
Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Chapter 11: Indexing and Hashing"



©Silberschatz, Korth and Sudarshan"11.2"Database System Concepts - 6th Edition"

Chapter 12:  Indexing and Hashing"

■  Basic Concepts!
■  Ordered Indices !
■  B+-Tree Index Files!

●  B-Tree Index Files!
■  Multiple-Key Access and Bitmap indices!
■  Hashing!

●  Static Hashing!
●  Dynamic Hashing !

■  Comparison of Ordered Indexing and Hashing !
■  Index Definition in SQL!
■  Index Definition in Oracle!



©Silberschatz, Korth and Sudarshan"11.3"Database System Concepts - 6th Edition"

Basic Concepts"

■  Indexing mechanisms used to speed up access to desired data.!
●  E.g., author catalog in library!

■  Search Key - attribute to set of attributes used to look up records in a 
file.!

■  An index file consists of records (called index entries) of the form 
 
!

■  Index files are typically much smaller than the original file !
■  Two basic kinds of indices:!

●  Ordered indices:  search keys are stored in sorted order!
●  Hash indices:  search keys are distributed uniformly across 

“buckets” using a “hash function”. !

search-key! pointer!



©Silberschatz, Korth and Sudarshan"11.4"Database System Concepts - 6th Edition"

Index Evaluation Metrics"

■  Access time!
■  Insertion time!
■  Deletion time!
■  Space overhead!
■  Access types supported efficiently.  E.g., !

●  records with a specified value in the attribute!
●  or records with an attribute value falling in a specified range of 

values.!
●  This strongly influences the choice of index, and depends on 

usage!



©Silberschatz, Korth and Sudarshan"11.5"Database System Concepts - 6th Edition"

Ordered Indices"

■  In an ordered index, index entries are stored sorted on the search key 
value.  E.g., author catalog in library.!

■  Primary index: in a sequentially ordered file, the index whose search 
key specifies the sequential order of the file.!
●  Also called clustering index!
●  The search key of a primary index is usually but not necessarily the 

primary key.!
■  Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called  
non-clustering index.!

■  Index-sequential file: ordered sequential file with a primary index.!



©Silberschatz, Korth and Sudarshan"11.6"Database System Concepts - 6th Edition"

Dense Index Files"

■  Dense index — Index record appears for every search-key 
value in the file. !

■  E.g. index on ID attribute of instructor relation (primary index)!

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000



©Silberschatz, Korth and Sudarshan"11.7"Database System Concepts - 6th Edition"

Dense Index Files (Cont.)"

■  Dense index on dept_name, with instructor file sorted on 
dept_name (primary index)!

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000



©Silberschatz, Korth and Sudarshan"11.8"Database System Concepts - 6th Edition"

Sparse Index Files"

■  Sparse Index:  contains index records for only some search-key 
values.!
●  Only applicable when records are sequentially ordered on 

search-key (i.e. in primary index)!
■  To locate a record with search-key value K we:!

●  Find index record with largest search-key value < K!
●  Search file sequentially starting at the record to which the index 

record points!
10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000



©Silberschatz, Korth and Sudarshan"11.9"Database System Concepts - 6th Edition"

Sparse Index Files (Cont.)"

■  Compared to dense indices:!
●  Less space and less maintenance overhead for insertions and 

deletions.!
●  Generally slower than dense index for locating records.!

■  Good tradeoff: sparse index with an index entry for every block in file, 
corresponding to least search-key value in the block.!

…
…

…
index
block 0

index
block 1

data
block 0

data
block 1

inner index



©Silberschatz, Korth and Sudarshan"11.10"Database System Concepts - 6th Edition"

Secondary Indices Example"

■  Index record points to a bucket that contains pointers to all the 
actual records with that particular search-key value.!

■  Secondary indices have to be dense!

Secondary index on salary field of instructor"

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000



©Silberschatz, Korth and Sudarshan"11.11"Database System Concepts - 6th Edition"

Primary and Secondary Indices"

■  Indices offer substantial benefits when searching for records.!
■  BUT: Updating indices imposes overhead on database 

modification --when a file is modified, every index on the file 
must be updated, !

■  Sequential scan using primary index is efficient, but a 
sequential scan using a secondary index is expensive !
●  Each record access may fetch a new block from disk!
●  Block fetch requires about 5 to 10 milliseconds, versus 

about 100 nanoseconds for memory access!



©Silberschatz, Korth and Sudarshan"11.12"Database System Concepts - 6th Edition"

Multilevel Index"
■  If primary index does not fit in memory, access becomes 

expensive.!
■  Solution: treat primary index kept on disk as a sequential file 

and construct a sparse index on it.!
●  outer index – a sparse index of primary index!
●  inner index – the primary index file!

■  If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.!

■  Indices at all levels must be updated on insertion or deletion 
from the file.!



©Silberschatz, Korth and Sudarshan"11.13"Database System Concepts - 6th Edition"

Multilevel Index (Cont.)"

…

…
…

…
outer index

index
block 0

index
block 1

data
block 0

data
block 1

inner index



©Silberschatz, Korth and Sudarshan"11.14"Database System Concepts - 6th Edition"

Index Update:  Deletion"

■  Single-level index entry deletion:"
●  Dense indices – deletion of search-key is similar to file record 

deletion.!
●  Sparse indices –!

!  if an entry for the search key exists in the index, it is 
deleted by replacing the entry in the index with the next 
search-key value in the file (in search-key order).  !

! If the next search-key value already has an index entry, the 
entry is deleted instead of being replaced.!

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000■  If deleted record was the 

only record in the file with its 
particular search-key value, 
the search-key is deleted 
from the index also.!



©Silberschatz, Korth and Sudarshan"11.15"Database System Concepts - 6th Edition"

Index Update:  Insertion"

■  Single-level index insertion:"
●  Perform a lookup using the search-key value appearing in 

the record to be inserted.!
●  Dense indices – if the search-key value does not appear in 

the index, insert it.!
●  Sparse indices – if index stores an entry for each block of 

the file, no change needs to be made to the index unless a 
new block is created.  !
! If a new block is created, the first search-key value 

appearing in the new block is inserted into the index.!
■  Multilevel insertion and deletion:  algorithms are simple 

extensions of the single-level algorithms!



©Silberschatz, Korth and Sudarshan"11.16"Database System Concepts - 6th Edition"

Secondary Indices"

■  Frequently, one wants to find all the records whose values in 
a certain field (which is not the search-key of the primary 
index) satisfy some condition.!
●  Example 1: In the instructor relation stored sequentially by 

ID, we may want to find all instructors in a particular 
department!

●  Example 2: as above, but where we want to find all 
instructors with a specified salary or with salary in a 
specified range of values!

■  We can have a secondary index with an index record for 
each search-key value!


