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Chapter 1

Introduction and course overview

What is machine learning and what can we use it for. Fundamental concepts. Different
types of learning. Outline of the course.

Note: for details on assignments, class schedules and assessment, please refer to the course page

1.1 What is machine learning
Machine learning is the science of building systems that improve with data. This is a broad concept
that includes instances ranging from self-driving cars to sorting images on a database and from
recommendation systems for diagnosing diseases to fitting parameters in climate change models. The
fundamental idea is that the system can use data to improve its performance at some task. Which
immediately points us to the three basic elements of a well-posed machine learning problem:

1. The task that the system must perform.

2. The measure by which its performance can be evaluated.

3. The data that can be used to improve its performance.

For example, suppose we want to automate airline ticket purchasing by phone. The task to perform
is thus to identify the requests, such as asking to book a flight, the origin and destination, the required
flight and so on. The system’s performance at this task can be measured by the frequency of correctly
identified expressions. In the work reported in [9], the data the used was a corpus of manually annotated
expressions. This is an example of the system parsing spoken sentences and identifying the relevant
elements for processing the requests:

1 <book_flight> please book me on </book_flight> <numflt> flight twenty one </numflt>

2
3 <i_want_to_go> i would like to fly </i_want_to_go>

4 <city_from> from philadelphia </city_from> <city_to> to dallas </city_to>

5
6 <request1> could you please list the </request1> flights

7 <city_from> from boston </city_from> <city_to> to denver </city_to>

8 on <date> july twenty eighth </date>
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Different tasks will determine different approaches. We may want to predict some continuous value,
such as the price of apartments, which is a Regression problem. Or we may have a Classification, when
we want to predict in which category, from a discrete set, each example belongs to. If we do this from
a set of data containing the right answers, so we can then extrapolate to new examples, we are doing
Supervised Learning.

We may want to find Association Rules, which are joint or conditional probability distributions of
some features. For example, which products customers tend to purchase together, so we can optimize
their placement in supermarket aisles. We may want to do Density Estimation to understand how
feature values are distributed, or perhaps group examples according to some similarity measure, which
is called Clustering. For example, grouping images together according to how similar they look. These
are examples of Unsupervised Learning, because in these cases there is no Ground Truth in the data
that can tell us if we made the right or wrong choice.

Supervised Learning requires that all data be labelled and Unsupervised Learning uses only unla-
belled data. But it is possible to use data sets in which some data is labelled but the rest, usually most
of the data, is not. In this case, we have Semi-supervised Learning. This approach has the advantage
that, usually, unlabelled data is much easier to find than correctly labelled data. For example, it is
possible to obtain from the World Wide Web many examples of English texts but to label correctly
each grammatical element of each sentence would be very laborious. By combining clustering and
classification it is possible to use unlabelled texts to improve the parsing and classification of elements
from a set of labelled texts.

Some tasks involve sequences of decisions, such as when playing a game, and the outcome can
only be assessed after all decisions are made (e.g. win or lose). This is an example of a Reinforcement
Learning problem, where each move is not good or bad by itself but only in the context of the sequence
of moves.

With such a diverse range of applications and problems, Machine Learning benefits from con-
tributions of many other disciplines. Computer Science, evidently, from subjects such as artificial
intelligence, algorithms, complexity analysis and data management. Statistics is also important for
inference, experiment design and data analysis. Mathematics is also crucial, with numerical methods
at the base of most machine learning algorithms and probability theory underlying many machine
learning approaches. Finally, Machine Learning is strongly inspired by Neuroscience, in particular
perception, learning and memory, and Philosophy, especially epistemology and ontology.

1.2 Why machine learning is useful
Machine learning is useful if we cannot, or do not wish to, explicitly program a solution to our problems.
For example, humans can easily identify handwritten digits such as those in zip codes of mail addresses.
However, it is not easy to find specific rules for programming a computer to automate this task. This is
a classic example of a problem where machine learning is a useful solution. For decades now, machine
learning algorithms have been applied to automating identification of handwritten digits [7]. Figure 1.1
shows an example of this problem.

Machine learning is also becoming increasingly more useful as the amount, complexity and quality
of data increases. Recently, the trend has been towards an exponential growth in data.

Another reason for using machine learning is so that the system can adapt to changing conditions.
If we have a static set of data we may figure out some rules for organizing and grouping the examples
after careful examination of the data. However, if the data set is continuously changing, as is generally
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Figure 1.1: Handwritten zip code digits

the case for most applications, it is not feasible to have programmers dedicated to constantly adapting
the code to extract information from the data. In these cases, automated systems that can constantly
learn from the new data are crucial. An example of this is the optimization of search engines. The
search engine must interpret the user’s query, consider how to expand the search by using synonyms or
words with overlapping meaning, and, especially, how to rank the results. These systems constantly
learn from the users, remembering which links are preferred, which search terms are most used and
their associations, and a large amount of information on the user (often even arguably violating privacy
rights).

Machine learning raises some important technical challenges, and even some ethical issues regarding
the information that is used and the purpose for which it is used, but it is clear that machine learning
is an important field in computer science and its importance can only grow as data and computation
power keep growing.

1.3 Fundamental concepts
Throughout this course we will constantly rely on some important concepts and it is important that
they are clear from the beginning. First is the concept of the hypothesis class. This is the space of
possibilities in which we will try to optimize the solution to our machine learning problem. Suppose we
have the data set represented in Figure 1.2, where each point has two continuous features, represented
in the X and Y axes, and is labelled either in the red or blue class.

One possible way of separating them would be to try to find the horizontal line that best splits the
two classes. In this case, our hypothesis class would be the set of horizontal lines, as represented in
Figure 1.3.

Machine learning is closely associated with statistics and so the term model is also used to refer to a
representation of a hypothesis class, typically using some parameters. For example, we could describe
this set of all horizontal lines with the parametric model y = θ, where θ is the parameter to adjust in
order to instantiate the model into a specific line. This is an hypothesis in the hypothesis class. In the
literature, and in this course, it is common to find both model and hypothesis class to refer to the set of
possible instances in which we want to find the best solution to our learning problem. An alternative to
the horizontal line model would be to consider all circles of radius 1 and try to find which of these
circles includes all blue points and excludes red points (Figure 1.4).

This different hypothesis class allow us to find different hypotheses that cannot be expressed with
the y = θ model. In this case, we would have a model with two parameters, (x− θ1)2 + (y − θ2)2 = 1.

We can say that the circle of radius 1 centered at (−1,−1) is an instance of the (x−θ1)2+(y−θ2)2 =

1 model, or a hypothesis from this hypothesis class, and the line y = 0 is an instance of the y = θ
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Figure 1.2: Arbitrary data set in two dimensions, divided into two classes (red and blue)

model or an hypothesis from that hypothesis class. The important point here is to distinguish between
the universe of possibilities we are considering, which is the model or hypothesis class, and the specific
instantiation of the model, or hypothesis, we obtain by setting the parameters and which constitutes an
answer to the learning problem.

The hypothesis class determines the inductive bias of our learning system. We cannot learn anything
if we do not assume anything, because this would make it impossible to extrapolate from the data we
have, and so we must make some prior assumptions about the problem we are solving. For example,
assuming that we can separate the red and blue classes using some horizontal line or some circle of
radius 1. This is such a crucial point that we will often talk about the problem of model selection, which
consists of finding the best hypothesis class for a particular problem.

1.4 Overview of Machine Learning problems
As mentioned above, one class of machine learning problems is Unsupervised learning, involving
unlabelled examples. In this case, the objective is generally to obtain some information about the
structure of the data. A schematic representation of the unsupervised learning process is shown in
Figure 1.5

For example, in clustering, we may want to organize the data so as to group together similar data
points. An example of this is clustering of images obtained from the World Wide Web, to help guide
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Figure 1.3: One hytpothesis class: horizontal lines to divide the two classes

organize search results. The authors of [5] extracted features both from the images themselves as well
as from the text of the pages where the images were found and hypelinks between them. Figure 1.6
gives an example of the resulting clusters for an image search with the keyword “pluto”.

Unsupervised learning gives us new values we can associate with the original data, and so unsuper-
vised learning can be used as part of a larger learning task. This is what happens in deep learning, for
example.

In Supervised Learning, we have a fully labelled data set that provides us not only with the input
features for our learning machine but also with the correct answers, allowing us to supervise the learning
process directly. Schematically, supervised learning looks like the diagram in Figure 1.7:

From the data we feed into the learner those features that will be used in the future to predict
something about new data. But we also use the target values to compute the empirical error of the
learner during the learning process. In this way, we can improve its performance in correctly predicting
the target values.

An example of this is given in [22]. The task consists of identifying faces in photographs. It is a
Classification task because each segment of the image may be classified as either a face or not a face.
The data used for training the classifier consists of a set of labelled images of faces and a set of labelled
images that were not faces. Figure 1.8 shows, on the right, an example of the set of face images used in
training (non-face images are not shown here) and an example of the application of the final classifier.

The authors of [22] also report a semi-supervised learning approach, where the labelled examples
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Figure 1.4: Another hytpothesis class: circles of radius 1 to isolate one class from the other

Figure 1.5: Diagram of an unsupervised learning process

used to train the classifier are enriched with unlabelled image data. This requires accounting both for
the statistical structure of all data, including the unlabelled data, and the classifier’s performance in the
labelled data. Another type of machine learning problem is Reinforcement Learning. In this type of
problem, the task is to optimize some output, like game moves, for example, but the feedback guiding
the learner must be given by some heuristic or an evaluation of an eventual outcome and not given by
the data. So the learner must improve performance by improving the feedback (e.g. win or lose the
game). Figure 1.9 shows a diagram of this learning process.

Some examples of reinforcement learning applications include robotics, for locomotion control
and other tasks such as object manipulation, autonomous vehicle control, operations research (pricing,
routing, marketing), and games. In this course we will focus on supervised and unsupervised learning
and will not cover semi-supervised or reinforcement learning problems.
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Figure 1.6: Clusters obtained for the image results of a search for “pluto”. Each cluster is a row of
images. Figure from [5].

Figure 1.7: Diagram of a supervised learning process

Figure 1.8: Labelled face images used in training (left) and the result of applying the classifier (right).
For more details see the original paper [22].

1.5 Goals and course outline
The main goal of this course is to provide a foundation on theoretical and practical aspects of machine
learning so the student can get some experience with common machine learning techniques, understand
the concepts, be able to follow the literature, acquire the skills to handle scientific computation problems
and understand the algorithms from their mathematical specifications.

The first part of this course will focus on supervised learning. Broadly speaking, the task of learning
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Figure 1.9: Diagram of a reinforcement learning process

how to predict an attribute of a universe of examples from a data set which includes both the observed
features used for the prediction and the attribute to be predicted. The second part will cover some
basics of learning theory and more detailed aspects of model selection. The third part will be dedicated
to ensemble methods and the final part to unsupervised learning algorithms.

1.6 Further Reading

1. Alpaydin [2], Chapter 1

2. Mitchell [19], Chapter 1

3. Marsland [18], Chapter 1, sections 1.1 through 1.4.
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Supervised Learning
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Chapter 2

Introduction to supervised learning

Basic concepts of supervised learning. Empirical error. Maximum likelihood and error
minimization. A regression example: curve fitting by least mean squares minimization.
Curve fitting as a linear regression.

2.1 Supervised learning
We call Supervised Learning the task of learning to predict attributes from data that include
those attributes. More formally, we have a set of examples with features X and some label Y ,
{(x1, y1), ..., (xn, yn)}, and we assume there is some unknown function F (X) : X → Y . Our
goal is to find a function g(θ,X) : X → Y , which is a function of some set of parameters θ, that
approximates the unknown F (X) : X → Y and can tells us the Y values of any examples, even if not
from our known set.

The reason for calling this supervised learning is that, by having all the Y values, we can supervise
the learning process by comparing the predicted values to the known values in the data. This allows us
to empirically estimate the error of each hypothesis.

The empirical error, or training error, is a measure of how any hypothesis obtained by instantiating
the parameters θ of our model (the g(θ,X) set of functions in our hypothesis class) performs in
predicting the Y values of the training data. Thus, we can formulate one machine learning problem in
this way:

1. The task: Predict the Y values in the {(x1, y1), ..., (xn, yn)} set.

2. The performance measure: training error, using Y .

3. The data: the {(x1, y1), ..., (xn, yn)} set.

Note that this is not a very useful problem to solve because this only aims at predicting the values
that we already know. In other words, this tries to approximate the unknown function F (X) : X → Y

only within our known data set. A better alternative would be to find the hypothesis that would minimize
the error for any examples, even those not included in the training set. That is usually the goal of a
machine learning application. But we’ll set aside that complication for now and focus on the simplified
problem first.

11
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Supervised learning problems can be split in two different categories. Classification problems
are those in which the Y values belong to discrete categories. For example, the classification of
email messages into spam and not spam or the classification of mushrooms into edible and poisonous
categories. In this case the error can be something like the percentage of misclassified examples.
Regression problems are those in which the Y values are continuous. We will focus on regression in
this chapter and the next, and cover classification later on.

2.2 Linear Regression
A linear regression is a regression in which the hypothesis class corresponds to the model y =

θ1x1 + θ2x2 + ...+ θn+1, where each xn is one dimension of the input space. Let’s suppose, to simplify,
that our input space has only one dimension and we have a set of (x, y) points and want to find the best
way to predict the y value of each point given the x value assuming some specific hypothesis class.
Let us suppose the hypothesis class is the set of all straight lines, defined by the parameters of the
model y = θ1x+ θ2 . Figure 2.1 shows an example of a data set of points and possible lines from our
hypothesis class, obtained by instantiating the model with different values of θ1 and θ2.

Figure 2.1: Example of lines for predicting the y values in these data.

How can we determine the best line? Let us assume that the dependent variable y is some (unknown)
function of the independent variable x plus some error:

y = F (x) + ε

We want to approximate F (x) with a model g(x, θ1, θ2). Assuming that the error is random and
normally distributed:

ε ∼ N(0, σ2)

then, if g(x, θ1, θ2) is a good approximation of the true function F (x), the probability of having a
particular y value given some x value can be computed from our function g(x, θ1, θ2) as:

p(y|x) ∼ N (g(x, θ1, θ2), σ
2)
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This allows us to estimate the probability of the data coming out with the distribution we observe
in our data set given any hypothesis instantiating θ, representing the vector of all θ1, ..., θn parameters
(in this case, θ1, θ2). The probability of the data given the hypothesis is the likelihood of the hypothesis.
Note that we cannot assume a probability for the hypothesis, at least in a frequentist sense, because the
hypothesis is not a random variable. What we assume to be random here is the sampling of data that
resulted in obtaining this dataset from the universe of all possible data.

Thus, given our datasetX = {xt, yt}Nt=1 and knowing that p(x, y) = p(y|y)p(x), then the likelihood
of the set of parameters θ is

l(θ|X ) =
n∏
t=1

p(xt, yt) =
n∏
t=1

p(yt|xt)×
n∏
t=1

p(xt)

Now we know how to choose the best hypothesis: we pick the one with the maximum likelihood.
In other words, we pick the hypothesis that estimates the largest probability of obtaining the data we
have. This is a generic approach that is often used in machine learning. But, to simplify the math, let us
change the expression. First, we know that the hypothesis that maximizes the likelihood also maximizes
the logarithm of the likelihood, so we can focus on the logarithm of the likelihood, L, instead of the
likelihood l:

L(θ|X ) = log
n∏
t=1

p(yt|xt) + log
n∏
t=1

p(xt)

We can also ignore the p(x) term since this corresponds to the probability of drawing those x values in
our data from the universe of possible values and this is the same for all hypotheses (all values of θ) we
are considering.

L(θ|X ) ∝ log
n∏
t=1

p(yt|xt)

Since we assume that the probability of obtaining some y value given some x is approximately
normally distributed around our prediction, we can replace that term with the corresponding distribution:

p(y|x) ∼ N (g(x, θ), σ2)

and then replace it with the expression for the normal distribution:

N (z, µ, σ) =
1

σ
√

2π
e−(z−µ)

2/2σ2

leaving:

L(θ|X ) ∝ log

n∏
t=1

1

σ
√

2π
e−[y

t−g(xt|θ)]2/2σ2

which can be simplified to:

L(θ|X ) ∝ log
n∏
t=1

e−[y
t−g(xt|θ)]2

L(θ|X ) ∝ −
n∑
t=1

[yt − g(xt|θ)]2

But this is the expression of the square of the training error:

E(θ|X ) =
n∑
t=1

[yt − g(xt|θ)]2
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So, basically, to find the hypothesis with the maximum likelihood we need (under our assumptions) to
find the hypothesis with the minimum squared error on our training set. This problem is called a Least
Mean Squares minimization.

Note that the squared error is often represented by this expression:

E(θ|X ) =
1

2

n∑
t=1

[yt − g(xt|θ)]2

The reason for this is that, when computing the derivative of this error as a function of the parameters,
the square power cancels the 2 in the denominator, simplifying the algebra. However, the values
obtained for the parameters minimizing the squared error or one half the squared error are the same.
This is merely an algebraic convenience.

2.3 Least Mean Squares minimization
In our straight line model (Figure 2.1) we need to consider two parameters, θ1 and θ2. If we compute
the squared error for all combinations of parameters in some range we will obtain something like shown
in Figure 2.2.

Figure 2.2: Surface of the squared error function for two parameters.

To find the optimal combination of parameters we need to find the lowest point of this surface.
Thus we use a gradient descent algorithm that starts from an arbitrary point as an initial guess and then
proceeds to descend the error surface in different directions until converging to the desired minimum.
This is illustraded in Figure 2.3

This will be a useful approach in many different problems we will encounter. The important idea is
this: if we assume that our model approaches the desired target values with some normal error, as a
function of the features in our dataset and the parameters of the model, then maximizing the likelihood
of our parameters is equivalent to minimizing the squared error. We shall see in the next chapter that
considering only the training error may not be a good idea, but in any case this least mean squares
minimization approach is an important tool in machine learning.
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Figure 2.3: Gradient descent on the squared error surface.

In this way, we can find the hypothesis that best fits the data. The straight line that minimizes the
squared error for our data set is shown in Figure 2.4. One thing we can notice immediately is that,
despite being the best straight line to predict the y values in our data, it is still a very poor predictor of
these values. We need to change your hypothesis class and try to find different hypotheses.

Figure 2.4: Best straight line for predicting the y values in our data.

2.4 Beyond the straight
Since fitting a straight line to these data is so evidently inadequate, we can try to consider alternatives.
Let us start by changing the data. We have a set of values for x and y, and we fit a straight line that gives
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us y given each x. But imagine that we spread our points over a plane with coordinates (x1, x2) instead
of x, and found the plane that minimized the error between to the y values in this new space. We are
still fitting a “straight” function, it’s just in more dimensions than the initial one. So let us compute this
new data set X∈ = {xt1, xt2, yt} by making x1 = x2 and x2 = x for each point in the original set. This
gives us the data set represented in Figure 2.5

Figure 2.5: Transformed data set. Note that the black dots below are just the “shadows” to indicate the
projection of the data in the (x2, x) plane.

Now our model is the equation for the plane, which we can write as y = θ1x1 + θ2x2 + θ3, and
each hypothesis in this hypothesis class will be a particular plane obtained by instantiating the three
parameters. Minimizing the square error, we obtain the plane shown in Figure 2.6.

Figure 2.6: The plane that best fits the transformed data.
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Now we can convert back into our original problem. We know that our data always falls in the line
where x1 = x22, because that was our initial transformation. If we intersect the best plane we found
with this line, we get a line that we can project into the initial (x, y) space. This line and the resulting
projection is shown in Figure 2.7.

Figure 2.7: The line for the best fit projected back into the original data set.

This is the equivalent of doing a second degree polynomial regression on the original data. We
could just have kept the original data set and just changed our model from the initial straight line, which
is a first degree polynomial (y = θ1x+ θ2) to that of a quadratic curve, y = θ1x

2 + θ2x+ θ3. In fact,
this is the easiest way to solve this problem with the tools we are using in this course. Here is the code
for loading the data and computing the best second degree polynomial.

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 mat = np.loadtxt(’polydata.csv’,delimiter=’;’)

5 x,y = (mat[:,0], mat[:,1])

6 coefs = np.polyfit(x,y,2)

The first two lines import the numpy library for the computations and the matplotlib library for
the plot, shown below. Then we load the csv file with the data, splitting the matrix into two variables x
and y. Then line 6 does the actual work of computing the coefficients of the second degree polynomial.
Now we can plot the results by first computing the polynomial over 100 points and plotting the data,
the line and saving the figure. The code continues below.

7 pxs = np.linspace(0,max(x),100)

8 poly = np.polyval(coefs,pxs)

9
10 plt.figure(1, figsize=(12, 8), frameon=False)

11 plt.plot(x,y,’.r’)

12 plt.plot(pxs,poly,’-’)

13 plt.axis([0,max(x),-1.5,1.5])

14 plt.title(’Degree: 2’)

15 plt.savefig(’testplot.png’)

16 plt.close()

However, there is an important lesson here that will reveal its usefulness when we deal with more
complex problems. We can use a simple hypothesis class, for example all linear relations of variables,
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corresponding to all hyperplanes in an N-dimensional problem, and use that hypothesis class for fitting
or classifying our data in complex ways by transforming our data into higher dimensional representations
of the same problem. In this example, we saw how the (straight) plane we used in 3 dimensions to fit
our data projects back into a curved line in the original problem with only one independent and one
dependent dimensions. This is an important way of thinking about machine learning problems.

2.5 Getting carried away
If a quadratic curve fits our data better than a straight line, a third degree polynomial is even better. Or
higher degrees. Figure 2.8 shows the result of fitting a third degree and a fifteenth degree polynomial
to our data. The polynomial of degree 15 certainly fits the data better, greatly reducing the training
error. But is this really the best option? We will discuss this problem in the next chapter and lecture.

Figure 2.8: Fitting our data with polynomials of degree 3 and 15.

2.6 Summary
In this chapter we met several important ideas that we will revisit often during this course. First, we
had to choose a hypothesis class for approximating the unknown function that determines the relations
between the variables we are studying. Second, had to choose some measure of adjustment to select
our parameters. In this case, we chose the maximum likelihood, which reduced to the least squared
error measure for fitting our lines. Third, to adjust our parameters we needed to solve an optimization
problem to find the values that optimize our adjustment measure. In this case, that minimize the squared
error. Then we saw two more important ideas. One is that we can increase the power of linear models
by increasing the number of features using non-linear transformations from the original feature values.
The other is that this can result in fitting the known data too well. In the next chapter we will see how
to address this last problem.

2.7 Further Reading

1. Bishop [4], Chapter 1

2. Alpaydin [2], Section 2.6
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3. Marsland [18], Sections 1.4 and 2.4.





Chapter 3

Overfitting in Linear Regression

Overfitting. Training, validation and testing.

3.1 Estimating the true error
We saw in the previous lecture that we could improve the fit of a curve to a set of points by increasing
the number of parameters. Figure 2.8 showed the difference between fitting the points with a third
degree polynomial and a polynomial of degree 15. However, it is apparent that the result is fitting
the known points by sacrificing the ability to correctly predict values not in the training set. This is a
common concern in supervised learning problems.

In general, in a regression problem, we want to find a function to predict the Y values of el-
ements of some universe U from their observable features X . The data is a labelled subset of U ,
{(x1, y1), ..., (xn, yn)}, from which we can try to infer a function to predict Y and on which we can
compute the training error, as we saw in the last lecture. However, the error we would like to minimise
is the expected error over any element of U , which is the true error, and not only the error measured in
our training set (the training error).

One way to estimate the expected error in predicting the y value of any element of U is to reserve
some elements of our data set specifically for this error estimate. These elements will not be used in
training. Thus, we split our data into two sets: the training set and the test set. We use the training set
to fit our function, minimizing the training error, and then the test set to estimate how our function
performs in predicting the values of examples outside the training set. Figure 3.1 shows an example of
fitting a fifth degree polynomial to 35 points in the data set (the training set, in blue) and then computing
the test error with the remaining 15 points (shown in red).

The difference between the test error and the training error gives us an estimate of the generalization
error, which is the difference between the true error and the training error. This is a measure of how
well the learner can generalize from the training set to new examples.

It is important to note that the data set is split randomly between training and test sets. Depending
on this selection, different curves will result from fitting the training set, with different test error values.
Figure /ref3-diffsplits illustrates the result of a fifth degree polynomial fit to different subsets of the
same data set, using the remaining points to evaluate the test error.

The test error is an unbiased estimate of the true error, but it is randomly distributed around the
true error. This is because the true error is the average error for all the infinite possible data points

21
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Figure 3.1: Training and test error example.

Figure 3.2: Fitting the same model to different training sets. The test error is indicated in the legend.

while the test error is the error measured on the sample of points we assigned to the test set. The test
error is an unbiased estimator for the true error because, assuming the data set is a random sample of
U and the training and test sets are randomly generated, then the average of the measured test error,
over a large number of repetitions of the experiment, would tend towards the true error. However, a
single measure of the test error will not correspond exactly to the true error. It is actually a sample
from a probability distribution around the true error, like illustrated in Figure 3.3, because it depends
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on the points that were randomly assigned to the test set.

Figure 3.3: Probability distribution of the test error for different samples of the test set in the fifth
degree polynomial example.

3.2 Underfitting and Overfitting
If the model is unable to fit the training set, both the training and test errors tend to be high because no
hypothesis can be instantiated that accurately reflect the relation between the attributes and the value
to predict. This is called underfitting. In the case of underfitting, replacing the model with one more
capable of fitting the data will reduce both training and test errors. This is illustrated in Figure 3.4, as
we move from degree 1 to degree 5. However, improving the fit between the model and the training set
will eventually begin increasing the test error, even though the training error decreases. This is called
overfitting, which is due to the model adapting to details of the training set that do not generalize to the
universe from which the data was sampled. Higher degree polynomials have a lower training error but
a larger test error

We can plot the two errors as a function of the degree of the polynomial to see this effect more
clearly. Figure 3.5 illustrates this. The training error, in blue, decreases steadily as we increase the
degree of the polynomial, increasing its ability to fit the training set. However, the test error, in red,
only decreases until degrees 5 or 6. Afterwards, the models start overfitting, increasing the test error
and the generalization error, which is the difference between the test error and the training error.

3.3 Model Selection and Validation
As Figure 3.5 shows, not all models are equally adequate for finding the hypothesis that best allows us
to predict values in our universe U . But, using the estimate of the true error in each case, we can find
the model that performs best at this task. This procedure is called model selection: we use one set of
data, the training set, to fit each model. Then we use another set of data to estimate the true error of
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Figure 3.4: Different models fit to the same training set, evaluated with the same test set.

Figure 3.5: Plot of the training error (blue) and the test error (red) as a function of the degree of the
polynomial.

each hypothesis resulting from fitting each model to the training set. We then select the hypothesis for
which this estimate for the true error is lowest. In this case, this would be the polynomial of degree 5
shown in the second panel of Figure 3.4.

However, if we select the hypothesis with the lowest error from a set of error estimates, then this
error estimate is no longer an unbiased estimate of the true error. This is because we are selecting the
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smallest value out of that set of measured errors (one for each model). We can understand this with
an analogy. If we choose people at random, some will be taller than average, others will be shorter
than average but the average of their height will tend towards the average height of the population.
So, even though the height of people at random is not exactly the average height, it is an unbiased
estimator of the average height. This is what happens when we use the test error of one hypothesis to
estimate its true error. However, if we choose people at random in groups and then, from each group,
we always pick the shortest person, the average height of those shortest people from each group will no
tend towards the average height of the population.

Figure 3.6 compares the unbiased test error distribution, in blue, and the distribution of the smallest
error measured in groups of 10 (in red). So, if we use the error estimate to select the best model and
hypothesis, then we can no longer use that value as an unbiased estimate of the true error. It will tend
to underestimate the true error. This is why, for model selection using the error estimates, we need to
split our data set in three subsets. The training set, to fit each model, the validation set to obtain the
error estimates to select the best hypothesis, and then a test set to obtain a final, unbiased, estimate of
the true error. This test error can only be used for the final estimate.

Figure 3.6: The probability distribution of the test error (in blue) and the smallest of groups of 10 test
errors.

There are other methods of model selection, which we will see later on. In this lecture, the main
point is to note this difference between training, validation and testing. Training is the process of fitting
the model; validation allows us to choose an hypothesis and testing gives us an unbiased estimate of
the true error. To ensure that this final estimate is unbiased, the test set cannot be used at any stage to
train hypotheses or select models.

3.4 Regularization
Another approach to solve the overfitting problem is to change the learning algorithm to try to prevent
the model from adjusting too much to details that do not generalize. One way to do this with our
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polynomial models is to use a high degree polynomial but add to the error function a penalty as a
function of the coefficient values:

J(θ) =
n∑
t=1

[
yt − g(xt|θ)

]2
+ λ

m∑
j=1

θ2j

This example, a quadratic penalty function, is called ridge regression [12]. Figure 3.7 shows the
result of fitting a degree 15 polynomial with different values of the regularization weight λ.

Figure 3.7: Fitting a degree 15 polynomial with different values of λ for regularization. The legend
shows the λ, training error and test error.

3.5 Application Example
Figure 3.8 shows the plot of life expectancy versus per capita GDP for 180 countries in 20031.

In order to find the best model for this data, we will split it randomly into three sets. The training
set, consisting of half of the points (90 points), the validation set, with 45 points, and the test set, also
with 45 points. This is the code for loading and splitting the data:

1 def random_split(data,test_points):

2 """return two matrices splitting the data at random

3 """

4 ranks = np.arange(data.shape[0])

5 np.random.shuffle(ranks)

6 train = data[ranks>=test_points,:]

7 test = data[ranks<test_points,:]

8 return train,test

9
10 data = np.loadtxt(’life_exp.csv’,delimiter=’\t’)

11 scale=np.max(data,axis=0)

1http://www.indexmundi.com/g/correlation.aspx?v1=30&v2=67&y=2003&l=en

http://www.indexmundi.com/g/correlation.aspx?v1=30&v2=67&y=2003&l=en
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Figure 3.8: Life expectancy versus per capita GDP.

12 data=data/scale

13 train, temp = random_split(data, 90)

14 valid, test = random_split(temp, 45)

Note that we rescale the data values by dividing them all by the maximum for each column. These
maximum values are obtained with the np.max() function, specifying the argument axis=0 to indicate
that we want the maximum values computed in the first dimension (the rows). The division of a matrix
by a vector is broadcast on the last dimensions (which must match) and, in this case, will divide each
row of data by the values in scale. This rescaling is advisable because large magnitude differences
in values can cause instabilities in the polynomial regressions, especially at higher degrees. Now we
test different degree polynomials and keep the one with the lowest validation error.

1 def mean_square_error(data,coefs):

2 """Return mean squared error

3 X on first column, Y on second column

4 """

5 pred = np.polyval(coefs,data[:,0])

6 error = np.mean((data[:,1]-pred)**2)

7 return error

8
9 best_err = 10000000 # very large number

10 for degree in range(1,9):

11 coefs = np.polyfit(train[:,0],train[:,1],degree)

12 valid_error = mean_square_error(valid,coefs)

13 if valid_error < best_err:

14 best_err = valid_error

15 best_coef = coefs

16 best_degree = degree

17
18 test_error = mean_square_error(test,best_coef)

19 print best_degree,test_error
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The result is shown in Figure 3.9, representing the different polynomials.

Figure 3.9: Evaluating different models. The training set is represented in blue, the validation set in
green and the test set in red. The legend shows the degree of each polynomial and the training and
validation errors.

Once we select the best hypothesis (in this case, the best polynomial with degree 3, with a validation
error of 0.0150), we can estimate the true error for this hypothesis using the test set. Unlike the
validation error, the test error is an unbiased estimate of the true error because we are not using this
value to select any parameter or model. Note, however, that these estimates depend on the random
assignment of examples to training, validation and test, and the test error is an estimate of the true error.

Alternatively, we can use regularization with ridge regression. The sklearn library provides a
class Ridge (in the linear_model module) for ridge regression. This is a linear regression solver,
but since it is a multivariate regression solver we can expand our data set in order to obtain the same
result as a polynomial fit.

First we import the libraries and define the expand function to expand the data matrix to a polyno-
mial representation with the specified degree. Then we load the data, rescale the GDP values so they
fall into the range [0..1], split into the training, validation and test sets and expand to a polynomial
representation of degree 10. In this way, each of our points will have 10 features instead of one.

1 import numpy as np

2 from sklearn.linear_model import Ridge

3
4 def expand(data,degree):

5 """expands the data to a polynomial of specified degree"""

6 expanded = np.zeros((data.shape[0],degree+1))

7 expanded[:,0]=data[:,0]

8 expanded[:,-1]=data[:,-1]

9 for power in range(2,degree+1):

10 expanded[:,power-1]=data[:,0]**power

11 return expanded

12
13 orig_data = np.loadtxt(’life_exp.csv’,delimiter=’\t’)
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14 scale=np.max(orig_data, axis=0)

15 orig_data=orig_data/scale

16 data = expand(orig_data,10)

17 train, temp = random_split(data, 90)

18 valid, test = random_split(temp, 45)

The reason for rescaling is to avoid having numbers of very different orders of magnitude, because
we are going to go up to the original values raised to a power of 10. This would cause instabilities in
the numeric solver.

Now we try different values of the λ constant (which in the ridge regression algorithm is actually
designated as α and called alpha in the Ridge class parameters). We use the np.linspace()

function to give us a set of evenly spaced values between the minimum and maximum values given. By
default, this function returns an array of 50 values, so that is the number of λ values we will try.

1 lambs = np.linspace(0.01,0.2)

2
3 best_err = 100000

4 for lamb in lambs:

5 solver = Ridge(alpha = lamb, solver=’cholesky’,tol=0.00001)

6 solver.fit(train[:,:-1],train[:,-1])

7 ys = solver.predict(valid[:,:-1])

8 valid_err = np.mean((ys-valid[:,-1])**2)

9 if valid_err < best_err:

10 # keep the best

If we plot the validation error as a function of the λ constant, we get something like what is shown
in Figure 3.10. For more information on the Ridge class, consult the Scikit-learn documentation2.

Figure 3.10: Plot of the validation error as a function of the λ constant.

2 http://scikit-learn.org/stable/modules/linear_model.html

http://scikit-learn.org/stable/modules/linear_model.html
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Figure 3.11: Plot of the best line found with the ridge regression. The training set is represented in
blue, the validation set in green and the test set in red.

3.6 Summary
The hypothesis that best predicts the target value given the feature vectors of examples from some
universe of data is not necessarily the hypothesis that best fits the training set. As we improve the fit,
we run into the overfitting problem. To solve this, we saw that we can fit our models with a training set
and use a validation set to select the hypothesis that minimizes the error estimated with the validation
set. However, when we select an hypothesis based on the estimated error, this error estimate will no
longer be unbiased, since it influenced our choice. To obtain a better estimate of the true error, we
retain a test set that we only use for this final estimate.

Later in this course we will revisit model selection and explore more sophisticated and reliable
ways of selecting the best model. The examples given in this chapter are meant only to illustrate the
fundamental aspects of the overfitting problem and how to solve it.

3.7 Further Reading

1. Bishop [4], Section 3.1

2. Alpaydin [2], Section 2.6 through 2.8



Chapter 4

Logistic Regression

Classification and linear separability. Normalization and standardization. The logistic
regression classifier. Linear separability and dimensionality

4.1 Linear separability
In two dimensions, a pair of sets of points is linearly separable if there exists a line that can separate
the two sets. Figure 4.3 shows two pairs of sets of points. These are the plots of the activity of gene
pairs in tumour (red) and normal tissue (blue). The data is from [1]. In the first panel, the sets are
linearly separable, as shown by the line dividing them (the decision boundary). In the second panel
they are not linearly separable, as there is no straight line that can divide the two sets.

Figure 4.1: The left panel shows a linearly separable pair of point sets. The pair of sets shown on the
right is not linearly separable.

In the previous chapters we saw that we can define a straight line with two parameters, in two
dimensions. However, for classification we also need to distinguish between the two sides of the line,
since we want to separate sets of points with the line as a frontier. We can do this by defining the line
with a vector. In this way, the line will consist of all vectors perpendicular to our chosen vector and
the vector will indicate a "positive" side of the line. Generalizing for N dimensions, given a vector ~w
perpendicular to the desired plane and a constant w0, the points belonging to the plane can be found by
this equation:

~wT~x+ w0 = 0

31
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Figure 4.2 shows a plane separating two sets of points and the corresponding ~w, plotted on the
plane. Note that the different axis scales make it appear that the vector is not perpendicular to the plane
(but it is).

Figure 4.2: A plane separating the two sets of points. The arrow shows the vector normal to the plane
(note the distortion due to the different axis scales).

The function
y(~x) = ~wT~x+ w0

has a positive value on one side of the dividing hyperplane and a negative value on the opposite side.
This gives us a way to model a linear discriminant separating the two classes. Now we need to find a
way to determine the coordinates for ~w and the constant w0.

4.2 The wrong way: least mean squares
Since the function y(~x) = ~wT~x + w0 is positive on one side of the hyperplane and negative on the
other, if we assign a value of 1 to one class and −1 to the other, we can try to find the place of the best
dividing hyperplane by minimizing the squared error:

E =
N∑
j=1

(y(~xj)− tj)2
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where ~xj are the points in our training set and tj the respective class of each point (1 or -1). Note that
this is the wrong way to solve this problem. However, the result teaches an important lesson about a
difference between regression and classification.

To simplify the computation of y(~x) = ~wT~x+ w0, we can include w0 in ~w and simply add a 1 to
each ~x:

w̃ = (w0, ~w), x̃ = (1, ~x), y(~x) = w̃T x̃

We will use the data set shown in Figure 4.3, which shows a plot of the activity of the guanylate
cyclase activator 2A gene (M97496) versus the activity of the carbonic anhydrase IV gene (M83670)
in normal cells (blue) and tumour cells (red) [1]. Our goal is to find the best frontier between these two
linearly separable sets.

Figure 4.3: Data set for the two classes, tumour and normal, plotting the activity of genes M83670 and
M97496 (standardized, see text).

These data is given in a text file, with the activity of each gene and the class, with 0 for normal and
1 for tumour cells:

-81 10 1

-30 60 1

...

320 1231 0

172 700 0

...

First we read the data and adjust the range of the input values. This is important to bring all values
into similar scales in order to prevent the solver from having to deal with different scales. There are two
main methods of preprocessing data. Normalization is a linear transformation that brings the values of
features into the range [0,1]:

xnew =
x−min(X)

max(X)−min(X)
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where X is the set of all values.
Standardization is a linear transformation that sets the average of the values of features to zero and

the standard deviation of these values to 1:

xnew =
x− µ(X)

σ(X)

When using real data, we should always do some preprocessing. In this case, we will standardize
the data. Note that in real applications we must retain these values because we need to process any
future examples in exactly the same way as we process the training set, using the same scaling factors.

1 import numpy as np

2
3 mat = np.loadtxt(input_data,delimiter=’\t’)

4 Ys = mat[:,[-1]]

5 Xs = mat[:,:-1]

6 means = np.mean(Xs,0)

7 stdevs = np.std(Xs,0)

8 Xs = (Xs-means)/stdevs

Now we create that function that adds the column of ones to the input vector, which originally
contains two columns for the gene activity. We add this column of ones at the end instead of at the
beginning, but the exact placement is indifferent as long as we remember it.

1 import numpy as np

2
3 def expand_features(X):

4 """append a columns of 1

5 """

6 X_exp = np.ones((X.shape[0],X.shape[1]+1))

7 X_exp[:,:-1] = X

8 return X_exp

Then the function that computes the quadratic error comparing the signed distance to a frontier
line and the classes of the examples. Since we want class values of -1 and 1 but the data originally has
classes of 0 for normal and 1 for tumour cells, we need to do some simple algebra to convert this in the
last line. Otherwise, we simply compute the inner (dot) product of the two vectors and compute the
mean squared error from the result.

1 def quad_cost(theta,X,y):

2 """return error value comparing signed distance with y

3 theta is a column of coefficients

4 X is a matrix with one example per row, and a 1 in the last column

5 y is a vector of classes 0 or 1

6 """

7 coefs = np.zeros((len(theta),1))

8 coefs[:,0] = theta

9 vals = np.dot(X,coefs)

10 return np.mean((vals-(2*y-1))**2)

Now we just add the column of ones and minimize the quadratic error:

1 from scipy.optimize import minimize
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2 import matplotlib.pyplot as plt

3
4 X_exp = expand_features(Xs)

5 coefs = np.ones(X_exp.shape[1])

6 opt = minimize(quad_cost,coefs,(X_exp,Ys),tol=0.00001)

7 coefs = opt.x

8 # plot the chart

The result, however, is less than ideal, as shown in Figure 4.4. The reason for this is that point
farther from the decision line will have a larger distance value. Since we are minimizing the squared
error, the learning algorithm will try to reduce the distance between the decision line and the farthest
points. This displaces the decision line away from the actual frontier between the two sets, resulting in
some points being misclassified.

Figure 4.4: Tentative decision line between these two sets computed by minimizing the squared error
between the signed distance and the class label. Note how the decision line is incorrectly placed due to
the effect of the farthest points.

This is a fundamental difference between regression and classification. In regression problems, it
is not desirable to have points distant from the prediction. In classification problems, having points
distant from the decision surface (or line, in two dimensions) is not a problem as long as they fall on
the correct side of the frontier. So for classification we need a different approach.

4.3 Classification by Logistic Regression
We will be using logistic regression as a classifier, with the purpose of obtaining a decision hyperplane
that separates different classes. However, logistic regression is, at heart, a regression model too, as we
will see below.

Let us assume we can find a function of our parameters w̃1 and the features ~x that can tell us the
1Remember that w̃ = (w0, ~w).
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probability of an example with features ~x belonging to class C1:

g(~x, w̃) = P (C1|~x)

We want to find a decision hyperplane where the probability of finding an example of class C1 equals
the probability of finding an example of class C0, assuming there are only these two classes.

P (C1|~x) = P (C0|~x) = 1− P (C1|~x)

which is equivalent to:

ln
P (C1|~x)

1− P (C1|~x)
= 0

Thus, we can write

ln
P (C1|~x)

1− P (C1|~x)
= ln

g(~x, w̃)

1− g(~x, w̃)
= ~wT~x+ w0

Rearranging, we obtain

g(~x, w̃) =
1

1 + e−(~wT ~x+w0)

The function
f(x) =

1

1 + e−k(x−x0)

is called the logistic function and is represented on the right panel of Figure 4.5, for x0 = 0 and k = 1.

Figure 4.5: Comparing the quadratic and the logistic functions.

This function has the useful feature of varying around a threshold value but being nearly constant
away from this threshold. This is what we need to solve the problem we had with the minimization of
the squared error, in which the points farther away were having an undesired effect on the decision
boundary. Note also that this function attempts to approximate the probability of each point ~x being in
class C1. This is why logistic regression is a regression model; when fitting the model we are trying to
approximate this continuous probability function. However, because we also choose a cut-off value
where we separate the two classes — where P (C1|~x) = P (C0|~x) —we turn this regression model into
a classifier. This is a common occurrence in classification, with the classifier model being trained, at
bottom, as a regression model. Since the class of hypotheses we are considering in logistic regression
to separate the classes is the set of all hyperplanes (or planes in 3D and lines in 2D) — i.e. linear
combinations of the features — this is a linear classifier, when used as a classifier.
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Now, given that:
g(~x, w̃) = P (C1|~x)

the likelihood of our parameters w̃, which is the product of the probabilities of the classes of our
examples given our hypothesis, will be

L(w̃|X) =
N∏
n=1

[
gtnn (1− gn)1−tn

]
and the logarithm of the likelihood is

l(w̃|X) =
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

where gn is the result of g( ~xn, w̃) and tn is the true class of point n, which can be 1 or 0.
Thus, the maximum likelihood solution to this problem is the minimum of this cost function:

E(w̃) = −
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

with
gn =

1

1 + e−(~wT ~xn+w0)

To implement this, we write the logistic and logistic cost functions:

1 def logistic(X):

2 """return logistic function of vector X"""

3 den = 1.0 + np.e ** (-1.0 * X)

4 return 1.0 / den

5
6 def log_cost(theta,X,y):

7 """return logistic error value

8 X is a matrix with one example per row, and a 1 in the last column

9 y is a vector of classes 0 or 1

10 """

11 coefs = np.zeros((len(theta),1))

12 coefs[:,0] = theta

13 sig_vals = logistic(np.dot(X,coefs))

14 log_1 = np.log(sig_vals)*y

15 log_0 = np.log((1-sig_vals))*(1-y)

16 return -np.mean(log_0+log_1)

And then minimize this function instead of the quadratic error. The result is much better, as shown
in Figure 4.6.

4.4 Linear separability, revisited
If the classes are not linearly separable, it is impossible to find a straight line that can separate the two
classes. This is illustrated in Figure 4.7, where the standard logistic regression approach of the last
section results in a decision boundary that cannot discriminate between the two classes. In this case,
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Figure 4.6: Logistic regression on the activity of M83670 and M97496 genes.

Figure 4.7: Attempting to separate classes that are not linearly separable (activity of X53416 and
U37019 genes).

the features are the activity of the actin-binding protein gene (X53416) and the smooth muscle cell
calcium binding protein gene (U37019).

However, we can expand our data with an additional feature obtained by (for example) the product
of the two original gene activity values. This function is easy to implement.

1 def poly_3features(X):

2 """append a column with the product of the two first features

3 """

4 X_exp = np.zeros((X.shape[0],X.shape[1]+1))

5 X_exp[:,:-1] = X
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6 X_exp[:,-1] = X[:,0]*X[:,1]

7 return X_exp

Now we load the data, transform it and use the LogisticRegression class from the
sklearn.linear_model module to find the best plane separating the expanded data.

1 mat = np.loadtxt(’gene_data_2.txt’,delimiter=’\t’)

2 Ys = mat[:,[-1]]

3 Xs = mat[:,:-1]

4 means = np.mean(Xs,0)

5 stdevs = np.std(Xs,0)

6 Xs = (Xs-means)/stdevs

7 X_exp = poly_3features(Xs)

8 reg = LogisticRegression(C=1e12, tol=1e-10)

9 reg.fit(X_exp,Ys[:,0])

Now, our linear discriminant will no longer be a line in two dimensions but a plane in three
dimensions, corresponding to the expanded data, as shown in Figure 4.8

Figure 4.8: Gene activity (X53416 and U37019 genes) data expanded to three dimensions and the
decision plane found by logistic regression.

Projecting this decision plane back into the two dimensional space of the original data, we can find
the corresponding decision boundary which is no longer a straight line. This is a similar approach to
the one we saw with linear regression.

This is still not enough to completely separate the two classes, but we can increase the discrimination
power of the classifier by increasing the dimensions used by the logistical regression. For example,
using 7 dimensions, as shown in the code below and Figure 4.10.

1 def poly_7features(X):

2 """append a five columns with the product,

3 square and cube of the first two features

4 """

5 X_exp = np.zeros((X.shape[0],X.shape[1]+5))
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Figure 4.9: Gene activity (X53416 and U37019 genes), decision boundary obtained using a third
feature value obtained from the product of the first two.

6 X_exp[:,:-5] = X

7 X_exp[:,-3] = X[:,0]*X[:,1]

8 X_exp[:,-2] = X[:,0]**2

9 X_exp[:,-1] = X[:,1]**2

10 X_exp[:,-5] = X[:,0]**3

11 X_exp[:,-4] = X[:,1]**3

12 return X_exp

Figure 4.10: Gene activity (X53416 and U37019 genes), decision boundary obtained using a five
additional features computed from the original two.
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Once again, we need to face the possibility of overfitting our data. This will be covered in the next
lecture.

4.5 Summary
In this chapter we covered the notions of linear separability and linear discriminants. We also saw that
finding linear discriminant by minimizing a simple quadratic error did not place the boundary in the
right position. However, we saw that using a logistic function to model the probability of obtaining
examples of each class as a function of the feature vectors and the discriminant allows us to find the
best discriminant by maximum likelihood. We also saw how expanding our features into a feature
space with more dimensions can allow us to use linear discriminants in higher dimensions to separate
classes that are not linearly separable in the original feature space.

4.6 Further Reading

1. Bishop [4], Sections 4.1.1, 4.1.3 and 4.3.2





Chapter 5

Overfitting Logistic Regression

Classification errors. Cross validation. Model selection with cross validation and Logistic
Regression. Regularization in Logistic Regression

5.1 Scoring binary classifiers
In Chapter 3, we saw the difference between the training error, measured on the set of points used to
fit the model; the validation error, measured outside the training set to estimate the error of each of a
number of hypotheses in order to select the best one; and the test error, measured on another set of
points and remaining an unbiased estimator of the true error because it is never used to fit or select an
hypothesis. In all these cases, we always measured the quadratic error between the predicted and the
target values:

E(θ|X ) =
n∑
t=1

[yt˘g(xt|θ)]2

In regression, we used this function to fit the data, validate and test the regression hypotheses.
However, in Chapter 4, we saw that, for classifying data using a linear discriminant defining a hyperplane,
the quadratic error measured as the distance to the discriminant was not the best cost function for
minimization. In Logistic Regression, we used a logistic function to estimate the probability of each
class and then obtained, by maximum likelihood, a cost function to minimize:

E(w̃) = −
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

with

gn =
1

1 + e−(~wT ~xn+w0)

Since gn is our predicted probability of example n belonging to class t = 1, this is actually the
cross-entropy between the probability distribution of our data and the probability distribution of our
predictions. Averaging over all samples, we get the average cross-entropy. This is called the logistic
loss or log loss function:
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L(w̃) =
1

N

N∑
n=1

H(pn, qn) = − 1

N

∑
[tn ln gn + (1− tn) ln(1− gn)]

The lower the log lossfunction the better our hypothesis is at predicting the training data.
Another possible measure is the quadratic error between the probability prediction given by our

hypothesis gn and the class t ∈ 0, 1. This is called the Brier score:

E(w̃) =
1

N

N∑
n=1

[tn − gn]2

Figure 5.1 shows the surface of the predicted probabilities of each point belonging to class 1 and
the points used to fit this model. The quadratic error will be the sum of the squared differences between
this surface and the class value for each point. Note that, in this case, the error is measured not from
the distance to the frontier but from the difference between the class and the estimated probability of
the point belonging to class 1.

Figure 5.1: Surface representing the predicted probability and the points plotted in their classes with
z=0 or z=1.

Another possible error measure is the accuracy of the classifier. Let us suppose we consider that
any point with gn ≥ 0.5 is predicted to be in class t = 1 and any point with gn < 0.5 is predicted to be
in class t = 0. We can consider four different possibilities:

1. True positive: the example belongs to class 1 and was predicted to belong to class 1.

2. False positive: the example belongs to class 0 and was predicted to belong to class 1.

3. True negative: the example belongs to class 0 and was predicted to belong to class 0.

4. False negative: the example belongs to class 1 and was predicted to belong to class 0.

Schematically, we can represent these four possibilities with a confusion table:
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Examples
Class 1 Class 0

Predictions Class 1 True Positive False Positive
Class 0 False Negative True Negative

The accuracy of a binary classifier over a set of N points is thus:

accuracy =
true positives+ true negatives

N

Considering this classification, we can also define the precision and recall of the classifier:

precision =
true positives

true positives+ false positives
recall =

true positives

true positives+ false negatives

In other words, precision is the fraction of correctly classified positive examples in all examples
classified as positive (correctly or not), whereas recall is the fraction of correctly classified positive
examples from the set of all positive examples. This gives us another useful measure of the performance
of a classifier, the F1 score, which is the harmonic mean of precision and recall:

F1 =
2× true positives

2× true positives+ false positives+ false negatives

F1 = 2
precision× recall
precision+ recall

Although the usual approach is to consider that gn ≥ 0.5 predicts a point in class 1 (positive), we
can change the value of this threshold and consider a more general approach of predicting the positive
class at gn ≥ α, α ∈ [0, 1]. Figure 5.2 shows the effect of drawing the frontier at different values of α
and then plotting the number of true and false positives as a function of α. If α is too small, all points
will be classified as being in the positive class, so there will be a maximum number of true and false
positives. As α increases, the false positives should start decreasing first. When α is too high, then all
points are classified as being in the negative class, which means there are no false positives but no true
positives either.

Using this variation in the fraction of true positives and false positives as a function of the threshold,
we can also evaluate a binary classifier by plotting a receiver operating characteristic curve, or ROC
curve1. The ROC curve is plotted by computing the fraction of true positives and false positives at
different score thresholds. A classifier performs all the better the greater the fraction of true positives
relative to the false positives for different threshold levels. In other words, the larger the area below the
ROC curve the better the classifier’s performance. Figure 5.3 shows an example of a ROC curve.

Classifiers in the Scikit-Learn offer a score(X,Y) method that returns the accuracy score for the
classifier computed on the given data. From this score, we can also compute the error as one minus the
accuracy.

1 from sklearn.linear_model import LogisticRegression

2 reg = LogisticRegression()

3 reg.fit(X_r,Y_r)

4 test_error = 1-reg.score(X_t,Y_t)

1The name comes from the original use of this method, which was to optimize the detection rate of aircraft in radar
signals during the second world war
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Figure 5.2: The left panel shows different contours of the probability of finding class 1 (in red). The
right panel shows the true positives and false positives as a function of the threshold α.

Figure 5.3: A ROC curve.

5.2 Cross-Validation and Model Selection
In Chapter 3 we saw a simple way to solve the overfitting problem, which was to select the hypothesis
that had a smaller validation error. To do this we split our data set into a training set and validation
set (and, if desired, a test set to estimate the true error of the selected hypothesis). However, all
these estimates are random samples from some probability distribution and we can improve them
by averaging over several repetitions. Furthermore, doing validation in that way only allowed us to
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evaluate specific hypotheses and not the models themselves. Cross-validation solves these problems.
To do cross-validation, we partition our data into a number of disjoint folds. For example, if we

have 50 points and want to use 5-fold cross-validation, we place 10 points into each fold. Then we
train our model with all folds but one, validate on the fold that was left out, and repeat for all folds. In
the end we average the validation error and this gives us an estimate of the true error that, on average,
hypotheses generated from this model will have on this type of data. Figure 5.4 shows an example of
5-fold cross validation using the gene expression data. Each panel shows an hypothesis obtained by
fitting the model to four of the folds (indicated by the smaller points) and then validating using the fold
left out.

Figure 5.4: Example of 5-fold cross validation, showing the plots for folds 1, 2 and 5. In each panel,
one of the folds is left out for validation, the other folds are used for training. The larger points are
those used for validation in each fold. The training and validation errors are kept for each fold and then
averaged in the end.

In general, k-fold cross-validation can be done with any number of folds from two to the number of
data points. In this last case, it is called leave-one-out cross-validation.

To illustrate this, consider the data set in Figure 5.5. We want to find the best model to separate
these data with a logistic regression. First, we load the data, shuffle the order of the points randomly,
and then we set aside a third of the data points for the final error evaluation (the test set). Ordering the
points at random is often necessary to eliminate any correlations in the data set. For example, in this
case, all positive class examples are first in the file. We also standardize the features.

1 import numpy as np

2 from sklearn.utils import shuffle

3 mat = np.loadtxt(’dataset_90.txt’,delimiter=’,’)

4 data = shuffle(mat)

5 Ys = data[:,0]

6 Xs = data[:,1:]

7 means = np.mean(Xs,axis=0)

8 stdevs = np.std(Xs,axis=0)

9 Xs = (Xs-means)/stdevs

Wewill select the best model using 10-fold cross-validation on the training set. The different models
to consider are different expansions of the original data, {x1, x2}, {x1, x2, x1 × x2}, {x1, x2, x1 ×
x2, x

2
1}, ..., each resulting in a model with a different number of features. To do this, we expand the

original features polynomially into a matrix of 16 features. Please note that this is not a common
use of logistic regression. Explicitly expanding features like this is not very efficient; there are better
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algorithms for this that we will see later. However, the purpose of this exercise is to help explain this
idea of a non-linear transformation making the classes linearly separable in the new representation, an
important technique in different machine learning algorithms.

1 def poly_16features(X):

2 """Expand data polynomially"""

3 X_exp = np.zeros((X.shape[0],X.shape[1]+14))

4 X_exp[:,:2] = X

5 X_exp[:,2] = X[:,0]*X[:,1]

6 X_exp[:,3] = X[:,0]**2

7 X_exp[:,4] = X[:,1]**2

8 #... rest of the expansion here

9 return X_exp

As we saw previously, the larger the dimension into which we expand the original data, the easier it
is to separate the classes in the training set but the more likely the model is to overfit the data. So, we
partition the training set into 10 folds, train each model 10 times, leaving out one fold for validation
and average the training and validation error. In this case, we estimate the error using the Brier score,
which is the average square difference between the class value and the predicted probability of each
point being in class 1. This is easy to do with the sklearn library. First we create a function that
returns the training and test error given a data set and the indexes of the training and test points, using
the number of features indicated.

1 from sklearn.linear_model import LogisticRegression

2 def calc_fold(feats, X,Y, train_ix,test_ix,C=1e12):

3 """return classification error for train and test sets"""

4 reg = LogisticRegression(penalty=’l2’,C=C, tol=1e-10)

5 reg.fit(X[train_ix,:feats],Y[train_ix,0])

6 prob = reg.predict_proba(X[:,:feats])[:,1]

7 squares = (prob-Y[:,0])**2

8 return (np.mean(squares[train_ix]),

9 np.mean(squares[test_ix]))

This function fits the logistic regression classifier to the training set, then predicts the probabilities
for all the set and returns the mean squared error for the training and test sets. Note that the computation
of the Brier score by subtracting the predicted probability and the class assumes that classes are 0 and
1. If the class labels are not 0 and 1 we must convert them to these values.

Now we use the KFold class to generate an iterator for the training and validation sets. Here is an
example of how a Kfold object works:

1 from sklearn.model_selection import KFold

2 x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

3 kf = KFold(n_splits=4)

4 for train, valid in kf.split(x):

5 print (train, valid)

6
7 [ 3 4 5 6 7 8 9 10 11] [0 1 2]

8 [ 0 1 2 6 7 8 9 10 11] [3 4 5]

9 [ 0 1 2 3 4 5 9 10 11] [6 7 8]

10 [ 0 1 2 3 4 5 6 7 8] [ 9 10 11]
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We expand the data to the maximum number of features, leave out one third of the data for testing
and then loop through the range of features. For each model, we iterate through the 10 different folds
to do the cross-validation, printing the average training and validation errors:

1 from sklearn.model_selection import train_test_split, StratifiedKFold

2 Xs=poly_16features(Xs)

3 X_r,X_t,Y_r,Y_t = train_test_split(Xs, Ys, test_size=0.33, stratify = Ys)

4 folds = 10

5 kf = StratifiedKFold(n_splits=folds)

6 for feats in range(2,16):

7 tr_err = va_err = 0

8 for tr_ix,va_ix in kf.split(Y_r,Y_r):

9 r,v = calc_fold(feats,X_r,Y_r,tr_ix,va_ix)

10 tr_err += r

11 va_err += v

12 print(feats,’:’, tr_err/folds,va_err/folds)

Figure 5.5 illustrates the ten hypotheses obtained for each of two models, with 2 and 6 features, and
the mean training and validation errors.

Figure 5.5: Example dataset. The first panel shows the full data set, with positive class (1) in red,
negative class (0) in blue. The next two panels show the training set, used in cross-validation. The
lines show the 10 different hypotheses obtained during the 10-fold cross-validation. The training and
validation errors are the average for the 10 folds.

Figure 5.6 shows the average training and validation error measured for the set of models considered,
with expansions of up to 15 features. In this case, we can see that the best model appears to be the one
with 9 features. We now train this model with all the points in the training set and estimate the true
error with the test set. Even though the cross-validation error, by itself, is not biased, since we used
cross-validation to select the best model we now need to estimate the true error of the best model with
examples outside the training set. The hypothesis obtained from the best model trained on the whole
training set and the error estimate obtained with the test set is shown on the right panel of Figure 5.6.

5.3 Cross-Validation and Regularization
We can also use cross-validation to find parameters, such as when optimizing regularization. The
LogisticRegression class can take a regularization parameter, C, which, when using a L2 type
regularization, as we saw before with ridge regression, corresponds to 1

λ
. So our regularization term in

this case will be
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Figure 5.6: The left panel shows the average training and validation error as a function of the number
of features in the model. The right panel shows the best model (9 features) trained with the whole
training set and tested with the test set (larger points).

1

C

m∑
j=1

w2
j

where wj are the coefficients for the hyperplane separating the classes.
Penalizing the hyperplane will force the coefficients of w̃ to be smaller. This affects the slope of the

logistic function:

g(~x, w̃) =
1

1 + e−w̃T ~x

Without regularization, w̃ can be as large as necessary and the logistic function can be very sharply
sloped, allowing the discriminant to be placed very close to the data points. In this example below
we can see that, without regularization, the logistic function is steep enough to separate these classes
perfectly:

However, this is probably over-fitting the data since the sole blue point close to the red class is likely
to be an outlier and not representative of the data in general. If we regularize the logistic regression
classifier, the regularization will force w̃ to be smaller and thus decrease the slope of the logistic function.
This forces the margins around the discriminant to be wider, which in turn forces the discriminant away
from the larger number of red class points:
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Figure 5.7: Arbitrarily steep logistic function, without regularization.

Figure 5.8: Regularization reduces the size of coefficients, making the logistic function less steep.

Figure 5.9 shows the average training and validation error measured for different values of C, from
10−5 to 1015, always using the model with 15 features, for the original data set shown in Figure 5.5. The
right panel shows the result of fitting the model using a C value of 105 to all the points in the training
set and then testing with the test set we left out in the beginning.
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Figure 5.9: The left panel shows the cross-validation error plotted against log10(C) for the 15 features
model. The right panel shows the 15 features model regularized with C = 105 trained on the complete
training set.

5.4 Summary
In this chapter we saw different ways of scoring classifiers, coveredmodel selection with cross-validation
and also saw how to use cross-validation to find the best regularization parameter.

5.5 Further Reading

1. Alpaydin [2], Section 2.7



Chapter 6

Lazy Learning

Lazy vs Eager learning. K-Nearest Neighbours classification and regression. Kernel
Density Estimation. Kernel Regression.

6.1 Lazy and Eager Learning
So far, we have approached all machine learning problems with the intent of finding a function that can
predict the class or value of new points. This is called Eager Learning, a process in which the training
data is used to fit some model and form a hypothesis that generalizes how the input features relate to
the value to predict. In Lazy Learning, this step is delayed until the moment the system is queried. In
this chapter we will see some examples of this approach.

6.2 Classification with K-Nearest Neighbours
A k-nearest neighbours classifier is an example of a lazy learningmethod. More specifically, an instance
learningmethod, because the algorithm involves comparing new instances with instances in the training
set. Keeping the labelled training set, the k-NN classifier will label a new point with the label of
the majority of the k points in the training set that are closer to the new point. Figure 6.1 shows the
tesselations of a 1-NN, 3-NN and 5-NN classifiers. For a 1-NN classifier, the new points are labelled
with the label of the closest point in the training set, resulting in a Voronoy tesselation. For classifiers
with more neighbours, the labels are determined by the majority label of the k nearest neighbours and
the tesselation becomes more complex.

In all cases, the decision surface is piecewise linear, composed of the hyperplanes across which the
nearest neighbours change. As the number of neighbours used increases, the classifier becomes less
determined by local conditions. Figure 6.2 shows the decision frontiers for 1-NN, 13-NN and 25-NN
classifiers.

To implement a k-NN classifier, we need to start by defining a distance function. For continuous
numerical features we can use the Minkowski distance, or p-norm, which is given by

Dx,x′ = p

√∑
d

|xd − x′d|p

53
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Figure 6.1: Tesselations for 1-NN, 3-NN and 5-NN classifiers.

Figure 6.2: Comparison of 1-NN, 13-NN and 25-NN classifiers on the same data set.

Depending on the value of p, this corresponds to the Manhattan distance (p = 1) or Euclidean
distance (p = 2). Other values of p result in different distance measures. For example, for p values
between 0 and 1, similarities in one feature become more important. Figure 6.3 shows the effect of
different p values.

Figure 6.3: Comparison of three distance measures, p = 2, p = 1 and p = 0.7.

For categorical features, a good distance function is the Hamming distance:

Dx,x′ =
∑
d

{
1, xd 6= x′d

0, xd = x′d
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Since we are dealing with continuous numerical features, we can start by defining the Minkowski
distance, or p-norm, with a default p value of 2, so that it defaults to the euclidean distance.

1 import numpy as np

2 def mink_dist(x, X, p = 2):

3 """return p-norm values of point x distance to vector X"""

4 sq_diff = np.power(np.abs(X - x),p)

5 dists = np.power(np.sum(sq_diff,1),1.0/p)

6 return dists

Now we create a function to list the nearest k neighbours in the training set given some example,
and then the mode (the most common value) of the label in these nearest k neighbours. This is all we
need to classify new data points given the training set X and respective labels Y.

1 from scipy.stats import mode

2 def k_nearest_ixs(x, X,k):

3 """return indexes of k nearest neighbours

4 """

5 ixs = np.argsort(mink_dist(x,X))

6 return ixs[:k]

7 def knn_classify(x,X,Y,k):

8 """return class of x"""

9 ix = k_nearest_ixs(x,X,k)

10 return mode(Y[ix,0], axis=None)[0][0]

Depending on the data and features we have to deal with, it may be desirable to standardize or
normalize the inputs. However, this will influence the distance measured between two points and has to
be considered with some care. We should do this preprocessing only if we do not wish for features with
a greater range of values to weigh more heavily on the distance function. This may often be the case
but there can be exceptions. Suppose, for example, that we are dealing with geographical coordinates
and want to predict some property of a point by looking up the properties of the neighbours. In that
case we should not standardize our data because that would distort the distances by shrinking our data
distribution in the direction it spreads the most.

6.3 Example of k-NN Classification
We can use cross-validation to determine the best k value. We load the data set, set aside a third of
the points for testing, and then plot the training and validation error with 10-fold cross-validation.
Figure 6.4 shows this process. The first panel shows the data set, the second panel the plot of the errors
as a function of the k value and the third panel the best model obtained by cross-validation, with k = 9.
Note that we also plotted the test error. However, we cannot use the test error to choose the model,
otherwise the test error would no longer be an unbiased estimator of the true error.

6.4 Curse of Dimensionality
The curse of dimensionality is a generic term for a set of problems that arise from dealing with data
with many dimensions. In the case of distance-based methods, the problem of high dimensionality
is that, with many dimensions, most points are at the frontier of any region. Figure 6.5 shows the
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Figure 6.4: Finding the best k value for the k-NN classifier. The first panel shows the data, the second
the training, validation and test error plot, and the last panel shows the result, with k = 9.

proportion of an N-dimensional sphere occupied by another sphere whose diameter is 95% that of the
first one. For high dimensions, most of the volume is at this frontier region.

Figure 6.5: Fraction of region occupied by a frontier that is 5% of the diameter as a function of
dimension.

6.5 Instance Based Regression
The k-NN approach can also be used for regression, making the predicted value equal to the average of
the values of the k nearest neighbours. Figure 6.6 shows a regression curve using different values of k.

However, a better way to perform instance based regression is to use a continuous function that
reduces the weight of points farther from the point of interest, and then estimate the desired value
using a weighted average of these values. This is called kernel regression. The function that weighs
different points in the training set according to distance is a kernel function. A kernel function K(u) is
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Figure 6.6: K-Nearest Neighbours regression with different values of k.

a function that satisfies these three conditions:

K(u) ≥ 0 ∀u (6.1)∫ ∞
−∞

K(u)du = 1 (6.2)

K(−u) = K(u) ∀u (6.3)

An example of an often used kernel function is the gaussian kernel1.

K(u) =
1√
2π
e−

u2

2

Then we also need an estimator that predicts the value at x from some function of the y values in
the data set weighted by the kernel function. For example, the Nadaraya-Watson estimator:

ŷ(x) =

N∑
t=1

K
(
x−xt
h

)
yt

N∑
t=1

K
(
x−xt
h

)
or the Priestley-Chao estimator

ŷ(x) =
1

h

N∑
t=2

(xt − xt−1)K
(
x− xt

h

)
yt

For example, we can implement the gaussian kernel and the Nadaraya-Watson estimator:

1 def gaussiank(u):

2 k=np.e**(-0.5*u**2)/np.sqrt(2*np.pi)

3 return k

4 def nad_wat(K, h, X, Y, x):

5 num = 0

6 den = 0

7 for ix in range(len(X)):

8 yf = Y[ix]

9 u = (x-X[ix])/h

1A list of common kernel functions can be found on Wikipedia: https://en.wikipedia.org/wiki/Kernel_
(statistics)

https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Kernel_(statistics)
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10 k = K(u)

11 den = den + k

12 num = num + yf * k

13 return num/den

And then use them to compute the regression curve from the data, as shown in Figure 6.7.

Figure 6.7: Kernel regression with a gaussian kernel and a Nadaraya-Watson estimator. The three
lines show the effect of three different values of the parameter h.

6.6 Kernel Density Estimation
Kernel functions can also be used to smooth density estimates. Given a distribution of points, for
example sampled from a normal distribution as shown in the left panel of Figure 6.8, we can depict the
varying density of the points using histograms. However, histograms are discontinuous and the result
is very dependent on bin size. An alternative is to apply a kernel function to each point and then sum
them all. This, shown on the right panel, leads to a much smoother estimate.

Figure 6.8: Kernel density estimation.
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6.7 Summary
In this chapter we saw lazy learning, in which inference from the data is delayed until the moment the
system is queried, in contrast with eager learning, which we covered before, and which involves first
training a model of the data. K-nearest neighbours is a lazy learning technique for predicting values of
new points based on the neighbouring points of the training data, for some distance function. Finally,
we covered kernel regression and density estimation.

6.8 Further Reading

1. Alpaydin [2], Sections 8.1 through 8.4

2. Mitchell [19], Sections 8.1 and 8.2

3. Marsland [18], Section 8.4.





Chapter 7

Naïve Bayes

Bayes Classifier and Naïve Bayes Classifier. Parametric and non-parametric models.
Generative vs Discriminative classifiers. Comparing classifiers.

7.1 Bayes rule
Let us imagine we have two random variables, X and Y . The probability of X = xi and Y = yj is
called the joint probability and is represented as:

p(X = xi, Y = yj)

The probability of X = xi is the sum of the joint probabilities of all Y values and X = xi:

p(X = xi) =
N∑
j=1

p(X = xi, Y = yj)

This is called the sum rule of probability. If we imagine representing the possible values of X and
Y in a matrix counting the probability of each combination, p(X = xi) is obtained by summing the
respective column. This is called the marginal probability because we can imagine summing it on the
margin of the matrix with the joint probabilities, as shown in Table 7.1.

The conditional probability for Y = yj given that X = xi, written p(Y = yj|X = xi), is the
proportion of p(X = xi, Y = yj) to p(X = xi):

p(Y = yj|X = xi) =
p(X = xi, Y = yj)

p(X = xi)

This means that

p(X = xi, Y = yj) = p(Y = yj|X = xi)p(X = xi)

This is the product rule, which relates the joint probability distribution to the conditional and
marginal probabilities. More briefly, these rules can be summarized as follows:

61



62 CHAPTER 7. NAÏVE BAYES

Table 7.1: Joint and Marginal probabilities

Y X 1 2 3 4 P(Y)
2 0,06 0,026 0,051 0,012 0,189
3 0,045 0,001 0,046 0,016 0,152
4 0,035 0,015 0,065 0,045 0,218
5 0,006 0,033 0,057 0,039 0,157
6 0,029 0,004 0,054 0,035 0,127
P(X) 0,175 0,079 0,273 0,147

This table shows the joint probabilities for different combinations of X and Y . The marginal
probabilities are computed on the margins by summing the respective rows and columns.

sum rule p(X) =
N∑
j=1

p(X, Yj)

product rule p(X, Y ) = p(Y |X)p(X)

Given that joint distributions are symmetric, p(Y,X) = p(X, Y ) (just transpose the matrix on
Table 7.1), applying the product rule we can obtain Bayes’ rule:

p(Y,X) = p(X, Y )⇔ p(Y |X)p(X) = p(X|Y )p(Y )⇔ p(Y |X) =
p(Y )p(X|Y )

p(X)

A frequentist interpretation will see these probabilities as the frequency of random events in the
limit of an infinite number of trials. For example, saying that a coin has a 50% probability of falling
“tails” means that, as the number of trials grows to infinity, the fraction of “tails” will tend towards
0.5. But a Bayesian interpretation of probabilities sees the probability values as a measure of our
knowledge about the propositions. Under this interpretation, we can see Bayes’ rule as telling us that
the probability of hypothesis Y being true (i.e. our knowledge of Y ) given evidence X , which is
p(Y |X), has been modified relative to the prior probability of Y , which is p(Y ), by the probability
of X given Y , or the likelihood of Y , written p(X|Y ), normalized by the probability of the data X .
This interpretation allows us to consider the probability of an example x belonging to class c as the
conditional probability of class C given the features of x: p(C = c|X = x), which would not make as
much sense in a frequentist interpretation, unless we assumed the class was determined by the features
only with some probability.

7.2 Bayes Classifier
Using Bayes’ rule, we can write that the probability of an example with feature vector x belonging to
class c is:

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)

In other words, the probability of x belonging to c is the prior probability of any point belonging to
c multiplied by the likelihood of C = c and divided by the probability of drawing example x at random.
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Since the probability of drawing example x does not depend on our classifier, we can simplify this
expression to:

p(C = c|X = x) ∝ p(C = c)p(X = x|C = c)

But we know from the product rule that p(C = c)p(X = x|C = c) is the joint distribution
p(C = c,X = x). So if we can compute the joint distribution of the classes and examples, we can
choose the best class for each example. This is the Bayes classifier:

CBayes = argmax
c∈{0,1,...,N}

p(C = c,X = x)

The Bayes classifier is ideal in the sense that it minimizes the probability of misclassifying an
example. However, it is generally not feasible to compute the joint probability of the classes and
features. To understand this, imagine we want to predict if a person has diabetes. We start with a
sample of healthy and diabetic individuals and have each fill in a questionnaire with 20 questions on
exercise practices, food, smoking, other diseases and so on. Even if the questions are only “yes” or
“no”, 20 questions gives us about a million combinations. To obtain a reasonable estimate of the joint
probability distribution of classes (diabetic or healthy) and all combinations of possible answers we
would need millions of volunteers and questionnaires. Without simplifying assumptions we cannot do
this. In short, although the Bayes classifier is the ideal classifier in theory, in practice it is generally
impossible to use.

7.3 Naïve Bayes Classifier
In the previous section, we saw that we can predict the class of an example by finding the maximum of
the joint probability of each class and the features of that example. We can decompose this using the
product rule as follows, considering x1, ..., xn to be the components of the feature vector and Ck the
probability of the example being in class k:

p(Ck, x1, x2, ..., xn) = p(Ck)p(x1|Ck)p(x2|Ck, x1)...p(xn|Ck, x1, x2, ..., xn−1)

Variables A,B are conditionally independent given X if:

p(A,B|X) = P (A|X)P (B|X)

That is, if their joint probability conditioned on the other variable is just the product of their
probabilities conditioned on that other variable.

An example of conditional independence could be the time two persons living in the same neigh-
bourhood arrive at home from work. These variables may not be independent because, whenever there
is a strike in the public transport system, both will arrive later. So if one arrives late it is more likely
that the other arrived late too. However, if we know that there was such a strike, then knowing when
one of them arrived home gives us no new information about when the other will arrive, and thus the
two are independent if we know if there was or was not a strike.

So, if we assume that the feature values x1, ..., xn are conditionally independent given the class, it
follows that:
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p(xn|Ck, x1, x2, ..., xn−1) = p(xn|Ck)

for any n. This allows us to greatly simplify the computation of the joint distribution:

p(Ck, x1, x2, ..., xn) = p(Ck)
N∏
j=1

p(xj|Ck)

or, if we take the logarithms to prevent numeric overflow or underflow problems:

ln p(Ck, x1, x2, ..., xn) = ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

This means that our classifier can be:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

This is called the Naïve Bayes classifier because of the assumption that all features are conditionally
independent on the class. In general, this is not true. However, since we are not concerned with the
absolute probability values but merely with finding the class that maximizes these values, the Naïve
Bayes classifier tends to work rather well.

In addition, it is very easy to apply. If we consider again the diabetes example of the previous
section, for a Naïve Bayes classifier we would only need to find the probability distribution of each
feature given the class. So we would only need to compute the proportions of yes and no for each
answer in all questionnaires given to healthy subjects and the same for all questionnaires given to
diabetic subjects. This should easily be done with a few dozen questionnaires instead of millions.

7.4 Naïve Bayes, example 1: continuous features
Let us consider a data set where each point has two continuous features and belongs to one of two
classes. To train a Naïve Bayes classifier, we need to determine the conditional probability distribution
of each feature given each class. With features that have continuous values we have several options.
One is to use a parametric model. For example, if we assume that a feature is a normally distributed
random variable when conditioned on the class, we can compute its probability distribution using the
normal distribution:

p(xj|Ck) =
1

σk
√

2π
e
− (x−µk)

2

2σ2
k

where µk and σk are, respectively, the mean and standard deviation of the values of feature xj for all
points in class Ck. This is a parametric model because the model is completely determined by a specific
set of parameters, and there are different probability distributions that we can consider.

Alternatively, we can use a nonparametric model for the distribution. This is a model that, even
though it can have parameters, it is not completely determined by the parameters. A histogram is
an example of a nonparametric model. It has one parameter – the size of the bins used to partition
the values – but it cannot be completely determined by that parameter, since we also need to count
the values. Another example of a nonparametric model for these distributions is a Kernel Density
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Estimator, as we saw in Section 6.6. Figure 7.1 compares these three models for finding the distribution
of one feature from one of the classes of our data set.

Figure 7.1: Different distribution estimates for one feature in one class of our data set. The data values
are in one dimension, and represented with Y = 0.1 just to make it easier to see them.

A kernel density estimator seems to be the best option, and it generally is unless we know the
distribution function and can use a parametric model. So now we load the data and find the distributions
for each of the two features in each of the two classes. The product of these distributions, for each class,
is our estimate of the joint probability distribution under the naïve assumption that the features are
conditionally independent given the class, which is the assumption used in the Naïve Bayes classifier.
Figure 7.2 shows the data, the four KDE computed (two classes times two features) and the 3D plot
showing the products of the probability distributions for each class, which, under the assumption of
conditional independence, are the estimates of the joint probability distributions of the features given
each class. The KDE was computed using a gaussian kernel and the Nadaraya-Watson estimator, as
illustrated in Section 6.6.

Now we just need to consider the proportion of red and blue class points in our data (the p(Ck)
term and find, for each point to classify, the class that maximizes:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

However, the KDE we used has one parameter h, which determines the width of the kernel function,
and different values of h lead to different classifiers. Figure 7.3 shows the result of the classifier with
different values of h.

To determine the best value we can use cross-validation. Figure 7.4 shows the result of 10-fold
cross validation, depicting the training and validation errors as a function of the value of h. The best
value, minimizing the validation error, was h = 1.8. The right panel shows the classifier retrained with
the complete training set and using h = 1.8 for the kernel density estimators.
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Figure 7.2: Kernel density estimation of the four distributions and the estimated joint distributions con-
ditioned on the class (red or blue) under the Naïve Bayes assumption that the features are conditionally
independent given the class. Note that the Z scale in the vertical plot was normalized to a maximum of
1 so the shape of the product plots are easier to see.

Figure 7.3: The Naïve Bayes classifier trained with this data set using different values of h for the KDE.
In each panel, the top-left plot depicts the kernel function resulting from the respective h value.

7.5 Naïve Bayes, example 2: categorical featues
For this example, we will be using a data set describing mushroom samples with 22 categorical features,
each labelled as edible or poisonous1. We will be using a Naïve Bayes classifier to try to predict if a
mushroom is edible. The features are all categorical and described in a features file:

1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

[...]

21. population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y

22. habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

The data is stored as strings with one sample per line. The first character indicates the class, with
1From the UCI machine learning repository: http://archive.ics.uci.edu/ml/datasets/Mushroom

http://archive.ics.uci.edu/ml/datasets/Mushroom
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Figure 7.4: Cross-validation results and the final Naïve Bayes classifier for h = 1.8.

p for poisonous and e for edible. The rest of the line indicates the value for each feature with the
corresponding character codes, separated by commas.

p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m

p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g

[...]

First we will load the information on the possible values for each feature. We will also add a possible
value of “?” because, in some cases, the value is missing and missing values are indicated by this
character. This function reads all the lines in the features file (specially modified so that each feature
description is in a single line in the text file), splits each line on the = character and stores the following
character.

1 def get_features():

2 lines = open(’agaricus-lepiota.features’).readlines()

3 features = []

4 for lin in lines:

5 ft_vals = ’?’

6 fragments = lin.split(’=’)

7 for frag in fragments[1:]:

8 ft_vals = ft_vals+frag[0]

9 features.append(ft_vals)

10 return features

With the list of strings describing the possible values for the features, we can now load the data.
This function removes the commas separating the attribute values then fills in a matrix with the index
of each code. Before returning the features and class matrices, this function also shuffles the ordering
of the rows. The purpose of this is to remove any correlations present in the ordering of the data file.

1 def load_data(features,class_codes):
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2 lines = open(’agaricus-lepiota.data’).readlines()

3 feat_vals = np.zeros((len(lines),22)).astype(int) # to store indexes

4 classes = np.zeros(len(lines))

5 for row,lin in enumerate(lines):

6 s = lin.replace(’,’,’’).strip()

7 classes[row] = class_codes.index(s[0])

8 for column,fv in enumerate(s[1:]):

9 feat_vals[row,column] = features[column].index(fv)

10 ixs = list(range(feat_vals.shape[0]))

11 np.random.shuffle(ixs)

12 return feat_vals[ixs,:],classes[ixs]

Now we can estimate the conditional probability distributions of the values for each feature given
the class. The following function receives the feature value matrix and the list of possible codes for each
feature. Since the features are all categorical, it is best to use histograms. The only detail to remember
here is to avoid having values with a probability of zero. This can happen if the value is absent from the
training set. To prevent this, we can use additive smoothing. Instead of simply computing the fraction
of occurrences of each value, we also add a constant α:

p̂(xj = k) =
count(k) + α

N + αd

where d is the number of possible values in feature j. This function creates a list of vectors, each vector
counting the occurrences of the different possible values of the corresponding feature, starting with 1
as the value of the α constant. After counting, the function computes the logarithm of the fraction for
each value. Logarithms are useful in this case so we can sum instead of multiplying the values.

1 def make_hists(data,features):

2 hists = []

3 for feat in features:

4 hists.append(np.ones(len(feat)))

5 for row in range(data.shape[0]):

6 for column in range(data.shape[1]):

7 hists[column][data[row,column]] +=1

8 for ix in range(len(hists)):

9 hists[ix] = np.log(hists[ix]/float(data.shape[0]+len(features[ix])))

10 return hists

Now we need to load the data and split it into a training and test set. Previously, we have done
this with random sampling, which consists of splitting the sets at random. However, it is best to have
the same proportion of the two classes in the training and test set. So this time we will use stratified
sampling. First we split the data in two sets, corresponding to the edible and poisonous examples.
Then we draw the same fraction of each set for the test set. Since the load_data function shuffles the
examples at random, this is easy to do by simply splitting the matrices in two.

1 def split_data(features,test_fraction):

2 feat_vals,classes = load_data(features,’ep’)

3 edible = feat_vals[classes==0,:]

4 poison = feat_vals[classes==1,:]

5 e_test_points = int(test_fraction*edible.shape[0])

6 e_train = edible[e_test_points:,:]

7 e_test = edible[:e_test_points,:]
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8 p_test_points = int(test_fraction*poison.shape[0])

9 p_train = poison[p_test_points:,:]

10 p_test = poison[:p_test_points,:]

11 return e_train,p_train,e_test,p_test

Now all we need is a function to classify examples. The function classify receives the histograms
with the logarithms of the estimated probabilities and the logarithm of the prior probability of an example
belonging to either class, p(Ck) . This is simply the logarithm of the fraction of each class in the data.
This function sums all the terms in this equation:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

and determines the class according to the maximum value found.

1 def classify(e_class,e_log,p_class,p_log,feat_mat):

2 classes = np.zeros(feat_mat.shape[0])

3 for row in range(feat_mat.shape[0]):

4 e_sum = e_log

5 p_sum = p_log

6 for column in range(feat_mat.shape[1]):

7 e_sum = e_sum + e_class[column][int(feat_mat[row,column])]

8 p_sum = p_sum + p_class[column][int(feat_mat[row,column])]

9 if e_sum<p_sum:

10 classes[row]=1

11 return classes

Now we put it all together and evaluate the performance of our classifier on the test set by computing
the percentage of misclassifications.

1 def do_bayes():

2 features = get_features()

3 e_train,p_train,e_test,p_test = split_data(features,0.5)

4 e_hists = make_hists(e_train,features)

5 p_hists = make_hists(p_train,features)

6 tot_len = e_train.shape[0]+p_train.shape[0]

7 e_log = np.log(float(e_train.shape[0])/tot_len)

8 p_log = np.log(float(p_train.shape[0])/tot_len)

9 c_e = classify(e_hists,e_log,p_hists,p_log,e_test)

10 c_p = classify(e_hists,e_log,p_hists,p_log,p_test)

11 errors = sum(c_e)+sum(1-c_p)

12 error_perc = float(errors)/(len(c_e)+len(c_p))*100

13 print(’%d errors;’ % errors, ’ %.2f%% error rate’ % error_perc)

We can also look at the confusion matrix by counting the correct and incorrect classifications of
edible and poisonous mushrooms:

Real class
Edible Poisonous

Predictions Edible 2089 221
Poisonous 15 1737



70 CHAPTER 7. NAÏVE BAYES

From the confusion matrix we can see that most of the mistakes in classification are in classifying as
edible mushrooms that are poisonous. This is a more costly mistake than mistaking edible mushrooms
for poisonous ones, and it suggests one problem that we have not considered so far, which is that
minimizing misclassification alone is not the ideal option when different errors have different costs.

7.6 Discriminative and Generative classifiers
So far we saw three different classifiers. Logistic regression and k-Nearest Neighbours predict the class
of an example from an estimate of the conditional probability of a point belonging to a class given
the features. These are examples of discriminative classifiers. Naïve Bayes is a generative classifier,
because in this case the classifier first estimates the joint probability distribution of the classes and
features values, and then predicts the class from this joint probability. The reason why this type of
classifier is called generative is that the joint probability distribution can be used to generate synthetic
examples for each class. Figure 7.5 shows an example of training a Naïve Bayes classifier and then
using it to generate synthetic data.

Figure 7.5: Naïve Bayes classifier trained with the data on the left panel, used to generate the set of
points on the right panel.

7.7 Comparing classifiers
Figure 7.6 shows three different classifiers trained and tested on the same data: Logistic Regression, k-
Nearest Neighbours and Naïve Bayes. These classifiers make, respectively, 10, 6 and 1 misclassification
errors on the test set. The question we need to address is whether any of these classifiers is significantly
better than the others. One solution is to use an approximate normal test. Since the number of
errors result from the sum of independent random variables, the number of errors tends towards a
normal distribution with a mean equal to the expected number of errors. If the true probability of
misclassification is p0, then the mean will be Np0 and the standard deviation is

√
Np0(1− p0):
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X −Np0√
Np0(1− p0)

≈ Z

where X is the number of misclassified examples and N is the total size of the test set. With this
approximation we can estimate a confidence interval for the expected number of errors in the given
classifiers, Np0. For a 95% confidence interval:

X − 1.96σ < Np0 < X + 1.96σ

with σ =
√
Np0(1− p0), which we can estimate by estimating p0 = X/N . If the intervals computed

for two classifiers do not intersect, we can exclude the hypothesis that they have the same expected
error rate p0. Applying this to our classifiers, we get the following 95% confidence intervals:

XLogReg = 10± 5.4 XkNN = 6± 3.5 XNB = 1± 1.9

This means that we cannot exclude the hypothesis that the first two classifiers have the same true
error, since their intervals intersect. Naïve Bayes seems to be a better classifier than Logistic Regression.
However, when X is a very small number, this test is not very reliable. As a rule of thumb, X should be
above 5, approximately, for this test to be useful. An alternative method is McNemar’s test. Let e01
be the number of examples the first classifier misclassifies but the second classifies correctly, and e10
be the number of examples the second classifier classifies incorrectly but the first classifier classifies
correctly. The difference divided by the total follows approximately a chi-squared distribution with one
degree of freedom:

(|e01 − e10| − 1)2

e01 + e10
≈ χ2

1

The −1 term is a continuity correction term because the error counts are discrete and the χ2

distribution is continuous. If the value is greater than 3.84, we can reject the null hypothesis (that the
two classifiers perform identically) with 95% confidence. In our case, the results are:

LogReg vs kNN = 0.8 kNN vs NB = 2.3 NB vs LogReg = 7.1

This means we can conclude there is likely to be a difference between the performance of the Naïve
Bayes and the Logistic Regression classifiers, but that the difference is not significant in the other cases.

7.8 Processing Data
In previous chapters we saw some data processing steps that are taken before feeding the data to machine
learning algorithms: random shuffling to eliminate correlations between the position of examples and
some features or target values; rescaling, either by standardization or normalization; and stratified
sampling when generating test, validation or cross-validation subsets. In detail, processing the data for
machine learning tasks can be a complex problem on its own and an in depth discussion of these issues
would not fit the context of this course. However, there are some basic considerations that you should
understand when dealing with data.

First, note that rescaling parameters are also parameters that we fit the data. In principle, if we
compute these parameters, such as mean or standard deviation, on the whole data set, the error estimated
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Figure 7.6: Three classifiers: logistic regression, k-NN and Naïve Bayes. All were trained on the set
marked as circles and tested on the points marked as crosses.

on the test set may be biased because we used those examples to help rescale all data. The reason why
this is not usually a problem in practice is that these parameters converge sufficiently with the number
of examples and it makes little difference whether we use only the training set or the whole data set.
For example, with 2000 points, the difference between the mean of the whole set or the mean of a
random sample of 1000 is generally less than 2% of the standard deviation of the values. Nevertheless,
you should bear in mind that rescaling parameters are also inferred from the data and, in some cases, it
may be wise to compute them only with the training set if the difference is significant.

Let us consider a practical example to illustrate this. Suppose we have data on the cost of public
transportation for people from different cities. The plot on Figure 7.7 shows the overall distribution
of values and the breakdown per city. If we want to use these values to predict something about any
random person from these cities, then we should split the data for training, cross-validation and testing
using stratified sampling to ensure the same proportion of examples from each city is represented in
each subset. This is illustrated in the first coloured strip in Figure 7.7. In this case, given a large enough
dataset, we would not need to worry about rescaling the whole data set in one go since the rescaling
parameters for each subset would be very similar to those computed on the whole data set.

Now suppose we wanted to use data from these cities to predict something about people from a
different city. Now we would have to worry about how we can generalize from data about some cities
to other cities. In this case, we would need to create subsets for training, cross-validation and testing
that ensure that cities in the test or validation subsets are not also present in the training set, for that
would lead us to underestimate the true error. This is illustrated on the second colour strip below the
plot on Figure 7.7. And in this case we would have to recompute and apply the scaling parameters for
each training step in cross-validation using only the training data for that step, because in this case we
could not assume that the rescaling parameters would be the same across cities.

7.9 Further Reading

1. Bishop [4], Section 1.2

2. Alpaydin [2], Section 14.6

3. Mitchell [19], Section 6.9

4. Marsland [18], Section 8.1.2
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Figure 7.7: Hypothetical distribution of transportation expenses for people in different cities. The plot
shows the global distribution and the distribution per city. The coloured strips illustrate two different
ways of splitting the data depending on the problem: using stratified sampling to ensure the same
proportion of data from each city in each subset or ensuring that cities do not get split into training and
test sets.





Chapter 8

Multi-layer Perceptron

Perceptron. Multi-layer Perceptron. Backpropagation. Regularization in MLP.

8.1 Perceptron
Figure 8.1 shows a neuron cell. Neurons have a set of dendritic branches which can be stimulated by
other cells. If the stimulus passes a threshold, then the neuron fires an impulse over the axon, consisting
of a wave of membrane depolarization. This in turn leads to the release of neurotransmitters in the
synaptic terminals. The neuron provides the inspiration for the perceptron. Originally, the perceptron
model consisted of a linear combination of the inputs, plus a bias value, and a non-linear threshold
response function:

y =
d∑
j=1

wjxj + w0 s(y) =

{
1, y > 0

0, y ≤ 0

Figure 8.1: Neuron anatomy (BruceBlaus, CC-BY, source Wikipedia).

75
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Note that, as we did in the case of logistic regression, we can include this bias value in the product of
the inputs and the coefficients by adding a bias value of 1 to the input vector. The perceptron represents
a hyperplane that separates the inputs into two classes, 0 and 1. To train a perceptron, we present
labelled examples and adjust the weights according to the following rule:

wi = wi + ∆wi ∆wi = η(t− o)xi

where t is the target label of the example, o the output of the perceptron for that example, xi the input
value for feature i and wi the coefficient i of the perceptron. Since the output of the perceptron is
either 0 or 1, as is the target class of each example, the training rule consists essentially of adjusting
the weights of the perceptron for every example that is incorrectly classified. The problem with this
original formulation of the perceptron is that the response function is discontinuous. This may be
nearer to the biological features of the neuron but raises problems with the minimization of the error
functions. An alternative is to use a differentiable threshold function. One often used function is the
logistic function, also called the sigmoid function:

s(y) =
1

1 + e−y
=

1

1 + e−~wT ~x

There are other functions that can be used in this role, such as the hyperbolic tangent, for example.
However, here we will only focus on the familiar logistic function. Although this is strictly not the same
as the perceptron, in the original formulation, it is also common to call this variant a perceptron too.

8.2 A Single Neuron
Training a logistic response neuron can be done by minimizing the squared error between the response
of the perceptron and the target class. This is the idea behind the Brier score we saw in Chapter 5. So
we minimize the error function:

E =
1

2

N∑
j=1

(tj − sj)2

But we can do this in a way similar to the one used for the perceptron, by adjusting the weights of the
neuron in small steps as a function of the error at each example j, Et = 1

2
(tj − sj)2, where tj is the

class of example j and sj is the neuron’s response for example j. To do this, we need to compute the
derivative of the error as a function of the weights of the neuron in order to compute how to update the
neuron weights. Since the error is a function of the activation of the neuron for example j (sj), the
activation is a function of the weighted sum of the inputs (netj) and this is, in turn, a function of the
weights, we use the chain rule for the derivative of compositions of functions to obtain the gradient as
a function of each weight:

−δE
j

δw
= −δE

j

δsj
δsj

δnetj
δnetj

δw

where

st =
1

1 + e−netj
netj = w0 +

M∑
i=1

wixi
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Since
δnetj

δw
= x

δsj

δnetj
= sj(1− sj)

δEj

δsj
= −(tj − sj)

We obtain the following update rule for the weight i of the neuron given example j:

∆wji = −ηδE
j

δwi
= η(tj − sj)sj(1− sj)xji

Using this update function we descend the error surface in small steps in different directions according
to each example presented to the net. With examples presented in random order, this is a stochastic
gradient descent. Figure 8.2 illustrates this process of stochastically descending the error surface. The
process of updating the weights at each example is called online learning. An alternative training
schedule consists of summing the ∆wji updates for the whole training set (an epoch) and then updating
the weights with the total. This is called batch learning. These are examples of stochastic gradient
descent because they are ways of descending along the gradient of the error function along random
paths depending on the data.

Figure 8.2: Stochastic gradient descent with online training (left panel) and batch training (right panel).

With a single neuron it is possible to learn to classify any linearly separable set of classes. One
classical example is the OR function, as shown in Table ??.
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Table 8.1: The OR function

x1 x2 OR
0 0 0
0 1 1
1 0 1
1 1 1

Figure 8.3: Set of points from the OR function.

Figurer̃ef8-neuro-or shows the training error for one neuron being presented the four examples of
the OR function and the final classifier, separating the two classes. The frontier corresponds to the line
where the response of the neuron is 0.5.

Figure 8.4: Training error and final classifier for one neuron trained to separate the classes in the OR
function.

However, if the sets are not linearly separable, a single neuron cannot be trained to classify them
correctly. This is because the neuron defines a hyperplane separating the two classes. For example, the
exclusive or (XOR) function results in two classes that are not linearly separable, as Table 8.2 illustrates.
So, if we try to train a neuron to separate these classes there is no reduction in the training error nor
does the final classifier manage to separate the classes, as shown in Figure 8.6.
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Table 8.2: The XOR function

x1 x2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

Figure 8.5: Set of points from the OR function.

Figure 8.6: Training error and final classifier for one neuron trained to separate the classes in the OR
function.

The solution for this problem is to add more neurons in sequence.

8.3 Multilayer Perceptron
The multilayer perceptron is a fully connected, feedforward neural network. This means that each
neuron of one layer receives as input the output of all neurons of the layer immediately before. Figure 8.7
shows two examples of multilayer perceptrons (MLP).

To update the coefficients of the output neurons, we derive the same update rule as for the single
neuron with the only difference that the input value is not the value of an example feature but rather the
value of the output of the neuron from the previous layer. Thus, the update rule for weightm of neuron
n in layer k is:
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Figure 8.7: Two examples of multilayer perceptrons. Both have a hidden layer. The left panel shows a
MLP with one output neuron, the right panel an MLP with two output neurons.

∆wjm,k,n = −η δE
j
k,n

δsjk,n

δsjk,n

δnetjk,n

δnetjk,n
δwm,k,n

= η(tj − sjk,n)sjk,n(1− sjk,n)sji,n = ηδk,ns
j
k−1,n

Where sjk−1,n is the output from neuron n of layer k − 1.
For neurons in hidden layers, we need to backpropagate the error through the layers in front:

∆wjm,i,n = −η
(∑

p

δEjk,p

δsjk,p

δsjk,p

δnetjk,p

δnetjk,p

δsji,n

)
δsji,n

δnetji,n

δnetji,n
δwm,i,n

= η(
∑
p

δkpwm,k,p)s
j
in(1− sji,n)xji = ηδi,nx

j
i

The intuition for this is that the neuron in the hidden layer will contribute its output to several
neurons in the layer ahead. Thus, we need to sum the errors from the neurons of the front layer,
propagated through the respective coefficients of those front neurons.

This is the backpropagation algorithm:

• Present the example to the MLP and activate all neurons, propagating the activation forward
through the network.

• Compute the δn,k for each neuron n of layer k, starting from the output layer and then backpropa-
gating the error through to the first layer.

• With the δn,k values .

With this algorithm and the MLP architecture shown on the left panel of Figure 8.7, we can train
the network to classify the XOR function output. During training the two neurons on the hidden layer
learn to transform the training set so that their outputs result in a linearly separable set that the neuron
on the output layer can then separate.
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Figure 8.8: Training the MLP with one hidden layer for classifying the XOR function output. The first
panel shows the training error over 10 training runs. Note that, due to the stochastic initialization and
ordering of the examples presented, there are differences between different runs. The second panel
shows the resulting classifier, successfully separating the classes. The third panel shows the output of
the two neurons in the hidden layer of the network. This layer transforms the features of the training set
making it linearly separable.

This ability to recode the features can be used explicitly in autoassociator networks. These networks
are trained so that the output equals the input, while a hidden layer with a smaller number of neurons
re-encodes the data. Figure 8.9 shows an example, from Mitchell [19], showing a MLP with 8 inputs, 8
output neurons and 3 neurons on the hidden layer. By forcing the output neuron activated to correspond
to the input neuron set to 1, the hidden layer learns to recode the 8 possible values in combinations of
three 0,1 values.

Figure 8.9: Autoassociator example. The network, shown on the left, was trained with the 8 different
values consisting of one input set to 1 and the remainder set to 0, and forced to generate the same output.
The hidden neurons recode the input into different combinations of neuron activations.

8.4 Training the Multilayer Perceptron
To train the MLP it is important to start with small, random weights, close to 0. This is because the
sigmoidal activation functions saturate away from zero. It is also important to run the training process
several times, since the training is not always exactly the same. Normalizing or standardizing the inputs
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is also important, since input features at different scales will force the network to adjust weights at
different rates.

To train the network, we present all training examples in a random order. One pass through all the
training examples is one epoch. Then we repeat this process until the error converges or we detect
overfitting. We can detect overfitting using cross-validation. This is also a form of regularization in
training neural networks, as it allows us to stop training before the training error converges to a fixed
value and thus avoid overfitting. Figure 8.10 illustrates this method.

Figure 8.10: Validation (blue) and training error for five-fold cross-validation. Although training error
keeps decreasing, it is best to stop training at epoch 40 to prevent overfitting.

Another form of regularization is to decay the coefficient weights by a small amount at each iteration,
changing the update function to :

∆wj = −η δE
δwj
− λwj

8.5 Further Reading

1. Alpaydin [2], Chapter 11

2. Mitchell [19], Chapter 4

3. Marsland [18], Chapter 3

4. (Bishop [4], Chapter 5)



Chapter 9

Support Vector Machines, part 1

Maximum margin classifier. Signed distance to decision frontier. Support Vectors and
Support Vector Machine for linear classification

9.1 Maximum margin
In logistic regression and the perceptron we saw examples of separating different classes using a
hyperplane. We saw that the squared error between the class and the distance to the hyperplane was
not a good measure because it pulls the frontier towards the more distant points. By using a function
that “squashes” the outputs away from the frontier, such as the logistic function, allowed us to find
a better way of separating the classes. Figure 10.1 illustrates this difference. The left panel shows a
linear discriminant computed by minimizing the squared errors loss function esq., and the right panel
the discriminant obtained with logistic regression, minimizing the loss function Elog.:

Esq.(w̃) =
N∑
j=1

(g(~xj)− tj)2 Elog.(w̃) = −
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

gn =
1

1 + e−(~wT ~xn+w0)

Figure 9.1: Gene activities for cancerous and normal cells. The linear discriminants were computed by
least squared error (left panel) and logistic regression (right panel).
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However, there is one disadvantage to an error function like the one used in logistic regression.
While the quadratic error function has a well-defined minimum, because increasing the norm of vector
w̃ can make the decision function arbitrarily steep in the frontier, the frontier can be placed in any of a
range of possible places. Figure 9.2 illustrates this problem. The left panel shows a series of results
from the logistic regression minimization. Since the logistic function is flat away from the frontier,
displacing the frontier makes little difference. This may result in the frontier being placed closer to
some points, as shown in the right panel, increasing overfitting.

Figure 9.2: Logistic regression frontiers. Different runs of the same optimization result in different
positions for the frontier because, if the logistic function is very steep at the frontier, placing it at
different positions makes no difference for the loss function.

Regularization helps reduce this effect by forcing vector w̃ to be shorter, smoothing the logistic
function and forcing the frontier away from the closest points. Figure 9.3 shows the same logistic
regression results as Figure 9.2, but this time using L21 regularization. This forces the optimization to
always give the same result and always the same frontier, fixed farther away from the points.

Figure 9.3: Logistic regression with L2 regularization, forcing the norm of w̃ to be small, smooths the
function and fixes the frontier away from the closest points.

This example shows the important concept of a maximum margin classifier. A margin classifier
is a classifier that provides a measure of the distance between the frontier and the points closest to
it. This is the margin of the classifier. A maximum margin classifier is a classifier that maximizes
this distance. With logistic regression, we can approximate this using regularization, but this requires
modifying the loss function to include the regularization term. The code below shows the loss function

1L2 regularization penalizes the square of the norm of w̃
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for the regularized logistic regression. Even though the regularization constant is small (0.00001),
regularization always distorts the objective function of minimizing the error.

1 def log_cost(theta,X,y):

2 coefs = np.zeros((len(theta),1))

3 coefs[:,0] = theta

4 sig_vals = logistic(np.dot(X,coefs))

5 log_1 = np.log(sig_vals)*y

6 log_0 = np.log(1-sig_vals)*(1-y)

7 return -np.mean(log_0+log_1)+np.sum(coefs**2)*0.00001

A better option is to make margin maximization an explicit goal for our loss function. Figure 9.4
shows the margin, which is the distance between the frontier and the examples closest to it. These
vectors are called the support vectors. To explicitly maximize the margin, we can consider the signed
distance between a vector and the decision hyperplane:

r =
~wTx+ w0

||~w||
The value of r is positive on one side of the decision hyperplane and negative on the other, because

of the value of the inner product r = ~wTx+ w0. Furthermore, r is invariant with respect to the norm
of the vector defining the hyperplane, due to the division by ||~w||.

Figure 9.4: The margin is the distance to the points nearest to the decision frontier.

Now we can try to find the hyperplane that maximizes the minimum distance to points being
classified:

argmax
~w,w0

(
min
j

yj(~w
Txj + w0)

||~w||

)
writing this loss function:

1 def closest_dist(ws, Xs, Ys):

2 coefs = np.zeros((len(ws)-1,1))

3 coefs[:,0] = ws.flatten()[:-1]
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4 dists = np.dot(Xs,coefs) + ws[2]

5 norm = np.sqrt(ws[0]**2+ws[1]**2)

6 return -np.min(dists * Ys / norm)

7 # load data

8 x0 = np.random.rand(3)

9 sol = minimize(closest_dist, x0, args = (Xs,Ys))

Note the negative sign on the returned value because we are using the minimize function to find
the maximum value. Despite the conceptual simplicity of this solution and the ease with which it can
be implemented, unfortunately this does not work. As Figure 9.5 shows, the landscape of this loss
function has discontinuous derivatives because, as the position of the discriminant hyperplane changes,
it also changes which vectors are closest to this plane. Furthermore, the maximum value of the margin
coincides with orientations for which several vectors are equidistant to the decision hyperplane, making
the derivative discontinuous at the desired solution. Because of this, the optimization algorithm is
unable to find the correct solution, as shown on the right panel.

Figure 9.5: Landscape of the loss function for maximizing the minimum distance to the decision
hyperplane (left panel) and the resulting hyperplanes due to the inability of the minimization algorithm
to converge to the maximum margin.

To solve this problem we need a different approach.

9.2 Support Vector Machine
We start by noting that the normalized distance is invariant to scaling:

yn(wTxn + w0)

||w||
=
yn(β ~wTxn + βw0)

β||~w||

So we can impose this condition by making ~w and w0 as large as necessary:

yn(~wTxn + w0) ≥ 1,∀n ∈ N

Subject to this condition, the problem of maximizing the margin is equivalent to the problem of
minimizing the norm ||~w||. As long as the condition above is not violated, shrinking the size of ~w
means we are effectively increasing the distance between the discriminant and the closest points. More
conveniently, we can minimize a quadratic function of the norm ||~w||, since minimizing quadratic
functions is computationally more efficient.
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argmax
~w,b

(
min
j

yj(~w
Txj + w0)

||~w||

)
= arg min

~w,w0

1

2
||~w||2

Note that w0 is determined by the constraint. This is thus a constrained optimization problem. One
method for solving constraint optimization problems is to use Lagrange multipliers. To illustrate the
approach, consider the following example:

arg max
x,y

(1− x2 − y2) s.t.x− y − 1 = 0

At the maximum along the line defining the constraint, the component of the function’s derivative
that is parallel to the constraint line must be zero, because otherwise this would not be a local maximum.
This means that, at this point, the constraint line is tangent to a contour line of the objective function.
Figure 9.6 illustrates this.

Figure 9.6: Objective function surface (in red) and the constraint line (blue). The red lines depict the
contour lines of the objective function.

Since g(x, y) = 0 is a contour line of g, if f(x, y) is a maximum subject to g(x, y) = 0, then the
contour line of f(x, y) is parallel to the contour line of g(x, y). And if the contour lines are parallel
then the gradient vectors are also parallel, because the gradient must be perpendicular to the contour
line. So we can write:

~∇x,yf(x, y) = −α~∇x,yg(x, y)

The negative sign is conventional and α is a Lagrange multiplier. We combine these in the
Lagrangian function:

L(x, y, α) = f(x, y) + αg(x, y)

and solve:
~∇x,y,αL(x, y, α) = 0

to find the critical points of the Lagrangian, among which the constrained optimum can be found. In
our example:
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~∇x,y,α

(
1− x2 − y2 + α(x− y − 1)

)
= 0

Can be solved by

δL
δx

= −2x+ α
δL
δy

= −2y − α δL
δα

= x− y − 1

x− y − 1 = 0⇔ x = y + 1 α = 2x , α = −2y ⇔ x = −y

The solution is thus {0.5,−0.5}. Applying the same method to the problem of maximizing the
margin of the classifier:

arg min
w,w0

1

2
||~w||2 s.t.yn(~wT~xn + w0) ≥ 1,∀n ∈ N

Noting that
yn(~wT~xn + w0) ≥ 1 ⇐⇒ −

(
(yn(~wTxn + w0)− 1

)
≤ 0

we obtain the following Lagrangian :

L(~w,w0, ~α) =
1

2
||~w||2 −

N∑
n=1

αn
(
yn(~wTxn + w0)− 1

)
We want to minimize the function with respect to vector ~w and b, while obtaining the maximum

with respect to the αn multipliers. Since at the critical point the derivatives with respect to ~w and w0

are 0, we can write:

δL
δ ~w

= 0⇔ ~w =
N∑
n=1

αnyn~xn
δL
δw0

= 0⇔
N∑
n=1

αnyn = 0

Replacing, we obtain the dual representation of our original problem. In optimization problems,
duality is a relation between two different perspectives on the problem, solving for different sets of
variables. In general, the dual of an optimization problem only provides a bound on the optimal value
but, in this case, solving the dual solves the original problem. So now we solve this dual representation
of our problem as a function of the lagrangian multipliers:

L̃(~α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

N∑
n=1

αnyn = 0 αn ≥ 0

This can be solved by standard quadratic programming algorithms.

9.3 Implementing a Support Vector Machine
As an example, we’ll see how to implement a SVM using the minimize function from the scipy
library. First, we compute the matrix with the inner products of all pairs of training vectors multiplied
by their respective classes:
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H =
N∑
n=1

N∑
m=1

ynym~x
T
n~xm

1 def H_matrix(X,Y):

2 H = np.zeros((X.shape[0],X.shape[0]))

3 for row in range(X.shape[0]):

4 for col in range(X.shape[0]):

5 H[row,col] = np.dot(X[row,:],X[col,:])*Y[row]*Y[col]

6 return H

Now we define the function to maximize:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

Intuitively, we can see that αn will be zero (all lagrangian multipliers are non-negative numbers)
for all vectors that are surrounded by vectors of the same class, because for these the inner products
with vectors of the same class will have a greater weight in the sum, and these contribute positively to
the total because the products of the class labels ynym will be positive. Conversely, for vectors close to
vectors of the opposite class, there will be a non-zero optimal value for αn that balances the increase of
the sum of the α values and the penalty given to the sum of the inner products. However, if a point has
too many neighbours of the other class, the inner products sum will be negative and the αn value will
tend towards infinity, so no solution can be found. This happens if the classes are not linearly separable.

Since we are using the minimize function, we need to change the sign of the result. It is also
useful to provide the optimization algorithm with the jacobian matrix, which consists of the derivatives
of our function with respect to each αn. This improves the convergence of the algorithm.

1 def loss(alphas):

2 return 0.5 * np.dot(alphas.T, np.dot(H, alphas)) - np.sum(alphas)

3 def jac(alphas):

4 return np.dot(alphas.T,H)-np.ones(alphas.shape[0])

Now we set up the constraints and minimize the target function using the Sequential Least Squares
Programming method (SLSQP).

1 H = H_matrix(Xs,Ys)

2 A = Ys[:,0] # sum of alphas is zero

3 cons = {’type’:’eq’,

4 ’fun’:lambda alphas: np.dot(A,alphas),

5 ’jac’:lambda alphas: A}

6 bounds = [(0,None)]*Xs.shape[0] #alpha>=0

7 x0 = np.random.rand(Xs.shape[0])

8 sol = minimize(loss, x0, jac=jac, constraints=cons, method=’SLSQP’, bounds = bounds)

For the minimize function, the constraints are specified in the dictionary with the function and

derivatives for the constraint line setting
N∑
n=1

αnyn = 0, which corresponds to the inner product of the

vector of α values and the classes of the respective points. The constraint αn ≥ 0 is specified in the
bounds variable.
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For all examples that are distant from the margins, the α values are zero. The support vectors, those
examples that lie at the margins, have an α value greater than zero and can be easily identified:

1 svs = sol.x>0.001

2 print svs

3 [False False False False False False True False False False False False

4 False False False False False False False False False False False True

5 False False False False False False False False False False False True]

Now we can compute ~w and b from the support vectors (for b, we can average over all support
vectors).

~w =
N∑
n=1

αnyn~xn b = yn − ~wT~xn

1 def svm_coefs(X,Y,alphas):

2 w = np.sum(alphas*Y*X.T,axis = 1)[:,np.newaxis]

3 b = np.mean(Y-np.dot(X,w))

4 coefs = np.zeros(len(w)+1)

5 coefs[-1] = b

6 coefs[:-1] = w.flatten()

7 return coefs

8
9 coefs = svm_coefs(Xs[svs,:],Ys[svs,0],sol.x[svs])

Figure 9.7 shows the resulting hyperplane and the support vectors found.

Figure 9.7: SVM classifier. The decision hyperplane is represented in blue and the support vectors are
outlined with a black circle.

9.4 Further Reading

1. Alpaydin [2], Sections 13.1 and 13.2

2. Marsland [18], Section 5.1



Chapter 10

Support Vector Machines, part 2

Support Vector Machine: soft margins and the kernel trick. Regularization of SVM

10.1 Soft Margins
In the previous chapter, we derived this dual problem from the problem of minimizing the norm of the
hyperplane vector subject to the constraint that the margin would be at least 1:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

N∑
n=1

αnyn = 0 αn ≥ 0

However, this is only possible if the data sets are linearly separable. Otherwise, the constraints
are incompatible and the problem has no solution, as illustrated on Figure 10.1. An intuitive way of
understanding this is to note that, if vectors ~x are surrounded by neighbours of another class, then the
corresponding α values can rise to infinity to maximize the target function. This means the function no
longer has a maximum value.

Figure 10.1: The left panel shows the decision frontier of a linear SVM. The right panel shows an
example of data that is not linearly separable.

91



92 CHAPTER 10. SUPPORT VECTOR MACHINES, PART 2

To solve this problem, we can add a slack variable ξn for each vector, a positive value representing
the distance between the vector and the inside of the margin, or zero if the vector is not inside the
margin:

yn(~wTxn + b) ≥ 1− ξn,∀n ∈ N ξ ≥ 0

If 1 > ξn > 0, then the vector ~x is inside the margin; if ξn > 1, then the vector ~x is on the wrong
side of the decision hyperplane. This allows vectors to penetrate the margins. However, we want to
minimize the violation of the margin constraint, so now we want to minimize ||~w||2 but penalizing
violations to the margin:

arg minC
N∑
n=1

ξn +
1

2
||~w||2

For the new lagrangian, we need additional lagrangian multipliers for the ξ variables, given the
constraint that they must be at zero or greater:

L(~w, b, ~α, ~µ, ~ξ) =
1

2
||~w||2 + C

N∑
n=1

ξn − C
N∑
n=1

αn
(
yn(~wT~x+ b)− 1 + ξn

)
−

N∑
n=1

µnξn

Setting the derivatives to 0 we obtain the same dual problem, but the derivative of the lagrangian as
a function of the ξ slack variables forces the α parameters to be less than C:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

N∑
n=1

αnyn = 0

δL
δξn

= 0⇔ C − αn − µn = 0⇔ 0 ≤ αn ≤ C,

N∑
n=1

αnyn = 0

So, to fit the SVM with soft margins, we just need to add the C parameter to the upper bounds of
the α values:

1 H = H_matrix(Xs,Ys)

2 A = Ys[:,0] # sum of alphas is zero

3 cons = {’type’:’eq’,

4 ’fun’:lambda alphas: np.dot(A,alphas),

5 ’jac’:lambda alphas: A}

6 bounds = [(0,C)]*Xs.shape[0] #alpha>=0

7 x0 = np.random.rand(Xs.shape[0])

8 sol = minimize(loss, x0, jac=jac, constraints=cons, method=’SLSQP’, bounds = bounds)

With this change, it is now possible to compute a SVM classifier for a data set in which the classes
have a slight overlap. Figure 10.2 shows the result. The thin green lines represent the margins. All
support vectors – the vectors for which the α values are greater than zero – are marked with a circle.
Those with red circles are inside the margins, corresponding to ξ values greater than zero and α values
maximized to C
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Figure 10.2: Soft-margin separation with SVM. Vectors indicated with circles are support vectors.
Those inside red circles are support vectors inside the margins, for which α = C.

Note that, in this case, to compute the w0 parameter we can only use the support vectors that do not
penetrate the margins (i.e. those for which alpha < C). For those that lie inside the margins (α = C)
the equation yn(~wT~xn + w0) = 1 is not valid. So, for computing w0 we average yn − ~wT~xn using only
those support vectors for which 0 < αn < C.

10.2 Non-linear separation and the Kernel Trick
Soft margins can solve slight overlaps, but sets that are not linearly separable will generally need a
different approach.

Figure 10.3: For data that is not linearly separable, soft-margins alone are generally not a good solution.

As we saw several times before, the way to classify sets that are not linearly separable with linear
classifiers is to use a representation of the data in higher dimensions. With SVM, this is easy to do
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with kernel functions. First, we note that all the inner products of the pairs of training vectors can be
precomputed, as we did in the last chapter:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym ~xTn~xm

If we expand the training vectors to higher dimensional representations, we could compute the inner
products of these expanded vectors. However, there is an even better way to do this. Since all we need
are the inner products and not the vectors themselves, we can use kernel functions. A kernel function
is a function that gives us the inner product of the transformed vectors as a function of the original
vectors:

K(~x1, ~x2) = φ(~x1)
Tφ(~x2)

For example, this function φ transforms a two-dimensional vector into a six-dimensional vector:

φ(~x) = [1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2]
T

But, in this case, φ( ~x1)
Tφ( ~x1) = ( ~x1

T ~x2 + 1)2, and so we have a kernel function in this case, which
is ( ~x1

T ~x1 + 1)2. More generally, for degree n polynomial expansions of this sort, the kernel function is:

Kφn( ~x1, ~x2) = ( ~x1
T ~x2 + c)n

So we can solve the original problem, but using a kernel function that implicitly expands the data to
a higher-dimensional space:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynymK( ~xn, ~xm)

To classify a new vector ~xt, once the SVM is trained, we cannot compute ~w because~w will define a
hyperplane on the higher-dimensional space where the kernel implicitly projects the original data. So,
instead, we compute the class of ~xt using the support vectors:

~wTφ(~xt) + w0 =
N∑
n=1

αnynK( ~xn, ~xt)

For example, we can use a polynomial kernel of degree d, Kφd( ~x1, ~x2) = ( ~x1
T ~x2 + 1)d:

1 def H_poly(X,Y,n):

2 H = np.zeros((X.shape[0],X.shape[0]))

3 for row in range(X.shape[0]):

4 for col in range(X.shape[0]):

5 k = (np.dot(X[row,:],X[col,:])+1)**n

6 H[row,col] = k*Y[row]*Y[col]

7 return H

And to classify a new point we use the support vectors:

~wTφ(~xt) + w0 =
N∑
n=1

αnynKφd( ~x1, ~x2)
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1 def poly_k_class(X,alphas,Y,xt,d):

2 s = 0

3 for ix in range(len(alphas)):

4 s = s + (np.dot(X[ix,:],xt)+1)**d*Y[ix]*alphas[ix]

5 return s

However, in practice we will not implement this ourselves. This code is just to illustrate the
computation. It is best to use an optimized implementation of a SVM, such as the one provided in the
sklearn library. To use the SVM classifier from sklearn, we just need to specify the kernel type
and corresponding parameters to the constructor of the SVC class (support vector classifier):

1 from sklearn import svm

2 #load and standardize

3 sv = svm.SVC(C=C,kernel = ’poly’, degree = poly, coef0 = 1)

4 sv.fit(Xs,Ys[:,0])

Figure 10.4 shows the result of fitting the SVM with a third degree polynomial kernel. Using a
lower value of C places a lower upper limit on the penalty for margin violations. This leads to several
support vectors being placed inside the margin (thus maximizing the α values to C). A higher value of
C results in greater penalties for margin violations and, in this case, with C = 1000 no support vectors
are placed inside the margins.

Figure 10.4: SVM trained with a third degree polynomial kernel. The SVM on the left panel was
trained with C = 1, and the right with C = 1000.

So we can see C as a regularization parameter, with lower C values corresponding to higher
regularization, simplifying the decision surface at the cost of allowing more errors. Figure 10.5 shows
another example, this time using a Gaussian kernel, also known as Gaussian Radial Basis Function
kernel, or RBF:

K( ~x1, ~x2) = e
−|| ~x1− ~x2||

2

2σ2

In Scikit Learn, 1/2σ2 is combined into the γ parameter in K( ~x1, ~x2) = e−γ|| ~x1− ~x2||
2 .

1 from sklearn import svm

2 #load and standardize

3 sv = svm.SVC(C=C,kernel = ’rbf’, gamma=gamma)

4 sv.fit(Xs,Ys[:,0])

Figure 10.5 shows different combinations of C and γ values. The top panels show the results of
using γ = 0.01 and γ = 2 with C = 1. A higher γ value makes the RBF kernel weigh nearby points
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more strongly, making the decision frontier conform more tightly to the two classes; a lower γ value
broadens the radius of the RBF kernel smoothing the frontier. The bottom panels, with C = 1000 show
the same effect but with less regularization.

Figure 10.5: SVM trained with a RBF kernel. In the top panels, the SVM was trained with C = 1, and
C = 1000 in the bottom panels. The panels on the left show SVM trained with γ = 0.01, those on the
right with γ = 2.

10.3 Further Reading

1. Alpaydin [2], Sections 13.1 - 13.8

2. Marsland [18], Chapter 5

3. Bishop [4], Section 7.1



Chapter 11

Multiclass and Bias-Variance decomposition

Multiclass classification. Bootstrapping, Bias-Variance decomposition

11.1 Multiclass classification
So far we have always focused on binary classification but classification problems with more than two
classes are common. A classical example is the classification of flowers of three species of the Iris
genus: Iris setosa, Iris versicolor and Iris virginica, shown in Figure 11.1. The data set describes each
flower with four features: sepal length and width and petal length and width1.

Figure 11.1: Iris flowers: setosa, versicolor and virginica. Images CC BY-SA: Szczecinkowaty; Gordon
abd Robertson; Mayfield

For classifiers like Naïve Bayes or k-Nearest Neighbours the number of classes makes no difference,
since the classifier is used in exactly the same way. For Naïve Bayes, we choose the class that maximizes
the conditional probability of the feature values:

CNave Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

and for k-Nearest Neighbours we classify each new point according to the majority in its k-
neighbourhood. Figure 11.2 illustrates the data set and its use for creating a k-NN classifier.

1The data set can be downloaded from the MIST repository: https://archive.ics.uci.edu/ml/datasets/
Iris
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Figure 11.2: The left panel shows the Iris data set projected on the sepal length and width features.
The right panel shows the classification with k-NN. Each point is classified according to the majority
of the classes of neighbouring points.

However, for classifiers based on binary discriminant functions, like Logistic Regression, percep-
trons or SVM, extension to more than two classes requires some meta-algorithm to obtain the necessary
binary discriminants. One possible way of separating K classes is to train K − 1 binary classifiers,
each one to discriminate between one class and all other examples. This is an example of a one versus
the rest classification scheme. An example is assigned to the class corresponding to the classifier that
identifies it as being in the classifier’s class, or to class K if none of the K − 1 classifiers identifies it.
Figure11.3 shows this process. One problem with theK − 1 one versus the rest classification scheme
is that there are ambiguous results wherever classifiers overlap. In this example, there are points that
are classified both as setosa and versicolor.

Figure 11.3: One versus the rest with K-1 classifiers. The first two classifiers distinguish, respectively,
setosa and versicolor examples from all others. The last panel shows the final classification.

An alternative is to train binary classifiers to distinguish between all pairs of classes by training
K(K − 1)/2 classifiers and then classifying each new example with a majority vote, assigning it to the
class with the largest number of votes among the classifiers. However, with this approach there are also
ambiguous classifications whenever there is an equal number of votes for more than one class.
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Figure 11.4: One versus one classification schemes. After trainingK(K − 1)/2 classifiers, points are
classified by majority vote.

A better alternative is to use a one versus the rest classification scheme with K classifiers. If
each classifier can provide a value for the decision function, points can be classified according to
the maximum of the decision functions of the K classifiers. This solves the problem of ambiguous
classification, as illustrated in Fig 11.5. However, for the one versus the rest scheme it is necessary to
train each classifier with an unbalanced sample in which the majority of points fall outside the respective
class. For example, if our training set has 10 evenly balanced classes, then each of the 10 classifiers
will have only 10% of the points in the positive class and 90% in the negative class. Furthermore, the
decision function values for the different one-vs-rest classifiers may not be directly comparable, and
these differences may affect the performance of this multiclass classification heuristic.

Figure 11.5: One versus the rest classification scheme withK classifiers. Points are classified by the
maximum value of the decision function.

Some classifiers allow specific alternatives to multiclass classification. For example, Logistic
Regression can be extended to multiclass classification by fitting K discriminant hyperplanes simul-
taneously, by using the cross entropy of all classes and predictions considering, for each of the K
discriminants, that the points belong to class 1 if they are in class k and to class 0 otherwise:

p(T |w1, ..., wK) =
N∏
n=1

K∏
k=1

p(Ck|φn)tnk =
N∏
n=1

K∏
k=1

ytnknk

In this expression, the tnk matrix gives this one vs rest classes, assigning a 1 to all elements in class k
and 0 otherwise. In practice, we minimize the logarithm of the cross entropy as an error function.

E(w1, ..., wK) = −
N∑
n=1

K∑
k=1

tnk ln ynk
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With the sklearn library, we can use either the one vs rest classification scheme (’ovr’) or the
cross entropy one (’multinomial’) in the LogisticRegression class:

1 from sklearn.linear_model import LogisticRegression

2
3 #One versus rest, max

4 logreg = LogisticRegression(C=1e5,multi_class=’ovr’)

5 logreg.fit(X, Y)

6 #Cross entropy

7 logreg = LogisticRegression(C=1e5,multi_class=’multinomial’)

8 logreg.fit(X, Y)

The multilayer perceptron also can be easily adapted to multiclass classification by having one
output neuron for each class and training the MLP to output a 1 on the neuron corresponding to the
class of the example and a 0 on all other output neurons. The activation function on the output layer,
in this case, is usually the softmax function, mapping a vector of K input values into a vector of K
values all between 0 and 1 and adding up to 1. This can be interpreted as the probability of the example
belonging to each class.

σ : RK → [0, 1]K σ(~x)j =
exj

K∑
k=1

exk
σj ∈ [0, 1];

K∑
k=1

σk = 1

For binary classifiers in general, the sklearn library offers a useful class to perform one versus
rest classification by training K classifiers and classifying each example according to the maximum of
the decision function:

Figure 11.6: One-vs-rest classifica-
tion of the Iris data set using SVM.

1 from sklearn.multiclass import OneVsRestClassifier

2 ovr = OneVsRestClassifier(SVC(kernel=’rbf’,

3 gamma=0.7, C=10))

4 ovr.fit(X, Y)

5 ovr.predict(test_set)

To use this class, we need only provide it with the class of the binary classifier, whichmust implement
the fit and decision_function methods. The fit method of OneVsRestClassifier gener-
atesK classifiers, training each to distinguish one class from all others. Then the predict method re-
turns the class corresponding to the classifier that outputs the largest value in the decision_function.
Figure 11.6 shows the result of this process using SVM on the Iris dataset.
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11.2 Bias and Variance
Statistically, bias is the difference between the expected value of an estimator and the true value being
estimated. Thus, the bias of a model at some point is the difference between the true value and the
expected prediction of the model for that point. The bias for the model is the average of the bias values
measured for all points::

biasn = (ȳ(xn)− tn)2 bias =
1

N

N∑
n=1

(ȳ(xn)− tn)2

Figure 11.7 shows an example of a model that cannot adequately fit the data. The estimates for the point
marked as a large blue circle are all tendentiously above the true value and thus there is a difference
between the average and the true value.

Figure 11.7: This model cannot adjust to the data and thus has a large bias in some points.

In statistics, variance is a measure of the dispersion of values. Applying this concept to a regression
model, the variance of the model at some point is the expected variance of the predicted values for that
point when the model is trained over any data set. The variance for the model is the average of the
variances for all points. To estimate the variance of a point and on N points of a model trained onM
data sets, we compute:

1

M

∑
(ȳ(xn)− ym(xn)) var =

1

NM

N∑
n=1

M∑
m=1

(ȳ(xn)− ym(xn))2

where ȳ(xn) is the average of the predictions for point xn. Figure 11.8 shows a model that overfits
the data, which results in a large variance, showing that, for the point marked as a large circle, the
predictions of individual hypotheses are spread in a broad range around their average.

11.3 Bootstrapping
To estimate the bias and variance of a model we need to train the model over different training sets.
However, in general we only have one training set, and so we need to resample our training set in
order to generate different sets from the same distribution. One widely used resampling method is
bootstrapping, which consists of creating replicas of the original set by sampling at random with
reposition until we have a new set with the same number of points as the original. On average, the
replica set will have around two thirds of the points of the original set, with some repetitions, leaving
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Figure 11.8: This model overfits the data and thus has a large variance in some points.

out about one third of the original points. With this method we can generate a large number of data
sets and use them to estimate the bias and variance of our model.

The function below shows how we can create a number of replicas from a training set data matrix
using bootstrapping. For each replica, the function generates a random vector with indexes of the rows
of the data matrix to be copied to the replica. This random vector will contain repetitions (sampling
with reposition), so some points will be left out and others may be repeated.

1 def bootstrap(samples,data):

2 train_sets = np.zeros((samples,data.shape[0],data.shape[1]))

3 for sample in range(samples):

4 ix = np.random.randint(data.shape[0],size=data.shape[0])

5 train_sets[sample,:] = data[ix,:]

6 return train_sets

With the replicas, we can now estimate the bias and variance of a model by training on each replica
and evaluating the errors outside the training set, using a separate test set (or validation set if we use it
to select a model). For this example, we’ll use polynomial regression models. We start by creating and
filling a matrix with all the predictions of all polynomials fit to all the replicas of the training set. This
is the predicts matrix in the source code below.

1 def bv_poly(degree, train_sets, test_set):

2 samples = train_sets.shape[0]

3 predicts = np.zeros((samples,test_set.shape[0]))

4 for ix in range(samples):

5 coefs = np.polyfit(train_sets[ix,:,0],

6 train_sets[ix,:,1],degree)

7 predicts[ix,:] = np.polyval(coefs,test_set[:,0])

8 mean_preds = np.mean(predicts,axis=0)

9 bias_per_point = (mean_preds-test_set[:,-1])**2

10 bias = np.mean(bias_per_point)

11 var_per_point = np.mean((predicts-mean_preds)**2,axis=0)

12 var = np.mean(var_per_point)

13 return bias,var

Then we compute the average predicted values over all predictions and use this vector, with one
mean prediction for each point in the test set, to predict the bias values for all points in the test set. The
bias will be the mean of these values. For the variance the procedure is similar, but now the variance for
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each point in the data set is given by the average quadratic distance between each individual prediction
and the mean prediction value.

Since we are estimating bias and variance on each hypothesis with points that were not used to
train that particular hypothesis, our estimates are unbiased. This is why it is important to avoid using
the same examples for training and evaluating bias and variance.

11.4 Bias-variance decomposition
With a quadratic error function, the error is the expected square of the difference between the predicted
values and the true values. This the loss function that is generally used in regression, so in regression
we can decompose the error into:

E
(
(y − t)2

)
= (E(y)− E(t))2 + E

(
(y − E(y))2

)
+ E

(
(t− E(t))2

)
The term (E(y)− E(t))2 is the square of the difference between the expected prediction and the

true value, which is the bias. E
(
(y − E(y))2

)
is the variance and E

(
(t− E(t))2

)
is the expected

squared error between the expected value for each point and the value in the training set. This last
term is the noise in our data set, which we will generally assume to be zero. Thus, assuming there is
no random noise in our data, we can decompose the quadratic error into a sum of bias and variance.
Figure 11.9 shows this decomposition used to examine the source of the error for polynomials of
different degrees.

Figure 11.9: The left panel plots the bias, variance and total error (assuming zero noise). The right
panel shows the result of training the best model.

As we can see in Figure 11.9, there is a trade-off between bias and variance. If the model is
underfitting, unable to adjust to the data, bias is the largest component of the error. But when overfit-
ting, variance becomes the dominant factor. The optimal choice is the one that minimizes the total
contribution of bias and variance.

So far, we’ve seen how to decompose the error into bias and variance for models using a quadratic
error function. However, although this is the norm with regression problems, a quadratic error function
is not ideal for classifiers. In these cases, we generally evaluate the error using a 0/1 loss function,
giving an error of 1 if the predicted class is different from the true class, or 0 if they are equal. With this
error function, the decomposition into bias and variance is different. First of all, the main prediction
in this case is the prediction that is most common, or the mode of the predictions, considering all



104 CHAPTER 11. MULTICLASS AND BIAS-VARIANCE DECOMPOSITION

hypotheses. So the bias for example i with a 0/1 loss function is the error of the main prediction with
respect to the true class of point i:

biasi = L(Mo(yi,m), ti)

where Mo(yi,m) is the mode of predictions for point i over all m hypotheses and L is the loss
function returning 0 if the values are equal or 1 if the values differ. The variance is the expected error
of all predictions for example i with respect to the main prediction:

vari = E (L(Mo(yi,m), yi,m))

So far, this is essentially the same as we saw for the quadratic error function used in regression
problems. However, the error decomposition is fundamentally different because whether the variance
increases or decreases the error depends on the bias for that error. If the bias is 0, meaning the
main prediction is correct, then the variance increases the error, since any deviation from the main
prediction increases the error. On the other hand, if the bias is 1, then this means the main prediction is
incorrect and so any deviation from this prediction will decrease the expected total error. Thus, the
error decomposition into bias and variance (assuming no noise in the data) is:

E (L(t, y)) = E (B(i)) + E (Vunb.(i))− E (Vbiased(i))

where Vunb. is the variance for points with bias of 0 and Vbiased corresponds to the variance for points
with bias of 1. Or, alternatively, we can consider the variance to be the net variance Ex (Vunb.(i))−
Ex (Vbiased(i)).

As an example, we’ll decompose the bias and variance of K-Nearest Neighbours classifiers (assum-
ing the data has no noise). We start, as in the regression example, by fitting the classifier to each of the
replicas and storing the predictions.

1 def bv_knn(neighs, train_sets, test_set):

2 samples = train_sets.shape[0]

3 predicts = np.zeros((samples,test_set.shape[0]))

4 for ix in range(samples):

5 sv = KNeighborsClassifier(n_neighbors=neighs)

6 sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1])

7 predicts[ix,:] = sv.predict(test_set[:,:-1])

8 main_preds = np.round(np.mean(predicts,axis=0))

9 bias_per_point = np.abs(test_set[:,-1]-main_preds)

10 var_per_point = np.mean(np.abs(predicts-main_preds),axis=0)

11 u_var = np.sum(var_per_point[bias_per_point == 0])/test_set.shape[0]

12 b_var = np.sum(var_per_point[bias_per_point == 1])/test_set.shape[0]

13 print(u_var,b_var)

14 return bias,u_var-b_var

Next, we compute the main prediction for each example, which is the more common prediction.
This can be done by rounding the mean of all predictions for each example to 0 or 1. The bias is
then computed from the difference between the main prediction and the true class, which can be 0
or 1, and the variance from the fraction of predictions that differ from the main prediction. Finally
we average the bias of each point over all the points to estimate the bias of the model. Since this is a
classification problem, we must distinguish the variance contributed by the unbiased points from the
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variance contributed by the biased points, since these affect the error differently. Thus we decompose
these two contributions to compute the net variance.

Figure 11.10 shows the bias and variance decomposition of a K-NN classifier with the number of
neighbours varying from 1 through 17. When the classifier averages classes over a larger neighbourhood
it has a larger bias and tendentiously smaller net variance. With a smaller number of neighbours, the
bias decreases but the variance starts increasing. The right panel shows the classifier that best balances
bias and variance, with 5 neighbours.

Figure 11.10: The left panel plots the bias, variance and total error (assuming zero noise) for different
values of the number of neighbours considered. The right panel shows the result of training the best
model with 5 neighbours.

11.5 Further Reading

1. Alpaydin [2], Section 4.3

2. Bishop [4], 4.1.2, 4.3.4, 7.1.3

3. (Optional: Valentini and Dietterich. Bias-variance analysis of support vector machines for the
development of SVM-based ensemble methods [23])

4. (Optional: Domingos, P. A unified bias-variance decomposition [8])





Chapter 12

Ensemble Methods

Ensemble methods. Bagging and bragging. Boosting and stumping.

12.1 Bagging
Ensemble methods combine different hypotheses, whether from regression models or classifiers, in
order to improve prediction. One way of doing this is to train different instances of some model with
different training sets and then aggregate the response, either with an average, for regression problems,
or with majority voting for classification. We can obtain replicas of the training set with bootstrapping,
as we saw on Chapter 11, and use those to train different hypotheses. In the code below, we first create
a vector pxof x values to plot our polynomial curves and a matrix for all the predictions. Then we fit
the polynomial model to each replica and compute the predicted values. Finally, we compute the mean
of each prediction. This method is called bootstrap aggregating or bagging, for short.

1 train_sets, _ = bootstrap(replicas,data)

2 px = np.linspace(ax_lims[0],ax_lims[1],points)

3 preds = np.zeros((replicas,points))

4 for ix in range(replicas):

5 coefs = np.polyfit(train_sets[ix,:,0], train_sets[ix,:,1],degree)

6 preds[ix,:] = np.polyval(coefs,px)

7 mean = np.mean(preds,axis=0).ravel()

Alternatively, we can also use the median instead of the mean for the ensemble. This variant of
bagging is called bragging. Figure 12.1 compares these two variants on a polynomial regression
problem. The ensemble of curves was computed using the replicas obtained by bootstrapping.

For classification with bagging, instead of averaging the predicted value, the class is predicted by
majority voting among the classifiers in the ensemble. Apart from this, the procedure is identical: train
the model on a number of replicas of the training set, obtained by bootstrapping. Then apply each
resulting classifier and classify according to the class that was given the most times. The code below
shows how to create an ensemble of SVM classifiers and then use it to classify new points.

1 train_sets,_ = bootstrap(replicas,data)

2 gamma = 2

3 C=10000

4 svs = []

107
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Figure 12.1: The two panels show the instances obtained by training the polynomial model with different
replicas of the data set. The left panel shows the ensemble predictions using the mean (bagging). The
right panel also shows the result using the median (bragging).

5 pX,pY = np.meshgrid(pxs,pys)

6 pZ = np.zeros((len(pxs),len(pys)))

7 for ix in range(replicas):

8 sv = svm.SVC(kernel=’rbf’, gamma=gamma,C=C)

9 sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1])

10 svs.append(sv)

11 preds = sv.predict(np.c_[pX.ravel(),pY.ravel()]).reshape(pZ.shape)

12 pZ = pZ + preds

13 pZ = np.round(pZ/float(replicas))

The meshgrid call on line 5 generates the pX and pY matrices for plotting the contour, along with
the pZ matrix with the prediction values. Then, for each replica, we train a new SVM classifier and add
its predictions to pZ. The majority class, 0 or 1, is computed by rounding the average classification.
Figure 12.2 shows the 50 SVM classifiers computed from the replicas of the data-set and the result of
the ensemble classifier, using the majority vote from the 50 SVM to classify each point.

Figure 12.2: The two panels show the 50 SVM classifiers and the resulting ensemble classifier.

Bootstrap aggregating reduces variance without increasing bias and so it is useful if the base model
has a high variance and low bias. In classification, the probability of the ensemble classifying an
example correctly increases rapidly with the number of classifiers aggregated. For an ensemble of T
classifiers, each with a probability p of correctly classifying an example, the probability of a correct
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classification with majority voting is:
T∑

k=T/2+1

(
T

k

)
pk(1− p)T−k

Figure 12.3 shows this increase for different values of p. Even modest classifiers can become quite
accurate if aggregated in large ensembles.

Figure 12.3: Probability of correct classification for different values of p as a function of the number of
classifiers in the bagging ensemble.

However, this increase in probability presumes that the classifiers are statistically independent. The
more correlation there is between classifiers the smaller the improvement gained by the ensemble. This
is why it is important to use unstable classifiers with a high variance, otherwise they will all be similar
and there will be no advantage to aggregating them. Unstable classifiers are classifiers that are sensitive
to changes in the training set. Stable classifiers, such as SVM with a small regularization constant (C)
or k-NN, are not good choices for bagging.

12.2 Boosting
For boosting we’ll consider the adaptive boosting algorithm, or AdaBoost. This method finds a linear
combination of weak classifiers, where each individual classifier is assigned a weight, so that the
weighted average of the classifier responses minimizes the classification error. This is done by training
each classifier with the same data set but giving different weights to different data points, weighing
more strongly those that were previously misclassified. So, first, we initialize the weights of all N
examples to wn = 1/N . Then we train one classifier so that we minimize the weighted error of the
training set:

Jm =
N∑
n=1

wnmI(ym(xn) 6= tn)
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Then we compute the weighted error of the classifier and the weight of the classifier in the ensemble
classifier.

εm =

N∑
n=1

wnmI(ym(xn) 6= tn)

N∑
n=1

wnm

αm = ln
1− εm
εm

Then we use αm to update the weights for the data points 1:

wnm+1 = wnm exp (αmI(ym(xn) 6= tn))

The indicator function I returns 1 if the values are different, 0 if they are equal, so this results in
increasing the weights of misclassified points. Then a new classifier is fitted to the training set with the
updated weights, and the process is repeated until the weighted training error is zero or greater than
0.5. To use the final ensemble classifier obtained with AdaBoost we compute the weighted sum of the

responses of the individual classifiers: f(x) = sign
M∑
m=1

αmym(x)

Decision Trees
For an example of boosting, we will use decision trees as the weak classifier. A decision tree is a
classifier that recursively splits the data into smaller subsets according to feature values, one at a time,
until the sets contain only examples from one class or a predetermined depth is reached. Figure 12.4
shows a decision tree trained for a dataset with two classes and bidimensional features. As we can
see on the diagram, the first rule splits the data set into two subsets depending on the value of the first
feature, x0 being less or equal to -0.819. This results in a set of 25 red examples that do not require
further splitting. The remaining set of 65 examples, now mostly blue, is further split on the second
feature, x1, and so on until all subsets remaining, at the leaves of the tree, have examples from a single
class.

Figure 12.4: Example of a decision tree.

1In the original algorithm, by Freund and Schapire, it was αm = 1
2 ln

1−εm
εm

. However, this 1
2α just affects the weights

of the classifier by a constant and the weights of the points by a value that is independent of the point, so can be omitted
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Stumping
To this end, at each step the decision tree algorithm maximizes a measure of purity of the subsets. This
measure is a function of the proportion of elements of each class, pc, in the data set. Some examples of
purity measures are:

1. Classification error: fraction of misclassified examples assuming most common class in each
subset.

2. Gini Index: G = 1−
∑

c p
2
c

3. Information Entropy: Entropy =
∑

c pc log pc

Stumping
Stumping is an example of adaptive boosting using a decision tree with only one level (called a stump).
This simple classifier consists of finding the threshold value of a single feature in the data that best
splits the classes we wish to separate. For a data set with two dimensions, this means we are creating
horizontal and vertical lines to split the data.

At each iteration of the AdaBoost algorithm, we fit a decision tree classifier with depth of 1 to the
weighted data set (line 7), compute the weighted error (lines 8 and 9) and update the weights, storing
the value of αm, computed in line 12. Line 14 normalizes the weights so that they add up to 1.

1 from sklearn.tree import DecisionTreeClassifier

2 hyps = []

3 hyp_ws = []

4 point_ws = np.ones(data.shape[0])/float(data.shape[0])

5 max_hyp = 50

6 for ix in range(max_hyp):

7 stump = DecisionTreeClassifier(max_depth=1)

8 stump.fit(data[:,:-1], data[:,-1], sample_weight = point_ws)

9 pred = stump.predict(data[:,:-1])

10 errs = (pred != data[:,-1]).astype(int)

11 err = np.sum(errs*point_ws)

12 alpha = np.log((1-err)/err)

13 point_ws = point_ws*np.exp(alpha*errs)

14 point_ws = point_ws/np.sum(point_ws)

15 hyps.append(stump)

16 hyp_ws.append(alpha)

Figure 12.5 shows the first three iterations and the final classifier, after 10 iterations. The points are
shown in different sizes depending on their current weights.

Figure 12.5: Adaptive boosting using decision stumps.
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To classify new points and compute the error, we iterate through the stored classifiers, compute the
prediction of each (line 3) and add it, weighted by the respective weight of that classifier (line 4).

1 net_pred = np.zeros(data.shape[0])

2 for ix in range(len(hyps)):

3 pred_n = hyps[ix].predict(data[:,:-1])

4 preds = preds+pred_n*hyp_ws[ix]

5 net_pred[preds<0] = -1

6 net_pred[preds>=0] = 1

7 errors = np.sum((net_pred !=data[:,-1]).astype(int))

AdaBoost can be seen as a sequential minimization of an exponential function of the weighted
error:

E =
N∑
n=1

exp (−tnfm(xn)) f(x)m =
m∑
j=1

αjyj(x)

It is sequential because, at each step m, we assume the classifiers and weights for all steps
1, . . . ,m− 1 are fixed. Since all those base classifiers will be constant, the error function we need to
minimize at each step needs to consider only the base currently at the last positionm:

E =
N∑
n=1

wnm exp (−tnαmym(xn))

We can decompose this expression by separating the terms corresponding to points that are correctly
classified, with tn = ym(xn), and those that are not correcly classified, with tn 6= ym(xn). Letting set
T be the set of points correctly classified by classifierm and setM the set of points misclassified by
classifierm, the error function is:

E =
N∑
n=1

wnm exp

(
−1

2
tnαmym(xn)

)
= e−αm/2

∑
n∈T

wnm + eαm/2
∑
n∈M

wnm

= e−αm/2
N∑
n=1

wnm + (eαm/2 − e−αm/2)
N∑
n=1

wnmI(ym(xn) 6= tn)

where function I is the indicator function that returns 1 when the point is misclassified or 0 if it is
classified correctly. Minimizing with respect to ym and αm, we obtain the following solutions:

Jm =
N∑
n=1

wnmI(ym(xn) 6= tn) αm+1 = ln
1− εm
εm

εm =
N∑
n=1

wnmI(ym(xn) 6= tn) /
N∑
n=1

wnm

which correspond to the weighted error function for AdaBoost and the expression for computing αm.

12.3 Further Reading

1. Alpaydin [2], Sections 17.6 and 17.7

2. Marsland [18], Chapter 7

3. Bishop [4], 14.2, 14.3
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Chapter 13

Probably Approximately Correct Learning

Empirical Risk Minimization. Decision theory. Probably Approximately Correct Learning.
VC dimension and shattering.

In Chapter 11 we saw how there is a trade-off between the ability of a model to fit the training data and
the ability of the model to generalize from the training sample to the population of examples whose
features we wish to predict. We did this by instantiating the model into different hypotheses, using
different training sets (by Bootstrapping) and then measuring the Bias, which is the error of the mean
prediction for each example, and the Variance, the dispersion of the predictions for each example. We
saw how reducing Bias leads to an eventual increase in Variance due to overfitting. In this chapter we
will look at the Bias-Variance tradeoff in more detail, with a more formal and grounded approach.

13.1 Empirical Risk Minimization
In brief, Empirical Risk Minimization consists in minimizing the training error. Or, more generally,
minimizing a loss function measured on the training set, such as the classification error or the quadratic
error in regression. This is what we have been doing when training regression or classification models
in supervised learning. The name comes from trying to minimize the risk, which is the expected loss,
and this is an empirical risk because we measure it on the training set. This contrasts with the true risk,
or the average loss over all possible data, which we cannot measure directly. Furthermore, if we adjust
the parameters to minimize the empirical risk, then the empirical risk becomes a biased estimate of
the true risk (for example, the true error, if that is our loss function). However, we can use probability
theory to find a probable upper bound on the true error based on the empirical error we minimized.

First, we note that, if A1, A2, ..., Ak are random events, then the probability of at least one of them
occurring cannot be larger than the sum of their probabilities:

P (A1 ∪ A2 ∪ ...Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

This is the union bound, an upper bound on the probability of the union of a set of random events.
Furthermore, if B1, B2, ..., Bm are independent random events following the Bernoulli distribution,
which is the distribution of a random variable that can take the values 0 or 1 with probabilities φ and
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1− φ respectively, with φ̂ defined as:

P (Bi = 1) = φ φ̂ =
1

m

m∑
i=1

Bi

Then, the following Hoeffding’s inequalities hold:

P (φ− φ̂ > γ) ≤ e−2γ
2m

P (φ̂− φ > γ) ≤ e−2γ
2m

In other words, the probability that the mean of a set of random Bernoulli variables with the same
probability P (Bi = 1) = φ deviating from φ by more than γ decreases exponentially with γ and the
number of examples on the sample.We can rewrite this as the Hoeffding’s inequality:

P (|φ− φ̂| > γ) ≤ 2e−2γ
2m

This is useful because, in classification, we can consider the classification error for each example to
be a Bernoulli random variable, with values of 0 or 1, and φ to be the probability of the classifier
committing an error. In this case, φ̂ is the observed error rate on the training set, or the empirical error,
and we train the classifier by finding the set of parameters that minimizes this error. Thus, we are doing
empirical risk minimization(ERM) because the empirical error, which we try to minimize, is the risk
of misclassification for examples in the training set. However, what we would really like would be
to minimize the φ, the true error, which we cannot measure but is related to the empirical error φ̂ by
Hoeffding’s inequality. This gives us a probable upper bound on the true error and is the rationale
behind the notion of Probably Approximately Correct Learning.

13.2 Probably Approximately Correct Learning
Let us consider X be the population of all possible examples and c : X → {0, 1} the target function
to learn, assigning each example to one of two possible classes. H is the hypothesis class the learner
will explore and D is the probability distribution according to which examples are drawn from X , and
according to which the training sample S is obtained. Our learner will draw S from X according to
distribution D and then find an hypothesis ĥ that minimizes the empirical error, Ês, measured on the
sample S:

ĥ = arg min
h∈H

ÊS(h)

This is the empirical error, which is the average error on the sample, while the true error of an hypothesis
h is the probability of error for any example drawn from X according to distribution D. In other words,
the true error corresponds to the set of possible instances for which the learned hypothesis differs from
the target function c:

E(h) = Px∼D (h(x) 6= c(x))

The true error is not accessible to the learner, who can only compute the empirical error.
In general, it is not reasonable to assume that the true error will be zero, since we cannot include all

possible examples in the training set and different hypotheses may seem correct on all the training set
while making mistakes outside it. So we need a more realistic set of requirements for our learner. We
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Figure 13.1: The true error of an hypothesis is the difference between the classifications given by that
hypothesis and the classifications given by the function c providing the true classes of all points.

can demand that the result is approximately correct, in the sense that the true error of the hypothesis
we find be below some threshold ε, instead of zero:

E(ĥ) ≤ ε

Furthermore, since we are training our classifier on a random subset of all possible examples, the
training set may mislead our classifier into finding a hypothesis whose true error is not even bound by
ε. So we require that our learner is Probably Approximately Correct (PAC):

P
(
E(ĥ) ≤ ε

)
≥ 1− δ

with ε < 1/2 and δ < 1/2. That is, there is a probability 1− δ, with a small (below 0.5) δ, that the true
error of the resulting hypothesis is some ε below 0.5. A learner is an Efficient PAC learner if it can
learn hypothesis ĥ in a time that is polynomial on 1/ε and 1/δ.

Let us now suppose that we have a PAC learner, able to learn an hypothesis with a true error of ε or
less with a probability of 1− δ or more, and let us assume that the hypothesis space H is finite and
contains at least one hypothesis with E(h) ≤ ε, which must be true for there to be a chance of finding
such hypotheses. Training and testing examples will all be drawn fromX according to distribution∼ D.
Let us also define the version space as the set of consistent hypotheses, which are those hypotheses for
which the empirical error is zero. This means that any consistent hypothesis (any hypothesis in the
version space) minimizes the empirical error, since the empirical error cannot be less than zero.

We say that the version space is ε-exhausted if all hypotheses in the version space have a true error
of at most ε:

∀h ∈ V E(h) < ε

It is important to note that the learner cannot tell this, since the true error is not measurable by the
learner. Conversely, the version space is not ε-exhausted if at least one hypothesis has a true error
greater than ε.
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What is the probability that no hypothesis in the version space has a true error larger than ε? In
other words, what is the probability that the version space is ε-exhausted? If we suppose h1, h2, ..., hk
are hypotheses with a true error greater than ε, E(hi) > ε, then the probability that hi is consistent with
one example is smaller than 1− ε, since that is the probability of correct classification for a hypothesis
with error ε. Thus, the probability of the hypothesis being consistent with all examples in a set ofm
examples is below (1− ε)m. Using the union bound relation we saw previously:

P (A1 ∪ A2 ∪ ...Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

we know that the probability that any hypothesis hi of the k hypotheses with E(hi) > ε is consistent
with m examples is ≤ k(1 − ε)m, which is the sum of the probabilities of each hypothesis hi being
consistent with the set of examples. Although we do not know the value of k, which is the total number
of such hypotheses, we know that k cannot be larger than the total number of hypotheses, |H|. That is,
k(1− ε)m ≤ |H|(1− ε)m. And since (1− ε) ≤ e−ε for 0 < ε < 1, the probability of an hypothesis
with a true error greater than ε being in the version space (that is, being compatible with the training
set) is bounded by:

P (∃h ∈ V : E(h) ≥ ε) ≤ |H|e−εm

Let us now choose a value δ that is an upper bound on the probability that an hypothesis in the
version space has a true error greater than ε. In this case, for P (E(h ∈ V) > ε) ≤ δ,

|H|e−εm ≤ δ ⇔ m ≥ 1

ε

(
ln
|H|
δ

)
This gives us a lower bound on the number of examples needed to have a probability of at least 1− δ
of learning an hypothesis with a true error of at most ε. We can also compute the lower bound on ε as a
function of the size of the training set,m, and the probability δ that the learner produces an hypothesis
with an error greater than ε:

m ≥ 1

ε

(
ln
|H|
δ

)
⇔ ε ≤ 1

m

(
ln
|H|
δ

)
This assumes that the learner is a consistent learner. That is, a learner that learns hypothesis with

zero empirical error, ÊS(ĥ) = 0. To extend this reasoning for ÊS ≥ 0, we can consider the empirical
(training) error to be the mean of Bernoulli variables corresponding to the classification error of each
training example:

Ê(hi) =
1

m

m∑
i=1

1{h(x(i) 6= c(x(i))} =
1

m

m∑
i=1

Zi

Applying the Hoeffding inequalities we saw before:

P (φ− φ̂ > γ) ≤ e−2γ
2m

P (φ̂− φ > γ) ≤ e−2γ
2m

gives us the following bounds:
P
(
Ê − E > ε

)
≤ e−2mε

2

P
(
E − Ê > ε

)
≤ e−2mε

2
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Thus, the probability of the true error of hypothesis h being more than ε above the empirical error of h
is bounded by:

P
(
E(h) > ÊS(h) + ε

)
≤ e−2mε

2

Extending this for all hypotheses h ∈ H:

P
(
∃h ∈ H : E(h) > ÊS(h) + ε

)
≤ |H|e−2mε2

Calling this probability δ and solving form, we obtain:

m ≥ 1

2ε2
(ln
|H|
δ

)

This gives us the lower bound on the size of the training set to guarantee a maximum probability of
delta that the true error of the hypothesis we find is greater than the sum of the empirical error and
ε. This lower bound increases with the square of 1/ε and with the logarithm of the total number of
hypotheses, |H|.

This result gives us an important insight into a major problem of machine learning, which is
the inductive bias. We mentioned before that it is always necessary to assume something about the
hypothesis space we are learning in order to be able to generalize from the training set to future examples.
This assumption that restricts the hypothesis space is the inductive bias. For example, that the best
regression curve will be a polynomial of some degree or the the best classifier will be a hyperplane
with a specified number of dimensions. Let us now look at what happens with a classifier that has no
inductive bias. For example, suppose that our hypothesis spaceH is the set of all subsets of X . This
means that our classifier can split X into two classes in any combination of examples by finding a
subset of X defining one class and placing in the other class any example not in that subset. If this
is the case, then the size of our hypothesis space is two raised to the number of possible examples,
since each example may or may not belong to each subset: |H| = 2|X |. Let us further assume that each
example is described by a vector of n boolean features, for simplification, which means that X is the
set of all 2n combinations of features and the cardinality of our hypothesis space is:

|H| = 2|X | = 22n

Using this, we can compute the lower bound on the size of the training set for some value of ε and δ:

m ≥ 1

2ε2
(ln
|H|
δ

)⇔ m ≥ 1

2ε2
(2n ln

2

δ
)

The lower bound ofm grows exponentially in the number of features, n, and since for an approximately
correct learning we want ε to be below 0.5, this means thatm will be greater than |X |, the total number
of all possible examples. In other words, without inductive bias we have no probably approximately
correct learning when trying to extrapolate from the training set to new examples.

Let us now extend this analysis to the hypotheses obtained by empirical risk minimization (ERM).
Recall that an ERM learner selects the hypothesis fromH that minimizes the empirical error:

ĥ = arg min
h∈H

Ê(h)

Let us define the generalization error as the difference between the true error and the empirical error:

E(ĥ)− Ê(ĥ)



120 CHAPTER 13. PROBABLY APPROXIMATELY CORRECT LEARNING

and h∗ be the best hypothesis, in the sense of being the hypothesis with the smallest true error.

h∗ = arg min
h∈H

E(h)

Let 1− δ be the probability that the true error of the ERM hypothesis is not greater than the empirical
error plus ε, P (E(ĥ) ≤ Ê(ĥ) + ε) = 1− δ. Furthermore, the empirical error for the ERM hypothesis,
given our training set S, cannot be greater than the empirical error of the best hypothesis, since the
ERM hypothesis was obtained by minimizing the empirical error. Thus, Ê(ĥ) ≤ Ê(h∗). This means
that the true error of the best hypothesis must also be bounded by the sum of the empirical error of the
best hypothesis and ε with a probability of at least 1− δ, because the best hypothesis, by definition, is
the hypothesis with the lowest true error: E(h∗) ≤ Ê(h∗) + ε with P ≥ 1− δ.

Combining all these, we find that, with a probability of at least 1− δ, the true error of the ERM
hypothesis we obtain by minimizing the empirical error cannot be greater than the true error of the best
hypothesis plus two times ε: and P (E(ĥ) ≤ E(h∗) + 2ε) ≥ 1− δ. Using the previous bounds, we can
decompose the true error of the ERM hypothesis into these two terms:

E(ĥ) =

(
arg min
h∈H

E(h)

)
+ 2

√
1

2m
ln
|H|
δ

The first term is the smallest true error of any hypothesis in the hypothesis spaceH, which corresponds
to the Bias of our model, and the larger this term, the less the model is able to fit the data adequately.
Thus, when this term dominates the true error, we say that our model is underfitting. The second term
is a function of the size of the hypothesis space and the size of the training set, and corresponds to
the Variance of our model. In general, the larger the hypothesis space the greater the variance of the
predictions of the hypotheses obtained by training with different training sets. If this term dominates
the true error, the model is overfitting since now the critical problem is not the model’s inability to
adjust to the points but rather its excessive freedom in adapting to the training set.

13.3 Shattering and the V-C Dimension
So far, we have assumed that the hypothesis spaceH is finite, which allowed us to obtain a lower bound
for the size of the training set given the values of ε and δ:

m ≥ 1

2ε2

(
ln
|H|
δ

)
This can be true for some classifiers, such as decision trees with a fixed limited depth, but is not true
in general, as it is often the case that classifiers use continuous parameters and thus have an infinite
number of possible hypotheses. For example, logistic regression, SVM, neural networks and so forth.
In these cases, the previous expression is no longer useful and we need another approach.

We can start by thinking that, for a classifier with continuous parameters, there can be many
hypotheses that result in the same set of labels for a given set of examples. A logistic regression, for
example, can divide the same set of points into the same two subsets with an infinitude of lines, as long
as the lines are placed between the sets to separate, as illustrated in Figure 13.2.

So what is relevant is how a classifier divides the set of examples into different subsets and not how
many different decision frontiers it can express. This leads us to the following definition:

Hypothesis class H shatters set of points S if, for any labelling S of S, there is a h ∈ H that is
consistent with S
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Figure 13.2: For classifiers with continuous parameters, although the size of the hypothesis space is
infinite, there are also infinite hypothesis resulting in the same classifications for all points.

In other words,H shatters a set of points if it can provide hypotheses that can classify all those points
correctly whatever the class each point belongs to. For example, a linear classifier in two dimensions
can shatter a set of 3 points forming a triangle, as shown in Figure 13.3.

Figure 13.3: A linear classifier in two dimensions can shatter this set of 3 points by correctly classifying
them whatever their labels. Note that two other cases, where all points belong to the same class, were
omitted for being trivial.

Using this notion of shattering, we can define the Vapnik-Chervonenkis dimension of an hypothesis
spaceH, or, for short, the V-C dimension ofH, V C(H), as the size of the largest set of points thatH
can shatter. Note that the points can be placed in the most adequate way to facilitate shattering and
that there may be sets with fewer than V C(H) points thatH cannot shatter. For example, if two points
overlap in the same coordinates no hypothesis can distinguish them. What matters is that some set of
points exists for which the hypothesis space can provide hypotheses for correct classification whatever
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the labels may be. Vapnik et. al. demonstrated that, with a probability of 1− δ:

E(ĥ) ≤ Ê(ĥ) +O

(√
V C(H)

m
ln

m

V C(H)
+

1

m
ln

1

δ

)

That is, the true error of the ERM hypothesis is bounded by the empirical error plus a term that is
approximately proportional to the VC dimension of the hypothesis space (V C(H)) and approximately
inversely proportional to the size of the training set (m). In other words, to keep the true error within
some bounds, the size of the training set must increase as V C(H) increases.

This has implications for the approach of using linear discriminants in higher dimensions to classify
non linearly separable sets. The VC dimension of a linear classifier isD+ 1, whereD is the dimension
of the feature vectors. As we increase the dimensionD, we increase the VC dimension of the hypothesis
space and thus we require a larger sample for the training set to prevent overfitting and an increase in
the generalization error.

13.4 Summary
The probabilistic and statistical foundation of machine learning provides us with a good intuition about
important aspects, even though, in practice, methods such as validation and testing provide better
estimates of the true error of our models or hypotheses. In this chapter we saw how inductive bias is an
important requirement for machine learning, since without it the hypothesis space becomes too large
for allowing generalization from a data set to all possible points. We also saw how the true error results
from a contribution of the error of the best hypothesis, corresponding to the bias of the model, and
the generalization error due to the size of the hypothesis space, corresponding to the variance of the
model. This is the source of the Bias-Variance tradeoff, since improving the best hypothesis of the
model generally requires increasing the size of the hypothesis space. Most importantly, we saw the
notion of Probably Approximately Correct learning. In machine learning we cannot guarantee that
the prediction error will be zero but we can make it probable that it will be small, as long as we have
enough data.

13.5 Further Reading

1. Alpaydin [2], Sections 2.1 through 2.3

2. Mitchell [19], Chapter 7 up to section 7.4
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Decision

Bayesian Decision theory. Maximum a posteriori estimation. Decisions and costs.

14.1 Bayesian Decision theory
So far, we saw several examples of maximizing likelihood as a way to find the best parameters to
fit some set of labelled data. The maximum likelihood (ML) approach consists of maximizing the
predicted joint probability of all features and labels, p(x, y), by adjusting θ, which is the vector of
parameters. Since the joint probability p(x, y) can be decomposed into the conditional probability of y
given x multiplied by the marginal probabilityp(x), and since p(x) is independent of the parameters of
our model, θ, we can simplify the maximization problem:

θ̂ML = arg max
θ

n∏
t=1

p(xt, yt; θ)

= arg max
θ

n∏
t=1

p(yt|xt; θ)×
n∏
t=1

p(xt)

= arg max
θ

n∏
t=1

p(yt|xt; θ)

(14.1)

In other words, we choose the parameters that maximize the probability of the observed labels
given the observed features. These are the maximum likelihood parameters. Note that, in this case, the
probabilities are a function of the parameters but the parameters, θ, are not considered to be random
variables. This is because, under a frequentist interpretation, probability is the measure of the frequency
of a random event in the limit of infinite trials and the parameters values are not random events. Thus,
in a frequentist interpretation, it does not make sense to consider the probability of the parameters
having those values or the probability distribution of the parameters.

However, under a Bayesian interpretation, probability is a measure of rational confidence about
some value or outcome and a probability distribution describes our uncertainty about the values. Under
this interpretation, θ can be considered to be just another random variable, like the features x or the
labels y. Thus, under a Bayesian approach, we may want to find the most probable values of θ given
the evidence obtained from the training sample S and prior assumptions regarding the probability
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distribution of θ. Using Bayes’ rule:

p(θ|S) =
p(S|θ)p(θ)
p(S)

⇔ p(θ|S) =

n∏
t=1

p(yt|xt, θ)p(θ)

p(S)

The marginal probability of the sample, the training set, p(S), cannot generally be computed, but
we can see it as simply a normalization value that guarantees that the probability distribution p(θ|S)

integrates to 1. So, again, we can ignore this probability and find the θ that maximizes the numerator in
the expression above. Thus, the maximum a posteriori(MAP) estimate for θ is:

θ̂MAP = arg max
θ

n∏
t=1

p(yt|xt, θ)p(θ) (14.2)

In practice, the difference between equation 14.1 and equation 14.2 is that the MAP estimate
includes the prior probability distribution of the parameters θ. The ML approach is equivalent to MAP
when the prior probability distribution of the parameters is uniform but, if we assume a non-uniform
prior distribution of θ, the results are different. This not only permits the inclusion of prior assumptions
regarding reasonable values of θ but also functions as a regularization term with an explicit probabilistic
justification. For example, if we assume, as a prior probability distribution for θ, that all parameter
values are normally distributed with a mean of 0 and a standard deviation of 1, the MAP estimate will
tend to keep the θ values close to 0 and prevent them from increasing too much, as can happen with
a pure maximum likelihood estimate which does not consider θ to be a random variable or have a
probability distribution.

14.2 Computing Priors
The ML approach makes no assumption about the prior probability distribution of the parameters
because it does not even consider the parameters to be random variables. An uninformative prior is
a Bayesian assumption about the prior distribution of the parameters that leads to approximately the
same result as the ML approach, having no significant impact on the posterior probability. In some
cases, assuming a uniform prior distribution for the model parameters θ can be an uninformative prior.
However, sometimes this is not the case. For example, in a linear regression, the slope of the line varies
from zero for a horizontal line to minus or plus infinity for a vertical line. If we assume a uniform
distribution for the slope we will strongly bias our prior distribution towards nearly vertical lines,
since this is where the vast majority of the values will be. Thus, in many cases, assuming a uniform
distribution of the parameters is not adequate. Furthermore, there are cases where we may want to use
an informative prior because we do have some information about the prior probability distribution of
our parameters.

This often results in prior probability distributions for which we do not have analytical solutions
for means and standard deviations. Thus, in MAP parameter estimation, it is often necessary to use
numerical techniques to sample these prior probability distributions and obtain the necessary statistics.
This is done by Monte Carlo techniques, most commonly by Markov Chain Monte Carlo (MCMC),
which computes random walks over parameter values based on the probability distribution function in
order to generate the appropriate samples. VanderPlas [24] illustrates this problem and shows some
solutions using Python MCMC libraries.
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In practice, even when using maximum likelihood methods in machine learning, we resort to
regularization, which can be seen as a way to encourage our parameters to fall within reasonable
intervals even though we do not make explicit assumptions about their prior probability distributions
nor consider them to be random variables. Bayesian learning provides a more rigorous alternative, but
often at significant computational cost due to the need to rely on numerical sampling methods.

14.3 Decision and Costs
Aside from the question of prior assumptions, which we can deal with explicitly in a Bayesian approach,
another problem that may occur when fitting parameters to create a classifier is the cost of different
mistakes.

Let us consider, as a simple example, a binary classification problem in one dimension. For each
class C1 and C2, there is a different distribution of the feature value x, with different joint probabilities
P (x,C1) and P (x,C2). If we want to create a classifier that classifies an example as C2 if x > x̂ or
C1, then we need to find the best value for the threshold x̂. The probability and type of each error will
depend on the value of x̂, as illustrated in Figure 14.1. One possibility would be to minimize the total
probability of committing an error, as shown on the right panel of Figure 14.1.

Figure 14.1: For a given value of x̂, the threshold dividing the two classes determines the probability
of each type of error. Red and green show the probability of classifying as class 1 a point of class 2
and blue the probability of classifying as class 2 a point in class 1.

However, this may not be the best option in general. Suppose class 1 corresponds to subjects with
cancer and class 2 to healthy subjects. In this case, the error of misdiagnosing a healthy subject and
concluding the subject has cancer is not as serious as the error of misdiagnosing a cancer patient and
concluding them healthy. Let us consider the loss matrix shown in Table 14.1. This indicates that the
cost of misdiagnosing a cancer patient is five times greater than the cost of misdiagnosing a healthy
subject.

Table 14.1: Loss matrix for cancer diagnosis.

Predict Cancer Predict Healthy
Has Cancer 0 5
Is Healthy 1 0

Instead of trying to minimize the probability of error, we canminimize the expected loss by assigning
each example to the class j that minimizes the loss function, which sum, for all classes k, of the joint
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probability of the class multiplied by the cost of classifying the example as class j when the true class
is k:

arg min
j

∑
k

Lk,jp(Ck|x)

In this case, the frontier dividing the two classes may not correspond to the point of lowest error
probability but, rather, to the point where the error cost is minimum, as illustrated in Figure 14.2.

Figure 14.2: When taking into account the different costs (loss) of different errors, according to the loss
matrix in Table 14.1, the frontier between the two classes gets shifter by the cost values. In this simple
example, this can be understood as finding the minimum point of the probability curves multiplied by
the misclassification costs (right panel).

Another problem with classification and learning is how to deal with the different levels of certainty
in deciding which class or value to predict. In some cases, the predicted probability of an example
belonging to one class may be only marginally larger than the probability of belonging to another class,
which makes the prediction much less reliable than it would be if one probability was large and the
remaining small. Figure 14.3 illustrates this problem. For low values of x, the class represented by the
blue line has a much larger probability than the class represented by the black line, with the converse
for high values of x. But in the mid range, the probabilities of both classes approach and a decision
there is less reliable. One way to avoid this problem is to abstain from offering a classification when
the probabilities for all classes, k, are below some threshold:

p(Ck|x) ≤ φ ∀k

. In the figure, this would be the 0.7 threshold. For these cases, no classification is given. This is called
the reject option.

14.4 Further Reading

1. Alpaydin [2], Chapter 3 up to sections 3.5

2. Bishop [4], Section 1.5

3. VanderPlas, Jake, Frequentism and bayesianism: a python-driven primer, [24]
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Figure 14.3: The probability of an example being in each class (blue and black) as a function of the
feature value x. The region marked in red is the reject region, in which the classifier will not propose
any classification because the probability for all classes is below the predefined threshold (0.7 in this
case).
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Chapter 15

Introduction to Unsupervised Learning

Introduction to unsupervised learning. Data visualization and feature selection.

15.1 Unsupervised Learning
Unsupervised learning, simply put, is the process of adjusting some model to the structure of the data
without relying on an error measure evaluated with reference to known labels. This does not mean the
data cannot have known labels. It is quite possible, and often useful, to use unsupervised learning with
labelled data. But, unlike supervised learning, the goal of unsupervised learning is simply to describe
aspects of the data — how it is distributed, relations between features and so forth — instead of trying
to predict some value that is known for the training set and which can be used to supervise learning. In
other words, the goal of unsupervised learning is to transform the data into some representation that
makes it easier to understand it or use it for some other purpose, like supervised learning. Figure 15.1
illustrates this process.

Figure 15.1: Diagram representing unsupervised learning.

Although, strictly speaking, data visualization by itself may not include unsupervised learning, as it
may not involve learning at all, it is a good starting point to understand the purpose of unsupervised
learning. So we shall begin with the problem of visualizing data with more than two dimensions.

15.2 Visualizing Data
We shall consider, as an example, the Iris dataset, first introduced by Fisher in 1936 1. Figure 15.2
shows examples of the three classes of flowers. Each flower is described by four features, the length
and width of sepals and petals.

1The dataset can be downloaded from the MIST repository: https://archive.ics.uci.edu/ml/datasets/
Iris
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Figure 15.2: The Iris data set contains values for sepal and petal lengths and widths for flowers of three
Iris species. Images CC BY-SA. Authors Setosa: Szczecinkowaty; Versicolor: Gordon, Robertson;
Virginica: Mayfield.

The problem is how to visualize this four-dimensional data, since we can only understand three
dimensions and, for practical purposes, two-dimensional representations are preferable. For this
purpose, we will use the Python Data Analysis (Pandas) library, since it includes many convenient
features for image visualization 2.

We begin by reading the .csv data file using the read_csv function from the Pandas library and
then plot the histograms of the features in a single figure. This is the file format:

1 SepalLength,SepalWidth,PetalLength,PetalWidth,Name

2 5.1,3.5,1.4,0.2,Iris-setosa

3 4.9,3.0,1.4,0.2,Iris-setosa

4 ...

5 5.1,2.5,3.0,1.1,Iris-versicolor

6 5.7,2.8,4.1,1.3,Iris-versicolor

7 ...

8 6.2,3.4,5.4,2.3,Iris-virginica

9 5.9,3.0,5.1,1.8,Iris-virginica

This is the code for creating the histogram.

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3
4 data = read_csv(’iris.data’)

5 data.plot(kind=’hist’, bins=15, alpha=0.5)

6 plt.savefig(’L15-stackedhist.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

Alternatively, instead of using the plot method of the class returned by the read_csv function to
plot the histogram of all features in the same chart, we can plot the different histograms separately by
using the hist method instead:

5 ...

6 data.hist(color=’k’, alpha=0.5, bins=15)

7 ...

The resulting images can be seen in Figure 15.3
2More information available on http://pandas.pydata.org/pandas-docs/stable/visualization.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html


15.2. VISUALIZING DATA 133

Figure 15.3: Examples of histograms for the Iris dataset. On the left, histograms of the four features in
the same chart. On the right, separated in four charts.

Another way of visualizing the distribution of each feature is using a box plot. In this type of plot,
the box represents the range between the first and third quantiles (25% and 75%), a line represents the
median value and the “whiskers” are placed away from the first and third quantile values at a distance
equal to the difference between these two quantile values multiplied by a constant parameter, often 1.5.
We can do this with the Pandas library by using the kind=’box’ argument on the plot method. The
result is shown in Figure 15.4.

5 ...

6 data.plot(kind=’box’)

7 ...

Figure 15.4: Box plot of the four features for the Iris dataset.

While histograms and box plots are useful to represent the distribution of each isolated feature, they
give us no idea about how features correlate. One alternative plot to visualize correlations between
pairs of features is the scatter matrix plot. This is a two-dimensional array of plots representing the
histogram or kernel density estimation plot of each feature in the diagonal and scatter plots of each
feature as a function of another in the remaining plots. Figure 15.5 illustrates these plots for the four
features in the Iris dataset. We can do this easily with the Pandas library sith the scatter_matrix
function:
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1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import scatter_matrix

4 data = read_csv(’iris.data’)

5 scatter_matrix(data.ix[:,[0,1,2,3]], alpha=0.5,figsize=(15,10), diagonal=’kde’)

6 plt.savefig(’L15-scatter.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

Figure 15.5: Scatter matrix plot examples, with histograms and Kernel Density Estimation in the
diagonals.

Another useful method for visualizing multidimensional data is the parallel coordinates plot, in
which features are represented as a set of parallel axes and each data point is represented as a set of line
segments intersecting the feature axes at the corresponding values for each feature. The code below
shows how we can do this to plot all the Iris data in single category by adding a new column, titled
’All’, in which all points have the value ’Iris’. Then we do the parallel_coordinates plot
using this new column as the category field.

1 from pandas import read_csv

2 from pandas.plotting import parallel_coordinates

3 import matplotlib.pyplot as plt

4 data = read_csv(’iris.data’)

5 one_class = data[ [’SepalLength’, ’SepalWidth’, ’PetalLength’, ’PetalWidth’] ]

6 one_class[’Name’] = ’all’

7 parallel_coordinates(one_class, ’Name’)

8 plt.savefig(’L15-parallel-all.png’, dpi=200,bbox_inches=’tight’)

9 plt.close()

Alternatively, we can plot the different categories in different colors by using the ’Name’ column
for the category and giving three color labels in the color argument of the parallel_coordinates
function. The result is shown in Figure 15.6.

1 ...

2 parallel_coordinates(data, ’Name’, color=(’r’,’g’,’b’))

3 ...

A similar method is to use Andrew’s curves [3]. In this plotting method, each data point is converted
into a line resulting from the sum of trigonometric terms of different frequencies. Given a data point
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Figure 15.6: Parallel coordinates plot. Each point is represented as a line crossing the feature axes at
the respective feature values. In the right panel, the lines are coloured by class.

~x = {x1, x2, x3, ...}, the resulting line is:

f~x(t) =
x1√

2
+ x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + x6 sin(3t) + x7 cos(3t)...

The result is that different features contribute to different frequencies on the curve, and points with
similar features result in similar curves. With the Pandas library, these curves can be plotted using the
andrews_curves function:

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import andrews_curves

4 data = read_csv(’iris.data’)

5 andrews_curves(data, ’Name’, color=(’r’,’g’,’b’))

6 plt.savefig(’L15-andrews.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

The Radial Visualization (RADVIZ) method [13] represents each multidimensional data point
as a point in two dimensions, but places the points by spreading the feature axes radially and using
the value of each feature to “pull” the point in the corresponding direction. The position of the point
results from the outcome of all these “forces” pulling it in different directions. This way, points that
have a balanced distribution of values across the features tend to be in the middle of the plot, whereas
points that favour some feature over the others are pulled by that feature’s axis. This can be done with
the radviz function of the Pandas library. The Andrew’s curves and RADVIZ plots are shown in
Figure 15.7.

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import radviz

4 data = read_csv(’iris.data’)

5 radviz(data, ’Name’, color=(’r’,’g’,’b’))

6 plt.savefig(’L15-radviz.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()
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Figure 15.7: Andrews curves and RADVIZ plot. Data coloured by class.

15.3 Feature Selection
In general, not all features are equally useful for learning and it may be beneficial to reduce the
dimensionality of the training set, both for supervised and unsupervised learning. There may be several
reasons for this. There may be too many features for the available data, leading to overfitting; some
features may be too noisy or uninformative; some features may be costly to measure and so forth. One
way of reducing the number of features is to discard all but the best. This is feature selection and can be
done by examining and discarding features before the learning process, or according to the performance
of the hypotheses learned or even as an integral part of the learning process. Discarding features before
beginning to train the learner is called filtering, an can be either univariate filtering if the features
are discarded by examining each feature individually or multivariate filtering if features are examined
jointly with other features.

Univariate filtering is easier to understand when we are dealing with labelled data and want to
prepare the data for supervised learning. In this case, we can select features by comparing each feature
with the data labels. One criterion for selecting features in this case can be the statistical independence
of each feature and the class, since features that are statistically independent from the class are not
useful for predicting the class. Statistical independence can by assessed by the χ2 (chi-squared) test,
a generic test that gives us the probability of obtaining some sample when drawing at random from
some distribution. If On are the observed frequencies and En the expected frequencies, the chi-squared
value is:

χ2 =
N∑
i=1

(Oi − Ei)2

Ei

If we have a feature with K categorical values and a classification problem with C classes, we can
compute the observed number of cases where the feature has a value k in points with class c, Okc, and
the expected number Ekc assuming the feature and class are independent, which is obtained from the
fraction of value k and class c. In this case, the chi-squared value (for (K − 1)(C − 1) degrees of
freedom) is:

χ2 =
K∑
k=1

C∑
c=1

(Okc − Ekc)2

Ekc

Using the chi-squared test we can eliminate those features that, having a low χ2 value, are closer to
being statistically independent of the class.
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Another statistical test for labelled data is the Analysis of Variance (ANOVA) F-test, which compares
the variance between groups with the variance within the groups. Again, this proportion has a known
probability distribution under the assumption that the variables are independent, and thus can be used to
find the likelihood of that assumption. If the F-test value is low, and thus the likelihood of independence
is high, we can reject the feature as uninformative. The code below shows how to use the ANOVA
F-test with Scikit-Learn library, on the Iris dataset:

1 from sklearn.feature_selection import f_classif

2 from sklearn import datasets

3
4 iris = datasets.load_iris()

5 X = iris.data

6 y = iris.target

7 f,prob = f_classif(X,y)

8 print f

9 print prob

The F-test values and respective probabilities indicate which features deviate the most from being
independent of the class (those with the smallest probability values). Figure 15.8 shows the scatter plot
of the two best features from the Iris dataset, according to the F-test, which are the two features with
the lowest F-test probabilities.

Figure 15.8: Scatter plot of the two best features (petal length and petal width) according to the ANOVA
F-Test.

These methods rely on labelled data, and determine the relevance of each feature for predicting
the labels. A feature is relevant if it correlates to the labels, and irrelevant if it is independent of the
labels, in which case we discard it. But we can also filter features according to their correlation to
other features, because a feature is redundant if it correlates to another features. This requires filtering
features by comparing them to each other, which is called multivariate fitering. In this approach, if
several features are strongly correlated one to the others, we can discard all but one of the set, since the
information given by that one is nearly the same as that given by all other correlated features. Since
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this can be applied both to labelled and unlabelled data sets, it can be more useful for unsupervised
learning.

Instead of filtering features prior to training, we can also use the performance of the trained
hypotheses to evaluate the adequacy of the set of features used. These are called wrapper methods
for feature selection, and consist of a scoring algorithm, typically the machine learning algorithm we
wish to use, and a search algorithm that runs the learning algorithm on subsets of all features to find
the best subset. For this we can use a deterministic wrapper that iterates through all possible subsets.
With sequential forward selection we start with the empty set and, at each iteration, loop through all
remaining features to find the best one to add to that set, according to the performance of our learning
algorithm. This is repeated until we reach the desired number of features or performance level. With
sequential backward elimination we do the search in the opposite direction, starting with all features
and removing, at each iteration, we eliminate one feature so that the performance of the classifier is
maximized.

Alternatively, we can also use a non-deterministic wrapper that searchs the subsets of features with
non-deterministic algorithms such as genetic algorithms or simulated annealing. The procedure is the
same, trying to maximize the performance with a limited number of features, but without the greedy
search of the deterministic wrapper methods.

Finally, some learning algorithms incorporate feature selection. This is called embedded feature
selection. Decision trees with a limited depth are an example of this kind of algorithm, since the
best features are used earlier in the tree and, by limiting the tree depth, less useful features end up
being ignored. Naïve Bayes with weighted features is another example. For example, features may
be weighted according to how much the conditional distribution of the feature values given a class
differs from the prior probability of the class, which indicates more relevant features [14]. Embedded
feature selection can also be done through regularization. For example, using L1 regularization, which
penalizes the sum of the absolute values of the parameters. This forces some parameters to be 0,
effectively ignoring the corresponding features. Logistic Regression in Scikit-Learn can be done with
L1 regularization.

15.4 Further Reading

1. Pandas library visualization tutorial: http://pandas.pydata.org/pandas-docs/

stable/visualization.html

2. Scikit-Learn feature selection tutorial: http://scikit-learn.org/stable/modules/

feature_selection.html

3. Alpaydin [2], Sections 6.2. and 6.9

4. A review of feature selection techniques in bioinformatics [20]

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html


Chapter 16

Feature Extraction

Dimensionality reduction: feature extraction with PCA; self-organizing maps.

16.1 Dimensionality Reduction
In Chapter 15 we saw how to reduce the dimensionality of a data set by selecting only a subset of
features, whether by filtering, using a wrapper to evaluate the performance of the learner for each subset
of features or using learning algorithms that embed feature selection. In this chapter, we will see a
different approach, feature extraction, which consists of computing new features using a function of the
original features in the dataset. This approach is very useful in many cases, such as image processing,
text mining or voice recognition. The main idea is to transform the original data into a more useful
data set.

There are many domain-specific algorithms for feature extraction. Identifying regions of interest in
an image requires different methods from extracting specific frequencies from a sound file, for example.
But in this chapter we will focus on some generic approaches that do not depend on the type of problem.
One widely used, and useful, approach is Principal Component Analysis (PCA).

16.2 Principal Component Analysis
Formally, PCA is a procedure for finding a transformation of a data set into an orthogonal set of
coordinates chosen so that the values along each new coordinate are linearly uncorrelated. Another
way of imagining PCA, is that we are going to choose the direction along which the data points have
the greatest variance — that is, are more “spread out” — and then project the data in this direction,
the principal component. Then we iteratively choose a new direction, orthogonal to all previous ones,
using the same criterion of maximum variance.

Figure 16.1 illustrates this process. On the left panel, we see a set of points in three dimensions,
and can note that the distributions over the different coordinates are not uncorrelated, since the point
cloud is spread along a diagonal. If we compute the vector along this diagonal, one of the three vectors
represented in red, and project the data in that direction, we can then find the next principal component
by doing the same computation on the projected data. We can imagine repeating this proces until
there is only one orthogonal direction left, giving the third vector in this case, since we started from
three dimensions. The panel on the right shows the result of projecting the three-dimensional data into
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the first two principal components. Note that, after this transformation, the coordinates are no longer
linearly correlated, with the points no longer spread along a diagonal.

Figure 16.1: The left panel shows a three-dimensional data set with correlated coordinates, and
corresponding three principal components. The right panel shows the projection of the original point
into the first two principal components.

In practice, we do not compute the principal components in this iterative manner. This is just to
make it easier to imagine the process. The way PCA is done is by computing the eigenvectors of the
covariance matrix or, more precisely, of the scatter matrix1. The scatter matrix S can be computed by
adding the matrices obtained by the outer products of all data vectors with themselves, after subtracting
the mean vector:

m =
1

n

n∑
k=1

xk S =
n∑
k=1

(xk −m)(xk −m)T

Using the Numpy library, we can compute the scatter matrix by computing the mean vector and then
the outer products of the data points minus the mean vector. Note that, with the Numpy library, the
mean vector cam be computed in a single instruction. This implementation is only to make it clearer
how the vector is computed.

1 import numpy as np

2 mean_x = np.mean(data[0,:])

3 mean_y = np.mean(data[1,:])

4 mean_z = np.mean(data[2,:])

5 mean_v = np.array([[mean_x],[mean_y],[mean_z]])

6 scatter = np.zeros((3,3))

7 for i in range(data.shape[1]):

8 scatter += (data[:,i].reshape(3,1) - mean_v).dot((data[:,i].reshape(3,1) - mean_v).T)

9
10 print mean_v

11 [[ 1.07726488]

1The scatter matrix divided by the number of samples is the maximum likelihood estimator of the covariance matrix
but, for our purposes, this scaling factor is not important, so we can use the scatter matrix directly. This explanation is based
on the PCA demo authored by Sebastian Raschka, available at http://sebastianraschka.com/Articles/2014_
pca_step_by_step.html

http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
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12 [ 1.11609716]

13 [ 1.03600411]]

14 print scatter

15 [[ 110.10604771 39.91266264 52.3183266 ]

16 [ 39.91266264 80.68947748 34.48293948]

17 [ 52.3183266 34.48293948 97.58136923]]

Once we have the scatter matrix, we can compute the eigenvectors and corresponding eigenvalues.
The eigenvectors of a matrix are those vectors which, after multiplication by the matrix, retain the same
direction, changing only by a scalar factor. Thus, if v is an eigenvector of matrix A,

Av = λv

The scaling factor λ is the corresponding eigenvalue, which can be used to sort the eigenvectors in
order to give us the principal components in order of importance. The details of this computation
fall outside the scope of this course, but we can use the eig function from the linalg module in the
Numpy library. This function returns a vector with the eigenvalues and a matrix with the corresponding
normalized eigenvectors, in columns (the first column of the matrix is the eigenvector corresponding to
the first eigenvalue, and so on):

1 eig_vals, eig_vecs = np.linalg.eig(scatter)

2 print eig_vals

3 [ 183.57291365 51.00423734 53.79974343]

4 print eig_vecs

5 [[ 0.66718409 0.72273622 0.18032676]

6 [ 0.45619248 -0.20507368 -0.8659291 ]

7 [ 0.58885805 -0.65999783 0.46652873]]

The two largest eigenvalues are, in order, the first and the third. This means that these are the
first two principal components of our data set, and the two best directions do choose to project the
three-dimensional data into two dimensions, as shown in Figure 16.1. To do this, we combine these
two vectors into a transformation matrix, then transform the data and plot it.

1 transf = np.vstack((eig_vecs[:,0],eig_vecs[:,2]))

2 t_data = transf.dot(data.T)

3 fig = plt.figure(figsize=(7,7))

4 plt.plot(t_data[0,:], t_data[1,:], ’o’, markersize=7, color=’blue’, alpha=0.5)

5 plt.gca().set_aspect(’equal’, adjustable=’box’)

6 plt.savefig(’L16-transf.png’,dpi=200,bbox_inches=’tight’)

7 plt.close()

By plotting the first principal component in the x axis we get most of the variance in this axis, with
the values ranging from -2 to 6. The second principal component, in the y axis, corresponds to the
direction, orthogonal to the first, that has the largest of the remaining variance. In this case, the range
is now only from -3 to 3. It is also worth noting that the projected points are no longer in a diagonal
distribution, as the new coordinates now are linearly uncorrelated due to the transformation using the
principal components.

The decomposition module of the Scikit-Learn library offers classes PCA and RandomizedPCA
for principal component analysis. The RandomizedPCA is suitable for large datasets, using random
samples of the data for the PCA instead of the complete dataset.
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16.3 Self Organizing Maps
Another way of projecting a high dimension data set into a smaller set of dimensions is to use a Self
Organizing Map (SOM). We can imagine the SOM as an artificial neural network whose neurons are
arranged in a two-dimensional matrix, with each neuron in the SOM having a set of coefficients of the
same dimension as the data set. This gives us two distance measures: we can measure the distance
from the coefficients vector of any neuron to any point in the data set, and we can measure the distance
within the neuron matrix from any neuron to its neighbours.

The SOM is trained by first assigning random values to the coefficients of the neurons. Then,
iteratively, we start by finding the neuron closest to a data point, called the Best Matching Unit (BMU),
and shifting the coefficients vector of the BMU neuron closer to the data point. Neurons that are close
to the BMU in the SOM matrix are also moved in the same direction, though by a smaller amount
decreasing with the distance to the BMU in the SOM matrix. The magnitude of these changes is a
function of a learning coefficient that decreases monotonically during training. Figure 16.2

Figure 16.2: Training the SOM. As the coefficient vector of each neuron is changed, it “pulls” on the
vectors of neighbouring neurons, making the neuron matrix adjust to the data set in the space of the
data points. Image source: Wikipedia

To illustrate the use of a SOM, we will project the three-dimensional colour space into a two-
dimensional matrix. Each colour is defined by a vector of 3 values, for the red, green and blue
components. We will use the minisom module2 to train a SOM of 20 by 30 neurons, for a total of 600
neurons3. We start by creating a labelled set of colors,

1 colors = np.array(

2 [[0., 0., 0.],

3 [0., 0., 1.],

4 ...

5 [.5, .5, .5],

6 [.66, .66, .66]])

7 color_names = \

8 [’black’, ’blue’, ’darkblue’, ’skyblue’,

9 ’greyblue’, ’lilac’, ’green’, ’red’,

10 ’cyan’, ’violet’, ’yellow’, ’white’,

11 ’darkgrey’, ’mediumgrey’, ’lightgrey’]

The MiniSom class is initialized by providing the dimensions of the SOM. In order, the number of
neurons in the x and y dimensions and the dimension of the input space. The learning_rate is the

2Available at https://github.com/JustGlowing/minisom
3This example is based on a SOM demo at the Multivariate Pattern Analysis in Python site: http://www.pymvpa.

org/examples/som.html

https://github.com/JustGlowing/minisom
http://www.pymvpa.org/examples/som.html
http://www.pymvpa.org/examples/som.html
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multiplier for the adjustment in the neuron coefficients and sigma is a parameter defining the neighbour-
hood function on the SOM matrix. The methods random_weights_init and train_batch serve,
respectively, to initialize the coefficients and train the SOM. The initialization consists of assigning
random points from the training set to the SOM neurons as coefficients.

1 from minisom import MiniSom

2 import matplotlib.pyplot as plt

3 import numpy as np

4
5 plt.figure(1, figsize=(7.5, 5), frameon=False)

6 som = MiniSom(20, 30, 3, learning_rate=0.5, sigma = 2)

7 som.random_weights_init(colors)

8 som.train_batch(colors,10000)

To view the result, we can draw the matrix using the colours corresponding to the three coefficients
of each SOM neuron, each coefficient corresponding to a colour channel. We can also draw the colour
labels on the SOM matrix by placing them at the position of the SOM neuron whose coefficients are
closer to the colour values. To do this, we use the winner method of the SOM object to obtain the
coordinates, in the SOM matrix, of the Best Matching Unit for the colour vector. The code below
details this process and Figure 16.3 shows the resulting image.

1 for ix in range(len(colors)):

2 winner = som.winner(colors[ix])

3 plt.text(winner[1], winner[0], color_names[ix], ha=’center’, va=’center’,

4 bbox=dict(facecolor=’white’, alpha=0.5, lw=0))

5 plt.imshow(som.weights, origin=’lower’)

6 plt.savefig(’L6-colors.png’,dpi=300)

7 plt.close()

16.4 An example of feature extraction
To illustrate the process of feature extraction and data projection with a SOM, we’ll examine data
from the Gapminder site4. We have data on a set of indicators: per capita GDP, life expectancy, infant
mortality and unemployment. Each indicator is available in an Excel spreadsheet file with one year in
each column and one country in each row. Figure 16.4 illustrates the structure of these files.

The problem here is that the data is not uniform in quality. For each country and indicator there
may be data for some years and not others, so there are different numbers of data points for different
countries, as illustrated in Figure 16.5. This makes it hard to organize the information. So the first step
will be to extract from these heterogeneous sets of data a set of features with a fixed dimension for all
countries. We can do this by fitting each curve with a third degree polynomial. This will allow us to
represent each country as a set of 16 features, with four features for the curve of each four indicators.
Figure 16.6 shows examples of polynomial curves obtained from the standardized indicator values,
with years and indicator values rescaled to a range of [0, 1].

With this dataset with 16 dimensions, with a 16 dimensional vector describing each country, we can
train a SOM in order to project the countries into a two-dimensional image according to their similarity
in the pattern of the four indicators. We start by normalizing these data by subtracting the mean value

4http://www.gapminder.org

http://www.gapminder.org
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Figure 16.3: Result of training the SOMwith the set of colours and labelling the colours at the respective
SOM neurons.

Figure 16.4: Data available for each indicator.

of each feature and dividing by the standard deviation. This is necessary because the coefficients of the
polynomials can span a wide range of values.

1 descs = np.zeros((len(countries),len(data_names)*(degree+1)))

2 features = len(data_names)*(degree+1)

3 for ix in range(len(countries)):

4 c = countries[ix]

5 c_desc = c.descriptors.reshape((1,features))

6 descs[ix,:] = c_desc

7 descs = (descs-np.average(descs,axis=0))/np.std(descs,axis=0)
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Figure 16.5: Examples of the data points available for the four indicators in three different countries

Figure 16.6: Polynomial curves adjusted to the indicator data points

Then we train the SOM and read a list with the set of countries to label on the neuron matrix.

1 som = MiniSom(30, 45, features, learning_rate=0.5, sigma = 2)

2 som.random_weights_init(descs)

3 som.train_batch(descs,10000)

4 to_plot = open(’countries_to_plot.txt’).readlines()

5 for ix in range(len(to_plot)):

6 to_plot[ix]=to_plot[ix].strip()

Finally, we can represent the SOM colouring each neuron on the matrix in a lighter colour the larger
its average distance to its neighbours. Figure 16.7 shows the result, indicating the position in the SOM
of the neurons closest to the selected countries.

1 plt.figure(1, figsize=(7.5, 5), frameon=False)

2 plt.bone()

3 plt.pcolor(som.distance_map()) # average dist. to neighs.

4 for ix in range(len(descs)):

5 if countries[ix].name in to_plot:

6 winner = som.winner(descs[ix])

7 plt.text(winner[1], winner[0], countries[ix].name,

8 ha=’center’, va=’center’,color=’lime’)

9 plt.savefig(’L6-countries_som.png’,dpi=300)

10 plt.close()
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Figure 16.7: SOM with the projected planets.

16.5 Further Reading

1. PCA with Scikit-Learn: http://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.PCA.html

2. Wikipedia article on Self Organizing Maps: https://en.wikipedia.org/wiki/

Self-organizing_map

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map


Chapter 17

Introduction to Clustering

Introduction to clustering. K-means and k-medoids. Expectation-maximization.

17.1 Clustering
The goal of clustering is to group similar examples and separate different examples in different clusters.
In other words, to create groups (clusters) of examples in a way that maximizes some measure of
similarity between examples within the same cluster and minimizes the similarity between examples in
different clusters. The term clustering can refer both to the process of computing the clusters and to the
resulting set of clusters.

Clustering can help us understand the structure of the data and the relations between different
examples and features. For one thing, grouping similar things together in categories that are distinct
from other groups is an important part of how we understand the world around us. That is why
we have words like “chair”, “stool” or “sofa”, that refer to clusters of objects. This is especially
important when we have large datasets, as happens in fields like biology, astronomy or climatology, or
when studying social networks online or credit card transactions. Clustering may also show us some
important properties of the data. For example, clustering living organisms gives us an insight into their
evolutionary relations. Figure 17.1 shows two examples of clustering used to understand the data. On
the left panel, Darwin’s “tree of life”, an example of hierarchical clustering that gave an important
insight into the mechanisms through which species originate. The right panel is an image from a study
using a large set of positional data from Baidu, the most used search engine in China, to characterize
empty neighbourhoods in chinese cities [6]. The authors used DBSCAN [10], a density-based clustering
algorithm, to group the locations of Baidu users and estimate the home location of each user based on
the density clusters of positional information. From this data, the authors then estimated the occupancy
of residential neighbourhoods in chinese cities.

Clustering can also be used to summarise the data, replacing a large data set with a smaller number
of data points that still retain the same overall structure. Figure 17.2 shows the result of using the
k-means algorithm [17] to compute a simplified dataset, with a smaller number of points, but with the
same “shape” as the original set.

There are several choices to make when deciding how to cluster some data. One problem is defining
the number of clusters. Figure 17.3 illustrates this, showing the same set of points clustered into two,
three or five clusters. Some clustering algorithms determine the number of clusters while others require
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Figure 17.1: The left panel shows Darwin’s depiction of the evolutionary relations between different
organisms, an example of hierarchical clustering. The right panel is an image from [6], a characterization
of “ghost cities” in China by density clustering.

Figure 17.2: Summarizing the larger original dataset (blue points) into 100 or 30 points (red crosses),
while still retaining the overall structure of the data.

that the number of clusters be specified in advance. We also need to decide if we want a partitional
clustering, where the data set is divided into clusters at the same level, or a hierarchical clustering,
where clusters are also clustered in higher-level clusters. Figure 17.4 shows the difference between
partitional and hierarchical clustering.

Figure 17.3: Choosing the number of clusters: two, three or five.

Regarding the membership of each example, the clustering can be exclusive, if each example belongs
only to one cluster; overlapping if an example can belong to two or more clusters; fuzzy clustering
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Figure 17.4: The left panel shows an example of partitional clustering. The right panel shows the same
data set clustered hierarchically, with the colour representing the top-level clustering and the shapes the
bottom level clustering. The lower level clusters are part of the higher level clusters.

if all examples belong to all clusters with some continuous membership value between 0 and 1; or
probabilistic clustering if the membership value of each example to each cluster represents a probability.
The clustering itself can be partial if not all examples belong to clusters or complete if all examples
are assigned to clusters. Depending on the structure of the data and the clustering, the clusters can be
well-separated if no example is more similar to any example outside its cluster than to any example
within its cluster.

Clustering criteria can be based on different aspects of the structure of the data. Figure 17.5 shows
some examples. Clustering based on prototypes assigns each example to the cluster represented by the
closest prototype. With an euclidean distance measure, this results in a Voronoy partition of the feature
space. Contiguity-based clustering creates clusters according to networks of contiguous examples, and
density-based clustering assigns examples to clusters defined by high-density regions, allowing for
some examples to be left unassigned and discarded as noise. Clustering can also be hierarchical, with
groups clustered in larger groups, or defined by probability distributions, such as Gaussian Mixture
Models, which we will cover later on.

Figure 17.5: Examples of prototype-based clustering, contiguity-based clustering and density-based
clustering.

17.2 K-means clustering
Lloyd’s algorithm for k-means clustering algorithm[15] is conceptually very simple. It consists in
dividing the data set into k clusters, each defined by the mean vector of the members of the cluster,
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which is the prototype of that cluster. Each example belongs to the cluster represented by the closest
prototype. Thus, k-means is an exclusive, partitional and prototype-based clustering method. The
algorithm for computing the k-means clustering is:

1. Start with a random set of k prototypes.

2. Assign each example to the closest prototype.

3. Recompute each prototype as the mean point of all the examples assigned to that cluster.

4. Repeat steps 2 and 3 until convergence or some stopping criterion.

There are several possible initialization methods for k-means. For example, the Forgy method
consists of assigning to each of the k prototypes the feature vector of a randomly selected examples as
the starting point for the algorithm. The Random Partition method starts by randomly assigning each
example to one of k clusters, and then computing the starting point of the prototypes as the mean point
of each cluster. Figure 17.6 illustrates these two initialization methods, showing also how the Random
Partition method tends to group the initial positions of the prototypes in the centre of the data space.

Figure 17.6: Initializing the k-means prototypes by the Forgy method (left panel) or the Random
Partition method (right panel). The prototypes are represented with larger symbols and the smaller
symbols represent the data points.

Figure 17.7 shows the first iterations of computing the clusters by the k-means algorithm, starting
with the random (Forgy) assignment of the initial prototype positions and assignment of the data points
to the clusters (left panel), recomputing the position of the cluster prototypes as the mean point of each
cluster (middle panel) and then recomputing the cluster assignment by assigning each example to the
cluster of the closest prototype (right panel).

To illustrate in more detail, we can see how to implement the k-means algorithm in Python. We
start with a function that determines the cluster of each data point in matrix data given a matrix of
centroid coordinates for the positions of the prototypes in centroids:

1 def closest_centroids(data,centroids):

2 ys = np.zeros(data.shape[0])

3 for ix in range(data.shape[0]):

4 dists = np.sum((centroids-data[ix,:])**2,axis=1)

5 ys[ix] = np.argmin(dists)

6 return ys



17.2. K-MEANS CLUSTERING 151

Figure 17.7: First iterations of the k-means algorithm. See text for more details.

Next, a function to recompute the centroids based on the assigned clusters. This function iterates
through the lines of the centroids matrix computing, for each line, the means of the data points
assigned to that cluster.

1 def adjust_centroids(data,centroids):

2 ys = closest_centroids(data,centroids)

3 for ix in range(centroids.shape[0]):

4 centroids[ix,:] = np.mean(data[ys==ix,:],axis=0)

Now we need a function for initializing the prototype positions (the centroids of the clusters). Using
the Forgy method, we can do this assigning the coordinates of randomly selected examples. Note that
the matrix returned is a copy of the selected lines of the data matrix, otherwise we could be returning
pointers to the data points and altering the centroids would alter the data.

1 def forgy(data,k):

2
3 ixs = np.arange(data.shape[0])

4
5 np.random.shuffle(ixs)

6
7 return data[ixs[:k],:].copy()

Alternatively, we can initialize the centroids using the random partition algorithm.

1 def rand_part(data,k):

2 ys = np.random.randint(0,k,data.shape[0])

3 centroids = np.zeros((k,data.shape[1]))

4 for ix in range(k):

5 centroids[ix,:] = np.mean(data[ys==ix,:],axis=0)

6 return centroids,ys

To find the best prototypes for clusters we need a distance measure. Very often, the measure is the
Euclidean distance. However, we can generalize this, as we saw before, with the Minkowsky distance,
which depends on a parameter p:

Dx,x′ = p

√∑
d

|xd − x′d|p

For p = 2 this is the Euclidean distance, and for p = 1 the Manhattan distance.
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17.3 K-medoids
The k-medoids algorithm is a variant of the k-means algorithm with the difference that the prototypes
always coincide with points in the data set. This makes it unnecessary to have a true distance measure,
since all we need is to measure similarities between points in the data set, and makes the algorithm
more robust to noise and outliers. The k-medoids clustering can be computed using the Partitioning
Around Medoids (PAM) algorithm, as follows:

1. Initialize the k prototypes (e.g. with the Forgy method).

2. Assign the examples to clusters.

3. For each medoid and each data point, test if swapping the medoid for that data point reduces the
sum of pairwise dissimilarities between data points and respective medoids. If so, then update
the medoid and reassign examples to clusters.

4. repeat step 3 until no improvement possible.

17.4 Expectation-Maximization
The Expectation-Maximization (EM) method is an important part of many unsupervised learning
algorithms, and we shall revisit it in more detail in future chapters. But, for now, we can introduce it in
a simplified overview and see how it relates to the k-means algorithm. Let us assume we have a set X
of observed data — for example, the known data points — and a set Z of variables we do not observe,
which are called latent variables. For example, the assignments of each data point to each cluster,
which we initially do not know. We also have a set of parameters θ that we wish to adjust in order to
maximize the likelihood of the parameters, which is the probability of all the data, including both the
known and unknown variables, given the set of parameters θ. For example, the centroids representing
the clusters.

L(θ;X,Z) = p(X,Z|θ)

We cannot compute this likelihood directly because we do not know the values Z. But we can estimate
the posterior, or conditional, distribution of Z given the knownX and some previous assumption about
θ:

p(Z|X, θold)

This allows us to compute an expected value for Z and thus estimate the necessary parameters for the
likelihood functionQ(θ, θold) for θ given some previous estimated θold. From the expected values of Z
given X and θold and the likelihood of θ for the known X and the expected Z, we can write:

Q(θ, θold) = EZ|X,θold ln p(X,Z|θ)

We can now find the new values of theta that maximize the likelihood function:

θnew = arg max
θ

EZ|X,θold ln p(X,Z|θ)

Broadly speaking, this is what the k-means algorithm does1. The latent variables Z correspond
to the assignment of examples to clusters and the known variables X correspond to the coordinates

1K-means is not exactly Expectation-Maximization because k-means assigns each point to each cluster instead of
estimating a probability of the point belonging to the cluster. However, we can see k-means as a limit case of EM.
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(features) of the examples in the data set. Given a set of prototype centroids, the θold, we can estimate
the best values for Z by assigning each data point to the closest centroid. With this, we can obtain a
maximum likelihood estimate of the centroid positions, the θnew, by computing the mean point of each
cluster.

Another way of understanding the EM algorithm is as an alternating sequence of optimizations
with respect to different variables. This can be seen if we define the distortion measure:

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2

to evaluate the clusters, where rnk is 1 if xn belongs to µk, else 0. Thus, the rnk variables are the latent
variables assigning each point n to each cluster k. This distortion measure J , which is the sum of the
squared distances between points and their respective cluster centroids, is what we want to minimize
by optimizing the µk parameters, which are the coordinates of the centroids. However, we cannot do
this without the rnk values. Thus we first estimate the best rnk values by minimizing J with respect to
the rnk, which consists simply of assigning each data point to the closest centroid, which results in the
smallest distance added. Now we optimize the function J with respect to the µk centroids. Since J is a
quadratic function on µk, the minimum can be found where the derivative is zero, which corresponds
to the value of µk that is the mean point of the data points in cluster k.

As a limiting case of the more general Gaussian mixture models we will see in Chapter ??, the
complete-data likelihood (including both the observed X and latent Z) for k-means tends towards:

EZ (ln p(X,Z|µµµ))→ −1

2

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 + C

Thus, in these conditions, EM corresponds to the alternating minimization of J we saw above. However,
we will postpone a more detailed explanation of the EM method to Chapter ??, after looking at the
Gaussian mixture models.

17.5 Application example for k-means
The k-means algorithm is often used for vector quantization, which is a procedure for reducing vectors
in a range of values to a smaller set of representative prototypes. In this example, we’ll use k-means to
quantize the colour space of an image2. Figure 17.8 shows the starting image and the results of colour
quantization with 64 and 8 centroids.

We start by loading the image and converting it into a set of two-dimensional vectors using the red
and green colour components, since this image has no blue components. This is easy to do by using
the imread function from the Scikit-image library:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.cluster import KMeans

4 from skimage.io import imsave,imread

5
6 rosa = imread("Rosa.png")

2This example is based on the Scikit-learn demo on colour quantization, http://scikit-learn.org/stable/
auto_examples/cluster/plot_color_quantization.html, using an example of vector quantization in Wikipedia,
https://en.wikipedia.org/wiki/K-means_clustering

http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/K-means_clustering
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Figure 17.8: The original image (left panel) compared with two different colour quantizations, reducing
the colour space to 6 bits (64 colours) and 3 bits (8 colours).

7 w,h,d = rosa.shape

8 cols = np.reshape(rosa/255.0, (w * h, d))

9 image_array = cols[:,:2]

We can now plot all the pixels in the red-green colour space

1 plt.figure(figsize=(12,8))

2 plt.xlabel(’Red’)

3 plt.ylabel(’Green’)

4 plt.scatter(image_array[:, 0], image_array[:, 1], color=cols.tolist(), s=10)

5 plt.axis([0,1,0,1])

6 plt.savefig(’L17-rosa-plot.png’, dpi=200,bbox_inches=’tight’)

and use the k-means algorithm to find the best set of k prototypes to represent the colours. For example,
for 64 colours, we can use the KMeans class from the cluster module of the Scikit-learn library.
Computing the centroids and plotting over the plot of the set of points:

1 n_colors = 64

2 kmeans = KMeans(n_clusters=n_colors).fit(image_array)

3 labels = kmeans.predict(image_array)

4 centroids = kmeans.cluster_centers_

5 plt.scatter(centroids[:, 0], centroids[:, 1], marker=’x’, color=’k’,s=200, linewidths=5)

6 plt.scatter(centroids[:, 0], centroids[:, 1], marker=’x’, color=’w’,s=150, linewidths=2)

7 plt.savefig(’L17-rosa-plot-cs-’+str(n_colors)+’.png’, dpi=200,bbox_inches=’tight’)

The result is shown in Figure 17.9

17.6 Further Reading

1. Alpaydin [2], Section 7.3

2. Marsland [18], Chapter 9

3. Bishop [4], Section 9.1
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Figure 17.9: Quantizing the colour-space into 64 or 8 colours.





Chapter 18

Clustering: beyond prototypes

Affinity Propagation clustering and problems with prototype-based clustering. Density
Clustering. Clustering validation.

18.1 Affinity Propagation clustering
Clustering using prototypes can be useful in some situations but inadequate in others. Because prototype-
based clustering assigns data points to clusters according the their similarity to the prototypes, this
type of clustering does not work well with clusters that are not globular or have different variances.
Another difficulty arises if, like with k-means, we need to specify the number of clusters, which can
lead to a poor clustering in some cases, although, in others, this can be a useful feature as we saw in the
case of vector quantization, where the ability to specify the number of prototypes allows us to control
the quantization. Figure 18.1 shows these aspects of prototype-based clustering.

Affinity Propagation solves the problem of having to pre-determine the number of clusters to generate.
This algorithm is based, conceptually, on the idea of data points passing messages of “responsibility”
sent by each data point to the candidates for cluster prototypes, indicating how suitable each candidate
is according to that data point, and messages of “availability”, sent by each prototype candidate to the
data points indicating how adequate the candidate seems to be based on the support it has for being a
prototype. Thus, we define:

• The similarity matrix si,k, indicating how alike two data points are, with sk,k indicating the
propensity for being a prototype.

• Responsibility matrixR, with ri,k, indicating the suitability of k as prototype for i as estimated
by i

• Availability matrix A, with ai,k, indicating the suitability of k to be prototype for i as estimated
by k

The algorithm begins by initializingR andA to zero. Then assign to each value of ri,k the similarity
between point i and prototype candidate k minus the largest sum of the affinity and similarity between
i and any other prototype:

ri,k ← si,k −max
k′ 6=k

(ai,k′ + si,k′)

157
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Figure 18.1: Prototype clustering fares poorly when the clusters are not globular (top-left panel), have
different variances (top-right) or the number of prototypes chosen is incorrect (bottom-left). However,
these features may be useful in some cases, such as in vector quantization (bottom-right).

In the first iteration, with A set to zero, this is simply the similarity between i and k. After the first
iteration, this also discounts the availability of the other candidates as prototypes for point i, the values
of ai,k′ , which are negative numbers. So, basically, the responsibility sent from i to k will depend on
how better than other candidates, in similarity and availability, k seems to be for i. In other words,
candidate prototypes are competing for the votes of the data points.

Then the algorithm updates theA matrix by considering the self responsibility of k and the votes k
gets from other data points.

ai,k(i 6=k) ← min

0, rk,k +
∑

i′ 6∈{i,k}

max(0, ri′,k)


The self availability is updated as follows, serving as evidence that k is a prototype:

ak,k ←
∑
i′ 6=k

max (0, ri′,k)

To identify prototypes, at each iteration, the algorithm computes for each i the k′ point with the
largest sum of availability and responsibility:

k′ = arg max
k

ai,k + ri,k

If k′ = i, then i is a prototype of a cluster. Otherwise, i belongs to the cluster with prototype k′.
Figure 18.2 shows some stages of the affinity propagation algorithm. Initially, nearly all points consider
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Figure 18.2: Stages of training in affinity propagation clustering.

themselves the best prototype for their own clusters. But as availability and responsibility is propagated,
more votes will accumulate with some candidates, becoming prototypes for larger groups of points.

This solves the problem of determining the number of clusters, since these result automatically
from the algorithm and depend on the structure of the data. However, it does not solve other problems
with prototype-based clustering that stem from attributing points to clusters based on the similarity
to the cluster prototypes. Figure 18.3 illustrates this problem. Since all it matters is the similarity to
the prototype, and all points must be long to the cluster with the closest prototype, prototype-based
clustering is unable to account for some relations between the points.

Figure 18.3: Affinity propagation does not solve all problems with prototype-based clustering.

Affinity propagation clustering in Scikit-learn can be done with the AffinityPropagation class
in the cluster module.

18.2 Density-based clustering
The Density-based spatial clustering of applications with noise (DBSCAN) algorithm[10] takes a
different approach, which solves these problems with prototype-based clustering. Defining the ε
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neighbourhood Nε of each point as the set of points within distance ε, a point p is a core point if the
number of points in the Nε of p is at least equal to a parameter minPts. A point q is reachable from p

if p is a core point and q is in the neighbourhood Nε of p or in the neighbourhood Nε of any core point
that is reachable from p. This recursive definition means that q is reachable from p if there is a path
of reachable core points from p to q. The DBSCAN algorithm proceeds as follows. For each point p,
if the number of points in the neighbourhood Nε of p is less than minPts, p is presumed to be noise.
Otherwise, a cluster is created for p, which is a core point, and all neighbours of p are added to the
cluster. If any neighbour of p is a core point belonging to another cluster, the clusters are merged.

This algorithm solves the problem of the shape of the clusters that arises with prototype clustering,
since the cluster membership propagates along the paths of nearby core points. Figure 18.4 shows the
result of clustering with the DBSCAN algorithm. The blue and green points are assigned to the two
different clusters, while the black points are considered noise and not assigned to any cluster.

Figure 18.4: DBSCAN clustering. The right panel shows the core points (white centers), the non
core points assigned to clusters (filled, green and blue) and points not assigned to clusters, which are
considered noise, in low density regions (black).

The cluster module of the Scikit-Learn library offers a DBSCAN class for clustering with this
algorithm.

18.3 Clustering Validation
In supervised learning we can always evaluate the results by measuring the error between the predictions
and the data labels. But with clustering we may not have that possibility, if we use unlabelled data.
So we may need to assess clusters by some measure of the “goodness” of the clustering. This may be
necessary in different contexts, such as to determine if the data has structure, if the right number of
clusters were predicted, if the clusters fit the data structure and if they fit some external information,
such as class labels, if such information is available. It may also be necessary to evaluate clustering
to compare different sets of clusters. Note that, in the following subsections, the similarity measure
can be substituted by a dissimilarity or distance measure. The only difference is that the meaning of
lower or higher scores will be reversed, as a high score using a similarity measure will, for the same
clusters, be a low score using a distance measure, and the quality of the clusters may be proportional or
inversely proportional to the score depending on the functions used.
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Cluster cohesion
Cluster cohesion is a measure of the similarity of points within each cluster. For each cluster, the cluster
cohesion score is:

cohesion(Ci) =
∑
x∈Ci

∑
y∈Ci

S(x, y)

For prototype-based clusters, the distance or similarity can be measured with respect to the prototype
of each cluster:

cohesion(Ci) =
∑
x∈Ci

S(x, ci)

Cluster separation
Cluster separation measures the similarity, or dissimilarity, of examples between different clusters,
summing the similarity measure between all pairs of points in different clusters.

separation(Ci, Cj) =
∑
x∈Ci

∑
y∈Cj

S(x, y)

For prototype-based clusters, the distance or similarity can be measured with respect to the prototype
of each cluster:

separation(Ci, Cj) = S(ci, cj)

Sum of Squared Errors
For prototype-based clustering, we can define a sum of squared errors as the sum of the distance to the
prototype or, more often, the sum of the squared distance.

SSE =
∑
k

∑
x∈Ck

dist(x, ck)

Silhouette Score
Given a(i) as the average distance between point i and all other points in the same cluster and b(i) as
the average distance of point i to all points in the nearest cluster, with the nearest cluster being the one
with the smallest average distance to i, the silhouette score for point i is the fraction:

s(i) =
b(i)− a(i)

max (a (i) , b (i))

Averaging over all points, we can obtain the silhouette score for the clustering, a value ranging from -1
to 1 with a higher value the more the distance between clusters, b(i), is greater than a(i). The silhouette
score is available on the Scikit-Learn library as the silhouette_score function in the metrics
module. Figure ?? shows the silhouette score for different clusterings using the k-means algorithm
with different numbers of clusters and data sets.

When working with labelled data, in supervised learning, we can also evaluate the clusters by
comparing cluster to the known structure of the data. While the previous scores we saw depend on
internal indices, computed solely from the clusters and the structure of the data, with labelled data it is
possible to use this information to obtain external indices for evaluating clusters.
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0.733 0.628

0.439 0.639

Figure 18.5: Silhouette score for different clusterings.

18.4 Further Reading

1. Frey et. al., Clustering by passing messages between data points [11]

2. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with
noise. [10]

3. Scikit-learn documentation on clustering:http://scikit-learn.org/stable/modules/
clustering.html

 http://scikit-learn.org/stable/modules/clustering.html
 http://scikit-learn.org/stable/modules/clustering.html


Chapter 19

Hierarchical clustering

Hierarchical Clustering. Agglomerative and Divisive Clustering. Clustering Features.

19.1 Hierarchical clustering
Deciding the best number of clusters is often difficult, as the structure of the data may not provide an
obvious solution for this problem. For example, if we want to cluster all living organisms, it is not
clear how many clusters we should have. In this case, the reason is that living organisms are related
in a family tree, in a range of degrees of distance. The best option is to represent this structure in a
series of nested clusters, and clusters of clusters, and so on. This is done with hierarchical clustering.
Figure 19.1 shows two examples of hierarchical clustering. The tree of life, a hierarchical clustering of
living species that also represents their evolutionary relations, and hierarchical clustering for analysing
similarities in gene expression patterns in different organisms.

Figure 19.1: Examples of hierarchical clustering. Left panel, hierarchical clustering of living organisms,
indicating evolutionary relations. Image source: Wikipedia. On the right panel, hierarchical clustering
of gene expression data (Mulvey and Gingold, Online Computational Biology Textbook).

A hierarchical clustering can be represented as a dendrogram (a tree) by joining together first the
examples that are more similar and then gradually joining the most similar clusters until all links are
found, as shown in Figure 19.2. This means that we need to define how to measure the similarity, or
dissimilarity, between examples in our dataset but also how to measure similarity between clusters of
examples, because we need to decide how to cluster clusters into sets of larger clusters.
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Figure 19.2: Hierarchical clustering represented as a dendrogram. Image source: Wikipedia.

There are several ways of thinking about this problem. We can think about proximity between
examples as a generic term of “likeness”, without any precise definition. Similarityis more well defined,
generally a number between 0 and 1 that indicates how alike examples are. Dissimilarity is also a
quantitative measure, in this case of difference between examples, and distance is a special case of
a dissimilarity measure that respects the algebraic properties of a distance. Namely, not negative,
symmetrical and respecting the triangle inequality:

d(x, y) ≥ 0 , d(x, y) = d(y, x) , d(x, z) ≤ d(x, y) + d(y, x)

There are many possible distance measures. Some of the most used are Euclidean, Manhattan and
squared Euclidean distance.

• Euclidean: ‖x− y‖2 =
√∑

d

(xd − yd)2

• Squared Euclidean: ‖x− y‖22 =
∑
d

(xd − yd)2

• Manhattan: ‖x− y‖1 =
∑
d

(xd − yd)2

• Mahalanobis (normalized by variance):
√

(x− y)TCov−1(x− y)

For strings and sequences in general, some useful measures are the Hamming distance, which is the
count of differences between the strings, or the Levenshtein distance, or edit distance, counting the
number of single-character edits (insertions, deletions or substitutions) needed to transform one string
into the other.

Apart from a way to measure similarity or distance between examples, we must also measure
distance between clusters. The method for evaluating cluster distance is the linkage, and there are also
several ways of doing this.

• Single linkage: distance between clusters is the distance between the closest points.

dist(Cj, Ck) = min (dist(x ∈ Cj, y ∈ Ck))

• Complete linkage: distance between the most distant points.

dist(Cj, Ck) = max (dist(x ∈ Cj, y ∈ Ck))
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• Centroid linkage: distance between the centroids of the two clusters.

dist(Cj, Ck) = dist

(∑
x ∈ Cj
|Cj|

,

∑
y ∈ Ck
|Ck|

)
• Average linkage: average distance between all pairs of points from the different clusters.

dist(Cj, Ck) = mean (dist(x ∈ Cj, y ∈ Ck))

• Median linkage: median distance between all pairs of points from the different clusters.

dist(Cj, Ck) = median (dist(x ∈ Cj, y ∈ Ck))

• Ward linkage: join clusters that minimize Sum of Squares Error:

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2

Figure 19-linkage illustrates some examples of linkage methods.

Figure 19.3: Single, complete and centroid linkage methods.

The obvious advantages of hierarchical clustering is avoiding the need to specify a number of
clusters, both before or after clustering, and the possibility of revealing some hierarchical structure in
the data. The disadvantages are that hierarchical clustering must generally be done in a single pass,
with a greedy algorithm, which may introduce errors, and if the hierarchical structure assumed by this
type of clustering does not exist in the data the result may be confusing or misleading.

Agglomerative clustering is a bottom-up approach that begins with singleton clusters and repeatedly
joins the best two clusters, according to the linkage method used, into a higher level cluster until all
elements are joined. The time complexity of agglomerative clustering is generally O(n3), but can be
improved with linkage constraints.

Divisive clustering is a top-down approach that begins with a single cluster containing all examples
and iteratively picks a cluster to split and separates it into smaller clusters until some number of clusters
is reached. The theoretical time complexity for divisive clustering is O(2n) for an exhaustive search
and this approach needs an additional clustering algorithm for splitting each cluster. However, the time
complexity in practice can be lower, depending on the clustering algorithm used, and it may be better
than agglomerative clustering if we only want a few levels of hierarchical clustering.
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19.2 Hierarchical to partitional
Although a hierarchical clustering is a tree of clusters inside other clusters, we can convert it into a
partitional clustering, with a set of clusters at the same level, by cutting some arcs of the tree. The
farther we go from the root of the tree, the greater the number of clusters generated. Figure ?? illustrates
this process.

Two clusters

Five clusters

Figure 19.4: Partitioning a hierarchical clustering by cutting the tree at the desired level.

19.3 Connectivity constraints
In agglomerative clustering, we can restrict which clusters to join by adding connectivity constraints.
These constraints specify which examples are considered connected and only clusters with connected
examples, from one cluster to the other, can be joined into larger clusters. This helps solve some
problems like Figure 19.5 illustrates. The left panel shows the result of agglomerative clustering
without connectivity constraints. Since the linkage method used (Ward) takes into account only
distances between the points, in order to minimize the SSE, the clusters include examples across the gap
separating different stretches of the “ribbon” in which the data is structured. A connectivity constraint
that restricts the connection of each example only to the 10 nearest neighbours creates a graph of
connections that respects the structure of the data and prevents these inadequate clusters from forming.

To create this matrix with the connectivity constraints, we can use the kneighbors_graph function
from the neighbors module of the Scikit-learn, and then use the connectivity constraints matrix in
the AgglomerativeClustering class, as shown below. The result is shown in the right panel of
Figure 19.5.

1 from sklearn.cluster import AgglomerativeClustering

2 from sklearn.neighbors import kneighbors_graph
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Figure 19.5: Agglomerative clustering with Ward linkage, without connectivity constraints (left panel)
and with connectivity constraints connecting only the 10 nearest neighbours of each example.

3
4 connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

5 ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity,

6 linkage=’ward’).fit(X)

19.4 Choosing the linkage method
Scikit-Learn currently offers three linkage methods for agglomerative clustering: complete, average and
Ward linkage. Figure 19.6 shows an example data set clustered to three clusters using agglomerative
clustering and the three linkage methods. Complete linkage tends to favour larger clusters, so leads to a
poor relation between the clusters and the data structure in some cases, as the figure shows (left panel).
Average linkage is better, in these cases (middle panel), and Ward linkage (right panel), minimizing the
SSE measured in the clusters, seems to work best. However, Ward linkage can only be used when the
dissimilarity measure is the Euclidean distance, so if another measure must be used average linkage
tends to be the best option.

Figure 19.6: Agglomerative clustering of the same data set with (left to right) complete, average and
Ward linkage.

19.5 Bisecting k-means
An example of a divisive hierarchical clustering algorithm is the bisecting k-means. The algorithm is:

1. Start with all the examples in a single cluster.
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Figure 19.7: Some examples from the handwritten digits dataset.

2. Choose the best cluster for splitting (e.g. the largest or the one with the lowest score).

3. Split the best candidate with k-means, using k = 2.

4. Repeat steps 2 and 3 until the desired number of clusters is reached.

Although the time complexity for an exhaustive search in divisive clustering is O(2n), using the
k-means algorithm reduces the complexity (although at the cost of having a more greedy divisive
clustering) and the possibility of stopping at the desired level may make this algorithm preferable to
agglomerative clustering in some cases, since agglomerative clustering must run until the complete
tree is generated.

19.6 Clustering features
Conceptually, clustering features is the same as clustering examples. We need but imagine that we
transpose the matrix with all examples in rows and features in columns and obtain a new matrix were
the examples are in the columns, and are now considered features, and the original features, now in rows,
are examples. Clustering features allows us to identify similar features and reduce the dimensionality
of the data by grouping these together in a single feature. With hierarchical clustering we have a simple
way of controlling how many groups of features we use and thus the dimensionally of the resulting data
set.

To illustrate this, we will simplify the handwritten digits data set, which consists of digitized
handwritten digits into grayscale bitmaps of 64 pixels. Figure 19.7 shows these data.

The data set has a total of 1797 examples with 64 features each so, for feature clustering, we
will convert it into a set of 64 examples each with 1797 features. Then we cluster it into 16 clusters,
corresponding to 16 features in the original data set, which we can extract by averaging all features in
each cluster. We also add a connectivity constraint to restrict clustering to neighbouring pixels in the
original image. Feature clustering is done automatically in the FeatureAgglomeration class, so the
complete code, including loading the data set, is simply:

1 import numpy as np

2 from sklearn import datasets, cluster
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3 from sklearn.feature_extraction.image import grid_to_graph

4
5 digits = datasets.load_digits()

6 images = digits.images

7 X = np.reshape(images, (len(images), -1))

8 connectivity = grid_to_graph(images[0].shape[0],images[0].shape[1])

9 agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=16)

10 agglo.fit(X)

11 X_reduced = agglo.transform(X)

12 X_restored = agglo.inverse_transform(X_reduced)

Lines 5-7 are for loading the data and converting the image matrices into a matrix of examples
(rows) and features (columns). Line 8 is for creating the connectivity matrix with the neighbours of
each pixel in the 64× 64 image matrix. Lines 9 and 10 create the agglomerative clusterer and fit the
data, and the last two lines complete the reduced dataset, with only 16 features, and a 64 features dataset
with the feature values aggregated, averaging the features in the same cluster. Figure 19.8 shows the
result. Although the digits in the reduced dataset are no longer recognizable as digits, it is easy to see
that the patterns are different from digit to digit, so this process reduced the number of features without
losing much information.

Figure 19.8: Feature clustering. The original handwritten digits features were clustered as shown in the
left panel. Using only these 16 clusters as 16 features, the reduced data set is illustrated on the right
panel.

19.7 Further Reading

1. Scikit-learn documentation on clustering:http://scikit-learn.org/stable/modules/
clustering.html

2. Alpaydin [2], Section 7.7

 http://scikit-learn.org/stable/modules/clustering.html
 http://scikit-learn.org/stable/modules/clustering.html




Chapter 20

Fuzzy clustering and manifold learning

Fuzzy sets and clustering. Fuzzy c-means. Manifold learning. Cluster validation: internal
and external indeces.

20.1 Fuzzy Clustering
In conventional set theory, elements either belong or do not belong to a set. In such case, we are dealing
with crisp sets. In fuzzy set theory, each element x has a membership value uS(x) ∈ [0, 1] specifying
by how much x belongs to set S. Thus, a fuzzy set S is a set of ordered pairs of elements and their
respective membership function values:

S = {(x, uS(x))|x ∈ X}

This makes it possible to model different types of uncertainty, such as linguistic or categorical uncer-
tainty, when we are unable to define exactly what we mean by some term or category. For example, the
temperature at which something stops being cold and becomes warm or hot is not a precise (crisp) value.
One way to account for this is to allow the membership of each temperature value to each category
cold, warm or hot to vary continuously, as Figure 20.1 illustrates.

1

0

cold warm hot

temperature
Figure 20.1: Fuzzy sets for cold, warm and hot temperatures, and respective membership values.
Wikimedia, CC BY-SA 3.0 fullofstars

Fuzzy sets can also model uncertainty about information or predictions, but fuzzy membership is
different from probability estimates. Conceptually, fuzzy membership is a measure of similarity to
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some imprecise properties that characterize the set the element may belong to with a smaller or larger
membership value, while probability is a measure either of a frequency of random events in the limit
of infinite trials (frequentist interpretation) or of uncertainty but under precise definitions of concepts
(Bayesian interpretation).

Fuzzy clustering rests on the notion of a fuzzy c-partittion. U(X) is a fuzzy c-partition of X if
these three conditions hold. First, the membership values of all elements are between 0 and 1:

0 ≤ uk(xn) ≤ 1 ∀k, n

Second, the total membership of each element to all c partitions is equal to 1:
c∑

k=1

uk(xn) = 1 ∀n

Finally, the total membership in each of the c partitions is between 0 and the total number of elements:

0 ≤
N∑
n=1

uk(xn) ≤ N ∀k

The fuzzy c-means algorithm is a clustering algorithm that finds a fuzzy c-partittion for the elements
to cluster, with each partition being a cluster. From a set X of N data points, the algorithm returns the
c×N membership matrix uk(xn), defining a fuzzy c-partition of X and determining the membership
value of each element xn, n ∈ {1, ..., N} to each cluster k ∈ {1, ..., c}. The fuzzy c-means algorithm
also returns the set {C1, ..., Cc} of centroids of the partitions (clusters). These are found by minimizing
the following squared error loss function:

Jm(X,C) =
c∑

k=1

N∑
n=1

uk(xn)m‖xn − ck‖2 m ≥ 1

and subject to the constraint
c∑

k=1

uk(xn) = 1 ∀n

</p> The parameter m, typically m = 2, is the degree of fuzzification. The derivative of the loss
function with respect to the membership values is zero at the points:

uk(xn) =

(
1

‖xn−ck‖2

) 2
m−1

c∑
j=1

(
1

‖xn−cj‖2

) 2
m−1

and with respect to the centroids Ck:

Ck =

N∑
n=1

uk(xn)mxn

N∑
n=1

uk(xn)m

That is, each centroid Ck is the weighted mean of the example vectors using the membership values.
This algorithm is similar to the k-means algorithm, but using a continuous membership function instead
of the 0, 1 membership of crisp sets.
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Like k-means, the fuzzy c-means algorithm also uses an approach that is similar to Expectation-
Maximization (EM), even though, formally, it is not quite EM. First, the membership values are
computed from a random initial set of centroids {C1, ..., Cc}:

uk(xn) =

(
1

‖xn−ck‖2

) 2
m−1

c∑
j=1

(
1

‖xn−cj‖2

) 2
m−1

This, in turn, allows the update of the centroid coordinates by maximizing the adequacy of the centroid
to the cluster assuming the computed membership values:

Ck =

N∑
n=1

uk(xn)mxn

N∑
n=1

uk(xn)m

These steps are then repeated until convergence, as usual in algorithms based on the EM method. The
stopping criteria for the fuzzy c-means algorithm are generally either reaching a predetermined number
of iterations or the change in the centroid positions falling below some initially specified value.

The result is similar to a k-means clustering, but with continuous membership values. Figure 20.2
illustrates the clustering along with the plot of the membership function for each cluster.

Figure 20.2: Fuzzy c-means example, from “Simulated Annealing - Advances, Applications and
Hybridizations”, Ed. Marcos de Sales Guerra Tsuzuki, CC BY 3.0

To convert a fuzzy clustering into a crisp clustering — defuzzification— it is simply necessary to
convert the continuous membership function into {0, 1} crisp membership values. This can be done by,
for each data point, setting to 1 the largest membership value, and to 0 the remainder, thus assigning
the data point to the cluster to which it has the largest membership, or assigning the data point to the
cluster with the nearest centroid, as in the k-means algorithm.
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20.2 Manifold Learning
Mathematically, an n-dimensional manifold, or n-manifold, is a set of points such that each point and
its neighbours form an approximately Euclidean space. For example, seismic events at the surface of
the Earth form a two-dimensional surface in three-dimensional space. Figure 20.3 shows two examples
of manifolds.

Figure 20.3: Examples of two manifolds in three-dimensional space: the 2-dimensional manifold of
seismic events on the surface of the Earth and a 1-dimensional manifold of hypothetical data that
follows a line in 3D.

In machine learning, this is a useful concept because it is often the case that data do not span
all possible combinations of feature values. Thus, data sets are usually sets of points that can be
approximated by manifolds fewer dimensions than the number of attributes. Finding these manifolds is
a useful way of reducing the dimensionality of our data.

There are many different algorithms for finding manifolds, using different approaches and criteria 1.
Here we will see two as examples: Isomap and t-distributed stochastic neighbor embedding (t-SNE).

t-SNE
The t-distributed stochastic neighbor embedding algorithm [16] (t-SNE) projects the data into lower
dimensions – typically two dimensions, for visualization – while trying to keep the distribution of
distances between points approximately analogous. First, it considers the probability of point xi
choosing point xj as a neighbour to be a Gaussian distribution dependent on the distance between the
points, ||xi − xj||. This can be imagined as the conditional probability of point xj being picked as a
neighbour given that xi is the centre of the neighbourhood:

1See, for example, Scikit-Learn documentation on Manifold Learning at https://scikit-learn.org/stable/
modules/manifold.html

https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/manifold.html
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pj|i =
exp(−||xi − xj||2/2σ2

i )∑
i 6=j

exp(−||xi − xj||2/2σ2
i )

(pi|i = 0)

To avoid the problem of computing the joint probability of finding xi and xj in the same neighbour-
hood from the conditional probabilities, and also to make the distribution vanish less quickly for longer
distances, in t-SNE the joint probability is taken as the average of the conditional probabilities:

pj,i = (pj|i + pi|j)/2

Note that pj|i and pi|j may be different because each Gaussian centred on each point has its own σ
value. In addition, though these steps are computationally convenient, this means that the probabilistic
framework of t-SNE is not formally correct but rather a practical approximation.

On the side of the embedded manifold, in lower dimensions, we can consider a similar distribution
or probabilities for points being neighbours, also dependent on their distance. For this, t-SNE uses
Student’s t-distribution. Thus, with yi and yj being the images of xi and xj in the lower dimensional
space, the probability of yj being in the neighbourhood of yj is:

qj|i =
(1 + ||yi − yj||)−1∑

i 6=j
(1 + ||yi − yj||)−1

(qi|i = 0)

Since Student’s t-distribution has no parameters, qj|i = qi|j and we can just take this as if it was
the joint distribution. Another reason for choosing Student’s t-distribution is that it makes it easier to
adjust the y values in order to bring this distribution close to the Gaussian distributions for the original
points. This is done by minimizing the Kullback–Leibler divergence of qij with respect to pij:

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij

which measures how the distributions differ. By minimizing this measure the distribution of the
embedded points will be locally similar to what it is in the original space. Figure 20.4 illustrates the
result of applying t-SNE to a three-dimensional data set that is distributed along a one-dimensional
line.

Figure 20.4: Original data set (left panel), t-SNE projection to two dimensions (center) and to one
dimension (right panel, bottom line).
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Isomap
The Isomap algorithm [21] tries to create a low-dimensional manifold from high-dimensional data
while preserving as much as possible the distances between the nearest neighbours. The outline of the
algorithm is as follows:

1. Create a k-nearest neighbours graph connecting each point to its k-nearest neighbours.

2. Compute pairwise distances for all pairs of points by adding the distances of all steps in the
shortest path between two points on the k-nearest neighbours graph. This is an estimate of the
distance between points in the manifold.

3. Compute the distribution of the points in the lower-dimensional manifold with multidimensional
scaling, which finds an embedding that preserves as much as possible the distances between pairs
of points.

Figure 20.5 illustrates the result of applying Isomap to the data set shown previously. We can reduce
from three to two dimensions, or even one dimension, and still preserve most of the local structure in
the data because this embedding in lower dimensions approximates the distances measured along the
k-neighbours graph.

Figure 20.5: Original data set (left panel), Isomap projection to two dimensions (center) and to one
dimension (right panel, bottom line).

20.3 The Rand index
Previously, we saw the silhouette score as an internal index to evaluate clusterings, and we also talked
about the possibility of using external indexes. The Rand index is an example of an external index we
can use when we want to compare a clustering with some other partition of our data, such as another
clustering, classification labels or any other way of organizing our data into different groups.

Let us suppose our N examples are grouped into some partition X composed of groups
{X1, X2, X3, ...} and we have a clustering Y with clusters {Y1, Y2, Y3, ...}. Note that this is not a
supervised learning problem, so we are not trying to predict the exact groups each example will fall
into. However, we would like our clustering to place in the same cluster of Y examples that belong in
the same group of X and in different clusters points that belong to different groups.



20.3. THE RAND INDEX 177

To measure this, we can consider allN × (N − 1)/2 pairs of examples and label any pair “positive”
if the two examples belong in the same group of X and “negative” if they belong to different groups.
This way, we can make an analogy to the true and false positives, and true and false negatives, of
supervised learning:

• True Positive: a pair of examples from the same group placed in the same cluster

• True Negative: a pair of examples from different groups placed in different clusters

• False Positive: a pair of examples from different groups placed in the same cluster

• False Negative: a pair of examples from the same group placed in different clusters

This makes it easy to understand the Rand index as analogous to the accuracy of a classifier:

Rand =
TP + TN

TP + TN + FP + FN
=

TP + TN

N(N − 1)/2

One shortcoming of the Rand index is that it does not account for the possibility of the clustering
of pairs of examples matching the groups with which we compare them. The Adjusted Rand Index
solves this problem by subtracting the expected index values if the clustering was uncorrelated to the
groups it is being compared to. The Adjusted Rand Index varies from -1 to 1, with 0 indicating no
correlation, and can be computed in Scikit Learn using the adjusted_rand_score function from
the sklearn.metrics module.

Following this analogy with classification, we can also compute scores analogous to precision,
recall and the F1 measure:

Precision =
TP

FP + TP
Recall =

TP

FN + TP
F1 = 2

Precision×Recall
Precision+Recall
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