COMPUTER SECURITY

PRINCIPLES AND PRACTICE
SECOND EDITION

William Stallings | Lawrie Brown

COMPUTER SECURITY
PRINCIPLES AND PRACTICE

Second Edition

William Stallings

Lawrie Brown
University of New South Wales, Australian Defence Force Academy

With Contributions by
Mick Bauer

Security Editor, Linux Journal
Dir. Of Value-Subtracted Svcs., Wiremonkeys.org

Michael Howard

Principle Security Program Manager, Microsoft Corporation

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton Senior Operations Supervisor: Alan Fischer

Editor-in-Chief: Michael Hirsch Manufacturing Buyer: Lisa McDowell
Acquisitions Editor: Tracy Dunkelberger Art Director: Anthony Gemmellaro/Jayne Conte
Associate Editor: Carole Snyder Cover Designer: Bruce Kenselaar

Editorial Assistant: Stephanie Sellinger Cover Image: Bodiam Castle © Lance Bellers
Vice President, Marketing: Patrice Jones Media Editor: Daniel Sandin

Marketing Manager: Yezan Alayan Full-Service Project Management: Integra
Marketing Coordinator: Kathryn Ferranti Composition: Integra

Marketing Assistant: Emma Snider Printer/Binder: Courier/Westford

Vice President, Production: Vince O’Brien Cover Printer: Lehigh-Phoenix Color/
Managing Editor: Jeff Holcomb Hagerstown

Production Project Manager: Kayla Smith-Tarbox Text Font: Times Roman, 10/12

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text on page 787.

Copyright © 2012, 2008. Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Printed in the
United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Stallings, William.
Computer security : principles and practice / William Stallings, Lawrie Brown.—2nd ed.
p.cm.
ISBN-13: 978-0-13-277506-9 (alk. paper)
ISBN-10: 0-13-277506-9 (alk. paper)
1. Computer security. 2. Computer security —Examinations—Study guides.
3. Computer networks—Security measures— Examinations—Study guides. 4. Electronic data
processing personnel — Certification —Study guides. 1. Brown, Lawrie. II. Title.

QA76.9.A255685 2012
005.8—dc23
2011029651

15141312 11-CW—-1098 76 54321

P E A R S O N ISBN-10: 0-13-277506-9
ISBN-13: 978-0-13-277506-9

For my loving wife, A. T. S.

To my extended family, who helped
make this all possible

— WS

This page intentionally left blank

CONTENTS

Online Resources xiii
Notation xiv

About the Authors xv
Preface xvii

Chapter 0 Reader’s and Instructor’s Guide 1

0.1 Outline of This Book 2

0.2 A Roadmap for Readers and Instructors 2
0.3 Support for CISSP Certification 3

0.4 Internet and Web Resources 5

0.5 Standards 7

Chapter 1 Overview 9

1.1 Computer Security Concepts 10
1.2 Threats, Attacks, and Assets 18
1.3 Security Functional Requirements 23

1.4 A Security Architecture for Open Systems 26

1.5 Computer Security Trends 31

1.6 Computer Security Strategy 33

1.7 Recommended Reading and Web Sites 35

1.8 Key Terms, Review Questions, and Problems 36

PART ONE: COMPUTER SECURITY TECHNOLOGY AND PRINCIPLES 38
Chapter 2 Cryptographic Tools 38

21 Confidentiality with Symmetric Encryption 39

2.2 Message Authentication and Hash Functions 46

2.3 Public-Key Encryption 54

2.4 Digital Signatures and Key Management 59

2.5 Random and Pseudorandom Numbers 62

2.6 Practical Application: Encryption of Stored Data 64
2.7 Recommended Reading and Web Sites 66

2.8 Key Terms, Review Questions, and Problems 67

Chapter 3 User Authentication 71

3.1 Means of Authentication 73
3.2 Password-Based Authentication 73
3.3 Token-Based Authentication 84

3.4 Biometric Authentication 88
3.5 Remote User Authentication 93
3.6 Security Issues for User Authentication 95

3.7 Practical Application: An Iris Biometric System 97

vi CONTENTS

3.8 Case Study: Security Problems for ATM Systems 99
3.9 Recommended Reading and Web Sites 101
3.10 Key Terms, Review Questions, and Problems 103

Chapter 4 Access Control 105

4.1 Access Control Principles 106

4.2 Subjects, Objects, and Access Rights 110

4.3 Discretionary Access Control 111

4.4 Example: UNIX File Access Control 118

4.5 Role-Based Access Control 121

4.6 Case Study: RBAC System for a Bank 129

4.7 Recommended Reading and Web Site 132

4.8 Key Terms, Review Questions, and Problems 133

Chapter 5 Database Security 137

5.1 The Need for Database Security 138

5.2 Database Management Systems 139

5.3 Relational Databases 141

5.4 Database Access Control 144

5.5 Inference 149

5.6 Statistical Databases 152

5.7 Database Encryption 162

5.8 Cloud Security 166

5.9 Recommended Reading and Web Site 172

5.10 Key Terms, Review Questions, and Problems 173

Chapter 6 Malicious Software 178

6.1 Types of Malicious Software (Malware) 179

6.2 Propagation—Infected Content—Viruses 182

6.3 Propagation—Vulnerability Exploit—Worms 188

6.4 Propagation—Social Engineering—SPAM E-mail, Trojans 195
6.5 Payload—System Corruption 197

6.6 Payload—Attack Agent—Zombie, Bots 199

6.7 Payload—Information Theft—Keyloggers, Phishing, Spyware 201
6.8 Payload—Stealthing—DBackdoors, Rootkits 202

6.9 Countermeasures 206

6.10 Recommended Reading and Web Sites 215

6.11 Key Terms, Review Questions, and Problems 216

Chapter 7 Denial-of-Service Attacks 220

7.1 Denial-of-Service Attacks 221

7.2 Flooding Attacks 228

7.3 Distributed Denial-of-Service Attacks 230

7.4 Application-Based Bandwidth Attacks 232

7.5 Reflector and Amplifier Attacks 234

7.6 Defenses Against Denial-of-Service Attacks 239
7.7 Responding to a Denial-of-Service Attack 243
7.8 Recommended Reading and Web Sites 244

7.9 Key Terms, Review Questions, and Problems 245

CONTENTS vil

Chapter 8 Intrusion Detection 248
8.1 Intruders 249

8.2 Intrusion Detection 253

8.3 Host-Based Intrusion Detection 256

8.4 Distributed Host-Based Intrusion Detection 263
8.5 Network-Based Intrusion Detection 265

8.6 Distributed Adaptive Intrusion Detection 270
8.7 Intrusion Detection Exchange Format 273

8.8 Honeypots 275

8.9 Example System: Snort 277

8.10 Recommended Reading and Web Sites 281

8.11 Key Terms, Review Questions, and Problems 282

Chapter 9 Firewalls and Intrusion Prevention Systems 285

9.1 The Need for Firewalls 286

9.2 Firewall Characteristics 287

9.3 Types of Firewalls 288

9.4 Firewall Basing 296

9.5 Firewall Location and Configurations 298

9.6 Intrusion Prevention Systems 303

9.7 Example: Unified Threat Management Products 306
9.8 Recommended Reading and Web Site 310

9.9 Key Terms, Review Questions, and Problems 311

PART TWO: SOFTWARE SECURITY AND TRUSTED SYSTEMS 316
Chapter 10 Buffer Overflow 316

10.1 Stack Overflows 318

10.2 Defending Against Buffer Overflows 339

10.3 Other Forms of Overflow Attacks 345

10.4 Recommended Reading and Web Sites 352

10.5 Key Terms, Review Questions, and Problems 353

Chapter 11 Software Security 355

11.1 Software Security Issues 356

11.2 Handling Program Input 360

11.3 Writing Safe Program Code 371

11.4 Interacting with the Operating System and Other Programs 376
11.5 Handling Program Output 389

11.6 Recommended Reading and Web Sites 391

11.7 Key Terms, Review Questions, and Problems 392

Chapter 12 Operating System Security 396

12.1 Introduction to Operating System Security 398
12.2 System Security Planning 399

12.3 Operating Systems Hardening 399

12.4 Application Security 404

12.5 Security Maintenance 405

12.6 Linux/Unix Security 406

viii CONTENTS

12.7
12.8
12.9
12.10

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Windows Security 410

Virtualization Security 412

Recommended Reading and Web Sites 416

Key Terms, Review Questions, and Problems 417

Trusted Computing and Multilevel Security 420

The Bell-LaPadula Model for Computer Security 421

Other Formal Models for Computer Security 431

The Concept of Trusted Systems 437

Application of Multilevel Security 440

Trusted Computing and the Trusted Platform Module 447

Common Criteria for Information Technology Security Evaluation 451
Assurance and Evaluation 457

Recommended Reading and Web Sites 462

Key Terms, Review Questions, and Problems 463

PART THREE: MANAGEMENT ISSUES 466

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Chapter 17

17.1
17.2

IT Security Management and Risk Assessment 466

IT Security Management 467

Organizational Context and Security Policy 470
Security Risk Assessment 473

Detailed Security Risk Analysis 476

Case Study: Silver Star Mines 488

Recommended Reading and Web Sites 493

Key Terms, Review Questions, and Problems 494

IT Security Controls, Plans, and Procedures 497

IT Security Management Implementation 498
Security Controls or Safeguards 498

IT Security Plan 506

Implementation of Controls 507

Implementation Follow-up 508

Case Study: Silver Star Mines 511

Recommended Reading 514

Key Terms, Review Questions, and Problems 514

Physical and Infrastructure Security 516

Overview 517

Physical Security Threats 518

Physical Security Prevention and Mitigation Measures 525
Recovery from Physical Security Breaches 528

Example: A Corporate Physical Security Policy 529
Integration of Physical and Logical Security 529
Recommended Reading and Web Sites 536

Key Terms, Review Questions, and Problems 537

Human Resources Security 539

Security Awareness, Training, and Education 540
Employment Practices and Policies 546

17.3
17.4
17.5
17.6

Chapter 18

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Chapter 19

19.1
19.2
19.3
19.4
19.5
19.6

E-Mail and Internet Use Policies 549

Computer Security Incident Response Teams 550
Recommended Reading and Web Sites 557

Key Terms, Review Questions, and Problems 558

Security Auditing 560

Security Auditing Architecture 562

The Security Audit Trail 567

Implementing the Logging Function 571

Audit Trail Analysis 583

Example: An Integrated Approach 587
Recommended Reading and Web Site 590

Key Terms, Review Questions, and Problems 591

Legal and Ethical Aspects 593

Cybercrime and Computer Crime 594
Intellectual Property 598

Privacy 605

Ethical Issues 611

Recommended Reading and Web Sites 618

Key Terms, Review Questions, and Problems 620

PART FOUR CRYPTOGRAPHIC ALGORITHMS 623

Chapter 20

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

Chapter 21

21.1
21.2
21.3
21.4
21.5
21.6

Symmetric Encryption and Message Confidentiality 623

Symmetric Encryption Principles 624

Data Encryption Standard 629

Advanced Encryption Standard 631

Stream Ciphers and RC4 637

Cipher Block Modes of Operation 640

Location of Symmetric Encryption Devices 646
Key Distribution 648

Recommended Reading and Web Sites 650

Key Terms, Review Questions, and Problems 650

Public-Key Cryptography and Message Authentication 655

Secure Hash Functions 656

HMAC 662

The RSA Public-Key Encryption Algorithm 665
Diffie-Hellman and Other Asymmetric Algorithms 671
Recommended Reading and Web Sites 676

Key Terms, Review Questions, and Problems 676

PART FIVE NETWORK SECURITY 680

Chapter 22

22.1
22.2
22.3
22.4

Internet Security Protocols and Standards 680

Secure E-mail and S/MIME 681

DomainKeys Identified Mail 684

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 688
HTTPS 692

CONTENTS

ix

X CONTENTS

22.5 IPv4 and IPv6 Security 699
22.6 Recommended Reading and Web Sites 699
22.7 Key Terms, Review Questions, and Problems 700

Chapter 23 Internet Authentication Applications 703

231 Kerberos 704

23.2 X.509 710

23.3 Public-Key Infrastructure 713

23.4 Federated Identity Management 715

23.5 Recommended Reading and Web Sites 719

23.6 Key Terms, Review Questions, and Problems 720

Chapter 24 Wireless Network Security 722

24.1 Wireless Security Overview 723

24.2 IEEE 802.11 Wireless LAN Overview 726

24.3 IEEE 802.111 Wireless LAN Security 732

24.4 Recommended Reading and Web Sites 746

24.5 Key Terms, Review Questions, and Problems 747

APPENDICES
Appendix A Projects and Other Student Exercises for Teaching Computer Security 750

A1l Hacking Project 751

A.2 Laboratory Exercises 752

A3 Research Projects 752

A.4 Programming Projects 753

A5 Practical Security Assessments 753
A.6 Firewall Projects 754

A7 Case Studies 754

A.8 Writing Assignments 754

A9 Reading/Report Assignments 755

References 756
Index 774
Credits 787

ONLINE CHAPTERS AND APPENDICES'
Chapter 25 Linux Security

25.1 Introduction

25.2 Linux’s Security Model

25.3 The Linux DAC in Depth: Filesystem Security
25.4 Linux Vulnerabilities

25.5 Linux System Hardening

25.6 Application Security

25.7 Mandatory Access Controls

25.8 Recommended Reading and Web Sites

25.9 Key Terms, Review Questions, and Problems

Chapter 26 Windows and Windows Vista Security
26.1 Windows Security Architecture
26.2 Windows Vulnerabilities

26.3 Windows Security Defenses
26.4 Browser Defenses

26.5 Cryptographic Services

26.6 Common Criteria
26.7 Recommended Reading and Web Sites
26.8 Key Terms, Review Questions, Problems, and Projects

Appendix B Some Aspects of Number Theory

B.1 Prime and Relatively Prime Numbers
B.2 Modular Arithmetic
B.3 Fermat’s and Euler’s Theorems

Appendix C Standards and Standard-Setting Organizations
C.1 The Importance of Standards

C.2 Internet Standards and the Internet Society

C.3 National Institute of Standards and Technology
C.4 The International Telecommunication Union

C.5 The International Organization for Standardization
C.6 Significant Security Standards and Documents

Appendix D Random and Pseudorandom Number Generation

D.1 The Use of Random Numbers

D.2 Pseudorandom Number Generators (PRNGs)
D.3 True Random Number Generators

D.4 References

Appendix E Message Authentication Codes Based on Block Ciphers

E.1 Cipher-Based Message Authentication Code (CMAC)
E.2 Counter with Cipher Block Chaining-Message Authentication Code

!Online chapters, appendices, and other documents are Premium Content, available via the access card at
the front of this book.

xii CONTENTS

ONLINE RESOURCES

Site Location Description
Companion WilliamStallings.com/Computer Student Resources link: Useful links
Website Security and documents for students.

Instructor Resources links: Useful
links and documents for instructors.

Premium Content

Click on Premium Content link at
Companion Website or at pearson
highered.com/stallings and enter the
student access code found on the
card in the front of the book.

Online chapters, appendices, and
other documents that supplement
the book.

Instructor Resource
Center (IRC)

Click on Pearson Resources for
Instructors link at Companion
Website or on Instructor Resource
link at pearsonhighered.com/stallings.

Solutions manual, projects manual,
slides, and other useful documents

Computer Science
Student Resource Site

ComputerScienceStudent.com

Useful links and documents for
computer science students.

NOTATION

Symbol Expression Meaning
D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K
D, PR, D(PR,, Y) Asymmetric decryption of ciphertext Y using A’s private key PR,
D, PU, D(PU,, Y) Asymmetric decryption of ciphertext Y using A’s public key PU,
E, K E(K, X) Symmetric encryption of plaintext X using secret key K.
E, PR, E(PR,, X) Asymmetric encryption of plaintext X using A’s private key PR,
E, PU, E(PU,, X) Asymmetric encryption of plaintext X using A’s public key PU,
K Secret key
PR, Private key of user A
PU, Public key of user A
H(X) Hash function of message X
4+ Xty Logical OR: x OR y
° xey Logical AND: x AND y
~ ~X Logical NOT: NOT x
c A characteris.tic forrpula, consisting of a logical formula over the
values of attributes in a database
X X(C) Query set of C, the set of records satisfying C
[, X | X(O)| Magnitude of X(C): the number of records in X(C)
N X(C)N X(D) Setintersection: the number of records in both X(C) and X(D)
Il x|y x concatenated with y

Xiv

ABOUT THE AUTHORS

Dr. William Stallings has authored 17 titles, and counting revised editions, over 40 books
on computer security, computer networking, and computer architecture. In over 20 years
in the field, he has been a technical contributor, technical manager, and an executive with
several high-technology firms. Currently he is an independent consultant whose clients
include computer and networking manufacturers and customers, software development
firms, and leading-edge government research institutions. He has nine times received the
award for the best Computer Science textbook of the year from the Text and Academic
Authors Association.

He created and maintains the Computer Science Student Resource Site at Computer
ScienceStudent.com. This site provides documents and links on a variety of subjects of
general interest to computer science students (and professionals). He is a member of the
editorial board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Lawrie Brown is a senior lecturer in the School of Information Technology and Electri-
cal Engineering, at the Australian Defence Force Academy (UNSW@ADFA) in Canberra,
Australia. His professional interests include cryptography, communications and computer
systems security, and most recently, the design of safe mobile code environments using the
functional language Erlang. He has previously worked on the design and implementation
of private key block ciphers, in particular the LOKI family of encryption algorithms. He
currently teaches courses in computer security, cryptography, data communications and java
programming, and conducts workshops in security risk assessment and firewall design.

XV

This page intentionally left blank

PREFACE

WHAT’S NEW IN THE SECOND EDITION

In the four and a half years since the first edition of this book was published, the field has
seen continued innovations and improvements. In this new edition, we try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field. To begin
the process of revision, the first edition of this book was extensively reviewed by a number
of professors who teach the subject and by professionals working in the field. The result is
that in many places the narrative has been clarified and tightened, and illustrations have
been improved.

One obvious change to the book is a revision in the organization, which makes for a
clearer presentation of related topics. There is a new chapter on operating system security
and a new chapter on wireless security. The material in Part Three has been reallocated to
chapters in a way that presents it more systematically.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
major substantive changes throughout the book. Highlights include:

* Operating system security: This chapter reflects the focus in NIST SP800-123. The
chapter also covers the important topic of virtual machine security.

* Cloud security: A new section covers the security issues relating to the exciting new
area of cloud computing.

* Application-based denial-of-service attacks: A new section deals with this prevalent
form of DoS attack.

* Malicious software: This chapter provides a different focus than that of the first edition.
Increasingly, we see backdoor/rootkit type malware installed by social engineering
attacks, rather than more classic virus/worm direct infection. And phishing is even
more prominent than ever. These trends are reflected in the coverage.

* Internet security protocol and standards: This chapter has been expanded to include
two additional important protocols and services: HTTPS and DKIM.

* Wireless security: A new chapter on wireless security has been added.

* Computer security incident response: The section on CSIR has been updated and
expanded.

e Student study aid: Each chapter now begins with a list of learning objectives.

e Sample syllabus: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabi
that guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These
samples are based on real-world experience by professors with the first edition.

¢ Practice problem set: A set of homework problems, plus solutions, is provided for
student use.

e Test bank: A set of review questions, including yes/no, multiple choice, and fill in the
blank, is provided for each chapter.

xvii

xviil PREFACE

BACKGROUND

Interest in education in computer security and related topics has been growing at a dramatic
rate in recent years. This interest has been spurred by a number of factors, two of which
stand out:

1. Asinformation systems, databases, and Internet-based distributed systems and com-
munication have become pervasive in the commercial world, coupled with the
increased intensity and sophistication of security-related attacks, organizations
now recognize the need for a comprehensive security strategy. This strategy encom-
passes the use of specialized hardware and software and trained personnel to meet
that need.

2. Computer security education, often termed information security education or informa-
tion assurance education, has emerged as a national goal in the United States and other
countries, with national defense and homeland security implications. Organizations such
as the Colloquium for Information System Security Education and the National Security
Agency’s (NSA) Information Assurance Courseware Evaluation (IACE) Program are
spearheading a government role in the development of standards for computer security
education.

Accordingly, the number of courses in universities, community colleges, and other
institutions in computer security and related areas is growing.

OBJECTIVES

The objective of this book is to provide an up-to-date survey of developments in compu-
ter security. Central problems that confront security designers and security administrators
include defining the threats to computer and network systems, evaluating the relative risks
of these threats, and developing cost-effective and user-friendly countermeasures.

The following basic themes unify the discussion:

e Principles: Although the scope of this book is broad, there are a number of basic
principles that appear repeatedly as themes and that unify this field. Examples are
issues relating to authentication and access control. The book highlights these princi-
ples and examines their application in specific areas of computer security.

* Design approaches: The book examines alternative approaches to meeting specific
computer security requirements.

* Standards: Standards have come to assume an increasingly important, indeed dominant,
role in this field. An understanding of the current status and future direction of technology
requires a comprehensive discussion of the related standards.

* Real-world examples: A number of chapters include a section that shows the practical
application of that chapter’s principles in a real-world environment.

PREFACE XiX

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science,
computer engineering, and electrical engineering majors. It covers all the topics in OS
Security and Protection, which is one of the core subject areas in the IEEE/ACM Computer
Curriculum 2008: An Interim Revision to CS 2001, as well as a number of other topics. The
book covers the core area IAS Information Assurance and Security in the IEEE/ACM
Curriculum Guidelines for Undergraduate Degree Programs in Information Technology
2008; and CE-OPS6 Security and Protection from the IEEE/ACM Computer Engineering
Curriculum Guidelines 2004.

For the professional interested in this field, the book serves as a basic reference volume
and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into five parts (see Chapter 0):

e Computer Security Technology and Principles
e Software Security and Trusted Systems

* Management Issues

¢ Cryptographic Algorithms

¢ Network Security

The book is also accompanied by a number of online appendices that provide more
detail on selected topics.

The book includes an extensive glossary, a list of frequently used acronyms, and a
bibliography. Each chapter includes homework problems, review questions, a list of key
words, suggestions for further reading, and recommended Websites.

COVERAGE OF CISSP SUBJECT AREAS

This book provides coverage of all the subject areas specified for CISSP (Certified Informa-
tion Systems Security Professional) certification. The CISSP designation from the International
Information Systems Security Certification Consortium (ISC)? is often referred to as the “gold
standard” when it comes to information security certification. It is the only universally recognized
certification in the security industry. Many organizations, including the U.S. Department of
Defense and many financial institutions, now require that cyber security personnel have the
CISSP certification. In 2004, CISSP became the first I'T program to earn accreditation under the
international standard ISO/IEC 17024 (General Requirements for Bodies Operating Certification
of Persons).

The CISSP examination is based on the Common Body of Knowledge (CBK), a
compendium of information security best practices developed and maintained by (ISC)?,

XX PREFACE

a nonprofit organization. The CBK is made up of 10 domains that comprise the body of
knowledge that is required for CISSP certification. See Chapter 0 for details of this book’s
coverage of CBK.

STUDENT RESOURCES

For this new edition, a tremendous amount of original supporting material for students has
been made available online, at two Web locations. The Companion Website, at William
Stallings.com/ComputerSecurity (click on Student Resources link), includes a list of relevant
links organized by chapter and an errata sheet for the book.

Purchasing this textbook new grants the reader six months of access to the Premium
Content Site, which includes the following materials:

* Online chapters: To limit the size and cost of the book, two chapters of the book are
provided in PDF format. The chapters are listed in this book’s table of contents.

* Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of nine
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

° Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions are available. These enable the
students to test their understanding of the text.

¢ Key papers: Several dozen papers from the professional literature, many hard to find,
are provided for further reading.

* Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

INSTRUCTOR SUPPORT MATERIALS

Support materials for instructors are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the Publisher’s Web site www.pearsonhighered.
com/stallings or by clicking on the link labeled “Pearson Resources for Instructor” at this
book’s Companion Website at WilliamStallings.com/ComputerSecurity. To gain access to
the IRC, please contact your local Pearson sales representative via pearsonhighered.com/
educator/replocator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-
0485. The IRC provides the following materials:

* Projects manual: Project resources including documents and portable software, plus
suggested project assignments for all of the project categories listed in the following
section.

¢ Solutions manual: Solutions to end-of-chapter Review Questions and Problems

* PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

e PDF files: Reproductions of all figures and tables from the book

e Test bank: A chapter-by-chapter set of questions.

www.pearsonhighered.com/stallings
www.pearsonhighered.com/stallings

PREFACE xx1

* Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-
world experience by professors with the first edition.

The Companion Website, at WilliamStallings.com/ComputerSecurity (click on Instruc-
tor Resources link), includes the following:

e Links to Web sites for other courses being taught using this book
e Sign-up information for an Internet mailing list for instructors using this book to
exchange information, suggestions, and questions with each other and with the author

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support for including a projects compo-
nent in the course. The instructor’s support materials available through Prentice Hall not
only includes guidance on how to assign and structure the projects but also includes a set of
user’s manuals for various project types plus specific assignments, all written especially for
this book. Instructors can assign work in the following areas:

* Hacking exercises: Two projects that enable students to gain an understanding of the
issues in intrusion detection and prevention.

* Laboratory exercises: A series of projects that involve programming and experiment-
ing with concepts from the book.

* Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

* Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

* Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

* Firewall projects: A portable network firewall visualization simulator is provided,
together with exercises for teaching the fundamentals of firewalls.

* Case studies: A set of real-world case studies, including learning objectives, case
description, and a series of case discussion questions.

° Writing assignments: A list of writing assignments to facilitate learning the material.

* Reading/report assignments: A list of papers that can be assigned for reading and writ-
ing a report, plus suggested assignment wording.

This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix A in this book
for details.

XXii PREFACE

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously
of their time and expertise. The following professors and instructors reviewed all or a large
part of the manuscript: Bob Brown (Southern Polytechnic State University), Leming Zhou
(University of Pittsburgh), Yosef Sherif (Mihaylo College of Business and Economics),
Nazrul Islam (Farmingdale State University), Qinghai Gao (Farmingdale State University),
Wei Li (Nova Southeastern University), Jeffrey Kane (Nova Southeastern University), Philip
John Lunsford II (East Carolina University), Jeffrey H. Peden (Longwood University), Ratan
Guha (University of Central Florida), Sven Dietrich (Stevens Institute of Technology), and
David Liu (Purdue University, Fort Wayne).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Paymon Yamini Sharif, Umair Manzoor (UmZ), Adewumi Olatunji (FAG-
OSI Systems, Nigeria), Rob Meijer, Robin Goodchil, Greg Barnes (Inviolate Security LLC),
Arturo Busleiman (Buanzo Consulting), Ryan M. Speers (Dartmouth College), Wynand van
Staden (School of Computing, University of South Africa), Oh Sieng Chye, Michael Gromek,
Samuel Weisberger, Brian Smithson (Ricoh Americas Corp, CISSP), Josef B. Weiss (CIS-
SP), Robbert-Frank Ludwig (Veenendaal, ActStamp Information Security), William Perry,
Daniela Zamfiroiu (CISSP), Rodrigo Ristow Branco, George Chetcuti (Technical Editor,
TechGenix), Thomas Johnson (Director of Information Security at a banking holding com-
pany in Chicago, CISSP), Robert Yanus (CISSP), Rajiv Dasmohapatra (Wipro Ltd), Dirk
Kotze, Ya’akov Yehudi, Stanley Wine (Adjunct Lecturer, Computer Information Systems
Department, Zicklin School of Business, Baruch College).

Dr. Lawrie Brown would first like to thank Bill Stallings for the pleasure of working with
him to produce this text. I would also like to thank my colleagues in the School of Information
Technology and Electrical Engineering, University of New South Wales at the Australian
Defence Force Academy in Canberra, Australia, for their encouragement and support. I
particularly wish to acknowledge the insightful comments and critiques by Ed Lewis and Don
Munro, who I believe have helped produce a more accurate and succinct text.

Finally, we would like to thank the many people responsible for the publication of
the book, all of whom did their usual excellent job. This includes the staff at Prentice Hall,
particularly our editor Tracy Dunkelberger, her assistant Carole Snyder, and production
manager Kayla Smith-Tarbox. We also thank Shiny Rajesh and the production staff at
Integra for another excellent and rapid job. Thanks also to the marketing and sales staffs at
Pearson, without whose efforts this book would not be in your hands.

CHAPTER

READER’S AND INSTRUCTOR’S
GUIDE

0.1 Outline of This Book
0.2 A Road map for Readers and Instructors
0.3 Support for CISSP Certification

0.4 Internet and Web Resources
Web Sites for This Book
Computer Science Student Resource Site
Other Web Sites
Online Groups

0.5 Standards

2 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

This book, with its accompanying Web site, covers a lot of material. Here we give
the reader an overview.

0.1 OUTLINE OF THIS BOOK

Following an introductory chapter, Chapter 1, the book is organized into five parts:

Part One: Computer Security Technology and Principles: This part covers tech-
nical areas that must underpin any effective security strategy. Chapter 2 lists
the key cryptographic algorithms, discusses their use, and discusses issues of
strength. The remaining chapters in this part look at specific technical areas of
computer security: authentication, access control, database security, malicious
software, denial of service, intrusion detection, and firewalls.

Part Two: Software Security and Trusted Systems: This part covers issues
concerning software development and implementation, including operat-
ing systems, utilities, and applications. Chapter 10 covers the perennial issue
of buffer overflow, while Chapter 11 examines a number of other software
security issues. Chapter 12 takes an overall look at operating system security.
The final chapter in this part deals with trusted computing and multilevel
security, which are both software and hardware issues.

Part Three: Management Issues: This part is concerned with management
aspects of information and computer security. Chapters 14 and 15 focus
specifically on management practices related to risk assessment, the setting up
of security controls, and plans and procedures for managing computer security.
Chapter 16 looks at physical security measures that must complement the
technical security measures of Part One. Chapter 17 examines a wide range of
human factors issues that relate to computer security. A vital management tool
is security auditing, examined in Chapter 18. Finally, Chapter 19 examines legal
and ethical aspects of computer security.

Part Four: Cryptographic Algorithms: Many of the technical measures that
support computer security rely heavily on encryption and other types of cryp-
tographic algorithms. Part Four is a technical survey of such algorithms.

Part Five: Internet Security: This part looks at the protocols and standards
used to provide security for communications across the Internet. Chapter 22
discusses some of the most important security protocols for use over the
Internet. Chapter 23 looks at various protocols and standards related to
authentication over the Internet. Chapter 24 examines important aspects of
wireless security.

A number of online appendices cover additional topics relevant to the book.

0.2 A ROADMAP FOR READERS AND INSTRUCTORS

This book covers a lot of material. For the instructor or reader who wishes a shorter
treatment, there are a number of alternatives.

0.2/0.3 SUPPORT FOR CISSP CERTIFICATION 3

To thoroughly cover the material in the first two parts, the chapters should
be read in sequence. If a shorter treatment in Part One is desired, the reader may
choose to skip Chapter 5 (Database Security).

Although Part Two covers software security, it should be of interest to users
as well as system developers. However, it is more immediately relevant to the latter
category. Chapter 13 (Trusted Computing and Multilevel Security) may be consid-
ered optional.

The chapters in Part Three are relatively independent of one another, with
the exception of Chapters 14 (IT Security Management and Risk Assessment)
and 15 (IT Security Controls, Plans, and Procedures). The chapters can be read
in any order and the reader or instructor may choose to select only some of the
chapters.

Part Four provides technical detail on cryptographic algorithms for the inter-
ested reader.

Part Five covers Internet security and can be read at any point after Part One.

0.3 SUPPORT FOR CISSP CERTIFICATION

This book provides coverage of all the subject areas specified for CISSP (Certified
Information Systems Security Professional) certification.

As employers have come to depend on in-house staff to manage and develop
security policies and technologies, and to evaluate and manage outside security
services and products, there is a need for methods for evaluating candidates.
Increasingly, employers are turning to certification as a tool for guaranteeing that
a potential employee has the required level of knowledge in a range of security
areas.

The international standard ISO/IEC 17024 (General Requirements for Bodies
Operating Certification of Persons) defines the following terms related to certification:

e Certification process: All activities by which a certification body establishes
that a person fulfils specified competence requirements.

* Certification scheme: Specific certification requirements related to specified
categories of persons to which the same particular standards and rules, and the
same procedures apply.

* Competence: Demonstrated ability to apply knowledge and/or skills and,
where relevant, demonstrated personal attributes, as defined in the certifica-
tion scheme.

The CISSP designation from the International Information Systems Security
Certification Consortium (ISC)!, a nonprofit organization, is often referred to as
the “gold standard” when it comes to information security certification. It is the
only universally recognized certification in the security industry [SAVAO03]. Many
organizations, including the U.S. Department of Defense and many financial insti-
tutions, now require that cyber security personnel have the CISSP certification
[DENNT11]. In 2004, CISSP became the first IT program to earn accreditation under
ISO/IEC 17024.

The CISSP examination is based on the Common Body of Knowledge (CBK),
a compendium of information security best practices developed and maintained by
(ISC)'. The CBK is made up of 10 domains that comprise the body of knowledge
that is required for CISSP certification. Table 0.1 shows the support for the CISSP

body of knowledge provided in this textbook.

Coverage of CISSP Domains

CISSP Domain

Key Topics in Domain

Chapter Coverage

Access Control

e Identification, authentication, and
authorization technologies

e Discretionary versus mandatory access
control models

e Rule-based and role-based access
control

4— Access Control

Application
Development
Security

e Software development models
¢ Database models
¢ Relational database components

5—Database Security
10—Buffer Overflow
11—Software Security

Business Continuity
and Disaster
Recovery Planning

¢ Planning

® Roles and responsibilities

e Liability and due care issues
* Business impact analysis

16—Physical and Infrastructure
Security
17—Human Resources Security

Cryptography

® Block and stream ciphers

e Explanation and uses of symmetric
algorithms

¢ Explanation and uses of asymmetric
algorithms

2— Cryptographic Tools

20— Symmetric Encryption and
Message Confidentiality

21 —Public-Key Cryptography and
Message Authentication

Information Security
Governance and Risk
Management

e Types of security controls

e Security policies, standards, procedures,
and guidelines

¢ Risk management and analysis

14—1IT Security Management and
Risk Assessment

15—1IT Security Controls, Plans, and
Procedures

Legal, Regulations,
Investigations and
Compliance

e Privacy laws and concerns
e Computer crime investigation
® Types of evidence

19—Legal and Ethical Aspects

Operations Security

e Operations department responsibilities
e Personnel and roles
e Media library and resource protection

15—IT Security Controls, Plans, and
Procedures

17—Human Resources Security
18—Security Auditing

Physical e Facility location and construction issues 16—Physical and Infrastructure
(Environmental) ¢ Physical vulnerabilities and threats Security
Security e Perimeter protection
Security Architecture e Critical components 13—Trusted Computing and
and Design e Access control models Multilevel Security

e Certification and accreditation
Telecommunications e TCP/IP protocol suite Appendix F—TCP/IP Protocol

and Network Security

* LAN, MAN, and WAN technologies
e Firewall types and architectures

Architecture

22 —Internet Security Protocols and
Standards

24— Wireless Network Security

0.4 / INTERNET AND WEB RESOURCES 5

The 10 domains are as follows:

* Access control: A collection of mechanisms that work together to create a
security architecture to protect the assets of the information system.

* Application development security: Addresses the important security concepts
that apply to application software development. It outlines the environment
where software is designed and developed and explains the critical role soft-
ware plays in providing information system security.

* Business continuity and disaster recovery planning: For the preservation and
recovery of business operations in the event of outages.

e Cryptography: The principles, means, and methods of disguising information
to ensure its integrity, confidentiality, and authenticity.

* Information security governance and risk management: The identification
of an organization’s information assets and the development, documenta-
tion, and implementation of policies, standards, procedures, and guidelines.
Management tools such as data classification and risk assessment/analysis are
used to identify threats, classify assets, and to rate system vulnerabilities so
that effective controls can be implemented.

¢ Legal, regulations, investigations and compliance: Computer crime laws and
regulations. The measures and technologies used to investigate computer
crime incidents.

* Operations security: Used to identify the controls over hardware, media,
and the operators and administrators with access privileges to any of these
resources. Audit and monitoring are the mechanisms, tools, and facilities that
permit the identification of security events and subsequent actions to identify
the key elements and report the pertinent information to the appropriate indi-
vidual, group, or process.

* Physical (environmental) security: Provides protection techniques for the
entire facility, from the outside perimeter to the inside office space, including
all of the information system resources.

¢ Security architecture and design: Contains the concepts, principles, structures,
and standards used to design, monitor, and secure operating systems, equip-
ment, networks, applications, and those controls used to enforce various levels
of availability, integrity, and confidentiality.

¢ Telecommunications and network security: Covers network structures; trans-
mission methods; transport formats; security measures used to provide avail-
ability, integrity, and confidentiality; and authentication for transmissions over
private and public communications networks and media.

In this book, we cover each of these domains in some depth.

0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support
this book and to help one keep up with developments in this field.

6

CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

Web Sites for This Book

Three Web sites provide additional resources for students and instructors. We main-
tain a Companion Web site for this book at WilliamStallings.com/ComputerSecurity.
For students, this Web site includes a list of relevant links, organized by chapter,
and an errata sheet for the book. For instructors, this Web site provides links to
course pages by professors teaching from this book.

There is also an access-controlled Premium Content Web site that provides
a wealth of supporting material, including additional online chapters, additional
online appendices, a set of homework problems with solutions, copies of a number
of key papers in this field, and a number of other supporting documents. See the
card at the front of this book for access information.

Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

Computer Science Student Resource Site

William Stallings also maintains the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into five categories:

* Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites

* How-to: Advice and guidance for solving homework problems, writing technical
reports, and preparing technical presentations

* Research resources: Links to important collections of papers, technical
reports, and bibliographies

e Other useful: A variety of other useful documents and links

* Computer science careers: Useful links and documents for those considering a
career in computer science.

Other Web Sites

There are numerous Web sites that provide information related to the topics of
this book. In subsequent chapters, pointers to specific Web sites can be found in
the Recommended Reading and Web Sites section. Because the addresses for Web
sites tend to change frequently, we have not included URLSs in the book. For all of
the Web sites listed in the book, the appropriate link can be found at this book’s
Web site. Other links not mentioned in this book will be added to the Web site
over time.

Online Groups

Usener Newsgrours A number of USENET newsgroups are devoted to some
aspect of computer security. As with virtually all USENET groups, there is a high
noise-to-signal ratio, but it is worth experimenting to see if any meet your needs.
The most relevant are as follows:

0.5 / STANDARDS 7

* sci.crypt.research: The best group to follow on cryptography. This is a mod-
erated newsgroup that deals with research topics; postings must have some
relationship to the technical aspects of cryptology.

e sci.crypt: A general discussion of cryptology and related topics.

e alt.security: A general discussion of security topics.

° comp.security.misc: A general discussion of computer security topics.

° comp.security.firewalls: A discussion of firewall products and technology.

° comp.security.announce: News and announcements from CERT (computer
emergency response team).

e comp.risks: A discussion of risks to the public from computers and users.
° comp.virus: A moderated discussion of computer viruses.

Forums There are a number of worthwhile Web-based forums dealing with aspects
of computer security. The companion Web site provides links to some of these.

0.5 STANDARDS

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we describe the most important standards in use or that are
being developed for various aspects of computer security. Various organizations
have been involved in the development or promotion of these standards. The most
important (in the current context) of these organizations are as follows:

* National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

¢ Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

e ITU-T: The International Telecommunication Union (ITU) is an interna-
tional organization within the United Nations System in which governments
and the private sector coordinate global telecom networks and services. The
ITU Telecommunication Standardization Sector (ITU-T) is one of the three
sectors of the ITU. ITU-T’s mission is the production of standards cover-
ing all fields of telecommunications. ITU-T standards are referred to as
Recommendations.

8

CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

ISO: The International Organization for Standardization (ISO)? is a world-
wide federation of national standards bodies from more than 140 countries,
one from each country. ISO is a nongovernmental organization that promotes
the development of standardization and related activities with a view to
facilitating the international exchange of goods and services, and to develop-
ing cooperation in the spheres of intellectual, scientific, technological, and
economic activity. ISO’s work results in international agreements that are
published as International Standards.

A more detailed discussion of these organizations is contained in Appendix C.

2ISO is not an acronym (in which case it would be TOS), but a word, derived from the Greek, meaning

equal.

OVERVIEW

1.1

1.2

1.3
14

1.5
1.6

1.7
1.8

Computer Security Concepts
A Definition of Computer Security
Examples
The Challenges of Computer Security
A Model for Computer Security

Threats, Attacks, and Assets
Threats and Attacks
Threats and Assets

Security Functional Requirements

A Security Architecture for Open Systems
Security Services
Security Mechanisms

Computer Security Trends

Computer Security Strategy
Security Policy
Security Implementation
Assurance and Evaluation

Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

10 CHAPTER 1 / OVERVIEW

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Describe the key security requirements of confidentiality, integrity, and
availability.

@ Discuss the types of security threats and attacks that must be dealt with

and give examples of the types of threats and attacks that apply to different
categories of computer and network assets.

€ Summarize the functional requirements for computer security.

@ Describe the X.800 security architecture for OSI.

@ Discuss key trends in security threats and countermeasures.

4 Understand the principle aspects of a comprehensive security strategy.

This chapter provides an overview of computer security. We begin with a discus-
sion of what we mean by computer security. In essence, computer security deals
with computer-related assets that are subject to a variety of threats and for which
various measures are taken to protect those assets. Accordingly, the next section
of this chapter provides a brief overview of the categories of computer-related
assets that users and system managers wish to preserve and protect, and a look at
the various threats and attacks that can be made on those assets. Then, we survey
the measures that can be taken to deal with such threats and attacks. This we do
from three different viewpoints, in Sections 1.3 through 1.5. We then look at some
recent trends in computer security and lay out in general terms a computer security
strategy.

The focus of this chapter, and indeed this book, is on three fundamental
questions:

1. What assets do we need to protect?
2. How are those assets threatened?
3. What can we do to counter those threats?

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

Computer Security: The protection afforded to an automated information
system in order to attain the applicable objectives of preserving the integrity,
availability, and confidentiality of information system resources (includes hard-
ware, software, firmware, information/data, and telecommunications).

1.1 / COMPUTER SECURITY CONCEPTS 11

This definition introduces three key objectives that are at the heart of computer
security:

* Confidentiality: This term covers two related concepts:

— Data confidentiality:1 Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.
— Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

* Integrity: This term covers two related concepts:

— Data integrity: Assures that information and programs are changed only
in a specified and authorized manner.

— System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

* Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad
(Figure 1.1). The three concepts embody the fundamental security objectives for
both data and for information and computing services. For example, the NIST

and
services

Availability

Figure 1.1 The Security Requirements Triad

'RFC 2828 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction; nor does this book.

12

CHAPTER 1 / OVERVIEW

standard FIPS 199 (Standards for Security Categorization of Federal Information
and Information Systems) lists confidentiality, integrity, and availability as the three
security objectives for information and for information systems. FIPS PUB 199
provides a useful characterization of these three objectives in terms of requirements
and the definition of a loss of security in each category:

¢ Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

¢ Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of
integrity is the unauthorized modification or destruction of information.

* Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture. Two of the most commonly mentioned are as follows:

* Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

* Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems aren’t yet an achievable
goal, we must be able to trace a security breach to a responsible party. Systems
must keep records of their activities to permit later forensic analysis to trace
security breaches or to aid in transaction disputes.

Note that FIPS PUB 199 includes authenticity under integrity.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.” For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integrity,
or availability). These levels are defined in FIPS PUB 199:

¢ Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability
might (i) cause a degradation in mission capability to an extent and duration

’These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

1.1 / COMPUTER SECURITY CONCEPTS 13

that the organization is able to perform its primary functions, but the effec-
tiveness of the functions is noticeably reduced; (ii) result in minor damage to
organizational assets; (iii) result in minor financial loss; or (iv) result in minor
harm to individuals.

* Moderate: The loss could be expected to have a serious adverse effect on organ-
izational operations, organizational assets, or individuals. A serious adverse
effect means that, for example, the loss might (i) cause a significant degradation
in mission capability to an extent and duration that the organization is able to
perform its primary functions, but the effectiveness of the functions is signifi-
cantly reduced; (ii) result in significant damage to organizational assets; (iii)
result in significant financial loss; or (iv) result in significant harm to individuals
that does not involve loss of life or serious, life-threatening injuries.

e High: The loss could be expected to have a severe or catastrophic adverse
effect on organizational operations, organizational assets, or individuals. A
severe or catastrophic adverse effect means that, for example, the loss might
(i) cause a severe degradation in or loss of mission capability to an extent
and duration that the organization is not able to perform one or more of its
primary functions; (ii) result in major damage to organizational assets; (iii)
result in major financial loss; or (iv) result in severe or catastrophic harm to
individuals involving loss of life or serious life-threatening injuries.

ConripentiaLITy - Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information, such as lists of students or faculty or departmental lists, may be assigned
a low confidentiality rating or indeed no rating. This information is typically freely
available to the public and published on a school’s Web site.

INTEGRITY Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to
trust that the information is correct and current. Now suppose that an employee
(e.g., a nurse) who is authorized to view and update this information deliberately
falsifies the data to cause harm to the hospital. The database needs to be restored
to a trusted basis quickly, and it should be possible to trace the error back to the
person responsible. Patient allergy information is an example of an asset with a high
requirement for integrity. Inaccurate information could result in serious harm or
death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings

14

CHAPTER 1 / OVERVIEW

in little or no advertising revenue, and is not used for something important such
as research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

AvarLapiLity The more critical a component or service, the higher is the level
of availability required. Consider a system that provides authentication services
for critical systems, applications, and devices. An interruption of service results in
the inability for customers to access computing resources and staff to access the
resources they need to perform critical tasks. The loss of the service translates into a
large financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be
an annoyance, there are other ways to access the information, such as a hardcopy
directory or the operator.

The Challenges of Computer Security

Computer security is both fascinating and complex. Some of the reasons follow:

1. Computer security is not as simple as it might first appear to the novice. The
requirements seem to be straightforward; indeed, most of the major require-
ments for security services can be given self-explanatory one-word labels:
confidentiality, authentication, nonrepudiation, integrity. But the mechanisms
used to meet those requirements can be quite complex, and understanding
them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is
not obvious from the statement of a particular requirement that such elaborate
measures are needed. It is only when the various aspects of the threat are
considered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide
where to use them. This is true both in terms of physical placement (e.g., at
what points in a network are certain security mechanisms needed) and in a
logical sense [e.g., at what layer or layers of an architecture such as TCP/IP

10.

1.1 / COMPUTER SECURITY CONCEPTS 15

(Transmission Control Protocol/Internet Protocol) should mechanisms be
placed].

Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the
creation, distribution, and protection of that secret information. There may
also be a reliance on communications protocols whose behavior may com-
plicate the task of developing the security mechanism. For example, if the
proper functioning of the security mechanism requires setting time limits on
the transit time of a message from sender to receiver, then any protocol or
network that introduces variable, unpredictable delays may render such time
limits meaningless.

Computer security is essentially a battle of wits between a perpetrator who
tries to find holes and the designer or administrator who tries to close them.
The great advantage that the attacker has is that he or she need only find a
single weakness while the designer must find and eliminate all weaknesses to
achieve perfect security.

There is a natural tendency on the part of users and system managers to
perceive little benefit from security investment until a security failure occurs.

Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

Security is still too often an afterthought to be incorporated into a system
after the design is complete rather than being an integral part of the design
process.

Many users and even security administrators view strong security as an imped-

iment to efficient and user-friendly operation of an information system or use
of information.

The difficulties just enumerated will be encountered in numerous ways as we

examine the various security threats and mechanisms throughout this book.

A Model for Computer Security

We now introduce some terminology that will be useful throughout the book, rely-
ing on RFC 2828, Internet Security Glossary.® Table 1.1 defines terms and Figure 1.2
[CCPS09a] shows the relationship among some of these terms. We start with the
concept of a system resource, or asset, that u sers and owners wish to protect. The
assets of a computer system can be categorized as follows:

Hardware: Including computer systems and other data processing, data storage,
and data communications devices

Software: Including the operating system, system utilities, and applications

Data: Including files and databases, as well as security-related data, such as
password files.

3See Chapter 0 for an explanation of RFCs.

16 CHAPTER 1 / OVERVIEW

Table 1.1 Computer Security Terminology

Adversary (threat agent)

An entity that attacks, or is a threat to, a system.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a
deliberate attempt (especially in the sense of a method or technique) to evade security services and violate
the security policy of a system.

Countermeasure

An action, device, procedure, or technique that reduces a threat, a vulnerability, or an attack by eliminating
or preventing it, by minimizing the harm it can cause, or by discovering and reporting it so that corrective
action can be taken.

Risk

An expectation of loss expressed as the probability that a particular threat will exploit a particular vulnerability
with a particular harmful result.

Security Policy

A set of rules and practices that specify or regulate how a system or organization provides security services to
protect sensitive and critical system resources.

System Resource (Asset)

Data contained in an information system; or a service provided by a system; or a system capability, such as
processing power or communication bandwidth; or an item of system equipment (i.e., a system component —
hardware, firmware, software, or documentation); or a facility that houses system operations and equipment.
Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or event, that
could breach security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.
Vulnerability

A flaw or weakness in a system’s design, implementation, or operation and management that could be
exploited to violate the system’s security policy.

Source: From RFC 2828, Internet Security Glossary, May 2000

~
Wish to minimize Value

Impose

Countermeasures

That
increase

Threat agents

Assets

Wish to abuse and/or may damage

Figure 1.2 Security Concepts and Relationships

1.1 / COMPUTER SECURITY CONCEPTS 17

o Communications facilities and networks: Local and wide area network
communication links, bridges, routers, and so on.

In the context of security, our concern is with the vulnerabilities of system
resources. [NRCO02] lists the following general categories of vulnerabilities of a
computer system or network asset:

e It can be corrupted, so that it does the wrong thing or gives wrong answers.
For example, stored data values may differ from what they should be because
they have been improperly modified.

e It can become leaky. For example, someone who should not have access to
some or all of the information available through the network obtains such
access.

¢ It can become unavailable or very slow. That is, using the system or network
becomes impossible or impractical.

These three general types of vulnerability correspond to the concepts of integrity,
confidentiality, and availability, enumerated earlier in this section.

Corresponding to the various types of vulnerabilities to a system resource are
threats that are capable of exploiting those vulnerabilities. A threat represents a
potential security harm to an asset. An attack is a threat that is carried out (threat
action) and, if successful, leads to an undesirable violation of security, or threat
consequence. The agent carrying out the attack is referred to as an attacker, or
threat agent. We can distinguish two types of attacks:

° Active attack: An attempt to alter system resources or affect their operation.

e Passive attack: An attempt to learn or make use of information from the
system that does not affect system resources.

We can also classify attacks based on the origin of the attack:

o Inside attack: Initiated by an entity inside the security perimeter (an “insider”).
The insider is authorized to access system resources but uses them in a way not
approved by those who granted the authorization.

* Outside attack: Initiated from outside the perimeter, by an unauthorized or
illegitimate user of the system (an “outsider”). On the Internet, potential
outside attackers range from amateur pranksters to organized criminals, inter-
national terrorists, and hostile governments.

Finally, a countermeasure is any means taken to deal with a security attack.
Ideally, a countermeasure can be devised to prevent a particular type of attack from
succeeding. When prevention is not possible, or fails in some instance, the goal is to
detect the attack and then recover from the effects of the attack. A countermeas-
ure may itself introduce new vulnerabilities. In any case, residual vulnerabilities
may remain after the imposition of countermeasures. Such vulnerabilities may be
exploited by threat agents representing a residual level of risk to the assets. Owners
will seek to minimize that risk given other constraints.

18 CHAPTER 1 / OVERVIEW

1.2 THREATS, ATTACKS, AND ASSETS

We now turn to a more detailed look at threats, attacks, and assets. First, we look at
the types of security threats that must be dealt with, and then give some examples of
the types of threats that apply to different categories of assets.

Threats and Attacks

Table 1.2, based on RFC 2828, describes four kinds of threat consequences and lists
the kinds of attacks that result in each consequence.

Unauthorized disclosure is a threat to confidentiality. The following types of
attacks can result in this threat consequence:

* Exposure: This can be deliberate, as when an insider intentionally releases
sensitive information, such as credit card numbers, to an outsider. It can also
be the result of a human, hardware, or software error, which results in an entity

Table 1.2 Threat Consequences, and the Types of Threat Actions that Cause Each Consequence.

Threat Consequence Threat Action (attack)

Unauthorized Disclosure Exposure: Sensitive data are directly released to an unauthorized
A circumstance or event whereby entity.
an entity gains access to data for Interception: An unauthorized entity directly accesses sensitive
which the entity is not authorized. data traveling between authorized sources and destinations.

Inference: A threat action whereby an unauthorized entity
indirectly accesses sensitive data (but not necessarily the
data contained in the communication) by reasoning from
characteristics or by-products of communications.

Intrusion: An unauthorized entity gains access to sensitive data
by circumventing a system’s security protections.

Deception Masquerade: An unauthorized entity gains access to a system or
A circumstance or event that performs a malicious act by posing as an authorized entity.
may result in an authorized entity Falsification: False data deceive an authorized entity.
receiving false data and believing it

Repudiation: An entity deceives another by falsely denying

{op2 e, responsibility for an act.

Disruption Incapacitation: Prevents or interrupts system operation by
A circumstance or event that disabling a system component.
interrupts or prevents the correct Corruption: Undesirably alters system operation by adversely
opergtion of system services and modifying system functions or data.
e Obstruction: A threat action that interrupts delivery of system

services by hindering system operation.

Usurpation Misappropriation: An entity assumes unauthorized logical or
A circumstance or event that results physical control of a system resource.
in control of system services or Misuse: Causes a system component to perform a function or
functions by an unauthorized entity. service that is detrimental to system security.

Source: Based on RFC 2828

1.2 / THREATS, ATTACKS, AND ASSETS 19

gaining unauthorized knowledge of sensitive data. There have been numerous
instances of this, such as universities accidentally posting student confidential
information on the Web.

¢ Interception: Interception is a common attack in the context of communica-
tions. On a shared local area network (LAN), such as a wireless LAN or a
broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker
can gain access to e-mail traffic and other data transfers. All of these situations
create the potential for unauthorized access to data.

¢ Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from
a database by a user who has only limited access; this is accomplished by
repeated queries whose combined results enable inference.

e Intrusion: An example of intrusion is an adversary gaining unauthorized
access to sensitive data by overcoming the system’s access control protections.

Deception is a threat to either system integrity or data integrity. The following
types of attacks can result in this threat consequence:

° Masquerade: One example of masquerade is an attempt by an unauthorized
user to gain access to a system by posing as an authorized user; this could
happen if the unauthorized user has learned another user’s logon ID and
password. Another example is malicious logic, such as a Trojan horse, that
appears to perform a useful or desirable function but actually gains unauthor-
ized access to system resources or tricks a user into executing other malicious
logic.

e Falsification: This refers to the altering or replacing of valid data or the intro-
duction of false data into a file or database. For example, a student may alter
his or her grades on a school database.

* Repudiation: In this case, a user either denies sending data or a user denies
receiving or possessing the data.

Disruption is a threat to availability or system integrity. The following types of
attacks can result in this threat consequence:

* Incapacitation: This is an attack on system availability. This could occur as a
result of physical destruction of or damage to system hardware. More typically,
malicious software, such as Trojan horses, viruses, or worms, could operate in
such a way as to disable a system or some of its services.

¢ Corruption: This is an attack on system integrity. Malicious software in this
context could operate in such a way that system resources or services function
in an unintended manner. Or a user could gain unauthorized access to a system
and modify some of its functions. An example of the latter is a user placing
backdoor logic in the system to provide subsequent access to a system and its
resources by other than the usual procedure.

20 CHAPTER 1 / OVERVIEW

* Obstruction: One way to obstruct system operation is to interfere with com-
munications by disabling communication links or altering communication
control information. Another way is to overload the system by placing excess

burden on communication traffic or processing resources.

Usurpation is a threat to system integrity. The following types of attacks can
result in this threat consequence:

e Misappropriation: This can include theft of service. An example is a distributed
denial of service attack, when malicious software is installed on a number of hosts
to be used as platforms to launch traffic at a target host. In this case, the malicious
software makes unauthorized use of processor and operating system resources.

° Misuse: Misuse can occur by means of either malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions

can be disabled or thwarted.

Threats and Assets

Computer system

(@ Sensitive files
must be secure
Data (file security)

DD

(D Access to the data N

must be controlled

(protection) / \

Processes representing users

@ Data must be
securely transmitted
through networks
(network security)

The assets of a computer system can be categorized as hardware, software, data,
and communication lines and networks. In this subsection, we briefly describe these
four categories and relate these to the concepts of integrity, confidentiality, and
availability introduced in Section 1.1 (see Figure 1.3 and Table 1.3).

Computer system

@Access to the computer
facility must be controlled
(user authentication)

} Users making requests

Scope of Computer Security

Figure 1.3

Data

]

/\

AN

N~

Processes representing users

Note: This figure depicts security concerns other than physical security, including controlling of
access to computers systems, safeguarding of data transmitted over communications systems, and

safeguarding of stored data.

1.2 / THREATS, ATTACKS, AND ASSETS 21

Table 1.3 Computer and Network Assets, with Examples of Threats.
Availability Conlfidentiality Integrity
Hardware | Equipment is stolen or
disabled, thus denying
service.
Software | Programs are deleted, An unauthorized copy of A working program is modi-
denying access to users. software is made. fied, either to cause it to fail
during execution or to cause
it to do some unintended task.
Data | Files are deleted, An unauthorized read Existing files are modified or
denying access to users. of data is performed. An new files are fabricated.
analysis of statistical data
reveals underlying data.
Communication | Messages are destroyed or | Messages are read. The Messages are modified,
Lines | deleted. Communication traffic pattern of delayed, reordered, or dupli-
lines or networks are messages is observed. cated. False messages are
rendered unavailable. fabricated.

HAarpwARrRE A major threat to computer system hardware is the threat to
availability. Hardware is the most vulnerable to attack and the least susceptible to
automated controls. Threats include accidental and deliberate damage to equipment
as well as theft. The proliferation of personal computers and workstations and the
widespread use of LANSs increase the potential for losses in this area. Theft of
CD-ROMs and DVDs can lead to loss of confidentiality. Physical and administrative
security measures are needed to deal with these threats.

Sorrware Software includes the operating system, utilities, and application
programs. A key threat to software is an attack on availability. Software, especially
application software, is often easy to delete. Software can also be altered or
damaged to render it useless. Careful software configuration management, which
includes making backups of the most recent version of software, can maintain high
availability. A more difficult problem to deal with is software modification that
results in a program that still functions but that behaves differently than before,
which is a threat to integrity/authenticity. Computer viruses and related attacks fall
into this category. A final problem is protection against software piracy. Although
certain countermeasures are available, by and large the problem of unauthorized
copying of software has not been solved.

Dara Hardware and software security are typically concerns of computing center
professionals or individual concerns of personal computer users. A much more
widespread problem is data security, which involves files and other forms of data
controlled by individuals, groups, and business organizations.

Security concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with the destruction
of data files, which can occur either accidentally or maliciously.

22

CHAPTER 1 / OVERVIEW

The obvious concern with secrecy is the unauthorized reading of data files or
databases, and this area has been the subject of perhaps more research and effort
than any other area of computer security. A less obvious threat to secrecy involves
the analysis of data and manifests itself in the use of so-called statistical databases,
which provide summary or aggregate information. Presumably, the existence of
aggregate information does not threaten the privacy of the individuals involved.
However, as the use of statistical databases grows, there is an increasing potential
for disclosure of personal information. In essence, characteristics of constituent
individuals may be identified through careful analysis. For example, if one table
records the aggregate of the incomes of respondents A, B, C, and D and another
records the aggregate of the incomes of A, B, C, D, and E, the difference between
the two aggregates would be the income of E. This problem is exacerbated by the
increasing desire to combine data sets. In many cases, matching several sets of data
for consistency at different levels of aggregation requires access to individual units.
Thus, the individual units, which are the subject of privacy concerns, are available at
various stages in the processing of data sets.

Finally, data integrity is a major concern in most installations. Modifications
to data files can have consequences ranging from minor to disastrous.

CommunicaTioN LINES AND NETwoRrks —Network security attacks can be classified
as passive attacks and active attacks. A passive attack attempts to learn or make
use of information from the system but does not affect system resources. An active
attack attempts to alter system resources or affect their operation.

Passive attacks are in the nature of eavesdropping on, or monitoring of,
transmissions. The goal of the attacker is to obtain information that is being trans-
mitted. Two types of passive attacks are release of message contents and traffic
analysis.

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an
apparently normal fashion and neither the sender nor receiver is aware that a
third party has read the messages or observed the traffic pattern. However, it is
feasible to prevent the success of these attacks, usually by means of encryption.
Thus, the emphasis in dealing with passive attacks is on prevention rather than
detection.

1.3 / SECURITY FUNCTIONAL REQUIREMENTS 23

Active attacks involve some modification of the data stream or the creation
of a false stream and can be subdivided into four categories: replay, masquerade,
modification of messages, and denial of service.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

A masquerade takes place when one entity pretends to be a different entity. A
masquerade attack usually includes one of the other forms of active attack. For exam-
ple, authentication sequences can be captured and replayed after a valid authentica-
tion sequence has taken place, thus enabling an authorized entity with few privileges
to obtain extra privileges by impersonating an entity that has those privileges.

Modification of messages simply means that some portion of a legitimate
message is altered, or that messages are delayed or reordered, to produce an
unauthorized effect. For example, a message stating, “Allow John Smith to read
confidential file accounts” is modified to say, “Allow Fred Brown to read confiden-
tial file accounts.”

The denial of service prevents or inhibits the normal use or management of
communications facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the security
audit service). Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to degrade
performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their
success. On the other hand, it is quite difficult to prevent active attacks absolutely,
because to do so would require physical protection of all communications facilities
and paths at all times. Instead, the goal is to detect them and to recover from any
disruption or delays caused by them. Because the detection has a deterrent effect, it
may also contribute to prevention.

1.3 SECURITY FUNCTIONAL REQUIREMENTS

There are a number of ways of classifying and characterizing the countermeasures
that may be used to reduce vulnerabilities and deal with threats to system assets. It
will be useful for the presentation in the remainder of the book to look at several
approaches, which we do in this and the next two sections. In this section, we view
countermeasures in terms of functional requirements, and we follow the classification
defined in FIPS PUB 200 (Minimum Security Requirements for Federal Information
and Information Systems). This standard enumerates 17 security-related areas with
regard to protecting the confidentiality, integrity, and availability of information
systems and the information processed, stored, and transmitted by those systems.
The areas are defined in Table 1.4.

The requirements listed in FIP PUB 200 encompass a wide range of coun-
termeasures to security vulnerabilities and threats. Roughly, we can divide these
countermeasures into two categories: those that require computer security tech-
nical measures (covered in this book in Parts One and Two), either hardware or

24

Security Requirements

Access Control: Limit information system access to authorized users, processes acting on behalf of authorized
users, or devices (including other information systems) and to the types of transactions and functions that
authorized users are permitted to exercise.

Awareness and Training: (i) Ensure that managers and users of organizational information systems are made
aware of the security risks associated with their activities and of the applicable laws, regulation, and policies
related to the security of organizational information systems; and (ii) ensure that personnel are adequately
trained to carry out their assigned information security-related duties and responsibilities.

Audit and Accountability: (i) Create, protect, and retain information system audit records to the

extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized,
or inappropriate information system activity; and (ii) ensure that the actions of individual information
system users can be uniquely traced to those users so they can be held accountable for their

actions.

Certification, A ccreditation, and Security Assessments: (i) Periodically assess the security controls in
organizational information systems to determine if the controls are effective in their application; (ii) develop
and implement plans of action designed to correct deficiencies and reduce or eliminate vulnerabilities in
organizational information systems; (iii) authorize the operation of organizational information systems and any
associated information system connections; and (iv) monitor information system security controls on an
ongoing basis to ensure the continued effectiveness of the controls.

Configuration Management: (i) Establish and maintain baseline configurations and inventories of
organizational information systems (including hardware, software, firmware, and documentation)
throughout the respective system development life cycles; and (ii) establish and enforce security
configuration settings for information technology products employed in organizational information
systems.

Contingency Planning: Establish, maintain, and implement plans for emergency response, backup opera-
tions, and postdisaster recovery for organizational information systems to ensure the availability of critical
information resources and continuity of operations in emergency situations.

Identification and Authentication: Identify information system users, processes acting on behalf of users, or
devices, and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to
allowing access to organizational information systems.

Incident Response: (i) Establish an operational incident-handling capability for organizational information
systems that includes adequate preparation, detection, analysis, containment, recovery, and user-response
activities; and (ii) track, document, and report incidents to appropriate organizational officials and/or
authorities.

Maintenance: (i) Perform periodic and timely maintenance on organizational information systems; and (ii)
provide effective controls on the tools, techniques, mechanisms, and personnel used to conduct information
system maintenance.

Media Protection: (i) Protect information system media, both paper and digital; (ii) limit access to informa-
tion on information system media to authorized users; and (iii) sanitize or destroy information system media
before disposal or release for reuse.

Physical and Environmental Protection: (i) Limit physical access to information systems, equipment, and
the respective operating environments to authorized individuals; (ii) protect the physical plant and support
infrastructure for information systems; (iii) provide supporting utilities for information systems; (iv) protect
information systems against environmental hazards; and (v) provide appropriate environmental controls in
facilities containing information systems.

Planning: Develop, document, periodically update, and implement security plans for organizational informa-
tion systems that describe the security controls in place or planned for the information systems and the rules
of behavior for individuals accessing the information systems.

1.3 / SECURITY FUNCTIONAL REQUIREMENTS 25

Personnel Security: (i) Ensure that individuals occupying positions of responsibility within organizations
(including third-party service providers) are trustworthy and meet established security criteria for those
positions; (ii) ensure that organizational information and information systems are protected during and after
personnel actions such as terminations and transfers; and (iii) employ formal sanctions for personnel failing to
comply with organizational security policies and procedures.

Risk Assessment: Periodically assess the risk to organizational operations (including mission, functions,
image, or reputation), organizational assets, and individuals, resulting from the operation of organizational
information systems and the associated processing, storage, or transmission of organizational information.

Systems and Services Acquisition: (i) Allocate sufficient resources to adequately protect organizational
information systems; (ii) employ system development life cycle processes that incorporate information
security considerations; (iii) employ software usage and installation restrictions; and (iv) ensure that third-
party providers employ adequate security measures to protect information, applications, and/or services
outsourced from the organization.

System and Communications Protection: (i) Monitor, control, and protect organizational communications
(i.e., information transmitted or received by organizational information systems) at the external boundaries
and key internal boundaries of the information systems; and (ii) employ architectural designs, software devel-
opment techniques, and systems engineering principles that promote effective information security within
organizational information systems.

System and Information Integrity: (i) Identify, report, and correct information and information system flaws
in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational
information systems; and (iii) monitor information system security alerts and advisories and take appropriate
actions in response.

Source: Based on FIPS PUB 200

software, or both; and those that are fundamentally management issues (covered in
Part Three).

Each of the functional areas may involve both computer security techni-
cal measures and management measures. Functional areas that primarily require
computer security technical measures include access control, identification and
authentication, system and communication protection, and system and information
integrity. Functional areas that primarily involve management controls and proce-
dures include awareness and training; audit and accountability; certification, accredi-
tation, and security assessments; contingency planning; maintenance; physical and
environmental protection; planning; personnel security; risk assessment; and systems
and services acquisition. Functional areas that overlap computer security technical
measures and management controls include configuration management, incident
response, and media protection.

Note that the majority of the functional requirements areas in FIP PUB 200
are either primarily issues of management or at least have a significant management
component, as opposed to purely software or hardware solutions. This may be new
to some readers and is not reflected in many of the books on computer and informa-
tion security. But as one computer security expert observed, “If you think technology
can solve your security problems, then you don’t understand the problems and you
don’t understand the technology” [SCHNOO]. This book reflects the need to combine
technical and managerial approaches to achieve effective computer security.

FIPS PUB 200 provides a useful summary of the principal areas of con-
cern, both technical and managerial, with respect to computer security. This book
attempts to cover all of these areas.

26 CHAPTER 1 / OVERVIEW

1.4 A SECURITY ARCHITECTURE FOR OPEN SYSTEMS

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for security
needs a systematic way of defining the requirements for security and characterizing
the approaches to satisfying those requirements. This is difficult enough in a central-
ized data processing environment; with the use of local area and wide area networks,
the problem is magnified.

ITU-T* Recommendation X.800, Security Architecture for OSI, defines such a
systematic approach. The OSI security architecture is useful to managers as a way
of organizing the task of providing security. Furthermore, because this architec-
ture was developed as an international standard, computer and communications
vendors have developed security features for their products and services that relate
to this structured definition of services and mechanisms. Although X.800 focuses on
security in the context of networks and communications, the concepts apply also to
computer security.

For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as follows:

e Security attack: Any action that compromises the security of information
owned by an organization.

¢ Security mechanism: A mechanism that is designed to detect, prevent, or
recover from a security attack.

* Security service: A service that enhances the security of the data processing
systems and the information transfers of an organization. The services are
intended to counter security attacks, and they make use of one or more secu-
rity mechanisms to provide the service.

The subsection on threats to communication lines and networks in Section 1.2
is based on the X.800 categorization of security threats. The next two sections exam-
ine security services and mechanisms, using the X.800 architecture.

Security Services

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides
the following definition: a processing or communication service that is provided by
a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

“The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations sponsored agency that develops standards, called Recommendations, relating to tele-
communications and to open systems interconnection (OSI). See Appendix C for a discussion.

27

X.800 divides these services into 6 categories and 14 specific services
(Table 1.5). We look at each category in turn.’ Keep in mind that to a considerable
extent, X.800 is focused on distributed and networked systems and so emphasizes

Security Services.

AUTHENTICATION

The assurance that the communicating entity is
the one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to
provide confidence in the identity of the entities
connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance
that the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a
resource (i.e., this service controls who can have
access to a resource, under what conditions
access can occur, and what those accessing the
resource are allowed to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized
disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data
block.

Selective-Field Confidentiality
The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be
derived from observation of traffic flows.

AVAILABILITY

Ensures that there is no denial of authorized access
to network elements, stored information, informa-
tion flows, services, and applications due to events
impacting the network. Disaster recovery solutions
are included in this categolry.

DATA INTEGRITY

The assurance that data received are exactly as sent
by an authorized entity (i.e., contain no modifica-
tion, insertion, deletion, or replay).

Connection Integrity with Recovery

Provides for the integrity of all user data on a connec-
tion and detects any modification, insertion, deletion,
or replay of any data within an entire data sequence,
with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without
recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the
user data of a data block transferred over a connection
and takes the form of determination of whether the
selected fields have been modified, inserted, deleted, or
replayed.

Connectionless Integrity

Provides for the integrity of a single connectionless
data block and may take the form of detection of data
modification. Additionally, a limited form of replay
detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a
single connectionless data block; takes the form of
determination of whether the selected fields have been
modified.

NONREPUDIATION

Provides protection against denial by one of the
entities involved in a communication of having
participated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified party.

Nonrepudiation, Destination
Proof that the message was received by the specified
party.

Source: From X.800, Security Architecture for OSI

SThere is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in the this chapter. Our usage here agrees with both X.800 and RFC 2828.

28

CHAPTER 1 / OVERVIEW

network security over single-system computer security. Nevertheless, Table 1.5 is a
useful checklist of security services.

Auvrnentication The authentication service is concerned with assuring that a
communication is authentic. In the case of a single message, such as a warning or
alarm signal, the function of the authentication service is to assure the recipient that
the message is from the source that it claims to be from. In the case of an ongoing
interaction, such as the connection of a terminal to a host, two aspects are involved.
First, at the time of connection initiation, the service assures that the two entities are
authentic, that is, that each is the entity that it claims to be. Second, the service must
assure that the connection is not interfered with in such a way that a third party can
masquerade as one of the two legitimate parties for the purposes of unauthorized
transmission or reception.
Two specific authentication services are defined in the standard:

* Peer entity authentication: Provides for the corroboration of the identity
of a peer entity in an association. Two entities are considered peer if they
implement the same protocol in different systems (e.g., two TCP users in two
communicating systems). Peer entity authentication is provided for use at the
establishment of, or at times during the data transfer phase of, a connection. It
attempts to provide confidence that an entity is not performing either a mas-
querade or an unauthorized replay of a previous connection.

° Data origin authentication: Provides for the corroboration of the source
of a data unit. It does not provide protection against the duplication or
modification of data units. This type of service supports applications like
electronic mail where there are no prior interactions between the communi-
cating entities.

Accress Conrror In the context of network security, access control is the ability
to limit and control the access to host systems and applications via communications
links. To achieve this, each entity trying to gain access must first be identified, or
authenticated, so that access rights can be tailored to the individual.

Dara ConripENTIALITY In the context of network security, confidentiality
is the protection of transmitted data from passive attacks. With respect to the
content of a data transmission, several levels of protection can be identified. The
broadest service protects all user data transmitted between two users over a period
of time. For example, when a TCP connection is set up between two systems,
this broad protection prevents the release of any user data transmitted over the
TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from
analysis. This requires that an attacker not be able to observe the source and
destination, frequency, length, or other characteristics of the traffic on a commu-
nications facility.

1.4 / A SECURITY ARCHITECTURE FOR OPEN SYSTEMS 29

Dara INTEGRITY In the context of network security, as with data confidentiality,
data integrity can apply to a stream of messages, a single message, or selected fields
within a message. Again, the most useful and straightforward approach is total
stream protection.

A connection-oriented integrity service, one that deals with a stream
of messages, assures that messages are received as sent, with no duplication,
insertion, modification, reordering, or replays. The destruction of data is also cov-
ered under this service. Thus, the connection-oriented integrity service addresses
both message stream modification and denial of service. On the other hand, a
connectionless integrity service, one that deals with individual messages without
regard to any larger context, generally provides protection against message modi-
fication only.

We need to make a distinction between the service with and without recov-
ery. Because the integrity service relates to active attacks, we are concerned with
detection rather than prevention. If a violation of integrity is detected, then the
service may simply report this violation, and some other portion of software or
human intervention is required to recover from the violation. Alternatively, there
are mechanisms available to recover from the loss of integrity of data, as we will
review subsequently. The incorporation of automated recovery mechanisms is, in
general, the more attractive alternative.

NonrepuDIATION Nonrepudiation prevents either sender or receiver from
denying a transmitted message. Thus, when a message is sent, the receiver can
prove that the alleged sender in fact sent the message. Similarly, when a message
is received, the sender can prove that the alleged receiver in fact received the
message.

Avarcaprciry Both X.800 and RFC 2828 define availability to be the property
of a system or a system resource being accessible and usable upon demand by an
authorized system entity, according to performance specifications for the system (i.e.,
a system is available if it provides services according to the system design whenever
users request them). A variety of attacks can result in the loss of or reduction in
availability. Some of these attacks are amenable to automated countermeasures,
such as authentication and encryption, whereas others require a physical action to
prevent or recover from loss of availability.

X.800 treats availability as a property to be associated with various secu-
rity services. X.805, Security Architecture for Systems Providing End-to-End
Communications, refers specifically to an availability service. An availability service
is one that protects a system to ensure its availability. This service addresses the
security concerns raised by denial-of-service attacks. It depends on proper manage-
ment and control of system resources and thus depends on access control service
and other security services.

Security Mechanisms

Table 1.6 lists the security mechanisms defined in X.800. The mechanisms are
divided into those that are implemented in a specific protocol layer, such as TCP

30

Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate
protocol layer in order to provide some of the
OSI security services.

Encipherment

The use of mathematical algorithms to transform
data into a form that is not readily intelligible. The
transformation and subsequent recovery of the
data depend on an algorithm and zero or more
encryption keys.

Digital Signature

Data appended to, or a cryptographic transforma-
tion of, a data unit that allows a recipient of the
data unit to prove the source and integrity of

the data unit and protect against forgery (e.g., by
the recipient).

Access Control
A variety of mechanisms that enforce access rights to
resources.

Data Integrity
A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

Authentication Exchange
A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain
properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality

That which is perceived to be correct with respect
to some criteria (e.g., as established by a security
policy).

Security Label

The marking bound to a resource (which may be a
data unit) that names or designates the security
attributes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

or an application-layer protocol, and those that are not specific to any particular
protocol layer or security service. These mechanisms will be covered in the appro-
priate places in the book and so we do not elaborate now, except to comment on the
definition of encipherment. X.800 distinguishes between reversible encipherment
mechanisms and irreversible encipherment mechanisms. A reversible encipherment
mechanism is an encryption algorithm that allows data to be encrypted and subse-
quently decrypted. Irreversible encipherment mechanisms include hash algorithms
and message authentication codes, which are used in digital signature and message

authentication applications.

1.5 / COMPUTER SECURITY TRENDS 31

1.5 COMPUTER SECURITY TRENDS

In order to assess the relative severity of various threats and the relative importance
of various approaches to computer security, it is useful to look at the experience of
organizations. A useful view is provided by the CSI Computer Crime and Security
Survey for 2010/2011, conducted by the Computer Security Institute [CSI10]. The
respondents consisted of over 350 U.S.-based companies, nonprofit organizations,
and public sector organizations.

Figure 1.4 shows the types of attacks experienced by respondents in nine
major categories.® Most noteworthy is the large and growing prevalence of mali-
cious software (malware) attacks. It is also worth noting that most categories of

80 80
70 Malware 70
60 60
7 N
7/ N
7/ AN
y N
’ \
50 PRI < 50
\;—_\--__—_,/ \\~\ AN Laptop/mobile
N 7 S device theft
Dsj 7 ~ 4 N A
ney , er g o S
40 ccgy, Dise N — 40
Sorg, N /
171&1'[N 5 AN
N N ?“"Sh\i\% N
~ N
30 < = 30
R Denial of service -7 \\\ <
N=——--—-—— - I - _ _ - ~
~<_ - .
= N
20 Bots on network \ 20
-._E_le_’loitof A T PN NN S
Wireless nefwors” ~ R I -
10 — e 10
1al fraud Password sniffin “Sleccascen
F'mancml g
0 0
o Q &)
\) Q Q \]
> > P >

Figure 1.4 Types of Attacks Experienced (by percent of respondents)
Source: Computer Security Institute 2010/2011 Computer Crime and Security Survey

A complete list, including low-incidence categories, is available as the file Types-of-Attacks.pdf in the
Documents folder in premium content site for this book.

32 CHAPTER 1 / OVERVIEW

attack exhibit a somewhat downward trend. The CSI report speculates that this is
due in large part to improved security techniques by organizations.

Figure 1.5 indicates the types of security technology used by organizations to
counter threats. Both firewalls and antivirus software are used almost universally.
This popularity reflects a number of factors:

e The maturity of these technologies means that security administrators are
very familiar with the products and are confident of their effectiveness.

* Because these technologies are mature and there are a number of vendors, costs
tend to be quite reasonable and user-friendly interfaces are available.

e The threats countered by these technologies are among the most significant
facing security administrators.

Anti-virus software I

Firewall I

Anti-spyware software |

Virtual private network (VPN) |

Vulnerability/Patch management |

Encryption of data in transit |

Intrusion detection system (IDS) |

Encryption of data at rest
(in storage)

Web/URL filtering

Application firewall |

Intrusion prevention system (IPS) |

Log management software |

Endpoint security software |

Data loss prevention/ I
content monitoring r r

Server-based access control list |

Forensic tool |

Static account logins/passwords |

Public key infrastructure (PKI) |

Smart cards and other I
one-time tokens

Specialized wireless security

Virtualization-specific tools

Biometrics

Other j

0% 20% 40% 60% 80% 100%
Percent of respondents

Figure 1.5 Security Technologies Used
Source: Computer Security Institute 2010/2011 Computer Crime and Security Survey

1.6 / COMPUTER SECURITY STRATEGY 33

1.6 COMPUTER SECURITY STRATEGY

We conclude this chapter with a brief look at the overall strategy for providing
computer security. [LAMPO04] suggests that a comprehensive security strategy
involves three aspects:

* Specification/policy: What is the security scheme supposed to do?
* Implementation/mechanisms: How does it do it?

* Correctness/assurance: Does it really work?

Security Policy

The first step in devising security services and mechanisms is to develop a secu-
rity policy. Those involved with computer security use the term security policy in
various ways. At the least, a security policy is an informal description of desired
system behavior [NRC91]. Such informal policies may reference requirements for
security, integrity, and availability. More usefully, a security policy is a formal state-
ment of rules and practices that specify or regulate how a system or organization
provides security services to protect sensitive and critical system resources (RFC
2828). Such a formal security policy lends itself to being enforced by the system’s
technical controls as well as its management and operational controls.

In developing a security policy, a security manager needs to consider the
following factors:

e The value of the assets being protected
¢ The vulnerabilities of the system
e Potential threats and the likelihood of attacks

Further, the manager must consider the following trade-offs:

* Ease of use versus security: Virtually all security measures involve some pen-
alty in the area of ease of use. The following are some examples. Access control
mechanisms require users to remember passwords and perhaps perform other
access control actions. Firewalls and other network security measures may
reduce available transmission capacity or slow response time. Virus-checking
software reduces available processing power and introduces the possibility of
system crashes or malfunctions due to improper interaction between the secu-
rity software and the operating system.

¢ Cost of security versus cost of failure and recovery: In addition to ease of use
and performance costs, there are direct monetary costs in implementing and
maintaining security measures. All of these costs must be balanced against the
cost of security failure and recovery if certain security measures are lacking.
The cost of security failure and recovery must take into account not only the
value of the assets being protected and the damages resulting from a security
violation, but also the risk, which is the probability that a particular threat will
exploit a particular vulnerability with a particular harmful result.

Security policy is thus a business decision, possibly influenced by legal requirements.

34

CHAPTER 1 / OVERVIEW

Security Implementation

Security implementation involves four complementary courses of action:

* Prevention: An ideal security scheme is one in which no attack is successful.
Although this is not practical in all cases, there is a wide range of threats in
which prevention is a reasonable goal. For example, consider the transmission
of encrypted data. If a secure encryption algorithm is used, and if measures
are in place to prevent unauthorized access to encryption keys, then attacks on
confidentiality of the transmitted data will be prevented.

° Detection: In a number of cases, absolute protection is not feasible, but it is
practical to detect security attacks. For example, there are intrusion detection
systems designed to detect the presence of unauthorized individuals logged
onto a system. Another example is detection of a denial of service attack, in
which communications or processing resources are consumed so that they are
unavailable to legitimate users.

* Response: If security mechanisms detect an ongoing attack, such as a denial of
service attack, the system may be able to respond in such a way as to halt the
attack and prevent further damage.

* Recovery: An example of recovery is the use of backup systems, so that if data
integrity is compromised, a prior, correct copy of the data can be reloaded.

Assurance and Evaluation

Those who are “consumers” of computer security services and mechanisms (e.g.,
system managers, vendors, customers, and end users) desire a belief that the security
measures in place work as intended. That is, security consumers want to feel that the
security infrastructure of their systems meet security requirements and enforce security
policies. These considerations bring us to the concepts of assurance and evaluation.

The NIST Computer Security Handbook [NIST95] defines assurance as the
degree of confidence one has that the security measures, both technical and opera-
tional, work as intended to protect the system and the information it processes. This
encompasses both system design and system implementation. Thus, assurance deals
with the questions, “Does the security system design meet its requirements?” and
“Does the security system implementation meet its specifications?”

Note that assurance is expressed as a degree of confidence, not in terms of a for-
mal proof that a design or implementation is correct. With the present state of the art,
it is very difficult if not impossible to move beyond a degree of confidence to absolute
proof. Much work has been done in developing formal models that define requirements
and characterize designs and implementations, together with logical and mathematical
techniques for addressing these issues. But assurance is still a matter of degree.

Evaluation is the process of examining a computer product or system with
respect to certain criteria. Evaluation involves testing and may also involve for-
mal analytic or mathematical techniques. The central thrust of work in this area is
the development of evaluation criteria that can be applied to any security system
(encompassing security services and mechanisms) and that are broadly supported
for making product comparisons.

1.7 / RECOMMENDED READING AND WEB SITES 35

1.7 RECOMMENDED READING AND WEB SITES

It is useful to read some of the classic tutorial papers on computer security; these
provide a historical perspective from which to appreciate current work and think-
ing. The papers to read are [WARE79], [BROW?72], [SALT75], [SHAN77], and
[SUMMS4]. Two more recent, short treatments of computer security are [ANDRO04]
and [LAMPO4]. [NIST95] is an exhaustive (290 pages) treatment of the subject.
Another good treatment is [NRC91]. Also useful is [FRAS97].

There is an overwhelming amount of material, including books, papers, and
online resources, on computer security. Perhaps the most useful and definitive
source of information is a collection of standards and specifications from standards-
making bodies and from other sources whose work has widespread industry and
government approval. We list some of the most important sources in Appendix C.

ANDRO04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
Privacy, September/October 2004.

BROW?72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database, Fall
1972.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.

LAMP04 Lampson, B. “Computer Security in the Real World.” Computer, June 2004.

NIST95 National Institute of Standards and Technology. An Introduction to
Computer Security: The NIST Handbook. Special Publication 800-12,
October 1995.

NRCY91 National Research Council. Computers at Risk: Safe Computing in the
Information Age. Washington, DC: National Academy Press, 1991.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE, September 1975.

SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.”
Computer, June 1977.

SUMMB84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal,
Vol. 23, No. 4, 1984.

WARE79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1.
October 1979. http://www.rand.org/pubs/reports/R609-1/index2.html

Recommended Web sites:’

e IETF Security Area: Material related to Internet security standardization efforts.

* Computer and Network Security Reference Index: A good index to vendor and com-
mercial products, FAQs, newsgroup archives, papers, and other Web sites.

"Because URLs sometimes change, they are not included. For all of the Web sites listed in this and sub-
sequent chapters, the appropriate link is at this book’s Companion Web site at WilliamStallings.com/
ComputerSecurity/index.html.

http://www.rand.org/pubs/reports/R609-1/index2.html

36 CHAPTER 1 / OVERVIEW

* IEEE Technical Committee on Security and Privacy: Copies of their newsletter,
information on IEEE-related activities.

* Computer Security Resource Center: Maintained by the National Institute of Standards
and Technology (NIST); contains a broad range of information on security threats, tech-
nology, and standards.

* European Network and Information Security Agency: A source of expertise on security
issues for the EU. Includes an excellent set of technical reports, plus numerous other
documents and links.

* Security Focus: A wide variety of security information, with an emphasis on vendor
products and end-user concerns. Maintains Bugtraq, a mailing list for the detailed
discussion and announcement of computer security vulnerabilities.

* SANS Institute: Similar to Security Focus. Extensive collection of white papers. Main-
tains the Internet Storm Center, which provides a warning service to Internet users and
organizations concerning security threats.

* Risks Digest: Forum on risks to the public in computers and related systems.

¢ CERT Coordination Center: The organization that grew from the computer emergency
response team formed by the Defense Advanced Research Projects Agency. Site provides
good information on Internet security threats, vulnerabilities, and attack statistics.

* Packet Storm: Resource of up-to-date and historical security tools, exploits,and advisories.

° Institute for Security and Open Methodologies: An open, collaborative security
research community. Lots of interesting information.

* Center for Internet Security: Provides freeware benchmark and scoring tools for evalu-
ating security of operating systems, network devices, and applications. Includes case
studies and technical papers.

1.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
access control evaluation prevent
active attack exposure privacy
adversary falsification replay
asset incapacitation repudiation
assurance inference risk
attack inside attack security attack
authentication integrity security mechanism
authenticity interception security policy
availability intrusion security service
confidentiality masquerade system integrity
corruption misappropriation system resource
countermeasure misuse threat
data confidentiality nonrepudiation traffic analysis
data integrity obstruction unauthorized
denial of service OSI security architecture disclosure
disruption outside attack usurpation
encryption passive attack vulnerabilities

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 37

Review Questions

1.1
1.2
1.3
1.4
1.5

1.6

Define computer security.

What is the OSI security architecture?

What is the difference between passive and active security threats?

List and briefly define categories of passive and active network security attacks.
List and briefly define categories of security services.

List and briefly define categories of security mechanisms.

Problems

1.1

1.2

sk
W

1.6

1.7

Consider an automated teller machine (ATM) in which users provide a personal
identification number (PIN) and a card for account access. Give examples of confi-
dentiality, integrity, and availability requirements associated with the system and, in
each case, indicate the degree of importance of the requirement.

Repeat Problem 1.1 for a telephone switching system that routes calls through a
switching network based on the telephone number requested by the caller.

Consider a desktop publishing system used to produce documents for various organi-

zations.

a. Give an example of a type of publication for which confidentiality of the stored
data is the most important requirement.

b. Give an example of a type of publication in which data integrity is the most impor-
tant requirement.

c¢. Give an example in which system availability is the most important requirement.

For each of the following assets, assign a low, moderate, or high impact level for the

loss of confidentiality, availability, and integrity, respectively. Justify your answers.

a. An organization managing public information on its Web server.

b. A law enforcement organization managing extremely sensitive investigative
information.

c. A financial organization managing routine administrative information (not priva-
cy-related information).

d. An information system used for large acquisitions in a contracting organization
contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

e. A power plant contains a SCADA (supervisory control and data acquisition)
system controlling the distribution of electric power for a large military installa-
tion. The SCADA system contains both real-time sensor data and routine admin-
istrative information. Assess the impact for the two data sets separately and the
information system as a whole.

Use a matrix format to show the relationship between X.800 security services and

security mechanisms. The matrix columns correspond to mechanisms and the matrix

rows correspond to services. Each cell in the matrix should be checked, or not, to
indicate whether the corresponding mechanism is used in providing the correspond-
ing service.

Draw a matrix similar to that for the preceding problem that shows the relationship

between X.800 security services and network security attacks.

Draw a matrix similar to that for the preceding problem that shows the relationship

between X.800 security mechanisms and network security attacks.

PART ONE: Computer Security

Technology and
Principles

CRYPTOGRAPHIC TOOLS

2.1

2.2

23

24

2.5

2.6
2.7
2.8

Confidentiality with Symmetric Encryption

Symmetric Encryption
Symmetric Block Encryption Algorithms
Stream Ciphers

Message Authentication and Hash Functions

Authentication Using Symmetric Encryption
Message Authentication without Message Encryption
Secure Hash Functions

Other Applications of Hash Functions

Public-Key Encryption

Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography
Asymmetric Encryption Algorithms

Digital Signatures and Key Management

Digital Signature

Public-Key Certificates

Symmetric Key Exchange Using Public-Key Encryption
Digital Envelopes

Random and Pseudorandom Numbers

The Use of Random Numbers
Random versus Pseudorandom

Practical Application: Encryption of Stored Data
Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

38

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 39

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Explain the basic operation of symmetric block encryption algorithms.
€ Compare and contrast block encryption and stream encryption.

@ Discuss the use of secure hash functions for message authentication.

@ List other applications of secure hash functions.

@ Explain the basic operation of asymmetric block encryption algorithms.

@ Present an overview of the digital signature mechanism and explain the
concept of digital envelopes.

@ Explain the significance of random and pseudorandom numbers in
cryptography.

An important element in many computer security services and applications is the
use of cryptographic algorithms. This chapter provides an overview of the various
types of algorithms, together with a discussion of their applicability. For each type
of algorithm, we introduce the most important standardized algorithms in common
use. For the technical details of the algorithms themselves, see Part Four.

We begin with symmetric encryption, which is used in the widest variety of
contexts, primarily to provide confidentiality. Next, we examine secure hash func-
tions and discuss their use in message authentication. The next section examines
public-key encryption, also known as asymmetric encryption. We then discuss the
two most important applications of public-key encryption, namely digital signatures
and key management. In the case of digital signatures, asymmetric encryption and
secure hash functions are combined to produce an extremely useful tool.

Finally, in this chapter we provide an example of an application area for crypto-
graphic algorithms by looking at the encryption of stored data.

CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION

The universal technique for providing confidentiality for transmitted or stored data
is symmetric encryption. This section introduces the basic concept of symmetric
encryption. This is followed by an overview of the two most important symmetric
encryption algorithms: the Data Encryption Standard (DES) and the Advanced
Encryption Standard (AES), which are block encryption algorithms. Finally, this
section introduces the concept of symmetric stream encryption algorithms.

Symmetric Encryption

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the introduction of public-key
encryption in the late 1970s. Countless individuals and groups, from Julius Caesar to the
German U-boat force to present-day diplomatic, military, and commercial users, have

40 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Plaintext
input

Figure 2.

X ciphertext
— ——
L Y = E[K, X] . X =DI[K,Y]

1

Secret key shared by Secret key shared by
sender and recipient sender and recipient
S &)

I- 1

Transmitted

Plaintext
Encryption algorithm Decryption algorithm output
(e.g., DES) (reverse of encryption
algorithm)

Simplified Model of Symmetric Encryption

used symmetric encryption for secret communication. It remains the more widely used
of the two types of encryption.

A symmetric encryption scheme has five ingredients (Figure 2.1):

Plaintext: This is the original message or data that is fed into the algorithm as
input.

Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on the
key.

Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of symmetric encryption:

We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form:
The opponent should be unable to decrypt ciphertext or discover the key even
if he or she is in possession of a number of ciphertexts together with the plain-
text that produced each ciphertext.

Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

There are two general approaches to attacking a symmetric encryption

scheme. The first attack is known as cryptanalysis. Cryptanalytic attacks rely on

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 41

Table 2.1 Average Time Required for Exhaustive Key Search
g q y
Number of Time Required Time Required
Key Size (bits) Alternative Keys at 1 Decryption/us at 10° Decryptions/us
32 22 =43 X 10 2% us = 35.8 minutes 2.15 milliseconds
56 2% =172 X 10" 2% us = 1142 years 10.01 hours
128 2% =34 X 10% 27 us = 5.4 X 10* years 5.4 X 10" years
168 1% =37 X 10® 27 us = 5.9 X 10* years 5.9 X 10* years
26 characters
(permutation) 26! =4 X 10* 2 X 10%* us = 6.4 X 10" years 6.4 X 10° years

the nature of the algorithm plus perhaps some knowledge of the general character-
istics of the plaintext or even some sample plaintext-ciphertext pairs. This type of
attack exploits the characteristics of the algorithm to attempt to deduce a specific
plaintext or to deduce the key being used. If the attack succeeds in deducing the
key, the effect is catastrophic: All future and past messages encrypted with that key
are compromised.

The second method, known as the brute-force attack, is to try every possible
key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
On average, half of all possible keys must be tried to achieve success. Table 2.1 shows
how much time is involved for various key sizes. The table shows results for each key
size, assuming that it takes 1 ps to perform a single decryption, a reasonable order of
magnitude for today’s computers. With the use of massively parallel organizations
of microprocessors, it may be possible to achieve processing rates many orders of
magnitude greater. The final column of the table considers the results for a system
that can process 1 million keys per microsecond. As one can see, at this performance
level, a 56-bit key can no longer be considered computationally secure.

Symmetric Block Encryption Algorithms

The most commonly used symmetric encryption algorithms are block ciphers. A
block cipher processes the plaintext input in fixed-size blocks and produces a block
of ciphertext of equal size for each plaintext block. The algorithm processes longer
plaintext amounts as a series of fixed-size blocks. The most important symmetric algo-
rithms, all of which are block ciphers, are the Data Encryption Standard (DES), triple
DES, and the Advanced Encryption Standard (AES); see Table 2.2. This subsection
provides an overview of these algorithms. Chapter 20 presents the technical details.

Dara ENcrypriON STANDARD The most widely used encryption scheme is based
on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau
of Standards, now the National Institute of Standards and Technology (NIST), as
Federal Information Processing Standard 46 (FIPS PUB 46).! The algorithm itself is

INIST is a U.S. government agency that develops standards, called Federal Information Processing Stan-
dards (FIPS), for use by U.S. government departments and agencies. FIPS are also widely used outside the
government market. See Appendix C for a discussion.

42 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Table 2.2 Comparison of Three Popular Symmetric Encryption Algorithms

DES Triple DES AES
Plaintext block size (bits) 64 64 128
Ciphertext block size (bits) 64 64 128
Key size (bits) 56 112 or 168 128,192, or 256

DES = Data Encryption Standard
AES = Advanced Encryption Standard

referred to as the Data Encryption Algorithm (DEA). DES takes a plaintext block
of 64 bits and a key of 56 bits, to produce a ciphertext block of 64 bits.

Concerns about the strength of DES fall into two categories: concerns about
the algorithm itself and concerns about the use of a 56-bit key. The first concern
refers to the possibility that cryptanalysis is possible by exploiting the characteristics
of the DES algorithm. Over the years, there have been numerous attempts to find
and exploit weaknesses in the algorithm, making DES the most-studied encryption
algorithm in existence. Despite numerous approaches, no one has so far reported a
fatal weakness in DES.

A more serious concern is key length. With a key length of 56 bits, there are 2>
possible keys, which is approximately 7.2 X 1016 keys. Thus, on the face of it, a brute-
force attack appears impractical. Assuming that, on average, half the key space has
to be searched, a single machine performing one DES encryption per microsecond
would take more than a thousand years (see Table 2.1) to break the cipher.

However, the assumption of one encryption per microsecond is overly con-
servative. DES finally and definitively proved insecure in July 1998, when the
Electronic Frontier Foundation (EFF) announced that it had broken a DES encryp-
tion using a special-purpose “DES cracker” machine that was built for less than
$250,000. The attack took less than three days. The EFF has published a detailed
description of the machine, enabling others to build their own cracker [EFF98].
And, of course, hardware prices will continue to drop as speeds increase, making
DES virtually worthless.

It is important to note that there is more to a key-search attack than simply run-
ning through all possible keys. Unless known plaintext is provided, the analyst must
be able to recognize plaintext as plaintext. If the message is just plain text in English,
then the result pops out easily, although the task of recognizing English would have to
be automated. If the text message has been compressed before encryption, then rec-
ognition is more difficult. And if the message is some more general type of data, such
as a numerical file, and this has been compressed, the problem becomes even more
difficult to automate. Thus, to supplement the brute-force approach, some degree of
knowledge about the expected plaintext is needed, and some means of automatically
distinguishing plaintext from garble is also needed. The EFF approach addresses this
issue as well and introduces some automated techniques that would be effective in
many contexts.

A final point: If the only form of attack that could be made on an encryption
algorithm is brute force, then the way to counter such attacks is obvious: Use longer

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 43

keys. To get some idea of the size of key required, let us use the EFF cracker as a
basis for our estimates. The EFF cracker was a prototype and we can assume that
with today’s technology, a faster machine is cost effective. If we assume that a cracker
can perform 1 million decryptions per us, which is the rate used in Table 2.1, then a
DES code would take about 10 hours to crack. This is a speed-up of approximately
a factor of 7 compared to the EFF result. Using this rate, Figure 2.2 shows how long
it would take to crack a DES-style algorithm as a function of key size.? For example,
for a 128-bit key, which is common among contemporary algorithms, it would take
over 10" years to break the code using the EFF cracker. Even if we managed to speed
up the cracker by a factor of 1 trillion (10'?), it would still take over 1 million years
to break the code. So a 128-bit key is guaranteed to result in an algorithm that is
unbreakable by brute force.

TrirLe DES The life of DES was extended by the use of triple DES (3DES),
which involves repeating the basic DES algorithm three times, using either two
or three unique keys, for a key size of 112 or 168 bits. Triple DES (3DES) was

1 044

1 04()

1036

10%

1 028

Years to break

1024
1020
1016

1012

/

N

/

A

/

//

Zan.

108

10*

100 /

10°4 / |
5056 100 128 150 1
Key length (bits)

8 200

Figure 2.2 Time to Break a Code (assuming 10° decryptions/us) The
graph assumes that a symmetric encryption algorithm is attacked using
a brute-force approach of trying all possible keys

2A log scale is used for the y-axis. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com

44 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

first standardized for use in financial applications in ANSI standard X9.17 in 1985.
3DES was incorporated as part of the Data Encryption Standard in 1999, with the
publication of FIPS PUB 46-3.

3DES has two attractions that assure its widespread use over the next few
years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force
attack of DES. Second, the underlying encryption algorithm in 3DES is the same as
in DES. This algorithm has been subjected to more scrutiny than any other encryp-
tion algorithm over a longer period of time, and no effective cryptanalytic attack
based on the algorithm rather than brute force has been found. Accordingly, there
is a high level of confidence that 3DES is very resistant to cryptanalysis. If security
were the only consideration, then 3DES would be an appropriate choice for a stand-
ardized encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DES was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which requires three times as
many calculations as DES, is correspondingly slower. A secondary drawback is that
both DES and 3DES use a 64-bit block size. For reasons of both efficiency and secu-
rity, a larger block size is desirable.

ADVANCED ENCRYPTION STANDARD Because of its drawbacks, 3DES is not a
reasonable candidate for long-term use. As a replacement, NIST in 1997 issued
a call for proposals for a new Advanced Encryption Standard (AES), which
should have a security strength equal to or better than 3DES and significantly
improved efficiency. In addition to these general requirements, NIST specified
that AES must be a symmetric block cipher with a block length of 128 bits
and support for key lengths of 128, 192, and 256 bits. Evaluation criteria included
security, computational efficiency, memory requirements, hardware and software
suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A
second round narrowed the field to 5 algorithms. NIST completed its evaluation
process and published a final standard (FIPS PUB 197) in November of 2001. NIST
selected Rijndael as the proposed AES algorithm. AES is now widely available in
commercial products. AES is described in detail in Chapter 20.

Pracricar Securrry Issues Typically, symmetric encryption is applied to a
unit of data larger than a single 64-bit or 128-bit block. E-mail messages, network
packets, database records, and other plaintext sources must be broken up into a
series of fixed-length block for encryption by a symmetric block cipher. The simplest
approach to multiple-block encryption is known as electronic codebook (ECB)
mode, in which plaintext is handled b bits at a time and each block of plaintext is
encrypted using the same key. Typically b = 64 or b = 128. Figure 2.3a shows the
ECB mode. A plain text of length nb is divided into n b-bit blocks (Py, P,P,).
Each block is encrypted using the same algorithm and the same encryption key, to
produce a sequence of n b-bit blocks of ciphertext (Cy, C,,...,C,).

For lengthy messages, the ECB mode may not be secure. A cryptanalyst may
be able to exploit regularities in the plaintext to ease the task of decryption. For
example, if it is known that the message always starts out with certain predefined

Encryption

Decryption

Plaintext
byte stream
M

Figure 2.3

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 45

(a) Block cipher encryption (electronic codebook mode)

Key
K

Pseudorandom byte
generator
(key stream generator)

Key
K

Pseudorandom byte
generator
(key stream generator)

k k
7\ Ciphertext 71\ Plaintext
pU4 byte stream N byte stream
ENCRYPTION C DECRYPTION M

(b) Stream encryption

Types of Symmetric Encryption

fields, then the cryptanalyst may have a number of known plaintext-ciphertext pairs
to work with.

To increase the security of symmetric block encryption for large sequences

of data, a number of alternative techniques have been developed, called modes of
operation. These modes overcome the weaknesses of ECB; each mode has its own
particular advantages. This topic is explored in Chapter 20.

Stream Ciphers

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements

46 CHAPTER 2/ CRYPTOGRAPHIC TOOLS

continuously, producing output one element at a time, as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book.

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.3b is a representative diagram of stream cipher structure. In this
structure a key is input to a pseudorandom bit generator that produces a stream
of 8-bit numbers that are apparently random. A pseudorandom stream is one that
is unpredictable without knowledge of the input key and which has an apparently
random character (see Section 2.5). The output of the generator, called a keystream,
is combined one byte at a time with the plaintext stream using the bitwise exclusive-
OR (XOR) operation.

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. The primary advantage
of a stream cipher is that stream ciphers are almost always faster and use far less
code than do block ciphers. The advantage of a block cipher is that you can reuse
keys. For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
transfer, e-mail, and database, block ciphers may be more appropriate. However,
either type of cipher can be used in virtually any application.

2.2 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message or data authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and came from its alleged source. Message or data authentication
is a procedure that allows communicating parties to verify that received or stored
messages are authentic.> The two important aspects are to verify that the contents of
the message have not been altered and that the source is authentic. We may also wish
to verify a message’s timeliness (it has not been artificially delayed and replayed)
and sequence relative to other messages flowing between two parties. All of these
concerns come under the category of data integrity as described in Chapter 1.

Authentication Using Symmetric Encryption

It would seem possible to perform authentication simply by the use of symmet-
ric encryption. If we assume that only the sender and receiver share a key (which is
as it should be), then only the genuine sender would be able to encrypt a message
successfully for the other participant, provided the receiver can recognize a valid mes-
sage. Furthermore, if the message includes an error-detection code and a sequence

3For simplicity, for the remainder of this section, we refer to message authentication. By this we mean both
authentication of transmitted messages and of stored data (data authentication).

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 47

number, the receiver is assured that no alterations have been made and that sequenc-
ing is proper. If the message also includes a timestamp, the receiver is assured that the
message has not been delayed beyond that normally expected for network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on message encryption. In all of these approaches, an authentication tag
is generated and appended to each message for transmission. The message itself is
not encrypted and can be read at the destination independent of the authentication
function at the destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authentication is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to a
number of destinations. Two examples are notification to users that the network
is now unavailable, and an alarm signal in a control center. It is cheaper and
more reliable to have only one destination responsible for monitoring authentic-
ity. Thus, the message must be broadcast in plaintext with an associated message
authentication tag. The responsible system performs authentication. If a violation
occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load
and cannot afford the time to decrypt all incoming messages. Authentication
is carried out on a selective basis, with messages being chosen at random for
checking.

3. Authentication of a computer program in plaintext is an attractive service.
The computer program can be executed without having to decrypt it every
time, which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked whenever
assurance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

MESSAGE AUTHENTICATION CoDE One authentication technique involves
the use of a secret key to generate a small block of data, known as a message

48 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Message
K
. MAC
Transmit algorithm
@J \@i—’ compare
MAC
algorithm
MAC
K

Figure 2.4 Message Authentication Using a Message Authentication Code (MAC) The
MAC is a function of an input message and a secret key

authentication code, that is appended to the message. This technique assumes that
two communicating parties, say A and B, share a common secret key K, 5. When
A has a message to send to B, it calculates the message authentication code as a
complex function of the message and the key: MAC,, = F(K 43, M).4 The message
plus code are transmitted to the intended recipient. The recipient performs the same
calculation on the received message, using the same secret key, to generate a new
message authentication code. The received code is compared to the calculated code
(Figure 2.4). If we assume that only the receiver and the sender know the identity of
the secret key, and if the received code matches the calculated code, then

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because
no one else knows the secret key, no one else could prepare a message with a
proper code.

“Because messages may be any size and the message authentication code is a small fixed size, there must
theoretically be many messages that result in the same MAC. However, it should be infeasible in practice
to find pairs of such messages with the same MAC. This is known as collision resistance.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 49

3. If the message includes a sequence number (such as is used with X.25, HDLC,
and TCP), then the receiver can be assured of the proper sequence, because
an attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The NIST speci-
fication, FIPS PUB 113, recommends the use of DES. DES is used to generate an
encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical.’

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

ONE-WAY Hasn Funcrion An alternative to the message authentication code is the
one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size message digest
H(M) as output (Figure 2.5). Typically, the message is padded out to an integer multiple
of some fixed length (e.g., 1024 bits) and the padding includes the value of the length

L bits

Message or data block M (variable length) L

Hash value &
(fixed length)

Figure 2.5 Block Diagram of Secure Hash Function;

h=HM)

SRecall from our discussion of practical security issues in Section 2.1 that for large amounts of data, some
mode of operation is needed to apply a block cipher such as DES to amounts of data larger than a single
block. For the MAC application mentioned here, DES is applied in what is known as cipher block chaining
mode (CBC). In essence, DES is applied to each 64-bit block of the message in sequence, with the input
to the encryption algorithm being the XOR of the current plaintext block and the preceding ciphertext
block. The MAC is derived from the final block encryption. See Chapter 20 for a discussion of CBC.

50 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

of the original message in bits. The length field is a security measure to increase the
difficulty for an attacker to produce an alternative message with the same hash value.
Unlike the MAC, a hash function does not also take a secret key as input.
To authenticate a message, the message digest is sent with the message in such
a way that the message digest is authentic. Figure 2.6 illustrates three ways in

~—— Source A —— > ~—— Destination B ——>

Message
Message
Message

(a) Using conventional encryption

o [0} [0}
= = =
2] © w2
6 S| >mmmm e > 5
= = =
(b) Using public-key encryption
K K
(5] (0] (0]
g g 1 %
Z — > 2| - > Z — PSR
p= = =
K - ': K Compare
—_——————— —

.

(c) Using secret value

Figure 2.6 Message Authentication Using a One-Way Hash Function The hash
function maps a message into a relatively small, fixed-size block

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 51

which the message can be authenticated using a hash code. The message digest
can be encrypted using symmetric encryption (part a); if it is assumed that only
the sender and receiver share the encryption key, then authenticity is assured. The
message digest can also be encrypted using public-key encryption (part b); this is
explained in Section 2.3. The public-key approach has two advantages: It provides
a digital signature as well as message authentication; and it does not require the
distribution of keys to communicating parties.

These two approaches have an advantage over approaches that encrypt the
entire message in that less computation is required. But an even more common
approach is the use of a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

e Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

e Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

* Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

* An encryption algorithm may be protected by a patent.

Figure 2.6c shows a technique that uses a hash function but no encryption for
message authentication. This technique, known as a keyed hash MAC, assumes
that two communicating parties, say A and B, share a common secret key K.
This secret key is incorporated into the process of generating a hash code. In the
approach illustrated in Figure 2.6c, when A has a message to send to B, it calcu-
lates the hash function over the concatenation of the secret key and the message:
MD,, = H(K|M| K).STtthensends [M||MD,,] to B. Because B possesses K, it can
recompute H(K|M|K) and verify MD,,. Because the secret key itself is not sent, it
should not be possible for an attacker to modify an intercepted message. As long as
the secret key remains secret, it should not be possible for an attacker to generate a
false message.

Note that the secret key is used as both a prefix and a suffix to the message. If
the secret key is used as either only a prefix or only a suffix, the scheme is less secure.
This topic is discussed in Chapter 21. Chapter 21 also describes a scheme known
as HMAC, which is somewhat more complex than the approach of Figure 2.6c and
which has become the standard approach for a keyed hash MAC.

Secure Hash Functions

The one-way hash function, or secure hash function, is important not only in message
authentication but in digital signatures. In this section, we begin with a discussion of
requirements for a secure hash function. Then we discuss specific algorithms.

9| denotes concatenation.

52 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Hasn Funcrion ReouiremeNTs The purpose of a hash function is to produce a
“fingerprint” of a file, message, or other block of data. To be useful for message
authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.
2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4. For any given code A, it is computationally infeasible to find x such that
H(x) = h. A hash function with this property is referred to as one-way or pre-
image resistant.’

5. For any given block x, it is computationally infeasible to find y # x with
H(y) = H(x). A hash function with this property is referred to as second preim-
age resistant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a hash
function to message authentication.

The fourth property is the one-way property: It is easy to generate a code given a
message, but virtually impossible to generate a message given a code. This property is
important if the authentication technique involves the use of a secret value (Figure 2.6c).
The secret value itself is not sent; however, if the hash function is not one way, an attacker
can easily discover the secret value: If the attacker can observe or intercept a transmission,
the attacker obtains the message M and the hash code MD,; = H(S 45 || M). The attacker
then inverts the hash function to obtain S,z || M = H! (MDy,). Because the attacker now
has both M and S, || M, it is a trivial matter to recover S 4p.

The fifth property guarantees that it is impossible to find an alternative
message with the same hash value as a given message. This prevents forgery when
an encrypted hash code is used (Figures 2.6a and b). If this property were not true,
an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it
is referred to as a strong hash function. A strong hash function protects against an
attack in which one party generates a message for another party to sign. For exam-
ple, suppose Bob gets to write an IOU message, send it to Alice, and she signs it.
Bob finds two messages with the same hash, one of which requires Alice to pay a
small amount and one that requires a large payment. Alice signs the first message
and Bob is then able to claim that the second message is authentic.

TFor f(x) = y,x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage values
for a given y.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 53

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

SEcurIrty orF HAasn Funcrions As with symmetric encryption, there are two
approaches to attacking a secure hash function: cryptanalysis and brute-force attack.
As with symmetric encryption algorithms, cryptanalysis of a hash function involves
exploiting logical weaknesses in the algorithm.

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length #,
the level of effort required is proportional to the following:

Preimage resistant 2n
Second preimage resistant | 2"
Collision resistant 2m

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2? determines the strength of the hash code against
brute-force attacks. Van Oorschot and Wiener [VANOY4] presented a design for a
$10 million collision search machine for MD3, which has a 128-bit hash length, that
could find a collision in 24 days. Thus a 128-bit code may be viewed as inadequate.
The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash
length. With a hash length of 160 bits, the same search machine would require over
four thousand years to find a collision. With today’s technology, the time would be
much shorter, so that 160 bits now appears suspect.

SEcUurE Hasn FuncrioNn ALcoritams In recent years, the most widely used
hash function has been the Secure Hash Algorithm (SHA). SHA was developed
by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993. When weaknesses
were discovered in SHA, a revised version was issued as FIPS 180-1 in 1995 and is
generally referred to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002,
NIST produced a revised version of the standard, FIPS 180-2, that defined three new
versions of SHA, with hash value lengths of 256,384, and 512 bits, known as SHA-256,
SHA-384, and SHA-512. These new versions have the same underlying structure and
use the same types of modular arithmetic and logical binary operations as SHA-1.
In 2005, NIST announced the intention to phase out approval of SHA-1 and move to
a reliance on the other SHA versions by 2010. As discussed in Chapter 21, researchers
have demonstrated that SHA-1 is far weaker than its 160-bit hash length suggests,
necessitating the move to the newer versions of SHA.

Other Applications of Hash Functions

We have discussed the use of hash functions for message authentication and for the
creation of digital signatures (the latter is discussed in more detail later in this chapter).
Here are two other examples of secure hash function applications:

¢ Passwords: Chapter 3 explains a scheme in which a hash of a password is
stored by an operating system rather than the password itself. Thus, the actual

54 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

password is not retrievable by a hacker who gains access to the password file.
In simple terms, when a user enters a password, the hash of that password is
compared to the stored hash value for verification. This application requires
preimage resistance and perhaps second preimage resistance.

* Intrusion detection: Store H(F) for each file on a system and secure the hash
values (e.g., on a CD-R that is kept secure). One can later determine if a file has
been modified by recomputing H(F). An intruder would need to change F with-
out changing H(F). This application requires weak second preimage resistance.

2.3 PUBLIC-KEY ENCRYPTION

Of equal importance to symmetric encryption is public-key encryption, which finds
use in message authentication and key distribution.

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76], is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use
of two separate keys, in contrast to symmetric encryption, which uses only one key.
The use of two keys has profound consequences in the areas of confidentiality, key
distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryption
scheme depends on (1) the length of the key and (2) the computational work involved
in breaking a cipher. There is nothing in principle about either symmetric or public-key
encryption that makes one superior to another from the point of view of resisting cryp-
tanalysis. A second misconception is that public-key encryption is a general-purpose
technique that has made symmetric encryption obsolete. On the contrary, because of
the computational overhead of current public-key encryption schemes, there seems no
foreseeable likelihood that symmetric encryption will be abandoned. Finally, there is
a feeling that key distribution is trivial when using public-key encryption, compared to
the rather cumbersome handshaking involved with key distribution centers for sym-
metric encryption. For public-key key distribution, some form of protocol is needed,
often involving a central agent, and the procedures involved are no simpler or any
more efficient than those required for symmetric encryption.

A public-key encryption scheme has six ingredients (Figure 2.7a):

 Plaintext: This is the readable message or data that is fed into the algorithm as
input.

* Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

* Public and private key: This is a pair of keys that have been selected so that
if one is used for encryption, the other is used for decryption. The exact

2.3 / PUBLIC-KEY ENCRYPTION 55

Bobs's
public key

Ted jb

Alice's public PR | Alice's private
key key

Mike Alice

Transmitted =

@ ciphertext @ D[PR,, Y]
i Y=E[PU,, X] i

Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA) \\/—Y\/
Bob Alice

(a) Encryption with public key

Alice's
public key

J
ib oy Ted
Mike Bob
PR, | Bob's private PU, | Bob's public
key key
Transmitted X=

X Y ciphertext M\
Y =E[PR,, X]

Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA)
Bob Alice

(b) Encryption with private key

Figure 2.7 Public-Key Cryptography

transformations performed by the encryption algorithm depend on the public
or private key that is provided as input.

8The key used in symmetric encryption is typically referred to as a secret key. The two keys used for
public-key encryption are referred to as the public key and the private key. Invariably, the private key is
kept secret, but it is referred to as a private key rather than a secret key to avoid confusion with symmetric
encryption.

56 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

* Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

* Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption
of messages.

2. Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private. As Figure 2.7a
suggests, each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message
using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed.
As long as a user protects his or her private key, incoming communication is secure.
At any time, a user can change the private key and publish the companion public
key to replace the old public key.

Figure 2.7b illustrates another mode of operation of public-key cryp-
tography. In this scheme, a user encrypts data using his or her own private key.
Anyone who knows the corresponding public key will then be able to decrypt the
message.

Note that the scheme of Figure 2.7a is directed toward providing confidential-
ity: Only the intended recipient should be able to decrypt the ciphertext because only
the intended recipient is in possession of the required private key. Whether in fact
confidentiality is provided depends on a number of factors, including the security of
the algorithm, whether the private key is kept secure, and the security of any proto-
col of which the encryption function is a part.

The scheme of Figure 2.7b is directed toward providing authentication
and/or data integrity. If a user is able to successfully recover the plaintext from
Bob’s ciphertext using Bob’s public key, this indicates that only Bob could have
encrypted the plaintext, thus providing authentication. Further, no one but
Bob would be able to modify the plaintext because only Bob could encrypt the
plaintext with Bob’s private key. Once again, the actual provision of authenti-
cation or data integrity depends on a variety of factors. This issue is addressed
primarily in Chapter 21, but other references are made to it where appropriate in
this text.

2.3 / PUBLIC-KEY ENCRYPTION 57

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is
otherwise likely to lead to confusion. Public-key systems are characterized by the use
of a cryptographic type of algorithm with two keys, one held private and one available
publicly. Depending on the application, the sender uses either the sender’s private key
or the receiver’s public key, or both, to perform some type of cryptographic function.
In broad terms, we can classify the use of public-key cryptosystems into three catego-
ries: digital signature, symmetric key distribution, and encryption of secret keys.

These applications are discussed in Section 2.4. Some algorithms are suita-
ble for all three applications, whereas others can be used only for one or two of
these applications. Table 2.3 indicates the applications supported by the algorithms
discussed in this section.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 2.7 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without dem-
onstrating that such algorithms exist. However, they did lay out the conditions that
such algorithms must fulfill [DIFF76]:

1. It is computationally easy for a party B to generate a pair (public key PU,,
private key PRy).

2. It is computationally easy for a sender A, knowing the public key and the
message to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUy, M)

3. Itis computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PR;,C) = D[PR,, E(PU,, M)]

4. Itis computationally infeasible for an opponent, knowing the public key, PUy,
to determine the private key, PRy,

5. Itis computationally infeasible for an opponent, knowing the public key, PUy,
and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

Table 2.3 Applications for Public-Key Cryptosystems

Symmetric Key Encryption of
Algorithm Digital Signature Distribution Secret Keys
RSA Yes Yes Yes
Diffie-Hellman No Yes No
DSS Yes No No
Elliptic Curve Yes Yes Yes

58 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

6. Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PU,, E(PR,, M)] = D[PR,, E(PU,, M)]

Asymmetric Encryption Algorithms

In this subsection, we briefly mention the most widely used asymmetric encryption
algorithms. Chapter 21 provides technical details.

RSA One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since reigned supreme as the most widely accepted and implemented
approach to public-key encryption. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n — 1 for some 7.

In 1977, the three inventors of RSA dared Scientific American readers to decode
a cipher they printed in Martin Gardner’s “Mathematical Games” column. They
offered a $100 reward for the return of a plaintext sentence, an event they predicted
might not occur for some 40 quadrillion years. In April of 1994, a group working over
the Internet and using over 1600 computers claimed the prize after only eight months
of work [LEUT94]. This challenge used a public-key size (length of »n) of 129 decimal
digits, or around 428 bits. This result does not invalidate the use of RSA; it simply
means that larger key sizes must be used. Currently, a 1024-bit key size (about 300
decimal digits) is considered strong enough for virtually all applications.

Dirrre-HELLmaN Key AGREEMENT The first published public-key algorithm
appeared in the seminal paper by Diffie and Hellman that defined public-key
cryptography [DIFF76] and is generally referred to as Diffie-Hellman key exchange,
or key agreement. A number of commercial products employ this key exchange
technique.

The purpose of the algorithm is to enable two users to securely reach agree-
ment about a shared secret that can be used as a secret key for subsequent symmetric
encryption of messages. The algorithm itself is limited to the exchange of the keys.

Dicrrar SIGNATURE STANDARD — The National Institute of Standards and Technology
(NIST) has published Federal Information Processing Standard FIPS PUB 186,
known as the Digital Signature Standard (DSS). The DSS makes use of SHA-1 and
presents a new digital signature technique, the Digital Signature Algorithm (DSA).
The DSS was originally proposed in 1991 and revised in 1993 in response to public
feedback concerning the security of the scheme. There was a further minor revision in
1996. The DSS uses an algorithm that is designed to provide only the digital signature
function. Unlike RSA, it cannot be used for encryption or key exchange.

Ercieric CUrRvE CRYPTOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has put
a heavier processing load on applications using RSA. This burden has ramifications,

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 59

especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE (Institute of Electrical and Electronics Engineers) P1363
Standard for Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

2.4 DIGITAL SIGNATURES AND KEY MANAGEMENT

As is mentioned in Section 2.3, public-key algorithms are used in a variety of appli-
cations. In broad terms, these applications fall into two categories: digital signatures,
and various techniques to do with key management and distribution.

With respect to of key management and distribution, there are at least three
distinct aspects to the use of public-key encryption in this regard:

¢ The secure distribution of public keys
e The use of public-key encryption to distribute secret keys

e The use of public-key encryption to create temporary keys for message
encryption

This section provides a brief overview of digital signatures and the various types of
key management and distribution.

Digital Signature

Public-key encryption can be used for authentication, as suggested by Figure 2.6b.
Suppose that Bob wants to send a message to Alice. Although it is not important that
the message be kept secret, he wants Alice to be certain that the message is indeed
from him. For this purpose, Bob uses a secure hash function, such as SHA-512, to
generate a hash value for the message and then encrypts the hash code with his private
key, creating a digital signature. Bob sends the message with the signature attached.
When Alice receives the message plus signature, she (1) calculates a hash value for
the message; (2) decrypts the signature using Bob’s public key; and (3) compares the
calculated hash value to the decrypted hash value. If the two hash values match, Alice
is assured that the message must have been signed by Bob. No one else has Bob’s
private key and therefore no one else could have created a ciphertext that could be
decrypted with Bob’s public key. In addition, it is impossible to alter the message
without access to Bob’s private key, so the message is authenticated both in terms of
source and in terms of data integrity.

It is important to emphasize that the digital signature does not provide confi-
dentiality. That is, the message being sent is safe from alteration but not safe from
eavesdropping. This is obvious in the case of a signature based on a portion of the

60 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

message, because the rest of the message is transmitted in the clear. Even in the
case of complete encryption, there is no protection of confidentiality because any
observer can decrypt the message by using the sender’s public key.

Public-Key Certificates

On the face of it, the point of public-key encryption is that the public key is pub-
lic. Thus, if there is some broadly accepted public-key algorithm, such as RSA, any
participant can send his or her public key to any other participant or broadcast the
key to the community at large. Although this approach is convenient, it has a major
weakness. Anyone can forge such a public announcement. That is, some user could
pretend to be Bob and send a public key to another participant or broadcast such a
public key. Until such time as Bob discovers the forgery and alerts other participants,
the forger is able to read all encrypted messages intended for A and can use the
forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a certifi-
cate consists of a public key plus a user ID of the key owner, with the whole block
signed by a trusted third party. The certificate also includes some information about
the third party plus an indication of the period of validity of the certificate. Typically,
the third party is a certificate authority (CA) that is trusted by the user commu-
nity, such as a government agency or a financial institution. A user can present his
or her public key to the authority in a secure manner and obtain a signed certifi-
cate. The user can then publish the certificate. Anyone needing this user’s public key
can obtain the certificate and verify that it is valid by means of the attached trusted
signature. Figure 2.8 illustrates the process.

Bob’s ID
information
Unsigned certificate:
contains user ID,

user’s public key < Bob’s public key >

Recipient can verify
CA signature by comparing

\=/

Generate hash
code of unsigned
certificate

Figure 2.8

information hash code values
\
< QJ
' Signed certificate ‘
Encrypt hash code Decrypt signature
with CA’s private key with CA’s public key
to form signature to recover hash code
g — _/

—~—

Create signed
digital certificate

Public-Key Certificate Use

—~—

Use certificate to
verify Bob's public key

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 61

One scheme has become universally accepted for formatting public-key
certificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP Security (IPsec), Transport Layer Security (TLS), Secure
Shell (SSH), and Secure/Multipurpose Internet Mail Extension (S/MIME). We
examine most of these applications in Part Five.

Symmetric Key Exchange Using Public-Key Encryption

With symmetric encryption, a fundamental requirement for two parties to communi-
cate securely is that they share a secret key. Suppose Bob wants to create a messag-
ing application that will enable him to exchange e-mail securely with anyone who has
access to the Internet or to some other network that the two of them share. Suppose
Bob wants to do this using symmetric encryption. With symmetric encryption, Bob
and his correspondent, say, Alice, must come up with a way to share a unique secret
key that no one else knows. How are they going to do that? If Alice is in the next
room from Bob, Bob could generate a key and write it down on a piece of paper or
store it on a disc or thumb drive and hand it to Alice. But if Alice is on the other side
of the continent or the world, what can Bob do? He could encrypt this key using
symmetric encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

One approach is the use of Diffie-Hellman key exchange. This approach is
indeed widely used. However, it suffers the drawback that, in its simplest form,
Diffie-Hellman provides no authentication of the two communicating partners.
There are variations to Diffie-Hellman that overcome this problem. Also, there are
protocols using other public-key algorithms that achieve the same objective.

Digital Envelopes

Another application in which public-key encryption is used to protect a symmetric
key is the digital envelope, which can be used to protect a message without need-
ing to first arrange for sender and receiver to have the same secret key. The tech-
nique is referred to as a digital envelope, which is the equivalent of a sealed envelope
containing an unsigned letter. The general approach is shown in Figure 2.9. Suppose
Bob wishes to send a confidential message to Alice, but they do not share a symmet-
ric secret key. Bob does the following:

1. Prepare a message.

Generate a random symmetric key that will be used this one time only.
Encrypt that message using symmetric encryption the one-time key.

Encrypt the one-time key using public-key encryption with Alice’s public key.

SO Sl A

Attach the encrypted one-time key to the encrypted message and send it to
Alice.

Only Alice is capable of decrypting the one-time key and therefore of recov-
ering the original message. If Bob obtained Alice’s public key by means of Alice’s
public-key certificate, then Bob is assured that it is a valid key.

62 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Message
Encrypted \
Random . message
symmetric —
key | / Digital
(E) envelope
Receiver’s) T S;;%E:fi
1;:ubllc I=© key
ey
(a) Creation of a digital envelope
—>@—> Message
Encrypted
message - Random
© |[= symmetric
@% Yy
- key
Digital \ (S0 f
envelope D

K . % < X % ' '
< Receiver’s
symme tric | h :)— private

key key

(b) Opening a digital envelope
Figure 2.9 Digital Envelopes

2.5 RANDOM AND PSEUDORANDOM NUMBERS

Random numbers play an important role in the use of encryption for various
network security applications. We provide a brief overview in this section. The topic
is examined in detail in Appendix D.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of
random numbers. For example,

e Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 21) and other public-key algorithms.
* Generation of a stream key for symmetric stream cipher.

¢ Generation of a symmetric key for use as a temporary session key or in creating
a digital envelope.

2.5 / RANDOM AND PSEUDORANDOM NUMBERS 63

e In a number of key distribution scenarios, such as Kerberos (described in
Chapter 23), random numbers are used for handshaking to prevent replay
attacks.

¢ Session key generation, whether done by a key distribution center or by one of
the principals.

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

Ranpomness Traditionally, the concern in the generation of a sequence of
allegedly random numbers has been that the sequence of numbers be random in
some well-defined statistical sense. The following two criteria are used to validate
that a sequence of numbers is random:

* Uniform distribution: The distribution of numbers in the sequence should be
uniform; that is, the frequency of occurrence of each of the numbers should be
approximately the same.

* Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demonstrate
if a sequence does not exhibit independence. The general strategy is to apply a number
of such tests until the confidence that independence exists is sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that
appear statistically random often occurs in the design of algorithms related to
cryptography. For example, a fundamental requirement of the RSA public-key
encryption scheme is the ability to generate prime numbers. In general, it is difficult
to determine if a given large number N is prime. A brute-force approach would
be to divide N by every odd integer less than VN. If N is on the order, say, of
10™°, a not uncommon occurrence in public-key cryptography, such a brute-force
approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations.
If the sequence is sufficiently long (but far, far less than V10!*), the primality of
a number can be determined with near certainty. This type of approach, known
as randomization, crops up frequently in the design of algorithms. In essence, if a
problem is too hard or time-consuming to solve exactly, a simpler, shorter approach
based on randomization is used to provide an answer with any desired level of
confidence.

UnprepicragiLiry In applications such as reciprocal authentication and session key
generation, the requirement is not so much that the sequence of numbers be statistically
random but that the successive members of the sequence are unpredictable. With
“true” random sequences, each number is statistically independent of other numbers
in the sequence and therefore unpredictable. However, as is discussed shortly, true
random numbers are not always used; rather, sequences of numbers that appear to
be random are generated by some algorithm. In this latter case, care must be taken

64 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

that an opponent not be able to predict future elements of the sequence on the basis
of earlier elements.

Random versus Pseudorandom

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called philosophical objections to such a practice, it generally works. As one
expert on probability theory puts it [HAMMO91],

For practical purposes we are forced to accept the awkward concept
of “relatively random” meaning that with regard to the proposed
use we can see no reason why they will not perform as if they were
random (as the theory usually requires). This is highly subjective
and is not very palatable to purists, but it is what statisticians regu-
larly appeal to when they take “a random sample” —they hope that
any results they use will have approximately the same properties as
a complete counting of the whole sample space that occurs in their
theory.

A true random number generator (TRNG) uses a nondeterministic source to
produce randomness. Most operate by measuring unpredictable natural processes,
such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky
capacitors. Intel has developed a commercially available chip that samples ther-
mal noise by amplifying the voltage measured across undriven resistors [JUN99].
A group at Bell Labs has developed a technique that uses the variations in the
response time of raw read requests for one disk sector of a hard disk [JAKO9S].
LavaRnd is an open source project for creating truly random numbers using inex-
pensive cameras, open source code, and inexpensive hardware. The system uses a
saturated charge-coupled device (CCD) in a light-tight can as a chaotic source to
produce the seed. Software processes the result into truly random numbers in a
variety of formats.

PRACTICAL APPLICATION: ENCRYPTION

OF STORED DATA

One of the principal security requirements of a computer system is the protection
of stored data. Security mechanisms to provide such protection include access con-
trol, intrusion detection, and intrusion prevention schemes, all of which are dis-
cussed in this book. The book also describes a number of technical means by which
these various security mechanisms can be made vulnerable. But beyond technical

2.6 / PRACTICAL APPLICATION: ENCRYPTION OF STORED DATA 65

approaches, these approaches can become vulnerable because of human factors.
We list a few examples here, based on [ROTHO5].

¢ In December of 2004, Bank of America employees backed up and sent to its
backup data center tapes containing the names, addresses, bank account num-
bers, and Social Security numbers of 1.2 million government workers enrolled
in a charge-card account. None of the data were encrypted. The tapes never
arrived and indeed have never been found. Sadly, this method of backing up
and shipping data is all too common. As an another example, in April of 2005,
Ameritrade blamed its shipping vendor for losing a backup tape containing
unencrypted information on 200,000 clients.

e In April of 2005, San Jose Medical group announced that someone had physi-
cally stolen one of its computers and potentially gained access to 185,000
unencrypted patient records.

e There have been countless examples of laptops lost at airports, stolen from a
parked car, or taken while the user is away from his or her desk. If the data on the
laptop’s hard drive are unencrypted, all of the data are available to the thief.

Although it is now routine for businesses to provide a variety of protections,
including encryption, for information that is transmitted across networks, via the
Internet, or via wireless devices, once data are stored locally (referred to as data at
rest), there is often little protection beyond domain authentication and operating
system access controls. Data at rest are often routinely backed up to secondary stor-
age such as CDROM or tape, archived for indefinite periods. Further, even when
data are erased from a hard disk, until the relevant disk sectors are reused, the data
are recoverable. Thus it becomes attractive, and indeed should be mandatory, to
encrypt data at rest and combine this with an effective encryption key management
scheme.

There are a variety of ways to provide encryption services. A simple approach
available for use on a laptop is to use a commercially available encryption package
such as Pretty Good Privacy (PGP). PGP enables a user to generate a key from a
password and then use that key to encrypt selected files on the hard disk. The PGP
package does not store the password. To recover a file, the user enters the password,
PGP generates the password, and PGP decrypts the file. So long as the user protects
his or her password and does not use an easily guessable password, the files are fully
protected while at rest. Some more recent approaches are listed in [COLLO06]:

° Back-end appliance:This is a hardware device that sits between servers and
storage systems and encrypts all data going from the server to the storage sys-
tem and decrypts data going in the opposite direction. These devices encrypt
data at close to wire speed, with very little latency. In contrast, encryption
software on servers and storage systems slows backups. A system manager
configures the appliance to accept requests from specified clients, for which
unencrypted data are supplied.

¢ Library-based tape encryption:This is provided by means of a co-processor board

embedded in the tape drive and tape library hardware. The co-processor encrypts
data using a nonreadable key configured into the board. The tapes can then be sent

66 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

off-site to a facility that has the same tape drive hardware. The key can be exported
via secure e-mail or a small flash drive that is transported securely. If the matching
tape drive hardware co-processor is not available at the other site, the target facility
can use the key in a software decryption package to recover the data.

* Background laptop and PC data encryption:A number of vendors offer soft-
ware products that provide encryption that is transparent to the application and
the user. Some products encrypt all or designated files and folders. Other prod-
ucts create a virtual disk, which can be maintained locally on the user’s hard
drive or maintained on a network storage device, with all data on the virtual
disk encrypted. Various key management solutions are offered to restrict access
to the owner of the data.

2.7 RECOMMENDED READING AND WEB SITES

The topics in this chapter are covered in greater detail in [STAL11b]. For coverage of cryp-
tographic algorithms, [SCHN96] is a valuable reference work; it contains descriptions of
virtually every cryptographic algorithm and protocol in use up to the time of the book’s
publication. A good classic paper on the topics of this chapter is [DIFF79].

For anyone interested in the history of code making and code breaking, the book
toread is [KAHNO96]. Although it is concerned more with the impact of cryptology than
its technical development, it is an excellent introduction and makes for exciting reading.
Another excellent historical account is [SING99].

DIFF79 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction
to Cryptography.” Proceedings of the IEEE, March 1979.

KAHNY96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner,
1996.

SCHNY6 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SING99 Singh, S. :The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. New York: Anchor Books, 1999.

STAL11b Stallings, W. Cryptography and Network Security: Principles and Practice,
Fifth Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

Recommended Web sites:

e The Cryptography FAQ: Lengthy and worthwhile FAQ covering all aspects of
cryptography.

e Bouncy Castle Crypto Package: Java implementation of cryptographic algorithms. The
package is organized so that it contains a light-weight application programming inter-
face (API) suitable for use in any environment. The package is distributed at no charge
for commercial or noncommercial use.

¢ Cryptography Code: Another useful collection of software.

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 67

e American Cryptogram Association: An association of amateur cryptographers. The
Web site includes information and links to sites concerned with classical cryptography.

¢ Crypto Corner: Simon Singh’s Web site. Lots of good information, plus interactive
tools for learning about cryptography.

2.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Advanced Encryption elliptic curve cryptography public-key certificate
Standard (AES) encryption public-key encryption
asymmetric encryption hash function random number
brute-force attack keystream RSA
ciphertext message authentication second preimage resistant
collision resistant message authentication secret key
cryptanalysis code (MAC) secure hash algorithm
Data Encryption Standard modes of operation (SHA)
(DES) one-way hash function secure hash function
Decryption plaintext strong collision resistant

Diffie-Hellman key exchange

digital signature

Digital Signature Standard
(DSS)

preimage resistant
private key
pseudorandom number
public key

symmetric encryption
Triple DES
weak collision resistant

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?
2.2 How many keys are required for two people to communicate via a symmetric cipher?
2.3 What are the two principal requirements for the secure use of symmetric encryption?
2.4 List three approaches to message authentication.
2.5 What is a message authentication code?
2.6 Briefly describe the three schemes illustrated in Figure 2.4.
2.7 What properties must a hash function have to be useful for message authentication?
2.8 What are the principal ingredients of a public-key cryptosystem?
2.9 List and briefly define three uses of a public-key cryptosystem.

2.10 What is the difference between a private key and a secret key?

2.11 What is a digital signature?

2.12 What is a public-key certificate?

2.13 How can public-key encryption be used to distribute a secret key?

Problems

2.1 Suppose that someone suggests the following way to confirm that the two of you are
both in possession of the same secret key. You create a random bit string the length
of the key, XOR it with the key, and send the result over the channel. Your partner
XORs the incoming block with the key (which should be the same as your key) and
sends it back. You check, and if what you receive is your original random string, you

68 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

2.

2

W

have verified that your partner has the same secret key, yet neither of you has ever
transmitted the key. Is there a flaw in this scheme?
This problem uses a real-world example of a symmetric cipher, from an old U.S.
Special Forces manual (public domain). The document, filename Special Forces.pdf,
is available in premium content site for this book.
a. Using the two keys (memory words) cryptographic and network security, encrypt the
following message:
Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.
Make reasonable assumptions about how to treat redundant letters and excess let-
ters in the memory words and how to treat spaces and punctuation. Indicate what
your assumptions are.
Note: The message is from the Sherlock Holmes novel The Sign of Four.
b. Decrypt the ciphertext. Show your work.
c¢. Comment on when it would be appropriate to use this technique and what its
advantages are.
Consider a very simple symmetric block encryption algorithm, in which 64-bits blocks
of plaintext are encrypted using a 128-bit key. Encryption is defined as

C=(POK)HK,

where C = ciphertext; K = secret key; Ky = leftmost 64 bits of K; K| = rightmost

64 bits of K, D = bitwise exclusive or; and F is addition mod 2%.

a. Show the decryption equation. That is, show the equation for P as a function of C,
Kl and Kz.

b. Suppose and adversary has access to two sets of plaintexts and their corre-
sponding ciphertexts and wishes to determine K. We have the two equations:

C=P@®K)HK; C'=(P @K, HK,

First, derive an equation in one unknown (e.g., Ky). Is it possible to proceed further to
solve for K?

Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using
a 128-bit key. The plaintext is divided into two 32-bit blocks (L, Ry), and the key
is divided into four 32-bit blocks (K, K1, K5, K3). Encryption involves repeated
application of a pair of rounds, defined as follows for rounds i and i + 1:

L; =R,
Ri = Lifl F(Rifl’ K07 K17 61)
Ly, =

Ry = LB F(R;, Ky, K3, 8;41)
where F is defined as

F(M, K, Kj, 8) = (M <<) B K) ® (M >> 5)BK) DM + 5)

and where the logical shift of x by y bits is denoted by x << y; the logical right shift

of x by y bits is denoted by x >>y; and §; is a sequence of predetermined constants.

a. Comment on the significance and benefit of using the sequence of constants.

b. Illustrate the operation of TEA using a block diagram or flow chart type of
depiction.

c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit block
(L,, R,). For this case, express the decryption algorithm in terms of equations.

d. Repeat part (c) using an illustration similar to that used for part (b).

In this problem we will compare the security services that are provided by digital

signatures (DS) and message authentication codes (MAC). We assume that Oscar

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 69

is able to observe all messages sent from Alice to Bob and vice versa. Oscar has no

knowledge of any keys but the public one in case of DS. State whether and how (i)

DS and (ii) MAC protect against each attack. The value auth(x) is computed with a

DS or a MAC algorithm, respectively.

a. (Message integrity) Alice sends a message x = “Transfer $1000 to Mark” in the
clear and also sends auth(x) to Bob. Oscar intercepts the message and replaces
“Mark” with “Oscar”. Will Bob detect this?

b. (Replay) Alice sends a message x = “Transfer $1000 to Oscar” in the clear and
also sends auth(x) to Bob. Oscar observes the message and signature and sends
them 100 times to Bob. Will Bob detect this?

c. (Sender Authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth(x) to Bob but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x with
a valid signature auth(x) from Alice (e.g., “Transfer $1000 from Alice to Bob”) but
Alice claims she has never sent it. Can Alice clear this question in either case?

2.6 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary
bit length into an n-bit hash value. Is it true that, for all messages x, x’ with x # x’, we
have H(x) # H(x")? Explain your answer.

2.7 This problem introduces a hash function similar in spirit to SHA that operates on
letters instead of binary data. It is called the toy tetragraph hash (tth).” Given a
message consisting of a sequence of letters, tth produces a hash value consisting
of four letters. First, tth divides the message into blocks of 16 letters, ignoring
spaces, punctuation, and capitalization. If the message length is not divisible by
16, it is padded out with nulls. A four-number running total is maintained that
starts out with the value (0, 0, 0, 0); this is input to a function, known as a com-
pression function, for processing the first block. The compression function consists
of two rounds. Round 1: Get the next block of text and arrange it as a row-wise
4 X 4 block of text and covert it to numbers (A = 0, B = 1, example, for the block
ABCDEFGHIJKLMNOP, we have

7
819 |10)11
12113 14|15

Zl=o]|»>
Z|—=|m|w
oIR|AIO
a2 il Heoll Rw)

Then, add each column mod 26 and add the result to the running total, mod 26.
In this example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from
round 1, rotate the first row left by 1, second row left by 2, third row left by 3, and
reverse the order of the fourth row. In our example,

6
111819 |10
1511413)12

oir|Q|w
o=z
Z|—=|m|o
IR »>

°I thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.

70 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

28

29

Now, add each column mod 26 and add the result to the running total. The new run-

ning total is (5, 7, 9, 11). This running total is now the input into the first round

of the compression function for the next block of text. After the final block is

processed, convert the final running total to letters. For example, if the message is

ABCDEFGHIJKLMNOP, then the hash is FHJL.

a. Draw figures of the overall tth logic and the compression function logic.

b. Calculate the hash function for the 48-letter message “I leave twenty million
dollars to my friendly cousin Bill.”

c¢. To demonstrate the weakness of tth, find a 48-letter block that produces the same
hash as that just derived. Hint: Use lots of A’s.

Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof
was developed whose purpose was to demonstrate that public-key encryption is possible
in theory. Consider the functions fi(x;) = z1; H(x2, y2) = 20; f3(x3, y3) = z3, where all val-
ues are integers with 1 = x;, y;, z; = N. Function f; can be represented by a vector M1
of length N, in which the kth entry is the value of f;(k). Similarly, f, and f5 can be repre-
sented by N X N matrices M2 and M3. The intent is to represent the encryption/decryp-
tion process by table look-ups for tables with very large values of V. Such tables would be
impractically huge but could, in principle, be constructed. The scheme works as follows:
Construct M1 with a random permutation of all integers between 1 and N; that is, each
integer appears exactly once in M1. Construct M2 so that each row contains a random
permutation of the first N integers. Finally, fill in M3 to satisfy the following condition:

f3(f,(f1(k),p).k) = p forallk,pwithl = k,p = N

In words,

1. M1 takes an input k and produces an output x.

2. M2 takes inputs x and p giving output z.

3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-
tion. As an example, fill in M3 for the following simple case:

512|134][1 5
4125113 1
11324 (5| M3=|3
3[114(2 15 4
215|134 |1 2

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j. We can look at
this in another way. The ith row of M1 corresponds to the ith column of M3. The
value of the entry in the ith row selects a row of M2. The entries in the selected
M3 column are derived from the entries in the selected M2 row. The first entry in
the M2 row dictates where the value 1 goes in the M3 column. The second entry in
the M2 row dictates where the value 2 goes in the M3 column, and so on.

b. Describe the use of this set of tables to perform encryption and decryption
between two users.

c. Argue that this is a secure scheme.

Construct a figure similar to Figure 2.9 that includes a digital signature to authenticate
the message in the digital envelope.

USER AUTHENTICATION

3.1 Means of Authentication

3.2 Password-Based Authentication

The Vulnerability of Passwords
The Use of Hashed Passwords
User Password Choices
Password File Access Control
Password Selection Strategies

3.3 Token-Based Authentication

Memory Cards
Smart Cards

3.4 Biometric Authentication

Physical Characteristics Used in Biometric Applications
Operation of a Biometric Authentication System
Biometric Accuracy

3.5 Remote User Authentication

Password Protocol

Token Protocol

Static Biometric Protocol
Dynamic Biometric Protocol

3.6 Security Issues for User Authentication

3.7 Practical Application: An Iris Biometric System
3.8 Case Study: Security Problems for ATM Systems
3.9 Recommended Reading and Web Sites

3.10 Key Terms, Review Questions, and Problems

71

72

CHAPTER 3 / USER AUTHENTICATION

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Discuss the four general means of authenticating a user’s identity.

@ Explain the mechanism by which hashed passwords are used for user
authentication.

@ Understand the use of the Bloom filter in password management.
@ Present an overview of token-based user authentication.
@ Discuss the issues involved and the approaches for remote user authentication.

€ Summarize some of the key security issues for user authentication.

In most computer security contexts, user authentication is the fundamental build-
ing block and the primary line of defense. User authentication is the basis for most
types of access control and for user accountability. RFC 2828 defines user authenti-
cation as follows:

The process of verifying an identity claimed by or for a system entity.
An authentication process consists of two steps:

o Identification step: Presenting an identifier to the security system. (Identifiers
should be assigned carefully, because authenticated identities are the basis for
other security services, such as access control service.)

® Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

For example, user Alice Toklas could have the user identifier ABTOKLAS. This
information needs to be stored on any server or computer system that Alice wishes
to use and could be known to system administrators and other users. A typical item
of authentication information associated with this user ID is a password, which is
kept secret (known only to Alice and to the system)'. If no one is able to obtain or
guess Alice’s password, then the combination of Alice’s user ID and password ena-
bles administrators to set up Alice’s access permissions and audit her activity. Because
Alice’s ID is not secret, system users can send her e-mail, but because her password is
secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed identity
to the system; user authentication is the means of establishing the validity of the claim.
Note that user authentication is distinct from message authentication. As defined in
Chapter 2, message authentication is a procedure that allows communicating parties
to verify that the contents of a received message have not been altered and that the
source is authentic. This chapter is concerned solely with user authentication.

! Typically, the password is stored in hashed form on the server and this hash code may not be secret, as

explained subsequently in this chapter.

3.2 / PASSWORD-BASED AUTHENTICATION 73

This chapter first provides an overview of different means of user authentication
and then examines each in some detail.

3.1 MEANS OF AUTHENTICATION

There are four general means of authenticating a user’s identity, which can be used
alone or in combination:

* Something the individual knows: Examples includes a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

* Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

* Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

¢ Something the individual does (dynamic biometrics): Examples include
recognition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

3.2 PASSWORD-BASED AUTHENTICATION

A widely used line of defense against intruders is the password system. Virtually all
multiuser systems, network-based servers, Web-based e-commerce sites, and other
similar services require that a user provide not only a name or identifier (ID) but
also a password. The system compares the password to a previously stored pass-
word for that user ID, maintained in a system password file. The password serves
to authenticate the ID of the individual logging on to the system. In turn, the ID
provides security in the following ways:

e The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

e The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

74

CHAPTER 3 / USER AUTHENTICATION

e The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

The Vulnerability of Passwords

In this subsection, we outline the main forms of attack against password-based
authentication and briefly outline a countermeasure strategy. The remainder of
Section 3.2 goes into more detail on the key countermeasures.

Typically, a system that uses password-based authentication maintains a password
file indexed by user ID. One technique that is typically used is to store not the user’s
password but a one-way hash function of the password, as described subsequently.

We can identify the following attack strategies and countermeasures:

¢ Offline dictionary attack: Typically, strong access controls are used to pro-
tect the system’s password file. However, experience shows that determined
hackers can frequently bypass such controls and gain access to the file. The
attacker obtains the system password file and compares the password hashes
against hashes of commonly used passwords. If a match is found, the attacker
can gain access by that ID/password combination. Countermeasures include
controls to prevent unauthorized access to the password file, intrusion detec-
tion measures to identify a compromise, and rapid reissuance of passwords
should the password file be compromised.

e Specific account attack: The attacker targets a specific account and submits
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the
account after a number of failed login attempts. Typical practice is no more
than five access attempts.

* Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency
is to choose a password that is easily remembered; this unfortunately makes
the password easy to guess. Countermeasures include policies to inhibit the
selection by users of common passwords and scanning the IP addresses of
authentication requests and client cookies for submission patterns.

* Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that
knowledge to guess the password. Countermeasures include training in and
enforcement of password policies that make passwords difficult to guess.
Such policies address the secrecy, minimum length of the password, character
set, prohibition against using well-known user identifiers, and length of time
before the password must be changed.

* Workstation hijacking; The attacker waits until a logged-in workstation is
unattended. The standard countermeasure is automatically logging the work-
station out after a period of inactivity. Intrusion detection schemes can be
used to detect changes in user behavior.

* Exploiting user mistakes: If the system assigns a password, then the user is
more likely to write it down because it is difficult to remember. This situation

3.2 / PASSWORD-BASED AUTHENTICATION 75

creates the potential for an adversary to read the written password. A user
may intentionally share a password, to enable a colleague to share files, for
example. Also, attackers are frequently successful in obtaining passwords by
using social engineering tactics that trick the user or an account manager into
revealing a password. Many computer systems are shipped with preconfigured
passwords for system administrators. Unless these preconfigured passwords
are changed, they are easily guessed. Countermeasures include user training,
intrusion detection, and simpler passwords combined with another authentica-
tion mechanism.

* Exploiting multiple password use. Attacks can also become much more
effective or damaging if different network devices share the same or a similar
password for a given user. Countermeasures include a policy that forbids the
same or similar password on particular network devices.

¢ Electronic monitoring: If a password is communicated across a network to
log on to a remote system, it is vulnerable to eavesdropping. Simple encryp-
tion will not fix this problem, because the encrypted password is, in effect, the
password and can be observed and reused by an adversary.

The Use of Hashed Passwords

A widely used password security technique is the use of hashed passwords and a salt
value. This scheme is found on virtually all UNIX variants as well as on a number
of other operating systems. The following procedure is employed (Figure 3.1a). To
load a new password into the system, the user selects or is assigned a password. This
password is combined with a fixed-length salt value [MORR?79]. In older implemen-
tations, this value is related to the time at which the password is assigned to the user.
Newer implementations use a pseudorandom or random number. The password
and salt serve as inputs to a hashing algorithm to produce a fixed-length hash code.
The hash algorithm is designed to be slow to execute to thwart attacks. The hashed
password is then stored, together with a plaintext copy of the salt, in the password
file for the corresponding user ID. The hashed-password method has been shown to
be secure against a variety of cryptanalytic attacks [WAGNOO].

When a user attempts to log on to a UNIX system, the user provides an ID
and a password (Figure 3.1b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

The salt serves three purposes:

e It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned different
salt values. Hence, the hashed passwords of the two users will differ.

e It greatly increases the difficulty of offline dictionary attacks. For a salt of
length b bits, the number of possible passwords is increased by a factor of 2b,
increasing the difficulty of guessing a password in a dictionary attack.

e It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

76 CHAPTER 3 / USER AUTHENTICATION

Password
Password File
User Id Salt Hash code

Salt

Slow hash Load
function

(a) Loading a new password

Password File
User Id User Id Salt Hash code

Salt

Password

Select —
J

Slow hash
function

Hashed password

Compare

(b) Verifying a password
Figure 3.1 UNIX Password Scheme

To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that
the salt is not used. The attacker’s goal is to guess a single password. To that end,
the attacker submits a large number of likely passwords to the hashing function.
If any of the guesses matches one of the hashes in the file, then the attacker
has found a password that is in the file. But faced with the UNIX scheme, the
attacker must take each guess and submit it to the hash function once for each
salt value in the dictionary file, multiplying the number of guesses that must be

checked.

3.2 / PASSWORD-BASED AUTHENTICATION 77

There are two threats to the UNIX password scheme. First, a user can gain
access on a machine using a guest account or by some other means and then run a
password guessing program, called a password cracker, on that machine. The attacker
should be able to check many thousands of possible passwords with little resource
consumption. In addition, if an opponent is able to obtain a copy of the password
file, then a cracker program can be run on another machine at leisure. This enables
the opponent to run through millions of possible passwords in a reasonable period.

UNIX ImpLEMENTATIONS Since the original development of UNIX, most imple-
mentations have relied on the following password scheme. Each user selects a password
of up to eight printable characters in length. This is converted into a 56-bit value
(using 7-bit ASCII) that serves as the key input to an encryption routine. The hash
routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The modified
DES algorithm is executed with a data input consisting of a 64-bit block of zeros. The
output of the algorithm then serves as input for a second encryption. This process is
repeated for a total of 25 encryptions. The resulting 64-bit output is then translated
into an 11-character sequence. The modification of the DES algorithm converts it
into a one-way hash function. The crypt(3) routine is designed to discourage guessing
attacks. Software implementations of DES are slow compared to hardware versions,
and the use of 25 iterations multiplies the time required by 25.

This particular implementation is now considered woefully inadequate. For
example, [PERRO3] reports the results of a dictionary attack using a supercomputer.
The attack was able to process over 50 million password guesses in about 80 minutes.
Further, the results showed that for about $10,000 anyone should be able to do the
same in a few months using one uniprocessor machine. Despite its known weaknesses,
this UNIX scheme is still often required for compatibility with existing account man-
agement software or in multivendor environments.

There are other, much stronger, hash/salt schemes available for UNIX. The
recommended hash function for many UNIX systems, including Linux, Solaris,
and FreeBSD (a widely used open source UNIX), is based on the MDS5 secure
hash algorithm (which is similar to, but not as secure as SHA-1). The MD5 crypt
routine uses a salt of up to 48 bits and effectively has no limitations on password
length. It produces a 128-bit hash value. It is also far slower than crypt(3). To
achieve the slowdown, MDS5 crypt uses an inner loop with 1000 iterations.

Probably the most secure version of the UNIX hash/salt scheme was developed
for OpenBSD, another widely used open source UNIX. This scheme, reported in
[PROV99], uses a hash function based on the Blowfish symmetric block cipher. The
hash function, called Berypt, is quite slow to execute. Berypt allows passwords of
up to 55 characters in length and requires a random salt value of 128 bits, to pro-
duce a 192-bit hash value. Berypt also includes a cost variable; an increase in the cost
variable causes a corresponding increase in the time required to perform a Beyrpt
hash. The cost assigned to a new password is configurable, so that administrators can
assign a higher cost to privileged users.

PAssworD CRACKING ArPrOACHES The traditional approach to password guessing,
or password cracking as it is called, is to develop a large dictionary of possible
passwords and to try each of these against the password file. This means that

78

CHAPTER 3 / USER AUTHENTICATION

each password must be hashed using each salt value in the password file and then
compared to stored hash values. If no match is found, then the cracking program
tries variations on all the words in its dictionary of likely passwords. Such variations
include backward spelling of words, additional numbers or special characters, or
sequence of characters,

An alternative is to trade off space for time by precomputing potential hash
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with
each possible salt value. The result is a mammoth table of hash values known as a
rainbow table. For example, [OECHO03] showed that using 1.4 GB of data, he could
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This
approach can be countered by using a sufficiently large salt value and a sufficiently
large hash length. Both the FreeBSD and OpenBSD approaches should be secure
from this attack for the foreseeable future.

User Password Choices

Even the stupendous guessing rates referenced in the preceding section do not
yet make it feasible for an attacker to use a dumb brute-force technique of trying
all possible combinations of characters to discover a password. Instead, password
crackers rely on the fact that some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is absurdly
short. The results of one study at Purdue University are shown in Table 3.1. The study
observed password change choices on 54 machines, representing approximately 7000
user accounts. Almost 3% of the passwords were three characters or fewer in length.
An attacker could begin the attack by exhaustively testing all possible passwords of
length 3 or fewer. A simple remedy is for the system to reject any password choice of
fewer than, say, six characters or even to require that all passwords be exactly eight
characters in length. Most users would not complain about such a restriction.

Password length is only part of the problem. Many people, when permitted
to choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the job
of password cracking straightforward. The cracker simply has to test the password

Table 3.1 Observed Password Lengths [SPAF92a]

Length Number Fraction of Total
1 55 .004
2 87 .006
3 212 .02
4 449 .03
5 1260 .09
6 3035 22
7 2917 21
8 5772 42
Total 13787 1.0

79

file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly character-
izes as frightening, is shown in Table 3.2. In all, nearly one-fourth of the passwords
were guessed. The following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

Percentage of
Number of Passwords Cost/Benefit
Type of Password Search Size Matches Matched Ratio®
User/account name 130 368 2.7% 2.830
Character sequences 866 22 0.2% 0.025
Numbers 427 9 0.1% 0.021
Chinese 392 56 0.4% 0.143
Place names 628 82 0.6% 0.131
Common names 2239 548 4.0% 0.245
Female names 4280 161 1.2% 0.038
Male names 2866 140 1.0% 0.049
Uncommon names 4955 130 0.9% 0.026
Myths and legends 1246 66 0.5% 0.053
Shakespearean 473 11 0.1% 0.023
Sports terms 238 32 0.2% 0.134
Science fiction 691 59 0.4% 0.085
Movies and actors 99 12 0.1% 0.121
Cartoons 92 9 0.1% 0.098
Famous people 290 55 0.4% 0.190
Phrases and patterns 933 253 1.8% 0271
Surnames 33 9 0.1% 0.273
Biology 58 1 0.0% 0.017
System dictionary 19683 1027 7.4% 0.052
Machine names 9018 132 1.0% 0.015
Mnemonics 14 2 0.0% 0.143
King James bible 7525 83 0.6% 0.011
Miscellaneous words 3212 54 0.4% 0.017
Yiddish words 56 0 0.0% 0.000
Asteroids 2407 19 0.1% 0.007
TOTAL 62727 3340 24.2% 0.053

4Computed as the number of matches divided by the search size. The more words that need to be tested for a
match, the lower the cost/benefit ratio.

80

CHAPTER 3 / USER AUTHENTICATION

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word upper-
case, reversing the word, changing the letter “o” to the digit “zero,” and so on.
These permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest
Thinking Machines implementation listed earlier, the time to encrypt all these words
for all possible salt values is under an hour. Keep in mind that such a thorough search
could produce a success rate of about 25%, whereas even a single hit may be enough
to gain a wide range of privileges on a system.

Password File Access Control

One way to thwart a password attack is to deny the opponent access to the password
file. If the hashed password portion of the file is accessible only by a privileged user,
then the opponent cannot read it without already knowing the password of a privi-
leged user. Often, the hashed passwords are kept in a separate file from the user
IDs, referred to as a shadow password file. Special attention is paid to making the
shadow password file protected from unauthorized access. Although password file
protection is certainly worthwhile, there remain vulnerabilities:

* Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. A hacker may be able to exploit a software vulnerability in the
operating system to bypass the access control system long enough to extract
the password file. Alternatively, the hacker may find a weakness in the file
system or database management system that allows access to the file.

* An accident of protection might render the password file readable, thus com-
promising all the accounts.

e Some of the users have accounts on other machines in other protection
domains, and they use the same password. Thus, if the passwords could
be read by anyone on one machine, a machine in another location might be
compromised.

e A lack of or weakness in physical security may provide opportunities for a
hacker. Sometimes there is a backup to the password file on an emergency
repair disk or archival disk. Access to this backup enables the attacker to read
the password file. Alternatively, a user may boot from a disk running another
operating system such as Linux and access the file from this OS.

¢ Instead of capturing the system password file, another approach to collecting
user IDs and passwords is through sniffing network traffic.

Thus, a password protection policy must complement access control measures with
techniques to force users to select passwords that are difficult to guess.

3.2 / PASSWORD-BASED AUTHENTICATION 81

Password Selection Strategies

The lesson from the two experiments just described (Tables 3.1 and 3.2) is that,
when not constrained, many users choose a password that is too short or too easy
to guess. At the other extreme, if users are assigned passwords consisting of eight
randomly selected printable characters, password cracking is effectively impos-
sible. But it would be almost as impossible for most users to remember their
passwords. Fortunately, even if we limit the password universe to strings of char-
acters that are reasonably memorable, the size of the universe is still too large to
permit practical cracking. Our goal, then, is to eliminate guessable passwords while
allowing the user to select a password that is memorable. Four basic techniques
are in use:

¢ User education

* Computer-generated passwords
¢ Reactive password checking

¢ Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strat-
egy is unlikely to succeed at most installations, particularly where there is a large
user population or a lot of turnover. Many users will simply ignore the guidelines.
Others may not be good judges of what is a strong password. For example, many
users (mistakenly) believe that reversing a word or capitalizing the last letter makes
a password unguessable.

Nonetheless, it makes sense to provide users with guidelines on the selection
of passwords. Perhaps the best approach is the following advice: A good technique
for choosing a password is to use the first letter of each word of a phrase. However,
don’t pick a well-known phrase like “An apple a day keeps the doctor away”
(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR)
or “My sister Peg is 24 years old” (MsPi24yo). Studies have shown that users can
generally remember such passwords but that they are not susceptible to password
guessing attacks based on commonly used passwords.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to
write it down. In general, computer-generated password schemes have a history of
poor acceptance by users. FIPS PUB 181 defines one of the best-designed automated
password generators. The standard includes not only a description of the approach
but also a complete listing of the C source code of the algorithm. The algorithm
generates words by forming pronounceable syllables and concatenating them to
form a word. A random number generator produces a random stream of characters
used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodi-
cally runs its own password cracker to find guessable passwords. The system can-
cels any passwords that are guessed and notifies the user. This tactic has a number
of drawbacks. First, it is resource intensive if the job is done right. Because a

82

CHAPTER 3 / USER AUTHENTICATION

determined opponent who is able to steal a password file can devote full CPU
time to the task for hours or even days, an effective reactive password checker is
at a distinct disadvantage. Furthermore, any existing passwords remain vulnerable
until the reactive password checker finds them. A good example is the openware
Jack the Ripper password cracker (openwall.com/john/pro/), which works on a
variety of operating systems.

A promising approach to improved password security is a proactive password
checker. In this scheme, a user is allowed to select his or her own password. How-
ever, at the time of selection, the system checks to see if the password is allowable
and, if not, rejects it. Such checkers are based on the philosophy that, with suffi-
cient guidance from the system, users can select memorable passwords from a fairly
large password space that are not likely to be guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between
user acceptability and strength. If the system rejects too many passwords, users will
complain that it is too hard to select a password. If the system uses some simple
algorithm to define what is acceptable, this provides guidance to password crackers
to refine their guessing technique. In the remainder of this subsection, we look at
possible approaches to proactive password checking.

RurLe EnrorcemenT The first approach is a simple system for rule enforcement.
For example, the following rules could be enforced:

e All passwords must be at least eight characters long.

e In the first eight characters, the passwords must include at least one each of
uppercase, lowercase, numeric digits, and punctuation marks.

These rules could be coupled with advice to the user. Although this approach is
superior to simply educating users, it may not be sufficient to thwart password
crackers. This scheme alerts crackers as to which passwords not to try but may still
make it possible to do password cracking.

The process of rule enforcement can be automated by using a proactive pass-
word checker, such as the openware pam_passwdqc (openwall.com/passwdqc/),
which enforces a variety of rules on passwords and is configurable by the system
administrator.

Passworp CrackEr Another possible procedure is simply to compile a large
dictionary of possible “bad” passwords. When a user selects a password, the system
checks to make sure that it is not on the disapproved list. There are two problems
with this approach:

e Space: The dictionary must be very large to be effective. For example, the dic-
tionary used in the Purdue study [SPAF92a] occupies more than 30 megabytes
of storage.

e Time: The time required to search a large dictionary may itself be large. In
addition, to check for likely permutations of dictionary words, either those
words must be included in the dictionary, making it truly huge, or each search
must also involve considerable processing.

3.2 / PASSWORD-BASED AUTHENTICATION 83

Broom Firrer A technique [SPAF92a, SPAF92b] for developing an effective
and efficient proactive password checker that is based on rejecting words on a list
has been implemented on a number of systems, including Linux. It is based on the
use of a Bloom filter [BLOO70]. To begin, we explain the operation of the Bloom
filter. A Bloom filter of order k consists of a set of k independent hash functions
Hi(x), Hy(x), . .., H(x), where each function maps a password into a hash value in
the range 0 to N — 1. That is,

H(X;) =y l=i=k; 1=j=D; 0=y=N-1
where

X; = jth word in password dictionary

D = number of words in password dictionary
The following procedure is then applied to the dictionary:

1. A hash table of N bits is defined, with all bits initially set to 0.

2. For each password, its k hash values are calculated, and the corresponding bits in
the hash table are set to 1. Thus, if H; (X;) = 67 for some (i,), then the sixty-seventh
bit of the hash table is set to 1;if the bit already has the value 1, it remains at 1.

When a new password is presented to the checker, its k hash values are
calculated. If all the corresponding bits of the hash table are equal to 1, then the
password is rejected. All passwords in the dictionary will be rejected. But there will
also be some “false positives” (that is, passwords that are not in the dictionary but
that produce a match in the hash table). To see this, consider a scheme with two
hash functions. Suppose that the passwords undertaker and hulkhogan are in the
dictionary, but xG %#jj98 is not. Further suppose that

Hi(undertaker) = 25 H; (hulkhogan) = 83 Hy (xG%#jj98) = 665

H,(undertaker) = 998 H, (hulkhogan) = 665 H, (xG%#jj98) = 998

If the password xG %#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash

scheme to minimize false positives. It can be shown that the probability of a false
positive can be approximated by

k
P ~ (1 _ ekD/N) _ (1 _ ek/R>k
or, equivalently,
—k
R~ 17k
In(1-p™)

where

k = number of hash functions

N = number of bits in hash table

D = number of words in dictionary

R = N/D, ratio of hash table size (bits) to dictionary size (words)

84 CHAPTER 3 / USER AUTHENTICATION

1
0.1 =
- 2 hash functions
Z I
&
2
£ 001 < —
& E / 4 hash functions
: 6 hash functions
0.001 |~
L | | |
0 5 10 15 20

Ratio of hash table size (bits) to dictionary size (words)

Figure 3.2 Performance of Bloom Filter

Figure 3.2 plots P as a function of R for various values of k. Suppose we have
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a
password not in the dictionary. If we choose six hash functions, the required ratio
is R = 9.6. Therefore, we need a hash table of 9.6 X 10° bits or about 1.2 MBytes
of storage. In contrast, storage of the entire dictionary would require on the order
of 8 MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore,
password checking involves the straightforward calculation of six hash functions
and is independent of the size of the dictionary, whereas with the use of the full
dictionary, there is substantial searching.’

3.3 TOKEN-BASED AUTHENTICATION

Objects that a user possesses for the purpose of user authentication are called
tokens. In this section, we examine two types of tokens that are widely used; these
are cards that have the appearance and size of bank cards (see Table 3.3).

>The Bloom filter involves the use of probabilistic techniques. There is a small probability that some
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of
probabilistic techniques results in a less time-consuming or less complex solution, or both.

3.3 / TOKEN-BASED AUTHENTICATION 85

Table 3.3 Types of Cards Used as Tokens

Card Type Defining Feature Example
Embossed Raised characters only, on front Old credit card
Magnetic stripe Magnetic bar on back, characters on front Bank card
Memory Electronic memory inside Prepaid phone card
Smart Electronic memory and processor inside Biometric ID card
Contact Electrical contacts exposed on surface
Contactless Radio antenna embedded inside

Memory Cards

Memory cards can store but not process data. The most common such card is the
bank card with a magnetic stripe on the back. A magnetic stripe can store only a
simple security code, which can be read (and unfortunately reprogrammed) by
an inexpensive card reader. There are also memory cards that include an internal
electronic memory.

Memory cards can be used alone for physical access, such as a hotel room. For
computer user authentication, such cards are typically used with some form of pass-
word or personal identification number (PIN). A typical application is an automatic
teller machine (ATM).

The memory card, when combined with a PIN or password, provides signi-
ficantly greater security than a password alone. An adversary must gain physical
possession of the card (or be able to duplicate it) plus must gain knowledge of the
PIN. Among the potential drawbacks are the following [NIST95]:

* Requires special reader: This increases the cost of using the token and creates
the requirement to maintain the security of the reader’s hardware and software.

* Token loss: A lost token temporarily prevents its owner from gaining system
access. Thus there is an administrative cost in replacing the lost token. In addi-
tion, if the token is found, stolen, or forged, then an adversary now need only
determine the PIN to gain unauthorized access.

e User dissatisfaction: Although users may have no difficulty in accepting the
use of a memory card for ATM access, its use for computer access may be
deemed inconvenient.

Smart Cards

A wide variety of devices qualify as smart tokens. These can be categorized along
three dimensions that are not mutually exclusive:

¢ Physical characteristics: Smart tokens include an embedded microprocessor.
A smart token that looks like a bank card is called a smart card. Other smart
tokens can look like calculators, keys, or other small portable objects.

¢ Interface: Manual interfaces include a keypad and display for human/token
interaction. Smart tokens with an electronic interface communicate with a
compatible reader/writer.

86 CHAPTER 3 / USER AUTHENTICATION

* Authentication protocol: The purpose of a smart token is to provide a means
for user authentication. We can classify the authentication protocols used with
smart tokens into three categories:

— Static: With a static protocol, the user authenticates himself or herself

to the token and then the token authenticates the user to the computer.
The latter half of this protocol is similar to the operation of a memory
token.

Dynamic password generator: In this case, the token generates a unique
password periodically (e.g., every minute). This password is then entered
into the computer system for authentication, either manually by the user or
electronically via the token. The token and the computer system must be
initialized and kept synchronized so that the computer knows the password
that is current for this token.

Challenge-response: In this case, the computer system generates a chal-
lenge, such as a random string of numbers. The smart token generates a
response based on the challenge. For example, public-key cryptography
could be used and the token could encrypt the challenge string with the
token’s private key.

For user authentication to computer, the most important category of smart
token is the smart card, which has the appearance of a credit card, has an electronic
interface, and may use any of the type of protocols just described. The remainder of
this section discusses smart cards.

A smart card contains within it an entire microprocessor, including processor,
memory, and I/O ports (Figure 3.3). Some versions incorporate a special co-processing
circuit for cryptographic operation to speed the task of encoding and decoding mes-

85.6 mm
4 N
-7 - 54 mm
- 7
- /
— /
//
R| |[EEPROM ,/
A ’
M \/// J
CPU ’
/
Crypto //
coprocessor 7
Typical chip layout

Figure 3.3 Smart Card Dimensions

The smart card chip is embedded into

the plastic card and is not visible. The dimensions conform to ISO standard

7816-2.

3.3 / TOKEN-BASED AUTHENTICATION 87

sages or generating digital signatures to validate the information transferred. In some
cards, the I/O ports are directly accessible by a compatible reader by means of exposed
electrical contacts. Other cards rely instead on an embedded antenna for wireless
communication with the reader.

A typical smart card includes three types of memory. Read-only mem-
ory (ROM) stores data that does not change during the card’s life, such as the
card number and the cardholder’s name. Electrically erasable programmable
ROM (EEPROM) holds application data and programs, such as the protocols
that the card can execute. It also holds data that may vary with time. For exam-
ple, in a telephone card, the EEPROM holds the talk time remaining. Random
access memory (RAM) holds temporary data generated when applications are
executed.

Figure 3.4 illustrates the typical interaction between a smart card and a
reader or computer system. Each time the card is inserted into a reader, a reset is
initiated by the reader to initialize parameters such as clock value. After the reset
function is performed, the card responds with answer to reset (ATR) message.
This message defines the parameters and protocols that the card can use and the
functions it can perform. The terminal may be able to change the protocol used

e
-

Smart card Card reader

Smart Card Activation

ATR

Protocol negotiation PTS

Negotiation Answer PTS

Command APDU
< Response APDU

End of Session

APDU = Application protocol data unit
ATR = Answer to reset
PTS = Protocol type selection

Figure 3.4 Smart Card/Reader Exchange

88 CHAPTER 3 / USER AUTHENTICATION

and other parameters via a protocol type selection (PTS) command. The cards
PTS response confirms the protocols and parameters to be used. The terminal
and card can now execute the protocol to perform the desired application.

3.4 BIOMETRIC AUTHENTICATION

A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;
and dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric
authentication is both technically complex and expensive. While it is used in a
number of specific applications, biometrics has yet to mature as a standard tool for
user authentication to computer systems.

Physical Characteristics Used in Biometric Applications

A number of different types of physical characteristics are either in use or under
study for user authentication. The most common are the following:

Facial characteristics: Facial characteristics are the most common means
of human-to-human identification; thus it is natural to consider them for
identification by computer. The most common approach is to define charac-
teristics based on relative location and shape of key facial features, such as
eyes, eyebrows, nose, lips, and chin shape. An alternative approach is to use an
infrared camera to produce a face thermogram that correlates with the under-
lying vascular system in the human face.

Fingerprints: Fingerprints have been used as a means of identification for
centuries, and the process has been systematized and automated particu-
larly for law enforcement purposes. A fingerprint is the pattern of ridges and
furrows on the surface of the fingertip. Fingerprints are believed to be unique
across the entire human population. In practice, automated fingerprint recog-
nition and matching system extract a number of features from the fingerprint
for storage as a numerical surrogate for the full fingerprint pattern.

Hand geometry: Hand geometry systems identify features of the hand,
including shape, and lengths and widths of fingers.

Retinal pattern: The pattern formed by veins beneath the retinal surface is
unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity
beam of visual or infrared light into the eye.

Iris: Another unique physical characteristic is the detailed structure of the iris.

Signature: Each individual has a unique style of handwriting and this is
reflected especially in the signature, which is typically a frequently written
sequence. However, multiple signature samples from a single individual will

3.4 / BIOMETRIC AUTHENTICATION 89

not be identical. This complicates the task of developing a computer represen-
tation of the signature that can be matched to future samples.

* Voice: Whereas the signature style of an individual reflects not only the unique
physical attributes of the writer but also the writing habit that has developed,
voice patterns are more closely tied to the physical and anatomical characteristics
of the speaker. Nevertheless, there is still a variation from sample to sample over
time from the same speaker, complicating the biometric recognition task.

Figure 3.5 gives a rough indication of the relative cost and accuracy of these
biometric measures. The concept of accuracy does not apply to user authentication
schemes using smart cards or passwords. For example, if a user enters a password,
it either matches exactly the password expected for that user or not. In the case of
biometric parameters, the system instead must determine how closely a presented
biometric characteristic matches a stored characteristic. Before elaborating on the
concept of biometric accuracy, we need to have a general idea of how biometric
systems work.

Operation of a Biometric Authentication System

Figure 3.6 illustrates the operation of a biometric system. Each individual who is to be
included in the database of authorized users must first be enrolled in the system. This
is analogous to assigning a password to a user. For a biometric system, the user pres-
ents a name and, typically, some type of password or PIN to the system. At the same
time the system senses some biometric characteristic of this user (e.g., fingerprint of
right index finger). The system digitizes the input and then extracts a set of features
that can be stored as a number or set of numbers representing this unique biometric
characteristic; this set of numbers is referred to as the user’s template. The user is now
enrolled in the system, which maintains for the user a name (ID), perhaps a PIN or
password, and the biometric value.

Depending on application, user authentication on a biometric system involves
either verification or identification. Verification is analogous to a user logging on

Iris
Hand
' Retina
z | Signature
@)
Face Finger
Voice
Accuracy

Figure 3.5 Cost versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes

90 CHAPTER 3 / USER AUTHENTICATION

Name (PIN)
Biometric Feature
sensor extractor
User interface
(a) Enrollment
Name (PIN)
Biometric Feature |]
sensor extractor
User interface true/false < | Feature
matcher One template
(b) Verification
Name (PIN)
Biometric Feature
sensor extractor
User interface User’s identity or Feature
“user unidentified” matcher N templates

(c) Identification

Figure 3.6 A Generic Biometric System Enrollment creates an associa-
tion between a user and the user’s biometric characteristics. Depending on the
application, user authentication either involves verifying that a claimed user
is the actual user or identifying an unknown user.

to a system by using a memory card or smart card coupled with a password or PIN.
For biometric verification, the user enters a PIN and also uses a biometric sensor.
The system extracts the corresponding feature and compares that to the template
stored for this user. If there is a match, then the system authenticates this user.

For an identification system, the individual uses the biometric sensor but
presents no additional information. The system then compares the presented
template with the set of stored templates. If there is a match, then this user is
identified. Otherwise, the user is rejected.

Biometric Accuracy

In any biometric scheme, some physical characteristic of the individual is mapped into a
digital representation. For each individual, a single digital representation, or template, is

3.4 / BIOMETRIC AUTHENTICATION 91

stored in the computer. When the user is to be authenticated, the system compares the
stored template to the presented template. Given the complexities of physical charac-
teristics, we cannot expect that there will be an exact match between the two templates.
Rather, the system uses an algorithm to generate a matching score (typically a single
number) that quantifies the similarity between the input and the stored template.

Figure 3.7 illustrates the dilemma posed to the system. If a single user is tested
by the system numerous times, the matching score s will vary, with a probability
density function typically forming a bell curve, as shown. For example, in the case of
a fingerprint, results may vary due to sensor noise; changes in the print due to swell-
ing, dryness, and so on; finger placement; and so on. On average, any other individual
should have a much lower matching score but again will exhibit a bell-shaped prob-
ability density function. The difficulty is that the range of matching scores produced
by two individuals, one genuine and one an imposter, compared to a given reference
template, are likely to overlap. In Figure 3.7 a threshold value is selected thus that
if the presented value s = t a match is assumed, and for s < ¢, a mismatch is assumed. The
shaded part to the right of ¢ indicates a range of values for which a false match is
possible, and the shaded part to the left indicates a range of values for which a false
nonmatch is possible. The area of each shaded part represents the probability of a
false match or nonmatch, respectively. By moving the threshold, left or right, the
probabilities can be altered, but note that a decrease in false match rate necessarily
results in an increase in false nonmatch rate, and vice versa.

For a given biometric scheme, we can plot the false match versus false nonmatch
rate, called the operating characteristic curve. Figure 3.8 shows representative curves

Probability
density function
Decision
Imposter threshold (#) Profile of
profile genuine user

N /

False
nonmatch False
possible match
possible

Average matching ~ Average matching Matching score (s)
value of imposter value of genuine user

Figure 3.7 Profiles of a Biometric Characteristic of an Imposter and an
Authorized User In this depiction, the comparison between the presented
feature and a reference feature is reduced to a single numeric value. If the
input value (s) is greater than a preassigned threshold (7), a match is declared.

92 CHAPTER 3 / USER. AUTHENTICATION

High-security
applications
Q
g
<=
Q
b=t
=)
g
= Equal error
2 rates
5 System A
Civillian Forensic
applications applications

False match rate

Figure 3.8 Idealized Biometric Measurement Operating Character-
istic Curves Different biometric application types make different
trade offs between the false match rate and the false nonmatch rate.
Note that system A is consistently inferior to system B in accuracy

performance.
Source: [JAINOO]

for two different systems. A reasonable tradeoff is to pick a threshold ¢ that corre-
sponds to a point on the curve where the rates are equal. A high-security application
may require a very low false match rate, resulting in a point farther to the left on the
curve. For a forensic application, in which the system is looking for possible candi-
dates, to be checked further, the requirement may be for a low false nonmatch rate.
Figure 3.9 shows characteristic curves developed from actual product testing. The
iris system had no false matches in over 2 million cross-comparisons. Note that over
a broad range of false match rates, the face biometric is the worst performer.

® Face o Fingerprint ®Voice < Hand @ Iris

100%
. \
g 10% I~
= \
2
<
g
f=}
o
= E
3
E 1% \Q—
0.1%
0.0001% 0.001% 0.01% 0.1% 1% 10% 100%

False match rate

Figure 3.9 Actual Biometric Measurement Operating Characteris-
tic Curves, Reported in [MANSO1] To clarify differences among
systems, a log-log scale is used.

3.5 / REMOTE USER AUTHENTICATION 93

3.5 REMOTE USER AUTHENTICATION

The simplest form of user authentication is local authentication, in which a user
attempts to access a system that is locally present, such as a stand-alone office PC or
an ATM machine. The more complex case is that of remote user authentication,
which takes place over the Internet, a network, or a communications link. Remote
user authentication raises additional security threats, such as an eavesdropper being
able to capture a password, or an adversary replaying an authentication sequence
that has been observed.

To counter threats to remote user authentication, systems generally rely on some
form of challenge-response protocol. In this section, we present the basic elements of
such protocols for each of the types of authenticators discussed in this chapter.

Password Protocol

Figure 3.10a provides a simple example of a challenge-response protocol for
authentication via password. Actual protocols are more complex, such as Kerberos,
discussed in Chapter 23. In this example, a user first transmits his or her identity to
the remote host. The host generates a random number r, often called a nonce, and
returns this nonce to the user. In addition, the host specifies two functions, h() and
f(), to be used in the response. This transmission from host to user is the challenge.
The user’s response is the quantity f(#’', h(P')), where ' = r and P’ is the user’s
password. The function h is a hash function, so that the response consists of the

Client Transmission Host Client Transmission Host
U, user U— U, user U—
«— {r, h0), f random number «— {r,h0), f r, random number
{r, h0), O} h(), f(), functions {r, 80, 10} h(), f(), functions
P oW
P’ password s 5 assword to ,)
, £(r', h(P")— P : f(r’, h(W") —
r’, return of r ey passcode via token ™ bW
r’, return of r
if f(r’, h(P’) = if f(r’, h\(W’) =
«— yes/no £(r, h(P(U))) < yes/no £(r, A(W(U)))

then yes else no then yes else no

—

a) Protocol for a password (b) Protocol for a token

then yes else no

Client Transmission Host Client Transmission Host
U, user U— U, user U—
r, random number
~ {r,EO} r, random number — {r,x, EO} x, random sequence
E(), function challenge
E(), function
B’— BT’ biometric _ Lo § . o E 'E(r’, BS'(x")) =
D’ biometric device | E(, D", BT") —| E EC",P’, BT) = B\ x'=BS'0) | B, BS'(x) - (r(’, BS‘(;‘))))
r’, return of r (r’, P’, BT") 7o T @ 7 extract B’ from BS’(x")
if r’=rand D’ =D if r=randx’ =x
< yes/no and BT" = BT(U) < yes/no and B’ = B(U)

then yes else no

(c) Protocol for static biometric

Figure 3.10

(d) Protocol for dynamic biometric

Basic Challenge-Response Protocols for Remote User Authentication
Source: Based on [OGORO3].

94

CHAPTER 3 / USER AUTHENTICATION

hash function of the user’s password combined with the random number using the
function f.

The host stores the hash function of each registered user’s password, depicted
as h(P(U)) for user U. When the response arrives, the host compares the incom-
ing f(r', h(P")) to the calculated f(r, h(P(U))). If the quantities match, the user is
authenticated.

This scheme defends against several forms of attack. The host stores not the
password but a hash code of the password. As discussed in Section 3.2, this secures
the password from intruders into the host system. In addition, not even the hash of
the password is transmitted directly, but rather a function in which the password hash
is one of the arguments. Thus, for a suitable function f, the password hash cannot be
captured during transmission. Finally, the use of a random number as one of the argu-
ments of f defends against a replay attack, in which an adversary captures the user’s
transmission and attempts to log on to a system by retransmitting the user’s messages.

Token Protocol

Figure 3.10b provides a simple example of a token protocol for authentication.
As before, a user first transmits his or her identity to the remote host. The host
returns a random number and the identifiers of functions f() and h() to be used in the
response. At the user end, the token provides a passcode W’. The token either stores
a static passcode or generates a one-time random passcode. For a one-time random
passcode, the token must be synchronized in some fashion with the host. In either
case, the user activates the passcode by entering a password P’. This password is
shared only between the user and the token and does not involve the remote host.
The token responds to the host with the quantity f(#', h(W")). For a static passcode,
the host stores the hashed value h(W(U)); for a dynamic passcode, the host gener-
ates a one-time passcode (synchronized to that generated by the token) and takes its
hash. Authentication then proceeds in the same fashion as for the password protocol.

Static Biometric Protocol

Figure 3.10c is an example of a user authentication protocol using a static biomet-
ric. As before, the user transmits an ID to the host, which responds with a random
number r and, in this case, the identifier for an encryption E(). On the user side is
a client system that controls a biometric device. The system generates a biomet-
ric template BT’ from the user’s biometric B’ and returns the ciphertext E(+/, D’,
BT'), where D' identifies this particular biometric device. The host decrypts the
incoming message to recover the three transmitted parameters and compares these
to locally stored values. For a match, the host must find ' = r. Also, the matching
score between BT’ and the stored template must exceed a predefined threshold.
Finally, the host provides a simple authentication of the biometric capture device by
comparing the incoming device ID to a list of registered devices at the host database.

Dynamic Biometric Protocol

Figure 3.10d is an example of a user authentication protocol using a dynamic
biometric. The principal difference from the case of a stable biometric is that the

3.6 / SECURITY ISSUES FOR USER AUTHENTICATION 95

host provides a random sequence as well as a random number as a challenge. The
sequence challenge is a sequence of numbers, characters, or words. The human
user at the client end must then vocalize (speaker verification), type (keyboard
dynamics verification), or write (handwriting verification) the sequence to gener-
ate a biometric signal BS’(x’). The client side encrypts the biometric signal and
the random number. At the host side, the incoming message is decrypted. The
incoming random number " must be an exact match to the random number that
was originally used as a challenge (7). In addition, the host generates a comparison
based on the incoming biometric signal BS’(x’), the stored template BT(U) for
this user and the original signal x. If the comparison value exceeds a predefined
threshold, the user is authenticated.

3.6 SECURITY ISSUES FOR USER AUTHENTICATION

As with any security service, user authentication, particularly remote user authen-
tication, is subject to a variety of attacks. Table 3.4, from [OGORO03], summarizes
the principal attacks on user authentication, broken down by type of authenticator.
Much of the table is self-explanatory. In this section, we expand on some of the
table’s entries.

Client attacks are those in which an adversary attempts to achieve user
authentication without access to the remote host or to the intervening communica-
tions path. The adversary attempts to masquerade as a legitimate user. For a pass-
word-based system, the adversary may attempt to guess the likely user password.
Multiple guesses may be made. At the extreme, the adversary sequences through
all possible passwords in an exhaustive attempt to succeed. One way to thwart such
an attack is to select a password that is both lengthy and unpredictable. In effect,
such a password has large entropy; that is, many bits are required to represent the
password. Another countermeasure is to limit the number of attempts that can be
made in a given time period from a given source.

A token can generate a high-entropy passcode from a low-entropy PIN or
password, thwarting exhaustive searches. The adversary may be able to guess or
acquire the PIN or password but must additionally acquire the physical token to
succeed.

Host attacks are directed at the user file at the host where passwords, token
passcodes, or biometric templates are stored. Section 3.2 discusses the security
considerations with respect to passwords. For tokens, there is the additional
defense of using one-time passcodes, so that passcodes are not stored in a host
passcode file. Biometric features of a user are difficult to secure because they are
physical features of the user. For a static feature, biometric device authentica-
tion adds a measure of protection. For a dynamic feature, a challenge-response
protocol enhances security.

Eavesdropping in the context of passwords refers to an adversary’s attempt
to learn the password by observing the user, finding a written copy of the password,
or some similar attack that involves the physical proximity of user and adver-
sary. Another form of eavesdropping is keystroke logging (keylogging), in which

96 CHAPTER 3 / USER AUTHENTICATION

Table 3.4 Some Potential Attacks, Susceptible Authenticators, and Typical Defenses

Attacks Authenticators Examples Typical Defenses
Password Guessing, exhaustive Large entropy; limited attempts
search
Token Exhaustive search Large entropy; limited attempts,
Client attack theft of object requires
presence
Biometric False match ILERER T e
attempts
Password Plaintext theft, Hashing; large entropy;
dictionary/exhaustive protection of password
search database
Host attack Token Passcode theft Same as password; 1-time
passcode
Biometric Template theft Capture device authentication;
challenge response
Password “Shoulder surfing” User diligence to keep secret;
administrator diligence to quickly
revoke compromised passwords;
. multifactor authentication
Eavesdropping,
theft. and Token Theft, counterfeiting Multifactor authentication; tamper
’ . hardware resistant/evident token
copying
Biometric Copying (spoofing) Copy detection at capture
biometric device and capture device
authentication
Password Replay stolen password Challenge-response protocol
response
Token Replay stolen passcode Challenge-response protocol;
response 1-time passcode
Replay
Biometric Replay stolen biometric Copy detection at capture
template response device and capture device
authentication via challenge-
response protocol
Trojan horse Password, token, Installation of rogue Authentication of client or
biometric client or capture device capture device within trusted
security perimeter
Denial Password, token, Lockout by multiple Multifactor with token
of service biometric failed authentications

malicious hardware or software is installed so that the attacker can capture the
user’s keystrokes for later analysis. A system that relies on multiple factors (e.g.,
password plus token or password plus biometric) is resistant to this type of attack.
For a token, an analogous threat is theft of the token or physical copying of the
token. Again, a multifactor protocol resists this type of attack better than a pure
token protocol. The analogous threat for a biometric protocol is copying or imitating

3.7 / PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM 97

the biometric parameter so as to generate the desired template. Dynamic biometrics
are less susceptible to such attacks. For static biometrics, device authentication is a
useful countermeasure.

Replay attacks involve an adversary repeating a previously captured
user response. The most common countermeasure to such attacks is the challenge-
response protocol.

In a Trojan horse attack, an application or physical device masquerades as
an authentic application or device for the purpose of capturing a user password,
passcode, or biometric. The adversary can then use the captured information to
masquerade as a legitimate user. A simple example of this is a rogue bank machine
used to capture user ID/password combinations.

A denial-of-service attack attempts to disable a user authentication service by
flooding the service with numerous authentication attempts. A more selective attack
denies service to a specific user by attempting logon until the threshold is reached
that causes lockout to this user because of too many logon attempts. A multifac-
tor authentication protocol that includes a token thwarts this attack, because the
adversary must first acquire the token.

PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM

As an example of a biometric user authentication system, we look at an iris biometric
system that was developed for use in the banking industry [NEGIO0] for authentica-
tion of debit card users. Figure 3.11 shows a generic version of this system, which
is now in use commercially in a number of locations worldwide. There is consider-
able interest commercially in the use of an iris biometric system for this application
because of its exceptional accuracy (see Figure 3.9) and because the biometric itself
can be acquired without the individual having to come into physical contact with the
biometric acquisition device [COVEOQ3].

The system described in this section is designed to operate with automated
teller machines (ATMs) in public places as well as with personal use devices that
can be installed at home. For ATMs, a wide-angle camera finds the head of the
person to be identified. A zoom lens then targets in on the user’s iris and takes a
digital photo. A template of concentric lines is laid on the iris image and a number
of specific points are recorded and the information converted into a digital code.
For personal-use systems, a low-cost camera device involves more cooperative
action on the part of the user to focus and capture the biometric.

A customer must initially enroll through a public-use ATM device owned
by the bank. The biometric is converted into a numeric iris code. This code and
the customer identification number (CIN) are encrypted and transmitted over
the bank’s intranet to a verification server. The verification server then performs
the user authentication function. A user may employ a personal-use device to access
the system via the Internet. The image information plus the CIN are transmitted
securely over the Internet to the bank’s Web server. From there, the data are trans-
mitted over the bank’s intranet to the verification server. In this case, the verification
server does the conversion of iris image to iris code.

98 CHAPTER 3 / USER AUTHENTICATION

The existing information technology (IT) structure

Customer access bank provides capability for remote transactions. It
accounts at home via the Internet allows access either by PIN or iris biometric
Customer domain: personal use device (for higher valued transactions).

Existing IT infrastructure

Customer's PC/laptop
e e | = =
Secure- Home wall server| [server
@I screens Access Image
(HTML) + CIN
A —_—
20 Kbytes (maximum) Iris image

compressed iris image file

Status

Link decryption
Image reconstruction

Bank branch office:
public-use device

Iris encoding
Matching

Customers
enroll at Enroll or Status

2 bank verify station
branch Enroll —
office using application/ Enrollment or
a public GUI verification
device. Iris code + CIN
Customers Link The verification server receives an iris code
access encryption or an iris image that is converted to an iris

account via
an ATM.

code. The system matches the iris code and
CIN to a database and returns status, allowing
or denying access to user's account.

Figure 3.11 Multichannel System Architecture Used to Link Public- and Personal-Use Iris Iden-
tification Devices via the Internet The system uses each customer’s PIN (personal identification
number), iris code, and CIN (customer identification number) to validate transactions.

Source: [INEGI00]

Initial field trials of the system showed very high acceptance rate of customers
preferring this method to other user authentication techniques, such as PIN codes.
The specific results reported in [NEGI00] are as follows:

* 91% prefer iris identification to PIN or signature.
* 94% would recommend iris identification to friends and family.
* 94% were comfortable or very comfortable with the system.

These results are very encouraging, because of the inherent advantage of
iris biometric systems over passwords, PINs, and tokens. Unlike other biometric
parameters, iris biometric systems, properly implemented, have virtually zero false
match rate. And whereas passwords can be guessed, and passwords, PINs, and
tokens can be stolen, this is not the case with a user’s iris pattern. Combined with
a challenge-response protocol to assure real-time acquisition of the iris pattern, iris
biometric authentication is highly attractive.

3.8 / CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS 99

The field trials referenced earlier were conducted in 1998 with the Nationwide
Building Society in Swindon, England. The bank subsequently put the system into
full-time operation. Following this, a number of other banks throughout the world
adopted this iris biometric system.

An instructive epilogue to this case study is the fate of the Nationwide Building
Society system. The system was in use at its Swindon headquarters branch for 5 years,
until 2003, and the bank planned to deploy the system nationwide in all its branches.
It was anticipated that the cost of the system would drop to competitive levels, but this
did not happen. Nationwide found that the iris recognition system made up 25% of the
cost of individual ATM units. Thus, in 2003, Nationwide cancelled the system, although
it continues to pursue biometric alternatives. The lesson here is that the technology
industry needs to be careful it does not damage the future of genuinely useful technolo-
gies like biometrics by pushing for its use where there isn’t a rock-solid business case.

CASE STUDY: SECURITY PROBLEMS

FOR ATM SYSTEMS

Redspin, Inc., an independent auditor, recently released a report describing a
security vulnerability in ATM (automated teller machine) usage that affects a
number of small to mid-size ATM card issuers. This vulnerability provides a useful
case study illustrating that cryptographic functions and services alone do not
guarantee security; they must be properly implemented as part of a system.

We begin by defining terms used in this section:

* Cardholder: An individual to whom a debit card is issued. Typically, this
individual is also responsible for payment of all charges made to that card.

e Issuer: An institution that issues debit cards to cardholders. This institution
is responsible for the cardholder’s account and authorizes all transactions.
Banks and credit unions are typical issuers.

* Processor: An organization that provides services such as core data processing
(PIN recognition and account updating), electronic funds transfer (EFT), and so
on to issuers. EFT allows an issuer to access regional and national networks that
connect point of sale (POS) devices and ATMs worldwide. Examples of process-
ing companies include Fidelity National Financial and Jack Henry & Associates.

Customers expect 24/7 service at ATM stations. For many small to mid-sized
issuers, it is more cost-effective for contract processors to provide the required data
processing and EFT/ATM services. Each service typically requires a dedicated data
connection between the issuer and the processor, using a leased line or a virtual
leased line.

Prior to about 2003, the typical configuration involving issuer, processor,
and ATM machines could be characterized by Figure 3.12a. The ATM units linked
directly to the processor rather than to the issuer that owned the ATM, via leased
or virtual leased line. The use of a dedicated link made it difficult to maliciously
intercept transferred data. To add to the security, the PIN portion of messages
transmitted from ATM to processor was encrypted using DES (Data Encryption

100

CHAPTER 3 / USER AUTHENTICATION

Standard). Processors have connections to EFT (electronic funds transfer) exchange
networks to allow cardholders access to accounts from any ATM. With the configu-
ration of Figure 3.12a, a transaction proceeds as follows. A user swipes her card and
enters her PIN. The ATM encrypts the PIN and transmits it to the processor as part
of an authorization request. The processor updates the customer’s information and
sends a reply.

In the early 2000s, banks worldwide began the process of migrating from
an older generation of ATMs using IBM’s OS/2 operating system to new systems
running Windows. The mass migration to Windows has been spurred by a number
of factors, including IBM’s decision to stop supporting OS/2 by 2006, market
pressure from creditors such as MasterCard International and Visa International to
introduce stronger Triple DES, and pressure from U.S. regulators to introduce new
features for disabled users. Many banks, such as those audited by Redspin, included
a number of other enhancements at the same time as the introduction of Windows
and triple DES, especially the use of TCP/IP as a network transport.

Because issuers typically run their own Internet-connected local area networks
(LANSs) and intranets using TCP/IP, it was attractive to connect ATMs to these
issuer networks and maintain only a single dedicated line to the processor, leading
to the configuration illustrated in Figure 3.12b. This configuration saves the issuer

X Issuer \

(e.g., bank)

Processor
(e.g., Fidelity)

Issuer-owned ATM

EFT exchange
e.g., Star, VISA

(a) Point-to-point connection to processor

Issuer
(e.g., bank)

EFT exchange
e.g., Star, VISA

~ Issuer's
internal network

=

S|
'._;l Proct_:sso_r
=y (e.g., Fidelity)

Issuer-owned ATM
(b) Shared connection to processor

Figure 3.12 ATM Architectures Most small to mid-sized issuers of debit cards con-
tract processors to provide core data processing and electronic funds transfer (EFT)
services. The bank’s ATM machine may link directly to the processor or to the bank.

3.9 / RECOMMENDED READING AND WEB SITES 101

expensive monthly circuit fees and enables easier management of ATMs by the
issuer. In this configuration, the information sent from the ATM to the processor
traverses the issuer’s network before being sent to the processor. It is during this
time on the issuer’s network that the customer information is vulnerable.

The security problem was that with the upgrade to a new ATM OS and a
new communications configuration, the only security enhancement was the use of
triple DES rather than DES to encrypt the PIN. The rest of the information in the
ATM request message is sent in the clear. This includes the card number, expiration
date, account balances, and withdrawal amounts. A hacker tapping into the bank’s
network, either from an internal location or from across the Internet potentially
would have complete access to every single ATM transaction.

The situation just described leads to two principal vulnerabilities:

¢ Confidentiality: The card number, expiration date, and account balance can
be used for online purchases or to create a duplicate card for signature-based
transactions.

¢ Integrity: There is no protection to prevent an attacker from injecting or
altering data in transit. If an adversary is able to capture messages en route,
the adversary can masquerade as either the processor or the ATM. Acting
as the processor, the adversary may be able to direct the ATM to dispense
money without the processor ever knowing that a transaction has occurred.
If an adversary captures a user’s account information and encrypted PIN,
the account is compromised until the ATM encryption key is changed,
enabling the adversary to modify account balances or effect transfers.

Redspin recommended a number of measures that banks can take to counter
these threats. Short-term fixes include segmenting ATM traffic from the rest of the
network either by implementing strict firewall rule sets or physically dividing the
networks altogether. An additional short-term fix is to implement network-level
encryption between routers that the ATM traffic traverses.

Long-term fixes involve changes in the application-level software. Protecting
confidentiality requires encrypting all customer-related information that traverses
the network. Ensuring data integrity requires better machine-to-machine authenti-
cation between the ATM and processor and the use of challenge-response protocols
to counter replay attacks.

3.9 RECOMMENDED READING AND WEB SITES

[OGORO3] is the paper to read for an authoritative survey of the topics of this chapter.
[BURRO4] is also a worthwhile survey. [SCAR09] is a comprehensive look at many issues
related to password selection and management.

[YANO4] provides an instructive analysis of password selection strategies. [ALEX04]
is a useful introduction to password protection strategies in operating systems.

[SHELO2] discusses types of smart cards as well as current and emerging applica-
tions. [DHEMO1] examines security features of smart cards in some detail. [FERR98] is a
book-length, thorough treatment of smart cards.

[TAINOO] is an excellent survey article on biometric identification. [LIUO1] is a useful
short introduction to biometrics. The following papers explore some of the technical and

102 CHAPTER 3 / USER AUTHENTICATION

security challenges in using biometrics: [CALA99], [PRABO03], and [CHANOS]. [GARRO06]
summarizes the state of the art in fingerprint evaluation. [DAUGO06] discusses the robustness
of iris-based biometric technology for large-scale deployments.

ALEX04 Alexander, S. “Password Protection for Modern Operating Systems.”;
login, June 2004.

BURRO04 Burr, W.; Dodson, D.; and Polk, W. Electronic Authentication Guideline.
Gaithersburg, MD: National Institute of Standards and Technology, Spe-
cial Publication 800-63, September 2004.

CALA99 Calabrese, C. “The Trouble with Biometrics.” ;login, August 1999.

CHANOS Chandra, A., and Calderon, T. “Challenges and Constraints to the
Diffusion of Biometrics in Information Systems.” Communications of the
ACM, December 2005.

DAUGO06 Daugman, J. “Probing the Uniqueness and Randomness of IrisCodes:
Results From 200 Billion Iris Pair Comparisons.” Proceedings of the
IEEE, November 2006.

DHEMO1 Dhem, J., and Feyt, N. “Hardware and Software Symbiosis Help Smart
Cart Evolution.” IEEE Micro, November/December 2001.

FERRY98 Ferrari, J., and Poh, S. Smart Cards: A Case Study. IBM Redbook
SG24-5239-00. http://www. redbooks. ibm. com, October 1998.

GARRO06 Garris, M.; Tabassi, E.; and Wilson, C. “NIST Fingerprint Evaluations and
Developments.” Proceedings of the IEEE, November 2006.

JAINOO Jain, A.; Hong, L.; and Pankanti, S. “Biometric Identification.” Communi-
cations of the ACM, February 2000.

LIUO1 Liu, S., and Silverman, M. “A Practical Guide to Biometric Security Tech-
nology.” IT Pro, January/February 2001,

OGORO03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User
Authentication.” Proceedings of the IEEE, December 2003.

PRABO03 Prabhakar, S.; Pankanti, S.; and Jain, A. “Biometric Recognition: Security
and Privacy Concerns.” [EEE Security and Privacy, March/April 2003.

SCAR09 Scarfone, K., and Souppaya, M. Guide to Enterprise Password Management
(Draft). NIST Special Publication SP 800-118 (Draft), April 2009.

SHELO02 Shelfer, K., and Procaccion, J. “Smart Card Evolution.” Communications
of the ACM, July 2002.

YANO4 Yan, J. et al. “Password Memorability and Security: Empirical Results.”
IEEE Security and Privacy, September/October 2004.

Recommended Web sites:

e Password usage and generation: NIST documents on this topic

¢ Biometrics Consortium: Government-sponsored site for the research, testing, and evaluation of
biometric technology

http://www.redbooks.ibm.com

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 103

3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
biometric identification static biometric
challenge-response protocol memory card token
dynamic biometric password user authentication
enroll salt verification
hashed password smart card

Review Questions

[T RIS SR

@
=N

In general terms, what are four means of authenticating a user’s identity?

List and briefly describe the principal threats to the secrecy of passwords.

What are two common techniques used to protect a password file?

List and briefly describe four common techniques for selecting or assigning passwords.
Explain the difference between a simple memory card and a smart card.

List and briefly describe the principal physical characteristics used for biometric
identification.

In the context of biometric user authentication, explain the terms, enrollment, verifi-
cation, and identification.

Define the terms false match rate and false nonmatch rate, and explain the use of a
threshold in relationship to these two rates.

Describe the general concept of a challenge-response protocol.

Problems

3.1

3.2

3.3

34

Explain the suitability or unsuitability of the following passwords:

a. YK 334 b. mfmitm (for “my favorite c. Nataliel d. Washington
movie is tender mercies)

e. Aristotle f. tv9stove g. 12345678 h. dribgib

An early attempt to force users to use less predictable passwords involved computer-

supplied passwords. The passwords were eight characters long and were taken from

the character set consisting of lowercase letters and digits. They were generated by a

pseudorandom number generator with 23 possible starting values. Using the technol-

ogy of the time, the time required to search through all character strings of length 8

from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflec-

tion of the actual security of the system. Explain the problem.

Assume that passwords are selected from four-character combinations of 26 alpha-

betic characters. Assume that an adversary is able to attempt passwords at a rate of

one per second.

a. Assuming no feedback to the adversary until each attempt has been completed,
what is the expected time to discover the correct password?

b. Assuming feedback to the adversary flagging an error as each incorrect character
is entered, what is the expected time to discover the correct password?

Assume that source elements of length k£ are mapped in some uniform fashion into a

target elements of length p. If each digit can take on one of r values, then the number

104

CHAPTER 3 / USER AUTHENTICATION

of source elements is 7* and the number of target elements is the smaller number r?.

A particular source element x; is mapped to a particular target element y;.

a. What is the probability that the correct source element can be selected by an
adversary on one try?

b. What is the probability that a different source element x; (x; # x;) that results in
the same target element, yj, could be produced by an adversary?

c. What is the probability that the correct target element can be produced by an
adversary on one try?

A phonetic password generator picks two segments randomly for each six-letter
password. The form of each segment is CVC (consonant, vowel, consonant), where
V=<a,e,j,obu>andC=V.

a. What is the total password population?

b. What is the probability of an adversary guessing a password correctly?

Assume that passwords are limited to the use of the 95 printable ASCII characters
and that all passwords are 10 characters in length. Assume a password cracker with
an encryption rate of 6.4 million encryptions per second. How long will it take to test
exhaustively all possible passwords on a UNIX system?

Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier /D 4, the user’s public key, PU,, and the corresponding private key PR,,.
This private key is encrypted using DES with a key derived from the user’s login
password P,. When A logs in, the system decrypts E(P,, PR,) to obtain PR,,.

a. The system then verifies that P, was correctly supplied. How?

b. How can an opponent attack this system?

It was stated that the inclusion of the salt in the UNIX password scheme increases the dif-
ficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same entry
as the corresponding ciphertext password. Therefore, those two characters are known to
the attacker and need not be guessed. Why is it asserted that the salt increases security?
Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

Consider the Bloom filter discussed in Section 3.3. Define k = number of hash func-
tions; N = number of bits in hash table; and D = number of words in dictionary.

a. Show that the expected number of bits in the hash table that are equal to zero is

expressed as
k D
= 1——
o=(1-3)

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P= (1-0)"

c. Show that the preceding expression can be approximated as
k
P~ (1—e*om)

For the biometric authentication protocols illustrated in Figure 3.10, note that the
biometric capture device is authenticated in the case of a static biometric but not
authenticated for a dynamic biometric. Explain why authentication is useful in the
case of a stable biometric but not needed in the case of a dynamic biometric.

CHAPTER

ACCESS CONTROL

4.1 Access Control Principles

Access Control Policies
Access Control Requirements

4.2 Subjects, Objects, and Access Rights
4.3 Discretionary Access Control

An Access Control Model
Protection Domains

4.4 Example: Unix File Access Control

Traditional UNIX File Access Control
Access Control Lists in UNIX

4.5 Role-Based Access Control

RBAC Reference Models
The NIST RBAC Model

4.6 Case Study: RBAC System for a Bank
4.7 Recommended Reading and Web Site

4.8 Key Terms, Review Questions, and Problems

105

106 CHAPTER 4 / ACCESS CONTROL

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Explain how access control fits into the broader context that includes
authentication, authorization, and audit.

@ Define the three major categories of access control policies.

@ Distinguish among subjects, objects, and access rights.

@ UNIX file access control model.

@ Discuss the principal concepts of role-based access control.

4 Summarize the NIST RBAC model.

ITU-T Recommendation X.800 defines access control as follows:

Access Control: The prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner

We can view access control as the central element of computer security. The
principal objectives of computer security are to prevent unauthorized users from
gaining access to resources, to prevent legitimate users from accessing resources in
an unauthorized manner, and to enable legitimate users to access resources in an
authorized manner.

This chapter focuses on access control enforcement within a computer system.
The chapter considers the situation of a population of users and user groups that are
able to authenticated to a system and are then assigned access rights to certain resources
on the system. A more general problem is a network or Internet-based environment, in
which there are a number of client systems, a number of server systems, and a number
of users who may access servers via one or more of the client systems. This more general
context introduces new security issues and results in more complex solutions than those
addressed in this chapter. We cover these topics in Chapter 23.

4.1 ACCESS CONTROL PRINCIPLES

In a broad sense, all of computer security is concerned with access control. Indeed,
RFC 2828 defines computer security as follows: Measures that implement and assure
security services in a computer system, particularly those that assure access control
service. This chapter deals with a narrower, more specific concept of access control:
Access control implements a security policy that specifies who or what (e.g., in the
case of a process) may have access to each specific system resource and the type of
access that is permitted in each instance.

Figure 4.1 shows a broader context of access control. In addition to access
control, this context involves the following entities and functions:

* Authentication: Verification that the credentials of a user or other system
entity are valid.

4.1 / ACCESS CONTROL PRINCIPLES 107

Security administrator

Authentication Access control
! 1 = |=
1 1 = ==
= —— =
! 1 —— —
1 1 =
—_—]
! 1 ——
Access
Authentication 1 1 =
—_—] control B E— E—
function [.
| function |
1 1
| 1
I 1
User 1 1
' 1 System resources
=~ -
=~ -
=~ -
~ ~ -
S o _ -
~ ~ - -
~ - -
~ ~ - -
~ ~ - -

Figure 4.1 Relationship among Access Control and Other Security Functions
Source: Based on [SANDY4].

* Authorization: The granting of a right or permission to a system entity to
access a system resource. This function determines who is trusted for a given
purpose.

¢ Audit: Anindependentreview and examination of system records and activities
in order to test for adequacy of system controls, to ensure compliance with
established policy and operational procedures, to detect breaches in security,
and to recommend any indicated changes in control, policy and procedures.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate an entity
seeking access. Typically, the authentication function determines whether the user
is permitted to access the system at all. Then the access control function determines
if the specific requested access by this user is permitted. A security administrator
maintains an authorization database that specifies what type of access to which
resources is allowed for this user. The access control function consults this database
to determine whether to grant access. An auditing function monitors and keeps a
record of user accesses to system resources.

108

CHAPTER 4 / ACCESS CONTROL

In the simple model of Figure 4.1, the access control function is shown as
a single logical module. In practice, a number of components may cooperatively
share the access control function. All operating systems have at least a rudimen-
tary, and in many cases a quite robust, access control component. Add-on security
packages can supplement the native access control capabilities of the OS. Particular
applications or utilities, such as a database management system, also incorporate
access control functions. External devices, such as firewalls, can also provide access
control services.

Access Control Policies

An access control policy, which can be embodied in an authorization database,
dictates what types of access are permitted, under what circumstances, and by
whom. Access control policies are generally grouped into the following categories:

* Discretionary access control (DAC): Controls access based on the identity
of the requestor and on access rules (authorizations) stating what requestors
are (or are not) allowed to do. This policy is termed discretionary because an
entity might have access rights that permit the entity, by its own volition, to
enable another entity to access some resource.

° Mandatory access control (MAC): Controls access based on comparing
security labels (which indicate how sensitive or critical system resources are)
with security clearances (which indicate system entities are eligible to access
certain resources). This policy is termed mandatory because an entity that has
clearance to access a resource may not, just by its own volition, enable another
entity to access that resource.

* Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

DAC is the traditional method of implementing access control, and is exam-
ined in Section 4.3. MAC is a concept that evolved out of requirements for military
information security and is best covered in the context of trusted systems, which we
deal with in Chapter 13. RBAC has become increasingly popular and is covered in
Section 4.5.

These three policies are not mutually exclusive (Figure 4.2). An access control
mechanism can employ two or even all three of these policies to cover different
classes of system resources.

Access Control Requirements

[VIMEO6] lists the following concepts and features that should be supported by an
access control system.

* Reliable input: The old maxim garbage-in-garbage-out applies with spe-
cial force to access control. An access control system assumes that a user is
authentic; thus, an authentication mechanism is needed as a front end to an
access control system. Other inputs to the access control system must also
be reliable. For example, some access control restrictions may depend on an

4.1 / ACCESS CONTROL PRINCIPLES 109

Discretionary
access control
policy

Mandatory
access control
policy

Role-based
access control
policy

Figure 4.2 Multiple Access Control Policies
DAC, MAC, and RBAC are not mutually exclu-
sive. A system may implement two or even three
of these policies for some or all types of access.
Source: [SANDY4]

address, such as a source IP address or medium access control address. The
overall system must have a means of determining the validity of the source for
such restrictions to operate effectively.

Support for fine and coarse specifications: The access control system should
support fine-grained specifications, allowing access to be regulated at the level of
individual records in files, and individual fields within records. The system should
also support fine-grained specification in the sense of controlling each individual
access by a user rather than a sequence of access requests. System administra-
tors should also be able to choose coarse-grained specification for some classes of
resource access, to reduce administrative and system processing burden.

Least privilege: This is the principle that access control should be implemented
so that each system entity is granted the minimum system resources and authori-
zations that the entity needs to do its work. This principle tends to limit damage
that can be caused by an accident, error, or fraudulent or unauthorized act.

Separation of duty: This is the practice of dividing the steps in a system function
among different individuals, so as to keep a single individual from subverting the
process. This is primarily a policy issue; separation of duty requires the appropri-
ate power and flexibility in the access control system, including least privilege and
fine-grained access control. Another useful tool is history-based authorization,
which makes access dependent on previously executed accesses.

Open and closed policies: The most useful, and most typical, class of access
control policies are closed policies. In a closed policy, only accesses that
are specifically authorized are allowed. In some applications, it may also be
desirable to allow an open policy for some classes of resources. In an open

110

CHAPTER 4 / ACCESS CONTROL

policy, authorizations specify which accesses are prohibited; all other accesses
are allowed.

* Policy combinations and conflict resolution: An access control mechanism
may apply multiple policies to a given class of resources. In this case, care must
be taken that there are no conflicts such that one policy enables a particular
access while another policy denies it. Or, if such a conflict exists, a procedure
must be defined for conflict resolution.

° Administrative policies: As was mentioned, there is a security administration
function for specifying the authorization database that acts as an input to the
access control function. Administrative policies are needed to specify who can
add, delete, or modify authorization rules. In turn, access control and other
control mechanisms are needed to enforce the administrative policies.

° Dual control: When a task requires two or more individuals working in tandem.

4.2 SUBJECTS, OBJECTS,AND ACCESS RIGHTS

The basic elements of access control are: subject, object, and access right.

A subject is an entity capable of accessing objects. Generally, the concept of
subject equates with that of process. Any user or application actually gains access to
an object by means of a process that represents that user or application. The process
takes on the attributes of the user, such as access rights.

A subject is typically held accountable for the actions they have initiated,
and an audit trail may be used to record the association of a subject with security-
relevant actions performed on an object by the subject.

Basic access control systems typically define three classes of subject, with
different access rights for each class:

e Owner: This may be the creator of a resource, such as a file. For system resources,
ownership may belong to a system administrator. For project resources, a project
administrator or leader may be assigned ownership.

¢ Group: In addition to the privileges assigned to an owner, a named group of
users may also be granted access rights, such that membership in the group is
sufficient to exercise these access rights. In most schemes, a user may belong
to multiple groups.

* World: The least amount of access is granted to users who are able to access the
system but are not included in the categories owner and group for this resource.

An object is a resource to which access is controlled. In general, an object
is an entity used to contain and/or receive information. Examples include records,
blocks, pages, segments, files, portions of files, directories, directory trees, mail-
boxes, messages, and programs. Some access control systems also encompass, bits,
bytes, words, processors, communication ports, clocks, and network nodes.

The number and types of objects to be protected by an access control system
depends on the environment in which access control operates and the desired trad-
eoff between security on the one hand and complexity, processing burden, and ease
of use on the other hand.

4.3 / DISCRETIONARY ACCESS CONTROL 111

An access right describes the way in which a subject may access an object.
Access rights could include the following:

* Read: User may view information in a system resource (e.g., a file, selected
records in a file, selected fields within a record, or some combination). Read
access includes the ability to copy or print.

* Write: User may add, modify, or delete data in system resource (e.g., files,
records, programs). Write access includes read access.

* Execute: User may execute specified programs.
¢ Delete: User may delete certain system resources, such as files or records.
¢ Create: User may create new files, records, or fields.

e Search: Usermaylist the filesin a directory or otherwise search the directory.

4.3 DISCRETIONARY ACCESS CONTROL

As was previously stated, a discretionary access control scheme is one in which an
entity may be granted access rights that permit the entity, by its own volition, to
enable another entity to access some resource. A general approach to DAC, as
exercised by an operating system or a database management system, is that of an
access matrix. The access matrix concept was formulated by Lampson [LAMP69,
LAMP71], and subsequently refined by Graham and Denning [GRAH72, DENN71]
and by Harrison et al. [HARR?76].

One dimension of the matrix consists of identified subjects that may attempt
data access to the resources. Typically, this list will consist of individual users or
user groups, although access could be controlled for terminals, network equipment,
hosts, or applications instead of or in addition to users. The other dimension lists
the objects that may be accessed. At the greatest level of detail, objects may be
individual data fields. More aggregate groupings, such as records, files, or even the
entire database, may also be objects in the matrix. Each entry in the matrix indicates
the access rights of a particular subject for a particular object.

Figure 4.3a, based on a figure in [SANDY4], is a simple example of an access
matrix. Thus, user A owns files 1 and 3 and has read and write access rights to those
files. User B has read access rights to file 1, and so on.

In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (ACLs); see Figure 4.3b. For each object, an ACL lists users and
their permitted access rights. The ACL may contain a default, or public, entry. This
allows users that are not explicitly listed as having special rights to have a default
set of rights. The default set of rights should always follow the rule of least privi-
lege or read-only access, whichever is applicable. Elements of the list may include
individual users as well as groups of users.

When it is desired to determine which subjects have which access rights to a par-
ticular resource, ACLs are convenient, because each ACL provides the information
for a given resource. However, this data structure is not convenient for determining
the access rights available to a specific user.

112 CHAPTER 4 / ACCESS CONTROL

OBJECTS
File 1 File 2 File 3 File 4
Own Own
User A Read Read
Write Write
Own
SUBJECTS User B Read Read Write Read
Write
Own
User C \I;Vi?ti Read Read
Write
(a) Access matrix
Filel —>| A — B C User A —>|File 1| —>File 2
Own Own Own Own
R R R R R
w w w w
File2 —>| B — C User B —>|File 1| —-File2| —>{File3 File 4
Own Own
R R R R w R
W w
File3 —>| A — B User C —>|File 1| —>|File2| —-|File4
Own R Own
R w W R R
W w
File4 —>| B —[C (c) Capability lists for files of part (a)
Own
R R
w

(b) Access control lists for files of part (a)

Figure 4.3 Example of Access Control Structures

Decomposition by rows yields capability tickets (Figure 4.3c). A capability
ticket specifies authorized objects and operations for a particular user. Each user
has a number of tickets and may be authorized to loan or give them to others.
Because tickets may be dispersed around the system, they present a greater secu-
rity problem than access control lists. The integrity of the ticket must be protected,
and guaranteed (usually by the operating system). In particular, the ticket must
be unforgeable. One way to accomplish this is to have the operating system hold
all tickets on behalf of users. These tickets would have to be held in a region of
memory inaccessible to users. Another alternative is to include an unforgeable
token in the capability. This could be a large random password, or a cryptographic

4.3 / DISCRETIONARY ACCESS CONTROL 113

message authentication code. This value is verified by the relevant resource when-
ever access is requested. This form of capability ticket is appropriate for use in a
distributed environment, when the security of its contents cannot be guaranteed.

The convenient and inconvenient aspects of capability tickets are the opposite
of those for ACLs. It is easy to determine the set of access rights that a given user
has, but more difficult to determine the list of users with specific access rights for a
specific resource.

[SANDY4] proposes a data structure that is not sparse, like the access matrix,
but is more convenient than either ACLs or capability lists (Table 4.1). An autho-
rization table contains one row for one access right of one subject to one resource.
Sorting or accessing the table by subject is equivalent to a capability list. Sorting or
accessing the table by object is equivalent to an ACL. A relational database can
easily implement an authorization table of this type.

An Access Control Model

This section introduces a general model for DAC developed by Lampson, Graham,
and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of subjects,
a set of objects, and a set of rules that govern the access of subjects to objects. Let us
define the protection state of a system to be the set of information, at a given point in
time, that specifies the access rights for each subject with respect to each object. We can

Table 4.1 Authorization Table for Files in Figure 4.3

Subject Access Mode Object
A Own File 1
A Read File 1
A Write File 1
A Own File 3
A Read File 3
A Write File 3
B Read File 1
B Own File 2
B Read File 2
B Write File 2
B Write File 3
B Read File 4
© Read File 1
@© Write File 1
C Read File 2
C Own File 4
© Read File 4
@© Write File 4

114 CHAPTER 4 / ACCESS CONTROL

OBJECTS
Subjects Files Processes Disk drives
Sy S, S5 F F, P, P, D, D,
S, control owner owner reads 2 wakeup wakeup seek owner
. control owner
F
Q
E S, control writes execute owner seeko
/m
o)
%)
Ss control write stop

% = copy flag set
Figure 4.4 Extended Access Control Matrix

identify three requirements: representing the protection state, enforcing access rights,
and allowing subjects to alter the protection state in certain ways. The model addresses
all three requirements, giving a general, logical description of a DAC system.

To represent the protection state, we extend the universe of objects in the
access control matrix to include the following:

° Processes: Access rights include the ability to delete a process, stop (block),
and wake up a process.

* Devices: Access rights include the ability to read/write the device, to control
its operation (e.g., a disk seek), and to block/unblock the device for use.

° Memory locations or regions: Access rights include the ability to read/write
certain regions of memory that are protected such that the default is to disallow
access.

* Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
subsequently.

Figure 4.4 is an example. For an access control matrix A, each entry A[S, X]
contains strings, called access attributes, that specify the access rights of subject S to
object X. For example, in Figure 4.4, S; may read file F}, because ‘read’ appears in
A[Sy, Fi].

From a logical or functional point of view, a separate access control module is
associated with each type of object (Figure 4.5). The module evaluates each request
by a subject to access an object to determine if the access right exists. An access
attempt triggers the following steps:

1. A subject Sy issues a request of type o for object X.

2. The request causes the system (the operating system or an access control inter-
face module of some sort) to generate a message of the form (S, o, X) to the
controller for X.

4.3 / DISCRETIONARY ACCESS CONTROL 115

3. The controller interrogates the access matrix A to determine if o is in A[Sg, X].
If so, the access is allowed; if not, the access is denied and a protection viola-
tion occurs. The violation should trigger a warning and appropriate action.

Figure 4.5 suggests that every access by a subject to an object is mediated
by the controller for that object, and that the controller’s decision is based on the
current contents of the matrix. In addition, certain subjects have the authority to
make specific changes to the access matrix. A request to modify the access matrix is
treated as an access to the matrix, with the individual entries in the matrix treated as
objects. Such accesses are mediated by an access matrix controller, which controls
updates to the matrix.

The model also includes a set of rules that govern modifications to the access
matrix, shown in Table 4.2. For this purpose, we introduce the access rights ‘owner’
and ‘control’ and the concept of a copy flag, explained in the subsequent paragraphs.

Subjects

1
|<—— System intervention —————>}

Access control mechanisms Objects

read F
S;

wakeup P
S

granta to S,, X
Sk
delete b from S, Y
S}ﬂ

(S;,read, F) File

Files
system

Memory
addressing
hardware

Segments
& pages

(S;, wakeup, P) Process

Processes
manager

Terminal
& device
manager |J |

Terminal
& devices

Instruction
decoding
hardware |J—

(Sk’ grant, a, Sn’ X)

(S,,, delete, b, S, Y) Access

D

matrix
monitor |

. Acce§s
write | matrix | read

Figure 4.5 An Organization of the Access Control Function

116

CHAPTER 4 / ACCESS CONTROL

Table 4.2 Access Control System Commands
Rule Command (by Sy) Authorization Operation
. ¢ ks s *
RI transfer {Dﬁ} to S, X @ Al S, 2] store {a } in A[S, X]
a a
% G 2 %
R2 grant {a } to S, X owner” in A[So, X] store {a } in A[S, X]
a a
‘control’ in A[Sy, S]
R3 delete o from S, X or delete o from A[S, X]
‘owner’ in A[Sy, X]
‘control’ in A[Sy, S]
R4 w <read S, X or copy A[S, X] into w
‘owner’ in A[Sy, X]
R5 create object X None add column for X to A; store
‘owner’ in A[Sy, X]
R6 destroy object X ‘owner’ in A[Sy, X] delete column for X from A
R7 create subject S none add row for S to A; execute
create object S; store
‘control’ in A[S, S]
R8 destroy subject S ‘owner’ in A[Sy, S] delete row for S from A;
execute destroy object S

The first three rules deal with transferring, granting, and deleting access rights.
Suppose that the entry o.” exists in A[So, X]. This means that S has access right o to
subject X and, because of the presence of the copy flag, can transfer this right, with
or without copy flag, to another subject. Rule R1 expresses this capability. A subject
would transfer the access right without the copy flag if there were a concern that
the new subject would maliciously transfer the right to another subject that should
not have that access right. For example, S; may place ‘read’ or ‘read” in any matrix
entry in the F; column. Rule R2 states that if S is designated as the owner of object
X, then S can grant an access right to that object for any other subject. Rule 2 states
that Sj can add any access right to A[S, X] for any S, if S, has ‘owner’ access to X.
Rule R3 permits S, to delete any access right from any matrix entry in a row for
which Sj controls the subject and for any matrix entry in a column for which S, owns
the object. Rule R4 permits a subject to read that portion of the matrix that it owns
or controls.

The remaining rules in Table 4.2 govern the creation and deletion of sub-
jects and objects. Rule RS states that any subject can create a new object, which it
owns, and can then grant and delete access to the object. Under rule R6, the owner
of an object can destroy the object, resulting in the deletion of the corresponding
column of the access matrix. Rule R7 enables any subject to create a new subject;
the creator owns the new subject and the new subject has control access to itself.

4.3 / DISCRETIONARY ACCESS CONTROL 117

Rule R8 permits the owner of a subject to delete the row and column (if there are
subject columns) of the access matrix designated by that subject.

The set of rules in Table 4.2 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative
rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could limited to one by
not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have ‘owner’ access
right to that subject can be used to define a hierarchy of subjects. For example, in
Figure 4.4, S; owns S, and S3, so that S, and S5 are subordinate to S;. By the rules
of Table 4.2, S; can grant and delete to S, access rights that S| already has. Thus,
a subject can create another subject with a subset of its own access rights. This
might be useful, for example, if a subject is invoking an application that is not fully
trusted and does not want that application to be able to transfer access rights to
other subjects.

Protection Domains

The access control matrix model that we have discussed so far associates a set of
capabilities with a user. A more general and more flexible approach, proposed
in [LAMP71], is to associate capabilities with protection domains. A protection
domain is a set of objects together with access rights to those objects. In terms
of the access matrix, a row defines a protection domain. So far, we have equated
each row with a specific user. So, in this limited model, each user has a protection
domain, and any processes spawned by the user have access rights defined by the
same protection domain.

A more general concept of protection domain provides more flexibility. For
example, a user can spawn processes with a subset of the access rights of the user,
defined as a new protection domain. This limits the capability of the process.
Such a scheme could be used by a server process to spawn processes for different
classes of users. Also, a user could define a protection domain for a program that
is not fully trusted, so that its access is limited to a safe subset of the user’s access
rights.

The association between a process and a domain can be static or dynamic.
For example, a process may execute a sequence of procedures and require differ-
ent access rights for each procedure, such as read file and write file. In general,
we would like to minimize the access rights that any user or process has at any
one time; the use of protection domains provides a simple means to satisfy this
requirement.

One form of protection domain has to do with the distinction made in many
operating systems, such as UNIX, between user and kernel mode. A user program
executes in a user mode, in which certain areas of memory are protected from the
user’s use and in which certain instructions may not be executed. When the user
process calls a system routine, that routine executes in a system mode, or what has
come to be called kernel mode, in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

118 CHAPTER 4 / ACCESS CONTROL

4.4 EXAMPLE: UNIX FILE ACCESS CONTROL

For our discussion of UNIX file access control, we first introduce several basic
concepts concerning UNIX files and directories.

All types of UNIX files are administered by the operating system by means of
inodes. An inode (index node) is a control structure that contains the key informa-
tion needed by the operating system for a particular file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode. The attributes of the file as well as
its permissions and other control information are stored in the inode. On the disk,
there is an inode table, or inode list, that contains the inodes of all the files in the file
system. When a file is opened, its inode is brought into main memory and stored in
a memory-resident inode table.

Directories are structured in a hierarchical tree. Each directory can contain
files and/or other directories. A directory that is inside another directory is referred
to as a subdirectory. A directory is simply a file that contains a list of file names plus
pointers to associated inodes. Thus, associated with each directory is its own inode.

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control
scheme introduced with the early versions of UNIX. Each UNIX user is assigned
a unique user identification number (user ID). A user is also a member of a pri-
mary group, and possibly a number of other groups, each identified by a group ID.
When a file is created, it is designated as owned by a particular user and marked
with that user’s ID. It also belongs to a specific group, which initially is either its
creator’s primary group, or the group of its parent directory if that directory has
SetGID permission set. Associated with each file is a set of 12 protection bits. The
owner ID, group ID, and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all other
users. These form a hierarchy of owner, group, and all others, with the highest relevant
set of permissions being used. Figure 4.6a shows an example in which the file owner has
read and write access; all other members of the file’s group have read access, and users
outside the group have no access rights to the file. When applied to a directory, the read
and write bits grant the right to list and to create/rename/delete files in the directory.!
The execute bit grants to right to descend into the directory or search it for a filename.

The remaining three bits define special additional behavior for files or direc-
tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the system
temporarily allocates the rights of the user’s ID of the file creator, or the file’s group,

!Note that the permissions that apply to a directory are distinct from those that apply to any file or
directory it contains. The fact that a user has the right to write to the directory does not give the user the
right to write to a file in that directory. That is governed by the permissions of the specific file. The user
would, however, have the right to rename the file.

4.4 / EXAMPLE: UNIX FILE ACCESS CONTROL 119

éﬁf? Q¢§? &35?
Cﬁp C§9 C§@
rw- r-- -—-
user: :rw- <—————————j
group: :r--
other::---

(a) Traditional UNIX approach (minimal access control list)

& 5 5
&o% Qc}‘b c}&
& 3,
N o 9
o' ¢ &
rw- rw- -——=

user: :rw- 4—1

Masked { user:joe:rw-

entries | group: :r--

mask: :rw-

other::---

(b) Extended access control list
Figure 4.6 UNIX File Access Control

respectively, to those of the user executing the file. These are known as the “effective
user ID” and “effective group ID” and are used in addition to the “real user ID” and
“real group ID” of the executing user when making access control decisions for this
program. This change is only effective while the program is being executed. This fea-
ture enables the creation and use of privileged programs that may use files normally
inaccessible to other users. It enables users to access certain files in a controlled fashion.
Alternatively, when applied to a directory, the SetGID permission indicates that newly
created files will inherit the group of this directory. The SetUID permission is ignored.

The final permission bit is the “Sticky” bit. When set on a file, this originally
indicated that the system should retain the file contents in memory following execu-
tion. This is no longer used. When applied to a directory, though, it specifies that
only the owner of any file in the directory can rename, move, or delete that file. This
is useful for managing files in shared temporary directories.

One particular user ID is designated as “superuser.” The superuser is
exempt from the usual file access control constraints and has systemwide access.
Any program that is owned by, and SetUID to, the “superuser” potentially grants

120

CHAPTER 4 / ACCESS CONTROL

unrestricted access to the system to any user executing that program. Hence great
care is needed when writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C. We
would need at least two user groups, and user B would need to belong to both groups
in order to access the two files. However, if there are a large number of different
groupings of users requiring a range of access rights to different files, then a very large
number of groups may be needed to provide this. This rapidly becomes unwieldy and
difficult to manage, even if possible at all.> One way to overcome this problem is to use
access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
FreeBSD, but other implementations have essentially the same features and inter-
face. The feature is referred to as extended access control list, while the traditional
UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and groups
to a file by using the setfacl command. Any number of users and groups can be
associated with a file, each with three protection bits (read, write, execute), offering a
flexible mechanism for assigning access rights. A file need not have an ACL but may be
protected solely by the traditional UNIX file access mechanism. FreeBSD files include
an additional protection bit that indicates whether the file has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 4.6b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file,
each with a 3-bit permission field. The permissions listed for a named user or
named group are compared to the mask field. Any permission for the named
user or named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The ACL
entries are looked at in the following order: owner, named users, (owning or named)

“Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.

4.5 / ROLE-BASED ACCESS CONTROL 121

groups, others. Only a single entry determines access. Step 2 checks if the matching entry
contains sufficient permissions. A process can be a member in more than one group; so
more than one group entry can match. If any of these matching group entries contain the
requested permissions, one that contains the requested permissions is picked (the result
is the same no matter which entry is picked). If none of the matching group entries con-
tains the requested permissions, access will be denied no matter which entry is picked.

4.5 ROLE-BASED ACCESS CONTROL

Traditional DAC systems define the access rights of individual users and groups
of users. In contrast, RBAC is based on the roles that users assume in a system
rather than the user’s identity. Typically, RBAC models define a role as a job func-
tion within an organization. RBAC systems assign access rights to roles instead of
individual users. In turn, users are assigned to different roles, either statically or
dynamically, according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a
standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2, May
25,2001), that requires support for access control and administration through roles.

The relationship of users to roles is many to many, as is the relationship of
roles to resources, or system objects (Figure 4.7). The set of users changes, in some
environments frequently, and the assignment of a user to one or more roles may
also be dynamic. The set of roles in the system in most environments is relatively
static, with only occasional additions or deletions. Each role will have specific access
rights to one or more resources. The set of resources and the specific access rights
associated with a particular role are also likely to change infrequently.

We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 4.8. The upper matrix relates
individual users to roles. Typically there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note that a single user may be assigned multiple roles (more than one mark in a
row) and that multiple users may be assigned to a single role (more than one mark in
acolumn). The lower matrix has the same structure as the DAC access control matrix,
with roles as subjects. Typically, there are few roles and many objects, or resources.
In this matrix the entries are the specific access rights enjoyed by the roles. Note that a
role can be treated as an object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least
privilege, referred to in Section 4.1. Each role should contain the minimum set of
access rights needed for that role. A user is assigned to a role that enables him or her
to perform only what is required for that role. Multiple users assigned to the same
role, enjoy the same minimal set of access rights.

RBAC Reference Models

A variety of functions and services can be included under the general RBAC
approach. To clarify the various aspects of RBAC, it is useful to define a set of
abstract models of RBAC functionality.

122 CHAPTER 4 / ACCESS CONTROL

Users Roles Resources

ole 3

Figure 4.7 Users, Roles, and Resources

[SANDO6] defines a family of reference models that has served as the basis
for ongoing standardization efforts. This family consists of four models that are
related to each other as shown in Figure 4.9a. and Table 4.3. RBACj contains the
minimum functionality for an RBAC system. RBAC; includes the RBAC; func-
tionality and adds role hierarchies, which enable one role to inherit permissions
from another role. RBAC,; includes RBACy and adds constraints, which restrict

ROLES

123

U, X

U,

X|X| XX

OBJECTS
R; R, R, F, F, Py P, D, D,
R, | control owner ownet read * A0 wakeup wakeup seek owner
control owner

R, control write execute owner seek

L]

L]

L]
R, control write stop

Access Control Matrix Representation of RBAC

the ways in which the components of a RBAC system may be configured. RBAC;
contains the functionality of RBAC), RBAC{, and RBAGC,.

Figure 4.9b, without the role hierarchy and constraints,
contains the four types of entities in an RBAC system:

User: An individual that has access to this computer system. Each individual
has an associated user ID.

124 CHAPTER 4 / ACCESS CONTROL

RBAC;
Consolidated model

RBAC,

RBAC,
Role hierarchies

Constraints

RBAC,
Base model

(a) Relationship among RBAC models

Role
hierarchy
User Permission
U assignment R assignment P
<> <~ >
Users Roles

Permission

A
\

\

\
\
\
\

\
\
\

Sessions

~< \
- ———

___________ :(Constraints)

(b) RBAC models

Figure 4.9 A Family of Role-Based Access Control Models RBAC is
the minimum requirement for an RBAC system. RBACI1 adds role hierar-

chies and RBAC, adds constraints. RBAC; includes RBAC; and RBAC,
Source: [SAND96]

* Role: A named job function within the organization that controls this computer
system. Typically, associated with each role is a description of the authority and
responsibility conferred on this role, and on any user who assumes this role.

* Permission: Anapproval of a particular mode of access to one or more objects.
Equivalent terms are access right, privilege, and authorization.

* Session: A mapping between a user and an activated subset of the set of roles
to which the user is assigned.

Table 4.3 Scope RBAC Models
Models Hierarchies Constraints
RBAC, No No
RBAC, Yes No
RBAGC, No Yes
RBAGC; Yes Yes

4.5 / ROLE-BASED ACCESS CONTROL 125

The solid lines in Figure 4.9b indicate relationships, or mappings, with a single
arrowhead indicating one and a double arrowhead indicating many. Thus, there is
a many-to-many relationship between users and roles: One user may have multiple
roles, and multiple users may be assigned to a single role. Similarly, there is a many-
to-many relationship between roles and permissions. A session is used to define a
temporary one-to-many relationship between a user and one or more of the roles to
which the user has been assigned. The user establishes a session with only the roles
needed for a particular task; this is an example of the concept of least privilege.

The many-to-many relationships between users and roles and between roles
and permissions provide a flexibility and granularity of assignment not found in
conventional DAC schemes. Without this flexibility and granularity, there is a greater
risk that a user may be granted more access to resources than is needed because of
the limited control over the types of access that can be allowed. The NIST RBAC
document gives the following examples: Users may need to list directories and modify
existing files without creating new files, or they may need to append records to a file
without modifying existing records.

Role Hierarchies—RBAC, Role hierarchies provide a means of reflecting
the hierarchical structure of roles in an organization. Typically, job functions with
greater responsibility have greater authority to access resources. A subordinate job
function may have a subset of the access rights of the superior job function. Role
hierarchies make use of the concept of inheritance to enable one role to implicitly
include access rights associated with a subordinate role.

Figure 4.10 is an example of a diagram of a role hierarchy. By convention, sub-
ordinate roles are lower in the diagram. A line between two roles implies that the
upper role includes all of the access rights of the lower role, as well as other access
rights not available to the lower role. One role can inherit access rights from multiple
subordinate roles. For example, in Figure 4.10, the Project Lead role includes all of

Director

/\

Project lead 1 Project lead 2

Nl T

Production Quality Production Quality
engineer 1 engineer 1 engineer 2 engineer 2

~_ >~

Engineer 1 Engineer 2

\/

Engineering dept.

Figure 4.10 Example of Role Hierarchy

126

CHAPTER 4 / ACCESS CONTROL

the access rights of the Production Engineer role and of the Quality Engineer role.
More than one role can inherit from the same subordinate role. For example, both
the Production Engineer role and the Quality Engineer role include all of the access
rights of the Engineer role. Additional access rights are also assigned to the Produc-
tion Engineer Role and a different set of additional access rights are assigned to the
Quality Engineer role. Thus, these two roles have overlapping access rights, namely
the access rights they share with the Engineer role.

Constraints—RBAC, Constraints provide a means of adapting RBAC to the
specifics of administrative and security policies in an organization. A constraint is
a defined relationship among roles or a condition related to roles. [SAND96] lists
the following types of constraints: mutually exclusive roles, cardinality, and prere-
quisite roles.

Mutually exclusive roles are roles such that a user can be assigned to only
one role in the set. This limitation could be a static one, or it could be dynamic, in
the sense that a user could be assigned only one of the roles in the set for a session.
The mutually exclusive constraint supports a separation of duties and capabilities
within an organization. This separation can be reinforced or enhanced by use of
mutually exclusive permission assignments. With this additional constraint, a mutu-
ally exclusive set of roles has the following properties:

1. A user can only be assigned to one role in the set (either during a session or
statically).

2. Any permission (access right) can be granted to only one role in the set.

Thus the set of mutually exclusive roles have non-overlapping permissions. If two
users are assigned to different roles in the set, then the users have non-overlapping
permissions while assuming those roles. The purpose of mutually exclusive roles is to
increase the difficulty of collusion among individuals of different skills or divergent job
functions to thwart security policies.

Cardinality refers to setting a maximum number with respect to roles. One
such constraint is to set a maximum number of users that can be assigned to a given
role. For example, a project leader role or a department head role might be limited
to a single user. The system could also impose a constraint on the number of roles
that a user is assigned to, or the number of roles a user can activate for a single ses-
sion. Another form of constraint is to set a maximum number of roles that can be
granted a particular permission; this might be a desirable risk mitigation technique
for a sensitive or powerful permission.

A system might be able to specify a prerequisite, which dictates that a user can
only be assigned to a particular role if it is already assigned to some other specified
role. A prerequisite can be used to structure the implementation of the least privilege
concept. In a hierarchy, it might be required that a user can be assigned to a senior
(higher) role only if it is already assigned an immediately junior (lower) role. For
example, in Figure 4.10 a user assigned to a Project Lead role must also be assigned
to the subordinate Production Engineer and Quality Engineer roles. Then, if the user
does not need all of the permissions of the Project Lead role for a given task, the user
can invoke a session using only the required subordinate role. Note that the use of
prerequisites tied to the concept of hierarchy requires the RBAC; model.

4.5 / ROLE-BASED ACCESS CONTROL 127

The NIST RBAC Model

In 2001, NIST proposed a consensus model for RBAC, based on the original work in
[SANDY6] and later contributions. The model was further refined within the RBAC
community and has been adopted by the American National Standards Institute,
International Committee for Information Technology Standards (ANSI/INCITS)
as ANSI INCITS 359-2004.

The main innovation of the NIST standard is the introduction of the RBAC
System and Administrative Functional Specification, which defines the features
required for an RBAC system. This specification has a number of benefits. The spec-
ification provides a functional benchmark for vendors, indicating which capabilities
must be provided to the user and the general programming interface for those
functions. The specification guides users in developing requirements documents and
in evaluating vendor products in a uniform fashion. The specification also provides a
baseline system on which researchers and implementers can build enhanced features.
The specification defines features, or functions, in three categories:

* Administrative functions: Provide the capability to create, delete, and maintain
RBAC elements and relations

* Supporting system functions: Provide functions for session management and
for making access control decisions

* Review functions: Provide the capability to perform query operations on
RBAC elements and relations

Examples of these functions are presented in the following discussion.

The NIST RBAC model comprises four model components (Figure 4.11): core
RBAC, hierarchical RBAC, static separation of duty (SSD) relations, and dynamic
separation of duty (DSD) relations. The last two components correspond to the
constraints component of the model of Figure 4.9.

@ ______ > (RH)Role
hierarchy

N Permissions
(UA) User (PA) Permission
assignment assignment

session_roles
user_sessions

SSD = static separation of duty
DSD = dynamic separation of duty

Figure 4.11 NIST RBAC Model

128

CHAPTER 4 / ACCESS CONTROL

Core RBAC The elements of core RBAC are the same as those of RBAC,
described in the preceding section: users, roles, permissions, and sessions. The NIST
model elaborates on the concept of permissions by introducing two subordinate
entities: operations and objects. The following definitions are relevant:

* Object: Any system resource subject to access control, such as a file, printer,
terminal, database record, and so on

* Operation: An executable image of a program, which upon invocation
executes some function for the user

* Permission: An approval to perform an operation on one or more RBAC
protected objects

The administrative functions for Core RBAC include the following: add and
delete users from the set of users; add and delete roles from the set of roles; create
and delete instances of user-to-role assignment; and create and delete instances of
permission-to-role assignment. The supporting system functions include the following:
create a user session with a default set of active roles; add an active role to a session;
delete a role from a session; and check if the session subject has permission to perform
arequest operation on an object. The review functions enable an administrator to view
but not modify all the elements of the model and their relations, including users, roles,
user assignments, role assignments, and session elements.

Core RBAC is a minimal model that captures the common features found in
the current generation of RBAC systems.

Hierarchical RBAC Hierarchical RBAC includes the concept of inheritance
described for RBAC;. In the NIST standard, the inheritance relationship includes
two aspects. Role r; is said to be a descendant of r, if ry includes (inherits) all of the
permissions from r, and all users assigned to r; are also assigned to r,.°> For example,
in Figure 4.10, any permission allowed in the Project Lead 1 role is also allowed in the
Director role, and a user assigned to the Director role is also assigned to the Project
Lead 1 role.
The NIST model defines two types of role hierarchies:

* General role hierarchies: Allow an arbitrary partial ordering of the role
hierarchy. In particular, this type supports multiple inheritance, in which a
role may inherit permissions from multiple subordinate roles and more than
one role can inherit from the same subordinate role.

* Limited role hierarchies: Impose restrictions resulting in a simpler tree struc-
ture. The limitation is that a role may have one or more immediate ascendants
but is restricted to a single immediate descendant.

The rationale for role hierarchies is that the inheritance property greatly simplifies
the task of defining permission relationships. Roles can have overlapping permissions,
which means that users belonging to different roles may have some shared permis-
sions. In addition, it is typical in an organization that there are many users that share
a set of common permissions, cutting across many organizational levels. To avoid the
necessity of defining numerous roles from scratch to accommodate various users,

3Sadly, the term descendant is somewhat confusing. The superior role is a descendant of a subordinate role.

4.6 / CASE STUDY: RBAC SYSTEM FOR A BANK 129

role hierarchies are used in a number of commercial implementations. General role
hierarchies provide the most powerful tool for this purpose. The standard incorporates
limited role hierarchies, which are also useful, to allow for a simpler implementation
of role hierarchies.

Hierarchical RBAC adds four new administrative functions to Core RBAC:
add a new immediate inheritance relationship between two existing roles; delete
an existing immediate inheritance relationship; create a new role and add it as
an immediate ascendant of an existing role; and create a new role and add it as
animmediate descendant of an existing relationship. The hierarchical RBAC review
functions enable the administrator to view the permissions and users associated with
each role either directly or by inheritance.

Static Separation of Duty Relations SSD and DSD are two components that add
constraints to the NIST RBAC model. The constraints are in the form of separation of
duty relations, used to enforce conflict of interest policies that organizations may employ
to prevent users from exceeding a reasonable level of authority for their positions.

SSD enables the definition of a set of mutually exclusive roles, such that if
a user is assigned to one role in the set, the user may not be assigned to any other
role in the set. In addition, SSD can place a cardinality constraint on a set of roles.
A cardinality constraint associated with a set of roles is a number greater than one
specifying a combination of roles that would violate the SSD policy. For example,
the permissions associated with the purchasing function could be organized as a set
of four roles, with the constraint the no user may be assigned more than three roles
in the set. A concise definition of SSD is that SSD is defined as a pair (role set, n)
where no user is assigned to n or more roles from the role set.

SSD includes administrative functions for creating and deleting role sets and
adding and deleting role members. It also includes review functions for viewing the
properties of existing SSD sets.

Dynamic Separation of Duty Relations As with SSD, DSD relations limit
the permissions available to a user. DSD specifications limit the availability of the
permissions by placing constraints on the roles that can be activated within or across
a user’s sessions. DSD relations define constraints as a pair (role set, n), where n is a
natural number n = 2, with the property that no user session may activate n or more
roles from the role set.

DSD enables the administrator to specify certain capabilities for a user at
different, non-overlapping spans of time. As with SSD, DSD includes administra-
tive and review functions for defining and viewing DSD relations.

CASE STUDY: RBAC SYSTEM FOR A BANK

The Dresdner Bank has implemented an RBAC system that serves as a useful prac-
tical example [SCHAO1]. The bank uses a variety of computer applications. Many
of these were initially developed for a mainframe environment; some of these older
applications are now supported on a client-server network while others remain on
mainframes. There are also newer applications on servers. Prior to 1990, a simple
DAC system was used on each server and mainframe. Administrators maintained

130

CHAPTER 4 / ACCESS CONTROL

alocal access control file on each host and defined the access rights for each employee
on each application on each host. This system was cumbersome, time-consuming,
and error-prone. To improve the system, the bank introduced an RBAC scheme,
which is systemwide and in which the determination of access rights is compartmen-
talized into three different administrative units for greater security.

Roles within the organization are defined by a combination of official position
and job function. Table 4.4a provides examples. This differs somewhat from the

Table 4.4 Functions and Roles for Banking Example

(a) Functions and Official Positions

Role Function Official Position
A financial analyst Clerk
B financial analyst Group Manager
C financial analyst Head of Division
D financial analyst Junior
E financial analyst Senior
I8 financial analyst Specialist
G financial analyst Assistant
X share technician Clerk
Y support e-commerce Junior
Z, office banking Head of Division

(b) Permission Assignments

(c¢) PA with Inheritance

Role Application Access Right Role Application Access Right
money market 1,2,3,4 money market 1,2,3,4
instruments instruments
derivatives 1,2,3,7,10,12 derivatives
= trading A ! 1,2,3,7,10, 12
trading
. interest 1,4,8,12,14, 16 R —_—
Instruments instruments 1,4,8,12,14,16
money market 1,2,3,4,7
instruments money market
instruments 7
derivatives 1,2,3,7, 10,
trading 12,14 derivatives
E : B : 14
interest 1,4,8,12,14,16 trading
instruments
- private consumer
pnyate consumer 1,2,4,7 e 1,2,4,7
instruments
LN] LN) oo LN) LN] o0 0

4.6 / CASE STUDY: RBAC SYSTEM FOR A BANK 131

concept of role in the NIST standard, in which a role is defined by a job function.
To some extent, the difference is a matter of terminology. In any case, the bank’s
role structuring leads to a natural means of developing an inheritance hierarchy
based on official position. Within the bank, there is a strict partial ordering of
official positions within each organization, reflecting a hierarchy of responsibility and
power. For example, the positions Head of Division, Group Manager, and Clerk are
in descending order. When the official position is combined with job function, there
is a resulting ordering of access rights, as indicated in Table 4.4b. Thus, the finan-
cial analyst/Group Manager role (role B) has more access rights than the financial
analyst/Clerk role (role A). The table indicates that role B has as many or more
access rights than role A in three applications and has access rights to a fourth
application. On the other hand, there is no hierarchical relationship between office
banking/Group Manager and financial analyst/Clerk because they work in different
functional areas. We can therefore define a role hierarchy in which one role is supe-
rior to another if its position is superior and their functions are identical. The role
hierarchy makes it possible to economize on access rights definitions, as suggested
in Table 4.4c.

In the original scheme, the direct assignment of access rights to the individual
user occurred at the application level and was associated with the individual applica-
tion. In the new scheme, an application administration determines the set of access
rights associated with each individual application. However, a given user perform-
ing a given task may not be permitted all of the access rights associated with the
application. When a user invokes an application, the application grants access on
the basis of a centrally provided security profile. A separate authorization adminis-
tration associated access rights with roles and creates the security profile for a use
on the basis of the user’s role.

A user is statically assigned a role. In principle (in this example), each user
may be statically assigned up to four roles and select a given role for use in invoking
a particular application. This corresponds to the NIST concept of session. In prac-
tice, most users are statically assigned a single role based on the user’s position and
job function.

All of these ingredients are depicted in Figure 4.12. The Human Resource
Department assigns a unique User ID to each employee who will be using the system.
Based on the user’s position and job function, the department also assigns one or
more roles to the user. The user/role information is provided to the Authorization
Administration, which creates a security profile for each user that associates the
User ID and role with a set of access rights. When a user invokes an application,
the application consults the security profile for that user to determine what subset of
the application’s access rights are in force for this user in this role.

A role may be used to access several applications. Thus, the set of access rights
associated with a role may include access rights that are not associated with one
of the applications the user invokes. This is illustrated in Table 4.4b. Role A has
numerous access rights, but only a subset of those rights are applicable to each of the
three applications that role A may invoke.

Some figures about this system are of interest. Within the bank, there are 65
official positions, ranging from a Clerk in a branch, through the Branch Manager, to a
Member of the Board. These positions are combined with 368 different job functions

132 CHAPTER 4 / ACCESS CONTROL

Human Resources Department Application Administration

)
Roles
User
1
Application

Assigns

Ly

Authorization Administration

N M
Application

Figure 4.12 Example of Access Control Administration

provided by the human resources database. Potentially, there are 23,920 different
roles, but the number of roles in current use is about 1300. This is in line with the
experience other RBAC implementations. On average, 42,000 security profiles are
distributed to applications each day by the Authorization Administration module.

4.7 RECOMMENDED READING AND WEB SITE

[SANDY4] is an excellent overview of the topics of this chapter.

[DOWNSS] provides a good review of the basic elements of DAC. [KAINS87] is a clear
discussion of capability-based access control.

[SANDY6] is a comprehensive overview of RBAC. [FERR92] also provides some
useful insights. [BARK97] looks at the similarities in functionality between RBAC and
DAC based on access control lists. [SAUNO1] is a more general comparison of RBAC and
DAC. [MOFF99] focuses on role hierarchies in RBAC. [FERRO01] presents the NIST RBAC
standard in exhaustive detail.

BARKY7 Barkley, J. “Comparing Simple Role-Based Access Control Models and Access
Control Lists.” Proceedings of the Second ACM Workshop on Role-Based
Access Control, 1997.

DOWNSS Down, D, et al. “Issues in Discretionary Access Control.” Proceedings of the
1985 Symposium on Security and Privacy, 1985.

FERRY92 Ferraiolo, D., and Kuhn, R. “Role-Based Access Control.” Proceedings of
the 15th National Computer Security Conference, 1992.

FERRO1 Ferraiolo,D. etal. “Proposed NIST Standard for Role-Based Access Control.”
ACM Transactions on Information and System Security, August 2001.

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 133

KAIN87 Kain, R., and Landwehr. “On Access Checking in Capability-Based System.”
IEEE Transactions on Software Engineering, February 1987.

MOFF99 Moffett, J., and Lupu, E. “ The Uses of Role Hierarchies in Access Control.”
Proceedings of the Fourth ACM Workshop on Role-Based Access Control, 1999.

SANDY4 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.” I[EEE
Communications Magazine, February 1996.

SANDY96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer, September
1994.

SAUNO1 Saunders, G.; Hitchens, M.; and Varadharajan, V. “Role-Based Access Control
and the Access Control Matrix.” Operating Systems Review, October 2001.

Recommended Web site:

e NIST RBAC site: Includes numerous documents, standards, and software on
RBAC

4.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control general role hierarchy permission

access control list group protection domain

access matrix least privilege role-based access control

access right limited role hierarchy (RBAC)

capability ticket mandatory access control role constraints

closed access control policy (MAC) role hierarchies

discretionary access control mutually exclusive roles separation of duty
(DAC) object session

dynamic separation of duty open access control policy static separation of duty (SSD)
(DSD) owner subject

Review Questions

4.1 Briefly define the difference between DAC and MAC.

4.2 How does RBAC relate to DAC and MAC?

4.3 List and define the three classes of subject in an access control system.

4.4 In the context of access control, what is the difference between a subject and an object?
4.5 What is an access right?

4.6 What is the difference between an access control list and a capability ticket?

4.7 What is a protection domain?

134

CHAPTER 4 / ACCESS CONTROL

4.8
4.9
4.10
4.11

Briefly define the four RBAC models of Figure 4.9a.

List and define the four types of entities in a base model RBAC system.
Describe three types of role hierarchy constraints.

In the NIST RBAC model, what is the difference between SSD and DSD?

Problems

4.1

44

F
th

For the DAC model discussed in Section 4.3, an alternative representation of the pro-

tection state is a directed graph. Each subject and each object in the protection state

is represented by a node (a single node is used for an entity that is both subject and

object). A directed line from a subject to an object indicates an access right, and the

label on the link defines the access right.

a. Draw a directed graph that corresponds to the access matrix of Figure 4.3a.

b. Draw a directed graph that corresponds to the access matrix of Figure 4.4.

c. Is there a one-to-one correspondence between the directed graph representation
and the access matrix representation? Explain.

a. Suggest a way of implementing protection domains using access control lists.

b. Suggest a way of implementing protection domains using capability tickets.

Hint: In both cases a level of indirection is required.

The VAX/VMS operating system makes use of four processor access modes to

facilitate the protection and sharing of system resources among processes. The access

mode determines:

¢ Instruction execution privileges: What instructions the processor may execute

° Memory access privileges: Which locations in virtual memory the current instruc-
tion may access

The four modes are as follows:

¢ Kernel: Executes the kernel of the VMS operating system, which includes mem-
ory management, interrupt handling, and I/O operations

* Executive: Executes many of the operating system service calls, including file and
record (disk and tape) management routines

* Supervisor: Executes other operating system services, such as responses to user
commands

e User: Executes user programs, plus utilities such as compilers, editors, linkers,
and debuggers

A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an operat-
ing system service. This call is achieved by using a change-mode (CHM) instruction,
which causes an interrupt that transfers control to a routine at the new access mode. A
return is made by executing the REI (return from exception or interrupt) instruction.
a. A number of operating systems have two modes, kernel and user. What are the
advantages and disadvantages of providing four modes instead of two?
b. Can you make a case for even more than four modes?

The VMS scheme discussed in the preceding problem is often referred to as a ring
protection structure, as illustrated in Figure 4.13. Indeed, the simple kernel/user
scheme is a two-ring structure. [SILB04] points out a problem with this approach:

The main disadvantage of the ring (hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain D; but not accessible in domain D;, then we must have
j < i. But this means that every segment accessible in D; is also accessible in D;.
a. Explain clearly what the problem is that is referred to in the preceding quote.
b. Suggest a way that a ring-structured operating system can deal with this problem.
UNIX treats file directories in the same fashion as files; that is, both are defined by
the same type of data structure, called an inode. As with files, directories include a

4.6

4.7

4.8

4.9

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 135

Figure 4.13 ' VAX/VMS Access Modes

nine-bit protection string. If care is not taken, this can create access control problems.
For example, consider a file with protection mode 644 (octal) contained in a directory
with protection mode 730. How might the file be compromised in this case?

In the traditional UNIX file access model, which we describe in Section 4.4, UNIX
systems provide a default setting for newly created files and directories, which the
owner may later change. The default is typically full access for the owner combined
with one of the following: no access for group and other, read/execute access for
group and none for other, or read/execute access for both group and other. Briefly
discuss the advantages and disadvantages of each of these cases, including an example
of a type of organization where each would be appropriate.

Consider user accounts on a system with a Web server configured to provide access to
user Web areas. In general, this uses a standard directory name, such as ‘public_html’,
in a user’s home directory. This acts as their user Web area if it exists. However, to
allow the Web server to access the pages in this directory, it must have at least search
(execute) access to the user’s home directory, read/execute access to the Web direc-
tory, and read access to any Web pages in it. Consider the interaction of this require-
ment with the cases you discussed for the preceding problem. What consequences
does this requirement have? Note that a Web server typically executes as a special
user, and in a group that is not shared with most users on the system. Are there some
circumstances when running such a Web service is simply not appropriate? Explain.
Assume a system with N job positions. For job position i, the number of individual users
in that position is U; and the number of permissions required for the job position is P;.
a. For a traditional DAC scheme, how many relationships between users and per-
missions must be defined?
b. For a RBAC scheme, how many relationships between users and permissions
must be defined?

What inheritance relationships in Figure 4.10 are prohibited by the NIST standard for
a limited role hierarchy?

136

CHAPTER 4 / ACCESS CONTROL

4.10

4.11

For the NIST RBAC standard, we can define the general role hierarchy as follows:
RH C ROLES X ROLES is a partial order on ROLES called the inheritance
relation, written as =, where r; = r; only if all permissions of r, are also permissions
of ry, and all users of ry are also users of rp. Define the set authorized_permissions(r;)
to be the set of all permissions associated with role r;. Define the set authorized_
users(r;) to be the set of all users assigned to role r;. Finally, node rq is represented as
an immediate descendant of r, by r; >> 15, if r{ = 1,, but no role in the role hierarchy
lies between r; and r,.
a. Using the preceding definitions, as needed, provide a formal definition of the
general role hierarchy.
b. Provide a formal definition of a limited role hierarchy.

In the example of Section 4.6, use the notation Role(x). Position to denote the position

associated with role x and Role(x). Function to denote the function associated with role x.

a. We defined the role hierarchy for this example as one in which one role is superior
to another if its position is superior and their functions are identical. Express this
relationship formally.

b. An alternative role hierarchy is one in which a role is superior to another if its
function is superior, regardless of position. Express this relationship formally.

DATABASE SECURITY

5.1 The Need For Database Security

5.2 Database Management Systems

5.3 Relational Databases
Elements of a Relational Database System
Structured Query Language

5.4 Database Access Control
SQL-Based Access Definition
Cascading Authorizations
Role-Based Access Control

5.5 Inference

5.6 Statistical Databases
Inference from a Statistical Database
Query Restriction
Perturbation

5.7 Database Encryption

5.8 Cloud Security
Cloud Computing
Cloud Security Risks
Data Protection in the Cloud

5.9 Recommended Reading and Web Site

5.10 Key Terms, Review Questions, and Problems

137

138 CHAPTER 5 / DATABASE SECURITY

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Understand the unique need for database security, separate from ordinary
computer security measures.

@ Present an overview of the basic elements of a database management system.

@ Present an overview of the basic elements of a relational database system.

€ Compare and contrast different approaches to database access control.

@ Explain how inference poses a security threat in database systems.

@ Understand the nature of statistical databases and their related security issues.

@ Discuss the use of encryption in a database system.

@ Understand the unique security issues related to cloud computing.

This chapter looks at the unique security issues that relate to databases.

The

focus of this chapter is on relational database management systems

(RDBMS). The relational approach dominates industry, government, and
research sectors and is likely to do so for the foreseeable future. We begin with an
overview of the need for database-specific security techniques. Then we provide
a brief introduction to database management systems, followed by an overview
of relational databases. Next, we look at the issue of database access control,
followed by a discussion of the inference threat. Then we examine security issues
for statistical databases. Next, we examine database encryption. Finally, we
examine the issues raised by the use of cloud technology.

5.1 THE NEED FOR DATABASE SECURITY

Organizational databases tend to concentrate sensitive information in a single
logical system. Examples include:

Corporate financial data
Confidential phone records

Customer and employee information, such as name, Social Security number,
bank account information, credit card information

Proprietary product information

Health care information and medical records

For many businesses and other organizations, it is important to be able to

provide customers, partners, and employees with access to this information. But such
information can be targeted by internal and external threats of misuse or unauthorized
change. Accordingly, security specifically tailored to databases is an increasingly
important component of an overall organizational security strategy.

5.2 / DATABASE MANAGEMENT SYSTEMS 139

[BENNO6] cites the following reasons why database security has not kept pace
with the increased reliance on databases:

1. There is a dramatic imbalance between the complexity of modern database
management systems (DBMS) and the security techniques used to protect these
critical systems. A DBMS is a very complex, large piece of software, providing
many options, all of which need to be well understood and then secured to avoid
data breaches. Although security techniques have advanced, the increasing
complexity of the DBMS—with many new features and services—has brought
a number of new vulnerabilities and the potential for misuse.

2. Databases have a sophisticated interaction protocol called the Structured Query
Language (SQL), which is far more complex, for example, than the HTTP
Protocol used to interact with a Web service. Effective database security requires
a strategy based on a full understanding of the security vulnerabilities of SQL.

3. The typical organization lacks full-time database security personnel. The result is a
mismatch between requirements and capabilities. Most organizations have a staff of
database administrators, whose job is to manage the database to ensure availability,
performance, correctness, and ease of use. Such administrators may have limited
knowledge of security and little available time to master and apply security
techniques. On the other hand, those responsible for security within an organization
may have very limited understanding of database and DBMS technology.

4. Most enterprise environments consist of a heterogeneous mixture of
database platforms (Oracle, IBM DB1 and Informix, Microsoft, Sybase,
etc.), enterprise platforms (Oracle E-Business Suite, PeopleSoft, SAP,
Siebel, etc.), and OS platforms (UNIX, Linux, z/OS, and Windows, etc.).
This creates an additional complexity hurdle for security personnel.

An additional recent challenge for organizations is their increasing reliance
on cloud technology to host part or all of the corporate database. This adds an
additional burden to the security staff.

DATABASE MANAGEMENT SYSTEMS

Insome cases, an organization can function with a relatively simple collection of files of
data. Each file may contain text (e.g., copies of memos and reports) or numerical data
(e.g., spreadsheets). A more elaborate file consists of a set of records. However, for an
organization of any appreciable size, a more complex structure known as a database
isrequired. A database is a structured collection of data stored for use by one or more
applications. In addition to data, a database contains the relationships between data
items and groups of data items. As an example of the distinction between data files
and a database, consider the following. A simple personnel file might consist of a set
of records, one for each employee. Each record gives the employee’s name, address,
date of birth, position, salary, and other details needed by the personnel department.
A personnel database includes a personnel file, as just described. It may also
include a time and attendance file, showing for each week the hours worked by each
employee. With a database organization, these two files are tied together so that a

140

CHAPTER 5 / DATABASE SECURITY

payroll program can extract the information about time worked and salary for each
employee to generate paychecks.

Accompanying the database is a database management system (DBMS),
which is a suite of programs for constructing and maintaining the database and for
offering ad hoc query facilities to multiple users and applications. A query language
provides a uniform interface to the database for users and applications.

Figure 5.1 provides a simplified block diagram of a DBMS architecture. Database
designers and administrators make use of a data definition language (DDL) to define
the database logical structure and procedural properties, which are represented by
a set of database description tables. A data manipulation language (DML) provides
a powerful set of tools for application developers.Query languages are declarative
languages designed to support end users. The database management system makes
use of the database description tables to manage the physical database. The interface
to the database is through a file manager module and a transaction manager module.
In addition to the database description table, two other tables support the DBMS.
The DBMS uses authorization tables to ensure the user has permission to execute
the query language statement on the database. The concurrent access table prevents
conflicts when simultaneous, conflicting commands are executed.

Database systems provide efficient access to large volumes of data and are vital
to the operation of many organizations. Because of their complexity and criticality,
database systems generate security requirements that are beyond the capability of
typical OS-based security mechanisms or stand-alone security packages.

Operating system security mechanisms typically control read and write
access to entire files. So they could be used to allow a user to read or to write any
information in, for example, a personnel file. But they could not be used to limit

Database User User
utilities applications queries
DDL DML and query
Processor language processor
A 1 N
e
Database
description
\—_tables
A
C 3 DBMS >
| - Concurrent
IOTIVZNTIIT Transaction File manager —
tables manager g tables

DDL = data definition language
DML = data manipulation language

Physical

database

Figure 5.1 DBMS Architecture

5.3 / RELATIONAL DATABASES 141

access to specific records or fields in that file. A DBMS typically does allow this type
of more detailed access control to be specified. It also usually enables access controls
to be specified over a wider range of commands, such as to select, insert, update, or
delete specified items in the database. Thus, security services and mechanisms are
needed that are designed specifically for, and integrated with, database systems.

5.3 RELATIONAL DATABASES

The basic building block of a relational database is a table of data, consisting of rows
and columns, similar to a spreadsheet. Each column holds a particular type of data,
while each row contains a specific value for each column. Ideally, the table has at
least one column in which each value is unique, thus serving as an identifier for a
given entry. For example, a typical telephone directory contains one entry for each
subscriber, with columns for name, telephone number, and address. Such a table is
called a flat file because it is a single two-dimensional (rows and columns) file. In a
flat file, all of the data are stored in a single table. For the telephone directory, there
might be a number of subscribers with the same name, but the telephone numbers
should be unique, so that the telephone number serves as a unique identifier for a
row. However, two or more people sharing the same phone number might each be
listed in the directory. To continue to hold all of the data for the telephone directory
in a single table and to provide for a unique identifier for each row, we could require
a separate column for secondary subscriber, tertiary subscriber, and so on. The result
would be that for each telephone number in use, there is a single entry in the table.

The drawback of using a single table is that some of the column positions for
a given row may be blank (not used). Also, any time a new service or new type of
information is incorporated in the database, more columns must be added and the
database and accompanying software must be redesigned and rebuilt.

The relational database structure enables the creation of multiple tables
tied together by a unique identifier that is present in all tables. Figure 5.2 shows
how new services and features can be added to the telephone database without
reconstructing the main table. In this example, there is a primary table with
basic information for each telephone number. The telephone number serves as
a primary key. The database administrator can then define a new table with a
column for the primary key and other columns for other information.

Users and applications use a relational query language to access the database.
The query language uses declarative statements rather than the procedural
instructions of a programming language. In essence, the query language allows
the user to request selected items of data from all records that fit a given set of
criteria. The software then figures out how to extract the requested data from one
or more tables. For example, a telephone company representative could retrieve a
subscriber’s billing information as well as the status of special services or the latest
payment received, all displayed on one screen.

Elements of a Relational Database System

In relational database parlance, the basic building block is a relation, which is a
flat table. Rows are referred to as tuples, and columns are referred to as attributes

142 CHAPTER 5 / DATABASE SECURITY

CALLER ID TABLE ADDITIONAL
SUBSCRIBER TABLE

PRIMARY TABLE

BILLING HISTORY CURRENT BILL
TABLE TABLE

Figure 5.2 Example Relational Database Model. A relational database uses multiple
tables related to one another by a designated key;in this case the key is the PhoneNumber
field.

(Table 5.1). A primary key is defined to be a portion of a row used to uniquely
identify a row in a table; the primary key consists of one or more column names.
In the example of Figure 5.2, a single attribute, PhoneNumber, is sufficient to
uniquely identify a row in a particular table.

To create a relationship between two tables, the attributes that define the
primary key in one table must appear as attributes in another table, where they are
referred to as a foreign key. Whereas the value of a primary key must be unique
for each tuple (row) of its table, a foreign key value can appear multiple times in
a table, so that there is a one-to-many relationship between a row in the table with

Table 5.1 Basic Terminology for Relational Databases

Formal Name Common Name Also Known As
Relation Table File

Tuple Row Record
Attribute Column Field

5.3 / RELATIONAL DATABASES 143

the primary key and rows in the table with the foreign key. Figure 5.3a provides an
example. In the Department table, the department ID (Did) is the primary key;
each value is unique. This table gives the ID, name, and account number for each
department. The Employee table contains the name, salary code, employee 1D, and
phone number of each employee. The Employee table also indicates the department
to which each employee is assigned by including Did. Did is identified as a foreign key
and provides the relationship between the Employee table and the Department table.

A view is a virtual table. In essence, a view is the result of a query that returns
selected rows and columns from one or more tables. Figure 5.3b is a view that
includes the employee name, ID, and phone number from the Employee table and
the corresponding department name from the Department table. The linkage is the
Did, so that the view table includes data from each row of the Employee table, with
additional data from the Department table. It is also possible to construct a view
from a single table. For example, one view of the Employee table consists of all
rows, with the salary code column deleted. A view can be qualified to include only
some rows and/or some columns. For example, a view can be defined consisting of
all rows in the Employee table for which the Did = 15.

Views are often used for security purposes. A view can provide restricted access to a
relational database so that a user or application only has access to certain rows or columns.

Department Table Employee Table
Did Dname Dacctno Ename | Did | Salarycode | Eid Ephone
human resources 528221 Robin | 15 23 2345 | 6127092485
8 | education 202035 Neil 13 12 5088 | 6127092246
accounts 709257 Jasmine| 4 26 7712 | 6127099348
13 | public relations 755827 Cody | 15 22 9664 | 6127093148
15 | services 223945 Holly 8 23 3054 | 6127092729
P“’—. Robin 8 24 2976 | 6127091945
rimary
key Smith 9 21 4490 | 6127099380
—— —
Foreign Primary
key key

(a) Two tables in a relational database

Dname Ename | Eid Ephone
human resources | Jasmine | 7712 | 6127099348
education Holly 3054 | 6127092729
education Robin 2976 | 6127091945
accounts Smith 4490 | 6127099380
public relations | Neil 5088 | 6127092246
services Robin 2345 | 6127092485
services Cody 9664 | 6127093148

(b) A view derived from the database

Figure 5.3 Relational Database Example

144 CHAPTER 5 / DATABASE SECURITY

Structured Query Language

Structured Query Language (SQL), originally developed by IBM in the mid-1970s, is a

standardized language that can be used to define schema, manipulate, and query data

in a relational database. There are several versions of the ANSI/ISO standard and a

variety of different implementations, but all follow the same basic syntax and semantics.
For example, the two tables in Figure 5.3a are defined as follows:

CREATE TABLE department (
Did INTEGER PRIMARY KEY,
Dname CHAR (30),

Dacctno CHAR (6))

CREATE TABLE employee (
Ename CHAR (30),

Did INTEGER,

SalaryCode INTEGER,

Eid INTEGER PRIMARY KEY,

Ephone CHAR (10),

FOREIGN KEY (Did) REFERENCES department (Did))

The basic command for retrieving information is the SELECT statement.
Consider this example:

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 15

This query returns the Ename, Eid, and Ephone fields from the Employee
table for all employees assigned to department 15.
The view in Figure 5.3b is created using the following SQL statement:

CREATE VIEW newtable (Dname, Ename, Eid, Ephone)
AS SELECT D.Dname E.Ename, E.Eid, E.Ephone

FROM Department D Employee E

WHERE E.Did = D.Did

The preceding are just a few examples of SQL functionality. SQL statements
can be used to create tables, insert and delete data in tables, create views, and
retrieve data with query statements.

5.4 DATABASE ACCESS CONTROL

Commercial and open-source DBMSs typically provide an access control capability
for the database. The DBMS operates on the assumption that the computer system
has authenticated each user. As an additional line of defense, the computer system

5.4 / DATABASE ACCESS CONTROL 145

may use the overall access control system described in Chapter 4 to determine
whether a user may have access to the database as a whole. For users who are
authenticated and granted access to the database, a database access control system
provides a specific capability that controls access to portions of the database.

Commercial and open-source DBMSs provide discretionary or role-based
access control. We defer a discussion of mandatory access control considerations
to Chapter 13. Typically, a DBMS can support a range of administrative policies,
including the following:

* Centralized administration: A small number of privileged users may grant and
revoke access rights.

° Ownership-based administration: The owner (creator) of a table may grant
and revoke access rights to the table.

* Decentralized administration: In addition to granting and revoking access rights
to a table, the owner of the table may grant and revoke authorization rights to
other users, allowing them to grant and revoke access rights to the table.

As with any access control system, a database access control system distinguishes
different access rights, including create, insert, delete, update, read, and write. Some
DBMSs provide considerable control over the granularity of access rights. Access
rights can be to the entire database, to individual tables, or to selected rows or columns
within a table. Access rights can be determined based on the contents of a table entry.
For example, in a personnel database, some users may be limited to seeing salary
information only up to a certain maximum value. And a department manager may
only be allowed to view salary information for employees in his or her department.

SQL-Based Access Definition

SQL provides two commands for managing access rights, GRANT and REVOKE.
For different versions of SQL, the syntax is slightly different. In general terms, the
GRANT command has the following syntax:'

GRANT { privileges | role }

[ON table]

TO { user | role | PUBLIC }
[IDENTIFIED BY password]

[WITH GRANT OPTION]

This command can be used to grant one or more access rights or can be used
to assign a user to a role. For access rights, the command can optionally specify that
it applies only to a specified table. The TO clause specifies the user or role to which
the rights are granted. A PUBLIC value indicates that any user has the specified
access rights. The optional IDENTIFIED BY clause specifies a password that
must be used to revoke the access rights of this GRANT command. The GRANT

IThe following syntax definition conventions are used. Elements separated by a vertical line are alternatives.
A list of alternatives is grouped in curly brackets. Square brackets enclose optional elements. That is, the
elements inside the square brackets may or may not be present.

146 CHAPTER 5/ DATABASE SECURITY

OPTION indicates that the grantee can grant this access right to other users, with or
without the grant option.
As a simple example, consider the following statement.

GRANT SELECT ON ANY TABLE TO ricflair

This statement enables user ricflair to query any table in the database.
Different implementations of SQL provide different ranges of access rights.
The following is a typical list:

e Select: Grantee may read entire database; individual tables; or specific
columns in a table.

e Insert: Grantee may insert rows in a table; or insert rows with values for spe-
cific columns in a table.

¢ Update: Semantics is similar to INSERT.
¢ Delete: Grantee may delete rows from a table.

¢ References: Grantee is allowed to define foreign keys in another table that
refer to the specified columns.

The REVOKE command has the following syntax:

REVOKE { privileges | role }
[ON table]
FROM { user | role | PUBLIC }

Thus, the following statement revokes the access rights of the preceding example:

REVOKE SELECT ON ANY TABLE FROM ricflair

Cascading Authorizations

The grant option enables an access right to cascade through a number of users.We
consider a specific access right and illustrate the cascade phenomenonin Figure 5.4.
The figure indicates that Ann grants the access right to Bob at time ¢ = 10 and to
Chris at time ¢ = 20. Assume that the grant option is always used. Thus, Bob is able
to grant the access right to David at r = 30. Chris redundantly grants the access right
to David at ¢t = 50. Meanwhile, David grants the right to Ellen, who in turn grants it
to Jim; and subsequently David grants the right to Frank.

Just as the granting of privileges cascades from one user to another using
the grant option, the revocation of privileges also cascaded. Thus, if Ann
revokes the access right to Bob and Chris, then the access right is also revoked
to David, Ellen, Jim, and Frank. A complication arises when a user receives the
same access right multiple times, as happens in the case of David. Suppose that
Bob revokes the privilege from David. David still has the access right because
it was granted by Chris at ¢+ = 50. However, David granted the access right to
Ellen after receiving the right, with grant option, from Bob but prior to receiving
it from Chris.Most implementations dictate that in this circumstance, the access

5.4 / DATABASE ACCESS CONTROL 147

Chris

Figure 5.4 Bob Revokes Privilege from David

right to Ellen and therefore Jim is revoked when Bob revokes the access right
to David. This is because at t = 40, when David granted the access right to
Ellen, David only had the grant option to do this from Bob. When Bob revokes
the right, this causes all subsequent cascaded grants that are traceable solely
to Bob via David to be revoked. Because David granted the access right
to Frank after David was granted the access right with grant option from Chris,
the access right to Frank remains. These effects are shown in the lower portion of
Figure 5.4.

To generalize, the convention followed by most implementations is as follows.
When user A revokes an access right, any cascaded access right is also revoked,
unless that access right would exist even if the original grant from A had never
occurred. This convention was first proposed in [GRIF76].

Role-Based Access Control

A role-based access control (RBAC) scheme is a natural fit for database access
control. Unlike a file system associated with a single or a few applications, a
database system often supports dozens of applications. In such an environment,
an individual user may use a variety of applications to perform a variety of tasks,
each of which requires its own set of privileges. It would be poor administrative
practice to simply grant users all of the access rights they require for all the tasks
they perform. RBAC provides a means of easing the administrative burden and
improving security.

In a discretionary access control environment, we can classify database users
in three broad categories:

* Application owner: An end user who owns database objects (tables, columns,
rows) as part of an application. That is, the database objects are generated by
the application or are prepared for use by the application.

148

CHAPTER 5 / DATABASE SECURITY

* End user other than application owner: An end user who operates on database
objects via a particular application but does not own any of the database objects.

* Administrator: User who has administrative responsibility for part or all of the
database.

We can make some general statements about RBAC concerning these
three types of users. An application has associated with it a number of tasks,
with each task requiring specific access rights to portions of the database.
For each task, one or more roles can be defined that specify the needed access
rights. The application owner may assign roles to end users. Administrators are
responsible for more sensitive or general roles, including those having to do
with managing physical and logical database components, such as data files,
users, and security mechanisms. The system needs to be set up to give certain
administrators certain privileges. Administrators in turn can assign users to
administrative-related roles.

A database RBAC facility needs to provide the following capabilities:

¢ Create and delete roles.
¢ Define permissions for a role.

e Assign and cancel assignment of users to roles.

A good example of the use of roles in database security is the RBAC
facility provided by Microsoft SQL Server. SQL Server supports three types of
roles: server roles, database roles, and user-defined roles. The first two types
of roles are referred to as fixed roles (Table 5.2); these are preconfigured for a
system with specific access rights. The administrator or user cannot add, delete,
or modify fixed roles; it is only possible to add and remove users as members of
a fixed role.

Fixed server roles are defined at the server level and exist independently
of any user database. They are designed to ease the administrative task.
These roles have different permissions and are intended to provide the ability
to spread the administrative responsibilities without having to give out complete
control. Database administrators can use these fixed server roles to assign
different administrative tasks to personnel and give them only the rights they
absolutely need.

Fixed database roles operate at the level of an individual database. As with
fixed server roles, some of the fixed database roles, such as db_accessadmin and
db_securityadmin, are designed to assist a DBA with delegating administrative
responsibilities. Others, such as db_datareader and db_datawriter, are designed to
provide blanket permissions for an end user.

SQL Server allows users to create roles. These user-defined roles can
then be assigned access rights to portions of the database. A user with proper
authorization (typically, a user assigned to the db_securityadmin role) may
define a new role and associate access rights with the role. There are two
types of user-defined roles: standard and application. For a standard role,
an authorized user can assign other users to the role. An application role is
associated with an application rather than with a group of users and requires

5.5 / INFERENCE 149

Table 5.2 Fixed Roles in Microsoft SQL Server

Role Permissions
Fixed Server Roles
sysadmin Can perform any activity in SQL Server and have complete control over
all database functions
serveradmin Can set server-wide configuration options, shut down the server
setupadmin Can manage linked servers and startup procedures
securityadmin Can manage logins and CREATE DATABASE permissions, also read
error logs and change passwords
processadmin Can manage processes running in SQL Server
Dbcreator Can create, alter, and drop databases
diskadmin Can manage disk files
bulkadmin Can execute BULK INSERT statements
Fixed Database Roles
db_owner Has all permissions in the database
db_accessadmin Can add or remove user IDs
db_datareader Can select all data from any user table in the database
db_datawriter Can modify any data in any user table in the database
db_ddladmin Can issue all data definition language statements
db_securityadmin Can manage all permissions, object ownerships, roles and role memberships
db_backupoperator Can issue DBCC, CHECKPOINT, and BACKUP statements
db_denydatareader Can deny permission to select data in the database
db_denydatawriter Can deny permission to change data in the database

a password. The role is activated when an application executes the appropriate
code. A user who has access to the application can use the application role for
database access. Often database applications enforce their own security based on
the application logic. For example, you can use an application role with its own
password to allow the particular user to obtain and modify any data only during
specific hours. Thus, you can realize more complex security management within
the application logic.

5.5 INFERENCE

Inference, asitrelates to database security, is the process of performing authorized
queries and deducing unauthorized information from the legitimate responses
received. The inference problem arises when the combination of a number of
data items is more sensitive than the individual items, or when a combination of
data items can be used to infer data of a higher sensitivity. Figure 5.5 illustrates
the process. The attacker may make use of nonsensitive data as well as metadata.

150 CHAPTER 5 / DATABASE SECURITY

Non
sensitive
data Inference

Sensitive
data

Access control

Authorized
access Unauthorized
@ w access

Metadata

Figure 5.5 Indirect Information Access via Inference Channel

Metadata refers to knowledge about correlations or dependencies among data
items that can be used to deduce information not otherwise available to a
particular user. The information transfer path by which unauthorized data is
obtained is referred to as an inference channel.

In general terms, two inference techniques can be used to derive additional
information: analyzing functional dependencies between attributes within a table
or across tables, and merging views with the same constraints.

An example of the latter shown in Figure 5.6, illustrates the inference prob-
lem. Figure 5.6a shows an Inventory table with four columns. Figure 5.6b shows
two views, defined in SQL as follows:

CREATE view V1 AS CREATE view V2 AS

SELECT Availability, Cost SELECT Item, Department

FROM Inventory FROM Inventory

WHERE Department = "hardware” WHERE Department = "hardware”

Users of these views are not authorized to access the relationship between
Item and Cost. A user who has access to either or both views cannot infer
the relationship by functional dependencies. That is, there is not a functional
relationship between Item and Cost such that knowing Item and perhaps other
information is sufficient to deduce Cost. However, suppose the two views
are created with the access constraint that Item and Cost cannot be accessed
together. A user who knows the structure of the Inventory table and who knows
that the view tables maintain the same row order as the Inventory table is then
able to merge the two views to construct the table shown in Figure 5.6¢c. This
violates the access control policy that the relationship of attributes Item and
Cost must not be disclosed.

5.5 / INFERENCE 151

Item Availability Cost ($) | Department
Shelf support in-store/online 7.99 hardware
Lid support online only 5.49 hardware
Decorative chain in-store/online 104.99 hardware
Cake pan online only 12.99 housewares
Shower/tub cleaner | in-store/online 11.99 housewares
Rolling pin in-store/online 10.99 housewares
(a) Inventory table
Availability Cost ($) Item Department
in-store/online 7.99 Shelf support hardware
online only 5.49 Lid support hardware
in-store/online 104.99 Decorative chain | hardware
(b) Two views
Item Availability Cost ($) | Department
Shelf support in-store/online 7.99 hardware
Lid support online only 5.49 | hardware
Decorative chain | in-store/online 104.99 | hardware

(c) Table derived from combining query answers

Figure 5.6 Inference Example

In general terms, there are two approaches to dealing with the threat of
disclosure by inference:

* Inference detection during database design: This approach removes an
inference channel by altering the database structure or by changing the
access control regime to prevent inference. Examples include removing
data dependencies by splitting a table into multiple tables or using more
fine-grained access control roles in an RBAC scheme. Techniques in
this category often result in unnecessarily stricter access controls that
reduce availability.

Inference detection at query time: This approach seeks to eliminate an
inference channel violation during a query or series of queries. If an inference
channel is detected, the query is denied or altered.

For either of the preceding approaches, some inference detection
algorithm is needed. This is a difficult problem and the subject of ongoing
research. To give some appreciation of the difficulty, we present an example
taken from [LUNTS89]. Consider a database containing personnel information,
including names, addresses, and salaries of employees. Individually, the name,
address, and salary information is available to a subordinate role, such as
Clerk, but the association of names and salaries is restricted to a superior role,
such as Administrator. This is similar to the problem illustrated in Figure 5.6.

152

CHAPTER 5 / DATABASE SECURITY

One solution to this problem is to construct three tables, which include the
following information:

Employees (Emp#, Name, Address)
Salaries (S#, Salary)
Emp-Salary (Emp#, S#)

where each line consists of the table name followed by a list of column names for that
table. In this case, each employee is assigned a unique employee number (Emp#)
and a unique salary number (S#). The Employees table and the Salaries table
are accessible to the Clerk role, but the Emp-Salary table is only available to the
Administrator role. In this structure, the sensitive relationship between employees
and salaries is protected from users assigned the Clerk role. Now suppose that we
want to add a new attribute, employee start date, which is not sensitive. This could
be added to the Salaries table as follows:

Employees (Emp#, Name, Address)
Salaries (S#, Salary, Start-Date)
Emp-Salary (Emp#, S#)

However, an employee’s start date is an easily observable or discoverable
attribute of an employee. Thus a user in the Clerk role should be able to infer (or
partially infer) the employee’s name. This would compromise the relationship between
employee and salary. A straightforward way to remove the inference channel is to
add the start-date column to the Employees table rather than to the Salaries table.

The first security problem indicated in this sample, that it was possible to infer
the relationship between employee and salary, can be detected through analysis
of the data structures and security constraints that are available to the DBMS.
However, the second security problem, in which the start-date column was added
to the Salaries table, cannot be detected using only the information stored in the
database. In particular, the database does not indicate that the employee name can
be inferred from the start date.

In the general case of a relational database, inference detection is a complex
and difficult problem. For multilevel secure databases, discussed in Chapter 13,
and statistical databases, discussed in the next section, progress has been made in
devising specific inference detection techniques.

STATISTICAL DATABASES

A statistical database (SDB) is one that provides data of a statistical nature, such as
counts and averages. The term statistical database is used in two contexts:

* Pure statistical database: This type of database only stores statistical data.
An example is a census database. Typically, access control for a pure SDB is
straightforward: certain users are authorized to access the entire database.

* Ordinary database with statistical access: This type of database contains individual
entries; this is the type of database discussed so far in this chapter. The database

5.6 / STATISTICAL DATABASES 153

supports a population of nonstatistical users who are allowed access to selected
portions of the database using discretionary access control (DAC), role-based
access control (RBAC), or mandatory access control (MAC). In addition, the
database supports a set of statistical users who are only permitted statistical
queries. For these latter users, aggregate statistics based on the underlying raw
data are generated in response to a user query, or may be precalculated and stored
as part of the database.

For the purposes of this section, we are concerned only with the latter type
of database and, for convenience, refer to this as an SDB. The access control
objective for an SDB system is to provide users with the aggregate information
without compromising the confidentiality of any individual entity represented in
the database. The security problem is one of inference. The database administrator
must prevent, or at least detect, the database user who attempts to gain individual
information through one or a series of statistical queries.

For this discussion, we use the abstract model of a relational database
table shown as Figure 5.7. There are N individuals, or entities, in the table and
M attributes. Each attribute A; has |Aj| possible values, with x;; denoting the value
of attribute j for entity i. Table 5.3, taken from [DENNS2], is an example that we
use in the next few paragraphs. The example is a database containing 13 confidential
records of students in a university that has 50 departments.

Statistics are derived from a database by means of a characteristic formula
(sometimes referred to as a Boolean formula), C, which is a logical formula over
the values of attributes. A characteristic formula uses the operators OR, AND, and
NOT (+, «, ~), written here in order of increasing priority. A characteristic formula
specifies a subset of the records in the database. For example, the formula

(Sex = Male) « (Major = CS) + (Major = EE))

specifies all male students majoring in either CS or EE. For numerical attributes,
relational operators may be used. For example, (GP > 3.7) specifies all students
whose grade point average exceeds 3.7. For simplicity, we omit attribute names when
they are clear from context. Thus, the preceding formula becomes Male « (CS + EE).

Attributes

Ay o o o A; o o o Ay

1 X11 o o o Xy o o o Xipm

. L] . L]

. L] . .
172

=]
St
e
3

é i X e o o X e o o Xim

. L] . .

o . o .

. . . .

N XN1 e o o xNj e o o XNm

Figure 5.7 Abstract Model of a Relational Database

154 CHAPTER 5/ DATABASE SECURITY

Table 5.3 Statistical Database Example
(a) Database with Statistical Access with N = 13 Students
Name Sex Major Class SAT GP
Allen Female CS 1980 600 34
Baker Female [EE 1980 520 2.5
Cook Male IElE 1978 630 35
Davis Female CS 1978 800 4.0
Evans Male Bio 1979 500 22
Frank Male IBE} 1981 580 3.0
Good Male CS 1978 700 3.8
Hall Female Psy 1979 580 2.8
Iles Male CS 1981 600 32
Jones Female Bio 1979 750 3.8
Kline Female Psy 1981 500 2.5
Lane Male EE 1978 600 3.0
Moore Male CS 1979 650 35

(b) Attribute Values and Counts

Attribute A; Possible Values [Al
Sex Male, Female 2
Major Bio, CS, EE, Psy, ... 50
Class 1978, 1979, 1980, 1981 4
SAT 310, 320, 330, ..., 790, 800 50
GP 0.0,0.1,0.2, ..., 3.9, 4.0 41

Source: “Relational Database (Revocation)” from CRYPTOGRAPHY AND DATA SECURITY, Ist Edition by Dorothy
E. Denning. Copyright © 1982 by Dorothy E. Denning. Printed and Electronically reproduced by permission of Pearson

Education,

Inc., Upper Saddle River, New Jersey.

The query set of characteristic formula C, denoted as X(C), is the set of records
matching that characteristic. For example, for C = Female . CS, X(C) consists of
records 1 and 4, the records for Allen and Davis.

A statistical query is a query that produces a value calculated over a query set.
Table 5.4 lists some simple statistics that can be derived from a query set. Examples:
count(Female « CS) = 2; sum(Female . CS, SAT) = 1400.

Inference from a Statistical Database

A statistical user of an underlying database of individual records is restricted to
obtaining only aggregate, or statistical, data from the database and is prohibited
access to individual records. The inference problem in this context is that a user may
infer confidential information about individual entities represented in the SDB. Such
an inference is called a compromise. The compromise is positive if the user deduces

5.6 / STATISTICAL DATABASES 155

Table 5.4 Some Queries of a Statistical Database

Name Formula Description
count(C) |X(O)] Number of records in the query set
sum(C, Aj) s Sum of the values of numerical attribute A; over all the
ij .
iEX(C) records in X(C)
rfreq(C) M Fraction of all records that are in X(C)
N
avg(C, A)) sum(C, A;) Mean value of numerical attribute A; over all the records
count(C) in X(C)
median(C, A4)) The [|X(C)| / 2] largest value of attribute over all the
records in X(C). Note that when the query set size is
even, the median is the smaller of the two middle values.
[x] denotes the smallest integer greater than x.
max(C, A;) Max(x;) Maximum value of numerical attribute A; over all the
=) records in X(C)
min(C, A)) Min (x;;) Minimum value of numerical attribute A4; over all the
HEX(EC) records in X(C)

Note: C = a characteristic formula, consisting of a logical formula over the values of attributes. X(C) = query set
of C, the set of records satisfying C.

the value of an attribute associated with an individual entity and is negative if the user
deduces that a particular value of an attribute is not associated with an individual
entity. For example, the statistic sum(EE . Female, GP) = 2.5 compromises the
database if the user knows that Baker is the only female EE student.

In some cases, a sequence of queries may reveal information. For example,
suppose a questioner knows that Baker is a female EE student but does not know if
she is the only one. Consider the following sequence of two queries:

count(EE . Female) = 1
sum(EE . Female, GP) = 2.5

This sequence reveals the sensitive information.

The preceding example shows how some knowledge of a single individual in the
database can be combined with queries to reveal protected information. For a large
database, there may be few or no opportunities to single out a specific record that has
a unique set of characteristics, such as being the only female student in a department.
Another angle of attack is available to a user aware of an incremental change to the
database. For example, consider a personnel database in which the sum of salaries of
employees may be queried. Suppose a questioner knows the following information:

Salary range for a new systems analyst with a BS degree is $[50K, 60K]
Salary range for a new systems analyst with a MS degree is $[60K, 70K]

Suppose two new systems analysts are added to the payroll and the change
in the sum of the salaries is $130K. Then the questioner knows that both new
employees have an MS degree.

156

CHAPTER 5 / DATABASE SECURITY

In general terms, the inference problem for an SDB can be stated as
follows. A characteristic function C defines a subset of records (rows) within
the database.A query using C provides statistics on the selected subset. If the
subset is small enough, perhaps even a single record, the questioner may be
able to infer characteristics of a single individual or a small group. Even for
larger subsets, the nature or structure of the data may be such that unauthorized
information may be released.

Query Restriction

SDB implementers have developed two distinct approaches to protection of an
SDB from inference attacks (Figure 5.8):

* Query restriction: Rejects a query that can lead to a compromise.The answers
provided are accurate.
* Perturbation: Provides answers to all queries, but the answers are approximate.

We examine query restriction in this section and perturbation in the next.
Query restriction techniques defend against inference by restricting statistical

A
Queries (restricted)
SDB
Exact responses
or denials
(a) Query set restriction
A
Queries
i Data Perturbated
pertubation SDB Pertubated
responses
(b) Data perturbation
A
Queries
SDB

Perturbated responses

(c) Output perturbation
Figure 5.8 Approaches to Statistical Database Security

5.6 / STATISTICAL DATABASES 157

queries so that they do not reveal user confidential information. Restriction in this
context simply means that some queries are denied.

Ouery Size Restricrion The simplest form of query restriction is query size
restriction. For a database of size N (number of rows, or records), a query g(C) is
permitted only if the number of records that match C satisfies

k=|X(C)| =N-k (5.1)

where k is a fixed integer greater than 1. Thus, the user may not access any query
set of less than k records. Note that the upper bound is also needed. Designate All
as the set of all records in the database. If g(C) is disallowed because | X(C)| <k,
and there is no upper bound, then a user can compute g(C) = g(All) — q(~C). The
upper bound of N — k guarantees that the user does not have access to statistics
on query sets of less than k records. In practice, queries of the form g(All) are
allowed, enabling users to easily access statistics calculated on the entire database.

Query size restriction counters attacks based on very small query sets.
For example, suppose a user knows that a certain individual / satisfies a given
characteristic formula C (e.g., Allen is a female CS major). If the query count(C)
returns 1, then the user has uniquely identified /. Then the user can test whether /
has a particular characteristic D with the query count(C . D). Similarly, the user can
learn the value of a numerical attribute A for / with the query sum(C, A).

Although query size restriction can prevent trivial attacks, it is vulnerable
to more sophisticated attacks, such as the use of a tracker [DENN79]. In essence,
the questioner divides his or her knowledge of an individual into parts, such that
queries can be made based on the parts without violating the query size restriction.
The combination of parts is called a tracker, because it can be used to track down
characteristics of an individual. We can describe a tracker in general terms using the
case from the preceding paragraph. The formula C « D corresponds to zero or one
record, so that the query count(C « D) is not permitted. But suppose that the formula
C can be decomposed into two parts C = CI - C2, such that the query sets for both
CI and T = (CI - ~C2) satisfy the query size restriction. Figure 5.9 illustrates this
situation; in the figure, the size of the circle corresponds to the number of records in
the query set. If it is not known if / is uniquely identified by C, the following formula
can be used to determine if count(C) = 1:

count(C) = count(CI) — count(7) (5.2)

That is, you count the number of records in CI and then subtract the number of
records that are in C/ but not in C2. The result is the number of records that are in
both CI and C2, which is equal to the number of records in C. By a similar reasoning,
it can be shown that we can determine whether I has attribute D with

count(C + D) = count(7 + CI D) — count(T) (5.3)

For example, in Table 5.3, Evans is identified by C = Male - Bio - 1979.
Let k = 3 in Equation (5.1). We can use 7 = (CI - ~C2) = Male . ~ (Bio - 1979).
Both CI and C2 satisfy the query size restriction. Using Equations (5.2) and (5.3),

158

CHAPTER 5 / DATABASE SECURITY

Figure 5.9 Example of Tracker

we determine that Evans is uniquely identified by C and whether his SAT score is
at least 600:

count(Male « Bio « 1979) = count(Male) — count(Male - ~ (Bio - 1979))
=7-6=1
count((Male . Bio - 1979) . (SAT = 600)) =
count((Male « ~ (Bio « 1979) + (Male . (SAT = 600)))
— count(Male « ~ (Bio+1979)) =6 -6 =0

In a large database, the use of just a few queries will typically be inadequate
to compromise the database. However, it can be shown that more sophisticated
tracker attacks may succeed even against large databases in which the threshold k is
set at a relatively high level [DENN79].

We have looked at query size restriction in some detail because it is easy
to grasp both the mechanism and its vulnerabilities. A number of other query
restriction approaches have been studied, all of which have their own vulnerabilities.
However, several of these techniques in combination reduce vulnerability.

Ouvuery SET OvErRLAP CONTROL A query size restriction is defeated by issuing
queries in which there is considerable overlap in the query sets. For example, in one
of the preceding examples the query sets Male and Male - ~ (Bio - 1979) overlap
significantly, allowing an inference. To counter this, the query set overlap control
provides the following limitation.

A query g(C) is permitted only if the number of records that match C satisfies

| X(C)NX(D)| = r (5.4)

for all g(D) that have been answered for this user, and where r is a fixed integer
greater than 0.
This technique has a number of problems, including the following [AD AMS89]:

1. This control mechanism is ineffective for preventing the cooperation of several
users to compromise the database.

2. Statistics for both a set and its subset (e.g., all patients and all patients undergoing
a given treatment) cannot be released, thus limiting the usefulness of the database.

3. For each user, a user profile has to be kept up to date.

5.6 / STATISTICAL DATABASES 159

PartrrioNinG Partitioning can be viewed as taking query set overlap control to
its logical extreme by not allowing overlapping queries at all. With partitioning, the
records in the database are clustered into a number of mutually exclusive groups.
The user may only query the statistical properties of each group as a whole. That is,
the user may not select a subset of a group. Thus, with multiple queries, there must
either be complete overlap (two different queries of all the records in a group) or
zero overlap (two queries from different groups).
The rules for partitioning the database are as follows:

1. Each group G has g = | G | records, where g = 0 or g = n, and g even, where n
is a fixed integer parameter.

2. Records are added or deleted from G in pairs.

3. Query sets must include entire groups. A query set may be a single group or
multiple groups.

A group of a single record is forbidden, for obvious reasons. The insertion or
deletion of a single record enables a user to gain information about that record by
taking before and after statistics. As an example, the database of Table 5.3a can
be partitioned as shown in Table 5.5. Because the database has an odd number of
records, the record for Kline has been omitted. The database is partitioned by year
and sex, except that for 1978, it is necessary to merge the Female and Male records
to satisfy the design requirement.

Partitioning solves some security problems but has some drawbacks.
The user’s ability to extract useful statistics is reduced, and there is a design effort in
constructing and maintaining the partitions.

QUERY DENIAL AND INFORMATION LEAKAGE A general problem with query
restriction techniques is that the denial of a query may provide sufficient clues
that an attacker can deduce underlying information. This is generally described by
saying that query denial can leak information.

Here is a simple example from [KENTO0S5]. Suppose that the underlying
database consists of real-valued entries and that a query is denied only if it would
enable the requestor to deduce a value. Now suppose the requester poses the query
sum(x1, X, x3) and the response is 15. Then the requester queries max(xy, x,, x3) and
the query is denied. What can the requester deduce from this? We know that the
max(xy, X, x3) cannot be less than 5 because then the sum would be less than 15.
But if max(xq, x,, x3) > 5, the query would not be denied because the answer would
not reveal a specific value. Therefore, it must be the case that max(xy, x,, x3) = 5,
which enables the requester to deduce that x; = x, = x3 = 5.

Table 5.5 Partitioned Database

Sex Class
1978 1979 1980 1981
Female 2 2 0
Male 2 0 2

160

CHAPTER 5 / DATABASE SECURITY

[KENTOS5] describes an approach to counter this threat, referred to as
simulatable auditing. The details of this approach are beyond the scope of this
chapter. In essence, the system monitors all of the queries from a given source
and decides on the basis of the queries so far posed whether to deny a new query.
The decision is based solely on the history of queries and answers and the specific new
query. In deciding whether to deny the query, the system does not consider the actual
values of database elements that will contribute to generating the answer and therefore
does not consider the actual value of the answer. Thus, the system makes the denial
decision solely on the basis of information that is already available to the requester (the
history of prior requests). Hence the decision to deny a query cannot leak any information.
For this approach, the system determines whether any collection of database values
might lead to information leakage and denies the query if leakage is possible. In practice,
a number of queries will be denied even if leakage is not possible. In the example of the
preceding paragraph, this strategy would deny the max query whether or not the three
underlying values were equal. Thus, this approach is more conservative in that it issues
more denials than an approach that considers the actual values in the database.

Perturbation

Query restriction techniques can be costly and are difficult to implement in such a
way as to completely thwart inference attacks, especially if a user has supplementary
knowledge. For larger databases, a simpler and more effective technique is to, in
effect, add noise to the statistics generated from the original data. This can be done
in one of two ways (Figure 5.8): the data in the SDB can be modified (perturbed)
so as to produce statistics that cannot be used to infer values for individual records;
we refer to this as data perturbation. Alternatively, when a statistical query is made,
the system can generate statistics that are modified from those that the original
database would provide, again thwarting attempts to gain knowledge of individual
records; this is referred to as output perturbation.

Regardless of the specific perturbation technique, the designer must attempt
to produce statistics that accurately reflect the underlying database. Because of
the perturbation, there will be differences between perturbed results and ordinary
results from the database. However, the goal is to minimize the differences and to
provide users with consistent results.

As with query restriction, there are a number of perturbation techniques.
In this section, we highlight a few of these.

DATA PERTURBATION TECHNIOUES We look at two techniques that consider the
SDB to be a sample from a given population that has a given population distribution.
Two methods fit into this category. The first transforms the database by substituting
values that conform to the same assumed underlying probability distribution.
The second method is, in effect, to generate statistics from the assumed underlying
probability distribution.

The first method is referred to as data swapping. In this method, attribute values
are exchanged (swapped) between records in sufficient quantity so that nothing can
be deduced from the disclosure of individual records. The swapping is done in such
a way that the accuracy of at least low-order statistics is preserved. Table 5.6, from

5.6 / STATISTICAL DATABASES 161

Table 5.6 Example of Data Swapping

D D’
Record Sex Major GP Sex Major GP
1 Female Bio 4.0 Male Bio 4.0
2 Female CS 3.0 Male CS 3.0
3 Female BE 3.0 Male B 3.0
4 Female Psy 4.0 Male Psy 4.0
5 Male Bio 3.0 Female Bio 3.0
6 Male CS 4.0 Female CS 4.0
7 Male BE 4.0 Female IBE 4.0
8 Male Psy 3.0 Female Psy 3.0

[DENNS82], shows a simple example, transforming the database D into the database D’.
The transformed database D has the same statistics as D for statistics derived from one
or two attributes. However, three-attribute statistics are not preserved. For example,
count(Female - CS . 3.0) has the value 1 in D but the value 0 in D’.

Another method is to generate a modified database using the estimated
underlying probability distribution of attribute values. The following steps are used:

1. For each confidential or sensitive attribute, determine the probability
distribution function that best matches the data and estimate the parameters
of the distribution function.

2. Generate a sample series of data from the estimated density function for each
sensitive attribute.

3. Substitute the generated data of the confidential attribute for the original data
in the same rank order. That is, the smallest value of the new sample should
replace the smallest value in the original data, and so on.

Ouvurpur PERTURBATION TECHNIOUES A simple output perturbation technique is
known as random-sample query. This technique is suitable for large databases and
is similar to a technique employed by the U.S. Census Bureau. The technique works
as follows:

1. A user issues a query g(C) that is to return a statistical value. The query set so
defined is X(C).

2. The system replaces X(C) with a sampled query set, which is a properly
selected subset of X(C).

3. The system calculates the requested statistic on the sampled query set and
returns the value.

Other approaches to output perturbation involve calculating the statistic on
the requested query set and then adjusting the answer up or down by a given amount
in some systematic or randomized fashion. All of these techniques are designed to

162 CHAPTER 5 / DATABASE SECURITY

thwart tracker attacks and other attacks that can be made against query restriction
techniques.

With all of the perturbation techniques, there is a potential loss of accuracy as
well as the potential for a systematic bias in the results.

Limrrations oF PERTURBATION TECHNIOUES The main challenge in the use of
perturbation techniques is to determine the average size of the error to be used.
If there is too little error, a user can infer close approximations to protected values.
If the error is, on average, too great, the resulting statistics may be unusable.

For a small database, it is difficult to add sufficient perturbation to hide data
without badly distorting the results. Fortunately, as the size of the database grows, the
effectiveness of perturbation techniques increases. This is a complex topic, beyond
the scope of this chapter. Examples of recent work include [DWORO06], [EVFI03],
and [DINUO3].

The last-mentioned reference reported the following result. Assume the size
of the database, in terms of the number of data items or records, is zn. If the number
of queries from a given source is linear to the size of the database (i.e., on the order
of n), then a substantial amount of noise must be added to the system, in terms of
perturbation, to preserve confidentiality. Specifically, suppose the perturbation is
imposed on the system by adding a random amount of perturbation =< x. Then,
if the query magnitude is linear, the perturbation must be at least of order V.
This amount of noise may be sufficient to make the database effectively unusable.
However, if the number of queries is sublinear (e.g., of order V), then much less
noise must be added to the system to maintain privacy. For a large database, limiting
queries to a sublinear number may be reasonable.

5.7 DATABASE ENCRYPTION

The database is typically the most valuable information resource for any organization
and is therefore protected by multiple layers of security, including firewalls,
authentication mechanisms, general access control systems, and database access
control systems. In addition, for particularly sensitive data, database encryption is
warranted and often implemented. Encryption becomes the last line of defense in
database security.

There are two disadvantages to database encryption:

° Key management: Authorized users must have access to the decryption key for
the data for which they have access. Because a database is typically accessible
to a wide range of users and a number of applications, providing secure keys
to selected parts of the database to authorized users and applications is a
complex task.

¢ Inflexibility: When part or all of the database is encrypted, it becomes more
difficult to perform record searching.

Encryption can be applied to the entire database, at the record level (encrypt
selected records), at the attribute level (encrypt selected columns), or at the level of
the individual field.

/e

User

5.7 / DATABASE ENCRYPTION 163

A number of approaches have been taken to database encryption. In this
section, we look at a representative approach for a multiuser database.

A DBMS is a complex collection of hardware and software. It requires a large
storage capacity and requires skilled personnel to perform maintenance, disaster
protection, update, and security. For many small and medium-sized organizations,
an attractive solution is to outsource the DBMS and the database to a service
provider. The service provider maintains the database off site and can provide high
availability, disaster prevention, and efficient access and update. The main concern
with such a solution is the confidentiality of the data.

A straightforward solution to the security problem in this context is to encrypt
the entire database and not provide the encryption/decryption keys to the service
provider. This solution by itself is inflexible. The user has little ability to access
individual data items based on searches or indexing on key parameters, but rather
would have to download entire tables from the database, decrypt the tables, and
work with the results. To provide more flexibility, it must be possible to work with
the database in its encrypted form.

An example of such an approach, depicted in Figure 5.10, is reported in
[DAMIO5] and [DAMIO3]. A similar approach is described in [HACI02]. Four
entities are involved:

* Data owner: An organization that produces data to be made available for
controlled release, either within the organization or to external users.

» User: Human entity that presents requests (queries) to the system. The user
could be an employee of the organization who is granted access to the database
via the server, or a user external to the organization who, after authentication,
is granted access.

- metadata
‘ s - ' ____________ -4

1. Original query 1

1
1
1
—~~— 1
1
1
4. Plaintext |
result 1
1
Y

2. Transformed

Client query
Query
Processor Executor
3. Encrypted

result

Meta Encrypt/
Data Decrypt Server

Figure 5.10 A Database Encryption Scheme

164

CHAPTER 5 / DATABASE SECURITY

* Client: Frontend that transforms user queries into queries on the encrypted
data stored on the server.

e Server: An organization that receives the encrypted data from a data owner
and makes them available for distribution to clients. The server could in
fact be owned by the data owner but, more typically, is a facility owned and
maintained by an external provider.

Let us first examine the simplest possible arrangement based on this scenario.
Suppose that each individual item in the database is encrypted separately, all
using the same encryption key. The encrypted database is stored at the server,
but the server does not have the key, so that the data are secure at the server.
Even if someone were able to hack into the server’s system, all he or she would
have access to is encrypted data. The client system does have a copy of the
encryption key. A user at the client can retrieve a record from the database with
the following sequence:

1. The user issues an SQL query for fields from one or more records with a
specific value of the primary key.

2. The query processor at the client encrypts the primary key, modifies the SQL
query accordingly, and transmits the query to the server.

3. The server processes the query using the encrypted value of the primary key
and returns the appropriate record or records.

4. The query processor decrypts the data and returns the results.

For example, consider this query, which was introduced in Section 5.1, on the
database of Figure 5.3a:

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 15

Assume that the encryption key k& is used and that the encrypted value of the
department id 15 is E(k, 15) = 1000110111001110. Then the query processor at the
client could transform the preceding query into

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 1000110111001110

This method is certainly straightforward but, as was mentioned, lacks
flexibility. For example, suppose the Employee table contains a salary attribute
and the user wishes to retrieve all records for salaries less than $70K. There is
no obvious way to do this, because the attribute value for salary in each record is
encrypted. The set of encrypted values do not preserve the ordering of values in
the original attribute.

To provide more flexibility, the following approach is taken. Each record
(row) of a table in the database is encrypted as a block. Referring to the abstract

5.7 / DATABASE ENCRYPTION 165

model of a relational database in Figure 5.7, each row R; is treated as a contiguous
block B; = (x;; || x2|l... || x;pr)- Thus, each attribute value in R;, regardless of whether
it is text or numeric, is treated as a sequence of bits, and all of the attribute values
for that row are concatenated together to form a single binary block. The entire row
is encrypted, expressed as E(k, B;) = E(k, (x;7 || xi2 || ... || xiar)). To assist in data
retrieval, attribute indexes are associated with each table. For some or all of the
attributes an index value is created. For each row R; of the unencrypted database,
the mapping is as follows (Figure 5.11):

(xiz> Xi2, - > Xipg) = [E(k, By), Lig, Iip, <., Iipg]

For each row in the original database, there is one row in the encrypted
database. The index values are provided to assist in data retrieval. We can proceed
as follows. For any attribute, the range of attribute values is divided into a set of
non-overlapping partitions that encompass all possible values, and an index value is
assigned to each partition.

Table 5.7 provides an example of this mapping. Suppose that employee 1D
(eid) values lie in the range [1, 1000]. We can divide these values into five partitions:
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000]; and then assign index
values 1, 2, 3, 4, and 5, respectively. For a text field, we can derive an index from
the first letter of the attribute value. For the attribute ename, let us assign index
1 to values starting with A or B, index 2 to values starting with C or D, and so on.
Similar partitioning schemes can be used for each of the attributes. Table 5.7b
shows the resulting table. The values in the first column represent the encrypted
values for each row. The actual values depend on the encryption algorithm and the
encryption key. The remaining columns show index values for the corresponding
attribute values. The mapping functions between attribute values and index values
constitute metadata that are stored at the client and data owner locations but not
at the server.

This arrangement provides for more efficient data retrieval. Suppose, for
example, a user requests records for all employees with eid < 300. The query
processor requests all records with I(eid) = 2. These are returned by the server.
The query processor decrypts all rows returned, discards those that do not match
the original query, and returns the requested unencrypted data to the user.

E(k, Bl) IlI o o o Ilj o o o IlM

E(k, B;) I ° o o It] ° o o Ly

E(k, BN) INl o o o INJ o o o INM
By = (xy 1 xp 11 11 xpy)

Figure 5.11 Encryption Scheme for Database of Figure 5.7

166 CHAPTER 5/ DATABASE SECURITY

Table 5.7 Encrypted Database Example
(a) Employee Table

eid ename salary addr did

23 Tom 70K Maple 45
860 Mary 60K Main 83
320 John S0K River 50
875 Jerry 55K Hopewell 92

(b) Encrypted Employee Table with Indexes

1100110011001011... 1 10 3 7 4
0111000111001010... 5 7 2 7 8
1100010010001101... 2 5 1 9 S
0011010011111101... 5 5 2 4 9

The indexing scheme just described does provide a certain amount
of information to an attacker, namely a rough relative ordering of rows by a
given attribute. To obscure such information, the ordering of indexes can
be randomized. For example, the eid values could be partitioned by mapping
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000] into 2, 3, 5, 1, and 4,
respectively. Because the metadata are not stored at the server, an attacker
could not gain this information from the server.

Other features may be added to this scheme. To increase the efficiency of
accessing records by means of the primary key, the system could use the encrypted
value of the primary key attribute values, or a hash value. In either case, the row
corresponding to the primary key value could be retrieved individually. Different
portions of the database could be encrypted with different keys, so that users
would only have access to that portion of the database for which they had the
decryption key. This latter scheme could be incorporated into a role-based access
control system.

5.8 CLOUD SECURITY

There is an increasingly prominent trend in many organizations to move a
substantial portion or even all information technology (IT) operations to an
Internet-connected infrastructure known as enterprise cloud computing. The use
of cloud computing raises a number of security issues, particularly in the area of
database security. We begin this section with an overview of cloud computing,
then move on to a general discussion of cloud security. Finally, we focus on
database cloud security.

5.8 / CLOUD SECURITY 167

Cloud Computing

NIST defines cloud computing as follows [MELL11]:

Cloud computing: A model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models.

The definition refers to various models and characteristics, whose relationship is
illustrated in Figure 5.12. The essential characteristics of cloud computing include
the following:

° Broad network access: Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, laptops, and PD As) as well
as other traditional or cloud-based software services.

Broad Rapid Measured On-Demand
Network Access Elasticity Service Self-Service

Resource Pooling

Essential
Characteristics

N
AN

Software as a Service (SaaS)

Platform as a Service (PaaS)

Service
Models

Infrastructure as a Service (IaaS) ’

N
AN

Models

Public Private Hybrid Community

Deployment

- J

Figure 5.12 Cloud Computing Elements

168

CHAPTER 5 / DATABASE SECURITY

Rapid elasticity: Cloud computing gives you the ability to expand and
reduce resources according to your specific service requirement. For
example, you may need a large number of server resources for the duration
of a specific task. You can then release these resources upon completion of
the task.

Measured service: Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

On-demand self-service: A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service provider. Because
the service is on demand, the resources are not permanent parts of your IT
infrastructure.

Resource pooling: The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a degree of location independence in that the customer
generally has no control or knowledge over the exact location of the provided
resources, but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter). Examples of resources include storage,
processing, memory, network bandwidth, and virtual machines. Even
private clouds tend to pool resources between different parts of the same
organization.

NIST defines three service models, which can be viewed as nested service

alternatives:

* Software as a service (SaaS): The capability provided to the consumer is to use

the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through a thin client interface
such as a Web browser. Instead of obtaining desktop and server licenses for
software products it uses, an enterprise obtains the same functions from the
cloud service. SaaS saves the complexity of software installation, maintenance,
upgrades, and patches.

Platform as a service (PaaS): The capability provided to the consumer
is to deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages and tools supported by the
provider. PaaS often provides middleware-style services such as database and
component services for use by applications.

Infrastructure as a service (IaaS): The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications.

5.8 / CLOUD SECURITY 169

NIST defines four deployment models:

* Public cloud: The cloud infrastructure is made available to the general
public or a large industry group and is owned by an organization selling
cloud services. Both the infrastructure and control of the cloud is with the
service provider.

e Private cloud: The cloud infrastructure is operated solely for an organization.
It may be managed by the organization or a third party and may exist on
premise or off premise. The cloud provider is responsible only for the
infrastructure and not for the control.

° Community cloud: The cloud infrastructure is shared by several organizations
and supports a specific community that has shared concerns (e.g., mission,
security requirements, policy, and compliance considerations). It may be
managed by the organizations or a third party and may exist on premise or
off premise.

° Hybrid cloud: The cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but
are bound together by standardized or proprietary technology that enables
data and application portability (e.g., cloud bursting for load balancing
between clouds).

Figure 5.13 illustrates the typical cloud service context. An enterprise maintains
workstations within an enterprise LAN or set of LANs, which are connected by
a router through a network or the Internet to the cloud service provider. The cloud
service provider maintains a massive collection of servers, which it manages with a
variety of network management, redundancy, and security tools. In the figure, the cloud
infrastructure is shown as a collection of blade servers, which is a common architecture.

Cloud Security Risks

In general terms, security controls in cloud computing are similar to the security
controls in any IT environment. However, because of the operational models and
technologies used to enable cloud service, cloud computing may present risks that
are specific to the cloud environment. The essential concept in this regard is that
the enterprise loses a substantial amount of control over resources, services, and
applications but must maintain accountability for security and privacy policies.

The Cloud Security Alliance [CSA10] lists the following as the top
cloud-specific security threats:

* Abuse and nefarious use of cloud computing: For many cloud providers
(CPs), it is relatively easy to register and begin using cloud services, some
even offering free limited trial periods. This enables attackers to get inside the
cloud to conduct various attacks, such as spamming, malicious code attacks,
and denial of service. PaaS providers have traditionally suffered most from
this kind of attacks; however, recent evidence shows that hackers have begun
to target laaS vendors as well. The burden is on the CP to protect against such
attacks, but cloud service clients must monitor activity with respect to their
data and resources to detect any malicious behavior.

170 CHAPTER 5 / DATABASE SECURITY

Enterprise -
Cloud User

Network
or Internet

Cloud
service
provider

Servers

Figure 5.13 Cloud Computing Context

 Insecure interfaces and APIs: CPs expose a set of software interfaces or APIs
that customers use to manage and interact with cloud services. The security
and availability of general cloud services is dependent upon the security of
these basic APIs. From authentication and access control to encryption and
activity monitoring, these interfaces must be designed to protect against both
accidental and malicious attempts to circumvent policy.

* Malicious insiders: Under the cloud computing paradigm, an organization
relinquishes direct control over many aspects of security and, in doing so,
confers an unprecedented level of trust onto the CP. One grave concern is the
risk of malicious insider activity. Cloud architectures necessitate certain roles
that are extremely high-risk. Examples include CP system administrators and
managed security service providers.

e Shared technology issues: [aaS vendors deliver their services in a scalable
way by sharing infrastructure. Often, the underlying components that make
up this infrastructure (CPU caches, GPUs, etc.) were not designed to offer
strong isolation properties for a multi-tenant architecture. CPs typically

5.8 / CLOUD SECURITY 171

approach this risk by the use of isolated virtual machines for individual clients.
This approach is still vulnerable to attack, by both insiders and outsiders, and
so can only be a part of an overall security strategy.

° Data loss or leakage: For many clients, the most devastating impact from a
security breach is the loss or leakage of data. We address this issue in the next
subsection.

* Account or service hijacking: Account and service hijacking, usually with
stolen credentials, remains a top threat. With stolen credentials, attackers
can often access critical areas of deployed cloud computing services, allowing
them to compromise the confidentiality, integrity, and availability of those
services.

* Unknown risk profile: In using cloud infrastructures, the client necessarily
cedes control to the cloud provider on a number of issues that may affect
security. Thus the client must pay attention to and clearly define the roles
and responsibilities involved for managing risks. For example, employees
may deploy applications and data resources at the CP without observing the
normal policies and procedures for privacy, security, and oversight.

Similar lists have been developed by the European Network and Information
Security Agency [ENIS09] and NIST [JANS11].

Data Protection in the Cloud

There are many ways to compromise data. Deletion or alteration of records without
a backup of the original content is an obvious example. Unlinking a record from
a larger context may render it unrecoverable, as can storage on unreliable media.
Loss of an encoding key may result in effective destruction. Finally, unauthorized
parties must be prevented from gaining access to sensitive data.

The threat of data compromise increases in the cloud, due to the number of
and interactions between risks and challenges that are either unique to the cloud or
more dangerous because of the architectural or operational characteristics of the
cloud environment.

Database environments used in cloud computing can vary significantly.
Some providers support a multi-instance model, which provides a unique DBMS
running on a virtual machine instance for each cloud subscriber. This gives the
subscriber complete control over role definition, user authorization, and other
administrative tasks related to security. Other providers support a multi-tenant
model, which provides a predefined environment for the cloud subscriber that
is shared with other tenants, typically through tagging data with a subscriber
identifier. Tagging gives the appearance of exclusive use of the instance, but
relies on the cloud provider to establish and maintain a sound secure database
environment.

Data must be secured while at rest, in transit, and in use, and access to the
data must be controlled. The client can employ encryption to protect data in transit,
though this involves key management responsibilities for the CP. The client can
enforce access control techniques but, again, the CP is involved to some extent
depending on the service model used.

172 CHAPTER 5 / DATABASE SECURITY

For data at rest, the ideal security measure is for the client to encrypt
the database and only store encrypted data in the cloud, with the CP having no access
to the encryption key. So long as the key remains secure, the CP has no ability to read
the data, although corruption and other denial-of-service attacks remain a risk.The
model depicted in Figure 5.10 works equally well when the data is stored in a cloud.

5.9 RECOMMENDED READING AND WEB SITE

[BERTO05] is an excellent survey of database security. Two surveys of access control for
database systems are [BERT95] and [LUNT90]. [VIEIO5] analyzes ways to characterize
and assess security mechanisms in database systems. [DISA95] is a lengthy discussion
of database security topics, focusing on the features available in commercial DBMSs.

[FARKO02] is a brief overview of the inference problem. [THUROS5] provides
a thorough treatment. [AD AMS89] provides a useful overview of statistical database
security. [JONGS3] illustrates the extent of the vulnerability of statistical databases
to a simple series of queries.

For a brief but useful overview of databases, see [LEYTO1]. [SHAS04] is an
instructive discussion on the use of database systems by application developers. The
concepts on which relational databases are based were introduced in a classic paper
by Codd [CODD70]. An early survey paper on relational databases is [KIM79].

[JANS11] is a worthwhile, systematic treatment of cloud security issues. Other
useful treatments, providing differing perspectives, are [HASS10], [BALAO09],
[ANTH10], and [CSA09].

ADAMS89 Adam, N., and Wortmann, J. “Security-Control Methods for Statistical
Databases: A Comparative Study.” ACM Computing Surveys, December 1989.

ANTH10 Anthes, G. “Security in the Cloud.” Communications of the ACM, November
2010.

BALAO09 Balachandra, R.; Ramakrishna, P.; and Rakshit, A. “Cloud Security Issues.”
Proceedings, 2009 IEEE International Conference on Services Computing, 2009.

BERT95 Bertino, E.; Jajodia, S.; and Samarati, P. “Database Security: Research and
Practice.” Information Systems, Vol. 20, No. 7, 1995.

BERTO05 Bertino, E., and Sandhu, R. “Database Security—Concepts, Approaches,
and Challenges.” I[EEE Transactions on Dependable and Secure Computing,
January—-March, 2005.

CODD70 Codd, E. “A Relational Model of Data for Large Shared Data Banks.”
Communications of the ACM, June 1970.

CSA09 Cloud Security Alliance. Security Guidance for Critical Areas of Focus in
Cloud Computing V2.1. CSA Report, December 2009.

DISA95 Defense Information Systems Agency. Database Security Technical
Implementation Guide. Department of Defense, November 30, 2005. csrc.
nist.gov/pcig/STIGs/database-stig-v7r2.pdf.

FARKO02 Farkas, C., and Jajodia, S. “The Inference Problem: A Survey.” ACM
SIGKDD Explorations, Vol. 4, No. 2, 2002.

HASS10

JANS11

JONGS3

KIM79
LEYTO01

LUNT90

SHAS04

THURO05

VIEIOS

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 173

Hassan, T.; Joshi, J.; and Ahn, G. “Security and Privacy Challenges in Cloud
Computing Environments.” IEEE Security&Privacy, November/December,
2010.

Jansen, W., and Grance, T. Guidelines on Security and Privacy in Public
Cloud Computing. NIST Special Publication 800-144, January 2011.

Jonge, W. “Compromising Statistical Database Responding to Queries
About Means.” ACM Transactions on Database Systems, March 1983.

Kim, W. “Relational Database Systems.” Computing Surveys, September 1979,
Leyton, R. “A Quick Introduction to Database Systems.” ;login, December
2001.

Lunt, T., and Fernandez, E. “Database Security.” ACM SIGMOD Record,
December 1990.

Shasha, D., and Bonnet, P. “Database Systems: When to Use Them and How
to Use Them Well.” Dr. Dobb’s Journal, December 2004.

Thuraisingham, B. Database and Applications Security. New York: Auerbach,
2005.

Vieira, M., and Madeira, H. “Towards a Security Benchmark for Database
Management Systems.” Proceedings of the 2005 International Conference on
Dependable Systems and Networks, 2005.

* Cloud Security Alliance: Organization promoting best practices for cloud security

Recommended Web site:

implementation. Site contains useful documents and links.

5.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
attribute foreign key query size restriction
cascading authorizations inference relation

characteristic formula

inference channel relational database

(DBMS)

query set overlap control

compromise output perturbation relational database
data perturbation partitioning management system
data swapping perturbation (RDBMS)

database primary key SQL

database access control query language statistical database
database encryption query restriction tuple

database management system | query set view

174 CHAPTER 5 / DATABASE SECURITY

Review Questions

9 Y Y Y Y |
>IN |

n

n
W N -

(7 I N

=)

Define the terms database, database management system, and query language.
What is a relational database and what are its principal ingredients?

How many primary keys and how many foreign keys may a table have in a relational
database?

List and briefly describe some administrative policies that can be used with a RDBMS.
Explain the concept of cascading authorizations.

Explain the nature of the inference threat to an RDBMS.

What are the two main types of statistical databases?

List and briefly describe two approaches to inference prevention for a statistical
database.

What are the disadvantages to database encryption?

Problems

5.1 Consider a simplified university database that includes information on courses (name,

n

number, day, time, room number, max enrollment) and on faculty teaching courses
and students attending courses. Suggest a relational database for efficiently managing
this information.

The following table below provides information on members of a mountain
climbing club.

Climber-ID Name Skill Level Age
123 Edmund | Experienced 80
214 Arnold Beginner 25
313 Bridget Experienced 33
212 James Medium 27

The primary key is Climber-I1D. Explain whether or not each of the following rows can
be added to the table.

Climber-ID Name Skill Level Age
214 Abbot Medium 40
John Experienced 19
15 Jeff Medium 42

The following table shows a list of pets and their owners that is used by a veterinarian
service.

P_Name Type Breed DOB Owner O_Phone O_Email
Kino Dog Std. Poodle 3/27/97 M. Downs 5551236 | md@abc.com
Teddy Cat Chartreaux 4/2/98 M. Downs 1232343 | md@abc.com
Filo Dog Std. Poodle 2/24/02 R. James 2343454 | rji@abc.com
Al Dog Collie Mix 11/12/95 Liz Frier 3456567 | liz@abc.com
Cedro Cat Unknown 12/10/96 R. James 7865432 | rji@abc.com
Woolley Cat Unknown 10/2/00 M. Trent 9870678 mt@abc.com
Buster Dog Collie 4/4/01 Ronny 4565433 | ron@abc.com

n
=N

n
W

n
BN |

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 175

a. Describe four problems that are likely to occur when using this table.

b. Break the table into two tables in a way that fixes the four problems. Lec2.doc
We wish to create a student table containing the student’s ID number, name, and
telephone number. Write an SQL statement to accomplish this.

Assume that A, B, and C grant certain privileges on the employee table to X, who
in turn grants them to Y, as shown in the following table, with the numerical entries
indicating the time of granting:

UserID Table Grantor READ INSERT | DELETE
X Employee A 15 15 —
X Employee B 20 — 20
Y Employee X 25 25 25
X Employee C 30 — 30

At time ¢ = 35, B issues the command REVOKE ALL RIGHTS ON Employee
FROM X. Which access rights, if any, of Y must be revoked, using the conventions
defined in Section 5.2?

Figure 5.14 shows a sequence of grant operations for a specific access right on a table.

Assume that atz = 70, B revokes the access right from C. Using the conventions defined
in Section 5.2, show the resulting diagram of access right dependencies.

Figure 5.14 Cascaded Privileges

Figure 5.15 shows an alternative convention for handling revocations of the type
illustrated in Figure 5.4.

Figure 5.15 Bob Revokes Privilege from David, Second Version

176

CHAPTER 5 / DATABASE SECURITY

94
o]

5.10

h
—
)

m
—
)

a. Describe an algorithm for revocation that fits this figure.
b. Compare the relative advantages and disadvantages of this method to the original
method, illustrated in Figure 5.4.

Consider the parts department of a plumbing contractor. The department maintains
an inventory database that includes parts information (part number, description,
color, size, number in stock, etc.) and information on vendors from whom parts are
obtained (name, address, pending purchase orders, closed purchase orders, etc.).
In an RBAC system, suppose that roles are defined for accounts payable clerk, an
installation foreman, and a receiving clerk. For each role, indicate which items should
be accessible for read-only and read-write access.

Imagine that you are the database administrator for a military transportation system.
You have a table named cargo in your database that contains information on the
various cargo holds available on each outbound airplane. Each row in the table
represents a single shipment and lists the contents of that shipment and the flight
identification number. Only one shipment per hold is allowed. The flight identification
number may be cross-referenced with other tables to determine the origin, destination,
flight time, and similar data. The cargo table appears as follows:

Flight ID Cargo Hold Contents Classification
1254 A Boots Unclassified
1254 B Guns Unclassified
1254 C Atomic bomb Top Secret
1254 D Butter Unclassified

Suppose that two roles are defined: Role 1 has full access rights to the cargo table. Role
2 has full access rights only to rows of the table in which the Classification field has the
value Unclassified. Describe a scenario in which a user assigned to role 2 uses one or
more queries to determine that there is a classified shipment on board the aircraft.
Users hulkhogan and undertaker do not have the SELECT access right to the
Inventory table and the Item table. These tables were created by and are owned by
user bruno-s. Write the SQL commands that would enable bruno-s to grant SELECT
access to these tables to hulkhogan and undertaker.

In the example of Section 5.4 involving the addition of a start-date column to a set
of tables defining employee information, it was stated that a straightforward way to
remove the inference channel is to add the start-date column to the employees table.
Suggest another way.

The query size restriction for a statistical database is defined in Section 5.6 as
k =IX(C)| = N — k. What is the upper bound on the value of k? Explain.

In Section 5.6, it was mentioned that for the query size restriction, queries of the form
q(All) are allowed. If such queries are not allowed, how can the user access statistics
calculated on the entire database?

Suppose a user knows that Evans is represented in the database of Table 5.3 and that
Evans is a male biology student in the class of 1979.

a. What query can be used to test whether Evans is the only such student?

b. What query can be used to determine Evans SAT score?

Draw a diagram similar to that of Figure 5.9 that illustrates the relationship
count(C « D) = count(7 + CI « D) — count(T).

a. Explain why the following statement is true. If count(C) = 1 for individual /,
the value of a numerical attribute A for / can be computed from sum(C, A) =
sum(CI, A) — sum(7, A).

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 177

b. Continuing the query restriction example from Section 5.5, show how to calculate
the GP value for Evans.

5.17 This question relates to the statistical database of Table 5.8.

a. Assume no query size restriction and that a questioner knows that Dodd is a
female CS professor. Show a sequence of two queries that the questioner could
use to determine Dodd’s salary.

b. Suppose there is a lower query size limit of 2, but no upper limit. Show a sequence
of queries that could be used to determine Dodd’s salary.

c. Suppose that there is a lower and upper query size limit that satisfies Equation
(5.1) with £ = 2. Show a sequence of queries that could be used to determine
Dodd’s salary.

Table 5.8 Statistical Database Problem

Adams Male CS Prof 80
Baker Male Math Prof 60
Cook Female Math Prof 100
Dodd Female CS Prof 60
Engel Male Stat Prof 72
Flynn Female Stat Prof 88
Grady Male CS Admin 40
Hayes Male Math Prof 72
Irons Female CS Stu 12
Jones Male Stat Adm 80

Knapp Female Math Prof 100
Lord Male CS Stu 12

5.18 Consider a database table that includes a salary attribute. Suppose the three queries
sum, count, and max (in that order) are made on the salary attribute, all conditioned
on the same predicate involving other attributes. That is, a specific subset of records
is selected and the three queries are performed on that subset. Suppose that the first
two queries are answered and the third query is denied. Is any information leaked?

5.19 For Table 5.7, deduce the partitioning scheme used for attributes salary, addr, and did.

CHAPTER

MALICIOUS SOFTWARE

6.1 Types of Malicious Software (Malware)

6.2 Propagation—Infected Content— Viruses

6.3 Propagation— Vulnerability Exploit—Worms

6.4 Propagation—Social Engineering—Spam E-Mail, Trojans

6.5 Payload—System Corruption

6.6 Payload— Attack Agent—Zombie, Bots

6.7 Payload —Information Theft —Keyloggers, Phishing, Spyware
6.8 Payload—Stealthing— Backdoors, Rootkits

6.9 Countermeasures

6.10 Recommended Reading and Web Sites

6.11 Key Terms, Review Questions, and Problems

178

6.1 / TYPES OF MALICIOUS SOFTWARE (MALWARE) 179

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

Describe three broad mechanisms malware uses to propagate.
Understand the basic operation of viruses, worms, and trojans.
Describe four broad categories of malware payloads.

Understand the different threats posed by bots, spyware, and rootkits.
Describe some malware countermeasure elements.

L 2R 2R 2K 2% 2K 2

Describe three locations for malware detection mechanisms.

Malicious software, or malware, arguably constitutes one of the most significant cat-
egories of threats to computer systems. [NIST05] defines malware as “a program that
is inserted into a system, usually covertly, with the intent of compromising the con-
fidentiality, integrity, or availability of the victim’s data, applications, or operating
system or otherwise annoying or disrupting the victim.” Hence, we are concerned
with the threat malware poses to application programs, to utility programs, such as
editors and compilers, and to kernel-level programs. We are also concerned with
its use on compromised or malicious Web sites and servers, or in especially crafted
spam e-mails or other messages, which aim to trick users into revealing sensitive
personal information.

This chapter examines the wide spectrum of malware threats and counter-
measures. We begin with a survey of various types of malware, and offer a broad
classification based first on the means malware uses to spread or propagate, and
then on the variety of actions or payloads used once the malware has reached a
target. Propagation mechanisms include those used by viruses, worms, and trojans.
Payloads include system corruption, bots, phishing, spyware, and rootkits. The
discussion concludes with a review of countermeasure approaches.

6.1 TYPES OF MALICIOUS SOFTWARE (MALWARE)

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 6.1 is a
useful guide to some of the terms in use.

A Broad Classification of Malware

A number of authors attempt to classify malware, as shown in the survey and pro-
posal of [HANSO4]. Although a range of aspects can be used, one useful approach
classifies malware into two broad categories, based first on how it spreads or propa-
gates to reach the desired targets; and then on the actions or payloads it performs
once a target is reached.

180

Terminology for Malicious Software (Malware)

Name Description

Adware Advertising that is integrated into software. It can result in pop-up ads or
redirection of a browser to a commercial site.

Attack kit Set of tools for generating new malware automatically using a variety of supplied

propagation and payload mechanisms

Auto-rooter

Malicious hacker tools used to break into new machines remotely.

Backdoor (trapdoor) Any mechanism that bypasses a normal security check; it may allow unauthorized
access to functionality in a program, or onto a compromised system.
Downloaders Code that installs other items on a machine that is under attack. It is normally

included in the malware code first inserted on to a compromised system to then
import a larger malware package.

Drive-by-Download

An attack using code in a compromised Web site that exploits a browser
vulnerability to attack a client system when the site is viewed.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Flooders (DoS client) Used to generate a large volume of data to attack networked computer systems,
by carrying out some form of denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Logic bomb Code inserted into malware by an intruder. A logic bomb lies dormant until a

predefined condition is met; the code then triggers an unauthorized act.

Macro virus

A type of virus that uses macro or scripting code, typically embedded in a
document, and triggered when the document is viewed or edited, to run and
replicate itself into other such documents.

Mobile code Software