
José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Chapters 14-16: Transaction Management

- Transactions (Chapter 14)
• Transaction Concept
• Transaction State
• Concurrent Executions
• Serialisability
• Recoverability
• Testing for Serialisability

- Concurrency control (Chapter 15)
• Lock-based protocols
• Timestamp-based protocols
• Multiple granularity
• Multiversion schemes

- Recovery Systems (Chapter 16)
• Log-based recovery
• Recovery with concurrent transactions

- Transaction in SQL
- Transaction management in Oracle

237

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Concept of Transaction

- A transaction is a unit of program execution that accesses and
possibly updates various data items.

- E.g. transaction to transfer €50 from account A to account B:
1.! read_from_account(A)
2.! A := A – 50
3.! write_to_account(A)
4.! read_from_accont(B)
5.! B := B + 50
6.! write_to_account(B)

- Two main issues to deal with:
• Failures of various kinds, such as hardware failures and system

crashes
• Concurrent execution of multiple transactions

238

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction ACID properties

- E.g. transaction to transfer €50 from account A to account B:
1.! read_from_acoount(A)
2.! A := A – 50
3.! write_to_account(A)
4.! read_from_accont(B)
5.! B := B + 50
6.! write_to_account(B)

- Atomicity requirement
• if the transaction fails after step 3 and before step 6, money will be “lost”

leading to an inconsistent database state
› Failure could be due to software or hardware

• the system should ensure that updates of a partially executed transaction
are not reflected in the database

• All or nothing, regarding the execution of the transaction
- Durability requirement — once the user has been notified of the transactionʼs

completion, the updates must persist in the database even if there are software
or hardware failures.

239

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction ACID properties (Cont.)
- Transaction to transfer €50 from account A to account B:

1.! read_from_acoount(A)
2.! A := A – 50
3.! write_to_account(A)
4.! read_from_accont(B)
5.! B := B + 50
6.! write_to_account(B)

- Consistency requirement in the above example:
• the sum of A and B is unchanged by the execution of the transaction

- In general, consistency requirements include
› Explicitly specified integrity constraints such as primary keys and foreign

keys
› Implicit integrity constraints

- e.g. sum of balances of all accounts, minus sum of loan amounts
must equal value of cash-in-hand

• A transaction must see a consistent database and must leave a consistent
database

• During transaction execution the database may be temporarily inconsistent.
› Constraints are to be verified only at the end of the transaction 240

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction ACID properties (Cont.)

- Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated database, it
will see an inconsistent database (the sum A + B will be less than it
should be).
 T1 T2

1.! read(A)
2.! A := A – 50
3.! write(A)

 read(A), read(B), print(A+B)
4.! read(B)
5.! B := B + 50
6.! write(B)

- Isolation can be ensured trivially by running transactions serially
• that is, one after the other.

- However, executing multiple transactions concurrently has significant
benefits, as we will see later.

241

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

ACID Properties - Summary

- Atomicity Either all operations of the transaction are properly reflected
in the database or none are.

- Consistency Execution of a (single) transaction preserves the
consistency of the database.

- Isolation Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from other
concurrently executed transactions.
• That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

- Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

242

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Non-ACID Transactions

- There are application domains where ACID properties are not
necessarily desired or, most likely, not always possible.

- This is the case of so-called long-duration transactions
• Suppose that a transaction takes a lot of time
• In this case it is unlikely that isolation can/should be guaranteed

› E.g. Consider a transaction of booking a hotel and a flight
- Without Isolation, Atomicity may be compromised
- Consistency and Durability should be preserved

- A usual solution for long-duration transactions is to define
compensation actions – what to do if later the transaction fails

- In (centralised) databases long-duration transactions are usually not
considered.

- But these are more and more important, especially in the context of
the Web.

243

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction State

- Active – the initial state; the transaction stays in this state while it is
executing

- Partially committed – after the final statement has been executed.
- Failed – after the discovery that normal execution can no longer

proceed.
- Aborted – after the transaction has been rolled back and the

database restored to its state prior to the start of the transaction.
Two options after it has been aborted:
• restart the transaction

› can be done only if no internal logical error
• kill the transaction

- Committed – after successful completion.

- To guarantee atomicity, external observable actions should all be
performed (in order) after the transaction is committed.

244

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction State (Cont.)

245

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Implementation of Atomicity and Durability
- The recovery-management component of a database system

implements the support for atomicity and durability.

- E.g. the shadow-database scheme:
• all updates are made on a shadow copy of the database

› db_pointer is made to point to the updated shadow copy after
- the transaction reaches partial commit and
- all updated pages have been flushed to disk.

246

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Implementation of Atomicity and Durability
(Cont.)

- db_pointer always points to the current consistent copy of the database.
• If the transaction fails, old consistent copy pointed to by db_pointer

can be used, and the shadow copy can be deleted.
- The shadow-database scheme:

• Assumes that only one transaction is active at a time.
• Assumes disks do not fail
• Useful for text editors, but extremely inefficient for large databases(!)

- Variant called shadow paging reduces copying of data, but is
still not practical for large databases

• Does not handle concurrent transactions
- Other implementations of atomicity and durability are possible, e.g. by

using logs.
• Log-based recovery will be addressed later.

247

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Concurrent Executions

- Multiple transactions are allowed to run concurrently in the system.
Advantages are:
• increased processor and disk utilisation, leading to better

transaction throughput
› E.g. one transaction can be using the CPU while another is

reading from or writing to the disk
• reduced average response time for transactions: short

transactions need not wait behind long ones.
- Concurrency control schemes – mechanisms to achieve isolation

• that is, to control the interaction among the concurrent
transactions in order to prevent them from destroying the
consistency of the database
› Two-phase look protocol
› Timestamp-Based Protocols
› Validation-Based Protocols

• Studied in Operating Systems, and briefly summarised later

248

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Schedules

- Schedule – a sequences of instructions that specifies the chronological
order in which instructions of concurrent transactions are executed
• a schedule for a set of transactions must consist of all instructions

of those transactions
• must preserve the order in which the instructions appear in each

individual transaction.

- A transaction that successfully completes its execution will have a
commit instructions as the last statement
• by default, the transactions shown here are assumed to execute

commit instruction as its last step
- A transaction that fails to successfully complete its execution will have

an abort instruction as the last statement

- The goal is to find schedules that preserve the consistency.

249

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example Schedule 1
- Let T1 transfer €50 from A to B, and T2 transfer 10% of the

balance from A to B.
- A serial schedule in which T1 is followed by T2 :

250

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example Schedule 2

• A serial schedule where T2 is followed by T1

251

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example Schedule 3
- Let T1 and T2 be the transactions defined previously. The

following schedule is not a serial schedule, but it is equivalent
to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.
252

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example Schedule 4

- The following concurrent schedule does not preserve the
value of (A + B) .! ! !

253

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Serialisability

- Goal : Deal with concurrent schedules that are equivalent to some
serial execution:
• Basic Assumption – Each transaction preserves database

consistency.
• Thus serial execution of a set of transactions preserves database

consistency.
- A (possibly concurrent) schedule is serialisable if it is equivalent to a

serial schedule. Different forms of schedule equivalence give rise to
the notions of:
1.!conflict serialisability
2.!view serialisability

- Simplified view of transactions
• We ignore operations other than read and write instructions
• We assume that transactions may perform arbitrary computations

on data in local buffers in between reads and writes.
• Our simplified schedules consist of only read and write

instructions.
254

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Conflicting Instructions

- Instructions li and lj of transactions Ti and Tj respectively, conflict if
and only if there exists some item Q accessed by both li and lj, and at
least one of these instructions wrote Q.

! 1. li = read(Q), lj = read(Q). li and lj donʼt conflict.
 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

- Intuitively, a conflict between li and lj forces an order between them.

• If li and lj are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

255

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Conflict Serialisability
- If a schedule S can be transformed into a schedule S´ by a series of swaps of

non-conflicting instructions, we say that S and S´ are conflict equivalent.

- We say that a schedule S is conflict serialisable if it is conflict equivalent to a
serial schedule

- Schedule 3 can be transformed into Schedule 6, a serial schedule where T2
follows T1, by series of swaps of non-conflicting instructions. Therefore it is
conflict serialisable.

Schedule 3 Schedule 6
256

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Conflict Serialisability (Cont.)

- Example of a schedule that is not conflict serialisable:

- We are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

257

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Testing for Serialisability

- Consider some schedule of a set of transactions T1, T2, ..., Tn

- Precedence graph — a direct graph where
• the vertices are the transactions (names).
• there is an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose
earlier.

- We may label the arc by the item that was accessed.

- Example 1

258

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example Schedule (Schedule A) + Precedence Graph

 ! T 1! ! T 2! ! T 3! ! T 4! ! T5

 ! ! read(X)
read(Y)
read(Z)
 ! ! ! ! ! ! ! ! read(V)
 ! ! ! ! ! ! ! ! read(W)
 ! ! ! ! ! ! ! ! read(W)
 ! ! read(Y)
 ! ! write(Y)
 ! ! ! ! write(Z)
read(U)
 ! ! ! ! ! ! read(Y)
 ! ! ! ! ! ! write(Y)
 ! ! ! ! ! ! read(Z)
 ! ! ! ! ! ! write(Z)
read(U)
write(U)

T3
T4

T1 T2

T5

259

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Test for Conflict Serialisability

- A schedule is conflict serialisable if and only
if its precedence graph is acyclic.

- Cycle-detection algorithms exist which take
O(n2) time, where n is the number of vertices
in the graph.
• (Better algorithms take order n + e

where e is the number of edges.)

- If the precedence graph is acyclic, the
serialisability order can be obtained by a
topological sorting of the graph.
• I.e. a linear order consistent with the

partial order of the graph.
• E.g. a serialisability order for Schedule

A would be
T5 → T1 → T3 → T2 → T4

260

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

View Serialisability

- Sometimes it is possible to serialise schedules that are not conflict
serialisable

- This schedule is not conflict serialisable
- But it is serialisable:

• It is equivalent to either <T3,T4,T6> or <T4,T3,T6>

- View serialisability provides a weaker and still consistency
preserving notion of serialisation

261

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

View Equivalence
- Let S and S´ be two schedules with the same set of transactions. S

and S´ are view equivalent if the following three conditions are met,
for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in
schedule Sʼ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value
was produced by transaction Tj (if any), then in schedule Sʼ also
transaction Ti must read the value of Q that was produced by the
same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation
in schedule S must also perform the final write(Q) operation in
schedule Sʼ.

- A schedule S is view serialisable if it is view equivalent to a serial
schedule.
• Every conflict serialisable schedule is also view serialisable
• Every view serialisable schedule that is not conflict serialisable

has blind writes. 262

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Test for View Serialisability

- The precedence graph test for conflict serialisability cannot be used
directly to test for view serialisability.
• Extension to test for view serialisability has cost exponential in the

size of the precedence graph.
- The problem of checking if a schedule is view serialisable falls in the

class of NP-complete problems.
• Thus existence of an efficient algorithm is extremely unlikely.

- However practical algorithms that just check some sufficient
conditions for view serialisability can still be used.

263

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Recoverable Schedules

- Recoverable schedule — if a transaction T1 reads a data item
previously written by a transaction T2 , then the commit operation of T2
must appear before the commit operation of T1.

- The following schedule is not recoverable if T9 commits immediately
after the read
 ! !

- If T8 should abort, T9 would have read (and possibly shown to the user,
or to other transactions) an inconsistent database state. Hence, a
database must ensure that schedules are recoverable - delaying
commits.

What to do if some transaction fails? One needs to address the effect of
failures on concurrently running transactions.

264

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Cascading Rollbacks

- Cascading rollback – when a single transaction failure leads to
a series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

- Can lead to the undoing of a significant amount of work

- Avoided in this case, by anticipating the commit of T10 to before
the read in T11, and the commit of T11 to before the read in T12

265

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Cascadeless Schedules

- Cascadeless schedules — in these, cascading rollbacks cannot
occur; for each pair of transactions T1 and T2 such that T1 reads a
data item previously written by T2, the commit operation of T2 must
appear before the read operation of T1.
• I.e. only committed value can be read

- Every cascadeless schedule is also recoverable
- It is desirable to restrict the schedules to those that are cascadeless

266

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Concurrency Control
- A database must provide a mechanism ensuring that all possible

executed schedules are
• either conflict or view serialisable, and
• are recoverable and preferably cascadeless

- A policy in which only one transaction can execute at a time generates
serial schedules, but provides a poor degree of concurrency
• Are serial schedules recoverable/cascadeless?

- Testing a schedule for serialisability after it has executed is already too
late!

- Goal – to develop concurrency control protocols that will ensure
serialisability
• Lock-based protocols
• Timestamp-based protocols

267

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Concurrency Control vs. Serialisability Tests

- Concurrency-control protocols allow concurrent schedules, but ensure
that the schedules are conflict/view serialisable, and are recoverable
and cascadeless

- Concurrency control protocols generally do not examine the
precedence graph as it is being created
• Instead a protocol imposes a discipline that avoids non-serialisable

schedules

- Different concurrency control protocols provide different tradeoffs
between the amount of concurrency they allow and the amount of
overhead that they incur.

- Tests for serialisability help us understand why a concurrency control
protocol is correct.

268

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Optimistic vs Pessimistic protocols

- What to do now?

269

T1 T2
read(A)

write(A)

• It may well be that the complete transactions are serialisable

- Optimistic protocols do not stop at potential conflicts; if something
goes wrong, rollback!

- Pessimistic protocols stop at potential conflicts, until no possible
conflict exists; if in the end no conflict happened, it just lost time!

- Letʼs start with a pessimistic protocol.

• But they may also turn out not to be serialisable

read(B)
write(B)

read(A)

write(A)

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Lock-Based Protocols

- A lock is a mechanism to control concurrent access to a data item

- Data items can be locked in two modes :
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.

- Lock requests are made to concurrency-control manager. A transaction
can proceed only after the request is granted.

270

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

- Lock-compatibility matrix

- A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

- Any number of transactions can hold shared locks on an item,
• but if any transaction holds an exclusive lock on the item no other

transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait

until all incompatible locks held by other transactions have been
released. The lock is then granted.

271

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

- Example of a transaction performing locking:
 T2: lock-S(A);
 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)

- Locking as above is not sufficient to guarantee serialisability — if A and B
get updated in-between the read of A and B, the displayed sum would be
wrong.

- A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

272

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

The Two-Phase Locking Protocol
- This is a protocol which ensures conflict-serialisable schedules.

- Phase 1: Growing Phase
• transaction may obtain locks
• transaction may not release locks

- Phase 2: Shrinking Phase
• transaction may release locks
• transaction may not obtain locks

- The protocol assures serialisability. It can be proved that the
transactions can be serialised in the order of their lock points (i.e.
the point where a transaction acquired its final lock).

273

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Pitfalls of Lock-Based Protocols

- Consider the partial schedule

- Neither T3 nor T4 can make progress — executing lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

- Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.
274

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Pitfalls of Lock-Based Protocols (Cont.)

- The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

- Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
- Concurrency control manager can be designed to prevent starvation.
- Two-phase locking does not ensure freedom from deadlocks

• Deadlock prevention protocols or deadlock detection mechanisms
are needed!

- With detection mechanisms when deadlock is detected:
• Some transaction will have to roll back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum
cost.

275

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Deadlock Detection
- Deadlocks can be described as a wait-for graph where:

• vertices are all the transactions in the system
• There is an edge Ti →Tk in case Ti is waiting for Tk

- When Ti requests a data item currently being held by Tk, then the
edge Ti →Tk is inserted in the wait-for graph. This edge is removed
only when Tk is no longer holding a data item needed by Ti.

- The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look
for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle 276

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Properties of the Two-Phase Locking Protocol

- Cascading rollback is possible under two-phase locking. To avoid this,
follow a modified protocol called strict two-phase locking. Here a
transaction must hold all its exclusive locks until it commits/aborts.

- Rigorous two-phase locking is even stricter: here all locks are held
until commit/abort. In this protocol transactions can be serialised in the
order in which they commit.

- There can be conflict serialisable schedules that cannot be obtained if
two-phase locking is used.

- However, in the absence of extra information (e.g., ordering of access
to data), two-phase locking is needed for conflict serialisability in the
following sense:
• Given a transaction T1 that does not follow two-phase locking, we

can find a transaction T2 that uses two-phase locking, and a
schedule for T1 and T2 that is not conflict serialisable.

277

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Timestamp-Based Protocols
- Instead of determining the order of each operation in a transaction at

execution time, determines the order by the time of beginning of each
transaction.
• Each transaction is issued a timestamp when it enters the system. If an

old transaction To has timestamp TS(Tn), a new transaction Tn is
assigned time-stamp TS(Tn) such that TS(To) <TS(Tn).

• The protocol manages concurrent execution so that the timestamps
determine the serialisability order.

- In order to ensure such behaviour, the protocol maintains for each data item
Q two timestamp values:
• W-timestamp(Q) is the largest timestamp of any transaction that

executed write(Q) successfully
› i.e. the starting time of the transaction that wrote into Q, and started

the latest
• R-timestamp(Q) is the largest timestamp of any transaction that

executed read(Q) successfully. 278

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Timestamp-Based Protocols (Cont.)
- The timestamp ordering protocol ensures that any conflicting read and write

operations are executed in the timestamp order.
- Suppose a transaction T issues a read(Q)

1. If TS(T) < W-timestamp(Q), i.e. T started before the transaction that
already wrote into Q, then T needs to read a value of Q that was already
overwritten.
> Hence, the read operation is rejected, and T is rolled back.

2. If TS(T) ≥ W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to max(R-timestamp(Q), TS(T)).

- Suppose that transaction T issues write(Q)
1. If TS(T) < R-timestamp(Q), i.e. T started before a transaction that already

read the value of Q, then the value of Q that T is producing was needed
previously, and the system assumed that that value would never be
produced.
> Hence, the write operation is rejected, and T is rolled back.

2. If TS(T) < W-timestamp(Q), then T is attempting to write an obsolete value
of Q.
> Hence, this write operation is rejected, and T is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is set to
TS(T).

279

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Correctness of Timestamp-Ordering Protocol

- The timestamp-ordering protocol guarantees serialisability since all the
arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph

- Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

- But the schedule may be non-cascade-free, and may not even be
recoverable.

transaction
with smaller
timestamp

transaction
with larger
timestamp

280

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiversion Schemes
- Up to now we only considered a single copy (the most recent) of each database

item.

- Multiversion schemes keep old versions of data item to increase concurrency.
• Multiversion Timestamp Ordering
• Multiversion Two-Phase Locking

- Basic Idea of multiversion schemes
• Each successful write results in the creation of a new version of the data

item written.
• Use timestamps to label versions.
• When a read(Q) operation is issued, select an appropriate version of Q

based on the timestamp of the transaction, and return the value of the
selected version.

• reads never have to wait as an appropriate version is returned
immediately.

- A drawback is that the creation of multiple versions increases storage overhead
• Garbage collection mechanisms may be used…

281

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiversion Timestamp Ordering
- Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each

version Qk contains three data fields:

• Content - the value of version Qk.

• W-timestamp(Qk) - timestamp of the transaction that created
(wrote) version Qk

• R-timestamp(Qk) - largest timestamp of the (latest) transaction
that successfully read version Qk

• The status (active, committed,...) of the transaction that created Qk

- When a transaction T creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialised to TS(T).

- R-timestamp of Qk is updated whenever a transaction T reads Qk, and
TS(T) > R-timestamp(Qk).

282

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiversion Timestamp Ordering (Cont)
- Suppose that transaction T issues a read(Q) or write(Q) operation. Let

Qk denote the version of Q whose write timestamp is equal to TS(T), if it
exists, or the largest W-timestamp < TS(T) and the status is committed

1. If transaction T issues a read(Q), then the value returned is the
content of version Qk.

2. If transaction T issues a write(Q)
1. if TS(T) < R-timestamp(Qk), i.e. T started before the transaction

that last read Qk, then transaction T is rolled back.
2. if TS(T) = W-timestamp(Qk), the contents of Qk are overwritten
3. else a new version of Q is created.

- Observe that
• Reads always succeed
• A write by T is rejected if some other transaction T2 that (in the

serialisation order defined by the timestamp values) should read
T's write, has already read a version created by a transaction older
than T (the one that created Qk, which has a timestamp ≤ TS(T))

- This protocol guarantees serialisability 283

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiversion Two-Phase Locking

- Differentiates between read-only transactions and update transactions

- Update transactions acquire read and write locks, and hold all locks up
to the end of the transaction. That is, update transactions follow rigorous
two-phase locking.
• Each successful write results in the creation of a new version of the

data item written.
• each version of a data item has a single timestamp whose value is

obtained from a counter ts-counter that is incremented during
commit processing.

- Read-only transactions are assigned a timestamp by reading the current
value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.

284

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiversion Two-Phase Locking (Cont.)

- When an update transaction wants to read a data item:
• it obtains a shared lock on it, and reads the latest version.

- When it wants to write an item
• it obtains X-lock; it then creates a new version of the item and sets

this version's timestamp to ∞.
› This is to prevent other concurrent transactions to read its value,

and guarantee that other reads on the same transaction get this
version.

- When update transaction T completes, commit processing occurs:
• T sets timestamp on the versions it has created to ts-counter + 1
• T increments ts-counter by 1

- Read-only transactions that start after T incremented ts-counter will
see the values updated by T.

- Read-only transactions that start before T incremented the
ts-counter will see the value before the updates by T.

- Only serialisable schedules are produced. 285

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Weak Levels of Consistency
- Some applications are willing to live with weak levels of consistency,

allowing schedules that are not serialisable
• E.g. a read-only transaction that wants to get an approximate total

balance of all accounts
• E.g. database statistics computed for query optimisation can be

approximate
• Such transactions need not be serialisable with respect to other

transactions

- Trade-off accuracy for performance

286

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Levels of Consistency in SQL

- Serializable — default in SQL standard

- Repeatable read — only committed records to be read, repeated
reads of same record must return a same value. However, a
transaction may not be serialisable – it may find some records
inserted by a transaction but not find others.

- Read committed — only committed records can be read, but
successive reads of a record may return different (but committed)
values.

- Read uncommitted — even uncommitted records may be read. I.e.,
no isolation at all!

- In many database systems, such as Oracle, read committed is the
default consistency level
• has to be explicitly changed to serialisable when required

› set isolation level serializable
- Lower degrees of consistency are useful for gathering non-critical

approximate information about the database
287

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Snapshot Isolation

- Isolation level, weaker than serialisability, that is often used by DBMSs.
• Guarantees that all read operations in a transaction see a consistent

snapshot of the database
› Usually the snapshot has the committed values at the moment

the database started (or those at the first reading operation)
• If at the end, the write operations performed in the transaction

conflict with other concurrent transactionʼs writes since the read
snapshot, the transaction fails; otherwise succeed

- Snapshot isolation can be implemented via multi-version protocols,
without locks on reads
• This way it allows for more concurrency than serialisability
• But may cause anomalies (write-skews)

- Though not in the SQL recommendation, many DBMSs adhere to it:
• Oracle (as we shall see), SQL-Server and PostgreSQL are among

those

288

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Write Skews
- Comes from failure to detect read-write conflicts

- Example:
• Consider a database with 2 items, I1 and I2, with a constraint

imposing that I1+I2 ≥ 0.
• At a given moment both I1 and I2 contain the number 5, and 2

concurrent transactions start
• T1 (resp. T2) decrements I1 (resp. I2) by 10

› Independently both transaction are consistent (in both of them,
in the end I1+I2=0)

› no write operation conflict with another write
› So they both succeed!

• No serialisation would succeed! (in both, in the end I1+I2 = -10)

- This can be remedied by imposing write-write conflicts
• E.g. in the example by creating an auxiliary item storing I1+I2, that

would be updated by both transactions, or also write the other
item, unchanged.

289

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Multiple Granularity

- Up to now we have considered locking (and execution) at the level of a single
item/row

- However there are circumstances at which it is preferable to perform locks at
different level (sets of tuples, relation, or even sets of relations)
• As extreme example consider a transaction that needs to access to the

whole database: performing locks tuple by tuple would be time-consuming
- Allow data items to be of various sizes and define a hierarchy (tree) of data

granularities, where the small granularities are nested within larger ones

- When a transaction locks a node in the tree explicitly, it implicitly locks all the
node's descendants in the same mode.

- Granularity of locking (level in the tree where locking is done):
• fine granularity (lower in the tree): high concurrency, high locking overhead
• coarse granularity (higher in the tree): low locking overhead, low

concurrency

290

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

291

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction Definition in SQL

- Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

- In SQL, a transaction begins implicitly, after previous transaction.
- A transaction in SQL ends by:

• Commit work commits current transaction and begins a new
one.

• Rollback work causes current transaction to abort.
- In almost all database systems, by default every SQL statement

also commits implicitly if it executes successfully
• Implicit commit can be turned off by a database directive

› E.g. in JDBC, connection.setAutoCommit(false);
- Four levels of (weak) consistency, cf. before.

292

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Transaction management in Oracle
- Transaction beginning and ending as in SQL

• Explicit commit work and rollback work
• Implicit commit on session end, and implicit rollback on failure
• Implicit commit before and after DDL commands

- Log-based deferred recovery using rollback segment
- Checkpoints (inside transactions) can be handled explicitly

• savepoint <name>
• rollback to <name>

- Concurrency control is made by snapshot isolation

- Deadlock are detected using a wait-graph
• Upon deadlock detection, the operation locked for longer fails (but

the transaction is not rolled back)

293

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Consistency verification in Oracle

- By default, consistency is verified after each command, rather than at
the end of the transaction, as is prescribed by ACID properties

- However, it is possible to defer the verification of constraints to the
end of transactions

- This requires both:
• A prior declaration of all constraints that can possibly be deferred

› Done by adding deferrable to the end of the declarations of
the constraint

• an instruction in the beginning of each of the transactions where
constraints are deferred
› Done with set constraints all deferred or

set constraints <nome1>, ..., <nomen> deferred

294

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Levels of Consistency in Oracle

- Oracle implements 2 of the 4 of levels of SQL
• Read committed, by default in Oracle and with

› set transaction isolation level read committed
• Serializable (which indeed implements Snapshot Isolation) with

› set transaction isolation level serializable
› Appropriate for large databases with only few updates, and

usually with not many conflicts. Otherwise it is too costly.

- Further, it supports a level similar to repeatable read:
• Read only mode, only allow reads on committed data, and further

doesnʼt allow INSERT, UPDATE or DELETE on that data (without
unrepeatable reads!)
› set transaction read only

295

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Granularity in Oracle

- By default Oracle performs row level locking.
- Command

 select … for update
! locks the selected rows so that other users cannot lock or update the

rows until you end your transaction. Restriction:
• Only at top-level select (not in sub-queries)
• Not possible with DISTINCT operator, CURSOR expression, set

operators, group by clause, or aggregate functions.
- Explicit locking of tables is possible in several modes, with

• lock table <name> in
› row share mode
› row exclusive mode
› share mode
› share row exclusive mode
› exclusive mode

296

José Alferes e Carlos Viegas Damásio - Adaptado de Database System Concepts - 6th Edition

Lock modes in Oracle

- Row share mode
• The least restrictive mode (with highest degree of concurrency)
• Allows other transactions to query, insert, update, delete, or lock

rows concurrently in the same table, except for exclusive mode
- Row exclusive mode

• As before, but doesnʼt allow setting other modes except for row
share.

• Acquired automatically after a insert, update or delete command
on a table

- Exclusive mode
• Only allows queries to records of the locked table
• No modifications are allowed
• No other transaction can lock the table in any other mode

- See manual for details of other (intermediate) modes

297

