
Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Chapter 16: Recovery System"

©Silberschatz, Korth and Sudarshan"16.2"Database System Concepts - 6th Edition"

Chapter 16: Recovery System"

■  Failure Classification!
■  Storage Structure!
■  Recovery and Atomicity!
■  Log-Based Recovery!
■  Remote Backup Systems!

©Silberschatz, Korth and Sudarshan"16.3"Database System Concepts - 6th Edition"

Failure Classification"

■  Transaction failure :!
●  Logical errors: transaction cannot complete due to some internal

error condition!
●  System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)!
■  System crash: a power failure or other hardware or software failure

causes the system to crash.!
●  Fail-stop assumption: non-volatile storage contents are assumed

to not be corrupted by system crash!
! Database systems have numerous integrity checks to prevent

corruption of disk data !
■  Disk failure: a head crash or similar disk failure destroys all or part of

disk storage!
●  Destruction is assumed to be detectable: disk drives use

checksums to detect failures!

©Silberschatz, Korth and Sudarshan"16.4"Database System Concepts - 6th Edition"

Recovery Algorithms"

■  Consider transaction Ti that transfers $50 from account A to account B!
●  Two updates: subtract 50 from A and add 50 to B !

■  Transaction Ti requires updates to A and B to be output to the
database. !
●  A failure may occur after one of these modifications have been

made but before both of them are made. !
●  Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state!
●  Not modifying the database may result in lost updates if failure

occurs just after transaction commits!
■  Recovery algorithms have two parts!

1.  Actions taken during normal transaction processing to ensure
enough information exists to recover from failures!

2.  Actions taken after a failure to recover the database contents to a
state that ensures atomicity, consistency and durability!

©Silberschatz, Korth and Sudarshan"16.5"Database System Concepts - 6th Edition"

Storage Structure"

■  Volatile storage:!
●  does not survive system crashes!
●  examples: main memory, cache memory!

■  Nonvolatile storage:!
●  survives system crashes!
●  examples: disk, tape, flash memory,  

 non-volatile (battery backed up) RAM !
●  but may still fail, losing data!

■  Stable storage:!
●  a mythical form of storage that survives all failures!
●  approximated by maintaining multiple copies on distinct

nonvolatile media!
●  See book for more details on how to implement stable storage!

©Silberschatz, Korth and Sudarshan"16.6"Database System Concepts - 6th Edition"

Stable-Storage Implementation"
■  Maintain multiple copies of each block on separate disks!

●  copies can be at remote sites to protect against disasters such as
fire or flooding.!

■  Failure during data transfer can still result in inconsistent copies: Block
transfer can result in!
●  Successful completion!
●  Partial failure: destination block has incorrect information!
●  Total failure: destination block was never updated!

■  Protecting storage media from failure during data transfer (one
solution):!
●  Execute output operation as follows (assuming two copies of each

block):!
1.  Write the information onto the first physical block.!
2.  When the first write successfully completes, write the same

information onto the second physical block.!
3.  The output is completed only after the second write

successfully completes.!

©Silberschatz, Korth and Sudarshan"16.7"Database System Concepts - 6th Edition"

Stable-Storage Implementation (Cont.)"

■  Protecting storage media from failure during data transfer (cont.):!
■  Copies of a block may differ due to failure during output operation. To

recover from failure:!
1.  First find inconsistent blocks:!

1.  Expensive solution: Compare the two copies of every disk block.!
2.  Better solution: !

●  Record in-progress disk writes on non-volatile storage (Non-
volatile RAM or special area of disk). !

●  Use this information during recovery to find blocks that may be
inconsistent, and only compare copies of these. !

●  Used in hardware RAID systems!
2.  If either copy of an inconsistent block is detected to have an error (bad

checksum), overwrite it by the other copy. If both have no error, but are
different, overwrite the second block by the first block. !

©Silberschatz, Korth and Sudarshan"16.8"Database System Concepts - 6th Edition"

Data Access"

■  Physical blocks are those blocks residing on the disk. !
■  Buffer blocks are the blocks residing temporarily in main memory.!
■  Block movements between disk and main memory are initiated

through the following two operations:!
●  input(B) transfers the physical block B to main memory.!
●  output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.!
■  We assume, for simplicity, that each data item fits in, and is stored

inside, a single block.!

©Silberschatz, Korth and Sudarshan"16.9"Database System Concepts - 6th Edition"

Example of Data Access"

X !

Y !
A!
B!

x1!
y1 !

buffer!
Buffer Block A !

Buffer Block B!

input(A)!

output(B) !
read(X)!

write(Y)!

disk!

work area!
of T1!

work area!
of T2 !

memory!

x2!

©Silberschatz, Korth and Sudarshan"16.10"Database System Concepts - 6th Edition"

Data Access (Cont.)"

■  Each transaction Ti has its private work-area in which local copies of
all data items accessed and updated by it are kept.!
●  Ti's local copy of a data item X is called xi.!

■  Transferring data items between system buffer blocks and its private
work-area done by:!
●  read(X) assigns the value of data item X to the local variable xi.!
●  write(X) assigns the value of local variable xi to data item {X} in

the buffer block.!
●  Note: output(BX) need not immediately follow write(X). System

can perform the output operation when it deems fit.!
■  Transactions !

●  Must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy) !

●  write(X) can be executed at any time before the transaction
commits!

©Silberschatz, Korth and Sudarshan"16.11"Database System Concepts - 6th Edition"

Recovery and Atomicity"

■  To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying the
database itself.!

■  We study log-based recovery mechanisms in detail!
●  We first present key concepts!
●  And then present the actual recovery algorithm!

■  Less used alternative: shadow-paging (brief details in book)!
!

©Silberschatz, Korth and Sudarshan"16.12"Database System Concepts - 6th Edition"

Log-Based Recovery"

■  A log is kept on stable storage. !
●  The log is a sequence of log records, and maintains a record of

update activities on the database.!
■  When transaction Ti starts, it registers itself by writing a  

 <Ti start>log record!
■  Before Ti executes write(X), a log record  

 <Ti, X, V1, V2>  
is written, where V1 is the value of X before the write (the old value),
and V2 is the value to be written to X (the new value). !

■  When Ti finishes it last statement, the log record <Ti commit> is written. !
■  Two approaches using logs!

●  Deferred database modification!
●  Immediate database modification!

©Silberschatz, Korth and Sudarshan"16.13"Database System Concepts - 6th Edition"

Immediate Database Modification"
■  The immediate-modification scheme allows updates of an

uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits!

■  Update log record must be written before database item is written!
●  We assume that the log record is output directly to stable storage!
●  (Will see later that how to postpone log record output to some

extent)!
■  Output of updated blocks to stable storage can take place at any time

before or after transaction commit!
■  Order in which blocks are output can be different from the order in

which they are written.!
■  The deferred-modification scheme performs updates to buffer/disk

only at the time of transaction commit!
●  Simplifies some aspects of recovery!
●  But has overhead of storing local copy!

©Silberschatz, Korth and Sudarshan"16.14"Database System Concepts - 6th Edition"

Transaction Commit"

■  A transaction is said to have committed when its commit log record is
output to stable storage !
●  all previous log records of the transaction must have been output

already !
■  Writes performed by a transaction may still be in the buffer when the

transaction commits, and may be output later!

©Silberschatz, Korth and Sudarshan"16.15"Database System Concepts - 6th Edition"

Immediate Database Modification Example"

Log Write Output!
!
<T0 start>!
<T0, A, 1000, 950>!
<To, B, 2000, 2050!
 A = 950!
 B = 2050!
<T0 commit>!
<T1 start>!
<T1, C, 700, 600>!
 C = 600!
 BB , BC!
<T1 commit>!
 BA !
■  Note: BX denotes block containing X.!

!

BC output before T1
commits!

BA output after T0
commits!

©Silberschatz, Korth and Sudarshan"16.16"Database System Concepts - 6th Edition"

Concurrency Control and Recovery"

■  With concurrent transactions, all transactions share a single disk
buffer and a single log!
●  A buffer block can have data items updated by one or more

transactions!
■  We assume that if a transaction Ti has modified an item, no other

transaction can modify the same item until Ti has committed or
aborted!
●  i.e. the updates of uncommitted transactions should not be visible

to other transactions!
! Otherwise how to perform undo if T1 updates A, then T2

updates A and commits, and finally T1 has to abort?!
●  Can be ensured by obtaining exclusive locks on updated items

and holding the locks till end of transaction (strict two-phase
locking)!

■  Log records of different transactions may be interspersed in the log.!

©Silberschatz, Korth and Sudarshan"16.17"Database System Concepts - 6th Edition"

Undo and Redo Operations"

■  Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X!
■  Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X!
■  Undo and Redo of Transactions"

●  undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti!
! each time a data item X is restored to its old value V a special

log record <Ti , X, V> is written out!
! when undo of a transaction is complete, a log record  

<Ti abort> is written out.!
●  redo(Ti) sets the value of all data items updated by Ti to the new

values, going forward from the first log record for Ti"
! No logging is done in this case!

©Silberschatz, Korth and Sudarshan"16.18"Database System Concepts - 6th Edition"

Undo and Redo on Recovering from Failure"

■  When recovering after failure:!
●  Transaction Ti needs to be undone if the log !

! contains the record <Ti start>,!
! but does not contain either the record <Ti commit> or <Ti abort>.!

●  Transaction Ti needs to be redone if the log !
! contains the records <Ti start> !
! and contains the record <Ti commit> or <Ti abort>!

■  Note that If transaction Ti was undone earlier and the <Ti abort> record
written to the log, and then a failure occurs, on recovery from failure Ti is
redone!
●  such a redo redoes all the original actions including the steps that

restored old values!
! Known as repeating history"
! Seems wasteful, but simplifies recovery greatly!

©Silberschatz, Korth and Sudarshan"16.19"Database System Concepts - 6th Edition"

Immediate DB Modification Recovery
Example"

 Below we show the log as it appears at three instances of time.!
!
!
!
!
!
!
!
!
!
Recovery actions in each case above are:!
(a) undo (T0): B is restored to 2000 and A to 1000, and log records  

<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out!
(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is

restored to 700. Log records <T1, C, 700>, <T1, abort> are written out.!
(c) redo (T0) and redo (T1): A and B are set to 950 and 2050 !
 respectively. Then C is set to 600!

©Silberschatz, Korth and Sudarshan"16.20"Database System Concepts - 6th Edition"

Checkpoints"

■  Redoing/undoing all transactions recorded in the log can be very slow !
1.  processing the entire log is time-consuming if the system has run

for a long time!
2.  we might unnecessarily redo transactions which have already

output their updates to the database.!
■  Streamline recovery procedure by periodically performing

checkpointing !
1.  Output all log records currently residing in main memory onto

stable storage.!
2.  Output all modified buffer blocks to the disk.!
3.  Write a log record < checkpoint L> onto stable storage where L

is a list of all transactions active at the time of checkpoint.!
●  All updates are stopped while doing checkpointing!

©Silberschatz, Korth and Sudarshan"16.21"Database System Concepts - 6th Edition"

Checkpoints (Cont.)"

■  During recovery we need to consider only the most recent transaction
Ti that started before the checkpoint, and transactions that started
after Ti. !
1.  Scan backwards from end of log to find the most recent

<checkpoint L> record !
●  Only transactions that are in L or started after the checkpoint

need to be redone or undone!
●  Transactions that committed or aborted before the checkpoint

already have all their updates output to stable storage.!
■  Some earlier part of the log may be needed for undo operations!

1.  Continue scanning backwards till a record <Ti start> is found for
every transaction Ti in L.!

●  Parts of log prior to earliest <Ti start> record above are not
needed for recovery, and can be erased whenever desired.!

©Silberschatz, Korth and Sudarshan"16.22"Database System Concepts - 6th Edition"

Example of Checkpoints"

■  T1 can be ignored (updates already output to disk due to checkpoint)!
■  T2 and T3 redone.!
■  T4 undone!

Tc! Tf!

T1!
T2!

T3!

T4!

checkpoint! system failure!

©Silberschatz, Korth and Sudarshan"16.23"Database System Concepts - 6th Edition"

Recovery Algorithm"
■  So far: we covered key concepts!
■  Now: we present the components of the basic recovery algorithm!
■  Later: we present extensions to allow more concurrency!
!

©Silberschatz, Korth and Sudarshan"16.24"Database System Concepts - 6th Edition"

Recovery Algorithm"

■  Logging (during normal operation):!
●  <Ti start> at transaction start!
●  <Ti, Xj, V1, V2> for each update, and !
●  <Ti commit> at transaction end"

■  Transaction rollback (during normal operation)"
●  Let Ti be the transaction to be rolled back!
●  Scan log backwards from the end, and for each log record of Ti of

the form <Ti, Xj, V1, V2> !
! perform the undo by writing V1 to Xj,!
! write a log record <Ti , Xj, V1> !
–  such log records are called compensation log records"

●  Once the record <Ti start> is found stop the scan and write the log
record <Ti abort> !

©Silberschatz, Korth and Sudarshan"16.25"Database System Concepts - 6th Edition"

■  Recovery from failure: Two phases!
●  Redo phase: replay updates of all transactions, whether they

committed, aborted, or are incomplete!
●  Undo phase: undo all incomplete transactions!

■  Redo phase:!
1.  Find last <checkpoint L> record, and set undo-list to L.!
2.  Scan forward from above <checkpoint L> record!

1.  Whenever a record <Ti, Xj, V1, V2> is found, redo it by
writing V2 to Xj !

2.  Whenever a log record <Ti start> is found, add Ti to undo-list!
3.  Whenever a log record <Ti commit> or <Ti abort> is found,

remove Ti from undo-list!

Recovery Algorithm (Cont.)"

©Silberschatz, Korth and Sudarshan"16.26"Database System Concepts - 6th Edition"

Recovery Algorithm (Cont.)"
■  Undo phase: !

1.  Scan log backwards from end !
1.  Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in

undo-list perform same actions as for transaction rollback:!
1.  perform undo by writing V1 to Xj.!
2.  write a log record <Ti , Xj, V1>!

2.  Whenever a log record <Ti start> is found where Ti is in undo-
list, !
1.  Write a log record <Ti abort> !
2.  Remove Ti from undo-list!

3.  Stop when undo-list is empty!
●  i.e. <Ti start> has been found for every transaction in

undo-list!
●  After undo phase completes, normal transaction processing can

commence!

©Silberschatz, Korth and Sudarshan"16.27"Database System Concepts - 6th Edition"

Example of Recovery"

©Silberschatz, Korth and Sudarshan"16.28"Database System Concepts - 6th Edition"

Log Record Buffering"

■  Log record buffering: log records are buffered in main memory, instead
of of being output directly to stable storage.!
●  Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed.!
■  Log force is performed to commit a transaction by forcing all its log

records (including the commit record) to stable storage.!
■  Several log records can thus be output using a single output operation,

reducing the I/O cost.!

©Silberschatz, Korth and Sudarshan"16.29"Database System Concepts - 6th Edition"

Log Record Buffering (Cont.)"

■  The rules below must be followed if log records are buffered:!
●  Log records are output to stable storage in the order in which they

are created. !
●  Transaction Ti enters the commit state only when the log record  

<Ti commit> has been output to stable storage.!
●  Before a block of data in main memory is output to the database,

all log records pertaining to data in that block must have been
output to stable storage. !
! This rule is called the write-ahead logging or WAL rule!
–  Strictly speaking WAL only requires undo information to be

output!

©Silberschatz, Korth and Sudarshan"16.30"Database System Concepts - 6th Edition"

Database Buffering"

■  Database maintains an in-memory buffer of data blocks!
●  When a new block is needed, if buffer is full an existing block needs to

be removed from buffer!
●  If the block chosen for removal has been updated, it must be output to

disk!
■  The recovery algorithm supports the no-force policy: i.e., updated blocks

need not be written to disk when transaction commits!
●  force policy: requires updated blocks to be written at commit!

! More expensive commit!
■  The recovery algorithm supports the steal policy:i.e., blocks containing

updates of uncommitted transactions can be written to disk, even before
the transaction commits!

©Silberschatz, Korth and Sudarshan"16.31"Database System Concepts - 6th Edition"

Database Buffering (Cont.)"

■  If a block with uncommitted updates is output to disk, log records with
undo information for the updates are output to the log on stable storage
first!
●  (Write ahead logging)!

■  No updates should be in progress on a block when it is output to disk.
Can be ensured as follows.!
●  Before writing a data item, transaction acquires exclusive lock on

block containing the data item!
●  Lock can be released once the write is completed. !

!  Such locks held for short duration are called latches.!
■  To output a block to disk"

1.  First acquire an exclusive latch on the block!
1.  Ensures no update can be in progress on the block!

2.  Then perform a log flush"
3.  Then output the block to disk!
4.  Finally release the latch on the block!

©Silberschatz, Korth and Sudarshan"16.32"Database System Concepts - 6th Edition"

Buffer Management (Cont.)"

■  Database buffer can be implemented either!
●  in an area of real main-memory reserved for the database, or!
●  in virtual memory!

■  Implementing buffer in reserved main-memory has drawbacks:!
●  Memory is partitioned before-hand between database buffer and

applications, limiting flexibility. !
●  Needs may change, and although operating system knows best

how memory should be divided up at any time, it cannot change
the partitioning of memory.!

©Silberschatz, Korth and Sudarshan"16.33"Database System Concepts - 6th Edition"

Buffer Management (Cont.)"

■  Database buffers are generally implemented in virtual memory in spite
of some drawbacks: !
●  When operating system needs to evict a page that has been

modified, the page is written to swap space on disk.!
●  When database decides to write buffer page to disk, buffer page

may be in swap space, and may have to be read from swap space
on disk and output to the database on disk, resulting in extra I/O! !
!  Known as dual paging problem.!

●  Ideally when OS needs to evict a page from the buffer, it should
pass control to database, which in turn should!
1.  Output the page to database instead of to swap space (making

sure to output log records first), if it is modified!
2.  Release the page from the buffer, for the OS to use!
Dual paging can thus be avoided, but common operating systems

do not support such functionality.!

©Silberschatz, Korth and Sudarshan"16.34"Database System Concepts - 6th Edition"

Fuzzy Checkpointing"

■  To avoid long interruption of normal processing during
checkpointing, allow updates to happen during checkpointing!

■  Fuzzy checkpointing is done as follows:!
1.  Temporarily stop all updates by transactions!
2.  Write a <checkpoint L> log record and force log to stable

storage!
3.  Note list M of modified buffer blocks!
4.  Now permit transactions to proceed with their actions!
5.  Output to disk all modified buffer blocks in list M!

★  blocks should not be updated while being output!
★  Follow WAL: all log records pertaining to a block must be

output before the block is output!
6.  Store a pointer to the checkpoint record in a fixed position

last_checkpoint on disk!

©Silberschatz, Korth and Sudarshan"16.35"Database System Concepts - 6th Edition"

Fuzzy Checkpointing (Cont.)"
■  When recovering using a fuzzy checkpoint, start scan from the

checkpoint record pointed to by last_checkpoint"
●  Log records before last_checkpoint have their updates

reflected in database on disk, and need not be redone.!
●  Incomplete checkpoints, where system had crashed while

performing checkpoint, are handled safely!

……!
<checkpoint L>!

…..!
<checkpoint L>!

…..!
!

Log!

last_checkpoint!

©Silberschatz, Korth and Sudarshan"16.36"Database System Concepts - 6th Edition"

Failure with Loss of Nonvolatile Storage"

■  So far we assumed no loss of non-volatile storage!
■  Technique similar to checkpointing used to deal with loss of non-

volatile storage!
●  Periodically dump the entire content of the database to stable

storage!
●  No transaction may be active during the dump procedure; a

procedure similar to checkpointing must take place!
! Output all log records currently residing in main memory onto

stable storage.!
! Output all buffer blocks onto the disk.!
! Copy the contents of the database to stable storage.!
! Output a record <dump> to log on stable storage.!

©Silberschatz, Korth and Sudarshan"16.37"Database System Concepts - 6th Edition"

Recovering from Failure of Non-Volatile Storage"

■  To recover from disk failure!
●  restore database from most recent dump. !
●  Consult the log and redo all transactions that committed after

the dump!
■  Can be extended to allow transactions to be active during dump;  

known as fuzzy dump or online dump"
●  Similar to fuzzy checkpointing!

