
15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 1/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 8. Imperative ProgrammingChapter 8. Imperative Programming
Most of the code shown so far in this book, and indeed, most OCaml code in general, is pure. Pure

code works without mutating the program's internal state, performing I/O, reading the clock, or in

any other way interacting with changeable parts of the world. Thus, a pure function behaves like

a mathematical function, always returning the same results when given the same inputs, and

never a�ecting the world except insofar as it returns the value of its computation. Imperative

code, on the other hand, operates by side e�ects that modify a program's internal state or interact

with the outside world. An imperative function has a new e�ect, and potentially returns di�erent

results, every time it's called.

Pure code is the default in OCaml, and for good reason—it's generally easier to reason about, less

error prone and more composable. But imperative code is of fundamental importance to any

practical programming language, because real-world tasks require that you interact with the

outside world, which is by its nature imperative. Imperative programming can also be important

for performance. While pure code is quite e�cient in OCaml, there are many algorithms that can

only be implemented e�ciently using imperative techniques.

OCaml o�ers a happy compromise here, making it easy and natural to program in a pure style,

but also providing great support for imperative programming. This chapter will walk you through

OCaml's imperative features, and help you use them to their fullest.

EXAMPLE: IMPERATIVE DICTIONARIESEXAMPLE: IMPERATIVE DICTIONARIES

We'll start with the implementation of a simple imperative dictionary, i.e., a mutable mapping

from keys to values. This is really for illustration purposes; both Core and the standard library

provide imperative dictionaries, and for most real-world tasks, you should use one of those

implementations. There's more advice on using Core's implementation in particular in

Chapter 13, Maps and Hash Tables.

The dictionary we'll describe now, like those in Core and the standard library, will be

implemented as a hash table. In particular, we'll use an open hashing scheme, where the hash

table will be an array of buckets, each bucket containing a list of key/value pairs that have been

hashed into that bucket.

Here's the interface we'll match, provided as an mli. The type ('a, 'b) t represents a

dictionary with keys of type 'a and data of type 'b:

(* file: dictionary.mli *)
open Core.Std

type ('a, 'b) t

val create : unit -> ('a, 'b) t
val length : ('a, 'b) t -> int
val add : ('a, 'b) t -> key:'a -> data:'b -> unit
val find : ('a, 'b) t -> 'a -> 'b option
val iter : ('a, 'b) t -> f:(key:'a -> data:'b -> unit) -> unit
val remove : ('a, 'b) t -> 'a -> unit

OCaml ∗ imperative-programming/dictionary.mli , continued (part 1) ∗ all code

The mli also includes a collection of helper functions whose purpose and behavior should be

largely inferrable from their names and type signatures. Notice that a number of the functions, in

particular, ones like add that modify the dictionary, return unit. This is typical of functions that

act by side e�ect.

We'll now walk through the implementation (contained in the corresponding ml �le) piece by

piece, explaining di�erent imperative constructs as they come up.

Our �rst step is to de�ne the type of a dictionary as a record with two �elds:

(* file: dictionary.ml *)
open Core.Std

type ('a, 'b) t = { mutable length: int;
 buckets: ('a * 'b) list array;
 }

OCaml ∗ imperative-programming/dictionary.ml , continued (part 1) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 2/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The �rst �eld, length, is declared as mutable. In OCaml, records are immutable by default, but

individual �elds are mutable when marked as such. The second �eld, buckets, is immutable but

contains an array, which is itself a mutable data structure.

Now we'll start putting together the basic functions for manipulating a dictionary:

let num_buckets = 17

let hash_bucket key = (Hashtbl.hash key) mod num_buckets

let create () =
 { length = 0;
 buckets = Array.create ~len:num_buckets [];
 }

let length t = t.length

let find t key =
 List.find_map t.buckets.(hash_bucket key)
 ~f:(fun (key',data) -> if key' = key then Some data else None)

OCaml ∗ imperative-programming/dictionary.ml , continued (part 2) ∗ all code

Note that num_buckets is a constant, which means our bucket array is of �xed length. A practical

implementation would need to be able to grow the array as the number of elements in the

dictionary increases, but we'll omit this to simplify the presentation.

The function hash_bucket is used throughout the rest of the module to choose the position in

the array that a given key should be stored at. It is implemented on top of Hashtbl.hash, which

is a hash function provided by the OCaml runtime that can be applied to values of any type. Thus,

its own type is polymorphic: 'a -> int.

The other functions de�ned above are fairly straightforward:

create

Creates an empty dictionary.

length

Grabs the length from the corresponding record �eld, thus returning the number of entries

stored in the dictionary.

find

Looks for a matching key in the table and returns the corresponding value if found as an option.

Another important piece of imperative syntax shows up in find: we write array.(index) to

grab a value from an array. find also uses List.find_map, which you can see the type of by

typing it into the toplevel:

List.find_map;;
- : 'a list -> f:('a -> 'b option) -> 'b option = <fun>

OCaml Utop ∗ imperative-programming/examples.topscript , continued (part 1) ∗ all code

List.find_map iterates over the elements of the list, calling f on each one until a Some is

returned by f, at which point that value is returned. If f returns None on all values, then None is

returned.

Now let's look at the implementation of iter:

let iter t ~f =
 for i = 0 to Array.length t.buckets - 1 do
 List.iter t.buckets.(i) ~f:(fun (key, data) -> f ~key ~data)
 done

OCaml ∗ imperative-programming/dictionary.ml , continued (part 3) ∗ all code

iter is designed to walk over all the entries in the dictionary. In particular, iter t ~f will call f

for each key/value pair in dictionary t. Note that f must return unit, since it is expected to work

by side e�ect rather than by returning a value, and the overall iter function returns unit as well.

The code for iter uses two forms of iteration: a for loop to walk over the array of buckets; and

within that loop a call to List.iter to walk over the values in a given bucket. We could have

done the outer loop with a recursive function instead of a for loop, but for loops are

syntactically convenient, and are more familiar and idiomatic in imperative contexts.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/examples.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 3/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The following code is for adding and removing mappings from the dictionary:

let bucket_has_key t i key =
 List.exists t.buckets.(i) ~f:(fun (key',_) -> key' = key)

let add t ~key ~data =
 let i = hash_bucket key in
 let replace = bucket_has_key t i key in
 let filtered_bucket =
 if replace then
 List.filter t.buckets.(i) ~f:(fun (key',_) -> key' <> key)
 else
 t.buckets.(i)
 in
 t.buckets.(i) <- (key, data) :: filtered_bucket;
 if not replace then t.length <- t.length + 1

let remove t key =
 let i = hash_bucket key in
 if bucket_has_key t i key then (
 let filtered_bucket =
 List.filter t.buckets.(i) ~f:(fun (key',_) -> key' <> key)
 in
 t.buckets.(i) <- filtered_bucket;
 t.length <- t.length - 1
)

OCaml ∗ imperative-programming/dictionary.ml , continued (part 4) ∗ all code

This preceding code is made more complicated by the fact that we need to detect whether we are

overwriting or removing an existing binding, so we can decide whether t.length needs to be

changed. The helper function bucket_has_key is used for this purpose.

Another piece of syntax shows up in both add and remove: the use of the <- operator to update

elements of an array (array.(i) <- expr) and for updating a record �eld (record.field <-

expression).

We also use ;, the sequencing operator, to express a sequence of imperative actions. We could

have done the same using let bindings:

let () = t.buckets.(i) <- (key, data) :: filtered_bucket in
 if not replace then t.length <- t.length + 1

OCaml ∗ imperative-programming/dictionary2.ml , continued (part 1) ∗ all code

but ; is more concise and idiomatic. More generally,

<expr1>;
<expr2>;
...
<exprN>

Syntax ∗ imperative-programming/semicolon.syntax ∗ all code

is equivalent to

let () = <expr1> in
let () = <expr2> in
...
<exprN>

Syntax ∗ imperative-programming/let-unit.syntax ∗ all code

When a sequence expression expr1; expr2 is evaluated, expr1 is evaluated �rst, and then

expr2. The expression expr1 should have type unit (though this is a warning rather than a hard

restriction. The -strict-sequence compiler �ag makes this a hard restriction, which is

generally a good idea), and the value of expr2 is returned as the value of the entire sequence. For

example, the sequence print_string "hello world"; 1 + 2 �rst prints the string "hello

world", then returns the integer 3.

Note also that we do all of the side-e�ecting operations at the very end of each function. This is

good practice because it minimizes the chance that such operations will be interrupted with an

exception, leaving the data structure in an inconsistent state.

PRIMITIVE MUTABLE DATAPRIMITIVE MUTABLE DATA

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dictionary2.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/semicolon.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/let-unit.syntax
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 4/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Now that we've looked at a complete example, let's take a more systematic look at imperative

programming in OCaml. We encountered two di�erent forms of mutable data above: records with

mutable �elds and arrays. We'll now discuss these in more detail, along with the other primitive

forms of mutable data that are available in OCaml.

Array-Like DataArray-Like Data

OCaml supports a number of array-like data structures; i.e., mutable integer-indexed containers

that provide constant-time access to their elements. We'll discuss several of them in this section.

Ordinary arraysOrdinary arrays

The array type is used for general-purpose polymorphic arrays. The Array module has a variety

of utility functions for interacting with arrays, including a number of mutating operations. These

include Array.set, for setting an individual element, and Array.blit, for e�ciently copying

values from one range of indices to another.

Arrays also come with special syntax for retrieving an element from an array:

<array_expr>.(<index_expr>)

Syntax ∗ imperative-programming/array-get.syntax ∗ all code

and for setting an element in an array:

<array_expr>.(<index_expr>) <- <value_expr>

Syntax ∗ imperative-programming/array-set.syntax ∗ all code

Out-of-bounds accesses for arrays (and indeed for all the array-like data structures) will lead to

an exception being thrown.

Array literals are written using [| and |] as delimiters. Thus, [| 1; 2; 3 |] is a literal integer

array.

StringsStrings

Strings are essentially byte arrays which are often used for textual data. The main advantage of

using a string in place of a Char.t array (a Char.t is an 8-bit character) is that the former is

considerably more space-e�cient; an array uses one word—8 bytes on a 64-bit machine—to store

a single entry, whereas strings use 1 byte per character.

Strings also come with their own syntax for getting and setting values:

<string_expr>.[<index_expr>]
<string_expr>.[<index_expr>] <- <char_expr>

Syntax ∗ imperative-programming/string.syntax ∗ all code

And string literals are bounded by quotes. There's also a module String where you'll �nd useful

functions for working with strings.

BigarraysBigarrays

A Bigarray.t is a handle to a block of memory stored outside of the OCaml heap. These are

mostly useful for interacting with C or Fortran libraries, and are discussed in Chapter 20,

Memory Representation of Values. Bigarrays too have their own getting and setting syntax:

<bigarray_expr>.{<index_expr>}
<bigarray_expr>.{<index_expr>} <- <value_expr>

Syntax ∗ imperative-programming/bigarray.syntax ∗ all code

Mutable Record and Object Fields and Ref CellsMutable Record and Object Fields and Ref Cells

As we've seen, records are immutable by default, but individual record �elds can be declared as

mutable. These mutable �elds can be set using the <- operator, i.e., record.field <- expr.

As we'll see in Chapter 11, Objects, �elds of an object can similarly be declared as mutable, and

can then be modi�ed in much the same way as record �elds.

Ref cellsRef cells

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/array-get.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/array-set.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/string.syntax
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/bigarray.syntax
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/objects.html

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 5/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Variables in OCaml are never mutable—they can refer to mutable data, but what the variable

points to can't be changed. Sometimes, though, you want to do exactly what you would do with a

mutable variable in another language: de�ne a single, mutable value. In OCaml this is typically

achieved using a ref, which is essentially a container with a single mutable polymorphic �eld.

The de�nition for the ref type is as follows:

type 'a ref = { mutable contents : 'a };;
type 'a ref = { mutable contents : 'a; }

OCaml Utop ∗ imperative-programming/ref.topscript , continued (part 1) ∗ all code

The standard library de�nes the following operators for working with refs.

ref expr

Constructs a reference cell containing the value de�ned by the expression expr.

!refcell

Returns the contents of the reference cell.

refcell := expr

Replaces the contents of the reference cell.

You can see these in action:

let x = ref 1;;
val x : int ref = {contents = 1}
!x;;
- : int = 1
x := !x + 1;;
- : unit = ()
!x;;
- : int = 2

OCaml Utop ∗ imperative-programming/ref.topscript , continued (part 3) ∗ all code

The preceding are just ordinary OCaml functions, which could be de�ned as follows:

let ref x = { contents = x };;
val ref : 'a -> 'a ref = <fun>
let (!) r = r.contents;;
val (!) : 'a ref -> 'a = <fun>
let (:=) r x = r.contents <- x;;
val (:=) : 'a ref -> 'a -> unit = <fun>

OCaml Utop ∗ imperative-programming/ref.topscript , continued (part 2) ∗ all code

Foreign FunctionsForeign Functions

Another source of imperative operations in OCaml is resources that come from interfacing with

external libraries through OCaml's foreign function interface (FFI). The FFI opens OCaml up to

imperative constructs that are exported by system calls or other external libraries. Many of these

come built in, like access to the write system call or to the clock, while others come from user

libraries, like LAPACK bindings. OCaml's FFI is discussed in more detail in Chapter 19, Foreign

Function Interface.

FOR AND WHILE LOOPSFOR AND WHILE LOOPS

OCaml provides support for traditional imperative looping constructs, in particular, for and

while loops. Neither of these constructs is strictly necessary, since they can be simulated with

recursive functions. Nonetheless, explicit for and while loops are both more concise and more

idiomatic when programming imperatively.

The for loop is the simpler of the two. Indeed, we've already seen the for loop in action—the

iter function in Dictionary is built using it. Here's a simple example of for:

for i = 0 to 3 do printf "i = %d\n" i done;;

i = 0
i = 1
i = 2

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/ref.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/ref.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/ref.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 6/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

i = 3
- : unit = ()

OCaml Utop ∗ imperative-programming/for.topscript , continued (part 1) ∗ all code

As you can see, the upper and lower bounds are inclusive. We can also use downto to iterate in

the other direction:

for i = 3 downto 0 do printf "i = %d\n" i done;;

i = 3
i = 2
i = 1
i = 0
- : unit = ()

OCaml Utop ∗ imperative-programming/for.topscript , continued (part 2) ∗ all code

Note that the loop variable of a for loop, i in this case, is immutable in the scope of the loop and

is also local to the loop, i.e., it can't be referenced outside of the loop.

OCaml also supports while loops, which include a condition and a body. The loop �rst evaluates

the condition, and then, if it evaluates to true, evaluates the body and starts the loop again. Here's

a simple example of a function for reversing an array in place:

let rev_inplace ar =
 let i = ref 0 in
 let j = ref (Array.length ar - 1) in
 (* terminate when the upper and lower indices meet *)
 while !i < !j do
 (* swap the two elements *)
 let tmp = ar.(!i) in
 ar.(!i) <- ar.(!j);
 ar.(!j) <- tmp;
 (* bump the indices *)
 incr i;
 decr j
 done
 ;;
val rev_inplace : 'a array -> unit = <fun>
let nums = [|1;2;3;4;5|];;
val nums : int array = [|1; 2; 3; 4; 5|]
rev_inplace nums;;
- : unit = ()
nums;;
- : int array = [|5; 4; 3; 2; 1|]

OCaml Utop ∗ imperative-programming/for.topscript , continued (part 3) ∗ all code

In the preceding example, we used incr and decr, which are built-in functions for incrementing

and decrementing an int ref by one, respectively.

EXAMPLE: DOUBLY LINKED LISTSEXAMPLE: DOUBLY LINKED LISTS

Another common imperative data structure is the doubly linked list. Doubly linked lists can be

traversed in both directions, and elements can be added and removed from the list in constant

time. Core de�nes a doubly linked list (the module is called Doubly_linked), but we'll de�ne our

own linked list library as an illustration.

Here's the mli of the module we'll build:

(* file: dlist.mli *)
open Core.Std

type 'a t
type 'a element

(** Basic list operations *)
val create : unit -> 'a t
val is_empty : 'a t -> bool

(** Navigation using [element]s *)
val first : 'a t -> 'a element option
val next : 'a element -> 'a element option
val prev : 'a element -> 'a element option
val value : 'a element -> 'a

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/for.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/for.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/for.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 7/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(** Whole-data-structure iteration *)
val iter : 'a t -> f:('a -> unit) -> unit
val find_el : 'a t -> f:('a -> bool) -> 'a element option

(** Mutation *)
val insert_first : 'a t -> 'a -> 'a element
val insert_after : 'a element -> 'a -> 'a element
val remove : 'a t -> 'a element -> unit

OCaml ∗ imperative-programming/dlist.mli ∗ all code

Note that there are two types de�ned here: 'a t, the type of a list; and 'a element, the type of an

element. Elements act as pointers to the interior of a list and allow us to navigate the list and give

us a point at which to apply mutating operations.

Now let's look at the implementation. We'll start by de�ning 'a element and 'a t:

(* file: dlist.ml *)
open Core.Std

type 'a element =
 { value : 'a;
 mutable next : 'a element option;
 mutable prev : 'a element option
 }

type 'a t = 'a element option ref

OCaml ∗ imperative-programming/dlist.ml , continued (part 1) ∗ all code

An 'a element is a record containing the value to be stored in that node as well as optional (and

mutable) �elds pointing to the previous and next elements. At the beginning of the list, the prev

�eld is None, and at the end of the list, the next �eld is None.

The type of the list itself, 'a t, is a mutable reference to an optional element. This reference is

None if the list is empty, and Some otherwise.

Now we can de�ne a few basic functions that operate on lists and elements:

let create () = ref None
let is_empty t = !t = None

let value elt = elt.value

let first t = !t
let next elt = elt.next
let prev elt = elt.prev

OCaml ∗ imperative-programming/dlist.ml , continued (part 2) ∗ all code

These all follow relatively straightforwardly from our type de�nitions.

Cyclic Data StructuresCyclic Data Structures

Doubly linked lists are a cyclic data structure, meaning that it is possible to follow a

nontrivial sequence of pointers that closes in on itself. In general, building cyclic

data structures requires the use of side e�ects. This is done by constructing the data

elements �rst, and then adding cycles using assignment afterward.

There is an exception to this, though: you can construct �xed-size cyclic data

structures using let rec:

let rec endless_loop = 1 :: 2 :: 3 :: endless_loop;;
val endless_loop : int list =
 [1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2;
 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3;
 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1;
 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2;
 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3;
 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1;
 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2;
 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3;
 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1;
 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2;
 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3;
 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1;
 ...]

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 8/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ imperative-programming/examples.topscript , continued (part 2) ∗ all code

This approach is quite limited, however. General-purpose cyclic data structures

require mutation.

Modifying the ListModifying the List

Now, we'll start considering operations that mutate the list, starting with insert_first, which

inserts an element at the front of the list:

let insert_first t value =
 let new_elt = { prev = None; next = !t; value } in
 begin match !t with
 | Some old_first -> old_first.prev <- Some new_elt
 | None -> ()
 end;
 t := Some new_elt;
 new_elt

OCaml ∗ imperative-programming/dlist.ml , continued (part 3) ∗ all code

insert_first �rst de�nes a new element new_elt, and then links it into the list, �nally setting

the list itself to point to new_elt. Note that the precedence of a match expression is very low, so

to separate it from the following assignment (t := Some new_elt), we surround the match with

begin ... end. We could have used parentheses for the same purpose. Without some kind of

bracketing, the �nal assignment would incorrectly become part of the None case.

We can use insert_after to insert elements later in the list. insert_after takes as arguments

both an element after which to insert the new node and a value to insert:

let insert_after elt value =
 let new_elt = { value; prev = Some elt; next = elt.next } in
 begin match elt.next with
 | Some old_next -> old_next.prev <- Some new_elt
 | None -> ()
 end;
 elt.next <- Some new_elt;
 new_elt

OCaml ∗ imperative-programming/dlist.ml , continued (part 4) ∗ all code

Finally, we need a remove function:

let remove t elt =
 let { prev; next; _ } = elt in
 begin match prev with
 | Some prev -> prev.next <- next
 | None -> t := next
 end;
 begin match next with
 | Some next -> next.prev <- prev;
 | None -> ()
 end;
 elt.prev <- None;
 elt.next <- None

OCaml ∗ imperative-programming/dlist.ml , continued (part 5) ∗ all code

Note that the preceding code is careful to change the prev pointer of the following element and

the next pointer of the previous element, if they exist. If there's no previous element, then the list

pointer itself is updated. In any case, the next and previous pointers of the element itself are set to

None.

These functions are more fragile than they may seem. In particular, misuse of the interface may

lead to corrupted data. For example, double-removing an element will cause the main list

reference to be set to None, thus emptying the list. Similar problems arise from removing an

element from a list it doesn't belong to.

This shouldn't be a big surprise. Complex imperative data structures can be quite tricky,

considerably trickier than their pure equivalents. The issues described previously can be dealt

with by more careful error detection, and such error correction is taken care of in modules like

Core's Doubly_linked. You should use imperative data structures from a well-designed library

when you can. And when you can't, you should make sure to put great care into your error

handling.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/examples.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 9/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Iteration FunctionsIteration Functions

When de�ning containers like lists, dictionaries, and trees, you'll typically want to de�ne a set of

iteration functions like iter, map, and fold, which let you concisely express common iteration

patterns.

Dlist has two such iterators: iter, the goal of which is to call a unit-producing function on

every element of the list, in order; and find_el, which runs a provided test function on each

values stored in the list, returning the �rst element that passes the test. Both iter and find_el

are implemented using simple recursive loops that use next to walk from element to element

and value to extract the element from a given node:

let iter t ~f =
 let rec loop = function
 | None -> ()
 | Some el -> f (value el); loop (next el)
 in
 loop !t

let find_el t ~f =
 let rec loop = function
 | None -> None
 | Some elt ->
 if f (value elt) then Some elt
 else loop (next elt)
 in
 loop !t

OCaml ∗ imperative-programming/dlist.ml , continued (part 6) ∗ all code

This completes our implementation, but there's still considerably more work to be done to make

a really usable doubly linked list. As mentioned earlier, you're probably better o� using

something like Core's Doubly_linked module that has a more complete interface and has more

of the tricky corner cases worked out. Nonetheless, this example should serve to demonstrate

some of the techniques you can use to build nontrivial imperative data structure in OCaml, as

well as some of the pitfalls.

LAZINESS AND OTHER BENIGN EFFECTSLAZINESS AND OTHER BENIGN EFFECTS

There are many instances where you basically want to program in a pure style, but you want to

make limited use of side e�ects to improve the performance of your code. Such side e�ects are

sometimes called benign e�ects, and they are a useful way of leveraging OCaml's imperative

features while still maintaining most of the bene�ts of pure programming.

One of the simplest benign e�ects is laziness. A lazy value is one that is not computed until it is

actually needed. In OCaml, lazy values are created using the lazy keyword, which can be used to

convert any expression of type s into a lazy value of type s Lazy.t. The evaluation of that

expression is delayed until forced with Lazy.force:

let v = lazy (print_string "performing lazy computation\n"; sqrt 16.);;
val v : float lazy_t = <lazy>
Lazy.force v;;

performing lazy computation
- : float = 4.
Lazy.force v;;
- : float = 4.

OCaml Utop ∗ imperative-programming/lazy.topscript , continued (part 1) ∗ all code

You can see from the print statement that the actual computation was performed only once, and

only after force had been called.

To better understand how laziness works, let's walk through the implementation of our own lazy

type. We'll start by declaring types to represent a lazy value:

type 'a lazy_state =
 | Delayed of (unit -> 'a)
 | Value of 'a
 | Exn of exn
 ;;
type 'a lazy_state = Delayed of (unit -> 'a) | Value of 'a | Exn of exn

OCaml Utop ∗ imperative-programming/lazy.topscript , continued (part 2) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/dlist.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/lazy.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/lazy.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 10/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

A lazy_state represents the possible states of a lazy value. A lazy value is Delayed before it has

been run, where Delayed holds a function for computing the value in question. A lazy value is in

the Value state when it has been forced and the computation ended normally. The Exn case is for

when the lazy value has been forced, but the computation ended with an exception. A lazy value

is simply a ref containing a lazy_state, where the ref makes it possible to change from being

in the Delayed state to being in the Value or Exn states.

We can create a lazy value from a thunk, i.e., a function that takes a unit argument. Wrapping an

expression in a thunk is another way to suspend the computation of an expression:

let create_lazy f = ref (Delayed f);;
val create_lazy : (unit -> 'a) -> 'a lazy_state ref = <fun>
let v = create_lazy
 (fun () -> print_string "performing lazy computation\n"; sqrt 16.);;
val v : float lazy_state ref = {contents = Delayed <fun>}

OCaml Utop ∗ imperative-programming/lazy.topscript , continued (part 3) ∗ all code

Now we just need a way to force a lazy value. The following function does just that:

let force v =
 match !v with
 | Value x -> x
 | Exn e -> raise e
 | Delayed f ->
 try
 let x = f () in
 v := Value x;
 x
 with exn ->
 v := Exn exn;
 raise exn
 ;;
val force : 'a lazy_state ref -> 'a = <fun>

OCaml Utop ∗ imperative-programming/lazy.topscript , continued (part 4) ∗ all code

Which we can use in the same way we used Lazy.force:

force v;;

performing lazy computation
- : float = 4.
force v;;
- : float = 4.

OCaml Utop ∗ imperative-programming/lazy.topscript , continued (part 5) ∗ all code

The main user-visible di�erence between our implementation of laziness and the built-in version

is syntax. Rather than writing create_lazy (fun () -> sqrt 16.), we can (with the built-in

lazy) just write lazy (sqrt 16.).

Memoization and Dynamic ProgrammingMemoization and Dynamic Programming

Another benign e�ect is memoization. A memoized function remembers the result of previous

invocations of the function so that they can be returned without further computation when the

same arguments are presented again.

Here's a function that takes as an argument an arbitrary single-argument function and returns a

memoized version of that function. Here we'll use Core's Hashtbl module, rather than our toy

Dictionary:

let memoize f =
 let table = Hashtbl.Poly.create () in
 (fun x ->
 match Hashtbl.find table x with
 | Some y -> y
 | None ->
 let y = f x in
 Hashtbl.add_exn table ~key:x ~data:y;
 y
);;
val memoize : ('a -> 'b) -> 'a -> 'b = <fun>

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 1) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/lazy.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/lazy.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/lazy.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 11/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The preceding code is a bit tricky. memoize takes as its argument a function f and then allocates a

hash table (called table) and returns a new function as the memoized version of f. When called,

this new function looks in table �rst, and if it fails to �nd a value, calls f and stashes the result in

table. Note that table doesn't go out of scope as long as the function returned by memoize is in

scope.

Memoization can be useful whenever you have a function that is expensive to recompute and you

don't mind caching old values inde�nitely. One important caution: a memoized function by its

nature leaks memory. As long as you hold on to the memoized function, you're holding every

result it has returned thus far.

Memoization is also useful for e�ciently implementing some recursive algorithms. One good

example is the algorithm for computing the edit distance (also called the Levenshtein distance)

between two strings. The edit distance is the number of single-character changes (including

letter switches, insertions, and deletions) required to convert one string to the other. This kind of

distance metric can be useful for a variety of approximate string-matching problems, like

spellcheckers.

Consider the following code for computing the edit distance. Understanding the algorithm isn't

important here, but you should pay attention to the structure of the recursive calls:

let rec edit_distance s t =
 match String.length s, String.length t with
 | (0,x) | (x,0) -> x
 | (len_s,len_t) ->
 let s' = String.drop_suffix s 1 in
 let t' = String.drop_suffix t 1 in
 let cost_to_drop_both =
 if s.[len_s - 1] = t.[len_t - 1] then 0 else 1
 in
 List.reduce_exn ~f:Int.min
 [edit_distance s' t + 1
 ; edit_distance s t' + 1
 ; edit_distance s' t' + cost_to_drop_both
]
 ;;
val edit_distance : string -> string -> int = <fun>
edit_distance "OCaml" "ocaml";;
- : int = 2

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 2) ∗ all code

The thing to note is that if you call edit_distance "OCaml" "ocaml", then that will in turn

dispatch the following calls:

edit_distance "OCam" "ocaml"
edit_distance "OCaml" "ocam"
edit_distance "OCam" "ocam"

Diagram ∗ imperative-programming/edit_distance.ascii ∗ all code

And these calls will in turn dispatch other calls:

edit_distance "OCam" "ocaml"
 edit_distance "OCa" "ocaml"
 edit_distance "OCam" "ocam"
 edit_distance "OCa" "ocam"
edit_distance "OCaml" "ocam"
 edit_distance "OCam" "ocam"
 edit_distance "OCaml" "oca"
 edit_distance "OCam" "oca"
edit_distance "OCam" "ocam"
 edit_distance "OCa" "ocam"
 edit_distance "OCam" "oca"
 edit_distance "OCa" "oca"

Diagram ∗ imperative-programming/edit_distance2.ascii ∗ all code

As you can see, some of these calls are repeats. For example, there are two di�erent calls to

edit_distance "OCam" "oca". The number of redundant calls grows exponentially with the

size of the strings, meaning that our implementation of edit_distance is brutally slow for large

strings. We can see this by writing a small timing function:

let time f =
 let start = Time.now () in

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/edit_distance.ascii
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/edit_distance2.ascii
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 12/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 let x = f () in
 let stop = Time.now () in
 printf "Time: %s\n" (Time.Span.to_string (Time.diff stop start));
 x ;;
val time : (unit -> 'a) -> 'a = <fun>

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 3) ∗ all code

And now we can use this to try out some examples:

time (fun () -> edit_distance "OCaml" "ocaml");;

Time: 0.698805ms
- : int = 2
time (fun () -> edit_distance "OCaml 4.01" "ocaml 4.01");;

Time: 1.78467s
- : int = 2

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 4) ∗ all code

Just those few extra characters made it thousands of times slower!

Memoization would be a huge help here, but to �x the problem, we need to memoize the calls that

edit_distance makes to itself. This technique is sometimes referred to as dynamic

programming. To see how to do this, let's step away from edit_distance and instead consider a

much simpler example: computing the nth element of the Fibonacci sequence. The Fibonacci

sequence by de�nition starts out with two 1s, with every subsequent element being the sum of

the previous two. The classic recursive de�nition of Fibonacci is as follows:

let rec fib i =
 if i <= 1 then 1 else fib (i - 1) + fib (i - 2);;
val fib : int -> int = <fun>

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 1) ∗ all code

This is, however, exponentially slow, for the same reason that edit_distance was slow: we end

up making many redundant calls to fib. It shows up quite dramatically in the performance:

time (fun () -> fib 20);;

Time: 0.379086ms
- : int = 10946
time (fun () -> fib 40);;

Time: 4.61983s
- : int = 165580141

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 2) ∗ all code

As you can see, fib 40 takes thousands of times longer to compute than fib 20.

So, how can we use memoization to make this faster? The tricky bit is that we need to insert the

memoization before the recursive calls within fib. We can't just de�ne fib in the ordinary way

and memoize it after the fact and expect the �rst call to fib to be improved:

let fib = memoize fib;;
val fib : int -> int = <fun>
time (fun () -> fib 40);;

Time: 4.90749s
- : int = 165580141
time (fun () -> fib 40);;

Time: 0.00286102ms
- : int = 165580141

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 3) ∗ all code

In order to make fib fast, our �rst step will be to rewrite fib in a way that unwinds the

recursion. The following version expects as its �rst argument a function (called fib) that will be

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 13/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

called in lieu of the usual recursive call:

let fib_norec fib i =
 if i <= 1 then i
 else fib (i - 1) + fib (i - 2) ;;
val fib_norec : (int -> int) -> int -> int = <fun>

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 4) ∗ all code

We can now turn this back into an ordinary Fibonacci function by tying the recursive knot:

let rec fib i = fib_norec fib i;;
val fib : int -> int = <fun>
fib 20;;
- : int = 6765

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 5) ∗ all code

We can even write a polymorphic function that we'll call make_rec that can tie the recursive knot

for any function of this form:

let make_rec f_norec =
 let rec f x = f_norec f x in
 f
 ;;
val make_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>
let fib = make_rec fib_norec;;
val fib : int -> int = <fun>
fib 20;;
- : int = 6765

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 6) ∗ all code

This is a pretty strange piece of code, and it may take a few moments of thought to �gure out

what's going on. Like fib_norec, the function f_norec passed into make_rec is a function that

isn't recursive but takes as an argument a function that it will call. What make_rec does is to

essentially feed f_norec to itself, thus making it a true recursive function.

This is clever enough, but all we've really done is �nd a new way to implement the same old slow

Fibonacci function. To make it faster, we need a variant of make_rec that inserts memoization

when it ties the recursive knot. We'll call that function memo_rec:

let memo_rec f_norec x =
 let fref = ref (fun _ -> assert false) in
 let f = memoize (fun x -> f_norec !fref x) in
 fref := f;
 f x
 ;;
val memo_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 7) ∗ all code

Note that memo_rec has the same signature as make_rec.

We're using the reference here as a way of tying the recursive knot without using a let rec,

which for reasons we'll describe later wouldn't work here.

Using memo_rec, we can now build an e�cient version of fib:

let fib = memo_rec fib_norec;;
val fib : int -> int = <fun>
time (fun () -> fib 40);;

Time: 0.0371933ms
- : int = 102334155

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 8) ∗ all code

And as you can see, the exponential time complexity is now gone.

The memory behavior here is important. If you look back at the de�nition of memo_rec, you'll see

that the call memo_rec fib_norec does not trigger a call to memoize. Only when fib is called

and thereby the �nal argument to memo_rec is presented does memoize get called. The result of

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 14/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

that call falls out of scope when the fib call returns, and so calling memo_rec on a function does

not create a memory leak—the memoization table is collected after the computation completes.

We can use memo_rec as part of a single declaration that makes this look like it's little more than a

special form of let rec:

let fib = memo_rec (fun fib i ->
 if i <= 1 then 1 else fib (i - 1) + fib (i - 2));;
val fib : int -> int = <fun>

OCaml Utop ∗ imperative-programming/fib.topscript , continued (part 9) ∗ all code

Memoization is overkill for implementing Fibonacci, and indeed, the fib de�ned above is not

especially e�cient, allocating space linear in the number passed in to fib. It's easy enough to

write a Fibonacci function that takes a constant amount of space.

But memoization is a good approach for optimizing edit_distance, and we can apply the same

approach we used on fib here. We will need to change edit_distance to take a pair of strings

as a single argument, since memo_rec only works on single-argument functions. (We can always

recover the original interface with a wrapper function.) With just that change and the addition of

the memo_rec call, we can get a memoized version of edit_distance:

let edit_distance = memo_rec (fun edit_distance (s,t) ->
 match String.length s, String.length t with
 | (0,x) | (x,0) -> x
 | (len_s,len_t) ->
 let s' = String.drop_suffix s 1 in
 let t' = String.drop_suffix t 1 in
 let cost_to_drop_both =
 if s.[len_s - 1] = t.[len_t - 1] then 0 else 1
 in
 List.reduce_exn ~f:Int.min
 [edit_distance (s',t) + 1
 ; edit_distance (s ,t') + 1
 ; edit_distance (s',t') + cost_to_drop_both
]) ;;
val edit_distance : string * string -> int = <fun>

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 6) ∗ all code

This new version of edit_distance is much more e�cient than the one we started with; the

following call is many thousands of times faster than it was without memoization:

time (fun () -> edit_distance ("OCaml 4.01","ocaml 4.01"));;

Time: 0.344038ms
- : int = 2

OCaml Utop ∗ imperative-programming/memo.topscript , continued (part 7) ∗ all code

Limitations of let recLimitations of let rec

You might wonder why we didn't tie the recursive knot in memo_rec using let rec,

as we did for make_rec earlier. Here's code that tries to do just that:

OCaml Utop ∗ imperative-programming/letrec.topscript , continued (part 1) ∗ all code

OCaml rejects the de�nition because OCaml, as a strict language, has limits on what

it can put on the righthand side of a let rec. In particular, imagine how the

following code snippet would be compiled:

let rec x = x + 1

OCaml ∗ imperative-programming/let_rec.ml ∗ all code

let memo_rec f_norec =
 let rec f = memoize (fun x -> f_norec f x) in
 f
 ;;
Characters 39-69:
Error: This kind of expression is not allowed as right-hand side of `let

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/fib.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/memo.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/letrec.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/let_rec.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 15/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Note that x is an ordinary value, not a function. As such, it's not clear how this

de�nition should be handled by the compiler. You could imagine it compiling down

to an in�nite loop, but x is of type int, and there's no int that corresponds to an

in�nite loop. As such, this construct is e�ectively impossible to compile.

To avoid such impossible cases, the compiler only allows three possible constructs

to show up on the righthand side of a let rec: a function de�nition, a constructor,

or the lazy keyword. This excludes some reasonable things, like our de�nition of

memo_rec, but it also blocks things that don't make sense, like our de�nition of x.

It's worth noting that these restrictions don't show up in a lazy language like

Haskell. Indeed, we can make something like our de�nition of x work if we use

OCaml's laziness:

let rec x = lazy (Lazy.force x + 1);;
val x : int lazy_t = <lazy>

OCaml Utop ∗ imperative-programming/letrec.topscript , continued (part 2) ∗ all code

Of course, actually trying to compute this will fail. OCaml's lazy throws an

exception when a lazy value tries to force itself as part of its own evaluation.

Lazy.force x;;
Exception: Lazy.Undefined.

OCaml Utop ∗ imperative-programming/letrec.topscript , continued (part 3) ∗ all code

But we can also create useful recursive de�nitions with lazy. In particular, we can

use laziness to make our de�nition of memo_rec work without explicit mutation:

let lazy_memo_rec f_norec x =
 let rec f = lazy (memoize (fun x -> f_norec (Lazy.force f) x)) in
 (Lazy.force f) x
 ;;
val lazy_memo_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>
time (fun () -> lazy_memo_rec fib_norec 40);;

Time: 0.041008ms
- : int = 102334155

OCaml Utop ∗ imperative-programming/letrec.topscript , continued (part 5) ∗ all code

Laziness is more constrained than explicit mutation, and so in some cases can lead

to code whose behavior is easier to think about.

INPUT AND OUTPUTINPUT AND OUTPUT

Imperative programming is about more than modifying in-memory data structures. Any function

that doesn't boil down to a deterministic transformation from its arguments to its return value is

imperative in nature. That includes not only things that mutate your program's data, but also

operations that interact with the world outside of your program. An important example of this

kind of interaction is I/O, i.e., operations for reading or writing data to things like �les, terminal

input and output, and network sockets.

There are multiple I/O libraries in OCaml. In this section we'll discuss OCaml's bu�ered I/O

library that can be used through the In_channel and Out_channel modules in Core. Other I/O

primitives are also available through the Unix module in Core as well as Async, the

asynchronous I/O library that is covered in Chapter 18, Concurrent Programming with Async.

Most of the functionality in Core's In_channel and Out_channel (and in Core's Unix module)

derives from the standard library, but we'll use Core's interfaces here.

Terminal I/OTerminal I/O

OCaml's bu�ered I/O library is organized around two types: in_channel, for channels you read

from, and out_channel, for channels you write to. The In_channel and Out_channel modules

only have direct support for channels corresponding to �les and terminals; other kinds of

channels can be created through the Unix module.

We'll start our discussion of I/O by focusing on the terminal. Following the UNIX model,

communication with the terminal is organized around three channels, which correspond to the

three standard �le descriptors in Unix:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/letrec.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/letrec.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/letrec.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 16/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

In_channel.stdin

The "standard input" channel. By default, input comes from the terminal, which handles

keyboard input.

Out_channel.stdout

The "standard output" channel. By default, output written to stdout appears on the user terminal.

Out_channel.stderr

The "standard error" channel. This is similar to stdout but is intended for error messages.

The values stdin, stdout, and stderr are useful enough that they are also available in the global

namespace directly, without having to go through the In_channel and Out_channel modules.

Let's see this in action in a simple interactive application. The following program,

time_converter, prompts the user for a time zone, and then prints out the current time in that

time zone. Here, we use Core's Zone module for looking up a time zone, and the Time module for

computing the current time and printing it out in the time zone in question:

open Core.Std

let () =
 Out_channel.output_string stdout "Pick a timezone: ";
 Out_channel.flush stdout;
 match In_channel.input_line stdin with
 | None -> failwith "No timezone provided"
 | Some zone_string ->
 let zone = Zone.find_exn zone_string in
 let time_string = Time.to_string_abs (Time.now ()) ~zone in
 Out_channel.output_string stdout
 (String.concat
 ["The time in ";Zone.to_string zone;" is ";time_string;".\n"]);
 Out_channel.flush stdout

OCaml ∗ imperative-programming/time_converter.ml ∗ all code

We can build this program using corebuildcorebuild and run it. You'll see that it prompts you for input, as

follows:

$ corebuild time_converter.byte
$./time_converter.byte
Pick a timezone:

Terminal ∗ imperative-programming/time_converter.out ∗ all code

You can then type in the name of a time zone and hit Return, and it will print out the current time

in the time zone in question:

Pick a timezone: Europe/London
The time in Europe/London is 2013-08-15 00:03:10.666220+01:00.

Terminal ∗ imperative-programming/time_converter2.out ∗ all code

We called Out_channel.flush on stdout because out_channels are bu�ered, which is to say

that OCaml doesn't immediately do a write every time you call output_string. Instead, writes

are bu�ered until either enough has been written to trigger the �ushing of the bu�ers, or until a

�ush is explicitly requested. This greatly increases the e�ciency of the writing process by

reducing the number of system calls.

Note that In_channel.input_line returns a string option, with None indicating that the

input stream has ended (i.e., an end-of-�le condition). Out_channel.output_string is used to

print the �nal output, and Out_channel.flush is called to �ush that output to the screen. The

�nal �ush is not technically required, since the program ends after that instruction, at which

point all remaining output will be �ushed anyway, but the explicit �ush is nonetheless good

practice.

Formatted Output with printfFormatted Output with printf

Generating output with functions like Out_channel.output_string is simple and easy to

understand, but can be a bit verbose. OCaml also supports formatted output using the printf

function, which is modeled after printf in the C standard library. printf takes a format string

that describes what to print and how to format it, as well as arguments to be printed, as

determined by the formatting directives embedded in the format string. So, for example, we can

write:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/time_converter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/time_converter.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/time_converter2.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 17/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

printf "%i is an integer, %F is a float, \"%s\" is a string\n"
 3 4.5 "five";;

3 is an integer, 4.5 is a float, "five" is a string
- : unit = ()

OCaml Utop ∗ imperative-programming/printf.topscript , continued (part 1) ∗ all code

Unlike C's printf, the printf in OCaml is type-safe. In particular, if we provide an argument

whose type doesn't match what's presented in the format string, we'll get a type error:

printf "An integer: %i\n" 4.5;;
Characters 26-29:
Error: This expression has type float but an expression was expected of type
 int

OCaml Utop ∗ imperative-programming/printf.topscript , continued (part 2) ∗ all code

Understanding Format StringsUnderstanding Format Strings

The format strings used by printf turn out to be quite di�erent from ordinary strings. This

di�erence ties to the fact that OCaml format strings, unlike their equivalent in C, are type-safe. In

particular, the compiler checks that the types referred to by the format string match the types of

the rest of the arguments passed to printf.

To check this, OCaml needs to analyze the contents of the format string at compile time, which

means the format string needs to be available as a string literal at compile time. Indeed, if you try

to pass an ordinary string to printf, the compiler will complain:

let fmt = "%i is an integer, %F is a float, \"%s\" is a string\n";;
val fmt : string = "%i is an integer, %F is a float, \"%s\" is a string\n"
printf fmt 3 4.5 "five";;
Characters 9-12:
Error: This expression has type string but an expression was expected of type
 ('a -> 'b -> 'c -> 'd, out_channel, unit) format =
 ('a -> 'b -> 'c -> 'd, out_channel, unit, unit, unit, unit)
 format6

OCaml Utop ∗ imperative-programming/printf.topscript , continued (part 3) ∗ all code

If OCaml infers that a given string literal is a format string, then it parses it at compile time as

such, choosing its type in accordance with the formatting directives it �nds. Thus, if we add a

type annotation indicating that the string we're de�ning is actually a format string, it will be

interpreted as such:

let fmt : ('a, 'b, 'c) format =
 "%i is an integer, %F is a float, \"%s\" is a string\n";;
val fmt : (int -> float -> string -> 'c, 'b, 'c) format = <abstr>

OCaml Utop ∗ imperative-programming/printf.topscript , continued (part 4) ∗ all code

And accordingly, we can pass it to printf:

printf fmt 3 4.5 "five";;

3 is an integer, 4.5 is a float, "five" is a string
- : unit = ()

OCaml Utop ∗ imperative-programming/printf.topscript , continued (part 5) ∗ all code

If this looks di�erent from everything else you've seen so far, that's because it is. This is really a

special case in the type system. Most of the time, you don't need to worry about this special

handling of format strings—you can just use printf and not worry about the details. But it's

useful to keep the broad outlines of the story in the back of your head.

Now let's see how we can rewrite our time conversion program to be a little more concise using

printf:

open Core.Std

let () =
 printf "Pick a timezone: %!";
 match In_channel.input_line stdin with
 | None -> failwith "No timezone provided"

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/printf.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/printf.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/printf.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/printf.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/printf.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 18/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 | Some zone_string ->
 let zone = Time.Zone.find_exn zone_string in
 let time_string = Time.to_string_abs (Time.now ()) ~zone in
 printf "The time in %s is %s.\n%!" (Time.Zone.to_string zone) time_string

OCaml ∗ imperative-programming/time_converter2.ml ∗ all code

In the preceding example, we've used only two formatting directives: %s, for including a string,

and %! which causes printf to �ush the channel.

printf's formatting directives o�er a signi�cant amount of control, allowing you to specify

things like:

Alignment and padding

Escaping rules for strings

Whether numbers should be formatted in decimal, hex, or binary

Precision of �oat conversions

There are also printf-style functions that target outputs other than stdout, including:

eprintf, which prints to stderr

fprintf, which prints to an arbitrary out_channel

sprintf, which returns a formatted string

All of this, and a good deal more, is described in the API documentation for the Printf module in

the OCaml Manual.

File I/OFile I/O

Another common use of in_channels and out_channels is for working with �les. Here are a

couple of functions—one that creates a �le full of numbers, and the other that reads in such a �le

and returns the sum of those numbers:

let create_number_file filename numbers =
 let outc = Out_channel.create filename in
 List.iter numbers ~f:(fun x -> fprintf outc "%d\n" x);
 Out_channel.close outc
 ;;
val create_number_file : string -> int list -> unit = <fun>
let sum_file filename =
 let file = In_channel.create filename in
 let numbers = List.map ~f:Int.of_string (In_channel.input_lines file) in
 let sum = List.fold ~init:0 ~f:(+) numbers in
 In_channel.close file;
 sum
 ;;
val sum_file : string -> int = <fun>
create_number_file "numbers.txt" [1;2;3;4;5];;
- : unit = ()
sum_file "numbers.txt";;
- : int = 15

OCaml Utop ∗ imperative-programming/file.topscript , continued (part 1) ∗ all code

For both of these functions, we followed the same basic sequence: we �rst create the channel,

then use the channel, and �nally close the channel. The closing of the channel is important, since

without it, we won't release resources associated with the �le back to the operating system.

One problem with the preceding code is that if it throws an exception in the middle of its work, it

won't actually close the �le. If we try to read a �le that doesn't actually contain numbers, we'll see

such an error:

sum_file "/etc/hosts";;
Exception: (Failure "Int.of_string: \"##\"").

OCaml Utop ∗ imperative-programming/file.topscript , continued (part 2) ∗ all code

And if we do this over and over in a loop, we'll eventually run out of �le descriptors:

for i = 1 to 10000 do try ignore (sum_file "/etc/hosts") with _ -> () done;;
- : unit = ()

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/time_converter2.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 19/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

sum_file "numbers.txt";;
Exception: (Sys_error "numbers.txt: Too many open files").

OCaml Utop ∗ imperative-programming/file.topscript , continued (part 3) ∗ all code

And now, you'll need to restart your toplevel if you want to open any more �les!

To avoid this, we need to make sure that our code cleans up after itself. We can do this using the

protect function described in Chapter 7, Error Handling, as follows:

let sum_file filename =
 let file = In_channel.create filename in
 protect ~f:(fun () ->
 let numbers = List.map ~f:Int.of_string (In_channel.input_lines file) in
 List.fold ~init:0 ~f:(+) numbers)
 ~finally:(fun () -> In_channel.close file)
 ;;
val sum_file : string -> int = <fun>

OCaml Utop ∗ imperative-programming/file2.topscript , continued (part 1) ∗ all code

And now, the �le descriptor leak is gone:

for i = 1 to 10000 do try ignore (sum_file "/etc/hosts") with _ -> () done;;
- : unit = ()
sum_file "numbers.txt";;
- : int = 15

OCaml Utop ∗ imperative-programming/file2.topscript , continued (part 2) ∗ all code

This is really an example of a more general issue with imperative programming. When

programming imperatively, you need to be quite careful to make sure that exceptions don't leave

you in an awkward state.

In_channel has functions that automate the handling of some of these details. For example,

In_channel.with_file takes a �lename and a function for processing data from an

in_channel and takes care of the bookkeeping associated with opening and closing the �le. We

can rewrite sum_file using this function, as shown here:

let sum_file filename =
 In_channel.with_file filename ~f:(fun file ->
 let numbers = List.map ~f:Int.of_string (In_channel.input_lines file) in
 List.fold ~init:0 ~f:(+) numbers)
 ;;
val sum_file : string -> int = <fun>

OCaml Utop ∗ imperative-programming/file2.topscript , continued (part 3) ∗ all code

Another misfeature of our implementation of sum_file is that we read the entire �le into

memory before processing it. For a large �le, it's more e�cient to process a line at a time. You can

use the In_channel.fold_lines function to do just that:

let sum_file filename =
 In_channel.with_file filename ~f:(fun file ->
 In_channel.fold_lines file ~init:0 ~f:(fun sum line ->
 sum + Int.of_string line))
 ;;
val sum_file : string -> int = <fun>

OCaml Utop ∗ imperative-programming/file2.topscript , continued (part 4) ∗ all code

This is just a taste of the functionality of In_channel and Out_channel. To get a fuller

understanding, you should review the API documentation for those modules.

ORDER OF EVALUATIONORDER OF EVALUATION

The order in which expressions are evaluated is an important part of the de�nition of a

programming language, and it is particularly important when programming imperatively. Most

programming languages you're likely to have encountered are strict, and OCaml is, too. In a strict

language, when you bind an identi�er to the result of some expression, the expression is

evaluated before the variable is bound. Similarly, if you call a function on a set of arguments,

those arguments are evaluated before they are passed to the function.

Consider the following simple example. Here, we have a collection of angles, and we want to

determine if any of them have a negative sin. The following snippet of code would answer that

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file2.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file2.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file2.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/file2.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 20/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

question:

let x = sin 120. in
 let y = sin 75. in
 let z = sin 128. in
 List.exists ~f:(fun x -> x < 0.) [x;y;z]
 ;;
- : bool = true

OCaml Utop ∗ imperative-programming/order.topscript , continued (part 1) ∗ all code

In some sense, we don't really need to compute the sin 128. because sin 75. is negative, so we

could know the answer before even computing sin 128..

It doesn't have to be this way. Using the lazy keyword, we can write the original computation so

that sin 128. won't ever be computed:

let x = lazy (sin 120.) in
 let y = lazy (sin 75.) in
 let z = lazy (sin 128.) in
 List.exists ~f:(fun x -> Lazy.force x < 0.) [x;y;z]
 ;;
- : bool = true

OCaml Utop ∗ imperative-programming/order.topscript , continued (part 2) ∗ all code

We can con�rm that fact by a few well-placed printfs:

let x = lazy (printf "1\n"; sin 120.) in
 let y = lazy (printf "2\n"; sin 75.) in
 let z = lazy (printf "3\n"; sin 128.) in
 List.exists ~f:(fun x -> Lazy.force x < 0.) [x;y;z]
 ;;

1
2
- : bool = true

OCaml Utop ∗ imperative-programming/order.topscript , continued (part 3) ∗ all code

OCaml is strict by default for a good reason: lazy evaluation and imperative programming

generally don't mix well because laziness makes it harder to reason about when a given side

e�ect is going to occur. Understanding the order of side e�ects is essential to reasoning about the

behavior of an imperative program.

In a strict language, we know that expressions that are bound by a sequence of let bindings will

be evaluated in the order that they're de�ned. But what about the evaluation order within a single

expression? O�cially, the answer is that evaluation order within an expression is unde�ned. In

practice, OCaml has only one compiler, and that behavior is a kind of de facto standard.

Unfortunately, the evaluation order in this case is often the opposite of what one might expect.

Consider the following example:

List.exists ~f:(fun x -> x < 0.)
 [(printf "1\n"; sin 120.);
 (printf "2\n"; sin 75.);
 (printf "3\n"; sin 128.);]
 ;;

3
2
1
- : bool = true

OCaml Utop ∗ imperative-programming/order.topscript , continued (part 4) ∗ all code

Here, you can see that the subexpression that came last was actually evaluated �rst! This is

generally the case for many di�erent kinds of expressions. If you want to make sure of the

evaluation order of di�erent subexpressions, you should express them as a series of let

bindings.

SIDE EFFECTS AND WEAK POLYMORPHISMSIDE EFFECTS AND WEAK POLYMORPHISM

Consider the following simple, imperative function:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/order.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/order.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/order.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/order.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 21/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let remember =
 let cache = ref None in
 (fun x ->
 match !cache with
 | Some y -> y
 | None -> cache := Some x; x)
 ;;
val remember : '_a -> '_a = <fun>

OCaml Utop ∗ imperative-programming/weak.topscript , continued (part 1) ∗ all code

remember simply caches the �rst value that's passed to it, returning that value on every call.

That's because cache is created and initialized once and is shared across invocations of

remember.

remember is not a terribly useful function, but it raises an interesting question: what is its type?

On its �rst call, remember returns the same value it's passed, which means its input type and

return type should match. Accordingly, remember should have type t -> t for some type t.

There's nothing about remember that ties the choice of t to any particular type, so you might

expect OCaml to generalize, replacing t with a polymorphic type variable. It's this kind of

generalization that gives us polymorphic types in the �rst place. The identity function, as an

example, gets a polymorphic type in this way:

let identity x = x;;
val identity : 'a -> 'a = <fun>
identity 3;;
- : int = 3
identity "five";;
- : string = "five"

OCaml Utop ∗ imperative-programming/weak.topscript , continued (part 2) ∗ all code

As you can see, the polymorphic type of identity lets it operate on values with di�erent types.

This is not what happens with remember, though. As you can see from the above examples, the

type that OCaml infers for remember looks almost, but not quite, like the type of the identity

function. Here it is again:

val remember : '_a -> '_a = <fun>

OCaml ∗ imperative-programming/remember_type.ml ∗ all code

The underscore in the type variable '_a tells us that the variable is only weakly polymorphic,

which is to say that it can be used with any single type. That makes sense because, unlike

identity, remember always returns the value it was passed on its �rst invocation, which means

its return value must always have the same type.

OCaml will convert a weakly polymorphic variable to a concrete type as soon as it gets a clue as

to what concrete type it is to be used as:

let remember_three () = remember 3;;
val remember_three : unit -> int = <fun>
remember;;
- : int -> int = <fun>
remember "avocado";;
Characters 9-18:
Error: This expression has type string but an expression was expected of type
 int

OCaml Utop ∗ imperative-programming/weak.topscript , continued (part 3) ∗ all code

Note that the type of remember was settled by the de�nition of remember_three, even though

remember_three was never called!

The Value RestrictionThe Value Restriction

So, when does the compiler infer weakly polymorphic types? As we've seen, we need weakly

polymorphic types when a value of unknown type is stored in a persistent mutable cell. Because

the type system isn't precise enough to determine all cases where this might happen, OCaml uses

a rough rule to �ag cases that don't introduce any persistent mutable cells, and to only infer

polymorphic types in those cases. This rule is called the value restriction.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/weak.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/weak.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/remember_type.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/weak.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 22/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The core of the value restriction is the observation that some kinds of expressions, which we'll

refer to as simple values, by their nature can't introduce persistent mutable cells, including:

Constants (i.e., things like integer and �oating-point literals)

Constructors that only contain other simple values

Function declarations, i.e., expressions that begin with fun or function, or the equivalent let

binding, let f x = ...

let bindings of the form let var = expr1 in expr2, where both expr1 and expr2 are simple

values

Thus, the following expression is a simple value, and as a result, the types of values contained

within it are allowed to be polymorphic:

(fun x -> [x;x]);;
- : 'a -> 'a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 1) ∗ all code

But, if we write down an expression that isn't a simple value by the preceding de�nition, we'll get

di�erent results. For example, consider what happens if we try to memoize the function de�ned

previously.

memoize (fun x -> [x;x]);;
- : '_a -> '_a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 2) ∗ all code

The memoized version of the function does in fact need to be restricted to a single type because it

uses mutable state behind the scenes to cache values returned by previous invocations of the

function. But OCaml would make the same determination even if the function in question did no

such thing. Consider this example:

identity (fun x -> [x;x]);;
- : '_a -> '_a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 3) ∗ all code

It would be safe to infer a fully polymorphic variable here, but because OCaml's type system

doesn't distinguish between pure and impure functions, it can't separate those two cases.

The value restriction doesn't require that there is no mutable state, only that there is no persistent

mutable state that could share values between uses of the same function. Thus, a function that

produces a fresh reference every time it's called can have a fully polymorphic type:

let f () = ref None;;
val f : unit -> 'a option ref = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 4) ∗ all code

But a function that has a mutable cache that persists across calls, like memoize, can only be

weakly polymorphic.

Partial Application and the Value RestrictionPartial Application and the Value Restriction

Most of the time, when the value restriction kicks in, it's for a good reason, i.e., it's because the

value in question can actually only safely be used with a single type. But sometimes, the value

restriction kicks in when you don't want it. The most common such case is partially applied

functions. A partially applied function, like any function application, is not a simple value, and as

such, functions created by partial application are sometimes less general than you might expect.

Consider the List.init function, which is used for creating lists where each element is created

by calling a function on the index of that element:

List.init;;
- : int -> f:(int -> 'a) -> 'a list = <fun>
List.init 10 ~f:Int.to_string;;
- : string list = ["0"; "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9"]

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 5) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 23/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Imagine we wanted to create a specialized version of List.init that always created lists of

length 10. We could do that using partial application, as follows:

let list_init_10 = List.init 10;;
val list_init_10 : f:(int -> '_a) -> '_a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 6) ∗ all code

As you can see, we now infer a weakly polymorphic type for the resulting function. That's

because there's nothing that guarantees that List.init isn't creating a persistent ref

somewhere inside of it that would be shared across multiple calls to list_init_10. We can

eliminate this possibility, and at the same time get the compiler to infer a polymorphic type, by

avoiding partial application:

let list_init_10 ~f = List.init 10 ~f;;
val list_init_10 : f:(int -> 'a) -> 'a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 7) ∗ all code

This transformation is referred to as eta expansion and is often useful to resolve problems that

arise from the value restriction.

Relaxing the Value RestrictionRelaxing the Value Restriction

OCaml is actually a little better at inferring polymorphic types than was suggested previously.

The value restriction as we described it is basically a syntactic check: you can do a few operations

that count as simple values, and anything that's a simple value can be generalized.

But OCaml actually has a relaxed version of the value restriction that can make use of type

information to allow polymorphic types for things that are not simple values.

For example, we saw that a function application, even a simple application of the identity

function, is not a simple value and thus can turn a polymorphic value into a weakly polymorphic

one:

identity (fun x -> [x;x]);;
- : '_a -> '_a list = <fun>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 8) ∗ all code

But that's not always the case. When the type of the returned value is immutable, then OCaml can

typically infer a fully polymorphic type:

identity [];;
- : 'a list = []

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 9) ∗ all code

On the other hand, if the returned type is potentially mutable, then the result will be weakly

polymorphic:

[||];;
- : 'a array = [||]
identity [||];;
- : '_a array = [||]

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 10) ∗ all code

A more important example of this comes up when de�ning abstract data types. Consider the

following simple data structure for an immutable list type that supports constant-time

concatenation:

module Concat_list : sig
 type 'a t
 val empty : 'a t
 val singleton : 'a -> 'a t
 val concat : 'a t -> 'a t -> 'a t (* constant time *)
 val to_list : 'a t -> 'a list (* linear time *)
 end = struct

 type 'a t = Empty | Singleton of 'a | Concat of 'a t * 'a t

 let empty = Empty
 let singleton x = Singleton x
 let concat x y = Concat (x,y)

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 24/25

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 let rec to_list_with_tail t tail =
 match t with
 | Empty -> tail
 | Singleton x -> x :: tail
 | Concat (x,y) -> to_list_with_tail x (to_list_with_tail y tail)

 let to_list t =
 to_list_with_tail t []

 end;;
module Concat_list :
 sig
 type 'a t
 val empty : 'a t
 val singleton : 'a -> 'a t
 val concat : 'a t -> 'a t -> 'a t
 val to_list : 'a t -> 'a list
 end

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 11) ∗ all code

The details of the implementation don't matter so much, but it's important to note that a

Concat_list.t is unquestionably an immutable value. However, when it comes to the value

restriction, OCaml treats it as if it were mutable:

Concat_list.empty;;
- : 'a Concat_list.t = <abstr>
identity Concat_list.empty;;
- : '_a Concat_list.t = <abstr>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 12) ∗ all code

The issue here is that the signature, by virtue of being abstract, has obscured the fact that

Concat_list.t is in fact an immutable data type. We can resolve this in one of two ways: either

by making the type concrete (i.e., exposing the implementation in the mli), which is often not

desirable; or by marking the type variable in question as covariant. We'll learn more about

covariance and contravariance in Chapter 11, Objects, but for now, you can think of it as an

annotation that can be put in the interface of a pure data structure.

In particular, if we replace type 'a t in the interface with type +'a t, that will make it explicit

in the interface that the data structure doesn't contain any persistent references to values of type

'a, at which point, OCaml can infer polymorphic types for expressions of this type that are not

simple values:

module Concat_list : sig
 type 'a t
 val empty : 'a t
 val singleton : 'a -> 'a t
 val concat : 'a t -> 'a t -> 'a t (* constant time *)
 val to_list : 'a t -> 'a list (* linear time *)
 end = struct

 type 'a t = Empty | Singleton of 'a | Concat of 'a t * 'a t

 ...

 end;;
 module Concat_list :
 sig
 type 'a t
 val empty : 'a t
 val singleton : 'a -> 'a t
 val concat : 'a t -> 'a t -> 'a t
 val to_list : 'a t -> 'a list
 end

OCaml Utop ∗ imperative-programming/value_restriction-13.rawscript ∗ all code

Now, we can apply the identity function to Concat_list.empty without without losing any

polymorphism:

identity Concat_list.empty;;
- : 'a Concat_list.t = <abstr>

OCaml Utop ∗ imperative-programming/value_restriction.topscript , continued (part 14) ∗ all code

SUMMARYSUMMARY

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/objects.html
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction-13.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/imperative-programming/value_restriction.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 8. Imperative Programming / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html 25/25

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

This chapter has covered quite a lot of ground, including:

Discussing the building blocks of mutable data structures as well as the basic imperative

constructs like for loops, while loops, and the sequencing operator ;

Walking through the implementation of a couple of classic imperative data structures

Discussing so-called benign e�ects like memoization and laziness

Covering OCaml's API for blocking I/O

Discussing how language-level issues like order of evaluation and weak polymorphism

interact with OCaml's imperative features

The scope and sophistication of the material here is an indication of the importance of OCaml's

imperative features. The fact that OCaml defaults to immutability shouldn't obscure the fact that

imperative programming is a fundamental part of building any serious application, and that if

you want to be an e�ective OCaml programmer, you need to understand OCaml's approach to

imperative programming.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fimperative-programming-1.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/functors.html

