
Introducing

Tiago Vale
21 February 2013

21 February 2013 Tiago Vale 2

Outline

● What (is git)?
● Why (do we need git)?
● Who uses git?
● Concepts and hands on

21 February 2013 Tiago Vale 3

What (is git)?

● (Distributed) version control system;

● Free and open source;

21 February 2013 Tiago Vale 4

Why (do we need git)?

v1

v2

teste

21 February 2013 Tiago Vale 5

Why (do we need git)?

v1

v2

teste

21 February 2013 Tiago Vale 6

Why (do we need git)?

v1

v2

teste

21 February 2013 Tiago Vale 7

Why (do we need git)?

● What was changed?

● When?

● By whom?

● Why?

+++

21 February 2013 Tiago Vale 8

Who uses git?

21 February 2013 Tiago Vale 9

Concepts – Repository

● Where all our work is stored;

● Contains every version of our work;

● Can be shared.

Repository

21 February 2013 Tiago Vale 10

Hands On – Repository

● Okay, so let's create our repository;

● Create/change to some directory:
– e.g., gitworkshop;

● $ git init

– Command to create a repository!

Repository

21 February 2013 Tiago Vale 11

Concepts – Working Copy

● A snapshot of the repository;

● Where we work, i.e., change things;

● Private.

Working
copy

21 February 2013 Tiago Vale 12

Hands On – Working Copy

● $ git status

– Check the state of our working copy.

Working
copy

nothing to commit, working directory clean

21 February 2013 Tiago Vale 13

Hands On – Working Copy

● Let's create our first file;

● Create the file main.c:

Working
copy#include <stdio.h>

int main(int argc, char** argv)
{

printf(“Hello world\n”);
return 0;

}

21 February 2013 Tiago Vale 14

Hands On – Working Copy

● $ git status

– We created a new file.
Working

copy

Untracked files:
(use "git add <file>..." to include in what will be
committed)
#
main.c
nothing added to commit but untracked files present
(use "git add" to track)

21 February 2013 Tiago Vale 15

Hands On – Working Copy

● $ git add main.c

– We want git to maintain main.c.
Working

copy

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: main.c

21 February 2013 Tiago Vale 16

Concepts – Commit

● Operation that modifies the repository;

● Typically accompanied by a comment that:
– explains the changes made;

– becomes part of the repository's history.

RepositoryWorking
copy

Commit

21 February 2013 Tiago Vale 17

Hands On – Commit

● $ git commit --message “My first commit!”

● --message/-m flag specifies the commit comment.

RepositoryWorking
copy

Commit

21 February 2013 Tiago Vale 18

Concepts – Log

● History of the repository's evolution.

● Description of the modifications made, who
made them, and when.

+++

21 February 2013 Tiago Vale 19

Hands On – Log

● $ git log

– Summary containing the author, date and
comment;

● $ git show

– More detailed description, includes actual
changes.

+++

commit 9c5c46b64c9470bf0e87cc63421cff23a226023b
Author: Tiago Vale <tiagomarquesvale@gmail.com>
Date: Wed Feb 20 21:22:57 2013 +0000

 My first commit

21 February 2013 Tiago Vale 20

Hands On

● Let's modify main.c.

● And now, we want to commit.

#include <stdio.h>
int main(int argc, char** argv)
{

printf(“Hello world, how are you?\n”);
return 0;

}

Working
copy

21 February 2013 Tiago Vale 21

Hands On

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)
#
modified: main.c
#
no changes added to commit (use "git add" and/or "git commit -a")

● $ git commit -m “Modified string”

● What happened? :-(Working
copy

21 February 2013 Tiago Vale 22

Concepts – Staging Area

● Sort of a loading dock;

● When we commit, we only apply the changes
to files which are staged.

Working
copy

RepositoryStaging Area

21 February 2013 Tiago Vale 23

Concepts – Staging Area

● When we modify a file in the working copy, it is
marked as “modified.”

Working
copy

RepositoryStaging Area

21 February 2013 Tiago Vale 24

Concepts – Staging Area

● Before committing, the modified file needs to
be “staged”
– i.e., add a snapshot of it to the staging area;

● Modified data is marked in its current version
to go in the next commit.

Working
copy

RepositoryStaging Area

$ git add

21 February 2013 Tiago Vale 25

Concepts – Staging Area

● Staged changes can be committed!

Working
copy

RepositoryStaging Area

Add Commit

21 February 2013 Tiago Vale 26

Hands On – Let's Try Again

[master cd9b797] Modified string
 1 file changed, 1 insertion(+), 1 deletion(-)

● $ git add main.c

● $ git commit -m “Modified string”

Working
copy

21 February 2013 Tiago Vale 27

Hands On – Let's Try Again

● The staging area can be bypassed with the
--all/-a commit flag;

– Commits all changed files in the working copy.

● $ git commit --all --message “...”

Working
copy

21 February 2013 Tiago Vale 28

Hands On

● What if I modify something, and change my
mind? How do I discard the changes?
– i.e., revert to the current repository version.

● $ git checkout -- <file>

– e.g., $ git checkout -- main.c

Working
copy

21 February 2013 Tiago Vale 29

Commands, Revisited

● $ git init

● $ git status

● $ git add <file>

● $ git diff <file>

● $ git commit [-a] -m <message>

● $ git checkout -- <file>

● $ git reset HEAD <file>

● $ git log/show

21 February 2013 Tiago Vale 30

Concepts – Remote

● Other instance of this repository...

● ...on other computer!
– e.g., on GitHub.

Repository Remote

21 February 2013 Tiago Vale 31

 GitHub

Hands On – Remote

● Create a repository on GitHub;
● Now, we clone GitHub's repository to our

machine
– $ git clone https://github.com/<user>/<repo>.git

21 February 2013 Tiago Vale 32

Hands On – Remote

● We now have our local instance of GitHub's
repository;

● We always work on our local instance;
● The repository on GitHub is called origin.
● $ git remote

origin

21 February 2013 Tiago Vale 33

Hands On – Remote

● Let's put our main.c file in this repository;

● Check GitHub.

● Not there! :-(

origin

21 February 2013 Tiago Vale 34

Concepts – Push

● Copy changes from the local repository
instance to a remote one;

● Synchronization between two repository
instances.

origin

21 February 2013 Tiago Vale 35

Hands On – Push

● We want to push our work to keep GitHub's
repository up to date.

● $ git push origin

origin

To https://github.com/tvale/git-workshop.git
 1c95c92..6284ab4 master -> master

21 February 2013 Tiago Vale 36

Concepts – Pull

● Copy changes from a remote repository
instance to the local one;

● The other way around!

origin

21 February 2013 Tiago Vale 37

Hands On – Pull

● Update your local repository instance.
● $ git pull origin

origin

 main.c | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

21 February 2013 Tiago Vale 38

Hands On

● Now one of you changes the string in main.c,
then commits and pushes.

● Meanwhile, I also modified my copy of main.c
and will push now.

● What happened?

To https://github.com/tvale/git-workshop.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to
'https://github.com/tvale/git-workshop.git'

21 February 2013 Tiago Vale 39

Hands On

● Git is not allowing me to push my changes
because someone has already pushed theirs
first;

● I must pull the changes before pushing my
own modifications;

● Two possible scenarios:
– Everything goes okay; or

– My modifications conflict with the pulled changes!

21 February 2013 Tiago Vale 40

Hands On

● If everything goes okay:

● $ git push origin

Auto-merging main.c
Merge made by the 'recursive' strategy.
 main.c | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

21 February 2013 Tiago Vale 41

Hands On

● If there are conflicts:

Auto-merging main.c
CONFLICT (content): Merge conflict in main.c
Automatic merge failed; fix conflicts and then
commit the result.

<<<<<<< HEAD
My modifications

=======
Changes in GitHub

>>>>>>> ...

21 February 2013 Tiago Vale 42

Hands On

● When we resolve the conflicts in a file, we
mark as solved:
– $ git add <file>

● After fixing all conflicts, we commit...
– $ git commit

● ...and can push now.
– $ git push origin

21 February 2013 Tiago Vale 43

Commands, Revisited

● $ git clone

● $ git push

● $ git pull

origin

21 February 2013 Tiago Vale 44

Conclusion

● Learned how to use git to manage the
evolution of your projects, on your own;

● Learned how to use git and GitHub to work as
a team on the same project.

21 February 2013 Tiago Vale 45

References

● http://git-scm.com/

● https://github.com/

● http://git-scm.com/book

● http://www.ericsink.com/vcbe/

http://git-scm.com/
https://github.com/
http://git-scm.com/book
http://www.ericsink.com/vcbe/

21 February 2013 Tiago Vale 46

Thank you.

