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Preface

This textbook contains no new scientific results, and my only contribution was to
compile existing knowledge and explain it with my examples and intuition. I have
made a great effort to cover everything with citations while maintaining a fluent
exposition, but in the modern world of the ‘electron and the switch’ it is very hard
to properly attribute all ideas, since there is an abundance of quality material online
(and the online world became very dynamic thanks to the social media). I will do
my best to correct any mistakes and omissions for the second edition, and all
corrections and suggestions will be greatly appreciated.

This book uses the feminine pronoun to refer to the reader regardless of the
actual gender identity. Today, we have a highly imbalanced environment when it
comes to artificial intelligence, and the use of the feminine pronoun will hopefully
serve to alleviate the alienation and make the female reader feel more at home while
reading this book.

Throughout this book, I give historical notes on when a given idea was first
discovered. I do this to credit the idea, but also to give the reader an intuitive
timeline. Bear in mind that this timeline can be deceiving, since the time an idea or
technique was first invented is not necessarily the time it was adopted as a technique
for machine learning. This is often the case, but not always.

This book is intended to be a first introduction to deep learning. Deep learning is
a special kind of learning with deep artificial neural networks, although today deep
learning and artificial neural networks are considered to be the same field. Artificial
neural networks are a subfield of machine learning which is in turn a subfield of
both statistics and artificial intelligence (AI). Artificial neural networks are vastly
more popular in artificial intelligence than in statistics. Deep learning today is not
happy with just addressing a subfield of a subfield, but tries to make a run for the
whole AI. An increasing number of AI fields like reasoning and planning, which
were once the bastions of logical AI (also called the Good Old-Fashioned AI, or
GOFAI), are now being tackled successfully by deep learning. In this sense, one
might say that deep learning is an approach in AI, and not just a subfield of a
subfield of AI.
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There is an old idea from Kendo1 which seems to find its way to the new world
of cutting-edge technology. The idea is that you learn a martial art in four stages:
big, strong, fast, light. ‘Big’ is the phase where all movements have to be big and
correct. One here focuses on correct techniques, and one’s muscles adapt to the new
movements. While doing big movements, they unconsciously start becoming
strong. ‘Strong’ is the next phase, when one focuses on strong movements. We
have learned how to do it correctly, and now we add strength, and subconsciously
they become faster and faster. While learning ‘Fast’, we start ‘cutting corners’, and
adopt a certain ‘parsimony’. This parsimony builds ‘Light’, which means ‘just
enough’. In this phase, the practitioner is a master, who does everything correctly,
and movements can shift from strong to fast and back to strong, and yet they seem
effortless and light. This is the road to mastery of the given martial art, and to an art
in general. Deep learning can be thought of an art in this metaphorical sense, since
there is an element of continuous improvement. The present volume is intended not
to be an all-encompassing reference, but it is intended to be the textbook for the
“big” phase in deep learning. For the strong phase, we recommend [1], for the fast
we recommend [2] and for the light phase, we recommend [3]. These are important
works in deep learning, and a well-rounded researcher should read them all.

After this, the ‘fellow’ becomes a ‘master’ (and mastery is not the end of the
road, but the true beginning), and she should be ready to tackle research papers,
which are best found on arxiv.com under ‘Learning’. Most deep learning
researchers are very active on arxiv.com, and regularly publish their preprints.
Be sure to check out also ‘Computation and Language’, ‘Sound’ and ‘Computer
Vision’ categories depending on your desired specialization direction. A good
practice is just to put the desired category on your web browser home screen and
check it daily. Surprisingly, the arxiv.com ‘Neural and Evolutionary Compu-
tation’ is not the best place for finding deep learning papers, since it is a rather
young category, and some researchers in deep learning do not tag their work with
this category, but it will probably become more important as it matures.

The code in this book is Python 3, and most of the code using the library Keras is
a modified version of the codes presented in [2]. Their book2 offers a lot of code and
some explanations with it, whereas we give a modest amount of code, rewritten to
be intuitive and comment on it abundantly. The codes we offer have all been
extensively tested, and we hope they are in working condition. But since this book
is an introduction and we cannot assume the reader is very familiar with coding
deep architectures, I will help the reader troubleshoot all the codes from this book.
A complete list of bug fixes and updated codes, as well as contact details for
submitting new bugs are available at the book’s repository github.com/
skansi/dl_book, so please check the list and the updated version of the code
before submitting a new bug fix request.

1A Japanese martial art similar to fencing.
2This is the only book that I own two copies of, one eBook on my computer and one hard copy—it
is simply that good and useful.
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Artificial intelligence as a discipline can be considered to be a sort of ‘philo-
sophical engineering’. What I mean by this is that AI is a process of taking
philosophical ideas and making algorithms that implement them. The term
‘philosophical’ is taken broadly as a term which also encompasses the sciences
which recently3 became independent sciences (psychology, cognitive science and
structural linguistics), as well as sciences that are hoping to become independent
(logic and ontology4).
Why is philosophy in this broad sense so interesting to replicate? If you consider
what topics are interesting in AI, you will discover that AI, at the most basic level,
wishes to replicate philosophical concepts, e.g. to build machines that can think,
know stuff, understand meaning, act rationally, cope with uncertainty, collaborate to
achieve a goal, handle and talk about objects. You will rarely see a definition of an
AI agent using non-philosophical terms such as ‘a machine that can route internet
traffic’, or ‘a program that will predict the optimal load for a robotic arm’ or ‘a
program that identifies computer malware’ or ‘an application that generates a for-
mal proof for a theorem’ or ‘a machine that can win in chess’ or ‘a subroutine which
can recognize letters from a scanned page’. The weird thing is, all of these are
actual historical AI applications, and machines such as these always made the
headlines.

But the problem is, once we got it to work, it was no longer considered ‘in-
telligent’, but merely an elaborate computation. AI history is full of such examples.5

The systematic solution of a certain problem requires a full formal specification
of the given problem, and after a full specification is made, and a known tool is
applied to it,6 it stops being considered a mystical human-like machine and starts
being considered ‘mere computation’. Philosophy deals with concepts that are
inherently tricky to define such as knowledge, meaning, reference, reasoning, and
all of them are considered to be essential for intelligent behaviour. This is why, in a
broad sense, AI is the engineering of philosophical concepts.

But do not underestimate the engineering part. While philosophy is very prone to
reexamining ideas, engineering is very progressive, and once a problem is solved, it
is considered done. AI has the tendency to revisit old tasks and old problems (and
this makes it very similar to philosophy), but it does require measurable progress, in
the sense that new techniques have to bring something new (and this is its

3Philosophy is an old discipline, dating back at least 2300 years, and ‘recently’ here means ‘in the
last 100 years’.
4Logic, as a science, was considered independent (from philosophy and mathematics) by a large
group of logicians for at least since Willard Van Orman Quine’s lectures from the 1960s, but
thinking of ontology as an independent discipline is a relatively new idea, and as far as I was able
to pinpoint it, this intriguing and promising initiative came from professor Barry Smith form the
Department of Philosophy of the University of Buffalo.
5John McCarthy was amused by this phenomenon and called it the ‘look ma’, no hands’ period of
AI history, but the same theme keeps recurring.
6Since new tools are presented as new tools for existing problems, it is not very common to tackle
a new problem with newly invented tools.
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engineering side). This novelty can be better results than the last result on that
problem,7 the formulation of a new problem8 or results below the benchmark but
which can be generalized to other problems as well.

Engineering is progressive, and once something is made, it is used and built
upon. This means that we do not have to re-implement everything anew—there is
no use in reinventing the wheel. But there is value to be gained in understanding the
idea behind the invention of the wheel and in trying to make a wheel by yourself. In
this sense, you should try to recreate the codes we will be exploring, and see how
they work and even try to re-implement a completed Keras layer in plain Python. It
is quite probable that if you manage your solution will be considerably slower, but
you will have gained insight. When you feel you understand it as much as you
would like, you should just use Keras or any other framework as building bricks to
go on and build more elaborate things.

In today’s world, everything worth doing is a team effort and every job is then
divided in parts. My part of the job is to get the reader started in deep learning.
I would be proud if a reader would digest this volume, put it on a shelf, become and
active deep learning researcher and never consult this book again. To me, this
would mean that she has learned everything there was in this book and this would
entail that my part of the job of getting one started9 in deep learning was done well.
In philosophy, this idea is known as Wittgenstein’s ladder, and it is an important
practical idea that will supposedly help you in your personal exploration–ex-
ploitation balance.

I have also placed a few Easter eggs in this volume, mainly as unusual names in
examples. I hope that they will make reading more lively and enjoyable. For all
who wish to know, the name of the dog in Chap. 3 is Gabi, and at the time of
publishing, she will be 4 years old. This book is written in plural, following the old
academic custom of using pluralis modestiae, and hence after this preface I will no
longer use the singular personal pronoun, until the very last section of the book.

I would wish to thank everyone who has participated in any way and made this
book possible. In particular, I would like to thank Siniša Urošev, who provided
valuable comments and corrections of the mathematical aspects of the book, and to
Antonio Šajatović, who provided valuable comments and suggestions regarding
memory-based models. Special thanks go to my wife Ivana for all the support she
gave me. I hold myself (and myself alone) responsible for any omissions or mis-
takes, and I would greatly appreciate all feedback from readers.

Zagreb, Croatia Sandro Skansi

7This is called the benchmark for a given problem, it is something you must surpass.
8Usually in the form of a new dataset constructed from a controlled version of a philosophical
problem or set of problems. We will have an example of this in the later chapters when we will
address the bAbI dataset.
9Or, perhaps, ‘getting initiated’ would be a better term—it depends on how fond will you become
of deep learning.
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1FromLogic toCognitive Science

1.1 The Beginnings of Artificial Neural Networks

Artificial intelligence has it roots in two philosophical ideas of Gottfried Leibniz, the
great seventeenth-century philosopher and mathematician, viz. the characteristica
universalis and the calculus ratiocinator. The characteristica universalis is an ide-
alized language, in which all of science could in principle be translated. It would be
language in which every natural language would translate, and as such it would be
the language of pure meaning, uncluttered by linguistic technicalities. This language
can then serve as a background for explicating rational thinking, in a manner so pre-
cise, a machine could be made to replicate it. The calculus ratiocinator would be a
name for such a machine. There is a debate among historians of philosophy whether
this would mean making a software or a hardware, but this is in fact a insubstantial
question since to get the distinction we must understand the concept of an universal
machine accepting different instructions for different tasks, an idea that would come
from Alan Turing in 1936 [1] (we will return to Turing shortly), but would become
clear to a wider scientific community only in the late 1970s with the advent of the
personal computer. The ideas of the characteristica universalis and the calculus rati-
ocinator are Leibniz’ central ideas, and are scattered throughout his work, so there
is no single point to reference them, but we point the reader to the paper [2], which
is a good place to start exploring.

The journey towards deep learning continueswith two classical nineteenth century
works in logic. This is usually omitted since it is not clearly related to neural networks,
there was a strong influence, which deserves a couple of sentences. The first is John
Stuart Mill’s System of Logic from 1843 [3], where for the first time in history,
logic is explored in terms of a manifestation of a mental process. This approach,

© Springer International Publishing AG, part of Springer Nature 2018
S. Skansi, Introduction to Deep Learning, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-73004-2_1
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2 1 From Logic to Cognitive Science

called logical psychologism, is still researched only in philosophical logic,1 but even
in philosophical logic it is considered a fringe theory. Mill’s book never became
an important work, and his work in ethics overshadowed his contribution to logical
psychologism, but fortunately there was a second book, whichwas highly influential.
It was the Laws of Thought by George Boole, published in 1854 [4]. In his book,
Boole systematically presented logic as a system of formal rules which turned out
to be a major milestone in the reshaping of logic as a formal science. Quickly after,
formal logic developed, and today it is considered a native branch of both philosophy
and mathematics, with abundant applications to computer science. The difference in
these ‘logics’ is not in the techniques and methodology, but rather in applications.
The core results of logic such as De Morgan’s laws, or deduction rules for first-order
logic, remain the same across all sciences. But exploring formal logic beyond this
would take us away from our journey. What is important here is that during the first
half of the twentieth century, logic was still considered to be something connected
with the laws of thinking. Since thinking was the epitome of intelligence, it was only
natural that artificial intelligence started out with logic.

Alan Turing, the father of computing, marked the first step of the birth of artifi-
cial intelligence with his seminal 1950 paper [5] by introducing the Turing test to
determine whether a computer can be regarded intelligent. A Turing test is a test in
natural language administered to a human (who takes the role of the referee). The
human communicates with a person and a computer for five minutes, and if the ref-
eree cannot tell the two apart, the computer has passed the Turing test and it may be
regarded as intelligent. There are many modifications and criticism, but to this day
the Turing test is one of the most widely used benchmarks in artificial intelligence.

The second event that is considered the birth of artificial intelligence was the
DartmouthSummerResearchProject onArtificial Intelligence.Theparticipantswere
JohnMcCarthy, Marvin Minsky, Julian Bigelow, Donald MacKay, Ray Solomonoff,
John Holland, Claude Shannon, Nathanial Rochester, Oliver Selfridge, Allen Newell
andHerbert Simon. Quoting the proposal, the conference was to proceed on the basis
of the conjecture that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate
it.2 This premise made a substantial mark in the years to come, and mainstream
AI would become logical AI. This logical AI would go unchallenged for years,
and would eventually be overthrown only in the 21 millennium by a new tradition,
known today as deep learning. This tradition was actually older, founded more than
a decade earlier in 1943, in a paper written by a logician of a different kind, and
his co-author, a philosopher and psychiatrist. But, before we continue, let us take a
small step back. The interconnection between logical rules and thinking was seen as
directed. The common knowledge is that the logical rules are grounded in thinking.
Artificial intelligence asked whether we can impersonate thinking in a machine with

1Today, this field of research can be found under a refreshing but very unusual name: ‘logic in the
wild’.
2The full text of the proposal is available at https://www.aaai.org/ojs/index.php/
aimagazine/article/view/1904/1802.

https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904/1802
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logical rules. But there was another direction which is characteristic of philosophical
logic: could we model thinking as a human mental process with logical rules? This
is where the neural network history begins, with the seminal paper by Walter Pitts
and Warren McCulloch titled A Logical Calculus of Ideas Immanent in Nervous
Activity and published in the Bulletin of Mathematical Biophysics. A copy of the
paper is available at http://www.cs.cmu.edu/~epxing/Class/10715/
reading/McCulloch.and.Pitts.pdf, and we advise the student to try to
read it to get a sense of how deep learning began.

Warren McCulloch was a philosopher, psychologist and psychiatrist by degree,
but he would work in neurophysiology and cybernetics. He was a vivid character,
embodying many academic stereotypes, and as such was a curious person whose
interests could be described as interdisciplinary. He met the homeless Walter Pitts
in 1942 when he got a job at the Department of Psychiatry at the University of
Chicago, and invited Pitts to come to live with his family. They shared a lifelong
interested in Leibniz, and they wanted to bring his ideas to fruition an create a
machine which could implement logical reasoning.3 The two men worked every
night on their idea of capturing reasoning with a logical calculus inspired by the
biological neurons. Thismeant constructing a formal neuronwith capabilities similar
to that of a Turing machine. The paper had only three references, and all of them
are classical works in logic: Carnap’s Logical Syntax of Language [6], Russell’s and
Whitehead’s Principa Mathematica [7] and the Hilbert and Ackermann Grundüge
der Theoretischen Logik. The paper itself approached the problem of neural networks
as a logical one, proceeding from definitions, over lemmas to theorems.

Their paper introduced the idea of the artificial neural network, as well as some
of the definitions we take for granted today. One of these is what would it mean for a
logical predicate to be realizable on a neural network. They divided the neurons in two
groups, the first called peripheral afferents (which are now called ‘input neurons’),
and the rest, which are actually output neurons, since at this time there was no hidden
layer—the hidden layer came to play only in the 1970s and 1980s. Neurons can be in
two states, firing and non-firing, and they define for every neuron i a predicate which
is true when the neuron is firing at the moment t . This predicate is denoted as Ni (t).
The solution of a network is then an equivalence of the form Ni (t) ≡ B where B is
a conjunction of firings from the previous moment of the peripheral afferents, and i
is not an input neuron. A sentence like this is realizable in a neural network if and
only if the network can compute it, and all sentences for which there is a network
which computes them are called a temporal propositional expression (T P E). Notice
that T P Es have a logical characterization. The main result of the paper (asides from
defining artificial neural networks) is that any T P E can be computed by an artificial
neural network. This paper would be cited later by John von Neumann as a major
influence in his own work. This is just a short and incomplete glimpse into this
exciting historical paper, but let us return to the story of the second protagonist.

3This was 15 years before artificial intelligence was defined as a scientific field.

http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
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Walter Pitts was an interesting person, and, one could argue, the father of artificial
neural networks. At the age of 12, he ran away from home and hid in a library,
where he read Principia Mathematica [7] by the famous logician Bertrand Russell.
Pitts contacted Russell, who invited him to come to study at Cambridge under his
tutorship, but Pitts was still a child. Several years later, Pitts, now a teenager, found
out that Russell was holding a lecture at the University of Chicago. He met with
Russell in person, and Russell told him to go and meet his old friend from Vienna,
the logician Rudolph Carnap, who was a professor there. Carnap gave Pitts his
seminal book Logical Syntax of Language4 [6], which would highly influence Pitts
in the following years. After his initial contact with Carnap, Pitts disappeared for a
year, and Carnap could not find him, but after he did, he used his academic influence
to get Pitts a student job at the university, so that Pitts does not have to do menial
jobs during days and ghostwrite student papers during nights just to survive.

Another person Pitts met during Russell was Jerome Lettvin, who at the time was
a pre-med student there, and who would later become neurologist and psychiatrist
by degree, but he will also write papers in philosophy and politics. Pitts and Lettvin
became close friends, andwould eventually write an influential paper together (along
with McCulloch and Maturana) titled What the Frog’s Eye Tells the Frog’s Brain in
1959 [8]. Lettvin would also introduce Pitts to the mathematician Norbert Weiner
from MIT who later became known as the father of cybernetics, a field colloquially
known as ‘the science of steering’, dedicated to studying system control both in
biological and artificial systems. Weiner invited Pitts to come to work at MIT (as
a lecturer in formal logic) and the two men worked together for a decade. Neural
networks were at this time considered to be a part of cybernetics, and Pitts and
McCulloch were very active in the field, both attending the Macy conferences, with
McCulloch becoming the president of theAmerican Society forCybernetics in 1967–
1968. During his stay at Chicago, Pitts also met the theoretical physicist Nicolas
Rashevsky, who was a pioneer in mathematical biophysics, a field which tried to
explain biological processes with a combination of logic and physics. Physics might
seem distant to neural networks, but in fact, we will soon discuss the role physicists
played in the history of deep learning.

Pitts would remain connected with the University, but he had minor jobs there due
to his lack of formal academic credentials, and in 1944 was hired by the Kellex Cor-
poration (with the help of Weiner), which participated in the Manhattan project. He
detested the authoritarianGeneral Groves (head of theManhattan project), andwould
play pranks to mock the strict and sometimes meaningless rules that he enacted. He
was granted anAssociate of Arts degree (2-year degree) by theUniversity of Chicago
as a token of recognition of his 1943 paper, and this would remain the only academic
degree he ever earned. He has never been fond of the usual academic procedures and
this posed amajor problem in his formal education. As an illustration, Pitts attended a

4The author has a fond memory of this book, but beware: here be dragons. The book is highly
complex due to archaic notation and a systemquite different from today’s logic, but it is aworthwhile
read if you manage to survive the first 20 pages.
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course taught by professorWilfrid Rall (the pioneer of computational neuroscience),
and Rall remembered Pitts as ‘an oddball who felt compelled to criticize exam ques-
tions rather than answer them’.

In 1952, Norbert Weiner broke all relations with McCulloch, which devastated
Pitts. Weiner wife accused McCulloch that his boys (Pitts and Lettvin) seduced their
daughter, Barbara Weiner. Pitts turned to alcohol to the point that he could not take
care of his dog anymore,5 and succumbed to cirrhosis complications in 1969, at the
age of 46. McCulloch died the same year at the age of 70. Both of the Pitts’ papers
we mentioned remain to this day two of the most cited papers in all of science. It is
interesting to note that even though Pitts had direct or mediated contact with most
of the pioneers of AI, Pitts himself never thought about his work as geared towards
building a machine replica of the mind, but rather as a quest to formalize and better
understand human thinking [9], and that puts him squarely in the realm of what is
known today as philosophical logic.6

The story of Walter Pitts is a story of influences of ideas and of collaboration
between scientists of different backgrounds, and in a way a neural network nicely
symbolizes this interaction. One of the main aims of this book is to (re-)introduce
neural networks and deep learning to all the disciplines7 which contributed to the
birth and formation of the field, but currently shy away from it. The majority of the
story about Walter Pitts we presented is taken from a great article named The man
who tried to redeem the world with logic by Amanda Gefter published in Nautilus
[10] and the paper Walter Pitts by Neil R. Smalheiser [9], both of which we highly
recommend.8

1.2 The XOR Problem

In the 1950s, the Dartmouth conference took place and the interest of the newly born
field of artificial intelligence in neural networkswas evident from the very conference
manifest. Marvin Minsky, one of the founding fathers of AI and participant to the
Dartmouth conference was completing his dissertation at Princeton in 1954, and the
titlewasNeural Nets and the Brain Model Problem.Minsky’s thesis addressed several
technical issues, but it became the first publication which collected all up to date
results and theorems on neural networks. In 1951, Minsky built a machine (funded

5A Newfoundland, name unknown.
6An additional point here is the great influence of Russell and Carnap on Pitts. It is a great shame
that many logicians today do not know of Pitts, and we hope the present volume will help bring the
story about this amazing man back to the community from which he arose, and that he will receive
the place he deserves.
7And any other scientific discipline which might be interested in studying or using deep neural
networks.
8Also, there is a webpage on Pitts http://www.abstractnew.com/2015/01/walter-
pitts-tribute-to-unknown-genius.html worth visiting.

http://www.abstractnew.com/2015/01/walter-pitts-tribute-to-unknown-genius.html
http://www.abstractnew.com/2015/01/walter-pitts-tribute-to-unknown-genius.html
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by the Air Force Office of Scientific Research) which implemented neural networks
called SNARC (Stochastic Neural Analog Reinforcement Calculator), whichwas the
first major computer implementation of a neural network. As a bit of trivia, Marvin
Minsky was an advisor to Arthur C. Clarke’s and Stanley Kubrick’s 2001: A Space
Odyssey movie. Also, Isaac Asimov claimed that Marvin Minsky was one of two
people he has ever met whose intelligence surpassed his own (the other one being
Carl Sagan). Minsky will return to our story soon, but first let us present another hero
of deep learning.

Frank Rosenblatt received his PhD in Psychology at Cornell University in 1956.
Rosenblatt made a crucial contribution to neural networks, by discovering the per-
ceptron learning rule, a rule which governs how to update the weights of neural
networks, which we shall explore in detail in the forthcoming chapters. His percep-
trons were initially developed as a program on an IBM 704 computer at Cornell
Aeronautical Laboratory in 1957, but Rosenblatt would eventually develop theMark
I Perceptron, a computer built with the sole purpose of implementing neural net-
works with the perceptron rule. But Rosenblatt did more than just implement the
perceptron. His 1962 book Principles of Neurodynamics [11] explored a number of
architectures, and his paper [12] explored the idea of multilayered networks similar
to modern convolutional networks, which he called C-system, which might be seen
as the theoretical birth of deep learning. Rosenblatt died in 1971 on his 43rd birthday
in a boating accident.

There were two major trends underlying the research in the 1960s. The first one
was the results thatwere deliveredbyprogramsworkingon symbolic reasoning, using
deductive logical systems. The two most notable were the Logic Theorist by Herbert
Simon, Cliff Shaw and Allen Newell, and their later program, the General Problem
Solver [13]. Both programs produced working results, something neural networks
did not. Symbolic systems were also appealing since they seemed to provide control
and easy extensibility. The problem was not that neural networks were not giving
any result, just that the results they have been giving (like image classification) were
not really considered that intelligent at the time, compared to symbolic systems
that were proving theorems and playing chess—which were the hallmark of human
intelligence. The idea of this intelligence hierarchy was explored by Hans Moravec
in the 1980s [14], who concluded that symbolic thinking is considered a rare and
desirable aspect of intelligence in humans, but it comes rather natural to computers,
which have much more trouble with reproducing ‘low-level’ intelligent behaviour
that many humans seem to exhibit with no trouble, such as recognizing that an animal
in a photo is a dog, and picking up objects.9

The second trend was the ColdWar. Starting with 1954, the USmilitary wanted to
have a program to automatically translate Russian documents and academic papers.

9Even today people consider playing chess or proving theorems as a higher form of intelligence than
for example gossiping, since they point to the rarity of such forms of intelligence. The rarity of an
aspect of intelligence does not directly correlate with its computational properties, since problems
that are computationally easy to describe are easier to solve regardless of the cognitive rarity in
humans (or machines for that matter).
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Funding was abundant, but many technically inclined researchers underestimated
the linguistic complexities involved in extracting meaning from words. A famous
example was the back and forth translation from English to Russian and back to
English of the phrase ‘the spirit was willing but the flesh was weak’ which produced
the sentence ‘the vodka was good, but the meat was rotten’. In 1964, there were
some concerns about wasting government money in a dead end, so the National
Research Council formed the Automatic Language Processing Advisory Committee
or ALPAC [13]. The ALPAC report from 1966 cut funding to all machine translation
projects, and without the funding, the field lingered. This in turn created turmoil in
the whole AI community.

But the final stroke which nearly killed off neural networks came in 1969, from
Marvin Minsky and Seymour Papert [15], in their monumental book Perceptrons:
An Introduction to Computational Geometry. Remember that McCulloch and Pitts
proved that a number of logical functions can be computed with a neural network. It
turns out, as Minsky and Papert showed in their book, they missed a simple one, the
equivalence. The computer science and AI community tend to favour looking at this
problem as the XOR function, which is the negation of an equivalence, but it really
does not matter, since the only thing different is how you place the labels.

It turns out that perceptrons, despite the peculiar representations of the data they
process, are only linear classifiers. The perceptron learning procedure is remarkable,
since it is guaranteed to converge (terminate), but it did not add a capability of cap-
turing nonlinear regularities to the neural network. The XOR is a nonlinear problem,
but this is not clear at first.10 To see the problem, imagine11 a simple 2D coordinate
system, with only 0 and 1 on both axes. The XOR of 0 and 0 is 0, and write an O at
coordinates (0, 0). The XOR of 0 and 1 is 1, and now write an X at the coordinates
(0,1). Continue with XOR(1, 0) = 1 and XOR(1, 1) = 0. You should have two Xs
and two Os. Now imagine you are the neural network, and you have to find out how
to draw a curve to separate the Xs from Os. If you can draw anything, it is easy. But
you are not a modern neural network, but a perceptron, and you must use a straight
line—no curves. It soon becomes obvious that this is impossible.12 The problemwith
the perceptron was the linearity. The idea of a multilayered perceptron was here, but
it was impossible to build such a device with the perceptron learning rule. And so,
seemingly, no neural network could handle (learn to compute) even the basic logical
operations, something symbolic systems could do in an instant. A quiet darkness fell
across the neural networks, lasting many years. One might wonder what was hap-
pening in the USSR at this time, and the short answer is that cybernetics, as neural
networks were still called in the USSR in this period, was considered a bourgeois
pseudoscience. For a more detailed account, we refer the reader to [16].

10The view is further dimmed by the fact that the perceptron could process an image (at least
rudimentary), which intuitively seems to be quite harder than simple logical operations.
11Pick up a pen and paper and draw along.
12If you wish to try the equivalence instead of XOR, you should do the same but with
EQUIV(0, 0) = 1, EQUIV(0, 1) = 0, EQUIV(1, 0) = 0, EQUIV(1, 1) = 1, keeping the Os for
0 and Xs for 1. You will see it is literally the same thing as XOR in the context of our problem.
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1.3 From Cognitive Science to Deep Learning

But the idea of neural networks lingered on in theminds of only a handful of believers.
But there were processes set in motion which would enable their return in style. In
the context of neural networks, the 1970s were largely uneventful. But there we
two trends present which would help the revival of the 1980s. The first one was the
advent of cognitivism in psychology and philosophy. Perhaps themost basic idea that
cognitivism brought in the mainstream is the idea that the mind, as a complex system
made from many interacting parts, should explored on its own (independent of the
brain), but with formal methods.13 While the neurological reality that determines
cognition should not be ignored, it can be helpful to build and analyse systems
that try to recreate portions of the neurological reality, and at the same time they
should be able to recreate some of the behaviour. This is a response to both Skinner’s
behaviourism [18] in psychology of the 1950s, which aimed to focus a scientific
study of the mind as a black box processor (everything else is purely speculation14)
and to the dualism of the mind and brain which was strongly implied by a strict
formal study of knowledge in philosophy (particularly as a response to Gettier [19]).

Perhaps one of the key ideas in the whole scientific community at that time was
the idea of a paradigm shift in science, proposed by Thomas Kuhn in 1962 [20], and
this was undoubtedly helpful to the birth of cognitive science. By understanding the
idea of the paradigm shift, for the first time in history, it felt legitimate to abandon
a state-of-the-art method for an older, underdeveloped idea and then dig deep into
that idea and bring it to a whole new level. In many ways, the shift proposed by
cognitivism as opposed to the older behavioural and causal explanations was a shift
from studying an immutable structure towards the study of amutable change. Thefirst
truly cognitive turn in the so-called cognitive sciences is probably the turn made in
linguistics byChomsky’s universal grammar [21] and his earlier and ingenious attack
on Skinner [22]. Among other early contributions to the cognitive revolution, we
find the most interesting one the paper from our old friends [23]. This paradigm shift
happened across six disciplines (the cognitive sciences), which would become the
founding disciplines of cognitive science: anthropology, computer science, linguistic,
neuroscience, philosophy and psychology.

The second was another setback in funding caused by a government report. It was
the paper Artificial Intelligence: A General Survey by James Lighthill [24], which
was presented to the British Science Research Council in 1973, and became widely
known as the Lighthill report. Following the Lighthill report, the British government
would close all but three AI departments in the UK, which forced many scientists
to abandon their research projects. One of the three AI departments that survived
was Edinburgh. The Lighthill report enticed one Edinburgh professor to issue a
statement, and in this statement, cognitive science was referenced for the first time

13A great exposition of the cognitive revolution can be found in [17].
14It must be acknowledged that Skinner, by insisting on focusing only on the objective and measur-
able parts of the behaviour, brought scientific rigor into the study of behaviour, whichwas previously
mainly a speculative area of research.
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in history, and its scope was roughly defined. It was Christopher Longuet-Higgins,
Fellow of the Royal Society, a chemist by formal education, who began work in
AI in 1967 when he took a job at the University of Edinburgh, where he joined the
Theoretical Psychology Unit. In his reply,15 Longuet-Higgins asked a number of
important questions. He understood that Lighthill wanted the AI community to give
a proper justification of AI research. The logic was simple, if AI does not work, why
do we want to keep it? Longuet-Higgins provided an answer, which was completely
in the spirit of McCulloch and Pitts: we need AI not to build machines (although that
would be nice), but to understand humans. But Lighthill was aware of this line of
thought, and he has acknowledged in his report that some aspects, in particular neural
networks, are scientifically promising. He thought that the study of neural networks
can be understood and reclassified as Computer-based studies of the central nervous
system, but it had to abide by the latest findings of neuroscience, and model neurons
as they are, and not weird variations of their simplifications. This is where Longuet-
Higgins diverged from Lighthill. He used an interesting metaphor: just like hardware
in computers is only a part of the whole system, so is actual neural brain activity,
and to study what a computer does, one needs to look at the software, and so to see
what a human does, one need to look at mental processes, and how they interact.
Their interaction is the basis of cognition, all processes taking parts are cognitive
processes, and AI needs to address the question of their interaction in a precise and
formal way. This is the true knowledge gained from AI research: understanding,
modelling and formalizing the interactions of cognitive processes. An this is why
we need AI as a field and all of its simplified and sometimes inaccurate and weird
models. This is the true scientific gain from AI, and not the technological, martial
and economic gain that was initially promised to obtain funding.

Before the turn of the decade, another thing happened, but it went unnoticed.
Up until now, the community knew how to train a single-layer neural network, and
that having a hidden layer would greatly increase the power of neural networks. The
problemwas, nobody knewhow to train a neural networkwithmore than one layer. In
1975, PaulWerbos [25], an economist by degree, discovered backpropagation, a way
to propagate the error back through the hidden (middle) layer. His discovery went
unnoticed, and was rediscovered by David Parker [26], who published the result
in 1985. Yann LeCun also discovered backpropagation in 1985 and published in
[27]. Backpropagation was discovered for the last time in San Diego, by Rumelhart,
Hinton and Williams [28], which takes us to the next part of our story, the 1980s, in
sunny San Diego, to the cognitive era of deep learning.

The San Diego circle was composed of several researchers. Geoffrey Hinton, a
psychologist, was a PhD student of Christopher Longuet-Higgins back in the Edin-
burgh AI department, and there he was looked down upon by the other faculty,
because he wanted to research neural networks, so he called them optimal networks

15The full text of the reply is available from http://www.chilton-computing.org.uk/
inf/literature/reports/lighthill_report/p004.htm.

http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p004.htm
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p004.htm


10 1 From Logic to Cognitive Science

to avoid problems.16 After graduating (1978), he came to San Diego as a visiting
scholar to the Cognitive Science program at UCSD. There the academic climate was
different, and the research in neural networks was welcome. David Rumelhart was
one of the leading figures in UCSD. A mathematical psychologist, he is one of the
founding fathers of cognitive science, and the person who introduced artificial neural
networks as a major topic in cognitive science, under the name of connectionism,
which had wide philosophical appeal, and is still one of the major theories in the
philosophy of mind. Terry Sejnowski, a physicist by degree and later professor of
computational biology, was another prominent figure in UCSD at the time, and he
co-authored a number of seminal papers with Rumelhart and Hinton. His doctoral
advisor, John Hopfield was another physicist who became interested in neural net-
works, and improved an popularized a recurrent neural network model called the
Hopfield Network [29]. Jeffrey Elman, a linguist and cognitive science professor at
UCSD, who would introduce Elman networks a couple of years later, and Michael
I. Jordan, a psychologist, mathematician and cognitive scientist who would intro-
duce Jordan networks (both of these networks are commonly called simple recurrent
networks in today’s literature), also belonged to the San Diego circle.

This leads us to the 1990s and beyond. The early 1990s were largely uneventful,
as the general support of the AI community shifted towards support vector machines
(SVM). These machine learning algorithms are mathematically well founded, as
opposed to neural networks which were interesting from a philosophical standpoint,
and mainly developed by psychologists and cognitive scientists. To the larger AI
community, which still had a lot of the GOFAI drive for mathematical precision,
they were uninteresting, and SVMs seemed to produce better results as well. A good
reference book for SVMs is [30]. In the late 1990s, two major events occurred,
which produced neural networks which are even today the hallmark of deep learn-
ing. The long short-term memory was invented by Hochreiter and Schmidhuber [31]
in 1997, which continue to be one of the most widely used recurrent neural net-
work architectures and in 1998 LeCun, Bottou, Bengio and Haffner produced the
first convolutional neural network called LeNet-5 which achieved significant results
on the MNIST dataset [32]. Both convolutional neural networks and LSTMs went
unnoticed by the larger AI community, but the events were set in motion for neural
networks to come back one more time. The final event in the return of neural net-
works was the 2006 paper by Hinton, Osindero and Teh [33] which introduced deep
belief networks (DMB) which produces significantly better results on the MNIST
dataset. After this paper, the rebranding of deep neural networks to deep learning
was complete, and a new period in AI history would begin. Many new architectures
followed, and some of themwewill be exploring in this book, while somewe leave to
the reader to explore by herself. We prefer not to write to much about recent history,
since it is still actual and there is a lot of factors at stake which hinder objectivity.

16The full story about Hinton and his struggles can be found at http://www.chronicle.
com/article/The-Believers/190147.

http://www.chronicle.com/article/The-Believers/190147
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For an exhaustive treatment of the history of neural networks, we point the reader to
the paper by Jürgen Schmidhuber [34].

1.4 Neural Networks in the General AI Landscape

We have explored the birth of neural networks from philosophical logic, the role
psychology and cognitive science played in their development and their grand return
to mainstream computer science and AI. One question that is particularly interest-
ing is where do artificial neural networks live in the general AI landscape. There
are two major societies that provide a formal classification of AI, which is used in
their publications to classify a research paper, the American Mathematical Society
(AMS) and the Association for Computing Machinery (ACM). The AMS maintains
the so-called Mathematics Subject Classification 2010 which divides AI into the
following subfields17: General, Learning and adaptive systems, Pattern recognition
and speech recognition, Theorem proving, Problem solving, Logic in artificial intel-
ligence, Knowledge representation, Languages and software systems, Reasoning
under uncertainty, Robotics, Agent technology, Machine vision and scene under-
standing and Natural language processing. The ACM classification18 for AI pro-
vides, in addition to subclasses of AI, their subclasses as well. The subclasses of AI
are: Natural language processing, knowledge representation and reasoning, planning
and scheduling, search methodologies, control methods, philosophical/theoretical
foundations of AI, distributed artificial intelligence and computer vision. Machine
learning is a parallel category to AI, not subordinated to it.

What can be concluded from these two classifications is that there are a few broad
fields of AI, inside which all other fields can be subsumed:

• Knowledge representation and reasoning,
• Natural language processing,
• Machine Learning,
• Planning,
• Multi-agent systems,
• Computer vision,
• Robotics,
• Philosophical aspects.

In the simplest possible view, deep learning is a name for a specific class of artificial
neural networks, which in turn are a special class of machine learning algorithms,
applicable to natural language processing, computer vision and robotics. This is a
very simplistic view, and we think it is wrong, not because it is not true (it is true), but

17See http://www.ams.org/msc/.
18See http://www.acm.org/about/class/class/2012.

http://www.ams.org/msc/
http://www.acm.org/about/class/class/2012
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Fig. 1.1 Vertical and horizontal components of AI

because it misses an important aspect. Recall the Good Old-Fashioned AI (GOFAI),
and consider what it is. Is it a subdiscipline of AI? The best answer it to think of
subdivisions of AI as vertical components, and of GOFAI as a horizontal component
that spans considerably more work in knowledge representation and reasoning than
in computer vision (see Fig. 1.1). Deep learning, in our thinking, constitutes a second
horizontal component, trying to unify across disciplines just as GOFAI did. Deep
learning and GOFAI are in a way contenders to the whole AI, wanting to address all
questions of AI with their respective methods: they both have their ‘strongholds’,19

but they both try to encompass as much of AI as they can. The idea of deep learning
being a separate influence is explored in detail in [35], where the deep learning
movement is called ‘connectionist tribe’.

1.5 Philosophical and Cognitive Aspects

So far, we have explored neural networks from a historical perspective, but there are
two important things we have not explained. First, what the word ‘cognitive’ means.
The term itself comes from neuroscience [36], where it has been used to characterize
outwardmanifestations of mental behaviour which originates in the cortex. The what
exactly comprises these abilities is non-debatable, since neuroscience grounds this
division upon neural activity. A cognitive process in the context of AI is then an

19Knowledge representation and reasoning for GOFAI, machine learning for deep learning.
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imitation of any mental process taking place in the human cortex. Philosophy also
wants to abstract away from the brain, and define its terms in a more general setting.
A working definition of ‘cognitive process’ might be: any process taking place in
a similar way in the brain and the machine. This definition commits us to define
‘similar way’, and if we take artificial neural networks to be a simplified version of
the real neuron, this might work for our needs here.

This leads us to the bigger issue. Some cognitive processes are simpler, and we
could model them easily. Advances in deep learning sweep away one cognitive
process at the time, but there is one major cognitive process eludes deep learning—
reasoning. Capturing and describing reasoning is the very core of philosophical
logic, and formal logic as the main method for a rigorous treatment of reasoning has
been the cornerstone of GOFAI. Will deep learning ever conquer reasoning? Or is
learning simply a process fundamentally different from reasoning? This would mean
that reasoning is not learnable in principle. This discussion resonates the old philo-
sophical dispute between rationalists and empiricists, where rationalists argued (in
different ways) that there is a logical framework in our minds prior to any learning.
A formal proof that no machine learning system could learn reasoning which is con-
sidered a distinctly human cognitive process would have a profound technological,
philosophical and even theological significance.

The question about learning to reason can be rephrased. It is widely believed
that dogs cannot learn relations.20 A dog would then be an example of a trainable
cognitive system incapable of learning relations. Suppose we want to teach a dog
the relation ‘smaller’. We could devise a training setting where we hand the dog
two different objects, and the dog should pick the smaller one when hearing the
command ‘smaller’ (and he is rewarded for the right pick). But the task for the dog is
very complex: he has to realize that ‘smaller’ is not a name of a single object which
changes reference from one training sample to the next, but something immaterial
that comes into existence when you have both objects, and then resolves to refer to
a single object (the smaller one). If you think about it like that, the difficulties of
learning relations become clearer.

Logic is inherently relational, and everything there is a relation. Relational rea-
soning is accomplished by formal rules and poses no problem. But logic has the
very same problem (but seen from the other side): how to learn content for relations?
The usual procedure was to hand define entities and relations and then perhaps add
a dynamical factor which would modify them over time. But the divide between
patterns and relations exists on both sides.

20Whether this is true or not, is irrelevant for our discussion. The literature on animal cognitive
abilities is notoriously hard to find as there are simply not enough academic studies connecting
animal cognition and ethology. We have isolated a single paper dealing with limitations of dog
learning [37], and therefore we would not dare to claim anything categorical—just hypothetical.
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The paper that exposed this major philosophical issue in artificial neural networks
and connectionism, is the seminal paper by Fodor and Pylyshyn [38]. They claimed
that thinking and reasoning as a phenomena is inherently rule-based (symbolic,
relational), and this was not so much a natural mental faculty but a complex ability
that evolved as a tool for preserving truth and (to a lesser extent) predicting future
events. They pose it as a challenge to connectionism: if connectionism will be able
to reason, the only way it will be able to do so (since reasoning is inherently rule-
based) is by making an artificial neural network which produces a system of rules.
This would not be ‘connectionist reasoning’ but symbolic reasoning whose symbols
are assigned meaningful things thanks to artificial neural networks. Artificial neural
networks fill in the content, but the reasoning itself is still symbolic.

You might notice that the validity of this argument rests on the idea that thinking
is inherently rule-based, so the most easy way to overcome their challenge it is to
dispute this initial assumption. If thinking and reasoning would not be completely
rule-based, it would mean that they have aspects that are processed ‘intuitively’, and
not derived by rules. Connectionists have made an incremental but important step
in bridging the divide. Consider the following reasoning: ‘it is to long for a walk, I
better take my van’, ‘I forgot that my van is at the mechanic, I better take my wife’s
car’. Notice that we have deliberately not framed this as a classic syllogism, but in
a form similar to the way someone would actually think and reason.21 Notice that
what makes this thinking valid,22 is the possibility of equating ‘car’ with ‘van’ as
similar.23 Word2vec [39] is a neural language model which learns numerical vectors
for a given word and a context (several words around it), and this is learned from
texts. The choice of texts is the ‘big picture’. A great feature of word2vec is that
it clusters words by semantic similarity in the big picture. This is possible since
semantically similar words share a similar immediate context: both Bob and Alice
can be hungry, but neither can Plato nor the number 4. But substituting similar for
similar is just proto-inference, the major incremental advance towards connectionist
reasoning made possible by word2vec is the native calculations it enables. Suppose
that v(x) is the function which maps x (which is a string) to its learned vector.
Once trained, the word vectors word2vec generates are special in the sense that one
can calculate with them like v(king) − v(man) + v(woman) ≈ v(queen). This is
called analogical reasoning or word analogies, and it is the first major landmark in
developing a purely connectionist approach to reasoning.

We will be exploring reasoning in the final chapter of the book in the context of
question answering. We will be exploring also energy-based models and memory
models, and the best current take on the issue of reasoning is with memory-based

21Plato defined thinking (in his Sophist) as the soul’s conversation with itself, and this is what we
want to model, whereas the rule-based approach was championed by Aristotle in his Organon.
More succinctly, we are trying to reframe reasoning in platonic terms instead of using the dominant
Aristotelian paradigm.
22At this point, we deliberately avoid talking of ‘valid inference’ and use the term ‘valid thinking’.
23Note that this interchangeability dependent on the big picture. If I need to move a piano, I could
not do it with a car, but if I need to fetch groceries, I can do it with either the car or the van.
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models. This is perhaps surprising since in the normal cognitive setting (undoubtedly
under the influence of GOFAI), we consider memory (knowledge) and reasoning as
two rather distinct aspects, but it seems that neural networks and connectionism do
not share this dichotomy.
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2Mathematical andComputational
Prerequisites

2.1 Derivations and FunctionMinimization

In this chapter, we give most of the mathematical preliminaries necessary to under-
stand the later chapters. The main engine of deep learning is called backpropagation
and it consists mainly of gradient descent, which is a move along the gradient, and
the gradient is a vector of derivations. And the first section of this chapter is about
derivations, and by the end of it, the reader should know what a gradient is and what
is gradient descent. We will not return to this topic, but we will make heavy use of
it in all the remaining chapters of this book.

One basic notational convention we will be using is ‘:=’; ‘A := xy’ means ‘We
define A to be xy’, or ‘xy is called A’. This is called naming xy with the name A. We
take the set to be the basic mathematical concept as most other concepts can be build
upon or explained by using sets. A set is a collection of members and it can have both
other sets and non-sets as members. Non-sets are basic elements called urelements,
such as numbers or variables. A set is usually denoted with curly braces, so for
example A := {0, 1, {2, 3, 4}} is a set with three members containing the elements
0, 1 and {2, 3, 4}. Note that {2, 3, 4} is an element of A, not a subset. A subset of A
would be for example {0, {2, 3, 4}}. A set can be written extensionally by naming the
members such as {−1, 0, 1} or intensionally by giving the property that the members
must satisfy, such as {x|x ∈ Z ∧ |x| < 2} where Z is the set of integers and |x| is the
absolute value of x. Notice that these two denote the same set, since they have the
same members. This principle of equality is called the axiom of extensionality, and
it says that two sets are equal if and only if they have the same members. This means
that {0, 1} and {1, 0} are equal, but also {1, 1, 1, 1, 0} and {0, 0, 1, 0} (all of them
have the same members, 0 and 1).1

1Notice that they also have the same number of members or cardinality, namely 2.

© Springer International Publishing AG, part of Springer Nature 2018
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A set does not remember the order of elements or repetitions of one element. If we
have a set that remembers repetitions but not order we have multisets or bags, so we
have {1, 0, 1} = {1, 1, 0} but neither is equal to {1, 0}, we are talking about multisets.
The usual way to denote bags to distinguish them from sets is to number the elements,
so instead ofwriting {1, 1, 1, 1, 0, 1, 0, 0}wewouldwrite {"1" : 5, "0" : 3}. Bagswill
be very useful to model language via the so-called bag of words model as we will
see in Chap.3.

If we care both about the position and repetitions, we write (1, 0, 0, 1, 1). This
object is called a vector. If we have a vector of variables like (x1, x2, . . . , xn)wewrite
it as x or x. The individual xi, 1 ≤ i ≤ n, is called a component (in sets they used to
be called members), and the number of components is called the dimensionality of
the vector x.

The terms tuple and list are very similar to vectors. Vectors are mainly used
in theoretical discussions, whereas tuples and lists are used in realizing vectors in
programming code. As such, tuples and lists are always named with programming
variables such as myList or vectorAsTuple. So an example of either tuple
or list would be newThing := (11, 22, 33). The difference between tuple and a
list is that lists are mutable and tuples are not. Mutability of a structure means
that we can assign a new value to a member of that structure. For example, if we
have newThing := (11, 22, 33) and then we do newThing[1] ← 99 (to be read
‘assign to the second2 item the value of 99’), we get newThing := (11, 99, 33).
This means that we have mutated the list. If we do not want to be able to do
that, we use a tuple, in which case we cannot modify the elements. We can
create a new tuple newerThing such that newerThing[0] ← newThing[0],
newerThing[1] ← 99 and newerThing[2] ← newThing[2] but this is not
changing the values, just copying it and composing a new tuple. Of course, if we
have an unknown data structure, we can check whether it is a list or tuple by trying
to modify some component. Sometimes, we might wish to model vectors as tuples,
but we will usually want to model them as lists in our programming codes.

Now we have to turn our attention to functions. We will take a computational
approach in their definition.3 A function is a magical artifact that takes arguments
(inputs) and turns them into values (outputs). Of course, the trick with functions is
that instead of using magic we must define in them how to get from inputs to outputs,
or in other words how to transform the inputs into outputs. Recall a function, e.g.
y = 4x3 + 18 or equivalently f (x) = 4x3 + 18, where x is the input, y is the output
and f is the function’s ‘name’. The output y is defined to be the application of f to x,
i.e. y := f (x). We are omitting a few things here, but they are not important for this
book, but we point the interested reader to [1].

When we think of a function like this, we actually have an instruction (algorithm)
of how to transform the x to get the y, by using simpler functions such as addition,

2The counting starts with 0, and we will use this convention in the whole book.
3The traditional definition uses sets to define tuples, tuples to define relations and relations to define
functions, but that is an overly logical approach for our needs in the present volume. This definition
provides a much wider class of entities to be considered functions.

http://dx.doi.org/10.1007/978-3-319-73004-2_3
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multiplication and exponentiation. They in turn can be expressed from simpler func-
tions, but we will not need the proofs for this book. The reader can find in [2] the
details on how this can be done.

Note that if we have a function with 2 arguments4 f (x, y) = xy and pass in values
(2, 3) we get 8. If we pass in (3, 2) we will get 9, which means that functions are
order sensitive, i.e. they operate on vector inputs. This means that we can generalize
and say that a function always takes a vector as an input, and a function taking an
n-dimensional vector is called an n-ary function. This means that we are free to use
the notation f (x). A 0-ary function is a function that produces an output but takes
in no input. Such a function is called a constant, e.g. p() = 3.14159 . . . (notice the
notation with the open and closed parenthesis).

Note that we can take a function’s argument input vector and add to it the output,
so that we have (x1, x2, . . . , xn, y). This structure is called a graph of the function
f for inputs x. We will see how we can extend this to all inputs. A function can
have parameters and the function f (x) = ax + b has a and b as parameters. They
are considered fixed, but we might want to tweak them to get a better version of the
function. Note that a function always gives the same result if it is given the same
input and you do not change the parameters. By changing the parameters, you can
drastically change the output. This is very important for deep learning, since deep
learning is a method for automatically tuning parameters which in turn modifies the
output.

We can have a set A and we may wish to create a function of x which gives a
value 1 to all values which are members of A and 0 to all other values for x. Since
this function is different for all sets A, other than this, it always does the same thing,
we can give it a name which includes A. We choose the name 1A. This function is
called indicator function or characteristic function, and it is sometimes denoted as
χA in the literature. This is used for something which we will call one-hot encoding
in the next chapter.

If we have a function y = ax, then the set from which we take the inputs is called
the domain of the function, and the set to which the outputs belong is called the
codomain of the function. In general, a function does not need to be defined for all
members of the domain, and, if it is, it is called a total function. All functions that
are not total are called partial. Remember that a function assigns to every vector
of inputs always the same output (provided the parameters do not change). If by
doing so the function ‘exhausts’ the whole codomain, i.e. after assignment there are
no members of the codomain which are not outputs of some inputs, the function
is called a surjection. If on the other hand the function never assigns to different
input vectors the same output, it is called an injection. If it is both an injection and
surjection, it is called a bijection. The set of outputs B given a set of inputs A is called
an image and denoted by f [A] = B. If we look for a set of inputs A given the set of
outputs B, we are looking at its inverse image denoted by f −1[B] = A (we can use
the same notation for individual elements f −1(b) = a).

4A function with n-arguments is called an n-ary function.
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A function f is called monotone if for every x and y from the domain (for which
the function is defined) the following holds: if x < y then f (x) ≤ f (y) or if x > y then
f (x) ≥ f (y). Depending on the direction, this is called an increasing or decreasing
function, and if we have < instead of ≤, it is called strictly increasing (or strictly
decreasing). A continuous function is a function that does not have gaps. For what
we will be needing now, this definition is good enough—we are imprecise, but we
are sacrificing precision for clearness. We will be returning to this later.

One interesting function is the characteristic function for rational numbers over
all real numbers. This function returns 1 if and only if the real number it picked is
also a rational number. This function is continuous nowhere. A different function
which is continuous in parts but not everywhere is the so-called step function (we
will mention it again briefly in Chap.4):

step0(x) =
{
1, x > 0

−1, x ≤ 0

Note that step0 can be easily generalized to stepn by simply placing n instead of 0.
Also, note that the 1 and−1 are entirely arbitrary, so we can put any values instead. A
step function that takes in an n-dimensional vector is also sometimes called a voting
function, but we will keep calling it a step function. In this version, all components of
the input vector of the function are added before being compared with the threshold
n (the threshold n is called a bias in neural network literature). Pay close attention
to how we defined the step function with two cases: if a function is defined by cases,
it is an important hint that the function might not be continuous. It is not always the
case (in either way we look at it), but it is a good hint to follow and it is often true.5

Before continuing to derivations, we will be needing a few more concepts. If the
outputs of the function f approach a value c (and settle in it), we say that the function
converges in c. If there is no such value, the function is called divergent. In most
mathematics textbooks, the definitions of convergence are more meticulous, but we
will not be needing the additional mathematical finesse in this book, just the general
intuition.

An important constant we will use is the Euler number, e = 2.718281828459 . . ..
This is a constant and we will reserve for it the letter e. We will be using the basic
numerical operations extensively, and we give a brief overview of their behaviour
and notations used here:

• The reciprocal number of x is 1
x or equivalently x−1

• The square root of x is x
1
2 or equivalently

√
x

• The exponential function has the properties: x0 = 1, x1 = x, xn · xm = xn+m,
(xn)m = xn·m

5The ReLU or rectified linear unit defined by ρ(x) = max(x, 0) is an example of a function that is
continuous even though it is (usually) defined by cases. We will be using ReLU extensively from
Chap.6 onwards.

http://dx.doi.org/10.1007/978-3-319-73004-2_4
http://dx.doi.org/10.1007/978-3-319-73004-2_6
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• The logarithmic function has the properties: logc 1 = 0, logc c = 1, logc(xy) =
logc x + logc y, logc(

x
y ) = logc x − logc y, logc x

y = y logc x, logx y = logc y
logc x

,

logx x
y = y, xlogx y = y, ln x := loge x).

The last concept we will need before continuing to derivations is the concept of
a limit. An intuitive definition would be that the limit of a function is a value which
the outputs of the function approach but never reach.6 The trick is that the limit of
the function is considered in relation to a change in inputs and it must be a concrete
value, i.e. if the limit is ∞ or −∞, we do not call it a limit. Note that this means
that for the limit to exist it must be a finite value. For example, lim

x→5
f (x) = 10, if we

take f to be f (x) = 2x. It is of vital importance not to confuse the number 5 which
the inputs approach and the limit, 10, which the outputs of the function approach as
the inputs approach 5.

The concept of limit is trivial (and mathematically weird) if we think of integer
inputs.We shall assumewhenwe think of limits that we are considering real numbers
as inputs (where the idea of continuity makes sense). Therefore, when talking about
limits (and derivations), the input vectors are real numbers and we want the function
to be continuous (but sometimes it might not be). If we want to know a limit of a
function, and it is continuous everywhere, we can try to plug in the value to which
the inputs approach and see what we get for the output. If there are problems with
this, we can either try to simplify the function expression or see what is happening
to the pieces. In practice,7 the problems occur in two way: (i) the function is defined
by cases or (ii) there are segments where the outputs are undefined due to a hidden
division by 0 for some inputs.

We can now replace our intuitive idea of continuitywith amore rigorous definition.
We call a function f continuous in a point x = a if and only if the following conditions
hold:

1. f (a) is defined
2. lim

x→a
f (x) exists

3. f (a) = lim
x→a

f (x).

A function is called continuous everywhere if and only if it is continuous in all
points. Note that all elementary functions are continuous everywhere8 and so are all

6This is why 0.999 · · · 
= 1.
7This is especially true in programming, since when we program we need to approximate functions
with real numbers by using functions with rational numbers. This approximation also goes a long
way in terms of intuition, so it is good to think about this when trying to figure out how a function
will behave.
8With the exception of divisionwhere the divisor is 0. In this case, the division function is undefined,
and therefore the notion of continuity does not have any meaning in this point.
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polynomial functions. Rational functions9 are continuous everywhere except where
the value of the denominator is 0. Some equalities that hold for limits are

1. lim
x→a

c = c

2. lim
x→0+

1
x = ∞

3. lim
x→0−

1
x = −∞

4. lim
x→∞

1
x = 0

5. lim
x→∞(1 + 1

x )
x = e.

Now, we are all set to continue our journey to differentiation.10 We can develop a
bit of intuition behind derivatives by noting that the derivative of a function can be
imagined as the slope of the plot of that function in a given point. You can see an
illustration in Fig. 2.1. If a function f (x) (the domain is X ) has a derivative in every
point a ∈ X , then there exists a new function g(x) which maps all values from X to
its derivative. This function is called the derivative of f . As g(x) depends on f and x,
we introduce the notation f ′(x) (Lagrange notation) or, remembering that f (x) = y,
we can use the notation dy

dx or df
dx (Leibniz notation). We will deliberately use these

two notations inconsistently in this book, since some ideas are more intuitive when
expressed in one notation, while some are more intuitive in the other. And we want
to focus on the underlying mathematical phenomena, not the notational tidiness.

Let us address this inmore detail. Supposewe have a function f (x) = x
2 . The slope

of this function can be obtained by selecting two points from it, e.g. t1 = (x1, y1)
and t2 = (x2, y2). Without loss of generality, we can assume that t1 comes before t2,

Fig. 2.1 The derivative of
f (x) in the point a

9Rational functions are of the form f (x)
g(x) where f and g are polynomial functions.

10The process of finding derivatives is called ‘differentiation’.
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i.e. that x1 < x2 and y1 < y2. The slope is then equal to y2−y1
x2−x1

, which is the ratio of
the vertical and horizontal segments. If we restrict our attention to linear functions
of the form f (x) = ax + b, we can see a couple of things. First, the slope is actually
a (you can easily verify this) and it is the same in every point, and second, that the
slope of a constant11 must be 0, and the constant is then b.

Let us take a more complex example such as f (x) = x2. Here, the slope is not the
same in every point and by the above calculation we will not be able to get much
out of it, and we will have to use differentiation. But differentiation is still just an
elaboration of the slope idea. Let us start with the slope formula and see where it
takes us when we try to formalize it a bit. So we start with y2−y1

x2−x1
. We can denote with

h the change in x with which we get x2 from x1. This means that the numerator can
be written as f (x + h) − f (x), and the denominator is just h by definition of h. The
derivative is then defined as the limit of that as h approaches 0, or

f ′(x) = dy

dx
= lim

h→0

f (x + h) − f (x)

h
(2.1)

Let us see how we can get the derivative f ′(x) of the function f (x) = 3x2. We will
give the rules to calculate the derivative a bit later, and using these rules we would
quickly find that f ′(x) = 6x, but let us see now how we can get this by using only
the definition of the derivative:

1. f (x) = 3x2 [initial function]
2. f ′(x) = lim

h→0

(f (x+h)−f (x)
h [definition of the derivative]

3. f ′(x) = lim
h→0

(3(x+h)2−3x2

h [we get this by substituting the expression from row

1 in the expression in row 2]

4. f ′(x) = lim
h→0

(3(x2+2xh+h2)−3x2

h [from row 3, by squaring the sum]

5. f ′(x) = lim
h→0

(3x2+6xh+3h2−3x2

h [from row 4, by multiplying]

6. f ′(x) = lim
h→0

6xh+3h2
h [from 5, cancelling out +3x2 and −3x2 in the numerator]

7. f ′(x) = lim
h→0

h(6x+3h)
h [from 6, by taking out h in the numerator]

8. f ′(x) = lim
h→0

(6x + 3h) [from 7, cancelling out the h in the numerator and denom-

inator]
9. f ′(x) = 6x + 3 · 0 [from 8, by replacing h with 0 (to which it approaches)]
10. f ′(x) = 6x [from 9].

We turn our attention to the rules of differentiation. All of these rules can be
derived just as we did with the rules used above, but it is easier to remember the rules
than the actual derivations of the rules, especially since the focus in this book is not

11Which is a 0-ary function, i.e. a function that gives the same value regardless of the input.
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on calculus. One of the most basic things regarding derivatives is that the derivative
of a constant is always 0. Also, the derivative of the differentiation variable is always
1, or, in symbols, dydx x = 1. The constant has to have a slope 0 and a function f (x) = x
will have horizontal component equal to the vertical component and the slope will
be 1. Also, to get f (x) from f (x) = ax + b, a has to be 1 to leave the x and b has to
be 0.

The next rule is the so-called exponential rule.We have seen this rule derived in the
above example: d

dx a · xn = a · n · xn−1.Wehaveplaced thea that showhowapossible
factor behaves. The rules for addition and subtraction are rather straightforward:
dy
dx (k + j) = dy

dx k + dy
dx j and

dy
dx (k − j) = dy

dx k − dy
dx j. The rules for differentiation in

the case of multiplication and division are more complex. We give two examples and
we leave it to the reader to extrapolate the general form of the rules. If we have y =
x3 · 10x then y′ = (x3)′ · 10x + x3 · (10x)′, and if y = x3

10x then y = (x3)′·10x−x3·(10x)′
(10x)2

.
The last rule we need is the so-called chain rule (not to be confused with the chain

rule for exponents). The chain rule says dy
dx = dy

du · du
dx , for some u. There is a similarity

with fractions that goes a long way in terms of intuition.12 Let us see an example.
Let h(x) = (3 − 2x)5. We can look at this function as if it were two functions: the
first is g(u) which gives some number y = u5 (in our case this is u = 3 − 2x), and
the second function which just gives u is f (x) = 3 − 2x. The chain rule says that to
differentiate y by x (i.e. to get dy

dx ), we can instead differentiate y by u (which is dy
du ),

u by x ( dudy ) and simply multiply the two.13

To see the chain rule in action, take the function f (x) = √
3x2 − x (i.e. y =√

3x2 − x). Then, f ′(x) = dy
du · du

dx , which means that y = √
u and so du

dx = 1
2u

− 1
2 .

On the other hand, u = 3x2 − x, and so du
dx = 6x − 1. From this we get dy

du · du
dx =

1
2u

− 1
2 · (6x − 1) = 1

2 · 1√
u

· (6x − 1) = 6x−1
2
√
u

= 6x−1
2
√
3x2−x

.
The chain rule is the soul of backpropagation, which in turn is the heart of deep

learning. This is done via function minimization, which we will address in detail in
the next section where we will explain gradient descent. To summarize what we said
and to add a few simple rules14 we shall need, we give the following list of rules
together with their ‘names’ and a brief explanation:

• LD: Differentiation is linear, so we can differentiate the summands separately and
take out the constant factors: [a · f (x) + b · g(x)]′ = a · f ′(x) + b · g′(x).

• Rec: Reciprocal rule [ 1
f (x) ]′ = − f ′(x)

f (x)2
.

12The chain rule in Lagrange notation is more clumsy and void of the intuitive similarity with
fractions: h′(x) = f ′(g(x))g′(x).
13Keep in mind that h(x) = g(f (x)) = (g ◦ f )(x) = g(u) ◦ f (x), which means that h is the com-
position of the functions g and f . It is very important not to mix up compositions of func-
tions like f (x) = (3 − 2x)5 with an ordinary function like f (x) = 3 − 2x5, or with a product like
f (x) = sinx · x5.
14These rules are not independent, since both ChainExp and Exp are a consequence of
CHAINRULE.
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• Const: Constant rule c′ = 0.
• ChainExp: Chain rule for exponents [ef (x)]′ = ef (x) · f ′(x).
• DerDifVar: Deriving the differentiation variable dy

dz z = 1.
• Exp: Exponent rule [f (x)n]′ = n · f (x)n−1 · f ′(x).
• CHAINRULE: Chain rule dy

dx = dy
du · du

dx (for some u).

2.2 Vectors,Matrices and Linear Programming

Before we continue, we will need to define one more concept, the Euclidean dis-
tance. If we have a 2D coordinate system, and have two points p1 := (x1, y1)
and p2 := (x2, y2) in it, we can define their distance in space as d(p1, p2) :=√

(x1 − x2)2 + (y1 − y2)2. This distance is called the Euclidean distance and defines
the behaviour of the whole space; in a sense, the distance in a space is a fundamental
thing upon the whole behaviour of the space behaves. If we use the Euclidean dis-
tance when reasoning about space, we will get Euclidean spaces. Euclidean spaces
are the most common type: they follow our spatial intuitions. In this book, we will
use only Euclidean spaces.

Now, we turn our attention to developing tools for vectors. Recall that an n-
dimensional vector x is (x1, . . . , xn) and that all the individual xi are called compo-
nents. It is quite a normal thing to imagine n-dimensional vectors living as points
in an n-dimensional space. This space (when fully furnished) will be called a vec-
tor space, but we will return to this a bit later. For now, we have only a bunch of
n-dimensional vectors from R

n.
Let us introduce the notion of scalar. A scalar is just a number, and it can be

thought of as a ‘vector’ fromR
1. And n-dimensional vectors are simply sequences of

n scalars. We can always multiply a vector by a scalar, e.g. 3 · (1, 4, 6) = (3, 12, 18).
Vector addition is quite simple. If we want to add two vectors a = (a1, . . . , an)
and b = (b1, . . . , bn), they must have the same number of components. Then
a + b := (a1 + b1, . . . , an + bn). For example, (1, 2, 3) + (4, 5, 6) = (1 + 4, 2 +
5, 3 + 6) = (5, 7, 9). This gives us a hint that we must stick with vectors of the same
dimensionality (but we will always include scalars even though they are technically
1Dvectors). Oncewe have scalarmultiplication and vector addition,we have a vector
space.15

Let us take an in-depth view of the space our vectors live in. For simplicity, we
will talk about 3D entities, but anything we will say can be easily generalized to the
n-dimensional case. So, to recap, a 3D space is the place where 3D vectors live: they
are represented as points in this space. A question can be asked whether there is a
minimal set of vectors which ‘define’ the whole vector universe of 3D vectors. This

15We deliberately avoid talking about fields here since we only use R, and there is no reason to
complicate the exposition.
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question is a bit vague but the answer is yes. If we take three16 vectors e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1), we can express any vector in this space with the
formula:

s1e1 + s2e2 + s3e3 (2.2)

where s1, s2 and s3 are scalars chosen so that we get the vector we want. This shows
how mighty scalars are and how they control everything that happens—they are a
kind of aristocracy in the vector realm. Let us turn to an example. If we want to
represent the vector (1, 34, −28) in this way, we need to take s1 = 1, s2 = 34 and
s3 = −28 and plug them in Eq.2.2. This equation is called linear combination: every
vector in a vector field can be defined as a (linear) combination of the vectors e1, e2
and e3, and appropriately chosen scalars. The set {e1, e2, e3} is called the standard
basis of the 3D vector space (which is usually denoted as R3).

The reader may notice that we have been talking about the standard basis without
defining what a basis is. Let V be a vector space and B ⊆ V . Then, B is called a basis
if and only if all vectors inB are linearly independent (i.e. are not linear combinations
of each other) andB is a minimally generating subset of V (i.e. it must be aminimal17

subset which can produce with the help of Eq.2.2) every vector in V .
We turn our attention to defining the single most important operation with vectors

we will need in this book, the dot product. The dot product of two vectors (which
must have the same dimensions) is a scalar. It is defined as

a · b = (a1, . . . , an) · (b1, . . . , bn) :=
n∑

i=1

aibi = a1b1 + a2b2 + . . . anbn (2.3)

This means that (1, 2, 3) · (4, 5, 6) = 1 · 4 + 2 · 5 + 3 · 6 = 32. If two vectors
have the a dot product equal to zero, they are called orthogonal. Vectors also have
lengths. To measure the length of a vector a, we compute its L2 or Euclidean norm.
The L2 norm of the vector is defined as

||a||2 :=
√
a21 + a22 + . . . + a2n (2.4)

Bear in mind not to confuse the notation for norms with the notation for the
absolute value. We will see more about the L2 norm in the later chapters. We can
convert any vector a to a so-called normalized vector by dividing it with its L2 norm:

â := a
||a||2 (2.5)

Two vectors are called orthonormal if they are normalized and orthogonal. We
will be needing these concepts in Chaps. 3 and 9.We not turn our attention tomatrices

16One for each dimension.
17A minimal subset such that a property P holds is a subset (of some larger set) of which we can
take no proper subset such that P would still hold.

http://dx.doi.org/10.1007/978-3-319-73004-2_3
http://dx.doi.org/10.1007/978-3-319-73004-2_9
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which are a natural extension of vectors. A matrix is a structure similar to a table as
it is made by rows and columns. To understand what a matrix is, take for example
the following matrix and try to make some sense of it with what we have already
covered when we were talking about vectors:

A =

⎡
⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤
⎥⎥⎦

Right away we see a couple of things. First, the entries in the matrix are denoted
by ajk and j denotes the row, and k denotes the column of the given entry. A matrix
has dimensions similar to a vector, but it has to have two of them. The matrix A
is a 4 × 3 dimensional matrix. Note that this is not the same as a 3 × 4 dimen-
sional matrix. We can look at a matrix as a vector of vectors (this idea has a couple
of formal problems that need to be ironed out, but it is a good intuition). Here,
we have two options: It could be viewed as vectors a1x = (a11, a12, a13), a2x =
(a21, a22, a23), a3x = (a31, a32, a33) and a4x = (a41, a42, a43) stacked in a new vec-
tor A = (a1x, a2x, a3x, a4x) or it could be seen as vectors ax1 = (a11, a21, a31, a41),
ax2 = (a12, a22, a32, a42) and ax3 = (a13, a23, a33, a43) which are then bundled
together as A = (ax1, ax2, ax3).

Either way we look at it something is off since we have to keep track of what is
vertical and what is horizontal. It is clear that now need to distinguish a standard,
horizontal vector, called a row vector (a row of the matrix taken out which is now
just a vector), which is a 1 × n dimensional matrix

ah = (a1, a2, a3, . . . , an) = [
a1 a2 a3 · · · an

]
from a vertical vector called column vector, which is a n × 1 dimensional matrix:

av =

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
a3
...

an

⎤
⎥⎥⎥⎥⎥⎦

We will need an operation to transform row vectors in column vectors and in
general, to transform a m × n dimensional matrix into a n × m dimensional matrix
while keeping the order in both the rows and columns. Such an operation is called a
transposition, and you can imagine it as having amatrixwritten downon a transparent
sheet of A4 paper in portrait orientation, and then by holding the top-left corner flip
it to landscape orientation (and you read the number through the paper). Formally, if
we have a n × mmatrix A, we can define another matrix B as the matrix constructed
from A by taking each ajk and putting it in place of bkj. B is then called the transpose
of A and is denoted by A�. Note that transposing a column vector gives a standard
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row vector and vice versa. Transposition is used a lot in deep learning to keep all
operations running smoothly and quickly. If we have an n × n matrix A (called a
square matrix) for which A = A� holds, then such a matrix is called symmetric.

Now we turn to operations with matrices. We start with scalar multiplication. We
can multiply a matrix A by a scalar s by multiplying each entry in the matrix by the
scalar:

sA =

⎡
⎢⎢⎣
s · a11 s · a12 s · a13
s · a21 s · a22 s · a23
s · a31 s · a32 s · a33
s · a41 s · a42 s · a43

⎤
⎥⎥⎦

Andwe note that themultiplication of amatrix and a scalar is commutative (matrix
by matrix multiplication will not be commutative). If we want to apply a function
f (x) to a matrix A, we do it by applying the function to all elements:

f (A) =

⎡
⎢⎢⎣
f (a11) f (a12) f (a13)
f (a21) f (a22) f (a23)
f (a31) f (a32) f (a33)
f (a41) f (a42) f (a43)

⎤
⎥⎥⎦

Now, we turn to matrix addition. If we want to add two matrices A and B, they
must have the same dimensions, i.e. they must be both n × m, and then we add18 the
corresponding entries. The result will also be a n × m matrix. To take an example:

A + B =

⎡
⎢⎢⎣

3 −4 5
−19 10 12
1 45 9

−45 −1 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

4 −1 2
−3 10 26
13 51 90
−5 1 30

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

7 −5 7
−22 20 38
14 96 99

−50 0 30

⎤
⎥⎥⎦

Now, we turn our attention to matrix multiplication. Matrix multiplication is not
commutative, so AB 
= BA. To multiply two matrices, they have to have matching
dimensions. So if we want to multiply A with B (that is to calculate AB), A has to be
m × q dimensional and b has to be q × t dimensional. The resulting matrix AB has
to be m × t dimensional. This idea of ‘dimensionality agreement’ is very important
for matrix multiplication to work out. It is a matter of convention, but by taking this
convention and saying that this is how matrices are to be multiplied, we will go a
long way, and be computationally fast all the time, so it is well worth it.

If we multiply two matrices A and B, we will get the matrix C (= AB) as the
result (of the dimensions we specified above). The matrix C consists of elements cij.
For every element cij, we get it by computing the dot product of two vectors: the
row vector i from A and the column vector j from B (the column vector has to be
transposed to get a standard row vector). Intuitively, this makes perfect sense: when
we have an element ckm, k is the row and m is the column, so it is sensible that this

18Matrix subtraction works in exactly the same way, only with subtraction instead of addition.
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element comes from the k-th row of A and the m-th column of B. An example will
make it clear:

AB =

⎡
⎢⎢⎣

4 −1
−3 0
13 6
−5 1

⎤
⎥⎥⎦ ·

[
3 −4 5
9 1 12

]

Let us check the dimensions first: matrix A is 4 × 2 dimensional, and matrix
B is 2 × 3 dimensional. They have the 2 ‘connecting’ them, and therefore we can
multiply these two matrices and we will get a 4 × 3 dimensional matrix as a result.

AB =

⎡
⎢⎢⎣

4 −1
−3 0
13 6
−5 1

⎤
⎥⎥⎦ ·

[
3 −4 5
9 1 12

]
=

⎡
⎢⎢⎣

3 −17 8
−9 12 −15
93 −46 137
−6 21 −13

⎤
⎥⎥⎦

We will call the resulting 4 × 3 dimensional matrix C. Let us show the full cal-
culations of all entries cij:

• c11 = 4 · 3 + (−1) · 9 = 3
• c12 = −3 · 3 + 0 · 9 = −9
• c13 = 13 · 3 + 6 · 9 = 93
• c14 = −5 · 3 + 1 · 9 = −6
• c21 = 4 · (−4) + (−1) · 1 = −17
• c22 = −3 · (−4) + 0 · 1 = 12
• c23 = 13 · (−4) + 6 · 1 = −46
• c24 = 5 · (−4) + 1 · 1 = 21
• c31 = 4 · 5 + (−1) · 12 = 8
• c32 = −3 · 5 + 0 · 12 = −15
• c33 = 13 · 5 + 6 · 12 = 137
• c34 = −5 · 5 + 1 · 12 = −13

Let us take another example of matrix multiplication:

AB =
[
0 1 2 3
4 5 6 7

]
·

⎡
⎢⎢⎣
8 9 0
1 2 3
4 5 6
7 8 9

⎤
⎥⎥⎦ =

[
30 36 42
110 132 114

]

We show the calculation for all elements of C:

• c11 = 0 · 8 + 1 · 1 + 2 · 4 + 3 · 7 = 30
• c12 = 0 · 9 + 1 · 2 + 2 · 5 + 3 · 8 = 36
• c13 = 0 · 0 + 1 · 3 + 2 · 6 + 3 · 9 = 42
• c21 = 4 · 8 + 5 · 1 + 6 · 4 + 7 · 7 = 110
• c22 = 4 · 9 + 5 · 2 + 6 · 5 + 7 · 8 = 132
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• c23 = 4 · 0 + 5 · 3 + 6 · 6 + 7 · 9 = 114

Before continuing, we must define two more classes of matrices. The first one is
the zero matrix. A zero matrix can be of any size and all of its entries are zeros. Its
dimensions will depend on what do we want to do with it, i.e. it will depend on the
dimensions of the matrix we want to multiply it with. The second (and much more
useful) is a unit matrix. A unit matrix is always a square matrix (i.e. both dimensions
are the same). It will have the value 1 along the diagonal and all other entries are 0,
i.e. ajk = 1 if and only if j = k and ajk = 0 otherwise. Note that a unit matrix is a
symmetric matrix. Note that there is only one unit matrix for every dimension, so we
can give it a name, In,n. Since it is a square matrix (a n × n matrix), we do not have
to specify both dimensions, so we can just write In. Just to show how they look:

I1 = [
1
]
, I2 =

[
1 0
0 1

]
, I3 =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , In =

⎡
⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ .

Nowwe can define orthogonality for matrices. An n × n square matrix A is called
orthogonal if and only if AA� = A�A = In.

Notice that vectors had one dimension, so we talked about n-dimensional vectors.
Matrices have 2D parameters, so we talk about n × m matrices. What if we add an
extra dimension? What would be a n × k × j dimensional object? Such objects are
called tensors and behave similarly to matrices. Tensors are an important topic in
deep learning but unfortunately are beyond the scope of this book. We point the
interested reader to [3].

So far we have talked about derivatives and vectors separately, but it is time to
see how they can combine to form the one of the most important structures in deep
learning, the gradient. We have seen how to compute the derivative of a function of
a single variable f (x), but could we extend the notion to multiple variables? Could
we get the slope in a point of a mathematical object that needs two variables to
be defined? The answer is yes, and we do that by employing partial derivatives.
Let us see on an example. Take the simple case of f (x, y) = (x − y)2. First, we must
transform it in x2 − 2xy + y2. Now, wemust focus on it as a function of one variable,
which means to treat the other one as an unknown constant: fy(x) = x2 − 2xy + y2,
or even better fa(x) = x2 − 2xa + a2. We are now committed to finding the partial
derivative of f with respect to x. So we are solving df

dx for f (x) = x2 − 2xa + a2 (or

equivalently f ′(x) = x2 − 2xa + a2). Note that we cannot safely use the notation dy
dx

but wemust write df
dx to avoid confusion. Since differentiation is linear, by the rule LD

from the previous section we get df
dx x

2 − 2a df
dx x + df

dx a
2. By using the exponent rule

Exp on the first term, the differentiation variable rule DerDifVar on the second
term and the constant rule Const on the third term, we get 2x − 2a + 0, which
simplifies to 2(x − a). Let us see what we did: we took the (full) derivative of fa(x)
(with a constant a in place of y), which is the same as taking the partial derivative
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of f (x, y). In symbols, we calculated
dfy(x)
dx , and the corresponding partial derivative

is denoted as ∂f (x,y)
∂x and is obtained by re-substituting the variable we took out with

the constant we put in. In other words ∂f (x,y)
∂x = 2(x − y).

Of course, just as f (x, y) has a partial derivative with respect to x, it also has one
with respect to y: ∂f (x,y)

∂y = 2(y − x). So if we have a function f taking as arguments
x1, x2, . . . , xn (or, we can say that f takes an n-dimensional vector), we would have
n partial derivatives ∂f (x1,x2,...,xn)

∂x1
, ∂f (x1,x2,...,xn)

∂x2
, …, ∂f (x1,x2,...,xn)

∂xn
. If we store them

in a vector and get

(
∂f (x)
∂x1

,
∂f (x)
∂x2

, . . . ,
∂f (x)
∂xn

)

We call this structure the gradient of the function f (x) and write it as ∇f (x).
To denote the i-th component of the gradient, we write ∇if (x) = ∂f (x)

∂xi
). If we have

a function f of n variables, it has to live in n + 1-dimensional space as an n + 1-
dimensional surface. This surface in 3D space is called a plane, and in four or more
dimensions it is called a hyperplane. The gradient then is simply a list of slopes in
each of the n + 1 dimensions.

Building on this idea of a gradient being a list of slopes, let us see how we can
find the minimum of an n-ary function using its gradient. Each input component of
the function is a coordinate, to which the final function maps an input coordinate
(which shows where the hyperplane given those inputs is). Since each component
of a gradient is a slope along each of the dimensions of the hyperplane, we can
subtract the gradient component from its respective input component and recalculate
the function. When we do so and feed the new values to the function, we will get a
new output, which is closer to the minimum of the function. This technique is called
gradient descent, and we will be using it often. In Chap.4, we will be providing a
full calculation for a simple case, and all of our deep learning models will be using
it to update their parameters.

Let us see an example of how function minimization with gradient descent looks
like. Suppose we have a simple function, f (x) = x2 + 1.We need to find the value of
x which shall result with the minimal f (x).19 From basic calculus, we know that this
point will be (0, 1). The gradient of f will have a single component∇f (x) = (

∂f (x)
∂x ),

corresponding with x.20 We start by choosing a random starting value for x, let it
be x = 3. When x = 3, f (x) = 10 and ∂f

∂x = df
dx = f ′(x) = 6. We take an additional

scaling factor of 0.3. This will make us take only 30% of the step along the gradient
we would normally take, and it will in turn enable us to be more precise in our quest
for minimization. Later, we will call this factor the learning rate, and it will be an
important part of our models.

19To get the actual f (x) we just need to plug in the minimal x and calculate f (x).
20In the case of multiple dimensions, we shall do the same calculation for every pair of xi and
∇i f (x).

http://dx.doi.org/10.1007/978-3-319-73004-2_4
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We will be making a series of steps towards the x which will produce a minimal
f (x) (or more precisely, a good approximation of the actual minimal point21), wewill
denote the initial x by x(0), and we will denote all the other xs on the road towards the
minimum in a similar fashion. So to get x(1) we calculate x(0) − 0.3 · f ′(x(0)), or, in
numbers, x(1) = 3 − 0.3 · 6 = 1.2. Now, we proceed to calculate x(2) = x(1) − 0.3 ·
f ′(x(1)) = 1.2 − 0.3 · 2.4 = 0.48. By the same procedure, we calculate x(3) = 0.19,
x(4) = 0.07 and x(5) = 0.02 where we stop and call it a day.22 We could continue to
get better and better approximations, but we would have to stop eventually. Gradient
descent will take as closer and closer to the value of x for which the function f has the
minimal value, which is in our case x(5) ≈ argmin f (x) = 0. Note that the minimum
of f is actually 1 which we get if we plug in the argmin as x in f (x) = x2 + 1. The
interested reader may wonder what would happen if we used addition instead of
subtraction: then we would be questing for a maximum not a minimum, but all the
mechanics of the process would remain the same.

We make a short remark before moving on to statistics and probability.
Mathematical knowledge is often considered to be common knowledge and as such
it is not cited. That being said, most good math textbooks cite and provide historical
remarks about the ideas and theorems proven. As this is not a mathematical book,
we will no do that here. We will instead point the reader to other textbooks that do
give a historical overview. We suggest that the reader interested in calculus starts her
journey with [4], while for linear algebra we recommend [5]. One fantastic book that
we believe any deep learning researcher should work her way through is [6], and we
strongly recommend it.

2.3 Probability Distributions

In this section, we explore the various concepts from statistics and probability theory
whichwewill be needing for deep learning.Wewill explore only the bitswewill need
for deep learning, but we point the interested reader towards two great textbooks,
viz. [7]23 and [8].

Statistics is the quintessential data analysis: it analyses a population whose mem-
bers have certain properties. All these terms will be rigorously defined later when
we introduce machine learning, but for now we will use an intuitive picture: imagine
the population to be the inhabitants of a city, and their properties24 can be height,

21Note that a function can havemany localminima orminimal points, but only one globalminimum.
Gradient descent can get ‘stuck’ in a local minimum, but our example has only one local minimum
which is the actual global minimum.
22We stop simply because we consider it to be ‘good enough’—there is no mathematical reason for
stopping here.
23This book is available online for free at https://www.probabilitycourse.com/.
24Properties are called features in machine learning, while in statistics they are called variables,
which can be quite confusing, but it is standard terminology.

https://www.probabilitycourse.com/
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weight, education, foot size, interests, etc. Statistics then analyses the population’s
properties, such as for example the average height, or which is the most common
occupation. Note that for statistical analysis we have to have nice and readable data,
but deep learning will not need this.

To find the average height of a population, we take the height of all inhabitants,
add them up, and divide them by the number of inhabitants:

MEAN (height) :=
∑n

i=1 heighti
n

(2.6)

The average height is also called mean of the height, and we can get a mean
for any feature which has numerical values such as weight, body mass index, etc.
Features that take numerical values are called numerical features. So the mean is
a ‘numerical middle value’, but what can we do when we need a‘middle value’,
for example, the population’s occupation? Then, we can use the mode, which is a
function which returns simply the value which occurs most often, e.g. ‘analyst’ or
‘baker’. Note that the mod can be used for numerical features, but the mode will treat
the values 19.01, 19.02 and 19000034 as ‘equally different’. This means that if we
want to take a meaningful mod, e.g. ‘monthly salary’, we should round the salary
to the nearest thousand, so that 2345 becomes 2000 and 3987 becomes 4000. This
process creates the so-called bins of data (it aggregates the data), and this kind of data
preprocessing is called binning. This is a very useful technique since it drastically
reduces the complexity of non-numerical problems and often gives a much clearer
view of what is happening in the data.

Asides from the mean and the mode, there is a third way to look at centrality.
Imagine we have a sequence 1, 2, 5, 6, 10000. With this sequence, the mod is quite
useless, since no two values repeat and there is no obvious way to do binning. It is
possible to take the mean but the mean is 2002.8, which is a lousy information, since
it tells us nothing about any part of the sequence.25 But the reason the mean failed
is due to the atypical value of 10000 in the sequence. Such atypical values are called
outliers.Wewill be in position to define outliersmore rigorously later, but this simple
intuition on outliers we have built here will be very useful for all machine learning
endeavors. Remember just that the outlier is an atypical value, not necessarily a large
value: instead of 10000, we could have had 0.0001, and this would equally be an
outlier.

When given the sequence 1, 2, 5, 6, 10000, we would like a good measure of
centrality which is not sensitive to outliers. The best-known method is called the
median. Provided that the sequence we analyse has an odd number of elements, the
median of the sequence is the value of the middle element of the sorted sequence.26

In our case, the median is 5. If we have the sequence 2, 1, 6, 3, 7, the median would
be the middle element of the sorted sequence 1, 2, 3, 6, 7 which is 3. We have noted

25Note that the mean is equally useless for describing the first four and the last member taken in
isolation.
26The sequence can be sorted in ascending or descending order, it does not matter.
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that we need an odd number of elements in the sequence, but we can easily modify
the median a bit to take care of the case when we have an even number of elements:
then sort the sequence, the two ‘middlemost’ elements, and define the median to
be the mean of those two elements. Suppose we have 4, 5, 6, 2, 1, 3, then the two
elements we need are 3 and 4, and their mean (and themedian of the whole sequence)
is 3.5. Note that in this case, unlike the case with an odd number of elements, the
median is not also a member of the sequence, but this is inconsequential for most
machine learning applications.

Now that we have covered the measures of central tendency,27 we turn our atten-
tion to the concepts of expected value, bias, variance and standard deviation. But
before that, we will need to address basic probability calculations and probability
distributions. Let us take a step back and consider what probability is. Imagine we
have the simplest case, a coin toss. This process is actually a simple experiment: we
have a well-defined idea, we know all possible outcomes, but we are waiting to see
the outcome of the current coin toss.We have two possible outcomes, heads and tails.
The number of all possible outcomes will be important for calculating basic prob-
abilities. The second component we need is how many times the desired outcome
happens (out of all times). In a simple coin toss, there are two possibilities, and only
one of them is heads, so P(heads) = 1

2 = 0.5, which means that the probability of
heads is 0.5. This may seem peculiar, but let us take a more elaborate example to
make it clear. Usually, probability of x is denoted as P(x) or p(x), but we prefer the
notation P(x) in this book, since probability is quite a special property and should
not be easily confused with other predicates, and this notation avoids confusion.

Suppose we have a pair of D6 dice, and we want to know what is the probability
of getting a five28 on them. As before, we will need to calculate A

B where B is the
total number of outcomes and A is the time the desired outcome happens. Let us
calculate A. We can get five on two D6 dice in the following cases:

1. First die 4, second die 1
2. First die 3, second die 2
3. First die 2, second die 3
4. First die 1, second die 4

So, we can get a five in four cases, and so A = 4. Let us calculate B now. We
are counting how many outcomes are possible on two D6 dice. If there is a 1 on
the first die, there are six possibilities for the second die. If there is a 2 on the first
die, we also have six possibilities for the second, and so up to 6 on the first die.
This means that there are 6 · 6 = 62 possibilities,29 and hence P(5) = 4

36 = 0.11.
All simple probabilities are calculated like this by counting the number of times the

27This is the ‘official’ name for the mean, median and mode.
28Not 5 on one die or the other, but 5 as in when you need to roll a 5 in Monopoly� to buy that last
street you need to start building houses.
29In 62, the 6 denotes the number of values on each die, and the 2 denotes the number of dice used.
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desired outcome will occur and dividing it by the number of all possible outcomes.
Please note one interesting thing: if the first die gives a 6 and the second gives a 1,
this is one outcome, while if the first gives a 1 and the second gives a 6, this is another
outcome. Also, there is only one combination which gives 2, viz. the first die gives
a 1 and the second die gives a 1.

Now that we have an intuition behind the basic probability calculation,30 let us
turn our attention to probability distributions. A probability distribution is simply a
function which tells us how often does something occur. To define the probability
distributions, we first need to define what is a random variable. A random variable is
amapping from the probability space to a set of real numbers, or in simple words, it is
a variable that can take random values. The random variable is usually denoted by X ,
and the values it takes are usually denoted by x1, x2, etc. Note that this ‘random’ can
be replaced by a more specific probability distribution, which gives a higher chance
for some values to occur (a lower-than-random chance for others). The simple, truly
random case is the following: If we have 10 elements in the probability space, a
random variable would assign to each the probability of 0.1. This is in fact the
first probability distribution called uniform distribution, and in this distribution, all
members of the probability space get the same value, and that value is 1

n , where n
is the number of elements. We have seen another probability distribution when we
analysed the coin toss called the Bernoulli distribution. The Bernoulli distribution
is the probability distribution of a random variable which takes the value 1 with the
probability p and the value 0 with the probability 1 − p. In our case, p = P(heads) =
0.5, but we could have equally chosen a different p.

To continue, we must define the expected value. To build up intuition, we use the
two D6 dice example. If we have a single D6 die, we have

EP[X ] = x1 · p1 + x2 · p2 + . . . + x6p6, (2.7)

where X is the random variable and P is a distribution of X (the xs come from X
and ps belong to P). Since there are six outcomes, each one has the probability of 1

6
this becomes

Euniform[X ] = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

(2.8)

It seems rather trivial, but if we have two D6 dice, it becomes more complex,
because the probabilities becomemessy, and the distribution is not uniform anymore
(recall that the probability of rolling a 5 on two D6 is not 1

36 ):

EnewDistribution[X ] = 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36
+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36

(2.9)

30What we called here ‘basic probabilities’ are actually called priors in the literature, and we will
be referring to them as such in the later chapters.



36 2 Mathematical and Computational Prerequisites

But let us seewhat is happening in the backgroundwhenwe talk about the expected
value. We are actually producing an estimator,31 which is a function which tells us
what to expect in the future. What the future will actually bring is another matter.
The ‘reality’ (also known as probability distribution) is usually denoted often by an
uppercase letter from the back of the alphabet such as X , while an estimator for that
probability distribution is usually denoted with a little hat over the letter, e.g. X̂ . The
relationship between an estimator and the actual values we will be getting in the
future32 is characterized by two main concepts, the bias and the variance. The bias
of X̂ relative to X is defined as

BIAS(X̂ ,X ) := EP[X̂ − X ] (2.10)

Intuitively, the bias shows by how much the estimator misses the target (on aver-
age). A related idea is the variance, which tells how wider or narrower are the
estimates compared to the actual future values:

VAR(X̂ ) := EP[(X̂ − EP[X̂ ])2] (2.11)

The standard deviation is defined as:

STD(X̂ ) :=
√
VAR(X̂ ) (2.12)

Intuitively, the standard deviation keeps the spread information from the variance,
but it rescales it to be directly useful.

We return now to probability calculations. We have seen how to calculate a basic
probability (prior) like P(A), but we should develop a calculus for probability. We
will provide both the set-theoretic notation and the logical notation in this section,
but later we will stick to the less intuitive but standard set-theoretic notation. The
most basic equation is the calculation of the joint probability of two independent
events:

P(A ∩ B) = P(A ∧ B) := P(A) · P(B) (2.13)

If we want the probability of two mutually exclusive events, we use

P(A ∪ B) = P(A ⊕ B) := P(A) + P(B) (2.14)

If the events are not necessarily disjoint,33 we can use the following equation:

P(A ∨ B) := P(A) + P(B) − P(A ∧ B) (2.15)

31All machine learning algorithms are estimators.
32Note that ideally we would like an estimator to be a perfect predictor of the future in all cases,
but this would be equal to having foresight. Scientifically speaking, we have models and we try to
make them as accurate as possible, but perfect prediction is simply not on the table.
33‘Disjoint’ means A ∩ B = ∅.
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Finally, we can define the conditional probability of two events. The conditional
probability of A given B (or in logical notation, the probability of B → A) is defined
as

P(A|B) = P(B → A) := P(A ∩ B)

P(B)
(2.16)

Now, we have enough definitions to prove Bayes’ theorem:

Theorem 2.1 P(X |Y ) = P(Y |X )P(X )
P(Y )

Proof By the above definition of conditional probability (Eq.2.16), we have that
P(X |Y ) = P(X∩Y )

P(Y )
. Now, we must reformulate P(X ∩ Y ), and we will also be using

the definition of conditional probability. By substituting X for B and Y for A in
Eq.2.16, we get P(Y |X ) = P(Y∩X )

P(X )
. Since ∩ is commutative, this is the same as

P(Y |X ) = P(X∩Y )
P(X )

.Now,wemultiply the expressionbyP(X ) andgetP(Y |X )P(X ) =
P(X ∩ Y ). We now know what is P(X ∩ Y ) and substitutes it in P(X |Y ) = P(X∩Y )

P(Y )

to get P(X |Y ) = P(Y |X )P(X )
P(Y )

, which concludes the proof. �

This is the first and only proof in this book,34 but we have included it since it is a
very important piece of machine learning culture, and we believe that every reader
should know how to produce it on a blank piece of paper. If we assume conditional
independence of Y1, . . . , Yn, then there is also a generalized form of the Bayes’
theorem to account for multiple conditions (Yall consists of Y1 ∧ . . . ∧ Yn):

P(X |Yall) = P(Y1|X ) · P(Y1|X ) · . . . · P(Yn|X ) · P(X )

P(Yall)
(2.17)

We see in the next chapter how this is useful for machine learning. Bayes’ theorem
is named after Thomas Bayes, who first proved it, but the result was only published
posthumously in 1763.35 The theorem underwent formalization and the first rigorous
formalization was given by Pierre-Simon Laplace in his 1774 Memoir on Inverse
probability and later in his Théorie analytique des probabilités form 1812.A com-
plete treatment of Laplace’s contributions we have mentioned is available in [9,10].

Before leaving the green plains of probability for the desolate mountains of logic
and computability, we must address briefly another probability distribution, the nor-
mal or Gaussian distribution. The Gaussian distribution is characterized by the fol-
lowing formula:

1√
2 · VAR · π

e− (x−MEAN )2
2·VAR (2.18)

34There are others, but they are in disguise.
35A version of Bayes’ original manuscript is available at http://www.stat.ucla.edu/
history/essay.pdf.

http://www.stat.ucla.edu/history/essay.pdf
http://www.stat.ucla.edu/history/essay.pdf
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It is quite aweird equation, but themain thing about theGaussian distribution is not
the elegance of calculation, but rather the natural and nice shape of the graph, which
can be used in a number of ways. You can see an illustration of how the Gaussian
distribution with mean 0 and standard deviation 1 looks like (see Fig. 2.2a).

The idea behind the Gaussian distribution is that many natural phenomena seem
to follow it, and in machine learning it is extremely useful for initializing values
that are random but at the same time are centred around a value. This value is the
mean, and it is usually set to 0, but it can be anything. There is a related concept of
a Gaussian cloud, which is made by sampling a Gaussian distribution with mean 0
for two values at a time, adding the values to a point with coordinates (x, y) (and
drawing the results if one wishes to see it). Visually, it looks like a ‘dot’ made with
the spray paint tool from an old graphical editing program (see Fig. 2.2b).

Fig. 2.2 Gaussian distribution and Gaussian cloud
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2.4 Logic andTuringMachines

We have already encountered logic in the very beginnings of artificial neural net-
works, and again with the XOR problem, but we have not really discussed it. Since
logic is a highly evolved and mathematical science, an in-depth introduction to logic
is far beyond the scope of this book, and we point the reader to [11] or [12], which
are both excellent introductions. We are going to give only a very quick tour here,
and focus exclusively on the parts which are of direct theoretical and practical sig-
nificance to deep learning.

Logic is the study of foundations of mathematics, and as such it has to take
something to be undefined. This is called a proposition. Propositions are represented
by symbols A,B,C,P,Q, . . . ,A1,B1, . . .. Usually, the first letters are reserved for
atomic propositions, while the Ps and Qs are reserved for denoting any proposi-
tion, atomic or compound. Compound propositions are built over atomic ones with
logical connectives, ∧ (‘and’), ∨ (‘or’), ¬ (‘not’), → (‘if…then’) and ≡ (‘if and
only if’). So if A and B are propositions, so is A → (A ∨ ¬B). All of the connec-
tives are binary, except for negation which is unary. Another important aspect is
truth functions. Intuitively, an atomic proposition is assigned either 0 or 1, and a
compound proposition gets 0 or 1 depending on whether its components are 0 or 1.
So if t(X ) is a truth function, t(A ∧ B) = 1 if and only if t(A) = 1 and t(B) = 1,
t(A ∨ B) = 1 if and only if t(A) = 1 or t(B) = 1, t(A → B) = 0 if and only if
t(A) = 1 and t(B) = 0, t(A ≡ B) = 1 if andonly if t(A) = 1 and t(B) = 1or t(A) = 0
and t(B) = 0, and t(¬A) = 1 if and only if t(A) = 0. Our old friend, XOR, lives here
as XOR(A,B) := A ≡ B.

The system we described above is called propositional logic, and we might want
to modify it a bit. Let us briefly address a first modification, fuzzy logic. Intuitively,
if we allow the truth values to be not just 0 or 1 but actually real values between 0
and 1, we are in fuzzy logic territory. This means that a proposition A (suppose that
Ameans ‘This is a steep decline’) is not simply 1 (‘true’), but can have the value 0.85
(“‘kinda” true’). We will be needing this general idea. Connections between fuzzy
logic and artificial neural networks form a vast area of active research, but we cannot
go in any detail here.

But themain extensionof propositional logic is to decomposepropositions in prop-
erties, relations and objects. So, what was simply A in propositional logic becomes
A(x) or A(x, y, z). The x, y, z are then called variables, and we need a set of valid
objects over which they span, called the domain. A(x, y) could mean ‘x is above
y’, and this is then either true or false depending on what we give as x and y. So
the main option is to provide two constants c and d which denote some particular
members of the domain, say ‘lamp’ and ‘table’. Then A(c, d) is true. But we can
also use quantifiers, ∃ (‘exists’) and ∀ (‘for all’) to say that there exists some object
which is ‘blue’, and we write ∃xB(x). This is true if there is any object in the domain
which is blue. Same goes ∀, and the syntax is the same, but it will be true if all
members of the domain are blue. Of course you can also compose sentences like
∃x(∀yA(x, y) ∧ ∃z¬C(x, z)), the principle is the same.
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We can also a quick look at fuzzy first-order logic. Here, we have a predicate
P (suppose P(x) means ‘x is fragile’) and a term c (denoting a flower pot). Then,
t(P(c)) = 0.85 would mean that the flower pot is ‘kinda’ fragile. You can look at it
from another perspective, as fuzzy sets: take P to be the set of all fragile things, and
c then belongs to the fuzzy set P with a degree of 0.85.

One important topic from logic we need to cover is a Turing machine. It is the
original simulator of a universal machine from the previously mentioned paper by
Alan Turing [13]. The Turing machine has a simple appearance, comprising two
parts: a tape and a head. A tape is just an imaginary piece of paper that is infinitely
long and is divided into cells. Each cell can either be filled with a single dot (•), with
a separator (#) or blank (B). The head can read and memorize a single symbol, write
or erase a symbol from a cell on the tape. It can go to any cell of the tape. The idea is
that this simple device can compute any function that can be computed at all. In other
words, the machine works by getting instructions, and any computable function can
be rewritten as instructions for this machine. If we want to compute addition of 5
and 2, we could do it in the following manner:

1. Start by writing the blank on the first cell. Write five dots, the separator and three
dots.

2. Return to the first blank.
3. Read the next symbol and if it is a dot, remember it, go right until you find a

blank, write the dot there. Else, if the next symbol is a separator return to the
beginning and stop.

4. Return to step 2 of this instruction and start over from there.

We conclude with the definition of logic gates. A logic gate is a representation of
a logical connective. An AND gate takes two inputs, and if they are both 1, it outputs
a 1. An XOR gate is also a gate which gives 1 if a 1 is coming from either side, gives
0 if nothing is coming, and blocks (produces a 0) if both are coming with 1.A special
kind of a logic gate is a voting gate. This gate takes not just two but n inputs, and
outputs a 1 if more than half of the inputs are 1.A generalization of the voting gate
is the threshold gate which has a threshold. If T is the threshold, then the threshold
gate outputs 1 if more than T inputs are 1 and 0 otherwise. This is the theoretical
model of all simple artificial neurons: in terms of theoretical computer science, they
are simply threshold logic gates and have the same computational power.

A natural physical interpretation for logic gates is that they are a kind of switch
for electricity, where 1 represents current and 0 no current.36 Most of the things work
out (some gates are impossible but they can be obtained as a combination of others),
but consider what happens to a negation gate when 0 is coming: it should produce
1, but this eludes our intuitions about currency (if you put two switches on the same

36This is not exactly how it behaves, but it is a simplification which is more than enough for our
needs.
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line and close one, closing the other will not produce a 1). This is a strong case for
intuitionistic logic where the rule ¬¬P → P does not hold.

2.5 Writing Python Code

Machine learning today is a process inseparable from computers. Thismeans that any
algorithm is written in program code, and this means that wemust choose a language.
We chose Python. Any programming language is actually just a specification of code.
This means to write a program you simply open a textual file, write the correct code
and then change the extension of the file from .txt into something appropriate. For
ANSI C, this is .c, and for Python this is .py. Remember, a valid code is defined by
the given language, but all program code is just text, nothing else, and can be edited
by any text editor.37

A programming language can be compiled or interpreted. A compiled language
is processed by compiling the code, while an interpreted language uses another
program called an ‘interpreter’ as a platform. Python is an interpreted language
(ANSI C is a compiled language), and this means we need an interpreter to run
Python programs. The usual Python interpreter is available at python.org, but
we suggest to use Anaconda from www.continuum.io/downloads. There are
currently two versions of Python, Python 3 and Python 2.7. We suggest to use the
latest version of Python, which at the time of writing is Python 3.6. When installing
Anaconda, use all the default options except the one that asks youwhether youwould
like to prepend Anaconda to the path. If you are not sure what this means, select ‘yes’
(the default is ‘no’), since otherwise you might end up in a place called ‘dependency
hell’. There are detailed instructions on how to install Anaconda on the Anaconda
web page, and you should consult those.

Once you have Anaconda installed, you must create an Anaconda environment.
Open your command prompt (Windows) or terminal (OSX, Linux) and type conda
create -n dlBook01 python=3.5 and hit enter. This creates an Anaconda
environment called dlBook01 with Python 3.5. We need this version for Tensor-
Flow. Now, we must type in the command line activate dlBook01 and hit
enter, which will activate you Anaconda environment (your prompt will change to
include the name of the environment). The environment will remain active as long as

37Text editors are Notepad, Vim, Emacs, Sublime, Notepad++, Atom, Nano, cat and many others.
Feel free to experiment and find the one you like most (most are free). You might have heard of
the so-called IDEs or Integrated Development Environments. They are basically text editors with
additional functions. Some IDEs youmight knowof areVisual Studio, Eclipse and PyCharm.Unlike
text editors, most IDEs are not freely available, but there are free versions and trial versions, so you
may experiment with them before buying. Remember, there is nothing essential an IDE can do but
a text editor cannot, but they do offer additional conveniences in IDEs. My personal preference is
to use Vim.

www.continuum.io/downloads
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the command prompt is opened. If you close it, or restart your computer, you must
type again activate dlBook01 and hit enter.

Inside this environment, you should install TensorFlow from
https://www.tensorflow.org/install/. After activating your environ-
ment, you shouldwrite the command pip install –upgrade tensorflow
andhit enter. If this fails towork, putpip3 install –upgrade tensorflow
and hit enter. If it still does not work, try to troubleshoot the problem. The usual way
to troubleshoot problems is to open the official web page of the application and
follow instructions there, and if it fails, try to consult the FAQ section. If you still
cannot resolve the issue, try to find the answer on stackoverflow.com. If you
cannot find a good answer, you can ask the community there for help and usually
you will get a response in a couple of hours. The final step is to install Keras. Check
keras.io/#installation to see whether you need any dependencies and if
you are good to go, just type pip install keras. If Keras fails to install, con-
sult the documentation on keras.io, and if it does not help, it is StackOverflowing
time again.

Once you have everything installed, type in the command line python and hit
enter. This will open the Python interpreter, which will then display a line or two
of text, where you should find ‘Python 3.5’ and ‘Anaconda’ written. If it does not
work, try restarting the computer, and then activate the anaconda environment again
and try to write python again and see whether this fixes the issue. If it does not,
StackOverflow it.

If youmanage to open the Python interpreter (with ‘Python 3.5’ and ‘Anaconda…’
written), you will have a new prompt looking like>>>. This is the standard Python
prompt which will interpret any valid Python code. Try to type in 2+2 and hit enter.
Then try ’2’+’2’ to get ’22’. Now try to write import tensorflow. It should
just write a new prompt with>>>. If it gives you an error, StackOverflow it. Next,
do the same thing to verify the Keras installation. Once you have done this, we are
done with installation.

Every section of this book will contain a fragmented code. For every section,
you should make one file and put the code from that section in that file. The only
exceptions from this are the sections in the chapter on Neural Language Models.
There the code from both sections should be placed in a single file. Once you save
the code to a file, open the command line, navigate to the directory containing the
code file (let us call it myFile.py), activate the dlBook01 environment, type
in python myFile.py and hit enter. The file will execute, print something on
the screen and perhaps create some additional files (depending on the code). Notice
the difference between the commands python and python myFile.py. The
former opens the Python interpreter and lets you type in code, and the latter runs the
Python interpreter on the file you have specified.

https://www.tensorflow.org/install/
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2.6 A Brief Overview of Python Programming

In the last section, we have discussed installation of Python, TensorFlow and Keras,
as well as how you should make an empty Python file. Now it is time to fill it
with code. In this section, we will explore the basic data structures and commands in
Python. You can put everything wewill be exploring in this section in a single Python
file (we will call it testing.py). To run it, simply save it, open a command line
in the location of the file and type python testing.py. We start out by writing
the first line of the file:

print("Hello, world!")

This line has twocomponents, a string (a simple data structure equivalent to a series
ofwords)"Hello world!" and the functionprint( ). This function is a built-
in function, which is a fancy name for a prepackaged function that comeswith Python.
You can use these functions to define more complex functions, but we will get to that
soon. You can find a list and explanation of all the built-in functions at https://
docs.python.org/3/library/functions.html. If this or any other link
becomes obsolete, simply use a search engine to locate the right web page.

One of the most basic concepts in Python is the notion of type. Python has a
number of types but the most basic ones we will need are string (str), integers (int)
and decimals (float). As we have noted before, strings are words or series of words,
ints are simply whole numbers and floats are decimal numbers. Type in python
in a command line and it will open the Python interpreter. Type in "1"==1, an it
will return False. This relation (==) means ‘equal’, and we are telling Python to
evaluate whether is “1” (a string) equal to 1 (an int). If you put != instead of ==,
which means ‘not equal’, then Python will return True.

The problem is that Python cannot convert an int to a string, or vice versa, but you
could try to tell Python int("1")==1 or "1"==str(1) and see what happens.
Interestingly, Python can convert ints to floats and vice versa, so 1.0==1 evaluates
toTrue. Note that the operation+ has twomeanings, for ints and floats, it is addition,
and for strings it is concatenation (sticking two strings together): "2"+"2"=="22"
returns True.

Let us return to our file, testing.py. You can use the basic functions to define
a more complex one as follows:

def subtract_one(my_variable): #this is the first line of code

return (my_variable - 1)#this is the second line…

print(subtract_one(53))

Let us dig into the anatomy of this code, since this is a basis for any more complex
Python code. The first line defines (with the command def) a new function called
subtract_one taking a single value referred to as my_variable. The line
ends with a colon telling Python that it will be given more instructions. The symbol
# begins a comment, which lasts until the end of the line. A comment is a piece of
text inside the Python code file which the interpreter will ignore, and you can put
there anything from notes to alternative code.

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
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The second line begins with four . They denote whitespace (the character which
the space bar puts in the text, and you see between words of a text). Whitespaces
which come in blocks of four are called indentations. An alternative way is to use
a single tab in place of a block of four whitespaces, but you have to be consistent:
if you use whitespaces in one file, then you should use whitespaces throughout that
file. In this book, we use whitespaces. After the whitespaces, the line has a return
command which says to finish the function and return whatever is after the return
statement. In our case, the function returns my_variable - 1 (the parentheses
are just to make sure Python does not misunderstand what to bring back from the
function). After this, we have a new comment, which the interpreter will ignore, so
we may write anything there.

The third line is outside the definition of the function, so it has no indent, and
it actually calls the inbuilt function print on our defined function on the value of
53. Notice that without the print, our function would execute, but we would not
see anything on the screen since the function does not print anything per se, so we
needed to add the print. You can try to modify the defined function so that it prints
something, but remember that you need to define first and use after (i.e. a simple
copy/paste will not work). This will give you a nice feel of the interaction between
print and return. Every indented whole together with the line preceding the
indent (function definition) in Python is called a block of code. So far we have seen
only the definition block, but other blockswork in the sameway.Other blocks include
thefor-loop, thewhile-loop, thetry-loop, theif-statement38 and several others.

One of the most fundamental and important operations in Python is the variable
assignment operation. This is simply placing a value in a new variable. It is done
with the command newVariable =”someString”. You can use assignments
to assign any value to a variable (any string, float, int, list, dictionary–anything), and
you can also reuse variables (a variable in this sense is just the name of the variable),
but the variable will keep only the most recent assignment value.

Let us revisit strings. Take the string ’testString’. Python allows to put
strings in either single quotes or double quotes "", but you must end the string
with the same symbol you started it. The empty string is denoted as ” or "",
and this is a substring of any string. Try opening the Python interpreter and
writing in "test" in ’testString’, "text" in ’testString’, ""
in "testString" and even "" in "", and see how it behaves. Try also
len("Deep Learning") and len(""). This is a built-in function which
returns the length of an iterable. An iterable is a string list, dictionary and any
other data structure which has parts. Floats, ints and characters are not iterables, and
most other things in Python are.

You can also get substrings of a string. You can first make an assignment of
a string to a variable and work with the variable or you can work directly with
the string. Write in the interpreter myVar = "abcdef". Now try telling Python
myVar[0]. This will return the first letter of the string. Why 0? Python starts

38Never call this an ‘if-loop’, since it is simply wrong.
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indexing iterables with ints from 0 onwards, and this means that to get the first
element of the iterable you need to use the index 0. This also means that each
string has N-1 values for indices where N=len(string). To get the f from
myVar, you can use myVar[-1] (this means ‘last element’) or a more complex
myVar[(len(myVar)-1)]. Youwill always use the -1 variant but it is important
to notice that these expressions are equivalent. You can also save a letter from a string
to a variable with this notation. Type in thirdLetter = myVar[2] to save the
"c" in the variable. You can also take out substrings like this. Try to type sub_str
= myVar[2:4] or sub_str = myVar[2:-2]. This simply means to take
indices from 2 to 4 (or from 2 to -2). This works for any iterable in Python, including
lists and dictionaries.

A list is a Python data structure capable of holding a wide variety of individual
data. A list uses square parentheses to enclose individual values. As an example,
[1,2,3,["c",[1.123,"something"]],1,3,4] is an example of a list.
This list contains another list as one of its elements. Notice also that a list does not
omit repeating values and order in the list matters. If you want to add a value of say
1.234 to a list myList, just use the function myList.append(1.234). If you
need a blank list, just initialize one with a fresh variable, e.g. newList = []. You
can use both the len( ) and the index notation we have seen for strings for lists as
well. The syntax is the same.39 Try to initialize blank lists and then adding stuff to
them and also to initialize lists as the onewe have shown (remember, youmust assign
a list to a variable to be able to work with it over multiple lines of code, just like
a string or number). Also, try finding more methods like append() in the official
Python documentation or on StackOverflow and play around with them a bit in the
test file or the Python interpreter. The main idea is to feel comfortable with Python
and to expand your knowledge gradually. Programming is very boring and hard at
first, but soon becomes easy and fun if you put in the effort, and it is an extremely
valuable skill. Also, do not give up if at first some code does not work: experiment
print() every part to make sure it connects well and search StackOverflow. If
you start coding fulltime, you will be writing code for at most two hours a day, and
spend the rest of the time correcting it and debugging it. It is perfectly normal, and
debugging and getting the code to work is an essential part of coding, so do not feel
bad or give up.

Lists have elements, and you can retrieve an element of a list by using the
index of that element. This is the only proper way to do it. There is a different
data structure which is like a list, but instead of using an index uses user-defined
keywords to fetch elements. This data structure is called a dictionary. An exam-
ple of a dictionary is myDict={"key_1":"value_1", 1:[1,2,3,4,5],
1.11:3.456, ’c’:{4:5}}. This is a dictionary with four elements (itslen()
is 4). Let us take the first element: it has two components, a key (the keyword
which fulfills the same role as an index in a list) and a value which is the same

39In a programming jargon, when we say ‘the syntax is the same’ or ‘you can use a similar syntax’
means that you should try to reproduce the same style but with the new values or objects.
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as the elements in a list. You can put anything as a value, but there are restric-
tions on what can be used as a key: only strings, chars, ints and floats—no
dictionaries or lists are allowed as keys. Say we want to retrieve the last ele-
ment of the above dictionary (the one with the key ’c’). To do so we write
retrieved_value=myDict[’c’]. If we want to insert a new element, we
cannot use append() since we have to specify a key. To insert a new element we
simply tell Python myDict[’new_key’]=’new_value’. You can use any-
thing you like for the value, but remember the restrictions on keys. You initialize a
blank dictionary the same way you would a list, but with curly braces.

We must make a remark. Remember that we said earlier that you can represent
vectors with lists. We can also use lists to represent trees (the mathematical struc-
tures), but for graphs we need dictionaries. Labelled trees can be represented in a
variety of ways but the most common is to use the members of the list to represent
the branching. This means that the whole list represents the root, its elements rep-
resent the nodes that come after the root, its elements the nodes that come after and
so on. This means that tree_as_list[1][2][3][0][4] represents a branch,
namely the branch you have when you take the second branch from the root, the
third branch after that, the fourth after that, the first after that and the fifth after that
(remember that Python starts indexing with 0). For a graph, we use the node labels as
keys and then in the values we pass on a list containing all nodes which are accessible
for the given node. Therefore, if we have an element of the dictionary 3:[1,4],
means that from the node labelled 3 we can access nodes labelled 1 and 4.

Python has built-in functions and defined functions, but there are a lot of other
functions, data structures andmethods, and they are available from external libraries.
Some of them are a part of the basic Python bundle, like the module time, and all
you have to do is write import time at the beginning of the Python file or when
you start the Python interpreter command line. Some of them have to be installed
first via pip. We have advised you to install Anaconda. Anaconda is simply Python
with some of the most common scientific libraries pre-installed. Anaconda has a lot
of useful libraries, but we need TensorFlow and Keras on top of that, so we have
installed them with pip. When we will be writing code, we will import them with
lines such as import numpy as np, which imports the whole Numpy library (a
library for fast computation with arrays), but also assigns np as a quick name with
which we shall refer to Numpy throughout the current Python file.40 It is a common
omission to leave out an import statement, so be sure to check all import statements
you are using.

Let us see another very important block, the if-block. The if-block is a simple
block of code used for forking in the code. This type of block is very simple and
self-explanatory, so we proceed to an example:

40Note that even though the name we assign to a library is arbitrary, there are standard abbreviations
used in the Python community. Examples are np for Numpy, tf for TensorFlow, pd for Pandas
and so on. This is important to know since on StackOverflow you might find a solution but without
the import statements. So if the solution has np somewhere in it, it means that you should have a
line which imports Numpy with the name np.
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if condition==1:
return 1

elif condition==0:
print("Invalid input")

else:
print("Error")

Every if-block depends on a statement. In our case, this is the statement that
a variable named condition has the value 0 or 1 assigned to it. The block then
evaluates the statement condition==1 (to see whether the value in condition
is equal to 1), and if it is true, it continues to the indented part. We have specified
this to be just return 1, which means that the output of the whole function where
this if-block lives will be 1. If the statement condition==1 is false, Python will
continue to the elif part. elif is just ‘else-if’, which means that you can give it
another statement to check, and we pass in the statement condition==0. If this
statement evaluates to true, then it will print the string "Invalid input", and
return nothing.41 In an if-block, we must have exactly one if, either zero or one
else, and as many elif as we like (possibly none). The else is here to telly
Python what to do if neither of our conditions is met (the two conditions we had are
condition==0 and condition==1). Note that the variable name condition
and the conditions themselves are entirely arbitrary and you can use whatever makes
sense for your program. Also, notice that each one of them ends with :, and the
omission of the colon is a frequent beginner’s bug.

The for-loop is the main loop in Python used to apply the same procedure to all
members of an iterable. Let us see an example:

someListOfInts = [0,1,2,3,4,5]
for item in someListOfInts:

newvalue = 10*item
print(newvalue)

print(newvalue)

The first line defines the loop: it has a for part which tells Python that it is a
for-loop, and right after it has a dummy variable which we called item. The value
of this variable will be changed after each pass and will be subsequently assigned
the value None after the loop is over. The someListOfInts is a list of ints. It
is more usual to create a list of ints with the function range(k,m), where k is
the starting point (it may be omitted, and then it defaults to 0), and m is the bound:
range(2,9) produces the list [2,3,4,5,6,7,8].42 The indented lines of code
do something with every item, in our case they multiply them by 10 and print

41In Python, technically speaking, every function returns something. If no return command is issued,
the function will return None which is a special Python keyword for ‘nothing’. This a subtle point,
but also the cause of many intermediate-level bugs, and therefore it is worth noting it now.
42In Python 3, this is no longer exactlythat list, but this is a minor issue at this stage of learning
Python. What you need to know is that you can count on it to behave exactly like that list.
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them out. The last non-indented line of the code will simply show you the last (and
current) value of newvalue after the whole for-loop. Notice that if you substitute
someListOfInts in the for-loop with range(0,6) or range(6), the code
will work exactly the same (of course, you can then delete the someListOfInts
= [0,1,2,3,4,5] line). Feel free to experiment with the for-loop, these loops
are very important.

We have seen how the for-loop works. It takes an iterable (or produces one
with the range() function), and does something (which is to be specified by the
indented block) with the elements from the iterable. There is another loop called
the while-loop. The while-loop does not take an iterable, but a statement, and
executes the commands from the indented block as long as the statement is true. This
‘as long as the statement is true’ is less weird than it sounds, since you want to put a
statement which will be modified in the indented block (and whose truth value will
change with subsequent passes). Imagine a simple thermostat program told to heat
up the room to 20 degrees:

room_temperature = 14
while room_temperature != 20:

room_temperature = room_temperature + 2
print(room_temperature)

Notice the fragility of this code. If you put a room_temperature of 15, the
code will run forever. This shows how careful you must be to avoid possible huge
errors that might happen if you change slightly some parameter. This is not a unique
feature of while loops, and it is a universal programming problem, but here it is
very easy to show this pitfall, and how to easily correct it. To correct this bug,43 you
could but while room_temperature < 20:, or use a temperature update
step of 1 instead of 2, but the former method (< instead of !=) is more robust.

In general computer science terminology, a valid Python dictionary is called a
JSON object.44 This may seem weird, but dictionaries are a great way to store infor-
mation across various applications and languages, and we want other applications
not using Python or JavaScript to be able to work with information stored in a
JSON. To make a JSON object, write a valid dictionary in a plain text file called
something.json. You can do it with the following code:

employees={"Tom":{"height":176.6}, "Ron":{"height":
180, "skills":["DIY", "Saxophone playing"], "room":12},
"April":"Employee did not fill the form"}
with open("myFile.json", "w") as json_file:

json_file.write(str(employees))

43Notice that the code, as it stands now, does not have this problem, but this is a bug since a problem
would arise if the room temperature turns out to be an odd number, and not an even number as we
have now.
44JSON stands for JavaScript Object Notation, and JSONs (i.e. Python dictionaries) are referred to
as objects in JavaScript.
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You can additionally specify a path to the file, so you can write Skansi/
Desktop/myFile.json. If you do not specify a path, the file will be written
in the folder you are currently in. The same holds for opening a file. To open a JSON
file, use the following code (you can use the encoding argument when writing or
reading the file):

with open("myFile.json", ’r’, encoding=’utf-8’) as text:
for line in text:

wholeJSON = eval(line)

You can modify this code to write any text, not just JSON, but then you need
to go through all the lines when opening, and when writing to a file you might
want to use "a" as the argument so that it appends (the "w" just overwrites it). This
concludes our brief overview of Python.With a bit of help from the internet and some
experimenting, this could be enough to get started without any previous knowledge,
but feel free to seek out a beginner’s course online since a detailed introduction to
Python is beyond the scope of this book.We recommendDavid Evans’ free course on
Udacity (www.udacity.com, Introduction to Computer Science), but any other
good introductory course will serve the purpose.
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3Machine LearningBasics

Machine learning is a subfield of artificial intelligence and cognitive science. In arti-
ficial intelligence, it is divided into three main branches: supervised learning, unsu-
pervised learning and reinforcement learning. Deep learning is a special approach
in machine learning which covers all three branches and seeks also to extend them
to address other problems in artificial intelligence which are not usually included in
machine learning such as knowledge representation, reasoning, planning, etc. In this
book, we will cover supervised and unsupervised learning.

In this chapter, we will be providing the general machine learning basics. These
are not part of deep learning, but prerequisites that have been carefully chosen to
enable a quick and easy grasp of the elementary concepts needed for deep learning.
This is far from a complete treatment, and for a more comprehensive treatment
we refer the reader to [1] or any other classical machine learning textbook. The
reader interested in the GOFAI approach to knowledge representation and reasoning
should consult [2]. The first part of this chapter is devoted to supervised learning and
its terminology, while the last part is about unsupervised learning. We will not be
covering reinforcement learning and we refer the reader to [3] for a comprehensive
treatment.

3.1 Elementary Classification Problem

Supervised learning is just classification. The trick is that a vast amount of problems
can be seen as classification problems, for example, the problem of recognizing a
vehicle in an image can be seen as classifying the image in one of the two classes:
‘has vehicle’ or ‘does not have vehicle’. Same goes for predictions: if we need to
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make a portfolio of penny stocks, we can reformulate it to be a classification problem
of the form: ‘winner! will rise 400% or more’ or ‘nay, pass’.

Of course the trick is tomake a classifier that is good enough.We have two options,
either selecting by hand with some property or combination of properties (e.g. is the
stock bottoming andmaking an RSI divergence and trading on a low high for the past
two days) or we can remain agnostic about the properties we need and simply say
‘look, I have 5000 examples of good ones and 5000 examples of bad ones, feed it to
an algorithm and let it decide whether the 10001st is more similar to the good ones or
the bad ones in terms of the properties it has’. The latter is the quintessential machine
learning approach. The former is known as knowledge engineering or expert system
engineering or (historical term) hacking. We will focus on the machine learning
approach here.

Let us see what ‘classification’ means. Imagine that we have two classes of ani-
mals, say ‘dogs’ and ‘non-dogs’. In Fig. 3.1, each dog is marked with an X and all
‘non-dogs’ (you can think of them as ‘cats’) are marked with an O . We have two
properties for them, their length and their weight. Each particular animal has the two
properties associated with it and together they form a datapoint (a point in space
where the axes are the properties). In machine learning, properties are called fea-
tures. The animal can have a label or target which says what it is: the label might be
‘dog’/‘non-dog’ or simply ‘1’/‘0’. Notice that if we have the problem of multiclass
classification (e.g. ‘dog’, ‘cat’ and ‘ocelot’), we can first perform a ‘dog’/‘non-dog’
classification and then on the ‘non-dog’ datapoints perform a ‘cat’/‘non-cat’ classifi-
cation. But this is rather cumbersome and we will develop techniques for multiclass
classification which can do it right away without the need to transform it in n − 1
binary classifications.

Returning to our Fig. 3.1, imagine that we have three properties, the third being
height. Then, we would need a 3D coordinate system or space. In general, if we
have n properties, we would need an n-dimensional system. This might seem hard to
imagine, but noticewhat is happening in the 2D versus 3D case and then generalize it:
look at the two animals which have the 2D coordinates (38, 7) (it is the overlapping

Fig. 3.1 Adding a new dimension
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X and O in Fig. 3.1a). We will never be able to distinguish them, and if a new animal
were to have this length and weight we would not be able to conclude what it is.

But take a look at the ‘top view’ in Fig. 3.1b where we have added an axis z: if
we were to know that its height (coordinate z) is 20 for one and 30 for the another,
we could now easily separate them in this 3D space, but we would need a plane
instead of a line if we wanted to draw a boundary between them (and this boundary
drawing is actually the essence of classification). The point is that adding a new
feature and expanding our graph to a new dimension offers us new ways to separate
what was very hard or even impossible in a lower number of dimensions. This is
a good intuition to keep while imagining 37-dimensional space: it is the expansion
of 36-dimensional space with one extra property that will enable us (hopefully) to
better distinguish what we could not distinguish in 36-dimensional space. In a 4D
space or higher, this plane is which divides cats and dogs the so-called a hyperplane
which is one of the most important concepts in machine learning. Once we have the
hyperplane which separates the two classes in an n-dimensional space, we know for
a new unlabelled datapoint what (probably) is just by looking whether it falls in the
‘dog’ side or the ‘non-dog’ side.

Now, the hard part is to draw a good hyperplane. Let us return to the 2D world
where we have just a line (but we will keep calling it ‘hyperplane’ to inculcate
the terminology) and look at some examples. Xs and Os represent dogs and cats
(labelled datapoints) and little squares represent new unlabelled datapoints. Notice
that we have all the properties for these new datapoints, we are just missing a label
and we have to find it. We even know how to find it: see on which side of the
hyperplane the datapoint is and then add the label which is the label of that side of
the hyperplane.1 Now, we only need to find out how to define the hyperplane. We
have one fundamental choice: should we ignore the labelled datapoints and draw the
hyperplane by some other method, or should we try to draw the hyperplane so that
it fits the existing labelled datapoints nicely? The former approach seems to be the
epitome of irrationality, while the latter is the machine learning approach.

Let us comment on the different hyperplanes drawn in Fig. 3.2. Hyperplane A
is more or less useless. It has a certain appeal since it does separate the datapoints
in a manner that on the ‘dog’ side there are more dogs than non-dogs and on the
‘non-dog’ side there are more non-dogs. But it seems that we could have done this
with no data at all. Hyperplane B is similar, but it has an interesting feature, namely
that on the ‘non-dog’ side all datapoints are non-dogs. If a new datapoint falls here,
we would be very confident that it is a cat. On the other side, things are not good.
But if we recast this problem in a marketing setting where Os represent people who
will most probably buy a product, then a hyperplane like B would provide a very

1You may wonder how a side gets a label, and this procedure is different for the various machine
learning algorithms and has a number o peculiarities, but for now you may just think that the side
will get the label which the majority of datapoints on that side have. This will usually be true, but
is not an elegant definition. One case where this is not true is the case where you have only one dog
and two cats overlapping (in 2D space) it and four other cats. Most classifiers will place the dog
and the two cats in the category ‘dog’. Cases like this are rare, but they may be quite meaningful.
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Fig. 3.2 Different
hyperplanes

useful separation. Hyperplane E is even worse than hyperplane A, but to define it
we just need a threshold on the weight like weight > 5. Here, we could quite easily
combine it with other parameters and find a better separation by purely logical ways
(no arithmetical operations, just relations <, > and = and logical connectives ∧, ∨,
¬). This could offer us the insight on what the hyperplane means, since we would
know exactly how it behaves and manually tweak it. If we use machine learning for
delicate matters (e.g. predicting failures for nuclear reactors), we want to be able to
understand the why. This is the basis of decision tree learning [4], which is a very
useful first model when tackling an unknown dataset.2

Hyperplane D seems great—it catches all Xs on one side and all Os on the other.
Why not use that? Notice how it went out of its way to catch the middle O . We might
worry about a hyperplane that provides a perfect fit to the existing data, since there
is always some noise3 in the data, and a new datapoint that falls here might happen
to be an X . Think of it this way. If there was no O here, would you still justify the
same loop? Probably no. If 25% of the overall Os were here, would that justify a
loop like this? Probably yes. So, there seems to be a fuzzy limit of the number of Os
we want to see to make such a loop justified. The point is that we want the classifier
to be good for new instances, and a classifier that works in 100% of the old cases is
probably learning noise alongwith the important and necessary information from the
datapoints. Hyperplane C is a reasonable separation which is quite good and seems
to be less concerned with precision than hyperplane C. It is not perfect, but it seems
to be capturing a rather general trend in the data.

There is, however, a dose of simplicity in hyperplanes A, B and particularly E
we would love to have. Let us see if we can make it happen. What if we use the
features we have to create a new one? We have seen we could add a new one like
height, but could we just try to build something with what we have? Let us try to
plot on the axis z a new feature length

weight (Fig. 3.3, top view). Now, we see that we can

2A dataset is simply a set of datapoints, some labelled some unlabelled.
3Noise is just a name for the random oscillations that are present in the data. They are imperfections
that happen and we do not want to learn to predict noise but the elements that are actually relevant
to what we want.
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Fig. 3.3 Feature engineering

actually separate the two classes by a simple straight plane in 3D.When it is possible
to separate4 two classes in an n-dimensional space with a ‘straight’ hyperplane, we
say that the classes are linearly separable. Usually, one can find a feature which is
then added as a new dimension which makes two classes (almost) linearly separable.
We can manually add features in which case it is called feature engineering, but we
would like our algorithms to do it automatically. Machine learning algorithms work
by exploiting this idea and they automate the process: they have a linear separator
and then they try to find features such that when they are added the classes become
linearly separable. Deep learning is no exception, and it is one of most powerful
ways to find features automatically. Even though later deep learning will do this for
us, to understand deep learning it is important to understand the manual process.

So far we have explored features that are numerical, like height, weight and length.
They are specific in twoways. First, order matters: 1 is before 3, 3 is before 14 andwe
can derive that 1 is before 14. The use of ‘before’ instead of ‘less than’ is deliberate.
The second thing is that we can add and multiply them. A different kind of feature is
an ordinal feature. Here, we have the first property of the numerical features ‘before’
but not the second. Think of the ending positions in a race: the fact that someone
is second, someone is third and someone is fourth does not mean that the distance
between the second and third is the same as between third and fourth, but the order
still holds (second comes before third, and third comes before fourth). If we do not
have that either, we are using categorical features. Here, we have just the names
of the categories and nothing can be inferred from them. An example would be the
dog’s colour. There are no ‘middles’ or orders in them, just categories.

Categorical features are very common.Machine learning algorithms cannot accept
categorical features as they are and they must be converted. We take the initial table
with the categorical feature ‘Colour’:

4It does not have to a perfect separation, a good separation will do.
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Length Weight Colour Label
34 7 Black Dog
59 15 White Dog
54 17 Brown Dog
78 28 White Dog
… … … …

And convert it so that we expand the columns with the initial category names and
allowonly binary values in those columnswhich indicatewhich one of the colours the
given dog has. This is called one-hot encoding, and it increases the dimensionality5

of the data but now a machine learning algorithm6 can process the categorical data.
The modified table7 is

Length Weight Brown Black White Label
34 7 0 1 0 Dog
59 15 0 0 1 Dog
54 17 1 0 0 Dog
78 28 0 0 1 Dog
… … … … … …

We conclude this section by giving a brief description of all supervised machine
learning algorithms in terms of input and output. Every supervised machine learning
algorithm receives a set of training datapoints and labels (they are rowvectors). In this
phase, the algorithm creates a hyperplane by adjusting its internal parameters. This
phase is called the training phase: it receives as inputs rowvectorswith corresponding
labels (called training samples) and does not give any output. Instead, in the training
phase, the algorithm simply adjusts its internal parameters (and by doing so creates
the hyperplane). The next phase is called the predicting phase. In this phase, the
trained algorithm takes in a number of row vectors but this time without labels and
creates the labels with the hyperplane (depending on which side of the hyperplane
the row vectors end up). The row vectors themselves are simply rows from a table
like the one above, so the row vector which corresponds to the training sample in the
third line is simply (54, 17, 1, 0, 0, Dog). If it were a row vector for which we need
to predict a label, it would look the same except it would not have the ‘Dog’ tag in
the end.8

5Think about how one-hot encoding can boost the understanding of n-dimensional space.
6Deep learning is no exception.
7Notice that to do one-hot encoding, it needs to make two passes over the data: the first collects the
names of the new columns, then we create the columns, and then we make another pass over the
data to fill them.
8Strictly speaking, these vectors would not look exactly the same: the training sample would be
(54,17,1,0,0, Dog), which is a row vector of length 6, and the row vector for which we want to
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3.2 Evaluating Classification Results

In the previous section, we have explored the basics of classification and we left the
hard part (producing the hyperplane) largely untouched. We will address this in the
next section. In this section, we will assume we have a working classifier and we
want to see how well it behaves. Take a look at Fig. 3.4.

This image illustrates a classifier named C for classifying Xs. This is the task for
this classifier and it is important to keep this in mind at all times. The black line is the
hyperplane, and the grey region is what C considers to be the region of X . From the
perspective of C , everything inside the grey region is X , while everything outside is
not an X . We have marked the individual datapoints with X or O depending whether
they are in reality an X or O . We can see right away that the reality differs from what
C thinks and this is the usual scenariowhenwe have and empirical classification task.
Intuitively, we see that the hyperplane makes sense, but we want to define objective
classification metrics which can tell us how good a classifier is and, if we have two
or more, which classifier is the best.

We can now define the concepts of true positive, false positive, true negative and
false negative. A true positive is a datapoint for which the classifier says it is an X
and it truly is an X . A false positive is a datapoint for which the classifier thinks it
is an X but it is an O . A true negative is a datapoint for which the classifier thinks
it is not and X and in fact it is not, and a false negative is a datapoint for which the
classifier thinks it is not an X but in fact it is. In Fig. 3.4, there are five true positives
(Xs in the grey), one false positive (the O in the grey), six true negatives (the Os in
the white) and two false negatives (the Xs in the white). Remember, the grey area
is the area where the classifier C thinks all are Xs and the white area is what the
classifier thinks all are Os.

The first andmost fundamental classificationmetric is accuracy. Accuracy simply
tells us how good is the classifier at sorting Xs and Os. In other words, it is the

Fig. 3.4 A classifier C for
classifying Xs

predict the label would have to be of length 5 (without the last component which is the label), e.g.
(47,15,0,0,1).
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number of true positives, added to the number of true negatives and divided by the
total number of datapoints. In our case, this would be 5+6

14 = 0.785714 . . . but we
will be rounding off to four decimal points.9

We might be interested in how good is a classifier at avoiding false alarms. The
metric used to calculate this is called precision. The precision of a classifier on a
dataset is calculated by truePosi tives

truePosi tives+ f alsePosi tives = 5
5+1 = 0.8333. If we are con-

cerned about missing out and we want to catch as many true Xs we can, we need
a different metric called recall to measure our success. The recall is calculated by
taking truePosi tives

truePosi tives+ f alseNegatives = 5
5+2 = 0.7142.

There is a standardway to display the number of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN) in a more visual way and this
method is called a confusion matrix. For a two-class classification (also known as
binary classification), the confusion matrix is a 2 × 2 table of the form:

Classifier says YES Classifier says NO
In reality YES Number of true positives Number of false negatives
In reality NO Number of false negatives Number of true negatives

Once we have a confusion matrix, precision, recall, accuracy and any other eval-
uation, metric can be calculated directly from it.

The values for all classifier evaluation metrics range from 0 to 1 and can be
interpreted as probabilities. Note that there are trivial modifications that can make
either the precision or recall reach 100% (but not both at the same time). If we want
the precision to be 1, we can simply make a classifier that selects no datapoint, i.e.
for each datapoint it should say ‘O’. The opposite works for recall: just select all
datapoints as Xs, and recall will be 1. This is why we need all three metrics to get a
meaningful insight on how good a classifier is and how to compare two classifiers.

Now that we know about evaluation metrics, let us turn to the question of evalu-
ating the classifier performance from a procedural point of view. When faced with a
classification task, as noted earlier we have a classification algorithm and a training
set. We train the algorithm on the training set and now we are ready to use it for
prediction. But where is the evaluation part? The usual strategy is not to use the
whole training set for training, but keep a part of it for testing. This is usually 10%,
but it can be more or less than that.10 The 10% we held out and did not train on it
is called the test set. In the test set, we separate the labels from the other features,
so that we have row vectors of the same form we would be getting when predicting.
When we have a trained model on the 90% (the training set), we use it to classify the
test set, and we compare the classification results with the labels. In this way, we get
the necessary information for calculating the precision, recall, and accuracy. This is

9If we will be needing more we will keep more decimals, but in this book we will usually round off
to four.
10It is mostly a matter of choice, there is no objective way of determining how much to split.
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called splitting the dataset in training and testing sets or simply the train–test split.
The test set is designed to be a controlled simulation of how well will the classifier
behave. This approach is sometimes called out-of-sample validation to distinguish it
from out-of-time validation where the 10% of the data are not chosen randomly from
all datapoints, but a time period spanning around 10% of the datapoints is chosen.
Out-of-time validation is generally not recommended since there might be seasonal
trends in the data which would seriously cripple the evaluation.

3.3 A Simple Classifier: Naive Bayes

In this section, we sketch the simplest classifier we will explore in this book, called
the naive Bayes classifier. The naive Bayes classifier has been used from at least 1961
[5], but, due to its simplicity, it is hard to pinpoint where research on the applications
of Bayes’ theorem ends and the research on the naive Bayes classifier begins.

The naive Bayes classifier is based on Bayes’ theorem which we saw earlier in
Chap.2 (this accounts for the ‘Bayes’ in the name), and it makes and additional
assumption that all features are conditionally independent from each other (this
is why there is ‘Naive’ in the name). This means that each feature carries ‘its own
weight’ in terms of predictive power: there is no piggy-backing or synergy of features
going on. We will rename the variables in the Bayes theorem to give it a more
‘machine learning feel’:

P(t | f ) = P( f |t)P(t)
P( f )

,

where P(t) is the prior probability11 of a given target value (i.e. the class label), P( f )
is the prior probability of a feature, P( f |t) is the probability of the feature f given
the target t , and, of course, P(t | f ) is the probability of the target t given only the
feature f which is what we want to find.

Recall from Chap.2 that we can convert Bayes’ theorem to accommodate for a
(n-dimensional) vector of features, and in that case we have the following formula:

P(t | fall) = P( f1|t) · P( f2|t) · . . . · P( fn|t) · P(t)
P( fall)

Let us see a very simple example to demonstrate how the naive Bayes classifier
works and how it draws its hyperplane. Imagine that we have the following table
detailing visits to a webpage:

We first need to convert this into a table with counts (called a frequency table,
similar to one-hot, but not exactly the same):

Now, we can calculate some basic prior probabilities. The probability of ‘yes’ is
9
13 = 0.6923. The probability of ‘no’ is 4

13 = 0.3076. The probability of ‘morning’

11The prior probability is just a matter of counting. If you have a dataset with 20 datapoints and in
some feature there are five values of ‘New Vegas’ while the others (15 of them) are ‘Core region’,
the prior probability P(New Vegas) = 0.25.

http://dx.doi.org/10.1007/978-3-319-73004-2_2
http://dx.doi.org/10.1007/978-3-319-73004-2_2
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Time Buy
morning no
afternoon yes
evening yes
morning yes
morning yes
afternoon yes
evening no
evening yes
morning no
afternoon no
afternoon yes
afternoon yes
morning yes

Time yes no TOTAL
morning 3 2 5
afternoon 4 1 5
evening 2 1 3
TOTAL 9 4 13

is 5
13 = 0.3846. The probability of ‘afternoon’ is 5

13 = 0.3846. The probability of
‘evening’ is 3

13 = 0.2307. Ok, that takes care of all the probabilities which we can
calculate just by counting from the dataset (the so-called ‘priors’ we addressed in
Sect. 2.3 of Chap.2). We will be needing one more thing but we will get to it.

Imagine now we are given a new case for which we do not know the target label
and we must predict it. This new case is the row vector (morning)12 and we want
to know whether it is a ‘yes’ or a ‘no’, so we need to calculate

P(yes|morning) = P(morning|yes)P(yes)
P(morning)

We can plug in the priors P(yes) = 0.6923 and P(morning) = 0.3846 we calcu-
lated above. Now, we only need to calculate P(morning|yes), which is the percent-
age of times the ‘morning’ occurs if we restrict ourselves to the rows which have
‘yes’, which is present 9 times, and out of these, three have also a ‘yes’, so we have
P(morning|yes) = 3

9 = 0.3333. Taking it all to Bayes’ theorem, we have

P(yes|morning) = P(morning|yes) · P(yes)
P(morning)

= 0.3333 · 0.6923
0.3846

= 0.5999

12If we were to have n features, this would be an n-dimensional row vector such as (x1, x2, . . . , xn),
but now we have only one feature so we have a 1D row vector of the form (x1). A 1D vector is
exactly the same as the scalar x1 but we keep referring to it as a vector to delineate that in the general
case it would be an n-dimensional vector.

http://dx.doi.org/10.1007/978-3-319-73004-2_2
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We also know that P(no|morning) = 1 − P(yes|morning) = 0.4. This means
that the datapoint gets the label ‘yes’, since the value is over 0.5 (we have two classes).
In general, if we were to have n classes, 1

n is the value over which the probability
would have to be.

The diligent reader could say that we could have calculated P(yes|morning)
directly from the table as we did with P(morning|yes), and this is true. The problem
is that we can do it by counting from the table only if there is a single feature, so
for the case of multiple features we would have to use calculation we actually used
(with the expanded formula for multiple features).

Naive Bayes is a simple algorithm, but it is still very useful for large datasets. In
fact, if we adopt a probabilistic view of machine learning and claim that all machine
learning algorithms actually learn only P(y|x), we could say that naive Bayes is the
simplest machine learning algorithm, since it has only the bare necessities to make
the ‘flip’ from P( f |t) to P(t | f )work (from counting to predicting). This is a specific
(probabilistic) view of machine learning, but it is compatible with the deep learning
mindset, so feel free to adopt it as a pet.

One important thing to remember is that naive Bayes makes the conditional inde-
pendence assumption.13 So it cannot handle any dependencies in the features. Some-
times, we might want to be able to model sequences like this, e.g. when the order
of the feature matters (we will see this come into play for language modelling or
for sequences of events in time), and naive Bayes is unable to do this. Later in the
book, we will present deep learning models fully capable of handling this. Before
continuing on, notice that the naive Bayes classifier had to draw a hyperplane to be
able to classify the new datapoints. Suppose we had a binary classification at hand.
Then, naive Bayes expanded the space by one dimension (so the row vectors are
augmented to include this value), and that dimension accepts values between 0 and
1. In this dimension, the hyperplane is visible and it passes through the value 0.5.

3.4 A Simple Neural Network: Logistic Regression

Supervised learning is usually divided into two types of learning. The first one is
classification, where we have to predict the class. We have seen that already with
naive Bayes, we will see it again countless times in this book. The second one is
regression where we predict a value, and we will not be exploring regression in
this book.14 In this section, we explore logistic regression which is not a regression
algorithm but a classification algorithm. The reason behind this is that it is considered
a regression model in statistics and the machine learning community just adopted it
and began using it as a classifier.

13That is, the assumption that features are conditionally independent given the target.
14Regression problems can be simulated with classification. An example would be if we had to find
the proper value between 0 and 1, and we had to round it in two decimals, then we could treat it as
a 100-class classification problem. The opposite also holds, and we have actually seen this in the
naive Bayes section, where we had to pick a threshold over which we would consider it a 1 and
below which it would be a 0.
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Fig. 3.5 Schematic view
of logistic regression

Logistic regression was first introduced in 1958 by D. R. Cox [6], and a consid-
erable amount of research was done both on logistic regression and using logistic
regression. Logistic regression is mainly used today for two reasons. First, it gives
an interpretation of the relative importance of features, which is nice to have if we
wish to build an intuition on a given dataset.15 The second reason, which is much
more important to us, is that the logistic regression is actually a one-neuron neural
network.16

By understanding logistic regression, we are taking a first and important step
towards neural networks and deep learning. Since logistic regression is a supervised
learning algorithm, we will have to have the target values for training included
in the row vectors for the training set. Imagine that we have three training cases,
xA = (0.2, 0.5, 1, 1) , xB = (0.4, 0.01, 0.5, 0) and xC = (0.3, 1.1, 0.8, 0). Logistic
regression has a much input neurons as it has features in the row vectors,17 which is
in our case 3.

You can see a schematic representation of logistic regression in Fig. 3.5. As for
the calculation part, the logistic regression can be divided into two equations:

z = b + w1x1 + w2x2 + w3x3,

which calculates the logit (also known as the weighted sum) and the logistic or
sigmoid function:

y = σ(z) = 1

1 + e−z

15Afterwards, we may do a bit of feature engineering and use an all-together different model. This
is important when we do not have an understanding of the data we use which is often the case in
industry.
16We will see later that logistic regression has more than one neuron, since each component of the
input vector will have to have an input neuron, but it has ‘one’ neuron in the sense of having a single
‘workhorse’ neuron.
17If the training set consists of n-dimensional row vectors, then there are exactly n − 1 features—the
last one is the target or label.
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If we join them and tidy up a bit, we have simply

y = σ(b + w1x1 + w2x2 + w3x3)

Now, let us comment on these equations. The first equation shows how to calculate
the logit from the inputs. The inputs in deep learning are always denoted by x , the
output of the neuron is always denoted by y and the logit is denoted by z or sometimes
a. The equations above make use of all the notational abuse which is common in
the machine learning community, so be sure to understand why the symbols are
employed as they are.

To calculate the logit, we need (asides from the inputs) the weightsw and the bias
b. If you look at the equations, you will notice that everything except the bias and
weights is either an input or calculated. The elements which are not given as inputs
or are constants like e are called parameters. For now, the parameters are the weights
and biases, and the point of logistic regression is to learn a good vector of weights
and a good bias to achieve good classification. This is the only learning in logistic
regression (and deep learning): finding a good set of weights.

But what are the weights and biases? The weights control how much of each
feature from the input we should let in. You can think about them as if they represent
percentages. They are not limited to the interval between 0 and 1, but this is a good
intuition to have. For weights over 1, you could think of them as ‘amplifications’. The
bias is a bit more tricky. Historically,18 it has been called threshold and it behaved
a bit differently. The idea was that the logit would simply calculate the weighted
sum of the inputs, and if it was above the threshold, the neuron would output a 1,
otherwise a 0. The 1 and 0 part was replaced by our equation for σ(z), which does
not output a sharp 0 or 1, but instead it ranges from 0 to 1. You can see the different
plots on Fig. 3.6. Later, in Chap.4, we will see how to incorporate the bias as one of
the weights. For now, it is enough to know that the bias can be absorbed as one of

Fig. 3.6 Historic and actual neuron activation functions

18Mathematically, the bias is useful to make an offset called the intercept.

http://dx.doi.org/10.1007/978-3-319-73004-2_4
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the weights so we can forget about the bias knowing it will be taken care of and it
will become one of the weights.

Let us make a calculation based on our inputs which will explain the mechanics
of logistic regression. We will need a starting value for the weights and bias, and we
usually produce this at random. This is done from a gaussian random variable, but to
keep things simple,wewill generate a set ofweights and bias by taking randomvalues
between 0 and 1. Now, we would need to pass the input row vectors through one-hot
encoding and normalize them, but suppose they already have been one-hot encoded
and normalized. So we have xA = (0.2, 0.5, 0.91, 1), xB = (0.4, 0.01, 0.5, 0) and
xC = (0.3, 1.1, 0.8, 0) and assume that the randomly generated weight vector is
w = (0.1, 0.35, 0.7) and the bias is b = 0.66. Now we turn to our equations, and put
in the first input:

yA = σ(0.66 + 0.1 · 0.2 + 0.35 · 0.5 + 0.7 · 0.91) = σ(1.492) = 1

1 + e−1.492 = 0.8163

We note the result 0.8163 and the actual label 1. Now we do the same for the
second input:

yB = σ(0.66 + 0.1 · 0.4 + 0.35 · 0.01 + 0.7 · 0.5) = σ(1.0535) = 1

1 + e−1.0535
= 0.7414

Noting again the result 0.7414 and label 0. And now we do it for the last input
row vector:

yC = σ(0.66 + 0.1 · 0.3 + 0.35 · 1.1 + 0.7 · 0.8) = σ(1.635) = 1

1 + e−1.635
= 0.8368

Noting again the result 0.8368 and the label 0. It seems quite clear that we did
good on the first, but failed to classify the second and third input correctly. Now, we
should update the weights somehow, but to do that we need to calculate how lousy
we were at classifying. For measuring this, we will be needing an error function and
we will be using the sum of squared error or SSE19:

E = 1

2

∑

n

(t (n) − y(n))2

The ts are targets or labels, and the ys are the actual outputs of the model. The
weird exponents (t (n)) are just indices which range across training samples, so (t (k))
would be the target for the kth training row vector. You will see in a moment why

19There are other error functions that can be used, but the SSE is one of the simplest.
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do we need such weird notation now and a bit later how to dispense with it. Let us
calculate our SSE:

E = 1

2

∑

n

(t (n) − y(n))2 = (3.1)

= 1

2
((1 − 0.8163)2 + (0 − 0.7414)2 + (0 − 0.8368)2) = (3.2)

= 0.0337 + 0.5496 + 0.7002

2
= (3.3)

= 0.64175 (3.4)

We now update the w and b by using magic, and get w = (0.1, 0.36, 0.3) and
b = 0.25. Later (in Chap.4), we will see it is actually done by something called the
general weight update rule. This completes one cycle of weight adjustment. This is
colloquially called an epoch, but we will redefine this term later in Chap.4 to make
it more precise. Let us recalculate the outputs and the new SSE to see whether the
new set of weights is better:

ynewA = σ(0.25 + 0.1 · 0.2 + 0.36 · 0.5 + 0.3 · 0.91) = σ(0.723) = 1

1 + e−0.723 = 0.6732

(3.5)

ynewB = σ(0.25 + 0.1 · 0.4 + 0.36 · 0.01 + 0.3 · 0.5) = σ(0.4436) = 1

1 + e−0.4436 = 0.6091

(3.6)

ynewC = σ(0.25 + 0.1 · 0.3 + 0.36 · 1.1 + 0.3 · 0.8) = σ(0.916) = 1

1 + e−1.635
= 0.7142

(3.7)

Enew = 1

2
((1 − 0.6732)2 + (0 − 0.6091)2 + (0 − 0.7142)2) = (3.8)

= 0.1067 + 0.371 + 0.51

2
= (3.9)

= 0.4938 (3.10)

We can see clearly that the overall error has decreased. We can continue this
procedure a number of times, and the error will decrease, until at one point it will stop
decreasing and stabilize. On rare occasions, it might even exhibit chaotic behaviour.
This is the essence of logistic regression, and the very core of deep learning—
everything we do will be an upgrade or modification of this.

Let us turn our attention to data representation. So far we have used an expanded
view of the process so that we may see clearly everything, but let us see how we
can make the procedure more compact and computationally faster. Notice that even
though a dataset is a set (and the order does not matter), it might make a bit of sense
to put xA, xB and xC in a vector, since we will be using them one by one (the vector
would then simulate a queue or stack). But since they also share the same structures
(same features in the same place in each row vector), we might opt for a matrix

http://dx.doi.org/10.1007/978-3-319-73004-2_4
http://dx.doi.org/10.1007/978-3-319-73004-2_4
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to represent the whole training set. This is important in the computational sense as
well since most deep learning libraries have somewhere in the background C, and
arrays (the programming equivalent of matrices) are a native data structure in C, and
computation on them is incredibly fast.

So what we want to do is first turn the n d-dimensional input vectors into and
input matrix of the size n × d. In our case, this is a 3 × 3 matrix:

x =
⎡

⎣
0.2 0.5 0.91
0.4 0.01 0.5
0.3 1.1 0.8

⎤

⎦

We will be keeping the targets (labels) in a separate vector, and we have to be
extremely careful not to shuffle neither the target vector nor the dataset matrix from
this point onwards, since the order of the matrix rows and vector components is the
only thing that can join them again. The target vector in our case is t = (1, 0, 0).

Let us turn our attention to the weights. The bias is a bit of a bother, so we can
turn it in one of the weights. To do this, we have to add a single column of 1’s as
the first column of the input matrix. Notice that this will not be an approximation,
but will capture exactly the calculation we need to perform. As for the weights, we
will be needing as many weights as there are inputs. Also, if we have more than
one workhorse neuron, we would need to have that many times the weights, e.g. if
we have 5 inputs (5-dimensional input row vectors) and 3 workhorse neurons, we
would need 5 × 3 weights. This 5 × 3 is deliberate, since we would be using a 5 × 3
matrix20 to store it in, since then we could do all the calculations needed for the logit
with a simple matrix multiplication. This illustrates something that could be called
‘the general deep learning strategy for fast computation’: try to do as much work as
you can with matrix (and vector) multiplication and transpositions.

Returning to our example, we have three inputs and we add the column of 1’s in
front of the inputs to make room for the bias in the weight matrix. The new input
matrix is now a 3 × 4 matrix:

x =
⎡

⎣
1 0.2 0.5 0.91
1 0.4 0.01 0.5
1 0.3 1.1 0.8

⎤

⎦

Now we can define the weight matrix. It is a 4 × 1 matrix consisting of the bias
followed by weight:

w =

⎡

⎢⎢⎣

0.66
0.1
0.35
0.7

⎤

⎥⎥⎦

20Recall that this is not the same as a 3 × 5 matrix.
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This matrix can be equivalently represented as (0.66, 0.1, 0.35, 0.7)�, but we
will use the matrix form for now. Now, to calculate the logit we do simple matrix
multiplication of the two matrices, with which we will get a 3 × 1 matrix in which
every row (there is a single value in every row) will represent the logit for each
training case (compare this with the previous calculation):

z = xw =
⎡

⎣
1 0.2 0.5 0.91
1 0.4 0.01 0.5
1 0.3 1.1 0.8

⎤

⎦ ·

⎡

⎢⎢⎣

0.66
0.1
0.35
0.7

⎤

⎥⎥⎦ = (3.11)

=
⎡

⎣
1 · 0.66 + 0.2 · 0.1 + 0.5 · 0.35 + 0.91 · 0.7
1 · 0.66 + 0.4 · 0.1 + 0.01 · 0.35 + 0.5 · 0.7
1 · 0.66 + 0.3 · 0.1 + 1.1 · 0.35 + 0.8 · 0.7

⎤

⎦ = (3.12)

=
⎡

⎣
1.492
1.0535
1.635

⎤

⎦ (3.13)

Now we must only apply the logistic functionσ to z. This is done by simply
applying the function to each element of the matrix:

σ(z) =
⎡

⎣
σ(1.492)
σ(1.0535)
σ(1.635)

⎤

⎦ =
⎡

⎣
0.8163
0.7414
0.8368

⎤

⎦

We add a final remark. The logistic function is the main component of the logistic
regression. But if we treat the logistic regression as a simple neural network, we
are not committed to the logistic function. In this view, the logistic function is a
nonlinearity,21 i.e. it is the component which enables complex behaviour (especially
when we expand the model beyond a single workhorse neuron of the classic logistic
regression). There are many types of nonlinearity, and they all have a slightly dif-
ferent behaviour. The logistic regression ranges between 0 and 1. Another common
nonlinearity is the hyperbolic tangent or tanh, which we will denote by τ to enforce
a bit of notational consistency. The τ nonlinearity ranges between −1 and 1, and has
a similar shape like the logistic function. It is calculated by

τ (z) = ez − e−z

ez + e−z
(3.14)

The choice of which activation function to use in neural networks is a matter of
preference, and it is often guided by the results one obtains using them. If, we use the
hyperbolic tangent in logistic regression instead of the logistic function, it will still
work nicely, but technically that is not logistic regression anymore. Neural networks,
on the other hand, are still neural networks regardless of which nonlinearity we use.

21In the older literature, this is sometimes called activation function.
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Fig. 3.7 A single MNIST
datapoint

3.5 Introducing theMNIST Dataset

The MNIST dataset is a modification of the National Institute of Standards and
Technology of theUnited States dataset consisting of handwritten digits. The original
datasets are described in [7] and the MNIST (modified NIST ) is a modification of
the Special Database 1 and Special Database 3 of the original dataset compiled by
Yann LeCun, Corinna Cortes and Christopher J. C. Burges. The MNIST dataset was
first used in the paper [8]. Geoffrey Hinton called MNIST ‘the fruit fly of machine
learning’22 since a lot of research in machine learning was performed on it and it
is quite versatile for a number of simple tasks. Today, MNIST is available from a
variety of sources, but the ‘cleanest’ source is probably Kaggle where the data is
kept in a simple CSV file,23 accessible by any software with ease. In Fig. 3.7 (image
taken from [9]), we can see an example of a MNIST digit.

MNIST images are 28 by 28 pixels in greyscale, so the value for each pixel ranges
between 0 (white) and 255 (black). This is different from the usual greyscale where
0 is black and 255 is white, but the community thought it might make more sense
since it can be stored in less space this way, but this is a minor point today for a
dataset of the size of MNIST.

There is one issue here, to which we will return at the very end of the book.
The problem is that all currently available supervised machine learning algorithms
can only process vectors as inputs: no matrices, graphs, trees, etc. This means that
whateverwe are trying to do,we have to find away to put in vector form and transform
all of our inputs in n-dimensional vectors. The MNIST dataset consists of 28 by 28
images, so, in essence, the inputs are matrices. Since they are all of the same size,
we can transform them in 784-dimensional vectors.24 We could do this by simply
‘reading’ them as we would a written page: left to right, after the row of pixels ends,
move to the leftmost part of the next line and continue again. By doing this, we have
transformed a 28 × 28 matrix into a 784-dimensional vector. This is a rather simple
transformation (note that it only works if all input samples are of the same size), and
if we want to learn graphs and trees, we have to have a vector representation of them.
We will return to this as an open problem at the very end of this book.

There is one additional point we want to make here. MNIST consists of greyscale
images.What could we do if it was RGB? Recall that an RGB image consists of three

22See http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf.
23Available at https://www.kaggle.com/c/digit-recognizer/data.
24The interested reader may look up the details in Chap.4 of [10].

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf
https://www.kaggle.com/c/digit-recognizer/data
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Fig. 3.8 Greyscale for all colours, red channel, green channel and blue channel

component ‘images’ called channels: red, green and blue. They are joined to form
the complete (colour) image. We could print these in colour (each pixel of the red
channelwould have a value from0 to 255 to denote howmuch red is in it), butwe have
actually converted the colours to greyscale without noticing (see Fig. 3.8). It might
seem weird to represent the red channel as grey, but that is exactly what a computer
does. The name of the channel image is ‘red’ but the values in pixels are between 0
and 255, which is, computationally speaking, grey. This is because an RGB pixel is
simply three values from 0 to 255. The first one is called ‘red’, but computationally
it is red just because it is in the first place. There is no intrinsic ‘redness’ or qualia
in it. If we were to display the pixels without providing the other two components, 0
will be interpreted as black and 255 as white, making it a greyscale. In other words,
an RGB image would have a pixel with the value (34, 67, 234), but if we separate a
channel by taking only the red component 34 we would get a greyscale. To get the
‘redness’ in the display, we must state it as (34, 0, 0) and keep it as an RGB image.
And the same goes for green and blue. Returning to our initial question, if we were
processing RGB images would have several options:

• Average the components to produce and average greyscale representation (this is
the usual way to create greyscale images from RGB).

• Separate the channels and form three different datasets and train three classifiers.
When predicting, we take the average of their result as the final result. This is an
example of a committee of classifiers.

• Separate the channels in distinct images, shuffle them and train a single classifier
on all of them. This approach would be essentially dataset augmentation.

• Separate the channels in distinct images, train three instances of the same classifier
on each (same size and parameters), and then use a fourth classifier to make the
final call. This is the approach that leads to convolutional neural networks which
we will explore in detail in Chap.6.

Each of these approaches has its merit, and depending on the problem at hand, any
of them can be a good choice. You can consider other options, deep learning has an
exploratory element to it, and an unorthodox method which contributes to accuracy
will be appreciated.

http://dx.doi.org/10.1007/978-3-319-73004-2_6
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3.6 LearningWithout Labels: K-Means

We now turn our attention to two algorithms for unsupervised learning, the K-means
and thePCA. Wewill briefly address PCA in the next section (especially the intuition
behind it), but we will be returning to it in Chap.9 where we will be giving the
technical details. PCA represents a branch of unsupervised learning called distributed
representations, and it is one of the most important topics in deep learning today,
and PCA is the simplest algorithm for building distributed representations.25 Another
branch of unsupervised learning which is conceptually simpler is called clustering.
The goal of clustering is to assign all datapoints to clusters which (hopefully) capture
their similarity in n-dimensional space. K-means is the simplest clustering algorithm,
and we will use it to illustrate how a clustering algorithm works.26

But before we proceed to K-means, let us comment briefly what is unsupervised
learning. Unsupervised learning is learning without labels or targets. Since unsu-
pervised learning is usually the last of the three areas to be defined (supervised and
reinforcement being the other two), there is a tendency to put everything which is not
supervised or reinforcement learning in unsupervised learning. This is a very broad
definition, but it is very interesting, since it begs the cognitive question of how we
learn without feedback, and is learning without feedback actually learning or is it a
different phenomenon? By exploring unsupervised learning, we are dwelling deep
in cognitive modelling and this makes this an exciting and colourful area.

Let us demonstrate howK-meansworks. K-means is a clustering algorithm,which
means it will produce clusters of data. Producing clusters actually means assigning a
cluster name to all datapoints so that similar datapoints share the same cluster name.
The usual cluster names are ‘1’, ‘2’, ‘3’, etc. Assume we have two features so that
we work in 2D space. In unsupervised learning, we do not have a training and testing
set, but all datapoints we have are ‘training’ datapoints, and we build the clusters
(which will define the hyperplane) from them. The input row vectors do not have a
label; they consist only of features.

The K-means algorithm takes as an input the number of centroids to be used. Each
centroid will define a cluster. At the very start of the algorithm, the centroids are
placed in a random location in the datapoint vector space. K-means has two phases,
one called ‘assign’ and the another ‘minimize’ forming a cycle, and it repeats this
cycle a number of times.27 During the assign phase, each datapoint is assigned to
the nearest centroid in terms of Euclidean distance. During the ‘minimize’ phase,
centroids are moved in a direction that minimizes the sum of the distance of all
datapoints assigned to it.28 This completes a cycle. The next cycle begins by dis-

25But PCA itself is not that simple to understand.
26K-means (also called the Lloyd-Forgy algorithm) was first proposed by independently by S. P.
Lloyd in [16] and E. W. Forgy in [17].
27Usually, in a predefined number of times, there are other tactics as well.
28Imagine that a centroid is pinned down and connected to all its datapoints with rubber bands, and
then you unpin it from the surface. It will move so that the rubber bands are less tense in total (even
though individual rubber bands may become more tense).

http://dx.doi.org/10.1007/978-3-319-73004-2_9
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Fig. 3.9 Two complete cycles of K-means with two centroids

associating all datapoints from centroids. Centroids stay where they are, but a new
assignment phase begins, which may make a different assignment than the previous
one. You can see this in Fig. 3.9. After the end of the cycles, we have a hyperplane
ready: when we get a new datapoint, it will be assigned to the closest centroid. In
other words, it will get the name of the closest centroid as a label.

In the usual setting, we do not have labels when using clustering (and we do
not need them for unsupervised learning). The evaluation metrics we discussed in
the previous sections are useless without labels since we cannot calculate the true
positives, false positives, true negatives and false negatives. It can happen that we
have access to labels but prefer to use clustering, or that we will obtain the true labels
at a later time. In such case, we may evaluate the results of clustering as if they were
classification results, and this is called external evaluation of clustering. A detailed
exposition of using classification evaluation metrics for the external evaluation of
clustering is given in [11].

But sometimes we do not have any labels and we must work without them. In
such cases, we can use a class of evaluation metrics called internal evaluation of
clustering. There are several evaluation metrics, but the Dunn coefficient [12] is the
most popular. Themain idea is tomeasure howdense the clusters are inn-dimensional
space. So for each cluster29 C the Dunn coefficient is calculated by

DC = min{d(i, j)|i, j ∈ Centroids}
din(C)

(3.15)

29Recall that a cluster in K-means is a region around a centroid separated by the hyperplane.



72 3 Machine Learning Basics

Here, d(i, j) is the Euclidean distance between centroids i and j and din(C) is
the intra-cluster distance which is taken to be the distance:

din(C) = max{d(x, y)|x, y ∈ C}, (3.16)

where C is the cluster for which we calculate the Dunn coefficient. The Dunn coef-
ficient is calculated for each cluster and the quality of each cluster can be assessed
by it. The Dunn coefficient can be used to evaluate different clusterings by taking
the average of the Dunn coefficients for each cluster in both clusterings30 and then
comparing them.

3.7 Learning Different Representations: PCA

The data we used so far has local representations. If the value of a feature named
‘Height’ is 180, then that piece of information about that datapoint (we could even say
‘that property of the entity’) exists only there. A different column ‘Weight’ contains
no information on height. Such representations of the properties of the entities that
we are describing as features of a datapoint are called local representations. Notice
that the fact that the object has some height does put a constraint on weight. This is
not a hard constraint but more of an ‘epistemic shortcut’: if we know that the person
is 180cm tall, then they will probably have around 80 kg. Individual persons may
vary, but in general we could make a relatively decent guess of the person’s weight
just by knowing their height. This phenomenon is called correlation and it is a tricky
phenomenon. If two features are highly correlated, they are very hard to tell apart.
Ideally, we would want to find a transformation of the data which has weird features,
but that are not correlated. In this representation, we would have a feature ‘Argh’
which captures the underlying component31 by which we were able to deduce the
weight from the height, and leave ‘Haght’ and ‘Waght’ as the part which is left in
‘Height’ and ‘Weight’ after ‘Argh’ was removed from them. Such representations
are called distributed representations.

Building distributed representations by hand is hard, and yet this is the essence
of what artificial neural networks do. Every layer builds its own distributed rep-
resentation and this facilitates learning (this is perhaps the very essence of deep
learning—learning many layers of distributed representations). We will show the
simplest method of building a meaningful distributed representation, but we will
write all the mathematical details of it only in Chap.9. It is quite hard, and this is
why we want deep learning to build such things for us. This method of building
distributed representations is called the principal component analysis or PCA for
short. In this chapter, we will provide a bird’s-eye view of PCA and we will give all

30We have to use the same number of centroids in both clusterings for this to work.
31These features are known as latent variables in statistics.

http://dx.doi.org/10.1007/978-3-319-73004-2_9
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the details in Chap.9.32 PCA has the following form:

Z = XQ, (3.17)

where X is the input matrix, Z is the transformed matrix and Q is the ‘tool-matrix’
with which we do the transformation. If X is an n × d matrix, Z should also be
n × d. This gives us our first information about Q: it has to be a d × d matrix for the
multiplication to work. We will show how to find the appropriate Q in Chap.9. In
the remainder of this section, we will introduce the intuition behind PCA as a whole
and some of the elements needed to build Q. We will also describe in detail what do
we want PCA to do and for what we want to be able to use it.

In general terms, PCA is used to preprocess the data. This means that it has to
transform the data before the data is fed in a classifier, to make it more digestible.
PCA is helpful for preprocessing in a couple of ways. We have seen above that
we will use it to build distributed representations of data to eliminate correlation.
We will also be able to use PCA for dimensionality reduction. We have seen how
dimensions can expandwith one-hot encoding andmanual feature engineering.When
we make distributed representations with artificial features such as ‘Argh’, ‘Haght’
and ‘Waght’, we would like to be able to order them in terms of informativity, so
that we can discard the uninformative features. Informativity is just variance33: if a
feature varies more, it carries more information.34 This is something we want our Z
to be like: the feature that has the most variance should be in the first column, the
one with the second most variance in the second column of Z and so on.

To illustrate how the variance can change with simple transformations, see Fig.
3.10 where we have a simple case of six 2D datapoints. The part A of Fig. 3.10
illustrates the starting position. Note that the variance along the x coordinate is
relatively small: the projections of the datapoints on the x axis are tightly packed
together. The variance along the y axis is better, and the y coordinates are further
apart. But we can do even better. Take a look at the part B of Fig. 3.10: we have
obtained this by rotating the coordinate systemabit.Notice that all data stays the same
and we are changing our representation of the data, i.e. the axes (which correspond
to features). The new ‘coordinate system’ is actually, mathematically speaking, just
a different basis for the points in this 2D vector space. You are not changing the
points (i.e. 2D vectors), but the ‘coordinate system’ they live in. You are actually
not even changing the coordinate system, but simply the basis of the vector space.
The question of how to do this mathematically is actually the same as asking how to
find a matrix Q such that it behaves in this way, and we will answer this in Chap.9.
Along the axes, we have plotted the distance between the first and last datapoint
coordinates, which may be seen as a ‘graphical proxy’ for variance. In the B part of

32One of the reasons for this is that we have not yet developed all the tools we need to write out the
details now.
33See Chap.2.
34And if a feature is always the same, it has a variance of 0 and it carries no information useful for
drawing the hyperplane.

http://dx.doi.org/10.1007/978-3-319-73004-2_9
http://dx.doi.org/10.1007/978-3-319-73004-2_9
http://dx.doi.org/10.1007/978-3-319-73004-2_9
http://dx.doi.org/10.1007/978-3-319-73004-2_2
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Fig. 3.10 Variance under rotation of the coordinate system

Fig. 3.10, we have compared the black (original coordinate system) with the grey
(transformed) variance side-by-side (next to the black coordinate system). Notice
that the variance along the y axis (the axis which had more variance in the original
system) has increased, while the variance on the x axis (the axis which had less
variance in the original system) has actually decreased.

Before continuing, let us make a final remark about PCA and preprocessing. One
of themost fundamental problemswith any kind of data is that it is noisy.Noise can be
defined as everything except relevant information. If our dataset has enough training
samples, then it should have non-random information and random noise. They are
usually mixed up in features. But if we can build a distributed representation, this
means we can extract as separate features the parts which have more variance and
part which have less variance; we could assume that noise (which is random) has low
variance (it is ‘equally random’ everywhere), whereas information has high variance.
Suppose we have used PCA on a 20-dimensional input matrix. Then, we can keep
the first 10 new features and by doing so we have eliminated a lot of noise (low
variance features) by eliminating only a little bit of information (since they are low
variance features—not ‘no variance’ features).

PCA has been around a long time. It was first discovered by Karl Pearson of the
University College London [13] in 1901. Since then variants of the PCA went by
many names, and often there were subtle differences. The details of the relations
between various variants of the PCA are interesting, but unfortunately they would
require a whole book to explore, and consequently are beyond the scope of this
volume.
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3.8 Learning Language:The Bag ofWords Representation

So far we have addressed numerical features, ordinal features and categorical fea-
tures. We have seen how to do one-hot encoding for categorical features. We have
not addressed a whole field, namely natural language processing. We refer the reader
to [14] or [15] for a thorough introduction to natural language processing. In this
section, we will see how to process language by using one of the simplest models,
the bag of words.

Let us first define a couple of terms for natural language processing. A corpus is
a whole collection of texts we have. A corpus can be decomposed into fragments.
Fragments can be single sentences, paragraphs or multi-page documents. Basically,
a fragment is something we wish to treat as a training sample. If we are analysing
clinical documents, each patient admission document might be one fragment; if we
are analysing all PhD theses from a major university, each 200-page thesis is one
fragment; if we are analysing sentiment on social media, each user comment is one
fragment; and so on. A bag of words model is made by turning each word from the
corpus in a feature and in each row, under that word, counting how many times the
word occurs in that fragment. Clearly, the order of the words is lost by creating a bag
of words.

The bag of words model is one of the main ways to convert language in features to
be fed to a machine learning algorithm, and only deep learning has good alternatives
to it as we shall see in Chaps. 6, 7 and 8. Other machine learning methods use the
bag of words or variations35 almost exclusively, and for many language processing
tasks, the bag of words is a great language model even in deep learning. Let us see
how the bag of words works in a simple social media dataset36:

User Comment Likes
S. A you dont know 22
F. F as if you know 13
S. A i know what i know 9
P. H i know 43

We need to convert the column ‘Comment’ into a bag of words. The columns
‘User’ and ‘Likes’ are left as they are for now. To create a bag of words from the
comments, we need tomake two passes. The first just collects all the words that occur
and turns them into features (i.e. collects the unique words and creates the columns
from them) and the second writes in the actual values:

35An example of an expansion of the basic bag of words model is a bag of n-grams. An n-gram is
a n-tuple consisting of n words that occur next to each other. If we have a sentence ‘I will go now’,
the set of its 2-grams will be {(‘I ′, ‘will ′), (‘will ′, ‘go′), (‘go′, ‘now′)}.
36Formost language processing tasks, especially tasks requiring the use of data collected from social
media, it makes sense to convert all text to lowercase first and get rid of all commas apostrophes
and non-alphanumerics, which we have already done here.

http://dx.doi.org/10.1007/978-3-319-73004-2_6
http://dx.doi.org/10.1007/978-3-319-73004-2_7
http://dx.doi.org/10.1007/978-3-319-73004-2_8


76 3 Machine Learning Basics

User you dont know as if i what Likes
S. A 1 1 1 0 0 0 0 22
F. F 1 0 1 1 1 0 0 13
S. A 0 0 2 0 0 2 1 9
P. H 0 0 1 0 0 1 0 43

Now, we have the bag of words of the column ‘Comment’ and we need to do
one-hot encoding on the column ‘User’ before being able to feed the dataset in a
machine learning algorithm.We do this as we have explained earlier and get the final
input matrix:

S. A F. F P. H you dont know as if i what Likes
1 0 0 1 1 1 0 0 0 0 22
0 1 0 1 0 1 1 1 0 0 13
1 0 0 0 0 2 0 0 2 1 9
0 0 1 0 0 1 0 0 1 0 43

This example shows the difference between one-hot encoding and the bag of
words. In one-hot, each row has only 1 or 0 and, moreover, it must have exactly
one 1. This means that it can be represented rather compactly by noting only the
column number where it is 1. Take the fourth example in the upper column: we
know everything for the one-hot part by simply noting ‘3’ as the column number,
which takes less space than writing ‘0,0,1’. The bag of words is different. Here, we
take the word count for each fragment, which can be more than 1. Also, we need to
use the bag of words on the entire dataset which means that we have to encode the
training and test set together. This means that words that occur only in the test set
will have 0 in the whole training set. Also, note that since most classifiers require
that all samples have the same dimensionality (and feature names), when we will
use the algorithm to predict, we will have to toss away any new word which is not
in the trained model to be able to feed the data to the algorithm.

What they both have in common is that they expand the dimensions considerably
and almost everywhere they will have the value 0. When we encode data like this we
say, we have a sparse encoding. This means that a lot of features will be meaningless
and that we want our classifier to dismiss them as soon as possible. We will see later
how some techniques like PCA and L1 regularization can be useful when confronted
with a dataset which is sparsely encoded. Also, notice how we use the expansions
of dimensions of the space to try to capture ‘semantics’ by counting words.
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4FeedforwardNeural Networks

4.1 Basic Concepts andTerminology for Neural Networks

Backpropagation is the core method of learning for deep learning. But before we
can start exploring backpropagation, we must define a number of basic concepts
and explain their interactions. Deep learning is machine learning with deep artificial
neural networks, and the goal of this chapter explains how shallow neural networks
work. We will also refer to shallow neural networks as simple feedforward neural
networks, although the term itself should be used to refer to any neural network
which does not have a feedback connection, not just shallow ones. In this sense, a
convolutional neural network is also a feedforward neural network but not a shallow
neural network. In general, deep learning consists of fixing the problems which arise
when we try to add more layers to a shallow neural network. There are a number
of other great books on neural networks. The book [1] offers the reader a rigorous
treatmentwithmost of themathematical detailswritten out,while the book [2] ismore
geared towards applications, but gives an overview of some connected techniques
that we have not explored in this volume such as the Adaline. The book [3] is a great
book written by some of the foremost experts in deep learning, and this book can be
seen as a natural next step after completing the present volume. One final book we
mention, and this book is perhaps the most demanding, is [4]. This is a great book,
but it will place serious demands on the reader, and we suggest to tackle it after [3].
There are a number of other excellent books, but we offered here our selection which
we believe will best augment the material covered in the present volume.

Any neural network is made of simple basic elements. In the last chapter, we
encountered a simple neural networkwithout even knowing it: the logistic regression.
A shallow artificial neural network consists of two or three layers, anythingmore than
that is considered deep. Just like a logistic regression, an artificial neural network
has an input layer where inputs are stored. Every element which holds an input is
called a ‘neuron’. The logistic regression then has a single point where all inputs are

© Springer International Publishing AG, part of Springer Nature 2018
S. Skansi, Introduction to Deep Learning, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-73004-2_4
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directed, and this is its output (this is also a neuron). The same holds for a simple
neural network, but it can have more than one output neuron making the output layer.
What is different from logistic regression is that a ‘hidden’ layer may exist between
the input and output layer. Depending on the point of view, we can think of a neural
network being a logistic regression with not one but multiple workhorse neurons,
and then after them, a final workhorse neuron which ‘coordinates’ their results, or
we could think of it as a logistic regression with a whole layer of workhorse neurons
squeezed between the inputs and the old workhorse neuron (which was already
present in the logistic regression). Both of these views are useful for developing
intuition on neural networks, and keep this in mind in the remainder of this chapter,
since we will switch form one view to the other if it becomes convenient.

The structure of a simple three-layer neural network shown in Fig. 4.1. Every
neuron of one layer is connected to all neurons of the next layer, but it gets multiplied
by a so-called weight which determines how much of the quantity from the previous
layer is to be transmitted to a given neuron of the next layer. Of course, the weight is
not dependent on the initial neuron, but it depends on the initial neuron–destination
neuron pair. This means that the link between say neuron N5 and neuron M7 has a
weight wk while the link between the neurons N5 andM3 has a different weight, wj.
These weights can happen to have the same value by accident, but in most cases,
they will have different values.

The flow of information through the neural network goes from the first-layer
neurons (input layer), via the second-layer neurons (hidden layer) to the third-layer
neurons (output neurons). We return now to Fig. 4.1. The input layer consists of three
neurons and each of them can accept one input value, and they are represented by
variables x1, x2, x3 (the actual input values will be the values for these variables).
Accepting input is the only thing the first layer does. Every neuron in the input

Fig. 4.1 A simple neural network
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layer can take a single output. It is possible to have less input values than input
neurons (then you can hand 0 to the unused neurons), but the network cannot take in
more input values than it has input neurons. Inputs can be represented as a sequence
x1, x2, . . . , xn (which is actually the same as a row vector) or as a column vector
x := (x1, x2, . . . , xn)�. These are different representations of the same data, and we
will always choose the representation that makes it easier and faster to compute the
operationswemight need. In our choice of data representation,we are not constrained
by anything else but computational efficiency.

As we already noted, every neuron from the input layer is connected to every
neuron from the hidden layer, but neurons of the same layer are not interconnected.
Every connection between neuron j in layer k and neuron m in layer n has a weight
denoted by wkn

jm, and, since it is usually clear from the context which layers are
concerned, we may omit the superscript and write simply wjm. The weight regulates
how much of the initial value will be forwarded to a given neuron, so if the input is
12 and the weight to the destination neuron is 0.25, the destination will receive the
value 3. The weights can decrease the value, but they can also increase it since they
are not bound between 0 and 1.

Once again we return to Fig. 4.1 to explain the zoomed neuron on the right-hand
side. The zoomed neuron (neuron 3 from layer 2) gets the input which is the sum of
the products of the inputs from the previous layer and respective weights. In this case,
the inputs are x3, x2 and x3, and the weights arew13,w23 andw33. Each neuron has a
modifiable value in it, called the bias, which is represented here by b3, and this bias
is added to the previous sum. The result of this is called the logit and traditionally
denoted by z (in our case, z23).

Some simpler models1 simply give the logit as the output, but most models apply a
nonlinear function (also called a nonlinearity or activation function and represented
by ‘S’ in Fig. 4.1) to the logit to produce the output. The output is traditionally denoted
with y (in our case the output of the zoomed neuron is y23)2 The nonlinearity can
be generically refered to as S(x) or by the name of the given function. The most
common function used is the sigmoid or logistic function. We have encountered this
function before, when it was the main function in logistic regression. The logistic
function takes the logit z and returns as its output σ(z) = 1

1+e−z . The logistic function
‘squashes’ all it receives to a value between 0 and 1, and the intuitive interpretation
of its meaning is that it calculates the probability of the output given the input.

A couple of remarks. Different layers may have different nonlinearities which
we shall see in the later chapters, but all neurons of the same layer apply the same
nonlinearity to its logits. Also, the output of a neuron is the same value in every
direction it sends it. Returning to the zoomed neuron in Fig. 4.1, the neuron sends
y23 in to directions, and both of them are the same value. As a final remark, following
Fig. 4.1 again, note that the logits in the next layer will be calculated in the same
manner. If we take, for example z31, it will be calculated as z31 = b31 + w23

11y21 +

1These models are called linear neurons.
2From linear neurons we still want to use the same notation but we set y23 := z23.
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w23
21y22 + w23

31y23 + w23
41y24. The same is done for z32, and then by applying the

chosen nonlinearity to z31 and z32 we obtain the final output.

4.2 Representing Network Components withVectors
andMatrices

Let us recall the general shape of a m × n matrix (m is the number of rows and n is
the number of columns):

⎡
⎢⎢⎢⎣

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

⎤
⎥⎥⎥⎦

Suppose we need to define with matrix operations the process sketched in Fig. 4.2.
In Chap.3 we have seen how to represent the calculations for logistic regression

with matrix operators. We follow the same idea here but for simple feedforward
neural networks. If we want the input to follow the vertical arrangement as it is in
the picture, we can represent it as a column vector, i.e. x = (x1, x2)�. The Fig. 4.2
also offers us the intermediate values in the network, so we can verify each step of
our calculation. As explained in the earlier chapters, if A is a matrix, the matrix entry
in the j row and k column is denoted by Aj,k or by Ajk . If we want to ‘switch’ the
j and k, we need the transpose of the matrix A denoted A�. So for all entries in the
matrices A and A� the following holds: Ajk has the same value as A�

kj , i.e. Ajk = A�
kj .

When representing operations in neural networks as vectors andmatrices, wewant to
minimize the use of transpositions (since each one of them has a computational cost),
and keep the operations as natural and simple as possible. On the other hand, matrix
transposition is not that expensive, and it is sometimes better to keep things intuitive
rather than fast. In our case, we will want to represent a weightw which connects the

Fig. 4.2 Weights in a
network

http://dx.doi.org/10.1007/978-3-319-73004-2_3
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second neuron in layer 1 and the third neuron in layer 2with a variable namedw23.We
see that the index retains information on which neurons in the layers are connected,
but one might ask where do we store the information which layers are in question.
The answer is very simple, that information is best stored in the matrix name in the
program code, e.g. input_to_hidden_w. Note that we can call a matrix by its
‘mathematical name’, e.g. u or by its ‘code name’ e.g. hidden_to_output_w.
So, following Fig. 4.2 we write the weight matrix connecting the two layers as:

[
w11(= 0.1) w12(= 0.2) w13(= 0.3)
w21(= 1) w22(= 2) w23(= 3)

]

Let us call this matrix w (we can add subscripts or superscripts to its name).
Using matrix multiplication w�x we get a 3 × 1 matrix, namely the column vector
z = (21, 42, 63)�.

With this we have described, alongside the structure of the neurons and connec-
tions the forwarding of data through the network which is called the forward pass.
The forward pass is simply the sum of calculations that happenwhen the input travels
through the neural network. We can view each layer as computing a function. Then,
if x is the input vector, y is the output vector and fi, fh and fo are the overall functions
calculated at each layer, respectively,(products, sums and nonlinearities), we can say
that y = fo(fh(fi(x))). This way of looking at a neural network will be very important
when we will address the correction of weights through backpropagation.

For a full specification of a neural network we need:

• The number of layers in a network
• The size of the input (recall that this is the same as the number of neurons in the

input layer)
• The number of neurons in the hidden layer
• The number of neurons in the output layer
• Initial values for weights
• Initial values for biases

Note that the neurons are not objects. They exist as entries in amatrix, and as such,
their number is necessary for specifying the matrices. The weights and biases play a
crucial role: the whole point of a neural network is to find a good set of weights and
biases, and this is done through training via backpropagation, which is the reverse of
a forward pass. The idea is to measure the error the network makes when classifying
and then modify the weight so that this error becomes very small. The remainder
of this chapter will be devoted to backpropagation, but as this is the most important
subject in deep learning, we will introduce it slowly and with numerous examples.
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4.3 The Perceptron Rule

As we noted before, the learning process in the neurons is simply the modification or
update of weights and biases during training with backpropagation. We will explain
the backpropagation algorithm shortly. During classification, only the forward pass
is made. One of the early learning procedures for artificial neurons is known as
perceptron learning. The perceptron consisted of a binary threshold neuron (also
known as binary threshold units) and the perceptron learning rule and altogether
looks like a modified logistic regression. Let us formally define the binary threshold
neuron:

z = b +
∑
i

wixi

y =
{
1, z ≥ 0

0, otherwise

Where xi are the inputs, wi the weights, b is the bias and z is the logit. The second
equation defines the decision, which is usually done with the nonlinearity, but here a
binary step function is used instead (hence the name). We take a digression to show
that it is possible to absorb the bias as one of the weights, so that we only need a
weight update rule. This is displayed in Fig. 4.3: to absorb the bias as a weight, one
needs to add an input x0 with value 1 and the bias is its weight. Note that this is
exactly the same:

z = b +
∑
i

wixi = w0x0(= b) + w1x1 + w2x2 + . . .

According to the above equation, b could either be x0 or w0 (the other one must
be 1). Since we want to change the bias with learning, and inputs never change, we
must treat it as a weight. We call this procedure bias absorption.

Fig. 4.3 Bias absorption
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The perceptron is trained as follows (this is the perceptron learning rule3):

1. Choose a training case.
2. If the predicted output matches the output label, do nothing.
3. If the perceptron predicts a 0 and it should have predicted a 1, add the input vector

to the weight vector
4. If the perceptron predicts a 1 and it should have predicted a 0, subtract the input

vector from the weight vector

As an example, take the input vector to be x = (0.3, 0.4)� and let the bias be
b = 0.5, the weightsw = (2,−3)� and the target4 t = 1. We start by calculating the
current classification result:

z = b +
∑
i

wixi = 0.5 + 2 · 0.3 + (−3) · 0.4 = −0.1

As z < 0, the output of the perceptron is 0 and should have been 1. This means
that we have to use clause (3) from the perceptron rule and add the input vector to
the weight vector:

(w, b) ← (w, b) + (x, 1) = (2,−3, 0.5) + (0.3, 0.4, 1) = (2.3,−2.6, 1.5)

If adding handcrafted features is not a option, the perceptron algorithm is very
limited. To see a simple problem thatMinsky andPapert exposed in 1969 [5], consider
that each classification problem can be understood as a query on the data. This means
that we have a propertywewant the input to satisfy.Machine learning is just amethod
for defining this complex property in terms of the (numerical) properties present in
the input. A query then retrieves all the input points satisfying this property. Suppose
we have a dataset consisting of people and their height and weight. To return only
those higher than say 175cm, one would make a query of the form select ∗
from table where cm>175. If we, on the other hand, only have jpg files of
mugshots with the black and white meter behind the faces, then we would need a
classifier to determine the people’s height and then sort them accordingly. Note that
this classifier would not use numbers, but rather pixels, so it might find people of e.g.
155cm similar to those of height 175, but not those of 165, since the black and white
parts of the background are similar. This means that the machine learning algorithm
learns ‘similar’ in terms of the information representation it is given: what might
seem similar in terms of numbers might not be similar in terms of pixels and vice
versa. Consider the numbers 6 and 9: visually they are close (just rotate one to get

3Formally speaking, all units using the perceptron rule should be called perceptrons, not just binary
threshold units.
4The target is also called expected value or true label, and it is usually denoted by t.
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the other) but numerically they are not. If the representation given to an algorithm is
in pixels, and it can be rotated,5 the algorithm will consider them the same.

When classifying, the machine learning algorithm (and perceptrons are a type of
machine learning algorithms) selects some datapoints as belonging to a class and
leaves the other out. This means that some of them get the label 1 and some get the
label 0, and this learned partitioning hopefully captures the underlying reality: that the
datapoints labelled 1 really are ‘ones’ and the datapoints labelled 0 really are ‘zeros’.
A classic query in logic and theoretical computer science is called parity. This query
is done over binary strings of data, and only those with an equal number of ones and
zeros are selected and given the label 1. Parity can be relaxed so it considers only
strings of length n, then we can formally name it parityn(x0, x1, . . . , xn), where
each xi is a single binary digit (or bit). parity2 is also called XOR and it is also
a logical function called exclusive disjunction. XOR takes two bits and returns 1 if
and only if there is the same amount of 1 and 0, and since they are binary strings,
this means that there is one 1 and one 0. Note that we can equally use the logical
equivalence which has the resulting 0 and 1 exchanged, since they are just names for
classes and do not carry much more meaning. So XOR gives the following mapping:
(0, 0) �→ 0, (0, 1) �→ 1, (1, 0) �→ 1, (1, 1) �→ 0.

When we have XOR as the problem (or any instance of parity for that matter),
the perceptron is unable to learn to classify the input so that they get the correct
labels. This means that a perceptron that has two input neurons (for accepting the
two bits for XOR) cannot adjust its two weights to separate the 1 and 0 as they come
in the XOR. More formally, if we denote by w1, w2 and b the weights and biases
of the perceptron, and take the following instance of parity (0, 0) �→ 1, (0, 1) �→ 0,
(1, 0) �→ 0 i (1, 1) �→ 1, we get four inequalities:

1. w1 + w2 ≥ b,
2. 0 ≥ b,
3. w1 < b,
4. w2 < b

The inequality (a) holds since if (x1 = 1, x2 = 1) �→ 1, andwe can get 1 as an out-
put only if w1x1 + w2x2 = w1 · 1 + w2 · 1 = w1 + w2 is greater or equal b, which
means w1 + w2 ≥ b.

The inequality (b) holds since if (x1 = 0, x2 = 0) �→ 1, and we can get 1 as an
output only ifw1x1 + w2x2 = w1 · 0 + w2 · 0 = 0 is greater or equal b, whichmeans
0 ≥ b.

The inequality (c) holds since if (1, 0) �→ 0, then w1x1 + w2x2 = w1 · 1 + w2 ·
0 = w1, and for the perceptron to give 0,w1 has to be less than the bias b, i.e.w1 < b.

5As a simple application, think of an image recognition system for security cameras, where one
needs to classify numbers seen regardless of their orientation.
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The inequality (d) is derived in a similar fashion to (c). By adding (a) and (b) we
get w1 + w2 ≥ 2b, and by adding (c) and (d) we get w1 + w2 < 2b. It is easy to see
that the system of inequalities has no solution.

This means that the perceptron, which was claimed to be a contendant for general
artificial intelligence could not even learn logical equality. The proposed solution
was to make a ‘multilayered perceptron’.

4.4 The Delta Rule

The main problem with making the ‘multilayered perceptron’ is that it is unknown
how to extend the perceptron learning rule to work with multiple layers. Since mul-
tiple layers are needed, the only option seemed to be to abandon the perceptron rule
and use a different rule which is more robust and capable of learning weights accross
layer. We already mentioned this rule—backpropagation. It was first discovered by
PaulWerbos in his PhD thesis [6], but it remained unnoticed. It was discovered for the
second time by David Parker in 1981, who tried to get a patent but he subsequently
published it in 1985 [7]. The third and the last time it was discovered independently
by Yann LeCun in 1985 [8] and by Rumelhart, Hinton and Williams in 1986 [9].

To see what we want to archive, let us consider an example6 imagine that each
day we buy lunch at the nearby supermarket. Every day our meal consists of a piece
of chicken, two grilled zucchinis and a scoop of rice. The cashier just gives us the
total amount, which varies each day. Suppose that the price of the components does
not very over time and that we can weight the food to see how much we have. Note
that one meal will not be enough to deduce the prices, since we have three of them7

and we do not know which component is responsible in what proportion for a total
price increase in one euro.

Notice that the price per kilogram is actually similar to the neural network weight.
To see this think of how you would find the price per kilogram of the meal compo-
nents: you make a guess on the prices per kilogram for the components, multiply
with the quantity you got today and compare their sum to the price you have actually
paid. You will see that you are off by e.g. 6e. Now you must find out which com-
ponents are ‘off’. You could stipulate that each component is off by 2e and then
readjust your stipulated price per kilogram by the 2e and wait for you next meal to
see whether it will be better now. Of course you could have also stipulated that the
components are off by 3, 2, 1e respectively, and either way, you would have to wait
for your next meal with your new price per kilograms and try again to see whether
you will be off by a lesser or greater amount. Of course, you want to correct your

6This is a modified version of an example given by Geoffrey Hinton.
7For example, ifwe only buy chicken, then itwould be easy to get the price of the chicken analytically
as total = price · quantity, and we get price = total

quantity .



88 4 Feedforward Neural Networks

estimations so that you are off by less and less as the meals pass, and hopefully, this
will lead you to a good approximation.

Note that there exists a true price per kilogram but we do not know it, and our
method is trying to discover it just by measuring how much we miss the total price.
There is a certain ‘indirectness’ in this procedure and this is highly useful and the
essence of neural networks. Once, we find our good approximations, we will be
able to calculate with appropriate precision the total price of all of our future meals,
without needing to find out the actual prices.8

Let us work a bit more this example. Each meal has the following general form:

total = ppkchicken · quantchicken + ppkzucchini · quantzucchini + ppkrice · quantrice
where total is the total price, the quant is the quantity and the ppk is the price per
kilogram for each component. Eachmeal has a total pricewe know, and the quantities
we know. So each meal places a linear constraint on the ppk-s. But with only this
we cannot solve it. If we plug in this formula our initial (or subsequenlty corrected)
‘guesstimate’9 we will get also the predicted value, and by comparing it with the true
(target) total value we will also get an error value which will tell us by how much
we missed. If after each meal we miss by less, we are doing a great job.

Let us imagine that the true price is ppkchicken = 10, ppkzucchini = 3, and ppkrice =
5. Let us start with a guesstimate of ppkchicken = 6, ppkzucchini = 3, and ppkrice = 3.
We know we bought 0.23kg of chicken, 0.15kg of zucchini and 0.27kg of rice and
that we paid 3e in total. By multiplying our guessed prices with the quantities we
get 1.38, 0.45 and 0.81, which totals to 2.64, which is 0.35 less than the true price.
This value is called the residual error, and we want to minimize it over the course
of future iterations (meals), so we need to distribute the residual error to the ppk-s.
We do this simply by changing the ppk-s by:

�ppki = 1

n
· quanti(t − y)

where i ∈ {chicken, zucchini, rice}, n is the cardinality (number of elements) of this
set (i.e. 3), quanti is the quantity of i, t is the total price and y is the predicted
total price. This is known as the delta rule. When we rewrite this in standard neural
network notation it looks like:

�wi = ηxi(t − y)

8In practical terms this might seem far more complicated than simply asking the person serving
you lunch the price per kilogram for components, but you can imagine that the person is the soup
vendor from the soup kitchen from the TV show Seinfeld (116th episode, or S07E06).
9A guessed estimate. We use this term just to note that for now, we should keep things intuitive an
not guess an initial value of, e.g. 12000, 4533233456, 0.0000123, not because it will be impossible
to solve it, but because it will need much more steps to assume a form where we could see the
regularities appear.
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where wi is a weight, xi is the input and t − y is the residual error. The η is called
the learning rate. Its default value should be 1

n , but there is no constraint placed
on it so values like 10 are perfectly ok to use. In practice, however, we want the
values for η to be small, and usually of the form 10−n, meaning 0.1, 0.01, etc., but
values such as 0.03 or 0.0006 are also used. The learning rate is an example of a
hyperparameter, which are parameters in the neural networkwhich cannot be learned
like regular parameters (like weights and biases) but have to be adjusted by hand.
Another example of a hyperparameter is the hidden layer size.

The learning rate controls how much of the residual error is handed down to
the individual weights to be updated. The proportional distribution of 1

n is not that
important if the learning rate is close to that number. For example, if n = 90 it is
virtually the same if one uses the proportional learning rate of 1

90 or a learning rate
of 0.01. From a practical point of view, it is best to use a learning rate close to the
proportional learning rate or smaller. The intuition behind using a smaller learning
rate than the proportional is to update the weights only a bit in the right direction.
This has two effects: (i) the learning takes longer and (ii) the learning is much more
precise. The learning takes longer since with a smaller learning rate each update
make only a part of the change needed, and it is more precise since it is much less
likely to be overinfluenced by one learning step. We will make this more clear later.

4.5 From the Logistic Neuron to Backpropagation

The delta rule as defined above works for a simple neuron called the linear neuron,
which is even simpler than the binary threshold unit:

y =
∑
i

wixi = w�x

To make the delta rule work, we will be needing a function which should measure
if we got the result right, and if not, by how much we missed. This is usually called
an error function or cost function and traditionally denoted by E(x) or by J (x). We
will be using the mean squared error:

E = 1

2

∑
n∈train

(t(n) − y(n))2

where the (t(n) denotes the target for the training case n (same for (y(n), but this is the
prediction). The training case n is simply a training example, such as a single image
or a row in a table. The mean squared error sums the error across all the training
cases n, and after that we will update the weights. The natural choice for measuring
how far were we from the bullseye would be to use the absolute value as a measure of
distance that does not depend on the sign, but the reason behind choosing the square
of the difference is that by simply squaring the difference we get a measure similar
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to absolute values (albeit larger in magnitude, but this is not a problem, since we
want to use it in relative, not absolute terms), but we will get as a bonus some nice
properties to work with down the road.

Let us see, how we can derive the delta rule from the SSE to see that they are
the same.10 We start with the above equation defining the mean squared error and
differentiate E with respect to wi and get:

∂E

∂wi
= 1

2

∑
n

∂y(n)

∂wi

dE(n)

dy(n)

The partial derivatives are here just because we have to consider a single wi and
treat all others as constants, but the overall behaviour apart from that is the same as
with ordinary derivatives. The above formula tells us a story: it tells us that to find out
how E changes with respect towi, we must find out how y(n) changes with respect to
wi and how E changes with respect to y(n). This is a nice example of the chain rule
of derivations in action. We explored the chain rule in the second chapter but we will
give a cheatsheet for derivations shortly so you do not have to go back. Informally
speaking, the chain rule is similar to fraction multiplication, and if one recalls that a
shallow neural network is a structure of the general form y = fo(fh(fi(x))), it is easy
to see that there will be a lot of places to use the chain rule, especially as we go on
to deep learning and add more layers.

We will explain the derivations shortly. The above equation means the weight
updates are proportional to the error derivations in all training cases added together:

�wi = −η
∂E

∂wi
=

∑
n

ηx(n)
i (t(n) − y(n))

Let us proceed to the actual derivation. We will be deriving the result for a logistic
neuron (also called a sigmoid neuron), which we have already presented before, but
we will define it once more:

z = b +
∑
i

wixi

y = 1

1 + e−z

Recall that z is the logit. Let us absorb the bias right away, so we do not have to
deal with it separately. We will calculate the derivation of the logistic neuron with
respect to the weights, and the reader can adapt the procedure to the simpler linear
neuron if she likes. Aswe noted before, the chain rule is your best friend for obtaining
derivations, and the ‘middle variable’ of the chain rule will be the logit. The first

10Not in the sense that they are the same formula, but that they refer to the same process and that
one can be derived from the other.
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part ∂z
∂wi

which is equal to xi since z = ∑
i wixi (we absorbed the bias). By the same

argument ∂z
∂xi

= wi.

The derivation of the output with respect to the logit is a simple expression ( dydz =
y(1 − y)) but is not easy to derive. Let us restate the derivation rules we use11

• LD: Differentiation is linear, so we can differentiate the summands separately and
take out the constant factors: [f (x)a + g(x)b]′ = a · f ′(x) + b · g′(x)

• Rec: Reciprocal rule [ 1
f (x) ]′ = − f ′(x)

f (x)2

• Const: Constant rule c′ = 0
• ChainExp: Chain rule for exponents [ef (x)]′ = ef (x) · f ′(x)
• DerDifVar: Deriving the differentiation variable dy

dz z = 1
• Exp: Exponent rule [f (x)n]′ = n · f (x)n−1 · f ′(x)

We can now start deriving dy
dz . We start with the definition for y, i.e. with

dy

dz

1

1 + e−z

From this expression by application of the Rec rule we get

−
dy
dz (1 + e−z)

(1 + e−z)

From this by applying LD we get

−
dy
dz 1 + dy

dz e
−z

(1 + e−z)2

On the first summand in the numerator, we apply Const and it becomes 0, and on
the second we apply ChainExp and it becomes e−z · dy

dz (−z), and so we have

−e−z · dy
dz (−z)

(1 + e−z)2

By applying LD to the constant factor −1 implicit with z we get

−−1 · dy
dz z · e−z

(1 + e−z)2

11For the sake of easy readability, we deliberately combine Newton and Leibniz notation in the
rules, since some of them are more intuitive in one, while some of them are more intuitive in the
second. We refer the reader back to Chap.1 where all the formulations in both notations were given.

http://dx.doi.org/10.1007/978-3-319-73004-2_1
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which by DerDifVar becomes

− −1 · e−z

(1 + e−z)2

We tidy up the signs and get

e−z

(1 + e−z)2

Therefore,

dy

dz
= e−z

(1 + e−z)2

Let us factorize the right-hand side in two factors which we will call A and B:

e−z

(1 + e−z)2
= 1

1 + e−z
· e−z

1 + e−z

It is obvious that A = y from the definition of y. Let us turn our attention to B:

e−z

1 + e−z
= (1 + e−z) − 1

1 + e−z
= 1 + e−z

1 + e−z
− 1

1 + e−z
= 1 − 1

1 + e−z
= 1 − y

Therefore A = y and B = 1 − y, and dy
dz = A · B, from which follows that

dy

dz
= y(1 − y)

Since we have ∂z
∂wi

and dy
dz with the chain rule we get

∂y

∂wi
= xiy(1 − y)

The next thing we need is dE
dy .

12 We will be using the same rules for this derivation

as we did for dy
dz . Recall that E = 1

2 (t
(n) − y(n))2, but we will use the version E =

1
2 (t − y)2 which is focused on a single target value t and a single prediction y.

Therefore, we need to find

dE

dy
[1
2
(t − y)2]

12Strictly speaking, we would need ∂E
∂y(n) but this generalization is trivial and we chose the simpli-

fication since we wanted to improve readability.
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By applying LD we get

1

2

dE

dy
(t − y)2

By applying Exp we get

1

2
· 2 · (t − y) · dE

dy
(t − y)

Simple cancellation yields

(t − y) · dE
dy

(t − y)

With LD we get

(t − y) · dE
dy

t · dE
dy

y

Since t is a constant, its derivative is 0 (rule Const), and since y is the differentiation
variable, its derivative is 1 (DerDiVar). By tidying up the expression we get (t −
y)(0 − 1) and finally, −1 · (t − y).

Now, we have all the elements for formulating the learning rule for the logistic
neuron using the chain rule:

∂E

∂wi
=

∑
n

∂y(n)

∂wi

∂E

∂y(n)
= −

∑
n

x(n)
i y(n)(1 − y(n))(t(n) − y(n))

Note that this is very similar to the delta rule for the linear neuron, but it has also
y(n)(1 − y(n)) extra: this part is the slope of the logistic function.

4.6 Backpropagation

So far we have seen how to use derivatives to learn the weights of a logistic neuron,
and without knowing it we have already made excellent progress with understanding
backpropagation, since backpropagation is actually the same thing but applied more
than once to ‘backpropagate’ the errors through the layers. The logistic regression
(consisting of the input layer and a single logistic neuron), strictly speaking, did
not need to use backpropagation, but the weight learning procedure described in the
previous section actually is a simple backpropagation. As we add layers, we will
not have more complex calculations, but just a large number of those calculations.
Nevertheless, there are some things to watch out for.

Wewill write out all the necessary details for backpropagation for the feedforward
neural networks, but first, we will build up the intuition behind it. In Chap.2 we
have explained gradient descent, and we will revisit some of the concepts here as

http://dx.doi.org/10.1007/978-3-319-73004-2_2
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needed.Backpropagation of errors is basically just gradient descent.Mathematically
speaking, backpropagation is:

wupdated = wold − η∇E

where w is the weigh, η is the learning rate (for simplicity you can think of it just
being 1 for now) and E is the cost function measuring overall performance.We could
also write it in computer science notation as a rule that assigns to w a new value:

w ← w − η∇E

This is read as ‘the new value of w is w minus η∇E’. This is not circular,13 since
it is formulated as an assignment (←), not a definition (= or :=). This means that
first, we calculate the right-hand side, and then we assign tow this new value. Notice
that if were to write out this mathematically, we would have a recursive definition.

We may wonder whether we could do weight learning in a more simple man-
ner, without using derivatives and gradient descent.14 We could try the following
approach: select a weight w and modify it a bit and see if that helps. If it does, keep
the change. If it makes things worse, then change it in the opposite direction (i.e.
instead of adding the small amount from the weight, subtract it). If this makes it
better keep the change. If neither change improves the final result, we can conclude
that w is perfect as it is and move to the next weight v.

Three problems arise right away. First, the process takes a long time. After the
weight change, we need to process at least a couple of training examples for each
weight to see if it is better or worse than before. Simply speaking, this is a compu-
tational nightmare. Second, by changing the weights individually we will never find
out whether a combination of them would work better, e.g. if you change w or v

separately (either by adding the small amount or subtracting to one or the other), it
might make the classification error worse, but if youwere to change them by adding a
small amount to both of them it would make things better. The first of these problems
will be overcome by using gradient descent,15 while the second will be only partially
resolved. This problem is usually called local optima.

The third problem is that near the end of learning, changes will have to be small,
and it is possible that the ‘small change’ our algorithm test will be too large to
successfully learn. Backpropagation also has this problem, and it is usually solved
by using a dynamic learning rate which gets smaller as the learning progresses.

13A definition is circular if the same term occurs in both the definiendum (what is being defined)
and definiens (with which it is defined), i.e. on both sides of = (or more precisely of :=) and in
our case this term could be w. A recursive definition has the same term on both sides, but on the
defining side (definiens) it has to be ‘smaller’ so that one could resolve the definition by going back
to the starting point.
14If you recall, the perceptron rule also qualifies as a ‘simpler’ way of learning weights, but it had
the major drawback that it cannot be generalized to multiple layers.
15Although it must be said that the whole field of deep learning is centered around overcoming the
problems with gradient descent that arise when using it in deep networks.
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If we formalize this approach we will get a method called finite difference approx-
imation16:

1. Each weight wi, 1 ≤ i ≤ k is adjusted by adding to it a small constant ε (e.g.
whose value is 10−6) and the overall error (with only wi changed) is evaluated
(we will denote this by E+

i )
2. Change back the weight to its initial valuewi and subtract ε from it and reevaluate

the error (this will be E−
i )

3. Do this for all weights wj, ≤ j ≤ k

4. Once finished, the new weights will be set to wi ← wi − E+
i −E−

i
2ε

Thefinite difference approximation does a good job in approximating the gradient,
and nothing more than elementary arithmetic is used. If we recall what a derivative is
and how it is defined from Chap.2, the finite difference approximation makes sense
even in terms of the ‘meaning’ of the procedure. This method can be used to build
up the intuition how weight learning proceeds in full backpropagation. However,
most current libraries which have tools for automatic differentiation perform gradi-
ent descent in a fraction of the time it would take to compute the finite difference
approximation. Performance issues aside, the finite difference approximation would
indeed work in a feedforward neural network.

Now, we turn to backpropagation. Let us examine what happens in the hidden
layer of the feedforward neural network. We start with randomly initialized weights
and biases, multiply them with the inputs, add them together, and take them through
the logistic regression which “flattens” them to a value between 0 and 1, and we do
that one more time. At the end, we get a value between 0 and 1 from the logistic
neuron in the output layer. We can say that everything above 0.5 is 1 and below is 0.
But the problem is that if the network gives a 0.67 and the output should have been
0, we know only the error the network produced (the function E), and we should
use this. More precisely, we want to measure how E changes when the wi change,
which means that we want to find the derivative of E with regard to the activities of
the hidden layer. We want to find all the derivatives at the same time, and for this,
we use vector and matrix notations and, consequently, the gradient. Once we have
the derivatives of E with regard to the hidden layer activity, we will easily compute
the changes for the weights themselves.

We will address the procedure illustrated in Fig. 4.4. To keep the exposition as
clear as possible, we will use only two indices, as if each layer has only one neuron.
In the following section, we shall expand this to a fully functional feedforward neural
network. As illustrated in Fig. 4.4 wewill use the subscripts o for the output layer and
h for the hidden layer. Recall that z is the logit, i.e. everything except the application
of the nonlinearity.

16Cf. G. Hinton’s Coursera course, where this method is elaborated.

http://dx.doi.org/10.1007/978-3-319-73004-2_2
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As we have

E = 1

2

∑
o∈Output

(to − yo)
2

the first thing we need to do is turn the difference between the output and the target
value into an error derivation. We have done this already in the previous sections of
this chapter:

∂E

∂yo
= −(to − yo)

Now, we need to reformulate the error derivative with regard to yo into an error
derivative with regard to zo. For this, we use the chain rule:

∂E

∂zo
= ∂yo

∂zo

∂E

∂yo
= yo(1 − yo)

∂E

∂yo
Now we can calculate the error derivative with respect to yh:

∂E

∂yh
=

∑
o

dzo
dyh

∂E

∂zo
=

∑
o

who
∂E

∂zo

These steps we made from ∂E
∂yo

to ∂E
∂yh

are the heart of backpropagation. Notice
that now we can repeat this to go through as many layers as we want. There will be
a catch though, but for now is all good. A few remarks about the above equation.
From the previous section, when we addressed the logistic neuron we know that
dzo
dyh

= who. Once, we have
∂E
∂zo

it is very simple to get the error derivative with regard
to the weights:

Fig. 4.4 Backpropagation
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∂E

∂who
= ∂zo

∂who

∂E

∂zo
= yi

∂E

∂zj

The rule for updating weights is quite straightforward, and we call it the general
weight update rule:

wnew
i = wold

i + (−1)η
∂E

∂wold
i

The η is the learning rate and the factor −1 is here to make sure we go towards
minimizing E, otherwise we would be maximizing it. We can also state it in vector
notation17 to get rid of the indices:

wnew = wold − η∇E

Informally speaking, the learning rate controls by how much we should update.
There are a couple of possibilities (we will discuss the learning rate in more detail
later):

1. Fixed learning rate
2. Adaptable global learning rate
3. Adaptable learning rate for each connection

We will address these issues in more detail later, but before that, we will show a
detailed calculation for error backpropagation in a simple neural network, and in the
next section, we will code the network. The remainder of this chapter is probably
the most important part of the whole book, so be sure to go through all the details.

Let us see a working example18 of a simple and shallow feedforward neural
network. The network is represented in Fig. 4.5. Using the notation, the starting
weights and the inputs specified in the image, we will calculate all the intricacies of
the forward pass and backpropagation for this network. Notice the enlarged neuron
D.We have used this to illustrate, where the logit zD is and how it becomes the output
of D (yD) by applying to it the logistic function σ .

Wewill assume (aswe did previously) that all the neurons have a logistic activation
function. So we need to do a forward pass, a backpropagation, and a second forward
pass to see the decrease in the error. Let us briefly comment on the network itself.
Our network has three layers, with the input and hidden layers consisting of two
neurons, and the output error which consists of one neuron. We have denoted the
layers with capital letters, but we have skipped the letter E to avoid confusing it with
the error function, so we have neurons named A, B, C, D and F. This is not usual.

17We must then use the gradient, not individual partial derivatives.
18This is a modified version of the example by Matt Mazur available at https://mattmazur.
com/2015/03/17/a-step-by-step-backpropagation-example/.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Fig. 4.5 Backpropagation in a complete simple neural network

The usual procedure is to name them by referring to the layer and neuron in the layer,
e.g. ‘third neuron in the first layer’ or ‘1, 3’. The input layer takes in two inputs, the
neuron A takes in xA = 0.23 and the neuron B takes in xB = 0.82. The target for this
training case (consisting of xA and xB) will be 1. As we noted earlier, the hidden and
output layers have the logistic activation function (also called logistic nonlinearity),
which is defined as σ(z) = 1

1+e−z .
We start by computing the forward pass. The first step is to calculate the outputs

of C and D, which are referred to as yC and yD, respectably:

yC = σ(0.23 · 0.1 + 0.82 · 0.4) = σ(0.351) = 0.5868

yD = σ(0.23 · 0.5 + 0.82 · 0.3) = σ(0.361) = 0.5892

And now we use yC and yD as inputs to the neuron F which will give us the final
result:

yF = σ(0.5868 · 0.2 + 0.5892 · 0.6) = σ(0.4708) = 0.6155

Now, we need to calculate the output error. Recall that we are using the mean
squared error function, i.e. E = 1

2 (t − y)2. So we plug in the target (1) and output
(0.6155) and get:
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E = 1

2
(t − y)2 = 1

2
(1 − 0.6155)2 = 0.0739

Now we are all set to calculate the derivatives. We will explain how to calculate
w5 and w3 but all other weights are calculated with the same procedure. As back-
propagation proceeds in the opposite direction that the forward pass, calculating w5
is easier and we will do that first. We need to know how the change in w5 affects E
and we want to take those changes which minimize E. As noted earlier, the chain
rule for derivatives will do most of the work for us. Let us rewrite what we need to
calculate:

∂E

∂w5
= ∂E

∂yF
· ∂yF
∂zF

· ∂zF
∂w5

We have found the derivatives for all of these in the previous sections so we will
not repeat their derivations. Note that we need to use partial derivatives because
every derivation is made with respect to an indexed term. Also, note that the vector
containing all partial derivatives (for all indices i) is the gradient. Let us address ∂E

∂yF
now. As we have seen earlier:

∂E

∂yF
= −(t − yF )

In our case that means:

∂E

∂yF
= −(1 − 0.6155) = −0.3844

Now we address ∂yF
∂zF

. We know that this is equal to yF (1 − yF ). In our case this
means:

∂yF
∂zF

= yF (1 − yF ) = 0.6155(1 − 0.6155) = 0.2365

The only thing left to calculate is ∂zF
∂w5

. Remember that:

zF = yC · w5 + yD · w6

By using the rules of differentiation (derivatives of constants (w6 is treated like a
constant) and differentiating the differentiation variable) we get:

∂zF
∂w5

= yC · 1 + yD · 0 = yC = 0.5868

We take these values back to the chain rule and get:
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∂E

∂w5
= ∂E

∂yF
· ∂yF
∂zF

· ∂zF
∂w5

= −0.3844 · 0.2365 · 0.5868 = −0.0533

We repeat the same process19 to get ∂E
∂w6

= −0.0535. Now, all we have to do is

use these values in the general weight update rule20 (we use a learning rate, η = 0.7):

wnew
5 = wold

5 − η
∂E

∂w5
= 0.2 − (0.7 · 0.0533) = 0.2373

wnew
6 = 0.6374

Now we can continue to the next layer. But an important note first. We will be
needing a value for w5 and w6 to find the derivatives of w1, w2, w3 and w4, and we
will be using the old values, not the updated ones. We will update the whole network
when we will have all the updated weights. We proceed to the hidden layer. What we
need to now is to find the update for w3. Notice that to get from the output neuron F
to w3 we need to go across C, so we will be using:

∂E

∂w3
= ∂E

∂yC
· ∂yC
∂zC

· ∂zC
∂w3

The process will be similar to ∂E
∂w3

, but with a couple of modifications. We start
with:

∂E

∂yC
= ∂zF

∂yC

∂E

∂zF
= w5

∂E

∂zF
= w5

∂yF
∂zF

· ∂E

∂yF
= 0.2 · 0.2365 · (−0.3844) = 0.2 · (−0.0909) = −0.0181

Now we need ∂yC
∂zC

:

∂yC
∂zC

= yC(1 − yC) = 0.5868 · (1 − 0.5868) = 0.2424

And we also need ∂zC
∂w3

. Recall that zC = x1 · w1 + x2 · w2, and therefore:

∂zC
∂w3

= x1 · 0 + x2 · 1 = x2 = 0.82

Now we have:

∂E

∂w3
= ∂E

∂yC
· ∂yC
∂zC

· ∂zC
∂w3

= −0.0181 · 0.2424 · 0.82 = −0.0035

19The only difference is the step for ∂zF
∂w5

, where there is a 0 now for w5 and a 1 for w6.
20Which we discussed earlier, but we will restate it here: wnew

k = wold
k − η ∂E

∂wk
.
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Using the general weight update rule we have:

wnew
3 = 0.4 − (0.7 · (−0.0035)) = 0.4024

We use the same steps (across C) to find wnew
1 = 0.1007. To get wnew

2 and wnew
4

we need to go across D. Therefore we need:

∂E

∂w3
= ∂E

∂yD
· ∂yD
∂zD

· ∂zD
∂w3

But we know the procedure, so:

∂E

∂yD
= w6 · ∂E

∂zF
= 0.6 · (−0.0909) = −0.0545

∂yC
∂zC

= yD(1 − yD) = 0.5892(1 − 0.5892) = 0.2420

And:

∂zD
∂w2

= 0.23

∂zD
∂w4

= 0.82

Finally, we have (remember we have the 0.7 learning rate):

wnew
2 = 0.5 − 0.7 · (−0.0545 · 0.2420 · 0.23) = 0.502

wnew
4 = 0.3 − 0.7 · (−0.0545 · 0.2420 · 0.82) = 0.307

And we are done. To recap, we have:

• wnew
1 = 0.1007

• wnew
2 = 0.502

• wnew
3 = 0.4024

• wnew
4 = 0.307

• wnew
5 = 0.2373

• wnew
6 = 0.6374

• Eold = 0.0739
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We can now make another forward pass with the new weights to make sure that
the error has decreased:

ynewC = σ(0.23 · 0.1007 + 0.82 · 0.4024) = σ(0.3531) = 0.5873

ynewD = 0.5907

ynewF = σ(0.5873 · 0.2373 + 0.5907 · 0.6374) = σ(0.5158) = 0.6261

Enew = 1

2
(1 − 0.6261)2 = 0.0699

Which shows that the error has decreased. Note that we have processed only
one training sample, i.e. the input vector (0.23, 0.82). It is possible to use multiple
training samples to generate the error and find the gradients (mini-batch training21),
and we can do this a number of times and each repetition is called an iteration.
Iterations are sometimes erroneously called epochs. The two terms are very similar
andwe can consider them synonyms for now, but quite soonwewill need to delineate
the difference, and we will do this in the next chapter.

An alternative to this would be to update the weights after every single training
example.22 This is called online learning. In online learning, we process a single
input vector (training sample) per iteration. We will discuss this in the next chapter
in more detail.

In the remainder of this chapter, we will integrate all the ideas we have presented
so far in a fully functional feedforward neural network, written in Python code. This
example will be fully functional Python 3.x code, but we will write out some things
that could be better left for a Python module to do.

Technically speaking, in anything but the most basic setting, we shall not use
the SSE, but its variant, the mean squared error (MSE). This is because we need
to be able to rewrite the cost function as the average of the cost functions SSEx for
individual training samples x, and we therefore define MSE := 1

n

∑
x SSEx.

4.7 A Complete Feedforward Neural Network

Let us see a complete feedforward neural network which does a simple classification.
The scenario is that we have a webshop selling books and other stuff, and we want
to know whether a customer will abandon a shopping basket at checkout. This is
why we are making a neural network to predict it. For simplicity, all the data is just
numbers. Open a new text file, rename it to data.csv and write in the following:

21Or full-batch if we use the whole training set.
22Which is equal to using a mini-batch of size 1.
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includes_a_book,purchase_after_21,total,user_action
1,1,13.43,1
1,0,23.45,1
0,0,45.56,0
1,1,56.43,0
1,0,44.44,0
1,1,667.65,1
1,0,56.66,0
0,1,43.44,1
0,0,4.98,1
1,0,43.33,0

This will be our dataset. You can actually substitute this for anything, and as
long as values are numbers, it will still work. The target is the user_action
column, and we take 1 to mean that the purchase was successful, and 0 to mean that
the user has abandoned the basket. Notice that we are talking about abandoning a
shopping basket, but we could have put anything in, from images of dogs to bags
of words. You should also make another CSV file named new_data.csv that has
the same structure as data.csv, but without the last column (user_action).
For example:

includes_a_book,purchase_after_21,total
1,0,73.75
0,0,64.97
1,0,3.78

Now let is continue to the Python code file. All the code in the remainder of this
section should be placed in a single file, you can name it ffnn.py, and placed
in the same folder as data.csv and new_data.csv. The first part of the code
contains the import statements:

import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense
TARGET_VARIABLE ="user_action"
TRAIN_TEST_SPLIT=0.5
HIDDEN_LAYER_SIZE=30
raw_data = pd.read_csv("data.csv")

The first four lines are just imports, the next three are hyperparameters. The
TARGET_VARIABLE tells Python what is the target variable we wish to predict.
The last line opens the file data.csv. Now we must make the train–test split. We
have a hyperparameter that currently leaves 0.5 of the datapoints in the training set,
but you can change this hyperparameter to something else. Just be careful since we
have a tiny dataset which might cause some problems if the split is something like
0.95. The code for the train–test split is:
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mask = np.random.rand(len(raw_data)) < TRAIN_TEST_SPLIT
tr_dataset = raw_data[mask]
te_dataset = raw_data[∼mask]

The first line here defines a random sampling of the data to be used to get the
train–test split and the next two lines select the appropriate sub-dataframes from
the original Pandas dataframe (a dataframe is a table-like object, very similar to
an Numpy array but Pandas focuses on easy reshaping and splitting, while Numpy
focuses on fast computation). The next lines split both the train and test dataframes
into labels and data, and then convert them into Numpy arrays, since Keras needs
Numpy arrays to work. The process is relatively painless:

tr_data = np.array(raw_data.drop(TARGET_VARIABLE,
axis=1))
tr_labels = np.array(raw_data[[TARGET_VARIABLE]])
te_data = np.array(te_dataset.drop(TARGET_VARIABLE,
axis=1))
te_labels = np.array(te_dataset[[TARGET_VARIABLE]])

Now, we move to the Keras specification of a neural network model, and its
compilation and training (fitting). We need to compile the model since we want
Keras to fill in the nasty details and create arrays of appropriate dimensionality of
the weight and bias matrices:

ffnn = Sequential()
ffnn.add(Dense(HIDDEN_LAYER_SIZE, input_shape=(3,),
activation="sigmoid"))
ffnn.add(Dense(1, activation="sigmoid"))
ffnn.compile(loss="mean_squared_error", optimizer=
"sgd", metrics=[’accuracy’])
ffnn.fit(tr_data, tr_labels, epochs=150, batch_size=2,
verbose=1)

The first line initializes a new sequential model in a variable called ffnn. The
second line specifies both the input layer (to accept 3D vectors as single data inputs),
and the hidden layer size which is specified at the beginning of the file in the variable
HIDDEN_LAYER_SIZE. The third line will take the hidden layer size from the
previous layer (Keras does this automatically), and create an output layer with one
neuron. All neurons will be having sigmoid or logistic activation functions. The
fourth line specifies the error function (MSE), the optimizer (stochastic gradient
descent) and which metrics to calculate. It also compiles the model, which means
that it will assemble all the other stuff that Python needs fromwhat we have specified.
The last line trains the neural network on tr_data, using tr_labels, for 150
epochs, taking two samples in a mini-batch. verbose=1 means that it will print
the accuracy and loss after each epoch of training. Now we can continue to analyze
the results on the test set:
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metrics = ffnn.evaluate(te_data, te_labels, verbose=1)
print("%s: %.2f%%" % (ffnn.metrics_names[1],
metrics[1]*100))

Thefirst line evaluates themodel onte_data usingte_labels and the second
prints out accuracy as a formatted string. Next, we take in the new_data.csv file
which simulates new data on our website and we try to predict what will happen
using the ffnn trained model:

new_data = np.array(pd.read_csv("new_data.csv"))
results = ffnn.predict(new_data)
print(results)
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5Modifications andExtensions
to a Feed-ForwardNeural Network

5.1 The Idea of Regularization

Let us recall the ideas of variance and bias. If we have two classes (denoted by X
and O) in a 2D space and the classifier draws a very straight line we have a classifier
with a high bias. This line will generalize well, meaning that the classification error
for the new points (test error) will be very similar to the classification error for the
old points (training error). This is great, but the problem is that the error will be too
large in the first place. This is called underfitting. On the other hand, if we have a
classifier that draws an intricate line to include every X and none of the Os, then we
have high variance (and low bias), which is called overfitting. In this case, we will
have a relatively low training error a much larger testing error.

Let us take and abstract example. Imagine that we have the task of finding orcas
among other animals. Then our classifier should be able to locate orcas by using
the properties that are common to all orcas but not present in other animals. Notice
that when we said ‘all’ we wanted to make sure we are identifying the species, not a
subgroup of the specie: e.g. having a blue tag on the tail might be something that some
orcas have, but we want to catch only those things that all orcas have and no other
animal has. A ‘species’ in general is called a type (e.g. orcas), whereas an individual
is called a token (e.g. the orca Shamu). We want to find a property that defines the
type we are trying to classify. We call such a property a necessary property. In case
of orcas this might be simply the property (or query):

orca(x) := mammal(x) ∧ livesInOcean(x) ∧ blackAndWhite(x)

But, sometimes it is not that easy to find such a property. Trying to find such
a property is what a supervised machine learning algorithm does. So the problem
might be rephrased as trying to find a complex property which defines a type as
best as possible (by trying to include the biggest possible number of tokens and try
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to include only the relevant tokens in the definition). Therefore, overfitting can be
understood in another way: our classifier is so good that we are not only capturing
the necessary properties from our training examples, but also the non-necessary or
accidental properties. So, we would like to capture all the properties which we need,
but we want something to help us stop when we begin including the non-necessary
properties.

Underfitting and overfitting are the two extremes. Empirically speaking, we can
really go fromhighbias and lowvariance to highvariance and lowbias.Want to stop at
a point in between, and we want this point to have better-than-average generalization
capabilities (inherited from the higher bias), and a good fit to the data (inherited from
high variance). How to find this ‘sweet spot’ is the art of machine learning, and the
received wisdom in the machine learning community will insist it is best to find this
by hand. But it is not impossible to automate, and deep learning, wanting to become
a contender for artificial intelligence, will automate as much as possible. There is
one approach which tries to automate our intuitions about overfitting, and this idea
is called regularization.

Why are we talking about overfitting and not underfitting? Remember that if have
a very high bias we will end up with a linear classifier, and linear classifiers cannot
solve the XOR or similar simple problems. What we want then is to significantly
lower the bias until we have reached the point after which we are overfitting. In the
context of deep learning, after we have added a layer to logistic regression, we have
said farewell to high bias and sailed away towards the shores of high variance. This
sounds very nice, but how can we stop in time? How can we prevent overfitting. The
idea of regularization is to add a regularization parameter to the error function E , so
we will have

Eimproved := Eoriginal + Regulari zationT erm

Before continuing to the formal definitions, let us see howwe can develop a visual
intuition on what regularization does (Fig. 5.1).

The left-hand side of the image depicts the classical various choices of hyperplanes
we usually have (bias, variance, etc.). If we add a regularization term, the effect will
be that the error function will not be able to pinpoint the datapoints exactly, and the

Fig. 5.1 Intuition about regularization
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effect will be similar to the points becoming actually little circles. In this way, some
of the choices for the hyperplane will simply become impossible, and the one that are
left will be the ones that have a good “neutral zone” between Xs and Os. This is not
the exact explanation of regularization (we will get to that shortly) but an intuition
which is useful for informal reasoning about what regularization does and how it
behaves.

5.2 L1 and L2 Regularization

As we have noted earlier, regularization means adding a term to the error function,
so we have:

Eimproved := Eoriginal + Regulari zationT erm

As one might guess, adding different regularization terms give rise to different
regularization techniques. In this book, we will address the two most common types
of regularization, L1 and L2 regularization. We will start with L2 regularization and
explore it in detail, since it is more useful in practice and it is also easier to grasp
the connections with vector spaces and the intuition we developed in the previous
section. Afterwards wewill turn briefly to L1 and later in this chapter wewill address
dropout which is a very useful technique unique to neural networks and has effects
similar to regularization.

L2 regularization is known undermany names, ‘weight decay’, ‘ridge regression’,
and ‘Tikhonov regularization’. L2 regularization was first formulated by the Soviet
mathematician Andrey Tikhonov in 1943 [1], andwas further refined in his paper [2].
The idea of L2 regularization is to use the L2 orEuclidean norm for the regularization
term.

The L2 norm of a vector x = (x1, x2, . . . , xn) is simply
√
x21 + x22 + . . . + x2n .

The L2 norm of the vector x can be denoted by L2(x) or, more commonly, by ||x||2.
The vector used is the weights of the final layer, but a version using all weights in
the network can also be used (but in that case, our intuition will be off). So now we
can rewrite the preliminary L2-regularized error function as:

Eimproved := Eoriginal + ||w||2
But, in the machine learning community, we usually do not use the square root,

so instead of ||w||2 we will use the square of the L2 norm, i.e. (||w||2)2 = ||w||22
which is actually just

∑
w w2. We will also want to add a hyperparameter to be able

to adjust how much of the regularization we want to use (called the regularization
parameter or regularization rate, and denoted by λ), and divide it by the size of the
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batch used (to account for the fact that we want it to be proportional), so the final
L2-regularized error function is:

Eimproved := Eoriginal + λ

n
||w||22 = Eoriginal + λ

n

∑
wi inwo

w2
i

Let us work a bit on the explanation1 what L2 regularization does. The intuition
is that during the learning procedure, smaller weights will be preferred, but larger
weights will be considered if the overall decrease in error is significant. This explains
why it is called ‘weight decay’. The choice of λ determines how much will small
weights be preferred (when λ is large, the preference for small weights will be great).
Let us work through a simple derivation.We start with our regularized error function:

Enew = Eold + λ

n

∑
w

w2

By taking the partial derivatives of this equation we get:

∂Enew

∂w
= ∂Eold

∂w
+ λ

n
w

Taking this back to the general weight update rule we get:

wnew = wold − η · (∂E
old

∂w
+ λ

n
w)

One might wonder whether this would actually make the weights converge to 0,

but this is not the case, since the first component ∂Eold

∂w will increase the weights if
the reduction in error (this part controls the unregularized error) is significant.

We can now proceed to briefly sketch L1 regularization. L1 regularization, also
known as ‘lasso’ or ‘basis pursuit denoising’ was first proposed by Robert Tibshirani
in 1996 [4]. L1 regularization uses the absolute value instead of the squares:

Eimproved := Eoriginal + λ

n
||w||1 = Eoriginal + λ

n

∑
wi inwo

|wi |

Let us compare the two regularizations to expose their peculiarities. For most
classification and prediction problems, L2 is better. However, there are certain tasks
where L1 excels [5]. The problems where L1 is superior are those that contain a
lot of irrelevant data. This might be either very noisy data, or features that are not
informative, but it can also be sparse data (where most features are irrelevant because

1We will be using a modification of the explanation offered by [3]. Note that this book is available
online at http://neuralnetworksanddeeplearning.com.

http://neuralnetworksanddeeplearning.com
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they are missing). This means that there are a number of useful applications of L1
regularization in signal processing (e.g. [6]) and robotics (e.g. [7]).

Let us try to develop an intuition behind the two regularizations. The L2 reg-
ularization tries to push down the square of the weights (which does not increase
linearly as the weights increase), whereas L1 is concerned with absolute values
which is linear, and therefore L2 will quickly penalize large weights (it tends to
concentrate on them). L1 regularization will make much more weights slightly
smaller, which usually results in many weights coming close to 0. To simplify the
matter completely, take the plots of the graphs f (x) = x2 and g(x) = |x |. Imag-
ine that those plots are physical surfaces like bowls. Now imagine putting some
points in the graphs (which correspond to the weights) and adding ‘gravity’, so
that they behave like physical objects (tiny marbles). The ‘gravity’ corresponds to
gradient descent, since it is a move towards the minimum (just like gravity would
push to a minimum in a physical system). Imagine that there is also friction, which
corresponds to the idea that E does not care anymore about the weights that are
already very close to the minimum. In the case of f (x), we will have a number
of points around the point (0, 0), but a bit dispersed, whereas in g(x) they would
be very tightly packed around the (0, 0) point. We should also note that two vec-
tors can have the same L1 norm but different L2 norms. Take v1 = (0.5, 0.5) and
v2 = (−1, 0). Then ||v1||1 = |0.5| + |0.5| = 1 and ||v2||1 = | − 1| + |0| = 1, but
||v1||2 = √

0.52 + 0.52 = 1√
2
and ||v2||2 = √

12 + 02 = 1.

5.3 Learning Rate,Momentum and Dropout

In this section, we will revisit the idea of the learning rate. The learning rate is an
example of a hyperparameter. The name is quite unusual, but there is actually a
simple reason behind it. Every neural network is actually a function which assigns to
a given input vector (input) a class label (output). The way the neural network does
this is via the operations it performs and the parameters it is given. Operations include
the logistic function, matrixmultiplication, etc., while the parameters are all numbers
which are not inputs, viz. weights and biases. We know that the biases are simply
weights and that the neural network finds a good set of weights by backpropagationg
the errors it registers. Since operations are always the same, this means that all of
the learning done by a neural network is actually a search for a good set of weight,
or in other words, it is simply adjusting its parameters. There is nothing more to
it, no magic, just weight adjusting. Now that this is clear, it is easy to say what
a hyperparameter is. A hyperparameter is any number used in the neural network
which cannot be learned by the network. An example would be the learning rate or
the number of neurons in the hidden layer.

This means that learning cannot adjust hyperparameters, and they have to be
adjusted manually. Here machine learning leans heavily towards art, since there is
no scientific way to do it, it is more a matter of intuition and experience. But despite
the fact that finding a good set of hyperparameters is not easy, there is a standard
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procedure how to do it. To do this, we must revisit the idea of splitting the data set
in a training set and a testing set. Suppose we have kept 10% of the datapoints for
testing, and the rest we wanted to use as the training set. Now we will take another
10% of datapoints from the training set and call it a validation set. So we will have
80% of the datapoints in the training set for training, 10%we use for a validation set,
and 10% we keep for a test set. The idea is to train on the train set with a given set of
hyperparameters and test it on the validation set. If we are not happy, we re-train the
network and test the validation set again.We do this until we get a good classification.
Then, and only then we test on the test set to see how it is doing.

Remember that a low train error and a high test error is a sign of overfitting.
When we are just training and testing (with no hyperparameter tuning), this is a
good rule to stick to. But if we are tuning hyperparameter, we might get overfitting
to both the training and validation set, since we are changing the hyperparameters
until we get a small error on the validation set. If the errors can become misleadingly
small since the classifier learns the noise of the training set, and we manually change
the hyperparameters to suit the noise of the validation set. If, after this, there is
proportionately small error on the test set, we have a winner, otherwise it is back to
the drawing board.Of course, it is possible to alter the sizes of the train, validation and
test sets, but these are the standard starting values (80%, 10% and 10% respectively).

We return to the learning rate. The idea of including a learning rate was first
explicitly proposed in [8]. As we have seen in the last chapter, the learning rate
controls how much of the update we want, since the learning rate is part of the
general weight update rule, i.e. it comes into play in the very end of backpropagation.
Before turning to the types of the learning rate, let us explore why the learning rate
is important in an abstract setting.2 We will construct an abstract model of learning
by generalizing the idea with the parabola we proposed in the previous section. We
need to expand this to three dimensions just so we can have more than one way to
move. The overall shape of the 3D surface we will be using is like a bowl (Fig. 5.2).

Its lateral view is given by the axes x and y (we do not see z). Seen from the top
(axes x and z visible, axis y not visible), it looks like a circle or ellipse. When we
‘drop’ a point at (xk, zk), it will get the value yk from the curve at the coordinates
(xk, zk). In other words, it will be as if we drop the point and it falls towards the
bowl and stops as soon as it meets the surface of the bowl (imagine that our point is
a sticky object, like a chewing gum). We drop it at a precise (xk, zk) (this is the ‘top
view’), we do not know the final ‘height’ of the sticky object, but we will measure it
when it falls to the side of the bowl.

The gradient is like gravity, and it tries to minimize y. If we want to continue our
analogy, we must make a couple of changes to the physical world: (i) we will not
have sticky objects all the time (we needed them to explain how can we get the y of
a point if we only have (x, z)), but little marbles which turn to sticky objects when
they have finished their move (or you may think that they ‘freeze’), (b) there is no

2We take the idea for this abstraction from Geoffrey Hinton’s courses.
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Fig. 5.2 Gradient bowl

friction or inertia and, perhaps the most counterintuitive, (c) our gravity is similar to
physical gravity but different.

Let us explain (c) in more detail. Suppose we are looking from the top, so we see
only axes x and z and we drop a marble. We want our gravity to behave like physical
gravity in the sense that it will automatically generate the direction the marble has to
move (looking from the top, the x and z view) so that it moves along the curvature
of the bowl which is, hopefully, the direction of the bottom of the bowl (the global
minimum value for y).

We want it to be different to physical gravity so that the amount of movement in
this direction is not determined by the exact position of theminimum for y, i.e. it does
not settle in the bottom butmaymove on the other side of the bowl (and remains there
as if it became a sticky object again). We leave the amount of movement unspecified
at the moment, but assume it is rarely the exact amount needed to reach the actual
minimum: sometimes it is a bit more and it overshoots and sometimes is a bit less and
it fails to reach it. One very important point has to bemade here: the curvature ‘points’
at the minimum, but we are following the curvature at the point we currently are,
and not the minimum. In a sense, the marble is extremely ‘short-sighted’ (marbles
usually are): it sees only the current curvature and moves along it. We will know we
have found the minimum when we have the curvature of 0. Note that in our example
we have an ‘idealized bowl’, which has only one point where the curvature is 0, and
that is the global minimum for y. Imagine how many more complex surfaces there
might be where we cannot say that the point of curvature 0 is the global minimum,
but also note that if we could have a transformation which transforms any of these
complex surfaces into our bowl we would have a perfect learning algorithm.

Also, we want to add a bit of imprecision, so imagine that the direction of our
gravity is the ‘general direction’ of the curvature of the bowl—sometimes a bit to the
left, sometimes a bit to the right of the minimum, but only on rare occasions follows
precisely the curvature.

Now we have the perfect setting for explaining learning in the abstract sense.
Each epoch of learning is one move (of some amount) in the ‘general direction’ of
the curvature of the bowl, and after it is done, it sticks where it is. The second epoch
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‘unfreezes’ the situation, and again the general direction towards of the curvature is
followed. this second move might either be the continuation of the first, or a move
in an almost opposite direction if the marble overshot the minimum (bottom). The
process can continue indefinitely, but after a number of epochs the moves will be
really small and insignificant, so we can either stop after a predetermined number of
epochs or when the improvement is not significant.3

Now let us return to the learning rate. The learning rate controls how much of the
amount of movement we are going to take. A learning rate of 1 means to make the
whole move, and a learning rate of 0.1 means to make only 10% of the move. As
mentioned earlier, we can have a global learning rate or parametrized learning rate
so that it changes according to certain conditions we specify such as the number of
epochs so far, or some other parameter.

Let us return a bit to our bowl. So far we had a round bowl, but imagine we have
a shallow bowl of the shape of an elongated ellipse (Fig. 5.3). If we drop the marble
near the narrow middle, we will have almost the same situation as before. But if
we drop it on the marble at the top left portion, it will move along a very shallow
curvature and it will take a very large number of epochs to find its way towards the
bottom of the bowl. The learning rate can help here. If we take only a fraction of the
move, the direction of the curvature for the next move will be considerably better
than if we move from one edge of a shallow and elongated bowl to the opposing
edge. It will make smaller steps but it will find a good direction much more quickly.

This leaves us with discussing the typical values for the learning rate η. The values
most often used are 0.1, 0.01, 0.001, and so on. Values like 0.03 will simply get lost
and behave very similarly to the closest logarithm, which is 0.01 in case of 0.03.4

The learning rate is a hyperparameter, and like all hyperparameters it has to be tuned
on the validation set. So, our suggestion is to try with some of the standard values
for a given hyperparameter and then see how it behaves and modify it accordingly.

We turn our attention now to an idea similar to the learning rate, but different
calledmomentum, also called inertia. Informally speaking, the learning rate controls

Fig. 5.3 Learning rate

3This is actually also a technique which is used to prevent overfitting called early stopping.
4You can use the learning rate to force a gradient explosion, so if you want to see gradient explosion
for yourself try with an η value of 5 or 10.



5.3 Learning Rate,Momentum and Dropout 115

Fig. 5.4 Local minimum

how much of the move to keep in the present step, while momentum controls how
much of the move from the previous step to keep in the current step. The problem
which momentum tries to solve is the problem of local minima. Let us return to our
idea with the bowl but now let us modify the bowl to have local minima. You can
see the lateral view in Fig. 5.4. Notice that the learning rate was concerned with the
‘top’ view whereas the momentum addresses problems with the ‘lateral’ view.

Themarble falls down as usual (depicted as grey in the image) and continues along
the curvature, and stops when the curvature is 0 (depicted by black in the image). But
the problem is that the curvature 0 is not necessarily the global minimum, it is only
local. If it were a physical system, the marble would have momentum and it would
fall over the local minimum to a global minimum, there it would go back and forth a
bit and then it would settle. Momentum in neural networks is just the formalization
of this idea. Momentum, like the learning rate is added to the general weight update
rule:

wnew
i = wold

i − η
∂E

∂wold
i

+ μ(|wold
i − wolder

i |)

Where wnew
i is the current weight to be computed, wold

i is the previous value of
the weight and wolder

i was the value of the weight before that. μ is the momentum
rate and ranges from 0 to 1. It directly controls how much of the previous change
in weight we will keep in this iteration. A typical value for μ is 0.9, and should
be adjusted usually to a value between 0.10 and 0.99. Momentum is as old as the
last discovery of backpropagation, and it was first published in the same paper by
Rumelhart, Hinton and Williams [9].

There is one final interesting technique for improving the way neural networks
learn and reduce overfitting, named dropout. We have chosen to define regularization
as adding a regularization term to the cost function, and according to this definition
dropout is not regularization, but it does lower the gap between the training error
and the testing error, and consequently it reduces overfitting. One could define reg-
ularization to be any technique that reduces this spread, and then dropout would be
a regularization technique. One could call dropout a ‘structural regularization’ and
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Fig. 5.5 Dropout with π = 0.5

the L1 and L2 regularizations ‘numerical regularizations’, but this is not standard
terminology and we will not be using it.

Dropout was first explained in [10], but one could findmore details about it in [11]
and especially [12]. Dropout is a surprisingly simple technique. We add a dropout
parameter π ranging from 0 to 1 (to be interpreted as a probability), and in each epoch
every weight is set to zero with a probability of π (Fig. 5.5). Returning to the general
weight update rule (where we need a wold

k for calculating the weight updates), if
in epoch n the weight wk was set to zero, the wold

k for epoch n + 1 will be the wk

from epoch n − 1. Dropout forces the network to learn redundancies so it is better
in isolating the necessary properties of the dataset. A typical value for π is 0.2, but
like all other hyperparameters it has to be tuned on the validation set.

5.4 Stochastic Gradient Descent and Online Learning

So far in this book, we have been a bit clumsy with one important question5: how
does backpropagation work from a ‘bird’s-eye view’. We have been avoiding this
question to avoid confusion until we had enough conceptual understanding to address
it, and nowwe know enough to state it clearly. Backpropagation in the neural network
works in the following way: we take one training sample at a time and pass it through
the network and record the squared error for each. Then we use it to calculate the
mean (squared) error. Once we have the mean squared error, we backpropagate it
using gradient descent to find a better set of weights. Once we are done, we have

5We have been clumsy around several things, and this section is intended to redefine them a bit to
make them more precise.
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finished one epoch of training. Wemay do this for as many epochs we want. Usually,
we want to continue either for a fixed number of epochs or stop it if it does not help
with decreasing the error anymore.

What we have used when explaining backpropagation was a training set of size 1
(a single example). If this is the whole training set (a weirdly small training set), this
would be an example of (full) gradient descent (also called full-batch learning). We
could however think of it as being a subset of the training set.When using a randomly
selected subset of from the training set of the size n, we saywe use stochastic gradient
descent or minibatch learning (with batch size n). Learning with a minibatch of size
1 is called online learning. Online learning can be either ‘stationary’ with fixed
training set and then selecting randomly6 one by one, or simply giving new training
samples as they come along.7 So we could think of our example backpropagation
from the last chapter as an instance of online learning.

Now we are also in position to introduce a terminological finesse we have been
neglecting until now. An epoch is one complete forward and backward pass over the
whole training set. If we divide the training set of the size 10000 in 10 minibatches,8

then one forward and one backward pass over a batch is called one iteration, and ten
iterations (the size of the minibatch) is one epoch. This will hold only if the samples
are divided as we stated in the footnote. If we use a random selection of training
samples for the minibatch, then ten iterations will not make one epoch. If, on the
other hand, we shuffle the training set and then divide it, then ten iterations will make
one epoch and the forces fighting for order in the universe will be triumphant once
more.

Stochastic gradient descent is usually much quicker to converge, since by random
samplingwe can get a good estimate of the overall gradient, but if theminimum is not
pronounced (the bowl is too shallow) it tends to compound the problemswe have seen
previously in Fig. 5.3 (the middle part) in the previous section. The intuitive reason
behind it is that when we have a shallow curvature and sample the surface randomly
we will be prone to losing the little amount of information about the curvature that
we had in the beginning. In such cases, full gradient descent couple with momentum
might be a good choice.

6We could use also a non-random selection. One of the most interesting ideas here is that of learning
the simplest instances first and then proceeding to the more tricky ones, and this approach is called
curriculum learning. For more on this see [13].
7This is similar to reinforcement learning, which is, alongwith supervised andunsupervised learning
one of the three main areas of machine learning, but we have decided against including it in this
volume, since it falls outside of the the idea of a first introduction to deep learning. If the reader
wishes to learn more, we refer her to [14].
8Suppose for the sake of clarification it is non-randomly divided: the first batch contains training
samples 1 to 1000, the second 1001 to 2000, etc.
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5.5 Problems for Multiple Hidden Layers:Vanishing
and Exploding Gradients

Let us return to the calculation of the fully functional feed-forward neural network
from the last chapter. Remember it was a neural network with the configuration
(2, 2, 1), meaning it has two input neurons, two hidden neurons9 and one output
neuron. Let us revisit the weight updates we calculated:

• wold
1 = 0.1, wnew

1 = 0.1007
• wold

2 = 0.5, wnew
2 = 0.502

• wold
3 = 0.4, wnew

3 = 0.4024
• wold

4 = 0.3, wnew
4 = 0.307

• wold
5 = 0.2, wnew

5 = 0.2373
• wold

6 = 0.6, wnew
6 = 0.6374

Just by looking at the amount of the weight update you might notice that two
weights have been updated with a significantly larger amount than the other weights.
These two weights (w5 and w6) are the weights connecting the output layer with the
hidden layer. The rest of theweights connect the input layerwith the hidden layer. But
why are they larger? The reason is that we had to backpropagate through few layers,
and they remained larger: backpropagation is, structurally speaking, just the chain
rule. The chain rule is justmultiplication of derivatives.And, derivatives of everything
we needed10 have values between 0 and 1. So, by adding layers through which we
had to backpropagate, we needed to multiply more and more 0 to 1 numbers, and this
generally tends to become very small very quickly. And this is without regularization,
with regularization it would be even worse, since it would prefer small weights at all
times (since theweight updateswouldbe small because of the derivatives, therewould
be little chance of the unregularized part to increase the weights). This phenomena
is called vanishing gradient.

We could try to circumvent this problem by initializing the weights to a very large
value and hope that backpropagation will just chip them to the correct value.11 In
this case, we might get a very large gradient which would also hinder learning since
a step in the direction of the gradient would be the right direction but the magnitude
of the step would take us farther away from the solution than we were before the
step. The moral of the story is that usually the problem is the vanishing gradient, but

9A single hidden layer with two neurons in it. It it was (3, 2, 4, 1)we would know it has two hidden
layer, the first one with two neurons and the second one with four.
10Ok, we have used the adjusted the values to make this statement true. Several of the derivatives we
need will become a value between 0 and 1 soon, but it the sigmoid derivatives are mathematically
bound between 0 and 1, and if we have many layers (e.g. 8), the sigmoid derivatives would dominate
backpropagation.
11If the regular approach was something like making a clay statue (removing clay, but sometimes
adding), the intuition behind initializing the weights to large values would be taking a block of stone
or wood and start chipping away pieces.
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if we change radically our approach we would be blown in the opposite direction
which is even worse. Gradient descent, as a method, is simply too unstable if we use
many layers through which we need to backpropagate.

To put the importance of the the vanishing gradient problem, we must note that
the vanishing gradient is the problem to which deep learning is the solution. What
truly defines deep learning are the techniques which make possible to stack many
layers and yet avoid the vanishing gradient problem. Some deep learning techniques
deal with the problem head on (LSTM), while some are trying to circumvent it (con-
volutional neural networks), some are using different connections than simple neural
networks (Hopfield networks), some are hacking the solution (residual connections),
while some have been using weird neural network phenomena to gain the upper hand
(autoencoders). The rest of this book is devoted to these techniques and architectures.
Historically speaking, the vanishing gradient was first identified by Sepp Hochreiter
in 1991 in his diploma thesis [15]. His thesis advisor was Jürgen Schmidhuber, and
the two will develop one of the most influential recurrent neural network architec-
tures (LSTM) in 1997 [16], which we will explore in detail in the following chapters.
An interesting paper by the same authors which brings more detail to the discussion
of the vanishing gradient is [17].

Wemake a final remark before continuing to the second part of this book.We have
chosen what we believe to be the most popular and influential neural architectures,
but there are many more and many more will be discovered. The aim of this book
is not to provide a comprehensive view of everything there is or will be, but to
help the reader acquire the knowledge and intuition needed to pursue research-level
deep learning papers and monographs. This is not a final tome about deep learning,
but a first introduction which is necessarily incomplete. We made a serious effort
to include a range of neural architectures which will demonstrate to the reader the
vast richness and fulfilling diversity of this amazing field of cognitive science and
artificial intelligence.
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6ConvolutionalNeural Networks

6.1 AThirdVisit to Logistic Regression

In this chapter, we explore convolutional neural networks, which were first invented
by Yann LeCun and others in 1998 [1]. The idea which LeCun and his team imple-
mented was older, and built up on the ideas of David H. Hubel and Torsten Weisel
presented in their 1968 seminal paper [2] which won them the 1981 Nobel prize in
Physiology and Medicine. They explored the animal visual cortex and found con-
nections between activities in a small but well-defined area of the brain and activities
in small regions of the visual field. In some cases, it was even possible to pinpoint
exact neurons that were in charge of a part of the visual field. This led them to the
discovery of the receptive field, which is a concept used to describe the link between
parts of the visual fields and individual neurons which process the information.

The idea of a receptive field completes the third and final component we need to
build convolutional neural networks. But what were the other two part we have? The
first was a technical detail: flattening images (2D arrays) to vectors. Even though
most modern implementations deal readily with arrays, under the hood they are often
flattened to vectors. We adopt this approach in our explanation since it has less hand-
waiving, and enables the reader to grasp some technical details along the way. You
can see an illustration of flattening a 3 by 3 image in the top of Fig. 6.1. The second
component is the one that will take the image vector and give it to a single workhorse
neuron which will be in charge of processing. Can you figure out what can we use?

If you said ‘logistic regression’, you were right! We will however be using a
different activation function, but the structure will be the same. A convolutional
neural network is a neural network that has one or more convolutional layers. This
is not a hard definition, but a quick and simple one. There will be architectures using
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Fig. 6.1 Building a 1D convolutional layer with a logistic regression

convolutional layers which will not be called ‘convolutional neural networks’.1 So
now we have to describe what a convolutional layer is.

A convolutional layer takes an image2 and a small logistic regression with e.g.
input size 4 (these sizes are usually 4 or 9, sometimes 16) and passes the logistic
regression over the whole image. This means that the first input consists of compo-
nents 1–9 of the flattened vector, the second input are the components 2–10, the third
are components 3–11, and so on.You can see an overview of the process in the bottom
of Fig. 6.1. This process creates an output vector which is smaller than the overall
input vector, since we start at component 1, but take four components, and produce
a single output. The end result is that if we were to move along a 10-dimensional
vector with the logistic regression (this logistic regression is called local receptive
field in convolutional neural networks), we would produce a 7-dimensional output
vector (see the bottom of Fig. 6.1). This type of convolutional layer is called a 1D
convolutional layer or a temporal convolutional layer. It does not have to use a time
series (it can use any data, since you can flatten out any data), but the name is here
to distinguish it from a classical 2D convolutional layer.

We can take also a different approach and say we want the output dimension to
be same as the input, but then our 4-dimensional local receptive field would have to
start at input at ‘cells’−1, 0, 1, 2 and then continue to 0, 1, 2, 3, and so on, finishing
at 9, 10, 11 (you can draw it yourself to see why we do not need to go to 12). Putting

1Yann LeCun once told in an interview that he prefers the name ‘convolutional network’ rather than
‘convolutional neural network’.
2An image in this sense is any 2D arraywith values between 0 and 255. In Fig. 6.1we have numbered
the positions, and you may think of them as ‘cell numbers’, in the sense that they will contain some
value, but the number on the image denotes only their order. In addition, note that if we have e.g.
100 by 100 RGB images, each image would be a 3D array (tensor) with dimensions (100, 100, 3).
The last dimension of the array would hold the three channels, red, green and blue.
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in −1, 0 and 11 components to get the output vector to have the same size as the
input vector is called padding. The additional components usually get values 0, but it
sometimesmakes sense to take either the values of the first and last components of the
image or the average of all values. The important thing when padding is to think how
not to trick the convolutional layer in learning regularities of the padding. Padding
(and some other concepts we discussed) will become much more intuitive when we
switch from flattened vectors to non-flattened images. But before we continue, one
final comment. We moved the local receptive field one component at a time, but we
could move it by two or more.We could even experiment with dynamically changing
by how much we move, by moving quicker around the ends and slower towards the
centre of the vector. The parameter which says by how many components we move
the receptive field between taking inputs is called the stride of the convolutional
layer.

Let us review the situation in 2D, as if we did not flatten the image into a vector.
This is the classical setting for convolutional layers, and such layers are called 2D
convolutional layers or planar convolutional layers. If we were to use 3D, we would
call it spatial, and for 4D or more hyperspatial. In the literature is common to refer
to the 2D convolutional layer as ‘spatial’, but this makes one’s spider sense tingle.

The logistic regression (local perceptive field) inputs now should be also 2D, and
this is the reason why we most often use 4, 9 and 16, since they are squares of 2 by
2, 3 by 3 and 4 by 4 respectively. The stride now represents a move of this square
on the image, staring from left, going to the right and after it is finished, one row
down, move all the way to the left without scanning, and start scanning from left to
right (you can see the steps of this process on the top part of Fig. 6.2). One thing
that becomes obvious is that now we will get less outputs. If we use a 3 by 3 local

Fig. 6.2 2D Convolutional layer
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receptive field to scan a 10 by 10 image, as the output from the local receptive fieldwe
will get an 8 by 8 array (see bottom part of Fig. 6.2). This completes a convolutional
layer.

A convolutional neural network has multiple layers. Imagine a convolutional neu-
ral network consisting of three convolutional layers and one fully connected layer.
Suppose it will be processing an image of size 10 and that all three layers have a
local receptive field of 3 by 3. Its task is to decide whether a picture has a car in it or
not. Let us see how the network works.

The first layer takes a 10 by 10 image, produces an output (it has randomly initial-
ized weights and bias) of size 8 by 8, which is then given to the second convolutional
layer (which has its own local receptive field with randomly initialized weights and
biases but we have decided to have it also 3 by 3), which produces an output of
size 6 by 6, and this is given to the third layer (which has a third local receptive
field). This third convolutional layer produces a 4 by 4 image. We then flatten it to a
16-dimensional vector and feed it to a standard fully-connected layer which has one
output neuron and uses a logistic function as its nonlinearity. This is actually another
logistic regression in disguise, but it could have had more than one output neuron,
and then it would not be a proper logistic regression, so we call it a fully-connected
layer of size 1. The input layer size is not specified and it is assumed to be equal to
the output of the previous layer. Then, since it uses the logistic function, it produces
an output between 0 and 1 and compares its output to the image label. The error is
calculated and backpropagated, and this is repeated for every image in the dataset
which completes the training of the network.

Training a convolutional layer means training the local receptive fields of the
layers (and weights and biases of fully-connected layers). It has a single bias, and
small number of weights (equal to the number of units in the local receptive field).
In this respect, it is just like a small logistic regression, and that is what makes
convolutional networks quick to train–they have only a small number of parameters
to learn. The main structural difference between a logistic regression and a local
receptive field is that in a local receptive field we can use any activation function
and in logistic regression we are supposed to use the logistic function (if we want to
call it ‘logistic regression’). The activation function which is most often used is the
rectified linear unit or ReLU. A ReLU of x is simply the maximal value of 0 and x ,
meaning that it will return a 0 if the input is negative or the raw input otherwise. In
symbols:

ρ(x) = max(x, 0) (6.1)

Padding in 2D is simply a ‘frame’ of n pixels around the image. Note that it does
not make much sense to use a padding of say 3 (pixels) if we use only a 3 by 3 local
receptive field, since it will only go one pixel over the image border.
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6.2 Feature Maps and Pooling

Now that we know how a convolutional neural network works, we can use a trick.
Recall that a convolutional layer scans a 10 by 10 image with an e.g. 3 by 3 local
receptive field (9 weights, 1 bias) and builds a new 8 by 8 ‘image’ as the output.
Imagine also that the image has three channels for colours. How would you process
an image with three channels? A natural answer is to run over the same receptive
field (which has trainable but randomly initialized weights and bias). This is a good
strategy. But what if we invert it, and instead of using one local receptive field over
three channels,wewant to use five local receptive fields over one channel?Remember
that a local receptive field is defined by its size and by its weights and bias. The idea
here is to keep the same size but initialize the other receptive fields with different
weights and biases.

This means that when they scan a 10 by 10 3-channel image, they will construct
15 8 by 8 output images. These images are called feature maps. It is like having
an 8 by 8 image with 15 channels. This is very useful since only one feature map
which learns a good representation (e.g. eyes and noses on pictures of dogs) will
boost considerably the overall accuracy of the network3 (suppose that the task for
the whole network was to classify images of dogs and various non-dog objects (i.e.
detecting a dog in an image)).

One of the main ideas here is that a 10 by 10 3-channel image turns into an 8 by 8
15-channel image. The input imagewas transformed into a smaller but deeper object,
and this will happen in every convolutional layer.4 Getting the image smaller, means
packing the information in a more compact (but deeper) representation. In our quest
for compactness, we may add a new layer after or before a convolutional layer. This
new layer is called a max-pooling layer. The max-pooling layer takes a pool size as
a hyperparameter, usually 2 by 2. It then processes its input image in the following
way: divide the image in 2 by 2 areas (like a grid), and take from each four-pixel
pool the pixel with the maximal value. Compose these pixels into a new image, with
the same order as the original image. A 2 by 2 max-pooling layer produces an image
that is half the size of the original image (it does not increase the channel number).
Of course, instead of the maximum, a different pixel selection or creation can be
devised, such as the average of the four pixels, the minimum, and so on.

The idea behind max-pooling is that important information in a picture is seldom
contained in adjacent pixels (this accounts for the ‘pick-one-out-of-four’ part), and it
is often contained in darker pixels (this accounts for using the max). You may notice
right away that this is a very strong assumption which may not be generally valid.
It must be said that max-pooling is rarely used on images themselves (although it
can be used), but rather on learned feature maps, which are images but they are very

3Here you might notice how important is weight initialization. We do have some techniques that
are better than random initialization, but to find a good weight initialization strategy is an important
open research problem.
4If using padding we will keep the same size, but still expand the depth. Padding is useful when
there is possibly important information on the edges of the image.
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peculiar images. You can try to modify the code in the section below to print out
featuremapswhich come out of a convolutional layer.5 You can think ofmax-pooling
in terms of decreasing the screen resolution. In general, if you recognize a dog on
a 1200 by 1600 image, you will probably recognize him on a grainer 600 by 800
image.

Usually a convolutional neural network is composed of a convolutional layer
followed by a max-pooling layer, followed by a convolutional layer, and so on. As
the image goes through the network, after a number of layers, we get a small image
with a lot of channels. Then we can flatten this to a vector and use a simple logistic
regression at the end to extract which parts are relevant for our classification problem.
The logistic regression (this time with the logistic function) will pick out which parts
of the representation will be used for classification and create a result which will be
compared with the target and then the error will be backpropagated. This forms a
complete convolutional neural network. A simple but fully functional convolutional
network with four layers is shown in Fig. 6.3.

Whyare convolutional neural networks easier to train?The answer is in the number
of parameters used. A five-layer deep fully connected neural network forMNIST has
a lot ofweights,6 throughwhichweneed tobackpropagate.Afive-layer convolutional
network (containing only convolutional layers) with all receptive fields of 3 by 3 has
45 weight and 5 biases. Notice that this configuration can be used for arbitrarily large
images: we do not have to expand the input layer (which is a convolutional layer in
our case), but we will need more convolutional layers then to shrink the image. Even
if we add feature maps, the training of each feature map is independent of the other,
i.e. we can train it in parallel. This makes the process not only computationally fast,
but we can also split it across many processors. By contrast, to backpropagate errors

Fig. 6.3 A convolutional neural network with a convolutional layer, a max-pooling layer, a
flattening layer and a fully connected layer with one neuron

5You have everything you need in this book to get the array (tensor) with the feature maps, and
even to squash it to 2D, but you might have to search the Internet to find out how to visualize the
tensor as an image. Consider it a good (but advanced) Python exercise.
6If it has 100 neurons per layer, with only one output neuron, that makes the total of 784 · 100+
100 · 100+ 100 · 100+ 100 · 1 = 98500 parameters, and that is without the biases!.



6.2 Feature Maps and Pooling 127

through a regular feed-forward fully connected network is highly sequential, since
we need to have the derivatives of the outer layers to compute the derivatives of the
inner layers.

6.3 A Complete Convolutional Network

We now show a complete convolutional neural network in Python. We are using the
library Keras, which gives us the ability to build neural networks from components,
without having to worry too much about dimensionality. All the code here should
be placed in one Python file and then executed in the terminal or command prompt.
There are other ways to run Python code, and feel free to experiment with them—
nothing will break. The first part of the code which should be placed in the file
handles the imports from Keras and Numpy:

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras.datasets import mnist

(train_samples, train_labels), (test_samples, test_labels) = mnist.load_data()

You might notice the we are importing MNIST from the Keras repository. The
last line of this code loads training samples, training labels, test samples and test
labels in four different variables. Most of the code in this Python file will actually be
used for formatting (or preprocessing) MNIST data to meed the demands which it
must fulfill to be fed into a convolutional neural network. The next part of the code
processes the MNIST images:

train_samples = train_samples.reshape(train_samples.shape [0], 28, 28, 1)

test_samples = test_samples.reshape(test_samples.shape [0], 28, 28, 1)

train_samples = train_samples.astype(’float32’)

test_samples = test_samples.astype(’float32’)

train_samples = train_samples/255

test_samples = test_samples/255

First notice that the code is actually duplicated: all operations are performed on
both the training set and the testing set, and we will comment only one (we will
talk about the training set), the other one functions in the same manner. The first
line of this block of code reshapes the array which holds MNIST. The result of
this reshaping is a (60000, 28, 28, 1)-dimensional array.7 The first dimension is
simply the number of samples, the second and the third are here to represent the 28

7Which is, mathematically speaking, a tensor.
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by 28 dimension of the images, and the last one is the channel. It could be RGB,
but MNIST is in greyscale, so this might seem redundant, but the whole point of
reshaping the array (the initial dimension was (60000, 28, 28)) was actually to add
the final dimension with 1 component in it. The reason behind this is that as we
progress through convolutional layers, feature maps will be added in this direction,
so we need to prepare the tensor to be able to accept it. The third row declares the
entries in the array to be of type float32. This simply means that they are to be
treated as decimal numbers. Python would to his automatically, but Numpy, which
speeds up computation drastically, needs type declarations, so we have to put this
line in. The fifth line normalizes array entries from a range of 0 to 255 to a range
between 0 and 1 (to be interpreted as the percentage of grey in a pixel). That takes
care of the samples, now we must preprocess the labels (digits from 0 to 9) with one
hot encoding. We do this with the following code:

c_train_labels = np_utils.to_categorical(train_labels, 10)

c_test_labels = np_utils.to_categorical(test_labels, 10)

With that we are finished preprocessing the data and we may continue to build
the actual convolutional neural network. The following code specifies the layers:

convnet = Sequential()

convnet.add(Convolution2D(32, 4, 4, activation=’relu’, input_shape=(28,28,1)))

convnet.add(MaxPooling2D(pool_size=(2,2)))

convnet.add(Convolution2D(32, 3, 3, activation=’relu’))

convnet.add(MaxPooling2D(pool_size=(2,2)))

convnet.add(Dropout(0.3))

convnet.add(Flatten())

convnet.add(Dense(10, activation=’softmax’))

The first line of this block of code creates a new blank model, and the rest of the
lines here fill the network specification. The second line adds the first layer, in this
case it is a convolutional layer, which has to produce 32 feature maps, has ReLU as
the activation function and has a 4 by 4 receptive field. For the first layer, we also
have to specify the input dimensions for each training sample that we will be giving
it. Notice that Keras takes the first dimension of an array to represent individual
training samples and chops up (parses) the dataset along it, so we do not need to
worry about giving a (65600, 28, 28, 1) tensor instead of a (60000, 28, 28, 1) after
we have specified that it takes input_shape=(28, 28, 1), but the code will
crash if we give it a (60000, 29, 29, 1) or even a (60000, 28, 28) dataset. The third
row defines a max pooling layer with a pool size of 2 by 2. The next line specifies
a third layer, which is a convolutional layer, this time with a receptive field of 3 by
3. Here we do not have to specify the input dimensions, Keras will do that for us.
Following that we have another max pooling layer, also with a pool size of 2 by 2.

After this we have a dropout ‘layer’. This is not a real layer, but only amodification
of the connections between the previous and the following layer. The connections are
modified to include a dropout rate of 0.3 for all connections. The next line flattens the
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tensor. This is a generalized version of the process which we described for translating
fixed-size matrices into a vector,8 only here it is generalized for arbitrary tensors.

The flattened vector is then fed into the final layer (the final line of code in this
block) which is a standard fully-connected feed-forward layer,9 accepting as many
inputs as there are components in the flattened vector, and outputting 10 values
(10 output neurons), where each of them will represent one digit and it will output
the respective probability. Which of them represents which digit is actually defined
only by the order we had when we did one-hot encoding of the labels.

The softmax activation function used in the final layer is a version of the logistic
function for more than two classes, but we will describe it in the later chapters, for
now just think of it as a logistic function for many classes (we have one class for
each label 0–9). Now we have a model specified, and we must compile it. Compiling
a model means that Keras can now deduce and fill in all the necessary details we
did not specify such as the input size for the second convolutional layer, or the
dimensionality of the flattened vector. The next line of code compiles the model:

convnet.compile(loss=’mean_squared_error’, optimizer=’sgd’, metrics=[’accuracy’])

Here we can see that we have specified the training method to be ’sgd’ which
is stochastic gradient descent, with MSE as the error function. We have also asked
the Keras to calculate the accuracy when training. The next line of code trains the
compiled model:

convnet.fit(train_samples, c_train_labels, batch_size=32, nb_epoch=20, verbose=1)

This line of code trains the model using train_samples as training samples
and c_train_labels as training labels. It also uses a batch size of 32 and trains
for 20 epochs. The ‘verbose’ flag is set to 1whichmeans that it will print out details of
training. And now we continue to the final part of the code which prints the accuracy
and makes predictions from what it has learned for a new set of data:

metrics = convnet.evaluate(test_samples, c_test_labels, verbose=1)

print()

print("%s: %.2f%%" % (convnet.metrics_names[1], metrics[1]*100))

predictions = convnet.predict(test_samples)

The last line is important. Here we have put test_samples, but if you
want to use it for predictions, you should put some fresh samples here, bearing
in mind that they have to have exactly the same dimensions as test_samples
asides from the first dimension, which holds individual training samples and along
which Keras parses the dataset. The variable predictions will have exactly
the same dimensionality as c_test_labels asides from the first dimension,
but the first dimension of test_samples and c_test_labels will be the
same (since they are predicted labels for that set of samples). You can add a
line to the end saying print(predictions) to see the actual predictions, or

8Remember how we can convert a 28 by 28 matrix into a 784-dimensional vector.
9Keras calls them ‘Dense’.



130 6 Convolutional Neural Networks

print(predictions.shape) to see the dimensionality of the array stored in
predictions. These 29 lines of code (or 30 if you added one of the last ones)
form a fully functional convolutional network.

6.4 Using a Convolutional Network to Classify Text

Even though the standard setting for a convolutional neural network is pattern recog-
nition in images, convolutional neural networks can also be used to classify text. A
standard approach is to use characters instead of words as primitives, and then try to
map a representation of text on a character level to a higher level idea like positive
or negative sentiment. This is very interesting since it allows to do a considerable
amount of language processing from raw text, without any fancy feature engineer-
ing or a knowledge-heavy logical system—just learning from the letters used. In
this section, we explore the now classical paper by Xiang Zhang, Junbo Zhao and
Yann LeCun titled Character-level Convolutional Networks for Text Classification
[3]. The paper itself is considerably more rich than what we present here, but we will
be showing the bare bones of the approach that the authors used. We do this to help
the reader to understand how to read research papers, and we strongly encourage the
reader to download a copy of the paper from arxiv.org/abs/1509.01626
and compare the text with what we write here. There will be a couple more sections
like this, all with the same aim, to help the student understand papers we consider
to be especially interesting. Of course, there are many more seminal and interesting
papers, but we had to pick only a couple, but we encourage the reader to find more
and work through them by herself.

The paper Character-level Convolutional Networks for Text Classification uses
convolutional neural networks to classify text. One of the tasks the authors explore
is the Amazon Review Sentiment Analysis. This is the most widely used sentiment
analysis dataset, and it is available from a variety of sources, perhaps the best one
being https://www.kaggle.com/bittlingmayer/amazonreviews. You will need a bit of
formatting to get it to run, and getting this to work will be a great data wrangling
exercise. Every line in these files has a review together with a label at the beginning.
Two samples from the raw file are (you can conclude which label is which, there are
only these two):

__label__1 Waste of money!

__label__2 Great book for travelling Europe:

The authors use a couple of architectures, and we focus on the larger one. The
network uses 1D convolutional layers. Note that here we will have an example of a
1D convolutional layer processing a m × n matrix rather than a vector. This is the
same as processing a vector, since the 1D convolutional layer will behave in the same
way, except it will take all m rows in a pass instead of a single one as it would if it

https://www.kaggle.com/bittlingmayer/amazonreviews
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were a vector. The ‘width’ of the local receptive field remains a hyperparameter, as
does the stride. The stride here is 1 throughout the paper.

The first layer of the network used in the paper is of size 1024, with a local
receptive field (called ‘kernel’ in the paper) of 7, followed by a pooling layer with a
pool of size 3. This all is called ‘layer 1’ in the paper. The authors consider pooling to
be a part of the convolutional layer, which is ok, but Keras treats pooling as a separate
layer, so we will re-enumerate the layers here so that the reader can recreate them
in Keras. The third and fourth level are the same as the first and second. The fifth,
sixth, seventh and eighth layer are the same as the first layer (they are convolutional
layers with no pooling), the ninth layer is a max pooling layer with a pool of 3 (i.e.
it is like the second layer). The tenth layer is a flattening layer, and the eleventh and
twelfth layers are fully-connected layers of size 2048. The final layer’s size depends
on the number of classes used. For sentiment this is ‘positive’ and ‘negative’, so we
may use a logistic function with a single output neuron (all other layers use ReLUs).
If we were to have more classes, we would use softmax, but we will do this in the
later chapters. There are also two dropout layers between the three fully-connected
layers and special weight initializations, but we ignore them here.

So now we have explained the task, shown you where to find the dataset with the
data and labels, and explored the network architecture. What is left to do is to see
how to feed the data to the network, and for this, we need encoding. The encoding
is the trickiest part of this paper.10

Let us see how the authors encode the text. We have already noted that they use a
character based approach, sowe have to specifywhich characters to use, i.e.whichwe
shall leave in the text and which we will remove. The authors substitute all uppercase
letters for lower ones, and keep all the 26 letters of the English alphabet as valid
characters. In addition, they keep the ten digits and 33 other characters (including
brackets, $, #, etc.). They total to 69. They keep also the new line character, often
denoted as \n. This is the character that the Enter or Return key produces when hit.
You do not see it directly, but the computer produces a new line. This means that the
vocabulary size is 69, and we shall denote this by M .

The length of the particular review as a string is denoted by L . The review (without
the label part) will be one-hot-encoded (aka 1-of-M encoding) using characters,
but there is a twist. To make the system behave like human memory, every string
is reversed, so Waste of money! will become !yenom fo etsaW. To see
a complete example, imagine we have only allowed a, b, c, d and S as allowed
characters,11 where the S simply represents whitespace, since leaving it as a space
would probably cause confusion (andwe have used the for Python code indentation).
Suppose the text of the review is ‘abbaScadd’, and L f inal = 7. First, the reverse it
to ‘ddacSabba’, and then cut it to have a length of 7, to get ‘ddacSab’. Then we use
one hot encoding to get an M by L f inal matrix to represent this input sample:

10Trivially, every paper will have a ‘trickiest part’, and it is your job to learn how to decode this
part, since it is often the most important part of the paper.
11Since the whole alphabet will not fit on a page, but you can easily imagine how it will expand to
the normal English alphabet.
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a 0 0 1 0 0 1 0
b 0 0 0 0 0 0 1
c 0 0 0 1 0 0 0
d 1 1 0 0 0 0 0
S 0 0 0 0 1 0 0

If on the other hand we had the review ‘bad’ and L f inal = 7, we would first
reverse it to ‘dab’ and then put it in the left of the M by L f inal matrix and pad the
rest of the columns with zeros:

a 0 1 0 0 0 0 0
b 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0
d 1 0 0 0 0 0 0
S 0 0 0 0 0 0 0

But for a convolutional neural networks, all input matrices must have the same
dimension, so we have an L f inal . All inputs for which L > L f inal are clipped to
L f inal and all of the inputs for which L f inal > L are padded by adding enough zeros
to the right side to make their length exactly L f inal . This is why the authors used the
reversing, so that we loose only the more remote information at the beginning when
clipping, and not the more recent one at the end.

We might ask how to make a Keras-friendly dataset from these? The first task is
to view them as a tensor. This just means to collect all of the M by L f inal matrices
and add a third dimension along which they will be ‘glued’. This simply means if we
have 1000 M by L f inal matrices, that we will make one M by L f inal by 1000 tensor.
Depending on the implementation you will use, it might make sense to make a 1000
by M by L f inal tensor. Now initialize this tensor (a 3D Numpy array) with all zeros,
and devise a function which will put a 1 where it should be. Try to write Keras code
which implements this architecture. As always, if you get stuck, StackOverflow it.
If you have never done anything similar before, it might take you even a week12 to
get it to work, even though the end result does not have many lines of code. This is
a great exercise in deep learning, so don’t skip it.
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7.1 Sequences of Unequal Length

Let us take bird’s eye view of things. Feedforward neural networks can process
vectors, and convolutional neural networks canprocessmatrices (which are translated
into vectors). How would we process sequences of unequal length? If we are talking
about, e.g. images of different sizes, then we could simply re-scale them to match.
If we have a 800 by 600 image and a 1600 by 1200, it is obvious we can simply
resize one of the images. We have two options. The first option is to make the bigger
picture smaller. We could do this in two ways: either by taking the average of four
pixels, or by max-pooling them. On the other hand, we can similarly make the image
bigger by interpolating pixels. If the images do not scale nicely, e.g. one is 800 by
600 an the other is 800 by 555, we can simply expand the image in one direction.
The deformations made will not affect the image processing since the image will
retain most of the shapes. A case where it would affect the neural network would be
if we were to build a classifier to discriminate between ellipses and circles and then
resize the images, since that would make circles look like ellipses. Note, that if all
matrices, we analyse are of the same size they can be represented by long vectors, as
we have seen in the section on MNIST. If they vary in size, we cannot encode them
as vectors and keep the nice properties since the rows would be of different lengths.
If all images are 20 by 20, then we can translate them in a vector of size 400. This
means that the second pixel in the third row of the image is the 43 component of the
400-dimensional vector. If we have two images one 20 by 20 and one 30 by 30, then
the 43rd component of the ?-dimensional vector (suppose for a second that we can
fit a dimensionality here somehow), would be the second pixel in the third row of the
first image and the thirteenth pixel of the second row of the second image. But, the
real problem is how to fit vectors of different dimensions (400 and 300) in a neural
network. Everything we have seen so far, needs a fixed-dimensional vectors.

© Springer International Publishing AG, part of Springer Nature 2018
S. Skansi, Introduction to Deep Learning, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-73004-2_7
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The problem of varying dimensionality can be seen as the problem of learning
sequences of unequal length, and audio processing is a nice example of how we
might need this, since various audio clips are necessarily of different lengths. We
could in theory just take the longest and then make all others of the same length as
that one, but this is waste in terms of the space needed. But there is a deeper problem
here. Silence is a part of language, and it is often used for communicating meaning,
so a sound clip with some content labeled with the label 1 in the training set might
be correct, but if add 10 s of silence at the beginning or the end of the clip, the
label 1 might not be appropriate anymore, since the clip with the silence may have
a different meaning. Think about irony, sarcasm and similar phenomena.

So the question is what we can do? The answer is that we need a different nerural
network architecture than we have seen before. Every neural network we have seen
so far has connections which push the information forward, and this is why we have
called them ‘feedforward neural networks’. It will turn out that by having connections
that feed the output back into a layer as inputs, we can process sequences of unequal
length. This makes the network deep, but it does share weights so it partly avoids
the vanishing gradient problem. Networks that have such feedback loops are called
recurrent neural networks. In the history of recurrent neural networks, there is an
interesting twist. As soon as the idea of the perceptron did not seem good, the idea
of making a ‘multi-layer perceptron’ seemed natural. Remember that this idea was
theoretical and predated backpropagation (which was widely accepted after 1986),
which means that no one was able to make it work back then. Among the theoretical
ideas explored was adding a single layer, addingmultiple layers and adding feedback
loops, which are all natural and simple ideas. This was before 1986.

Since backpropagation was not yet available, J. J. Hopfield introduced the idea of
Hopfield networks [1], which can be thought of the first successful recurrent neural
networks. We will explore them in detail in Chap.10. They were specific since they
were different from what we consider today to be recurrent neural networks. The
most important recurrent neural networks are the long short-term memory networks
or LSTMs which were invented in 1997 by Hochreiter and Schmidhuber [2]. To this
day, they remain the most widely used recurrent neural networks and are responsible
formany state-of-the-art results in various fields, from speech recognition tomachine
translation. In this chapter, we will focus on developing the necessary concepts to
explain the LSTM in detail.

7.2 TheThree Settings of Learning with Recurrent Neural
Networks

Let us return a bit to the naive Bayes classifier. As we saw in Chap.3, the naive Bayes
classifier calculates P(target | f eatures) after we calculate P( f eature1|target),
P( f eature2|target), etc., from the dataset. This is how the naive Bayes clas-
sifier works, but all classifiers (supervised learning algorithms) try to calculate
P(target | f eatures) or P(t|x) in some way. Recall that any predicate P such that

http://dx.doi.org/10.1007/978-3-319-73004-2_10
http://dx.doi.org/10.1007/978-3-319-73004-2_3
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(i) P(A) ≥ 0, (ii) P(�) = 1, where � is the possibility space and (iii) for all disjoint
An , n ∈ N, P(

⋃∞
n=1 An) = ∑∞

n=1 P(An) is a probability predicate. Moreover, it is
the probability predicate (try to work out the why by yourself).

Taking the probabilistic interpretation to analyze the machine learning algorithms
from a bird’s-eye perspective, we could say that what a supervised machine learning
algorithm does is calculate P(t|x) (where x denotes an input vector, and t denotes
the target vector1). This is the classic setting, simple supervised learning with labels.

Recurrent neural networks can learn in this standard setting by simply digesting
a lot of labelled sequences and then they predict the label of each finished sequence.
An example might be classifying audio clips according to emotions. But recurrent
neural networks are capable of much more. They can also learn from sequences with
multiple labels. Imagine an industrial robotic arm that we wish to train to perform
a task. It has a multitude of sensors and it has to learn directions (for simplicity
suppose we have only four, North, South, East and West). The training set is then
produced with movement sequences, each consisting of a string of directions, e.g.
x1Nx2Nx3Wx4Ex5Wx6W or just x1Nx2W . Notice how different this is from what
we have seen before. Here we have a sequence of sensor data (xi ) andmovements (N ,
E , S orW , wewill denote themby D). Notice that it would be a very bad idea to break
up the sequences in xD pieces, since a movement of the form xNxN might happen
most often when broken, it might make sense only in the beginning of the sequence
(e.g. as a ‘get out of the dock’ command) and in any other case it would be disastrous.
Sequences cannot be broken, and it is not enough to know the previous state to be
able to predict the next. The idea that the next state depends only on the current is
known as the Markov assumption, and one of the greatest strengths of the recurrent
neural networks is that they do not need to make the Markov assumption—they can
model more complex behaviour. This means that the recurrent network learns from
uneven sequences whose parts are labelled and it creates a bunch of labels when it
predicts over an unknown vector. This we will call sequential setting.

There is a third setting which is an evolved form of the sequential setting and we
can call it the predict-next setting. This setting does not need labels at all and it is
commonly used for natural language processing. Actually, it has labels, but they are
implicit. The idea is that for every input sequence (sentence), the recurrent network
breaks it down to subsequences and use the next word as the target. We will need
special tokens for the start and end of the sentence, which we must put in manually,
and we denote them here by $ (‘start’) and & (‘end’). If we have a sentence ‘All I
want for Christmas is you’, then we first have to transform it into ‘$ all I want for
Christmas is you &’.2 Then the sentence is broken into inputs and targets, which we
will denote as (‘input string’,‘target’):

1In machine learning literature, it is common to find the notation ŷ, which denotes the results from
the predictor, and y is kept for denoting target values. We have used a different notation, more
common to deep learning, where y denotes the outputs from the predictor, and t is used to denote
actual values or targets.
2Notice which capital letters we kept and try to conclude why.
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• (‘$’,‘all’)
• (‘$ all’,‘I’)
• (‘$ all I’,‘want’)
• (‘$ all I want’, ‘for’)
• (‘$ all I want for’, ‘Christmas’)
• (‘$ all I want for Christmas’, ‘is’)
• (‘$ all I want for Christmas is’, ‘you’)
• (‘$ all I want for Christmas is you’, ‘&’).

Then, the recurrent network will learn how to return the most likely next word
after hearing a word sequence. This means that the recurrent network is learning a
probability distribution from the inputs, i.e. P(x), which actually makes this unsu-
pervised learning, since there are no targets. Targets here are synthesized from the
inputs.

Note that we will usually want to limit how many words we want to look back
(i.e. the word-wise length of the ‘input string’ part). Notice that this is actually quite
a big deal since this can be seen as a question answering capability, which is the
basis of the Turing test, and this is a step towards not just a useful tool, but also
towards general AI. But, we have to make one tiny adjustment here. Notice that if
the recurrent network learns which is the most probable word following a sequence,
it might become repetitive. Imagine that we have the following five sentences in the
training set:

• ‘My name is Cassidy’
• ‘My name is Myron’
• ‘My name is Marcus’
• ‘My name is Marcus’
• ‘My name is Marcus’.

Now, the recurrent neural network would conclude that P(Marcus) = 0.6,
P(Myron) = 0.2 and P(Cassidy) = 0.2. So when given a sequence ‘My name is’
it would always pick ‘Marcus’ since it has the highest probability. The trick here is
not to let it pick the one with the highest probability, but rather the recurrent neural
network should build a probability distribution for every input sequence with the
individual probabilities of all outcomes and then randomly sample it. The result will
be that in 60% of the time it will give ‘Marcus’ but sometimes it will also produce
‘Myron’ and ‘Cassidy’. Note that this actually solves quite a bit of problems which
might arise. If it were not so, we would have always the same response to the same
sequences of words. Now that we have given a quick black box view, it is time to
dig deep into the mechanics of recurrent neural networks.
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7.3 Adding Feedback Loops and Unfolding a Neural Network

Let us now see how recurrent neural networks work. Remember the vanishing gra-
dient problem? There we have seen that adding layers one after the other would
severely cripple the ability to learn weights by gradient descent, since the move-
ments would be really small, sometimes even rounded to zero. Convolutional neural
networks solved this problem by using a shared set of weights, so learning even
little by little is not a problem since each time the same weights get updated. The
only problem is that convolutional neural networks have a very specific architecture
making them best suited for images and other limited sequences.

Recurrent neural networks work not by adding new layers to a simple feedforward
neural network, but by adding recurrent connections on the hidden layer. Figure7.1a
shows a simple feedforward neural netwok and Fig. 7.1b shows how to add recurrent
connections to the simple feedforward neural network from Fig. 7.1a. The outputs
from a given layer are denoted by I,O andH for the simple feedforward network, and
by H1,H2,H3,H4,H5, . . . when we add recurrent connections. The weights in the
simple feedforward network are denoted by wx (input-to-hidden) and wo (hidden-
to-output). It is very important not to confuse multiple outputs from a hidden layer
with multiple hidden layers, since a layer is actually defined in terms of weights, i.e.
each layer has its own set of weights, and here all Hn share the same set of weights,
viz. wh . Figure7.1c is exactly the same as Fig. 7.1b with the only difference being
that we condensed the individual neurons (circles) into vectors (rectangles), which
we have been doing since Chap.3 in our calculations, but now we do it on the visual
display as well. Notice that to add the recurrent connection, we had to add a set of
weights, wh , to the calculation and this is all that is needed to add recurrence to the
network.

Note that the recurrent neural network can be unfolded so that the recurrent con-
nections are all specified. Figure7.2a shows the previous network and Fig. 7.2 shows
how to unfold the recurrent connections. Figure7.2c is the same as Fig. 7.2b but with

Fig. 7.1 Adding recurrent connections to a simple feedforward neural network

http://dx.doi.org/10.1007/978-3-319-73004-2_3
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Fig. 7.2 Unfolding a recurrent neural network

the proper and detailed notation used in the recurrent neural network literature, and
wewill focus on this representation for commenting on the fly how a recurrent neural
network works. The next section will use the sub-image C of Fig. 7.2 for reference,
and this will be our standard notation for the rest of the chapter.3

7.4 Elman Networks

Let us comment on the Fig. 7.2c.wx represent input weights,wh represent the recur-
rent connection weights and the wo the hidden-to-output weights. The xs are inputs,
and the ys are outputs, just like before. But here we have an additional sequential
nature, which tries to capture time. So x(1) is the first input, and later it gets x(2)
and so on. The same holds of outputs. If we have the classic setting, we would only
be using x(1) (to give the input vector) and y(4) to catch the (overall) output. But
for the sequential and predict-next settings, we would be using all xs and ys.

Notice that unlike the situation we had in simple feedforward networks, here we
also have the h, and they represent the inputs for the recurrent connection. We need
something to start with, and we can generate h(0) by simply setting all its entries to
0. We give an example calculation where it can be seen how to calculate all elements
and it will be much more insightful than giving a piece by piece calculation. By f ,
we will be denoting a nonlinearity, and you can think of it as the logistic function.
A bit later we will see a new nonlinearity called softmax, which can be used here
and has natural fit with recurrent neural networks. So, the recurrent neural network

3We used the shades of grey just to visually denote the gradual transition to the proper notation.
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calculates the output y at a final time t . The calculation can be unfolded to the
following recursive structure (which makes it clear why we need h(0)):

y(t) = f (w�
o h(t)) = (7.1)

= f (w�
o f (w�

h h(t − 1) + w�
x x(t))) = (7.2)

= f (w�
o f (w�

h f (w�
h h(t − 2) + w�

x x(t − 1)) + w�
x x(t))) = (7.3)

= f (w�
o f (w�

h f (w�
h f (w�

h h(t − 3) + w�
x x(t − 2)) + w�

x x(t − 1)) + w�
x x(t))).

(7.4)

We can make this more readable by condensing it to two equations:

h(t) = fh(w�
h h(t − 1) + w�

x x(t)) (7.5)

y(t) = fo(w�
o h(t)), (7.6)

where fh is the nonlinearity of the hidden layer, and fo is the nonlinearity of the
output layer, which are not necessarily the same function, but they can be the same
if we want. This type of recurrent neural network is called Elman networks [3], after
the linguist and cognitive scientist Jeffrey L. Elman.

If we change the h(t − 1) for y(t − 1) in Eq.7.5, so that it becomes as follows:

h(t) = fh(w�
h y(t − 1) + w�

x x(t)). (7.7)

We obtain a Jordan network [4], which are named after the psychologist, mathe-
matician and cognitive scientist Michael I. Jordan. Both Elman and Jordan networks
are known in the literature as simple recurrent networks (SRN for short). Simple
recurrent networks are seldom used in applications today, but they are the main
teaching method for explaining recurrent networks before running in the much more
complex LSTMs, which are the main recurrent architecture used today. It is very
easy to look down on SRNs today, but when they were first proposed, it became the
first model that could operate on words of a text without having to rely on an ‘alien’
representation such as the bag of words or n-grams. In a sense, those representations
seemed to suggest that language processing is something very foreign to a computer,
since people do not use anything like the Bag of words for understanding language.
The SRN made a decisive move towards the language processing as word sequence
processing paradigm we have today, and made the whole process much closer to
human intelligence. Consequently, SRNs should be considered a milestone in AI,
since they have made that crucial step: what previously seemed impossible was now
conceivable. But a couple of years later, a stronger architecture would come and take
over all practical applications, but this strength comes with a price: LSTMs are much
slower to train than SRNs.
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7.5 Long Short-TermMemory

In this section, we will give a graphical illustration of the workings of the long
short-term memory (LSTM), and the interested reader should have no problem in
coding LSTMs from scratch just by following our explanation and the accompanying
images. All images in the current section onLSTMs are reproduced fromChristopher
Olah’s blog.4 We follow the same notation as is used there (except from a couple of
minor details), and we omit the weights in Fig. 7.3 to simply exposition, but we will
add them when addressing individual components of the LSTM in the later images.
Since we know from Eq.7.5 that y(t) = fo(wo · h(t)) ( fo is the nonlinearity of
choice for the output layer), in this chapter y(t) is the same as h(t), but we still
point to the places, where h(t) is to be multiplied by wo to get y(t) by simply noting
y(t) = h(t). This is really not that important from a purely formal point of view, but
we hope to be more clear by holding a place for y(t).

Figure7.3 shows a bird’s-eye perspective on LSTMs and compares them to SRNs.
One thing that can be seen right away is that SRNs have one link from one unit to the
next (it is the flow of h(t)), whereas the LSTMs have the same h(t) but also C(t).
This C(t) is called the cell state, an this is the main flow of information through
the LSTMs. Figuratively speaking, the cell state is the ‘L’, the ‘T’ and the ‘M’ from
‘LSTM’, i.e. it is the long-term memory of the model. Everything else that happens
is just different filters to decide what should be kept or added to the cell state. The

Fig. 7.3 SRN and LSTM units zoomed

4http://colah.github.io/posts/2015-08-Understanding-LSTMs/,
accessed 2017-03-22.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Fig. 7.4 Cell state (a), forget gate (b), input gate (c) and output gate (d)

cell state is emphasized on Fig. 7.4a (for now you should ignore the f (t) and i(t) on
the image, you will see how they are calculated in a couple of paragraphs).

The LSTM adds or removes information from the cell with so-called gates, and
these make up the rest of the unit in an LSTM. The gates are actually very simple.
They are a combination of addition, multiplication and nonlinearities. The nonlin-
earities are used simply to ‘squash’ information. The logistic or sigmoid function
(denoted as SIGM in the images) is used to ‘squash’ information to values between
0 and 1, and the hyperbolic tangent (denoted as TANH in the images) is used to
‘squash’ the information to values between −1 and 1. You can think of it in the fol-
lowing way: SIGM makes a fuzzy ‘yes’/‘no’ decision, while TANH makes a fuzzy
‘negative’/‘neutral’/‘positive’ decision. They do nothing else except this.

The first gate is the forget gate, which is emphasized in Fig. 7.4b. The name ‘gate’
comes from analogies with the logic gates. The forget gate at unit t is denoted by
f (t), and is simply f (t) := σ(w f (x(t)+h(t−1))). Intuitively, it controls howmuch
of the weighted raw input and weighted previous hidden state is to be remembered.
Note that the σ is the symbol for the logistic function.

Regarding weights, there are different approaches, but we consider the most intu-
itive to be the onewhich breaks upwh into several different weights,w f ,wff ,wC and
wfff .5 The point to remember is that there are different ways to look at the weights
and some of them try to keep the same names as they had in simpler models, but the
most natural approach for deep learning is to think of an architecture as composed

5Notice that we are not quite precise here and that the w f in the LSTMs is actually the same as wx

in the SRN and not a component of the old wh .
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of basic ‘building blocks’ to be assembled together like LEGO® bricks, and then
each block should have its own set of weights. All of the weight in a complete neural
network are trained together with backpropagation and the joint training actually
makes a neural network a connected whole (like each LEGO brick normally has its
own studs to connect to other bricks to make a structure).

The next gate (emphasized in Fig. 7.4c), called the input gate, is a bit more com-
plex. It basically decides on what to put in the cell state. It is composed of another
forget gate (which we unimaginatively denote with ff (t)) but with different weights,
but it also has an additional module which creates candidates to be added to the cell
state. The ff (t) can be thought of as a saving mechanism, which controls how much
of the input we will save to the cell state. In symbols:

ff (t) := σ(wff (x(t) + h(t − 1))), (7.8)

i(t) := ff (t) · C∗(t). (7.9)

What we are missing is a calculation for the candidates (denoted by C∗(t)). Cal-
culating the candidates is pretty easy: C∗(t) := τ (wC · (x(t)+h(t −1))), where τ is
the symbol for the hyperbolic tangent or tanh. We are using the hyperbolic tangent
here to squash the results to values which range between −1 and 1. Intuitively, the
negative part of the range (−1 to 0) can be seen as a way to get quick ‘negations’,
so that even opposites would be considered to get, for example a quick processing
of linguistic antonyms.

As we have seen before, an LSTM unit has three outputs: C(t), y(t) and h(t). We
have all we need to compute the current cell state C(t) (this calculation is shown in
Fig. 7.4a):

C(t) := f (t) · C(t − 1) + i(t). (7.10)

Since y(t) = go(wo · h(t)) (where go is a nonlinearity of choice), all that is left
is to compute h(t). To compute h(t), we will need a third copy of the forget gate
(fff (t)), which will have the task of deciding which parts of the inputs and howmuch
of it to include in h(t):

fff (t) := σ(wfff (x(t) + h(t − 1))). (7.11)

Now, the only thing left for a complete output gate (whose result is actually not
o(t) but h(t)), we need tomultiply the fff (t) by the current cell state squashed between
−1 and 1:

h(t) := fff (t) · τ (C(t)). (7.12)

And now finally, we have the complete LSTM. Just a quick final remark: the
fff (t) can be thought of as a ‘focus’ mechanism which tries to say what is the most
important part of the cell state. You might think of f (t), ff (t) and fff (t), but the idea
is that they all participate in different parts and as such, we hope they will take on
the mechanism we want (‘remember from last unit’, ‘save input’ and ‘focus on this
part of the cell state’ respectively). Remember that this is only our wild hope, we
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have no way to ‘force’ this interpretation on the LSTM other than with the sequence
of calculations or flow of information we have chosen to use. This means that these
interpretations are metaphorical, and only if we have made a one-in-a-million lucky
guesstimate will these mechanisms actually coincide with the mechanisms in the
human brain.

The LSTMs have been first proposed by Hochreiter and Schmidhuber in 1997
[2], and they have become one of the most important deep architectures for natural
language processing, time series analysis and many other sequential tasks. Today
one of the best reference books on recurrent neural networks is [5], and we highly
recommend it for any reader that wishes to specialize in these amazing architectures.

7.6 Using a Recurrent Neural Network for Predicting Following
Words

In this section, we give a practical example of a simple recurrent neural network
used for predicting next words from a text. This sort of task is highly flexible, since
it allows not just predictions but also question answering—the (single word) answer
is simply the next word in the sequence. The example we use is a modification of
an example from [6], with ample comments and explanations. Some portions of
the original code have been modified to make the code easier to understand. As we
explained in the previous section, this is a working Python 3 code, but you will need
to install all dependencies. You should also be able to follow the ideas from the
code on chapter, but to see the subtleties, one needs to have the actual code on the
computer.6 We start by importing the Python libraries and we will be needing:

from keras.layers import Dense, Activation
from keras.layers.recurrent import SimpleRNN
from keras.models import Sequential
import numpy as np

The next thing is to define hyperparameters:

hidden_neurons = 50
my_optimizer ="sgd"
batch_size = 60
error_function = "mean_squared_error"
output_nonlinearity = "softmax"
cycles = 5
epochs_per_cycle = 3
context = 3

6Which you can get either from the book’s GitHub repository, or by typing in all the code in this
section in one simple file (.txt) and rename it to change its extension to .py.
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Let us take a minute and see what we are using. The variable hidden_neurons
simply states how many hidden units are we going to use. We use Elman units
here, so this is the same as the number of feedback loops on the hidden layer. The
variable optimizer defines which Keras optimizer we are going to use, and in this
case it is the stochastic gradient descent, but there are others,7 and we recommend to
experimentwith several optimizers just to get a feel.Note that "sgd" is aKeras name
for it, so youmust type it exactly like this, not"SGD", nor "stochastic_GD", nor
anything similar. Thebatch_size simply says howmany exampleswewill use for
a single iterationof the stochastic gradient descent. Thevariableerror_function
= "mean_squared_error" tells Keras to use the MSE we have been using
before.

But now we come to the activation function output_nonlinearity, and we
see something we have not seen before, the softmax activation function or nonlin-
earity, with its Keras name "softmax". The softmax function is defined as

ζ(z j ) := ez j
∑N

n=1 e
zk

, j = 1, . . . , N . (7.13)

The softmax is quite a useful function: it basically transforms a vector zwith arbitrary
real values to a vector with values ranging from 0 to 1, and they are such that they
all add up to 1. This is why the softmax is very often used in the final layer of
a deep neural network used for multiclass classification8 to get the output which
can be a probability proxy for the classes. It can be shown that if the vector z has
only two components, z0 and z1 (which would simulate binary classification) would
reduce exactly to the logistic function classification, only with the weight being
wσ = wζ1 −wζ0. We can now continue to the next part of the SRN code, bearing in
mind that the rest of the parameters we will comment when they become active in
the code:

def create_tesla_text_from_file(textfile="tesla.txt"):
clean_text_chunks = []
with open(textfile, ’r’, encoding=’utf-8’) as text:

for line in text:
clean_text_chunks.append(line)

clean_text = ("".join(clean_text_chunks)).lower()
text_as_list = clean_text.split()
return text_as_list

text_as_list = create_tesla_text_from_file()

This part of the code opens a plain text file tesla.txt, which will be used for
training and predicting. This file should be encoded in utf-8 or the utf-8 in the

7There is a full list on https://keras.io/optimizers/.
8Where we have more than two classes. Note that in binary classification were we have two classes,
say A and B, we actually do a classification (with, for e.g. the logistic function in the output layer)
in only one of them and get a probability score pA. The probability score of B is then calculated as
1 − pA.

https://keras.io/optimizers/
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code should be changed to reflect the appropriate file encoding. Note that most text
editors today distinguish ‘file encoding’ (actual encoding of the file) from ‘encoding’
(the encoding used to display text for that file in the editor). This approach will work
for files that are about 70% the size of the available RAM on the computer you are
using. Since we are talking about plain text files, having an 16GB machine and a
10GB file will work out well, and 10GB is a lot of plain text (just for comparison, the
whole English Wikipedia with metadata and page history in plain text has a size of
14GB). For larger datasets, we would take a different approach, namely to separate
the big file into chunks and consider them batches, and feed them one by one, but
the details of such big data processing are beyond the scope of this book.

Notice that when Python opens and reads a file, it returns it line by line, so we
are actually accumulating these lines in a list called clean_text_chunks. We
then glue all of these together in one big string called clean_text, and then cut
them into individual words and store it in the list called text_as_list, and this
is what the whole function create_tesla_text_from_file(textfile=
"tesla.txt") returns. The part (textfile="tesla.txt")means that the
function create_tesla_text_from_file() expects an argument (which is
refered to astextfile) butwe have provided a default value"tesla.txt". This
means that if we give a file name, it will use that, otherwise it will se"tesla.txt".
The final line text_as_list = create_tesla_text_from_file()
calls the function (with the default file name), and stores what the function has
returned in the variable text_as_list. Now, we have all of our text in a list,
where each individual element is a word. Notice that there may be repetitions of
words here, and that is perfectly fine, as this will be handled by the next part of the
code:

distinct_words = set(text_as_list)

number_of_words = len(distinct_words)

word2index = dict((w, i) for i, w in enumerate(distinct_words))

index2word = dict((i, w) for i, w in enumerate(distinct_words))

The number_of_words simply counts the number of words in the text. The
word2index creates a dictionary with unique words as keys and their position in
the text as values, and index2word does the exact opposite, creates a dictionary
where positions are keys and words are values. Next, we have the following:

def create_word_indices_for_text(text_as_list):

input_words = []

label_word = []

for i in range(0,len(text_as_list) - context):

input_words.append((text_as_list[i:i+context]))

label_word.append((text_as_list[i+context]))

return input_words, label_word

input_words,label_word = create_word_indices_for_text(text_as_list)

Now, it gets interesting. This is a function which creates a list of input words and
a list of label words from the original text, which has to be in the form of a list of
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individual words. Let us explain a bit of the idea. Suppose we have a tiny text ‘why
would anyone ever eat anything besides breakfast food?’. Then we want to make an
‘input’/‘label’ structure for predicting the next word, and we do this by decomposing
this sentence into an array:

Input word 1 Input word 2 Input word 3 Label word

why would anyone ever
would anyone ever eat
anyone ever eat anything
ever eat anything besides
eat anything besides breakfast
anything besides breakfast food?

Note that we have used three input words and declared the next one the label,
and then shifted for one word and repeated the process. How many input words we
use is actually defined by the hyperparameter context, and can be changed. The
function create_word_indices_for_text(text_as_list) takes a text
in the form of the list, creates the input words list and the label word list and returns
them both. The next part of the code is

input_vectors = np.zeros((len(input_words), context, number_of_words), dtype=np.int16)

vectorized_labels = np.zeros((len(input_words), number_of_words), dtype=np.int16)

This code produces ‘blank’ tensors, populated by zeros.Note that the term ‘matrix’
and ‘tensor’ come from mathematics, where they are objects that work with certain
operations, and are distinct. Computer science treats them both as multidimensional
arrays. The difference is that computer science places the focus on their structure: if
we iterate along one dimension, all elements along that dimension (properly called
‘axis’) have the same shape. The type of entries in the tensors will be int16, but
you can change this as you wish.

Let us discuss tensor dimensions a bit. The tensor input_vectors is techni-
cally called a third-order tensor, but in reality this is just a ‘matrix’ with three dimen-
sions, or simply a3Darray.Tounderstand thedimensionality of theinput_vectors
tensor note that first we have three words (i.e. a number of words defined by
context) to make a one-hot encoding of. Notice that we are technically using
a one-hot encoding and not a bag of words, since we have only kept distinct words
from the text. Since we have a one-hot encoding, this would expand a second dimen-
sion. This takes care of the context and number_of_words dimensions of the
tensor, and third one (in the code it is the first one, len(input_words)) is actu-
ally here just to bundle all inputs together, like we had a matrix holding all input
vectors in the previous chapters. The vectorized_labels is the same, only
here we do not have three or n words specified by the variable context, but only
a single one, the label word, so we need one less dimension in the tensor. Since we
have initialized two blank tensors, we need something to put the 1s in the appropriate
places, and the next part of the code does just that which is as follows:
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for i, input_w in enumerate(input_words):

for j, w in enumerate(input_w):

input_vectors[i, j, word2index[w]] = 1

vectorized_labels[i, word2index[label_word[i]]] = 1

It is a bit hard, but try to figure out for yourself how this code ‘crawls’ the tensors
and puts the 1s where they should be.9 Now, we have cleared all the messy parts,
and the next part of the code actually specifies the complete simple recurrent neural
network with Keras functions.

model = Sequential()

model.add(SimpleRNN(hidden_neurons, return_sequences=False,

input_shape=(context,number_of_words), unroll=True))

model.add(Dense(number_of_words))

model.add(Activation(output_nonlinearity))

model.compile(loss=error_function, optimizer=my_optimizer)

Most of the things that can be tweaked here are actually placed in the hyperparam-
eters. No change should be done in this part, except perhaps add a number of new
layers, which is done by duplicating the line or lines specifying the layer, in particular
the second line, or the third and fourth lines. The only thing left to do is to see how
well does the model work, and what does it produce as output. This is done by the
final part of the code which is as follows:

for cycle in range(cycles):

print("> − <" * 50)

print("Cycle: %d" % (cycle+1))

model.fit(input_vectors, vectorized_labels, batch_size = batch_size,

epochs = epochs_per_cycle)

test_index = np.random.randint(len(input_words))

test_words = input_words[test_index]

print("Generating test from test index %s with words %s:" % (test_index,

test_words))

input_for_test = np.zeros((1, context, number_of_words))

for i, w in enumerate(test_words):

input_for_test[0, i, word2index[w]] = 1

predictions_all_matrix = model.predict(input_for_test, verbose = 0)[0]

predicted_word = index2word[np.argmax(predictions_all_matrix)]

print("THE COMPLETE RESULTING SENTENCE IS: %s %s" % ("".join(test_words),

predicted_word))

print()

This part of the code trains and tests the complete SRN. Testing would usually be
predicting a part of data we held out (test set) and then measuring accuracy. But here

9This is perhaps the single most challenging task in this book, but do not skip it since it will be
extremely useful for a good understanding, and it is just four lines of code.
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we have the predict-next setting, which does not have labels, so we have to adopt a
different approach. The idea is to train and test in a cycle. A cycle is composed of a
training session (with a number of epochs) and then we generate a test sentence from
the text and see whether the word which the network gives makes sense when placed
after the words from the text. This completes one cycle. These cycles are cumulative,
and sentences will become more and more meaningful after each successive cycle.
In the hyperparameters we have specified that we will train for 5 cycles, each having
3 epochs.

Let us make a brief remark on what we have done. For computational efficiency,
most tools used for the predict-next make use of theMarkov assumption. Informally,
the Markov assumption means that we simplify a probability which would have
to consider all steps from the beginning of time, P(sn|sn−1, sn−2, sn−3, . . .), to a
probability which just considers the previous step P(sn|sn−1). If a system takes this
computational detour it is said to ‘use the Markov assumption’. If a process turns out
to be such that it really does not matter anything but the preceding state in time, it is
said to be aMarkov process. Language production is not a Markov process. Suppose
you are a classifier and you have a ‘training’ sentence: ‘We need to remember what is
important in life: friends, waffles, work. Or waffles, friends, work. Does not matter,
but work is third’. If it were a Markov process, and you could make the Markov
assumption without a big loss in functionality, you would be needing just one word
and you could tell which one follows. If you have ‘Does’, you can tell that in you
training set, after this it always comes ‘not’, and you would be right. But if you were
given ‘work’, youwould havemore trouble, but you could get awaywith a probability
distribution. But what if you did not have a predict-next setting, but your task was to
identify when the speaker got confused (i.e. when you try to dig into meaning). Then,
you would need all of the previous words for comparison. At many times you can
cut corners a bit and make the Markov assumption for non-Markov processes and
get away with it, but the point is that unlike many other machine learning algorithms,
recurrent neural networks do no have to make the Markov assumption, since they
are fully capable of handling many time steps, not just the last one.

There is one last thing we need to comment before leaving recurrent neural net-
works, an this is how backpropagation works. Backpropagation in recurrent neural
networks is called backpropagation through time (BPTT). In our code, we did not
have to worry about backpropagation since TensorFlow, which is the default back-
end for Keras calculated the gradients for us automatically, but let us see what is
happening under the hood. Remember that the goal in backpropagation is to calcu-
late the gradients of the error E with respect to wx , wh and wo.

When we we were talking of the MSE and SSE error functions, we have seen
that we resort to summing up the errors, and that this is good enough for machine
learning. We can also just sum up the gradients for each training sample at a given
point in time:

∂E

∂wi
=

∑

t

∂Et

∂wi
. (7.14)
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Let us see how this works in a whole example. Say, we want to calculate the
gradient for E2:

∂E2

∂wo
= ∂E2

∂y2

∂y2
∂z2

∂z2
∂wo

. (7.15)

This means that for wo the time component plays no part. As expected, for wh

(wx is similar) it is a bit different which is as follows:

∂E2

∂wh
= ∂E2

∂y2

∂y2
∂h2

∂h2
∂wh

. (7.16)

But remember that h2 = fh(whh1 + wxx2) which means the whole expression
depends on h1, so if we want the derivative with respect to wh we cannot treat it as
a constant. The proper way to do it is to split the last term into a sum as follows:

∂h2
∂wh

=
2∑

i=0

∂h2
∂hi

∂hi
∂wh

. (7.17)

So, except for the summation, backpropagation through time is exactly the same as
standard backpropagation. This simplicity of calculation is actually the reason why
SRNs are more resistant to the vanishing gradient than a feedforward network with
the same number of hidden layers. Let us address a final issue. The error function we
have previously used was MSE, and this is a valid choice for regression and binary
classification. A better choice for multi-class classification is the cross-entropy error
function, which is defined as

CE = −1

n

∑

i∈curr Batch
(ti ln yi + (1 − yi ) ln(1 − yi )). (7.18)

Where t is the target, y is the classifier outcome, i is the dummy variable which
iterates over the current batch targets and outputs, and n is the number of all samples
in the batch. The cross-entropy error function is derived from the log-likelihood,
but this derivation is rather tedious and beyond our needs so we skip it. The cross-
entropy is a more natural choice of error functions, but it is less straightforward
to understand conceptually, so we used the MSE throughout this book, but you
will want to use the CE for all multiclass classification tasks. The Keras code is
loss=categorical_crossentropy, but feel free to browse all loss functions
https://keras.io/losses/, you might be surprised to find some functions

https://keras.io/losses/
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whichwewill discuss in a different context can also be used as a loss or error function
in neural network training. In fact, finding or defining a good loss function is often
a very important part of getting a good accuracy with a deep learning model.
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8Autoencoders

8.1 Learning Representations

In this and the next chapter we turn our attention to unsupervised deep learning,
also known as learning distributed representations or representation learning. But
first we need to fill in a blank we had from Chap.3. There we discussed PCA as a
form of learning distributed representations, and formulated the problem as finding
Z = XQ, where all features have been decorrelated. Here we will calculate the
matrix Q. We will need to have a covariance matrix of X . The covariance matrix
of a given matrix shows the entries of the original matrix. The covariance of two
random variables X and Y is defined asCOV (X, Y ) := E((X − E(X))(Y − E(Y )))

and show how two random variables change together. Remember that with a bit of
hand waving everything relating to data can be thought of as a random variable.
Also, with a bit more of hand waving, for a random variable X we may think of
E(X) = MEAN (X).1 This will only hold if the distribution of X is uniform, but it
can be helpful from a practical perspective even when it is not, especially since in
machine learning we will probably have some optimization somewhere so we can
be a bit sloppy.

The attentive readermay notice thatE(X)was actually a vector,whileMEAN (X)

is a single value, but wewill use something called broadcasting tomake it right again.
Broadcasting a value v into an n-dimensional vector vmeans simply to put the same
v in every component of v, or simply:

broadcast (v, n) = (v, v, v, . . . , v)
︸ ︷︷ ︸

n

(8.1)

1The expected value is actually the weighted sum, which can be calculated from a frequency table.
If 3 out of five students got the grade ‘5’, and the other two got a grade ‘3’,E(X) = 0.6 · 5 + 0.4 · 3.
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We will denote the covariance matrix of the matrix X as �(X). This is not a
standard notation, but (unlike the standard notation C or �) this notation will avoid
confusion, since we are using the standard notations in a different sense in this
book. To address the covariance matrix more formally, if we have a column vector
X = (X1, X2, . . . , Xd)

� populated with random variables, the covariance matrix
�X (which can also be denoted as �i j ) can be defined as �i j = COV (Xi , X j ) =
E((Xi − E(Xi ))(X j − E(X j ))), or if we write the whole d × d matrix:

�X =

⎡

⎢

⎢

⎢

⎣

E((X1 − E(X1))(X1 − E(X1))) · · · E((X1 − E(X1))(Xd − E(Xd)))

E((X2 − E(X2))(X1 − E(X1))) · · · E((X2 − E(X2))(Xd − E(Xd)))
...

. . .
...

E((Xd − E(Xd))(X1 − E(X1))) · · · E((Xd − E(Xd))(Xd − E(Xd)))

⎤

⎥

⎥

⎥

⎦

(8.2)
It should now be clear that the covariance matrix actually measures ‘self’-

covariance, i.e. covariance between its own elements. Let us see what properties
does a matrix�(X) have. First, it must be symmetric, since the covariance of X with
Y is the same as the covariance of Y with X . �(X) is also a positive-definite matrix,
which means that the scalar v�Xz is positive for every non-zero vector v.

Let us turn to a slightly different topic, eigenvectors. Eigenvectors of a d × d
matrix A are vectors whose direction does not change (but the length does) when
they are multiplied by A. It can be proved that there are exactly d of them. How to
find the eigenvectors is the hard part, and there are number of approaches, and one
of the more popular ones is gradient descent. Since all numerical libraries can find
eigenvectors for us, we will not go into details.

So the eigenvectors when multiplied by a matrix A do not change direction, only
the length. It is common practice to normalize the eigenvectors and denote them
by vi . This change of length is called the eigenvalue, usually denoted by λi . This
actually gives rise to a fundamental property of eigenvectors and eigenvalues of a
matrix, namely Avi = λivi

Once we have the vs and λs, we start by arranging the lambdas in descending
order:

λ1 > λ2 > . . . > λd

This also creates an arrangement in the corresponding eigenvectors v1, v2, …, vd
(note that each of them is of the form vi = (v

(1)
i , v

(2)
i , . . . , v

(d)
i ), 1 ≤ i ≤ d) since

there is a one to one correspondence between them and the eigenvalues, so we can
simply ‘copy’ the order of the eigenvalues on the eigenvectors. We create a d × d
matrix with the eigenvectors as columns which are sorted with ordering of the the
corresponding eigenvalues (in the last step we are simply renaming the entries to
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follow the usual matric entry naming conventions):

V = (v�
1 , v�

2 , . . . , v�
d ) =

⎡

⎢

⎢

⎢

⎢

⎣

v
(1)
1 v

(1)
2 · · · v

(1)
d

v
(2)
1 v

(2)
2 · · · v

(2)
d

...
...

. . .
...

v
(d)
1 v

(d)
2 · · · v

(d)
d

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

v11 v12 · · · v1d
v21 v22 · · · v2d
...

...
. . .

...

vd1 vd2 · · · vdd

⎤

⎥

⎥

⎥

⎦

Wenowcreate a blankmatrix of zeros (size d × d) and put the lambdas in descend-
ing order on the diagonal. We call this matrix �:

V =

⎡

⎢

⎢

⎢

⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd

⎤

⎥

⎥

⎥

⎦

With this, we turn to the eigendecomposition of a matrix. We need to have a
symmetric matrix A and then its eigendecomposition is:

A = V�V−1 (8.3)

The only condition is that all eigenvectors vi are linearly independent. Since
� is a symmetrical matrix with linearly independent eigenvectors, we can use the
eigendecomposition to get the following equations which hold for any covariance
matrix �:

� = V�V−1 (8.4)

�V = V� (8.5)

Since V is orthonormal,2 we also have V�V = I . Now we are ready to return to
Z = XQ. Let us take a look at the transformed data Z .We can express the covariance
of Z as the covariance of X multiplied by Q:

�Z = 1

d
((Z − MEAN (Z))�(Z − MEAN (Z))) = (8.6)

= 1

d
((XQ − MEAN (X)Q)�(XQ − MEAN (X)Q)) = (8.7)

= 1

d
Q�(X − MEAN (X))�(X − MEAN (X))Q = (8.8)

= Q��X Q (8.9)

2We omit the proof but it can be found in any linear algebra textbook, such as e.g. [1].
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We now have to choose a matrix Q so that we get what we want (correlation zero
and features ordered according to variance). We simply chose Q := V . Then we
have:

�Z = V��XV = V�V� = � (8.10)

Let us see what we have achieved. All elements except the diagonal elements of
�Z are zero, which means that the only correlation left in Z is along the diagonal.
This is the covariance of a variable with itself, which is actually the variance we have
encountered earlier, and the matrix is ordered in descending variance (V AR(Xi ) =
COV (Xi , Xi ) = λi ). This is everythingwewanted. Note that we have done PCA for
the 2D case with matrices but the same ideas hold for tensors. More on the principal
component analysis can be found in [2].

So we have seen how we can create a different representation of the same data
such that the features it is described with have a covariance of zero, and are sorted by
variance. In doing so we have created a distributed representation of the data, since
a column named ‘height’ does not exist anymore, and we have synthetic columns.
The point here is that we can build various distributed representations, but we have
to know what constraint we want the final data to obey. If we want this constraint to
be left unspecified and we want to specify it not directly but by feeding examples,
then we will have to employ a more general approach. This is the approach that leads
us to autoencoders, which offer a surprising generality across many tasks.

8.2 Different Autoencoder Architectures

An autoencoder is a three-layered feed-forward neural network. They have one pecu-
liarity: the targets t are actually the same values as inputs x, which means that the
task of the autoencoder is simply to recreate the inputs. So autoencoders are a form
of unsupervised learning. This entails that the output layer has to have the same
number of neurons as the input layer. This is all that is needed for a feed-forward
neural network to be called an autoencoder.We can call this version the ‘plain vanilla
autoencoder’. There is a problem right away for plain vanilla autoencoders. If there
are at least as many neurons in the hidden layer layer as there are in the input and
output layer, the autoencoder is in danger of learning the identity function. This leads
to a constraint, namely that there have to be less neurons in the hidden layer than
in the input and output layers. We can call autoencoders which satisfy this property
simple autoencoders. The outputs of the hidden layer of a fully trained autoencoder
constitute a distributed representation, similar to PCA, and, as with PCA, this repre-
sentation can be fed to a logistic regression or a simple feed-forward neural network
as input and it will produce much better results than the regular representation.

But we can take another path, which is called sparse autoencoders. Let us say
we constrain the number of neurons on the hidden layers to be at most double the
number of neurons in the input layer, but we add a heavy dropout of e.g. 0.7. Then, we
will have for each iteration less hidden neurons than input neurons, but at the same
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time we will produce a large hidden layer vector. This large hidden layer vector is a
(very large) distributed representation. What is happening here intuitively speaking
is that simple autoencoders make a compact distributed representation, which is a
different representation of the input. This makes it more easy for a simple neural
network to digest it and process it, resulting in higher accuracy. Sparse autoencoders
digest the inputs in the same way, but in addition, they learn redundancies and offer
a more ‘dilluted’ and bigger vector, which is even simpler to process well. Recall
how the hyperplane works in multiple dimensions and this will make sense. There
is a different way to define sparse autoencoders, via a sparsity rate, which forces
the activations below a certain threshold to be considered zero, it is similar to our
approach.

We can also make the autoencoder’s job harder, by inserting some noise into the
input. This is done by creating a copy of the input with inserted random numbers at a
fixed amount, e.g. on randomly chosen 10% of the input. The targets are a copy of the
inputs without noise. These autoencoders are called denoising autoencoders. If we
add explicit regularization, we obtain a flavour of autoencoders known as contractive
autoencoders. Figure8.1 offers an illustration of the various types of autoencoders.
There are many other types of autoencoders, but they are more complex and fall
outside the scope of this book. We point the interested reader to [3].

All of the autoencoders are used to preprocess data for a simple feed-forward
neural network. This means that we have to get the preprocessed data from the
autoencoder. This data is not the output of the whole autoencoder, but the output of
the middle (hidden) layer, which is the layer that does the donkey work.

Let us address a technical issue.We have seen but not formally introduced the con-
cept of a latent variable. A latent variable is a variable which lies in the background
and is correlated with one or many ‘visible’ variables. We have seen an example
in Chap.3 when we addressed PCA in an informal manner, and we had synthetic
properties behind ‘height’ and ‘weight’. These are a prime example of a latent vari-
able. When we hypothesize a latent variable (or create it), we postulate we have a
probability distribution to define it. Note that it is a philosophical question whether
we discover or define latent variables, but it is clear that we want our latent variables
(the defined ones) to follow as closely as possible the latent variables in nature (the
ones that we measure or discover). A distributed representation is a probability dis-

Fig.8.1 Plain vanilla autoencoder, simple autoencoder, sparse autoencoder, denoising autoencoder,
contractive autoencoder

http://dx.doi.org/10.1007/978-3-319-73004-2_3
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tribution of latent variables which hopefully are the objective latent variables and
learning will conclude when they are very similar. This means that we have to have a
way of measuring similarities between probability distributions. This is usually done
via the Kullback-Leibler divergence, which is defined as:

KL(P, Q) :=
N

∑

n=1

P(n) log
P(n)

Q(n)
(8.11)

where P and Q are two probability distributions. Notice thatKL(P, Q) is not sym-
metric (it will change if you change the P and Q). Traditionally, theKullback-Liebler
divergence is denoted as DKL , but the notation we used is more consistent with the
other notation in the book. There are a number of sources which provide more detail,
but we will refer the reader to [3]. Autoencoders are a relatively old idea, and they
were first proposed by Dana H. Ballard in 1987 [4]. Yann LeCun [5] also considered
similar structures independently from Ballard. A good overview of the many types
of autoencoders and their functionality can be found in [6] as an introduction to the
stacked denoising autoencoders which we will reproduce in the next section.

8.3 Stacking Autoencoders

If autoencoders seem like LEGO bricks, you have the right intuition, and in fact
they may be stacked together, and then they are called stacked autoencoders. But
keep in mind that the real result of the autoencoder is not in the output layer, but
the activations in the middle layer, which are then taken and used as inputs in a
regular neural network. This means that to stack them we need not simply stick
one autoencoder after the other, but actually combine their middle layers as shown
in Fig. 8.2. Imagine that we have two simple autoencoders of size (13, 4, 13) and

Fig. 8.2 Stacking a (4, 3, 4) and a (4, 2, 4) autoencoder resulting in a (4, 3, 2, 3, 4) stacked
autoencoder
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(13, 7, 13). Notice that if they want to process the same data they have to have the
same input (and output) size. Only the middle layer or autoencoder architecture may
vary. For simple autoencoders, they are stacked by creating a 13, 7, 4, 7, 13 stacked
autoencoder. If you think back onwhat the autoencoder does, it makes sense to create
a natural bottleneck. For other architectures, it may make sense to make a different
arrangement. The real result of the stacked autoencoder is again the distributed
representation built by the middle layer. We will be stacking denoising autoencoders
following the approach of [6] and we present a modification of the code available at
https://blog.keras.io/building-autoencoders-in-keras.html. The
first part of the code, as always, consists of import statements:

from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()

The last line of code loads the MNIST dataset from the Keras repositories. You
could do this by hand, but Keras has a built-in function that lets you load MNIST
into Numpy3 arrays. Note that the Keras function returns two pairs, one consists
of train samples and train labels (both as Numpy arrays of 60000 rows), and the
second consisting of test samples and test labels (again, Numpy arrays, but this time
of 10000 rows). Since we do not need labels, we load them in the _ anonymous
variable, which is basically a trash can, but we need it since the function needs to
return two pairs and if we do not provide the necessary variables, the system will
crash. So we accept the values and dump them in the variable _. The next part of the
code preprocesses the MNIST data. We break it down in steps:

x_train = x_train.astype(’float32’) / 255.0
x_test = x_test.astype(’float32’) / 255.0
noise_rate = 0.05

This part of the code turns the original values ranging from 0 to 255 to values
between 0 and 1, and declares their Numpy types as float32 (decimal number with a
precision of 32). It also introduces a noise rate parameter, which we will be needing
shortly.

x_train_noisy = x_train + noise_rate * np.random.normal
(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_rate * np.random.normal
(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0.0, 1.0)
x_test_noisy = np.clip(x_test_noisy, 0.0, 1.0)

This part of the code introduces the noise into a copy of the data. Note that the
np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)

3Numpy is the Python library for handling arrays and fast numerical computations.
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introduces a new array, of the size of the x_train array populated with a Gaussian
random variable with loc=0.0 (which is actually the mean), and a scale=1.0
(which is the standard deviation). This is then multiplies with the noise rate and
added to the data. The next two rows actually make sure that all the data is bound
between 0 and 1 even after the addition. We can now reshape our arrays which are
currently (60000, 28, 28) and (10000, 28, 28) into (60000, 784) and (10000, 784)
respectively. We have touched upon this idea when we have first introduced MNIST,
and now we can see the code in action:

x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))

x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

x_train_noisy = x_train_noisy.reshape((len(x_train_noisy), np.prod(x_train_noisy.shape[1:])))

x_test_noisy = x_test_noisy.reshape((len(x_test_noisy), np.prod(x_test_noisy.shape[1:])))

assert x_train_noisy.shape[1] == x_test_noisy.shape[1]

The first four rows reshape the four arrays we have, and the final row is a test to
see whether the sizes of the noisy train and test vectors are the same. Since we are
using autoencoders, this has to be the case. If they are somehow not the same, the
whole program will crash here. It might seem strange to want to crash the program
on purpose, but in this way we actually gain control, since we know where it has
crashed, and by using as many tests as we can, we can quickly debug even very
complex codes. This ends the preprocessing part of the code, and we continue to
build the actual autoencoder:

inputs = Input(shape=(x_train_noisy.shape[1],))

encode1 = Dense(128, activation=’relu’)(inputs)

encode2 = Dense(64, activation=’tanh’)(encode1)

encode3 = Dense(32, activation=’relu’)(encode2)

decode3 = Dense(64, activation=’relu’)(encode3)

decode2 = Dense(128, activation=’sigmoid’)(decode3)

decode1 = Dense(x_train_noisy.shape[1], activation=’relu’)(decode2)

This offers a different view from what we are used to, since now we manually
connect the layers (you can see the layer sizes, 128, 64, 32, 64, 128). We have added
different activations just to show their names, but you can freely experiment with
different combinations. What is important here to notice is that the input size and
the output size are both equal to x_train_noisy.shape[1]. Once we have
the layers specified, we continue to build the model (feel free to experiment with
different optimizers4 and error functions5):

autoencoder = Model(inputs, decode1)

autoencoder.compile(optimizer=’sgd’, loss=’mean_squared_error’,metrics=[’accuracy’])

autoencoder.fit(x_train,x_train,epochs=5,batch_size=256,shuffle=True)

4Try’adam’.
5Try’binary_crossentropy’.
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You should also increase the number of epochs once you get the code to work.
Finally we get to the last part of the autoencoder code when we evaluate, predict
and pull out the weight of the deepest middle layer. Note that when we print all the
weight matrices, the right weight matrix (the result of the stacked autoencoder) is
the first one where the dimensions start to increase (in our case (32, 64)):

metrics = autoencoder.evaluate(x_test_noisy, x_test, verbose=1)

print()

print("%s:%.2f%%" % (autoencoder.metrics_names[1], metrics[1]*100))

print()

results = autoencoder.predict(x_test)

all_AE_weights_shapes = [x.shape for x in autoencoder.get_weights()]

print(all_AE_weights_shapes)

ww=len(all_AE_weights_shapes)

deeply_encoded_MNIST_weight_matrix = autoencoder.get_weights()[int((ww/2))]

print(deeply_encoded_MNIST_weight_matrix.shape)

autoencoder.save_weights("all_AE_weights.h5")

The resultingweightmatrix is stored in the variabledeeply_encoded_MNIST
_weight_matrix, which contains the trained weights for the middlemost layer
of the stacked autoencoder, and this should afterwards be fed to a fully connected
neural network together with the labels (the ones we dumped). This weight matrix
is a distributed representation of the original dataset. A copy of all weights is also
saved for later use in a H5 file. We have also added a variable results to make
predictions with the autoencoder, but this is mainly used for assessing autoencoder
quality, and not for actual predictions.

8.4 Recreating the Cat Paper

In this section, we recreate the idea presented in the famous ‘cat paper’, with the
official title Building High-level Features Using Large Scale Unsupervised Learning
[7]. We will present a simplification to better delineate the subtleties of this amazing
paper. This paper became famous since the authors made a neural network which
was capable of learning to recognize cats just by watching YouTube videos. But
what does that mean? Let us take a step back. The ‘watching’ means simply that the
authors sampled frames from 10 million YouTube videos, and took a number of 200
by 200 images in RGB. Now, the tricky part: what does it mean to ‘recognize a cat’?
Surely it could mean that they build a classifier which was trained on images of cats
and then it classified cats. But the authors did not do this. They gave the network an
unlabelled dataset, and then tested it against images of cats from ImageNet (negative
samples were just random images not containing cats). The network was trained by
learning to reconstruct inputs (it means that the number of output neurons is the same
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as the number of input neurons), which makes it an autoencoder. Result neurons are
found in the middle part of the autoencoder. The network had a number of result
neurons (let us say there are 4 of them for simplicity), and they noticed that the
activations of those neurons formed a pattern (activations are sigmoid so they range
from 0 to 1). If the network was classifying something similar to what it has seen
(cats), it formed a pattern, e.g. neuron 1 was 0.1, neuron 2 was 0.2, neuron 3 was 0.5
and neuron 4 was 0.2. If it got something it did not know about, neuron 1 would get
0.9, and the others 0. In this way, an implicit label generation was discovered.

But the cat paper presented another cool result. They asked the network what was
in the videos, and the network drew the face of a cat (as the tech media formulated
it). But what does that mean? It means that they took the best performing ‘cat finder’
neuron, in our case neuron 3, and found the top 5 images it recognized as cats.
Suppose the cat finder neuron had activations of 0.94, 0.96, 0.97, 0.95 and 0.99 for
them. They then combined and modified this image (with numerical optimization,
similar to gradient descent) to find a new image such that given neuron gets the
activation 1. Such image was a drawing of a cat face. It may seem like science
fiction, but if you think about it, it is not that unusual. They picked the best cat
recognizer neuron, and then selected top 5 images it was most confident of. It is
easy to imagine that these were the clearest pictures of cat faces. It then combined
them, added a little contrast, and there you have it—an image which produced the
activation of 1 in that neuron. And it was an image of a cat different from any other
image in the dataset. The neural network was set loose to watch YouTube videos of
cats (without knowing it was looking at cats), and once prompted to answer what it
was looking at, the network drew a picture of a cat.

We scaled down a bit, but the actual architecture used was immense: 16000 com-
puter cores (your laptop has 2 or 4), and the network was trained over three days. The
autoencoder had over 1 billion trainable parameters, which is still only a fraction of
the number of synapses in the human visual cortex. The input images were a 200
by 200 by 3 tensors for training, and for testing 32 by 32 by 3. The authors used
a receptive field of 18 by 18 similar to the convolutional networks, but the weights
were not shared across the image but each ‘tile’ of the field had its own weights. The
number of feature maps used was 8. After this, there was a pooling layer using L2
pooling. L2 pooling takes a region (e.g. 2 by 2) in the same way as max-pooling, but
instead of outputting the max of the inputs, it squares all inputs, adds them, and then
takes the square root of it and presents this as the output.

The overall autoencoder has three parts, all of them are of the same architecture. A
part takes the input, applies the receptive field (no shared weights), and then applies
L2 pooling, and finally a transformation known as local contrast normalization. After
this part is finished, there are twomore exactly the same. Thewhole network is trained
with asynchronous SGD. This means that there are many SGDsworking at once over
different parts, and have a central weights repository. At the beginning of each phase,
every SGD asks the repository for the update on weights, optimizes them a bit, and
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then sends them back to the repository so that other instances running asynchronous
SGD can use them. The minibatch size used was 100. We omit the rest of the details,
and refer the reader to the original paper.
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9Neural LanguageModels

9.1 Word Embeddings andWord Analogies

Neural languagemodels are distributed representations ofwords and sentences. They
are learned representations, meaning that they are numerical vectors. Aword embed-
ding is any method which converts words in numbers, and therefore, any learned
neural language model is a way of obtaining word embeddings. We use the term
‘word embedding’ to denote a very concrete numerical representation of a certain
word or words, represent ‘Nowhere fast’ as (1, 0, 0, 5.678,−1.6, 1). In this chapter,
we focus on the most famous of the neural language models, the Word2vec model,
which learns vectors which represent words with a simple neural network.

This is similar to the predict-next setting for recurrent neural networks, but it
gives an added bonus: we can calculate word distances and have similar words only
a short distance away. Traditionally, we can measure the distances of two words
as strings with the Hamming distance [1]. For measuring the Hamming distance,
two strings have to be of the same length and the distance is simply the number of
characters that are different. The Hamming distance between the words ‘topos’ and
‘topoi’ is 1, while the distance between ‘friends’ and ‘fellows’ is 5. Note that the
distance between ‘friends’ and ‘0r$8MMs’ is also 5. It can easily be normalized to
a percentage by dividing it by the words’ length. You can probably see already how
this would be a useful but very limited technique for processing language.

The Hamming distance is the simplest method from a wide variety of string
similarity measures collectively known as string edit distance metrics. More evolved
forms such as Levenshtein distance [2] or Jaro–Winkler [3,4] distance can compare
strings of different lengths and penalize differently various errors, such as insertion,
deletion or edit. All of these are measures of a word by the form of the word. They
would be useless in comparing ‘professor’ and ‘teacher’, since they would never
recognize the similarity in meaning. This is why, we want to embed a word in a
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vector in a way which will convey information about the meaning of the word (i.e.
its use in our language).

If we represent words as vectors, we need to have a distance measure between
vectors. We have touched upon this idea a number of times before, but we can now
introduce the notion of the cosine similarity of vectors. A good overview of cosine
similarity is given in [5]. Cosine similarity of two n-dimensional vectors v and u is
given by:

CS(v,u) := v · u
||v|| · ||u|| =

∑n
i=1 vi ui√∑n

i=1 v
2
i

√∑n
i=1 u

2
i

(9.1)

Where vi and ui are components of v and u, and ||v|| and ||u|| denote the norms
of the vectors v and u respectively. The cosine similarity ranges from 1 (equal) to−1
(opposite), and 0 means that there is no correlation. When using the bag of words,
one-hot encoding s or similar word embeddings the cosine similarity ranges from 0
to 1, since the vectors representing fragments do not contain negative components.
This means that 0 takes the meaning of ‘opposite’ in such contexts.

We will now continue to show the Word2vec neural language model [6]. In par-
ticular, we will address the questions of what input does it need, what will it give
as an output, does it have parameters to tune it and how can we use it in a complete
system, i.e. how does it interact with other components of a bigger system.

9.2 CBOW andWord2vec

The Word2vec model can be built with two different architectures, the skip-gram
and the Word2vec. Both of these are actually shallow neural networks with a twist.
To see the difference, we will use the sentence ‘Who are you, that you do not know
your history?’. First, we clean the sentence from uppercase and interpunction. Both
architectures use the context of the word (the words around it) as well as the word
itself. We must define in advance how large will the context be. For the sake of
simplicity, we will be using a context of size 1. This means that the context of a word
consists of one word before and one word after. Let us break or sentence into word
and context pairs:

We have already noted that both versions of theWord2vec are learnedmodels, and
this means they must learn something. The skip-grammodel learns to predict a word
from the context given the middle word. This means that if we give the model ‘are’
it should predict ‘who’, if we give it ‘know’ it should predict ‘not’ or ‘your’. The
CBOW version does the opposite, assuming the context to be 1, it takes two words1

from the context (we will call them c1 and c2) and uses it to predict the middle or
main word (which we will denote by m).

1If the context were 2, it would take 4 words, two before the main word and two after.
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Context Word
‘are’ ‘who’
‘who’, ‘you’ ‘are’
‘are’, ‘that’ ‘you’
‘you’, ‘you’ ‘that’
‘that’, ‘do’ ‘you’
‘you’, ‘not’ ‘do’
‘do’, ‘know’ ‘not’
‘not’, ‘your’ ‘know’
‘know’, ‘history’ ‘your’
‘your’ ‘history’

The production of the word embeddings is structurally quite similar to autoen-
coders. To make the network which produces the embeddings, we use a shallow
feedforward network. The input layer will receive word index vectors, so we will
need as many input neurons as there are unique words in the vocabulary. The number
of hidden neurons is called embedding size (suggested values range between 100 and
1000, which is considerably less than the vocabulary size even for modest datasets),
and the number of output neurons is the same as input neurons. The input to hidden
connections are linear, i.e. they have no activation function, and the hidden to output
have softmax activations. The weights of the input to hidden are the deliverables
of the model (similar to the autoencoder deliverables), and this matrix contains as
rows the individual word vectors for a particular word. One of the easiest methods
of extracting the proper word vector is to multiply this matrix by the word index
vector for a given word. Note that these weights are trained with backpropagation
in the usual way. Figure9.1 offers an illustration of the whole process. If something
is unclear, we ask the reader to fill out the details for herself by using what we have
previously covered in this book—there should be no problem in doing this.

Before continuing to the code for the CBOW Word2vec, we must correct a his-
torical mistake. The idea behind Word2vec is that the meaning of a given word is
determined by a context, which is usually defined as the way the word is used in
a language. Most deep learning textbooks (including the official TensorFlow doc-
umentation on Word2vec) attribute this idea to a paper from 1954 by Harris [7],
and note that he idea came to be known in linguistics as the distributional hypothe-
sis in 1957 [8]. This is actually wrong. The first time this idea was proposed was in
Wittgenstein’s Philosophical Investigations in 1953 [9], and since ordinary language
philosophy and philosophical logic (the area of logic dealing mainly with language
formalization) played a major role in the history of natural language processing, the
historical merit must be acknowledged and attributed correctly.
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Fig. 9.1 CBOW Word2vec architecture

9.3 Word2vec in Code

In this and the next section, we give an example of a CBOW Word2vec implemen-
tation. All the code in these two sections should be placed in one Python file, since
it is connected. We start with the usual imports and hyperparameters:

from keras.models import Sequential

from keras.layers.core import Dense

import numpy as np

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

text_as_list=["who","are","you","that","you","do","not","know","your","history"]

embedding_size = 300

context = 2

The text_as_list can hold any text, so you can put here your text, or use the
parts of the code from the recurrent neural network which parse a text file into a list
of words. The embedding size is the size of the hidden layer (and, consequently, that
the word vectors will have). The context is the number of words before and after the
given word which will be used this. If the context is 2, this means we will use two
words before the main word and two words after the main word to create the inputs
(the main word will be the target). We continue to the next block of code which is
exactly the same as the same part of code for recurrent neural networks:

distinct_words = set(text_as_list)

number_of_words = len(distinct_words)
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word2index = dict((w, i) for i, w in enumerate(distinct_words))

index2word = dict((i, w) for i, w in enumerate(distinct_words))

This code creates word and index dictionaries in both ways, one where the word
is the key and the index is the value and another one where the index is the key and
the word is the value. The next part of the code is a bit tricky. It creates a function
that produces two lists, one is a list of main words, and the other is a list of context
words for a given word (it is a list of lists):

def create_word_context_and_main_words_lists(text_as_list):

input_words = []

label_word = []

for i in range(0,len(text_as_list)):

label_word.append((text_as_list[i]))

context_list = []

if i >= context and i<(len(text_as_list)-context):

context_list.append(text_as_list[i-context:i])

context_list.append(text_as_list[i+1:i+1+context])

context_list = [x for subl in context_list for x in subl]

elif i<context:

context_list.append(text_as_list[:i])

context_list.append(text_as_list[i+1:i+1+context])

context_list = [x for subl in context_list for x in subl]

elif i>=(len(text_as_list)-context):

context_list.append(text_as_list[i-context:i])

context_list.append(text_as_list[i+1:])

context_list = [x for subl in context_list for x in subl]

input_words.append((context_list))

return input_words, label_word

input_words,label_word = create_word_context_and_main_words_lists(text_as_list)

input_vectors = np.zeros((len(text_as_list), number_of_words), dtype=np.int16)

vectorized_labels = np.zeros((len(text_as_list), number_of_words), dtype=np.int16)

for i, input_w in enumerate(input_words):

for j, w in enumerate(input_w):

input_vectors[i, word2index[w]] = 1

vectorized_labels[i, word2index[label_word[i]]] = 1

Let us see what this block of code does. The first part is the definition of a function
that takes in a list of words and returns two lists. One is a copy of that list of words
(named label_word in the code), and the second is input_words, which is a
list of lists. Each list in the list carries thewords from the context of the corresponding
word inlabel_word. After thewhole function is defined, it is called on the variable
text_as_list. After that two matrices to hold the word vectors corresponding
to the two lists are created with zeros, and the final part of the code updates the
corresponding parts of the matrices with 1, to make a final model of the context for
inputs and of the main word for the target. The next part of the code initializes and
trains the Keras model:
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word2vec = Sequential()

word2vec.add(Dense(embedding_size, input_shape=(number_of_words,), activation=

"linear", use_bias=False))

word2vec.add(Dense(number_of_words, activation="softmax", use_bias=False))

word2vec.compile(loss="mean_squared_error", optimizer="sgd", metrics=[’accuracy’])

word2vec.fit(input_vectors, vectorized_labels, epochs=1500, batch_size=10, verbose=1)

metrics = word2vec.evaluate(input_vectors, vectorized_labels, verbose=1)

print("%s: %.2f%%" % (word2vec.metrics_names[1], metrics[1]*100))

The model follows closely the architecture we presented in the last section.
It does not use biases since we will be taking out the weights and we do not
want any information to be anywhere else. The model is trained for 1500 epochs
and you may want to experiment with these. If one wants to make a skip-gram
model instead, one should just interchange these matrices, so the part that says
word2vec.fit(input_vectors, vectorized_labels, epochs
=1500, batch_size=10, verbose=1) should be changed to word2vec.
fit(vectorized_labels, input_vectors, epochs=1500,
batch_size=10, verbose=1) and you will have a skip-gram. Once we have
this, we just take out the weights with the following code:

word2vec.save_weights("all_weights.h5")
embedding_weight_matrix = word2vec.get_weights()[0]

And we are done. The first line of this code returns the word vectors for all the
words, in the form of a number_of_words×embedding_size dimensional
array, and we can pick the appropriate row to get the vector for that word. The first
line saves all the weights in the network to a H5 file. You can do several things
with word2vec and for all of them we need these weights. First, we may just learn
weights from scratch, as we did with our code. Second, we might want to fine-tune a
previously learned word embedding (suppose it was learned from Wikipedia data),
and in that case, we want to load previously saved weights in a copy of the original
model and train it on new texts that are perhaps more specific and more closely
connected with e.g. legal texts. The third way we may use word vectors is to simply
use them instead of one-hot encoded words (or a Bag of Words), and feed them in
another neural network which has the task of e.g. predicting sentiment.

Note that the H5 file contains all the weights of the network, and we want to
use just the weight matrix from the first layer,2 and this matrix is fetched by the
last line of code and named embedding_weight_matrix. We will be using
embedding_weight_matrix in the code in the next section (which should be
in the same file as the code of this section).

2If we were to save and load from a H5 file, we would be saving ans loading all the weights in a new
network of the same configuration, possibly fine-tuning them and then taking out just the weight
matrix with the same code we used here.
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9.4 Walking Through theWord-Space: An Idea That Has Eluded
Symbolic AI

Word vectors are a very interesting type of word embeddings, since they allow much
more than meets the eye. Traditionally, reasoning is viewed as a symbolic concept
which ties together various relations of an object or even various relations of various
objects. Objects, and symbols denoting them, have been seen as logically primitive.
This means that they were defined, and as such void of any content other than that
which we explicitly placed in them. This has been a dogma of the logical approach to
artificial intelligence (GOFAI) for decades. The main problem is that rationality was
equated with intelligence, and this meant that the higher faculties, where the one that
embodied intelligence. Hans Moravec [10] discovered that higher faculties (such
as chess playing and theorem proving) where in fact easier than recognizing cats
on unlabelled photos, and this caused the AI community to rethink the previously
accepted concept of intelligence, and with it ideas of low faculty reasoning became
interesting.

To explain what low faculty reasoning is we turn to an example. If you consider
two sentences ‘a tomato is a vegetable’ and ‘a tomato is a suspension bridge’, you
might conclude that they are both false, and you would technically be right. But most
people (and intelligent animals) endorse an idea of fuzzinesswhich takes into account
the degree ofwrongness. You are lesswrong by uttering ‘a tomato is a vegetable’ than
‘a tomato is a suspension bridge’. Note also that these are not sentences of natural
phenomena, but sentences about linguistic classification and the social conventions
on language use. You are not referring to objects (except for ‘tomato’), but to classes
defined by descriptions (composed of properties) or examples (which share to a
degree a number of common properties). Notice that you are using singular terms in
all three cases, and the only symbolic part is ‘_is a_’, which is irrelevant.

If an agent were locked in a room and given only books in a foreign language to
read, we would consider her intelligent if she would be able to find patters, such as
a word which denote places and words that denote people. So if she would classify
two sentences ‘Luca frequenta la scuola elementare Pedagna’ and ‘Marco frequenta
la scuola elementare Zolino’ as being similar, she would display a certain degree of
intelligence. Shemight even go so far to say that in this context ‘Luca’ is to ‘Pedagna’
as ‘Marco’ is to ‘Zolino’. If she was given a new sentence ‘Luca vive in Pedagna’,
she might infer the sentence ‘Marco vive in Zolino’, and she might hit it spot on. The
question of semantically similar terms very quickly became a question of reasoning.

We can actually find similarities of terms in our datasets an even reason with
them in this fashion using Word2vec. To see how, let us return to our code. The
following code goes immediately after the code from the last section (in the same
Python file).Wewill use the embedding_weight_matrix to find an interesting
way to measure word similarities (actually word vector clusterings) and to calcu-
late and reason with words with the help of word vectors. To do this, we first run
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embedding_weight_matrix through PCA and keep just the first two dimen-
sions,3 and then simply draw the results to a file:

pca = PCA(n_components=2)
pca.fit(embedding_weight_matrix)
results = pca.transform(embedding_weight_matrix)
x = np.transpose(results).tolist()[0]
y = np.transpose(results).tolist()[1]
n = list(word2index.keys())
fig, ax = plt.subplots()
ax.scatter(x, y)
for i, txt in enumerate(n):

ax.annotate(txt,(x[i],y[i]))
plt.savefig(’word_vectors_in_2D_space.png’)
plt.show()

This produces Fig. 9.2. Note that we need a significantly larger dataset than our
nine word sentence to be able to learn similarities (and to see them in the plot), but
you can experiment with different datasets using the parser we used with recurrent
neural networks.

Reasoning with word vectors is also quite straightforward. We need to take the
corresponding vectors from embedding_weight_matrix and do simple arith-
metic with them. They are all of the same dimensionality, whichmeans it is quite easy
to add and subtract them. Let w2v(someword) denote the trained word embedding

Fig. 9.2 Word similarity clusters in transformed 2D space

3More precisely: to transform the matrix into a decorrelated matrix whose columns are arranged in
descending variance and then keep the first two columns.
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for the word ‘someword’. To recreate the classic example, take w2v(king), subtract
from it w2v(man) add to it w2v(woman) and the result would be near w2v(queen).
The same holds even if we use PCA to transform the vectors and keep just the first
two or three components, although it is sometimes more distorted. This depends on
the quality and size of the dataset, and we suggest the reader to try to make a script
which does this over a large dataset as an exercise.
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10AnOverviewofDifferentNeural
NetworkArchitectures

10.1 Energy-BasedModels

Energy-based models are a specific class of neural networks. The simplest energy
model is the Hopfield Network dating back from the 1980s [1]. Hopfield networks
are often thought to be very simple, but they are quite different from what we have
seen before. The network is made of neurons, and all of these neurons are connected
among them with weights wi j connecting neurons ni and n j . Each neuron has a
threshold associated with it, and we denote it by bi . All neurons have 1 or −1 in
them. If you want to process and image, you can think of −1 as white and 1 as black
(no shades of grey here). We denote the inputs we place in neurons by xi . A simple
Hopfield network is shown in Fig. 10.1a.

Once a network is assembled, the training can start. The weights are updated by
the following rule, where n denotes an individual training sample:

wi j =
N∑

n=1

x (n)
i x (n)

j (10.1)

Then we compute activations for each neuron:

yi =
∑

j

wi j x j (10.2)

There are two possibilities on how to update weights. We can either do it syn-
chronously (all weights at the same time) or asynchronously (one by one, this is the
standard way). In Hopfield networks there is no recurrent connections, i.e. wi i = 0
for all i , and all connections are symmetric, i.e.wi j = w j i . Let us see how the simple
Hopfield Network shown in Fig. 10.1b processes the simple 1 by 3 pixel ‘images’
in Fig. 10.1c, which we represent by vectors a = (−1, 1, −1), b = (1, 1, −1) and
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Fig. 10.1 Hopfield networks

c = (−1, −1, 1). Using the equation above, we calculate the weight updates with
the update equation:

w11 = w22 = w33 = 0

w12 = a1a2 + b1b2 + c1c2 = −1 · 1 + 1 · 1 + (−1) · (−1) = 1

w13 = −1

w23 = −3

Hopfield networks have a global measure of success, similar to the error function
of regular neural networks, called the energy. Energy is defined for each stage of
network training as a single value for the whole network. It is calculated as:

ENE = −
∑

i, j

wi j yi y j +
∑

i

bi yi (10.3)

The as learning progresses, ENE either stays the same or diminishes, and this
is how Hopfield networks reach local minima. Each local minimum is a memory
of some training samples. Remember logical functions and logistic regression? We
needed two input neurons and one output neurons for conjunction and disjunction,
and an additional hidden one for XOR. We need three neurons in Hopfield networks
for conjunction and disjunction and four for XOR.

The next model we briefly present are Boltzmann machines first presented in
1985 [2]. At first glance, they are very similar to Hopfield networks, but have input
neurons and hidden neurons as well, which are all interconnected with weights.
These weights are non-recurrent and symmetrical. A sample Boltzmann machine
is displayed in Fig. 10.2a. Hidden units are initialized at random, and they build a
hidden representation to mimic the inputs. These form two probability distributions,
which can be compared with the Kullback-Leibler divergence KL. The main goal
then becomes clear, calculate ∂KL

∂w
, and backpropagate it.
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Fig. 10.2 Boltzmann machines and restricted Boltzmann machines

We turn to a subclass of Boltzmann machines, called restricted Boltzmann
machines (RBM)[3]. Structurally speaking, restricted Boltzmann machines are just
Boltzmann machines where there are no connections between neurons of the same
layer (hidden to hidden and visible to visible). This seems like a minor point, but
this actually makes it possible to use a modification of the backpropagation used in
feed-forward networks. The restricted Boltzmann machine therefore has two layers,
a visible, and a hidden. The visible layer (this is true for Boltzmann machines in
general) is the place where we put in inputs and read out outputs. Denote the inputs
with xi , the biases of the hidden layer with b[h]

j . Then, during the forward pass (see

Fig. 10.2b), the RBM calculates y = σ(x�w + b[h]). If we were to stop here, RBMs
would be similar to autoencoders, but we have a second phase, the reconstruction
(see Fig. 10.2c). During the reconstruction, the y are fed to the hidden layer and then
passed to the visible layer. This is done by multiplying them with the same weights,
and adding another set of biases, i.e. r = y�w + b[v]. The difference between x and r
is measured withKL and then this error is used in backpropagation. RBMs are frag-
ile, and every time one gets a nonzero reconstruction, this is a good sign. Boltzmann
machines are similar to logical constraint satisfaction solvers, but they focus on what
Hinton and Sejnowski called ‘weak constraints’. Notice that we moved away quite
a bit from the energy function, and well back into standard neural network territory.

The final architecturewewill briefly discuss is deep belief networks (DBN), which
are just stacked RBMs. They were introduced in [4] and in [5]. They are conceptu-
ally similar to stacked autoencoders, but they can be trained with backpropagation
to be generative models, or with contrastive divergence. In this setting, they may
be even used as classifiers. Contrastive divergence is simply an algorithm that effi-
ciently approximates the gradients of the log-likelihood. A discussion on contrastive
divergence is beyond the scope of this book, but we point the interested reader to [6]
and [7]. For a discussion about the cognitive aspects of energy-based models, see
[8].
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10.2 Memory-BasedModels

The first memory-based model we will explore are neural Turing-machines (NTM)
first proposed in [9]. Remember how a Turing-machine works: you have a read-write
head and a tape which acts as a memory. The Turing-machine then is given a function
in the form of an algorithm and it computes that function (takes in the given inputs
and outputs the result). The neural Turing-machine is similar, but the point is to have
all components trainable, so that they can do soft computation, and they should also
learn how to do it well.

The neural Turing-machine acts similarly to an LSTM. It takes input sequences
and outputs sequences. If we want it to output a single result, we just take the last
component and discard everything else. The neural Turing-machine is built upon
an LSTM, and can be seen as an architecture extending the LSTM similarly how
LSTMs builds upon simple recurrent networks.

A neural Turing-machine has several components. The first one is called a con-
troller, and a controller is simply an LSTM. Similar to an LSTM, the neural Turing-
machine has a temporal component, and all elements are indexed by t , and the state of
the machine at time t takes as inputs components calculated at t − 1. The controller
takes in two inputs: (i) raw inputs at time t , i.e. xt and (ii) results of the previous step,
rt . The neural Turing-machine has another major component, the memory, which is
just a tensor denoted by Mt (it is usually just a matrix). Memory is not an input to
the controller, but it is an input to the step t of the whole neural Turing-machine (the
input is Mt−1).

The structure of a complete neural Turing-machine is shown in Fig. 10.3, but
we have omitted the details.1 The idea is that the whole neural Turing-machine
should be expressed as tensors, and trainable by gradient descent. To enable this,
all crisp concepts from regular Turing-machines are fuzzified, so that there is no
single memory location which is accessed in separation, but all memory locations
are accessed to a certain degree. But in addition to the fuzzy part, the amount of the
accessed memory is also trainable, so it changes dynamically.

To reiterate: the neural Turing-machine has an LSTM (controller) which receives
the outputs from the previous step, and a fresh vector of inputs, and uses them and
a memory matrix to produce outputs and everything is trainable. But how do the
components work? Let us now work our way from the memory upward. We will be
needing three vectors, all of which the controller will produce: add vector at, erase
vector et, and weighting vector wt. They are similar but used for different purposes.
We will be coming back to them later to explain how they are produced.

Let us see how the memory works. The memory is represented by a matrix (or
possibly higher order tensor)Mt . Each row in thismatrix is called amemory location.
If there are n rows in thememory, the controller produces a weighting vector of size n

1For a fully detailedview, see the blog entry of oneof the creators of theNTM,https://medium.
com/aidangomez/the-neural-turing-machine-79f6e806\penalty-
\@Mc0a1.

https://medium.com/aidangomez/the-neural-turing-machine-79f6e806penalty -@M c0a1
https://medium.com/aidangomez/the-neural-turing-machine-79f6e806penalty -@M c0a1
https://medium.com/aidangomez/the-neural-turing-machine-79f6e806penalty -@M c0a1
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Fig. 10.3 Neural
Turing-machines

(components range from 0 to 1) which indicates howmuch of each of those locations
to take in consideration. This can be a crisp access to a one or several locations or a
fuzzy access to those locations. Since this vector is trainable, it is almost never crisp.
This is the reading operation, defined simply as the Hadamard product (pointwise
multiplication) of m by n matrix Mt and B, where B is obtained by transposing the
m-dimensional row vector wt, and then broadcasting its values (just copying this
column n − 1 times) to match the dimensions of Mt .

The neural Turing-machine will now write. It always reads and writes, but some-
times it writes very similar values, so we have the impression that the content is not
changed. This is important since it is a common source of confusion thinking that the
NTM makes a decision whether to (over)write or not. It does not make this decision
(it does not have a separate decision mechanism), it always performs the writing, but
sometimes the value written is the same as the old value.

The write operation itself is composed by two components: (i) the erase compo-
nent, and (ii) add component. The erase operation resets the components of amemory
location to zero only if both the weighting vectorwt component for that location and
the erase vector et component are both 1. In symbols: M̂t = Mt−1 · (I − wt · et ),
where I is a row vector of 1s, and all products are Hadamard or pointwise, so these
multiplications are commutative.To take care of the dimensions, transpose andbroad-
cast as needed. The add operation performs exactly the same taking in M̂t instead
of Mt−1, but by using the equation: Mt = M̂t + wt · at ). Remember, the way these
things work is the same, they are all operations on trainable components–there is
no intrinsic difference, only operations and trainable differences. We now have to
connect the two parts, and this is done by addressing. Addressing is the part which
describes how the weighting vectors wt are produced. It is a relatively complex pro-
cedure involving a number of components, and we refer the reader to the original
paper [9] for details. What is important to note is that neural Turing-machines have
location-based addressing and content-based addressing.

A secondmemory-basedmodel,much simpler and equally powerful is thememory
networks (MemNN) introduced in [10]. The idea is to extend LSTM tomake the long
term dependency memory better. Memory networks have several components, and
aside from the memory, all of them are neural networks, which makes memory
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networks even more aligned with the spirit of connectionism than neural Turing-
machines, while retaining all the power. The components of the memory network
are:

• Memory (M): An array of vectors
• Input feature map (I): converts the input into a distributed representation
• Updater (G): decides how to update the memory given the distributed represen-

tation passed in by I
• Output feature map (O): receives the input distributed representation and finds

supportive vectors from memory, and produces an output vector
• Responder (R): Additionally formats the output vectors given by O

Their connections are illustrated in Fig. 10.4. All of these components except
memory are functions described by neural networks and hence trainable. In a simple
version, I would be word2vec, G would simply store the representation in the next
available memory slot, R would modify the output by replacing indexes with words
and adding some filler words.O is the one that does the hard work. It would have to
find a number of supporting memories (a single memory scan and update is called
a hop2), and then find a way of ‘bundling’ them with what I has forwarded. This
‘bundling’ is simplematrixmultiplication, of the input and thememory, but with also
some additional learned weights. This is how it always should be in connectionists
models: just adding, multiplying and weights. And the weights are where the magic
happens. A fully trainable complex memory network is presented in [11].

One problem that both neural Turing-machines and memory networks have in
common is that they have to use segmented vector-based memory. It would be inter-
esting to see how tomake amemory-basedmodelwith a continuousmemory, perhaps
with encoding vectors in floats. But a word of warning, even plain-vanilla memory
networks have a lot more trainable parameters than LSTMs, and training could take
a lot of time, so one of the major challenges in memory models mentioned in [11]
is how to reuse parameters in various components, which would speed up learning.
Memory networks memory addressing is only content-based.

Fig. 10.4 Memory networks

2By default,memory networksmake one hop, but it has been shown thatmultiple hops are beneficial,
especially in natural language processing.
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10.3 The Kernel of General Connectionist Intelligence:The bAbI
Dataset

Despite their colourful past, neural networks today are a recognized subfield of AI,
and deep learning is making a run for the whole AI. A natural question arises, how
can we evaluate neural networks as an AI system, and it seems that the old idea of
the Turing test is coming back. Fortunately, there is a dataset of toy tasks called bAbI
[12], which was made with the idea of it becoming a kernel for general AI: Any
agent hoping to be recognized as general AI should be able to pass all the toy tasks
in the bAbI dataset. The bAbI dataset is one of the most important general AI tasks
to be confronted with a purely connectionistic approach.

The tasks in the dataset are expressed in natural language, and there are twenty
categories of them. The first category addresses single supporting fact, and it has
samples that try to capture a simple repetition of what was already stated like the
example produced ‘Mary went to the bathroom. John moved to the hallway. Mary
travelled to the office.Where isMary?. The next two tasks introducemore supporting
facts, i.e. more actions by the same person. The next task focuses on learning and
resolving relations, like being given ‘the kitchen is north of the bathroom. What is
north of the bathroom?. A similar but considerably more complex task is Task 19
(Path finding): ‘the kitchen is north of the bathroom. How to get from the kitchen to
the bathroom?’. It is the ‘flipping’ that adds to the complexity. Also, here the task
is to produce directions (with multiple steps), where in the relation resolution the
network just had to produce the resolvent.

The next task addresses binary answer questions in natural language. Another
interesting task is called ‘counting’, and the information given contains a single
agent picking up and dropping stuff. The network has to count how many items
he has in his hands at the end of the sequence. The next three tasks are based on
negation, conjunction and using three-valued answering (‘yes’, ‘no’, ‘maybe’). The
tasks which address coreference resolution follow. Then come the tasks for time rea-
soning, positional reasoning and size reasoning (resembling Winograd sentences3),
and tasks dealing with basic syllogistic deduction and induction. The last task is to
resolve the agent’s motivation.

The authors of the dataset tested a number of methods against the data, but the
results for plain (non-tweaked) memory networks[10] are the most interesting, since
they represent what a pure connectionist approach can achieve. We reproduce the
list of accuracies for plain memory networks [12], and refer the reader to the original
paper for other results.

3Winograd sentences are sentences of a particular form, whare the computer should resolve the
coreference of a pronoun. They were proposed as an alternative to the Turing test, since the turing
test has some deep flaws (deceptive behaviour is encouraged), and it is hard to quantify its results
and evaluate it on a large scale. Winograd sentences are sentances of the form ‘I tried to put the
book in the drwer but it was too [big/small]’, and they are named after Terry Winograd who first
considered them in the 1970s [13].
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1. Single supporting fact: 100%
2. Two supporting facts: 100%
3. Three supporting facts: 20%
4. Two argument relations: 71%
5. Three argument relations: 83%
6. Yes-no questions: 47%
7. Counting: 68%
8. Lists: 77%
9. Simple negation: 65%

10. Indefinite knowledge: 59%
11. Basic coreference: 100%
12. Conjunction: 100%
13. Compound coreference: 100%
14. Time reasoning: 99%
15. Basic deduction: 74%
16. Basic induction: 27%
17. Positional reasoning: 54%
18. Size reasoning: 57%
19. Path Finding: 0%
20. Agent’s motivations: 100%

These results point at a couple of things. First, it is amazing how well memory
networks address coreference resolution. It is also remarkable how well the memory
network performs on pure deduction. But the most interesting part is how the prob-
lems arise from inference-heavy tasks where deduction has to be applied to obtain
the result (as opposed to basic deduction, where the emphasis is on form). The most
representative of these tasks are path finding and size reasoning. We find it inter-
esting since memory networks have a memory component, but not a component for
reasoning, and it would seem that memory is more helpful in form-based reasoning
such as deduction. It is also interesting that the tweaked memory network jumped to
100% on induction but dropped to 73% on deduction. The question on how to get a
neural network to reason seems to be of paramount importance in getting past these
benchmarks made by memory networks.
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11Conclusion

11.1 An Incomplete Overview of Open Research Questions

We conclude this book with a list of open research questions. A similar list, from
which we have borrowed some of the problems we present here, can be found in [1].
We were hoping to compile a diverse list to show how rich and diverse research in
deep learning can be. The problems we find most intriguing are:

1. Canwe find something else than gradient descent as a basis for backpropagation?
Canwefind something as an alternative to backpropagation as awhole forweight
updates?

2. Can we find new and better activation functions?
3. Can reasoning be learned? If so, how? If not, how can we approximate symbolic

processes in connectionist architectures? How canwe incorporate planning, spa-
tial reasoning and knowledge in artificial neural networks? There is more here
than meets the eye, since symbolic computation can be approximated with solu-
tions to purely numerical expressions (which can then be optimized). A good
nontrivial example is to represent A → B, A � B with B

A · A = B. Since it
seems that a numerical representation of logical connectives can be found quite
easily, can a neural network find and implement it by itself?

4. There is a basic belief that deep learning approaches consisting of many layers
of nonlinear operations correspond to the idea of re-using many subformulas in
symbolic systems. Can this analogy be formalized?

5. Why are convolutional networks easy to train? This is of course connected with
the number of parameters, but they are still easier to train than other networks
with the same number of parameters.

6. Can we make a good strategy for self-taught learning, where training samples
are found among unlabelled samples, or even actively sought by an autonomous
agent?
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7. The approximation of the gradient is good enough for neural networks, but it is
currently computationally less efficient than symbolic derivation. For humans,
it is much easier to guess a number that is close to a value (e.g. a minimum)
than to compute the exact number. Can we find better algorithms for computing
approximate gradients?

8. An agent will be faced with an unknown future task. Can we develop a strategy
so that it is expecting it and can start learning right away (without forgetting the
previous tasks)?

9. Can we prove theoretical results for deep learning which use more than just
formalized simple networks with linear activations (threshold gates)?

10. Is there a depth of deepneural networkswhich is sufficient to reproduce all human
behaviour? If so, what wouldwe get by producing a list of human actions ordered
by the number of hidden layers a deep neural network needs to reproduce the
given action? How would it relate to the Moravec paradox?

11. Dowe have a better alternative than simply randomly initializing weights? Since
in neural networks everything is in the weights, this is a fundamental problem.

12. Are local minima a fact of life or only an inherent limitation of the presently
used architectures? It is known that by adding hand-crafted features helps, and
that deep neural networks are capable of extracting features themselves, but why
do they get stuck? Curriculum learning helps a lot in some cases, and we can
ask whether the curriculum is necessary for some tasks?

13. Are models that are hard to interpret probabilistically (such as stacked autoen-
coders, transfer learning, multi-task learning) interpretable in other formalisms?
Perhaps fuzzy logic?

14. Can deep networks be adapted to learn from trees and graphs, not just vectors?
15. The human cortex is not always feed-forward, it is inherently recurrent, and

there is recurrence in most cognitive tasks. Are there cognitive tasks which are
learnable only by feed-forward or only by recurrent networks?

11.2 The Spirit of Connectionism and Philosophical Ties

Connectionism today is more alive and vibrant than ever. For the first time in the
history of AI, connectionism, under its present name of ‘deep learning’, is trying to
take over GOFAI’s central position, and reasoning is the only major cognitive ability
that remains largely unconquered. Whether this is a final wall which can never be
breached, or just a matter of months, is hard to tell. Artificial neural networks as a
research area almost died out a couple of times during similar quests. They were
always the underdog, and perhaps this is the most fascinating part. They finally
became an important part of AI and Cognitive Science, and today (in part thanks to
marketing) they have an almost magical appeal.

A sculptor has to have two things to make a masterpiece: a clear and precise idea
what to make, and the skill and tools to make it. Philosophy and mathematics are
the two oldest branches of science, old as civilization itself, and most of science



11.2 The Spirit of Connectionism and Philosophical Ties 187

can be seen as a gradual transition from philosophy to mathematics. This can chart
one’s way in any scientific discipline, and this is especially true of connectionism:
whenever you feel without ideas, reach for philosophy, and when you feel you do
not have the tools, reach for mathematics. A little research in both can build an
astounding career in any branch of science, and neural networks are no exception
here.

This book ends here, and if you feel it has been a fantastic journey, then I am
happy. This is only the beginning of your path to deep learning. I strongly encourage
you to seek out knowledge1 and never settle for the status quo. Always dismiss when
someone says ‘why are you doing this, this does not work’ or ‘you are not qualified
to do this’ or ‘this is not relevant to your field’ and continue to research and do
your very best. A proverb I like very much2 goes: Every day, write something new.
If you do not have anything new, write something old. If you do not have anything
old, read something. At one point, someone with a new brilliant mind will make a
breakthrough. It will be hard, and there will be a lot of resistance, and the resistance
will take weird forms. But try to find solace in this: neural networks are a symbol
of struggle, the struggle of pulling yourself up from rock-bottom, falling again and
again, and finally reaching the stars against all odds. The life of the father of neural
networks was an omen of all the future struggles. So, remember the story of Walter
Pitts, the philosophical logician, the teenager who hid in the library to read the
Principa, the student who tried to learn from the best, the person who walked out of
life straight into the annals of history, the inconsolable man who tried to redeem the
world with logic. Let his story be an inspiration.
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