
15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 1/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 10. First-Class ModulesChapter 10. First-Class Modules
You can think of OCaml as being broken up into two parts: a core language that is concerned with

values and types, and a module language that is concerned with modules and module signatures.

These sublanguages are strati�ed, in that modules can contain types and values, but ordinary

values can't contain modules or module types. That means you can't do things like de�ne a

variable whose value is a module, or a function that takes a module as an argument.

OCaml provides a way around this strati�cation in the form of �rst-class modules. First-class

modules are ordinary values that can be created from and converted back to regular modules.

First-class modules are a sophisticated technique, and you'll need to get comfortable with some

advanced aspects of the language to use them e�ectively. But it's worth learning, because letting

modules into the core language is quite powerful, increasing the range of what you can express

and making it easier to build �exible and modular systems.

WORKING WITH FIRST-CLASS MODULESWORKING WITH FIRST-CLASS MODULES

We'll start out by covering the basic mechanics of �rst-class modules by working through some

toy examples. We'll get to more realistic examples in the next section.

In that light, consider the following signature of a module with a single integer variable:

module type X_int = sig val x : int end;;
module type X_int = sig val x : int end

OCaml Utop ∗ fcm/main.topscript ∗ all code

We can also create a module that matches this signature:

module Three : X_int = struct let x = 3 end;;
module Three : X_int
Three.x;;
- : int = 3

OCaml Utop ∗ fcm/main.topscript , continued (part 1) ∗ all code

A �rst-class module is created by packaging up a module with a signature that it satis�es. This is

done using the module keyword, using the following syntax:

(module <Module> : <Module_type>)

Syntax ∗ fcm/pack.syntax ∗ all code

So, we can convert Three into a �rst-class module as follows:

let three = (module Three : X_int);;
val three : (module X_int) = <module>

OCaml Utop ∗ fcm/main.topscript , continued (part 2) ∗ all code

The module type doesn't need to be part of the construction of a �rst-class module if it can be

inferred. Thus, we can write:

module Four = struct let x = 4 end;;
module Four : sig val x : int end
let numbers = [three; (module Four)];;
val numbers : (module X_int) list = [<module>; <module>]

OCaml Utop ∗ fcm/main.topscript , continued (part 3) ∗ all code

We can also create a �rst-class module from an anonymous module:

let numbers = [three; (module struct let x = 4 end)];;
val numbers : (module X_int) list = [<module>; <module>]

OCaml Utop ∗ fcm/main.topscript , continued (part 4) ∗ all code

In order to access the contents of a �rst-class module, you need to unpack it into an ordinary

module. This can be done using the val keyword, using this syntax:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/pack.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 2/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(val <first_class_module> : <Module_type>)

Syntax ∗ fcm/unpack.syntax ∗ all code

And here's an example:

module New_three = (val three : X_int) ;;
module New_three : X_int
New_three.x;;
- : int = 3

OCaml Utop ∗ fcm/main.topscript , continued (part 5) ∗ all code

Equality of First-Class Module TypesEquality of First-Class Module Types

The type of the �rst-class module, e.g., (module X_int), is based on the fully quali�ed name of

the signature that was used to construct it. A �rst-class module based on a signature with a

di�erent name, even if it is substantively the same signature, will result in a distinct type:

module type Y_int = X_int;;
module type Y_int = X_int
let five = (module struct let x = 5 end : Y_int);;
val five : (module Y_int) = <module>
[three; five];;
Characters 8-12:
Error: This expression has type (module Y_int)
 but an expression was expected of type (module X_int)

OCaml Utop ∗ fcm/main.topscript , continued (part 6) ∗ all code

Even though their types as �rst-class modules are distinct, the underlying module types are

compatible (indeed, identical), so we can unify the types by unpacking and repacking the module:

[three; (module (val five))];;
- : (module X_int) list = [<module>; <module>]

OCaml Utop ∗ fcm/main.topscript , continued (part 7) ∗ all code

The way in which type equality for �rst-class modules is determined can be confusing. One

common and problematic case is that of creating an alias of a module type de�ned elsewhere.

This is often done to improve readability and can happen both through an explicit declaration of a

module type or implicitly through an include declaration. In both cases, this has the unintended

side e�ect of making �rst-class modules built o� the alias incompatible with those built o� the

original module type. To deal with this, we should be disciplined in how we refer to signatures

when constructing �rst-class modules.

We can also write ordinary functions which consume and create �rst-class modules. The

following shows the de�nition of two functions: to_int, which converts a (module X_int) into

an int; and plus, which returns the sum of two (module X_int):

let to_int m =
 let module M = (val m : X_int) in
 M.x
 ;;
val to_int : (module X_int) -> int = <fun>
let plus m1 m2 =
 (module struct
 let x = to_int m1 + to_int m2
 end : X_int)
 ;;
val plus : (module X_int) -> (module X_int) -> (module X_int) = <fun>

OCaml Utop ∗ fcm/main.topscript , continued (part 8) ∗ all code

With these functions in hand, we can now work with values of type (module X_int) in a more

natural style, taking advantage of the concision and simplicity of the core language:

let six = plus three three;;
val six : (module X_int) = <module>
to_int (List.fold ~init:six ~f:plus [three;three]);;
- : int = 12

OCaml Utop ∗ fcm/main.topscript , continued (part 9) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/unpack.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 3/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

There are some useful syntactic shortcuts when dealing with �rst-class modules. One notable

one is that you can do the conversion to an ordinary module within a pattern match. Thus, we

can rewrite the to_int function as follows:

let to_int (module M : X_int) = M.x ;;
val to_int : (module X_int) -> int = <fun>

OCaml Utop ∗ fcm/main.topscript , continued (part 10) ∗ all code

First-class modules can contain types and functions in addition to simple values like int. Here's

an interface that contains a type and a corresponding bump operation that takes a value of the

type and produces a new one:

module type Bumpable = sig
 type t
 val bump : t -> t
 end;;
module type Bumpable = sig type t val bump : t -> t end

OCaml Utop ∗ fcm/main.topscript , continued (part 11) ∗ all code

We can create multiple instances of this module with di�erent underlying types:

module Int_bumper = struct
 type t = int
 let bump n = n + 1
 end;;
module Int_bumper : sig type t = int val bump : t -> t end
module Float_bumper = struct
 type t = float
 let bump n = n +. 1.
 end;;
module Float_bumper : sig type t = float val bump : t -> t end

OCaml Utop ∗ fcm/main.topscript , continued (part 12) ∗ all code

And we can convert these to �rst-class modules:

let int_bumper = (module Int_bumper : Bumpable);;
val int_bumper : (module Bumpable) = <module>

OCaml Utop ∗ fcm/main.topscript , continued (part 13) ∗ all code

But you can't do much with int_bumper, since int_bumper is fully abstract, so that we can no

longer recover the fact that the type in question is int.

let (module Bumpable) = int_bumper in Bumpable.bump 3;;
Characters 52-53:
Error: This expression has type int but an expression was expected of type
 Bumpable.t

OCaml Utop ∗ fcm/main.topscript , continued (part 14) ∗ all code

To make int_bumper usable, we need to expose the type, which we can do as follows:

let int_bumper = (module Int_bumper : Bumpable with type t = int);;
val int_bumper : (module Bumpable with type t = int) = <module>
let float_bumper = (module Float_bumper : Bumpable with type t = float);;
val float_bumper : (module Bumpable with type t = float) = <module>

OCaml Utop ∗ fcm/main.topscript , continued (part 15) ∗ all code

The sharing constraints we've added above make the resulting �rst-class modules polymorphic

in the type t. As a result, we can now use these values on values of the matching type:

let (module Bumpable) = int_bumper in Bumpable.bump 3;;
- : int = 4
let (module Bumpable) = float_bumper in Bumpable.bump 3.5;;
- : float = 4.5

OCaml Utop ∗ fcm/main.topscript , continued (part 16) ∗ all code

We can also write functions that use such �rst-class modules polymorphically. The following

function takes two arguments: a Bumpable module and a list of elements of the same type as the

type t of the module:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 4/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let bump_list
 (type a)
 (module B : Bumpable with type t = a)
 (l: a list)
 =
 List.map ~f:B.bump l
 ;;
val bump_list : (module Bumpable with type t = 'a) -> 'a list -> 'a list =
 <fun>

OCaml Utop ∗ fcm/main.topscript , continued (part 17) ∗ all code

Here, we used a feature of OCaml that hasn't come up before: a locally abstract type. For any

function, you can declare a pseudoparameter of the form (type a) for any type name a which

introduces a fresh type. This type acts like an abstract type within the context of the function. In

the example above, the locally abstract type was used as part of a sharing constraint that ties the

type B.t with the type of the elements of the list passed in.

The resulting function is polymorphic in both the type of the list element and the type

Bumpable.t. We can see this function in action:

bump_list int_bumper [1;2;3];;
- : int list = [2; 3; 4]
bump_list float_bumper [1.5;2.5;3.5];;
- : float list = [2.5; 3.5; 4.5]

OCaml Utop ∗ fcm/main.topscript , continued (part 18) ∗ all code

Polymorphic �rst-class modules are important because they allow you to connect the types

associated with a �rst-class module to the types of other values you're working with.

More on Locally Abstract TypesMore on Locally Abstract Types

One of the key properties of locally abstract types is that they're dealt with as

abstract types in the function they're de�ned within, but are polymorphic from the

outside. Consider the following example:

let wrap_in_list (type a) (x:a) = [x];;
val wrap_in_list : 'a -> 'a list = <fun>

OCaml Utop ∗ fcm/main.topscript , continued (part 19) ∗ all code

This compiles successfully because the type a is used in a way that is compatible

with it being abstract, but the type of the function that is inferred is polymorphic.

If, on the other hand, we try to use the type a as equivalent to some concrete type,

say, int, then the compiler will complain:

OCaml Utop ∗ fcm/main.topscript , continued (part 20) ∗ all code

One common use of locally abstract types is to create a new type that can be used in

constructing a module. Here's an example of doing this to create a new �rst-class

module:

module type Comparable = sig
 type t
 val compare : t -> t -> int
 end ;;
module type Comparable = sig type t val compare : t -> t -> int end
let create_comparable (type a) compare =
 (module struct
 type t = a
 let compare = compare
 end : Comparable with type t = a)
 ;;
val create_comparable :
 ('a -> 'a -> int) -> (module Comparable with type t = 'a) = <fun>
create_comparable Int.compare;;
- : (module Comparable with type t = int) = <module>

let wrap_int_in_list (type a) (x:a) = x + x;;
Characters 38-39:
Error: This expression has type a but an expression was expected of type

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 5/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

create_comparable Float.compare;;
- : (module Comparable with type t = float) = <module>

OCaml Utop ∗ fcm/main.topscript , continued (part 21) ∗ all code

Here, what we e�ectively do is capture a polymorphic type and export it as a

concrete type within a module.

This technique is useful beyond �rst-class modules. For example, we can use the

same approach to construct a local module to be fed to a functor.

EXAMPLE: A QUERY-HANDLING FRAMEWORKEXAMPLE: A QUERY-HANDLING FRAMEWORK

Now let's look at �rst-class modules in the context of a more complete and realistic example. In

particular, consider the following signature for a module that implements a system for

responding to user-generated queries.

module type Query_handler = sig

 (** Configuration for a query handler. Note that this can be
 converted to and from an s-expression *)
 type config with sexp

 (** The name of the query-handling service *)
 val name : string

 (** The state of the query handler *)
 type t

 (** Creates a new query handler from a config *)
 val create : config -> t

 (** Evaluate a given query, where both input and output are
 s-expressions *)
 val eval : t -> Sexp.t -> Sexp.t Or_error.t
 end;;
module type Query_handler =
 sig
 type config
 val name : string
 type t
 val create : config -> t
 val eval : t -> Sexp.t -> Sexp.t Or_error.t
 val config_of_sexp : Sexp.t -> config
 val sexp_of_config : config -> Sexp.t
 end

OCaml Utop ∗ fcm/query_handler.topscript ∗ all code

Here, we used s-expressions as the format for queries and responses, as well as the con�guration

for the query handler. S-expressions are a simple, �exible, and human-readable serialization

format commonly used in Core. For now, it's enough to think of them as balanced parenthetical

expressions whose atomic values are strings, e.g., (this (is an) (s expression)).

In addition, we use the Sexplib syntax extension which extends OCaml by adding the with sexp

declaration. When attached to a type in a signature, with sexp adds declarations of s-expression

converters, for example:

module type M = sig type t with sexp end;;
module type M =
 sig type t val t_of_sexp : Sexp.t -> t val sexp_of_t : t -> Sexp.t end

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 1) ∗ all code

In a module, with sexp adds the implementation of those functions. Thus, we can write:

type u = { a: int; b: float } with sexp;;
type u = { a : int; b : float; }
val u_of_sexp : Sexp.t -> u = <fun>
val sexp_of_u : u -> Sexp.t = <fun>
sexp_of_u {a=3;b=7.};;
- : Sexp.t = ((a 3) (b 7))
u_of_sexp (Sexp.of_string "((a 43) (b 3.4))");;
- : u = {a = 43; b = 3.4}

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 2) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 6/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

This is all described in more detail in Chapter 17, Data Serialization with S-Expressions.

Implementing a Query HandlerImplementing a Query Handler

Let's look at some examples of query handlers that satisfy the Query_handler interface. The �rst

example is a handler that produces unique integer IDs. It works by keeping an internal counter

which it bumps every time it produces a new value. The input to the query in this case is just the

trivial s-expression (), otherwise known as Sexp.unit:

module Unique = struct
 type config = int with sexp
 type t = { mutable next_id: int }

 let name = "unique"
 let create start_at = { next_id = start_at }

 let eval t sexp =
 match Or_error.try_with (fun () -> unit_of_sexp sexp) with
 | Error _ as err -> err
 | Ok () ->
 let response = Ok (Int.sexp_of_t t.next_id) in
 t.next_id <- t.next_id + 1;
 response
 end;;
module Unique :
 sig
 type config = int
 val config_of_sexp : Sexp.t -> config
 val sexp_of_config : config -> Sexp.t
 type t = { mutable next_id : config; }
 val name : string
 val create : config -> t
 val eval : t -> Sexp.t -> (Sexp.t, Error.t) Result.t
 end

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 3) ∗ all code

We can use this module to create an instance of the Unique query handler and interact with it

directly:

let unique = Unique.create 0;;
val unique : Unique.t = {Unique.next_id = 0}
Unique.eval unique Sexp.unit;;
- : (Sexp.t, Error.t) Result.t = Ok 0
Unique.eval unique Sexp.unit;;
- : (Sexp.t, Error.t) Result.t = Ok 1

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 4) ∗ all code

Here's another example: a query handler that does directory listings. Here, the con�g is the

default directory that relative paths are interpreted within:

module List_dir = struct
 type config = string with sexp
 type t = { cwd: string }

 (** [is_abs p] Returns true if [p] is an absolute path *)
 let is_abs p =
 String.length p > 0 && p.[0] = '/'

 let name = "ls"
 let create cwd = { cwd }

 let eval t sexp =
 match Or_error.try_with (fun () -> string_of_sexp sexp) with
 | Error _ as err -> err
 | Ok dir ->
 let dir =
 if is_abs dir then dir
 else Filename.concat t.cwd dir
 in
 Ok (Array.sexp_of_t String.sexp_of_t (Sys.readdir dir))
 end;;
module List_dir :
 sig
 type config = string
 val config_of_sexp : Sexp.t -> config
 val sexp_of_config : config -> Sexp.t
 type t = { cwd : config; }

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 7/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 val is_abs : config -> bool
 val name : config
 val create : config -> t
 val eval : t -> Sexp.t -> (Sexp.t, Error.t) Result.t
 end

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 5) ∗ all code

Again, we can create an instance of this query handler and interact with it directly:

let list_dir = List_dir.create "/var";;
val list_dir : List_dir.t = {List_dir.cwd = "/var"}
List_dir.eval list_dir (sexp_of_string ".");;
- : (Sexp.t, Error.t) Result.t =
Ok
 (agentx at audit backups db empty folders jabberd lib log mail msgs netboot
 networkd root rpc run rwho spool tmp vm yp)
List_dir.eval list_dir (sexp_of_string "yp");;
- : (Sexp.t, Error.t) Result.t = Ok (binding binding~orig)

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 6) ∗ all code

Dispatching to Multiple Query HandlersDispatching to Multiple Query Handlers

Now, what if we want to dispatch queries to any of an arbitrary collection of handlers? Ideally,

we'd just like to pass in the handlers as a simple data structure like a list. This is awkward to do

with modules and functors alone, but it's quite natural with �rst-class modules. The �rst thing

we'll need to do is create a signature that combines a Query_handler module with an

instantiated query handler:

module type Query_handler_instance = sig
 module Query_handler : Query_handler
 val this : Query_handler.t
 end;;
module type Query_handler_instance =
 sig module Query_handler : Query_handler val this : Query_handler.t end

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 7) ∗ all code

With this signature, we can create a �rst-class module that encompasses both an instance of the

query and the matching operations for working with that query.

We can create an instance as follows:

let unique_instance =
 (module struct
 module Query_handler = Unique
 let this = Unique.create 0
 end : Query_handler_instance);;
val unique_instance : (module Query_handler_instance) = <module>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 8) ∗ all code

Constructing instances in this way is a little verbose, but we can write a function that eliminates

most of this boilerplate. Note that we are again making use of a locally abstract type:

let build_instance
 (type a)
 (module Q : Query_handler with type config = a)
 config
 =
 (module struct
 module Query_handler = Q
 let this = Q.create config
 end : Query_handler_instance)
 ;;
val build_instance :
 (module Query_handler with type config = 'a) ->
 'a -> (module Query_handler_instance) = <fun>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 9) ∗ all code

Using build_instance, constructing a new instance becomes a one-liner:

let unique_instance = build_instance (module Unique) 0;;
val unique_instance : (module Query_handler_instance) = <module>
let list_dir_instance = build_instance (module List_dir) "/var";;
val list_dir_instance : (module Query_handler_instance) = <module>

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 8/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 10) ∗ all code

We can now write code that lets you dispatch queries to one of a list of query handler instances.

We assume that the shape of the query is as follows:

(query-name query)

Scheme ∗ fcm/query-syntax.scm ∗ all code

where query-name is the name used to determine which query handler to dispatch the query to,

and query is the body of the query.

The �rst thing we'll need is a function that takes a list of query handler instances and constructs a

dispatch table from it:

let build_dispatch_table handlers =
 let table = String.Table.create () in
 List.iter handlers
 ~f:(fun ((module I : Query_handler_instance) as instance) ->
 Hashtbl.replace table ~key:I.Query_handler.name ~data:instance);
 table
 ;;
val build_dispatch_table :
 (module Query_handler_instance) list ->
 (module Query_handler_instance) String.Table.t = <fun>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 11) ∗ all code

Now, we need a function that dispatches to a handler using a dispatch table:

let dispatch dispatch_table name_and_query =
 match name_and_query with
 | Sexp.List [Sexp.Atom name; query] ->
 begin match Hashtbl.find dispatch_table name with
 | None ->
 Or_error.error "Could not find matching handler"
 name String.sexp_of_t
 | Some (module I : Query_handler_instance) ->
 I.Query_handler.eval I.this query
 end
 | _ ->
 Or_error.error_string "malformed query"
 ;;
val dispatch :
 (string, (module Query_handler_instance)) Hashtbl.t ->
 Sexp.t -> Sexp.t Or_error.t = <fun>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 12) ∗ all code

This function interacts with an instance by unpacking it into a module I and then using the query

handler instance (I.this) in concert with the associated module (I.Query_handler).

The bundling together of the module and the value is in many ways reminiscent of object-

oriented languages. One key di�erence, is that �rst-class modules allow you to package up more

than just functions or methods. As we've seen, you can also include types and even modules.

We've only used it in a small way here, but this extra power allows you to build more

sophisticated components that involve multiple interdependent types and values.

Now let's turn this into a complete, running example by adding a command-line interface:

let rec cli dispatch_table =
 printf ">>> %!";
 let result =
 match In_channel.input_line stdin with
 | None -> `Stop
 | Some line ->
 match Or_error.try_with (fun () -> Sexp.of_string line) with
 | Error e -> `Continue (Error.to_string_hum e)
 | Ok (Sexp.Atom "quit") -> `Stop
 | Ok query ->
 begin match dispatch dispatch_table query with
 | Error e -> `Continue (Error.to_string_hum e)
 | Ok s -> `Continue (Sexp.to_string_hum s)
 end;
 in
 match result with
 | `Stop -> ()
 | `Continue msg ->

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query-syntax.scm
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 9/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 printf "%s\n%!" msg;
 cli dispatch_table
 ;;
val cli : (string, (module Query_handler_instance)) Hashtbl.t -> unit = <fun>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 13) ∗ all code

We can most e�ectively run this command-line interface from a standalone program, which we

can do by putting the above code in a �le along with following command to launch the interface:

let () =
 cli (build_dispatch_table [unique_instance; list_dir_instance])

OCaml ∗ fcm/query_handler.ml , continued (part 1) ∗ all code

Here's an example of a session with this program:

$./query_handler.byte
>>> (unique ())
0
>>> (unique ())
1
>>> (ls .)
(agentx at audit backups db empty folders jabberd lib log mail msgs named
 netboot pgsql_socket_alt root rpc run rwho spool tmp vm yp)
>>> (ls vm)
(sleepimage swapfile0 swapfile1 swapfile2 swapfile3 swapfile4 swapfile5
 swapfile6)

OCaml Utop ∗ fcm/query_example.rawscript ∗ all code

Loading and Unloading Query HandlersLoading and Unloading Query Handlers

One of the advantages of �rst-class modules is that they a�ord a great deal of dynamism and

�exibility. For example, it's a fairly simple matter to change our design to allow query handlers to

be loaded and unloaded at runtime.

We'll do this by creating a query handler whose job is to control the set of active query handlers.

The module in question will be called Loader, and its con�guration is a list of known

Query_handler modules. Here are the basic types:

module Loader = struct
 type config = (module Query_handler) list sexp_opaque
 with sexp

 type t = { known : (module Query_handler) String.Table.t
 ; active : (module Query_handler_instance) String.Table.t
 }

 let name = "loader"

OCaml ∗ fcm/query_handler_core.ml , continued (part 1) ∗ all code

Note that a Loader.t has two tables: one containing the known query handler modules, and one

containing the active query handler instances. The Loader.t will be responsible for creating new

instances and adding them to the table, as well as for removing instances, all in response to user

queries.

Next, we'll need a function for creating a Loader.t. This function requires the list of known

query handler modules. Note that the table of active modules starts out as empty:

let create known_list =
 let active = String.Table.create () in
 let known = String.Table.create () in
 List.iter known_list
 ~f:(fun ((module Q : Query_handler) as q) ->
 Hashtbl.replace known ~key:Q.name ~data:q);
 { known; active }

OCaml ∗ fcm/query_handler_core.ml , continued (part 2) ∗ all code

Now we'll start writing out the functions for manipulating the table of active query handlers. We'll

start with the function for loading an instance. Note that it takes as an argument both the name of

the query handler and the con�guration for instantiating that handler in the form of an s-

expression. These are used for creating a �rst-class module of type (module

Query_handler_instance), which is then added to the active table:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_example.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 10/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let load t handler_name config =
 if Hashtbl.mem t.active handler_name then
 Or_error.error "Can't re-register an active handler"
 handler_name String.sexp_of_t
 else
 match Hashtbl.find t.known handler_name with
 | None ->
 Or_error.error "Unknown handler" handler_name String.sexp_of_t
 | Some (module Q : Query_handler) ->
 let instance =
 (module struct
 module Query_handler = Q
 let this = Q.create (Q.config_of_sexp config)
 end : Query_handler_instance)
 in
 Hashtbl.replace t.active ~key:handler_name ~data:instance;
 Ok Sexp.unit

OCaml ∗ fcm/query_handler_core.ml , continued (part 3) ∗ all code

Since the load function will refuse to load an already active handler, we also need the ability to

unload a handler. Note that the handler explicitly refuses to unload itself:

let unload t handler_name =
 if not (Hashtbl.mem t.active handler_name) then
 Or_error.error "Handler not active" handler_name String.sexp_of_t
 else if handler_name = name then
 Or_error.error_string "It's unwise to unload yourself"
 else (
 Hashtbl.remove t.active handler_name;
 Ok Sexp.unit
)

OCaml ∗ fcm/query_handler_core.ml , continued (part 4) ∗ all code

Finally, we need to implement the eval function, which will determine the query interface

presented to the user. We'll do this by creating a variant type, and using the s-expression

converter generated for that type to parse the query from the user:

type request =
 | Load of string * Sexp.t
 | Unload of string
 | Known_services
 | Active_services
 with sexp

OCaml ∗ fcm/query_handler_core.ml , continued (part 5) ∗ all code

The eval function itself is fairly straightforward, dispatching to the appropriate functions to

respond to each type of query. Note that we write <:sexp_of<string list>> to autogenerate a

function for converting a list of strings to an s-expression, as described in Chapter 17, Data

Serialization with S-Expressions.

This function ends the de�nition of the Loader module:

let eval t sexp =
 match Or_error.try_with (fun () -> request_of_sexp sexp) with
 | Error _ as err -> err
 | Ok resp ->
 match resp with
 | Load (name,config) -> load t name config
 | Unload name -> unload t name
 | Known_services ->
 Ok (<:sexp_of<string list>> (Hashtbl.keys t.known))
 | Active_services ->
 Ok (<:sexp_of<string list>> (Hashtbl.keys t.active))
end

OCaml ∗ fcm/query_handler_core.ml , continued (part 6) ∗ all code

Finally, we can put this all together with the command-line interface. We �rst create an instance

of the loader query handler and then add that instance to the loader's active table. We can then

just launch the command-line interface, passing it the active table:

let () =
 let loader = Loader.create [(module Unique); (module List_dir)] in
 let loader_instance =
 (module struct
 module Query_handler = Loader
 let this = loader

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_core.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 11/12

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 end : Query_handler_instance)
 in
 Hashtbl.replace loader.Loader.active
 ~key:Loader.name ~data:loader_instance;
 cli loader.Loader.active

OCaml ∗ fcm/query_handler_loader.ml , continued (part 1) ∗ all code

Now build this into a command-line interface to experiment with it:

$ corebuild query_handler_loader.byte

Terminal ∗ fcm/build_query_handler_loader.out ∗ all code

The resulting command-line interface behaves much as you'd expect, starting out with no query

handlers available but giving you the ability to load and unload them. Here's an example of it in

action. As you can see, we start out with loader itself as the only active handler:

$./query_handler_loader.byte
>>> (loader known_services)
(ls unique)
>>> (loader active_services)
(loader)

Terminal ∗ fcm/loader_cli1.out ∗ all code

Any attempt to use an inactive query handler will fail:

>>> (ls .)
Could not find matching handler: ls

Terminal ∗ fcm/loader_cli2.out ∗ all code

But, we can load the ls handler with a con�g of our choice, at which point it will be available for

use. And once we unload it, it will be unavailable yet again and could be reloaded with a di�erent

con�g:

>>> (loader (load ls /var))
()
>>> (ls /var)
(agentx at audit backups db empty folders jabberd lib log mail msgs named
 netboot pgsql_socket_alt root rpc run rwho spool tmp vm yp)
>>> (loader (unload ls))
()
>>> (ls /var)
Could not find matching handler: ls

Terminal ∗ fcm/loader_cli3.out ∗ all code

Notably, the loader can't be loaded (since it's not on the list of known handlers) and can't be

unloaded either:

>>> (loader (unload loader))
It's unwise to unload yourself

Terminal ∗ fcm/loader_cli4.out ∗ all code

Although we won't describe the details here, we can push this dynamism yet further using

OCaml's dynamic linking facilities, which allow you to compile and link in new code to a running

program. This can be automated using libraries like ocaml_plugin, which can be installed via

OPAM, and which automates much of the work�ow around setting up dynamic linking.

LIVING WITHOUT FIRST-CLASS MODULESLIVING WITHOUT FIRST-CLASS MODULES

It's worth noting that most designs that can be done with �rst-class modules can be simulated

without them, with some level of awkwardness. For example, we could rewrite our query handler

example without �rst-class modules using the following types:

type query_handler_instance = { name : string
 ; eval : Sexp.t -> Sexp.t Or_error.t
 }
 type query_handler = Sexp.t -> query_handler_instance
 ;;
type query_handler_instance = {
 name : string;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler_loader.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/build_query_handler_loader.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/loader_cli1.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/loader_cli2.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/loader_cli3.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/loader_cli4.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 10. First-Class Modules / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/first-class-modules.html 12/12

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 eval : Sexp.t -> Sexp.t Or_error.t;
}
type query_handler = Sexp.t -> query_handler_instance

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 14) ∗ all code

The idea here is that we hide the true types of the objects in question behind the functions stored

in the closure. Thus, we could put the Unique query handler into this framework as follows:

let unique_handler config_sexp =
 let config = Unique.config_of_sexp config_sexp in
 let unique = Unique.create config in
 { name = Unique.name
 ; eval = (fun config -> Unique.eval unique config)
 }
 ;;
val unique_handler : Sexp.t -> query_handler_instance = <fun>

OCaml Utop ∗ fcm/query_handler.topscript , continued (part 15) ∗ all code

For an example on this scale, the preceding approach is completely reasonable, and �rst-class

modules are not really necessary. But the more functionality you need to hide away behind a set

of closures, and the more complicated the relationships between the di�erent types in question,

the more awkward this approach becomes, and the better it is to use �rst-class modules.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffirst-class-modules.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/fcm/query_handler.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/objects.html

