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Chapter 12:  Indexing and Hashing"

■  Basic Concepts!
■  Ordered Indices !
■  B+-Tree Index Files!

●  B-Tree Index Files!
■  Multiple-Key Access and Bitmap indices!
■  Hashing!

●  Static Hashing!
●  Dynamic Hashing !

■  Comparison of Ordered Indexing and Hashing !
■  Index Definition in SQL!
■  Index Definition in Oracle!
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Basic Concepts"

■  Indexing mechanisms used to speed up access to desired data.!
●  E.g., author catalog in library!

■  Search Key - attribute to set of attributes used to look up records in a 
file.!

■  An index file consists of records (called index entries) of the form 
 
!

■  Index files are typically much smaller than the original file !
■  Two basic kinds of indices:!

●  Ordered indices:  search keys are stored in sorted order!
●  Hash indices:  search keys are distributed uniformly across 

“buckets” using a “hash function”. !

search-key! pointer!
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Index Evaluation Metrics"

■  Access time!
■  Insertion time!
■  Deletion time!
■  Space overhead!
■  Access types supported efficiently.  E.g., !

●  records with a specified value in the attribute!
●  or records with an attribute value falling in a specified range of 

values.!
●  This strongly influences the choice of index, and depends on 

usage!
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Ordered Indices"

■  In an ordered index, index entries are stored sorted on the search key 
value.  E.g., author catalog in library.!

■  Primary index: in a sequentially ordered file, the index whose search 
key specifies the sequential order of the file.!
●  Also called clustering index!
●  The search key of a primary index is usually but not necessarily the 

primary key.!
■  Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called  
non-clustering index.!

■  Index-sequential file: ordered sequential file with a primary index.!
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Dense Index Files"

■  Dense index — Index record appears for every search-key 
value in the file. !

■  E.g. index on ID attribute of instructor relation (primary index)!
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Dense Index Files (Cont.)"

■  Dense index on dept_name, with instructor file sorted on 
dept_name (primary index)!
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Sparse Index Files"

■  Sparse Index:  contains index records for only some search-key 
values.!
●  Only applicable when records are sequentially ordered on 

search-key (i.e. in primary index)!
■  To locate a record with search-key value K we:!

●  Find index record with largest search-key value < K!
●  Search file sequentially starting at the record to which the index 

record points!
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Sparse Index Files (Cont.)"

■  Compared to dense indices:!
●  Less space and less maintenance overhead for insertions and 

deletions.!
●  Generally slower than dense index for locating records.!

■  Good tradeoff: sparse index with an index entry for every block in file, 
corresponding to least search-key value in the block.!
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Secondary Indices Example"

■  Index record points to a bucket that contains pointers to all the 
actual records with that particular search-key value.!

■  Secondary indices have to be dense!

Secondary index on salary field of instructor"
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Primary and Secondary Indices"

■  Indices offer substantial benefits when searching for records.!
■  BUT: Updating indices imposes overhead on database 

modification --when a file is modified, every index on the file 
must be updated, !

■  Sequential scan using primary index is efficient, but a 
sequential scan using a secondary index is expensive !
●  Each record access may fetch a new block from disk!
●  Block fetch requires about 5 to 10 milliseconds, versus 

about 100 nanoseconds for memory access!
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Multilevel Index"
■  If primary index does not fit in memory, access becomes 

expensive.!
■  Solution: treat primary index kept on disk as a sequential file 

and construct a sparse index on it.!
●  outer index – a sparse index of primary index!
●  inner index – the primary index file!

■  If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.!

■  Indices at all levels must be updated on insertion or deletion 
from the file.!
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Multilevel Index (Cont.)"
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Index Update:  Deletion"

■  Single-level index entry deletion:"
●  Dense indices – deletion of search-key is similar to file record 

deletion.!
●  Sparse indices –!

!  if an entry for the search key exists in the index, it is 
deleted by replacing the entry in the index with the next 
search-key value in the file (in search-key order).  !

! If the next search-key value already has an index entry, the 
entry is deleted instead of being replaced.!
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only record in the file with its 
particular search-key value, 
the search-key is deleted 
from the index also.!
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Index Update:  Insertion"

■  Single-level index insertion:"
●  Perform a lookup using the search-key value appearing in 

the record to be inserted.!
●  Dense indices – if the search-key value does not appear in 

the index, insert it.!
●  Sparse indices – if index stores an entry for each block of 

the file, no change needs to be made to the index unless a 
new block is created.  !
! If a new block is created, the first search-key value 

appearing in the new block is inserted into the index.!
■  Multilevel insertion and deletion:  algorithms are simple 

extensions of the single-level algorithms!
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Secondary Indices"

■  Frequently, one wants to find all the records whose values in 
a certain field (which is not the search-key of the primary 
index) satisfy some condition.!
●  Example 1: In the instructor relation stored sequentially by 

ID, we may want to find all instructors in a particular 
department!

●  Example 2: as above, but where we want to find all 
instructors with a specified salary or with salary in a 
specified range of values!

■  We can have a secondary index with an index record for 
each search-key value!


