

Chapter 12: Query Processing

Database System Concepts, 6th Ed.

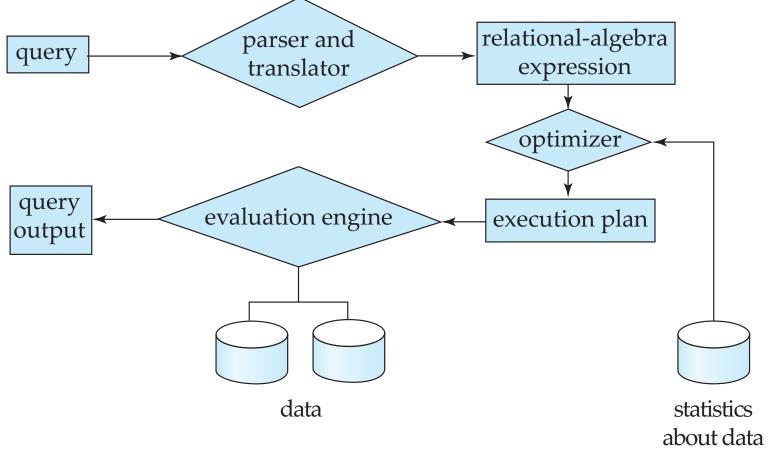
©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Chapter 12: Query Processing

- Overview of query processing and optimisation
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions
- Intraquery parallelism (in chapter 18 of the book)

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

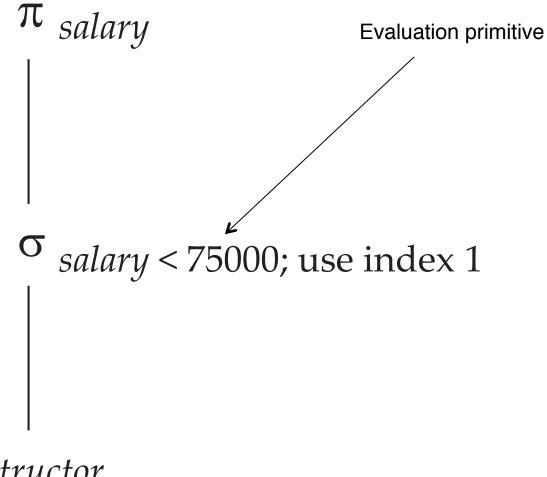


Basic Steps in Query Processing (Cont.)

Parsing and translation

- Translate the query into its internal form.
- This is then translated into relational algebra.
 - (Extended) relational algebra is more compact, and differentiates clearly among the various different operations
- Parser checks syntax, verifies relations
- This is a subject for *compilers* that we will ignore here
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.
 - The bulk of the problem lies in how to come up with a good evaluation plan!
 - Query execution is "simply" executing a predefined plan (or program)

Evaluation plan example



instructor

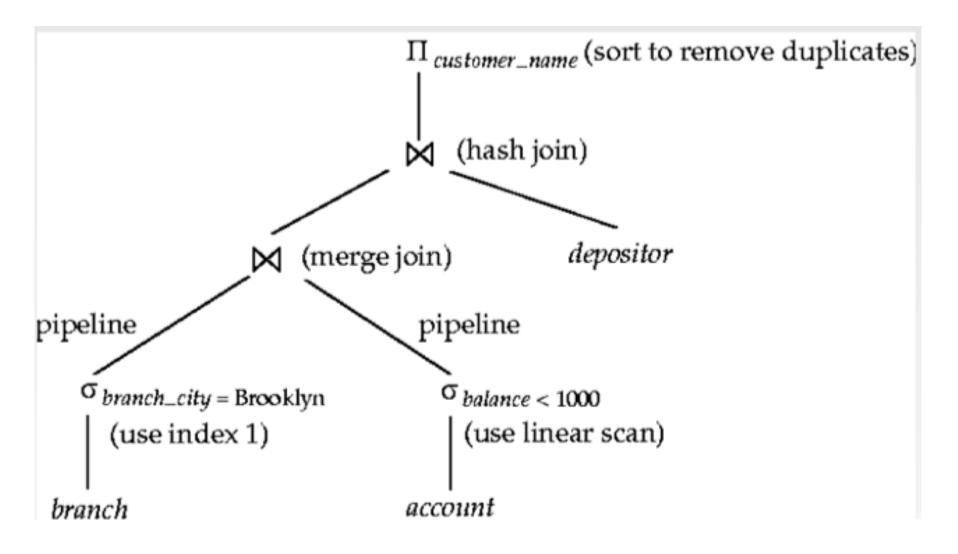
Database System Concepts - 6th Edition

Basic Steps in Query Processing : Optimization

A relational algebra expression may have many equivalent expressions

- E.g., $\sigma_{salary < 75000}(\prod_{salary}(instructor))$ is equivalent to $\prod_{salary}(\sigma_{salary < 75000}(instructor))$
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Annotated expression specifying detailed evaluation strategy is called an evaluation-plan.
 - E.g., can use an index on *salary* to find instructors with salary < 75000,
 - or can perform complete relation scan and discard instructors with salary ≥ 75000

A more complex evaluation-plan



Basic Steps: Optimization (Cont.)

- Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g. number of tuples in each relation, size of tuples, etc.
- In this chapter we study
 - How to measure query costs (to have a measure to be able to evaluate and compare the various plans and algorithms)
 - Algorithms for evaluating (main) relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression
 - How these algorithms and combinations can be parallelised
- Later we will study how to optimize queries, that is, how to find an evaluation plan with lowest estimated cost

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
- Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks
 * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful
 - The cost of a seek is usually much higher than that of a block transfer read or write (one order of magnitude)

Measures of Query Cost (Cont.)

For simplicity we just use the **number of block transfers** from disk and the **number of seeks** as the cost measures

- t_{T} time to transfer one block (0.1 ms for 4Kb blocks and 40 Mb/s transfer rate)
- t_s time for one seek (high-end disks 4 ms)
- Cost for b block transfers plus S seeks
 b * t_τ + S * t_s

We do not include cost to writing output to disk in the cost formulae

- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account, but they are clearly less significant
- Evaluating the cost of an algorithm for query processing is similar to the ones learnt in "Algorithms and Data Structures" but here the measures are quite different:
 - the evaluation in terms of block transfers and seeks are substantially different than in terms of number of execution steps.

Measures of Query Cost (Cont.)

- Several algorithms can reduce disk IO by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation

Selection Operation (recall)

Notation: $\sigma_p(r)$

- *p* is the selection predicate
- Defined by $\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$
- in which *p* is a formula of propositional calculus of terms connected by: ∧ (and), ∨ (or), ¬ (not)
 Each term is of the form:
- <attribute> op <attribute> or <constant>
 - where *op* can be one of: =, ≠, >, ≥. <. ≤

Selection example:

σ _{branch-name='Perryridge'} (account)

For recalling other operators, see documentation of "Bases de Dados".

Selection Operation

- File scan search algorithms that locate and retrieve records that fulfill a selection condition
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - Average cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices

Binary search

- Binary search generally does not make sense since data is not stored consecutively except when there is an index available, but binary search requires more seeks than index search
- Applicable only if the selection is an equality comparison on the attribute on which file is ordered.
- Assuming that the blocks of a relation are stored contiguously, the cost estimate (number of disk blocks to be scanned):
 - cost of locating the first tuple by a binary search on the blocks

 $|\log_2(b_r)| * (t_r + t_s)$

- If there are multiple records satisfying selection
 - Add transfer cost of the number of blocks containing records that satisfy selection condition
- If b_r is not too big, then most likely binary search doesn't pay.
 - Note that t_s is several (say, 50) times bigger than t_{τ}
- Estimates on the size of the relation are needed to wisely choose which of the two algorithms is better for a specific query at hands.

Selections Using Indices

Index scan – search algorithms that use an index

- selection condition must be on search-key of index.
- **A2** (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition, with h_i the index height

•
$$Cost = h_i^* (t_T + t_S) + (t_T + t_S) = (h_i + 1)^* (t_T + t_S)$$

Index search Record retrieval

- The height of a B+-tree is $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$, where n is the number of index entries per node and K is the number of search keys. Unless the relation is small, this algorithms "pays off" when indexes are available
 - E.g. for a relation r with 1.000.000 different search keys, and with 100 index entries per node, $h_i = 4$. Usually root node is in memory.
 - A3 (primary index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records

•
$$Cost = h_i^* (t_T + t_S) + t_S + t_T^* b$$

Database System Concepts - 6th Edition

Selections Using Indices

- A4 (secondary index, equality on nonkey).
 - Retrieve a single record if the search-key is a candidate key

• $Cost = (h_i + 1) * (t_T + t_S)$

- Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block

• Cost =
$$(h_i + n) * (t_T + t_S)$$

- Can be very expensive!

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- **A5** (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge v$ and scan relation sequentially from there
 - For σ_{A≤V}(r) just scan relation sequentially till first tuple > v; do not use index since it would require extra seeks on the index file

A6 (secondary index, comparison).

- For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
- For σ_{A≤V}(r) just scan leaf pages of index finding pointers to records, till first entry > v
- In either case, retrieve records that are pointed to
 - In worst-case requires an I/O for each record (a lot!)
 - Linear file scan may be cheaper!!!!

Database System Concepts - 6th Edition

Implementation of Complex Selections

- **Conjunction:** $\sigma_{\theta 1} \wedge \theta_{2} \wedge \dots \theta_{n}(r)$
- **A7** (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A6 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
 - In this case the choice of the first condition is crucial!
 - One must use estimates to figure out which one is better.
- **A8** (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- **A9** (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers (rowids).
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

- **Disjunction**: $\sigma_{\theta 1} \vee_{\theta 2} \vee_{\dots \theta n} (r)$.
- **A10** (disjunctive selection by union of identifiers).
 - Applicable if *all* conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
 - **Negation:** $\sigma_{\neg\theta}(r)$
 - Use linear scan on file
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Sorting

Sorting algorithms are important in query processing at least for two reasons:

- The query itself may require sorting (**order by** clause)
- Some algorithms for other operations, like projection, join, set operations and aggregation, require previously sorted relations
- To sort a relation:
 - We may build an index on the relation, and then use the index to read the relation in sorted order.
 - This only sorts the relation logically, not physically
 - May lead to one disk block access for each tuple.
 - For relations that fit in memory sorting algorithms that you've studied before, like quicksort, can be used.
 - For relations that don't fit in memory special algorithms are required, that take into account the measures in terms of disc transfers and seeks. **External sort-merge** is a good choice.

External Sort-Merge

Let *M* denote memory size (in pages/blocks).

1. Create sorted runs. Let *i* be 0 initially.

Repeatedly do the following till the end of the relation:

- (a) Read *M* blocks of relation into memory
- (b) Sort the in-memory blocks
- (c) Write sorted data to run R_i ; increment *i*.

Let the final value of *i* be N

2. Merge the runs (next slide).....

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that *N* < *M*.

- 1. Use *N* blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page
- 2. repeat
 - 1. Select the first record (in sort order) among all buffer pages
 - 2. Write the record to the output buffer. If the output buffer is full write it to disk.
 - Delete the record from its input buffer page.
 If the buffer page becomes empty then read the next block (if any) of the run into the buffer.
- **3. until** all input buffer pages are empty:

External Sort-Merge (Cont.)

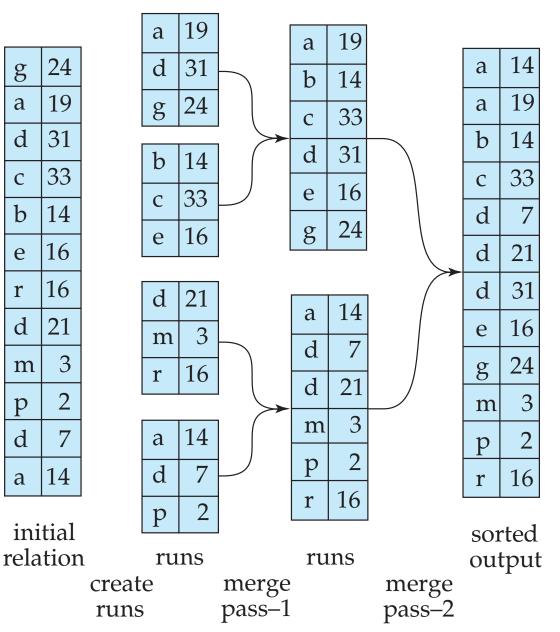
If $N \ge M$, several merge *passes* are required.

- In each pass, contiguous groups of M 1 runs are merged.
- A pass reduces the number of runs by a factor of *M*-1, and creates runs longer by the same factor.
 - E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
- Repeated passes are performed till all runs have been merged into one.
- Note that, in practice, this is only required fore really huge relations:
 - Consider 4Gb memory and 4Kb blocks (i.e. 1M blocks fit in memory)
 - For a 2nd pass to be needed, there should be over 1M runs,
 i.e. 4000Tb (since each run can be circa 4Gb).

Database System Concepts - 6th Edition

Example: External Sorting Using Sort-Merge

M=3



External Merge Sort (Cont.)

Cost analysis (as corrected in the ERRATA):

- 1 block per run leads to too many seeks during merge
 - Instead use b_b buffer blocks per run
 - → read/write b_b blocks at a time
 - Can merge $[M/b_b]$ -1 runs in one pass
- Total number of merge passes required: $[\log_{[M/bb]-1}(b_r/M)]$.
- Block transfers for initial run creation as well as in each pass is $2b_r$
 - for final pass, we don't count write cost
 - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
 - Thus total number of block transfers for external sorting: $b_r (2 \lceil \log_{|M/bb|-1} (b_r / M) \rceil + 1)$

External Merge Sort (Cont.)

Cost of seeks

 During run generation: one seek to read each run and one seek to write each run

▶ 2[b_r/M]

- During the merge phase
 - Need $2 [b_r / b_b]$ seeks for each merge pass
 - except the final one which does not require a write

Total number of seeks:

 $2 \left[\frac{b_r}{M} + \left[\frac{b_r}{b_b} \right] \left\{ 2 \left(\left[\log_{\left\lfloor \frac{M}{bb} \right\rfloor - 1} \left(\frac{b_r}{M} \right) \right] - 1 \right) + 1 \right\} \right\}$ = $2 \left[\frac{b_r}{M} + \left\lfloor \frac{b_r}{b_b} \right\rfloor \left(2 \left[\log_{\left\lfloor \frac{M}{bb} \right\rfloor - 1} \left(\frac{b_r}{M} \right) \right] - 1 \right)$

Join Operation

Several different algorithms to implement joins, ignoring for the time being the parallel ones:

- Nested-loop join
- Block nested-loop join
- Indexed nested-loop join
- Merge-join
- Hash-join
- As for selection, choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of *student*: 100 *takes*: 400

Nested-Loop Join

The simplest algorithm that can be used always (like linear search for selection)

To compute the theta join $r \Join_{\theta} s$ for each tuple t_r in r do begin for each tuple t_s in s do begin test pair (t_r, t_s) to see if they satisfy the join condition θ if they do, add $t_r \cdot t_s$ to the result. end end

- *r* is called the **outer relation** and *s* the **inner relation** of the join.
- Requires no indices and can be used with any kind of join condition.
- Quite expensive in general, since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$n_r * b_s + b_r$$
 block transfers, plus $n_r + b_r$ seeks

- In general, it is much better to have the smaller relation as the outer relation
 - The number of block transfers is multiplied by the number of tuples of the outer relation
 - The number of seeks only depends on the outer relation
- However, if the smaller relation is small enough to fit in memory, one should use it as the inner relation!
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- The choice of the inner and outer relation strongly depends on the estimate of the size (cardinality) of each relation

Nested-Loop Join (Example)

Assuming worst case memory availability cost estimate is

- with *student* as outer relation:
 - ▶ 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
- with *takes* as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.
- Instead of iterating over records, one could iterate over blocks. This way instead of $n_r * b_s + b_r$ we would have $b_r * b_s + b_r$ block transfers
- This is the basis of the usually preferable block nested-loop join algorithm (details in the next slide)

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin
for each block B_s of s do begin
for each tuple t_r in B_r do begin
for each tuple t_s in B_s do begin
Check if (t_r, t_s) satisfy the join condition
if they do, add t_r \cdot t_s to the result.
end
end
end
```


Block Nested-Loop Join (Cont.)

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
- Best case (when smaller relation fits into memory): $b_r + b_s$ block transfers + 2 seeks.
- Improvements to nested loop and block nested loop algorithms:
 - In block nested-loop, use M 2 disk blocks as blocking unit for outer relations, where M = memory size in blocks; use remaining two blocks to buffer inner relation and output
 - Cost = $[b_r / (M-2)] * b_s + b_r$ block transfers + 2 $[b_r / (M-2)]$ seeks
 - If equi-join attribute forms a key or inner relation, stop inner loop on first match
 - Scan inner loop forward and backward alternately, to make use of the blocks remaining in buffer (with LRU replacement)
 - Use index on inner relation if available to faster obtain the tuples that match the current tuple of the outer relation

Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one block of r, and, for each tuple in r, we perform an index lookup on s.
- Cost of the join: $b_r(t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition
- If indices are available on join attributes of both r and s, use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs

- Compute student \bowtie takes, with student as the outer relation.
- Let takes have a primary B⁺-tree index on the attribute ID, which contains 20 entries in each index node.
- Since takes has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the actual data
 - student has 5000 tuples
- Cost of block nested-loop join
 - 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks (4.81 secs)
 - assuming worst case memory
 - may be significantly less with more memory
 - Cost of indexed nested-loop join
 - 100 + 5000 * 5 = 25,100 block transfers and seeks (102,91 secs)
 - CPU cost likely to be less than that for block nested loops join
 - However in terms of time for transfers and seeks, in this case using the index does not pay (this is so because the relations are small)