

NON-FUNCTIONAL REQUIREMENTS
IN SOFTWARE ENGINEERING

by

Lawrence Chung
Department of Computer Science
The University of Texas at Dallas

Brian A. Nixon
Department of Computer Science

University of Toronto

Eric Yu
Faculty of lnformation Science

University o.f Toronto

John Mylopoulos
Department of Computer Science

University of Toronto

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

Non-functional requirements in software engineering / by Lawrence Chung ... [et al.].
p. cm. -- (The Kluwer international series in software engineering)

lncludes bibliographical references.
ISBN 978-1-4613-7403-9 ISBN 978-1-4615-5269-7 (eBook)
DOI 10.1007/978-1-4615-5269-7

1. Software engineering. 2. Computer software--Quality control. I. Series. II. Chung.
Lawrence.

QA76.758 .N65 1999
005.1 21--dc21

Copyright © 2000 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers in 2000

Softcover reprint ofthe hardcover Ist edition 2000

99-046023

AII rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo
copying, recording, or otherwise, without the prior written permis sion of the
publisher, Springer Science+Business Media, LLC

Printed on acidjree paper.

THE KLUWER INTERNATIONAL SERIES
IN SOFTWARE ENGINEERING

Series Editor

Victor R. Ba8ili
University ofMaryland

College Park, MD 20742

Also in the Series:

FORMAL SPECIFICATION TECHNIQUES FOR ENGINEERING MODULAR C
PROGRAMS, by TAN Yang Meng; ISBN: 0-7923-9653-7

TOOLS AND ENVIRONMENTS FOR PARALLEL AND DISTRIBUTED
SYSTEMS, by AmI' Zaky and Ted Lewis; ISBN: 0-7923-9675-8

CONSTRAINT-BASED DESIGN RECOVERY FOR SOFTWARE
REENGINEERING: Theory and Experiments, by Steven G. Woods, Alexander E.
Quilici and Qiang Yang; ISBN: 0-7923-8067-3

SOFTWARE DEFECT MODELING, by Kai-Yuan Cai; ISBN: 0-7923-8259-5

The Kluwer International Series in Software Engineering addresses the
following goals:

• To coherently and consistently present important research topics and their
application(s).

• To present evolved concepts in one place as a coherent whole, updating
early versions of the ideas and notations.

• To provide publications which will be used as the ultimate reference on the
topic by experts in the area.

With the dynamic growth evident in this field and the need to communicate
findings, this series provides a forum for information targeted toward Software
Engineers.

NON-FUNCTIONAL REQUIREMENTS
IN SOFTWARE ENGINEERING

Contents

List of Figu res

List of Tables

LEGEND FOR FIGURES

Preface

1. INTRODUCTION

1.1 Introduction

1.2 The Nature of Non-Functional Requirements

1.3 Literatu re Notes

Part I The NFR Framework

2. THE NFR FRAMEWORK IN ACTION

2.1 Using the NFR Framework

2.2 Acquiring Domain Knowledge

2.3 Acquiring and Cataloguing NFR Knowledge

2.4 Identifying NFRs

2.5 Decomposing NFR Softgoals

2.6 Dealing with Priorities

2.7 Identifying Possible Operationalizations

2.8 Dealing with Implicit Interdependencies among Softgoals

2.9 Recording Design Rationale

2.10 Selecting Among Alternatives

2.11 Evaluating the Impact of Decisions

2.12 Cataloguing Development Methods and Correlations

2.13 Discussion

3. SOFTGOAL INTERDEPENDENCY GRAPHS

3.1 Kinds of Softgoals

3.2 Interdependencies

3.3 The Evaluation Procedure

ix

XVII

xix

XXIX

1

1

6

9

15

16

18

18

19

21

25

27

30

33

35

37

42
44

47

48

54

70

VI NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

3.4 Coupling NFRs with Functional Requirements

3.5 Discussion

4. CATALOGUING REFINEMENT METHODS AND CORRELATIONS

4.1 Refinement Methods

4.2 NFR Decomposition Methods

4.3 Operationalization Methods

4.4 Argumentation Methods and Templates

4.5 Correlations

4.6 Putting Them All Together: The Goal-Driven Process

4.7 Discussion

4.8 Related Literature for the Framework

Part" Types of Non-Functional Requirements

5. TYPES OF NFRs

5.1 Categorizations of NFRs

5.2 Standards

5.3 A List of NFRs

5.4 Our Approach: The NFR Framework

5.5 Literatu re Notes

6. ACCURACY REQUIREMENTS

6.1 Accuracy Concepts

6.2 Decomposition Methods

6.3 Operationalization Methods

6.4 Argumentation Methods

6.5 Correlations

6.6 lI1ustration

6.7 Discussion

7. SECURITY REQUIREMENTS

7.1 Security Concepts

7.2 Decomposition Methods

7.3 Operationalization Methods

7.4 Argumentation Templates and Methods

7.5 Correlations

7.6 lI1ustration

7.7 Discussion

8. PERFORMANCE REQUIREMENTS

8.1 Performance Concepts

8.2 Factors for Dealing with Performance Requirements

8.3 Refinement Methods

80

85

89

90

90

III

119

129

137

141

142

153

155

158

159

159

160

161

163

167

175

180

181

184

194

197

198

201

204

207

207

208

213

217

218

223

225

Contents VB

8.4 Operationalization Methods from Software Performance Engineering 233

8.5 Argumentation Methods and Templates 236

8.6 Correlations 238

8.7 Illustration 239

8.8 Discussion 247

9. PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 249

9.1 Language Features and Implementation Techniques for Information Systems 250

9.2 Example: A Research Management System 252

9.3 Extending the Performance Type 258

9.4 Organizing Issues via Language Layers 259

9.5 Decomposition Methods for Handling Data Management 264

9.6 Methods for Handling Inheritance Hierarchies 267

9.7 Methods for Handling Integrity Constraints and Long-Term Processes 273

9.8 Organizing Performance Methods 277

9.9 Organizing Correlations 280

9.10 Illustration 282

9.11 Discussion 283

Part III Case Studies and Applications

10. INTRODUCTION TO THE STUDIES AND APPLICATIONS

10.1 Introduction

10.2 Characteristics of Domains Studied

10.3 Our Approach to Conducting the Studies

10.4 Observations from Studies

10.5 Literature Notes

291

292

293

297

300

300

11. A CREDIT CARD SYSTEM 301

11.1 Domain Description and Functional Requirements 301

11.2 Non-Functional Requirements 304

11.3 Dealing with Performance Requirements 305

11.4 Dealing with Security and Accuracy Requirements 323

11.5 Discussion 328

11.6 Literature Notes 329

12. AN ADMINISTRATIVE SYSTEM 331

12.1 Introduction 331

12.2 Domain Description, Functional Requirements and Organizational Workload 331

12.3 Non-Functional Requirements 333

12.4 Recording Domain Information in a Design 334

12.5 Overview of SIGs 334

12.6 Time Softgoals for Managing Long-Term Tax Appeal Processes 336

12.7 Operationalization Methods for Integrity Constraints 340

Vlll NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

12.8 Dealing with a Tradeoff 346

12.9 Discussion 350

12.10Literature Notes 350

13 APPLICATION TO SOFTWARE ARCHITECTURE 351

13.1 Introduction 352

13.2 Cataloguing Software Architecture Concepts using the NFR Framework 354

13.3 Illustration of the Architectural Design Process 358

13.4 Discussion 365

13.5 Literature Notes 366

14. ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 367

14.1 Introduction 367

14.2 The Strategic Dependency Model 370

14.3 The Strategic Rationale Model 374

14.4 Discussion 381

14.5 Literature Notes 382

15. ASSESSMENT OF STUDIES 383

15.1 Feedback from Domain Experts 383

15.2 Discussion: Lessons Learned for Conducting Studies 387

15.3 Literature Notes 389

POSTSCRIPT 391

BIBLIOGRAPHY 399

List of Figures

0.1 Logos for figures. xx
0.2 Conventions for abbreviations and usage of fonts. xxi
0.3 Legend for Softgoal Interdependency Graphs. xxii
0.4 Legend for Softgoals and Interdependencies. XXIII

0.5 Legend for Functional Requirements. XXIV

0.6 Kinds of Refinements. xxv

0.7 The "individual impact" of an offspring upon its parent for
selected contribution types during the First Step of the eval-
uation procedure (Chapter 3). Parent labels are shown in the
table entries. xxvi

0.8 The "individual impact" of an offspring upon its parent during
the First Step of the evaluation procedure (Chapter 3). An
elaboration of Figure 0.7. XXVI

0.9 Label propagation for selected contribution types and offspring
labels during the First Step. xxvii

0.10 Legend for Performance Requirements (Chapters 8 and 9). XXVIII

0.11 Legend for Business Process Redesign (Chapter 14). XXVIII

2.1 A catalogue of some NFR Types. 19
2.2 An initial Softgoal Interdependency Graph with NFR soft-

goals representing requirements for performance and security
of customer accounts. 20

2.3 Decomposing NFR softgoals into more specific non-functional
requirements. 22

2.4 Further decomposition of a security softgoal. 23
2.5 Considering a performance softgoal. 24
2.6 Decomposing a performance softgoal. 25
2.7 Identifying a softgoal as a priority. 26
2.8 Identifying possible operationalizations for NFR softgoals. 28
2.9 Detecting implicit interdependencies among existing softgoals. 31
2.10 Detecting implicit interdependencies among existing and other

softgoals. 32

x NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

2.11
2.12
2.13
2.14
2.15

2.16

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15
3.16

3.17

3.18

3.19
3.20
3.21

3.22

3.23

4.1
4.2

4.3

Recording design rationale.
Selecting among alternatives.
Evaluating the impact of decisions.
Relating decisions to Functional Requirements.
A catalogue of operationalization methods for achieving con
fidentiality.
A catalogue showing the impact of operationalizing softgoals
upon NFR softgoals.
Representing sample non-functional requirements as NFR soft
goals.
Portions of NFR type catalogues.
Sample operationalizing softgoals.
Representation of claims softgoals.
Decomposition and prioritization of NFR softgoals.
Kinds of Refinements.
Refining NFR softgoals into operationalizing softgoals.
Recording design rationale using claim softgoals.
A decomposition with an AND contribution.
Examples of several contribution types.
Intuitive distinction among contribution types.
Grouping positive and negative contribution types.
A conflict in contributions.
A softgoal interdependency graph with various contribution
types.
Catalogue of label values.
Label propagation for selected contribution types and offspring
labels during the First Step.
Examples of "automatic" label propagation during the Second
Step.
Examples of developer-directed label propagation during the
Second Step.
Meaning of symbols in softgoal interdependency graphs.
Recording developer's decisions to choose or reject softgoals.
Determining the impact of developer's decisions, using the
evaluation procedure.
Relating functional requirements and the target system to a
SIG.
Dealing with functional requirements guided by considerations
of NFRs.
A catalogue of NFR decomposition methods.
A catalogue of NFR decomposition methods, including those
for specific NFRs.
Definition and application of the AccountResponseTimeViaSub
class decomposition method.

34

36

38

41

43

44

50

50

52
53

55

56
57
59

61

62

63

64

65

69

72

75

76

77

78

80

81

82

84

91

92

93

LIST OF FIGURES Xl

4.4 Definition and application of ResponseTimeViaSubclass, a pa-
rameterized decomposition method. 95

4.5 Another application of the ResponseTimeViaSubclass method. 97

4.6 The StaffingAndAmountForOperatingCostViaSubclassAndDollar-
Limit method, parameterized on two topics. 98

4.7 A catalogue of NFR Types. 99

4.8 Definition and application of the AccountSecurityViaSubType
method. 100

4.9 The AccountQualityViaSubType method, parameterized on NFR
type. 101

4.10 The SubType method, parameterized on NFR Type and Topic,
and applied to performance of accounts. 102

4.11 The SubType method, applied to adaptability of insurance
claims processing. 103

4.12 The SubType type decomposition methods, with varying de-
grees of parameterization. 104

4.13 The Subclass method, applied to space performance of accounts. 106

4.14 The Subclass method, applied to modifiability of packages. 107

4.15 The Subclass topic decomposition methods, with varying de-
grees of parameterization. 108

4.16 The Attribute decomposition method and one of its applications. 109

4.17 A Softgoal Interdependency Graph with two method applica-
tions. 110

4.18 A catalogue of operationalization methods. 111

4.19 The Perform First method, applied to an operation on an at-
tribute. 112

4.20 The Compressed Format operationalization method and an ap-
plication. 113

4.21 The Auditing method and one of its applications. 114

4.22 The Validation method and one of its applicatiolls. 115

4.23 Refining an operationalizing softgoal and adding a topic. 116

4.24 Applying the AuthorizationViaSubType method to accounts, re-
sulting in several offspring of an operationalizing softgoal. 117

4.25 A Softgoal Interdependency Graph with applications of vari-
ous decomposition and operationalization methods. 118

4.26 A catalogue of argumentation methods. 119

4.27 A template for claims about validation. 121

4.28 Claims about operationalization methods. 122

4.29 A template for the VitalFew argumentation method for prior-
itization, and an example of its usage in a claim. 123

4.30 A template for claims about prioritization. 125

4.31 Another template for claims about prioritization. 126

4.32 Modifying the offspring labels of an AND interdependency. 127

4.33 Modifying the parent label of an AND interdependency. 128

4.34 A SIG with operationalization and argumentation methods. 129

xu NO -FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

4.35 Sample correlations. 131

4.36 Different kinds of inferences which can be made by usmg a
correlation rule. 133

4.37 A correlation catalogue. 135

4.38 Benefits of using a common component in refinements of an
operationalization. 136

4.39 Selection of operationalizating softgoals and argumentation
softgoals. 138

4.40 The impact of decisions on NFRs and Functional Requirements. 139

5.1 Software Quality Characteristics Tree (From [Boehm76]). 157

5.2 Types of non-functional requirements (From [Sommerville92]). 158

6.1 An example of information flow. 164

6.2 An accuracy type catalogue. 165

6.3 A catalogue of accuracy decomposition methods. 168

6.4 A description of information flow. 170

6.5 A catalogue of accuracy operationalization methods. 176

6.6 The ValidationResourceAvailability method. 179

6.7 A catalogue of accuracy argumentation methods. 181

6.8 Decompositions for accurate travel expenses. 185

6.9 Operationalizing the accuracy of reimbursement requests. 188

6.10 Detecting a negative impact on a security requirement. 190

6.11 Evaluation of selective certification of expense summaries. 191

6.12 Relating functional requirements to the target system. 193

7.1 A catalogue of security types. 198

7.2 A catalogue of security operationalization methods. 205

7.3 Refinement of a security softgoal by subtypes. 209

7.4 SIG for confidential accounts. 210
8.1 The Performance Type. 220

8.2 Characteristics of the Performance Type. 220

8.3 Catalogue of Decomposition Methods for Performance. 225

8.4 A SubType decomposition. 226

8.5 Decomposing a performance softgoal using the Subclass method. 227

8.6 Using the IndividualAttributes method. 228

8.7 A decomposition based on implementation components. 228

8.8 Using the FlowThrough method to link layers. 230

8.9 A template for inter-layer refinement. 230

8.10 A prioritization argument. 231

8.11 Using the EarlyFixing method. 233

8.12 Refining an EarlyFixing operationalizing softgoal. 234

8.13 Positive and negative impacts of an operationalizing softgoal. 236

8.14 Catalogue of Operationalization Methods for Performance. 237

8.15 A correlation catalogue for Performance. 238

8.16 A decomposition on attributes. 240

8.17 A prioritization argument based on workload. 241

8.18 Consideration of an operationalizing softgoal. 242

LIST OF FIGURES Xlll

8.19 An inter-layer interdependency link. 242
8.20 Initial operationalizing softgoals. 243
8.21 Refined operationalizing softgoals. 245
8.22 Evaluation of the Softgoal Interdependency Graph. 246
9.1 Definitions of the Employee and Researcher classes. 253
9.2 Defining ComputerResearcher as a specialization of Researcher. 254
9.3 Entity (data) classes in the functional requirements for the

research administration example. 254
9.4 Transaction classes in the functional requirements. 255
9.5 A long-term research administration process represented as a

script. 256
9.6 Adding ManagementTime to the performance type. 258
9.7 Adding ManagementTime and characteristics to the perfor-

mance type. 259
9.8 Performance issues arranged in a grid. 260
9.9 Layered organization of performance knowledge. 261
9.10 Space of implementation alternatives arranged by layer. 263
9.11 Arrangement of attribute values in the presence of inheritance

hierarchies. 268
9.12 Horizontal splitting of attributes. 268
9.13 Vertical splitting of attributes. 268
9.14 Attributes stored as "triples." 269
9.15 Organization of Performance decomposition methods. 278
9.16 Some Performance decomposition methods for Layers 6 and 5. 279
9.17 Organization of Performance operationalization methods. 280
9.18 A performance correlation catalogue for information system

development. 281
9.19 Dealing with inheritance hierarchies. 282
9.20 Linking another layer to the graph. 284
10.1 Overview of studies presented in Part III. 294
10.2 Overview of studies presented elsewhere. 295
11.1 Attributes of credit cardholders. 302
11.2 Classes in the credit card system. 302
11.3 Information Flow for the credit card system. 303
11.4 Some main NFRs for the credit card system. 304
11.5 Initial softgoal for fast cancellation of credit cards. 306
11.6 Softgoal decomposition and prioritization with argumentation. 307
11.7 Further softgoal decomposition and prioritization. 308
11.8 Selection of Operationalizing Softgoals. 309
11.9 Using inter-layer interdependency links. 310
11.10 Decomposition based on implementation components. 311
11.11 Evaluating the impact of decisions after selecting operational-

izing softgoals. 312
11.12 Dealing with transaction hierarchies at Layer 4. 314
11.13 Dealing with priority operations at Layer 3. 315

XIV NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

11.14 Dealing with credit card attributes at Layer 2. 317
11.15 Evaluating the impact of decisions. 318
11.16 Considering inheritance hierarchies at Layer 4. 319
11.17 Selecting attribute storage methods at Layer 2. 321
11.18 Evaluating the impact of decisions. 322
11.19 SIG for storage of sales information. 323
11.20 Main Security Requirements for the credit card system. 324
11.21 Accuracy and Confidentiality Requirements for the credit card

system. 325
11.22 Interactions among softgoals. 325
11.23 Evaluating the use of an operationalization. 327
11.24 Refining an Internal Confidentiality softgoal. 328
11.25 Evaluating the impact of alarms on Internal Confidentiality. 329
12.1 The tax appeals process represented as a Script. 335
12.2 Initial softgoal of good time performance for managing tran-

sitions of appeal process. 336
12.3 Decomposition into softgoals for individual transitions. 337
12.4 Further decompositions at Layer 6. 338
12.5 An inter-layer refinement. 339
12.6 Considering some operationalizing softgoals. 340
12.7 An Argument about an Operationalization. 341
12.8 Refining an Operationali zing Softgoal. 342
12.9 Evaluation of the SIG. 343
12.10 Time and Space softgoals and their refinements. 346
12.11 Identifying priorities using workload-based arguments. 347
12.12 Developing an hybrid method to deal with tradeoffs. 348
13.1 Catalogue of some NFR Types considered for software archi-

tecture. 355
13.2 A method for refining a modifiability softgoal for the system. 356
13.3 A method for refining a modifiability softgoal for the process. 356
13.4 A generic Correlation Catalogue, based on [Garlan93]. 357
13.5 Initial NFR Softgoals for a KWIC system. 358
13.6 Refining softgoals using methods. 359
13.7 Tradeoffs among operationalizations. 361

13.8 Domain-Specific Correlation Catalogue for KWIC Example. 362
13.9 Evaluating the impact of the chosen alternative on NFRs. 364
14.1 Strategic Dependency Model for existing auto insurance claims

handling. 371
14.2 Strategic Dependency Model for letting the insurance agent

handle claims. 373
14.3 Strategic Dependency Model for letting the body shop handle

claims. 374
14.4 Strategic Rationale Model relating softgoals and tasks for in-

surance claims handling. 375
14.5 Strategic Rationale Model for handling claims centrally. 377

LIST OF FIGURES xv

14.6 Strategic Rationale Model for handling small claims by the
insurance agent. 378

14.7 Strategic Rationale Model for handling small claims by the
body shop. 379

14.8 Overall Strategic Rationale Model for Claims Handling. 380

List of Tables

1.1 RADC software quality consumer-oriented attributes [Keller90]. 2
3.1 The "individual impact" of an offspring upon its parent for se

lected contribution types during the First Step. Parent labels
are shown in the table entries. 74

3.2 The "individual impact" of an offspring upon its parent during
the First Step. Parent labels are shown in the table entries. 74

5.1 Software quality factors and criteria (From [Keller90]). 156

5.2 A list of non-functional requirements. 160
6.1 An accuracy correlation catalogue. 183

LEGEND FOR FIGURES

We present a collected legend for the figures of this book.
Figures in this book have a "logo" in the top left corner indicating the

type of the figure. Logos for some figures types are given in Figure O.l.
Some types of figures contain sub-figures. In Figure 0.1, their names are

indented and preceded by a hyphen.
There are also Informal figures in Chapter 2, which use an approximate

syntax.

xx NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Legend

Logo

Claim Template
Contribution Catalogue
Contribution Type Examples
Correlation Catalogue
Evaluation Catalogue
Evaluation Examples
FRs

Informal Correlation Catalogue
Informal Legend
Informal SIC
Information Flow
Label Catalogue
Layered Structuring
Legend
Method Application - Initial SIC

- Resultant SIC
Method Catalogue
Method Definition, Parameterized on Topic
Method Definition, Parameterized on NFR Type
Method Definition, Parameterized on NFR Type and Topic
Method Definition, Unparameterized
Method Hierarchy
NFR Type Catalogue
Refinement Catalogue
Rule Definition, Parameterized on Topic
Rule Application - Initial SIC

- Resultant SIC
SIC

Softgoal Examples
Strategic Dependency Model
Strategic Rationale Model
Template - Initial SIC

- Resultant SIC
Template Usage - Initial SIC

- Resultant SIC

Explanation

Functional
Requirements

(Chapter 2)
(Chapter 2)
(Chapter 2)

(Chapters 8 & 9)

Softgoal
Interdependency
Graph

(Chapter 14)
(Chapter 14)

Figure 0.1. Logos for figures.

Legend I
Abbreviations

FR = Functional Requirements

IF = Information Flow

NFR = Non-Functional Requirements

PM =Policy Manual

SIG = Softgoallnterdependency Graph

SPE =Software Performance Engineering

Usage of Fonts

Helvetica Roman: Elements of the NFR Framework. SIGs.
catalogues and functional requirements

Helvetica Italics: Parameters

CAPITAL HEL VETICA ITALICS: Contributions

Times Italics: Descriptions

Times Roman: Descriptions and some information flow

XXI

Figure 0.2. Conventions for abbreviations and usage of fonts.

XXII NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Legend I

Softgoal Interdependency Graphs

Softgoalso NFR softgoal

Contributions

o Operationalizing sottgoal) Claim softgoal
'.j

BREAK HURT UNKNOWN HELP MAKE

"-y--J
50ME-

"-y--J
50ME+

AND OR EQUAL

Softgoal Labels

@ @ ® @ (1)
denied weakly denied undecided weakly satisficed satisficed

(D) (W-) (U) (~) (5)

(9
conflict

(e)

Figure 0.3. Legend for Softgoal Interdependency Graphs.

Legend I
Softgoals and Interdependencies

Softgoal tag: NFR Type
[topic]

XXlll

r Explicit Softgoallnterdependency

1-
I
I
I
I

Implicit Softgoallnterdependency

Priority softgoal

1-
I
1+
I
I
I

Detected positive contribution

1-
I
I
I
r
I

Detected negative contribution

,/ Satisficed or chosen softgoal

X Denied or rejected softgoal

t
A portion of the graph ;J omilled

Figure 0.4. Legend for Softgoals and Interdependencies.

xxiv NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Legend I
Functional Requirements

Relating functional requirements to target systems

r'-~~-Jl Functional requirement
1\Q Operationalizing softgoal

",,
Operationalization-target link'" ,

'~

Target II"---l-----.J

Conceptual modeling

i [sA (specialization) relationship

t attributes ofa class

Information flow o agent or channel

information item

i unit flow of information

Design decision link

Long-term processes

o
t

Location (State)

Transition:

Figure 0.5. Legend for Functional Requirements.

Refinement Catalogue

Decompositions

~!

xxv

NFR
Decomposition

Operationalization
Decomposition

Argumentation
Decomposition

Prioritization

Operationalizations

Argumentations

9

Figure 0.6. Kinds of Refinements.

XXVI NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

I Evaluation Catalogue

Individual Impact of
offspring
with label:

upon parent label,
given offspring-parent
contribution type:

SOME- I ? I SOME+ I =
(UNKNOWN)

x (Denied) II W+ U I W- I x I
Q (Conflict) II Q u I Q I Q I
U (Undetermined) II U U I U I U I
J (Satis/iced) II W- U I W+ I V I

Figure 0.7. The "individual impact" of an offspring upon its parent for selected contribu

tion types during the First Step of the evaluation procedure (Chapter 3). Parent labels are

shown in the table entries.

Evaluation Catalogue I
Individual upon parent label,

Impact of given offspring-parent

offspring contribution type:

with label: BREAK I SOME- I HURT I? I HELP I SOME+ I MAKE I =

I x II W+ I W+ I W+ U I W- I W- I X I X I
I Q II Q I Q I Q U I Q I Q I Q I Q I
I U II U !U I U I U IU I U I U I U I
Iv II X I W- I W- I U I W+ I W+ Iv I vi

Figure 0.8. The "individual impact" of an offspring upon its parent during the First Step

of the evaluation procedure (Chapter 3). An elaboration of Figure 0.7.

XXVII

Evaluation Catalogue

Legend

CD @ ® @ 0
denied weakly denied undecided weakly satisficed satisficed

(0) (W-) (U) (l¥) (5)

(9
conflict

(C)

Figure 0.9. Label propagation for selected contribution types and offspring labels during

the First Step.

XXVlll

Legend I

NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Performance

LAYERn

Inter-layer boundary
LAYER m (m < n)

Figure 0.10.

Legend I

Legend for Performance Requirements (Chapters 8 and 9).

Business Process Redesign

Strategic Dependency Model

-0-0-0- So!tgoal Dependency

-0-0-0- Goal Dependency

.."" ...-0'., ;-0- Task Dependency

- 0 -D--0- Resource Dependency

... --0- ... -0-- ...o Actor

depender dependum dependee

Strategic Rationale Model

o
o

.. '."
So!tgoal t......; Task

Gmll D Re,\'Ource

Interdependency link

Means-ends link

Task-Decomposition link

+ Positive contribution

Negative contribution

Figure 0.11.

/~-----~-'\ Actor boundary

\"-e/;~:or

Legend for Business Process Redesign (Chapter 14).

Preface

The material in this book is based on the following publications, which are
overviewed in Chapter 1: [Chung93a] [Nixon97a] [Yu94b] [Mylopoulos92a]
[Chung94a,b] [Chung91a, 93b] [Nixon91, 93, 94a] [Chung95b] [Chung95c,d]
[Yu94c] [Mylopoulos97] [Chung91b] [Nixon90]. The "Literature Notes" and
"Discussions" at the end of each chapter describe the source publications for
the particular chapter.

In writing this book, we have benefitted from the work of many people.
The following diagrams are taken from, or in some cases adapted from,

the source publications listed below.

Table or Figure
in this Book

Table 1.1
Figure 5.1
Figure 5.1
Figure 5.2
Figure 13.4

Source
Publication

[Keller90]
[Boehm76]
[Keller90]
[Sommerville92]
[Garlan93]

The following trademarks have been used: SADT, a trademark ofSoftech
Inc., and REFINE, a trademark of Reasoning Systems Inc.

We express our sincere gratitude to Scott Delman, Senior Publishing
Editor of Kluwer Academic Publishers for first suggesting this book, and for
his ongoing encouragement to complete it. We thank Scott for having the
patience of Job during the writing and editing of this book. Scott, ably aided
by Sharon Palleschi and Melissa Fearon (Editorial Assistants) and Suzanne
St. Clair (Electronic Production Manager), provided help in many ways.

We thank Professor Victor R. Basili, Series Editor, The Kluwer Inter
national Series in Software Engineering, for reviewing the book proposal and
arranging a review of a draft manuscript. We thank the anonymous reviewer
for helpful comments.

xxx NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Our deep appreciation for her contribution to our research goes to Eliz
abeth D'Angelo. Her excellent work in preparing the figures, proofreading
the manuscript and suggesting helpful improvements has made the presenta
tion more consistent and understandable. With the authors she designed the
graphical notation used in this book. She has cheerfully dealt with numerous
revisions. We also thank Ricardo D'Angelo for his help with the figures.

We thank our colleagues, Sol Greenspan, Alex Borgida, Matthias Jarke
and Joachim Schmidt for sharing their expertise and ideas over the years. We
have truly benefitted from collaborating with them.

We also thank Alex Borgida for coauthoring a source paper for Chap
ter 14.

The thesis committee members of the first three authors have also played
an important role in the development of the material presented herein. We also
appreciate the helpful comments received from the reviewers (often anonymous)
of the source papers of this book. Many colleagues have read drafts of our earlier
papers and offered helpful literature references, and we thank them, including
Kostas Kontogianis, Ken Sevcik, Stewart Green, Vinay Chaudhri, Isabel Cruz,
David Lauzon, Sheila McIlraith and Will Hyslop.

We thank colleagues who have provided us with references to identify
issues and examples, organized workshops, and encouraged us to write up our
work. They include Stephen Fickas, Anthony Finkelstein, Martin Feather, Peri
Loucopoulos, Barry Boehm, John Callahan, David Garlan and Dewayne Perry.

A number of people with domain expertise aided our case studies, by
providing domain documents, reviewing our studies, offering feedback, and re
ferring us to others. We thank Lou Melli, Dominic Covvey, Bill Polimenakos,
Brian Brett, David Braidwood, Honey Robb and Patrick Daly.

Many thanks to Belinda Lobo for excellent office support, as well as
preparing the legend of logos for figures, and cheerfully maintaining our files.

We also thank Niloo Hodjati for carefully proofreading several chapters,
Joseph Makuch for valuable systems support, and Daniel Gross for helpful
discussions.

Many people have helped us develop tools for the NFR Framework,
including Ian Maione, Thomas Rose, David Lauzon, Martin Staudt, Bryan
Kramer and Martin Stanley. Although tools are not detailed in this book, the
help of these people permitted us to tryout some of the ideas of the Framework.

We acknowledge with gratitude the financial support received from the
Institute for Robotics and Intelligent Systems (IRIS), the Consortium for Soft
ware Engineering Research (CSER) and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Many colleagues and friends have encouraged us to complete this book.
Finally, we thank our families for their love and support throughout the

development of this book.

1.1 INTRODUCTION

1 INTRODUCTION

The complexity of a software system is determined partly by its functionality
i.e., what the system does - and partly by global requirements on its develop
ment or operational costs, performance, reliability, maintainability, portability,
robustness and the like. These non-functional requirements (or NFRs)l playa
critical role during system development, serving as selection criteria for choos
ing among myriads of alternative designs and ultimate implementations. Errors
of omission or commission in laying down and taking properly into account such
requirements are generally acknowledged to be among the most expensive and
difficult to correct once a software system has been implemented [Brooks87]
[Davis93]. The cry from managers, software engineers, and users alike for soft
ware that is "better, cheaper, faster, friendlier" further illustrates the need to
deal comprehensively with such requirements during the development process.

Surprisingly, non-functional requirements have received little attention
in the literature and are definitely less well understood than other, less critical
factors in software development. As far as software engineering practice is

IThe term "non-functional requirements" was used by Roman [Roman85]. NFRs are also re
ferred to as quality attributes [Boehm78] [Keller90], constraints [Roman85], goals [Mostow85],
extra-functional requirements [Shaw89], and non-behavioural requirements [Davis93] in the
literature. We adopt the term non-functional requirements to distinguish them from func
tional ones.

2 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

concerned, they are generally stated informally during requirements analysis,
are often contradictory, difficult to enforce during software development and to
validate, when the software system is ready for delivery.

The only glimmer of technical light in an otherwise bleak landscape origi
nates in technical work on software quality metrics that allow the quantification
of the degree to which a software system meets non-functional requirements
[Keller90, Boehm76, Boehm78, Basili91, Fenton97, Musa87, Lyu96].

Acquisition
Concern

User
Concern

Quality
Attribute

How well does it utilize
a resource? Efficiency

How secure is it? Integrity
Performance - What confidence can be
How well does it function? placed in what it does? Reliability

How well will it perform
under adverse conditions? Survivability

How easy is it to use it? Usability

How well does it conform
to the requirements? Correctness

Design - How easy is it to repair? Maintainability
How valid is the design? How easy is it to verify

its performance? Verifiability

How easy is it to expand
or upgrade its capability
or performance? Expandabili ty

How easy is it to change? Flexibility
Adaptation - How easy is it to interfere
How adaptable is it? with another system? Interoperability

How easy is it to transport? Portability
How easy is it to convert for

use in another application? I Reusability

Table 1.1. RADC software quality consumer-oriented attributes [Keller90].

Even though there is no formal definition, there has been considerable
work on characterizing and classifying non-functional requirements. In a report
published by the Rome Air Development Center (RADC, now known as the
Rome Laboratory) [Bowen85], non-functional requirements ("software quality
attributes" in their terminology) are classified into consumer-oriented (or soft
ware quality factors) and technically-oriented attributes (or software quality
criteria). The former class of software attributes refers to software qualities
observable by the consumer, such as efficiency, correctness and interoperabil-

INTRODUCTION 3

ity. The latter class addresses system-oriented requirements such as anomaly
management, completeness and functional scope. Table 1.1 shows the RADC
consumer-oriented attributes. The non-functional requirements listed in the
table apply to all software systems. However, additional requirements may
apply for special classes of software. For instance, precision would be an im
portant non-functional requirement for a numerical analysis software package,
while accuracy (of maintained information) might feature prominently during
the development of an information system.

Two basic approaches characterize the systematic treatment of non
functional requirements and we shall refer to them as product-oriented and
process-oriented. The first attempts to develop a formal framework so that
a software system can be evaluated as to the degree to which it meets its
non-functional requirements. For example, measuring software visibility may
include, among other things, measuring the amount of branching in a software
system. This might be achieved globally with a criterion such as: "There shall
be no more than X branches per 1 000 lines of code" or locally with a criterion
such as "There shall be no more than Y% of system modules that violate the
above criterion." The product-oriented approach has received almost exclusive
attention in the literature and is nicely overviewed in [Keller90].

Earlier work by Boehm et al. [Boehm78] considered quality character
istics of software, noting that merely increasing designer awareness would im
prove the quality of the final product. Also supporting a quantitative approach
to software quality, Basili and Musa [Basili91] advocate models and metrics
of the software engineering process from a management perspective. On a
different track, Hauser et al. [Hauser88] provide a methodology for reflecting
customer attributes in different phases of automobile design.

An alternative approach, explored in this book, is to develop techniques
for justifying design decisions during the software development process. Instead
of evaluating the final product, the emphasis here is on trying to rationalize
the development process itself in terms of non-functional requirements. Design
decisions may positively or negatively affect particular non-functional require
ments. These positive and negative interdependencies can serve as basis for
arguing that a software system indeed meets a certain non-functional require
ment or explaining why it does not.

Orthogonally, treatments of non-functional requirements can be classified
into quantitative and qualitative ones. Most of the product-oriented approaches
alluded to earlier are quantitative in the sense that they study quantitative
metrics for measuring the degree to which a software system satisfies a non
functional requirement. The process-oriented treatment proposed here, on the
other hand, is definitely qualitative, adopting ideas from qualitative reasoning
[AI84]. It should be acknowledged that a process-oriented treatment of non
functional requirements need not be qualitative. Indeed, one could imagine
quantitative measures for, say, software visibility that can be used as the system
is being developed to offer advance warning that non-functional requirements
are not being met. Qualitative techniques were chosen here primarily because

4 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

it was felt that the problem of quantitatively measuring an incomplete software
system is even harder than that of measuring the final product.

Of course, neither product-oriented quantitative metrics nor process
oriented qualitative ones have a monopoly on properly treating non-functional
requirements. They are best seen as complementary, both contributing to a
comprehensive framework for requirements engineering. This framework would
use, among other things, process-oriented, qualitative methods during the early
stages of requirements analysis, when the engineer is still trying to understand
the problem and has vague ideas about how to constrain its solution. Product
oriented, quantitative methods, on the other hand, are most appropriate during
software requirements definition, where ideas have crystallized into a coherent
solution which is specified in terms of functionalities and measurable quality
factors.

The objective of this book is to describe a novel framework, called the
NFR Framework, for representing and analyzing non-functional requirements.
In the classification scheme introduced earlier, the Framework is process-oriented
and qualitative. A cornerstone of the Framework is the concept of softgoal,
which represents a goal that has no clear-cut definition and/or criteria as to
whether it is satisfied or not. The reader may have guessed already that soft
goals are used to represent non-functional requirements. Softgoals are related
through relationships which represent the influence or interdependency of one
softgoal on another. A qualitative analysis method is included in the Frame
work for deciding the status of softgoals, given that other, related softgoals are
satisfied or have been found to be unsatisfiable. In fact, throughout the book
we shall speak of softgoals being satisficed [Simon81] rather than satisfied, to
underscore the ad hoc nature of softgoals, both with respect to their definition
and their satisfaction.

Two sources of ideas were particularly influential on our work. The first
involves work on the capture and management of design rationale through de
cision support systems, such as those described in [J. Lee90, 91] and [Hahn91].
Lee's work, for example, adopts an earlier model for representing design ra
tionale [Potts88] and extends it by making explicit the goals presupposed by
arguments. The work reported here can be seen as an attempt to adopt and
specialize this model to the representation and use of non-functional require
ments. The second source of ideas is the DAIDA environment for information
system development [Jarke92a, 93b] which has provided us with a comprehen
sive software development framework covering notations for requirements mod
elling, design, implementation and decision support, as well as a starting point
on how the treatment of non-functional requirements might be integrated into
that framework. Users of the DAIDA environment are offered three languages
through which they can elaborate requirements, design and implementation
specifications. In developing a design specification, the developer consults and
is constrained by corresponding requirements specifications. Likewise, the gen
eration of an implementation is guided by a corresponding design specification.

INTRODUCTION 5

An early description of the Framework and an account of how it relates to
DAIDA can be found in [Chung91a].

A further description of work related to the NFR Framework is found at
the end of Chapter 4.

Design decisions relate implementation objects to their design counter
parts, and design objects to their requirements counterparts. To account for
design decisions, softgoal interdependencies are used. The Framework presented
in this book focusses on these interdependencies and how they can be justified
in terms of non-functional requirements.

The NFR Framework helps developers produce customized solutions, by
considering characteristics of the particular domain and system being devel
oped. These characteristics, including non-functional requirements, functional
requirements, priorities and workload, influence the choice of development al
ternatives for a particular system. To deal with the large number of possible
development alternatives, developers can consult the Framework's design cat
alogues. These catalogues organize past experience, standard techniques, and
knowledge about particular NFRs, their interdependencies and tradeoffs.

The body of the book consists of three parts. The first part includes
Chapters 2-4 and is intended to introduce the notions of 5oftgoal and softgoal
interdependencies, and the analysis that can be performed on softgoal interde
pendency graphs (SICs). The second part of the book includes Chapters 5-9 and
is intended to show how one can deal with particular types of non-functional
requirements by producing catalogues which specialize the NFR Framework of
Part 1. In particular, Part II deals with accuracy and performance requirements
for information systems, as well as security requirements for software systems.
In the third part of the book we examine a number of case studies and applica
tions, to demonstrate the usefulness of the Framework's approach to a variety
of systems and domains. The domains studied include credit cards and gov
ernment administration. We present some initial feedback from practitioners
on the Framework and studies. The Framework is also applied to software
architecture and business process redesign. This part of the book includes
Chapters 10-15. Finally, the Postscript presents some concluding comments
and directions for future work.

The material of this book is based largely on the Ph.D. thesis of Lawrence
Chung [Chung93a], which develops a qualitative framework for representing and
reasoning with non-functional requirements, and demonstrates its usefulness in
dealing with particular classes of requirements. Another major source of ma
terial is the Ph.D. thesis of Brian Nixon [Nixon97a] which applies the NFR
Framework to performance requirements for a particular class of software, in
formation systems. Eric Yu's Ph.D. thesis [Yu94b] and subsequent work on
business process redesign also have adopted concepts from the NFR Frame
work, most notably the notion of softgoal.

Other sources of material for the book include an earlier, more formal
presentation of the NFR Framework [Mylopoulos92a], and tutorial introduc
tions to the Framework [Chung94a,b]. This book also draws on papers which

6 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

have applied the Framework to deal with specific classes of NFRs: accuracy
[Chung91a], security [Chung93b], and performance [Nixon91, 93, 94a]. Chung
and Nixon [Chung95b] present a number of case studies related to informa
tion system development [Nixon93, 94a, 97a] [Chung93a,b]. Chung, Nixon and
Yu [Chung95c,d] apply the NFR Framework to software architecture, while
Yu, Mylopoulos and Borgida [Yu94c] [Mylopoulos97] discuss applications to
business process redesign. Other earlier sources include work on information
systems development, taking requirements to designs [Chung91b] and designs
to implementations [Nixon90]. All material selected for inclusion in this book
has been integrated, updated and simplified. In addition, the presentation,
figures and terminology have been revamped.

Before presenting the details of the Framework in Part I, we will discuss
the nature of NFRs.

1.2 THE NATURE OF NON-FUNCTIONAL REQUIREMENTS

non-functional requirement - in software system engineering, a software
requirement that describes not what the software will do, but how the software
will do it, for example, software performance requirements, software external
interface requirements, software design constraints, and software quality at
tributes. Non-functional requirements are difficult to test; therefore, they are
usually evaluated subjectively.

[Thayer90]

functional requirement - A system/software requirement that specifies a
function that a system/software system or system/software component must be
capable of performing. These are software requirements that define behaviour
of the system, that is, the fundamental process or transformation that software
and hardware components of the system perform on inputs to produce outputs.

[Thayer90]

Why are non-functional requirements so vital and yet so difficult to ad
dress?

Non-functional requirements (NFRs) address important issues of quality
for software systems. NFRs are vital to the success of software systems. If
NFRs are not addressed, the results can include: software which is inconsistent
and of poor quality; users, clients and developers who are unsatisfied; and time
and cost overruns to fix software which was not developed with NFRs in mind.
Let's consider some aspects of NFRs.

Non-functional requirements can be subjective, since they can be viewed,
interpreted and evaluated differently by different people. Since NFRs are often
stated briefly and vaguely, this problem is compounded.

Non-functional requirements can also be relative, since the interpretation
and importance of NFRs may vary depending on the particular system being
considered. Achievement of NFRs can also be relative, since we may be able to

INTRODUCTION 7

improve upon existing ways to achieve them. For these reasons, a "one solution
fits all" approach may not be suitable.

Furthermore, non-functional requirements can often be interacting, in
that attempts to achieve one NFR can hurt or help the achievement of other
NFRs. As NFRs have a global impact on systems, localized solutions may not
suffice.

For all these reasons, non-functional requirements can be difficult to deal
with. Yet, dealing with NFRs can be vital for the success of a software system.
Hence it is important to deal with them effectively. To better understand these
aspects of NFRs, let us consider a simple scenario.

Suppose you want to develop a credit card information system. You may
or may not be able to build it, depending on whether you have enough staff,
funds, time, and other resources. Now suppose you want to build the system
so that it is fast and accurate. You might be able to build a system, but will it
be fast and accurate? Perhaps you consider it to be so, but your manager does
not. Or perhaps you consider accuracy to be most important, but your manager
really values speed. Now, without even getting your manager involved, would
the system be fast on a day when there are a lot of credit card transactions?
And would it be accurate even if merchants are being targetted by fraudsters?
If not, perhaps you can make it more accurate, by doing more validation. But
this extra processing may slow down the system.

The notion of "goal" has been used in a variety of settings. One preva
lent use of this notion has its foundations in traditional problem-solving and
planning frameworks in Artificial Intelligence. Used in that way, goals (e.g.,
"build a fast and accurate system") are considered as obliga.tions to be accom
plished or satisfied. If goals can indeed be absolutely accomplished, they are
said to be solvable or satisfiable; otherwise they are unsolvable or unsatisfiable.
Put differently, a goal should be either satisfied or unsatisfied, and nothing else,
in every possible imaginable situation (e.g., "The system is fast and accurate,
day and night, during peak shopping periods, during crime waves, etc."). With
this two-valued logic, then, a goal evaluates to true, if it is satisfied, and false,
otherwise. And absolutely nothing in-between.

In this context, a set of "sub-goals" is introduced to satisfy a given goal,
where the relationship between the sub-goals and the parent goal is either AND
or OR. When the relationship is AND, the goal is satisfied if all of its sub-goals
are; when the relationship is OR, the goal is satisfied if any of its sub-goals is.
This process of forming sub-goals continues until no goal, or sub-goal, can be
further refined into more detailed ones. But can this notion of "goal" always
be equally-well applied to non-functional requirements?

If the answer is yes, we should be able to say that non-functional re
quirements (e.g., "build a fast and accurate credit card system") can always be
"accomplished" or "satisfied" in a clear-cut sense. But can we?

Firstly, since NFRs can have a subjective nature, some solutions to non
functional requirements may be considered accomplished by some people, but
not by others (e.g., "You feel the system is fast, but your manager doesn't.").

8 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Not only that, solutions may be considered accomplished at one time, but not
at another, even by the same person (e.g., "The system is fast for you overnight,
but not during peak daytime shopping periods.").

Secondly, since NFRs can have a relative nature, they may be poorly
accomplished, marginally accomplished, well accomplished, etc. (e.g., "a sys
tem," "an accurate system," "a very accurate system," etc.). In some cases,
we may be able to find better solutions.

Furthermore, since some NFRs can be interacting and global in nature,
some design decisions can have side-effects. In other words, design decisions
which can contribute positively towards a particular non-functional requirement
can also contribute negatively towards another, such as cost or convenience
(e.g., "spending more processing time to improve accuracy."). They can also
contribute positively to other non-functional requirements (e.g., "an accurate
system increases consumer confidence."). Thus, non-functional requirements
can be helpful (synergistic) or hurtful (antagonistic) to each other.

In this discussion, an interesting observation can be made about the
way non-functional requirements are considered fulfilled or not fulfilled. It
involves some kind of qualifications (e.g., "you want the system to be accurate
especially when there are fraud attempts," and "you want it to be fast especially
during peak periods."). Such qualifications may in turn be explained by other
qualifications (e.g., "cardholders and merchants like consistent response time
for sales authorization, whether it is a peak shopping period or not.").

This kind of iterative qualification or reasoning, called a dialectical style
of reasoning, allows one to state arguments, for or against other statements,
in a recursive manner [Aristotle, 350 B.C.] [Toulmin58]. Reasoning with du
alism (e.g., true and false) is helpful, and may suffice in some circumstances.
However, in addition we may use a dialectical style of reasoning which han
dles subjectivity, relativity and interaction, reflecting the possible natures of
non-functional requirements.

From the above discussion, we cannot always say that non-functional
requirements are "accomplished" or "satisfied" in a clear-cut sense. Hence,
we need something different than the notion of "goal" in traditional problem
solving and planning frameworks. If so, what is an appropriate notion of "goal"
when dealing with NFRs?

In order to handle the possible natures of NFRs, we do not insist that all
goals be met absolutely. (Of course, there may well be some absolute require
ments, and they can be handled accordingly.) Rather, NFRs are treated as
softgoals. A softgoal does not necessarily have a priori, clear-cut criteria of sat
isfaction. Although some of these can be measured and quantified, a qualitative
approach can be used when exploring the possible development alternatives.

Now what is the appropriate notion of "relationship between softgoals"?
Here, the strict AND/OR goal reduction of logical formalisms does not quite
work. Instead, qualitative reasoning, a "lighter" (weak) form of reasoning, is
used to reason about softgoals. We say that softgoals can contribute positively
or negatively, and fully or partially, towards achieving other softgoals. This

INTRODUCTION 9

approach is called "satisficing," a term used by Herbert Simon in the 1950s, to
refer to satisfying at some level a variety of needs, without necessarily optimiz
ing results. The term has its origins in the word "satisfice," which the Oxford
English Dictionary reports was used as early as 1561. The reader may think of
satisficing as being sufficiently satisfactory.

Expressing non-functional requirements as softgoals helps put concerns
about NFRs foremost in the developer's mind. Using the NFR Framework,
then, the developer can "build quality into" systems, striving for NFRs sys
tematically, rather than in an ad hoc manner.

The approach is developer-directed. Developers build quality into sys
tems and produce customized solutions. This is done by using their expertise
in the specific NFRs and in the domain under consideration, along with cata
logues of expert knowledge about NFRs and development techniques. In this
way, the developer uses NFRs to drive the overall development process and fo
cus on the process of meeting NFRs. Along with their expertise and catalogues,
developers' creativity (their intellectual "spark") is an important part of the
development process.

1.3 LITERATURE NOTES

Parts of this chapter are based on [Mylopoulos92a].
The sources of each chapter, along with discussions of related work are

presented in the "Literature Notes" and "Discussion" sections at the end of
each chapter.

A discussion of related literature for the NFR Framework is presented
in Section 4.8.

I The NFR Framework

Part I presents a framework for representing and analyzing non-functional
requirements (NFRs). The NFR Framework helps the developer to deal with
non-functional requirements. This is done by expressing NFRs explicitly, by
dealing with them systematically, and by using them to drive the software de
velopment process rationally. First an informal presentation is given, with a
tutorial on its use. Then the Framework for representing and using NFRs is
more thoroughly described.

In Chapter 2, we show informally, by example, the usage of the Frame
work. We give a step-by-step tutorial illustrating how a developer would use the
Framework in dealing with some NFRs for a system under development.

In Chapters 3 and 4, we present more formally the Framework for rep
resenting and using NFRs. The Framework helps a developer represent, orga
nize and use knowledge of specific NFRs (e.g., accuracy and performance) and
knowledge of the enterprise being modelled in the system. Because NFRs are
not always satisfied in an absolute sense, they are represented as "softgoals,"
which can be analyzed and inter-related by way of "softgoal interdependencies. "
These chapters present the components of the Framework, which are used in
recording and structuring development alternatives, tradeoffs, decisions and ra
tionale into records of development history, called "softgoal interdependency
graphs." These graphs serve not only as a means for the process of developing
quality software but as a record of development history fOT justification, later
review, and change.

Chapter 3 presents the Framework's components for developing softgoal
interdependency graphs. Interestingly, NFRs, development techniques and de
sign rationale are all represented as "softgoals." This facilitates the system
atic refinement of softgoals, which are inter-related via "softgoal interdepen
dencies." "Contributions" show the impact, either positive or negative, that
softgoals make towards achieving other softgoals. An "evaluation procedure"
semi-automatically determines the impact of development decisions on meet
ing NFRs. This is aided by a developer interactively examining the softgoal
interdependency graph.

Chapter 4 presents the Framework's components for cataloguing generic
knowledge about NFRs, development techniques and interdependencies. "Meth
ods" capture knowledge of development techniques and the refinement of soft
goals. "Correlations" capture knowledge of implicit interdependencies among
softgoals. The chapter concludes with a discussion of related work for the
Framework.

The Framework can be applied to a variety of NFRs (e.g., accuracy and
performance). When adapting the Framework to handle an additional NFR,
the representation and reasoning facilities of Chapter 3 can be incorporated,
essentially as-is. The main work will be to add the counterpart of Chapter 4,
by cataloguing concepts and methods applicable to the particular NFR. Such
catalogues are presented in Part II for a variety of NFRs.

2 THE NFR FRAMEWORK IN ACTION

Consider the design of an information system, such as one for managing credit
card accounts. The system should debit and credit accounts, check credit limits,
charge interest, issue monthly statements, and so forth.

During the development process of requirements elaboration, systems
design and implementation, a developer needs to make decisions such as:

• How frequently will account information be updated?

• How will customer identity be validated - e.g., by using personal identifi
cation numbers (PIN codes) or biometrics?

• Will a certain group of data be stored locally or replicated over multiple
sites?

These development decisions have important implications for the secu
rity, performance, accuracy, cost and other aspects of the eventual system. The
significance of these non-functional requirements (or software quality attributes)
are widely recognized. Attaining software quality attributes can be as crucial
to the success of the system as providing the functionality of the system. For
example, inaccurate credit account information can lead to monetary loss and
damage to the reputation of a financial institution, while poor response time
could lead to poor morale and eventually loss of customers.

Most conventional approaches to system design are driven by functional
requirements. Developers focus their efforts primarily on achieving the desired

16 NON-FUNCTIO AL REQUIREMENTS 11 SOFTWARE ENGINEERING

functionality of the system - calculating account interest, issuing monthly state
ments, etc. Although decisions about how to achieve functionality are made
along the way, usually with non-functional requirements (such as cost and per
formance) in mind, these considerations may not be systematic, and may often
not be documented. Furthermore, these software quality attributes may of
ten be viewed as consequences of the decisions, but not something that the
developer can stri ve for in a coherent, well thought-out way.

Note that in t.his section we are not using the terms "design" or "devel
opment" to refer to a particular phase of development. Rather, they are used
in the broad sense of the process of developing a target artifact by starting with
a source specification and producing constraints upon the target artifact. This
could occur at various phases of development (e.g., requirements specification,
conceptual design, or implementation).

2.1 USING THE NFR FRAMEWORK

In contrast to functionality-driven approaches, the NFR Framework uses non
functional requirements such as security, accuracy, performance and cost to
drive the overall design process. The Framework aims to put non-functional
requirements foremost in the developer's mind.

There are several major steps in the design process:

• acquiring or accessing knowledge about:

the particular domain and the system which is being developed,

functional requirements for the particular system, and

particular kinds of NFRs, and associated development techniques,

• identifying particular NFRs for the domain,

• decomposing NFRs,

II identifying "operationalizations" (possi ble design alternatives for meeting
NFRs in the target system),

• dealing with:

ambiguities,

tradeoffs and priorities, and

interdependencies among among NFRs and operationalizations,

• selecting operationalizations,

• supporting decisions with design rationale, and

l1li evaluating the impact of decisions.

These are not necessarily sequential steps, and one may also need to iterate
over them many times during the design process. A developer may choose

THE NFR FRAMEWORK IN ACTION 17

refinements, having operationalizations in mind; thus the development process
may move up and down, rather than being strictly top-down.

It would be extremely helpful, if at each step in the process, the developer
could draw on available knowledge that is relevant to that step in the process.
This is precisely what the NFR Framework aims to provide. The Framework
offers a structure for representing and recording the design and reasoning pro
cess in graphs, called softgoal interdependency graphs (SICs). The Framework
also offers cataloguing of knowledge about NFRs and design knowledge, includ
ing development techniques. By providing SIGs and drawing on catalogues,
the contextual information at each step can be used to trigger and bring forth
previously-stored knowledge to help the developer carry out that step.

Softgoal Interdependency Graphs

The operation of the Framework can be visualized in terms of the incremental
and interactive construction, elaboration, analysis, and revision of a softgoal
interdependency graph (SIC). The graph records the developer's consideration
of softgoals, and shows the interdependencies among softgoals.

Major concepts of the Framework appear in the graphical form in SIGs.
Softgoals, which are "soft" in nature, are shown as clouds. Main requirements
are shown as softgoals at the top of a graph. Softgoals are connected by inter
dependency links, which are shown as lines, often with arrowheads. Softgoals
have associated labels (values representing the degree to which a softgoal is
achieved) which are used to support the reasoning process during design. In
terdependencies show refinements of "parent" softgoals downwards into other,
more specific, "offspring" softgoals. They also show the contribution (impact)
of offspring softgoals upwards upon the meeting of other (parent) softgoals.

To determine whether softgoals are achieved, an evaluation procedure
(labelling algorithm) is used, which considers labels and contributions, and,
importantly, decisions by the developer.

It is important to note that the developer has control over what softgoals
are stated, how they are refined, and the extent to which they are refined.
The design process and evaluation procedure are interactive. Evaluation is
also "semi-automatic," i.e., assisted by a procedure (algorithm), but with the
developer in control.

Cataloguing Design Knowledge

A very important aspect of the Framework is that developers are able to draw
on an organized body of design knowledge (including development techniques)
that has been accumulated from previous experience. This type of knowledge
can be arranged in knowledge catalogues.

There are three kinds of catalogues used. One kind of catalogue rep
resents knowledge about the particular types NFRs being considered, such
as security and performance, and their associated concepts and terminology.
Another kind of catalogue is used to systematically organize development tech-

18 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

niques (methods), which are intended to help meet requirements, and are avail
able to developers. The third type of catalogue shows implicit interdependen
cies (correlations, tradeoffs) among softgoals.

The design knowledge in catalogues may come from many sources. Gen
eral knowledge for various areas (e.g., performance, security, usability) are typ
ically available in textbooks, developer guides and handbooks. More special
ized knowledge may be accumulated by specialists in industry and academia, or
within an organization. Individual developers and teams also build up knowl
edge from their experiences over a number of projects that can be reused. By
making this knowledge available in a single design framework, developers can
draw on a broad range of expertise, including those beyond their own immedi
ate areas of speciality, and can adapt them to meet the needs of their particular
situations.

These catalogues, such as those offered in Part II, provide a valuable
resource for use and re-use during development of a variety of systems. This
was our experience in the case studies of Part III, where catalogued knowledge
of domain information and NFRs was used throughout the design process. Thus
other steps in the process can be aided by gathering and cataloguing knowledge
early in the process.

Now we consider the various steps of the process of using the Framework.

2.2 ACQUIRING DOMAIN KNOWLEDGE

During the process, the developer will acquire and use information about the
domain and the system being developed. This includes items such as functional
requirements, expected organizational workload, and organizational priorities.

For a credit card system, for example, the functional requirements in
clude operations to authorize purchases, update accounts and produce state
ments. Organizational workload includes the number of cardholders and mer
chants, and the expected daily volume of purchases. The credit card organi
zation will have some priorities, such as emphasizing the fast cancellation of
stolen cards, and the provision of fast authorization.

Of course the developer will need to acquire a source specification of the
system, before moving towards a target. For example, the source might be a
set of requirements, and the target might be a conceptual design. As another
example, the developer might start with a conceptual design and move towards
an implementation of the system.

The case studies of Part III include descriptions of the domains studied.

2.3 ACQUIRING AND CATALOGUING NFR KNOWLEDGE

The developer will be drawing on catalogues of knowledge of NFRs and asso
ciated development techniques.

To provide a terminology and classification of NFR concepts, NFR type
catalogues are used. Figure 2.1 shows a catalogue of NFRs. The NFR types
are arranged in a hierarchy. More general NFRs are shown above more specific

THE NFR FRAMEWORK IN ACTION 19

ones. For example, performance has sub-types time and space, which in turn
have their own sub-types. The NFRs shown in bold face are considered in detail
in this book.

NFR Type Catalogue I
NFRTypes

P.rt"'~~se'U'ity
/ ~Cost user-Friendliney f~

Time Space Confidentiality . Availability

Resp:::':l~" M.(~~.~ /~Time Management Memory Storage Accuracy Completeness
Time

Throughput

Informal Legend I

r IsA (sub-type) relationship

Figure 2.1. A catalogue of some NFR Types.

The NFR types provide a terminology to express requirements. For
example, we can speak of the security of an account, or the response time for
sales authorization.

Standard development techniques, along with methods of decomposing
NFRs, are also organized into method catalogues. Interdependencies among
NFRs (for example, stating that auditing helps security) are also organized
into correlation catalogues. We will give examples of methods and correlations
in this chapter, and will discuss these two types of catalogues in more detail in
Section 2.12.

Normally, system developers can access existing catalogues from the start
of development. The catalogues can be extended during development, to deal
with additional or more refined concepts or development techniques which sub
sequently need to be addressed.

2.4 IDENTIFYING NFRs

In using the NFR Framework, one constructs an initial softgoal interdependency
graph by identifying the main non-functional requirements that the particular

20 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

system under development should meet. In the credit card system example,
these may include security of account information, and good performance in the
storing and updating of that information. These non-functional requirements
(NFRs) are then treated as softgoals to be achieved, i.e., they are goals which
need to be clarified, disambiguated, prioritized, elaborated upon, etc. This
particular kind of softgoal is called an NFR softgoal. As we will soon see, NFR
softgoals are one of three kinds of softgoals.

The developer will identify specific possible development techniques.
From among them, the developer will choose solutions in the target system
that meet the source requirements specification. Thus the developer begins by
systematically decomposing the initial NFR softgoals into more specific sub
softgoals (or subgoals).

Let us consider the requirements to "maintain customer accounts with
good security" and "maintain customer accounts with good performance."

Informal SIG I

Good Performance Secure
for accounts accounts

0 0
Informal Legend I o NFRSofl/?oal

+ Developer states top pertormance and security softgoals.. NFR Tool displays relevant catalogues
of methods.

Figure 2.2. An initial Softgoal Interdependency Graph with NFR softgoals representing

requirements for performance and security of customer accounts.

We are considering two non-functional requirements here, one for good
performance for accounts, the other for good security of accounts. These non
functional requirements are represented as NFR softgoals Good Performance for
accounts and Secure accounts. The NFR softgoals are represented by clouds,
shown in the softgoal interdependency graph (SIG) of Figure 2.2.

Softgoals have an NFR type, which indicates the particular NFR, such
as security or performance, addressed by the softgoal. In this chapter, the NFR
types of some top-level softgoals are underlined in figures. Softgoals also have
a subject matter or topic, here, accounts.

In this chapter, we use a syntax for SIGs which conveys the main points
but is somewhat informal. Here the figure is an "informal" softgoal interdepen-

THE NFR FRAMEWORK IN ACTION 21

dency graph (informal SIG). A more precise syntax is introduced in Chapters 3
and 4, and is used in the remainder of the book.

Figures in this book have a logo in the top left corner (such as Informal
SIC) indicating the kind of figure. A list of the different kinds of logos for
figures is given in Figure 0.1.

Some figures also have legends to describe new symbols. A collected
Legend for Figures appears at the front of this book.

Figures in this chapter also have an informal description of the process of
developing SIGs. A diamond introduces an action by the developer. A right
arrow introduces a response to the developer, done by consulting catalogues
and executing algorithms (procedures).

Responding to a developer's decisions, along with the drawing of SIGs,
can be provided by an interactive design support tool, or can be done "by
hand" by the developer using "pencil and paper." The responses in the figures
of this chapter are suggestive of how a tool, such as the "NFR Tool" [Chung93a,
94c], could be used. In this book, however, we do not assume that a particular
method is used to draw graphs or respond to developers' decisions. Rather, the
presentation below will focus on the usage of the NFR Framework's concepts.
This is done to offer some evidence that the Framework is useful. However, we
do not make a claim about the ease of handling large SIGs for large systems

The following steps of using the NFR Framework can be viewed as an
analysis of requirements, followed by a synthesis of operationalizations to meet
the requirements. First, softgoals are broken down into smaller softgoals. We
deal with ambiguities, and also consider domain information and priorities.
Throughout the analysis we consider interdependencies among softgoals. Then
we synthesize solutions to build quality into the system being developed. We
consider possible alternatives for the target system, then choose some, and state
reasons for decisions. Finally we see how well the main requirements have been
met.

Interestingly, the NFR Framework is able to deal with different NFRs in
one graph at the same time, even when the NFRs have different natures (here,
performance and security). As we shall see, the NFR Framework can deal with
interactions among these different NFRs.

2.5 DECOMPOSING NFR SOFTGOAlS

In decomposing an NFR softgoal, the developer can choose to decompose its
NFR type or its topic. In the example, the two softgoals share the same topic,
accounts, but address different NFRs, performance and security.

Now we will decompose the two NFR softgoals of the example, starting
with the security requirement.

The initial security requirement is quite broad and abstract. To effec
tively deal with such a broad requirement, the NFR softgoal may need to be
broken down into smaller components, so that effective solutions can be found.

22 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In addition, the requirement may be ambiguous. Different people may
have different conceptions of what "security" constitutes in the context of credit
card account information.

Informal SIG

Secure
accounts

Integrity
of accounts

Availability
of accounts

Informal Legend

~ ANDw."ib,,'••

... Developer focusses on security and selects method
~ NFR Tool creates and links sub-goals.

Figure 2.3. Decomposing NFR softgoals into more specific non-functional requirements.

By treating this high-level requirement as a softgoal to be achieved, we
can decompose it into more specific subgoals which together "satisfice" (should
meet) the higher-level softgoal. Thus the Secure accounts NFR softgoal can be
decomposed into sub-softgoals for the

• integrity,

• confidentiality, and

• availability.

of the accounts. This is shown in Figure 2.3, which is an extension (downwards)
of part of Figure 2.2. Such series of figures are used throughout this book to
show the development of SIGs, where one figure builds on earlier ones.

In the graphical notation, clouds denote softgoals and lines represent
interdependencies among softgoals.

Softgoals contribute, positively or negatively, to fulfilling other softgoals.
There are different types of contributions. When all of several sub-softgoals
are needed together to meet a higher softgoal , we say it is an AND type of
contribution. Here, we say that if integrity, confidentiality and availability

THE NFR FRAMEWORK IN ACTION 23

are all met, then as a group their contribution will be to achieve the security
softgoal. This is an AND contribution. It is shown with lines grouped by an
arc.

Typically, softgoals are shown as being refined downwards into sub
softgoals (subgoals), and subgoals contribute upwards to parent softgoals.

It is interesting to note that steps used in constructing SIGs can draw on
catalogues, such as the NFR Type catalogue of Figure 2.1. In Figure 2.3, for ex
ample, an entry (Security) in the type catalogue has specialized types (Integrity,
Confidentiality and Availability). And in the SIG we see the same pattern, where
inter-connected (interdependent) softgoals have these same types.

If patterns are be expected to be re-used when building SIGs, methods
can be defined and entered in a catalogue. Here, for example, a method can
be defined which takes a parent softgoal of a particular type, and produces
offspring softgoals which have sub-types of the parent's type. This SubType
method is used in the SIG.

Informal SIG

Secure
accounts

Complete
accounts

Availability
of accounts

<> Developer focusses on security and selects method
» NFR Tool creates and links sub-goals.

.. Further security refinement

Figure 2.4. Further decomposition of a security softgoal.

The NFR softgoal that accounts will have integrity can be further decom
posed into the subgoals that account information be complete, and accurate.
This is shown in Figure 2.4. This is another application of the SubType method.
Here, it considers the sub-types of Integrity from the catalogue of Figure 2.1.

In the descriptions at the bottom of figures in this chapter, solid dia
monds and right-arrows represent new actions and responses, while outlined

24 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SIG

Good Performance
for accounts

o
Secure

accounts

Availability
of accounts

Complete
accounts

Accurate
accounts

? Developer states top perlormance and security softgoals
» NFR Tool displays relevant catalogues of methods.

.¢- Developer focusses on security and selects method
» NFR Tool creates and links sub-goals.

? Further security refinement

.. Developer focusses on perlormance softgoal for accounts
~ NFR Tool displays catalogue of perlormance methods.

Figure 2.5. Considering a performance softgoaL

ones provide context by repeating actions and responses which were shown in
earlier figures.

Recall that we started with two main NFRs, for security and performance
of accounts. Figure 2.5 shows these initial NFRs from Figure 2.2, along with
the security development of Figure 2.4.

Having refined the security requirement, the developer now focusses on
the performance requirement.

The developer decides to decompose the performance softgoal with re
spect to its NFR type. This results, in Figure 2.6 (an extension of Figure 2.5),
in two subgoals:

• one for good space performance for accounts, and

• one for good time performance for accounts.

Good time performance here means fast response time, and good space perfor
mance means using little space. Here the subgoals make an AND contribution
to the performance softgoal.

THE NFR FRAMEWORK IN ACTION 25

Informal SlG

Space for
accounts

Good Performance
for accounts

Integrity
of accounts

Complete
accounts

Response
time for
accounts

Secure
accounts

--0Availability
of accounts

Confidentiality
of accounts

Accurate
accounts

<> Developer focusses on performance softgoal for accounts

» NFR Tool displays catalogue of performance methods.

• Developer refines performance softgoal

Figure 2.6. Decomposing a performance softgoal.

This is another use of the SubType method. It draws on the subtypes of
Performance in the NFR type catalogue of Figure 2.1.

As well as their NFR type, softgoals can also be decomposed by their
topic. For example, a performance softgoal for credit carel accounts could be
decomposed into performance softgoals for gold accounts and for regular ac
counts.

2.6 DEALING WITH PRIORITIES

Softgoal interdependency graphs can grow to be quite large and complex. How
can a developer focus on what is important?

One way is to identify priorities. Extra attention can then be put towards
meeting the priority softgoals.

Priorities can arise from consideration of several factors. These include
domain information such as organizational priorities (e.g., a. bank may consider
security very important) and organizational workload (e.g., it credit card system
may have a large number of sales to authorize each day). In addition, require
ments can be identified as priorities during various phases of development.

26 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SlG

Space for
accounts

Good Performance
for accounts

Integrity
of accounts

Response
time for
accounts

Secure
accounts

Accurate
accounts

, Accurate
• accounts

Availability
of accounts

Informal Legend

Priority softgoal

<> Developer focusses on pertormance softgoal for accounts
):> NFR Tool displays catalogue of pertormance methods.

.¢. Developer refines pertormance softgoal

.. Developer identifies accurate accounts as a priority

Figure 2.7. Identifying a softgoal as a priority.

Some priority softgoals will be identified as critical, as they are vital to
the success of the system or organization. Other softgoals will be noted as
being dominant, as they deal with a significant portion of the organization's
workload. Priority softgoals are identified by an exclamation mark (I).

Figure 2.7 identifies Accurate accounts as being a priority softgoal. This
is shown by producing an offspring with the same type and topic, but noted as
a priority by"!".

The priority offspring contributes positively to the parent, and this is
indicated by "+". This positive contribution is an example of a contribution
type, which shows the impact of offspring softgoals upon their parent softgoal.

The reasons for prioritizing a softgoal can be noted as design rationale,
discussed in Section 2.9 below. Now that the priority is identified, it can be
analyzed and dealt with.

THE NFR FRAMEWORK IN ACTION 27

For example, priorities may be used to make appropriate tradeoffs among
softgoals. As an example, fast authorization of credit card sales may be given
higher priority than fast determination of travel bonus points to be given to
gold cardholders. Here, the developer may perform the authorization before
the bonus calculation.

Knowledge of tradeoffs can be captured in catalogues, and made available
for re-use in dealing with softgoal synergy and conflicts. Thus throughout the
development process, various tradeoff considerations can be made.

2.7 IDENTIFYING POSSIBLE OPERATIONAlIZATIONS

While the refinement process so far provides more specific interpretations of
what the initial NFRs of "secure" and "good performance" mean, it does not
yet provide means for actually accomplishing security and performance for ac
counts.

At some point, when the non-functional requirements have been suffi
ciently refined, one will be able to identify possible development techniques for
achieving these NFRs (which are treated as NFR softgoals) and then choose
specific solutions for the target system. The development techniques can be
viewed as methods for arriving at the "target" or "destination" of the design
process.

However, it is important to note that there is a "gap" between NFR
softgoals and development techniques. To get to the destination, one must
bridge the gap. This involves performing analysis, and dealing with a number
of factors. These include ambiguities, priorities, tradeoffs, and other domain
information such as the workload of the organization. These factors will have
to be addressed at various steps in the process.

We show how development techniques are identified here, and how they
are selected in Section 2.10.

Let us consider the challenge of providing good Response time for ac
counts. One possible alternative is to use indexing (Figure 2.8). In this case,
Use indexing is a development technique that can be implemented. It is a can
didate for the task of meeting the response-time NFR. But it is no longer a
non-functional requirement. This is contrasted with Response time, which is
still a software quality attribute, i.e., a non-functional requirement, since it is
not something that can be implemented directly.

We call the development techniques operationalizations of the NFR soft
goals.

We say that indexing operationalizes response time. We also say that
the response time NFR is operationalized by indexing.

Operationalizing softgoals are drawn as thick (dark) clouds, and are an
other kind of softgoal.

Note that operationalizations are not limited to operations and functions.
Instead, operationalizations can correspond to data, operations and constraints
in the target system.

28 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SIG

Response
time for
accounts

Good Performance
for accounts

Use
indexing

Use uncompressed
format

Secure
accounts

, Accurate
• accounts

Validate access
against eligibility rules

Availability
of accounts

Authenticate
user access

Require
additional
ID

Informal Legend

o Operationalization ~OR contribution Positive
contribution

<> Developer identifies accurate accounts as a priority

.. Developer focusses on response time, confidentiality and security
~ NFR Assistant displays catalogue of possible techniques

and trade-ofts.

.. Developer selects possible techniques
~ NFR Assistant creates and links techniques.

Figure 2.8. Identifying possible operationalizations for NFR softgoals.

THE NFR FRAMEWORK IN ACTION 29

Like other softgoals, operationalizing softgoals make a contribution, pos
itive or negative, towards parent softgoals. Here, the use of indexing helps meet
the NFR softgoal for good response time. This positive contribution is shown
by "+" in Figure 2.8. There are several contribution types. Earlier, we saw the
AND contribution type.

In addition, the use of an uncompressed format makes a positive con
tribution towards meeting the response time requirement. However, as we will
see later, it has a negative impact on space performance.

Note that we have not yet chosen which operationalizations will be used
in the target system. What we can say now is that the use of either indexing
or an uncompressed format, or both, will make a positive contribution towards
achieving good response time.

Let us now consider how to meet the security requirement, particularly
Confidentiality of accounts. One development technique is to allow only autho
rized access to account information. Authorize access to account information is
an operationalizing softgoal which makes a positive contribution to confiden
tiality.

The operationalizations can be drawn from catalogues of development
techniques, based on expertise in security, performance, and information system
development. Catalogues can aid the search for possible operationalizations.

The transition from NFR softgoals to operationalizing softgoals is a cru
cial step in the process, because NFRs need to be converted into something
that can be implemented. However, one may not be able to convert initial
requirements into a concrete operationalization in one step, i.e., the initial op
erationalization (development technique) may not be specific enough. Often,
there needs to be further refinements and elaborations. Furthermore, there
can be different ways for refining or elaborating these general operationaliz
ing softgoals, i.e., one needs to continue to identify other possible development
techniques and choose among them. In the NFR Framework, we continue to
treat these operationalizing softgoals - both general ones as well as increasingly
specialized and specific ones - as softgoals to be addressed. This allows us to
use the same systematic framework to decompose operationalizing softgoals
into more specific ones.

For example, the operationalizing softgoal Authorize access to account
information can be detailed (further operationalized) in terms of a combination
of:

• identifying users,

• authenticating user access, and

• validating access against eligibility rules.

The AND contribution joining operationalizing softgoals means that all
three offspring have to be achieved, in order to achieve the parent softgoal ,
Authorize access to account information. If anyone is not achieved, the parent
softgoal will not be achieved.

30 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In turn, authenticating user access can be decomposed into anyone of
several options: using a personal identification number (PIN code), comparing
signatures, or requiring additional ID. Here, the contribution type is OR, since
anyone of the offspring can be used to meet the parent. That is, Authentication
can be accomplished by using a PIN code, by comparing signatures, or by
requiring additional identification.

Catalogues also show possible decompositions of operationalizations into
more specialized operationalizations. The catalogues also show the contribu
tions of specialized operationalizations towards their parents.

AND and OR contributions are drawn with arcs, and the direction of
contribution is towards the arcs. However the other contribution types (such
as "+" in the figure) are drawn with arrowheads on the lines, showing the
direction of contributions toward parent softgoals. Note that the direction of the
arrows is typically the opposite of the sequence in which softgoals are generated.
Contribution types affect how the graph is evaluated, and are explained in full
in Chapter 3.

We use the term decomposition when the parent and offspring have the
same kinds of softgoals. We have alread seen decomposition of NFR softgoals
to other NFR softgoals, as well as decompositions of operationalizing softgoals
into other operationalizing softgoals.

2.8 DEALING WITH IMPLICIT INTERDEPENDENCIES AMONG
SOFTGOALS

At each step in the process, when we make choices in order to achieve a par
ticular non-functional requirement (say, security of account information), it is
very likely that some other non-functional requirements (e.g., user-friendly ac
cess, dealing with ease of use of the interface to a system) may be affected,
either positively or negatively, at the same time. These interactions are very
important because they have an impact on the decision process for achieving
the other NFRs.

These interactions include positive and negative contributions. These
different interactions can be dealt with in different ways.

We have already seen how developers can explicitly state interdependen
cies among softgoals, by using refinements. We call these explicit interdepen
dencies. They are shown as solid lines in figures.

Now we consider interdependencies which are detected by comparing a
portion of a SIG with a catalogue of relationships among softgoals. These
implicit interdependencies (correlations among softgoals) are shown as dashed
lines in figures.

Figure 2.9 shows some correlations (implicit interdependencies) among
softgoals. These include positive and negative contributions.

Using an uncompressed format is negative (shown as "-") for space (be
cause compressed formats are more space-efficient), but positive ("+") for re
sponse time (because we don't need to uncompress the data before processing
it). The positive contribution was stated explicitly. Now the negative part of

THE NFR FRAMEWORK IN ACTION 31

Informal SIG

Good Performance
for accounts

Secure
accounts

Use uncompressed
format

Accurate
accounts

Complete
accounts

Response
time for , Accurate
accounts • accounts

" ,
" ', ,

" "" ,,- ,
, '+

"""" '\\

" \, ,
""", ",

Validate access
against eligibility rules

Availability
of accounts

Require
additional
ID

Informal Legend

1-
I
1+
I
I
I

Detected positive contribution

1-
I
I
I
I
I

Detected negative contribution

.. Assistant automatically detects Accuracy-Confidentiality
synergy (+).

.. Assistant detects negative (-) impact of Validation on
Response time.

.. Assistant detects negative (-) impact of Uncompressed
format on Space.

Figure 2.9. Detecting implicit interdependencies among existing softgoals.

32 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

this time-space tradeoff is detected using a correlation. By showing posItIve
and negative contributions, correlations are one way of recording tradeoffs.

Informal SIG

Good Performance
for accounts

Secure
accounts

User-friendly
access to accounts

Use uncompressed
format

Accurate
accounts

Response
time for , Accurate

, accounts • accounts, \, \

" \, \, \
" \, - \

" \ +
"'- "

""''-, "
" \" \, \

""" ",

Validate access
against eligibility rules

Q

Availability
of accounts

Require
additional
10

» Assistant automatically detects Accuracy-Confidentiality
synergy (+).

» Assistant detects negative (-) impact of Validation on
Response time.

» Assistant detects negative (-) impact of Uncompressed
format on Space.

~ Assistant warns against possible omission of
User-friendliness based on correlation rules

Figure 2.10. Detecting implicit interdependencies among existing and other softgoals.

As another example, Validate access against eligibility rules is one com
ponent of Authorize access to account information, which operationalizes the
Confidentiality of accounts NFR softgoal. However, besides contributing to con-

THE NFR FRAMEWORK IN ACTION 33

fidentiality, validation also happens to have a positive effect on the accuracy of
accounts, since ill-intentioned users can be denied access and prevented from
committing forgery. On the other hand, Validate access against eligibility rules
has a negative contribution to Response time for accounts, since validation in
duces extra overhead.

Implicit interdependencies can be detected as the graph is being devel
oped. This is done by consulting ("by hand," or with tool support) catalogues
of positive and negative interdependencies among softgoal~. These correlation
catalogues, are discussed below in Section 2.12.

Figure 2.9 added interdependency links for correlations. Now we can
consider correlations which add softgoals.

The examination of correlation catalogues may also lead to the identi
fication of related NFRs which had not previously been considered relevant.
In decomposing Authenticate user access, for example, one of the alternatives
- Require additional 10 - is detected to have a negative impact on User-friendly
access to accounts. Although we had not been considering it in Figure 2.9, note
that the NFR softgoal User-friendly access to accounts now appears in the SIG
of Figure 2.10 as part of a correlation.

Thus correlations can add softgoals (Figure 2.10), as well as interdepen
dencies (Figure 2.9) to softgoal interdependency graphs.

2.9 RECORDING DESIGN RATIONALE

An important premise of the Framework is that design decisions should be sup
ported by well-justified arguments or design rationale. Reasons can be stated
for making refinements, for selecting an alternative for the target system, etc.
The Framework extends the goal-oriented approach to the treatment of argu
ments.

Let us consider two examples. First, we can state the reason for a priori
tization, here of Accurate accounts. To support this prioritization, in Figure 2.11
we write Claim "Accuracy is vital."

We call this a claim softgoal (or claim). Claim softgoals are the third
kind of softgoal. Earlier we saw NFR softgoals and operationalizing softgoals.

Here the claim is attached to an interdependency link, which connects
the prioritized softgoal IAccurate accounts to its parent, Accurate accounts.

Note that we use the term claim softgoal to refer to the statement itself.
When the statement is used to argue for or against something, that constitutes
an argument, i.e., the argument refers to the relationship between the claim
and the thing argued about. Claim softgoals are represented as dashed clouds
in the softgoal interdependency graph. Their interdependency links represent
the arguments.

As a second use of claims, we can rationalize tradeoffs. Here, the spe
cialized operationalization Validate access against eligibility rules helps to achieve
the more general operationalization, Authorize access to account information.

34 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SIG

Good Performance
for accounts

Secure
accounts

User-friendly
access to accounts

Validate access
against eligibility rules

Require
additional
ID

Q
Availability
01 accounts

Compare
Signature

Accurate
accounts

,.,.1"""'".."...,
t' \r y

.........J~

Claim
'Accuracy
is vital'

I Accurate
, accounts

Response
time lor
accounts, , ,

" ,

j
."',,:-,,, ",:

, ,, ,
""""..... ", ,

.- " '
~ J " "

Claim-J'- " '

'Optimized validation will not
hurt response time much.'

Informal Legend
,.,.r--..........

~ .J Claim',,'-

.. Developer examines priorities trade-oHs

.. Developer provides justifications
~ NFR Assistant displays the developer's arguments.

Figure 2.11. Recording design rationale.

At the same time, it has generated some correlations. It has a positive
impact on the softgoal for accuracy of accounts, which is a priority. However, it
also has a negative impact on the softgoal for good response time for accounts.

In this case, the developer weighs the tradeoff and feels that the Validate
access against eligibility rules operationalizing softgoal is still worth considering,

THE NFR FRAMEWORK IN ACTION 35

despite its negative contribution to Response time for accounts (Figure 2.11).
In fact, this operationali zing softgoal will be chosen in the next section.

To support this position, the developer introduces the claim: Claim
["Optimized validation will not hurt response time much."] The claim notes that
optimization of "Validate access against eligibility rules" will mitigate its degra
dation of Response time for accounts.

Rationale can draw on domain information, such as organizational pri
orities and organizational workload (e.g., the number of credit card sales per
day), as well as development expertise.

Note that as these factors change, the reasons and decisions may change.
For example, if the volume of daily sales rises dramatically, then priorities may
change. These could be reflected in the rationale, and different operational
izations could be selected, which could have an impact on meeting the top
softgoals.

Claims are treated as softgoals related by interdependencies and associ
ated contributions, in the same way that NFRs and their operationalizations
are. Claims make contributions, positive or negative, to other softgoals. Such
contributions are not shown in the figures of this chapter, but will be discussed
in the next chapter.

2.10 SElECTING AMONG ALTERNATIVES

The refinement process continues until the developer considers that the possi
ble solutions for the target system are sufficiently detailed, and that no other
alternatives need be considered.

Along the way, the developer has considered NFRs, domain information,
and addressed ambiguities, priorities and tradeoffs. The developer has then
considered possible operationalizations, design rationale, and interdependencies
among softgoals, using the expertise from the developer and from catalogues.
Of course, early decisions need to be considered and reconsidered when making
later decisions. All this information is recorded in the graph, and is available
to help the developer select among alternatives.

Thus, developers are aided in their decision-making, by referring to the
graphs, which have a history of the design process.

In expanding the softgoal interdependency graph, the developer is elabo
rating on the possible subparts and alternatives that one would like to consider
as means for achieving the initial high-level softgoals. The graph thus repre
sents a design space over which design decisions are to be made.

As softgoals are being refined, the developer will eventually reach some
softgoals which are sufficiently detailed. The developer can accept or reject
them, as part of the target system.

Now it is time to choose from among the possible operationalizations,
in order to produce a target system. In addition, appropriate design rationale
should be selected.

36 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SIG

Good Performance
for accounts

Secure
accounts

User-friendly
access to accounts

Q

Require
additional
10

Availability
of accounts

Compare
Signature

Validate access
against eligibility rules

Response
time for

, accounts, ,
""""'-,

j
'",-", ",;

, ,, ,
""'........ ", ,

"'~ -"....... " '
~ .t J "~"Claim,,'-'" "-

"Optimized validation will not
hurt response time much."

Use
indexing

Use uncompressed
format

Informal Legend .t Chosen operationalization or claim

X Rejected operationaiization or claim

• Developer makes decisions

Figure 2.12. Selecting among alternatives.

There are choices of operationalizing 80ftgoal8. Of the many target al
ternatives in the graph (Figure 2.12), some are chosen (selected or "satisficed,"
indicated by "yI") and others are rejected (denied, indicated by "x").

Having identified three possible ways for authenticating user access, the
developer decides that the Compare Signature operationalization is acceptable.
Chosen solutions are represented in the graphical notation as a check-mark
("yI") inside the node (Figure 2.12). On the other hand, rejected candidates,
such as Require additional ID, are shown as "x".

THE NFR FRAMEWORK IN ACTION 37

To aid confidentiality, Identify users and Validate access against eligibility
rules are also selected. To aid response time, indexing and an uncompressed
format are chosen. Note that a decision need not be made for every opera
tionalizing softgoal. This is the case for Use P.1. N, which is left blank.

As is the case for operationalizing softgoals, claim softgoals (claims) are
also either accepted (satisficed) or rejected (denied). The claim for prioritizing
accuracy is accepted, hence a check-mark ("y''') is placed in the Claim["Accuracy
is vital."] claim softgoal. Likewise, the claim C1aim["Optimized validation will not
hurt response time much."] is accepted.

Now we turn to the impact of these decisions on top requirements.

2.11 EVALUATING THE IMPACT OF DECISIONS

The evaluation of softgoals and interdependencies determines the impact of
decisions. This indicates whether high-level softgoals are met.

To determine the impact of decisions, both current and previous decisions
are considered. Previous considerations and decisions are already reflected in
the graph, as softgoals and interdependencies.

To reflect the nature of design reasoning, the evaluation and propagation
of design decisions focusses on the question of whether a chosen alternative
is "good enough," i.e., whether it meets a softgoal sufficiently. This style
of reasoning is appropriate for dealing with non-functional requirements since
meeting these requirements is often a matter of degree, not a binary true
false decision. The NFR Framework builds on the notion of satisficing, which
was used by Herbert Simon [Simon81] to refer to finding solutions that are
sufficiently good, even if they may not be optimal. To emphasize the difference
between this style of goal-oriented reasoning from the more conventional, binary
logic-based, goal-oriented reasoning (e.g., [Nilsson71]), we use the term softgoal
to refer to the kind of goal that requires satisficing.

The evaluation process can be viewed as working bottom-up, starting
with decisions, which are often leaves of the graph, and often at its bottom.
Then the evaluation procedure (or labelling algorithm) works towards the top
of the graph, determining the impact on higher-level main softgoals. These top
softgoals reflect overall non-functional requirements as stated by the developer
and people in the organization for which the system is being developed.

In the NFR Framework, the evaluation of softgoals is represented by
assigning labels (such as "...;' and "x") to the clouds (softgoals) in the graph.
Labels may be assigned by the developer, or computed from contributions from
other nodes.

Roughly speaking, when there is a single offspring, a positive contribution
"propagates" the offspring's label to the parent. Thus a satisficed offspring
results in a satisficed parent, and a denied offspring results in a denied parent.

On the other hand, a negative contribution will take the offspring's label
and "invert" it for the parent's label. That is, a satisficed offspring leads to a
denied parent, and a denied offspring leads to a (somewhat) satisficed parent.

38 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal SIG

Good Performance
for accounts

Secure
accounts

User-friendly
access to accounts

Require
additional
ID

Compare
Signature

Validate access
against eligibility rules

, Accurate
• accounts

Claim
"Accuracy
is vital"

Integrity
of accounts

Response
time for
accounts

" ,
'"

"

j
',.:, ""............ +

",,

''''', ",
.-, " '
~ .t J "~"Claim/'- "-

"Optimized validation will not
hurt response time much.'

Use
indexing

Use uncompressed
format

Informal Legend
,f Satisficed softgoal

X Denied sojtgoal

-¢- Developer makes decisions
~ NFR Assistant evaluates the satisfaction of softgoals.

Figure 2.13. Evaluating the impact of decisions.

This is the case in the lower left of Figure 2.13. The operationalizing soft
goal Use uncompressed format makes a negative contribution towards the NFR
softgoal Space for accounts. In addition, Use uncompressed format is satisficed
(the label is shown as '\/"). When the satisficed label and negative contribution
are considered, the result is that Space for accounts is denied (" x").

THE NFR FRAMEWORK IN ACTION 39

Note that in Figure 2.12, "V' indicated "leaf" operationalizations or
claims which were selected directly by the developer. Now in Figure 2.13 (and
the remainder of this book), its meaning is made more general. It indicates
softgoals which are determined to to be satisficed; this is determined by the
developer, or by the evaluation procedure. Likewise "x" represented rejected
operationalizations or claims, but now more generally indicates denied softgoals.

Suppose a softgoal receives contributions from more than one offspring.
Then the contribution of each offspring toward the parent is determined, using
the above approach. The individual results are then combined.

For example, Response time for accounts has three offspring. Use com
pressed format is satisficed and makes a positive contribution, hence its individ
ual result would be to satisfice the parent. The same is true for Use indexing. If
these two were the only offspring, the combination of their individual positive
results would lead to satisficing the parent. However, Validate access against
eligibility rules is satisficed and makes a somewhat negative contribution to re
sponse time.

The developer combines the results - two satisficed and one denied
- and sees there is a conflict. What value should be assigned to the parent
softgoal? The developer could assign various values - satisficed, denied, or
something in between. Here, the developer notes that claim that optimized
validation will not hurt response time much, and labels Response time for ac
counts as satisficed.

Using the rule for satisficed softgoals and positive contribution links,
IAccurate accounts is noted as being satisficed, and so is Accurate accounts.

It is interesting to note that the evaluation procedure works the same
way, whether the interdependency link was explicitly stated by the developer,
or implicitly detected.

Let us continue at the bottom right of Figure 2.13. Requiring additional
identification is not chosen for authenticating access. This helps satisfice the
requirement for user-friendly access to accounts.

Compare Signature and its siblings participate in an OR contribution to
their parent, Authenticate user access. This means that if any of the offspring
is acceptable, the parent will be acceptable. Compare Signature was chosen, so
the operationalizing softgoal Authenticate user access can thus be automatically
evaluated to be satisficed ("V').

Earlier, the softgoals Identify users and Validate access against eligibility
rules were selected, hence satisficed. Since they and Authenticate user access
are all satisficed, then a checkmark can be propagated "upwards" along the
AND contribution to the Authorize access to account information softgoal. Then
Confidentiality of accounts is satisficed.

Let us take stock of how well the target system would meet main non
functional requirements. Accuracy, confidentiality, response time and user
friendly access requirements have been satisficed. The space requirement has
been denied. For other requirements, such as performance, integrity and secu
rity, we have not indicated if they are satisficed or denied. To obtain answers

40 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

for some of these, we would need further refinement, further information, or a
resolution of conflicts.

Interestingly, we have been able to address interactions between different
kinds of non-functional requirements (here, accuracy and performance), even
though the NFRs were initially stated as separate requirements.

In the NFR Framework, a softgoal can be assigned a label. So far, we
have used labels such as ""j" or "x". In fact, there are actually more "shadings"
of label values than these ones. For example, softgoals can be weakly satisficed,
or weakly denied. The propagation of these labels along interdependency links
depends on the type of contribution.

We have shown some contribution types, such as AND and OR, in this
chapter. There are also other contribution types indicating various combi
nations of positive and negative, and partial and sufficient contributions. In
addition, claims provide positive or negative contributions; these are omitted
from the Informal SIGs in Figures 2.11 through 2.14. Full details of labels and
contribution types are given in Chapter 3.

The propagation of labels is interactive, since humanjudgement is needed
at various points. The evaluation procedure (whether executed by a developer
"by hand" or using an automated tool) will propagate labels as far as it can, at
which point the developer can step in to provide values as appropriate. At any
time, the developer can override previously assigned or computed labels, and
can change contribution types. Details of the evaluation procedure are given
in Chapter 3.

Developers can assess the status of their designs at any time, by ex
amining how the status of the most detailed decisions contribute towards the
top-level softgoals that they started with. The developer can thus make in
formed tradeoffs among the available alternatives.

Relating Functional Requirements to Decisions and NFRs

We can also relate functional requirements to NFRs and the decisions made for
the target system.

So far, graphs started with top NFRs and resulted in operationalizations
being selected. Now we graphically relate them to functional requirements and
their associated chosen target design specification or implementation.

The top of Figure 2.14 shows the functional requirements (for maintain
ing accounts) and the top level NFRs, relating to the security, performance,
etc., of maintaining accounts. The bottom of the figure links the chosen opera
tionalizations to a description of the target system (shown in a rectangle at the
bottom right). The right side of the figure links this description of the target
system to the (source) functional requirements (shown in an oval at the top
right).

THE NFR FRAMEWORK IN ACTION 41

Informal SIG

Good Performance
for accounts

Secure
accounts

User-friendly
access to accounts

Require
additional
ID

~I
I
I
I
I
I

Availability I
of accounts

I
I

Accurate
accounts

, Accurate
• accounts

..... r----"
~ .tJ

...... Jt" ••,'-

Claim
"Accuracy
is vital"

\

\

Response
time for
accounts

"""
'" -

Use '" \
indexing ?' \ +, \

,..r'".... " ,
t' , '\
t.....'!...j,.. ',,',

Claim " \
"Optimized validation '" \
will not hurt response ',\

\ time much." ,

Validate access .t
against eligibility
rules

Use
uncompressed •
format \

\
\

\

For accounts, use indexing and uncompressed format;
identify users and validate access against eligibility rules; IE-------.J

and authenticate user access by comparing signatures

Informal Legend

Functional requirement L- I Target

Design decision link
I.
'f Operationalization-target link

Figure 2.14. Relating decisions to Functional Requirements.

42 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

2.12 CATALOGUING DEVELOPMENT METHODS AND
CORRELATIONS

Let us further consider how a developer comes up with refinements, including
NFR decompositions, operationalizations, and claims that justify decisions.

In order to be able to bring relevant knowledge to the attention of the
developer at each point in the design process, knowledge needs to be represented
in a flexible catalogue structure. Three major kinds of catalogues are used to
express design knowledge:

• NFR type catalogues: They encode concepts about particular types of NFRs,
such as security and performance.

• method catalogues: They encode knowledge that helps refine graphs by de
composing softgoals and considering operationalizations.

• correlation rule catalogues: They encode knowledge that helps detect implicit
interdependencies among softgoals.

Developers can browse through these catalogues to examine a current
area of interest within a wide range of possible techniques.

Development knowledge can be catalogued to organize NFR types, meth
ods, and correlation rules, which are used as a developer faces particular design
decisions.

So far we have shown only a catalogue of NFR types in Figure 2.1. Let
us now consider other kinds of catalogues.

Method Catalogues

Figure 2.15 shows a catalogue of methods for addressing the NFR of confi
dentiality. The catalogue is hierarchically classified: more specific methods
(techniques) are placed under general ones.

The concept of method is applied uniformly to refinement throughout
the Framework. Thus there are methods to assist in the decomposition of
NFRs, methods for operationalizing, and methods for argumentation to identify
claims.

Let us consider how catalogues can be used to aid refinement. Recall
Figure 2.2, where we were starting with the NFR softgoal that accounts be
maintained securely and with good performance. A search of catalogues (which
can be done by hand, or be tool-assisted and semi-automated) for NFR types
and methods could result in a suggestion to decompose an NFR softgoal into
several sub-softgoals, which use sub-types of the type of the parent softgoal.
This occurs through the invocation of a method which encodes this knowledge,
here, about sub-types.

Some methods are domain-specific, e.g., dealing with particular develop
ment techniques and domains. Some other methods are fairly generic, applying
to all softgoals of a particular NFR type. Others are quite generic, applying
to a variety of domains and NFR types, e.g., a method decomposing an NFR

THE NFR FRAMEWORK IN ACTION 43

Method Catalogue I
Methods for Operatlonallzlng Confidentiality

Ideo",,,,,o.-/7\~ eoo,,"oo
authentication virusFilter/'/1 \'"validoteA"es. . . pe"..".,loo

audlttng \
password PIN \

","'Key bl~elrios 1m,""", L,.eAdditioO
requlreAddltlonallD

subsystem noiseRemoval

Informal Legend I

r [sA relationship

Figure 2.15. A catalogue of operationalization methods for achieving confidentiality.

softgoal for a data item into NFR softgoals for all components of that item.
Methods that are generic tend to be more powerful, because they are appli
cable more widely. However, they can be harder to come up with. Many
generic methods are already built into the Framework, and are developed by
the Framework developers.

The NFR Framework comes with a collection of generic methods, which
are described in Chapter 4. Other method catalogues are available for accuracy,
security and performance requirements, and are discussed in Chapter 4 and
Part II.

Note that the developer may have to select among a number of sugges
tions, possibly coming from different knowledge sources. The developer can
also adapt a method by overriding some of its features.

Correlation Catalogues

Now let us consider a catalogue of correlations, showing implicit inter
dependencies. Figure 2.16 is an example of a catalogue of implicit interdepen
dencies, and their contributions.

This catalogue shows the impact of various operationalizing softgoals
(such as Validation and Indexing, shown on the vertical axis) upon NFR softgoals
(such as Accuracy and Response Time, shown on the horizontal axis). The
correlation catalogue entries show the contribution type. For example Validation
makes a positive contribution towards Accuracy, and Indexing has a positive
contribution towards Response Time.

44 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal Correlation Catalogue

Impact of upon
offspring parent
Operationalizing NFR Softgoal
Sojtgoal Accuracy I Confidentiality I Response I Space I User-

Time friendliness

Validation II + +
Com pression II +
Indexing II +

Authorization II +
AdditionallD II +

Figure 2.16. A catalogue showing the impact of operationalizing softgoals upon NFR
softgoals.

Detected correlations are shown as dashed lines in graphs. In Figures 2.9
and 2.10, the implicit interdependencies between Use uncompressed format and
Space for accounts, between Require Additional ID and User-Friendly Access, and
among Validate Access against Eligibility Rules, Response Time, and Accuracy of
Accounts are detected by correlation rules.

Catalogues can be prepared with different axes showing correlations be
tween different groups of softgoals. For example, another correlation catalogue
could show the impact of NFR softgoals upon other NFR softgoals. Yet an
other correlation catalogue could show the impact of operationalizing softgoals
upon other operationalizing softgoals.

Catalogue-based correlations are detected by pattern-matching. Correla
tions can be used to establish interdependencies in a graph either automatically
or after confirmation by a developer, depending on the developer's wishes. Like
methods, correlations can be generic or specific.

2.13 DISCUSSION

In this chapter, we offered a glimpse into how the NFR Framework provides
a systematic treatment of non-functional requirements, and how they are me
thodically introduced into steps in the design process.

During this process, the developer is constructing a record of how sub
softgoals contribute to higher softgoals, eventually contributing to the top-level
softgoals. Throughout the development process, both selected and discarded

THE NFR FRAMEWORK IN ACTION 45

alternatives form part of the development history, and the softgoal interdepen
dency graph keeps track of the impact of decisions upon the top-level softgoals.
These records are displayed graphically.

Catalogues of NFR knowledge help with the time-consuming, and often
difficult, search for development techniques.

It can be possible, at least for small examples, to use the NFR Frame
work starting from "first principles," without the use of catalogues. However,
our experience has been that catalogues are quite important, especially when
considering NFRs for larger systems.

While it can take some time to develop methods and catalogues, our
experience is that this results in a payoff, by speeding up the refinement pro
cess. Chapter 4 presents generic catalogues of methods and correlations, while
Part II presents catalogues for particular types of NFRs (accuracy, security and
performance) .

Literature Notes

This chapter is adapted from [Chung94a,b].
The goal-oriented approach we have taken is meant to be intuitive, fol

lowing and supporting the developer's reasoning. However, it is not the same as
the approaches in artificial intelligence or automated reasoning, such as AND
OR trees [Nilsson71]. By taking a "satisficing" approach [Simon81], the aim
is to offer flexible support for a developer's reasoning, and to allow it to be
recorded. The purpose is not to automate development. Instead, development
is intended to be highly interactive, where the human developer is in control.

The catalogues of refinement techniques and tradeoffs (e.g., [Chung93a]
[Nixon97a] [Yu94b]) are based on work done by researchers and practitioners
in particular areas. These include security [ITSEC91, Parker91, Clark87, Mar
tin73], accuracy [Pfleeger89], and performance [C. Smith90, Hyslop91], as well
as information system development. In addition, catalogues can deal with other
NFRs, other classes of issues, e.g., Business Process Reengineering [Hammer95],
and other aspects of development, e.g., software architecture [Garlan93].

3 SOFTGOALINTERDEPENDENCY
GRAPHS

In this chapter and the next, we present the NFR Framework in more detail.
The NFR Framework helps developers deal with non-functional requirements
(NFRs) during software development. The Framework helps developers express
NFRs explicitly, deal with them systematically, and use them to drive the
software development process rationally.

By focussing on the process of meeting requirements, the NFR Frame
work is process-oriented and complementary to traditional product-oriented
approaches. Control of the process and the focus of development is given to
the developer, who is helped with refining softgoals, dealing with tradeoffs and
selecting among alternatives. All of this can be facilitated by catalogues of
knowledge for specific non-functional requirements and specific domains.

The Framework provides a goal-oriented approach to dealing with NFRs.
Unlike goals in traditional problem-solving and planning frameworks, non
functional requirements can rarely be said to be "accomplished" or "satisfied"
in a clear-cut sense. Instead, different design decisions contribute positively
or negatively, and with varying degrees, towards attaining a particular non
functional requirement. Accordingly, we speak of the satisficing of softgoals to
suggest that generated software is expected to satisfy NFRs within acceptable
limits, rather than absolutely.

Softgoals can be stated and refined, and alternatives can be chosen to
move towards a target system. Consideration of design alternatives, analysis

48 TON· FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

of design tradeoffs and rationalization of design decisions are then all carried
out in relation to the stated softgoals.

Softgoals are interdependent. To help a developer address non-functional
requirements, the NFR Framework represents softgoals and their interdepen
dencies in softgoal interdependency graphs (SIGs). SIGs maintain a complete
record of development decisions and design rationale, in concise graphical form.
This graphical record of decisions made includes non-functional requirements
and their associated alternatives, decisions, and reasons for decisions. To de
termine if top-level requirements are met, an evaluation procedure is offered.

The NFR Framework consists of five major components:

1. Softgoals are the basic unit for representing non-functional requirements.
They help a developer deal with NFRs, which can have subjective, relative
and interacting natures. There are three kinds of softgoals. NFR softgoals
(or NFRs) represent non-functional requirements to be satisficed. Opera
tionalizing softgoals are development techniques which help satisfice NFRs.
Claim softgoals help justify decisions.

2. Interdependencies state interrelationships among softgoals. They record re
finements of softgoals into offspring softgoals, and the contributions of off
spring towards the satisficing of parent softgoals. Interdependencies can also
state more general refinements among softgoals and interdependencies.

3. An evaluation procedure determines the degree to which a given non-functional
requirement is satisficed by a set of design decisions.

4. Methods offer the developer catalogues of development techniques. They are
realized by refining softgoals into other softgoals.

5. Correlations provide catalogues for inferring possible interactions, both pos
itive and negative, among softgoals.

Methods and correlations help generate a softgoal interdependency graph,
by drawing on catalogued knowledge of NFRs and software development. This
helps knowledge of softgoal refinements and their interactions to be captured,
catalogued, tailored and reused. Each method is instantiated explicitly by the
developer, resulting in an explicit interdependency. On the other hand, corre
lations are not instantiated explicitly by the developer but are used to detect
implicit interdependencies.

This chapter and the next present the five components of the NFR
Framework. This chapter presents softgoals , interdependencies (refinements
and contributions), and the evaluation procedure. The next chapter will present
catalogues of methods and correlations.

The examples throughout this chapter continue with NFRs for the credit
card account management information system introduced in Chapter 2.

3.1 KINDS OF SOFTGOALS

As discussed in Chapter 2, there are three distinct kinds of softgoals:

SOFTGOAL INTERDEPENDI:NCY GRAPHS 49

• NFR softgoals, e.g., Accuracy of Accounts,

• operationalizing softgoals, e.g., Indexing, and

• claim softgoals, e.g., "Gold Card Accounts are important" .

NFR softgoals act as overall constraints on the system, and are satis
ficed by the operationalizing softgoals which represent design or implementation
components. Claim softgoals provide rationale for development decisions.

Only operationalizing softgoals appear in some form (such as an oper
ation, data representation, constraint or assignment of an external agent to
a task) in the target design or implementation. However, all the three kinds
of softgoals appear in a softgoal interdependency graph, and may appear in
supporting documentation.

Each softgoal has an associated NFR type and one or more topics (sub
jects). In Accuracy of Accounts, for example, Accuracy is the type and Accounts
is the topic. When the type changes (e.g., Response Time for Accounts), so does
the meaning of the softgoal. Similarly, when the topic changes, so does the
meaning of the softgoal. After all, the accuracy of an account is quite different
from the response time for an account, the response time for a bank deposit,
etc.

In the above paragraphs and in Chapter 2, we used an informal nota
tion for softgoals, e.g., Response Time for Accounts. This softgoal can be writ
ten more systematically as ResponseTime[Accounts]' where ResponseTime is the
NFR type (or type), and Accounts is the topic, surrounded by brackets. Soft
goals can have more than one topic, e.g., FlexibleUserinterface[lnfrequentUser.
GoldAccount]. This more systematic notation for softgoals is used in the re
mainder of this book, for both figures and textual descriptions.

Note that "topics" do not directly correspond to parameters as used in
programming languages and standard computer science. The number of topics
of a softgoal can vary, even for a given NFR type. In addition, topics can be
refined in a specialization hierarchy.

NFR softgoals can have an associated priority. Priority softgoals are
shown in figures with an exclamation mark ("I"). In addition, the kind of
priority is shown in brace brackets. Critical softgoals are vital to the success of
a system, e.g, IAccuracy[GoldAccount]{critical}. Dominant softgoals deal with a
dominant part of the workload, e.g., IResponseTime[AuthorizeSales]{dominant}.

Clouds represent softgoals in figures. Clouds have an associated tag, to
describe the softgoal in textual form. Some softgoals and tags are shown in
Figure 3.1. Note that descriptions (e.g., Softgoal tag) are shown in regular
italics in figure legends, while parameterized items (e.g., NFR Type[topic)) are
shown in sans serif (Helvetica) italics.

50 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Soltgoal Examples I

0 Response Time
[Account)

0 Accuracy
[Account]

0 Accuracy
[GoldAccount.highSpending]

Legend I

0 NFR softgoal

Softgoal tag: NFRType
[topic]

Figure 3.1. Representing sample non-functional requirements as NFR softgoals.

NFR Type Catalogue I
NFRTypes

~~
Security Performance

/i~ / ~
Integrity Confidentiality Availability Time Performance Space Performance

/ ~
Response Time Throughput

Legend I i /sA (sub-type) relationship

Figure 3.2. Portions of NFR type catalogues.

NFR Softgoals

NFR softgoals represent non-functional requirements as softgoals. The types
of FR softgoals are NFR types. NFR types include accuracy, performance,
security, and other NFRs.

SOFTGOAL INTERDEPENDENCY GRAPHS 51

NFR types can be inter-related. The NFR Framework helps organize
NFR types by arranging them into catalogues. General NFR types are shown
above more specialized ones. They are arranged in IsA hierarchies (i.e., sub
type or specialization hierarchies). This way, a large number of types become
more manageable, and their often unclear meaning becomes clarified. Examples
are shown in the NFR type catalogue of Figure 3.2. More detailed NFR type
catalogues are discussed in Part II of the book.

Some sample NFR softgoals are shown in Figure 3.1. They are shown
as thin (light) clouds. The first NFR softgoal is for response time of accounts,
and the second one is for accuracy of accounts.

Let's consider the third NFR softgoal. This is an example of an NFR
softgoal's topic referring to more specific information than, for example, the
class GoldAccount. For example, it could refer to an attribute of GoldAccount,
such as GoldAccount.highSpending. The resulting NFR softgoal for accuracy
of high spending information of a gold account can be written as: Accu
racy[GoldAccount.highSpending]. Here the value of GoldAccount.highSpending
indicates whether spending on a gold account exceeds a pre-set amount. For
example, if the total amount of spending on a gold account is $13 000 when
the pre-set amount is $10 000, then this high spending will be reflected in the
value of GoldAccount.highSpending. The interpretation of this softgoal is that
all the high spending associated with the class of gold accounts ought to be
maintained accurately in the system, e.g., in the database.

NFR softgoals act as global constraints on a system. They are global
because they affect many parts of the system instead of anyone particular
part. They need to be satisficed by operationalizing softgoals, which will be
described shortly.

Operationalizing Softgoals

When developers have refined the initial NFRs into a suitable set of NFR soft
goals, they need to find solutions in the target system which will satisfice the
NFR softgoals. These solutions provide operations, processes, data representa
tions, structuring, constraints and agents in the target system to meet the needs
stated in the NFR softgoals. They are called operationalizations, as they op
erationalize the NFR softgoals, i.e., they provide more concrete mechanisms in
the target system, which meet the functional requirements and non-functional
requirements. They are represented as operationalizing softgoals.

Operationalizing softgoals range over different development techniques,
including design techniques during the design phase, or implementation tech
niques during the implementation phase. Put differently, operationalizing soft
goals are the result of a decision-making process, and can be viewed as (com
ponents of) the solutions considered for the given problem or needs statement.

Figure 3.3 shows sample operationalizing softgoals. They are drawn with
thick (dark) clouds. Like other softgoals, operationalizing softgoals have type
and topic, where the topics associated with each type depend on the nature of
the corresponding operationalizing softgoal.

52 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Sol/goal Examples I o Validation
[GoldAccount.highSpending)o PerformFirst
[GoldAccount.highSpending]

Legend I o Operationalizing softgoal

Figure 3.3. Sample operationalizing softgoals.

For instance, one way to satisfice the accuracy softgoal mentioned earlier
might be to validate all account data entered into the system. This can be rep
resented as an operationalizing softgoal: Validation[GoldAccount.highSpending].
Here, Validation is the softgoal's NFR type. The softgoal's topic is GoldAc
count.highSpending, an attribute of GoldAccount, as discussed before.

As another example, PerformFirst[GoldAccount.highSpending] is an op
erationalizing softgoal which orders the execution of operations. Operations
relating to high spending are performed first. This may help satisfice NFRs,
e.g., for response time.

Claim Softgoals

Design rationale is represented by claim softgoals (claims). Claim softgoals
make it possible for domain characteristics (such as priorities and workload) to
be considered and properly reflected into the decision making process. They
serve as justification in support or denial of the way softgoals are prioritized,
the way softgoals are refined and the way target components are selected.

This way, claim softgoals provide rationale for development decisions,
hence facilitating later review, justification and change of the system, as well
as enhancing traceability.

Sample claim softgoals are shown in Figure 3.4. Claim softgoals are
drawn as dashed clouds. Claim softgoals have a type of Claim. The topic is a
statement, typically of evidence or reasons.

Claims can be used to support prioritization, whereby efforts are fo
cussed on priorities. For example, Claim["One of vital few: high spending in gold
accounts."] argues that priority should be given to softgoals dealing with gold
accounts.

Claims can be used to provide reasons for selecting possible solutions.
For example, ["Priority actions can be performed first."] argues for performing
priority operations first, to help meet a priority softgoal.

SOFTGOAL INTERDEPENDENCY GRAPHS 53

Soltgoal Examples I
f"'''~'), Claim
t .. j.Y ("one of vital few: high spending in gold accounts')

_,,,~.~ Claim

~-_.jY ['Priority actions can be performed first")

Legend I ?.....,,) Claim softgoal
........ _,-

Figure 3.4. Representation of claims softgoals.

Claims can also be expressed in a more formal notation, using pred
icates. Such predicates can describe situations. For example, in the claim
Claim[vitaIFew(GoldAccount.highSpending)], we have vitaIFew(...) which is a sit
uation descriptor used to argue that the highSpending attribute of gold accounts
is of the "vital few," i.e., is a priority.

During this justification process, claims may be considered weak, counter
intuitive or even wrong. For this reason, even claims themselves sometimes
need to be supported or denied, hence acting as evidence or counter-evidence
for other claims. Thus, like other kinds of softgoals, claims are also treated as
softgoals to be satisficed.

Long Notation for Softgoals

Softgoals are most often written in a compact form, such as
IAccuracy[Account]{critical}. In addition, softgoals can also be written in a
longer form, using a frame-like notation:

NFR Softgoal account-accuracy

type: Accuracy

topic: Account

label: .J
priority: critical

author: Jane Doe

creation time: 15 May 1999

An individual softgoal can have an optional identifier, here account
accuracy. It is written after the initial keywords which indicate the kind of
softgoal (here, NFR softgoal). Later on, the identifier can be used by itself to
designate the softgoal.

54 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Each softgoal can also have an associated priority (criticality or domi
nance). Softgoals can also have other attributes, such as author, and time of
creation of the softgoal.

Each softgoal has a label which indicates the degree to which the soft
goal is "satisficed." Labels will be explained when the evaluation procedure is
presented in Section 3.3.

To summarize, three kinds of concepts, namely, NFR softgoals, opera
tionalizing softgoals, and claim softgoals, are all uniformly treated as softgoals
to be satisficed. Of the three, NFR softgoals and operationalizing softgoals
need to be achieved if possible. In contrast, claims present domain knowledge
and development knowledge which support (or deny) possible development de
CISIOns.

This treatment helps the developer to deal with non-functional require
ments as design constraints, while considering operationalizing softgoals as de
velopment alternatives with associated tradeoffs. At the same time, develop
ment decisions are made and design rationale is stated. This broad spectrum
of activities is carried out systematically, in order to achieve softgoals rather
than to merely evaluate how good the resulting product is.

3.2 INTERDEPENDENCIES

Softgoals are inter-related via interdependencies. In the "downward" direction,
refinements take a softgoal, the parent, and produce one or more offspring soft
goals. Parents and offspring are related by interdependencies. In the "upward"
direction, offspring softgoals make contributions, positively or negatively, to the
satisficing of the parent softgoal.

Figure 3.5 shows a softgoal interdependency graph with some interde
pendencies resulting from refinements. The direction of contribution is shown
by the arrowheads. The arrowhead points to the parent, and away from the
offspring. The actual contribution values are not yet shown. They will be
presented later.

We now discuss these two aspects of interdependencies, refinements and
contributions.

Refinements

Refinements take an existing softgoal and relate it to other softgoals. There
are three kinds of refinements: decomposition, operationalization, and argu
mentation. The kinds of refinements are shown in a refinement catalogue in
Figure 3.6.

Decomposition.

Decompositions refine a softgoal into other softgoals of the same kind.
There are three kinds of decompositions. These correspond to the three kinds

SOFTGOAL INTERDEPENDENCY GRAPHS 55

SIG

Legend

ResponseTime
[RegularAccount)

ResponseTime
[GoldAccount)

ResponseTime
[GoldAccount.highSpendingl

, ResponseTime
• [GoldAccount.highSpending]

{critical}

i Softgoal interdependency

! Priority softgoal

Accuracy
-....' ",,-.:-[Account]

Accuracy
Accuracy [RegularAccount]
[GoldAccount)

Accuracy
[GoldAccount.highSpending]

, Accuracy
• [GoldAccount.highSpending)

{critical}

Figure 3.5. Decomposition and prioritization of NFR softgoals.

of softgoals: NFR softgoals (drawn as thin (light) clouds), operationalizing
softgoals (thick (dark) clouds), and claims (dashed clouds).

Figure 3.5 shows several NFR decompositions, which refine NFR soft
goals into other NFR softgoals. By breaking a "large" NFR softgoal into more
specific ones, this kind of decomposition can help solve large problems in terms
of smaller ones. Decomposition is also helpful for dealing with ambiguities, and
dealing with priorities.

Operationalization decompositions refine operationalizing softgoals into
other operationalizing softgoals. They are helpful for taking a general solution
and breaking it (further operationalizing it) into more specific ones. Opera
tionalization decompositions are illustrated in Chapter 4.

A rgumentation decompositions refine claim softgoals into other claim
softgoals. This is helpful for supporting or denying particular design rationale.
Chapter 4 also illustrates argumentation decompositions.

Prioritization is a special kind of decomposition. It refines a softgoal into
another softgoal with the same type and topics, but with an associated priority.
For example, Figure 3.5 shows the prioritization of
ResponseTime[GoldAccount.highSpendingJ to !ResponseTime

56 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Refinement Catalogue

Decompositions

~!
NFR

Decomposition
Operationalization

Decomposition
Argumentation
Decomposition

Prioritization

Operationalizations

9
6

Argumentations

Figure 3.6. Kinds of Refinements.

prioritization of
IAccuracy

the
to

and[GoldAccou nt. highSpending]{critical},
Accuracy[GoldAccount.highSpending]
[GoldAccou nt. highSpending] {critical}.

The prioritization can reflect the intention of the developer to spend more
time and effort to satisfice these softgoals than the rest, and, as will be seen
later, to use relative priority among softgoals to resolve conflicts and deal with
priorities. In this book, prioritization is primarily applied to NFR softgoals.

Operationalization.

SOFTGOAL INTERDEPENDENCY GRAPHS 57

SIG

ResponseTime
-"... ...,-......c.-IAccountl

ResponseTime
[RegularAccount)

ResponseTime
IGoldAccountJ

ResponseTime
[GoldAccount.highSpending]

, ResponseTime
• IGoldAccount.highSpending)

{critical}

Auditing
IGoldAccount.highSpending)

PerformFirst
IGoldAccount.highSpending)

Accuracy
Accuracy IRegularAccountl
[GoldAccount)

Accuracy
IGoldAccount.highSpending)

, Accuracy
• IGoldAccount.highSpending)

{critical}

Figure 3.7. Refining NFR softgoals into operationalizing softgoals.

Operationalizations refine a softgoal into operationalizing softgoals.
The refinement of NFR softgoals into operationalizing softgoals repre

sents a crucial transition, where we move from NFRs (which are to be achieved)
to development techniques which can achieve the NFRs.

Figure 3.7 shows some operationalizations.
PerformFirst[GoldAccount.highSpending] is an operationalization of
IResponseTime[GoldAccount.highSpending]{critical}. In addition, Auditing
[GoldAccount.highSpending] and Validation[GoldAccount.highSpending] are oper
ationalizations of IAccuracy[GoldAccount.highSpending]{critical}.

The term "operationalization" can also be used to refer to a refinement
producing an operationalizing softgoal as an offspring. Observe that a solu
tion can lead to a problem in its own right. A solution often needs to be
"achieved" as well in terms of more concrete ones. Furthermore, there is
usually more than one way to achieve a solution. By treating operational
izations as softgoals, we are able to aim to satisfice operationalizing softgoals

58 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

and can refine them. For example, operationalization can refer to a refine
ment of Validation[GoldAccount.highSpending] to a specialized operationalizing
softgoal, such as validation by a specific kind of employee. To avoid ambi
guity, this may be called an "operationalization decomposition," a "decom
position of an operationalization," or a "further operationalization" of Valida
tion[GoldAccount. highSpending].

"Operationalization" can also be used to relate an operationalizing soft
goal to one of its ancestors, typically an NFR softgoal somewhat "above" it in
a SIG. For example, we can say that PerformFirst[GoldAccount.highSpending] op
erationalizes, or is an operationalization of, ResponseTime
[GoldAccount.highSpending]. Likewise, Validation[GoldAccount.highSpending] is
an operationalization of Accuracy[GoldAccount.highSpending].

Argumentation.

Design rationale is noted via argumentation. This is recorded by refine
ments, typically involving claim softgoals. Examples are shown in Figure 3.8.

A few words of clarification are in order here. By treating design rationale
as softgoals, the intention is to convey the idea that they in turn may need to
be supported or denied by other claims, partially or fully, using the notion of
"satisficing." Typically, however, claims merely state facts or opinion about the
domain, and developers usually do not attempt to achieve them the way they
do for NFR softgoals or operationalizing softgoals. Thus refinements involving
claim softgoals are somewhat different in nature than those involving NFR
softgoals or operationalizing softgoals.

One form of argumentation has a claim softgoal as an "offspring" of any
kind of 80ftgoal. In Figure 3.8, Claim["Priority actions can be performed first."] is
an offspring of the operationalizing softgoal
PerformFirst[GoldAccount.highSpending]. The claim gives a reason for select
ing the operationalization.

Another form of argumentation has a claim softgoal as an offspring of
an interdependency link. In Figure 3.8, C1aim["One of vital few: high spending in
gold accounts."] is an offspring of the interdependency between
ResponseTime[GoldAccount.highSpending] and I ResponseTime
[GoldAccount.highSpending]{critical}. The claim is also an offspring of the inter
dependency link between Accuracy[GoldAccount.highSpending] and
IAccuracy[GoldAccount.highSpending]{critical}. The claim gives a reason for
making the refinements, here for prioritizations.

Claims can also be used to support other claims.

In the NFR Framework, other forms of argumentation are possible, albeit
infrequent. One involves an interdependency link as the "offspring," and a claim
softgoal as the parent. The other involves interdependency links as both the
parent and offspring. These two cases are not used in this book.

SOFTGOAL INTERDEPENDENCY GRAPHS 59

SIG

ResponseTime
[RegularAccountj

ResponseTime
[GoldAccount.highSpendingj

Claim
["one of vital few:

high spending
in gold accounts"]

, ResponseTime
" \GOldAccount. highSpending]

critical}

Auditing
[GoldAccount.highSpending]

PerformFirst
[GoldAccount.highSpendingJ

Claim
["Priority actions can

be performed first")

Accuracy
Accuracy [RegularAccountJ
[GoldAccountj

Accuracy
[GoldAccount.highSpendingj

, Accuracy
" \GOldAccount.highSpending)

critical}

Validation
[GoldAccount.highSpendingj

Figure 3.8"

Prioritization.

Recording design rationale using claim softgoals.

501tgoal prioritization includes dealing with criticality and dominance.
Critical softgoals have a high degree of importance, and dominant softgoals
deal with frequent situations which dominate the workload of a system. Any
softgoal or interdependency can be associated with a priority, indicating its
relative importance. A priority softgoal can be thought of as one of the "vital
few" [Juran79] softgoals, needed for success of the system, while non-priorities
can be considered part of the "trivial many." There are priority attributes:

60 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

critical and dominant (each with softgoal prefix "I"), very critical ("!I") and very
dominant (each with softgoal prefix "!I"), etc. The developer can prioritize a
single softgoal or interdependency link, as well as assign relative importance to
several softgoals or interdependencies.

In the example, IAccuracy[GoldAccount.highSpending]{critical} and !Re
sponseTime[GoldAccount.highSpending]{critical} are both critical. These prior
itizations are supported by a claim softgoal. Prioritizations can be used to
deal with tradeoffs and help with selection among alternative operationalizing
softgoals.

Another use of prioritization concerns coping with resource limitations.
Suppose developers are given a large number of softgoals. Should they put
equal amount of effort into meeting each of them? Perhaps not, especially if
they only have a limited amount of time available. But instead, they would
want to prioritize the softgoals and spend more time for softgoals of high prior
ity. For example, they may choose to spend most of the time to meet the
priority softgoals IAccuracy[GoldAccount.highSpending]{critical} and IRespon
seTime[GoldAccount.highSpending]{critical}, rather than trying to meet non
priority accuracy and response-time softgoals for regular accounts.

Up to this point the figures have left unspecified the contributions that
offspring softgoals make to the satisficing of parent softgoals. This is the topic
of the next section.

Types of Contributions

As illustrated in Chapter 2, development proceeds by repeatedly refining "par
ent" softgoals into "offspring" softgoals. In such refinements, the offspring can
contribute fully or partially, and positively or negatively, towards the satisficing
of the parent.

Recall that we speak of softgoal satisficing to suggest that generated
software is expected to satisfy non-functional requirements within acceptable
limits, rather than absolutely. Accordingly, in the NFR Framework, there can
be several different types of contributions describing how the satisficing of the
offspring (or failure thereof) contributes to the satisficing of the parent.

For example, AND is one of the contribution types. It means that if
the offspring are all satisficed, so will their parent be. A more precise defi
nition will be presented shortly. Suppose Accuracy[Account] has two offspring
Accuracy[RegularAccount] and Accuracy[GoldAccount] which make an AND con
tribution to their parent.

Figure 3.9 illustrates this contribution in a softgoal interdependency
graph. Offspring are shown underneath the parent softgoal. The AND con
tribution is shown by an arc connecting the lines from the offspring to the
parent. For clarity of figures, arrowheads from offspring to parents are omitted
from AND and OR contributions. Note that previous figures showed inter
dependencies between the parent and offspring, but did not show an AND
contribution.

SIG

SOFTGOAL INTERDEPENDENCY GRAPHS 61

Accuracy
[Account)

Legend

Accuracy
[RegularAccountj

Accuracy
[GoldAccountj

Figure 3.9. A decomposition with an AND contribution.

We can express the AND contribution of Figure 3.9 by writing:

Accuracy[RegularAccount] AND Accuracy[GoldAccount]

SATISFICE Accuracy[Account]

to state that if all offspring are satisficed, then the parent will be satisficed.
Equivalently, this can also be written as:

AND({Accuracy[RegularAccount], Accuracy[GoldAccountJ})

SATISFICE Accuracy[Account]

which shows the contribution of the set of offspring to the parent.
Figure 3.10 shows examples of several contribution types. Note that

contributions were not shown in Figure 3.8 and earlier SIGs in this chapter.
For OR contributions, we have:

Accuracy[MasterFile] OR Accuracy[WorkingFile]

SATISFICES Accuracy[RegularAccount]

which states that if any offspring is satisficed, then the parent will be satisficed.
This can also be written as:

OR({Accuracy[MasterFile], Accuracy[WorkingFileJ})

SATISFICES Accu racy [Regu larAccou nt]

62 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Contribution Type Examples

Contribution Types

A
AND

A
OR

Performance
[RegularAccount)

Accuracy
[MasterFile]

Examples of contribution types in use

Performance
[GoldAccount]

Accuracy
[WorkingFile]

MAKE BREAK ~
' Accuracy S;FlexibleUserlnterface
• [GOldAccount.highspending). [lnfrequentUser,

(critical) GoldAccount.highSpending]

++ --
Validation / .-\C~aim .
[GoldAccount highSpending) r y [Accuracy more Important

.,.," than flexIbility")

HELP

i-
HURT ~

ResponseTime ~ ,Accuracy
[GoldAccount.highSpendingj • [GoldAccount.highSpending)

(cntlcal)

+ -
Indexing FlexibleUserlnterface
[GoldAccount.highSpending] [lnfrequentUser,

GoldAccount.highSpending]

iSOME+ iSOME- ~
'ACCUraCY ~'ResponseTime
• [GoldAccount.highSpending] • [GoldAccount.highSpending]

(critical) {critical}
SOME+ SOME-

Auditing CompressedFormat
[GoldAccount.highSpending] [GoldAccount.highSpending]

Figure 3.10. Examples of several contribution types.

For OR contributions, a double arc connects the lines from the group of offspring
to the parent.

A given contribution may, however, not be acceptable to different people.
Thus, just like softgoals , contributions need to be satisficed either through a
refinement process or through arguments provided by the developer. In this
book, contributions are normally assumed to be satisficed, unless indicated
otherwise.

AND and OR relate a group of offspring to a parent. Let's consider the
other contribution types, which relate a single offspring to a parent.

SOFTGOAL INTERDEPENDENCY GRAPHS 63

One pair of contribution types provide sufficient (full) support, MAKES
being positive, and BREAKS, being negative. MAKES provides sufficient pos
itive support. It can be viewed as the single-offspring analogy of AND. With
MAKES, if the one offspring is satisficed, the parent can be satisficed. BREAKS
provides sufficient negative support: if the one offspring is satisficed, the parent
can be denied.

Another pair of contribution types provide partial support, HELPS being
positive and HURTS, being negative. HELPS provides partial positive support:
if the one offspring is satisficed, partial positive support is given to the parent.
For HURTS, if the one offspring is satisficed, partial negative support is given
to the parent.

Note that we can write contributions fairly naturally in an infix form,
e.g., "Validation MAKES Accuracy" and "Indexing HELPS ResponseTime".
Reading left-to-right, we have the offspring, the contribution, and the parent.
Where unambiguous, softgoal topics may be omitted from such statements of
contributions.

Contribution Catalogue

BREAK
(

HURT UNKNOWN

I
?

HELP

+

MAKE

++
)

Figure 3.11. Intuitive distinction among contribution types.

In addition, the UNKNOWN contribution makes some contribution, but
of unknown "sign" (positive or negative) and "extent" (pa.rtial or sufficient).

Figure 3.11 illustrates these contribution types in a spectrum, ranging
from sufficient negative support ("--") on the left to sufficient positive support
("++") on the right. Note that the suffix "5" may be omitted from the names
of contribution types MAKES, BREAKS, HELPS, HURTS and EQUALS, and
the keyword SATISFICES.

MAKE represents the positive situation where the developer is suffi
ciently confident to think that the particular offspring is "good enough" to
wards meeting ("making") the parent. On the other hand, when the developer
is confident that the offspring will deny ("break") the meeting of the parent
softgoal, BREAK is used. Sufficient contributions are shown with doubled sign
symbols, while the partial contributions, HELP ("+") and HURT ("-") are
shown with single signs, towards the middle. In the middle is UNKNOWN,
drawn as "7."

Figure 3.12 is an elaboration of Figure 3.11. The SOME+ contribution
type represents some positive contribution, either HELP or MAKE. Likewise
SOME- represents some negative contribution, either HURT or BREAK.

64 NON· FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Contribution Catalogue I

BREAK
(

HURT UNKNOWN
I
?

HELP

+

MAKE

++
)

'-~__~ ...;J
y-

SOME-

'-~__~ _--...;J
Y

SOME+

Figure 3.12. Grouping positive and negative contribution types.

Note that the informal contribution types of Chapter 2 have given way
to a larger number of contribution types with more specific meanings. For
example, in Chapter 2, "+" stood for all positive contributions. Now we have
several types of positive contributions: "+", "++", and SOME+.

When the developer considers that the achievement of a softgoal is sat
isfactory, the softgoal is satisficed. However, when softgoal achievement is con
sidered unsatisfactory, the softgoal is denied.

If achievement of a softgoal is considered to be potentially satisfactory,
the softgoal is satisficeable. If, however, softgoal achievement is considered to
be potentially unsatisfactory, the softgoal is deniable.

In Artificial Intelligence problem-solving terminology [Nilsson71], satis
ficed refers to "solvable" problems, while denied refers to "unsolvable" ones.
In this sense, satisficeable refers to potentially solvable problems, and deniable
refers to potentially unsolvable ones.

Suppose an offspring makes a sufficiently positive contribution to a par
ent. We say that the parent is satisficeable. Furthermore, if there is no counter
evidence, the parent is satisficed. However, if there is counter-evidence, the
parent can become unsatisficeable (but not necessarily denied).

Likewise, if an offspring makes a sufficiently negative contribution to a
parent, the parent is deniable. In the absence of counter-evidence, the parent
is denied. With counter-evidence, the parent can become undeniable (but not
necessarily satisficed).

Now what does it mean to say that a softgoal is satisficeable or deniable?
Why can't a softgoal simply be considered either satisficed (satisfactory) or
denied (unsatisfactory)?

The reason is that a softgoal will sometimes receive both positive and
negative contributions from offspring.

For instance, the accuracy softgoal for high spending data may be sat
isficed - thanks to a validation procedure which, although imperfect, signif
icantly enhances the accuracy of such data. However, the accuracy softgoal
can also be denied later on - due to a flexible user interface which permits
widespread access to infrequent users. On the other hand, performing opera-

SOFTGOAL INTERDEPENDENCY GRAPHS 65

SIG

FlexibleUserlnterface
[lnfrequentUser,
GoldAccount.highSpendingj

PerformFirst
[GoldAccount.highSpendingj

Legend

1+ + MAKE contribution

I+ HELP contribution

I-HURT contribution

1-- BREAK contribution

Figure 3.13. A conflict in contributions.

tions in a certain order may aid accuracy. These conflicting contributions are
shown in Figure 3.13.

When a validation procedure is applied to the accuracy softgoal , the
accuracy softgoal may be satisficed, i.e., satisficeable. In other words, the soft
goal will remain satisficed if no other operationalizing softgoal with a negative
effect is applied later on. Otherwise, the accuracy softgoal may no longer be
considered satisficed or it may even become unsatisficed.

Thus, we need to distinguish a softgoal being satisficed or denied from one
being potentially satisficed or denied, namely, satisficeable or deniable. Likewise,
interdependencies can be satisficed, denied, satisficeable and deniable.

With these distinction in place, we now define the set of contribution
types.

Definitions of Contribution Types.

The first two contribution types, AND and OR, relate a group of offspring
to a parent (See Figure 3.9).

Let

{offspring} {offspring 1 ... offspring11}

66 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

and note that variables are shown in sans serif italics.
We then let

offspring) AND ... AND offspringn SATISFICE parent

be equivalent to:

AND({offspring}) SATISFICE parent

We define them both as follows:

If all the offspring are satisficed

when the interdependency itself is satisficed,

then the parent is satisficeable;

and

if any of the offspring is denied

when the interdependency itself is satisficed,

then the parent is deniable.

In other words, offspring) AND ... AND offspringn SATISFICE parent im
plies that the parent is satisficed if all the offspring are satsificed, and the
offspring make an AND contribution to the parent. In our example, Accu
racy[Account] will be satisficeable if all the offspring (here,
Accuracy[RegularAccount] and Accuracy[GoldAccount]) are satisficed, and the
AND interdependency itself is satisficed.

But what does it mean to say "the offspring make an AND contribution
to the parent" and "the AND interdependency itself is satisficed"? A particular
contribution type such as AND may sometimes need to be subject to validation,
especially if the developer does not have confidence in it. After all, it may turn
out that the offspring do not conjunctively satisfice the parent, but instead
disjunctively or individually satisfice the parent. Thus, for an interdependency
to be effective, it too needs to be satisficed.

Contributions can also be written in a frame-like notation. For example,

Accu racy [Regu IarAccou nt] AND Accu racy [GoldAccou ntJ

SATISFICE Accuracy[AccountJ

can be written as:

Contri bution specia lized-account-accu racy- to-accou nt-accu racy

parent: Accuracy[Account]

offspring: Accuracy[RegularAccount],

Accuracy[GoldAccou nt]

contribution: AND

SOFTGOAL INTERDEPENDENCY GRAPHS 67

If desired, the kind of softgoal can be indicated, e.g.,
parent: NFR Softgoal Accuracy[Account].

As for OR contributions, the parent is satisficed if any of the offspring
are satisficed and the offspring make an OR contribution to the parent.

We then let:

offspring j OR ... OR offspringn SATISFICES parent

be equivalent to:

OR({offspring}) SATISFICES parent

We define them both as follows:

If any of the offspring is satisficed

when the interdependency itself is satisficed,

then the parent is satisficeable;

and

if all of the offspring are denied

when the interdependency itself is satisficed,

then the parent is deniable.

Let's turn to the contributions involving a single offspring.
MAKES and BREAKS provide sufficient support, MAKES being positive

and BREAKS being negative.

offspring MAKES parent is defined as:

If the offspring is satisficed

when the interdependency itself is satisl'iced,

then the parent is satisficeable.

offspring BREAKS parent is defined as:

If the offspring is satisficed

when the interdependency itself is satisficed,

then the parent is deniable.

In Figure 3.10, the validation operationalization is sufficient to satisfice
an accuracy softgoal, so we have Validation[GoldAccount.highSpending] MAKES
!Accuracy[GoldAccount.highSpending]{critical}. On the other hand, a claim that

68 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

accuracy is more important than flexibility is sufficient to deny an operational-
ization using a flexible user interface. So we have
Claim["Accuracy more important than flexibility."] BREAKS
Flexi bleUser Interface[1 nfreq ue nt User, GoldAccou nt. high Spend ing].

HELPS and HURTS provide partial support, HELPS being positive, and
HURTS being negative.

HURTS provides partial negative support. If offspring HURTS parent
then denial of the offspring leads to the satisficing of the parent, and satisficing
of the offspring contributes to the denial of the parent.

offspring HURTS parent is defined as:

If the offspring is denied

when the interdependency itself is satisficed,

then the parent is satisficeable.

HELPS provides partial positive support.

offspring HELPS parent is defined as:

If the offspring is denied

when the interdependency itself is satisficed,

then the parent is deniable.

As a consequence of offspring) HELPS parent, there are other offspring,
offspring2 , ... , offspringn which cannot achieve the satisficing of the parent
without the contribution of offspring).

On the other hand, offspring) is not the only partial contributor to
the parent. In other words, besides offspring), there can be other offspring
offspring 2 " ... ,offspringm , which also partially contribute to the parent. For
example, in Figure 3.10, Indexing[GoldAccount.highSpending] HELPS
ResponseTime[GoldAccount.highSpending], but additional operationalizations
may be used to help satisfice the ResponseTime softgoal.

Another pair of contribution types are used when the "sign" of a con
tribution (i.e., positive or negative) is known, but the extent (i.e., partial or
full) of support is not. When there is some positive contribution, but some
uncertainty whether to use HELP or MAKE, the SOME+ contribution type
is used. Similarly, SOME- is used where there is some negative contribution,
but some uncertainty whether to use HURT or BREAK. Figure 3.12 shows
SOME+ grouping the HELP and MAKE cases, while SOME- groups HURT
and BREAK. SOME+ is defined as follows:

offspring SOME+ parent = offspring HELPS parent or

offspring MAKES parent

SOFTGOAL INTERDEPENDENCY GRAPHS 69

Now "offspring SOME+ parenf' can be read as "the offspring makes some
positive contribution to the parent." SOME- is defined as:

offspring SOME- parent offspring HURTS parent or

offspring BREAKS parent

Here "offspring SOME- parenf' can be read as "the offspring makes some
negative contribution to the parent."

SIG

V
Accuracy

Accuracy [RegularAccount)
[GoldAccount)

Accuracy
[GoldAccount. highSpending)

, Accuracy
• [GoldAccount.highSpending)

{critical}

++

SOM£+

ResponseTime
[RegularAccount)

Auditing
[GoldAccount.highSpending)

Claim
['one of vital few:

high spending
in gold accounts"]

++

ResponseTime
[GoldAccount.highSpending)

PerformFirst
[GoldAccount.highSpending)

, ResponseTime
• [GoldAccount.highSpending)

{critical}

++

Claim
["Priority actions can

be performed first")

Figure 3.14. A softgoal interdependency graph with various contribution types.

In Figure 3.10, auditing gives some positive contribution to accuracy.
In addition, the use of a compressed format gives some negative contribution

70 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

to response time (since extra time will be needed to uncompress data before
usage).

It is useful to define the EQUALS (equivalent) contribution type.
EQUALS means that the offspring is satisficeable if and only if the parent
is, and the offspring is deniable if and only if its parent is too.

At times, it may be hard to determine a priori the precise relationship
between a set of offspring and their parent softgoal without further expansion of
the softgoal interdependency graph. This situation is accommodated through
the UNKNOWN ("7") contribution type. UNKNOWN presents some unknown
interdependency between the parent and the offspring. More precisely:

offspring UNKNOWN parent offspring SOME- parent or

offspring EQUALS parent or

offspring SOME+ parent

Figure 3.14 is an elaboration of Figure 3.8, showing contribution types.
Note that it shows AND contributions which were shown as pairs of interde
pendencies in Figures 3.5, 3.7 and 3.8. However, Figure 3.14 is still incomplete
as it is missing labels which indicate the degree to which softgoals (and inter
dependencies) are satisficed. This is the topic of the next section.

3.3 THE EVALUATION PROCEDURE

Presented up to this point are two of the five main concepts of the NFR Frame
work: softgoals and interdependencies. These concepts enable developers to
treat non-functional requirements as softgoals, and then satisfice them by re
peatedly refining them into more specific ones. In developing a system, devel
opers need to determine whether softgoals in a softgoal interdependency graph
are satisficed, be they NFR softgoals, operationalizing softgoals or claim soft
goals. Ultimately, they need to know if the initial (top) NFR softgoals for the
system are met. But how do they do that?

The evaluation procedure is another concept of the NFR Framework
which determines the degree to which non-functional requirements are achieved
by a set of decisions. Given a softgoal interdependency graph, complete or
incomplete, the evaluation procedure determines whether each softgoal or in
terdependency in the softgoal interdependency graph is satisficed. This is done
through the assignment of a label.

Decisions to accept or reject alternatives provide an initial set of labels.
These decisions are often "leaf" or bottom nodes of a softgoal interdependency
graph. The evaluation procedure uses these labels to determine the impact of
decisions on other softgoals, and ultimately, upon the top softgoals.

Thus, the evaluation procedure is useful in selecting among alternatives.
In the presence of competing alternatives, developers can use the procedure to
see what impact a particular selection has on the satisficing of their softgoals.
If one selection hurts some important softgoals, developers can simply reject
it, choose another and again use the procedure to see the impact of the new

SOFTGOAL INTERDEPENDENCY GRAPHS 71

choice. By repeating this process, developers can aim at making a choice which
yields the most benefit with acceptable minimum sacrifices.

Using the notions of satisficeable and deniable from the previous section,
a softgoal or interdependency of the graph is labelled:

• satisficed ('>I or 5) if it is satisficeable and not deniable;

• denied (x or D) if it is deniable but not satisficeable;

• conflicting (shown as a thunderbolt in figures, and "Q" or C in the text) if it
is both satisficeable and deniable; and

• undetermined (denoted by blank or U) if it is neither satisficeable nor deni
able.

The U label represents situations where there is no positive or negative
support. At the time a softgoal is newly introduced, it is given a U label by
default. Interdependencies are normally given a satisficed ("'>I") label when in
troduced. In figures, any unlabelled softgoal is undetermined ("U") by default,
and any unlabelled interdependency is satisficed ("y"') by default.

When a softgoal or interdependency in a softgoal interdependency graph
is assigned a new label (including default values), the evaluation procedure is
activated and propagates labels from offspring to parent. It consists of two
basic steps. For each softgoal or interdependency in a SIG, the procedure first
computes the individual impact of each satisficed interdependency. Secondly,
the individual impacts of all interdependencies are combined into a single label.
Details of the procedure will be described shortly.

The NFR Framework adopts a dialectical style of reasoning in which
arguments are made to support or deny why non-functional requirements are
considered fulfilled. This leads to a premise of the Framework that only some
of the relevant knowledge is formally represented. The rest remains with de
velopers, during the process of dealing with non-functional requirements.

Given this open-ended and argumentative nature of the development
process, the NFR Framework calls for an interactive evaluation procedure where
the developer may be asked to step in and determine the appropriate label for
a particular softgoal or interdependency having supporting but inconclusive
(partial) evidence.

For this reason, the labels characterizing the influence of one set of off
spring towards a parent includes '>I, x, Q, and U, as mentioned before, but
also:

• weak positive (W+) representing inconclusive positive support for a parent,
and

• weak negative (W-) representing inconclusive negative support for a parent.

For any conflict (Q) from the first step, the developer can determine the
label that characterizes the contribution of an offspring towards its parent.

Figure 3.15 shows a catalogue of label values. The spectrum ranges from
denied to satisficed. Unknown and conflicting values are shown in the middle.

72 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Label Catalogue I

denied
(0)

@
weakly denied

(W-)

®
undecided

(U)

(9
conflict

(e)

@
weakly satis/iced

(W+)
satis/iced

($)

Figure 3.15. Catalogue of label values.

The First Step

The First Step determines the "individual impact" of an offspring's contribution
towards a parent.

For AND and OR contributions, we treat all of the offspring as one
group, with a single "individual impact," defined as follows:

If offspring I AND ... AND offspring n SATISFICE parent

then LabeL (parent) = min(LabeL (offspring J)
•

If offspring) OR ... OR offspringn SATISFICES parent

then Label(parent) = max(Label(offspring j))
•

where the labels are ordered in increasing order as follows:

The developer needs to provide input if either of U or ~ is involved. For the
purposes of the First Step, there is no specific ordering relationship between U
and ~; instead they are both in-between x and y'.

Let's consider the individual impact for some of the other contribution
types. Here are some rules for propagation of labels from an offspring to its
parent:

• MAKES propagates y' from offspring to parent; it also propagates x.

• BREAKS "inverts" the "sign" of an offspring's y' label into x for the parent.

• HELPS keeps the same direction, but "weakens" it. That is, y'in the off
spring is weakly propagated to W+ in the parent, and x in the offspring is
weakly propagated to W- in the parent.

SOFTGOAL INTERDEPENDENCY GRAPHS 73

• HURTS inverts the direction, and weakens it. That is, V in the offspring
is weakly inverted to W- in the parent, and x in the offspring is weakly
inverted to W+ in the parent.

• SOME+ considers the two parent labels that would result from using HELP
and MAKE contributions for a given offspring, and uses the parent label
that is weaker. By "weaker," we mean that if the two parent labels are V
and W+, the result is W+; if the parent labels are x and W-, the result is
W-. Looking at it another way, SOME+ labels the parent with a "weak"
label (W+ or W-) with the same "direction" as the olfspring's label. An
offspring label of V or W+ results in W+ for the parent; an offspring label
of x or W- results in to W- in the parent.

• SOME- considers the two parent labels that would result from using HURT
and BREAK contributions for a given offspring, and uses the parent label
that is "weaker," as explained above. Looking at it another way, SOME
labels the parent with a "weak" label that inverts the "direction" of the
offspring's label. An offspring label of Vor W+ results in W- for the parent;
an offspring label of x or W- results in to W+ in the parent.

• UNKNOWN ("?") always contributes U.

In addition, there are rules for special offspring values:

• An undetermined offspring (U) always propagates U, regardless of the con
tribution type.

• A conflicting offspring (q) propagates q, unless the contribution type is UN
KNOWN.

Let's present the individual impact upon a parent, of a given offspring
along a given contribution type. The entries in Tables 3.1 and 3.2 show the
individual impact upon the parent.

Table 3.1 outlines an evaluation catalogue of individual impacts given
selected contribution types, representing the "signs" of the contributions. Par
ent labels are shown in the table entries. As an example, if the offspring is
satisficed ("\/"'), and the contribution type is SOME-, the individual impact
on the parent is weak negative (W-). To condense the size of Table 3.1, it uses
grouped contribution types, SOME+ and SOME-.

It is interesting to compare rows of entries of Table 3.1 with the label
catalogue of Figure 3.15, which has a left-to-right ordering. In Table 3.1, looking
left-to-right at the individual impacts for satisficed offspring (labelled V), there
is a progression left-to-right through the label catalogue. For individual impacts
of denied offspring (labelled x), there is a progression right-to-left through the
label catalogue.

We can now consider the individual impacts of more contribution types,
in an extension of Table 3.1. Table 3.2 includes entries for contribution types
MAKES, BREAKS, HELPS and HURTS.

74 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Evaluation Catalogue

Individual Impact of upon parent label,
offspring given offspring-parent
with label: contribution type:

SOME-I? I SOME+ I=
(UNKNOWN)

x (Denied) II W+ U W- I x I
Q (Conflict) II U I I
U (Undetermined) II U U U I U I
V (Satisficed) II w- U W+ I V I

Table 3.1. The "individual impact" of an offspring upon its parent for selected contribution

types during the First Step. Parent labels are shown in the table entries.

Evaluation Catalogue

Individual upon parent label,

Impact of given offspring.parent

offspring contribution type:

with label: BREAK I SOME- I HURT I ? I HELP I SOME+ I MAKE I = I
I x II W+ W+ w+ U w- W- I X I X I
I II Q U I I I
I U II U U U U U U I U I U I
Iv II X W- w- U W+ W+ Iv I V I

Table 3.2. The "individual impact" of an offspring upon its parent during the First Step.

Parent labels are shown in the table entries.

Let's look again left-to-right at the individual impacts for offspring la
belled V, but now in the larger Table 3.2. There is a progression left-to-right
through the label catalogue of Figure 3.15. For individual impacts offspring
labelled X (denies), there is a progression right-to-left through the label cata
logue.

In Table 3.2, it is interesting to note that the entries for the SOME- and
HURT contributions are the same. Likewise, SOME+ and HELP have identical
entries.

SOFTGOAL INTERDEPENDENCY GRAPHS 75

Evaluation Catalogue

Legend

(f) @ ® @ (1)
denied weakly denied undecided weakly satisficed satisficed

(0) (W-) (U) (W') (5)

(9
conflict

(C)

Figure 3.16. Label propagation for selected contribution types and offspring labels during

the First Step.

The reader may note that the table does not have entries for other off
spring, such as W+ and W-. As we will see later, the Second Step eliminates
such values. We will also discuss a possible extension to retain such values as
outputs of the Second Step, and inputs to the First Step.

Figure 3.16 illustrates how the first step of the evaluation procedure
works on some selected contribution types and labels.

Consider the case of a denied offspring (" x") and a BREAKS contri
bution type. It contributes W+ to the parent. By reasons of symmetry, one
might expect the entry to be v. Informally, the reason for using W+ is that
stopping a bad thing is helpful, but does not necessarily result in a good thing.
In some cases, however, stopping a bad thing does result in a good thing. Thus,
the developer may change the W+ to V, depending on the circumstances. In

76 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

fact, this will be done frequently in subsequent chapters, and will not always
be explicitly noted.

The Second Step

Evaluation Examples

Figure 3.17. Examples of "automatic" label propagation during the Second Step.

Once all contributed labels have been collected for a given parent, the Second
Step of the evaluation procedure combines them into a single label.

The labels contributed to a parent are collected in a "bag" (a collection
which allows duplicate entries, unlike a set). The possible label values in the
bag are x, W-, q, U, W+ and.j. A bag is used because duplicate labels
are useful; for instance several positive supporting contributions indicated by
several W+ labels may be combined into a .j label by the developer.

The W+ and W- labels in the bag are first combined by the developer
into one or more .j, x, Q, and U labels. Typically, W+ values alone in a bag
would result in .j or U, and W- values alone would result in x or U. A mixture
of W+ and W- values would typically result in .j, x or Q.

The resulting set of labels is then combined into a single one, by choosing
the minimal label of the bag, with a label ordering:

<U<xr::::;.j

If there are both .j and x values present, without SOME+ or SOME-, the
result will be a conflict ("Q"), and the developer will have to deal with the
conflict. For the purposes of the Second Step, there is no specific ordering
relationship between x and .j; instead they are both greater than the other
label values.

Figures 3.17 and 3.18 illustrate the Second Step of evaluation. Note
that these examples each show two individual contributions, not one AND
contribution.

In the Second Step of evaluation, Figure 3.17 shows cases where the
decisions can be made automatically, by following a procedure. This can be

SOFTGOAL INTERDEPENDENCY GRAPHS 77

done without developer intervention since no uncertainty is introduced during
either the first or second steps. A straightforward application of the rules in
the first and second steps suffices for automatically determining the label of
the parent. In the first example, both individual contributions are satisficed
("V'), so the parent is also satisficed. In the second example, the left offspring
contributes V' while the right one contributes x, resulting in a conflict. If
desired, the developer can resolve the conflict and change the parent's label. In
the third example, both offspring contribute x, so the parent is also denied.

Figure 3.18. Examples of developer-directed label propagation during the Second Step.

The developer can use expertise about NFRs, the domain and develop
ment, as well as other knowledge, in order to resolve conflicts. Figure 3.18
illustrates the second step of evaluation, where the developer has stepped in to
make some decisions. In each of the three examples, the left offspring is satis
ficed ("V') and has a MAKE contribution to the parent. The right offspring
in the first example contributes W+, which the developer must change to one
of x, q, U or V. If the developer chooses V, then the parent will be satisficed,
receiving V from both offspring. The right offspring in the second example
contributes W-; using expertise (e.g., that the left offspring is more important
than the right one), the developer might change the right offspring label to V,
resulting in the parent being satisficed. The third example is similar to the
second one.

Generally, the interdependency is assumed satisficed, i.e., having V as
its label. If the interdependency is not satisficed, the associated offspring has
no effect on its parent.

The examples of Figure 3.18 show that developer input is important
to the evaluation procedure. The developer combines the contributions into
a single result. This "resolution" is done by choosing one of x, q, U or V.
However, after the Second Step is done, information about the resolution is not
directly visible. Nonetheless, the developer may wish to take this resolution into
account during subsequent evaluation, say of the parent's parents. This may
be done, for example, by changing the parent's label to one of the weak label

78 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

values, W+ or W-. For instance, in each of the three examples of Figure 3.18,
the parent's label could be changed from V to W+ to indicate that there is
some weak positive contribution arising from the combined offspring. In fact,
this kind of change of labels is often done throughout this book, resulting in
W+ and W- appearing throughout SIGs. Because of its frequency, this kind
of change is not always explicitly mentioned.

Legend I

Softgoalso NFR softgoal

Contributions

o Operationalizing softgoal
•....-. Claim softgoal

BREAK HURT UNKNOWN HELP MAKE

'---y--J
50ME-

'---y--J
50ME+

1\ A 1=
Labels

AND OR EQUAL

denied
(D)

@ ® @ (1)
weakly denied undecided weakly satisficed satisficed

(W-) (U) (Wi) (5)

(9
conflict

(C)

Figure 3.19. Meaning of symbols in softgoal interdependency graphs.

By having W+ and W- as output values after the Second Step, they
would also have to be considered as inputs to subsequent First Steps. This
would require extensions to Tables 3.1 and 3.2. Developers would be guided by
domain information, and existing rules; for example, to infer possible propaga
tion values for W+ as offspring, they could look at entries for V as offspring,

SOFTGOAL INTERDEPENDENCY GRAPHS 79

but weaken the result. Informally, we can consider some possible propagation
values:

• W+ EQUALS W+.

• W- EQUALS W- .

• W+ OR W+ could result in W+ for the parent.

• W- AND any value could result in denying the parent

• A W+ offspring and a SOME+ contribution could result III W+ for the
parent.

• A W+ offspring and a SOME- contribution could result in W- for the parent.

To summarize the notation, Figure 3.19 presents the symbols used for
softgoals , contributions and labels.

We now continue with SIGs for our example. Figure 3.20 shows some of
the decisions made by the developer to choose or reject some operationalizing
softgoals and claim softgoals. In choosing an operationalizing softgoal, the
developer considers it to be satisficed. In rejecting an operationalizing softgoal,
the developer considers it to be denied. Such labellings are often are applied
to "leaf" operationalizing softgoals and claim softgoals, but in principle can be
applied to any kind of softgoal, anywhere in a SIG.

Then the Framework's evaluation procedure determines whether soft
goals are satisficed or denied. It takes into account the developer's decisions,
labels of softgoals, and contribution types. It uses the rules introduced earlier
in this chapter to assign labels to softgoals. The result for our example is shown
in Figure 3.21. Here, the decisions at the bottom of Figure 3.20 have an impact
on higher softgoals.

Let's consider where the developer stepped in to assist the evaluation pro
cedure. Selecting Validation contributed ("V") to
IAccuracy[GoldAccount. highSpending]{critical}. However, rejecting Auditing gave
a weak negative contribution ("W-") to !Accuracy
[GoldAccount.highSpending]{critical}. The developer felt that validation was
sufficient to satisfice IAccuracy[GoldAccount. highSpending] {critical}, and declared
it to be satisficed, by assigning it a label of "V".

The developer also selected PerformFirst[GoldAccount.highSpending]. Per
forming operations related to gold accounts gave a weak positive contribution
("W+") to !ResponseTime[GoldAccount.highSpending]{critical}, but the devel
oper felt that it was sufficient to satisfice ("V") the priority softgoal for response
time. Similarly, the developer felt that satisficing Accuracy
[GoldAccount.highSpending] was sufficient to satisfice Accuracy[GoldAccount].
Likewise, satisficing ResponseTime[GoldAccount.highSpendingJ was felt to be suf
ficient to satisfice ResponseTime[GoldAccount].

80 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Validation
[GoldAccount.highSpending]

Accuracy
[GoldAccount. highSpending]

Accuracy
Accuracy [RegularAccountJ

[GoldAccount)

, Accuracy
• [GoldAccount.highSpending]

(critical)

++

SOME+

+~Iaim <;j)
["one of vital few:

high spending
in gold accounts"]

X
Auditing

[GoldAccount.highSpending]

ResponseTime
[RegularAccount]

ResponseTime
[GoldAccount.highSpending)

ResponseTime
[GoldAccount]

, ResponseTime
• [GoldAccount.highSpending]

(critical)

.t PerformFirst
[GoldAccount.highSpending)

Claim
(" Priority actions can

be performed first']

Legend .t Chosen (satisficed) softgoal

X Rejected (denied) softgoal

Figure 3.20. Recording developer's decisions to choose or reject softgoals.

3.4 COUPLING NFRs WITH FUNCTIONAL REQUIREMENTS

Let us consider the bigger picture of overall software development. A source
specification with functional requirements (FRs) is dealt with, resulting in a
description of the target system (e.g., a design or implementation [Chung9lb,
9la)). There may be several possibilities for the target system. However, only

SOFTGOAL INTERDEPENDENCY GRAPHS 81

SlG

Accuracy
Accuracy [RegularAccount)
[GoldAccount]

Accuracy
[GoldAccount.highSpending]

, Accuracy
• [GoldAccount.highSpendingJ

{critical}

SOME+

x

ResponseTime
[RegularAccount)

+ ~Iaim ';: ..?;~;-----'+-+'-------?01

["one of vital few:
high spending
in gold accounts']

Auditing
[GoldAccount.highSpending)

ResponseTime
[GoldAccount.highSpending]

, ResponseTime
• [GoldAccount.highSpending]

{critical}

./ PerformFirst
[GoldAccount.highSpending]

++

(~)
Claim

['Priority actions can
be performed first")

Legend
./ Satisficed softgoal

X Denied softgoal

Figure 3.21.
cedure.

Determining the impact of developer's decisions, using the evaluation pro-

one final system can be chosen, possibly involving several components. What
alternative should the developer select?

The NFR Framework is intended to guide the developer to make such
a selection. Take, for example, the functional requirement that "the system
should maintain accounts." For this source specification, there are several tar-

82 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Accuracy
[GoldAccount.highSpending]

Accuracy
Accuracy [RegularAccount]
[GoldAccount]

, Accuracy
, [GoldAccount.highSpending]

{critical}

.
/

/.
/

/

/
/

++

SOME+

X
Auditing
[GoldAccount.highSpendingl

ResponseTime
[RegularAccount]

,,

+~Iaim c;r>
['one of vital few:

high spending
in gold accounts"]

,

ResponseTime
[GoldAccount.highSpending]

, ResponseTime
, [GoldAccount.highSpending]

{critical}

PerformFirst
[GoldAccount.highSpending)

"
++ "

('.I'.
Cfai·~

["Priority actions can
be performed first']

++

For Gold accounts with high spending validate,I- ...J

information and perform operations first

Figure 3.22. Relating functional requirements and the target system to a SIG.

get alternatives:

Functional

Requirements

Target

Alternatives

Maintain accounts -+ - Validate information for all accounts.

- Validate information for

SOFTGOAL INTERDEPENDENCY GRAPHS 83

gold accounts with high spending.

- Perform operations first for regular accounts.

- Perform operations first for

gold accounts wi th high spending.

- Audit all accounts.

- Audit gold accounts with high spending.

For example, auditing all accounts may exhaust critical resources and
prevent other NFRs from being met. As another example, if gold account cus
tomers get excellent response time, regular customers may become dissatisfied
with poor service, and take their business elsewhere.

Figure 3.22, an elaboration of Figure 3.21, shows the selection of a target
system, and relates it to the softgoal interdependency graph of our example.
For gold accounts with high spending, information is validated, and associated
operations are performed first. This is how the functional requirements of
maintaining accounts are handled.

Figure 3.23 shows how (source) functional requirements and the selected
target are related to each other and to the SIG of the NFR Framework. Func
tional requirements and the selected target are related via design decision links.
NFR softgoals are related to the development process of taking functional re
quirements to a target system (or "designs"). In addition, operationalizing soft
goals are related to the target specifications ("designs") via operationalization
target links.

The figure shows how the development process is influenced and guided
by NFR softgoals in general.

Now, where can the developer use the particular non-functional require
ments at hand? Matters pertaining to system functionality may become topics
of NFR softgoals. Account is one example. InvoiceProcessingModule could be
another. Thus, when a functional requirement is being taken to a design, all
those NFR softgoals having that requirement as a topic may act as criteria for
selecting among target alternatives.

The NFR Framework makes it possible to systematically deal with non
functional requirements and ultimately use them as the criteria for making
selections among competing target alternatives. Hence, it offers a goal-driven,
process-oriented approach to dealing with non-functional requirements, com
plementary to other software engineering approaches which focus on products
and their evaluation.

The relationship between the development phases of requirements speci
fication, design specifications, and implementation is considered in the DAIDA
framework for software development [Jarke92a, 93bJ. DAIDA includes a re
quirements modelling language, RlVlL [Greenspan82]
[Greenspan94], a conceptual design specification language, TaxisDL [Borgida93],
and a database implementation language, DBPL [Matthes£13]. The case studies

84 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG FRs and Design Decisions

2···0
1 0 ""

O ...:=_.-._._._._._.~~ .
._.~~~~~~~~._._._:=::::'~="=::"--'.::.::. '.-=".-=".-=.-.-=.---=

r-----'---, n

S(!figoal interdependency graph in
the NFR Framework

Legend

Mapping functional requirements to
targets in some design framework

O k
NFR
softgoal-k

>
----~

-------»

O moperationaliZing
sC!ftgoal-m

Design decision links

Impact ofNFRs on designs

Operationalization-target links

___ n

___I Target·n

Figure 3.23. Dealing with functional requirements guided by considerations of NFRs.

done using the NFR Framework (See Part III) draw on the DAIDA framework,
its languages, and the three phases of development which DAIDA considers.

We feel that the NFR Framework can be used in conjunction with a
variety of frameworks for taking functional requirements to target systems.
Section 3.5 outlines such frameworks, from areas including structured analysis,
the Entity-Relationship approach, and object-oriented approaches.

SOFTGOAL INTERDEPENDENCY GRAPHS 85

3.5 DISCUSSION

Key Points

During the process of software development, softgoals and interdependencies
are organized into a softgoal interdependency graph (SIC). It is a record of what
is addressed by the developer: NFRs, development alternatives and design ra
tionale. All these are represented by softgoals. It also records design tradeoffs,
which are represented as positive or negative contributions of operationalizing
softgoals towards the satisficing of NFRs. Each softgoal is associated with a
label which indicates the degree to which it is satisficed. Each interdependency
has a contribution, which indicates the local impact of a softgoal. The eval
uation procedure determines the overall impact of design decisions upon the
satisficing of softgoals. This is done by considering labels (of both softgoals
and contributions) and contribution values.

The NFR Framework records development decisions in softgoal inter
dependency graphs. The Framework offers five components which are used
for dealing with non-functional requirements, softgoals, interdependencies, the
evaluation procedure, methods and correlations. This chapter has presented the
first three of them. The next chapter deals with methods and correlations.

The notion of softgoal enables non-functional requirements to be treated
as softgoals which need to be satisficed instead of always being absolutely sat
isfied. Non-functional requirements are then refined via decompositions into
other non-functional requirements. Refinements aid disambiguation and pri
oritization. These non-functional requirements are next satisficed by opera
tionalizing softgoals, either design or implementation components, which can
be used to meet functional requirements. Just like non-functional require
ments, operationalizing softgoals can also be refined via decompositions into
other operationalizing softgoals. In the presence of multiple competing tech
niques, tradeoffs are taken into consideration before some of them are finally
chosen to be included in the target design or implementation. Throughout the
refinements of non-functional requirements, their operationalization, prioritiza
tion and selection among competing techniques, arguments can be captured to
support particular decisions.

The notion of interdependency enables softgoals to be interrelated. Re
finements capture the refinement of softgoals into other softgoals. Contributions
reflect the degree to which offspring softgoals satisfice the parent softgoal. Asso
ciated with each interdependency is one of several contribution types, indicating
full or partial, positive or negative influence. Interdependencies themselves can
contribute to other interdependencies, hence making it possible to talk about
the relationship between a softgoal and an interdependency, etc.

The evaluation procedure determines the impact of design decisions upon
the satisficing of softgoals and interdependencies. This is done by propagating
labels of the offspring upward to the parents, while taking the contribution
types into consideration.

86 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

The next chapter deals with methods and correlations. These help a
developer to catalogue and systematically use knowledge when constructing
softgoal interdependency graphs.

The concepts of the Framework help represent essential concepts of non
functional requirements and systematically deal with them. This is done by
organizing, in a softgoal interdependency graph, NFRs and their associated
alternatives, decisions and rationale. This organization then serves as criteria
for selecting among target alternatives in meeting functional characteristics of
a software system.

When addressing a particular type of non-functional requirement, one
can use the representation and reasoning facilities ofthis chapter, without much
change. The main work will be to catalogue the knowledge of the particular
NFR type, using the counterpart ofthe next chapter to structure the knowledge.

Extensions

We can consider some extensions to the Framework. It might be helpful to
have additional contribution types. One possibility would be a contribution
which "inverts" the offspring's label, taking x in the offspring to ,j in parent,
and ,j in the offspring to x in the parent. Note however, that even if this
were done, the rules for individual impacts for SOME+ and SOME- would not
change from what is shown in the tables.

We could consider modifying the evaluation procedure so that values
such as W+ ar.d W- could appear as outputs of the Second Step, instead of
being eliminated. If this were the case, the Second Step would use the ordering

< U < W- ~ W+ < x ~ ,j

In addition, Tables 3.1 and 3.2 would have to be extended by adding rows for
W+ and W- as offspring.

Literature Notes

This chapter is based on [Mylopoulos92a] [Chung93a].
Related literature for the NFR Framework is discussed at the end of

Chapter 4.
The notion of "satisficing" was used by Herbert Simon, earlier in the

context of economics, and later in the context of design [Simon81] where he
actually used the term to refer to decision methods that look for satisfactory
solutions rather than optimal ones. The term is adopted here in a broadened
sense since in the context of non-functional requirements, the solution or opti
mality of a solution may be unclear. Since user requirements can be unclear,
even the problem can be unclear.

Softgoal interdependency graphs are very much in the spirit of AND/OR
trees used in problem-solving [Nilsson71]. Unlike AND/OR softgoal trees,
where the relationship between a collection of offspring and their parent can
only be AND or OR, in the NFR Framework there can be several different

SOFTGOAL INTERDEPENDENCY GRAPHS 87

types of relationships or contribution types describing how the satisficing (or
denying) of offspring relates to the satisficing of the parent.

Contribution types are suggested by the literature, e.g., [Boehm78],
which states that some quality characteristics are necessary, but not sufficient,
for achieving others. A four-grade scale is then used to correlate each quality
metric with quality attributes in the final product. Hauser et al. [Hauser88] use
four types of values (strong positive, medium positive, medium negative and
strong negative) to state how much each engineering characteristic affects each
customer quality requirement. They are similar to those in [DiMarc090] and
generally to those used in qualitative reasoning frameworks [AI84].

Leveson [Leveson86] presents a convincing argument for the need to ex
plicitly capture tradeoffs, and an elegant discussion of various issues on safety.
Leveson states that the effect of taking water is relative to the person who
takes it. In other words, that water is good for human health is too coarse, but
should be discussed, among other things, in terms of the average and threshold
amount of water, as well as the age, body weight, health condition, etc., of the
person who drinks it. This is, in spirit, also similar to the notions in [Garvin87]
which describes a wide spectrum of different dimensions of quality. For in
stance, a quality concern such as performance, that lies on the one extreme,
tends to be more objective than a concern on user perception, that lies on the
other extreme, which is more subjective.

It is interesting to compare our evaluation procedure with those of truth
maintenance systems (TMSs) [deKleer86] [Doyle79]. They record and maintain
beliefs, their justifications and assumptions, while distinguishing facts from de
feasible beliefs, which are either accepted or rejected. As with TMSs, our
graph evaluation procedure recursively propagates values of offspring to par
ents. However, our procedure is not automatic, but interactively allows the
developer to deal with inconclusive evidence. While we have AND and OR,
comparable to TMS conjunction and disjunction, our cont.ribution types have
additional values, all of which are inputs to computing individual impact in our
first step. In applying the propagation rules of Tables 3.1 and 3.2, interde
pendencies, which are not included in TMS beliefs, must be satisficed. Unlike
TMSs, we then combine individual effects of label values including qualitative
(conflicting) and open-ended (undetermined) ones, using a label ordering in the
second step. In order to make sure that the evaluation procedure always termi
nates, techniques for cyclic graphs can be used, such as those used in constraint
networks (e.g., [Dechter90]).

In the area of software engineering, the notion of operationalization has
been around for quite some time. For example, in SADT™ [Ross77], man
agement objectives are fulfilled through "operational concepts" which define
system functions, which are then allocated as personnel functions, software
functions and hardware functions. More recently, in KAOS [Dardenne93], goals
of stakeholders are achieved through operationalization in terms of actions of
agents or constraints.

88 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

There are a number of frameworks for taking functional requirements to
target systems. We feel that the NFR Framework could be used in conjunc
tion with many of them. Such frameworks could include Structured Analy
sis, e.g., Data Flow Diagrams (DFDs) [DeMarco78], Jackson System Develop
ment (JSD) [Jackson83], Structured Analysis and Design Technique (SADT™)
[Ross77], and the Entity-Relationship approach [Chen76]. More recent propos
als for design frameworks, such as object-oriented analysis and design (e.g.,
[Booch94] [Booch97] [Coad90] [Coleman91] [Jacobson92] [Martin95]
[Rumbaugh91] [Shlaer88] [Quatrani98]), ERAE [Dubois86], and KAOS [Dar
denne93], could also be suitable for use with the NFR Framework.

4 CATALOGUING
REFINEMENT METHODS

AND CORRELATIONS

During the process of software development, developers use softgoals and inter
dependencies to analyze and record in a softgoal interdependency graph their
intentions, design alternatives and tradeoffs and rationale. The evaluation pro
cedure is then used to determine if their softgoals have been met.

In this chapter, we present the remaining components of the NFR Frame
work: refinement methods and correlations. These two components help the de
veloper generate a softgoal interdependency graph, by allowing for knowledge
about ways of softgoal refinements and their interactions to be captured, cat
alogued, tailored, reused and improved. They show the impact of one softgoal
upon another.

Refinement methods and correlations can be defined, collected and or
ganized into catalogues. Catalogues are then available for sharing, reuse and
adaptation, within the same application contexts and across different ones.
This helps alleviate time-consuming and often difficult searches for know-how.

Refinement methods and correlations elaborate existing graphs. This is
done by using the developer's expertise and knowledge about the domain and
functional requirements, while considering elements of the graph. Applicable
patterns are examined, and appropriate methods and correlations are selected.

Refinement methods are used by the developer to refine and extend a
particular portion of a graph. Methods can be taken from catalogues or from
the developer's expertise.

90 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Correlation rules, in contrast, may elaborate any part of an existing
graph. The graph is examined for patterns which are matched with a catalogue
of correlation rules. This matching can be done by a developer "by hand," or
can be done by a software tool.

The chapter concludes with a discussion of the overall process of using
the NFR Framework, and a review of work which is related to the Framework.

4.1 REFINEMENT METHODS

Refinement methods (or methods) are generic procedures for refining a softgoal
or interdependency into one or more offspring. When a number of methods are
collected and catalogued, they can offer appropriate vocabulary and subject
matter for dealing with NFRs.

Recall that there are three kinds of refinements used to relate softgoals
to each other. Section 3.2 presented decomposition, operationalization and
argumentation refinements. Three corresponding kinds of refinement methods
are applied (used) to guide these refinements:

• NFR decomposition methods,

• operationalization methods, and

• argumentation methods.

Methods are used to systematically make refinements, using the three kinds of
softgoals and several contribution types.

NFR decomposition methods iteratively refine NFR softgoals into more
specific NFR softgoals. When NFRs are sufficiently refined, the developer then
uses operationalization methods to satisfice such NFRs. Along the way, design
decisions can be recorded using argumentation methods.

During the development process, softgoals may be refined by the devel
oper in an ad hoc manner. However, this can be time-consuming, especially
when the know-how for such a refinement is not readily available, as it takes
time and effort to search for the source of the know-how. Even when avail
able, the know-how might not be properly encoded, making it harder to be
shared, extended, tailored, or reused. Refinement methods help to alleviate
these difficulties.

Now we move onto the three major kinds of methods mentioned earlier,
namely, NFR decomposition, operationalization, and argumentation methods.
Let us start with NFR decomposition methods.

4.2 NFR DECOMPOSITION METHODS

Recall that initial NFR softgoals are often coarse-grained. Thus they do not
permit the consideration of tradeoffs and design decisions which normally re
quire more specific details. In addition, initial NFR softgoals can be ambiguous,
and invite many interpretations from different groups of people.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 91

Method Catalogue I

NFR oecomrSlliOn Methods

NFR-SpeC~ ~veloperDefined
Generic

/' '"SubType SubTopic

SUbcl~ r"subset
Attributes

Legend I
i Specialization (lsA) links

Figure 4.1. A catalogue of NFR decomposition methods.

NFR decomposition methods record the know-how for breaking NFR
softgoals down into more detailed ones, and interpreting them in different (and
possibly conflicting) ways. This allows multiple conflicting interpretations of
non-functional requirements to coexist. The developer can choose the one that
best suits the needs of the intended application domain.

NFR decomposition methods also allow for the "divide-and-conquer"
paradigm to be exercised. This helps deal with as many NFRs as needed. It
also helps divide a problem into components; when each component is solved,
the overall problem is solved. Hence NFR Decomposition methods which break
down a parent softgoal into a number of offspring softgoals often use AND
contributions. If there is a single offspring, HELP and MAKE contributions
are common.

Figure 4.1 shows a catalogue of NFR decomposition methods. More gen
eral methods are shown above more specific ones. We now discuss some of the
groups of methods shown in the figure.

The generic methods include refinements on type and on topic. By refin
ing on NFR type, we can address more specific aspects of NFRs. Refinements
on topic include structural decomposition. For example, a softgoal about an
organization can be decomposed into softgoals dealing with parts of the or
ganization. Similarly, a softgoal about a software system can be decomposed
into softgoals for software components. We will discuss some of these generic
refinements in this chapter. These include decompositions on features common
to several data models.

92 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Catalogue I

NFR Decomposition Methods

NFR-spec~ r '" Generic

/ \ ~v.,ope'D••"ed/ ~
... SubType SubTopic

Accuracy S· Performance / r~
Decomposition Decunty .. Decomposition Subclass Subset

ecomposltlon
Methods Methods Methods Attributes

Legend I
i Specialization ([sA) links

Figure 4.2. A catalogue of NFR decomposition methods, including those for specific
NFRs.

Note that these generic decompositions can be specialized. For example,
we can deal with features and structures of particular data models; this is
illustrated in Chapters 8 and 9 on performance requirements. Likewise, the
use of decomposition methods to deal with ambiguities is shown in detail in
Chapters 6 and 7 on accuracy and security requirements.

NFR-specific decomposition methods apply to particular NFRs, such as
accuracy, security and performance, outlined in Figure 4.2, an elaboration of
Figure 4.1. Detailed method catalogues for particular NFRs are presented in
Part II of this book.

Let's consider some simple refinement methods. For example,

"To have good response time for operations on credit card accounts, you need
good response time for regular accounts and gold accounts."

might come from experts in the credit card system domain. Once acquired,
this know-how can be represented as a method as in Figure 4.3. The figure is
broken into parts. Logos at the top left indicate the nature of each part of the
figure.

The method definition is shown in the top of the figure. Logos of figures
indicate the degree of parameterization of the definition. This definition is not
parameterized, i.e., it is quite "concrete."

An important part of methods is their use of functional requirements and
domain information. Here, we use the fact that the subclasses of the Account
class are RegularAccount and GoldAccount.

The bottom of this figure shows the method application. The left side
shows the initial softgoal interdependency graph, here with the softgoal Re-

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 93

Method Definition, Unparameterized

ResponseTime
[RegularAccount)

(a) Method definition

Method Application

ResponseTime
[GoldAccount)

Initial SIG

o
ResponseTime
[Account]

Resultant SIG

(b) Method application

ResponseTime
[RegularAccount]

ResponseTime
[GoldAccount]

Figure 4.3. Definition and application of the AccountResponseTimeViaSubclass de
composition method.

sponseTime[Account]. The right side shows the SIG which results when we
start with the initial SIG and apply the method. In this case, the right
side contains the already-existing parent, its newly-created offspring, Respon
seTime[RegularAccount] and ResponseTime[GoldAccount], and the interdepen
dency between parent and offspring. Here the result is an AND contribution
of the offspring to the parent. That is, the parent will be satisficed if all the
offspring are.

Methods can be summarized and identified by their contribution, here:

ResponseTime[RegularAccount] AND ResponseTime[GoldAccount]

SATISFICE ResponseTime[Account]

Where desired, methods can also be identified by a name, here
AccountResponseTimeViaSubclass. The convention is that the name includes
the parent softgoal's topic (here, Account), followed by its type (ResponseTime),
followed by "Via" and the kind of refinement (here, Subclass). Methods which
are more generic (parameterized) will have names which omit some of these
components.

Method definitions can also be shown in a frame-like notation:

94 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFR DecompositionMethod AccountResponseTimeViaSubclass
parent: ResponseTime[Account]
offspring: {ResponseTime [RegularAccount],

ResponseTime[GoldAccount]}
contribution: AND

The definition starts with keywords which identify the kind of method, here
NFR DecompositionMethod.

Once a method is defined, it can be used to extend a portion of a softgoal
interdependency graph. Given a particular parent in a softgoal interdependency
graph, its offspring are generated according to the definition of the method
being applied.

In order to be sure about this, let us see how a method application works.
Suppose that the developer has selected ResponseTime[Account] as the softgoal
to refine in an existing SIG. Also suppose that the developer has selected Ac
countResponseTimeViaSubclass as the method to apply to the softgoal. At this
point, the chosen method is applicable to the chosen softgoal only if both the
type in the method definition matches that of the softgoal and the topic list
in the method definition matches that of the softgoal. If the method is indeed
applicable, offspring of the softgoal are generated, along with a contribution,
as specified in the method definition.

In the case of AccountResponseTimeViaSubclass, a method takes a parent
having a fixed type (here, ResponseTime) and a fixed topic list (here, Account),
and then generates offspring whose types and topics are again fixed.

While this kind of unparameterized method is useful for capturing
domain-specific refinement knowledge, a method becomes less
domain-dependent, more widely applicable and more amenable to tool support
when the type and topics are parameterized, using variables. This is fairly easy
to do, using slight extensions to the mechanisms we have already introduced.

For example, the following is a method which has a variable as topic:
"To have good response time for class d, you need to have good response time
for all relevant subclasses of d."

Here the softgoal topic is a variable. The above know-how is represented in
Figure 4.4.

Part (a) of the figure has the method definition, which is parameterized.
Parameters (variables) are shown in sans serif italics. We can parameterize on
the type or topic of a softgoal. Here the topic is a parameter, and the parameter
must be a class.

When a method involves a variable, an application of the method can
benefit from the functional requirements description. The description usually
includes structural requirements which model information structures and rules
which determine allowable states of these structures, and behavioural require
ments which model activities that operate on such structures and events that
trigger these activities.

Part (b) of the figure shows a portion of the functional requirements
(FRs in the logo). Here we have the subclasses of the class Account, namely,

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 95

Method Definition, Parameterized on Topic

ResponseTime
[subclass 1] ResponseTime

(subclass2]

(a) Method definition

Account

~~
RegularAccount GoldAccount

(b) A subclass hierarchy in the functional requirements

o
ResponseTime
[Account]

ResuUant S/G

ResponseTime
[RegularAccount]

(c) Using the subclass hierarchy in a method application

ResponseTime
[GoldAccountj

Figure 4.4. Definition and application of ResponseTimeViaSubclass, a parameterized

decomposition method.

the class of regular accounts, and the class of gold accounts. They are arranged
in a specialization (IsA) hierarchy, where general classes are above specialized
ones.

Part (c) of the figure shows the method application. Here, the functional
requirements from part (b) are used (substituted) as values for the parame
ters of part (a). The application of the ResponseTimeViaSubclass method to
ResponseTime[Account] will result in the generation of two offspring softgoals.

Figure 4.4 as a whole, thus, illustrates the definition of a method involv
ing a variable, the use of functional requirements, and finally an application
of the method using the functional requirements. This three-part figure show-

96 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

ing a parameterized method definition, functional requirements, and a method
application, will be frequently used in this chapter.

Note that the method name here, ResponseTimeViaSubclass is shorter
than the previous one, AccountResponseTimeViaSubclass. The topic at the front
(Account) is omitted, because it is a parameter.

A frame-like definition can also be given for this kind of method. Pa
rameters are in sans serif italics.

NFR Decomposition Method ResponseTimeViaSubclass

parent: ResponseTime[cfj

offspring: {ResponseTime[cld, "', ResponseTime[c1n]}

contribution: AND
applicabilityCondition: cl: Information Class

constraint: forAIl i: cl j isA cl
and /* set up one offspring for every subclass of c1 */

Each method definition specifies the parent softgoal (its type and topic(s))
followed by a list of offspring (with type and topic(s) for each). The contribution
of the offspring to the parent is also indicated.

The applicabilityCondition describes the kind of parent in a softgoal in
terdependency graph to which the method can be applied. Here the topic of
the parent must be an information class.

In contrast, the constraint describes the kind of offspring that should be
generated when the method is applied to the parent. Here, one offspring should
be generated for every subclass of the parent's topic.

The applicabilityCondition and constraint can often be omitted. When
included, they can be described formally, informally, or using a combination of
styles.

Now let's consider the impact of the method application. Note that the
net result of all this is identical with the application of the earlier
AccountResponseTimeViaSubclass method. Why do we now bother with the Re
sponseTime
ViaSubclass method, when the use of the AccountResponseTimeViaSubclass
method does not even need a class hierarchy from the functional requirements?

It's because AccountResponseTimeViaSubclass can only be applied to the
ResponseTime[Account] softgoal, and none other. In contrast, for the
ResponseTimeViaSubclass method, the topic can be just about anything per
taining to information. In other words, the method can be applied not only
to the response time for all account information but also to the response time
for very specialized fields. For example, the method can be applied to medical
test information, which should be of concern to patients and practitioners alike
in the context of a health care system. Now suppose test information can be
categorized into blood, heart- kidney and x-ray information. Then the method
application results in the generation of four offspring, each having as its topic
one of the four kinds of test information. Figure 4.5 illustrates this.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 97

Method Definition, Parameterized on Topic

ResponseTime
[subclass 1) ResponseTime

[subclass2]

(a) Method definition

ResponseTime
[class]

ResponseTime
[subclass-n]

Medical Test Information

Blood Information--/ ~RaYInformation
Heart Information Kidney Information

(b) A subclass hierarchy in the functional requirements

Resultant SIG

o
ResponseTime
[MedicalTestlnformation]

ResponseTime
[Bloodlnformation]

ResponseTime
[Heartlnformation]

(c) Using the subclass hierarchy in a method application

ResponseTime
[XRaylnformation)

ResponseTime
[Kidneylnformation)

Figure 4.5. Another application of the ResponseTimeViaSubclass method.

Note that the method definition is the same as in Figure 4.4. However,
Figure 4.5 also shows a different class hierarchy from the functional require
ments. This is used to replace the variable topic in the method application.

Softgoals with multiple topics are refined just the way softgoals with a
single topic are. This is illustrated in Figure 4.6 for an operating cost softgoal
with two topics. Here, both topics are refined. In the subclass hierarchy,
Staffing is refined into full-time and part-time employees, while the amount is
refined into applicable dollar limits for each staff category. Here, a limit of
$50 000 is a specialization of a limit of $100 000.

98 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Definition, Parameterized on Topic

OperatingCost
[OpCostComponent1,
Amount1J

(a) Method definition

OperatingCost
[OpCostComponent2,
Amount2]

Staffing

~~
FuliTimeEmployee PartTimeEmployee

(b) A staffing subclass hierarchy in the functional requirements

Method Application

Initial SIG

o
OperatingCost

[Staffing,
Under $100 000]

Resultant SIG

OperatingCost
[FuIiTimeEmployee,
Under $100 000]

OperatingCost
[PartTimeEmployee,
Under $50 OOOJ

(c) Using the subclass hierarchy and an amount constraint in a method application

Figure 4.6. The StaffingAndAmountForOperatingCostViaSubclassAndDollarLimit

method, parameterized on two topics.

At this point we should note that we may need to address the correctness
of a refinement method. For generic methods, we assume that they have been
defined carefully and correctly. However, the correctness of ad hoc refinements
must be considered by the developer on a case-by-case basis. We handle this by
representing the refinement itself as an interdependency. In the case of generic
methods, the refinement is assumed to be satisficed. For ad hoc refinements,
the developer must satisfice the interdependency.

Let's discuss in more detail the two important kinds of NFR decompo
sition methods: decompositions on NFR type and decompositions on topic.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 99

Decomposition on NFR Type

NFR Type Catalogue

Unilorm

NFR Characteristics/~
Performance Security / ~/ \ //7 \ Internal-External Statistical

/
\

Characteristics
Time Space Availability Confidentiality I \

Integrity \

\ Internal External

/

M~n
ACC\CY

InternalConsistency

MeanTime

Figure 4.7. A catalogue of NFR Types.

NFR type decomposition methods refine and relate the types of NFR softgoals
which represent the types of system characteristics, such as accuracy, response
time, operating cost, modifiability and traceability.

NFR type decomposition methods are particular kinds of decomposition
methods which in turn are particular kinds of refinement methods. As such,
NFR type decomposition methods inherit the nature and benefits of NFR de
composition methods as well as refinement methods.

An NFR type decomposition method allows for the refinement of a parent
on its type in terms of offspring, each with a subtype of the parent type. Each
subtype can be viewed as representing special cases for each softgoal class.

Figure 4.7 shows a catalogue of NFR types. Specialized types are shown
underneath general ones. The entries in bold face include the NFRs that are
discussed in detail in this book.

Characteristics of NFRs are shown in small italics at the right of Fig
ure 4.7. They are not NFR types in their own right; however they are char
acteristics which can modify and specialize the meaning of a type. Specialized
NFR types can then be formed from combinations of type a.nd characteristics.
For example, internal consistency (within the system) and external consistency
(outside the system) are two kinds of consistency. As another example, we can

100 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

refer to mean (average) response time, and uniform response time (i.e., with
small deviation from the mean).

Method Definition, Unparameterized

Security
[Account)

Availability
Confidentiality [Account]
[Account]

(a) Method definition

Method Application

Initial SlG

o
Security
[Account]

(b) Method application

Resultant SIG

Confidentiality
[Account]

Figure 4.8. Definition and application of the AccountSecurityViaSubType method.

Let us consider a SubType refinement. Consider the Security type with
subtypes Integrity, Confidentiality and Availability. Figure 4.8 defines and
applies the unparameterized AccountSecurityViaSubType method.

NFR Type decomposition methods also allow for variables to be used in
place of the type.

Figure 4.9 defines and applies the AccountQualityViaSubType method,
which is parameterized on NFR type. It takes a parent softgoal dealing with
accounts for a given NFR (quality attribute). It produces offspring dealing
with accounts for sub-types of the given NFR type.

This is more general than the AccountSecurityViaSubType method of Fig
ure 4.8, as it can deal with various NFR types. In Figure 4.9, the Accoun
tQualityViaSubType method is applied to Security, which has subtypes Integrity,
Confidentiality, and Availability. Note that the topic of the parent (i.e., Account
is copied down to the offspring; only the type of the offspring differ from that
of the parent. In the method name, Quality is a placeholder for the NFR type
(quality attribute), which is a variable.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 101

Method Definition, Parameterized on NFR Type

Subtype2
[Account]

(a) Method definition

NFR Type Catalogue I

~curi~

Integrity C i Availability
onfidentiality

(b) A catalogue ofNFR types

Security
[Account)o

Security
[Account]

Resullant SIG

Confidentiality
[Account)

Availability
[Account)

(c) Using the NFR typ catalogue in a method application

Figure 4.9. The AccountQualityViaSubType method, parameterized on NFR type.

The method can also be written as:

N FR DecompositionMethod AccountQualityViaSubType

parent: ty[Account]

offspring: ty 1 [Account]. "'. tyn[Account]

contribution: AND
applicabilityCondition: ty: NFR Type

constraint: forAI! i: ty j isA ty

and 1* set up one offspring for every subclass of ty */

102 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Subtypet
[topic)

(a) Method definition

NFR Type Catalogue I

Subtype2
[topic]

NFRType
[topic]

Subtype-n
[topic]

Perlormance

/~
TimePerlormance SpacePerlormance

(b)An NFR type catalogue

Method Application

Initial SIG

o
Perlormance
[Account]

Resultant SIG

TimePerlormance
[Account]

SpacePerlormance
[Account)

(c) Applying the subtype method to accounts, using the perfonnance type catalogue

Figure 4.10. The SubType method, parameterized on NFR Type and Topic, and applied
to performance of accounts.

Of course, the AccountQualityViaSubType method can take any softgoal
as the parent, as long as the softgoal has accounts as its topic. For example,
the method can be applied to Adaptability[Account] and result in the generation
of DetectabilityOfChange[Account] and Modifiability[Account], where the type
Adaptability has two subtypes DetectabilityOfChange and Modifiability. Thus,
the AccountQualityViaSubType method may be viewed as being more generic
than the AccountSecurityViaSubType method.

An even more generic method can be defined which can be applied to
virtually any softgoal having variables for both its type and topics. Figure 4.10
shows the SubType method. Given a parent, it produces offspring which have

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 103

Subtype2
[topic)

(a) Method definition

NFR Type Catatogue I
Adaptability

/~
DetectabilityOfChange

(b) An NFR type catalogue

Modifiability

ResuUant SIG

o
Adaptability

[ClaimsProcessingj

DetectabilityOfChange
[ClaimsProcessingj

Modifiability
[ClaimsProcessingj

(c) Applying the subtype method to insurance claims, using the adaptability type catalogue

Figure 4.11. The SubType method, applied to adaptability of insurance claims process

ing.

the same topic as the parent. In addition, the subtypes of the parent's type are
used as the types of the offspring. This method is parameterized on both type
and topic. It is applied to performance of accounts. The offspring deal with
time performance and space performance of accounts.

This method can be summarized as:

ty If to] AND ... AND tyn [to]

SATISFICE ty[to]

104 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Subtype2
(topic)

Subtype method

Method Definition, Parameterized on NFR Type

Subtype2
[Account]

Account Quality Via Subtype method

Method Definition, Unparameterized

TimePerformance
[Account)

SpacePerformance
[Account)

Account Performance Via Subtype method

Figure 4.12. The SubType type decomposition methods, with varying degrees of param

eterization.

Here, ty is a NFR type, and each tYi is a sub-type of ty. One offspring is set
up for each subtype of ty.

Now, this method can be applied not only to Security[Account] and Per
formance[Account], but also Security[Customer), Security[Address], Performance
[Customer], Performance[Address), etc. This method is quite domain
independent, and as such it can be used in many contexts: systems for banking,
credit card, insurance, health, military, etc.

To illustrate this domain independence, consider another application of
the method, to the insurance domain. In Figure 4.11 the method is applied to

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 105

an adaptability softgoal for claims processing, Adaptability[C1aimsProcessing].
Note that this figure has the same method definition as Figure 4.10, but ap
plies the method to a different type and a different topic. l\ow the type Adapt
ability has two subtypes DetectabilityOfChange and Modifiability. The figure
illustrates the application of the SubType method to the adaptability softgoal.
This results in the generation of DetectabilityOfChange[C1aimsProcessing] and
Modifiability[C1aimsProcessing] as offspring.

Figure 4.12 shows a family of SubType methods. The three type decom
position methods have an increasing degree of parameterization. The bottom
layer shows the unparameterized AccountPerformanceViaSubType method. The
middle layer shows AccountQualityViaSubType parameterized on type. The top
layer shows the SubType method, parameterized on both type and topic.

It is also possible to have parameterization on topic only. This will be
shown next.

Decomposition on Softgoal Topic

Topic decomposition methods relate and refine topics of softgoals.
Like type decomposition methods, topic decomposition methods are spe

cializations of decomposition methods which are in turn specializations ofmeth
ods. As such, topic decomposition methods inherit all the benefits of decom
position methods and methods in general.

A topic of a softgoal can refer to a collection of items, such as informa
tion, processes, functions, events, interfaces, time, monetary amount, etc. Used
for describing functional aspects of the system, these items are usually orga
nized along structural modelling primitives of functional requirements, system
and software architectures, or process architectures. Such primitives include
classes, super-classes and sub-classes, attributes, views, contexts, perspectives,
programs, packages and components, etc.

Whatever a topic may refer to, it can be decomposed along a structural
dimension. For instance, the StaffingAndAmountForOperatingCostViaSubclas
sAndDollarLimit method shown in Figure 4.6 is a topic decomposition method
which decomposes topics [Staffing, Under $100 000] into [FuIlTimeEmployee, Un
der $100 000] and [PartTimeEmployee, Under $50000]. In ol;her words, a general
limit of $100000 for staffing is also used for full-time employees, but specialized
to a limit of $50 000 for part-time employees.

Recall the varying degrees of type parameterization in Figure 4.12, where
the SubType method is more generic than the AccountQualityViaSubType method,
which in turn is more generic than the AccountPerformanceViaSubType method.

Similarly, topic decomposition methods can have varying degrees of pa
rameterization. For example, the AccountResponseTimeViaSubclass and more
generic ResponseTimeViaSubclass methods of Section 4.2 are also topic decom
position methods which decompose the topic of a response-time softgoal in
terms of subclasses of the topic of the softgoal. We can define an even more
generic method which can be applied to virtually any softgoal, because it has
variables for both the type and topics. The Subclass method of Figure 4.13 de-

106 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFRType
[subclass2]

(a) Method definition

Account

~~
RegularAccount

(b) An account subclass hierarchy

Method Application

GoldAccount

Initial SIG

o
Space
[Account]

Resultant SIG

Space
[RegularAccountJ

Space
[GoldAccount]

(c) Applying the subclass method to the accounl subclass hierarchy, for space requirements

Figure 4.13. The Subclass method, applied to space performance of accounts.

composes any softgoal with a class as the topic into softgoals having as topics
the immediate subclasses (specializations) of the class.

Note that the type of the parent is copied down to the offspring; only the
topics of the offspring differ from those of the parent. In the figure, we apply
the generic method to deal with space requirements for accounts. We use the
account subclass hierarchy from the functional requirements to determine the
offspring topics, RegularAccount and GoldAccount.

NFR DecompositionMethod Subclass

parent: ty [to]
offspring: {ty [tal], ty [t02],

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 107

contribution: AND
applicabilityCondition: ty: NFR Type

to: Information Item

constraint: forAIi i: tOi isA to

and /* set up one offspring for every subclass of to */

NFRType
[subclass2)

(a) Method definition

Package

~~
Component Componentlnterface

(b) A package subclass hierarchy

o
Modifiability

[Package]

Resullant SIG

Modifiability
[Component]

Modifiability
[Package]

----0
Modifiability

[Componentlnterface]

(c) Applying the subclass method to the package subclasses, for modifiability requirements

Figure 4.14. The Subclass method, applied to modifiability of packages.

Importantly, the type and the topics of the parent are not limited to
Space and Accounts. Instead the method can be invoked for any meaningful
type and topics. For example, Figure 4.14 shows how the method can be
applied to a modifiability softgoal for software packages. It uses the same
method definition as Figure 4.13, but applies it to a different type and topic.

108 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFRType
[subclass2j

Subclass method

Method Definition, Parameterized on Topic

Accuracy
[subclass2j

Accuracy Via Subclass method

Method Definition, Unparameterized

Accuracy
[RegularAccount]

Account Accuracy Via Subclass method

Accuracy
[GoldAccountj

Figure 4.15. The Subclass topic decomposition methods, with varying degrees of param
eterization.

Figure 4.15 shows a family of Subclass methods. The three topic de
composition methods have an increasing degree of parameterization. At the
top layer is the very generic Subclass method, which is parameterized on both
type and topic. This is specialized in the middle layer by fixing the type as
Accuracy to produce the AccuracyViaSubclass method, which is parameterized
on topic. In turn, this is specialized by fixing the topic as Account to produce
the unparameterized AccountAccuracyViaSubclass method at the bottom layer.

Another example of a fairly generic topic decomposition method is the
Attribute method, shown in Figure 4.16. This draws on data models having

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 109

NFRType
[attribute2j

(a) Method definition

GoldAccount

t name

balance

highSpending

(b) Attributes of the gold account class in the functional requirements

Initial SIG

o
ResponseTime
[GoldAccountl

Resultant SIG

o
ResponseTime

. [GoldAccount.highSpendingj
ResponseTlme
[GoldAccount.balancej

(c) Using the attributes in a method application

Figure 4.16. The Attribute decomposition method and one of its applications.

classes with attributes. This method takes a parent of any type, with a class
as topic, and generates a set of offspring, each having as its topic one of the
attributes of the parent topic. The figure shows how to accomplish this by an
application of the method to response time for gold accounts.

Gold card accounts have an attribute highSpending, in addition to name
and address which GoldAccount inherits from RegularAccount. In the functional
requirements in Figure 4.16, attributes are shown underneath and to the right
of their class. Attributes of a class can also be written using a dot notation in
the form class. attribute, e.g., GoldAccount.balance.

110 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

The Attribute method can be applied to any softgoal having any type and
any topic, provided the topic has attributes. For example, the method could
be applied to softgoals such as Flexibility[Userinterface], Space[RegularAccount],
Accuracy[GoldAccount] or OperatingCost[Staffing, Under $100 000]. Applying
the Attribute method to Accuracy[GoldAccount] would require that aJJ attributes
of gold accounts be maintained accurately, in order for Accuracy[GoldAccount]
to be satisficed.

SIG

Via Subclass

ResponseTime
[RegularAccountj

Via Attributes

ResponseTime
[GoldAccount.name]

ResponseTime
[Account)

ResponseTime
[GoldAccount.balanceJ

ResponseTime
[GoldAccount.highSpending)

Figure 4.17. A Softgoal Interdependency Graph with two method applications.

Figure 4.17 iJJustrates how the developer could use two decomposition
methods, first the subclass method, foJJowed by the attribute method, to refine
the top-level softgoal ResponseTime[Account]. In SIGs, method names (possibly
abbreviated) are in italics and underlined.

In using a method, whether decomposing on type or topic, it should be
noted that there may be more than one decomposition possible. For example,
if the Subclass method is applied to a softgoal whose topic involve students, the
result could be two subgoals involving graduate and undergraduate students,
or it could be two subgoals involving fuJJ-time and part-time students. Multiple
decompositions are also possible for SubType, Subset and other methods. In
such cases, developers would have to choose what is suitable, using domain
information and their expertise.

We have described NFR decomposition methods, which decompose NFR
softgoals into other NFR softgoals. The same basic mechanisms are also used for
operationalization decomposition methods (which refine operationalizing soft
goals to operationalizing softgoals) and argumentation decomposition methods
(which refine claim softgoals to claim softgoals). However, the meaning of the

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 111

methods will differ, reflecting the different kinds of softgoals that are decom
posed.

4.3 OPERATIONALIZATION METHODS

In due course the developer will have satisfactorily refined the initial non
functional requirements in terms of more detailed ones, using a catalogue of
methods, and the developer's expertise and own methods.

Method Catalogue I
Operationalization Methods

Gene~ r ~veloperDefined
NFR-Specific

~\~
Accuracy
Operationalization
Methods

Figure 4.18.

Security Performance
Operationalization Operationalization
Methods Methods

A catalogue of operationalization methods.

The developer can now move on to trying to satisfice the NFR softgoals.
As with decomposition methods, the know-how for satisficing non-functional
requirements can also be captured and encoded as methods, and compiled into
a catalogue. This way, the time and effort to search for relevant know-how can
be reduced, and a catalogue of such know-how is made widely available and
reusable.

Figure 4.18 shows a catalogue of operationalization methods. More gen
eral methods are shown above more specific ones. As with NFR decomposition
methods (Figure 4.2), operationalization methods include generic, developer
defined, and NFR-specific methods. Operationalization methods for specific
NFRs will be presented in Part II.

Operationalization methods refine softgoals into operationalizing soft
goals. Operationalizations are candidates for representing entities, activities
and constraints. They represent possible design or implementation compo
nents.

One group of operationalization methods refines NFR softgoals into oper
ationalizing softgoals. Another group, operationalization decomposition meth
ods, decompose operationalizing softgoals into more specific operationalizing
softgoals. This later kind of method is helpful because operationalizing soft-

112 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

goals can be coarse-grained and there can be more than one way to realize them
in the target.

Thus, operationalization methods take either an NFR softgoal or an
operationalizing softgoal, and generate one or more operationalizing softgoals.
We now discuss these two kinds of operationalization methods.

Operationalization of NFR Softgoals

Method Definition, Parameterized on Topic I
ResponseTime

[topic)

PerformFirst
[topic]

(a) Method definition

Method Appli<:ation I
1nitiol SIG I

o
ResponseTime
[GoldAccount.highSpendingJ

(b) A method appLication

I ResuIJant SIG I
ResponseTime
[GoldAccounl.highSpendingj

PerformFirst
[GoldAccounl.highSpendingj

Figure 4.19. The Perform First method, applied to an operation on an attribute.

Returning to our credit card example, we started with NFRs for accuracy and
performance of accounts. After decomposition, we have some specific NFR
softgoals, such as ones for the accuracy and response time for the highSpending
attribute of gold accounts. We now want to operationalize these NFR softgoals.

Let's consider the NFR softgoal ResponseTime[GoldAccount.highSpendingJ.
One method of providing good response time is to order operations so that op
erations relating to high spending are performed first. This operationalization
method is shown in Figure 4.19. The operationalizing softgoal is Perform
First[GoldAccount.highSpendingJ. It HELPS satisfice the response time softgoal.
Note that the type of an operationalizing softgoal is not an NFR type, such
as Accuracy or Performance. Instead, it represents a development technique
used in the target design or implementation to help achieve NFRs. Here the

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 113

Method Definition, Parameterized on Topic I
Space

[Information]

CompressedFormat
[Information)

(a) Method definition

Method Application I
Initiat SIG I

o
Space

[GoldAccount.name]

(b) A method application

I ResulJant SlG I
Space

[GoldAccount.name]

CompressedFormat
[GoldAccount.name]

Figure 4.20. The Compressed Format operationalization method and an application.

operationalization type is Perform First. Often the type of the operationalizing
softgoal is used to name the operationalization method.

The method application can be summarized by stating the contribution
of the operationalizing softgoal (the offspring) to the NFR softgoal (the parent):

Perform First[GoldAccount. highSpending) HELPS

ResponseTime[GoldAccount.highSpending)

Similarly, the method definition can be summarized:

Perform First[topic) HELPS ResponseTi mer topic)

Here topic is a parameter, shown in sans serif italics. Where there is no am
biguity, softgoal topics may be omitted, to provide a briefer summary of the
method:

Perform First HELPS ResponseTime

In this example, we have not specified a particular operation to be per
formed on the highSpending attribute, and to be performed first. This can also

114 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Definition, Parameterized on Topic I

~
Accuracy

[Information]

SOME+

Audit
[Information]

(a) Method definition

Method Application I
Initial SlG I Resultant SIG I

0 ~ A~"ffi'Y[GoldAccounl.highSpending]
Accuracy
[GoldAccounl.highSpending] SOME+

Audit
[GoldAccounl.highSpendingj

(b) A melhod application

Figure 4.21. The Auditing method and one of its applications.

be done by specifying information in the topics of softgoals. For example:

PerformFirst[retrieve(GoldAccount.highSpending)] HELPS

ResponseTime[retrieve(GoldAccount. highSpend ing)]

Let's consider how we could help meet a requirement for good space
performance for the accountholder's name. To help reduce the space usage, we
can use a compressed format for storing the name. This is shown in Figure 4.20.
While Compressed Format HELPS Space, it will also hurt response time, because
the information will have to be uncompressed before being used. We will deal
with this kind of tradeoff later.

Continuing with our example, let's consider the accuracy of informa
tion about various high spending in gold card accounts, i.e., Accuracy [GoldAc

count.highSpending]. Periodic auditing of those databases will make some posi
tive contribution to ensuring the accuracy of this information, if the high spend
ing record of each gold account is obtained from existing databases. This knowl
edge can be encoded as an operationalization method, shown in Figure 4.21 and
summarized as Audit SOME+ Accuracy.

Given an accuracy softgoal, the Audit method will generate one offspring
softgoal whose topic is identical with the parent's topic. The offspring's type is

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 115

Method Definition, Parameterized on Topic I

~
Accuracy

[Information]

SOME+

Validation
[Information)

(a) Method definition

Method Application I
Initiot SIG I

o
Accuracy

[GoldAccount.highSpendingJ

(b) A method application

I Resultant SIG I

~
Accuracy

[GoldAccount.highSpending)

SOME+

Validation
[GoldAccount.highSpending]

Figure 4.22. The Validation method and one of its applications.

Audit. The contribution type is SOME+ which either HELPS or MAKES the
parent.

There are some restrictions for this method. As an C1pplicabilityCondition,
the topic must be an information item. As a constraint, the topic must be in
the database.

If, on the other hand, information about various high spending reports
are fed directly by an employee of the credit card organization in question, a
method may call for the validation of the information by the employee's man
ager. Figure 4.22 shows the definition of this method and one of its applications.
Validation gives some positive contribution to Accuracy.

Later, the developer may change the contribution types. For instance,
the contribution of Validation is changed from SOME+ to MAKES in Fig
ure 4.25, when the design has proceeded further and it can be determined that
validation indeed leads to more accurate high spending data.

As a result of applying the Audit and Validation operationalization meth
ods, each operationalization would give some positive contribution to Accuracy
[GoldAccount.highSpending].

Clearly, selection of one of the two alternatives leads to very different
kinds of user interfaces for the system under development. In particular, if
validation is selected, all high spending information will have to be confirmed

116 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

by another person, while auditing calls for the inclusion of an audit requirement
on the database from which high spending data are imported.

Decomposition of Operationalizing Softgoals

Method Definition, Parameterized on Topic I

~
Validation

[/nforma/ion]

SOME+

ValidationBy
[Information,
Agen~

(a) Method defini/ion

Method Application [

Initial SIG I Resultant SIG I

0 ~ V.,ld••oo[GoldAccount.highSpending]

Validation
[GoldAccount. highSpendingj SOME+

ValidationBy
[GoldAccount.highSpending,
Senior Secretary)

(b) A method application

Figure 4.23. Refining an operationalizing softgoal and adding a topic.

Let's turn to operationalization decompositions, which refine operationalizing
softgoals into other operationalizing softgoals. This kind of refinement can be
used to add detail, to focus on a particular aspect, or to disambiguate notions.
This kind of method can refine the type or topic of an operationalizing softgoal.

In our example, we continue considering validation of high spending for
gold accounts. So far, the validation task has not been assigned to appropriate
people. This is done by using the Validation By method (Figure 4.23). This
method is a kind of topic refinement. It adds a second topic to the softgoal,
which indicates who will do the validation. (The name of the type is slightly
changed from Validation to Validation By to indicate that the later uses a val
idator.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 117

Method Definition, Parameterized on Topic

Identification
[Information]

(a) Method definition

Authorization
[Information)

AccessRuleValidation
Authentication [Information)
[Information]

o
Authorization
(Account)

(b) Method application

ResutJant SIG

Identification
[Account)

Authorization
[Account]

o
AccessRuleValidation

Authentication [Account]
(Account]

Figure 4.24. Applying the AuthorizationViaSubType method to accounts, resulting in
several offspring of an operationalizing softgoal.

The method can be summarized as:

ValidationBy[Information, Agent] SOME+ Validation [Information]

It can a)so be defined in a frame-like notation:

Operationalization Method Validation By

parent: Validation[I]

offspring: ValidationBy[i', Agent]
contribution: HELP
applicabilityCondition: i subsetOf i'
constraint: /* Developer specifies Agent */

The constraint has the developer specify a particular agent, such as a senior
secretary, to perform the validation. Note that this is an example of the de
veloper's involvement in generating offspring softgoals even after a method has
been selected. Before proceeding to other refinements, the developer could
consult domain experts to assign an appropriate agent.

118 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Operationalization decomposition methods can also refine the type of an
operationalizing softgoaI. Figure 4.24 shows the refinement of an Authorization
operationalizing softgoal into more specific aspects of authorization. Here the
types of the offspring are different from each other and from the parent. The
types of the offspring are taken from a type catalogue. All three operational
izations must be done in order to satisfice Authorization.

SIG

Accuracy
[GoldAccount.balance)

Accuracy
[GoldAccount.highSpending)

, Accuracy
• [GoldAccount.highSpending)

{critical}

Via Subclass

Via A/tribute

ValidationBy
[GoldAccount.highSpendin
Senior secretary]

AvailableAgent
[Senior secretary]

AvailablePolicy Availablelnfo
[policy-on-spending-patlems) [GoldAccount.highSpendingJ

ResponseTime
[RegularAccountJ

SOME+

Prioritization

AUditing
[GoldAccount.highSpending)

ResponseTime
[GoldAccount.balance)

ResponseTime
[GoldAccount.highSpending]

PerformFirst
[GoldAccount.highSpending]

, ResponseTime
• [GoldAccount.highSpendingJ

{critical}

++

Figure 4.25. A Softgoal Interdependency Graph with applications of various decomposi

tion and operationalization methods.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 119

As another example, the bottom of Figure 4.25 shows the application
of the Availability method to ValidationBy[GoldAccount. highSpending. SeniorSec
retary]. To perform the validation, three resources should be available: in
formation about the topic, a policy which states predetermined standards on
permissible values of the topic, and an agent to perform the task.

Figure 4.25 illustrates a softgoal interdependency graph that could be
generated by applying some of the operationalization methods we have pre
sented. Method names are shown in SIGs in underlined italics. However,
method names are omitted when they are similar to the type of the offspring
operationalizing softgoal.

Note also that the developer has changed the contribution of Validation
from SOME+ to MAKES. Here, the developer feels that validation will suitably
ensure accuracy. This decision could be made, for example, on the basis of the
information which should be accurate, and the needs and characteristics of the
particular domain for which the system is being built. This is an example of
developers stepping in and using their expertise and knowledge of the domain.

In the current example, only one of auditing and validation is likely to
be adopted for the satisficing of Accuracy[GoldAccount.highSpending]. However,
there can be a large number of operationalization methods that are applicable
to a non-functional requirement, all at the same time. If so, it is up to the
developer to examine what impact such methods have on other types of non
functional requirements (e.g., cost and usability) and decide on what and how
many operationalizing methods to apply.

4.4 ARGUMENTATION METHODS AND TEMPLATES

Method Calalogue I

Argumentation Methods

FR-eonsultati~ ~rkloadconsultatlon
PolicyManualConsultatlon Prioritization

/"Criticality Dominance

Legend I
FR = Functional Requirements

Figure 4.26. A catalogue of argumentation methods.

120 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Claims are used to incorporate domain characteristics into the decision-making
process. This includes information about the organization which will use the
system, such as organizational priorities (e.g., "we value confidentiality and
speed"), and organizational workload (e.g., the number of credit card trans
actions per day). It also includes information about the functionality of the
system. Claims also incorporate developers' expertise, including knowledge of
the domain, particular NFRs, and particular development techniques. Claims
help justify a variety of design decisions, including the way the initial NFR
softgoals are elaborated, prioritized, and satisficed.

Argumentation methods refine a softgoal into a claim softgoal. They
frequently also refine an interdependency into a claim softgoal. Whether the
parent is a softgoal or interdependency, argumentation methods are used to
indicate evidence, or counter-evidence, for the satisficing of a parent.

As with NFR refinement methods and operationalization methods, we
can catalogue know-how in argumentation methods. Once catalogued, such
know-how for making and justifying design decisions can be made available for
re-use.

Figure 4.26 shows a catalogue of general kinds of argumentation methods.
Several of them involve consulting other documents, which can be used as a
reference source for claims that are made. For example, claims referring to the
functionality of the system can involve consultation of the functional require
ments. Workload-based claims can also be made, by consulting appropriate
information. Claims referring to how users will use the system can involve con
sultation of operations policy manuals. Finally, argumentation is frequently
used for prioritization, which we will discuss shortly.

Because argumentation often draws on domain information, it is not
always possible to provide complete argumentation method definitions which
capture domain details. Therefore, we use claim templates to provide outlines
of argumentation methods. However, the developer must provide some details
for the offspring. Unlike complete method definitions, these details cannot
be determined automatically, by examining the parent and the template (or
definition) and then using syntactic substitution.

Argumentation methods and templates help the developer construct an
argumentative structure as part of a softgoal interdependency graph. Argu
ments are applied to softgoals and contributions. In an argumentative struc
ture, an argument can offer positive or negative support for a particular softgoal
or interdependency. In turn, an argument can be supported or denied by other
softgoals or interdependencies. This kind of power to organize design rationale
stems from the ability of interdependencies to interrelate softgoals and inter
dependencies. This allows nested and complex interrelationships to be stated.

The simplest case of argumentation is where a claim is associated with
a softgoal. For example, PerformFirst[GoldAccount.highSpending] is an opera
tionalization for a priority NFR, providing good response time for the high
Spending attribute. By examining domain information and implementation
techniques, the developer could argue that Perform First

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 121

Claim Template I

("":~~++
Clai~'-~/
[argumen~

Validation
[Informalion]

ValidationBy
[Information,
Agen~

(a) A template for claims about validation by agents

Template Usage I
Initial SIG I

~
alidation

+ [GoldAccount.highSpendingj

ValidationBy
[GoldAccount.highSpending,
Senior Secretary]

(b) Usage of the template

I Resultant SIG I

~
validation

[GoldAccount.highSpending]

,~ ..~",-, + +
~) +

Claim"
['Validated by ValidationBy . .
appropriate [GoldAccount.hlghSpendlng,
secretary'] Senior Secretary]

Figure 4.27. A template for claims about validation.

[GoldAccount.highSpending] is suitable because there is an implementation which
allows priority arguments to be performed first. This claim provides a MAKES
contribution to PerformFirst[GoldAccount.highSpending], because if the rationale
of the claim is true, the operationalization will be suitable. This is shown at
the left of Figure 4.28, later in this section.

More complex cases of argumentation associate a claim with an inter
dependency link. Let's consider the rationale for assigning a particular kind of
employee to validating high spending in gold accounts. The developer assigned
senior secretaries to this task. Now this is justified by claiming that validation
should be performed by employees with appropriate senioril;y (Figure 4.27).

This is done by refining a parent interdependency to an offspring. Here
the parent is the interdependency between ValidationBy
[GoldAccount.highSpending, SeniorSecretary] and Validation
[GoldAccount.highSpending]. This interdependency can be summarized as:

Validation By[GoldAccount.highSpending, Sen iorSecretary]

HELPS Validation[GoldAccount.highSpending]

Here again, the developer has changed the contribution. Here, SOME+ in the
definition of the ValidationBy method is changed to HELPS here.

122 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

,
\'

Clai~
["Priority actions can
be perfonned first"]

Claim
["Policy of rigorous
examinations of
high spending")

... ,'...

Availablelnfo
[GoldAccount.highSpending]

/.,._.....; Claim
IE----:; . ["Validated by

"'1'" .' appropriate
..".+.+ secretary")

, Accuracy
• [GoldAccount.highSpending]

{critical}

ValidationBy
[GoldAccount.highSpendin
Senior secretary]

AvaiiableAgent
[Senior secretary)

AvailablePolicy
[policy-on-spending-pattems)

SOME+

PerformFirst
[GoldAccount,highSpending]

Auditing
[GoldAccount.highSpending)

, ResponseTime
• [GoldAccount.highSpending)

{critical}

++

+

Figure 4.28. Claims about operationalization methods.

The offspring is C1aim["Validated by appropriate secretary"]. This pro
vides a MAKES contribution to the parent interdependency. This means
that if the claim is substantiated, it will justify making the refinement from
Validation[GoldAccount.highSpending) to Validation By
[GoldAccount.highSpending. SeniorSecretary). This can be written as:

Claim

MAKES

["Validated by appropriate secretary"]

ValidationBy[GoldAccount.highSpending, SeniorSecretary]

HELPS Validation[GoldAccount.highSpending])

This template can also be written in the frame-like notation:

Argu mentationTemplate ValidatorAssignmenUustification

parent: ValidationBy[Information, Agent] HELPS
Va lidation [Information]

offspring: C1aim[argument]
contribution: MAKES
applicabilityCondition: Information: Informationltem
constraint: /* argument is about the seniority of the Agent

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 123

performing validation of Information */

Note that the parent is an interdependency. Also note that this is a template,
not a full method, because the developer must provide the details of the argu
ment.

This claim about who does validation can in turn be supported by ar
gumentation. A company policy of carefully examining high spending is used
to support the claim about validation being done by an appropriate secretary.
This is an example of a claim supporting another claim. This argumentation
decomposition is shown at the right side of Figure 4.28, which illustrates some
of the argumentation used in this section.

Prioritization

CkIim Template I
NFRType

[topic)

! NFRType
[topic) {priority}

(a) A template for claims about prioritization ofgoals

Template Usage I
Initial SIG I I Resultant SIG I

O ResponseTime
[GoldAccount.highSpending]

(b) Usage oflhe lemplate

~
ResponseTime
[GoldAccount.highSpending)

,-.~" ..-, + +
t I,
".. \.'Claim ...-..-,. + +

["One of the vital few: !ResponseTime
high spending in \GOldAccount.highSpending)
gold accounts"] cntlcal}

Figure 4.29. A template for the Vital Few argumentation method for prioritization, and
an example of its usage in a claim.

An argumentation method can be used to capture generic knowledge about
setting priorities among alternatives. One such prioritization method, is the Vi
tal FewTrivialMany method. This argumentation method allows for putting more
emphasis on important softgoals (the "vital few") during refinement, conflict
resolution, and selection among competing alternatives.

124 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Figure 4.29 shows a template for the Vital Few argumentation method,
which is used to identify a softgoal as a priority softgoal. It also shows a sam
ple usage of the template. We start with a parent softgoal, such as Response
Time[GoldAccount.highSpending]' and produce an offspring with the same type
and topic, but identified as a priority using an exclamation mark. Since satis
ficing the priority offspring will satisfice the parent, they are inter-related by a
MAKES contribution. For example,

!ResponseTime[GoldAccount.highSpending] MAKES

ResponseTime[GoldAccount. highSpending]

To justify this decomposition, a claim is made. For example, the claim
could explain why high spending in gold accounts is a priority item. The claim
provides a MAKES contribution to the interdependency between the parent
and offspring softgoals. This means that if the claim is satisficed, then the
interdependency link (here, from IResponseTime[GoldAccount.highSpending] to
ResponseTi me[GoldAccou nt. highSpen di ng]) itself becomes satisficed. In this way,
claims can support softgoal refinements.

Note that in using the template, we can in part use automatic substitu
tion: the type and topic of the parent given the type and topic of the offspring;
this is like the substitution used in methods. However, the details of the ar
gument of the Claim are not given by the template. Instead, they must be
provided by the developer, using domain information or other expertise.

The result of all this is that the developer will give higher priority to
IResponseTime[GoldAccount.highSpending]. Other softgoals will not receive such
treatment. There is also a TrivialMany method which indicates that a softgoal
is not a priority. These prioritization methods are used throughout this book.

Let's look at prioritization in more detail, especially when parts of an
AND decomposition are prioritized. When priority offspring have been satis
ficed, but the non-priorities are denied, we may want to consider the parent to
be satisficed. To do so, we present mechanisms which in effect modify AND
contributions.

Consider the "Initial SIG" of Figure 4.30. We have refined an NFR
softgoal for response time of accounts into two offspring, one for gold accounts,
the other for regular accounts. The offspring make an AND contribution to
the parent. Suppose that the gold account softgoal can be satisficed, and is a
priority. On the other hand, the regular account softgoal is not a priority, and
can't be satisficed. In cases where we have met the priorities, we may want to
consider the overall requirement met [Juran64] [C. Smith86].

We need to deal with a technical problem. Using the evaluation rules for
AND contributions (Figure 3.16), if ResponseTime[RegularAccount] is denied,
the parent ResponseTime[Account] will always be denied.

To avoid this, we apply a prioritization method to each offspring. On
the left sides of the "Claim Template" and the "Resultant SIG" of Figure 4.30,
we apply the Vital Few method to the priority offspring, and provide an ap
propriate claim. As a result, we have a priority offspring, e.g., IResponseTime

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 125

Claim Template

Claim
[atgumentl)

, NFRTypel
• (topic 1/(Priority)

Claim
[atgumenl2)

NFRType2
(topic2) (nonPriority)

(a) A lemplatefor prioritization claims

ResponseTime
[GoldAccount]

ResponseTime
[RegularAccountj

Resultant SIG

, ResponseTime
• [GoldAccount) {critical}

ResponseTime
[FlegularAccount) (nonCritical)

(b) Usage of the template

Figure 4.30. A template for claims about prioritization.

[GoldAccount]{critical}. As before, the priority softgoal MAKES its parent, and
the claim MAKES the interdependency, which goes from the priority softgoal
to its parent. The result of satisficing the claim is to justify the refinement
from the NFR softgoal to the prioritized one.

On the right side, we apply the TrivialMany method. An offspring is gen
erated which is identified as being a non-priority. In the example, we produce
ResponseTime[RegularAccount]{nonCritical}. In addition, a claim is provided to
explain why the softgoal is not a priority. In the example, we argue that regular

126 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Claim Template

Claim
[argument1)

'NFR Typel
• [topic1J(Priority)

NFR Type2
[topic2] (nonPriority)

(a) A lemplale for prioritization claims

ResponseTime
(GoldAccount]

ResponseTime
[RegularAccount)

, ResponseTime
• [GoldAccauntJ (critical}

ResponseTime
[RegularAccount} (nonCritical}

(b) Usage of the template

Figure 4.31. Another template for claims about prioritization.

accounts are not critical. Unlike the Vital Few method, the claim BREAKS the
interdependency, which has a contribution from the non-priority softgoal to its
parent. The result of denying the claim is to deny the interdependency. This is
indicated by a small "x" on the right interdependency link. As a result, the off
spring, here ResponseTime[RegularAccount]{ nonCritical}, makes no contribution
to the parent. Interestingly, this is true regardless of value of the offspring; here
it is denied, as would often be the case for non-priorities. Importantly, the par
ent, here ResponseTime[RegularAccount], does not make any contribution to its

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 127

parent, here ResponseTime[Account]. As a result, the satisficing of the overall
softgoal, here ResponseTime[Account], will depend only on its other offspring.
If that other offspring is satisficed (and here ResponseTime[GoldAccount] is),
then the overall softgoal will also be satisficed.

This is consistent with the principle that satisficing the priorities may
be enough to satisfice the overall requirement. This template for prioritization
among AND offspring will be frequently used in this book.

Template

Initial SIG

Figure 4.32. Modifying the offspring labels of an AND interdependency.

Figure 4.31 provides another template for prioritization of AND off
spring. It obtains the same net effect as Figure 4.30, but accomplishes it in a
slightly different way. The Vital Few prioritization on the left works exactly the
same way as in the previous figure. However, the claim for the "trivial many"
case is the opposite of the previous figure. Instead of satisficing a claim that
the right offspring is not critical, we deny a claim that it is critical. In the
"Claim Template" of Figure 4.31, argument2' does not hold; it is the opposite
of argument2 of Figure 4.30. In the example, regular accounts are still not
critical. In Figure 4.31, we make the opposite claim, i.e., "Regular accounts are
critical" and then immediately deny the claim (indicated by "x" in the claim
softgoal on the right). This claim MAKES the interdependency (which runs
from the non-priority softgoal to its parent). The result of denying the claim,
and its MAKES contribution to the interdependency, is exactly the same as in
Figure 4.30: the interdependency is denied, and we proceed as before.

The developer can use similar techniques to obtain flexibility to adjust
labels and contribution values to deal with particular situa.tions. This can be
done, for example, to strengthen or weaken particular values. This can also
be useful when combining values. We describe some templates to achieve this
kind of flexibility.

In Figure 4.32, for example, we start with an AND interdependency. The
developer may wish to adjust label values coming into the offspring. This can

128 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Template

Initial SIG Resultant S/G

Figure 4.33. Modifying the parent label of an AND interdependency.

be done by giving each offspring its own offspring, each connected by HELPS
contributions. With this contribution type, the effect is to weaken inputs. Here
a satisficed offspring-of-an-offspring results in a weak positive (W+) offspring.
Similarly, a denied offspring-of-an-offspring results in a weak negative (W-)
offspring. Other effects can be achieved using other contribution types. The
overall effect is to allow "inputs" to AND interdependencies to be adjusted. We
say this two-step interdependency has the HELPS_AND combined contribution.

Likewise the "output" of an AND interdependency can be adjusted. In
Figure 4.33, the parent of the AND interdependency is given a parent. Here
it is given a HELPS contribution, which generally weakens the values. We say
that this two-step interdependency has the ANDJIELPS contribution type.
Again, other contribution types will have different effects.

These types of adjustments can be useful, for example, when the devel
oper does not have full confidence in the use of a method, or in the satisficing
of offspring softgoals. In such cases it might be helpful to weaken output or
input values.

Figure 4.34 shows a SIG with some examples of the argumentation we
have been discussing. Note that the claim about high spending is used to
prioritize two NFR softgoals, involving ResponseTime and Accuracy. The figure
is an extension of Figure 4.25, which shows the usage of operationalization
methods.

In SIGs, if the contribution of a claim is not indicated, it is MAKES by
default. For other interdependencies, the default contribution is HELPS.

We have discussed prioritization of NFR softgoals. However, it is also
possible to prioritize operationalizing softgoals and claim softgoals. Prioritiza
tion of operationalizing softgoals helps a developer indicate that some are more
important than others, and should be given more attention than low-priority

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 129

SlG

, ResponseTime
• [GoldAccount.highSpending]

{critical}

Claim
["Policy of rigorous
examinations of
high spending")

.,."V'., Claim
. ["Validated byt ::r.~".,~i

.'
't....... i ••.

Availablelnfo
[GoldAccount.highSpending]

-0
Accuracy

[GoldAccount.balancel
Accuracy
[GoldAccount.highSpending)

, Accuracy
• \GOldAccount. highSpending)

critical}

Via Attributes

Via Subclasses

ValidationBy
[GoldAccount.highSpendin
Senior secretary]

AvaiiableAgent
[Senior secretary]

AvaiiablePolicy
[policy-on-spending-pattems]

ResponseTime
[RegularAccount]

SOME+

Auditing
[GoldAccount. highSpending)

Claim
["one of vital few: Prioritization
high spending
in gold accounts"]

PerforrnFirst
[GoldAccount.highSpendingj

++

ResponseTime
[GoldAccount.balance)

ResponseTime
[GoldAccount.highSpending)

IE--------:.+...;+---t + +

cia-1m
("Priority actions can
be performed first")

... ","

.'

Figure 4.34. A SIG with operationalization and argumentation methods.

ones. Similarly, prioritization of claim softgoals can be used to indicate that
some evidence is considered more important than others.

4.5 CORRELATIONS

The non-functional requirements set down for a particular system may be in
conflict or in harmony with each other. For instance, "faster'" (production time)

130 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

may be in conflict with "cheaper" (cost), if it involves hiring more software
engineers. On the other hand, "better" (software) may be harmonious with
"faster," if "better" (software) significantly reduces the time needed for testing
and correction of defects.

In dealing with non-functional requirements in software engineering, it is
important to address this kind of conflict and harmony. This helps us deal with
tradeoffs as well as synergy (mutual helpfulness) during system development.

However, we have to detect conflict and harmony. To do so, we introduce
an additional mechanism. The reason is that for a given set of softgoals, there
can be more interdependencies than those that have already been explicitly
stated, e.g., via usage of methods.

In the NFR Framework, conflict is represented by negative correlations
and harmony is represented by positive correlations.

During the process of software development, interactions between soft
goals are discovered and noted in a softgoal interdependency graph. Such dis
coveries can be made "on-the-fly" or with the assistance of correlation rules.

Just like methods, correlations allow for capturing knowledge about
generic interactions between softgoals, for encoding such knowledge, and for
compiling it into a catalogue. Initially collected from the literature and indus
try experience, correlation rules then can easily be shared, extended, tailored,
and reused.

Unlike methods, however, correlations are not usually selected and ap
plied explicitly by the developer during the development process. Instead, they
are usually detected implicitly. They typically arise from changes in SIGs, such
as the addition of a softgoal. These changes can be thought of as "triggering"
a correlation.

Thus an interdependency generated as the result of a method application
is termed an explicit interdependency. On the other hand, an interdependency
contribution inferred from a correlation rule is termed an implicit interdepen
dency.

Correlations can be detected either by hand, or with the aid of a tool. In
either case, this detection is done by comparing portions of a SIG to patterns in
a catalogue of correlations. It is then up to the developer to decide whether to
incorporate the detected interdependencies into the softgoal interdependency
graph.

Detecting negative correlations can be viewed as revealing the (hidden)
tradeoff of a development technique - it can be good for one softgoal but at
the same time bad for another.

When selecting among competing operationalizing softgoals, correlation
rules about interactions between such softgoals and NFR softgoals can serve as
a basis for performing tradeoff analysis. Naturally, the developer might want
to select those operationalizing softgoals that yield the most benefits and the
least sacrifices, where possible.

Returning to our credit card account management system, let's consider
the use of a compressed format to store information, such as the highSpending

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 131

attribute of gold accounts. Unfortunately, using this operat.ionalizing softgoal
causes response time to deteriorate. This is because information must not only
be retrieved, but also uncompressed before usage. This can be expressed by a
correlation rule:

Com pressed Format[Information] HURTS ResponseTi melInformation]

where Information is an information it.em (such as a class, or an attribute of a
class). The gist of correlation rules can often be given by omitting the softgoal
topics, where unambiguous, e.g.: Compressed Format HURTS ResponseTime.

, Accuracy
ResponseTime • [GoldAccount.highSpending)

[Account) ~___________ {critical} .0 Confidentiality
~ .' [GoldAccount.highSpendingj

:,:>',<,::::>::::">-""""" /"/?
.--,,; - "" ---Ovalidation

,,,,-- "" [GoldAccount.highSpending)

,,---- OcompressedFormat

0, PerformFirst [GoldAccount.highSpending]
[GoldAccount.highSpending]

Figure 4.35. Sample correlations.

The effect of applying the correlation rule to the highSpending attribute
would be a negative implicit interdependency:

CompressedFormat[GoldAccount.highSpending] HURTS

ResponseTime[GoldAccount. highSpendi ng]

Figure 4.35 illustrates the use of some of the correlation rules in this
section. Correlation links are shown as dashed lines.

As another example, a developer might allow access to a database using
a flexible user interface. This could hurt accuracy, which is it priority NFR soft
goal, especially if there are several infrequent users. Suppose that 5 employees
is the acceptable limit. This can be written by attaching a condition to the
correlation rule:

FlexibleUserinterface[Employee, Information] HURTS Accuracy[Information]

WHEN cardinality(Employee) > 5

132 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Here, Employee is a class of employees. The condition follows the keyword
WHEN.

When we apply the rule to infrequent users accessing the highSpending
attribute, we have the following negative implicit contribution:

FlexibleUserinterface[lnfrequentUser, GoldAccount. highSpending] HURTS

'Accu racy[GoldAccou nt. highSpend ing] {critica I}

Correlation rules can also be written in a frame-like notation. For ex
ample, the rule concerning flexible user interfaces can be written:

Correlation Rule Flexi bleUserinterfaceH URTSAccu racy
parent: Accuracy[Information]

offspring: FlexibleUserinterface[Employee, Information]

contribution: HURTS

condition: cardinality(Employee) > 5

A rule without a condition, such as the previous rule for compressed formats,
is equivalent to a condition of "True".

Usage of these and other correlations is shown in Figure 4.35. Note that
correlations can be positive or negative. For example,

Validation[GoldAccount.highSpending] HELPS

Confidentia Iity [GoldAccou nt. highSpend ing]

is a positive correlation. In addition, one softgoal can participate in several
correlations. Later figures in this chapter show a correlation as part of a larger
SIG.

Let's consider in more detail how correlations are used. Interestingly,
one correlation rule can be used to make inferences in several ways. Let's
return to the correlation rule Compressed Format HURTS ResponseTime. Fig
ure 4.36 shows the correlation rule definition, followed by three different kinds
of applications of the rule to accounts.

In part (b) of the figure, we start with two softgoals , ResponseTime
[Account] and CompressedFormat[Account], which are not connected. By com
paring this "Initial SIG" with the Rule Definition in part (a) of the figure, we
see that a match is possible, by substituting "Account" in the SIG for "In
formation" in the rule definition. As a result, the two softgoals, initially not
connected, are now connected by an interdependency, here a HURTS contribu
tion. The developer can now decide whether to use this interdependency.

In addition to generating interdependencies, correlation rules can also
generate new softgoals. Consider the Initial SIG of part (c) of the figure, which
has one softgoal , ResponseTime[Account]. Again using pattern matching, now
with this SIG and the rule definition, ResponseTime[Account] is matched with a
rule (pattern) where it is a "parent." Then an offspring is inferred, along with
its contribution to the initial softgoal. Here we infer Compressed Format[Account]
and its contribution of HURTS. We call this downward inference.

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 133

Rule Definition, Parameterized on Topic I

9
6

(a) Correlation rule definition

ResponseTime
[Information]

CompressedFormat
[Information)

Initial SIG I
Rule Application I

O CompressedFormat
[Account)

o ResponseTime
[Account)

I Resultant SIG I

9
6

ResponseTime
[Account)

CompressedFormat
[Account]

(b) The rule infers a contribution from one existing softgoal to another

Rule Application I
Initial SIG I Resultant SIG I

0 ResponseTime 9 ResponseTime
[Account] [Account]

'-,

0 CompressedFormat
[Account)

(c) "Downward inference"; The rule infers an operationalizing softgoal
and its contribution to an existing NFR softgoal

Rule Application I
Initial SIG I Resultant SIG I

9 ResponseTime
[Account)

0 CompressedFormat 6 CompressedFormat
[Account] [Account]

(d) "Upward inference"; The rule infers an NFR softgoal and a contribution
from an existing operationalizing softgoal

Figure 4.36. Different kinds of inferences which can be made by using a correlation rule.

134 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

We can also have inference in the other direction. In part (d) of the
figure, the Initial SIG has one softgoal, Compressed Format[Account]. This time,
CompressedFormat[Account] is matched with a rule where it is an "offspring."
Then a parent is inferred, along with a contribution from the offspring (here,
the initial softgoal) to the parent. Here we infer ResponseTime[Account] which
receives a contribution of HURTS from CompressedFormat[Account]. We call
this upward inference.

These kinds of uses of correlations are helpful in not only detecting neg
ative correlations between softgoals that are already in the softgoal interdepen
dency graph but also providing a warning to the developer against omission of
those NFRs that the developer might not have addressed. These inferences can
be confirmed by a domain expert, an analyst, or the developer.

Fairly general expressions can be used in a condition of a rule. This gives
the flexibility to specify narrow or broad conditions for a rule to be applica
ble. For example, the relationships between different softgoal topics could be
constrained, e.g., one information item would have to be a subset of another.

As another example, constraints in the domain may be used. For in
stance, certain classes of employees may be allowed access only to certain types
of information. This could be written in a condition as:
accessAliowed(1nformation, Employee), where accessAliowed is not a softgoal,
but a descriptor of situations in the domain. Suppose only senior secretaries had
access to high spending information (written
accessAliowed(GoldAccount.highSpending, SeniorSecretary)). Then a SIG involv
ing senior secretaries might match the correlation rule with this condition, but
a SIG involving junior secretaries would not.

Similarly, conditions could include descriptors of situations in the system,
e.g., infrequentReorganizations(Database). In this case, for example, a correla
tion rule involving implementation techniques might be matched only when
the database is infrequently reorganized. Likewise, conditions could include
descriptors of workload, e.g., frequentAccess(1nformation).

Such situation descriptors can also be used in argumentation, e.g.,
Cia im[accessAI lowed (GoldAccou nt. highSpending, SeniorSecretary)].

Correlation rules can be catalogued. Figure 4.37 shows a correlation
catalogue. It summarizes in tabular form some of the correlation rules de
scribed in this section. The operationalizing softgoal (offspring) is in the left
column, and the NFR softgoal (parent) is shown in the top row. The indi
vidual table entries show the contribution of the offspring to the parent, along
with the condition, if any. One sample entry is CompressedFormat[Information]
HELPS Space[Information]. This has no condition attached. Another sample
entry, with a condition, is FlexibleUserinterface[Employee, Information] HURTS
Accuracy[Information] WHEN cardinality(Employee) > 5. Details of conditions,
often written using situation descriptors, are shown at the bottom of the figure.

The correlation catalogue helps the developer to examine cross-impacts
among softgoals, during tradeoff analysis and subsequently during selection

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 135

Correlation Catalogue

Contribution of to
offspring parent
Operationalizing NFR Softgoal
Softgoal Accuracy I Confidentiality I ResponseTime I Space

[Info] [Info] [Info] [Info]

Com pressed
Format[Info]

Validation
[Info] "II

HELPS

HURTS

HURTS

HELPS

Flexi bleUser- HURTS
Interface WHEN condl
[Employee. Info]

PerformFirst
[Info]

II HELPS

condl: cardinality(Employee) > 5

Figure 4.37. A correlation catalogue.

among competing target alternatives. The table format helps keep things or
ganized, even as the number of correlations grows.

We have only shown correlations involving a single offspring. It is also
possible to have correlations involving AND and OR contributions. In this
case, the table format for correlation catalogues would have to be modified to
allow for more than one offspring.

Correlations can exist not only between an NFR softgoal and an opera
tionalizing softgoal, but between two operationalizing softgoals as well.

Let's consider an operationalization which has two parts. Each part has
several components. If the two parts share a common component, there may
be a correlation which facilitates the overall operationalization.

To support security, account holders may be identified by fingerprinting
and other biometrics. Biometrics is the identification of a human through
the examination of physiological signs. These include eyeball-scanning, voice
authentication, body temperature measurement, body contour measurement,
etc.

136 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SlG

Biometrics&Fingerprinting
[Account]

Biometrics
[Account]

CompareBiometrics
Access
[Account]

Fingerprinting
[Account]

CompareFingerprints

Figure 4.38. Benefits of using a common component in refinements of an operationaliza
tion.

Figure 4.38 shows the use of the operationalization
Biometrics&Fingerprinting[Account]. It is refined into two parts,
Fingerprinting[Account] and, to handle other biometrics, Biometrics[Account].

Now Fingerprinting[Account] could be implemented by two components.
The first, Access[Account], accesses the account information and retrieves a
stored fingerprint. The second, CompareFingerprints[Account. currentClient],
compares the retrieved fingerprint with the current client's fingerprint.

Likewise, Biometrics[Account] could be implemented by retrieving the
account information and stored biometric information via Access[Account], fol
lowed by comparing the retrieved biometrics with those of the current client.

Notice that both Fingerprinting[Account] and Biometrics[Account] require
retrieval of stored information. By having Access[Account] retrieve the account
information, stored fingerprints and stored biometrics, we retrieve more infor
mation at once, and only do one retrieval instead of two. This "family plan"
(combined) retrieval [C. Smith90] facilitates the combined operation and of
fers efficiency. Thus there is a positive correlation from Access[Account] to
Biomet rics& Fi ngerpri nti ng[Accou nt].

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 137

In passing we note that Access[Account] has two parents. This is an
example of why the structure of softgoals and interdependencies is not a tree
but a graph.

4.6 PUTTING THEM ALL TOGETHER: THE GOAL-DRIVEN
PROCESS

In the previous and current chapters, the five components of the NFR Frame
work have been presented. For each component, some illustrations have been
provided, with results shown in softgoal interdependency graphs.

We now elaborate upon the process of dealing with non-functional re
quirements, in the context of system development. The process was introduced
in Chapter 2. We now present more detail on the management of SIGs.

The process starts with an initial set of high-level non-functional require
ments as NFR softgoals, along with an initial set of functional requirements.
It iteratively refines the NFR softgoals into more specific ones, while estab
lishing interdependencies. These include relationships among softgoals, and
relationships between softgoals and interdependencies. Priorities are identified,
operationalizations are considered, tradeoffs are made, and design rationale is
provided.

Figure 4.39 illustrates a softgoal interdependency graph that could be
generated from our credit card example. It also shows a correlation, and the
selection of operationalizations.

Figure 4.40 continues Figure 4.39 by showing the evaluation of the SIG.
This shows the impact of decisions upon top NFRs.

Functional requirements serve as topics of softgoals, and can be used in
claims. Figure 4.40 also shows the use of functional requirements in a SIG, and
relates them to target decisions. We note that during development, functional
requirements might need to be refined.

Throughout this process, softgoals and interdependencies are organized
in a softgoal interdependency graph, and partitioned into two lists. Open is a
list of all softgoals and interdependencies that are to be refined. Closed is a list
of softgoals and interdependencies that have been completely refined.

In the process, the developer is in full control, selectively focussing at
tention and determining what softgoal or interdependency to refine next. The
developer is also in full control, determining how to refine the chosen object
and how much to refine.

After selecting a parent softgoal or interdependency from Open for refine
ment, developers can apply one of the pre-defined refinement methods; they can
also propose and use refinements of their own making. Carrying out the cho
sen refinement on the selected parent results in the generation of its offspring,
as well as a contribution of the offspring to the parent. The newly-created
offspring and interdependency are then added to Open.

The use of pre-defined methods involves several steps. First is browsing
a catalogue for methods which are applicable to the parent. Then is selecting
a particular method. This is followed by ensuring that the type and topics

138 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

510

++

ValidalionBy
[GoldAccount.highSpending.
Senior secretaryl

+ + ,.,.,..•.
~. fill .)

Claim""",
(Policy of rigorous
examinations of
high spending)

Accuracy
[RegularAccount)

AvailableAgent
(Senior secretary)

AvailablePolicy
[policy·on·spending·pattems]

,Accuracy
• (GoldAccount.highSpendingl

{critical}

SOME+

Accuracy
[GoldAccount.balance]

Accuracy
(GoldAccount.highSpending)

Via AUributes

Validation
[GoldAccount.highSpending]

ResponseTime
[GoldAccount.balance]

ResponseTime
[GoldAccount.highSpending]

, ResponseTime
• [GoldAccount.highSpending]

{critical}

~~~

~~

~~

~~

~~

~~

+ ~~
~~~

~---------

IE-----+-+-C-Ia-im--.,(';/:',..:·----+-+--~

[one of vital few:
high spending in gold accounts]

/","\
.~ ., .'
ci~r~

(Priority actions can
be perlormed first)

Figure 4.39. Selection of operationalizating softgoals and argumentation softgoals.

of the chosen softgoal or interdependency match (or are related to) those in
the parent part of the definition of the selected method; in addition, one must
ensure that the current situation meets the criteria given in the definition of
the method, Finally is generating the offspring and contribution, according to
the offspring and condition parts of the definition of the chosen method.

Due to design tradeoffs, correlations are introduced between softgoals.
This involves using both the developer's judgement and correlation rules, and

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 139

SlG

Accuracy
lRegularAccountJ

AvailableAgent
[Senior secretary]

AvailablePolicy
[policy-on-spending-pattems]

Operationalization-rarget link

,Accuracy
• [GoldAccount.highSpending]

{critical}

SOME+

Accuracy
[GoldAccount.balance]

Accuracy
IGoldAccount.hiljhSpending]

I.
'If

___--'I Target

~-'-'--""'C.j)(+ +ClaimC:{)
[Policy of rigorous
examinations of
high spending}

/,
/,

Via Attributes

/,

Validation
[GoldAccount.highSpending]

ValidationBy
(GoldAccount.highSpending,
Senior secretary]

Design decision link

Functional requirement

i

~~

~
-~

~~-~~

--+ ~-~~

~
-~~

~
~~--

, ResponseTime
• [GoldAccount.highSpending]

{critical}

ResponseTime
[GoldAccount.balance]

ResponseTime
IGoldAccount.highSpending]

IE-------'+-+-C-Ia-im-----,{;Z;-----+-+-----O:ol

[one of vital few:
high spending in gold accounts]

For Gold accounts with high spending perform operations on those accounts first,
and have a senior secretary validate such expenditures

++

,Ci>
Claim
[Priority actions can
be performed first)

Figure 4.40. The impact of decisions on NFRs and Functional Requirements.

140 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

results in the creation of new interdependencies, and sometimes new softgoals,
which are added to Open.

The use of pre-defined correlation rules involves several steps. First is
matching parts of a SIG against patterns in the correlation catalogue. Then
there is testing the conditions associated with the rules to see if any correlation
rules are applicable to the newly-added softgoals or interdependencies of Open.
Then there is inferring new contributions (and possibly new softgoals) to con
nect the existing SIG and the new softgoals or interdependencies. Finally the
interdependencies and softgoals are proposed for addition to the SIG, subject
to confirmation or rejection by the developer.

At any point during this process, the developer may prioritize the soft
goals and interdependencies, in either Open or Closed, by assigning values to
their criticality or priority attribute.

Prioritization may be needed due to resource limitation, bounded ratio
nality [Simon81], domain constraints, etc. For example, due to limited devel
opment time available, the developer may need to spend more effort and time
on priority softgoals than on less-important ones (e.g., more effort could be
spent on an accuracy softgoal for large amounts than an accuracy softgoal on
insignificant amounts).

Prioritization can also help resolve conflicts. In Figure 4.35, for example,
Validation is good for Confidentiality but hurts ResponseTime. If ResponseTime
were a priority (not shown in the figure), then Validation might be rejected,
due to its negative contribution. Additionally, selection among alternative
techniques may also be based on their relative importance, and analysis of
arguments on their relative weights (e.g., distinguishing major policies from
minor ones), etc.

This process of refinement, selection among alternatives, analysis of
tradeoffs and prioritization is repeated for the chosen softgoal or interdepen
dency until there are no more refinements the system or the developer can offer.
At this time, the softgoal or interdependency is placed on the Closed list and
another open softgoal or interdependency is selected.

A second alternative for softgoal or interdependency refinement is to
simply label the softgoal or interdependency satisficed or denied. This may
come from developer input or from the use of a method or correlation during
refinement. Upon the change in any label, the interactive evaluation procedure
determines, with the input from the developer, all those softgoals and interde
pendencies that are affected by such a change, and assigns new labels to them
appropriately. A closed softgoal or interdependency should have as its label
"..j" or "x", while an open one can have any of the other label values.

The development process and SIGs can be further structured using a
layering process. This is done for performance requirements in Chapters 8
and 9.

By using the components and development process, the NFR Framework
takes a goal-oriented approach to dealing with non-functional requirements.
This approach makes it possible to systematically treat non-functional require-

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 141

ments and ultimately use them as the criteria for making selections among
competing target alternatives. This is complementary to approaches which
focus on the evaluation of products.

4.7 DISCUSSION

Key Points

The NFR Framework takes a knowledge-based approach. First, the history
of design decisions is recorded in graphs. Second, development knowledge is
organized in catalogues. In both cases, there is a cost associated with collecting
and recording the knowledge. However, there are also payoffs associated with
this approach.

Softgoal Interdependency Graphs concisely record decisions. Our expe
rience has been that a subsequent review of graphs brings key points to a
developer's mind, even if the graph is reviewed a long time after it was pre
pared. In addition, graphs record patterns of commonly-occurring situations,
and can be used and re-used in similar situations. Graphs have also been found
useful for dealing with a variety of changes [Chung9Sa,96].

Of the five components which the NFR Framework offers, this chapter
has presented methods and correlations which Chapter 3 did not cover.

These two components help construct a softgoal interdependency graph
in which softgoals and interdependencies, together with their labels, are or
ganized as a record of design intentions, alternatives, tradeoffs, decisions and
rationale - the focus of Chapter 3.

Methods are a means to collect, encode and catalogue knowledge about
clarifying the meaning of softgoals, satisficing them and providing arguments in
support or denial of development decisions. Correspondingly, the NFR Frame
work offers three kinds of methods: NFR decomposition methods, operational
ization methods and argumentation methods. Once catalogued, methods can
be tailored, improved, extended and reused.

One group of methods provide facilities for prioritizing softgoals. This
can be done on the basis of workload, other domain information, and the de
veloper's expertise.

Similarly, correlation rules are a means to collect, encode and catalogue
knowledge about interactions, synergistic or harmonious, between and among
softgoals and interdependencies. Correlations are useful particularly during the
analysis of tradeoffs among alternative techniques and discovery of omission
of softgoals (NFR softgoals or operationalizing softgoals). Just like methods,
correlations can be tailored, improved, extended and reused.

The Framework can be applied to a variety of NFRs (e.g., accuracy
and performance) by providing catalogues of NFR-specific knowledge. When
adapting the Framework to handle an additional NFR, the representation and
reasoning facilities of Chapter 3 can be incorporated, essentially as-is. That is,
the kinds of softgoals, interdependencies and refinements, as well as contribu
tion types, label values and the evaluation procedure, ca.n be viewed as being

142 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

"fixed." Furthermore, the structure for defining methods and correlations is
provided. In addition, the generic refinement methods can be viewed as given,
subject to modification by the developer if desired. The main work, then, will
be to add the counterpart of Chapter 4, by cataloguing concepts and methods
applicable to the particular NFR. While there is a cost to preparing catalogues,
our experience in several case studies (Part III of this book) is that there is a
payoff when the catalogues are subsequently used.

Such catalogues are presented in Part II for a variety ofNFRs. It's impor
tant to observe that different NFRs have often been addressed with completely
different models and means of analysis; for example, [ITSEC89) for security,
and [C. Smith90) for performance). Yet the Framework can handle a variety of
NFRs, both individually and in combination, in a goal-oriented manner.

Literature Notes

This chapter is adapted from [Mylopoulos92a) [Chung93a).
The representation of security requirements is adopted from the area of

computer security (e.g., [Hartson76]).
The Vital FewTrivialMany prioritization method has its origin from Juran

[Juran64] who coined the terms vital few and trivial many as applied to the
Pareto principle, after the Italian economist, Vilfredo Pareto, who quantified
the extent of inequality or nonuniformity of the distribution of wealth. Juran
later noted in [Juran79) (the first edition came out in 1951) that it was a
mistake to name it the Pareto principle, and that the principle should have
been identified with M. O. Lorenz, who had used curves to depict concentration
of wealth in graphic forms. McCabe et al. [McCabe87) applied this principle
to software quality activities. This also reflects the 80-20 rule that 80% of
development effort or software improvement results from 20% of the software
under development or in the system [Boehm87). Prioritization is also used in
principles for building performance into software systems [C. Smith90).

The correlation catalogue is similar in spirit, to the "relationship ma
trix" in [Hauser88], which indicates, in terms of types and four kinds of values
(strong positive, medium positive, medium negative, and strong negative), how
much each engineering characteristic affects each customer quality requirement.
Unlike the NFR Framework, the House of Quality by Hauser et al. deals with
only actual design instances, rather than offering generic methods with top
ics or generic correlation rules with conditions which facilitate reuse of design
knowledge. Another difference is that, via a softgoal interdependency graph,
the NFR Framework allows for justifications of design decisions to be tightly
associated with decision points.

An earlier, less formal description of some correlations among accuracy,
security, cost, and user-friendliness can be found in [Chung91a).

4.8 RelATED LITERATURE FOR THE FRAMEWORK

The characteristics of the NFR Framework include:

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 143

• The focus of the work is large systems development rather than
programming-in-the-small;

• Requirements specifications consist of both functional and non-functional
requirements;

• The solution takes a process-oriented approach, where non-functional re
quirements are treated as a special kind of goal, "softgoals";

• This work adopts the ideas in work on decision support systems and the
DAIDA environment.

The NFR Framework aims to provide a systematic methodology for gen
erating large systems from requirements that consist of both functional and
non-functional requirements. There are several lines of work which address
aspects of these aims. Related work is discussed in three parts.

• Since we treat non-functional requirements as softgoals, we discuss goal
oriented approaches in several different areas.

• Since we are concerned with developing systems, we discuss existing tools,
methodologies, frameworks, and environments used for developing software
systems.

• Since quality control issues are relevant to non-functional requirements and
have been dealt with in those areas of management, manufacturing, software,
and information system development, we discuss projects and approaches in
such areas.

Goal-Oriented Methodologies

Systematic goal-oriented approaches have been used in a variety of areas. How
ever, the concern of many of such approaches is not system development, in
particular.

Of particular relevance to our work, is work in design rationale. In
the context of qualitative decision support systems, [J. Lee91] presents a goal
oriented approach to facilitating decision-making process, which extends an
earlier model for representing design rationale [Potts88] by making explicit the
goals presupposed by arguments. More specifically, each design issue is treated
as a goal to fulfill which is supported, denied or presupposed by various claims.
Each claim or its relationship with the associated goal can again be treated as
a goal. This leads to a recursive argumentation process, which is captured in
term of a dependency representation graph (DRG). In order to support this
approach, Lee builds a system, called SYBIL, which consists of a dependency
representation language (DRL), four types of services, and a user interface.
DRL is used to describe various relationships among claims, and the four types
of services are intended for: (i) managing such relationships, (ii) making use of
previous decisions, (iii) evaluating the degree of satisficing softgoals according
to the scheme which each particular decision-maker provides, and (iv) allowing

144 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

alternative decisions with different priorities on the terminal goals. Our work
specializes Lee's work to the context of system development with NFRs. When
compared to Lee's work, the NFR Framework distinguishes goals that are asso
ciated with functional requirements from ones that are with NFRs. We further
categorize the latter kinds of softgoals into three kinds of softgoals: NFR soft
goals, operationalizing softgoals, and claim softgoals; all sharing a common
structure of type and topic. By separating concerns, this categorization helps
identify the right concerns at the right places during system development. The
provision of operationalizing softgoals within this categorization makes it pos
sible to use NFRs as criteria for selecting among design alternatives. Our focus
on system development facilitates the capture and reuse of NFR-related knowl
edge, in terms of three kinds of methods and three kinds of softgoals. The NFR
Framework also offers finer-grained contribution types with semi-formal seman
tics, and a built-in, evaluation procedure which is semi-automatic, allowing for
developer input. Goal synergy and conflict is catalogued in terms of correla
tions, for later reuse. Another benefit of our approach is that our methods,
correlations, and an evaluation procedure make it possible to automate parts
of the system development process.

The TI (Transformational Implementation) project [Balzer85] [Fickas85]
led by Balzer at USC lSI is one of the foremost automatic programming projects
in the world, attempting to develop software through the interaction of system
builders and automated assistants. A main theme of the project is the ef
ficient implementation of conceptual system designs constructed in terms of
a wide-spectrum executable language, called Gist. Gist is based on state
transitions coupled with the entity-relationship model. Specification refine
ments are achieved by constraining the allowable state transitions. While treat
ing each design component as a goal to fulfill, the project has generated a set of
design alternatives (or methods) and a set of criteria for design decisions that
form the backbone for a software development methodology.

KATE is one of several projects which address programming-in-the-large.
It is led by Fickas at the University of Oregon [Fickas87] [Fickas88] and its scope
extends that of the TI project by considering requirements specifications. A
fuller specification gradually evolves from an incomplete and inconsistent one,
and that is later transformed into a specification that can serve as a starting
point for the TI framework. TI and KATE use a wide-spectrum executable
language, Gist, while the NFR Framework looks to the DAIDA project with
declarative non-executable knowledge representation language features. Impor
tantly, Fickas acknowledges the need to consider non-functional requirements
in generating conceptual system designs.

Glitter [Fickas85] takes a goal-oriented, formal approach, using problem
solving to automatically find and apply portions of transformations. Glitter
takes an interactive approach: it tries to automate many tasks, leaving small
portions of tasks to developers. In this regard, it is more automated than the
NFR Framework. Both Glitter and the NFR Framework represent such con-

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 145

cepts as goals, methods, design rationale, evaluation and correlation (indexing
to inter-relate goals).

Work on critiquing [Fickas88] looks for inconsistencies in specifications,
such as policies (goals and associated priorities) which are not met positively by
a target. Fickas points out the need to deal with conflicting policies via compro
mise and tradeoffs, which are important in the NFR Framework. A qualitative
approach to critiquing is also available [Downing92]. It is also goal-oriented,
relating decisions to goal achievement. Interestingly, decisions are partitioned
into groups which have equivalent impact. Downing's exhaustive-generation
approach differs from the NFR Framework's developer-directed approach. A
goal-oriented approach has been used also for requirements acquisition [Dard
enne91].

In the domain of VLSI high-level synthesis, the FAD (Feedback Aided
Design) project [Liew90] takes a quantitative approach to improving resource
usage by intelligently selecting optimizations and applying them to a previ
ous solution similar to a currently desired solution. This project considers
firstly multiple resource goals, such as (quantitative) limitations on time (e.g.,
time under 2000 units), area (e.g., area under 1000 units), and power (e.g.,
under 1500 units), and secondly an objective function whose parameters are
the resources. In an attempt to improve resource usage of a previous solution,
resource goals are, one at a time, decomposed in the manner of a tree; optimiza
tion strategies (which will modify a subset of resource components) applicable
to the leaves are listed; and the value of the objective function with the opti
mization strategies is computed. Choosing the better one between the current
and the previous value, the developer repeats the improvement process until
satisfactory. Although specific contents would be different, the decomposition,
optimization strategies, and objective function computation may respectively
be comparable to our decomposition, satisficing, and evaluation methods (ar
gumentation is not offered in FAD). Besides the quantitative approach taken
here, however, the project does not provide the guidance for detecting possible
conflicts among the goals and optimizations or the scheme to capture design
rationale in the sense of argumentation.

In the area of machine translation, [DiMarc093] and [DiMarc090] present
a scheme for automatically evaluating the translation of one natural language
(e.g., English) into another (e.g., French). The evaluation criteria are stylis
tics such as clarity and dynamicity, which are treated as softgoals. According
to the (stylistic) grammar associated with each goal, each target sentence is
categorized into one of three types, each reflecting the bias (or orientation)
of the sentence (e.g., a sentence is dynamic, neutral, or static). The work is
interesting to us in that it recognizes three types of categories into which the
evaluation scheme differentiates each target sentence. As the work's primary
concern lies in evaluation rather than translation, it does not address those gen
eration phase issues such as conflict detection and resolution, design rationale
maintenance or selection among alternative target constructs.

146 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In the area of computer architecture design, [Hooton88] provides a the
ory of plausible design (TPD). In this theory, each requirement consists of a
combination of functional and non-functional requirements, such as "maximal
concurrency," and is treated as a goal to satisfy. The plausibility or satisfia
bility of the decomposed subgoals (or goal if a terminal node) categorizes each
goal into one of four types: validated, assumed, unknown, and refuted. A goal
is validated if there is a significant evidence for and no evidence against its
satisfiability, assumed if there is no evidence against its satisfiability, refuted
if there is some evidence against its satisfiability, and unknown when initially
introduced. Then, the decomposition of a softgoal into subgoals, devised by
human developers when needed, is guided since satisficing a softgoal of one
type can be achieved in terms of its subgoals of the same type. The presence
or absence of evidence or counter-evidence is determined by human developers
through simulation, experimentation, literature search, etc. An arbitrary de
composition is also allowed when certain justification is present. The work is of
interest as it recognizes the need for distinguishing different types of relation
ships that can hold between a goal and its subgoals, and subsequently offers an
evaluation scheme which is a modification of an ATMS [de Kleer86]. The NFR
Framework's evaluation procedure adapts some concepts from ATMSs.

Software Development

In the field of software development, much attention has been given to the gen
eration of efficient implementations from formal specifications, either manually
or automatically. For example, [Spivey87] and [Wordsworth87] describe a soft
ware development methodology based on a set-theoretic formalism named Z,
while [AbriaI88] describes a tool (named the B tool) that can serve as proof
assistant in establishing that an implementation generated through a sequence
of transformations is indeed consistent with a given Z specification. 1 Another
project in the same league is the Cornell Program Synthesizer [Teitelman81]
which inspired the Nuprl proof development system [Constable86]. Generally,
such work focuses on programming-in-the-small applications and is most rele
vant to the mapping problem from designs to implementations. A fine survey
of AI-related work on this problem, which has traditionally been called "au
tomatic programming" can be found in [Barstow87], while [Hayes87] gives an
excellent comparative account of several formal specification methodologies.

The Gandalfproject at eMU [Haberman86] includes a component called
SMILE, which consists of a multi-user software engineering environment.
SMILE is intended to offer intelligent assistance to the software developer.
However, unlike DAIDA [Jarke92a, 93b] whose user support comes from a
knowledge base (managed by the GKBMS), the knowledge used by SMILE
is hard-coded and cannot be changed or extended easily. [Kaiser87] describes

I Both Z and the B tool play an important role for the design-to-implementation mapping
assistant of DAIDA [Borgida89].

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 147

an effort to generalize SMILE by including an objectbase and a model of the
software development activity which represent explicitly some of the hard-coded
knowledge of SMILE. SMILE is similar in spirit to DAIDA. However, DAIDA
differs by focussing on information systems and taking full advantage of its nar
row focus in selecting languages, developing tools, and adopting methodologies.

The CHI project [D. Smith85] [Green86] at Kestrel Institute, a descen
dant of PSI project carried out earlier at Stanford [Green76], is based on a
wide-spectrum language2 , called V, that is executable. To its credit, the project
has a commercial product called REFINE™. The starting point here for the
software development process is a formal specification consisting of logical as
sertions which is mapped, via several transformations, to an efficient LISP
implementation [Westfold84]. However, the logical assertions that constitute
the initial formal specification tend to focus on the behaviour of the software
to-be-built rather than its intended environment and information content and
CHI relies on computational notions such as sequencing, compute-versus-store,
etc., to make them executable. Thus, CHI, like other projects focussing on
programming-in-the-small applications, bypasses the requirements modelling
and analysis phase and only addresses the problem of going from a less deter
ministic description of the software-to-be-built to a completely deterministic
(and efficient) one. Also, CHI does not offer much guidance on how conceptual
system designs are produced.

As one of the foremost advocates for the need of world modelling in soft
ware development, Jackson [Jackson83] presents a system development method
(known as JSD) which is in commercial use. JSD starts with a world model
and, through a functional system design, produces an implementation. How
ever, JSD, as other diagrammatic approaches, adopts an ad hoc set of modelling
features and is often quite informal in the specifications it starts with and pro
duces. The NFR Framework uses concepts from knowledge representation and
artificial intelligence.

The work of Bubenko [Bubenko81] is close in spirit to the NFR Frame
work, using layers of formal software specifications as a basis for the definition
of a software development process. The first layer of Bubenko's work com
prises an abstract world model, called "understanding level," and the second
layer comprises a conceptual system design. In order to define model behaviour
in non-procedural terms, time is considered as the most essential concept and
the world model is described in an extended time perspective rather than in
points of procedure invocation.

Recently, there have been many proposals for goal-oriented approaches
to requirements engineering, including [KaindI97] which is semi-formal and
pragmatic, and [Dardenne91] which is more long-term and "heavy-weight."
In KAOS, functional requirements are successively decomposed into more con
crete ones and operationalized in terms of agents or constraints. Thanks to

2 A language is wide-spectrum if it offers constructs for specifications ranging from highly
abstract and non-procedural to ones that are implementation-oriented [Bauer76].

148 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

its solid formal semantics, KAOS is amenable to the construction of sophisti
cated analysis tools. However, these goal-oriented approaches mainly deal with
functional requirements.

The notion of goals has also been used extensively to deal with vari
ous kinds of key issues in requirements engineering. For example, goals are
treated as the central concept in developing requirements specification [An
ton96], an important ingredient during scenario analysis [Potts94], and verifi
cation of requirements [Dubois89], and support for reuse [vanLamsweerde97].
Goals are also used to deal with conflicting requirements, with multiple views
[Nuseibeh93] and multiple stakeholders [Boehm96], which may require negoti
ations to resolve [Robinson90].

Some software development methodologies have a strong emphasis on
functional aspects of the system, hence they focus on functional requirements,
while offering product- and process-oriented approaches. The NFR Framework
provides a basis for dealing with both non-functional and functional require
ments (Section 3.4) in a process-oriented way. In comparison, work on software
metrics addresses NFRs in a product-oriented way.

In the area of information system development, the NATURE project
recognizes the crucial role that non-functional requirements play in require
ments engineering, and has in its scope the representation of NFRs [Jarke93a].
This project also attempts to address teamwork support and the use of repos
itories in dealing with NFRs.

A research group at the University of Trondheim, Norway, has con
tributed to the area of information system engineering. For example, a frame
work for performance engineering for information systems is presented by Op
dahl [Opdah192]. Focussing on the prediction and improvement of performance
of information systems during development, it incorporates models of software,
hardware, the organization and the applications. It offers sensitivity analysis
and a number of tools, and is integrated into an environment for a larger per
formance evaluation project [Brataas92]. Opdahl [OpdahI94] argues for quan
tifying performance demands during requirements specification.

Quality Assurance and Control

The field of quality control is rich in general guidelines and statistical measure
ment techniques that are used on a daily basis. Although related to each other
and sometimes used interchangeably, quality assurance is regarded as being
broader in scope than quality control. According to the ISO 8402 standard,
quality assurance refers to the overall management function that determines
and implements the quality policy, which is established by senior management
as the overall quality intentions and objectives of an organization. According
to ISO 9001, quality control is concerned mostly with the latter part of quality
assurance, ensuring firstly the use of appropriate tools in producing the final
product and secondly that the final product meets pre-determined standards.

One of the most advanced methodologies for quality control, described
by Hauser et al. [Hauser88], aims to reflect customer attributes in different

CATALOGUING REFINEMENT METHODS AND CORRELATIONS 149

phases of automobile design, by helping establish and visualize relations be
tween manufacturing functions and customer satisfaction. In this kind of so
called Quality Function Deployment methodology, (QFD) customer attributes
are (recursively) treated as bundles of more finer-grained attributes and cus
tomers' evaluations of their relative importance are registered. The relation
ship between these customer attributes and engineering characteristics is then
expressed in terms of different degrees of scale, along with the relationship be
tween different engineering characteristics. Finally information associated with
engineering characteristics, such as technical difficulties, relative weights, and
cost, are recorded and used in making design decisions.

For strategic quality analysis and management, Garvin [Garvin87]
presents eight critical dimensions or categories of quality: performance, fea
tures, reliability, conformance, durability, serviceability, aesthetics, and per
ceived quality. He states that some dimensions have more objective standards
than some other ones, stating that performance has more objective standard
than perceived quality. He also states that some dimensions are always mutu
ally reinforcing, while some other ones are not. As an improvement in one may
be achieved only at the expense of another, a product or service canTank high
on one dimension of quality and low on another. This interplay is noted as the
key that makes strategic quality management possible and suggests competing
on selected dimensions.

Among the eight dimensions, robustness, which Garvin treats as a com
ponent of conformity, has drawn a significant interest in the area of manu
facturing design. Taguchi et al. [Taguchi90] presents a statistical approach to
dealing with robustness, where one major emphasis lies in taking into account
of critical interactions among design components. This approach emphasizes
that quality loss starts from the time a product is shipped and should include
warranty costs and nonrepeating customers. Garvin considers that quality loss
increases by the square of deviation of design components from the target value.

A more focussed area, of interest to the software engineering community
is software quality assurance (SQA), which is defined in ANSI/IEEE Standard
729-1983 [ANSI] [IEEE]:

"In software system engineering, a planned and systematic pattern of all actions
necessary to provide adequate confidence that the software and the delivered
documentation conforms to established technical requirements."

Previous work in this area has focused primarily on managerial issues, quan
titative measurements or product testing and inspection (See, for instance,
[IEEESoftware87]) .

The complementary nature of process-oriented and product-oriented ap
proaches to dealing with non-functional requirements has been noted. Hailstone
[Hailstone91], for instance, warns against the danger in taking a unilateral ap
proach. Taking a solely product-oriented view, on the one hand, may ignore
or poorly implement any software attribute that is difficult to quantify, such
as usability, flexibility, and maintainability. On the other hand, taking a solely
process-oriented view would, in the extreme, lead to abandoning any form of
software testing.

150 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Taking a quantitative approach, earlier work by Boehm et al. (Boehm78]
considered quality characteristics of software, noting that merely increasing de
velopers' awareness would improve the quality of the final product. Also sup
porting a quantitative approach to software quality, Basili and Musa (Basili91]
advocate models and metrics of the software engineering process from a man
agement perspective.

Also from a management perspective, Zultner (Zultner91] and Oakland
(Oakland89] apply the Total Quality Management approach (TQM) of Deming
(Deming86] to software development and maintenance. The application results
in guidelines for software managers to know and do (called fourteen points),
for management to avoid (seven deadly diseases), and poor practices that hin
der quality and productivity (fifteen obstacles). Similarly, albeit less specific
to software development, a general management approach to improving pro
ductivity has been widely publicized, in the name of quality (control) circle
(QC) which aims to increase efficiency through worker motivation, increased
communication among and involvement of employees at all levels within the
organization in the decision-making process (Crocker84]. In relation to soft
ware quality assurance, some of these and other related work, such as work by
Ishikawa, Juran (Juran64] (Juran79], Sandholm, and Crosby, are surveyed and
assessed in (Schulmeyer87].

II Types of Non-Functional
Requirements

5 TYPES OF NFRs

Part II shows how the NFR Framework can accommodate different types of
non-functional requirements. Part II focusses on three: accuracy, security and
performance requirements.

Other types of non-functional requirements (e.g., usability, portability,
etc.) could be treated in essentially the same manner; however, they are not
specifically addressed in this book.

In each case, non-functional requirements are represented as a set of
softgoals. Concepts for each type of NFR are collected and organized, along
with associated development techniques. Methods for decomposing and analyz
ing softgoals are presented and organized in catalogues, along with rules for
correlating softgoals. These methods and rules are used to move towards a tar
get system. The selected system is evaluated to determine how well the system
meets the non-functional requirements.

Chapter 5 provides a ((roadmap" of different types of NFRs. This draws
on definitions and classifications of NFRs from various categorizations and
standards.

Chapters 6 through 9 apply the NFR Framework to deal with particular
NFRs: accuracy, security and performance requirements. NFRs are represented
as softgoals, which can be conflicting or synergistic. Each chapter presents re
finement methods for the particular type of NFR, and organizes methods into
catalogues. Tradeoffs among methods are organized in correlation catalogues.
These catalogues are available for reuse in refining NFR sof/goals by generating

154 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

new softgoals and interdependencies from existing ones. To move towards a
target system, softgoals are "operationalized" while taking a "satisficing" ap
proach (finding "good enough" solutions). Justifications are stated for develop
ment decisions, which are made in the context of the particular domain, and
in the presence of resource limitations and softgoal conflicts. The evaluation
procedure is used to show developers the impact of development decisions upon
NFRs.

In Chapter 6, the NFR Framework is applied to accuracy requirements.
Like other types of NFRs, accuracy requirements are treated as softgoals. The
chapter shows how accuracy-related requirements can be treated. This includes
a treatment of information flow and its impact on accuracy. An illustration de
tails the use of the components of the Framework to deal with accuracy require
ments. It shows how the Framework helps a developer detect softgoal conflicts,
consider development alternatives, and address the needs of the domain (e.g.,
priorities) in resolving the conflict.

In Chapter 7, the NFR Framework is applied to security requirements.
This chapter shows how different notions of security can be arranged in the
security type. Security-related development techniques are captured as refine
ment methods. Tradeoffs among methods are represented as correlation rules.
Security requirements are then treated as softgoals, which are repeatedly disam
biguated, refined and co-related to one another, using catalogues of methods and
correlation rules. The impact of decisions is determined using the evaluation
procedure. The process of dealing with security requirements is illustrated. It
shows how to take general security concerns and policies into consideration,
and how to focus on a particular aspect of security in addressing the needs of a
particular application domain.

In Chapter 8, the Framework is applied to performance requirements.
This chapter introduce performance concepts and factors that should be consid
ered, along with principles for building performance into systems. It illustrates
how the Framework and its catalogue of methods can be used to deal with trade
offs, priority softgoals, and how domain information can be reflected in meeting
performance requirements. Catalogues of methods are further organized by a
language-based layering, to make the development process more manageable.

To be more specific about performance, Chapter 9 focusses on perfor
mance requirements for a particular kind of system, namely information sys
tems. Performance requirements are addressed while considering priorities,
workload and other characteristics of the organization for which a system is
being developed. The method catalogues draw on results from databases, perfor
mance engineering, and implementation of object-based specification languages
for information systems. There are many implementation alternatives with
varying performance characteristics, and these are reflected in the method and
correlation catalogues.

There is a large variety of non-functional requirements, which are impor
tant to address. In essence, the objective of Part II of this book is to show that

TYPES OF NFRs 155

such types of NFRs can be suitably addressed by using the NFR Framework
of Part I. We will demonstrate this for the cases of accuracy, security and per
formance requirements (Chapters 6 to 9). For each type of NFR addressed in
Part II, our approach is to collect and represent concepts and terminology rel
evant for the particular NFR (e.g., performance, or accuracy). Then we gather
and catalogue refinements and operationalizations which are appropriate for
the particular NFR.

The problem of addressing NFRs has existed for a long time. This chap
ter starts Part II with an overview of the types of NFRs. It outlines some cat
egorizations of NFRs, and some standards relating to NFR,s, which are taken
from the literature. Then, from our perspective, we present a list of a fairly
large number of NFRs.

We feel that such types of NFRs can be accommodated using the NFR
Framework; however most of them have not yet be addressed in detail using
the Framework.

It's important to note that particular requirements have been addressed
with completely different classifications, models and means of analysis. For
performance requirements, approaches include [C. Smith90] and [Jain9l] . For
integrity we can turn to [NIST90], for example.

5.1 CATEGORIZATIONS OF NFRs

We now consider some categorizations of NFRs. First, however, it should be
noted that there is not a formal definition or a complete list of non-functional
requirements. Neither is there a single universal classification scheme, accom
modating all the needs of different application domains under different situa
tions. Furthermore, different people use different terminologies; this can make
it harder to use given categorizations without customizing them.

Early work on software quality [Boehm76] presents a tree of software
quality characteristics (See Figure 5.1). Meeting a parent quality in the tree
implies meeting the offspring qualities. This includes a number of "-iiities" for
a variety of software quality attributes.

A great diversity of types of non-functional requirements is also discussed
in [Roman85]. Roman's presentation includes several classes of NFRs:

• interface constraints,

• performance constraints, including response time, throughput, storage space,
reliability, security, survivability, productivity, etc.,

• operating constraints, including physical constraints, personnel availability,
skill-level considerations, etc.,

• life-cycle constraints, including maintainability, enhanceability, portability,
flexibility, reusability, compatibility, resource availability, time limitations,
methodological standards, etc.,

• economic constraints, including development cost,

156 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

II Performance II Design II \.daptatlon II
Factor/J\.cronym Il:;r' IG RL SV US I CR MA VI:; I:;X Ir'X IP I PO RU

J\.CQUISITION
CONCERN

Criterion

Accuracy X
P Anomaly management X X
E Autonomy X
R Distributedness X
F Effectiveness X
0 communication
R Effectiveness X
M processing
A Effectiveness storage X
N Operability X
C Inconfigurability X
E System accessibility X

Training X

D
E Completeness X
S Consistency X X
I Traceability X
G Visibility X X
N

Application X
independence

A Augmentability X
D Commonality X
A Document X
P accessibility
T Functional overlap X
A Functional scope X
T Generality X X X
I Independence X X X
0 System clarity X
N System X

compatibility
Virtuality X

G
E
N Modularity X X X X X X X X
E Self-descriptiveness X X X X X X
R Simplicity X X X X X X
A
L

Legend

EF Efficiency
IG Integrity
RL Reliability
SV Survivability
US Usability

CR Correctness
MA Maintainability
VE Verifiability

EX Expandability
FX Flexibility
IP Interoperability
PO Portability
RU Reusability

Table 5.1. Software quality factors and criteria (From [Keller90]),

TYPES OF NFRs 157

portability

eneral utili

maintainabili
Iconciseness

I legibility

Iaugmentability

Figure 5.1. Software Quality Characteristics Tree (From [Boehm76]).

• political constraints, including policy and legal issues.

In Chapter 1, we referred to classifications of NFRs done at the Rome Air
Development Center (RADC). Consumer-oriented attributes (software quality
factors, Table 1.1) are NFRs (such as efficiency, correctness, and interoperabil
ity) which are of interest to software consumers. Technically-oriented attributes
(software quality criteria), on the other hand, are NFRs (such as anomaly
management, completeness, and functional scope) which are more meaningful
to software producers. Table 5.1 [Keller90] relates the consumer-oriented at
tributes to the technically-oriented ones. This table was developed as part of a
large software quality assurance project, which incorporated a metrics-oriented
approach.

In the area of usability inspection, a number of heuristics are offered for
reviewing a design for usability [Nielsen93]:

• Use simple and natural language,

• Speak the users' language,

• Minimize the users' memory load,

• Have consistency,

• Have feedback,

158 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

• Have clearly marked exits,

• Have shortcuts,

• Have precise and constructive error messages,

• Prevent errors.

Another classification scheme [Sommerville92] categorizes a number of
non-functional requirements into three general groups: process considerations,
product considerations, and external considerations (See Figure 5.2).

Figure 5.2. Types of non-functional requirements (From [Sommerville92]).

We have outlined some of the many categorizations of NFRs. Other clas
sifications of NFRs are available. There is a chapter on specifying "nonbehav
ioral requirements" in [Davis93]. A variety of classifications of non-functional
requirements is presented in [Loucopoulos95].

5.2 STANDARDS

As the problem of NFRs has existed for a long time, we can draw upon a body
of existing work. To understand the breadth of possible NFRs, we can look to
standards.

Standards are developed and published by a number of agencies, in
cluding [ISO] [IEEE] [ANSI]. Standards for NFRs are described in [Thayer90]
[PohI96]. In looking at [Thayer90], for example, we see many standards, includ
ing Canadian standards, United States military standards, and IEEE no. 830
(1984), among others; further definitions are given in that book's glossary.

TYPES OF NFRs 159

Standards provide high-level guidelines. For example, they can provide
a structure for documents and processes. The IEEE standard has English defi
nitions of several NFRs. This tells us, for example, how reliability differs from
security. Standards do not always provide detailed guidelines for methodology.
For example, the Trusted Computer Systems Evaluation Criteria [TCSEC85]
imposes no constraint on the methodologies used.

It should be noted that there can be many standards for a particular
NFR. For security, for example, standards include [ITSEC91) [CTCPEC92)
[TCSEC85].

5.3 A LIST OF NFRs

NFRs cover a wide variety of issues for software quality. They are sometimes
referred to as "-iiities and -ities." To give the reader a feel for the breadth of
possible areas which can be addressed by NFRs, we present a list of NFRs in
Table 5.2.

Note that we have not made any effort to organize the list by categories.
This is because our purpose in presenting this list is to illustrate the large
possible scope of NFRs, but not to present a particular arrangement of the
NFRs. As we have seen earlier in this chapter, there are a variety of ways to
categorize NFRs.

Subsequent chapters will present catalogues of NFRs, for accuracy, se
curity and performance, using the NFR Framework. These these three NFRs
are addressed in detail. However, we have not addressed in detail most of the
other NFRs in Table 5.2.

5.4 OUR APPROACH: THE NFR FRAMEWORK

The NFR Framework aims to provide a more systematic and global view of
NFRs. It offers a rational and systematic approach to dealing with NFRs.
It provides a way to categorize NFRs. It provides a qualitative approach to
dealing with NFRs. Using the Framework, analysis of NFRs involves looking at
NFRs, refining them (using methods), correlating and operationalizing them.
This helps to decompose NFRs, and deal with ambiguities and other defects.

The NFR Framework does not require any assumptions about the com
pleteness of non-functional requirements, the use of any single classification
scheme, unanimous agreement on terminology, or homogeneity of different ap
plication domains. Quite the contrary, the NFR Framework helps the developer
accommodate different needs of different applications while considering their
particular characteristics.

Next we use the NFR Framework to deal with some specific NFRs. We
show how the framework is specialized to deal with accuracy, security and
performance requirements. Then we further specialize one framework, for per
formance, to deal with a particular area, information systems. Other NFRs
mentioned in this chapter are not treated in detail in this book.

160 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

accessibility,
adaptability,
affordability,
availability,
capacity,
cohesiveness,
communication time,
component integration cost,
comprehensibility,
confidentiality,
controllability,
correctness,
customer evaluation time,
data-space performance,
dependability,
distributivity,
domain analysis time,
enhanceability,
extensibility,
feasibility,
generality,
impact analyzability,
inspection cost,
inter-operability,
learnability,
maintenance cost,
mean performance,
modifiability,
nomadicity,
operability,
perform ability,
planning time,
precision,
productivity,
promptness,
reconfigurability,
reengineering cost I

replaceability,
responsiveness,
risk analysis cost,
safety,
security,
simplicity,
space boundedness,
stability,
supportability,
susceptibility,
testing time,
timeliness,
trainability,
understandability,
usability,
variability,
visibility,

accountability,
additivity,
agility,
buffer space performance,
clarity,
commonality,
compatibility,
component integration time,
conceptuality,
configurability,
coordination cost I

cost,
customer loyalty,
decomposability,
development cost,
diversity,
efficiency,
evolvability,
external consistency,
flexibility,
guidance,
independence,
inspection time,
internal consistency,
main-memory performance,
maintenance time,
measurability,
modularity,
observability,
operating cost,
performance,
plasticity,
predictability,
project stability,
prototyping cost,
recoverability,
reliability,
replicability,
retirement cost,
risk analysis time,
scalability,
sensitivity,
software cost,
space performance,
standardizability,
surety,
sustainability,
throughput,
tolerance,
transferability,
uniform performance,
user.friendliness ,
verifiability,
wrappability.

accuracy,
adjustability,
auditability,
capability,
code-space performance,
communication cost,
completeness,
composability,
conciseness,
consistency,
coordination time,
coupling,
customizability,
degradation of service,
development time,
domain analysis cost,
elasticity,
execution cost,
fault-tolerance,
formality,
hardware cost,
informativeness,
integrity,
intuitiveness ,
maintainability,
maturity,
mobility,
naturalness,
off-peak-period performance,
peak-period performance,
planning cost,
portability,
process management time,
project tracking cost,
prototyping time,
recovery,
repeatability,
response time,
reusability,
robustness,
secondary-storage performance,
similarity,
software production time,
specificity,
subjectivity,
survivability,
testability,
time performance,
traceabi lity,
transparency,
uniformity,
validity,
versatility,

Table 5.2. A list of non-functional requirements.

5.5 LITERATURE NOTES

This chapter is based on [Mylopoulos92a] and [Chung93a].

6 ACCURACY REQUIREMENTS

The accuracy of information is often regarded as an inherent property of any
automated information system. As a familiar example, some people inquire
about a payment request, such as monthly credit card or telephone bill, and
get a reply from a staff member saying, "As the transactions were handled by
the computer, there can't be any error!"

Accuracy is a necessary virtue of almost all information that an informa
tion system maintains. The Usenet newsgroup comp. risks shows various cases
of inaccurate data which is useless and often invites user complaints, confusion,
and distrust. The newsgroup also shows how inaccurate financial information
may lead to monetary loss and damage to reputation of a Jinancial institution,
and how inaccurate medical information may lead to wrong diagnosis, medica
tion or surgery. Laudon [Laudon86] described how, in a criminal-record system,
inaccurate information may lead to wrongly issued warrants, false arrest or re
jection of employment.

However, accuracy does not come automatically. Rather, it needs to be
"designed into" the system. Consider a travel expense management system.
Employees of the particular organization travel to various cities in different
countries and participate in various meetings. The system should generate
monthly expense reports for each employee, meeting, and project, as well as
cheques to employees with the correct amount. The reports are used to monitor
the adequacy of spending, as well as to estimate the budget of all the projects
in the company for the following fiscal year.

162 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Now, how do we design accuracy into the system so that the information
in monthly expense reports and cheques is accurate?

For one thing, employees' expense vouchers can be validated - perhaps
by some experts - before the system accepts any expense information. For
another thing, auditors can periodically examine the vouchers and the informa
tion in the system. The more operationalizations for accuracy that are adopted,
the more accurate such information should become.

However, such an operationalization may have negative side-effects. For
example, validation may HURT operating cost as it involves the time of some
experts. It may also HURT user-friendliness, as it introduces a time delay for
employees to enter information into the system. What if the system allows
users to directly update information in their own files? By not using the time
of experts, this would HELP operating cost, and by not delaying input, this
would HELP user-friendliness. But it may HURT accuracy, as we will not have
a high level of confidence in the information the system maintains.

Thus, to design accuracy into the system, we need to be aware of vari
ous decomposition and operationalization methods and use them appropriately.
They should not excessively hurt other NFRs such as user-friendliness, perfor
mance, cost and production time. Better yet, we need a systematic way of
using the methods, considering their tradeoffs, recording design rationale, and
evaluating design decisions.

In this chapter, we show how the NFR Framework helps to systematically
"design accuracy into" a system. In effect, we produce an Accuracy Require
ments Framework which customizes the NFR Framework to deal with accuracy
requirements.

This first involves clarifying the notion of accuracy, which is used to treat
accuracy requirements as softgoals. For this, Section 6.1 identifies different
types of accuracy requirements, which are used as types of accuracy softgoals;
the things that should be accurate are used as topics of softgoals.

In addition, this involves cataloguing the knowledge of methods for re
fining accuracy softgoals. Sections 6.2 through 6.4 show the three types of
refinement methods described in Chapter 4, for decomposing and clarifying ac
curacy softgoals, operationalizing accuracy softgoals, and providing rationale
for design decisions.

Finally, this involves cataloguing knowledge of implicit contributions be
tween accuracy softgoals and other NFRs. Section 6.5 presents an accuracy
correlation catalogue.

Section 6.6 illustrates the use of the Accuracy Requirements Framework
to develop a sample system. Accuracy softgoals guide the overall process.
The evaluation procedure is applied to a softgoal interdependency graph to
determine the impact of design decisions. Evaluation draws on contributions,
which help describing methods and correlations, and on decisions recorded as
softgoal labels.

ACCURACY REQUIREMENTS 163

6.1 ACCURACY CONCEPTS

What does it mean for information to be accurate? Firstly, we assume that
accuracy is a fundamental semantic attribute of any infol'mation item. By
comparison, weight and volume are fundamental physical attributes of a ma
terial item. By information item, we mean a piece of information, such as
"the colour of the White House," "Sue's address," "Peri is a requirement en
gineer," or "Matthias is a software architect," that we ordinarily use in our
communication.

If Info is an information item, then Accuracy of Info, written
"Accuracy[Info]" is a requirement that Info accurately describe the correspond
ing information in the application domain.

How can we have a high degree of confidence in the accuracy of an infor
mation item? In order to answer this question, we need to better understand
how information is created, manipulated and managed within and outside the
system. For this, we introduce the notion of information flow. This notion will
help clarify various types of accuracy, or lack thereof, and provide intuition for
a variety of methods and correlations.

A Model of Information Flow

Accuracy requirements for information systems require the information main
tained by the system to faithfully describe the corresponding aspects of the
application domain. A fundamental premise in designing accuracy into such a
system is that the accuracy (or inaccuracy) of a piece of information heavily
depends on the way that information is manipulated within the system as well
as in its environment.

For example, information may flow along sequential or parallel paths.
Intuitively, we expect that long sequential paths will allow intermediaries to
introduce inaccuracy, while parallel paths enhance accuracy since the same
message is sent to its destination through more than one route, and the received
messages can be compared with each other.

Figure 6.1 shows a sample information flow network for the travel ex
pense management system. It models the ways that employees and other agents
pass around information items.

In this information flow network, an airline sends the ticket to a project
employee (project member) who gives a copy of the ticket to the secretary.
Similarly, a restaurant gives a receipt to a project employee, who gives it to
the secretary. The secretary determines the total expense from the individual
expense items and sends a reimbursement request form with the vouchers as
supporting documents to the central accounting office. The secretary may also
insert an expense summary into the information system via electronic mail. In
turn, the central accounting office enters the reimbursement request form into
the information system and a reimbursement is issued after a suitably irritating
delay. At the end of each month, the information system produces a monthly
expense report and sends it to the project leader.

164 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Information Flow

restaurant

Legend

airline
company

secretary

expense
summary

travel expense
management system

project leader

o agent or channel

information item

i unit flow of information

Figure 6.1. An example of information flow.

ACCURACY REQUIREMENTS 165

This simple, but common, scenario shows that an information item may
be created, derived from other information items, maintained, and transmitted
by a number of agents, which may be persons or systems. In addition to agents,
the scenario includes channels used to transmit information. Individual links
in the information flow network shown in Figure 6.1 represent unit flows.

We will present a qualitative model with decomposition rules for ac
curacy softgoals as well as operationalization methods that HELP or MAKE
accuracy softgoals. Other approaches may treat accuracy as a probabilistic,
fuzzy, or quantitative measure, in particular domains.

We treat accuracy as a non-functional requirement, to be satisficed. Our
confidence in the accuracy of information items can range from total confidence
to a complete lack of confidence.

Accuracy Types

Figure 6.2 shows a type catalogue which organizes the various specializations
of accuracy.

NFR Type Catalogue I
NFR Types

/l~ NFRChrom~

C:=~::4i~.],ru~"
OneToOneAccuracy I valueAccurac~onSls\ten, / 1

PropertyAccuracy ,~

ExternalConsistency InternalConsistency

Figure 6.2. An accuracy type catalogue.

Why do we have an accuracy type catalogue? A type catalogue helps the
developer accommodate different needs of different application domains. Here,
for example, accuracy is presented as a specialization of integrity. Instead of
forcing the developer to adopt any particular definition of accuracy, the type
catalogue helps the developer pick out the concepts of accuracy that are most
appropriate to the particular application domain. As a consequence, accuracy

166 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

requirements can be refined into more specialized requirements involving sub
types of accuracy.

Characteristics of NFRs are shown in small italics at the right of Fig
ure 6.2. They are not NFR types in their own right. However, they modify
and specialize the meaning of types. Specialized NFR types can be formed by
combining NFR types and characteristics. For example, InternalConsistency is a
specialization of the Consistency subtype of accuracy, and takes on the Internal
characteristic.

There are several specializations of the Accuracy type. Some relate enti
ties in the domain to information in the system.

Suppose the system records information that the credit account of Chris
is a gold account. If Chris' account is indeed a gold account, the information in
the system would have PropertyAccuracy. By a property accuracy requirement,
we mean that an object in the system is recorded as an instance of the correct
class. This requirement is written PropertyAccuracy[Info], where Info is an
object in the system. PropertyAccuracy is also called C1assAccuracy.

ValueAccuracy[Info, attribute] is a requirement that the value of an at
tribute of Info be accurate. For example, the information that the balance on
the credit account of Chris is $700 would have ValueAccuracy if $700 is indeed
the value of the balance.

OneToOneAccuracy[Info] is a requirement that an object in the system
has one and only one corresponding entity in the application
domain [Borgida85a]. For example, if Chris is represented in the system as
if he were two different clients, thus stored in two different records, the infor
mation will not be accurately maintained by the system. Also, if one system
record is used to refer to more than one client, say Chris and Sue, that partic
ular information is again inaccurate.

Another kind of accuracy requirement has to do with the timeliness of
information items. This addresses concerns such as "the age of a person, as
recorded in the system, is within one year of the real age ofthe person involved"
[Greenspan84] (p. 87). Thus, an information item has TimelyAccuracy, written
TimelyAccuracy[Info], if the time interval of the information in the system is
faithful to the corresponding time interval in the domain. TimelyAccuracy is
different from the TimePerformance type discussed in Chapters 8 and 9.

Another kind of accuracy is Consistency. ExternalConsistency is about
the correspondence between values in the system and corresponding values in
the application domain. In contrast, InternalConsistency is about the validity of
relationships among various values in the system.

Each accuracy softgoal then has one of the accuracy subtypes as the
softgoal type, and one or more information items as topics of the softgoal. An
example is:

Accu racy [Accou nt]

This is requirement that Account information be accurate.
As accuracy softgoals have information items as topics, satisficing such

softgoals means providing a degree of confidence in the accuracy of information

ACCURACY REQUIREMENTS 167

items maintained by the system. Accuracy softgoals can be written in a longer
form, introduced in Chapter 3, and may optionally have other attributes, such
as priority and author.

Note that accuracy is treated extensionally rather than intensionally
here. In other words, an accuracy requirement for, say, most-highly-rated client
accounts is interpreted extensionally as a requirement for the accuracy of partic
ular accounts maintained by the information system, rather than intensionally
as a requirement for the accuracy of the description of the concept of MostHigh
lyRatedClientAccount included in the system specification. An intensional treat
ment of accuracy would attempt to measure the accuracy of information items
such as generic descriptions; the description of the HaveMeeting activity, for ex
ample, may be accurate or inaccurate depending on its declared sub-activities,
constraints, parameters, etc. This notion of accuracy seems appropriate when
one attempts to measure the faithfulness of the world model - that is a part
of functional requirements - to the application domain.

REFINEMENT METHODS

Refinement methods (Chapter 4) are generic procedures for refining a softgoal
into one or more offspring. When collected and organized into catalogues,
refinement methods can offer a body of knowledge for dealing with NFRs in
general, and accuracy requirements in particular. Methods can be shared,
extended, tailored and reused.

Sections 6.2 through 6.4 present refinement methods for decomposition,
operationalization and argumentation of accuracy softgoals.

6.2 DECOMPOSITION METHODS

Decomposition methods provide decomposition of accuracy requirements. They
also allow for different interpretations of accuracy requirements to coexist,
hence accommodating different needs of different application domains.

Decomposing a parent accuracy softgoal results in a set of offspring ac
curacy softgoals. Type decomposition methods generate offspring whose types
differ from that of the parent. On the other hand, topic decomposition methods
generate offspring whose topics differ from that of the parent.

Figure 6.3 shows a catalogue of decomposition methods for accuracy soft
goals. This catalogue, of course, can be tailored and extended by the developer.
Sometimes method names are abbreviated. For example, method names may
omit the term "Accuracy."

Type Decomposition Methods

A type decomposition method produces offspring softgoals with different types
than the parent softgoal. Some examples of type decomposition methods are:

168 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Catalogue

Accuracy Decomposition Methods

Attribute~~r;; \~~ CorrectlnformationFlow
FromPartToWhole \ "" Derivedlnfo~ \

ExplicitAggregation AttributeSelection
Correctlntemal IF

AccuratelnformationReception AccuracyViaSubType
CorrectExternaJ IF

Superclass Conservation

. .?' i Subset AccuracyViaSubclass / '"
ExhaustlveSuperclass Correctlncomlng IF '"

InexhaustiveSuperclass /7/i\ CorrectOutgoing IF
/) ExhaustiveSubclass

ExhaustiveSubset
InexhaustiveSubclass AccuracyViaSubType4

ProperSubset
AccuracyViaSubType3

AccounlAccuracyViaSubclass

Legend IF =Information Flow

Figure 6.3. A catalogue of accuracy decomposition methods.

• AccuracyViaSubType method:
To establish the accuracy of an information item, establish subtypes of ac
curacy, for the information item. This is a specialization of the SubType
method, described in Chapter 4.

One specialization of this method is the AccuracyViaSubType4 method which
addresses the properties, attribute values, one-to-one correspondence, and
time interval, for information items:

PropertyAccuracy[Info] AND ValueAccuracy[Info] AND

OneToOneAccuracy[Info] AND TimelyAccuracy[Info]

SATISFICE Accuracy[Info]

The developer could use only some of the subtypes. For instance, the Ac
curacyViaSubType3 could decompose an accuracy requirement into property,
value, and timely accuracy. The particular selection of subtypes can be
based on academic and industrial experience, and the needs of the domain.

Methods Addressing Information Flow.

There are type decomposition methods which deal with information flow.
These decomposition methods enable developers to divide their concerns ac-

ACCURACY REQUIREMENTS 169

cording to the way information items are manipulated, within and outside of
the system. Figure 6.4 shows kinds of information flow; it is more abstract
than Figure 6.1.

In Figure 6.4, there are different types of agents: source agents from
whom information originates; intermediate agents who receive information and
further transmit it; and destination agents to whom the original information
was intended. In Figure 6.4 "Computer System," such as a travel expense
management system, is an intermediate agent in the flow of information, Infor
mationl, from a source agent to a destination agent.

Of course, an agent can take on different roles, becoming a source agent
for one information item at one time, an intermediate agent for another in
formation item at another time, and a destination agent at yet another time,
etc. For example, a secretary may travel to participate in a meeting and re
quest for expense reimbursement. The secretary would be the source agent
for information describing the nature of the travel, as well as an intermediate
agent for retransmitting information about airfare from an airline to the central
accounting office.

To generate an information item, several informa.tion items may be
needed by an agent. For example, the travel expense management system may
use InformationB (e.g., per diem food expense) to service another information
item, Information4 (e.g., total expense). In this case, the accuracy of a derived
information item would depend on the accuracy of other information items.

Methods for Correct Information Flow.

The following methods address the correct manipulation of information
items, whether the information is accurate or not.

• CorrectlnformationFlow (ClF) method:
To establish correct manipulation of information items, establish that they
are correctly manipulated by the system (CorrectlnternallnformationFlow) and
that they are correctly manipulated while they are outside the system (Cor
rectExternallnformationFlow) .

CorrectlnternallnformationFlow[Info] AND

CorrectExternallnformationFlow[Info]

SAT ISF ICE Correctl nformation Flow [Info]

• CorrectExternallnformationFlow method:
To establish correct manipulation of information items while they are outside
the system, establish that they are correctly manipulated from the source
agent until received by the system (CorrectlncominglnformationFlow), and
that they are correctly manipulated from the system until received by the
destination agent (CorrectOutgoinglnformation Flow).

Correctlncominglnformation Flow [Info] AND

170 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Information Flow

Legend

Source
Agent

Intermediate
Agent

Infomultion2

Computer System
Information3

Infomultion4

Destination
Agent

o agent or channel

information item

i unit flow of infomultion

Source
Agent

InfomultionA

InfomultionS

InfomultionC

Intermediate
Agent

Destination
Agent

Figure 6.4. A description of information flow.

CorrectOutgoingl nformation Flow [Info]

SATISFICE CorrectExternallnformationFlow[Info]

ACCURACY REQUIREMENTS 171

Shortly below, we will discuss the relationship of correct internal information
flow to accuracy.

• CorrectlncominglnformationFlow method:
To establish correct manipulation of information items obtained from source
agent until received by the system, establish that they a.re correctly manip
ulated from the transmission by the original sender until received by the
interface agent who transmits them to the system (C1FBetweenSourceAndln
terfaceAgent), and that they are correctly transmitted by the interface agent
to the system (CiFFromlnterfaceAgentToSystem).

C1FBetweenSourceAndlnterfaceAgent[Info] AND

CIFFrom InterfaceAgentToSystem [Info]

SATISFICE CorrectlncominglnformationFlow[Info]

Similarly, for the CorrectOutgoinglnformationFlow method, we have:

CI FFromSystemTolntermediateAgent[Info] AND

CI FFrom IntermediateAgentToDestinationAgent[Info]

SATISFICE CorrectOutgoinglnformationFlow[Info]

Relating Accuracy and Information Flow.

Using the notion of information flow, it is possible to address areas of
concern for accuracy by way of some general accuracy type decomposition meth
ods. In order to relate information accuracy to correct information flow, the
developer can use methods dealing with the accuracy of information at the
source agent and in the system:

• AccuratelnformationReception method:

To establish accuracy of information items received by the system, establish
that they are accurate when first transmitted by the original sender (Ac
curateSource), and that they are subsequently correctly manipulated until
received by the system (CorrectlncominglnformationFlow):

AccurateSource[Info] AND CorrectlncominglnformationFlow [Info]

SATISFICE Accu racy [received (Info)]

• Conservation method:
To establish the accuracy of a collection of information items currently in the
system, establish (i) their accuracy, when received by the system from some
external agent, and (ii) their correct internal manipulation by the system.
In other words, information in the system is accurate if the information was

172 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

accurate when received, and the system's internal processing has internally
conserved the accuracy.

Accu racy [received (Info)] AND Correct Interna II nformation Flow [Info]

SATISFICE Accuracy[Info]

This method draws on a decomposition [ITSEC91] of Accuracy into Exter
nalConsistency and Internal Consistency .

• Derived/nfo method:
To establish the accuracy of information items, establish that the function
f which derives them is correctly designed and implemented, and that the
function's source parameters are accurate:

DecompositionMethod Derivedlnfo
parent: Accuracy[Info]
offspring: {CorrectDerivFn[f, Info], AccurateParameters[~}

contribution: AND
applicabilityCondition: Info = f(Info j , ••• , Infon)

In turn, AccurateParameters[~means:

Accuracy[Infod AND ... AND Accuracy[Infon].

This method can be applied to those accuracy requirements whose topics are
derived from other information items. An example is the computeAmount
function shown later in Figure 6.8.

Topic Decomposition Methods

As described in Chapter 4, topic decomposition methods relate topics of a par
ent softgoal to topics of its offspring. Topics of NFRs are often drawn from
the functional requirements. For large information systems, functional require
ments are often organized using a number of "structural axes" of conceptual
modelling, such as specialization and aggregation.

When NFR softgoals are revised via topic decomposition methods, dif
ferent aspects of these structural axes (or organizational primitives) can be
explored by the developer. Different kinds of softgoals (e.g., accuracy, perfor
mance or security) can equally be refined this way. Let us consider the case of
accuracy softgoals.

Decompositions along the Generalization-Specialization Axis.

Chapter 4 introduced some generic topic decomposition methods, in
cluding the Subclass method. To deal with accuracy softgoals, this method is
specialized to the AccuracyViaSubclass method: to establish the accuracy of a

ACCURACY REQUIREMENTS 173

class of information items, establish the accuracy of each immediate specializa
tion of the class.

Decomposition Method AccuracyViaSubclass

parent: Accuracy[to]
offspring: {Accuracy[tod, "', Accuracy[ton]}

contribution: AND
applicabilityCondition: to: InformationCiass

constraint: forAII i: tOj isA to

and 1* set up one offspring for every subclass

of the parent topic *I
While the Sublcass method is parameterized on the softgoal topic, AccuracyVi
aSubclass fixes the topic to be Accuracy (or one of its subtypes).

If the union of the extensions of the subclasses contains all instances of
the general class, we say that the use of subclasses is exhaustive, and the Ac
curacyViaSubclass method is specialized into the AccuracyViaExhaustiveSubclass
method with a contribution type of AND.

Otherwise, the method is specialized into the AccuracyVialnexhaustiveSub
class method and we will need a different contribution type. Suppose that the
three subclasses of Travel Expense (MeetingExpense, ProjectExpense and Member
Expense) do not contain all the instances of TravelExpense. Then establishing
the accuracy of the three subclasses is necessary but not sufficient to establish
the accuracy of TravelExpense. This is represented by the three subclasses mak
ing an AND contribution to their (intermediate) parent, which in turn HELPS
Accuracy[TraveIExpense]. This combined contribution is called ANDJIELPS,
and was described in Figure 4.33. ANDJIELPS is also used for other NFRs,
such as performance.

While AccuracyViaSubclass examines specializations, the AccuracyViaSu
perclass method allows for navigating the structure of information items along
the generalization hierarchy.

Decompositions along the Aggregation-Decomposition A:ris.

Several generic topic decomposition methods are described in Chapter 4.
They can be specialized to deal with accuracy softgoals. For example, the At
tributes method refines an NFR softgoal for an item into several NFR softgoals,
each dealing with one attribute of the item. Here the method is specialized
to the AccuracyViaAttributes method. Using this method, to establish the ac
curacy of a topic, establish the accuracy of each attribute of the topic. This
method enables the developer to navigate the structure of information items
along the aggregation dimension.

Other topic decomposition methods include:

• AttributeSelection method:
To establish the accuracy of an information item obtained by a sequence of

174 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

attribute selections, establish the accuracy of each information item obtained
in the sequence. For example, to establish the accuracy of
Chris.account.balance, first establish the accuracy of Chris.account and then of
(Chris.account).balance. This attribute selection assumes that there are classes
of customers (Customer) and accounts (Account), as well as a class of legiti
mate account balance values.

• ExplicitAggregation method:
To establish the accuracy of an information item whose value is derived from
a "source" information item by a simple assignment, make the source an at
tribute of the derived item and use the attributeSelection method. Suppose
that the date an expense is incurred (Expense.date) is derived from the date
specified in a reimbursement request form (reimbursementRequest.date). Now
to establish Accuracy[Expense.date], establish
Accuracy[Expense. reim bursementRequest.date] after making reimbursementRe
quest an attribute of expense information. This way, any change to the date
in a reimbursement request gets automatically propagated to the relevant
expense date.

• FromPartToWhole method:
To establish the accuracy of an attribute of an information item, establish
the accuracy of the information item in its entirety. This method is in
contrast to the attribute method which decomposes the whole into parts.
This method is intended to shift focus from individual attributes to the set
of all the attributes of a class of information items.

Note that the generic versions of these methods also apply to other NFRs,
including performance and security.

Other Decomposition Methods.

Topic decomposition methods along the classification or context hierar
chy can also be introduced when needed.

Other types of topic decomposition methods are also possible. One ex
ample is the Subset method:

• Subset method:
To establish the accuracy of a set of information items, establish the accuracy
of each subset of information items.

If the union of the subsets includes all members of the set, this method is
specialized to AccuracyViaExhaustiveSubset, with contribution type AND.
Otherwise, the AccuracyViaProperSubset method is used, with contribution
type ANDJlELPS.

• Superset method:
The Accuracy ViaSuperset method is also available.

ACCURACY REQUIREMENTS 175

6.3 OPERATIONAlIZATION METHODS

As described in Section 4.3, the know-how for satisficing non-functional re
quirements can be captured and encoded as operationalization methods, and
compiled into catalogues. Accuracy operationalization methods refine accuracy
softgoals into accuracy operationalizing softgoals which are intended to enhance
the level of our confidence in information accuracy.

For instance, the accuracy of information about high transportation ex
penses, Accuracy[TransportationExpense.highSpending] could be aided by peri
odic auditing of expense databases. This knowledge can be encoded as an
operationalization method, shown earlier in Figure 4.21:

OperationalizationMethod Auditing
parent: Accuracy[Info]
offspring: Audit[Info]

contribution: SOME+
applicabilityCondition: Info in Database

For another example, the Validation method can refine a more specific ac
curacy softgoal, such as CorrectlnfoFlow[Info], into an accuracy operationalizing
softgoal, Validation[Info]. For example,

Validation[TransportationExpense.highSpending] HELPS

Correct InfoFlow[Transportation Expense. highSpendi ng]

Following procedural guidelines for validation and performing comprehensive
checking of Info will help the accuracy of Info at the source and correct manip
ulation during the transmission from this source to the system.

To avoid introducing numerous distinct names, we use the convention
that the names of an operationalization method and the type of the opera
tionalizing softgoals it introduces can be identical (here, Validation).

Accuracy operationalization methods can refine accuracy softgoals into
accuracy operationalizing softgoals. These methods can also refine accuracy
operationalizing softgoals into other accuracy operationalizing softgoals.

Methods for Changing the Processing of Information

We take the premise that the accuracy of information items depends entirely on
the process in which they are manipulated within the system and its environ
ment. As a consequence, our accuracy operationalizing methods alter the in
formation manipulation process. James Martin [Martin73], for instance, offers
a glossary of techniques for improving accuracy. Figure 6.5 shows a catalogue
of accuracy operationalization methods.

Some examples of accuracy operationalization methods are:

• Confirmation
The informant, either a machine or a person, double-checks the previously
submitted information item. This method can be specialized to Confirma
tionVialdenticalChannel, if the transmissions for both the first and the second

176 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Catalogue

Accuracy Operationalizatlon Methods

E'COP'OOHaodl;0 ~"Ih~,"
ResourceAssignment / I \ ~ TransmissionValidation

Validation Certification

OpenValidation /!1\ i \ingUlarCertification

ClosedValidation ChainedCertification

CreationValidation TrackingAssistance

TransmissionValidation i"
JustificationEnforcement PeriodicTrackingAssistance/!1\ AperiodicTrackingAssistance

DirectJustification CrossExamination

IndirectJustification !"
FixedJustification HistoryExamination

LiberalJustification StatisticsExamination

Confirmation

11
\\enderConfirmation

SourceConfirmation

ConfirmationVialdenticalChannel

ConfirmationViaDistinctChannel

ConsistencyChecking

i ~einContextCheck
CheckSum 1\\angeCheCk

ReasonablenessCheck

AttributeSelectioninContextCheck

Auditing
~
AuditingStandards

! ~eriodicAuditing
AperiodicAuditing

AuthenticationEnforcement

t
AuthenticationWithExpertKnowledgeAndPowerToEnforce

CheckPoint

CheckTransitionpoin(!1
CheckCommunicationPoint

CheckTransactionCompletionPoint

Betterl nformationFlow

AdaptiveFlo/!1\
FixedFlow

BetterTopology

BetterConstituents

BetterChann!!1
BetterAuditing

BetterMedium

Verification

co-senderverificatio(!1\
PredecessorVerification

VerificationVialdenticalChanneJ

VerificationViaDistinctChannel

Figure 6.5. A catalogue of accuracy operationalization methods.

ACCURACY REQUIREMENTS 177

checks take place using the same channel, and ConfirmationViaDistinctChan
nel (e.g., via a daisy-channel), otherwise.

• Verification:
A verifier, who is a co-worker of the sender of certain information item makes
a duplicate entry of this item, possibly in a separate recording device, into
the system (e.g., via duplicate key-entry operations). As with Confirma
tion, this method can be specialized to VerificationVialdenticalChannel and
VerificationViaDistinctChannel.

• Validation:
A validator performs checking of certain information item, using certain
records or procedural guidelines to ensure that this item meets predeter
mined standards. The kind and thoroughness of the checking is specified
in specialized methods. The CreationValidation method requires an agent
to directly contact the information source and ensure that the information
item at the system is identical with that at the source. Drawing on [Wino
grad86], other specializations of this method include Experimentation, which
requires conducting a test to determine the validity of the information item,
TransmissionValidation, which requires inspecting transmissions to unveil the
presence of some faulty substance, and LogicalValidation, which requires de
ducing formal proofs of claims.

• Certification:
The Certification or ExpertConsultation method seems to be a frequently used
method in a variety of organizations. A certifier, with a high ranking being
regarded as highly reliable (usually with expertise in a certain area), assumes
certain responsibilities for the future. For example, a bank manager may
issue a letter of credit, thus making a commitment to make payments to
others in the future.

• Authorization:
An authorizer grants the receiver of certain information items authority to
transmit them to the system.

• Audit:
An accuracy auditor uses procedures to periodically go through suspicious
sampled information items.

A specialization of this method is InternalAuditing, in which the system checks
the validity of information items against a set of inter-related constraints
and reports suspicious information items. [Svanks81] reports that internal
auditing enabled the discovery of several welfare "claimants" who were in
fact deceased.

• ConsistencyChecking:
To prevent frequently-occurring errors, the system enforces certain integrity
constraints. For example, check-sums incorporated into ISBNs protect against
transposition of digits.

178 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Various specializations of this method are used to satisfice internal consis
tency, a subtype of accuracy [ITSEC91].

These methods can be specialized in accordance with the kind of agent
which performs the needed task, the mode of checking (e.g., interactive
vs. batch), the presence and kind of evidence attached, the time of checking
(e.g., input or output time), etc.

A Categorization of Accuracy Operationalization
Methods

Accuracy operationalization methods can be used for precautionary, preventive
or curative purposes:

Precautionary Accuracy Operationalizing Methods:
These methods can be used to reduce the chances of occurrence or recurrence
of inaccurate information items, which are caused by faulty transmission. For
example, the BetterlnfoFlow method and its variants are intended to achieve
more reliable information flow by upgrading what is involved in information
transmission, such as senders, receivers, and communication channels.

Preventive Accuracy Operationalizing Methods:
To prevent inaccuracies, these methods usually require direct interaction
between the system and agents in the application domain. These methods
are carried out at the time information items are received by the system. For
example, the Confirmation and Verification methods are intended to detect
inaccuracies of information items and prevent them from permeating the
system.

Curative Accuracy Operationalizing Methods:
These methods may either disallow and avoid possibly inaccurate infor
mation items, or identify them as such and allow them to persist, as in
[Borgida85b]. These methods can be carried out whenever inaccuracies are
suspected, including information processing and output time. For example,
the ExceptionHandling method can be used to take certain measures against
any further propagation of inaccuracies. In order to detect the source of
errors and to recover from inaccuracies, the CheckPoint and Validation meth
ods can be used to trace inaccuracies backward to their transmission paths
and sources.

Resource-Related Operationalization Methods

In order to use some of the above methods, the developer needs to allocate
certain resources in the application domain and assign them to the tasks associ
ated with the methods. For instance, there is the ValidationResourceAvailability
method (Figure 6.6):

Availablelnfo[lnfo] AND

ACCURACY REQUIREMENTS 179

Method Definition, Parameterized on Topic

ValidationBy
[Information,
Agen~

AvailableAgent
AvailablePolicy [Agen~

[PolicyOnlnformation)

(a) Method definition

o
ValidationBy

[GoldAccount.highSpending,
Senior Secretary)

(b) A method application

Figure 6.6.

Resultant SIG

ValidationBy
[GoldAccount.highSpending,
Senior Secretary]~--r__

AvailableAgent
[GoldAccount.highSpending) AvailablePolicy [Senior Secretary]

[policy-on-spending-pattems]

The ValidationResourceAvailability method.

Ava iIablePol icy[PolicyOnInformation] AND

AvailableAgent[Agent]

SATISFICE Validation[Info, Agent]

To validate information, three resources should be available: knowledge about
the information, a policy which states predetermined standards on permissible
values of the information, and an agent to perform the task.

For instance, validation can be carried out by a senior secretary (Fig
ure 6.6), or by a junior secretary who compares expense vouchers:

Availablelnfo[SummaryAndVouchers] AND

AvailablePolicy[policy - on - voucher - comparison] AND

AvailableAgent[JuniorSecretary]

SATISFICE ValidationBy[SummaryAndVouchers, JuniorSecretary]

This method application takes an operationalizing softgoal as the parent and
produces other ones as offspring.

180 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Agents can be made available by assigning new or existing resources to
them. Granting new resources can be operationalized by NewAcquisition. Ex
isting resources, possibly under-utilized can be assigned via Workload Increase.

ValidationResourceAvailability is a specialization of the ResourceAvailabil
ity method:

Availablelnfo[Info] AND

AvailablePolicy[Policy] AND

AvailableAgent[Agent]

SATISFICE NFRType[Info, Agent]

6.4 ARGUMENTATION METHODS

Argumentation methods are used to support or deny the use of accuracy re
finement methods, as well as prioritization. For instance, treating the accuracy
of information about foreign travel expenses as critical can be sufficiently jus
tified via a specialization of the Vital FewTrivialMany prioritization template,
introduced in Chapter 4:

Claim

MAKES

["Foreign travel costs more than domestic;

treat foreign travel expense as critical"]

(!Accu racy [ForeignTravel Expense] {critica I}

MAKES Accuracy[ForeignTravel ExpenseJ)

Here the argument is used to justify the prioritization of parent
Accuracy[ForeignTravelExpense] into offspring IAccuracy
[ForeignTraveIExpense]{critical}. The first MAKES indicates that the claim sat
isfices the interdependency link which is enclosed in parentheses. The second
MAKES indicates that satisficing the critical accuracy softgoal will satisfice
Accuracy[ForeignTraveIExpense]. Recall Figure 4.30 which provides a template
for prioritization.

Figure 6.7 shows a catalogue of argumentation methods. Note that sev
eral, such as PolicyManualConsultation and Prioritization, are generic and can be
applied to a variety of NFRs (e.g., accuracy, performance and security). Let's
consider some of the methods.

• PreferentialSelection:
Select a method which helps meet preferred softgoals. For instance, if an
operationalizing softgoal helps or makes one accuracy softgoal but hurts
or breaks a second accuracy softgoal, a pre-existing preference for the first
softgoal over the second would be a positive argument for selecting this
operationalization method.

ACCURACY REQUIREMENTS 181

Method Catalogue I

Argumentation Methods

preferentialselecti0 ~uthorityconsultation
PolicyManualConsultatlon Prioritization

'"fom~ PM.Co""".tio(!1\ ! ~FeWTriVialManYBaSedselection
Formal FR-Consultation PriorityBasedSelection

ExtemalReferenceCitation ! ~.priOrityBasedselectionDevelopmentGuidelineConsultation

PM-PriorityBasedSelection

Legend I
PM = Policy Manual

Figure 6.7. A catalogue of accuracy argumentation methods.

• PolicyManualConsultation:
When a question arises about the applicability of various types of methods,
consult policy manuals in the application domain.

• PriorityBasedSelection:
Select a method in accordance with their relative priority. Suppose an op
erationalizing softgoal is good for one accuracy softgoal but bad for a sec
ond. Now if the first has greater priority than the second, this would be an
argument for selecting the first operationalizing softgoal. The above Pref
erentialSelection method is similar to this method, but does not necessarily
depend on priority, but can be related to users' or developers' taste.

• SynergisticSelection:
(This method is not shown in the figure.) Select a method if two or more
softgoals can collectively justify its application. Each one alone may be
insufficient to justify the application. As we will see in Chapter 8, this
principle is also applicable to performance requirements, where a "family
plan" retrieval obtains several pieces of information in one operation.

6.5 CORRELATIONS

As described in Section 4.5, correlation rules catalogue knowledge about in
teractions between and among NFR softgoals, operationalizing softgoals and
claim softgoals. Such knowledge is compiled into a catalogue of correlation

182 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

rules for reuse, tailoring, and extension. Some correlation rules were described
in Section 4.5, such as FlexibleUserinterfaceHURTSAccuracy.

Let's consider some other accuracy correlation rules, used to describe
situations in application domains. Consider the Validation operationalization
method which can be applied to information about expense date, amount,
location, etc., in order to enhance our level of confidence in the accuracy of
such information. This method can cause delays, as it takes time to carry out
the validation process, and consequently make information items less timely.
This negative interaction with timely accuracy requirements is written:

Validation[Info] HURTS TimelyAccuracy[Info]

WH EN excessive (duration(validationActivity(Info)))

Correlation rules can lead to a large number of interdependencies in a softgoal
interdependency graph. A condition can be used to control the invocation of
rules. In the above example, the condition follows the WHEN keyword. This
correlation can also be written in a longer format:

Correlation Rule Validation HURTSTimelyAccuracy

parent: TimelyAccuracy[Info]

offspring: Validation[Info]
contribution: HURTS
condition: excessive(duration(va lidationActivity(Info)))

Here, the developer can estimate the duration of the validationActivity,
after considering the person and documents involved. If the duration seems
prolonged enough to cause significant delays for the users of the system, the
developer can set excessive(duration(...)) to true. This will activate the corre
lation rule.

Situation Descriptors

Note that excessive(...), duration(..), and validationActivity(...) are not NFRs.
Rather they are descriptors of situations. Here they are used to form conditions
for a correlation rule. They can also be used within methods and claims. To
syntactically distinguish them from NFRs, situation descriptor names start
with a lower-case letter, and their parameters are placed within parentheses.
Note that situation descriptors can be used when dealing with a topic of an
NFR, as in validationActivity(Info).

These are examples of correlation rules which allow for the capture of
interactions between operationalizing softgoals and accuracy softgoals.

Conditions can also specify relationships between topics of various soft
goals, using situation descriptors. Relationships such as isA, instanceOf, sub
setOf and supersetOf can be used in situation descriptors. For example:

Validation[Info'] HURTS

WHEN

TimelyAccuracy[Info]

excessive(duration(validationActivity(Info)))

and Info' isA Info

ACCURACY REQUIREMENTS 183

The WHEN condition requires the topic of the Validation softgoal to be a sub
class of the topic of the TimelyAccuracy softgoal. This generates a variety of
topics which meet the condition.

Correlation Catalogues

Correlation Catalogue

Contribution of
offspring
Operationalizing
Softgoal

Accuracy
[Info]

to parent
NFR Softgoal

I
Security

[Info]

I

ValidationBy
[Agent, Info] II

HELPS WHEN not condl
HURTS WHEN condl

HELPS WHEN not cond2 I
BREAKS WHEN cond2

MutuallD HELPS
[Agent, Info
Procedure, Time]

condl: excessive(duration(validationActivity(Info)))
cond2: accessDisaliowed(Agent, Info)

HELPS

Table 6.1. An accuracy correlation catalogue.

Correlation rules are collected in correlation catalogues (Table 6.1). Cat
alogue entries can be of the form:

contribution

This indicates the contribution of the offspring to the parent. This particu
lar catalogue shows the contributions of operationalizing softgoals to accuracy
softgoals and other NFR softgoals. Entries can also be of a more general form:

contribution WH EN condition

When the condition holds, these entries provide the contribution of the offspring
to the parent.

In addition to operationalizations for accuracy, other operationalizations,
say for security, can be positive or negative for an accuracy softgoal. These can
also be recorded in a correlation catalogue. Consider the security operational
izing softgoal MutuallD[Agent, Info, Procedure, Time], used when an Agent
attempts to access information item Info. To mutually ensure their identities,
the Agent and the system process use a test Procedure during a Time inter
val. The procedure requires alternating queries and answers by the two; this is
similar to the challenge response process [Pfleeger89]. This would be positive

184 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

for accuracy softgoals if mutual identification prevents a malicious user from
penetrating the system and falsifying information.

6.6 ILLUSTRATION

In this section, we illustrate how accuracy requirements are addressed for the
example of the travel expense management system.

Initial Accuracy Requirements and Functional
Requirements

Suppose that "All travel expenses much be accurate" is an initial accuracy
requirement. The developer can represent this requirement as an NFR softgoal:
Accuracy[Travel Expense].

In addition to accuracy requirements, other NFRs may also be stated.
For example, one security requirement is that junior staff not have access to
reimbursement information.

In the functional requirements, TravelExpense has three subclasses:
MeetingExpense, ProjectExpense and MemberExpense. Attributes of these classes
are also specified. One of them, ProjectExpense.amount, is derived by a deriva
tion function computeAmount(Expense.project, Expense.date,
ProjectExpense.month). More specifically, the amount of each project expense
is the sum of all those expense items which belong to the particular project
and whose date falls within the month of the project expense item.

In addition, company policy limits the time that managers spend on
reimbursements.

Method Applications

At this point, the developer might feel that the topic of the expression is too
coarse-grained to apply any specific accuracy operationalizing softgoals. Thus,
the developer applies the Subclass method and decomposes the accuracy soft
goal Accuracy[TraveIExpense] into three offspring softgoals, which correspond to
the three subclasses of TravelExpense.

Accuracy[MeetingExpense] AND

Accuracy[ProjectExpense] AND

Accu racy [Mem berExpense]

SATISFICE Accuracy[TraveIExpense]

This now allows the developer to deal with accuracy concerns for the
subclasses of travel expenses. The above decomposition is illustrated at the
top of Figure 6.8. The legend for figures is given at the front of this book.

Now each of these offspring needs to be satisficed. Focussing on the
offspring Accuracy[ProjectExpense], the developer applies the AccuracyVialndi
vidualAttributes method and decomposes the softgoal into the accuracy of the

ACCURACY REQUIREMENTS 185

SIG

Correctlntemal InformationFlow
[ReimbursementRequest.date)

Accuracy
[Expense.project]

.:~" ...-\;---~

Claim \:._,-,Y
["accurate date is needed
for an accurate exchange rate")

Accuracy
[Received(ReimbursementRequest.date))

AccurateParameters
[computeAmountj

Accuracy
[ProjectExpense.month]

Accuracy
[Expense.date)

Prioritization

Accuracy
[Summary.when]

Legend computeAmount ; computeAmount(Expense.project, Expense.date, ProjectExpense.month)

Figure 6.8. Decompositions for accurate travel expenses.

individual attributes:

Accuracy[ProjectExpense.month] AND

Accu racy [ProjectExpense.a mou nt] AND

186 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Accu racy [ProjectExpense. budgetLeft]

SATISFICE Accuracy[ProjectExpense]

The developer first considers expense information, and focusses on the
accuracy of total monthly project expenses, Accuracy[ProjectExpense.amount].
Since the functional requirements specify that ProjectExpense.amount is de
rived by a derivation function computeAmount(Expense.project, Expense.date,
ProjectExpense.month), the developer instantiates the Derivedlnfo decomposi
tion method. This method decomposes Accuracy[ProjectExpense.amount] into
two offspring, one for correctly designing the function, and the other for the
accuracy of the parameters of this function (Figure 6.8):

CorrectDerivFn[computeAmount, ProjectExpense.amount] AND

AccurateParameters[computeAmount(

Expense.project, Expense.date, ProjectExpense.month)]

SATISFICE Accuracy[ProjectExpense.amount]

Now the developer takes the second step of the Derivedlnfo method. To
examine the parameter list of computeAmount, the developer applies the Subset
decomposition method to AccurateParameters[computeAmount]:

Accuracy[Expense.project] AND

Accuracy[Expense.date] AND

Accuracy [ProjectExpense. month]

SATISFICE AccurateParameters[computeAmount]

One of the parameters of computeAmount, the date when the expense was
incurred, requires careful treatment, since this information is used in currency
conversion, which is required for most of the expenses. In order to reflect this,
the developer treats the accuracy of date information as being critical, written
IAccuracy[Expense.date]{critical}. This prioritization, indicated by "I," can help
reduce the search space in expanding the softgoal interdependency graph, and
facilitate conflict resolution.

Two alternatives are foreseen by the developer in obtaining this critical
information. The developer uses the AccuracyOfDifferentDerivations method to
indicate that the information may come from:

• (a) the expense reimbursement requests (by requiring the members to send
their reimbursement request forms to the central management office), or

• (b) the expense summary (by requiring the secretary to submit it directly).

This disjunction,

Accuracy[ReimbursementRequest.date] OR Accuracy[Summary .when]

SATISFICES !Accuracy[Expense.date]{critical}

ACCURACY REQUIREMENTS 187

is shown near the bottom of Figure 6.8.
The functional requirements indicate that ReimbursementRequest should

be received from an external agent. To ensure its accuracy, the developer uses
the Conservation method. The accuracy of ReimbursementRequest.date depends
on its accuracy at the time it is received, and on correct internal processing by
the system afterwards:

Accuracy[received (ReimbursementReq uest.date)] AND

Correct Internall nformation Flow [Rei mbursementReq uest .date]

SATISFICE Accuracy[ReimbursementRequest.date]

Instead of focussing on accuracy of just the date, the developer considers
all the information in reimbursement request forms received. This is done by
using the FromPartToWhole method (Top of Figure 6.9):

Accu racy [received (Rei mbu rsement Req uest)]

MAKES Accuracy[received(ReimbursementRequest.date)]

The developer uses the AccuratelnformationReception method to refine
the softgoal:

Correctl ncomingl nformation Flow [Rei mbu rsementReq uest] AND

AccurateSource[ReimbursementRequest]

SATISFICE Accuracy[received(ReimbursementRequest)]

This decomposition is at the top of Figure 6.9.

Considering, Choosing and Justifying an
Operationalization

Unfortunately, ensuring correct creation of information items at the source
or subsequent transmissions from the source to the system is in many cases
costly and impractical. Being unsure of what operationalization methods are
appropriate for the application domain, the developer consults the director in
charge of policies. The director prefers a policy of careful examination for those
materials that are directly related to issuing a cheque. With the view that the
Validation method conforms to this policy, the developer first decides to apply
this method (middle of Figure 6.9).

Validation[ReimbursementRequest] HELPS

Correctl ncomingl nformation Flow[Rei m bu rsementRequest].

Then the developer supports the decision by referring to the policy director's
statement:

Claim ["Director of policy: Careful examination when issuing a Cheque"]

188 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

From Part To Whole

Accurate Information Reception

Accuracy
[Received(ReimbursementRequest,datel)

Accuracy
[Received(ReimbursementRequestl]

CorrectlncominglnformationFlow
[ReimbursementRequest)

Validator A fsignment Justification

AccurateSource
[ReimbursementRequest]

+ + .:....-,,-,\ Claim
IE-----------;:,_.-(;y ["Director of policy:

- Careful examination
when issuing a cheque"]

Validation
[ReimbursementRequest]

+ + ':':/-'1 Claim
'~.'_JY ['Development Guidelines Consultation:

Consider junior secretaries for
general tasks')

ValidationBy
[ReimbursementRequest.
JuniorSecretary]

Figure 6.9.

MAKES

Operatianalizing the accuracy af reimbursement requests.

(Va lid atian [Rei mbu rsementReq uest] HELPS

CorrectlncominglnformationFlow[ReimbursementRequest])

Here the claim MAKES the interdependency link, shown within parentheses.
To successfully validate the reimbursement request, resources need to be

allocated and assigned to the validation task. The developer consults the de
velopment guidelines and discovers that junior secretaries are one good class of
candidate for carrying out the validation, although not the only one. Thus, in
allocating resources, a junior secretary could be assigned the role of validator,
via the ValidatorAssignment method, resulting in the refined operationalizing
softgoal ValidationBy[ReimbursementRequest. JuniorSecretary] (bottom of Fig
ure 6.9). The assignment of the junior secretary as validator is supported by a
development guideline consultation, using the ValidatorAssignmentJustification

ACCURACY REQUIREMENTS 189

template (Section 4.4):

Claim ["Development Guidelines Consultation:

Consider junior secretaries for general tasks"]

MAKES

(Validation By[Reimbu rsementReq uest, J un iorSecretary]

MAKES Va lidation [ReimbursementReq uest])

The developer selects ValidationBy[ReimbursementRequest. JuniorSecre
tary]. The selection of this operationalizing softgoal is shown by "-./' (satis
lked) label in Figure 6.9. Using the evaluation procedure of Chapter 3, this
choice satisfices Validation[ReimbursementRequest].

While no conflict has yet been encountered for the decomposed offspring,
note that later refinements of the graph may make selected operationalizations
unsuitable.

We have shown the use of methods to refine softgoals. Although omitted,
all the interdependencies in the SIGs of this chapter have V as their default
labels, since they result from applications of catalogued methods.

Softgoals can also be directly refined by developers, using their own
expertise. Our course, such refinements may then be considered for inclusion
in a method catalogue.

Detecting a Conflict

In particular, the non-functional requirements disallow junior staff from ac
cessing reimbursement information. This security requirement, shown at the
left of Figure 6.10, is in direct conflict with having junior secretaries validate
reimbursements:

ValidationBy[ReimbursementRequest, JuniorSecretary] BREAKS

Security[ReimbursementRequest, accessDisaliowedBy, JuniorSecretary]

This conflict is detected by a correlation rule, which generates a new BREAKS
contribution shown with a dashed line in the figure. (A correlation catalogue
for accuracy was shown in Table 6.1.)

As a result of further evaluation in Figure 6.10, the security softgoal
is labelled "x" (denied), as validation of information about reimbursement
requests by a junior secretary directly violates the requirement (see left-hand
side of figure). This leads to more general security softgoals (top left of figure)
being denied as well.

Considering an Alternative

There are many options available to the developer, when confronted with a
conflicting situation like the above. Senior staff could do the validation. Other

190 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

S/G

@securityT [...)

+

From Part To Whole

Accurate Information Reception

CorrectincominglnformationFlow
[ReimbursementRequestj

Accuracy
[Received(ReimbursementRequest.datel)

Accuracy
[Received(ReimbursementRequestl)

AccurateSource
[ReimbursementRequest)

+

++

+ + '::j'-'\ Claim
' }Y ["Development Guidelines Consultation:

- Consider junior secretaries for
general tasks")

Validation
[ReimbursementRequestj

ValidationBy
[ReimbursementRequest,
JuniorSecretary}

r:Fj C!aim .
tE--------~,__ }..l [Director of polley:

- Careful examination
when issuing a cheque"]

Security
[ReimbursementRequest,
accessDisallowedBy,

............ JuniorSecretary]

""""""""""""

Legend

t
A portion of the graph is omitted

Figure 6.10. Detecting a negative impact on a security requirement.

operationalization methods can be considered: reimbursement requests could
be received without validation or without any operationalization method; and
the security softgoal could be relaxed.

Two alternatives for !Accuracy[Expense.date]{critical} were shown near
the bottom of Figure 6.8. The developer already considered Accuracy [Reim
bursementRequest.date] in Figures 6.9 and 6.10.

Now the developer considers Accuracy[Summary.when). The developer
applies the Conservation and FromPartToWhole methods. Then the developer
applies the Confirmation method (resulting in Confirmation[Summary) in the
middle of Figure 6.11), which does not result in a conflict.

ACCURACY REQUIREMENTS 191

SlG

AccuraL:)' ofDi(ferent Derivations

Accuracy
[Expense.date)
{critical}

Accuracy
·IReimbursementRequest.date]

Accuracy
[Summary.when]

Accuracy
[Received{Summary.whenl)

From Part To Whole

CorrectlncominglnformationFlow
[Summary]

+ +

CO/lservation

CorrectlntemallnformationFlow
[Summary.when]

Accuracy
[Received(Summary}]

Accurate Information Reception

AccurateSource
(Summary]

Confirmation
[Summary]

Certification
[Summary]

Exhaustive Subclass

Certification
[LowSummary]

CertificationBy
[LowSummary,
Manager]

I?-----';'i)-+.:.....:..+---""
.... " / ..

Claim
["Policy Manual:
Maximum v.. of
manager's time for
reimbursement-related
activities']

Certification
[HighSummary]

CertificationBy
[HighSummary•
Manager]

Figure 6.11. Evaluation of selective certification of expe,nse summaries.

192 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

The developer feels that summary information would be indeed accurate,
if more operationalization methods can be used. Thus, the developer applies
another method, the Certification method, where the manager of the accounting
department in the central management office is assigned the role of the certifier.
Thus, two operationalization methods are used for the accuracy of the summary.

We imagine that company policy would limit the time that managers
spend on reimbursement-related activities, to, say, one-quarter of their time.
However, certifying all expense summaries would well exceed this limit. In
resolving this situation, the developer again consults the policies and the man
agers to find out that managers could keep within the time limit by certifying
only summaries with a high monetary value. We estimate that these constitute
only 5% of all summaries. Figure 6.11 shows the design rationale recorded as
a result of eliciting and acquiring knowledge about the application domain. As
well, the figure shown the progress in the overall development.

We have specified the nature of the subclass refinement. Here it is ex
haustive; it is also disjoint. Note that we can use this information in later steps
to restrict correlations and control graph development.

Selection of an Alternative

The developer decides to have members send reimbursement requests to the
central management office. To ensure accuracy, confirmation is used, along
with certification of high summaries by a manager. The selected alternatives
are shown with a "V' (satisficed) at the bottom of Figure 6.11. Low summaries
are not certified. Rejected (denied) alternatives are shown with "x" in the
figure.

To avoid security problems, the developer does not choose validation
and submission by junior secretaries, which had been previously chosen in Fig
ures 6.9 and 6.10. This is an example of retracting a selection.

Relating the Target System to Functional Requirements

The right hand side and bottom of Figure 6.12 relate the functional require
ments for expense management to the alternatives for the target system. The
target alternatives are related to the operationalizing softgoals of the SIG.

Here, the functional requirements include the maintenance of expense
information. This is related to the selected target, which has summaries con
firmed and high summaries certified. The selected target is related to the
selected operationalizing softgoals.

Procedure Manual

The success or failure of operationalization methods relies on the cooperation
between the system and agents in the environment, which is described in a
users' procedure manual, which is initially drafted by the developer during the
design process. The manual indicates policies that the agents in the environ-

ACCURACY REQUIREMENTS 193

SlG

AccuraQi ofDifferent Derivations

Accuracy
[ReimbursementRequest.date)

Accuracy
[Expense.date]
{critical}

Accuracy
[Summary.when)

Maintain
Expense

Information

!dl!.lservation

fu!!mWjve Subclass

AccurateSource
[Summary)

Certification
[HighSummary]

CertificationBy
[HighSummary,
Manager)

\.

Certification
[Summary)

CorrectinternallnformationFlow
[Summary.when)

Accurate Information Reception

Accuracy
[Received(Summaryl]

~---=-..:-::.......,..,---..-, + +
l- ./),-:--=-------"'1
"'_ .._1-

Claim
['Policy Manual:
Maximum \4 of
manager's time for
reimbursement-related
activities')

CertificationBy
[LowSummary,
Manager)

From Part To Whole

I.
I

Accuracy
[Received(Summary.whenl)

I Certification
• [LowSummary)
I.
I.
I.
I
I.
I

CorrectlncominglnformationFlow
[Summary)

Confirmation
[Summary]

Confirm expense summaries, and have managers certify high summaries

Figure 6.12. Relating functional requirements to the target system.

194 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

ment should obey when interacting with the system in order to satisfice the
methods selected. For instance, if a Validation method is selected, the manual
indicates that members must transfer their expense information to the sys
tem and to the project office which will enter the same information into the
system. Reubenstein [Reubenstein90] recognizes the need for generating such
manual documents, in acquiring formal requirements from possibly inconsistent
or ambiguous informal descriptions.

6.7 DISCUSSION

Key Points

In this chapter, we have shown how to use the features of the NFR Frame
work to represent and use accuracy requirements during information system
development.

This "Accuracy Requirements Framework" captures development knowl
edge for accuracy requirements, by cataloguing refinement methods and corre
lation rules from industrial and academic sources.

To deal with accuracy, a model of information flow has been provided.
This helps a developer consider the accuracy of information while it moves
around a system and its environment.

The travel expense management system has illustrated the use of ac
curacy requirements for choosing among alternatives and justifying decisions,
throughout the development process. These are systematically recorded in soft
goal interdependency graphs, which capture the complex and dynamic develop
ment process. The graphs provide a development history which is available for
later review. The development process could be quite complex, involving many
alternatives and tradeoffs, and quite dynamic, as a selected helpful method can
later become unsatisfactory when a conflict is encountered or a better solution
is found.

This complexity and dynamicity in turn support the need for the process
oriented framework. With a final product alone, be it a design or an imple
mentation, it would be even harder for the developer to understand what went
on during the process, and consequently to maintain and upgrade the system.

Literature Notes

This chapter is based on [Chung93a] [Mylopoulos92a].
There are several sources of the methods and correlations catalogued

in this chapter. Accuracy depends on the correctness of information in the
system, with respect to corresponding items in the domain. This is discussed
in [Borgida85a].

In [Parker91]' accuracy is described as having two components: authen
ticity which reflects the faithfulness or true representation of data, and integrity
which means wholeness or completeness of the data being maintained by the
system or the data being void of missing elements. In [Motr089], database in-

ACCURACY REQUIREMENTS 195

tegrity is characterized by two components: validity which is like authenticity,
and completeness (or onto aspect), the database's maintaining every relevant
fact.

The notion of Value Accuracy is similar to Heninger's [Heninger80] de
scription of accuracy constraints in hardware and software engineering as the
allowable deviation between actual and ideal values. This may be contrasted
with the notion of external consistency, the correspondence between values in
the system and what they are supposed to represent in the application domain.
As will be discussed in detail in Chapter 7, external consistency is one of the
two notions which characterize accuracy in the area of security [ITSEC91]; the
other notion is internal consistency, valid relationships among various values in
the system. There are other similar notions of accuracy in the areas of security
and database.

Categorization of information items, along with a treatment of accuracy
as a partial function, is given in more detail in [Chung91a] and [Chung91b).

To resolve conflicts, a negotiation-based approach may be taken (e.g.,
[Robinson90], [Johnson91)). We use argumentation methods to record how
conflicts are resolved, e.g., by attachment of priorities.

7 SECURITY REQUIREMENTS

One important concern in building an information system is information secu
rity, the protection of information as an asset of an enterprise, just like money or
any other forms of property. But how do we "design in" information security?

To design information security into a system, we need to make the design
process less ad hoc and more systematic. For such a systematic methodology,
we need to address the following issues:

1. How can a wide variety of security methods, and their tradeoffs, be made
available to the developer?

2. How can security requirements be systematically integrated into the design?

Without a systematic methodology, security requirements are often
retrofitted late in the design process (e.g., how to securely update an account),
or pursued in parallel but separately from functional requirements (e.g., how
to update an account). These practices tend to result in systems which cannot
be accredited, are more costly and less trustworthy [BenzeIS9].

This chapter shows how to systematically "design in" information secu
rity using the NFR Framework, while dealing with the above issues. The result
is a "Security Requirements Framework."

In the "information age," information security is becoming more and
more important. This is especially true for the increasingly-used Internet, which
is not secure as it stands today. A pragmatic option is to understand how
attacks occur and how best to protect against them [Bishop97].

198 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

We use the notion of "satisficing" in the NFR Framework, which closely
corresponds to the notion of security assurance [E. Lee92]. The notion of "sat
isficing" reflects the discussion in [Moffett88] that the risk of security breaches
can only be limited in magnitude, reduced in likelihood and made detectable,
but not removed.

Section 7.1 discusses several different notions of security and how they are
treated as softgoals, which then drive the overall design process. Sections 7.2
through 7.5 describe how to catalogue of methods and correlations for security.
Section 7.6 illustrates the use of these components to address security require
ments for an account management system. Finally, Section 7.7 summarizes key
points in this chapter and presents references for further reading.

7.1 SECURITY CONCEPTS

Information security means protecting information. However, when it comes to
the issue of the scope of protection, a multitude of definitions is encountered,
and these diverse definitions can be a source of confusion.

NFR Type Catalogue

NFRTypes

r NFR Characteristics

/j
secu\r~;ty _"Jii \

t Developmental \
Internal-External

Availability OperationalSecurity)" \

Integrity Confidentiality Internal

/ '" \lntemaJ External
Completeness Accuracy confiden,ality

,

Operationallntemal
Confidentiality

Extemal
Confidentiality

IntemalConsistency

ExtemalConsistency

Figure 7.1. A catalogue of security types.

SECURITY REQUIREMENTS 199

The NFR Framework allows for such diverse notions to be captured in
types of security softgoals and organized in a security type catalogue (Figure 7.1).
This type catalogue then serves as a rich set of alternatives to choose from as
well as check-points to guard against omitting any important security concerns.
There are some important aspects of security to consider:

• There are different emphases in definitions of security.

Confidentiality, guarding against unauthorized disclosure, is the primary
emphasis in evaluation criteria [TCSEC85], [ITSEC89], and [ITSEC91].

In some commercial applications, the focus is on Integrity [Clark87],
guarding against unauthorized update or tampering.

Availability or Assured Service, guarding against interruption of service;
this, along with confidentiality and integrity, are general concerns in
evaluation criteria.

A broader definition of security encompasses Availability as well as Au
thenticity, genuineness or faithfulness of true representation (comparable
to "external consistency" in [ITSEC91]), Integrity, wholeness or com
pleteness, Utility, fitting the use (e.g., a money amount in dollars, not in
yen), and Confidentiality or Secrecy [Parker91].

• In addition, there are different characteristics of security requirements, shown
on the right-hand side of the figure:

The primary scope of protection could be confined to information resi
dent internally in the computer system, externally, or both.

The scope can be operational, for run-time operation, or developmental,
for the development stage [Amoros091].

Figure 7.1 shows subtypes of Security which have these characteristics.
OperationalSecurity is one subtype, which refers to information security
during system operation, while InternalConfidentiality refers to the con
fidentiality of information items residing in the system.

The type catalogue shows different aspects of security. Note that fo
cussing on one subtype of security may not satisfice other subtypes. For in
stance, focussing on the confidentiality aspect may not be sufficient to meet the
accuracy needs of a specific application domain. Authorized access, meeting
access-rule security requirements, does not necessarily preserve accuracy, due
to either unintentional mistakes or intentional fraud.

Once a type is chosen, appropriate topics are needed in order to express
a security softgoal. One important class of topic of a security softgoal is infor
mation, or information item, which seems to be appropriate as our concern lies
in the development of information systems. For instance, Security[Account] is
a security softgoal for our account management system, where Security is the
softgoal type and Account is the softgoal topic. Account stands for all of the

200 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

accounts. This softgoal expresses the requirement that all accounts should be
secure.

In addition to information items, such as Account, security softgoals can
have other topics, such as the authorizer, access condition, delegation function
([Wood80] [Hartson76]), and task [Steinke90]. A general security softgoal would
be of the form:

Security [Info, Authorizer, Agent,

Task, AccessCondition,

DelegateTo, DelegationFunction,

FailureCondition, FailureAction]

where Authorizer specifies what Agent is allowed to access Info under Access
Condition during the course of Task. Agents may DelegateTo others their rights
when DelegationFunction evaluates to true. To deal with access failures, Fail
ureCondition may be specified together with some appropriate FailureAction
to be taken.

A sample security softgoal would be:

Security [Account, SecurityAdministrator , Manager,

AIITasks, Always,

AssistantManager, LeaveOfAbsence,

UpdateOwnlnfo, NotifySecurityAdministrator]

Here, security administrators authorize managers to always access account in
formation for any task, with the permission to delegate their rights to assistant
managers during their leaves of absence. Employees should not update their
own information (e.g., salary), and any such attempt should be reported to the
security administrator.

In the rest of this chapter, security softgoals have information items as
the main topic. Hence, satisficing such softgoals means assuring the security of
information items maintained by the system. The security softgoals that follow
often include only the information topic.

In the example used in this chapter, we will describe the application of
the NFR Framework to security requirements to achieve operational security
- security of information system at run-time.

REFINEMENT METHODS

There are three types of refinements: decomposition, satisficing and argumen
tation. Each refinement would be the result of either the instantiation of a
generic method or input given explicitly by the developer. Generic refinement
methods conveniently allow the capture, organization, and reuse of research
results and industry experiences. The next three sections describe refinement
methods for decomposition, operationalization, and argumentation of security
softgoals.

SECURITY REQUIREMENTS 201

7.2 DECOMPOSITION METHODS

Security requirements are often ambiguous and invite many interpretations
from different groups of people. Decomposition methods help analyze security
softgoals and clarify their meaning. They also link security requirements with
other NFRs.

Decomposition methods also facilitate separating more sensitive infor
mation from less sensitive, thereby avoiding a single but costly strategy that
uniformly protects all types of information. They help to selectively add secu
rity enforcement features on top of a particular type of operating system which
might be adopted to meet a target security level. Examples of security lev
els (security classes) include mandatory security (the system is responsible for
enforcing access control based on the assignment of sensitivity labels to infor
mation and clearance levels to users) and discretionary security (the user/owner
is responsible for access control).

Reflecting the traditional wisdom of structural "divide and conquer,"
decomposition methods also alleviate the extreme difficulty with the design for
very large requirements descriptions and their certification. For instance, Di
Vito et al. [Di Vit090] note (p. 307) "If over 380 000 lines of text were printed at
50 lines per page, we would have over 7600 pages of proof documentation," and
advocate the need for decomposition: "It is essential that the proof effort be
decomposed and modularized to avoid confronting too many details at once."

Decomposition of security requirements can result in changes in types
and topics, as well as other attributes, such as their levels of sensitivity.

Some methods are fairly generic, applying to a variety ofNFRs (security,
performance, accuracy, etc.). Other methods are specific to the security type
or security techniques.

Security Sub-Type Methods

The SecurityViaSubType3 method is a type decomposition method, based on
[TCSEC85], that introduces three subtypes: Confidentiality, Integrity, and Avail
ability. This method decomposes a security softgoal into three offspring soft
goals:

Confidentiality[Info] AND Integrity[Info] AND Availability[Info]

SATISFICE Security[Info]

This is a specialization of the SubType method, which can be used to deal with
the various definitions of security as described in the previous section. Let's
consider some other type decomposition methods:

• SecurityViaSubType5 method:
To establish the security of information items, establish each of the compo
nent subtypes of security: Availability, Authenticity (or genuineness), Integrity
(wholeness), Utility (fitting the use), and Confidentiality (or secrecy), as in
[Parker91].

202 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

• InternalExternal method:
To establish information security of the organization, establish InternalSe
curity - security of information residing inside the system - and Exter
nalSecurity - security of information external to the system. This is an
adaptation of the automated security policy and organizational security pol
icy in [Sterne91].

Security Topic Decomposition Method

As a topic decomposition method, the Subclass method, which is applicable
to a variety of softgoals (including accuracy and performance), is also appli
cable to security softgoals. For instance, since there are two specializations
of Account in the account management system, the confidentiality softgoal
Confidentiality[Account] can be refined using the Subclass method:

Confidentiality[RegularAccount] AND Confidentiality[GoldAccount]

SATISFICE Confidentiality[Account]

This method is an adaptation of the inheritance policy in [Fernandez89].

Security Specializations of Generic Methods

There are several other topic decomposition methods that are applicable to a
variety of NFRs (including security, performance and accuracy):

• Subset method:
To establish the security of a set of information items, establish the security
of each subset of information items.

• AttributeSelection method:
To establish the security of an information item to be obtained by a se
quence of attribute selections (e.g., Joe.project.budget), establish the secu
rity of each information item obtained in the sequence (e.g., Joe.project, then
(Joe. project). budget).

• Class method:
To establish the security of a class of information items, C, establish the
security of its defining aspects and its extension:

Security[containingClasses(ClJ AND

Security[superclasses(ClJ AND

Security[attributes(C)J AND

Security[extension (C)]

SATISFICE Security[(C)J

• Derivedlnfo method:
This was introduced in the previous chapter. The security of a set of infor
mation items is established in terms of security of both the function, which

SECURITY REQUIREMENTS 203

can be used to derive these items, and each of this function's source param
eters. For instance, the security of account balance information, which can
be derived from debit and credit information, depends on the security of the
derivation function and each of this function's parameters.

• IndividualAttribute method:
To establish the security of the attributes of a class, establish the security
of each attribute of the class. This method draws on vertical splitting in
[J. Smith83], which is also used for addressing performance requirements.

Now we consider some methods that draw on security techniques or
adapt generic methods to security:

• IndividualAttributeSecurityLevel method:
To establish the security of an attribute of a class, establish the security of
each security level associated with that attribute. This method is similar, in
spirit, to the horizontal splitting in [J. Smith83].

• Inheritance method:
To establish the security of the attributes of a class, establish the security
of the attributes of its immediate specializations (this is an adaptation of
the first policy in [Fernandez89]; this is contrasted with the Subclass method
which may lead to other aspects of security, for the specializations, such as
definitions, object existence, etc.).

• C1assAttribute method:
To establish the security of a class, establish the security of its inherited and
specialized attributes (this is an adaptation of a policy in [Fernandez89]).

• AccessGroup method:
To establish information security, establish information security m accor
dance with the access groups.

• Compartmentalization method:
For information security for an organization which has complex structural
divisions, introduce compartmentalization, departmentalization or segmen
tation, by introducing new topics.

For example, if the accounting department is divided into foreign and domes
tic work units, this method can be used to separate foreign security concerns
from the domestic ones:

Security[Account, DomesticAccounting] AND

Security[Account, ForeignAccounting]

SATISFICE Security[Account, AccountingDept]

204 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Security Prioritization Methods

As described in Chapter 3, the priority of a softgoal can be changed by modify
ing an attribute of the softgoal, such as its criticality. Suppose that a high level
of internal confidentiality is demanded for gold accounts, as these are large in
number and usually have a high spending limit. This is recorded by setting the
priority attribute to critical:

InternaIConfidentiality[GoldAccount] {critical}.

A variety of priority levels can be specified. This can be mapped to a hi
erarchical design, which facilitates simultaneously attaining several important
requirements [Neumann86],

• Categorization (or SecurityCiass) method:
To meet the target level of quality, categorize a given requirement as manda
tory, discretionary, or minimal. Mandatory security requires a very high
level of care. Discretionary security requires access to information be con
trolled by users. Minimal security categorizes a security softgoal as non
sensitive.

At the beginning of a softgoal interdependency graph expansion process,
the notion of security tends to be quite coarse-grained and yet it is often un
clear what notion of security to adopt. The developer can cope with this type
of situation by repeatedly applying decomposition methods. At times, clarifi
cation of the notion of security can come later during the design process. Other
NFRs can also be considered. Developers can choose to wait until they have
gained more understanding by applying some operationalization or argumen
tation methods. Developers can select and apply appropriate decomposition
methods. The developer can control the manner in which security softgoals
are decomposed, focussing on particular types and topics, and give different
treatment to different kinds of information items.

7.3 OPERATIONALIZATION METHODS

Operationalization methods refine a security softgoal into a set of security op
erationalizing softgoals, thereby committing the design that is being generated
to particular ways of satisficing security softgoals. For instance, satisficing the
internal confidentiality softgoal for accounts demands, among other things, ac
cess authorizations. Such a demand can be met by applying the Authorization
method, with Account as the topic:

AccessAuthorization[Account] HELPS InternaIConfidentiality[Account]

Access authorization not only has many variations but is only one of
many available security operationalization methods. Figure 7.2 is a catalogue of
security operationalization methods that includes methods from the literature
that have been used in practice to enforce various types of security policies.

SECURITY REQUIREMENTS 205

Method Catalogue I

P'rt""""'o'~\~ RapldP"",
VirusFilter / \ ~ Encryption

AccessAuthorization Auditing Alarm ~ '\

A"""R""V~ld~1~,oo/. \ \ \ N:'::::;oo
:::~:::.L //:1Aut7hentiloa\~"y,::'~1 Phy:~":::

Biometrics / / \ Mutual

/..

\

CardKey Single OneSided

Password MultiLayer

VoiceRecognition \ /
FingerPrintVerification

MultiLayerPassword

"MutualMultiLayerPassword

Figure 7.2. A catalogue of security operationalization methods.

Some of these methods are explained below:

• Identification:
To tell the system who uses it, identify the user's title.

• Authentication:
To ensure that users are in fact whom they claim to be, test their iden
tity. This method can be classified and specialized along many dimensions,
including:

the type of protocol used. This includes personal knowledge (such as a
Password method), a physical device (such as CardKey), a physical trait
(such as a biometrics device for FingerPrintVerification and VoiceRecog
nition) .

the number of authentications. This includes SingleAuthentication, which
requires performing single login-time authentication, and MultiLayer
Authentication, which requires multiple passwords or procedures. An
example is multiple keys for bank safes (where each key is kept by a
different employee) to protect highly sensitive information.

206 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

the parties involved. This includes OneSidedAuthentication, where the
(trusted) system authenticates the user, and MutualAuthentication, where
the agent and the system mutually ensure the identity of each other (Re
call the discussion of MutuallD in the previous chapter).

An authentication method can be a combination of several methods. For
example, the MultilayerPassword (or MultiplePassword) is a specialization of
the Password and MultilayerAuthentication, hence exhibiting characteristics
of both. Similarly, the MutualMultilayerPassword is a specialization of Pass
word, MultilayerAuthentication and MutualAuthentication, hence exhibiting
characteristics of all three.

• AccessRuleValidation:
To allow access to information items, validate that the user or program has
the needed access right. Specializations of this method include:

simple access rule validation based on rules which state who can access
what information under what conditions; and

access rule validation based on an audit trail, which is input to the
access authorization decision [Karger88], which may be needed for the
enforcement of separation of duties [Clark87] (For instance, different
tasks may be required to be done by different employees).

• Pertu rbation:
To protect against inference from a statistical database, perturb its data
[Matloff86]. Specializations of this method include NoiseAddition - per
turbing data by adding random noise - and ValueRemoval - perturbing
data by removing extreme values (e.g., for a census database).

• Alarm:
To prevent potentially malicious access to certain vital information, notify
authorities of such accesses, either failures or successes. This method may
be specialized into PhysicalAlarm, notification with an alarm device, and
SoftAlarm, on-line notification of authorities by the system.

• SecurityAuditing:
To enable authorized personnel to monitor security breaches, selectively
maintain an audit trail on significant events. Specializations of this method
include AuditingSubsystem [Picciotto87] which is used for a compartmental
ized systems with workstations.

• limitingAccessTime:
To reduce the potential for theft, limit access time.

• Checksum:
To protect against changes to the data or classification labels, a checksum
may be applied using various granularities of data. A specialization of this
method is CryptographicChecksum [Denning84], where a cipher checksum is
used.

SECURITY REqUIREMENTS 207

7.4 ARGUMENTATION TEMPLATES AND METHODS

Argumentation templates and methods are used to generate arguments which
can be used to support or deny security softgoals.

Claims help readers understand reasons about how rules of access rights
were arrived at. For instance, for a complex organization, the size of access
rules could become an issue: the bigger the size, the harder to establish their
consistency and allow change later on.

Claims also help readers understand how a particular level of security,
or confidentiality, was selected. For instance, the decision to adopt mandatory
security could involve the consideration of the perceived risks of the system as
related to its data and processing environment.

Some security requirements can be met by any number of different design
techniques [Woodie83]. Here, claims help readers underst.and how refinement
methods were chosen, especially when cost and resource limitations could be
come an Issue.

For instance,

Claim ["Gold accounts whose balances exceed $5000 are few,

but a high level of confidentiality is desired"]

is an argument which can support the treatment of protecting large gold account
spending as a very critical confidentiality softgoal.

Claims can be introduced and used to justify particular ways of treating
softgoals or interdependency links. For instance, highly sensitive information,
such as large gold account spending, may be separated from less sensitive infor
mation and treated as such by the use of the VitalFewTrivialMany argumentation
method, which was presented in Chapter 4:

Claim

MAKES

["Gold accounts whose balances exceed $5000 are few,

but a high level of confidentiality is desired"]

(!Confidentia lity [LargeGoldAccou nts] {critical}

MAKES Confidenti ality [LargeGoldAccou nts])

Here the claim justifies the prioritization of the confidentiality softgoal.

7.5 CORRELATIONS

Security requirements can interact with each other, and with other NFRs. Cor
relation rules catalogue knowledge of conflict or harmony among various NFRs.
They are then used to detect and consider tradeoffs among security operational
ization methods.

For an example of conflict, consider the method of perturbing the data
in a statistical database, NoiseAddition. This method contributes to enhancing
confidentiality softgoals. However, such perturbation could induce severe bias

208 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

- underestimate or overestimate of the true value - into responses to user
queries [MatIoff86], hence negatively influencing accuracy softgoals. To warn
the developer of any undesirable consequences, the knowledge about the generic
interaction between accuracy requirements and the perturbation method can
be expressed by a correlation rule:

NoiseAddition[Info'] HURTS

WHEN

Accu racy [Info]

Info' isA Info

Here, Info' isA Info holds if the topic of the noise addition softgoal (an infor
mation item) is a specialization of the accuracy softgoal.

There are other examples of correlations arising from the security meth
ods described earlier. LimitingAccessTime could help both (value and property)
accuracy and confidentiality, but hurt timely accuracy. Encryption helps confi
dentiality but could again hurt (value and property) accuracy, as it reduces the
chance of direct examination. On the other hand, Verification, which was de
scribed in the previous chapter, is a commonly-occurring accuracy operational
ization method, which could hurt confidentiality if the verifier is not allowed to
access the verification information.

Recall from earlier chapters that situation descriptors can be used to
form conditions for a correlation rule. A topic relation condition is a particular
kind of condition of a correlation rule. For instance, the following topic relation
condition relates i, the topic of a parent softgoal , to i', the topic of an offspring
softgoal, when one is a subclass, superclass, subset, superset or instance of the
other:

i' isA j or

j' subsetOf or

i' instanceOf i or

isA j' or

subsetOf i' or

instanceOf i'

As a specialization of AccessRuleValidation (ARV), the AuditTrailBasedARV
method requires built-in procedures for authorizing an access with the use of
an audit trail as input to the access authorization decision. Such procedures
in general require frequent access to disk. The larger the size of an audit
trail, the more severe penalty such a softgoal would impose on the performance
of processes doing a great deal of file system manipulations [Karger88]. In
fact, [Picciotto87] reports that in building an effective auditing subsystem on
workstations, disk-intensive processes were slowed down by a factor of 2, while
processor-intensive activities were not affected.

7.6 IllUSTRATION

We now show how a developer could deal with security requirements for a
sample system, here an account management system. The developer's decisions
and design rationale are recorded in a softgoal interdependency graph.

SECURITY REqUIREMENTS 209

Functional Requirements and Security Requirements

The system handles expenses which are initially paid by employees, typically
by credit card. Reimbursement cheques are issued to employees.

The overall security requirement is to maintain accounts securely. This
includes information inside and outside the system. In the domain, priority
is given to maintaining security to gold accounts, especially those with large
balances.

Initial Softgoal and Subtype Refinements

The developer starts with an initial softgoal, Security[Account] (top of Fig
ure 7.3).

SIG

Accuracy
[Account]

Integrity
[Account]

Completeness
(Account]

ExtemalConfidentiality
[Account]

InternalConfidentiality
[Account] .

Figure 7.3. Refinement of a security softgoal by subtypes.

The developer repeatedly applies type decomposition methods
(Figure 7.3). The developer first applies the SecurityViaSubType3 method, gen
erating three offspring, namely integrity, confidentiality, and availability soft
goals. Then the developer refines the confidentiality and integrity softgoals,
again using SubType methods.

Confidentiality needs to be enforced for both information that will reside
inside the projected system, and information that will be in external media,
such as paper or microfilm. In order to address these needs, the developer
applies the Internal External method and generates offspring Internal Confidential
ity[Account] and ExternaIConfidentiality[Account].

Dealing with Internal Confidentiality

Now the developer focusses on internal confidentiality of accounts (shown at
the top of Figure 7.4, a continuation from the bottom of Figure 7.3).

210 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

ACCUraCyQ
[Account) : +

InternalConfidentiality
[Account]

Generate
Reimbursement

Cheque

SoftAlamn

Prioritization

,.,'''',Claim, .I. ~ ["Design Guidelines:
1_...... 1_)'" Gold accounts are important"]

IntemalConfidentiality
[GoldAccountl

Individual Allrjbutes

, InternalConfidentiality
• IGoldAccount.lowSpending]

{critical)

, InlernalConfidentiality
• [GoldAccount.highSpending)

{critical}

,-'""-, Claim
~ .I. , ["Design Guidelines:

'-•• jY High spending is very critical"]

" InternalConfidentiality
•• [GoldAccount.highSpendingl

{veryCritical}

Security Level

" InternalConfidentiality
•• [GoldAccount.highSpending)

{securityLevel=mandatory}

CommunicatingScriptWithTrigger

..
..

..
,/

....

AccessAuthorization
[Account] InlernalConfidentiality

RegularAccountJ 1(1+

AccessRule
Validation .I

Authentication

Identification,Password
&AccessRuleValidation

SinglePassword
[Account]

+

Figure 7.4. SIG for confidential accounts.

Then the developer considers internal confidentiality of both gold ac
counts and regular accounts.

SECURITY REQUIREMENTS 211

Prioritization and Security Levels

In the functional requirements, the security of gold accounts is very important,
since they have high spending limits. Thus the developer focusses on Inter
naIConfidentiality[GoldAccount] (right hand side of Figure 7.4). This softgoal is
prioritized as critical, and this decision is justified by referring to the design
guidelines.

There are two kinds of gold accounts: those with high spending usage,
and those with low usage. Each account has attributes to identify these two
groups, so the developer uses the IndividualAttributes method to produce two
softgoals.

The developer then identifies the gold accounts with high spending us
age as being very critical (shown with "! I" in the figure, and priority attribute
veryCritical). This further prioritization is justified by referring to design guide
lines.

In view of the importance of gold accounts with high spending usage,
the developer applies the SecurityLevel method. This sets the security level
(security class) of the softgoal to mandatory, one of the eight classes of en
hanced protection in [TCSEC85]. To operationalize mandatory security, an
alarm will be needed to notify authorities of accesses to information. It may
be a PhysicalAlarm or a SoftAlarm.

Authorizing Access

We've considered operationalizations for internal confidentiality for an impor
tant, but small, group of gold accounts. Let's now consider some operational
izations for internal confidentiality of all accounts.

The developer chooses the AccessAuthorization operat.ionalization (at the
left of Figure 7.4, near the top). This HELPS InternaIConfidentiality[Account]
as well as Accuracy[Account].

Using the catalogue of Figure 7.2, the developer can use the special
izations of AccessAuthorization to refine the AccessAuthorization[Account] op
erationalizing softgoal. It is refined into Identification[Account], Authentica
tion[Account] and AccessRuleValidation[Account]. Note that. softgoal topics are
sometimes omitted from figures, typically when the parent and the offspring
have the same topic.

To consider specific kinds of authentication the developer examines the
specializations of Authentication in the catalogue. Accordingly, Authentica
tion[Account] is refined into Biometrics[Account]' CardKey[Account] and Pass
word[Account]. Anyone of these operationalizations can be used, so the contri
bution type is OR.

Selecting a Target System

To address authentication, the developer chooses a card key system along with
passwords. In fact, a combination of two password schemes is chosen. A sin-

212 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

gle password helps internal confidentiality for regular accounts. A multi-layer
password discipline (MultiplePassword) helps internal confidentiality for gold
accounts with high spending. Biometrics are not chosen, as some users may
object to their usage.

A combination of identification, passwords and access rule validation is
selected (shown near the bottom left of Figure 7.4).

This leaves the choice of alarms. SoftAlarm is chosen to avoid the noise
generated by a PhysicalAlarm.

The use of SoftAlarm has some implications for the target system. Spend
ing limits will have to be monitored over a long time period, and will be pe
riodically adjusted. Certain situations will "trigger" alarms, adjustments, or
communication between the system and the manager. This will be implemented
by a long-term process (script) with communication and triggering mechanisms,
shown as CommunicatingScriptWithTrigger at the bottom right of Figure 7.4.

The relationship of operationalizations to the target system is shown at
the bottom of the figure. Along the right side of the figure is a link relating the
target system to the source functional requirements, shown at the top right of
the figure.

The success of security operationalization methods also relies on the co
operation between the system and agents in the environment. The users' proce
dure manual should indicate policies that the agents in the environment should
obey when interacting with the system in order to satisfice the confidentiality
specific methods selected. For example, the nature of the communication be
tween the manager and the system can be specified in the manual.

Evaluating the Impact of Decisions

What is the overall impact of the decisions? The evaluation procedure starts
with the "leaves" of the graph, often found at the bottom of figures.

On the right hand side of Figure 7.4, the choice of an alarm leads to the
critical NFR softgoal, IlnternaIConfidentiality[GoldAccount.highSpendingJ{critical}
being satisficed.

On the left hand side of the figure, the use of card key and passwords
satisfices authentication. The use of authentication, along with access rule
validation and identification satisfices AccessAuthorization[AccountJ. This in
turn HELPS satisfice the accuracy of accounts.

In addition, the use of a single password provides weak positive support
W+ for InternaIConfidentiality[RegularAccount].

Until more support is given to satisfice
IlnternaIConfidentiality[GoldAccount]{critical} (for example, addressing internal
confidentiality of low-spending gold accounts), the developer feels that the top
softgoal of InternaIConfidentiality[Account] has not yet been satisficed, and sets
the label to undetermined.

SECURITY REQUIREMENTS 213

Although omitted, all the interdependency links in Figure 7.4 are sat
isficed (i.e., have '\I"have as their label), since the links are the results of
applying catalogued methods.

7.7 DISCUSSION

Key Points

In this chapter, we have used the NFR Framework to produce a Security Re
quirements Framework to represent and address security requirements during
information system development.

Various kinds of available development knowledge specific to dealing with
security requirements needs to be captured and organized. The Security Re
quirements Framework helps meets this need.

Now let's consider the questions we raised at the beginning of this chap-
ter:

• How can a wide variety of security methods, and their tradeoffs, be made
available to the developer?

Catalogues of security refinement methods and correlations facilitate the sys
tematic capture and reuse of design knowledge. Decomposition methods can
guide disambiguating and choosing appropriate notions of security from a
rich, diversified set of security notions. For instance, the developer can focus
on the confidentiality aspects of run-time operations, instead of addressing
broader issues, such as availability and recovery.

Decomposition methods can also be used to gradually refine an abstract
security requirement into one or more concrete ones with different levels
of security. For example, classes and attributes can be associated with a
sensitivity level (e.g., top secret or secret) [Fernandez89] [G. Smith89].

In moving towards a target design, operationalization methods can guide the
selection of specific security techniques. For instance, authentication or ac
cess rule validation (e.g., [TCSEC85], [ITSEC8!J], [ITSEC91] or
[CTCPEC92]) can be selected. Such operationalizations also have varia
tions, such as a password authentication mechanism, using personal knowl
edge, biometrics for fingerprint-verification or voice-recognition, which test
personal characteristics. Control or deterrent measures [Parker91] are also
available, such as alarms, encryption, and physical-access lock~.

Catalogues of correlation rules facilitate the systematic capture and reuse
of knowledge of softgoal harmony and conflict. For example, a correlation
rule can state that biometric authentication improves system security, but
may not be user-friendly. Concerning tradeoffs for biometrics, [Lawton98]
states that a biometric system is unlike many other security methods that
can be lost, stolen, forged, or forgotten. On the other hand, such a system
can be quite complex due to the need for sophisticated databases, search
algorithms, etc.

214 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

• How can security requirements be systematically integrated into the design?

When security requirements are treated as softgoals, consideration of design
alternatives, analysis of design tradeoffs, selection among design alternatives
and justification of design decisions are all carried out in an attempt to meet
the softgoals. Hence, security requirements become an integral part of the
design process in which they serve as selection criteria for choosing among
myriads of decisions, which then can act as basis for justifying the overall
design.

Literature Notes

This chapter is based on [Chung93a,b].
Leakage, damage or loss of information, which is resident either in com

puter memory or in a medium such as paper, microfilm or communication line,
could lead to violations of privacy, financial loss or even loss of human life.
For instance, revealing credit ratings, medical history or criminal records could
all have serious consequences for individuals, while destruction of computer
equipment or networks could jeopardize the entire operation of an enterprise.
Examples of information security breaches have been reported widely in the
literature [Adam92] [Neumann91] [Perry84] [Parker84a].

Treating security requirements as softgoals to be satisficed can be seen
as complementary to a product evaluation approach to security. In a prod
uct evaluation approach, evaluation criteria serve as benchmarks for selecting
a level of security and meeting it for the target system. For instance, the
"Trusted Computer Systems Evaluation Criteria" (also known as TCSEC or
the more colloquially as the "Orange Book") [TCSEC85] lays out criteria to
categorize a system into one of eight hierarchical classes of enhanced protection
(e.g., discretionary and mandatory). The "IT Security Criteria: Criteria for
the Evaluation of Trustworthiness of Information Technology Systems" (or the
"Green Book") [ITSEC89] describes eight security functions, addressing a wide
variety of commercial and governmental security concerns, in a less formal and
less rigidly prescriptive manner. A more recent document, the "Harmonized
Criteria" [ITSEC91], emphasizes the assurance aspect of security and method
ological aspect for evaluating security functionality. For a further comparison,
see [E. Lee92]. Due to their generality, these product evaluation criteria are
not intended to prescribe or proscribe a specific development methodology for
semi-formally managing or guiding the complex development process.

While not specific to information systems, there is a body of work which
adapts existing software life cycle models to the development and change of
secure systems. For instance, security activities can be integrated into the
system life cycle, and reviewed and audited in the software quality assurance
process [Tompkins86]. Additionally, guidelines can be offered for dealing with
certain security concerns for battle management systems, such as visibility and
configuration control [Crocker89], in accordance with military security stan
dards for the software development process [DOD-STD-2167A]. Similarly, the

SECURITY REQUIREMENTS 215

spiral model [Boehm86] can be adapted to meet military standards, by pro
viding mappings for phases and points of iterations [Benzel89]. The spiral
model can also be specialized to address both trust and performance, in the
context of Ada development [Marmor-Squires89]. For a decision support sys
tem, which addresses concerns for cost-effective systems, a statistical approach
can be taken to evaluate and choose the most preferred set of security control
activities [Bui87].

[TCSEC85] describes integrity as the property that data meet an a priori
expectation of quality. Schell [Schell87] relates the notion of integrity with
accuracy and states: "The problem of integrity is ... the problem of guarding
the database against invalid updates." (p. 202). Sterne [Steme9l] also seems to
share this view, after pointing out that security policy objectives may be divided
into organizational and automated ones. These two notions may be compared,
respectively, to our notions of external and internal security. The notion of
integrity or accuracy in the Evaluation Criteria seems to correspond to the
combined notion of authenticity and integrity in [Parker91]. Parker separates
out the notion of authenticity from the notion of integrity, after pointing out
that some definitions of (data) integrity deal not so much with conformance to
facts or reality, but with wholeness and completeness. He cites one definition
from [TCSEC85], which describes integrity, among other things, as: "The state
that exists when computerized data is the same as that in the source documents
and has not been exposed to accidental or malicious alteration or destruction."
Another definition is also cited from [NIST90], which defines integrity as "...
ensuring that data changes only in highly structured and controlled ways."

This rich variety of works suggests the need for a comprehensive semi
formal development methodology - a methodology to capture the know-how
for security enforcement techniques, and their interactions. The NFR Frame
work is intended to meet this need.

Chosen target systems should deal with selection of data structures
(such as partial orders) and algorithms to better organize the accessors in rela
tion to their permitted database operations and data (see, for instance, [Den
ning79] and [Thomson88]), enforcement techniques for object-oriented design
constructs such as message-passing (see, for instance, [Rabitti88] and [Lunt89]),
etc.

This chapter has dealt mainly with operational security. It would be
interesting to see how the framework enhances user trust for developmental,
or process, security [Amoros091]. This would involve consideration of security
requirements for the development process itself, techniques for enforcing process
security, and correlations among the techniques. This in turn would require the
examination of the various parties involved in the process, such as developers
and domain experts, and how they interact with each other.

8 PERFORMANCE REQUIREMENTS

Complex applications need performance, performance, performance. l

As performance is a vital quality factor for systems, an important chal
lenge during system development is to deal with performance requirements.
For a credit card system, for example, a developer might consider perfor
mance requirements to "achieve good response time for sales authorization"
and "achieve good space usage for storing customer information." Being global
in their nature and impact, performance requirements are an important class
of non-functional requirements (NFRs). To be effective, systems should attain
NFRs as well as functional requirements (e.g., requiring a credit card system to
authorize sales). However, it is generally difficult to deal with performance re
quirements and other NFRs, as they can conflict and interact with each other
and with the many implementation alternatives which have varying features
and tradeoffs.

This chapter presents a "Performance Requirements Framework" to help
a developer deal with performance requirements for software systems. By giving
the developer control of the development process, and the ability to interactively
consider the particular needs and characteristics of the system under develop
ment, it helps a developer "build performance into" customized solutions. It
starts with the NFR Framework to give a developer a structured, systematic,

1 From a presentation by Object Design, Inc., Toronto, 20 October 1£190.

218 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

goal-oriented process to help meet NFRs. This is done by refining NFRs, con
sidering and selecting among competing implementation alternatives, justifying
and recording decisions, and evaluating their impact on meeting NFRs. We
then apply the components of the NFR Framework to represent, organize and
use performance requirements. This involves the representation of performance
concepts in performance types, the use of principles for building performance
into systems, and the representation and organization of implementation tech
niques and associated performance considerations as performance methods. In
addition, performance issues are further organized by using a layered structur
ing approach. This reduces the number of issues considered at a time, while
interrelating decisions about different issues.

In dealing with performance requirements, there are a number of factors
to consider. The Performance Requirements Framework helps a developer orga
nize and use this information, thus making the development process more man
ageable. The framework represents basic performance concepts, such as time
and space, and provide a notation for describing performance requirements.
It adapts existing principles for building good performance into systems be
ing developed. It uses a variety system development techniques and addresses
their impact upon performance requirements. Adopting a layered approach to
address performance issues, the framework offers a layered structure to help
organize the process of dealing with performance requirements, and reduce the
number of issues considered at a time. For any particular system under de
velopment, developers can consider the particular domain, expected workload
and other characteristics of the system, and its particular performance require
ments. All these kinds of information are considered to produce customized
systems which address performance requirements.

We illustrate how the framework can be used to deal with tradeoffs,
critical softgoals, and how domain information and workload can be reflected
in meeting performance requirements.

We start the presentation in this chapter with material on performance
requirements which should be applicable to a wide variety of software systems.
To go into more detail, we would then have to make assumptions about the
kind of software. The next chapter considers performance requirements for
information systems, and their implementation. It draws on experience in
implementing specifications written in a particular class of object-based design
languages, namely semantic data models.

8.1 PERFORMANCE CONCEPTS

Let's consider some of the performance concepts which are incorporated in the
Performance Requirements Framework.

PERFORMANCE REQUIREMENTS 219

Performance and Performance Requirements

Our starting point for understanding performance is the standard set of system
oriented concepts (e.g., [Lazowska84]), such as the achievement of low response
time, high throughput and low space usage.

We then consider principles for building performance into systems
[C. Smith86, 901. This approach considers the impact of software require
ments and priorities upon performance before coding begins. For example, we
can provide users of a banking system with good responsiveness - the elapsed
time as observed by an end-user of a transaction - by designing a banking ma
chine to dispense cash, without making the client wait for "gold card" travel
bonus points to be calculated. These extra non-priority operations can be done
later, after the client has departed.

In practice,2 performance requirements often focus on response time, and
are often stated very briefly. At least for information systems, performance re
quirements may be developed for particular application systems. Of course,
there will be tradeoffs among requirements. For example, making a transac
tion as fast as possible may decrease flexibility for future changes in design.
Although performance requirements may be brief, we will see that their rami
fications can be complex.

Thus dealing with performance requirements has some difficulties. First,
performance requirements can conflict with each other. When producing a tar
get system, one needs to choose among the many development techniques avail
able, which have tradeoffs. Furthermore, performance requirements are hard to
handle because they have a global impact on the target system. To deal with
performance, one does not just "add an extra module" to the system. Instead,
performance will need to be considered throughout the system, and throughout
the development process. Finally, one needs to consider the characteristics of
the particular domain and system - such as its workload and priorities - in or
der to produce systems which meet the performance requirements, which vary
from system to system.

The Performance Type

Performance requirements drive selection of implementation alternatives, and
are stated in terms of performance concepts, such as response time.

Basic performance concepts are organized in the Performance Type (Fig
ure 8.1). Types may be further subdivided into subtypes, representing special
cases for each softgoal class. For instance, the Performance type has subtypes
TimePerformance (or simply Time) and SpacePerformance (or simply Space),
representing respective time and space performance requirements on a partic
ular system.

2Many thanks to Michael Brodie and Ken Sevcik for their insight on the use of performance
requirements in industry.

220 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFR Type Catalogue I

NFR Types

t
Performance

~~
Space Time

/''''- /''''-
Main

Memory
Secondary

Storage
Response

Time
Throughput

NFR Type Catalogue

Figure 8.1. The Performance Type.

NFR Types

t NFR Characteristics

Performance ,/
~~ Peak
~ ~ Characteristics

jr, A /i
/ '" / ~ Off Peak Peak

M~~~'Y S~:'':;'Y R~:~:Z'" hpo' / j~

OffP~kTh,oo"'"" ~/O_

PeakMeanThroughpul PeakUniformThroughpul

Figure 8.2. Characteristics of the Performance Type.

In turn, time can be refined into response time and throughput, while
space can be refined into main memory and secondary storage.

PERFORMANCE REQUIREMENTS 221

Types are a part of each softgoal. We interpret softgoals for the subtypes
of Performance, as follows. Time[...] is read as good time performance. For
Time and ResponseTime, this means seeking decreased or low time. However,
the units for throughput are the reciprocal of response time, so Throughput[...]
means increased or high throughput. Good Space performance means decreased
or low usage; this also applies to SecondaryStorage and MainMemory.

Performance types can be made more specific by considering characteris
tics of NFR types. C. Smith [C. Smith90] (section 3.1.1) and Jain [Jain91] call
for performance requirements to be specific and measurable; for example does
a requirement apply all day or at peak time? Recommending that performance
requirements be specific, measurable, acceptable, reliable, and thorough, Jain
provides the acronym "SMART" as an aide-memoire.

Concerning specificity of requirements, we distinguish requirements for
peak time vs. those for off-peak times, and requirements for good mean value
(e.g., low response time) vs. requirements for good uniformity of values (e.g.,
low standard deviation in response time). See Figure 8.2 for some examples of
specifying characteristics of performance requirements, such as PeakThrough
put. One could further refine types, e.g., to consider such measures as 90th and
95th percentiles, e.g., of response times for classes of transactions.

Principles for Building Performance into Systems

We draw on Software Performance Engineering principles [C. Smith86, 90] for
designing good performance into software systems. These principles help a
developer focus on priorities, and build systems which are responsive to users.
The principles include:

1. Centring Principle: Efforts to improve performance should focus first on the
critical and dominant parts of the workload. From the dominant workload
(i.e., the few routines which are executed the most), trim what is unnecessary
to do while the user waits. Assuming that the frequent operations can be
sped up, overall average response time can be improved. This principle helps
to focus optimization efforts on frequent cases.

2. Processing vs. Frequency Tradeoff Principle: Minimize the product of the
processing time per execution of an operation, and the frequency of exe
cuting the operation. This is applicable to loops and frequently invoked
operations. Sometimes there is a savings without a tradeoff, as execution
time and/or frequency can be decreased. For example, if one can detect
operations which have the effect of retrieving every instance of a class from
secondary storage, several entities can be retrieved at the same cost as one
entity. It is important to identify when a slight increase in time causes a
great decrease in frequency (or vice versa), such as "family plan" situations
where handling several requests does not cost much more than handling one
request. This principle can be applied by identifying situations where sub
sequent requests can be handled by slightly extending the scope of an initial
request.

222 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

3. Fixing Principle: For good response time to users, "fixing" (the process
of mapping functions and information to instructions and data) is done as
early as possible. There is a tradeoff between reducing resource usage (early
fixing) and increasing flexibility (late fixing).

Structuring Issues using a Layered Approach

Performance issues can be further structured to help a developer focus on
smaller sets of issues at a time, when desired. Layering approaches have often
been used to structure performance work.

The framework offers such a layered approach, inspired by a framework
for prediction of performance of relational databases [Hyslop91]. Each layer
addresses a certain class of performance issues and produces outputs which can
be used as inputs at lower layers.

In the framework, design decisions made at higher layers, corresponding
to higher levels of abstraction, will be reflected in lower layers which describe
the system in more detail. This results in softgoal interdependency graphs at
each layer, illustrated later in this chapter.

A developer can choose whether to use a layered approach, and if so,
how to structure the layers. Let's consider a language-based layering.

Consider the decomposition of a source specification into a series of spec
ifications in simpler languages (e.g., which use subsets of successively simpler
data model features) until the target system is reached. The framework offers
such a language-layering approach: starting with the source (top) language,
successive lower layers deal with and eliminate data model features until we
arrive at the target language.

We can provide a small sample layering which is applicable to a variety
of systems, languages and data models.

1. First we start at the bottom layer with entities (or objects, variables, etc.).

2. Then at the second layer we can add attributes (or record fields, array ele
ments, etc.).

3. Then at the third (top) layer, we can add transactions (or procedures, func-
tions, etc.)

Note that subsets of layers can correspond to existing models. For example,
the first two layers can represent the Entity-Relationship model [Chen76], and
the three layers can represent a variety of programming languages, as well as
the Entity-Relationship model extended with transactions.

That layering can be used to organize selection among implementation
alternatives, prediction of performance of a selected implementation (an initial
partial approach is given in [Nixon91]), and development tools. By sharing a
common organization, results should be more easily shared among components.

The next chapter extends this simple layering to deal with additional
features of languages used for designing information systems. We feel that this
layered approach should be applicable to other data models.

PERFORMANCE REQUIREMENTS 223

Notation for Performance Softgoals

A performance softgoal is written in the form:

Performance Type[Topics. Layer] {PriorityAttributes}

The type of a softgoal is written at the beginning of a softgoal , followed by
the topics. The final topic is special; it is the layer topic, which is a layer
number. Optional priority attributes (dealing with the criticality or dominance
of a softgoal) are placed to the right in brace brackets, and exclamation marks
are placed to the left of priority softgoals.

Topics include the subjects of a softgoal. They include information items
such as Employee and Meeting. They also include operations on information
items, whether primitive (predefined), such as retrieve(Employee), or developer
defined, such as Reimburse(Employee). Topics can include nested expressions,
such as 1ResponseTi me[retrieve(Employee. add ress) , 2]{critica I}. To distinguish
them, we capitalize the names of developer-defined operations, but not the
names of the predefined ones.

8.2 FACTORS FOR DEALING WITH PERFORMANCE
REQUIREMENTS

To give the flavour of the kinds of information used and generated in our ap
proach to dealing with performance requirements, let us consider the factors
that a developer might need to consider. During system development, there
are a number of input and output factors to consider. We will illustrate them
with the case of developing a research administration system.

Basic input factors include:

• performance requirements for the system, e.g., expense reimbursement should
be fast.

• other (non-performance) NFRs for the system (e.g., requiring that expense
account information be maintained accurately and securely), which may in
teract with performance requirements and development decisions.

• functional requirements for the system, e.g., the system should maintain
records of projects and meetings, and issue reimbursements.

• priorities for the system and organization [C. Smith86], e.g., reimbursements
should be issued quickly, since it is important to maintain employee morale.

• workload expectations. This can be expressed with varying degrees of detail,
ranging from the organizational level (e.g., the number of employees, and
the number of meetings held per year) to the systems level (e.g., the size of
a database, and the number of transactions per minute).

The above basic input factors do not really depend on the particular
development approach. Some will be available in early phases of development.

224 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Additional input factors will also have to be considered. Their details
may depend on the particular development approach taken, the particular spec
ification languages used, and the development phase at which they are consid
ered. They would include:

• development techniques to produce a target system from a source specifica
tion, and their associated performance features and tradeoffs. For example,
in a database system, one technique would be indexing, which can help im
prove retrieval time, at the cost of space.

• interactions and tradeoffs among NFRs, priorities, development techniques,
etc. For example, choosing a particular technique may result in time-space
tradeoffs, time-accuracy tradeoffs, etc.

• the source specification of the system. For example, this could include defini
tions of projects, meetings and researchers, and associated operations, such
as travel reimbursements.

• features of the source specification language. This might include the lan
guage's data model features, which would have associated performance fea
tures.

Even when different development methods are used (e.g., by using differ
ent source or target languages, or considering performance requirements during
different phases of development), we would still expect the above kinds of ad
ditional inputs to be needed. However, their details might vary.

The results of the development process should include the following out-
puts:

• a record of development decisions made, and the reasons for decisions. This
includes implementation decisions made by the developer, and design ratio
nale given by the developer.

• an indication of which performance requirements are met, and to what ex
tent.

• a record of the interactions and tradeoffs among NFRs, priorities, workload,
decisions made, and alternatives not chosen.

• a prediction of performance of the selected system. This would provide a
further indication of how well performance requirements will be met by an
implementation of a system.

It can be seen that there are a lot of factors to consider during develop
ment, and many interactions are possible. It is therefore desirable to have a
structured process to deal with performance requirements. In the Performance
Requirements Framework, the inputs and outputs are recorded or reflected in
softgoal interdependency graphs (SIGs).

PERFORMANCE REQUIREMENTS 225

Method Catalogue I

Performance Decomposition Methods

TYP'Deoompo,n;~/ \ ~rlO'"''''tionMetho<''
/ TOPiCDecomp;sitionMethodS LayerMe,odS I \

SubType ComponentDecompositionMethods FlowThrough Criticality Dominance

t
ImplementationComponents

/ "-
CodeComponents OperationComponents

Figure 8.3. Catalogue of Decomposition Methods for Performance.

8.3 REFINEMENT METHODS

We can refine performance softgoals on their components: type, topic, layer
topic, and priority attributes. Figure 8.3 shows a catalogue of some performance
decomposition methods, arranged by these components.

Now let's present some performance decomposition methods.

SubType Decompositions

Type-based decomposition methods refine a softgoal on the basis of its type.
For example, the TimeSpace decomposition method takes a softgoal of the
Performance type, and produces two softgoals, one with the Time type, the
other with the Space type. For example, we can decompose the softgoal of
"good performance for the Researcher class at layer 3" into the softgoals of
good time performance for Researcher at layer 3 and good space performance
for Researcher at layer 3:

Time[Researcher, 3] AND Space[Researcher, 3]

SATISFICE Performance[Researcher, 3]

This means that if both offspring softgoals (shown here on the first line) are
satisficed, then the parent softgoal (on the second line) will be satisficed.

The above method is a particular application of a general method, and
has no parameters. We can define generic methods, using parameters which
are shown in sans serif italics. Info is an information item, and Layer is a layer.

226 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

LAYER 3 (Transactions)

Space
[Researcher,
3]

Figure 8.4. A SubType decomposition.

Here is the definition of the Performance SubTypes method:

Time[Info, Layer] AND Space[Info, Layer]

SATISFICE Performance[Info, Layer]

To produce a particular application of a method, we replace the pa
rameters with concrete items, layers and operations. For example, we can
replace Info above by a variety of subjects: an information item (e.g., Re
searcher), operations on an information item (e.g., Reimburse(Researcher); here
the operation name is capitalized), attributes of an information item (e.g., at
tributes(Researcher) as is done in Figure 8.6), etc. In addition, Operation(Info)
represents an operation on Info.

We can further decompose the subtypes of time and space.

• Time SubTypes method:

A time softgoal can be decomposed by the Time SubTypes method into soft
goals for response time and throughput.

ResponseTime[Info, Layer] AND Throughput[Info, Layer]

SATISFICE Time[Info, Layer]

• Space SubTypes method:

A space softgoal can be decomposed by the Space SubTypes method into
softgoals on main memory and secondary storage.

MainMemory[Info, Layer] AND SecondaryStorage[Info, Layer]

SATISFICE Space[Info, Layer]

PERFORMANCE REQUIREMENTS 227

Further type decompositions are possible. They correspond to subtypes
shown in the performance type catalogue (Figure 8.2).

Decomposition Softgoal Topics into Components

Let's consider methods which decompose a softgoal based on its topics.
A softgoal for an information item (or an operation on an information

item) can be decomposed into softgoals for components of the item, in a number
of ways. These component decomposition methods refine a softgoal at a layer
to one or more softgoals at the same or lower layers.

SlG

LAYER 3 (Transactions)

Time
[MathResearcher.
3)

Figure 8.5. Decomposing a performance softgoal using the Subclass method.

• Generic Methods:

Generic methods discussed in Chapter 4 can be applied to performance soft
goals. These include the Subclass method (Figure 8.5) and the Individual
Attributes method (Figure 8.6).

• Implementation Components method:

By this method, a softgoal for an item is decomposed into softgoals for its
implementation components, at a lower (or the same) layer of implementa
tion.

A performance softgoal for an information item is refined into several perfor
mance softgoals, each dealing with one of the implementation components:

Performance[implementationComponent j (Info), Layerj] AND

. .. ANDPerformance[implementationComponentn (Info), Layerj]

SATISFICE Performance[Info, Layerk]

WHERE Layerj:S Layerk

228 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

S/G

LAYER 2 (Attributes)

Individual Attributes

Space
[Researcher.Name,
2]

Figure 8.6. Using the IndividualAttributes method.

For example, a time softgoal for accessing an attribute, Researcher. Meeting,
could be decomposed into time softgoals for two implementation compo
nents: finding the offset of Meeting, and retrieving the value from storage
(Figure 8.7).

S/G

LAYER 2 (Attributes)

Implementation Components

Time
[retrieve from storage,
2]

Figure 8.7. A decomposition based on implementation components.

• Operation Components method:

We can also decompose a softgoal topic based on the components of an
operation. A softgoal for an operation Operation(Info) on an information
item Info, is decomposed into softgoals for the components of the operation,
at the same or lower layers. This may assume that the implementor has
some knowledge of the implementation.

Performance[component t (Operation(In£o)) , Layerj) AND ... AND

PERFORMANCE REQUIREMENTS 229

Performance[componentn (Operation (Info)) , LayerJ

SATISFICE Performance[Info, Layerkl

WHERE Layerj:S Layerk

• CodeComponents method:

A softgoal for a body of code CodeBody(Info) dealing with an information
item Info can be decomposed into softgoals for its components (e.g., sub
blocks) [C. Smith86, 90].

Performance[codeComponent j (CodeBody(Info)) , Layerj] AND

... AND

Performa nce[codeComponen tn (CodeBody (Info)), Layerj]

SATISFICE Performance[Info, Layerkl

WHERE Layerj:S Layerk

We adopt a convention applicable to all refinements. If the same type
(e.g., Performance) appears throughout a method, the decomposition may be
specialized by uniformly applying it to a subtype (e.g., Time). For example,
we can uniformly replace Performance by Time throughout on both sides of the
above method, to obtain:

Time[codeComponent j (CodeBody(Info)), Layerj] AND ... AND

Time[codeComponentn (CodeBody(Info)) , Layerj]

SATISFICE Time[Info, Layerkl

WHERE Layerj:S Layerk

Refinements to Handle Multiple Layers of SIGs

Softgoals at a given layer are refined into softgoals at the same, or lower, layers.
Thus softgoal interdependency graphs (SIGs) can be formed for each layer. In
order to combine such SIGs into a global record, methods ,He needed to refine
downwards through layers.

To relate softgoals which are at different layers, the FlowThrough method
refines a softgoal at one layer to a softgoal with the same type and topic, but
at a lower layer. Layers are connected by inter-layer interdependency link. In
terestingly, they help developers deal with issues at different layers, and help
connect different issues which are considered at different layers. Furthermore,
they obey the normal rules for interdependency links: for example, the evalu
ation rules work in the same way for them.

Performance[Info, Layerm] MAKES Performance[Info, Layern]
WHERE Layerm:S Layern

230 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIC

LAYER 3 (Transactions)

Flow Through

LAYER 2 (Attributes)

Time
[Researcher.Meeting,
3J

Time
[Researcher.Meeting,
2]

Figure 8.8. Using the FlowThrough method to link layers.

The contribution type for inter-layer interdependency links is MAKES when
satisficing the lower-layer softgoal satisfices the higher-layer one. In some cases,
where there is only a partial contribution, HELPS would be appropriate.

For example, Figure 8.8 shows how a time softgoal for
Researcher.Meeting at Layer 3 (which deals with transactions) can be refined
into a softgoal at Layer 2 (which deals with attributes).

Template

Initidl SIC

LAYERn

NFR Type
[topic, n)

Resu/lanl SIC

iLAYERn

NFR Type
[topic,n)

Operationalization Type
[topic. nj

ILAYERm(m<n)

i

++ Operationatization Type
[topic. n)

NFR Type
[topic,m)

Figure 8.9. A template for inter-layer refinement.

To keep within the rules of the NFR Framework, however, one must be
careful in making refinements. Operationalizing softgoals cannot be refined
into NFR softgoals. This forbids the refinement of an operationalizing softgoal

PERFORMANCE REQUIREMENTS 231

(say at the bottom of a SIG at one layer) into an NFR softgoal (say at the
top of a layer below). This can be resolved by refining an NFR softgoal into
an operationalizing softgoal at the same layer, and an NFR softgoal at a lower
layer (Figure 8.9). The inter-layer interdependency link between the two NFR
softgoals will also allow propagation of evaluation results, upwards through
layers. This approach is in keeping with the NFR Framework. For a different
approach, allowing operationalizations to be refined into NFR softgoals, see
Chapter 14.

Evaluation (labelling) begins at the bottom layer's SIG (See, for example,
Figure 8.22). Using the normal labelling procedure, one starts at the bottom
of that SIG, and obtains results at the top of the record for that layer; results
are then linked to softgoals at a higher layer, starting at (or near) the bottom
of that layer. This procedure is repeated until results are obtained at the top
of the SIG at the top layer.

Refinements to Handle Prioritization

SIG

Prioritization

Time
[Researcher.Meeting,
3)

+ + /.,.,.....,; Claim
I<E-----'-...:----',....(,/ ["Meeting is frequently accessed",

.. 3)

'Time
• [Researcher.Meeting,

3) {dominant}

Figure 8.10. A prioritization argument.

C. Smith [C. Smith90] points out the need to address both dominant and critical
parts of the workload. Priority softgoals are preceded by an exclamation mark,
and are followed by an attribute indicating the kind of priority. For example,
the Criticality method takes a softgoal of the form Performance[Info, Layer], and
gives the sub-softgoal a critical attribute, which indicates that the satisficing of
the softgoal is critical for attaining good performance. This is written as lPer
formance[Info, Layer]{critical}. Note that attributes of softgoals reflect qualities
of softgoals. They are not topics, and are shown in brace brackets after the
softgoal topics.

The Dominance method identifies a softgoal as referring to a dominant
part of the workload, by adding an attribute.

!Performance[Info, Layer]{dominant} MAKES Performance[Info, Layer]

232 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

For example, Figure 8.10 shows a time softgoal being identified as being domi
nant. The refinement is supported by a workload argument from the domain.
Other methods identify softgoals as being non-dominant, non-critical, etc.

This treatment (based on [Chung93a]) of critical and dominant softgoals
helps us realise the centring principle [C. Smith90]: we can focus on the dom
inant workload (i.e., the few routines executed the most), and then trim what
is unnecessary to do while the user waits. Priority-based decompositions may
be supported by arguments drawing on workload statistics.

Dealing with Priorities and Uncertainties

We have presented some refinement methods in one step, simply having a con
tribution type such as AND. In some cases this will not fully represent the
situation, and it may be better to represent the situation in two or more steps.

One concern is when only some offspring of a decomposition are pri
orities (critical or dominant) for the satisficing of a parent. For example, a
time softgoal for calculating reimbursements to employees may be refined (via
an AND interdependency) into softgoals for researchers and managers, but
only the researchers' reimbursements might be critical. Drawing on C. Smith's
[C. Smith86] principles, satisficing the parent is much more influenced by sat
isficing the priority (critical or dominant) offspring than the non-priority ones.
This is not fully captured by a simple AND decomposition in which denial
of a non-priority offspring would deny the parent. Instead, the prioritization
templates shown in Figures 4.30 and 4.31 are frequently used to deal with
performance requirements.

Another concern arises when satisficing the offspring softgoals does not
necessarily satisfice the parent softgoal. The developer may wish to indicate
that the satisficing of the offspring and their parent may only partially con
tribute to the satisficing of the parent's parent. For example, the Implementa
tionComponents method, presented earlier, could be done in two steps. First
a performance softgoal for an information item is refined into a performance
softgoal for the (set of) implementation components of the information.

Performance[im plementation Components(Info), LayerJ

HELPS Performance[Info, Layerk]

WHERE Layerj ~ Layerk

The contribution is HELPS because aspects other than implementation com
ponents may be needed to satisfice Performance[Info, Layerk]. In the second
step, a performance softgoal for the set of implementation components of the
information is refined into several performance softgoals, each dealing with one
of the implementation components:

Performance[implementationComponent j (Info), Layer] AND .. , AND

Performance[implementationComponentn (Info), Layer]

SATISFICE Performance[implementationComponents(Info), Layer]

PERFORMANCE REQUIREMENTS 233

In this kind of situation, we can use a combined contribution type, here
ANDJfELPS, when referring to the contribution of the performance of the
set of individual implementation components to Performance[Info, Layerk]'

Another concern is when the offspring's topics (e.g" of an AND con
tribution) do not necessarily partition the parent's topic. In other cases, the
developer might be uncertain whether a method is applicable to a given situa
tion.

In these various cases, a developer may wish to "soften" a contribu
tion. For example, an AND interdependency can be softened by placing an
HELPS contribution above or below it. This was shown in Figures 4.33 (the
ANDJfELPS contribution) and 4.32 (the HELPS-A.ND contribution).

8.4 OPERATIONALIZATION METHODS FROM SOFTWARE
PERFORMANCE ENGINEERING

Performance Operationalization Methods (OMs) make commitments to imple
mentation decisions, while increasing our confidence of satisficing (fulfilling
within reasonable bounds) a performance softgoal.

Some operationalization methods apply software performance engineer
ing [C. Smith86, 90] principles for building performance into systems. For
example, an UncompressedFormat for attributes uses more space than a Com
pressed Format, but has the benefit of speeding access by avoiding repeated un
compression and compression of data. An UncompressedFormat is an example
of EarlyFixing, the mapping, as early as possible, of functions and information
to the instructions and structures which achieve them.

SlG

Time
[find offset,
2)

IE---..:..+...;.+--'{{')~~~citReferenCeS(ReSearCher.Meeting),
. 2)

EarlyFixing
[find offset,
2)

Figure 8.11. Using the EarlyFixing method.

Early Fixing Methods

By EarlyFixing, early connection (e.g., at compilation time) is made between an
action and the instructions that achieve it [C. Smith90]. This method has a

234 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

positive impact on time performance. It will also have some impact on space
performance, but we cannot in general say whether it will be positive or nega
tive.

EarlyFixing[/nfo, Layer] HELPS Time[/nfo, Layer]

For example, in Figure 8.11, EarlyFixing helps satisfice a time softgoal
for finding the offset of an attribute. This choice is supported by an argument
that the name of the attribute is given explicitly in the source code, allowing
the offset to be determined statically.

There are several ways to specialize this method.

srG

EarlyFixing
[find offset,
2]

StaticOffsetDeterrnination
[Researcher.Meeting,
2]

Figure 8.12. Refining an EarlyFixing operationalizing softgoal.

• One way is StaticOffsetDetermination which determines offsets statically,
rather than at execution time. This is illustrated in Figure 8.12. Note that
an operationalizing softgoal can be specialized to another operationalizing
softgoal.

StaticOffsetDetermination[/nfo, Layer] HELPS EarlyFixing[/nfo, Layer]

Since EarlyFixing HELPS Time, we conclude that:

StaticOffsetDetermination[/nfo, Layer] HELPS Time[/nfo, Layer]

• Indexing helps EarlyFixing, hence it helps Time softgoals. However, it has a
negative impact on space softgoals, due to the storage requirements for the
index; this impact is represented by the HURTS contribution.

Indexing[/nfo, Layer]

Indexing[/nfo, Layer]

HELPS Time[/nfo, Layer]

HURTS Space[/nfo, Layer]

• UncompressedFormat. also helps EarlyFixing. Thus it also helps satisfice Time
softgoals. Storing information in an uncompressed format uses extra space,

PERFORMANCE REQUIREMENTS 235

but avoids extra access time for encoding and decoding.

UncompressedFormat[Info, Layer]

UncompressedFormat[Info, Layer]

Late Fixing Methods

HELPS Time[Info, Layer]

HURTS Space[Info, Layer]

LateFixing. the opposite of early fixing, has a negative impact upon time per
formance, but also has undetermined impact on space performance.

LateFixing[Info, Layer] HURTS Time[Info, Layer]

Late fixing hurts time performance. As we will see shortly, late fixing can
have a positive impact on space softgoals, and some time softgoals. It is helpful
to consider these kinds of tradeoffs. These impacts, positive and negative, are
also recorded in correlations, which are catalogued in Section 8.6.

• One specialization of LateFixing determines offsets dynamically, rather than
at execution time. Since DynamicOffsetDetermination HELPS LateFixing, and
LateFixing HURTS Time, we conclude that:

DynamicOffsetDetermination[Info, Layer] HURTS Time[Info, Layer]

• Compressed Format also helps LateFixing. Storing information in a compressed
format saves space, but the encoding and decoding (i.e., late fixing) necessi
tates extra access time.

Compressed Format[Info, Layer]

Compressed Format[Info, Layer]

HELPS Space[Info, Layer]

HURTS Time[Info, Layer]

• The ReduceRunTimeReorganization method can be viewed as a variant of late
fixing. When dealing with frequent schema changes, ReduceRunTimeReorga
nization uses a structure which uses late fixing to reduce expensive run-time
reorganization to offer less variation (i.e., greater uniformity) in response
time, but at the cost of higher average response time.

ReduceRunTimeReorganization[Info, I,ayer]

HURTS MeanTime[Info, Layer]

Red uceRu nTimeReorga nization [Info, Layer]

HELPS UniformResponseTime[Info, Layer]

Interestingly, this method is negative for one type of time softgoal, but pos
itive for another. This illustrates the need, pointed out in [C. Smith90] and
[Jain91], to be careful when specifying requirements.

Figure 8.13 shows some of the impact (positive and negative) of this method
on two time softgoals. With this method, during run-time we can use more
look-ups of schema information, rather than compiling it in; this makes it
easier to change the schema while allowing accesses.

236 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Q Time
[retrieve from storage,

, 2),
"

" ,
, +
" ,,,

UniformTime
[Researcher.Meeting,
2]

ReduceRunTimeReorganization
[retrieve from storage,

2]

Figure 8.13. Positive and negative impacts of an operationalizing softgoal.

Execution Ordering Methods

To satisfice a time performance softgoal, a developer may selectively state the
relative order for the execution of a set of tasks. Responsiveness [C. Smith86,
90], the elapsed time as observed by an end-user of a transaction, can be shorter
than the total time for a transaction to complete. For example, after registering
a researcher, control may be returned to the user even though some statistics on
total registrations are still being updated. The elapsed time can be improved
by early execution of critical and dominant tasks. Consider the Perform First
method:

Perform First[Operation(1nfo), Layer] HELPS Time[Operation(1nfo), Layer]

Here operation Operation(Info) is performed before other operations on the
information item. This helps time performance. Related methods and their
contributions are:

Perform Early

PerformLater

Perform Last

HELPS

HURTS

BREAKS

Time

Time

Time

Here, topics and layers of softgoals are omitted for brevity.
Figure 8.14 presents a catalogue of some operationalization methods for

performance requirements. The methods use Software Performance Engineer
ing (SPE) techniques [C. Smith86, 90].

8.5 ARGUMENTATION METHODS AND TEMPLATES

Argumentation methods and templates can provide evidence for a choice of
methods. Suppose we know that all references to information item Info in a

PERFORMANCE REQUIREMENTS 237

Method Catalogue I

Performance Operatlonalization Methods

t
SPE-Based OperationalizationMethods

Ea"YF""~ i ~",;onO'd'""9
~ i" LateFixing 1,'-

Indexing ~ i" \ PerformFirslCompressedFormal
UncompressedFormal PerformLaler

DynamicOflselDelerminalion
SlalicOflsetDelerminalion PerformLasl

ReduceRunTimeOrganizalion

Legend I SPE = Software Performance Engineering

Figure 8.14. Catalogue of Operationalization Methods for Performance.

segment of code are specific, and can be uniquely determined statically, rather
than being variable expressions with several possible values. This argument,
written

Cia im[explicit References(Info), Layer],

can be used as evidence that static addressing techniques will satisfice a softgoal
of fast retrieval.

An argument that an information item is subject to frequent changes in
the schema can be written: C1aim[frequentSchemaChanges(1nfo), Layer].

An argument that access on an information item is frequent can be writ
ten: C1aim[frequentAccess(1nfo), Layer].

As in earlier chapters, situation descriptors can be used in claims. Ex
amples are explicitReferencesO, frequentSchemaChangesO a.nd frequentAccessO.
Situation descriptors can also be used in other softgoals and in correlation defi
nitions. To distinguish them from softgoals, they start with a lower-case letter,
and use round parentheses for parameter lists.

Claims can also consist of a textual explanation, e.g., Claim["Meeting and
Name are frequently accessed together" , 3].

Expected or actual workload statistics, as well as information about a
schema, can also be used as arguments. If performance prediction results are
available, they too can be used in arguments. Such arguments may be used to
support the identification of a softgoal as involving a critical or dominant part
of the workload.

238 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Correlation Catalogue

Contribution of to
offspring parent
Operationalizing NFR Softgoal
Softgoal Time Uniform Space

[Info] Response [Info]
Time

[Info]

Early Fixing
Operationalizations:

EarlyFixing HELPS
[Info]

Indexing
[Info]

II HELPS I I HURTS I
Uncom pressed- HELPS HURTS

Format
[Info]

Late Fixing
Operationalizations:

LateFixing HURTS
[Info]

Com pressed- HURTS HELPS
Format
[Info]

Reduce- HURTS HELPS
RunTime-
Reorganization
[Info]

Figure 8.15. A correlation catalogue for Performance.

8.6 CORRELATIONS

Relationships between softgoals can be stated by correlation rules, which are
collected in correlation catalogues (Figure 8.15). This catalogue shows the
impact of offspring operationalizing softgoals upon parent NFR softgoals.

PERFORMANCE REQUIREMENTS 239

For example, using a compressed format to store information is good for
space performance but bad for response time, due to the need to uncompress
or compress the information. A correlation rule can state that a compressed
format operationalizing softgoal HURTS a time softgoal.

Early and late fixing have a variety of contributions, positive and nega
tive. Methods may be selected for some of these contributions, and the corre
lation catalogue will detect others. For example, LateFixing might be chosen to
help space requirements, and the correlation catalogue will detect a negative
impact on time.

In addition to such general correlations, application specific conditions
can be attached to correlation rules. For example, a developer could use domain
knowledge to record that the use of a list structure is good for response time if
a condition holds, such as requiring a list to be suitably small.

Some operationalizing softgoals are effectively mutually exclusive, at
least when applied to the same information item. For example, the negative
relationship between two kinds of storage format can be written:

CompressedFormat[addr, 2] BREAKS UncompressedFormat[addr, 2]

On the other hand, mutual exclusion can also create a positive relationship, for
example, between operationalizing softgoals which impose a relative order on
the execution of two distinct operations, Operation j and Operation2.

PerformLater[Operation], Layerj]

HELPS Perform First[Operation2, Layerk]

WH EN distinctOperations(Operation j, Operation2)

Here the WHEN keyword introduces a condition needed for the contribution to
apply.

8.7 ILLUSTRATION

Let's illustrate how the framework can be applied to the example of the research
management system.

Domain and Workload Information

The system is used to administer research projects. Researchers are associated
with institutes, and attend meetings. The developer has definitions of the
main concepts. For example, Researcher has several attributes including the
researcher's name, and the current meeting attended.

The developer also has some information on the workload of the system.
This would include the number of researchers, the frequency of meetings, and
the typical attendance at meetings. This gives an indication of the frequency
of operations. The developer may also have a set of priorities for the system.
Here, reimbursing researchers for their travel expenses for meetings is frequent,
and is given priority.

240 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

We will now develop a SIG. The SIG will deal with two layers, starting at
Layer 3. It will show some refinement methods, and the impact of higher-layer
softgoals upon lower ones.

Stating an Initial Requirement

SIG

LAYER 3 (Transactions)

Time
[attribules(Researcher),
3J

Individual Attributes

Time
[Researcher.Meeling,
3]

Time
[Researcher.olherAttrs,
3J

Figure 8.16. A decomposition on attributes.

The developer starts by stating a requirement of good time performance for
transactions dealing with the attributes of researchers. This can be represented
by the softgoal Time[attributes(Researcher), 3] at the top of Figure 8.16.

The developer can choose the layer at which an initial softgoal is stated.
One approach is to start with a softgoal addressing the highest layer applicable.
Here the developer focusses on transactions (operations) dealing with attributes.
Layer 3 addresses transactions, while Layer 2 handles attributes. The developer
decides to state the softgoal at Layer 3. Other approaches (e.g., starting at
Layer 2) might be considered.

A Refinement Based on the Topic of a Softgoal

The developer focusses on the time softgoal, and wants to decompose the topic
(subject) of the softgoal. This refinement takes the time softgoal for operations
on the attributes of Researcher, and produces several time softgoals, one for each
particular attribute (Name, Meeting, etc.). This use of the IndividualAttributes
method is shown in Figure 8.16.

Prioritization Based on Workload

The developer considers the workload and priorities. The developer recalls
that travel reimbursement is a frequent and priority operation, and notes that
reimbursement for meetings will involve both the researcher's name and the

PERFORMANCE REQUIREMENTS 241

SIG

LAYER 3 (Transactions)

Time
[attributes(Researcher},
3]

Individual Attributes

Prioritization

Time
[Researcher.Meeting,
3] ... <..... ,.

++ ::./) ++
Claim .,......'.

['Meeting and Name are
frequently accessed together',
3]

!Time
, [Researcher.Meeting,

3] {dominant}

Time
[Researcher.otherAttrs,
3)

!Time
, [Researcher.Name,

3] {dominant}

Figure 8.17. A prioritization argument based on workload.

meeting the researcher attended. Thus access to these attributes is recorded as
being a dominant part of the workload, and these prioritizations are supported
by a claim based on the workload, shown in Figure 8.17.

Choosing an Operationalizing Softgoal

With this domain, workload and prioritization information in mind, the de
veloper considers operationalization methods. One option is to retrieve both
attributes, Name and Meeting, at the same time. By appropriately structuring
the data and operations, this may be able to be accomplished in little more
time than it takes to retrieve just one attribute. This selection of the Family
PlanRetrieval method using the Processing vs. Frequency Tradeoff Principle is
shown in Figure 8.18.

The use of FamilyPlanRetrieval HELPS both of the priority time softgoals.
We will discuss evaluation of the graph a little later.

The use of "family plan" results in a target system using grouped re
trieval of attributes of Researcher. The bottom and the right side of the figure
relate the target system to the functional requirements of maintaining the at
tributes of Researcher.

An Inter-Layer Refinement

Having considered operations at Layer 3, the developer now wants to focus
on attributes, which are at Layer 2. Note that the operationalizing softgoal

242 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SlG

LAYER 3 (Transactions)

Time
[attributes(Researcher),
3J

Individual Attributes

Prioritization

FamilyPlanRetrieva
[Researcher.Meeting,
Researcher.Name,
3J

Time
[Researcher.otherAttrs,
3)

,Time
• [Researcher.Name.

3) {dominant}

grouped retrieval

Figure 8.18. Consideration of an operationalizing softgoal.

SlG

LAYER 3 (Transactions)

,Time
• [Researcher. Name,

3] {dominant}

Flow Through
FamilyPlanRetrieval
[Researcher.Meeting,

+ + Researcher.Name,
..~l.. .
LAYER 2 (Attributes)

Time
[Researcher.Meeting,
2]

Figure 8.19. An inter-layer interdependency lin k.

PERFORMANCE REQUIREMENTS 243

at Layer 3 cannot be refined down into NFR softgoals at lower (or the same)
layers. Instead, the Layer 3 dominant time softgoal for Meeting is refined to a
corresponding softgoal at Layer 2, using the FlowThrough method (Figure 8.19).

The FlowThrough and subsequent decompositions for Researcher. Name
are similar to those for Researcher.Meeting, but are not shown in the figures.

Considering a Characteristic of Time

SIG

LAYER 2 (Attributes)

Implementation Components

Time
[find offset,
2)

EarlyFixing
[find offset,
2)

Time
(retrieve from storage,
2J

++({.:>
Claim
[explicrtReferences
k7esearcher.Meeting),

ReduceRunTimeReorganizalion
[relrieve from storage.
2]

Figure 8.20. Initial operationalizing softgoals.

Now we are at Layer 2. Figure 8.20 shows the portion of the softgoal interde
pendency graph at that layer. The top softgoals of this lay,~r include a softgoal
resulting from an inter-layer refinement, as well as a softgoal initially stated at
this layer, but not connected to a higher layer.

We now consider a characteristic of the Time type (Section 8.1). Fig
ure 8.20 has a UniformTime softgoal, which represents a requirement that the
time performance be uniform, i.e., with low deviation. There is also a top soft
goal for Time; here we'll treat this as dealing with average time performance.
As we will see, these two kinds of softgoals can lead to difl'erent outcomes.

If desired, the developer could have instead refined the top Time soft
goal of this layer using the SubType method to decompose it on a statistical
characteristic:

MeanTime[Researcher.Meeting, 2] AND

UniformTi me[Researcher. Meeti ng, 2]

SATISFICE Time[Researcher.Meeting, 2]

In that case, the MeanTime softgoal on the left of the figure might be prioritized,
and would be refined using the Implementation Components method. In addition,

244 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

the UniformTime softgoal on the right side would have an impact on higher
layers.

For the softgoal Time[Researcher. Meeting, 2], we consider how operations
on the Meeting attribute may be implemented. Thus we use the Implementa
tionComponents method (Recall Figure 8.7). Assuming that the attribute is
stored as a field within a record, the time softgoal for the attribute is refined
into a softgoal for finding the offset of the attribute, and another for retriving
the attribute value from storage.

Two different operationalizations are considered. Each is suitable for
different kinds of requirements.

One operationalization is EarlyFixing of finding the offset of the attribute.
This involves determining the offset as early as possible, for example at compila
tion time. This helps time performance at run-time by not having to determine
the offset during each access. The developer argues that this is the case, as the
code explicitly refers to the Meeting attribute by name, hence the attribute's
offset can be determined statically. This will help provide good average time
performance.

Another operationalization tries to reduce reorganization of the data at
run-time. For example, LateFixing can be used, by having more lookups of data
locations at run-time. This would avoid having occasional major delays in
accessing data while the data is being reorganized. Hence ReduceRunTimeRe
organization helps meet the softgoal of uniformity of time performance. On the
other hand, the lack of reorganization may lead to poorer average access time.
The negative impact of this operationalization on average time for retrieval
from storage is shown as a correlation link.

It is interesting to note that consideration of a softgoal for average time
performance leads to one type of operationalization, while consideration of
uniform time performance leads to quite another.

If schema changes were frequent, the developer might use this domain in
formation as an argument for trying to reduce run-time reorganization, as this
could avoid great variations in response time during schema changes. Here,
however, such changes are infrequent, so the claim is not shown as being satis
ficed.

The developer now moves towards an implementation (Figure 8.21) by
refining the operationalizations into specific development techniques. Here the
developer considers the method of determining the offset of the Meeting at
tribute.

One form of EarlyFixing is StaticOffsetDetermination, which helps meet
the EarlyFixing softgoal. This is in fact chosen, and is indicated by a "V" in
the figure. This helps meet the (average) time performance softgoal.

DynamicOffsetDetermination, a form of LateFixing would help satisfice
ReduceRunTimeReorganization, and help meet the uniform time performance
softgoal. However, this kind of offset determination is not selected.

PERFORMANCE REQUIREMENTS 245

SlG

LAYER 2 (Attributes)

Implementation Components

Time
(find offset.
2)

EarlvFixing
(find offset.
2)

Figure 8.21.

ReduceRunTimeReorganization
(retrieve from storage.
2)

Refined operationalizing softgoals.

The bottom and right side of the figure relate the possible target sys
tems to the functional requirements of dealing with the Meeting attribute of
Researcher.

Evaluating Different Layers of a Graph

We have refined the softgoal interdependency graph, start.ing at Layer 3, and
t.hen moving down to Layer 2.

Now in Figure 8.22, evaluation works bottom-up, st.arting at the bottom
of the lower layer. We start with the selected and rejected softgoals, including
operationalizing softgoals and claim softgoals (These were shown in Figure 8.21
as ",j" and "x").

Choosing StaticOffsetDetermination HELPS its parent, EarlyFixing. Us
ing the evaluation procedure, EarlyFixing receives a weak positive label. The
developer changes the label to satisficed (",j"). Similarly, t.he satisficing of Ear
lyFixing, taking into account the accepted claim about references to the Meeting
attribute, leads to Time[find offset, 2] being satisficed.

246 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Time
[affribules(Researcher),
3)

LAYER 3 (Transactions)

IndividuaL Attributes

Prioritization

++

FLow Through
FamilyPlanRetrieval
[Researcher.Meeting,
Researcher.Name,
3)

, Time
• [Researcher.Name,

3) {dominant)

--........~
grouped retrieval 1----------'

LAYER 2 (Attributes)

ImpLementation Components

Time
[find offset,
2)

EarlyFixi n9
[find offsel,
2J

Time
[Researcher.Meeling,
2)

Time
[retrieve from storage,
2J

...........................
........

.........................

Claim
[explicitReferences
&~eSearcher.Meeling),

UniformTime
[Researcher.Meeting,
21

Claim
(frequentSchemaChanges
(Researcher.Meeting),
2J

ReduceRunTimeReorganization
[relrieve from storage,
2)

Figure 8.22. Evaluation of the Softgoal Interdependency Graph.

PERFORMANCE REQUIREMENTS 247

Rejecting DynamicOffsetDetermination leads to a weak negative label
(W-) for ReduceRunTimeReorganization, which the developer changes to denied
(" x"). This leads to denial of the UniformTime softgoal, and, via a correlation
link, a weak positive contribution to Time[retrieve from storage, 2], which the
developer changes to satisficed.

Then a top softgoal of this layer, Time[Researcher. Meeting, 2] is satisficed,
since its offspring are satisficed. As we mentioned, the other top softgoal, for
UniformTime is denied.

Now the evaluation moves up a layer, following the inter-layer link from
Time[Researcher.Meeting, 2] to ITime[Researcher. Meeting, 3]{dominant}, using
the standard rules for evaluation.

At Layer 3, the FamilyPlanRetrieval operationalization helps both dom
inant time softgoals. In addition, !Time[Researcher.Meeting, 3]{dominant} is
satisficed by the inter-layer contribution from Layer 2 as well. This leads to the
parent being satisficed. The developer also considers !Time[Researcher.Meeting,
3]{dominant} and its parent to be satisficed. As the time softgoals have been
satisficed for the two priority attributes, Meeting and Name, the time softgoal
for all attributes of researcher is considered satisficed as well.

8.8 DISCUSSION

This chapter has introduced a "Performance Requirements Framework," which
extends the NFR Framework by addressing performance concepts and tech
nIques.

In addition to the generic methods available in the NFR Framework
for all NFRs, we have added methods based on principles for building perfor
mance into systems. Positive and negative relationships among softgoals are
catalogued as methods and correlations.

Layered approaches are often used in performance work. This is adapted
to the NFR Framework, organizing softgoal interdependency graphs into layers
dealing with particular issues. We illustrated how a softgoal interdependency
graph can be developed with more than one layer, and the results evaluated
for all layers.

The next chapter continues to look at performance requirements, but
focusses on a particular kind of target system, namely information systems.

Literature Notes

This chapter and the next are based on B. Nixon's thesis [Nixon97a]. They
also draw on other publications [Nixon90, 91] [Mylopoulos92a] [Nixon93, 94a,
97b,98].

Performance requirements were addressed in this chapter, and then per
formance requirements for information systems are addressed in the next.

Our layered approach was inspired by Hyslop's [Hyslop91] layered decom
position of performance prediction for relational database management systems.

248 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Each of Hyslop's layers has its own performance model which takes certain in
put values and produces outputs which are considered at lower layers.

Work on metrics has produced classifications of performance require
ments. Jain [Jain91] defines a number of metrics: criteria, used to compare the
performance of systems, that relate to the speed, accuracy and availability of
services. These include response time, throughput, utilization, reliability and
availability.

Further literature notes on performance requirements are given at the
end of the next chapter.

9 PERFORMANCE REQUIREMENTS
FOR INFORMATION SYSTEMS

The previous chapter addressed performance requirements. [n order to be more
specific about performance requirements, we need to make assumptions about
the kind of system under development. This chapter focusses on performance
requirements for information systems. It continues the presentation of the
"Performance Requirements Framework" started in the last chapter.

Performance is a vital quality factor for systems, and this is no less true
for information systems. Information systems are a cornerstone for the suc
cessful working of many organizations. Unlike other types of systems (e.g.,
operating system software), information systems have to handle incoming data
and transactions, provide an interface with external users, and maintain persis
tent storage. [nformation systems exhibit a variety of characteristics, ranging
from a large to small number of entities, and from large to small volume of
transactions, which vary in duration and complexity. Without good perfor
mance, such systems would be practically unusable, leading to lack of service,
lack of information, clients who are dissatisfied, and corporate loss. Hence it
is important to consider performance requirements during information system
development.

250 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Recall from Chapter 8 that performance requirements for information
systems often focus on response time. They are often stated very briefly, and
may be developed for particular application systems. l

This chapter presents a framework for dealing with performance require
ments for information systems. It extends the presentation of the Performance
Requirements Framework, which was introduced in Chapter 8. It organizes and
catalogues knowledge about information systems, features of their specification
languages, their implementation techniques and their performance features. A
catalogue of methods is given, which draws on results from databases, principles
for building performance into systems, and experience in implementing object
based systems, particularly semantic data models. The layered organization of
issues, introduced in Chapter 8, is extended to deal with language features of
semantic data models. The framework for dealing with performance require
ments for information systems is illustrated using the research administration
example.

9.1 LANGUAGE FEATURES AND IMPLEMENTATION TECHNIQUES
FOR INFORMATION SYSTEMS

In addressing performance requirements for information systems, we consider
the kinds of features found in languages that are used to specify the design
on a system. We also consider the kinds of target techniques used to produce
an implementation of an information system that is consistent with its design.
We then examine the performance characteristics of these target techniques to
determine how well they meet a variety of performance requirements.

Our focus, then, is on the body of design language features and target
implementation techniques, rather than on particular languages, per se. The
emphasis is on selection of data structures and algorithms; hence detailed code
is not often shown in this chapter. We feel that the approach should be ap
plicable to a variety of approaches to information system development, since
several of the features and techniques are used in a variety of languages and
implementations.

To be more specific, we consider performance requirements during the
development phase when high-level conceptual source specifications of infor
mation systems are translated to target implementations. By considering per
formance requirements during this phase, we can draw upon implementation
experience and techniques.

More specifically, we consider translating a semantic data model (par
ticularly the Taxis language) to a relational database implementation language
augmented with application programmes (such as is offered by the DBPL lan
guage).

lThanks to Michael Brodie for his help concerning the nature of performance requirements
for information systems in industry.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 251

In order to naturally and directly model the subject matter of the ap
plication domain, semantic data models adopt an entity-oriented framework.
These conceptual design specification languages are based on an Entity
Relationship data model [Chen76], and are used to specify and manage a large
and complex information base. Entities are grouped into classes, which have
associated attributes. Classes are arranged in inheritance (IsA) hierarchies:
specialized classes inherit attributes from general classes. Taxis [Mylopou
los80) [Borgida90a) [Borgida93] applies inheritance uniformly to all types of
classes, including entities, short-term transactions, long-term processes and
integrity constraints. TaxisDL [Borgida93) is a refinement of Taxis, offering
non-procedural specification facilities.

As a target database implementation language, we focus on DBPL
[Matthes92a, 93) [Schmidt88) [Borgida89], a relational database programming
language which offers structures and operations for database applications, mod
ularization, and a rich, static type system. Given the abstraction in the lan
guage, the DBPL programmer need not consider too many database implemen
tation issues.

Recall from Section 8.2 that there are input factors which apply when
dealing with performance requirements. Some factors generally apply to a vari
ety of systems. When we focus on information systems, and choose the source
and target languages, we can be more specific about the nature of the addi
tional input factors. For example, the language definition includes data model
features of the source language, here Taxis. Development techniques include
implementation techniques and tradeoffs for information systems. They also
include techniques to deal with features of the source language, e.g., methods
for representing inheritance IsA hierarchies in the target system. The source
specification includes definitions of source concepts such as researchers, meet
ings and travel authorization; here, they would be specified in Taxis, e.g., as
entities and transactions.

Even if the particular source or target language were changed to other
languages with similar features, we would expect that the basic principles and
issues described in this chapter would still apply. In part, this is because Taxis
shares features with object-oriented systems including entities (objects) with
identity, inheritance and persistence. Taxis has also influenced the design of
data models for object-oriented databases [Fishman87).

Some Lessons from Implementation Experience

Experience with implementation of semantic data models gives some motivation
for using an approach such as the NFR Framework.

There is a variety of implementation techniques for features of semantic
data models. In developing an implementation, performance requirements can
be considered, along with a number of other NFRs, such as reliability and safety.
These NFRs can interact with each other and with the implementation tech
niques. We observed [Nixon90) that when applying "off-the-shelf" technology
from areas such as compilers and databases to the implementation of seman-

252 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

tic data models, integration problems often arise due to interactions among
data model features, implementation techniques and NFRs. Such interactions
need to be considered, as they often have global impact, and lead to tradeoff
dilemmas and sub-optimal implementations.

Accordingly, we do not feel that automatic compilation using generic
algorithms and structures ("canned alternatives") alone suffices for efficient
implementation of information systems. Rather, the developer should be al
lowed to exploit characteristics of the particular application by choosing an
implementation in an interactive, developer-directed, way.

Hence, in dealing with NFRs in general, and in particular for dealing
with performance requirements for information systems, we need to deal with
tradeoffs and conflicts among performance requirements, and with the many
implementation alternatives which have varying performance features. Fur
thermore, we want to be able to deal with interactions which are discovered
when development is already underway. In addition, there is a great deal of
knowledge to consider. Thus, there is a need to organize issues and structure
the development process.

In view of these needs, and our experience, we feel that the NFR Frame
work, as specialized in the Performance Requirements Framework, allows de
velopers to interactively use their expertise to produce customized solutions by
building performance into information systems. It offers a good basis for cata
loguing knowledge about performance of information systems, and for dealing
with interactions.

9.2 EXAMPLE: A RESEARCH MANAGEMENT SYSTEM

As an illustration, we continue to consider a research administration system.
We give an outline of the source specification of the system. At the same time,
we illustrate some of the data model features of Taxis which would be used in
the source specification.

This hypothetical system is intended to model the management of ex
penses for scientists, drawn from several institutes in several countries, who are
engaged in a related set of research projects. Participating scientists register
for, and attend, group meetings, then submit reports on meetings and expenses.
Reports are reviewed and expenses are reimbursed. Scientists then plan and
execute their work. This cycle is repeated periodically.

The developer can start by defining some classes of entities. Figure 9.1
shows definitions of the class Employee, along with its specialization Researcher.

Attributes can be defined for each class. Entities (such as Jacob, an
instance of class Employee) will have a value for the attributes defined on the
class. For example, Jacob might have a BirthDate of 14May1948.

Classes can be related by inheritance. Specialized classes (e.g.,
Researcher) are formed by refining definitions of general classes (e.g., Employee
in Figure 9.1).

As a consequence, all Researchers are also Employees. Furthermore,
specialized classes inherit attributes from their superclasses. For example, Re-

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 253

entityCiass Employee with
unchanging

BirthDate: Date
DateStartedWork: Date

changing
Name: String
Dept: Department
Inst: Institute
Mgr: Manager

end Researcher

entityCiass Researcher isA Employee with
changing

Meeting: ResearchMeeting
NumOfPapers: NonNegativelnteger

end Researcher

Figure 9.1. Definitions of the Employee and Researcher classes.

searcher inherits all attributes of Employee, such as Name, are inherited from
Employee. In addition, new attributes can be defined for Researcher. An exam
ple is Meeting, a meeting attended by a researcher.

Transactions can also be defined. Typically, these are short-term opera
tions on entities. For example, a transaction to register a given researcher for
a meeting can be defined. It includes a header indicating the transaction and
topic RegisterForMeeting(Researcher), and also include details of the operations
to be performed.

A number of data management facilities will be automatically pre-defined
for the entity classes. These facilities include operations to insert and remove
entities, update attribute values, and retrieve values.

Further specializations can be defined. For example, ComputerResearcher
is a specialization of Researcher (Figure 9.2). New attributes can be defined for
ComputerResearcher. An example is System, the operating system used by
the researcher. Of the inherited attributes, some (e.g., DateStartedWork) retain
the initial definition, and some of them can be specialized. For example Salary
is inherited from Researcher. While not shown in the figure, the salary for
computer researchers could be restricted to a certain range.

Classes are arranged in IsA (inheritance) hierarchies. Specialized classes
are placed under general ones. Figure 9.3 shows such an arrangement of entity

254 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

entityCiass ComputerResearcher isA Researcher with

changing

ComputerType: Computer

System: OperatingSystem

end ComputerResearcher

Figure 9.2. Defining ComputerResearcher as a specialization of Researcher.

~\~
Organization Person Expense Meeting Department Project Report

i
Employee

/"Secretary Researcher

~i~
ComputerResearcher MathResearcher PhysicsResearcher

,,/
NumericalAnalysisResearcher

Legend I i [sA link

Figure 9.3. Entity (data) classes in the functional requirements for the research adminis

tration example.

classes for the example. With multiple inheritance, a class may simultaneously
be a specialization of two or more classes; e.g., a NumericalAnalysisResearcher is
both a ComputerResearcher and a MathResearcher.

All types of classes in Taxis (such as entity classes, transactions, etc.)
are arranged in IsA hierarchies. For example, Figure 9.4 shows the main trans
actions arranged in an IsA hierarchy. For example, the general transaction

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 255

Transaction Classes

p'YR..e''''h,,~7J1 \\~"Re"'rt(Researcher) RegisterForMeeting A IR

r
(Researcher) nnua eport

1
PlanWork SubmitReport

AttendMeeting WriteCheque
PayResearcher .
(ComputerResearcher) ReviewMeetingReport 1~

RegisterForMeeting SubmitMeetingReport SubmitExpenseReport
(ComputerResearcher)

Legend I t [sA link

Figure 9.4. Transaction classes in the functional requirements.

RegisterForMeeting(Researcher) can be specialized to
RegisterForMeeting(Computer Researcher). Here the specialized transaction has
specialized parameters. Specialized transactions inherit the actions of general
transactions. They can also have specialized actions and additional new ones.
For example, when any researcher registers for a meeting, a meeting room can
be booked, but when computer researchers register, computer equipment is also
booked.

A number of integrity constraints are specified. For example, the cost
of a trip cannot exceed the budget of the researcher's department. Another
example, a temporal constraint, is that a researcher must register for a meeting
before attending it.

Figure 9.5 outlines, the long-term process of research administration. It
takes the perspective of an individual researcher. This long-term process can
be modelled by a Taxis script [Chung84, 88] [TDL87].

The process starts at the top, where some initialization is done. Then,
moving down the figure, the researcher registers for the meeting and then at
tends it. This is an example of a temporal constraint, requiring registration
before attendance. Note that there may be long periods of time between such
activities. In addition, confirmations may be sent to the system, e.g., to indi
cate that the researcher attended the meeting, so that control may flow to the
next step. This is an example of communication, which may involve systems
and people.

After the meeting, two series of events can occur in parallel. In one,
an expense report is submitted, and then the researcher is reimbursed and

256 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

FRs

work:

DoWork

Start

getReady:

Initialize

Ready

register:

RegisterForMeeting

Registered

attend:

AttendMeeting

Attended

meetingReportFoliowup:

ExpenseReported

expenseReportFollowup:

PayResearcher
UpdateStatistics

expenseReport:

SubmitExpenseReport

BothReportsSubmitted

plan:

PlanWork

WorkPlanned

transition:

Activity

Location

meetingReport:

SubmitMeetingReport

MeetingReported

Legend

Figure 9.5. A long-term research administration process represented as a script.

statistics are updated. In the other, the researcher can submit a report on the
meeting. When both series of events are completed, the system synchronizes,
and the researcher can plan future work, and then perform it. Then the entire
process can be repeated.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 257

A Taxis script is built around a Petri net skeleton, inspired by [Zis
man78]. Control flows between locations, which are nodes or states, such as
Start and Ready in Figure 9.5. Transitions, which are arcs such as getReady,
which join locations. Along a transition arc, operations are performed. Exam
ples are Initialize and RegisterForMeeting. In TaxisDL [Borgida93], operations
are specified non-procedurally, in terms of givens (preconditions) and activities
(postconditions).2 Givens are conditions for activating a transition. Activi
ties specify the activity to be performed if a transition is activated. Some of
the activities of the script in Figure 9.5 are transactions from the functional
requirements (Figure 9.4). For example, the transition register has a precon
dition (given) that the researcher be employed, and a postcondition (activity)
that the researcher be registered for the meeting (which can be accomplished
by the transaction RegisterForMeeting).

Scripts also have interprocess communication primitives, based on Hoare's
communicating sequential processes [Hoare78]. This allows scripts to invoke
other scripts, communicate with them, and reference any entity. Detailed code
is not shown in the figure.

Organizational Workload

The framework allows the developer to consider priorities as well as workload for
the organization and system. The basic Performance Requirements Framework
in Chapter 8 considered workload in general. Now we also consider organiza
tional workload. We use this term to deal with workload aspects more related
to the particular domain, organization, applications and operations. Exam
ples of the kind of workload measure include the number of researchers, and
how frequently they attend meetings. In comparison, "system workload" ex
presses workload more in detailed implementational terms, such as the number
of input-output operations.

To meet performance requirements, organizational workload is used to
help deal with tradeoffs and select among appropriate implementation alter
natives. For example, we might expect there to be 2000 employees, of whom
1000 are researchers. On average, each researcher attends 4 meetings per year.
In total, 100 meetings are held per year. The 1000 researchers consist of 100
physicists, 700 computer scientists and 300 mathematicians. Counted in each
of the last two groups are 100 numerical analysis researchers. There are 30
managers. In addition, from these figures one can draw a number of implica
tions. For example, at a given time, there can be 1000 script instances at a
given time, one per researcher. Per year, there are 4000 script cycles through
9 transitions each, and therefore 36 000 transitions. Several transactions (e.g.,
SubmitExpenseReport) are invoked 4000 times per year, while some functions

2In Taxis scripts, postconditions of transitions are called "goals." These functional goals are
different from the softgoals of the NFR Framework. For consistency, this book uses the terms
"givens" for preconditions, and "activities" for postconditions.

258 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

(e.g., ForeignExchange) might be invoked less frequently. The entities are ar
ranged in classes with inheritance. Some attributes are inherited and others are
not. For the Researcher class, 50% of the non-inherited attributes are frequently
accessed.

9.3 EXTENDING THE PERFORMANCE TYPE

NFR Type Catalogue I

NFR Types

t
Performance

~~
Space Time

/'" /i~
Main Secondary Response Throughput Management

Memory Storage Time Time

Figure 9.6. Adding ManagementTime to the performance type.

Observe that our sample script has a long-term process which may last sev
eral months, during which time the researcher attends a meeting, prepares
reports, and so on. However, the computer system will not be continuously
performing operations on behalf of this script. Rather, there will be a number
of relatively short "bursts" of processing time when script-related operations
will be executed. This includes time managing the script, such as determin
ing which givens have been met, and which transactions to activate. We call
this time spent managing long-term processes and integrity constraints Man

agementTime, a subtype of Time. Figure 9.6 extends the performance type of
Chapter 8 to deal with ManagementTime.

We distinguish ManagementTime of scripts from ResponseTime of trans
actions because they deal with activities with vastly different time durations.
In addition, reducing these two types of Time has different kinds of impact.
For example, improving the ResponseTime of the PayResearcher transaction will
shorten the duration of this transaction. However, speeding up the activation of
the transition which contains Pay Researcher (i.e., improving the Management

Time of expenseReportFoliowup) will not significantly decrease the duration of
the script. This is because the overall script duration is primarily determined
by domain factors, such as the frequency of meetings. To put it another way,

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 259

quarterly reports will end up being issued quarterly, no matter how little Man
agementTime is used to administer the reporting process.

We use ManagementTime to refer to the time spent managing seman
tic integrity constraints as well as scripts. This is because semantic integrity
constraints and scripts share some implementation considerations [Chung84].
ManagementTime was called "Process Management Time" in Figure 2.1.

NFR Type Catalogue I

NFR Types

i NFR Characteristics

~rl~mM~ /
~'- Peak
~ "" Characteristics

!'\)l~ 00/1.
Main Secondary Management Responset<:Thoughput / Statistical

Memory Storage Time Time t /' ~
// /Characte~tics

Oltp"kThm"""",zx::/"-
PeakMeanThroughput PeakUniformThroughput

Figure 9.7. Adding ManagementTime and characteristics to the performance type.

In previous chapters we have extended performance and other NFR types
to deal with characteristics of NFRs. Now the performance type with manage
ment time (Figure 9.6) is extended in Figure 9.7 to deal with characteristics of
the performance type. Thus we can express requirements for mean manage
ment time, peak-period management time, etc.

9.4 ORGANIZING ISSUES VIA LANGUAGE LAYERS

We can impose additional structure in the presentation and representation of
performance issues. This is accomplished through a series of language layers.
This generalizes the layering of Section 8.1. It organizes information about in
teractions among data model features, implementation techniques and perfor
mance aspects of specification languages [Nixon90]. This layering helps control
the number of interacting implementation concepts to consider at a time, by

260 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

structuring the introduction of domain knowledge associated with specification
components.

Layered Structuring I

Entity Activity Constraint

Classification

Aggregation

Specialization

11: Entities I
2: Attributes 3: Transactions

4: IsA Hierarchies 5: Constraints

6: Long·Term Processes

Figure 9.8. Performance issues arranged in a grid.

Consider a grid with two axes, as shown in Figure 9.8. On the horizontal
axis, we have the conceptual linguistic features (relating to the ontology, i.e.,
what can be expressed about the world) of entities, activities and constraints
(based on Greenspan's [Greenspan82] specification units for requirements mod
elling). On the vertical axis are the organizational (epistemological) features of
classification, aggregation and specialization [J. Smith77] offered by semantic
data models. This grid helps organize issues into a series of language subsets,
where larger subsets deal with a larger number of issues.

Now we can express the issues of the grid in terms of layers, correspond
ing to language features of semantic data models. This is done by selecting a
small portion of the grid for lower layers, and then forming higher levels to deal
with additional features by enlarging the selected area, extending the selected
portion along one axis at a time.

Figure 9.9 shows this layering. Each layer deals with a language feature
supported by semantic data models. The layering uses a series of language
subsets, where higher-level languages introduce additional features and include
the features of lower levels. Note that the lowest level language, the target, is
numbered 0, and higher-level languages have larger numbers.

The languages and features added at each layer are as follows.
Layer 0 is the target language, namely the relational data model. We

consider the database facilities offered by the DBPL language [Borgida90a].

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 261

lAyered Structuring

CONCEPTUAL DESIGN:
Semantic Data Model

6. LONG-TERM PROCESS

5. INTEGRITY CONSTRAINTS

4. IsA HIERARCHIES

3. TRANSACTIONS

2. ATTRIBUTES

1. ENTITIES & CLASSES

IMPLEMENTATION:
Relational Database

+ Application Programs

Figure 9.9. Layered organization of performance knowledge.

Layer 1 is the relational model, extended with entities, both persistent
data entities (such as John, an instance of Researcher), and finite entities (e.g.,
integers), arranged in classes;

Layer 2 consists of Layers 0 and 1, plus attributes, defined on entity
classes. Layers 1 and 2 roughly correspond to the Entity-Relationship Model
[Chen76].

Layer 3 has the lower layers plus transactions, modelled as classes with
attributes and instance entities.

Layer 4 includes entities and transactions with attributes, and classes
arranged in [sA hierarchies. Layers 1 through 4 roughly correspond to the
Taxis subset described in [Nixon87].

Layer 5 has the above Taxis subset, extended with constraints.
Layer 6 includes the lower layers plus long-term processes, whose nature

has aspects of entities, activities and constraints [Chung84].

262 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Layers 1 through 6 comprise the source specification language, namely
Taxis [Chung88] and its successors, TDV [Borgida90a] and
TaxisDL [Borgida93].

Recall the simple layering of Chapter 8, which organized issues into 3 lay
ers. Now to deal with information systems, we start with comparable layers at
the bottom. That is, Layer 1 deals with entities and classes. Layer 2 deals with
attributes, so that the bottom 2 layers essentially correspond to the Entity
Relationship model. Layer 3 deals with transactions.

We then extend the layering to consider additional language features.
Layer 4 deals with inheritance (IsA) hierarchies, which apply to a variety of
language features such as entity classes, but also transactions. Layer 5 deals
with integrity constraints (e.g., requiring that researchers' salaries are less than
their department's budget). Finally, Layer 6 deals with long-term processes,
which unlike transactions, may last several months, and may also involve in
teraction with other processes and people.

We work top-down, starting with the source (top layer) semantic data
model. Successive layers deal with and eliminate data model features such
as long-term processes and integrity constraints. This is done by expressing
features of higher layers in terms of simpler concepts at lower layers. In the
other direction, bottom-up, we consider smaller languages and then larger ones.

This approach helps a developer focus on smaller sets of issues at a time,
when desired. In addition, some of the intermediate languages correspond ap
proximately to previously-studied models, including a Taxis subset [Nixon87]
and the Entity-Relationship model [Chen76]; this facilitates the review of in
termediate results in terms of known characteristics of those languages.

From a performance viewpoint, implementation issues are organized in
a layered manner similar to what has been used in the study of database per
formance [Casas86] [Hyslop91].

From a language and data model viewpoint, issues are organized to con
sider a series of subsets of data model features and languages.

The framework uses the same layered organization for selection among
implementation alternatives (while dealing with performance requirements),
prediction of performance of a selected implementation (which is outlined
in [Nixon91]), and in a (partial) performance requirements tool. By sharing a
common organization, results should be more easily shared among components
and future extensions. In addition, this layered approach should be applicable
to other data models, e.g., object oriented models [Kim89].

3Note that the acronym "TDL" is also used in a different context, as the Type Definition
Language of the VBASE object-oriented system [Andrews87).

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 263

Some Issues for Information System Development

There are many performance concerns for information systems. These con
cerns are addressed in the framework by the provision of decomposition and
operationalization methods, correlation rules, etc.

SOURCE
Conceptual Specification

6. Long-term processes

5. Constraints

4. IsA hierarchies:
· representation

· inherited attributes

· transaction body

3. Transactions

2. Attributes

1. Entities

TARGET
Implementations

- Database transaction
- Trigger code

- Cyclic checking
- Trigger code

- Tree
- Matrix
- Horizontal splitting
- Vertical splitting
- Static inheritance
- Dynamic inheritance

- Database transaction
- Function

- Static offset fixing
- Dynamic offset fixing

- Surrogate identifiers
- Physical addresses

Figure 9.10. Space of implementation alternatives arranged by layer.

One class of issues relates to techniques used to implement the data
model features of the source specification language. Experience in implement
ing semantic data models reveals that there are a number of issues and imple
mentation alternatives. Part of the large space of implementation alternatives
is shown in Figure 9.10, which organizes the issues using the layering structure.

The figure shows different techniques that can be used to implement a
particular source feature. For example, at Layer 2, two different methods are
shown for determining the offsets of an attribute of an entity.

264 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Other issues and sources of methods arise from database design and
implementation, and from techniques for building performance into systems.

Now we will consider methods for dealing with information system per
formance. This extends the presentation of the Performance Requirements
Framework of Chapter 8. The presentation here is organized by language
features, starting generally at lower layers. It is illustrated by the research
administration example.

9.5 DECOMPOSITION METHODS FOR HANDLING DATA
MANAGEMENT

We consider a number of decomposition methods for data management oper
ations (and developer-defined transactions) for entities, classes and attributes.
These are considered at the lower 3 layers.

Recall from Chapter 8 that Info is an information item (or an operation
on an item), Operation is an operation on an item, and Layer is a layer.

• Operational method:

A performance softgoal for an information item Info (such as a class or an
attribute of a class) at a particular Layer is helped (but not necessarily
satisficed) by a softgoal for operations on the item:

Performance[operationsOn (Info), Layer]

HELPS Performance[Info, Layer]

In turn, the performance softgoal for the set of operations on the item is
refined into a set of performance softgoals, one for each operation on the
item:

Performance[Operationj(Info), Layer] AND .. , AND

Performance[Operationn (Info), Layer]

SATISFICE Performance[operationsOn(Info), Layer]

• Primitive-Developer-DefinedOperations method:

This method refines a performance softgoal for operations on an item into
softgoals for its primitive (pre-defined) and its developer-defined operations:

Performa nce[primitiveOperationsOn (Info), Layer] AND

Performance[developerOperationsOn(Info), Layer]

SATISFICE Performance[operationsOn(Info), Layer]

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 265

In turn, the softgoal for primitive operations is refined into softgoals for each
primitive operation, using the Primitive Operations method:

Performance[primitiveOperation j (Info), Layer] A.ND ... AND

Performance[primiti veOperationn (Info), Layer]

SATISFICE Performance[primitiveOperationsOn(Info), Layer]

Similarly, the softgoal for developer-defined operations is refined into soft
goals for each developer-defined operation, using the Developer-Defined Op
eration method:

Performance[developerOperation 1 (Info), Layer] AND ... AND

Performa nce[developerOperation n (Info), Layer]

SATISFICE Performa nce[developerOperationsOn (Info), Layer]

• Individual-BulkOperations method:

This method refines a performance softgoal for operations into softgoals for
operations manipulating one or many items.

Performance[individuaIOperationsOn(Info), Layer] AND

Performance[bulkOperationsOn(Info), Layer]

SATISFICE Performance[operationsOn(Info), Layer]

For example, operations on individual researchers (such as registering for a
meeting) can be distinguished from operations involving all researchers (such
as printing expense summaries for all staff). This allows us to distinguish two
groups of operations, whose performance can have quite different natures.

In turn, the softgoal for operations on an individual information item is
refined into softgoals for each such operation:

Performance[individualOperation l (Info), Layer] AND ... AND

Performance[indi vidualOperationn (Info), Layer]

SATISFICE Performance[individuaIOperationsOn(Info), Layer]

Similarly, the softgoal for bulk operations is refined into softgoals for each
such operation:

Performance[bulkOperation j (Info), Layer] AND ... AND

Performance[bulkOperationn (Info) , Layer]

SATISFICE Performa nce[bu IkOperationsOn (Info), Layer]

266 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

• EntityManagement method:

A performance softgoal for operations on an information item is refined into
softgoals for the primitive data management operations on the softgoai.

Performance[entityOperationsOn (Info), Layer]

HELPS Performance[operationsOn (Info), Layer]

Good performance for entity operations will help, but not necessarily satis
fice, good performance for all the operations on the item.

The performance softgoal for entity operations can be satsificed by satisficing
performance softgoals for all the primitive data management operations:
creation, retrieval, update and removal of entities:

Performance[create(Info), Layer] AND

Performance[retrieve(Info), Layer] AND

Performance[update(Info), Layer] AND

Performance[remove(Info), Layer]

SATISFICE Performance[entityOperationsOn(Info) , Layer]

An abbreviation for entityOperationsOn is access.

• Single-MultipleAttribute method:

Suppose a performance softgoal for operations on an information item has
been refined by the individual attribute method to a softgoal for operations
on the attributes of the item.

Performance[operationsOn(attributes(Info)), Layer]

HELPS Performance[operationsOn(Info), Layer]

This softgoal can then be refined into three softgoals. One softgoal addresses
the set of operations on precisely one attribute, another addresses the set of
operations on all attributes, and the other addresses the set of operations
on an intermediate number of attributes.

Performance[operationsOn(oneAttribute(Info)), Layer] AND

Performance[operationsOn(someAttributes(Info)), Layer] AND

Performance[operationsOn (aIiAttributes(Info)), Layer]

SATISFICE Performance[operationsOn(attributes(Info)), Layer]

• SchemaChange method:

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 267

We can also consider the impact of schema changes on the storage and ma
nipulation of entities. While the conceptual specification (or schema) of an
information system may be expected to remain constant in some cases, in
other cases it may be expected to change. For example, it may be desired to
be able to add new specializations of ComputerResearcher over time, without
requiring the entire system to be shut down and restarted. This method re
fines a performance softgoal for an information item, on the basis of whether
the schema is expected to change. One offspring deals with performance for
the case of a static schema; the other handles schemas which change.

Performance[inStaticSchema (Info), Layer] AND

Performa nce[i nDyna micSchema (Info), Layer]

SATISFICE Performance[Info, Layer]

9.6 METHODS FOR HANDLING INHERITANCE HIERARCHIES

IsA hierarchies have an impact on many data model features, including entity
classes and transaction classes. Each of these has a variety of implementation
alternatives.

There are several operationalizing and decomposition methods from se
mantic data model implementation experience. Several of the operationaliza
tion methods relate to implementation techniques for inheritance (IsA) hierar
chies, which are considered at Layer 4.

An important observation is that IsA hierarchies result in collections
of attribute values whose appearance is more like a "staircase" than a grid
(Figure 9.11). Here Researcher has attribute NumOfPapers, which is inherited
by ComputerResearcher and NumericalAnalysisResearcher, the specializations of
Researcher. Similarly ComputerResearcher has a non-inherited attribute System,
which is inherited by NumericalAnalysisResearcher, which has a non-inherited
attribute, MathPackage. In the illustration, not all attributes are shown.

Data Hierarchies

Let's consider IsA hierarchies for the case of storage of entity (data) classes.
When storing large amounts of persistent data, a natural first choice

is relational database technology. If we can represent attribute values within
a relational schema, we can exploit the efficient storage and access techniques
already developed for relational databases. However, the collection of attributes
attributes does not appear like a relational table. As a result, a simple relational
representation may waste space

For example, one alternative for representing all attributes is to use a
universal relation which has one tuple per entity, one column per attribute, and
null values for attributes not applicable to an entity. Obviously, such a rep
resentation would be highly inefficient with respect to space usage, although
it allows static determination of attribute offsets. Let's consider some alterna
tives.

268 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NumOfPapers System MathPackage

Num.AnalysisResearcher I
ComputerResearcher .
Researcher ------------------+--------~

-----~

Figure 9.11. Arrangement of attribute values in the presence of inheritance hierarchies.

OnlyNum.AnalysisResearchers

OnlyComputerResearchers

On lyResearchers

entity NumOf System Math
entity Papers Package
NumOO36 24 UNIX Maple
NumOO35 28 OS/2 MatLab

Figure 9.12. Horizontal splitting of attributes.

All
Researchers

entity NumOf
Papers

Num0036 24
Num0035 28
Com0034 19
Com0033 23
Res0032 20
Res0031 22

AIIComputer
Researchers

entity System

Num0036 UNIX
Num0035 OS/2
Com0034 Windows
Com0033 Win98

AIINum.Analysis
Researchers

entity Math
Package

Num0036 Maple
Num0035 MatLab

Figure 9.13. Vertical splitting of attributes.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 269

A second, more interesting, alternative involves using one relation per
class [J. Smith77], while another uses one relation for each generalization sub
lattice that is part of the conceptual schema [Zaniol083].

When using one relation per class, one may store all attributes (newly
defined or inherited) of a particular class in the corresponding relation (Hori
zontalSplitting, Figure 9.12), or only the newly defined attributes, as done in
[J. Smith83] (VerticaISplitting, Figure 9.13). In the examples, we assume that
entities are implemented by assigning a unique internal identifier to each entity.
Also note that only some attributes are shown in the diagrams.

Some implementations give the system developer more flexibility in se
lecting storage mechanisms to meet more selectively the needs of a particular
application. ADAPLEX [Chan82] supports a form of both vertical and hor
izontal partitioning of entities and their attribute values. In fact, arbitrary
predicates, specifying which entities to include in which partition, are available
to the system developer.

A variant of vertical splitting, which does not necessarily deal with in
heritance, is SelectiveAttributeGrouping. It stores together attributes chosen by
the implementor (not necessarily on the basis of inheritance).

I entity I attribute I attributeValue I
Num0036 NumOfPapers 24
Num0036 System UNIX
Num0036 MathPackage Maple
Num0035 NumOfPapers 28
Num0035 System OS/2
Num0035 MathPackage MatLab
Com0034 NumOfPapers 19
Com0034 System Windows
Com0033 NumOfPapers 23
Com0033 System Win98
Res0032 NumOfPapers 20
Res0031 NumOfPapers 22

Figure 9.14. Attributes stored as "triples."

Another alternative (which was considered for Taxis [Nixon87]) stores
a tuple of "triples": for every attribute value of every entity, one stores the
entity identifier, the attribute name, and the attribute value. The example
would be represented as in Figure 9.14. The "triples" method does not offer
the best performance, but does permit translation to a schema with a small,

270 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

fixed number of relations, that requires no refinement or reformatting, even
when additional classes and attributes are defined.

Another option is a modified universal relation approach. One issue is
to determine the field in the relation where a given attribute will be stored.
Observe that typical schemata have many general classes which have disjoint
extensions (e.g., integers, strings, exceptions, data classes). Consider the IsA
sub-lattice underneath each such general class: the set of attributes used in
each sub-lattice will typically be much smaller than the set corresponding to
the most general class (say, Any). A separate "universal" relation can be created
for each general class. This can be repeated at lower levels where extensions are
disjoint, for example, for data classes Person and Building. As a result, space
can be saved by allocating space for only the attributes used in each sub-lattice,
while still offering static determination of offsets, provided the translator can
determine which general class is to be accessed. Note however that if static
analysis of an expression can only determine that it refers to an overly general
class (e.g., AnyData which includes Person and Building) the field (or offset)
may have to be calculated dynamically, necessitating some run-time conversions
between attributes of a general class and fields of a particular relation.

Relevant parameters for selecting among alternatives include the relative
proportions of data management operations (entity creation, entity removal,
attribute retrieval, attribute modification, and bulk retrievals), as well as the
expected frequency of schema modifications over time. An analysis of the
different alternatives for attribute storage is presented in [Nixon87]. While
there are tradeoffs, it is clear that one needs to go beyond a simple relational
representation in order to obtain efficiency.

Tuple Storage: Operationalization Methods.

To implement hierarchies of entity classes, we consider the storage of
tuples in a relational database.

• Using FewAttributesPerTuple, if a tuple contains few attributes (e.g., vertical
splitting), some time softgoals can be positively satisficed, since a unit of
storage will contain several tuples, which can be retrieved together. However,
with this information alone, we can't necessarily determine the impact on
space softgoals.

FewAttributesPerTuple[Info, Layer] HELPS Time[Info, Layer]

• Using SeveralAttributesPerTuple, if a tuple contains several attributes (e.g.,
horizontal splitting), some space softgoals can be positively satisficed. For
example, if this reduces the total number of tuples needed to store informa
tion about a class, we may decrease the total space needed for overhead for
each tuple (for internal identifiers, pointers, etc.).

SeveraIAttributesPerTuple[Info, Layer] HELPS Space[Info, Layer]

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 271

We can't in general determine the impact on time.

• Using ReplicateDerivedAttribute, explicitly storing one attribute which is de
fined as being derived from another, will have a negative impact on space.
The impact on time softgoals may vary. For example, it may be positive for
retrievals, but negative for updates, as more than one attribute may need to
be updated.

ReplicateDerivedAttribute[Info, Layer] HURTS Space[Info, Layer]

We can extend this method to deal with data management operations.

ReplicateDerivedAttribute[Info, Layer] HELPS

Time[retrieve(Info), Layer]

ReplicateDerivedAttribute[Info, Layer] HURTS

Time[update(Info), Layer]

For these two methods, we can't in general determine the impact on space.

Tuple Manipulation: Operationalization Methods.

For hierarchies of entity classes, we also need to consider operations on
attributes. The effectiveness of operations will greatly depend on the storage
method chosen.

• Using AccessManyAttributesPerTuple (e.g., accessing information stored using
horizontal splitting), if many of the attributes in a tuple will frequently be
accessed, time softgoals can be positively satisficed. This is because one
access will retrieve several values.

AccessManyAttributesPerTuple[Info, Layer] HELPS Time[Info, Layer]

• Using AccessManyTuplesPerRelation (e.g., accessing information stored using
vertical splitting), if many of the tuples in a relation will be accessed, time
softgoals can be positively satisficed. For example, if one needs to access
several attributes of an entity, this method is helpful.

AccessManyTuplesPerRelation[Info, Layer] HELPS Time[Info, Layer]

272 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Transaction Hierarchies

Some data models (such as Taxis) offer transactions arranged in hierarchies. For
example, if the entity class Researcher has a specialization
ComputerResearcher, the transaction class RegisterForMeeting(Researcher) can
have a specialization RegisterForMeeting(ComputerResearcher) (Figure 9.4). And
in executing a call to the RegisterForMeeting transaction (e.g.,
r.RegisterForMeeting) for a given researcher r, the system needs to know the
"minimum class(es)" of the parameter (e.g., is r a computer researcher, or
just a researcher?) in order to invoke the "most specialized transaction ver
sion." For example, if r is a computer researcher, then RegisterForMeeting
(Com puterResearcher) will be called; otherwise RegisterForMeeting(Researcher)
will be. Let's consider some issues which arise from this feature .

• Transaction Calls: Based on the minimumclass(es) of the actual arguments,
the "most specialized transaction version" must be selected for invocation.
The difficulty of this selection task grows with the number of parameters,
the number of specializations of each parameter class, and the associated
topology of the IsA hierarchy (multiple inheritance, depth of hierarchy, etc.).
Depending on the degree of complications, different techniques, such as table
look-up, hashing, and inverse indexing of attributes may be selected. In
addition, for frequently called transactions, it may be desirable to use more
space to minimize execution time.

• Code Inheritance: Another issue is whether inherited code should be repli
cated. There is a spectrum of options. Dynamic inheritance (performed at
each transaction invocation) may be useful when the schema is continuously
being modified, at least for infrequently-called transactions. The system
could monitor calls to determine which transactions should be re-compiled
using another technique. Static inheritance, with full replication of code,
may be suitable for transactions which are called very frequently, or for
which fast response time is paramount. Some intermediate (hybrid) methods
are reviewed in [Nixon89]: they statically prepare tables of code locations
(offsets in activation records), without replicating code, but requiring ex
tra de-referencing of code locations during execution. One can imagine an
hybrid method, whereby large inherited code segments are not replicated
(saving space), while smaller ones are copied (saving de-referencing time).

There are several relevant parameters for choosing among implementation
alternatives. They include the topology of the transaction hierarchy, the
relative size of non-specialized inherited code in the schema and the relative
frequency of using it, the expected frequencies of invocation of transactions,
and limitations on space available for code and allowable response times.

Decomposition Method for Transaction Hierarchies.

Consider an IsA hierarchy of transactions. For example,
Reimburse(Computer Researcher) is a specialization of Reimburse(Researcher).

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 273

• CommonOperations method: By the CommonOperations method, operations
on the general transaction may be refined into operations which are common
to all versions, and operations which are not.

Time[eommonOperations(Operation(Info)), Layer] AND

Time[nonCommonOperations(Operation(Info)), Layer]

SATISFICE Time[Operation(Info), Layer]

This is a specialization of the ImplementationComponents method.

Operationalization Methods for Transaction Hierarchies.

Some operationalization methods for dealing with transaction hierarchies
draw on the software performance engineering principles for building perfor
mance into systems. They include specializations of early and late fixing.

• StatieCodelnheritanee is a specialization of EarlyFixing. Due to replication of
code, there is a negative impact on space.

StatieCodelnheritanee[Info, Layer]

StatieCodelnherita nee[Info, Layer]

HELPS Time[Info, Layer]

HURTS Spaee[Info, Layer]

• DynamieCodelnheritanee is a specialization of LateFixing. By avoiding repli
cation of code, there is a positive impact on space.

Dyna mieCodelnheritanee[Info, Layer]

DynamieCodelnheritanee[Info, Layer]

HELPS Spaee[Info, Layer]

HURTS Time[Info, Layer]

• Execution Ordering Methods, such as Perform First and PerformLater were
presented in Section 8.4. They can be applied to the implementation of
conceptual specification languages. For example, TaxisDL [Borgida93] does
not require the specification of the order of execution of components of a
transaction.

9.7 METHODS FOR HANDLING INTEGRITY CONSTRAINTS AND
lONG-TERM PROCESSES

Semantic integrity constraints and long-term processes are language features
found in some data models, including Taxis. They share some implementation
considerations [Chung84].

Integrity Constraints

A large information system can have many entities, and many integrity con
straints associated with each entity. Efficient enforcement of integrity con
straints is essential, as the system cannot check every constraint at every point

274 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

in time. Hence, one must consider how and when the system searches among all
the constraints which may be violated, when implementing semantic integrity
constraints. Integrity constraints are considered at Layer 5.

Since the system will be continually looking for unsatisfied constraints,
an important performance issue is whether the search is exhaustive or selective.
Consider a constraint that every researcher must have a salary which does not
exceed the budget of his or her department. Exhaustive search involves the
repeated checking of every constraint after any change to the system. In the
example, every researcher's salary could be examined, and this entire process
might be done frequently. It would be better to analyse the condition at com
pilation, and produce code with selective checking; in the example, a compiler
would emit code which does not check this condition for any salary decrease.
Here, a particular constraint may be satisfied by simply checking the direction
of change. In other cases, modified values may be compared to aggregate values
(such as maxima and minima) to determine constraint satisfaction. These are
some of the cases where a constraint can be implemented by examining only
one or two values, which are selected at compilation time.

It turns out that there are tradeoffs among the different techniques for
selective checking [Chung88]. For example, if attribute values are frequently
modified, overhead for maintaining maxima and minima will also increase. The
form of the constraint, and the expected patterns of modifications will be fac
tors in determining which compilation techniques should be used. There are
additional options concerning integrity constraint enforcement.

One option is for enforcement of integrity constraints on entity classes
to be centralized. Using this approach, all updates are handled by a central
mechanism which examines the relevant definitions to determine which con
straints to check, e.g., as in Taxis [Chung88]. Another option is application
based (decentralized) enforcement, where the developer chooses which appli
cation transactions will have code to check particular constraints. Centralized
checking imposes some structure on enforcement, while decentralized checking
offers flexibility and individual optimization, possibly at the cost of consis
tency. For example, if a certain constraint can only be violated from execution
of one transaction, the constraint can efficiently and safely enforced directly
in that one transaction. Suppose the Researcher class has the constraint that
a researcher registering for a meeting must have a good record of submitting
timely reports. By using knowledge of where this constraint is used, it could be
directly checked in the RegisterForMeeting transaction, and nowhere else, thus
reducing overhead.

For operationalizations of integrity constraints, there are alternatives
with varying performance. These include CyclicChecking [Zisman78] (exhaus
tive circular examination of all entities with a particular constraint) and a Trig
gerMechanism (event-driven selective checking [Chung88] as in active databases)
which can often be more efficient. Temporal integrity constraints can be ar
ranged in a list ordered by the time applicable to the constraint; this can avoid
exhaustive checking of the list.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 275

Handling Long-Term Processes

Another, related, issue is the efficient implementation of a data model's facilities
for concurrency and long-term processes. In Taxis, they are modelled by scripts.

Operationalization Methods.

There are several problems in the management of the type of concurrency
introduced by a modelling construct such as that of scripts. In general, there
will be a large number of active script instances, states and transitions at any
one time, and it is important to use a strategy for process scheduling that is
both fair and efficient. The key to any such strategy is the determination and
management of transitions that are eligible for activation or are currently active.
One needs to consider techniques for both scheduling (such as those available
from systems programming) and optimized detection of condition satisfaction.
If an implementation uses an "off-the-shelf" technique which only provides
scheduling (such as monitors provided by an operating system), but does not
incorporate optimizing techniques (such as selective checking) then performance
will be poor. For example, if the condition that a particular researcher has been
hired is translated to a monitor-like "wait" construct, the result could be very
inefficient, as the condition would be evaluated repeatedly. Now if there are a
thousand instances of the script, (one for each researcher), the large amount
of checking may slow down the system altogether. Again selective checking
will improve the situation. For example, the condition could be checked for a
particular researcher when that researcher is registering for a meeting.

CyclicChecking involves a sequential scan, but only of transitions whose
input states are active.

Another approach, Triggering, is to only examine transitions whose con
ditions may have now become satisfiable and have all input states active.

Cyclic checking may actually provide reasonable performance when there
are few transitions, and when every transition whose input states are satisfied
also has its conditions satisfied. In most other situations, however, triggering is
much more efficient. One exception is when many transactions are de-triggered,
i.e., true conditions become false.

Decomposition Methods.

There are a number of types of decomposition methods to deal with
long-term processes. Some of them involve data model features of scripts.

Let's consider DataModelFeature decomposition methods. These decom
pose a softgoal by considering the data model features used in the topic of the
softgoal.

• ScriptComponents method:

276 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

A softgoal for a script Script is refined into softgoals for its locations and for
its transitions.

Performance[locations(Script), Layer] AND

Performance[transitions(Script), Layer]

SATISFICE Performance[(Script), Layer]

• TransitionComponents method:

This method refines a softgoal for a script's Transition, e.g., RemindToContact,
into softgoals for its constituent constructs, namely givens and actions:

Performa nce[givens(Transi tion), Layer] AND

Performance[actions(Transition), Layer]

SATISFICE Performance[(Transition) , Layer]

The ScriptComponents and TransitionComponents methods are shown in Fig
ure 9.16, along with a number of other methods for scripts and integrity con
straints.

Another group of methods are the IndividualComponents methods. These
methods refine a performance softgoal for a particular feature (e.g., transitions
of a script) into softgoals for each individual component of the feature (e.g.,
each transi tion).

For long-term processes (Layer 6), specializations of the Individual Com
ponents method include the Individual Locations, IndividualTransitions, Individu
alGivens, and IndividualActivities methods. Let's consider one of these methods.

• IndividualActivities method:

This method refines a performance softgoal for the activities (postconditions)
of a transition into softgoals for each of the activities of the transition:

Performance[ActivitYl (Transition), Layer] AND ... AND

Performance[Activityn (Transition), Layer]

SATISFICE Performance[activities(Transition), Layer]

Refining Management Time into Time Softgoals

After ManagementTime softgoals are addressed at Layers 6 and 5, there may be
remaining time-related development to be done at these and lower layers. Since
aspects relating to long-term process and integrity constraints may have been
addressed at the higher layers, the remaining softgoals at these and lower layers

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 277

may address other Time softgoals, such as ResponseTime or Throughput. The
ManagementTime to Time method allows this kind of inter-layer refinement:

Time[Info, Layerm] HELPS MgmtTime[Info, Layern]
WHERE 1:::;Layerm :::;6 AND S:::;Layern :::;6

AN D Layerm :::; Layern

Unlike the FlowThrough method, this method allows the types of the parent
and offspring softgoals to differ.

9.8 ORGANIZING PERFORMANCE METHODS

We consider how to organize the large number of performance methods.
A premise of this framework is that performance and development knowl

edge must be organized. As we have seen earlier, there are many types of knowl
edge which must be considered when addressing performance requirements and
there is knowledge about a large number of information system implementation
alternatives, whose performance can interact in complex ways. Accordingly,
the framework represents and organizes performance concepts and knowledge
of information systems, their specification, implementation and performance.
It represents and organizes results from semantic data models and databases,
as well as principles for building performance into systems [C. Smith86]. This
knowledge can be organized using a powerful object-oriented knowledge rep
resentation language such as Telos [Mylopoulos90]. Developers can use this
knowledge, along with characteristics of the system (e.g., domain knowledge,
organizational workload, and priorities) and their own expertise, to deal with
the particular performance requirements of the particular system under devel
opment, and produce customized solutions.

There are a number of performance refinement methods. How do we
organize them? Refinement methods are divided into decomposition, opera
tionalization and argumentation methods (Section 4.1). They can be further
grouped by the types of the parents and offspring. For example, all oper
ationalization methods produce operationalizing softgoals, but some have an
NFR softgoal as a parent, while others have an operationalizing softgoal. They
can also be grouped into predefined- and developer- defined methods.

Figure 9.15 organizes decomposition methods ("DM"). (In Figures 9.15
and 9.17 the "top" level is displayed at the left of the figure.) Since softgoals
have types, topics, layer topics, and additional attributes (such as priorities,
discussed below), methods can refine softgoals along each of these dimensions.
We can form broad groups of methods for each of these dimensions, which are
shown as the second level of decomposition methods.

These groups of methods can be further sub-divided. For example, the
layer-based methods can be specialized into groups of methods for each of the
layers. Likewise, topic-based methods can be specialized: there are groups of

278 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Method Ca1alDgue

Figure 9.15. Organization of Performance decomposition methods.

methods which produce offspring based on operations on the topic, data model
features of the topic, etc.

Most of the actual decomposition methods are specializations of the
groups shown in Figure 9.15. In fact, many of the methods are actually formed
by multiple inheritance, from two or more such groups. For example, the Transi
tionComponents method (lower right of Figure 9.16) is one of the methods which
is a specialization of both the LayerBased method for a particular layer, Layer 6
(long-term processes), and the TopicBased method for data model feature com
ponent decomposition. Similarly, the IndividualTransitions method (lower left of
Figure 9.16) is a specialization of the method for Layer 6 and the topic-based
method for individual components decomposition.

Similarly, operationalizing methods ("OM" at the "top" of Figure 9.17,
where the "top" is displayed at the left of the figure) are arranged into broad
groups, which are then used to define more specific methods via multiple in
heritance. Here, the broad groups again include types, topics and layer topics.
However, there are additional groups which represent sources of operational
ization methods. These include implementation techniques from semantic data

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 279

Method Catalogue

Performance Decomposition Methods

~~
LayerBasedDM ToplcBasedDM

/'" \IntegrityConstraintsDM LongTermProcessesDM ComponentDecomposltionDM

(Layer 5) (Layer 6) ~i~

\

Implementation DataModelFeature
ComponentsDM Individual ComponentsDM

compon7

IntegrityConstraints LongTemnProcesses LongTemnProcessesDataModelFeature
Implementation Individual ComponentsDM

ComponentsDM ComponentsDM / \

Individual~~ Individual
LocationsDM \ ActivitiesDM

Individual Individual
Trans~ionsDM GivensDM Script Transition

ComponentsDM ComponentsDM

Legend

DM: Decomposition Method

Figure 9.16. Some Performance decomposition methods for Layers 6 and 5.

modelling, object-oriented systems, and database systems, as well as software
performance engineering principles for building performance into systems.

By arranging methods into groups, particular refinement methods can be
defined via multiple inheritance from the (somewhat orthogonal) broad groups
of methods. This arrangement should help the developer in understanding,
representing and using a fairly large number of methods, for several reasons.
First, the groups should help a developer search a catalogue. In addition, the
use of the groupings can help a developer focus attention on a smaller number
of methods. A developer who understands aspects of a group of methods will
understand some aspects of more specific groups and their individual methods.
In addition, a developer will understand some aspects of methods formed by
multiple inheritance from two or more general methods, if they are already
understood. Finally, the groupings can provide some guidance for cataloguing
new methods when they are defined.

280 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Metlwd CatahJgue

Figure 9.17. Organization of Performance operationalization methods.

The same organization of knowledge can be made available to help a
developer use tool support for the framework. Tools can catalogue and orga
nize performance concepts and development methods, including results from
semantic data models and principles for developing responsive systems. Tools
can also record knowledge of NFR Framework concepts, the source language,
and the particular domain being considered.

9.9 ORGANIZING CORRELATIONS

Correlations show positive and negative interdependencies among softgoals.
Figure 9.18 shows the impact of some operationalizations for information sys
tem development. Here some operationalizations deal with tuple storage for
data hierarchies, and others deal with transaction hierarchies. In addition to
standard time and space softgoals, the performance softgoals deal with data
management operations, including retrieval and updating. Interestingly, some
operationalizations have both positive and negative impacts.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 281

Correlation Catalogue

Contribution of to
offspring parent
Operationalizing NFR Softgoal
Softgoal Time Time Time Space

[Info, [retrieve(Info), [update(Info), [Info,
Layer] Layer] Layer] Layer]

Tuple Storage
Operationalizations:

FewAttributes HELPS
PerTuple

[Info,
Layer]

SeveralAttributes HELPS
PerTuple

[Info,
Layer]

Replicate HELPS HURTS HURTS
Derived Attri bute

[Info,
Layer]

Transaction
Hierarchy
Operationalizations:

StaticCodelnheritance HELPS HURTS
[Info,
Layer]

DynamicCodelnheritance HURTS HELPS
[Info,
Layer]

Figure 9.18. A performance correlation catalogue for information system development.

282 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

9.10 ILLUSTRATION

We now illustrate some of the issues presented in this chapter. We continue
with the research administration example. We focus on issues related to IsA
hierarchies, at Layer 4.

SIC

Attributes of
Researcher

+Time
[individual operations on
Researcher.Name,
4)

Time
(anributes(Researcher).
4J

,Time
• [individual operations on

Researcher.Meeting,
4) {dominant}

Individual-Bulk

Time
{individual operations on
anributes(Researcher),
4)

Individual A/lributes

Time
(individual operations on
Researcher.Meeting,
4)

AccessMany
TuplesPerRelation

(Researcher.Meeting,
4)

LAYER 4 (lsA Hierarchies)

Figure 9.19. Dealing with inheritance hierarchies.

The initial requirement is for good performance for the attributes of
Researcher. This is shown as the softgoal Performance[attributes(Researcher), 4]
at the top of Figure 9.19.

Using the SubType method, this softgoal is decomposed into time and
space softgoals for the attributes of Researcher.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 283

The developer focusses on the time softgoal. To explore the differ
ent kinds of operations on researchers, the time softgoal is refined, using the
Individual-Bulk Operations method.

The developer focusses on the time softgoal for individual operations on
the attributes of Researcher. To consider individual operations on the various
attributes of Researcher, the IndividualAttributes method is used.

The developer focusses on individual operations on the Meeting attribute.
The developer observes that attributes such as Name, which Researcher inher
its from its parent class Employee, are not frequently accessed. However, 50%
of non-inherited attributes, including Meeting, are frequently accessed. Hence
Time[individual operations on Researcher. Meeting, 4] is prioritized as being dom
inant.

Using this information about access patterns, the developer realizes that
time performance can be enhanced. The developer arranges the storage so
that the non-inherited attributes are accessed together, but without accessing
other attributes in that operation. Vertical splitting groups the non-inherited
attributes together, so the developer decides to use it in the target system to
address the functional requirements of storing and manipulating the attributes
of Researcher. This is done by selecting the operationalization AccessManyTu
piesPerRelation .

The result of using vertical splitting is that the dominant time softgoal is
satisficed. However, the space softgoal for attributes is denied. This is because
vertical splitting can use extra storage, requiring several entity identifiers per
entity. For example, a particular researcher entity can require up to three
such entity identifiers (the entity key attributes) in relations AIIResearchers,
AIIComputerResearchers and AIINumericalAnalysisResearchers in Figure 9.13.

On the other hand, horizontal splitting requires only one entity identifier
per entity (Figure 9.12), so it helps the space softgoal. This operationalization
is rejected, however, as it hurts the dominant time softgoal.

The developer can continue consideration of performance requirements
at lower layers. Figure 9.20 shows an inter-layer link connecting Layers 4 and 3.

This example has addressed one layer, dealing with IsA hierarchies, par
ticularly data hierarchies. However, transaction hierarchies and a variety of
other data model features are considered when treating performance require
ments in the case studies of Chapters 11 and 12.

9.11 DISCUSSION

This chapter and the previous one have presented the Performance Require
ments Framework. It offers developers a systematic approach for dealing with
performance requirements, by applying the NFR Framework to performance
requirements. This chapter has extended the framework to deal with perfor
mance requirements for information system development.

The developer draws on a body of knowledge about performance and
information systems, organized in catalogues. This knowledge is used by de-

284 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Time
(attributesIResearcher),
4J

LAYER 4 (IsA Hierarchies)

Individual-Bulk

Time
(individual operations on
attributes(Researcher),
4J

Individual Attrjbutes

Time
[individual operations on
Researcher.Meeting,
4J

,Time
• [individual operations on

Researcher.Meeting.
4J {dominant)

++

Time
[individual operations on
Researcher.Name,
4J

AccessMany
TuplesPerRelation

[Researcher.Meeting,
4J

+

Attributes of
Researcher

Flow Through

LAYER 3 (Transactions) , Time
• [individual operations on

Researcher.Meeting,
3J (dominant}

Figure 9.20. Linking another layer to the graph.

velopers, along with their own expertise and domain information, to produce
customized solutions that address the performance requirements.

Knowledge of information systems development, their specification, im
plementation and performance aspects, is represented and organized. This
draws on experience in translating the Taxis semantic data model, a concep
tual specification language for information systems, into an implementation
specificed using a relational database implementation language, DBPL. As a
result we have catalogued implementation techniques for a number of data
model features used in a variety of design specification languages.

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 285

The use of C. Smith's principles for building performance into systems
helps developers choose the focus of their attention. This prioritization helps
a developer deal with tradeoffs.

As well, knowledge is further organized by a layered structure, which can
help reduce the number of concepts a developer deals with at a time during
the development process. The layering helps the decomposition of problems
to simpler, smaller ones. In our layering, based on subsets of specification
languages, language features are expressed in terms of simpler features. In
addition, the layering is applied to softgoal interdependency graphs. NFRs,
which have a global impact, are made more "localized" in their impact as one
goes down a graph and operationalizes the NFR softgoals. By going down
through layers of graphs, there is further localization of concerns.

Approaches to Treating Performance

We have taken a substantially qualitative approach to dealing with performance
requirements. Why have we done this, when performance is generally consid
ered quantitative? In addition, why focus on the quality of the development
process, when the performance of the software product is so important?

We feel that qualitative and process-oriented aspects are needed, along
with quantitative and product-oriented ones, but different aspects will be
stressed at different stages of development. We feel that a qualitative approach
is helpful, at least during early phases of development, and when consider
ing combinations of performance and other non-functional requirements (e.g.,
security) which may be more qualitative in nature.

At the early stages of development, it seems helpful to start qualitatively.
We start with brief, high-level requirements. We want to deal especially with
broad overall relationships and conflicts among NFRs, and between NFRs and
implementation techniques. Initial efforts may focus on direction, e.g., moving
towards or away from a requirement (e.g., response time should be fast).

At late stages of development, a quantitative approach will certainly be
needed. There, the detail can be analysed with an appropriate degree of quan
titative detail. We can quantitatively evaluate the product, e.g., by predicting
its performance, to see if it will meet performance requirements. If it does not
(or if it meets current requirements, but does not meet new, more stringent,
ones), we can again go through the (initially qualitative) process of selection
among alternatives.

During intermediate stages of development, we would expect both qual
itative and quantitative approaches to be of help. We could use a qualitative
approach to select just a few implementation alternatives to evaluate quantita
tively. Thus a qualitative approach could decrease the number of alternatives
whose performance would be predicted quantitatively. Quantitative perfor
mance prediction gives numerical results to evaluate the software product; the
prediction results can also indicate trends, which can help as the qualitative
decision-making process continues. Note that the layered approach may help
quantitative prediction of the performance of intermediate products. The in-

286 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

termediate product can be evaluated at a particular layer, by treating it as the
"end" product of a smaller step in development.

An early approach to quantitative, product-oriented prediction of perfor
mance for semantic data models is presented in [Nixon91). It uses the language
layering presented in this chapter. Detail needs to be added to produce a
full prediction model. In addition, a predictor tool should be prepared, and
linked to tools for the NFR Framework. Such a performance predictor would
be helpful without needing to modify the current framework. For example,
quantitative performance prediction results can be used to provide claims for
decisions. Also, a performance predictor would be helpful in estimating the
performance of target systems selected at various layers using the framework.

In the longer term, more quantitative aspects could be added to the
framework, and linked to its qualitative aspects.

Literature Notes

This chapter and the previous one are based on B. Nixon's thesis [Nixon97a).
They also draw on other publications [Nixon90, 91) [Mylopoulos92a) [Nixon93,
94a, 97b, 98).

This work on performance requirements for information system develop
ment was motivated by earlier work on aspects of information system devel
opment: information system specification languages, their implementation and
performance. Our particular experience [Nixon83) [Chung84) [Nixon87, 89, 90)
[Chung88) considered the compilation of specifications expressed in a semantic
data model (e.g., Taxis [Mylopoulos80) [Wong81)) into a relational database
programming language (e.g., DBPL). See [Borgida85a, 90b], [Alban085, 89],
[Atkinson87], [Hu1l87) and [Peckham88) for overviews of semantic data models.

As a source specification language, this chapter has used Taxis [My
lopoulos80) and its successors, the Taxis Design Languages, TDL [Borgida90a)
[TDL87) and TaxisDL [Borgida93). Various strategies for implementing Taxis
long-term processes are discussed in
[Chung88). See [Chung84, 88) and [Nixon90) for details of several compilation
techniques for reducing run-time costs for integrity constraint enforcement.

The presentation of the space of alternatives (previously described in
[Nixon90) which discussed intergrations issues for implementations) is orga
nized here and in [Nixon97a] by the language layering. Our layered organiza
tion of performance issues is somewhat driven by data model features. It is
noteworthy that object-oriented database languages can be placed in a com
parable hierarchy, starting with object identity, then adding inheritance, and
then encapsulation [Cruz90). Besides structuring selection among implementa
tion alternatives for the framework, the layering is also helpful for structuring
performance prediction for semantic data models (an initial approach is pre
sented in [Nixon91)), by adding detailed inputs and outputs at each layer.

The organization of methods draws on [Nixon94a).
The research management example is based on a common

example [Olle82) used in the DAIDA project [Borgida89).

PERFORMANCE REQUIREMENTS FOR INFORMATION SYSTEMS 287

Information System Development.

The NFR Framework was influenced by the DAIDA environment for
information system development [Jarke92a, 93b] [Borgida90a]. The DAIDA
project also addresses implementation of conceptual designs, but focusses on
correctness rather than performance. It also deals with the "mapping" of con
ceptual designs to database implementations. No mapping steps are generated
automatically; rather, there is an emphasis on helping the developer establish
the correctness of refinement steps. This offers great flexibility in considering
new implementation techniques. For the future, one can envision an hybrid
implementation assistant, which would address the complementary issues of
performance and correctness.

A framework for performance engineering for information systems is pre
sented in [OpdahI92]. Focussing on the prediction and improvement of per
formance of information systems during development, it incorporates models
of software, hardware, the organization and the applications. It offers sensi
tivity analysis and a number of tools, and is integrated into an environment
for a larger performance evaluation project [Brataas92]. As part of the same
project, a method for designing workflow systems which satisfy performance re
quirements has been produced [Brataas96]. This project draws on, and extends
the work of C. Smith. Opdahl [OpdahI94] argues for quantifying performance
demands during requirements specification.

A knowledge-based approach for software performance and capacity plan
ning engineering is proposed in [Molnar93] for the case of a particular systems
analysis and design methodology.

It is interesting to contrast the treatment offered in the Framework with
other research based on the transformational approach, such as the TI system
[Balzer85]. TI, like its transformation-based peers, focusses on correctness re
quirements, i.e., making sure that the generated implementation is consistent
with the original specification. Performance, if treated at all, is treated as a se
lection criterion among alternative transformations. Kant's early work [Kant79,
81,83], on the other hand, does address performance requirements. Her frame
work, however, focusses on conventional programming-in-the-small rather than
information system development, relies on quantitative performance measures
(which are available for her chosen domain but are, unfortunately, not always
available for information systems because of their complexity) and assumes
an automatic programming setting rather than the semi-automatic, dialectical
software development process adopted here.

Also in the automatic programming area is Tan's design assistant [Tan89].
Given a high-level design specification, it aids the programmer with automatic
selection of correct implementations using knowledge of algorithms and data
structures. This is part of a multi-layer software apprentice project. The Re
quirements Assistant [Reubenstein91] is at the top, the Design Assistant is

288 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

in the middle, and and the Programmer's Apprentice (which has KBEmacs
[Waters85] as one realization) is at the bottom.

Implementation Techniques for Data and Knowledge Bases.

For automating physical database design, for relational and post-relational
databases, Rozen [Rozen93] offers a framework and a tool. Sets of design op
tions which do not conflict with each other are considered, and low-cost designs
are found by an approximation algorithm.

Batory [Batory88] addresses the implementation of relational databases.
Batory decomposes implementation issues into a set of distinct issues, such as
implementation of indexing. Higher-level decisions are made by the developer;
the system then handles lower-level decisions. Each decision (building block)
has a set of pre-defined implementation alternatives, and should fit together
with solutions for other issues. By combining "plug-compatible" solutions, the
resulting implementation should be correct by construction.

For knowledge base management systems [Brodie86], implementation
techniques have been considered [Mylopoulos96] for such issues as query pro
cessing [Jarke89], concurrency control [Chaudhri92], constraints, and storage
management.

For an object-oriented database with inheritance hierarchies, [Benza
ken90] considers placement of entity attributes and functions on secondary
storage. Clustering of entities on secondary storage is used to decrease input
output activity for data-intensive applications. Benzaken's work addresses
performance-oriented prediction and selection, for a particular problem.

For the particular issue of maintaining integrity constraints, one ap
proach is to automatically repair inconsistent database states via production
rules [Ceri90]; the system determines which operations can cause a constraint
violation.

III Case Studies and
Applications

10 INTRODUCTION TO THE
STUDIES AND APPLICATIONS

In Part III, we look at particular case studies and applications of the NFR
Framework, having already presented the Framework and its specializations for
particular types of NFRs.

We will now study the use of the NFR Framework for a variety of in
formation systems and domains. We present two such case studies, for credit
card and administrative systems, which address non-functional requirements for
security, performance and accuracy.

We will also present applications of the NFR Framework, to two partic
ular areas of application, software architecture, and business process redesign.

Chapter 11 is the first of two studies of NFRs for information systems.
The chapter studies credit card systems with respect to the NFRs of perfor
mance, accuracy and security. Domain information, workload and information
flow are considered. A variety of data model features are dealt with.

In Chapter 12, an administrative system is studied. It deals with income
tax appeals, a government system involving long-term, consultative processes.
Performance requirements are considered, using descriptions of the organiza
tion, its workload and procedures.

Chapter 13 is the first of two applications of the NFR Framework. The
chapter applies the Framework to a particular phase in Software Engineering,
namely, software architectural design. Using a standard problem in software ar
chitecture, we describe how to use the NFR Framework to systematically guide
a software architect in selecting among architectural alternatives. We show how

292 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFRs such as modifiability, performance, reusability, comprehensibility and se
curity, can be addressed early in the software lifecycle, and reflected in a soft
ware architecture before a commitment is made to a specific implementation.

Chapter 14 applies the NFR Framework's concept of softgoal to mod
elling and reasoning about organizations. This links organizational objectives
and strategies with the work processes and technologies that support them. In
redesigning an organization, many of the design objectives, such as better cus
tomer service and faster turn-around have tradeoffs and can be modelled as
softgoals to be satisficed. This is an application of the NFR Framework not
limited to the design and development of software systems. The application is
illustrated using an hypothetical example from the literature.

In Chapter 15, the NFR Framework and some of our studies are eval
uated. Feedback is presented from the viewpoint of domain experts who are
familiar with the kinds of systems and organizations studied, but were not in
volved in the development of the Framework. Methodological considerations for
studies are also discussed.

10.1 INTRODUCTION

This chapter introduces the two studies and two applications of the NFR Frame
work, which are presented in Part III.

The studies show the use of the NFR Framework to address NFRs for
software systems. We address the NFRs of security, performance and accuracy,
which were presented in detail in Part II. We study two information systems,
one for credit cards authorization, the other for income tax appeals.

The applications show the use of the NFR Framework in two particular
areas of application. The NFR Framework is applied to software architectural
design, and to business process redesign. The applications are illustrated for
standard problems. They address a variety of NFRs, some of which have not
been analyzed using the NFR Framework at the level of detail presented in
Part II.

Studies

We have presented the NFR Framework and its specializations for particular
types of NFRs. Now we turn to putting the Framework to use, by studying its
use in dealing with NFRs during development of a variety of systems.

To consider the applicability of the NFR Framework to a variety of types
of information systems, we conducted empirical studies of portions of some dif
ferent information systems. These studies address a variety of domains: a credit
card authorization system (Chapter 11, based on [Nixon93, 97a] [Chung93a,b,
95bJ), and a governmental administrative system for income tax appeals (Chap
ter 12, based on [Nixon94a, 97a] [Chung95b]). The studies dealt with three im
portant classes of NFRs, namely accuracy, security, and performance. The use
of systems which do not meet these NFRs may lead to loss of money and trust,

INTRODUCTION TO THE STUDIES AND APPLICATIONS 293

incorrect treatment, and inefficient administration. The studies also exhibit a
variety of organizational workloads, priorities, and other characteristics.

Sections 10.2 through 10.4 outline the characteristics of the domains
studied, describe how we conducted the studies, and introduce feedback from
domain experts. Feedback is discussed further in Chapter 15.

Applications

The NFR Framework is applied to two application domains.
Chapter 13 applies the NFR Framework to architectural software design.

That chapter (based on [Chung95c,d]) applies the NFR Framework to a par
ticular phase in Software Engineering, namely software architectural design. It
describes how to use the NFR Framework to systematically guide a software ar
chitect in selecting among architectural alternatives. This provides goal-driven,
process-oriented architectural design. The approach is illustrated with a stan
dard example from the software architecture field, and is applied to a variety
of NFRs, including modifiability, performance, security and comprehensibility.

Chapter 14 applies the NFR Framework to business process reengineer
ing and organization modelling. The chapter, based on [Yu94c] [Mylopou
los97], helps modellers understand how an organization operates, and help re
design organizational processes. The chapter links organizational objectives
and strategies to the work processes and the technologies that support them.
One important way of characterizing an organization is in terms of the goal
oriented behaviour of organizational "actors." The chapter incorporates the
NFR Framework's concept of softgoal as a knowledge representation construct
to enrich the expressiveness of modelling and reasoning about organizational
relationships. The approach is illustrated with an hypothetical example from
the literature. In redesigning an organization, many of the design objectives,
such as better customer service and faster turn-around, can be represented as
softgoals that need to be traded-off against each other and ultimately satisficed.

10.2 CHARACTERISTICS OF DOMAINS STUDIED

In Chapters 11 and 12, we present studies of two kinds of systems (See Fig
ure 10.1 for a summary):

• a credit card authorization system, [Nixon93, 97a] [Chung93a,b, 95b] which
authorizes transactions and cancels stolen cards. Security, performance and
accuracy are all important NFRs for these systems.

• an administrative system for government: an income tax appeals system,
[Nixon94a, 97a] [Chung95b] which tracks the progress of tax appeal cases.
Performance requirements are considered.

In addition, our studies of other kinds of systems are reported elsewhere
(See Figure 10.2 for a summary).:

• another administrative system for government: a Cabinet document man
agement system, [Chung93a, 95b] which tracks the progress of documents

294 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Study Credit Cards Administration:
Tax Appeals

Chapter 11 Chapter 12
[Nixon93, 97a] [Nixon94a, 97a]
[Chung93a,b, 95b] [Chung95b]

Domain II Commercial Government

Characteristics II interactive long-term, consultative

Functional

"

- authorization - maintain status
Requirements - cancellation - statistics

NFRs time, management time,
Considered space, space,

security, accuracy (actually accuracy)

II
- cancellation
- authorization

Priorities

I Tradeoffs
II

- time-space

- timely reminders
- fast access to info

- time-space
- (actual: time-accuracy)

Organizational
Workload: - very many - long-term processes

short transactions
- many cardholders - fairly few dossiers

Data Model IsA hierarchies, long-term processes,
Features transactions, integrity constraints,
Considered attributes attributes

Matters - hybrid methods for - deal with (assumed)
Illustrated priorities & tradeoffs priorities & tradeoffs

- use tool to build - use tool to represent
security SIG domain info

- information flow
- centring principle - centring principle

(order of operations) (focus on priorities)

Domain - annual reports - operations policy
Documents manual

- statistical summary - detailed statistics

Feedback II initial interview only I full interview

Figure 10.1. Overview of studies presented in Part III.

INTRODUCTION TO THE STUDIES AND APPLICATIONS 295

Study Admini- Health Bank Loans
stration: Insurance
Cabinet
Documents
[Chung93a,95b] [Chung93a,95b] [Chwlg95a,96]

I Domain II Government I Multi-sector I Commercial

Character- long-term, batch batch,
istics consultative interactive,

consultative

Functional - monitor - calculate - calculate rates
Requirements progress payments & balances

- statements - statements

NFRs confidentiali ty, confidentiali ty informativeness,
Considered informativeness (accuracy, time,

user- accw'acy,
friendliness) confidentiali ty

I Priorities

11
- confidentiality 1- confidentiality 1- change rate

- enhanced info.

Tradeoffs - security-time - time-security - time-accuracy
- replicated data

vs. central storage

Organiza- -long-term -large - interest & balance
tional processes volume calculations

Workload - fairly few files - many patients - many statements

Data Model long-term transactions, transactions,

IFeatures processes, attributes attributes
Considered constraints

Matters - detect - complex - dealing with
Illustrated correlations specification change

- deal with - disambiguate - centring principle
priorities requirements (focus on priorities)

Domain II
Documents

Feedback II

- proposed sys.
specification

full interview

- govt. reports
- system docs.

full interview

- policy manuals
- annual reports

none

Figure 10.2. Overview of studies presented elsewhere.

296 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

considered by a government Cabinet. Security requirements are especially
important for this kind of system.

• a health insurance system [Chung93a, 9Sb], which maintains information on
patients, doctors and reimbursements. Interestingly, this deals with several
sectors (professional, governmental and commercial). Security is a major
concern.

• a bank loan system [Chung9Sa, 96], which maintains information on loans
outstanding and interest rates. This study also dealt with changes in non
functional requirements, workload, etc.

The systems, studied in Part III and elsewhere, exhibit a variety of char
acteristics (See Figures 10.1 and 10.2 for summaries). They include commercial,
governmental and multi-sectoral domains. Operations may be short-term and
interactive, long-term and consultative, or a combination of these. The studies
address a variety of NFRs, especially accuracy, security and performance. Pri
orities (critical requirements, and dominant parts of the workload) and tradeoffs
among requirements vary from domain to domain.

In presenting the two studies (Figure 10.1) in Chapters 11 and 12, we
describe the domain, the functional requirements, organizational characteristics
(such as workload and information flow), and non-functional requirements.

Domain information was drawn from documents which varied in their
nature and degree of detail. They included system specification documents,
policy manuals, statistical reports, and annual reports. For each study, we had
access to only some of the document types.

Where possible, information is taken from documents from the organiza
tions concerned. We tried to be faithful to the real requirements and workload
statistics in such documentation. In some cases we supplemented the documen
tation with creative imagination, based on our understanding of the domain.

With this information, the studies then illustrate how a developer could
deal with NFRs by using the NFR Framework and its components to build
softgoal interdependency graphs (SIGs) to record the analysis, rationale and
development decisions that might be made in developing such systems.

We used this information to conduct the studies, and found that a num
ber of matters were illustrated. We were able to use several different types
of refinement methods and operationalization methods, thus illustrating the
NFR Framework's components, and the use of a selection of its associated
method catalogues. We were able to detect and deal with defects, such as am
biguities, omissions and conflicts. Interactions among NFRs and development
decisions were recorded and handled. We were able to use knowledge of the
organizations' workload to deal with priorities and tradeoffs. In the case of per
formance requirements, we were able to use principles for building performance
into systems [C. Smith90], and were able to organize the process using layered
structures.

INTRODUCTION TO THE STUDIES AND APPLICATIONS 297

10.3 OUR APPROACH TO CONDUCTING THE STUDIES

We now describe how we carried out the studies using the NFR Framework.
This approach (from [Chung95b] and [Nixon97a]) could be used when employ
ing the NFR Framework in a particular domain.

Before presenting the steps in detail, we give an outline.

Step A: Knowledge acquisition.

• Step A.I: Acquiring knowledge specific to NFRs.

• Step A.2: Acquiring domain knowledge.

Step B: Using of the NFR Framework:

• Step B.I: Identifying NFR-related concepts.

1. Identifying important NFR softgoals.

2. Identifying development (design, implementation) methods.

3. Identifying design rationale (arguments).

• Step B.2: Refining and interrelating NFR concepts.

1. Refining and relating softgoals.

2. Identifying and dealing with priorities.

3. Providing design rationale.

4. Evaluating softgoal achievement.

These are not necessarily sequential steps, and one may also need to iterate
over them many times during the design process. A developer may choose
refinements, having operationalizations in mind; thus the development process
may move up and down, rather than being strictly top-down.

In more detail, here are the steps used to conduct the studies.

Step A: Knowledge acquisition.
Acquisition of knowledge about particular NFRs and the domain was done
in this Step.

• Step A.I: Acquiring knowledge specific to NFRs.
First we obtained knowledge about the particular type of NFR. Our

sources of knowledge included industrial experience and academic litera
ture. We encoded and catalogued this knowledge using the NFR Frame
work and its components. We produced a terminology for particular
NFRs, such as the Accuracy Type and the Performance Type. We also
developed catalogues of methods for information system development,
as well as methods for operationalizing NFRs. Tradeoffs and interac
tions among methods and requirements were noted, e.g., as correlation
rules. Typical design rationale were represented as generic arguments.

298 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

After this Step was done essentially once for a particular NFR, the cat
alogued results were applied to several domains.

• Step A.2: Acquiring domain knowledge.
For each domain, we obtained documents from (or about) the organi

zations whose systems we were studying. As noted earlier, the nature
of the documents varied depending on the organization. In one study
we obtained workload information, and information on the organization
and its operations (including partial schema information). In some stud
ies, we received only general, public information (e.g., annual reports).
We then conducted an initial review of the documents, to understand
the domain characteristics, obtain as much NFR-related information as
possible, and get an initial idea of some of the main requirements. We
tried to make minimal assumptions, and be faithful to the source docu
ments, which varied in the amount of detail provided. Due to the varying
amounts of information available to us, we sometimes had to provide or
augment information on schema, requirements, and priorities, based on
our own experience and intuition, but without violating available do
main knowledge. This Step was done once per domain, but could be
done more interactively, using ongoing contact with the organizations
over a period of time.

Step B: Using of the NFR Framework:
Detailed development via use of the NFR Framework involved iterative use

of this Step.

• Step B.t: Identifying NFR-related concepts.
This Step took domain information and arranged it into categories

along the lines of the main components of the NFR Framework.

1. Identifying important NFR softgoals.
We came up with an initial estimation of priorities for the organiza
tion and system. This included critical NFRs and dominant parts
of the workload.

2. Identifying development (design, implementation) methods.
These included methods from the area of concern, such as accuracy
or performance (from Step A.I), and those described in domain
documents. These were then used as operationalization methods.

3. Identifying design rationale (arguments).
We identified and catalogued the relevant arguments. These too
could originate from generic knowledge of systems, particular NFRs,
and the type of system (e.g., information systems), or from domain
specific information.

• Step B.2: Refining and interrelating NFR concepts.
In this Step we interrelated NFR softgoals, refining softgoals, han

dling priorities, providing design rationale, and evaluating achievement
of softgoals. To do this, we used and linked the concepts identified in

INTRODUCTION TO THE STUDIES AND APPLICATIONS 299

Step B.1, producing Softgoal Interdependency Graphs, while endeav
ouring to meet the stated NFR softgoals during the development of a
system.

1. Refining and relating softgoals.

(La) We refined softgoals, often into simpler ones. We often selected
methods from catalogues. Catalogues were extended to address
new methods.

(Lb) We also refined softgoals to help clarify the meaning of softgoals,
which may be initially stated briefly, and may be ambiguous.
For example, sometimes softgoals had to be refined before the
relationship among them could be established.

(I.e) We related development (design, implementation) methods to
NFR softgoals.

(Ld) We identified tradeoffs, interdependencies among softgoals, con
flict and synergy, and factors underlying correlations.

2. Identifying and dealing with priorities.

(2.a) This involved identifying priority softgoals, and critical and dom
inant parts of the workload.

(2.b) Tradeoffs were often handled by considering tradeoffs. For per
formance softgoals, principles for providing good response time
[C. Smith90j were used.

(2.c) We noted the impact of those methods which were stressed III

the domain documents.

3. Providing design rationale.

(3.a) Rationale for decisions was obtained from a number of sources,
including workload descriptions, other documentation,
catalogues of generic rationale, and arguments based on obser
vations about the particular system.

(3.b) On the basis of development tradeoffs present in the SIG under
construction, we provided some reasons why particular methods
were chosen.

4. Evaluating softgoal achievement.

We applied the evaluation procedure to determine whether the
stated NFRs, particularly the priority ones, were achieved. Part of
the procedure involves examination of the nature and strength of
relationships between softgoals.

300 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Step B.2, and sometimes Step B.1, were applied repeatedly, not necessarily
in the order stated.

The studies dealt with only small portions of systems. They were based
on descriptions of existing systems, and in some cases considered a proposed
extension to an existing system.

The studies were were carried out "off-line," without our involvement
as actual participants during the development process. We ourselves did not
develop the systems, but did consider NFRs for such systems.

We had contact with the organizations at the start of the studies, when
we obtained their documentation, and then at the end, when we obtained
feedback. During the actual studies, we examined their documentation, but
generally did not communicate with the organizations. Thus our approach was
done in a kind of "archaeology mode" [Chung95b] in which we attempted to
"dig" into the documents producing SIGs without being in contact with the
organizations.

10.4 OBSERVATIONS FROM STUDIES

Feedback from people familiar with these kinds of systems (Chapter 15) pro
vides a valuable "reality check" in examining the NFR Framework and its
applicability to a variety of systems. Some of the studies were reviewed by
domain experts. They offered some preliminary support for the usefulness of
certain aspects of the framework, while pointing out room for improvement,
and raising some important open issues.

The studies were based on the domains, and illustrated our approach.
However, the experts found that the detailed conclusions in the studies are not
necessarily what they would have concluded. This seems mainly due to our use
of source documents without ongoing contact with domain experts during our
study.

For example, in some studies, we were able to deal with tradeoffs, by
using domain information (e.g., workload) and hybrid combinations of imple
mentation methods. This allowed us to meet priority requirements, at the
expense of non-priority requirements. In some studies, however, experts noted
that tradeoffs did not reflect priorities in the domains, hence indicating the
need for more domain knowledge. In retrospect, we would have done studies
more interactively. This was a shortcoming in the study methodology rather
than of the Framework. See Chapter 15 for details of feedback.

10.5 LITERATURE NOTES

This chapter is based on portions of [Chung95b], [Nixon97a] and [Chung93a].
The detailed sources of individual studies and applications are given in the
literature notes of each chapter in Part III.

11 A CREDIT CARD SYSTEM

In this chapter, credit card systems are studied. We consider an information
system for a bank's credit card operation. A body of information on cardholders
and merchants is maintained. In this highly competitive market, it is important
to provide fast response time and accuracy for sales authorizations. To reduce
losses due to fraud, lost and stolen cards must be invalidated as soon as the
bank is notified.

Interestingly, this chapter considers several of the NFRs we have studied
- performance, security and accuracy requirements - for one system. Domain
information and organizational workload are considered.

We describe the domain and requirements, and then develop softgoal
interdependency graphs (SIGs) to address NFRs.

11.1 DOMAIN DESCRIPTION AND FUNCTIONAL REQUIREMENTS

The functionality of a bank's credit card system includes maintaining infor
mation on sales, cardholders and merchants. Transactions are authorized, and
accounts are updated. Stolen cards are cancelled.

This study draws on actual statistics [Canadian Bankers91] and annual
reports from industry associations [Visa Canada90] [Visa International91] [Mas
terCard91]. In conducting studies, we have tried to rema.in faithful to the in
formation available. In this study, where information was unavailable to us,
we supplemented the published information with some creative imagination

302 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Card

r- name

'- address

'- account

r- balance

r- creditRemaining

- '"

Legend I
attributes of a class

Figure 11.1. Attributes of credit cardholders.

based on general knowledge of the domain. From the statistics for Visa and
MasterCard usage in Canada for the year ended 31 October 1991 [Canadian
Bankers91), we estimate workload for an hypothetical large bank. Assuming

Transaction (Card)

/~
Account

/~
Merchant Account Card

/'"Regular Card Gold Card

Authorize
(Card, Money)

/~

Cancel
(Card)

Legend I i IsA link

Authorize
(Regular Card, Money)

Authorize
(Gold Card, Money)

Figure 11.2. Classes in the credit card system.

that the 5 large banks have approximately 75% of the market, we allocate
15% of the national market to our hypothetical bank. We further assume that

A CREDIT CARD SYSTEM 303

there are approximately 300 retail sales days per year. Accordingly, a bank
would have 3 600 000 cards in circulation and 90 000 merchants. Each day it
would deal with 217 000 sales slips, 218 lost or stolen cards, and 19 cards used
fraudulently.

information Flow

cardholder

Legend

Figure 11.3.

merchant
card. si nature

merchandise. voucher

bank

o agent or channel

information item

r unit flow of information

Information Flow for the credit card system.

A credit card system specification would include a design schema. Based
on general knowledge of the domain, we assume that each cardholder has a
number of attributes, as shown in Figure 11.1.

In addition, the market may be somewhat segmented. For example, cards
may be categorized as "regular" or "gold" (Figure 11.2). This segmentation
can also be reflected in activities. For example, credit authorization for gold
cards may be more flexible and also involve additional steps (e.g., calculation

304 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

of travel bonuses payable to cardholders based on the amount of the sale). This
is reflected in the figure showing part of an hypothetical schema, by the use of
IsA (inheritance) hierarchies for data and transactions.

Figure 11.3 shows a simplified description of the information flow for
the credit card system. Information flows between the bank, cardholders, mer
chants and automated teller machines (ATMs).

11.2 NON-FUNCTIONAL REQUIREMENTS

We examined [Nixon93, 97a] [Chung93b, 95a] some organizations' documents
[Canadian Bankers91] [Visa Canada90] [Visa International91] [MasterCard91].
Response time and security were considered important NFRs. For a com
mercial credit card system, quality is very important, as the market is highly
competitive.

SIG

Performance
(Transaction (Card)]

Individual Transactions

Security
(Transaction (Card)!

Performance
[Aulhorize

(Card, Money)]

Performance
(Cancel

(Card)]

Security
(Authorize

(Card, Money)]

Security
{Cancel

(Card)]

Figure 11.4. Some main NFRs for the credit card system.

We now consider some hypothetical non-functional requirements which
a developer might state for this system, This is done on the basis of the above
domain information, and an everyday knowledge of the domain.

Figure 11.4 shows some top-level NFRs for performance and security for
card transactions. These are refined into NFRs for specific transactions, such
as authorizing a sale for a particular card and money amount (Authorize(Card.
Money)), and cancelling a card (Cancel(Card)). For these broad softgoals, the
performance softgoals do not have a layer topic specified. Some additional
broad softgoals are not shown in the figure. Layers will be introduced for
offspring of these broad softgoals.

For performance requirements, time performance is an important NFR
for credit cards, due to the high transaction volume, and the need to cancel
stolen cards immediately. We considered the following performance require
ments.

A CREDIT CARD SYSTEM 305

1. The cancellation of lost and stolen cards requires very fast response time.
To minimize financial loss, this transaction is given highest priority.

2. The second performance requirement is that authorization of sales, a dom
inant portion of the transaction volume, should be done with fast response
time. In practice, this kind of performance is considered important; for
example one credit card network reported that it has an international au
thorization average response time of 1.9 seconds [Visa Canada90).

3. Also considered was minimizing secondary storage requirements for the card
holder information, due to the large number of cards in circulation.

4. In addition, minimizing secondary storage for the daily individual sales IS

another, less important, requirement.

For security requirements, we require good security for authorizing sales.
This leads us to consider more specific security requirements for autho

rizations - addressing integrity, confidentiality and availability.
Accuracy is an important aspect of integrity. As account information

can change rapidly, it is important that cardholder accounts have information
that is both accurate and timely. Here timely accuracy is a critical NFR for
authorization of sales.

11.3 DEALING WITH PERFORMANCE REQUIREMENTS

We now illustrate how a developer of the credit card system could address the
performance requirements (involving time and space) stated above. We show
some softgoal refinement methods and the impact of higher-layer softgoals upon
lower ones. We deal with the prioritization: of performance requirements, some
for dominant parts of the workload, and others for critical parts. C. Smith
[C. Smith90) points out the need to address both, in order to effectively deal
with requirements. We consider first a critical time requirement, then a time
requirement for a dominant part of the workload, and then some space require
ments. We also consider softgoals at different layers, involving various data
model features.

In dealing with performance softgoals for this study, we repeatedly fol
lowed a pattern of first decomposing a softgoal based on its components, and
then identifying and focussing on priority component softgoals. This is in keep
ing with principles for building performance into systems [C. Smith90). For
example, we decomposed a softgoal of good response time for cancelling lost
and stolen cards into softgoals for the operational components. We focussed
first on accessing the attributes of a credit card, then on a particular attribute
which is needed for cancelling a stolen card, and finally on updating it. This
was satisficed by updating the attribute at the start of the operation, which
effectively cancels the card, even though the non-critical tasks may continue in
the background.

We considered a time-space tradeoff. Space performance softgoals some
times interacted negatively with the above treatment of time softgoals. For

306 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

example, we sought good space performance for storing the attributes of a
card. As there are many cards, using a compressed format would save space,
but compressing the particular attribute needed for cancellation would cause
a conflict by slowing down the cancellation due to processing delays. So we
satisficed the space softgoal for the dominant case, by compressing the other
attributes. Even though we did not meet a non-dominant storage softgoal, we
avoided a negative impact on the critical time softgoal.

Fast Card Cancellation: A Critical Time Softgoal

As soon as the bank is notified that a card has been lost or stolen, the card
must be cancelled, to disallow unauthorized purchases. To reduce fraud, this
infrequent transaction is treated by a developer as critical, and is given top
priority for attaining fast response time. While there may be lengthy delays
outside the system (e.g., the time it takes for people to discover lost cards and
report them), the system should cancel the card as soon as possible, to avoid
authorizing subsequent fraudulent requests.

For the design, we assume that given a Card, the Cancel(Card) transaction
must update the value of its Status attribute, to indicate cancellation of the
card. In addition, several other attributes of the card (Figure 11.1) will also be
accessed. For example, the cardholder's name, address, etc., could be printed
in a log.

Stating an Initial Softgoal.

LAYER 3 (Transactions)

ResponseTime 0
[Cancel(CardJ.
3J

Figure 11.5. Initial softgoal for fast cancellation of credit cards.

The performance softgoal Performance[Cancel(Card)] was shown at the
bottom of Figure 11.4. Using the SubType decomposition method (not shown in
a figure), it is refined into softgoals Time[Cancel(Card)] and Space[Cancel(Card)].
Then Time[Cancel(Card)] is refined into softgoals for response time and through
put. So far we have not indicated layers for these broad softgoals.

We now focus on good response time for this transaction and specify a
layer. This softgoal is stated at Layer 3, which deals with transactions, and is
shown in Figure 11.5

A CREDIT CARD SYSTEM 307

Softgoal Decomposition and Prioritization.

SIG

ResponseTime
[access(anributes(Card)).
3)

ResponseTime
[access(anributes(Card)).
3J (criticat)

LAYER 3 (Transactions)

_ _ t'""', Claim
; .,f) [·other ops. not important
,.",-,~ .. "",; for cancellation-,

3)

ResponseTime
[Cancel(Card).
3)

ResponseTime
[components(Cancel(Card)).
3)

Claim
I·Access important
for cancellation·.
3)

Prioritization

Operation Components

Figure 11.6. Softgoal decomposition and prioritization with argumentation.

In Figure 11.6 the developer focusses on the components of the Cancel
transaction, resulting in a softgoal for the components of the operation. The
OperationComponents method is used to decompose the softgoal, resulting in
response-time softgoals:

1. for accessing the attributes of a card, and

2. for other operations.

Now the developer identifies one offspring as critical, another as nonCrit
ical, and uses domain information to support these actions. Response time for
accessing the attributes of the card, ResponseTime[access(attributes(Card)), 3],
is identified as critical, because the access is important. On the other hand,
response time for the other operations are identified as nonCritical for cancella
tion, and are not considered further.

Now the developer will consider the parent softgoal, ResponseTime
[components(Cancel(Card)), 3], to be satisficed if its critical offspring is sat
isficed, even if the nonCritical one is denied. This is done by using the prior
itization templates from Figures 4.30 and 4.31 and Section 8.3. This has the
effect of "softening" AND contributions.

Note that some relationships among softgoals are not precisely repre
sented by an AND contribution. For example, developers may use their exper
tise to state that certain offspring are more (or less) important than others,
for the purposes of satisficing a parent softgoal. In the NFR Framework, this

308 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

flexibility can be accomplished by placing HELPS contributions below or above
an AND link. This approach, shown in Figures 4.32 and 4.33, and discussed
in Section 8.3, was used in earlier versions of this study and the next. It is
omitted from Chapters 11 and 12, to simplify the presentation.

Some HELPS links are not discussed. When the contribution of a Claim
is not shown, the default is MAKES.

Further Decomposition and Prioritization.

SIG

LAYER 3 (Transactions)

Entity Management
ResponseTime
[~rate(Card,SlatuS).

ResponseTime
[access(Card.otherAttrs),
3]

......_" Claim
IE---------;~ .I.j [;g~hc~n~~\fatPo~.~mportant

''''.J' 3]

ResponseTime
[access(Card.olherAttrs),
3J (nonCritical)

.-.- '-, Claim- - ~~ J) [-Retrieving ~tatus is not important
'" ;..~ for cancelfatlon ,

- 3)

ResponseTime
[access(attributes(Card»,
3J (critical)

ResponseTime
[access(Card.Status).
31

ResponseTime
[access(Card.Status),
3) (critical)

Claim :-,"'.-, + + + +
[;~~~~~~V f~~~~~~~lIation" .,.~)----7
~-

ResponseTime
[UFdate(Card,Status),
3 {critical}

Prioritization

Individual Attributes

Figure 11.7. Further softgoal decomposition and prioritization.

The IndividualAttributes method refines the critical softgoal into softgoals
for each of the attributes of Card. For presentation, Figure 11.7 groups the
attributes into Status, whose access is critical, and the remaining non-critical
ones, represented by otherAttrs.! Here the contribution type is AND.

Now the most critical part of the Cancel transaction is accessing the
Status attribute, and in particular, updating it. The EntityManagement method
decomposes the softgoal for accessing Status into softgoals for retrieval and up
dating. Of the two, updating is argued as being critical, since it effectively

lIn Figures 11.16 through 11.18, otherAttrs also excludes CreditRemaining.

A CREDIT CARD SYSTEM 309

cancels the card, blocking further sales authorizations. A prioritization argu
mentation method records that access to this attribute is critical.

The other softgoal, retrieval, is not critical here, but is considered further
in Figure 11.13.

Consideration and Selection of Operationalizing Softgoals.

510

ResponseTime
[access(altribules(Card)),
3) {critical}

ResponseTime
[access(Card.otherAltrs),
3)

ResponseTime
[otherOperations(Cancel).
3)

.•...• ,. Claim
- - :: ..t .:' {"other ops. not

",..,..... .1' " Important for
cancellation·,
3J

ResponseTime
(otherOperations(Cancel),
3) (nonCritical)

PerformLater
[retrieve(Card.Status),
3)

__ •. ,..." Claim
!<E---""" , '. [·other altrs. not important

« ~ J-. ,,.' for cancellation-,
.. 3J

ResponseTime
[access(Card.otherAltrs),
3] (nonCritical)

ResponseTime
[retrieve(Card.Status),
31

- - j''j'';, Claim
'- .' .J} [;~re~~~~~Pa~6~~~sis not important

3)

ResponseTime
[Cancel(Card),
3J

ResponseTime
(components(Cancel(Card)),
3J

Claim
[·Status important
for cancellation·,
3)

/"''''', + +
Claim '~'. ..t,;~

[·Updating Status is;... + +
important for cancellation-.
3]

Prioritization

Prioritization

Individual Attributes

ResponseTime
[access(Card.Status),
3)

PerformFirst
[~lda'e(card.Status),

, ResponseTime
• [access(Card.Status),

31 (critical}
Entity Management

ResponseTime
[~ldate(card.status),

, ResponseTime
• [update(Card.Status),

3J {critical}

Operation Components

ResponseTime
[access(attributes(Card)),
3)

Claim .••.•.
rAccess important ::..t
for cancellation·, ••..··.r
3)

LAYER 3 (Transactions)

update done first in Cancel(Card)

Figure 11.8. Selection of Operationalizing Softgoals.

310 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

C. Smith [C. Smith90] advocates achieving good response time as seen
by users of the system. Accordingly, a bank officer who requests cancellation of
a card can receive confirmation from the system as soon as Status has been up
dated, even though other tasks (such as updating other attributes and printing
a log) may continue in the background.

Some design languages (including TaxisDL) do not require specification
of the order of performing individual operations within a transaction. In Fig
ure 11.8, the developer can exploit this underspecification in the design by
choosing an order of execution of operations in the target implementation lan
guage. This leads the developer to select performing this update first in the
transaction. This "satisfices" the response-time softgoal, and the Perform First
operationalizing softgoal is recorded.

Figure 11.8 shows the develop for all of Layer 3, which deals with transac
tions. The selection of operationalizations Perform First[update(Card .Status), 3]
and PerformLater[retrieve(Card.Status), 3] is shown at the bottom of the figure,
and is indicated by '\j." The satisficing of claims is also shown by '\j." The
right side of the figure also links the target implementation to the functional
requirements.

Linking Layers.

SIG

LAYER 3 (Transactions)

, ResponseTime
• [update(Card.Status),

3J {critical)

+

PerfonnFirst
[~ldate(card.statusl,

Flow-azrou gh

LAYER 2 (Attributes)
++

ResponseTime
[retrieve(Card.Status).
3) {nonCritical)

PerfonnLater
[retrieve(Card.Statusl,
3)

ResponseTime
[~ldate(card.Status),

Figure 11.9. Using inter-layer interdependency lin ks.

The developer refines the Layer 3 softgoal for updating Status into a soft
goal at Layer 2, which deals with attributes. This is done by the FlowThrough
method. Softgoals at the two layers are connected by an inter-layer interde
pendency link, shown in Figure 11.9.

A CREDIT CARD SYSTEM 311

Decomposition on Implementation Components.

SIG

LAYER 2 (Attributes)

Implementation Components

ResponseTime
[findOffset(Card.Stalusl,
2)

ResponseTime
(implementationComponents(updale(Card.Status)),
2]

ResponseTime
(sendToSlorage(Card.Statusl,
2]

Figure 11.10. Decomposition based on implementation components.

The Layer 2 softgoal is then decomposed into softgoals for the two com
ponent operations. These are finding the attribute's offset, and sending the
new attribute value to storage. This is done by the Implementation Components
method in Figure 11.10.

Selecting Operationalizing Softgoals.

The softgoal of quickly finding the offset of the attribute within a tuple
can be satisficed by statically determining the offset. This is recorded by an
operationalizing softgoal. The other softgoal - that of quickly sending the
updated attribute value to secondary storage - may be satisficed by storing
Status values of all cards together, By storing few other attributes, if any, per
tuple, time may be reduced by accessing a smaller structure. Both operational
izing softgoals (bottom of Figure 11.11) HELP their parents. As a result of
choosing these operationalizations, the target system stores Status values in a
separate relation via SelectiveAttributeGrouping (a method which does not deal
with inheritance of attributes).

Evaluating the Impact of Decisions.

Now that we've constructed the SIG from top to bottom, let's consider
evaluating the impact of decisions upon main softgoals. The evaluation pro
cedure (Section 3.3) does this by labelling softgoals, starting at the bottom of
Figure 11.11. Initially, all softgoals are labelled as undetermined (U). Selected
operationalizing softgoals are labelled as satisficed ("V') I while rejected ones
are denied ("x"). Generally, interdependency links resulting from application
of catalogued methods are satisficed (i.e., have "V' as their labels).

312 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SlG

ResponseTime
(access(Card.otherAttrs).
3]

.•.,...., Claim
- - " ['other anrs. not important

~ ., \.; for cancellation-,
'-'.. '-' 3]

ResponseTime
[access(Card.otherAttrs).
3J {nonCritical}

ResponseTime
[otherOperations(Cancel),

3] ". Claim
- - / .. ,-; 'J ['other ops. not

c ., ,) important for
'~ j./ cancellation-,

3]
ResponseTime
lotherOperations(Cancel),
3) (nonCritical)

PerfomnLater
(retrieve(Card.Status),
3)

ResponseTime
[retrieve(Card.Status),
3]

.-,.' "". Claim
- - : .,f ~I rRetrievlng Status is not important

" ..-, ;.) for cancelfation·,
" 3]

ResponseTime
[retrieve(Card.Status),
3) (nonCritical)

ResponseTime
[implementationComponents(update(Card.Status».
2]

ResponseTime
[Cancel(Card),
3J

..

ResponseTime
[components(Cancel(Card)),
3)

ResponseTime! [update(Card.Status).
3]{critical} +

Operation Components

Flow-through

PerfomnFirst
[~fdate(Card.Status).

ResponseTime
[access(anributes(Card».

Claim 31 , ..,..... ,
[-Access important ,.J.,f \,_~:.......;~
mr cancellation', :<,.joY

, ResponseTime
• [access(anributes(Card)),

3] {critical}
Individual Attributes

ResponseTime
[access(Card.Status),
3J

Claim .,....,.,
['Status important /.t) + +
mr cancellation', ~" " .._'.1'

ResponseTime! [aceess(Card.Status},
3] (critical)

Entity Management
ResponseTime
[~rate(Card.Status).

Claim ..',"
['Updating Status is (.t >~ + +
important for cancellation"," __, .. ;·
3)

LAYER 3 (Transactions)

Implementation Components

ResponseTime
[findOffset(Card.Slatus).
2J

StaticOffsetDetemnination
[Card.status.
2J

LAYER 2 (Attributes)

Figure 11.11, Evaluating the impact of decisions after selecting operationalizing softgoals.

A CREDIT CARD SYSTEM 313

Evaluation starts at the bottom of the SIG for the lowest layer, then
up through the graphs of each layer. By selecting SelectiveAttributeGrouping
[Card.Status, 2], both operationalizing softgoals StaticOffsetDetermination
[Card.Status, 2] and FewAttributesPerTuple[Card.Status, 2] are labelled as sat
isficed (,\/,'). By the rule for HELPS contributions (Table 3.2), each "..j"
contributes weak positive support ("W+") to its parent. The developer, who
must change the W+ values, feels that the softgoal refinements are satisfac
tory, and changes the W+ values of ResponseTime[findOffset(Card .Status), 2] and
ResponseTime[sendToStorage(Card.Status), 2] to "..j". Several similar changes
from W+ to "..j" are not explicitly mentioned in the remainder of this chapter.
Now using the rule for AND contributions (Section 3.3), the two "..j" values
are combined into an "..j" value for ResponseTime[implementationComponents
(update(Card.Status)), 2]' which is propagated to its parent.

Up at Layer 3, !ResponseTime[update(Card.Status), 3]{critical} receives
an "..j" value via an inter-layer HELPS link, and an "..j" value from Perform
First[update(Card.Status), 3], resulting in an "..j" value for it and its parent.

For !ResponseTime[access(Card .status), 3]{critical}, we encounter a fre
quently occurring pattern where there is a conjunction of a critical operation
and a non-critical one (Recall Figures 4.30 and 4.31 and Section 8.3). The de
veloper argues that one of its offspring, ResponseTime[retrieve (Card.Status) ,3],
is not critical, and a nonCritical offspring is produced. The claim denies that
parent-offspring interdependency link, so that ResponseTime[retrieve
(Card.Status), 3] is not considered in the conjunction. Now the parent, IRespon
seTime
[access(Card .status), 3]{critical}, is labelled as satisficed, due to satisficing its
critical offspring alone. Other non-critical offspring are similarly eliminated.
This same pattern is repeated resulting in satisficing ResponseTi meraccess
(attributes(Card)), 3] and then ResponseTime[components(Cancel(Card)), 3] even
though their non-critical offspring have not been satisficed. Finally, the devel
oper labels the top-level softgoal ResponseTime[Cancel(Card), 3] as satisficed.

Importantly, the developer has satisficed the critical operations of this
dominant transaction. Moreover, response-time softgoals were denied primar
ily for those operations which can be performed after responding to the user.
These results are in keeping with principles for providing good response time
[C. Smith90]. When these less-important negative results are aggregated with
the very important positive ones, the overall result is that steps have been taken
towards achieving good response time for users.

Fast Sales Authorization: A Dominant Time Softgoal

Authorization of sales is a dominant part of the workload. The developer desires
good response time for the Authorize(Card, Money) transaction, whose topics
include Card, and the amount of Money involved in the sale. The critical parts
of the transaction are (1.) ensuring that the card is valid (i.e., not reported as
stolen) and (2.) ensuring that the amount of the proposed sale does not exceed
the balance of credit remaining for the card. Other tasks can be done after

314 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

authorizing the sale, such as creating a record of the sale, and recording travel
bonus points (if applicable to the particular card type).

We will consider operationalizations for the critical and dominant soft
goals, and will structure them in a SIG. For reasons discussed below, it happens
in this particular case that the dominant softgoal is addressed at Layer 4 (Fig
ure 11.12) and the priority softgoal is addressed at Layer 3 (Figure 11.13).

Dealing with Transaction Hierarchies.

SIG

operation
Authorize(Card. Money)

ResponseTime
[nonCommonCode(Authorize).
4) {nonDominant)

ResponseTime
[nonCommonCode(Authorize),
4)

ResponseTime
[Authorize(Card, Money).
4)

ResponseTime
[CommonCode(Authorize),

Claim 4] f'-····-'~
['Inherited code predominates (./ .2·)==:::2~--':=-==-~
authorization- ~...- ... ;..~

3) ,

PerformFirst
[CommonCode(Authorize),
4)

Common Code

LAYER 4 (IsA Hierarchies)

order of operations
Authorize(Card, Money)

Figure 11.12. Dealing with transaction hierarchies at Layer 4.

Just as card types (regular, gold, etc.) can be arranged in an IsA hierar
chy, so can the corresponding versions of the Authorize(Card, Money) transac
tion (Recall Figure 11.2). The specialized transactions can have some additional
actions depending on the type of card involved, such as recording travel bonus
points for gold cards. Since we are dealing with IsA hierarchies, the softgoal for
good response time for the transaction (shown at the top of Figure 11.12), is
at Layer 4. This softgoal, ResponseTime[Authorize(Card, Money), 4] contributes
to the broad softgoal Performance[Authorize(Card. Money)], which was shown
at the bottom of Figure 11.4.

An important observation is that the critical parts of the authorization
process are independent of the card type (gold, regular, etc.). That is, au
thorization is basically independent of the options for travel bonuses, service
charges, etc., which vary with the type of card. Thus code can be structured
so that operations which are common to all card types are done first, and the

A CREDIT CARD SYSTEM 315

authorization decision is returned to the user before the card type is identified,
and additional, type-dependent operations, are performed.

SIG

LAYER 4 (lsA Hierarchies)

PerformFirst
[CommonCode(Authorize).
4J

++
...

Common Code for
Authorize(Card. Money)

ResponseTime
[other
3J

.,',_ Claim
- -/" , '>, ("other not

(...... !..)'.,..~' 3Important-,

ResponseTime
(other....
3) (nonCritical)

ResponseTime
(update(

Card.CreditRemaining).
3J

//

PerformEar~ +
[retrieve!

Card.CredijRemaining).
3)

ResponseTime
[retrieve(Card.Status).
3J

Claim /"',"',
[-disallow t<~) ..}'

bad cards". '"
3J + +

, ResponseTime
• [retrieve(Card.Status).

3J (critical)

"

PerformFirst
(retrieve(Card.Status).
3J

ResponseTime
(CommonCode(Authorize).

Operation Components 3)

LAYER 3 (Transactions)

Figure 11.13. Dealing with priority operations at Layer 3.

In Figure 11.12, the developer applies the CommonCode (or Common
Operations) method, which decomposes the response-time softgoal into Layer 4
softgoals for the operations common to all cards, and for the non-common op
erations. The common operations are inherited from Card by its specializations
including GoldCard and RegularCard. The common operations (inherited code)
are identified, in an argument, as a dominant portion of the workload. The
softgoal for common operations is satisficed by performing them before other
operations. As the common code need not distinguish specializations of Card,

316 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

the developer will subsequently deal with the code at Layer 3, which deals with
transactions without inheritance in Figure 11.13. On the other hand, the "non
common operations," i.e., those operations which differ for the specializations
of Card, are considered at Layer 4. There are different techniques available
(e.g., [Nixon87]) to deal with issues arising in IsA hierarchies of transactions,
such as code inheritance. We do not discuss these further here, as the softgoal
is not dominant. Layer 4 (IsA hierarchies) has dealt with the overall relative
order of operations of the transaction.

Dealing with Priority Operations.

The developer returns to the common operations, but now at Layer 3
(Figure 11.13). The developer uses the OperationComponents method to pro
duce softgoals for the sub-tasks. These include retrieving the status of the card
(which is critical here, and is therefore performed first), accessing the credit
remaining on the card, and performing other operations. CreditRemaining, the
credit limit remaining on the account, is the credit limit less the current balance
outstanding. The softgoal of fast access to CreditRemaining is decomposed by
the EntityManagement method into softgoals for retrieving the attribute and
updating it. The retrieval subgoal is identified as critical and is satisficed by
being performed early. Updating the credit remaining and the account balance,
can be performed later. At Layer 3, we have dealt with the relative order of
execution of the common operations of the transaction.

Note that a softgoal may be critical in one situation, but not in another.
For example, recall that in the context of cancellation (Figure 11.7), retrieval
of Card.Status was not critical. Here, however, it is critical in the context of
authorization (Figure 11.13).

Dealing with Credit Card Attributes.

Now Layer 2 deals with representation of attributes (Figure 11.14). So
far, we have assumed that CreditRemaining is a separate, explicitly-stored at
tribute. What would happen if it were in fact defined in the design schema as
being derived (e.g., as Card.CreditLimit - Card.BalanceOwing)? To avoid having
to retrieve and process several attributes during this critical part of a dominant
procedure, the developer may decide to replicate the derived attribute and and
store it separately. This involves a change to the source schema (Cf. [Gold
man83]) which might normally be beyond the purview of the developer; but
is done for the sake of "satisficing" a critical performance softgoal. A HELPS
link indicates that the replication helps retrieval.

Decisions and their Impact.

As was mentioned for Figure 11.11, the good response-time softgoal for
updating the Status attribute can be satisficed by storing few attributes per

A CREDIT CARD SYSTEM 317

SIG

LAYER 3 (Transactions)

, ResponseTime
• Iretrieve(Card.Slatus),

3j(critical}

PerformFirst
Iretrieve(Card.Status),
3)

++

, ResponseTime
• (retrieve(

Card.CreditRemaining),
3) (critical)

+

PerformEarly
Iretrieve(

Card.CreditRemainingl.
3) + +

ResponseTime
(update(
Card.CreditRemaining).
3)

PerformLater
IUpdate(
Card.CrediIRemaining},

3)

..
LAYER 2 (Attributes)

ResponseTime
Iretrieve(Card.Status),
2J

FewAttributesPerTuple
(Card.Status.
2)

ResponseTime
(retrievel

Card.CreditRemaining),
2) + , ReplicateDerived

., Attribute
(Card.CreditRemaining),

2)

Figure 11.14. Dealing with credit card attributes at Layer 2.

tuple, by using selective attribute grouping. This operationalizing softgoal
can be used here for the other critical task - retrieving the Status attribute.
The softgoal is labelled as being satisficed ("V") as we start the bottom-up
evaluation process (Figure 11.15).

Thus both critical retrieval operations have been satisficed. Now recall
the softgoals for other operations, ResponseTime[other ... , 3] and ResponseTime
[update(Card.CreditRemaining), 3]. The good news is that these tasks can be
done after the authorization response has been given to the user. The bad news
is that the updating of
Card. CreditRemaining will trigger additional work (such as the updating of
Card.BalanceOwing), which is due to the replication of the formerly-derived at
tribute. Thus the satisficing of the critical fast-retrieval softgoal BREAKS the
fast-update softgoal. In addition, the use of PerformLater
[update(Card.CreditRemaining), 3] gives further evidence for denying the fast
update softgoal. This is not so bad, since fast-update is not a priority. By

318 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

operation
Authorize(Card, Money)

ResponseTime
[nonCommonCode(Aulhorize),
4] {nonDominant)

ResponseTime
[nonCommonCode(Authorize),
4J

order of operations
Authorize(Card, Money)

++

ResponseTime
[Aulhorize(Card, Money),
4J

, ResponseTime
• [CommonCode(Authorize),

4J {dOminant)__~_-7

./ +
PerformFirst - • _ •
[CommonCode(Authorize), I'"":~ ...,
4J

ResponseTime
[CommonCode(Authorize),

Claim 4] ['--'-'; + +
rlnherited code predominates c· .I .to===~_"""':=-==---3~

authorization·, ~~~ ...r'
3]

C01/'lnwu Code

LAYER 4 (lsA Hierarchies)

ResponseTime
[other ... ,
3]

Claim
- - ."'~"""", [·other nol

~ ./,1 important',
''''',.'''' 3]

Common Code for
Authorize(Card, Money)

PerformLater

[t~;'J~reditRemaining),
3]

ReplicateDerived
Attribute
[Card.CreditRemaining,

2]

./
\

+

ResponseTime ./
[retrieval

Card.CreditRemaining),
2]

LAYER 3 (Transactions) I
ResponseTime .,
[CommonCode(Authorize),

Operation Components 3] ~.......,C""::::--__

ResponseTime
[relrieve(Card.Status),
3}

, ResponseTime
• [retrieve(Card.Status),

3] (critical)

LAYER 2 (Attributes)

ResponseTime
Iretrieve(Card.Status),
2J

FewAllributesPerTuple
[Card.Status,
2]

Figure 11.15. Evaluating the impact of decisions.

A CREDIT CARD SYSTEM 319

similar use of propagation rules and consideration of priorities, the top-level
softgoals at Layers 3 and 4 are seen to be satisficed. The developer has made
arguments that the critical operations of this dominant transaction have been
satisficed. Moreover, response-time softgoals were denied primarily for opera
tions which can be performed after responding to the user. Both these results
are in keeping with C. Smith's [C. Smith90] principles for building performance
into software.

Storage of Cardholder Information

Now let's consider a space requirement. As indicated in Section 11.1, a typical
bank might have over 3 million cardholders. Information on these cardholders
may include several attributes, and should be stored efficiently.

Inheritance Hierarchies and Priorities for Attribute Storage.

SIG

SecondaryStorage
[CreditRemaining
4J {nonDominant}

SecondaryStorage
[CreditRemaining
4J

storage of attributes (Card)
in IsA hierarchy

++

, SecondaryStorage
• [otherAttrs.

4) {dominant}

SecondaryStorage
[attributes(Card).
4)

IE-----":~ :l.t~==~;t--1
Claim ' .1-'

[·otherAtt,s use
most space·,

4)

SecondaryStorage
[Status,
4) {nonDominant}

SecondaryStorage
[Status,
4)

Prioritization

Individual Attributes

LAYER 4 (lsA Hierarchies)

+

SeveralAttributes
PerTuple
[otherAttrs.
4)

Figure 11.16. Considering inheritance hierarchies at Layer 4.

The softgoal Performance[Cancel(Card)], shown at the bottom of Fig
ure 11.4, was refined using the SubType decomposition method (not shown in
a figure), into softgoals Time[Cancel(Card)] and Space[Cancel(Card)]. The top

320 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

softgoal of Figure 11.16, for good SecondaryStorage of the attributes of Card,
i.e., the cardholder information, contributes to Space[Cancel(Card)].

Since the Card class has specializations, e.g., GoldCard which has addi
tional attributes related to travel bonus plans, the softgoal SecondaryStorage
[attributes(Card), 4] is stated at Layer 4 which deals with IsA hierarchies.

The developer uses the IndividualAttributes method to decompose the
softgoal into softgoals for each of the attributes. To simplify the discussion,
we show attributes Status and CreditRemaining separately (as we have been
dealing with them in previous parts of the example), and show all the remaining
attributes together as otherAttrs. These other attributes are noted as using
most of the space, hence their storage is identified as being dominant, while
Status and CreditRemaining are non Dominant. The space requirement for the
other attributes can be satisficed using HorizontalSplitting (Section 9.6) on these
attributes, which reduces the numbers of tuples used per cardholder.

Using Domain Information to Select Attribute Storage Methods.

At Layer 2 (attribute storage), the developer no longer considers the im
pact ofIsA hierarchies. Attribute values can be stored in compressed (encoded)
form (bottom of Figure 11.17). This saves space, but incurs extra time when
updating or retrieving values. Recall that during critical operations, the other
attributes are not used. This argument supports their compression, which sat
isfices their space softgoal. Chosen operationalizations and satisficed claims are
shown in the figure by '\j."

Let's return to the Layer 4 secondary-storage softgoal for the Status
attribute. As status values do not depend on the Card type hierarchy, we refine
this softgoal to one at Layer 2, using the FlowThrough method (Section 8.3).
Recall from Figure 11.13 that it was critical to quickly retrieve Status for fast
sales authorization. Using a compressed format for this attribute would slow
down this dominant transaction. This is an example of a negative interaction
between time and space, i.e., a time-space tradeoff. So for this attribute, the
developer opts for an uncompressed format a form of early fixing. In general,
this makes an UNKNOWN contribution for Space (including SecondaryStorage).
But here the developer changes the UNKNOWN contribution to BREAKS to
show that satisficing early fixing leads to denial of the storage softgoal.

The refinement for SecondaryStorage[CreditRemaining, 4]{nonDominant}
at Layer 2 is not shown, but is similar to that of Status, since both attributes are
critical in the (dominant) authorization transaction. This example thus shows
that non-dominant softgoals may need further refinement, due to interaction
with other softgoals.

Evaluating the Impact of Decisions.

The result of the evaluation (Figure 11.18) is that the storage softgoals
are satisficed for the dominant case, the "other" attributes - which form the

A CREDIT CARD SYSTEM 321

SIG

LAYER 4 (IsA Hierarchies)

SecondaryStorage
[Status,
4) {nonDominant}

"'~"'-"~',

. ;:./)
Claim '_....."

['status .
not specialized-,

4J

Flow·through
++

, SecondaryStorage
• [otherAttrs,

4) {dominant}

++

+

SeveralAttributes
PerTuple
[otherAnrs,
4]

..

i
it

LateFixing
[otherAttrs.

2)

SecondaryStorage
[otherAttrs,
2]

;"-"'-". + +, \ J ,;:-.....:.-'-~
Claim ' J ..

['otherAttrs not accessed
during critical operations· I +
2)

EartyFixing
[Status,
2J

UncompressedFormal
for Status

./-.-.....-~. + +
. -.. J,'Claim "'_,.;-'

['Status needed
21UiCkly to stop fraud',

LAYER 2 (Attributes)

SecondaryStorage
[Status,
2)

Figure 11,17. Selecting attribute storage methods at Layer 2.

bulk of the attributes of Card - while they are denied for only the two attributes
whose fast access is very important for satisficing other softgoals. Again, in
keeping with C, Smith's [C. Smith90] principles, we have satisficed the softgoals
for the dominant requirements (here, for storage). We also have justifications
recorded for the softgoals denied.

Storage of Sales Information

In Figure 11.19, the top softgoal is good space performance for sales informa
tion, which is kept in secondary storage. While sales records are independent
of card type, they could be specialized for each type of merchant (e.g., restau
rants, airlines). Hence we do not deal with IsA hierarchies here, so the softgoal
is stated at Layer 2.

322 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

SecondaryStorage
[CreditRemaining
4)

SeveralAttributes
PerTuple
[otherAltrs,
4J

storage of attributes (Card)
in IsA hierarchy

++

LateFixing /
[olherAltrs, or

2)

, SecondaryStorage
• [otherMrs,

4) {dominant}

SecondaryStorage /
(otherMrs, or
2)

Claim {;() ++
('otherAltrs not accessed

during critical operations·, +
2)

SecondaryStorage
(altributes(Card),
4)

++

IE---:.j":;,-----4--~
Claim '"./'

l'otherAtlrs use
most space-,

4)

SecondaryStorage
[Status,
4)

EarlyFixing
[Status,
2)

Claim ".C{)
('status
not specialized',
4)

. ,:l) + +
Claim ;-.
['Status needed'
21UiCkly to stop fraud',

Flow-through

Prioritization

Individual Attributes

LAYER 4 (IsA Hierarchies)

LAYER 2 (Attributes)

Figure 11,18. Evaluating the impact of decisions.

Figure 11.4 refines Performance[Transaction(Card)] into several top-level
NFRs, one of which (not shown in that figure) is Performance[Sale], which is in
turn refined into Time[Sale] and Space[Sale], Now SecondaryStorage[Sale, 2] of
Figure 11.19 contributes positively to Space[Sale].

LAYER 2 (Attributes)
~~~?e~daryStorage~

2J

+
LateFixing ,
(Sale, .,

2)

VI

A CREDIT CARD SYSTEM 323

[
storage)
of Sale

I

ICompressedForrnat 11- -'
tor Sale 1

Figure 11.19. SIG for storage of sales information.

A compressed format is used to satisfice the softgoal. This will slow down
the recording of sales, but such operations can be done after the merchant is
given a response by the authorization transaction.

We have looked at several performance requirements. We have selected
some aspects of the target system. When such selection decisions were eval
uated, we found that some main softgoals have been satisficed. Importantly,
priority (critical and dominant) softgoals were satisficed, meeting a principle
for building performance into systems. We were able to deal with tradeoffs
by focussing on satisficing the priorities, at the cost of not meeting the non
priorities.

Let us now turn to security and accuracy requirements.

11.4 DEALING WITH SECURITY AND ACCURACY REQUIREMENTS

The informal concerns for security are sometimes ambiguous, perhaps due to the
nature of the document, inviting many possible interpretations. For example,
an NFR or operationalizing softgoal needs clarification when it is expressed
only in terms of its type name without clear explanation.

Security Softgoals

Consider a main softgoal, Security[Authorize(Card, Money)] from the bottom of
Figure 11.4, shown at the top of Figure 11.20.

We recognize the importance of accuracy and confidentiality aspects of
security. Accordingly, we used the SubType method to decompose a secu
rity softgoal, Security[Authorize(Card, Money)], into softgoals for confidentiality,
availability and integrity (Figure 11.20).



324 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Integrity
[Authorize OJ

Completeness
[Authorize OJ

Accuracy
[Authorize OJ

Intemal
Confidentiality
[Authorize OJ

Confidentiality
[Authorize OJ

External
Confidentiality

[Authorize OJ

Figure 11.20. Main Security Requirements for the credit card system.

The integrity softgoal is further decomposed into Accuracy
[Authorize(Card, Money)] and Completeness[Authorize(Card. Money)]. Recall the
discussion in Section 6.7 of different notions of accuracy.

A security breach can take place either internally, by staff accessing the
system, or externally, in terms of forgery of vouchers, remittance requests, etc.
Thus the confidentiality softgoal is refined into softgoals for internal confiden
tiality and external confidentiality.

This is done using the Internal-External SubType method, to address two
different characteristics of confidentiality.

Addressing Accuracy and Confidentiality Softgoals

Of the softgoals identified in Figure 11.20, we now focus on accuracy and confi
dentiality for authorization of sales. These softgoals are both shown at the top
of Figure 11.21, even though they were not at they same level in Figure 11.20.

The developer refines Accuracy[Authorize(Card, Money)] into TimelyAc
curacy[Authorize( Card, Money)], PropertyAccuracy[Authorize( Card, Money)] and
ValueAccuracy[Authorize(Card. Money)].

The developer focusses on TimelyAccuracy[Authorize(Card. Money)], the
faithful representation of information during the lifetime of the authorization
transaction. Using a prioritization template, this softgoal is then treated as
critical in Figure 11.22. We assume that market surveys show that timely
accuracy is of strategic importance.



A CREDIT CARD SYSTEM 325

SIG

Accuracy
[Authorize
(Card. Money)]

Property Value
Accuracy Accuracy
[Authorize OJ [Authorize OJ

Timely
Accuracy
[Authorize OJ

External
Confidentiality
[Authorize OJ

Confidentiality
[Authorize
(Card. Money)]

Internal
Confidentiality
[Authorize OJ

Figure 11.21. Accuracy and Confidentiality Requirements for the credit card system.

SIG

Confidentiality
[Authorize
(Card. Money)]

External
Confidentiality
[Authorize OJ Internal

Confidentiality
[Authorize OJ

Time
[Transmission

(Authorize 0)]

I
I
I
I
I
I
I
I
I
I

/+
I
I
I
I
I
I
I
I
I
I
I

Timely
Accuracy
[Authorize OJ

++

, Timely
• Accuracy

[Authorize OJ
(critical)

,--,,,-, + +

Claim ~-_.-')'
["Market survey:
strategic importance")

Accuracy
[Authorize
(Card. Money)]

Property Value
Accuracy Accuracy
[Authorize OJ [Authorize OJ

Figure 11.22. Interactions among softgoals.



326 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Now one way to HELP meet ITimelyAccuracy[Authorize(Card, Money)]
{critical} is to provide good transmission time for authorizations. Thus the
developer refines the critical timely accuracy softgoal into Time[transmission
(Authorize( Card, Money))].

Providing good transmission time for transactions has other benefits
such as helping external confidentiality. Accordingly, a correlation is detected,
showing that Time[transmission(Authorize(Card, Money))] HELPS ExternalCon
fidentiality[Authorize(Card, Money)]. To avoid undesirable consequences, the
correlation catalogue might state a condition that, for the correlation to be
positive, the phone line from the input device to the system should be safe
guarded against wire-tapping. This helps the developer avoid omissions of
certain important concerns.

Interestingly, we are able to express different kinds of NFRs, here timely
accuracy, time performance and confidentiality, in the same softgoal interde
pendency graph, using essentially the same notation. If desired, the time per
formance softgoal could be refined to include a layer parameter (This is not
shown in the figure).

We've considered external confidentiality here. Soon we will consider
internal confidentiality, in Figure 11.24.

The developer applies the RapidPosting operationalization method (Fig
ure 11.23). This helps transmission time, hence timely accuracy, by reducing
the time delay for the posting of the sale to the accounts.

Other operationalizations could also be used. For example, installation
of a particular kind of point-of-sale transaction device could help rapid posting.
However, this operationalization might also increase equipment cost.

The evaluation procedure is used to show the effect of selecting rapid
posting (Figure 11.23). Rapid posting HELPS transmission time. Using the
rules for evaluation, this results in a weak positive label for the satisficing of
Time[transmission(Authorize(Card, Money))], which the developer changes (here
and elsewhere) to satisficed. We also have positive contributions to satisficing
external confidentiality of authorization, and to the critical softgoal for timely
accuracy of authorization.

Internal Confidentiality Softgoals

The developer focusses on internal confidentiality in Figure 11.24, a continua
tion of part of Figure 11.23.

The developer applies the Subclass method to InternalConfidentiality
[Authorize(Card, Money)]. This results in two Internal Confidentiality softgoals,
one for authorization of gold cards, the other for authorization of regular cards.

The developer focusses on authorization for gold cards, and applies the
Subset method to partition the sales amounts (Money) into large amounts and
small amounts.

We assume that the bank has a policy that care should be exercised
in dealing with authorizations involving gold cards and large money amounts
(Figure 11.25). Although there are relatively few such transactions, they are



A CREDIT CARD SYSTEM 327

SIG

Confidentiality
[Authorize
(Card. Money)]

External
./ Confidentiality

[Authorize OJ Intemal
Confidentiality
[Authorize OJ

I
I
I
I
I
I
I
I
I
I

/+
I
I
I
I
I
I
I
I
I
I
I

+

Timely
Accuracy
[Authorize OJ

++

, Timely
• Accuracy

[Authorize OJ
{critical}

Claim {-:2~;, + +
['Market survey:
strategic importance']

Property Value
Accuracy Accuracy
[Authorize OJ [Authorize OJ

Accuracy
[Authorize
(Card, MoneYl]

Time
[Transmission
(Authorize 0)]

Rapid Posting
[Authorize OJ

Figure 11.23. Evaluating the use of an operationalization.

treated as critical. This treatment is supported by a prioritization template. In
addition, internal confidentiality is identified as being mandatory for authoriza
tion of large amounts on gold cards.

Evaluating the Chosen System,

By applying the Alarm operationalization method, the manager of the
authorization department can be informed of suspicious authorizations involv
ing large amounts and gold cards.

The alarm can be realized in two ways (not shown in Figure 11.25): Phys

icalAlarm, using a loud sound, and SoftAlarm, using a communication network.
The impact of choosing an alarm for authorization of large amounts on

gold cards is shown using the evaluation procedure (Figure 11.25). There is a



328 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

Internal Confidentiality
[Authorize
(Card, Money))

Internal
Confidentiality

[Authorize
(Regular Card, Money))

Internal
Confidentiality

[Authorize
(Gold Card, Money))

Internal Confidentiality
[Authorize
(Gold Card, Large Amount))

Internal Confidentiality
[Authorize
(Gold Card, Small Amount))

Figure 11.24. Refining an Internal Confidentiality softgoal.

positive impact on internal confidentiality for authorizing large amounts on gold
cards. Assuming that InternaIConfidentiality[Authorize(GoldCard, SmaIiAmount)]
is not a priority, there is a positive contribution to internal confidentiality of all
authorizations involving gold cards, InternaIConfidentiality[Authorize(GoldCard,
Money)].

11.5 DISCUSSION

This chapter has addressed some non-functional requirements for a credit card
authorization system. This study has used actual national credit card statistics,
and then estimated the portion applicable to one bank. Assumed NFRs for
performance, security and accuracy have been addressed. Interestingly, the
NFR Framework allows such a variety of NFRs to be addressed together.

The study has involved a series of refinements, and the use of priori
tization of softgoals to ensure that the important requirements are satisficed.
Prioritization can help the developer deal with tradeoffs between priorities and
non-priorities.

For performance, for example, we dealt with time-space tradeoffs. By
focussing on priorities at the expense of non-priorities, we obtained results con
sistent with principles for achieving good response time for users [C. Smith90j.
The performance part of the study also illustrated how issues can be handled
at more than one layer, while addressing various language features, such as IsA
hierarchies.



A CREDIT CARD SYSTEM 329

SIG

Intemal Confidentiality ,
[Authorize .,
(Gold Card. Large Amount)]

Intemal
Confidentiality

[Authorize
(Regular Card, Money)]

,:--- .....-"1 + +
\- .I), )

Claim ""."
['Large amounts are infrequent,

but have great impact."] ++

Intemal Confidentiality
[Authorize
(Card. Money)]

Intemal
Confidentiality

[Authorize
(Gold Card. Money)]

Intemal Confidentiality
[Authorize
(Gold Card. Small Amount)]

, Intemal Confidentiality
• [Authorize

(Gold Card. Large Amount)]
{critical. mandatory}

Alarm
[Authorize
(Gold Card. Large Amount)]

Figure 11.25. Evaluating the impact of alarms on Internal Confidentiality.

In considering security and accuracy requirements, the use of a series of
refinements helped the developer focus on priorities. Correlations were help
ful in determining the impact of one softgoal upon another. We found that
choosing one operationalization can help satisfice more than one NFR.

11.6 LITERATURE NOTES

This chapter is based on studies of NFRs for credit card systems, reported
elsewhere [Nixon93, 97a] [Chung93a,b, 95a].



12 AN ADMINISTRATIVE SYSTEM

12.1 INTRODUCTION

In this chapter, an administrative system is studied. Performance requirements
are considered for a government system to help administer income tax appeals.
This involves long-term, consultative processes. The study considers descrip
tions of the organization, its workload and procedures.

We studied [Nixon94a, 97a] an Income Tax Appeals system, which man
ages the handling of taxpayers' appeals of decisions about their tax returns. It
provides support for decision-making over a long period of time, recording and
tracking information and decisions. We considered a possible extension to this
government information system.

Each case is typically complex, and the number of cases is typically much
less than the number of short-term transactions in other systems, such as credit
cards.

12.2 DOMAIN DESCRIPTION, FUNCTIONAL REQUIREMENTS
AND ORGANIZATIONAL WORKLOAD

An Income Tax Appeals system manages the handling of appeals by taxpayers
who disagree with decisions made by the Canadian Department of National
Revenue. During the appeals process, a taxation officer should contact the tax
payer, and may also consult other staff members. This is a highly consultative
and interactive process, subject to constraints, and may last months or even



332 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

years. The existing system which records and tracks information and decisions
over a long period of time. We considered [Nixon94a) a possible extension to
this government information system.

After reviewing a taxpayer's individual tax return, the Department of
National Revenue issues a notice of assessment, which sets out the amount of
tax payable. A taxpayer who disagrees with the assessment may file a formal
notice of objection. This sets in motion a formal and somewhat complex appeals
process, which can last several months or even years, which is intended to
provide an impartial re-consideration of an assessment.

We consider a system which monitors the appeals process over long time
periods, and a proposed extension which provides a follow-up service to track
appeals and issues reminders to staff to keep on schedule.

Currently, the system maintains an inventory control database of infor
mation on each appeal case. This draws on manually-prepared documents,
which record case disposition and the time spent by staff on each case. This
information then is used to prepare reports and handle on-line enquiries.

However, workload control and the supervision of the progress of ap
peals cases are not automated. \Ve therefore consider an enhanced system.
As a partially automated follow-up service would be helpful to departmental
operations, 1 we add design specifications and performance requirements which
could reasonably be expected for such a system, including the issuing of re
minders to staff to contact taxpayers before deadlines.

While a system specification of the existing appeals database system is
not available to us, we have access to the taxation operations manual and forms
[Revenue Canada80, 89, 92a) which partially describe the appeals system and
some of the data in the system. We also use actual taxation organizational
workload statistics [Revenue Canada91, 92b,c). The following description of
the appeals process is based upon material presented in, or derived from, de
partmental information and policies.

The Tax Appeals Process

Normally, a notice of objection must be filed by a taxpayer within a stated time
limit (e.g., 90 days from the mailing ofthe notice of assessment) 2 Upon receipt
by the Department of an objection, several initial steps are taken, including re
trieval of files, suspension of account collection activity, and the assignment of
the case to one of over 400 appeals officers. During review of the objection, an
appeals officer may repeatedly engage in a variety of activities including exam
ination of the taxpayer's account, discussion with the taxpayer, consultation
with other staff members, calculations and negotiations. There are some tem
poral constraints arising from departmental policy. An appeals officer should
normally discuss the matter with the taxpayer within 50 days of receipt of the

1 Letter from Fernand Livernoche, Acting Director, Policy and Programs Division, Depart
ment of National Revenue, Taxation, November 19, 1992.
2Under new rules, objections may also be filed within one year of the due date of the return.



AN ADMINISTRATIVE SYSTEM 333

objection, and complete the review within 90 days, resulting in a decision by
the Minister of National Revenue within 120 days. There are several possible
outcomes of an objection, which will affect its final processing. For example,
if the original assessment is changed, adjustments are made and a notice of
re-assessment is issued. If no change is made to the original assessment, the
taxpayer is so informed.

Organizational Workload

Actual organizational workload statistics [Revenue Canada92b,c] are used in
this study to help deal with performance requirements, and make implemen
tation decisions. Each year, approximately 18000000 t.ax returns are filed
[Revenue Canada91]. For the year ended March 31, 1992, some 57 072 appeals
were completed, and a a closing inventory of 38 532 uncompleted appeals re
mained at year-end. In each of the 4 quarters in the year ending March 31,
1992, between 64% and 84% of reassessments were issued within 60 days, while
18% to 55% were issued within 30 days. While the average time to dispose of
most cases was 104 days, some cases were taking longer than the 120-day ser
vice standard. For the quarter ended March 31, 1992,4% of the reassessments
took more than 120 days to be completed. This pattern was fairly consistent
for the 3 prior quarters. On March 31, 1992,5 378 cases remained which were
outstanding for over 120 days.

12.3 NON-FUNCTIONAL REQUIREMENTS

We consider some performance requirements for the proposed extension to the
system. As the documentation to which we had access did not specifically
state system performance requirements, these requirements are based on our
intuition and understanding of the domain.

1. There should be good time performance for managing information about the
long-term appeal processes in the system.

2. Reminders to staff (e.g., to contact a taxpayer by a certain date) should be
issued quickly.

3. Information on appeals (which is used to generate reminders to staff) should
be accessible quickly, and stored efficiently.3

To meet performance requirements, we need to consider the performance
of implementation alternatives for such a system. For example, part of the ap
peals process involves repeated access on a timely basis to appeals files. As
this can be implemented in many different ways, with widely varying perfor
mance characteristics, we need to be able to see the impact (whether positive
or negative) of implementation decisions upon performance requirements.

3 As we subsequently found out during domain interviews (Chapter 15), storage requirements
are not actually a priority in the domain.



334 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

The performance of long-term processes (which last months or years,
although they may have large idle periods) has been less studied than shorter
term processes. Note also that we are concerned here with system-oriented
performance issues (such as reducing time to access an account), rather than
organization-oriented performance issues (such as how the appeals branch could
change its procedures to reduce the time to consider an appeal by, say, a month);
for an examination of organizational goals, see Chapter 14.

12.4 RECORDING DOMAIN INFORMATION IN A DESIGN

We now consider how a developer could record the domain information in a
conceptual design.

Characteristics of the application domain lend themselves to the use of
TaxisDL (See Section 9.1 and (Borgida93] for descriptions) as a design lan
guage. Its data model features (including long-term processes and integrity
constraints) can naturally represent the appeals process and proposed follow-up
service, which is consultative, interactive and long-term, is subject to legislative
and policy constraints, and has many classifications of cases and decisions.

From the domain information, we use the design language to record a
schema, including the long-term appeals process. Figure 12.1 is a simplified
representation of a portion of the long-term appeals process, represented as a
TaxisDL script.

Scripts (See Chapter 9 and (Chung88]) are augmented Petri nets (Zis
man78]. Control flows between locations (or "states," represented as nodes),
along directed transitions (arcs). The operations to be accomplished along a
transition are specified by the activities of a transition. 4 Transitions also have
givens (preconditions) which are conditions that must hold before the execution
of the transition can begin.

The script represents the appeals process from the viewpoint of an ap
peals officer, who deals with taxpayers. Starting at the top of Figure 12.1,
it shows the initial steps taken when an appeal is received. Next, the officer
is reminded (possibly repeatedly) to contact the taxpayer. The officer is also
reminded to issue a recommendation for the outcome of the case. The officer
may consult with the taxpayer and possibly with staff within the department.
This cycle of reminders and consultations may be repeated. After the decision
is made, the taxpayer is notified, records are updated, and other divisions of
the department are informed.

12.5 OVERVIEW OF SIGs

We illustrate how a system developer can use the NFR Framework, as special
ized in the Performance Requirements Framework, to deal with time and space

4In TaxisDL, activities (postconditions) of a script transition are called "goals." These func
tional goals are distinct from softgoals of the NFR Framework.



AN ADMINISTRATIVE SYSTEM 335

FRs

Start

RemindToAdvise:
remindStaffToAdviseMinister

RemindedStaffAdviseMinister

Contact:
contactTaxpayer

RemindedStaffToContactTaxpayer

RemindToContact:
remindStaffToContactTaxpayer
remindToContactWithin50Days
logReminder

Advise:
adviseMinister

Finalize:
issueDecision
notilyTaxpayer
reassess
updateAndNotilyAccountingAndCollections

CompletedACycle

AdvisedMinister

Initialize:
receiveAppeal
validate
sendAcknowledgeToTaxpayer
assignToOfficer
notilyAccountingAndCollections

Initialized

transition:
Activity

Location (State)

ConsiderCase:
consider
consult
compute
communicate

Legend

Figure 12.1. The tax appeals process represented as a Script.

requirements for the tax appeal system. We show how results are recorded in
SIGs.

We start with a requirement of good ManagementTime performance
(MgmtTime) for managing actions of the long-term tax appeals process. One



336 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

important aspect is good management time for issuing reminders to appeals
staff to contact taxpayers. Recall from Chapter 9 that management time deals
with the time used to manage long-term processes and integrity constraints.

To produce a customized solution, we use some performance refinement
methods, which were introduced in Chapters 8 and 9. This is done in con
junction with knowledge of the actual application domain and its workload.
We represent, consider and use knowledge of many implementation techniques
for semantic data models [Hu1l87] [Nixon90, 93], such as TaxisDL, including
temporal integrity constraints (See [Chung88]). Actual statistics and work
load patterns (e.g., many cases are resolved faster than the service standard
requires) are used to help deal with tradeoffs and select among implementation
techniques.

Issues are considered at a few layers. In developing a SIG, softgoals
and decisions at higher layers (here, dealing with long-term processes) have an
impact upon lower layers.

Decisions for target systems are made, and then evaluated in terms of
meeting the overall softgoals. This information is incrementally recorded in
softgoal interdependency graphs

12.6 TIME SOFTGOAlS FOR MANAGING
lONG-TERM TAX APPEAL PROCESSES

Let's turn to the first performance requirement.

Stating an Initial Softgoal

LAYER 6 (Long-Term Processes)

O MgmtTime
[lransilions(TaxAppeal),
6)

Figure 12.2. Initial softgoal of good time performance for managing transitions of appeal

process.

The developer desires good time performance for managing the actions of the
long-term tax appeal process. In a TaxisDL script, actions are performed along
the transitions which are shown as arcs in Figure 12.1.

The developer states a softgoal of good time performance for managing
the transitions of the tax appeal process. This time softgoal is stated at Layer 6,
which deals with long-term processes, and is shown in a SIG in Figure 12.2.

The softgoal is written as MgmtTime[transitions(TaxAppeal), 6]. Here
MgmtTime (part of the the Performance Type of Figure 9.6) is the type of the
softgoal , transitions(TaxAppeal) is a topic of the softgoal, and 6 is the layer topic



AN ADMINISTRATIVE SYSTEM 337

of the softgoal. The interpretation of the softgoal is that there should be good
time performance for managing the transitions of the tax appeal script.

Refining Softgoals

SIG

LAYER 6 (Long-Term Processes)

Individual Transitions

MgmtTime
[Initialize.
6]

MgmtTime
[transitions(TaxAppeal),
6]

MgmtTime
[RemindToContact.
6)

MgmtTime
[....
6J

Figure 12.3. Decomposition into softgoals for individu al transitions.

Now we can refine the top softgoal into other softgoals, using refinement meth
ods.

By the IndividualTransitions decomposition method, a specialization of
the IndividualComponents method, the management time softgoal is refined into
softgoals for each individual transition of the script. The parent softgoal is
refined into a set of management time softgoals, one for each transition of the
Tax Appeal script (Initialize, RemindToContact, etc.). This AND decomposition
is shown in the SIG of Figure 12.3. In other words, if good management
time performance can be attained for each transition, there should be good
performance for the group of transitions as a whole.

Further Refinements

Using the NFR Framework, it is up to the developer to chose what to refine,
when to refine and how much to refine. We show how a developer can refine
softgoals by considering the components and sub-components of a script.

To deal with the proposed reminder service, the developer decides to fo
cus on the transition which reminds the staff to contact the taxpayer,
RemindToContact. Thus we refine the softgoal MgmtTime[RemindToContact,
6]. (Refinements for the softgoals involving Initialize and other transitions are
not shown here, but could be considered.)

Now TaxisDL script transitions have two components. Givens are true
at the beginning of a transition, i.e., preconditions. Activities are true at the
end of a transition, i.e., postconditions. Accordingly, the TransitionComponents
method can be used to refine the management time softgoal for the Remind
ToContact transition into one management time softgoal for the transition's
givens, and one for the transition's activities (middle of Figure 12.4).



338 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

MgmtTime
{....
6J

MgmtTime
[aclivilies(RemindToConlacl).
6)

LAYER 6 (Long-Term Processes)

Individual Transitions

MgmtTime
[Initialize,
6)

Transition Components

MgmtTime
[~JvenS(RemindToCOnlaCI).

Individual Activities

MgmtTime
[ ...
61 MgmtTime

[AemindToConlactWithinSODays.
6J

MgmtTime
[IogReminder.
6J

Figure 12.4. Further decompositions at Layer 6.

In a TaxisDL design specification, a transition's activities reflect what is
to be achieved. Examples here include reminding the staff to contact the tax
payer, preparing a log of reminders issued, etc. Accordingly, the management
time softgoal for a transition's set of activities is refined into several manage
ment time softgoals, one for each activity of the transition. The activities in
clude reminding the agent to contact the taxpayer within 50 days, and making
a log of the reminder. This refinement is done by using the IndividualActivities
decomposition method (bottom of Figure 12.4).

Linking Softgoals and SIGs at Different Layers

Recall from Chapters 8 and 9 that performance softgoals can be associated
with particular layers, which helps further organize SIGs into layers. Each
layer deals with a set of issues (here, particular data model features of the
source language). Methods can be used to move down to lower layers, dealing
with simpler languages (which omit the features of higher layers), until we get
to the target language.

Here, in considering the long-term tax process at Layer 6, the devel
oper pays attention to the management time softgoal for the transition activity
specification that staff contact the taxpayer within 50 days the first time. This
softgoal is written MgmtTime[RemindToContactWithin50Days. 6].

We consider how this might be implemented. One way would include
issuing a reminder to the staff within 40 days of the appeal: if not already



AN ADMINISTRATIVE SYSTEM 339

SIG

LAYER 6 (Long-Term Processes)

Individual Transitions

MgmtTime
[Initialize,
6)

Transition Components

LAYER 5 (Constraints)

Figure 12.5. An inter-layer refinement.

MgmtTime
[....
6)

MgmtTime
[logReminder,
6)

MgmtTime
(... ,
5)

contacted, the taxpayer could be contacted within the remaining 10 days, to
meet the service standard. We can then refine the management time softgoal
using the Implementation Components decomposition method, which decomposes
a parent softgoal into softgoals for the components which implement the topic
of the parent softgoal (bottom of Figure 12.5).

Note, however, that we have taken a problem involving one layer (here,
long-term processes at Layer 6) and are now dealing with part of it in terms of
a lower layer - here, integrity constraints at Layer 5. We now are dealing with
a temporal integrity constraint, to issue reminders within a certain time.

This reduction to lower (simpler) layers is represented by an inter-layer
interdependency link. This results in softgoals at the lower layer (e.g., Mgmt
Time[lssueReminderWithin40Days, 5]) which can now be refined, satisficed, etc.,
but now focussing on the issues, methods, etc., applicab:e to this lower layer. In
effect we have started another SIG at a lower layer. The inter-layer interdepen
dency links connect the SIGs at each layer to form a complete SIG involving all
applicable layers. Decisions at lower SIGs have an impact upon higher layers,
and their impact is propagated upwards via inter-layer contributions.



340 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

12.7 OPERATIONALIZATION METHODS FOR
INTEGRITY CONSTRAINTS

We continue the development, focussing on the softgoal of good management
time performance for issuing a reminder within 40 days. We are now at Layer 5,
addressing integrity constraints.

Considering Operationalization Methods

SIG

LAYER 6 (Long-Term Processes)

Imnlementation Components

LAYER S (Constraints)

CyclicChecking
(lssueRemindeiWilhin40Days.
5)

Figure 12.6.

MgmtTime
I.
5J

TimeOrderedList
(lssueReminderWilhin40Days.
5J

Considering some operationalizing softgoals.

In moving towards a target system, the developer considers operationaliza
tion methods (implementation techniques) which will satisfice the performance
softgoals. In Figure 12.6, we consider operationalizing softgoals derived from
implementation techniques for temporal constraints [Chung88]. One option is
CyclicChecking, which cycles through and examines each transition of each tax
payer's script. If it is 40 days since the appeal was filed, a reminder is sent
to staff. This gives reasonable performance with a small number of script in
stances. Otherwise, the time overhead of repeatedly checking each script is too
great, since only a few scripts will meet the temporal condition.

The developer considers another operationalization method for temporal
constraints, the TimeOrderedList [Chung88], which keeps script instances in a
list, sorted by the time at which they need to be activated. If the order of
actions is known in advance, the sorting provides efficient access time, since
we only examine the front of the list. Appeals with the appropriate date are
removed from the list, and reminders are issued.

Figures 12.6 through 12.8 omit much of Layer 6, to condense the figures.



AN ADMINISTRATIVE SYSTEM 341

Using Domain Information to Argue about Alternatives

SIG

LAYER 6 (Long-Term Processes)

Implementation Component!

LAYER 5 (Constraints)

CyclicCheckinQ
,lssueRemindeiWithin40Days,
5J

Figure 12.7.

MgmtTime
[ .. ,
5J

TimeOrderedUst
[lssueReminderWithin40Days.
5]

An Argument about an Operationalization.

The process of selecting implementation alternatives needs to reflect different
needs, priorities and workloads of the particular organization for which the
system is being produced. These factors can be used to support decisions
made by the developer. For example, organizational workload (e.g., the number
of appeal cases, or the speed of resolving cases) can be used as arguments
for choosing one operationalization over another. An argumentation softgoal
(Claim) records such design rationale.

When there are many script instances, the time overhead for cyclic check
ing is great, since every script will be repeatedly checked. However, the tempo
ral condition (being 40 days from the filing of the appeal) will be met for only
a small number of scripts. This is in fact the case for the tax appeal applica
tion, as the workload statistics [Revenue Canada92b,c] indicate that there were
recently 38 532 appeals pending, which, while not huge, is not insignificant.
Hence in Figure 12.7 the developer argues that the criterion for using cyclic
checking is not met.

As a result, the positive contribution of CyclicChecking in Figure 12.6
becomes a negative contribution in Figure 12.7. In Figure 12.8, the developer
rejects CyclicChecking. In addition, the developer denies the interdependency
link (shown as an "x" along the link), so that CyclicChecking does not contribute
to its parent. Thus CyclicChecking is removed from further consideration.



342 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Refining Operationalizing Softgoals

SIC

LAYER 6 (Long"Term Processes)

Implementation Components

LAYER 5 (Constraints)

Claim
I"Many

script instances",
5)

)(

MgmtTime
IAemindToContactWithin50Days.
6)

MgmtTime
I···.
5)

+

)(
CyclicChecking
[lssueRemindeiWilhin40Days.
5J

Claim .....: ..
["Many cases ':.1 .~.

resorved earlier· I - .... , ... ,. ,..}

5)

RemoveEntryOnlyAtStatedTime
IlssueReminderWithin40Days,
5)

Figure 12.8. Refining an Operationalizing SoftgoaL

Here we have chosen a list structure for the implementation. We may wish to
consider more specialized structures. This can be done by refining an opera
tionalizing softgoal into other operationalizing softgoals.

For example, a specialized list structure may be more efficient. A queue
structure (RemoveEntryOnlyAtStatedTime, a specialization of TimeOrderedList,
shown at the bottom of Figure 12.8), can be optimized to restrict removal
operations to the front of the list. This would offer some management time
and space advantages if reminders are issued for every appeal on the 40th
day, However, the c;,ueue is ruled out because the workload patterns show that
reminders are not always needed, as some appeals are handled faster than the
service standard.

In fact, staff may contact taxpayers (and even conclude the appeal) be
fore the deadline; in these cases, reminders are not needed. If this is a frequent
situation, the developer may be able to exploit it to benefit performance. For
guidance, the developer again turns to the workload statistics, and observes
that some cases are resolved within 30 days, and a majority are resolved within
60 days. Hence, many cases are concluded before the 40-day service standard,
and in some others the taxpayer has been contacted before then. An implica
tion for implementation is that entries need to be able to be efficiently removed



AN ADMINISTRATIVE SYSTEM 343

in advance of the normal time. The developer therefore uses the statistics
to argue against the queue structure, and instead chooses a more flexible list
structure which easily allows early removal, RemoveEntryAnyTime.

Considering Performance Softgoals at Lower Layers

SIG

Mgmtnme
[LogReminder.
6J

Mgmtnme
[....
6)

temporal constraint for
issuing reminder

Mgmtnme
[....
5)

MgmtTIme
[~Jtiv~ieS(RemindToContact).

TimeOrderedList
[~SUeR9mindelWilhin40DaYs.

.................................................................................

Mgmtnme
_-rT"1__[~~r,jnsitions(TaxAppeal).

MgmtTime
[Initialize.
6)

Imlliementation COmllOnelltS

x

Transition Comllonents

lrulividual Activities

Mgmtnme
[..
6)

Individual Tran~itions

CyclicChecking
[[ssueRemindeiWilhin40Days.
5J

9!~~y C:()
script instances·,

5]

LAYER 5 (Constraints)

LAYER 6 (Long-Term Processes)

RemoveEntryOnlyAtStatedTime . RemoveEntryAnyTime
[lssueReminaerWithin400ays I [lssueReminaerWithin40Days,
5J " 5J

time-ordered list
with early removal

.~~~~.~.~.(~.~;~;~~;~~; ~.;;;~ ..

./ [Lisl.
2)

Figure 12.9. Evaluation of the SIG.



344 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Having chosen a particular list structure at Layer 5 to meet the integrity con
straint, the developer still needs to deal with details of storing the attributes of
the list structure, which is considered at Layer 2. Note that the developer can
choose to skip intermediate layers (here, Layers 4 and 3) when the softgoals
under consideration need not be refined to address the issues of those layers
(here, IsA hierarchies, and transactions).

To manage long-term processes and integrity constraints at higher lay
ers, we have dealt with MgmtTime softgoals for reminders. At the lower lay
ers of implementation, we will be dealing with shorter-term Time softgoals
for maintaining a list structure. As a result, the developer refines MgmtTime
[lssueReminderWithin40Days, 5] into Time[List, 2]. The resulting interlayer link
is shown at the bottom of Figure 12.9.

This inter-layer refinement can be viewed as a variant of the Manage
mentTime to Time method (Section 9.7) which takes a parent MgmtTime soft
goal at Layer 6 or 5, and refines it to a Time softgoal at a lower layer. However,
here we have also changed the topic of the offspring softgoal.

Recall from Section 8.3 that an NFR softgoal which is an offspring at
the top of a lower layer must have a parent which is an NFR softgoal, not an
operationalizing softgoal, at a higher layer. This refinement is in keeping with
that provision of the NFR Framework.

The refinement of the Layer 2 softgoal will be discussed in Section 12.8.

Evaluating Softgoal Accomplishment

Figure 12.9 also shows the evaluation of softgoal interdependency graphs. To
determine the overall effect of local decisions upon top NFR softgoals, an eval
uation procedure (labelling algorithm, Section 3.3) is used. Importantly, the
procedure can dynamically ask developers for their expertise, e.g., when there
are inconsistencies, or situations not handled by an existing catalogue.

Figure 12.9 is a combined SIG of the development described in Sec
tions 12.6 and 12.7. Evaluation of multi-layer SIGs proceeds from the bottom
of the figure, starting with the leaf softgoals, commencing at the lowest layer.

At each layer of a fully refined SIG, most leaves are either operationaliz
ing softgoals or claims, which are labelled. In other words, the NFR softgoals
have been refined to operationalizing softgoals, each of which has been chosen
or rejected. Otherwise, the developer can assign labels to unlabelled leaves.
Here, at the bottom of Figure 12.9, Time[List, 2] is not yet refined, but the
developer assumes it will be satisficed, and labels the softgoal accordingly. In
Section 12.8, it will be refined, and we will see that the result of evaluating the
resulting SIG at Layer 2 does satisfice Time[List, 2].

Now Time[List, 2] is labelled satisficed, and HELPS its parent, Mgmt
Time[lssueReminderWithin40Days, 5]. Using the rule for this combination of
label and link type, a weak positive contribution ("W+") is made to the par
ent. We'll return to the label of the parent softgoal shortly. In the meantime,
note that the propagation rules work for an inter-layer interdependency link in
the same way as for links within one layer.



AN ADMINISTRATIVE SYSTEM 345

Now we go up to Layer 5. The three leaf operationalizing softgoals have
each been already accepted (labelled as satisficed) or rejected (denied). The
two rejected ones, CyclicChecking and RemoveEntryOnlyAtStatedTime, have ar
guments (Claims) attached to their links to their respective parents. Their
claims have been denied. In both cases, the claims are conditions, based on
domain and workload knowledge, under which the use of the operationaliz
ing softgoals would be appropriate. The result is to deny the offspring-parent
interdependency links (shown by "x" along the links). The effect of denying in
terdependency links (which are normally considered satisficed) is that no value
is propagated to the parent, i.e., the offspring are removed from consideration.

Turning to the remaining leaf operationalizing softgoal, RemoveEntryAny
Time, it is selected (satisficed), and is connected to its parent by a HELPS link.
This propagates W+ to the parent, TimeOrderedList, which has no contributions
from other offspring.

Now the developer can step in, using expertise to consider that Time
OrderedList is satisficed. As a result, its label of "W+" is changed to "V',.s

Now we go up to MgmtTime[lssueReminderWithin40Days, 5]. Recall that
it receives a W+ contribution from Time[List, 2] and no contribution from
CyclicChecking. It also receives W+ from the HELPS link from satisficed Time
Ordered List. The developer considers that the combination of the two W+
contributions, one from Layer 2, the other from Layer 5, in fact satisfices
MgmtTime[lssueReminderWithin40Days, 5], which is labelled with "V". No
tice that results propagated from lower layers via inter-layer interdependency
links are combined with results from other softgoals at the higher layers, in the
normal way.

In the remainder of the SIG, there are several leaf NFR softgoals (e.g.,
MgmtTime[... ,5] and MgmtTime[LogReminder, 6]) which have not been refined
to operationalizing softgoals. The developer could choose to refine softgoals
more fully. Another alternative would be to assume that there are satisficed,
and label them with "V".

Now using the rule for AND contributions, since the offspring
MgmtTime[lssueReminderWithin40Days, 5] and MgmtTime[... , 5] are satisficed,
so is their parent at Layer 6, MgmtTime[RemindToContactWithin50Days, 6].

At this point, we have satisficed the second performance requirement,
good management time for issuing reminders to staff, by satisficing MgmtTime
[RemindToContactWithin50Days, 6] and MgmtTime[lssueReminderWithin40Days,
5]. This helps satisfice some softgoals at Layer 6.

Thus there is some positive contribution towards satisficing MgmtTime
[transitions(TaxAppeal), 6]. However, further refinement (not shown) would
be needed to definitely satisfice that top-level softgoal, and provide good time
performance for managing information about the long-term appeal processes in
the system, which was the first performance requirement listed in Section 12.3.

5This kind of label change from "W+" is done frequently, especially for HELPS links, and is
usually not shown in diagrams.



346 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In Section 12.8 we will look at the third requirement, that information
on appeals should be accessible quickly, and stored efficiently.

Relating Functional Requirements to the Target System

The right side of Figure 12.9 relates functional requirements (here, the tem
poral constraint for issuing a reminder) to a chosen implementation (here, the
particular list structure) at Layer 5. We have shown links from source to target
within one layer. They can also relate the overall design to the implementation
target. At Layer 6, we have not refined NFR softgoals to satisficing softgoals;
hence we do not link that layer to functional requirements.

The lower right of the figure relates operationalizing softgoals to the
selected implementation.

12.8 DEALING WITH A TRADEOFF

510

LAYER 2 (Attributes)

Timec?o[List.
2)

Time Time
[Front(List), [End(Lisl),
~ ~

Sillml
Space
[F,ont(List),
2)

Space
[End(List),
2J

Figure 12.10. Time and Space softgoals and their refinements.

In addition to the good time performance for handling the list of appeals,
Time[List. 2], the developer also requires good Space performance. This softgoal
is written Space[List. 2] at the top of Figure 12.10. As we will see, we will deal
with a time-space tradeoff.

To effectively maintain the list ofreminders, items in the list are arranged
in date order. Cases that need to be handled on the current date are placed at
the front, while cases that do not need to be handled until much into the future
are placed at the back of the list. In considering possible refinements to these
softgoals, the developer considers different types of access to the time-ordered
list.

Hence new appeals, which require future action, will generally be inserted
towards the back of the list, while retrievals (for seeing if a reminder should
be issued) will generally be from the front of the list, and deletions (when a
reminder has been issued or the taxpayer has been contacted) will often be
from the front of the list. This suggests that the front of the list may be
considered separately from the rest of the list. The Subset method, can effect



AN ADMINISTRATIVE SYSTEM 347

such a partitioning. It refines the time softgoal for the list into softgoals for the
front (where many accesses are made), Time[Front(List), 2], and the remainder
(end) of the list, Time[End(List), 2]. The space softgoal is refined in the same
way, using domain and development knowledge.

Identifying Priorities

SIG

LAYER 2 (Attributes)

Prioritization

Time
[Front(List).
2)

,Time
• [Front(List).

2)
(critical}

)(

Time
[End(List),
2J

Time
[End(List).
2)
(nonCritical}

Space
IFront(List),
2)

Space
IFront(List)•
2)
{nonDominant}

)(

Space
IEnd(Lisl).
2)

, Space
• [End(List).

~ominant)

Figure 12.11. Identifying priorities using workload-based arguments.

The developer now focusses on priorities (critical and dominant parts of the
workload) [C. Smith90]. The developer notes that fast access to the front of the
list is critical for fast checking of the temporal integrity constraint, because the
front is the location of the appeals which need reminders the soonest. On the
other hand, there are only a few entries at the front, so the developer argues
that the end of the list dominates storage.

These observations are stated as arguments (Claims, in Figure 12.11),
and are based on knowledge of the domain and its organization workload. In
some cases, we can use standard arguments; an example is the Vital Few ar
gumentation template, which argues for a form of the "80-20 rule" [Juran79]
[McCabe87] .

This prioritization results in two softgoals being identified as critical or
dominant (e.g., !Time[Front(List), 2]{critical}). The other two softgoals are iden
tified as non-priorites The result of identifying the other softgoals as (nonCritical
or non Dominant) is to remove them from consideration. This is done by denying
their contributions to their parents.



348 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Developing an Hybrid Method to Deal with Tradeoffs

SIG

Space
[End(List),
2J

, Space
" IEnd(List},

fJominanl}

storage for
time-ordered list

with flexible removal

CompressedFormat
./ [End(Lisl).

2J

Claim
+ +/ •...•. ,l·~~~inates

IE----P-~. ./ ,) slorage".
'•.•.. -' 2)

)(

Subset
Space
[Fronl(List),
2)

Priorilization

Time
IEnd(List),
2J

)(

Time Space
[End(List). [Front(List).

X f~onCriliCal} f~onDominanl} X------ ----

,f <::~~=~><=~~>

Time
[Fronl(Lisl),
2)

,Time
" IFront(List),

2J
(critical)

LAYER 2 (Attributes)

UncompressedFormat
[Fronl(List).
2)

Figure 12.12. Developing an hybrid method to deal with tradeoffs.

The developer now deals with a time-space tradeoff. One operationalization
method is to use Compressed Format for attributes. This saves storage space,
but accesses will require extra time, both for compression when storing, and
uncompression when retrieving.

The developer applies this observation to the priority softgoals. The de
veloper considers an hybrid implementation where the attributes at the front
of the list (corresponding to appeals for which a reminder should be issued im
minently) are uncompressed, while those at the back (corresponding to appeals
for which a reminder need not be issued until some future date) are compressed.
UncompressedFormat HELPS the critical Time softgoal, based on the method
definition of Section 8.4. Likewise, Compressed Format HELPS the dominant
Space softgoal. These HELPS contributions are shown in Figure 12.12. Se
lected operationalizations are labelled as satisficed ("J").

What about the non-priority softgoals? Correlations can relate softgoals
which have not been explicitly linked. Here, UncompressedFormat HURTS the



AN ADMINISTRATIVE SYSTEM 349

non-dominant Space softgoal. Likewise, Compressed Format HURTS the non
critical Time softgoal. These HURTS links are identified by comparison of
the SIG with the correlation rules in Figure 8.15. Here, the correlations have
negative impact, but, fortunately, only on the non-priority softgoals.

Thus the developer chooses to only compress attributes which are at the
end of the list, corresponding to reminders which need not be issued until some
future date. This results in fast access time to appeals at the front of the list,
which is critical for issuing reminders needed soon, It also provides efficient
space usage for the end of the list, which dominates storage. However, the
storage softgoal for the front is not met. This is not so bad, since it does not
dominate storage. Similarly, the non-critical time softgoal for access to the end
of the list is not met.

The chosen operationalizations are related to the target system at the
bottom of the figure. The target system is related to the functional require
ments at the top right of the figure.

Evaluation of Softgoals

A frequent situation for AND decompositions is when a satisficed priority soft
goal is combined with an unsatisficed non-priority one. The developer has the
flexibility to adjust the label values of non-priority softgoals so that the overall
softgoal is considered satisficed.

As usual, evaluation within this layer starts at the bottom (Figure 12.12).
Here the developer labels the two selected operationalizing softgoals as satis
ficed. These propagate a weak positive ("W+") contribution to the priority
parents, and, via the correlation links, a weak negative ("W-") contribution to
the non-priority parents.

However, the developer steps in to labeIITime[Front(List), 2]{critical} and
!Space[End(List), 2]{ dominant} as satisficed ("y"'), since the priority softgoals
have been satisficed.

Now these satisficed priority softgoals MAKE their respective parents,
Time[Front(List), 2] and Space[End(List), 2].

Now consider the non-priority softgoals Time[End(List), 2]{nonCritical}
and Space[Front(List), 2]{nonDominant}. First the developer changes their weak
negative ("W-") labels to denied ("x"). Since the interdependencies from the
non-priority softgoals to their parents are denied (shown as "x" along the
interdependency links), the parents Time[End(List), 2] and Space[Front(List), 2]
are removed from further consideration.

As a result, the top-level softgoals , Time[List, 2] and Space[List, 2], are
satisficed. This is because each has only one remaining offspring participating
in an AND interdependency, and the one offspring is satisficed.

This is an example of using prioritization templates of Figures 4.30
and 4.31 and Section 8.3. to give the developer flexibility to address the
stated needs of the domain. Note that the critical and dominant softgoals
are satisficed. Only the non-critical and non-dominant are not satisficed. This



350 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

is in accordance with principles for achieving good response time for users
[C. Smith90].

As a result, the top time and space softgoals are satisficed. Recall from
Section 12.7 that when doing the evaluation we assumed that Time[List, 2] had
been satisficed. As this in fact is the case, the evaluation of that section would
not be changed.

We have shown how the NFR Framework can handle time and space
softgoals, and a tradeoff. We have considered a time-space tradeoff.

12.9 DISCUSSION

This study has illustrated the use of a number of aspects of the Performance
Requirements Framework. This includes the basic representation scheme of the
NFR Framework (softgoals, contributions, methods, etc.), as well as knowledge
specific to performance and implementation of information systems. The ap
proach has been illustrated for long-term, consultative processes, and integrity
constraints. Layered structures were used to further organize the development
process, by addressing some data model features first, and reducing the remain
ing problem to address simpler features.

We have used domain-specific workload information and have dealt with
priorities and tradeoffs. Results in SIGs have been consistent with some prin
ciples for achieving good response time for users.

After the study was done, we interviewed an expert from the domain.
From the feedback, we found that actual priorities and tradeoffs in the domain
were different from our assumptions. We found that time was a priority for
the domain. However, space was not; instead, accuracy was important. Hence
the actual system had to deal with a time-accuracy tradeoff, rather than a
time-space tradeoff. Feedback is discussed in Chapter 15.

12.10 LITERATURE NOTES

This chapter is based on a study of an income tax appeal system, reported
elsewhere [Nixon94a, 97a] [Chung95a].

Another administrative system has been studied using the NFR Frame
work [Chung93a, 95a]. It addressed a proposed system to manage the flow of
documents used in the decision-making process of the Cabinet of a government.
Confidentiality is a critical concern in such systems. Both the Cabinet docu
ment and tax appeals processes are highly consultative and interactive. They
are subject to constraints, and can last for several months.



13 APPLICATION TO
SOFTWARE ARCHITECTURE

Non-functional requirements, such as modifiability, performance, reusability,
comprehensibility and security, are often crucial for software systems. They
should be addressed as early as possible in a software lifecycle, and properly
reflected in a software architecture before a commitment is made to a specific
implementation.

This chapter applies the NFR Framework to a particular phase in Soft
ware Engineering, namely software architectural design. We describe how to use
the NFR Framework to systematically guide a software architect in selecting
among architectural alternatives. This provides goal-driven, process-oriented
architectural design.

We illustrate our approach to addressing NFRs in the software architec
tural design process by using a standard example from the software architecture
field. We consider a variety of NFRs for a Keyword in Conte:rt (KWIC) system.
NFRs such as modifiability and comprehensibility are addressed using the NFR
Framework, but are not treated in the detail that has been done for accuracy,
security and performance in Part II.

In our view, the work of [Chung95c,d], which is presented in this chapter,
is one of the first that considers adaptation of the NFR Framework specifically
in the context of software architecture.



352 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

13.1 INTRODUCTION

Software architecture is becoming an increasingly important topic in software
engineering (e.g., [DagstuhIWorkshop95] [IWASSWorkshop95]). Some (e.g.,
[Boehm94] [Perry92] [Kazman94]) have argued convincingly for the importance
of addressing non-functional concerns in software architectures. However, as
pointed out by Garlan and Perry [Garlan94], architectural design has tradi
tionally been largely informal and ad hoc. The manifested symptoms include
difficulties in communication, analysis, and comparison of architectural designs
and principles.

A more disciplined approach to architectural design is needed to improve
our ability to understand the interacting high-level system constraints and the
rationale behind architectural choices, to reuse architectural knowledge to make
the system more changeable, and to analyze the design with respect to NFRs.

This chapter outlines an approach by which such knowledge can be or
ganized. This chapter discusses how the NFR Framework can be applied to
systematically guide selection among architectural design alternatives. The
NFR Framework has been applied to several NFRs (particularly accuracy, per
formance and security), has been used to study several information systems,
and is now applied to architecture.

After presenting functional and non-functional requirements for the
KWIC system, and discussing software architecture and approaches, this chap
ter shows the use of the NFR Framework to catalogue knowledge of software
architecture. Then we illustrate the use of the NFR Framework by a study of
architectural design for a KWIC system.

Functional Requirements and Target Alternatives for the
KWIC System

Here we are developing an architecture for a Keyword in Context system, which
was formulated by Parnas [Parnas72]:

The KWIC (Key Word in Context) index system accepts an ordered set of
lines, each line is an ordered set of words, and each word is an ordered set of
characters. Any line may be "circularly shifted" by repeatedly removing the
first word and appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical order.

The example is chosen since it is relatively well known and used in several
studies (by Parnas [Parnas72], Garlan et al. [Garlan92]' and Garlan and Shaw
[Garlan93]) which provide a good illustration of tradeoffs among NFRs and
design alternatives for the KWIC domain. However, it is used primarily as an
instructional example in this chapter, so that we can illustrate the use of the
NFR Framework for selecting among alternatives for architectural design.

We will consider four architectural design alternatives that Garlan and
Shaw [Garlan93] discuss (the first two were considered by Parnas [Parnas72],
and the third is a variant which was considered by Garlan et al. [Garlan92]):



APPLICATION TO SOFTWARE ARCHITECTURE 353

1. Shared Data: In this approach, a main program (Master Control) iter
ates in sequence through the four basic modules: input, shift, alphabetize, and
output. Data communication between the modules is carried out by means of
shared storage, which is accessed with an unconstrained sequential read-write
protocol.

2. Abstract Data Type: Instead of direct sharing of data, each module
accesses data only by invoking procedures in the interface that each module
provides.

3. Implicit Invocation: Like the Shared Data approach, modules share
data, but through an interface. Unlike the Shared Data approach, module
interaction is triggered by an event. For example, adding a new line to the
line storage triggers the Circular Shift module to do the shifting (in a separate
abstract shared data store), which in turn causes the Alphabetizer to alphabetize
the lines.

4. Pipes and Filters: Using a pipeline, each of the four filters processes
data and sends it to the next filter. With distributed control, each filter can
run only when it has data transmitted on pipes.

Addressing Non-Functional Requirements during
Architectural Design

We want to meet non-functional requirements for modifiability, performance,
etc., for the KWIC system. But if we optimize performance too early, we may
well hinder future modifiability. How do we keep track of NFRs and their in
teractions, while selecting among design alternatives to meet the requirements?

The NFR Framework offers explicit representation of non-functional re
quirements, systematic use of catalogued methods of architectural design knowl
edge, management of tradeoffs among architectural design alternatives through
catalogued correlations, and evaluation of softgoal achievement for a particular
choice of architectural design using the evaluation procedure.

The process of using the NFR Framework is intended not only as a
means for supporting the design of software architecture but also for providing
a graphical record for later review, justification, change and reuse. In this
regard, the NFR Framework has also been applied to dealing with change
[Chung95a, 96].

Software Architecture: Concepts and Approaches

We draw on concepts, such as elements, components, and connectors, that have
been identified as essential to portray architectural infrastructure, as advocated
by Perry and Wolf [Perry92], Garlan and Shaw [Garlan93], Abowd, Allen, and
Garlan [Abowd93]' Callahan [Callahan93], Mettala and Graham [Mettala92].
We also draw on earlier notions on information system architecture by Zach
man [Zachman87]. In our view, an emphasis on NFRs is complementary to
efforts directed towards identification and formalization of concepts for func
tional design.



354 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Concerning the role of NFRs, design rationale, and softgoal assessment,
the proposal by Perry and Wolf [Perry92] is of close relevance to our work. Perry
and Wolf propose the use of architectural style for constraining the architec
ture and coordinating cooperating software architects. They also propose that
rationale, together with elements and form, constitute the model of software ar
chitecture. In the NFR Framework, properties of the architectural form can be
jl!stified with respect to their positive and negative contributions to the stated
NFRs, and relationships of the architectural form can be abstracted into contri
butions and softgoal labels, which can be interactively and semi-automatically
determined.

Kazman et al. [Kazman94] propose a basis (called SAAM) for under
standing and evaluating software architectures and give an illustration using
modifiability. This proposal is similar to the NFR Framework, in spirit, as
both take a qualitative approach, instead of a metrics-based approach. In a
similar vein, but oriented towards software reuse, Ning et al. [Ning93] propose
an approach (called ABC), in which they suggest the use of NFRs to evalu
ate the architectural design, chosen from a reuse repository of domain-specific
software architectures, which closely meets very high-level requirements. Both
SAAM and ABC are product-oriented, i.e., they use NFRs to understand or
evaluate architectural products. We, however, take a process-oriented approach,
providing support for systematically dealing with NFRs during the process of
architectural design.

The NFR Framework [Chung93a] [Mylopoulos92a] aims to improve soft
ware quality [Chung94a,b] and has been studied [Chung95b] for a variety of
information system types with a variety of NFRs, including accuracy, security
and performance.

In our view, there are parallels to NFR-related work on information
systems, and the work of [Chung95c,d], presented in this chapter, is one of
the first that considers adaptation of the NFR Framework specifically in the
context of software architecture.

13.2 CATALOGUING SOFTWARE ARCHITECTURE CONCEPTS
USING THE NFR FRAMEWORK

An important step in using the NFR Framework is to obtain and organize
knowledge of a specific NFR, e.g., performance, from both academic research
and industrial experience, and then record and organize it in method catalogues.
In our studies of NFRs for information systems [Chung95a,b, 96], some of
which are described in Part III of this book, we found that the power of the
NFR Framework can be increased if the models and tools are used not only to
operate on the knowledge pertaining to the case at hand (e.g., redesigning a
particular process), but also to bring to bear experiences accumulated in generic
knowledge (e.g., methods for achieving fast turnaround, for assuring security,
etc.), or case-based knowledge (e.g., in redesigning other operations). Once a
more organized catalogue of architectural methods is developed, it could be
used in studies of using the NFR Framework to deal with architectural design.



APPLICATION TO SOFTWARE ARCHITECTURE 355

Along with feedback from industrial and academic experts, such studies would
enhance the coverage of the NFR Framework and evaluate its usefulness for
architectural design.

Treating NFRs as Softgoals

In our process-oriented approach, non-functional
requirements, such as "modifiable system" and "good system performance," are
explicitly represented as softgoals to be addressed and satisficed during the pro
cess of architectural design. Each softgoal (e.g., !Modifiability[System]{critical})
is associated with a type (e.g., Modifiability), a topic list (e.g., System), and an
optional priority (e.g., critical).

One fundamental premise of the NFR Framework is that NFR softgoals
can interact with each other, in conflict or in synergy. This property is used to
systematically guide selection among architectural design alternatives and to
rationalize the overall architectural design process.

NFR Types

NFR Type Catalogue I
NFRTypes

~~
Modifiability Performance

/r~ / ~
Extensibility Updatability Deletability Time Pertorrnance Space Pertormance

ugend I r/sA link

Figure 13.1. Catalogue of some NFR Types considered for software architecture.

Figure 13.1 provides a catalogue of some NFR Types which are considered for
software architecture. This figure is an extension of the NFR Types presented
in Figure 3.2.

NFRs such as modifiability and comprehensibility have not been treated
using the NFR Framework in the detail that has been done for accuracy, secu
rity and performance in Part II.



356 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Modifiability
[System)

Method Definition, Unparameterized

Modifiability
[Data Rep] Modifiability

[Process)

Modifiability
[Function]

Figure 13.2. A method for refining a modifiability softgoal for the system.

The type catalogue organizes our general knowledge about modifiability.
It shows sub-types of modifiability. From this information, we can generate
type decomposition methods, such as:

In order to satisfice modifiability, one needs to satisfice extensibility, updatabil
ity, and deletability.

Methods

Architectural design knowledge and experience about specific NFRs can be
organized into methods and made available to the software architect through
systematic search.

Method Definition, Unparameterized

Modifiability
[Input Process]

Modifiability
[Process)

Modifiability
[Output Process]

Modifiability
[Transformation Process)

Figure 13.3. A method for refining a modifiability softgoal for the process.

Figure 13.2 shows a topic decomposition method. Modifiability consid
erations for a system are decomposed into concerns for data representation,
processes and functions.



APPLICATION TO SOFTWARE ARCHITECTURE 357

Correlation Catalogue

Contri- to
bution of

offspring parent
Operation- NFR Softgoal

alizing Modifiability I Modifiability I Space I Time I Reusability
Softgoal [Process] [Data Rep] [System] [System] [System]

Shared BREAKS BREAKS MAKES HURTS
Data
[Target
System]

Abstract HURTS HELPS HURTS HELPS
Data
Type
[Target
System]

Implicit HELPS HURTS HURTS BREAKS ?
Invocation
[Target
System]

Pipe & HELPS BREAKS BREAKS HELPS
Filter WHEN
[Target condl
System]

condl: size of data in domain is huge

Figure 13.4. A generic Correlation Catalogue, based on [Garlan93].

Figure 13.3 shows a method which decomposes the topic on process,
including algorithms as used in [Garlan93]. Decomposition methods for pro
cesses are also described in [Nixon93, 94a, 97a], drawing on implementations of
processes [Chung84, 88].

These two method definitions are unparameterized. A fuller catalogue
would include parameterized definitions too.

Operationalization methods, which organize knowledge about satisficing
NFR softgoals, are embedded in architectural designs when selected. For exam
ple, an ImplicitFunctionlnvocationRegime (based on [Garlan93]' architecture 3)
can be used to hide implementation details in order to make an architectural



358 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

design more extensible, thus contributing to one of the softgoals in the above
decomposition.

Argumentation methods and templates are used to organize principles
and guidelines for making design rationale for or against design decisions
(Cf. [J. Lee91]).

Correlations

Knowledge and experience about tradeoffs among architectural design alterna
tives can be organized into correlation rules and made available to the software
architect through systematic search. Once stated and organized, correlation
rules can be browsed by the software architect in selecting among architectural
alternatives. Correlations can then be specialized to record domain-specific
softgoal conflict and synergy, omissions and redundancies.

Figure 13.4 shows a correlation catalogue based on the presentation by
Garlan and Shaw [Garlan93], which compared the extent to which alternative
target solutions (operationalizations) address design considerations. In our
adaptation of the notion of "satisficing," entries in Figure 13.4 reflect contri
butions by architectural design alternatives (operationalizing softgoals) for or
against NFR softgoals. An empty entry indicates a lack of significant contribu
tion. As it stands, the catalogue is applicable to a variety of KWIC systems.
This generic catalogue can be extended to incorporate more tradeoff knowledge
or tailored to the needs of the intended application domain. An entry with "7"
means an UNKNOWN contribution. To deal with this, the software architect
will have to consider the characteristics of the application domain.

13.3 IllUSTRATION OF THE ARCHITECTURAL DESIGN PROCESS

Let us now illustrate the architectural design process.

Initial NFR Softgoals

, Modrtiability
• (System]

o
, Pertormance
• [System]

o
Reusability

(System!o
Figure 13.5. Initial NFR Softgoals for a KWIC system.

We consider an assumed initial set of main NFR softgoals which indicate that
"the system should be modifiable, have good performance, and be reusable and



APPLICATION TO SOFTWARE ARCHITECTURE 359

comprehensible, with modifiability and performance being priorities." The soft
ware architect can represent these by I Modifiability[System]'
I Performance[System]' Reusability[System] and Comprehensi bility[System]. They
are shown in Figure 13.5.

To simplify presentation in this chapter, the kind of priority (e.g.,
"{critical}") is often omitted. In addition, priorities are often directly attached
to softgoals, without showing prioritization refinements such as:

!Modifiability[System] MAKES Modifiability[System]

The softgoal topics are fairly broad here, representing the overall system.
Softgoal refinements can make the softgoal topics more specific. Refinements
can also introduce performance layers (discussed in Chapters 8 and 9) as an
additional topic for softgoals. Let's see how the initial NFR softgoals can be
refined.

Refining Softgoals using Methods

SIG

Comprehensibility
(System)

, Modifiability
• IProcess)

Coherence
ISystem)

I Mod~iability
• (System]

, Performance
• (System)

IDeletability
• (Function)

'Space
•Performance

(System)

!~~~~~~\lity

Reusability
[System)

++

I Reusability
• [Systemj

Figure 13.6. Refining softgoals using methods.

After stating NFRs as NFR softgoals, the software architect attempts to re
fine them (Figure 13.6). This can involve decomposing softgoals or clarifying
(disambiguating) them.

Decomposition can, for example, involve refining a softgoal for a module
into softgoals for components of the module.

Refinement can also clarify (disambiguate) softgoals, since they can mean
many different things to different people and are too coarse to be put un
der analysis concerning their interactions. For example, security has different



360 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

shades of meaning in industrial and military contexts; and performance can be
decomposed into time and space considerations.

The software architect can refine a softgoal either on its type or on its
topic. The architect focuses on decomposing IModifiability[System] on its topic.

Softgoals can also be refined on their priority, based on the criticality
of the softgoal, or the dominance of the softgoal's topic in the workload. Fig
ure 13.6 shows the prioritization:

!Reusability[System]{critical} MAKES Reusability[System]

As discussed above, other prioritizations are shown in the figure without using
refinements. These include:

!TimePerformance[System]{critical}

!!Modifiability[DataRep]{veryCritical}

!SpacePerformance[System]{dominant}

MAKES

MAKES

MAKES

TimePerformance[System]

Modifiability[DataRep]

SpacePerformance[System]

After browsing methods in consultation with domain experts, the archi
tect might refine the softgoal into three other offspring softgoals: for modifia
bility of the process, modifiability of the data representation, and modifiabil
ity of the function. These softgoals are written IModifiability[Process]{critical},
II Modifiability[Data Rep]{ veryCritical}, and IModifiability[Function]{critical}
(Figure 13.6). This topic decomposition method draws on the work by Gar
Ian and Shaw [Garlan93]' who consider changes in processing algorithm and
changes in data representation, and by Garlan et al. [Garlan92], who further
consider enhancement of system function.

The software architect further refines IModifiability[Function]' this time
on its type, into IExtensibility[Function], IUpdatability[Function], and IDeletabil
ity[Function]. This type decomposition method draws on work by Kazman et
al. [Kazman94]' who consider extension of capabilities in terms of adding new
functionality, enhancing existing functionality, and deleting unwanted capabil
ities.

Similarly, the software architect refines IPerformance[System] on its type
into softgoals ISpacePerformance[System]{dominant} and ITimePerformance
[System]{critical}, using a SubType method which draws on work on perfor
mance requirements from Nixon [Nixon93, 94a, 97a] (See Chapters 8 and 9).
Further refinements can address the system's response time to users, using
Smith's principles for building performance into systems [C. Smith90].

Operationalizations, Prioritization and Design Rationale

In moving towards a target system, the software architect considers the four
operationalizing softgoals (architectural design alternatives) from [Garlan93]
that were described earlier. These are shown at the bottom of Figure 13.7,
which also shows tradeoffs among the operationalizations.

The software architect has a number of softgoal conflicts and synergies
to deal with.



APPLICATION TO SOFTWARE ARCHITECTURE 361

SIG

++

Reusability
[System)

IE--f-Z---'c-:.:t)
Claim

[c4J

'Modffiability , Perlormance
• (System) • (System]

'*"_.....I:-__~>.{)~

Claim
[c1J

Abstract Data Type
[Target System)

SharedData
[Target System)

Comprehensibility
[System)

Legend c1 : 'among the vital few goals'
c2 : '[Pamas 72)"
c3 : ·fewer assumptions among interacting modules·
c4 : 'expected size of data is huge (from domain expert)'
c5: 'many implementors familiar with ADTs (from domain expert)"

Figure 13.7. Tradeoffs among operationalizations.

To handle the situation, the architect prioritizes softgoals, as nonCritical,
Critical, veryCritical, nonDominant, Dominant and veryDominant. This decision
can be justified by way of design rationale. For example, treating modifiability,
performance, and reusability as priority softgoals can be supported, via the
Vital Few argumentation template, possibly with a user survey.

With the prioritization, the software architect can put emphasis on high
priority softgoals, and readily resolve softgoal conflict. For example, as !!Modifi
ability[Data Rep]{veryCritical} is considered very important, architectural design
alternatives which strongly hurt the softgoal might be eliminated from further
consideration, here Shared Data and Pipe & Filter.



362 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Design rationale can come from several sources, including the literature.
For example, an argument may simply be a citation, such as C1aim["[Parnas72)"]
which supports that the Shared Data scheme strongly hurts both Modifiabil
ity[Process] and Modifiability[Data Rep].

Resolving Tradeoffs using Domain Information

Architectural design alternatives make partial contributions for or against NFR
softgoals which can be synergistic or in conflict with one another. Correlations
can be used to generate new interdependencies between existing softgoals, as
well as to suggest the generation of new softgoals, hence making tradeoffs ex
plicit.

Correlation Catalogue

Contri- to
bution of

offspring parent
Operation- NFR Softgoal

alizing Modifiability Modifiability Space Time Reusability
Softgoal [Process] [Data Rep] [System] [System] [System]

Shared BREAKS BREAKS MAKES HURTS
Data
[Target
System]

Abstract HURTS HELPS HURTS HELPS
Data
Type
[Target
System]

Implicit HURTS HURTS BREAKS HELPS
Invocation
[Target
System]

Pipe & BREAKS BREAKS HELPS
Filter
[Target
System]

Figure 13.8. Domain-Specific Correlation Catalogue for KWIC Example.



APPLICATION TO SOFTWARE ARCHITECTURE 363

The software architect takes the generic correlation catalogue
(Figure 13.4) and specializes it into a domain-specific correlation catalogue
(Figure 13.8). During specialization of correlation rules (Figure 13.8), uncer
tainties in the generic correlation catalogue (e.g., UNKNOWN entries ("?"))
should be resolved. For example, the software architect could consult a domain
expert who knows about the characteristics of the intended application domain
to determine if the Pipe and Filter would significantly hinder the SpacePer
formance softgoal. Once obtained, domain characteristics can be used as an
argument in a SIG (e.g., C1aim["expected size of data is huge (from domain ex
pert)"], as shown in Figure 13.7). This also eliminates from Figure 13.8 the
condition condl, which was in Figure 13.4. In addition, contributions to Mod
ifiability[ProcessJ are changed here. Similarly, Implicit Invocation and Pipe &
Filter do not HELP Modifiability[Process] here, as shown in the domain-specific
correlation catalogue (Figure 13.8) and the SIG (Figure 13.7).

The software architect has specialized the correlation rules using domain
information. This led to both positive and negative contributions, which the
software architect examined. Some were rejected or tailored, and justifications
were provided. Such catalogues can help identify tradeoffs, which may be some
what difficult to see when the number of correlation contributions is high, as
is the case in of Figure 13.7.

The resulting correlations are applied to the SIG in Figure 13.7. Note
that correlation links are not shown with dashed lines in Figures 13.7 and 13.9.
However, their impacts are shown.

Selection Among Alternatives

A particular architectural design can make a positive or negative contribution
to an NFR softgoal, or make no contribution at all. For example, the use of
an abstract data type may help updatability, but at the cost of poorer time
performance (Figure 13.9). Hence, selecting an architectura.l design requires
careful examination of the degree of satisficing softgoals, particularly priorities.

Figure 13.9 shows the selection of one operationalization,
AbstractDataType[TargetSystem], the use of an abstract data type in the target
system. At the bottom of the figure, this selected operationalization is labelled
as satisficed, while the rejected ones are denied.

This kind of approach is made possible by earlier softgoal reduction as an
application of the "divide-and-conquer" paradigm. Refinement, for decomposi
tion and disambiguation, has facilitated systematic organization of and search
for NFR-related reusable knowledge, clearer understanding of tradeoffs, and
conflict resolution with design rationale which reflects the needs and character
istics of the intended application domain.

Evaluation

Figure 13.9 shows the impact of the decisions upon the main softgoals. The use
of abstract data types supports modifiability of data representation, which is



364 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

SIG

++

Reusability
[System)

IE--f-L-....;'.{..::
Claim

(c4)

, Pertormance
• (System)

"""__-'+'-- ~.: :j\_:t_:;,.
Ciai~

[c1)

Abstract Data Type
[Targel System)

SharedData
[Target Systemj

Legend c1 : 'among the vital few goals'
c2 : '(parnas 72)"
c3 : -fewer assumptions among interacting modules·
c4 : 'expected size of data is huge (from domain expen)'
cS : 'many implementors familiar with ADTs (from domain expen)"

Figure 13.9, Evaluating the impact of the chosen alternative on NFRs.

very critical, but hinders process modifiability, which is criticaL The decisions
give weak positive contributions to the dominant space performance softgoaL
However, further work will be needed to determine the impact on the critical
time performance softgoal, which currently receives conflicting contributions.
In addition, extensibility has been denied.

A slightly more fine-grained evaluation scheme is proposed in [Chung95a,
96].



APPLICATION TO SOFTWARE ARCHITECTURE 365

13.4 DISCUSSION

Software architecture is becoming an increasingly important topic in software
engineering. Software systems are increasingly distributed, open, and con
stantly changing. NFRs need to be addressed at the architectural level.

This chapter has presented an application of the NFR Framework, build
ing quality into a software system during the architectural design phase. This
helps to systematically guide selection among architectural design alternatives,
thus providing an alternative to an ad hoc approach. We see three aspects of
this.

First, our application of the NFR Framework is intended to improve the
software architect's ability to understand the high-level system constraints and
the rationale behind architectural choices, to reuse architectural knowledge
concerning NFRs, to make the system more changeable, and to analyze the
design with respect to NFR-related concerns. Our approach facilitates codifi
cation of knowledge about NFR-related architectural design and tradeoffs, and
systematic management and use of such knowledge.

Second, this application emphasizes collecting, organizaing and using
information, such as knowledge about the particular domains and systems,
their workloads and priorities, to meet the architectural quality needs of the
particular systems being developed.

Finally, throughout the process of architectural design, it is the the soft
ware architect who is in control.

In the context of architectural design, this application is only preliminary,
with its use illustrated only on an instructional example. Once a more codified
catalogue of architectural methods is developed, it could be used in studies of
using the framework to deal with architectural design.

A variety of architectural case studies are needed to gain experience and
expert feedback on benefits and weaknesses and to see whether this approach
can be effectively applied to a variety of real, large-scale industrial-strength
domain-specific software architectures, application frameworks, and reference
architectures.

We have only illustrated the application of the NFR Framework to se
lecting among architectural design alternatives at a very abstract level. An
important aspect of future work is to deal with more complex architectural
problems, and to show the scalability of the NFR Framework. This of course
requires codification of current and future knowledge about architectural alter
natives and design criteria. In addition, studies should be conducted using a
rigorous methodology allowing the usefulness of the framework to be confirmed
or denied.

The results, we trust, would be the provision of a more satisfactory
approach to building NFRs into software architecture.



366 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

13.5 LITERATURE NOTES

This chapter is based on a paper by Lawrence Chung, Brian Nixon and Eric
Yu, in the Proceedings of the First International Workshop on Architectures
for Software Systems [Chung95c], and a revision of that paper which appeared
in the CD-ROM Supplement to the Proceedings of CASCON'95 [Chung95d].

A recent paper dealing with software architecture [Chung99] draws on
the source papers of this chapter [Chung95c,d], the NFR Framework, and the
i* Framework ([Yu94b], see Chapter 14).

Architecture and quality has been considered for data
warehouses [Jarke98]. In addition to software quality, that paper considers
data quality.



14 ENTERPRISE MODELLING AND
BUSINESS PROCESS REDESIGN

14.1 INTRODUCTION

Applications of the NFR Framework are not limited to the development of
software systems. In this chapter, we apply the NFR Framework to enterprise
modelling and business process redesign.

This application makes use of several concepts from the NFR Framework.
It uses the concept of softgoal, and reasoning techniques that are based on
satisficing. The softgoal interdependency graph is used to capture and support
the design process and reasoning. In addition, methods and correlations are
catalogued and applied as a developer faces particular design decisions.

The approach is illustrated with an hypothetical example, taken from
the literature.

Effective processes are crucial to the success of any organization. There
has been ongoing effort to find better ways to improve work processes in or
ganizations, e.g., to achieve faster cycle times, better quality products, high
customer satisfaction, lower cost, and greater flexibility. The availability of
advanced information technologies has provided a major impetus to many or
ganizations to rethink their work processes. Instead of making incremental,
quantitative improvements and optimizations, it has become common to seek
dramatic improvements in performance by making major, structural changes,
often involving the use of information technology. This has come to be known
as business process reengineering [Hammer90, 93] [Davenport93].



368 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

To achieve these changes, Hammer advocates asking fundamental ques
tions about how work is currently done, possibly challenging long-held assump
tions, and understanding why things are done the way they are. A lack of care
during design can cause a great deal of upheaval in an organization, without
achieving the desired gains [Davenport94] [Hammer95].

One of the challenges is therefore to understand the implications of target
techniques (operationalizations). The use of appropriate kinds of models can
assist the formulation of suitable questions and answers. This can help to
systematically guide developers towards beneficial techniques.

The i* Framework

The i* Framework has been developed to support the modelling, analysis, and
redesign of organizations and business processes [Yu94d]. The name i*, pro
nounced "i-star," stands for distributed intentionality. In the i* Framework,
organizations are viewed as consisting of social actors who depend on each
other for softgoals to be satisficed, goals to be achieved, tasks to be performed,
and resources to be furnished. The i* Framework includes a Strategic Depen
dency Model for describing the network of relationships among actors, and a
Strategic Rationale Model for describing and supporting the reasoning that each
actor has about its relationships with other actors.

The i* Framework makes use of the NFR Framework's concepts, notably
softgoals, which are used both in the description of business processes, and in
assisting the redesign of processes.

Intentional elements consist of softgoals, goals, tasks and resources.

Enriching Process Descriptions with Strategic
Relationships and Dependencies

Many kinds of models have been proposed and used for describing (or "map
ping") business processes [Curtis92] [Mylopoulos98]. For example, it is com
mon to use systems analysis techniques such as structured analysis (e.g., SADT
[Ross77], DFD [DeMarco78]) and Entity-Relationship Models [Chen76], which
focus on the modelling of activities and entities. While these are important for
systems development, they offer little help in the search for target techniques to
address business problems. Most existing process models have been designed
for describing what an organization is like, but they cannot express why the
organization is the way it is. The motivations, intents and rationales behind
the activities and entities of the organization are missing from these models.

In particular, these models fail to capture the strategic relationships
among organizational stakeholders. The i* Framework focusses on the mod
elling of strategic relationships. It considers such relationships to be "strategic"
in the sense that each party is assumed to be concerned with opportunities and
vulnerabilities, and seeking to protect or further its interests. Of course, in re
ality there are different possible strategic relationships. For example, one may
seek to protect the interests of others, or not take advantage of others.



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 369

In modelling a process, a developer describes how organizational actors
depend on each other for softgoals to be satisficed, goals to be achieved, tasks
to be performed, and resources to be furnished. By using intentional concepts
such as softgoals, abilities, beliefs, and commitments, the modelling framework
allows a much more realistic characterization of a work process that is inhabited
by real-life actors (as opposed to abstract, depersonalized activities).

However, in introducing the concept of relationships among actors, an
important question arises as to the notions of "goal" that are needed to capture
realistic kinds of relationships. For one notion of goal, the criteria for success
and failure is sharply-defined a priori. This notion of goal is widely used in
artificial intelligence in automated reasoning (e.g., [Nilsson71]). However, an
other frequently encountered kind of relationship is the softgoal of the NFR
Framework, which has a qualitative aspect, and can be elaborated upon and
clarified as it is refined. The i* Framework incorporates both notions of goal
and softgoal.

Supporting Process Design Reasoning by Adapting the
NFR Framework

While the significance of models for describing processes is widely recognized,
the task of coming up with possible techniques during redesign is seldom sup
ported by models. The use of appropriate models, however, can be very helpful
in the systematic exploration of the space of possible techniques, and in rea
soning about their relative merits and pitfalls. In particular, a goal-oriented
approach provides an excellent way of focussing the search for good designs.
Requirements such as faster cycle time, higher customer satisfaction, greater
flexibility, and higher employee morale, are often best treated as softgoals. In
this way, tradeoffs are considered as possible techniques are explored. The
NFR Framework therefore offers a good foundation for supporting process de
sign reasoning.

Several adaptations of the NFR Framework are needed. In a process
design context, multiple actors are involved in the eventual execution of the
process. In addition, these actors, and possibly others, are also stakeholders
during the design process. The design reasoning, therefore, has to reflect the
goals and interests of these stakeholders.

Most process designs now occur within a context of existing processes.
That is, a developer is more likely to be doing a redesign rather than designing
from scratch. A developer needs to understand the existing process, discover
what its problems are, then redesign it while at the same time exploiting new
opportunities. Thus a developer might not start with top-level softgoals and
proceed primarily in a top-down fashion. A developer is more likely to start
with an existing process and organization. Developers may uncover increasingly
fundamental goals as they pursue answers to ever deeper "why" questions.
However, at any level of questioning, they may also begin to seek alternative
means to achieving goals by considering how else those goals can be achieved.



370 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Thus the redesign process may proceed in a up-and-down sequence along a
means-ends hierarchy.

Processes must include actual operations, and not just descriptions of
how well those operations are carried out. Thus the i* Framework draws on
the NFR Framework's treatment of both functional and non-functional require
ments. Non-functional and functional aspects of process description and design
reasoning are used in the i* Framework.

Example: Handling Insurance Claims

We illustrate the approach using an insurance claims example. In the area of
claims processing, insurance companies may no longer be content with infor
mation systems that simply automate well-established process steps. Instead,
information systems may be viewed as part of a thoroughly redesigned claims
handling process. Questions that might drive the redesign effort might include:

• Why does it take so long to have a claim settled after an automobile acci-
dent?

• Why does the company hire appraisers to assess damages?
• How else can claims be settled?
• What other concerns would arise if new ways of handling claims are adopted?

Now we consider the nature of strategic information about organizations,
using the insurance claims example. Consider an insurance company which
wants to minimize payments to claimants, and for this reason hires appraisers
to keep repairs, and therefore payments, to the necessary minimum. At the
same time, the insurance company wants to keep customers happy so that
they will continue to renew their policies. Car owners want repair damages
to be assessed fairly, and may ask body shops to give repair estimates that
maximize the insurance payment. It can be seen that the various parties have
different strategic interests. These interests help determine what information
is collected and used by the claims representative (e.g., accident particulars,
witness statements) and the appraiser (e.g., photographs of damage, multiple
repair estimates).

14.2 THE STRATEGIC DEPENDENCY MODEL

A Strategic Dependency Model is a graph. Nodes in the graph can represent
actors. Each link between two actors indicates that one actor depends on the
other for something in order that the former may attain some softgoal, goal,
resource or task. We call the depending actor the depender, and the actor
who is depended upon the dependee. The object around which the dependency
relationship centres is called the dependum. These are shown in the legend of
Figure 14.1. Each dependency link is shown as "-D-." The dependum can be
a softgoal, goal, task or resource.

In Figure 14.1, the depender and dependee are actors. More generally in
the Strategic Dependency Model, dependencies relate actors, softgoals, goals,



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 371

Strategic Dependency Model

Appraise <:>
Da~!~~y

i.~ ..;
/Minimal <:>

<> ;ov
(}

Secure

o~Q

Cover Repairs

0----0---_
Happy D
[Customer)

0-0---0
Claims
Payout

t----0-O--0

o

\ "
Fai:O--
[Repair Appraisal)

Payment
forRepairs

0-D-0

Repair Car

<>~
Maximize 0
[Repair Estimate)

0-0-0

o Repeat Q

~

... --0- ... -0-- ...

- 0-0-0- Sallgoal Dependenc)'

-0-0--0- Gaal Dependenc)'

Legend

o AClar

depender dependum

•• 'et.
-0 -;.,.. .. ,.--0-· Task Dependency

- 0 -0-- 0 -- Resource Dependenc)'

dependee

Figure 14.1. Strategic Dependency Model for existing auto insurance claims handling.

tasks and resources. That is, the depender can be any of an actor, softgoal,
goal, task or resource, and so can the dependee.

When depending on another actor for a dependum, an actor is able to
achieve softgoals, goals, tasks or resources that it is otherwise unable to achieve,
or is able to achieve them not as easily or not as well. At the same time, the
depender becomes vulnerable. If the dependee fails to deliver the dependum,
the depender would be adversely affected in its ability to achieve its intentional
elements (i.e., softgoals, goals, tasks or resources).

For example, car owners can have their cars repaired by body shops, even
if car owners do not have the ability to do the repairs themselves. However,
they are vulnerable to the cars not being properly repaired.

The model provides four kinds of dependencies, shown in the legend of
Figure 14.1. They are: softgoal dependency, goal dependency, task dependency,
and resource dependency. They are distinguished by the kind of dependum
that is allowed in the relationship between depender and dependee.



372 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Figure 14.1 shows a Strategic Dependency Model for an existing auto
mobile insurance business claims handling configuration. The actors, such as
the car owner and insurance company, are shown as circles, and are related
by various kinds of strategic dependencies Each "-D-" in the figure shows the
direction of the dependency, from depender to dependee.

The insurance company wants to offer good service to the customer in
order to keep the business (Happy[Customer]). This is a softgoal dependency.
As usual, the softgoal has an NFR type, and a topic.

To maintain profitability, the company depends on appraisers to ap
praise damages so that only the minimal necessary repairs are approved, Mini
mal[Repairs]. This is a softgoal dependency, since profitability is a softgoal. In
addition, the company depends on appraisers to appraise damages. This is a
task dependency, since appraisal is a task.

The car owner depends on the insurance company to reimburse for the
repairs from an accident (CiaimsPayout). This is a resource dependency. For
this, car owner pays insurance premium in order to have coverage (CoverRe
pairs). This is a goal dependency.

The car owner depends on the claims appraiser for a fair appraisal. How
ever, the appraiser might be viewed as acting in the interests of the insurance
company because the appraiser depends on the insurer for continued employ
ment. The car owner, in turn, might depend on the body shop to give an es
timate that maximizes the car owner's interests, since the body shop depends
on the car owner for repeat business. An analysis of strategic dependencies
at a more detailed level would reveal the role of information and information
systems in these relationships [Yu93b].

Existing information systems that support the claims process have this
kind of understanding embedded, but likely only as implicit assumptions. These
assumptions are seldom made explicit during information system development
because existing modelling techniques generally do not encourage or support
the modelling of relationships that involve intentional concepts. Without this
deeper understanding, it is difficult to change information systems to meet
changing needs, as evidenced by the problem of "legacy systems."

Change is rapid in business environments, and recent management con
cepts, such as business reengineering, are being used. As a result, existing
relationships, business patterns and assumptions are re-examined and are of
ten reconfigured, sometimes dramatically.

Hammer and Champy [Hammer93, pp. 136-143] describe an hypotheti
cal scene in which a process redesign team explores new techniques to improve
claims handling of an automobile insurance business. Since a small claim may
cost almost as much to process as a large claim, one way to reduce adminis
trative costs is to reduce insurance company involvement in dealing with small
claims. "Let the insurance agent handle small claims," it was suggested. The
insurance agent will make all the inquiries and payments, while the insurance
company will concentrate on large claims that have more significant impact on
profitability. Agents get to cement their relationships with customers, while



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 373

StraJegic Dependency Model

Repair Car

~
C> Maximize 0

[Repair Estimate]

0-0-0
Payment
fo,Repairs

D-D---0

Cover Repairs

O---O-----D
Happy
[Customer)

"-_---0-0--0

Figure 14.2. Strategic Dependency Model for letting the insurance agent handle claims.

customers are more likely to get fair hearings from their agents about a fair
payment amount, it was argued. This would help keep the customer happy.

Figure 14.2 shows a Strategic Dependency Model for this new business
process configuration. Needless to say, shifting the claims handling responsibil
ities to the insurance agent means that the information needs of the insurance
agent are also significantly altered. Based on the new model of strategic de
pendencies, a developer could consider what information needs to be shared
or sent among insurance agents and the insurance company, and how accurate
and up-to-date they need to be.

A willingness to dispense with existing approaches to running an insur
ance business may lead to proposals which are dramatically different. "Let the
body shop handle the claims," someone else suggested. Currently, body shops
are not likely to be on the side of the insurance company. For example, an
insurance company might not want to pay according to a body shop's repair
estimates, since the body shop may charge too much, and be on the customer's
side. This is illustrated by the strategic dependencies in Figures 14.1 and 14.2.

However, for small claims, it may not be a bad idea to bypass the paper
work and help customers get their cars fixed as quickly as possible. This meets
customers' desire to have their cars fixed promptly, while significantly reducing
administrative costs for the insurance company. However, t.his approach raises



374 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Strategic Dependency Model

Cover Repairs

o
Happy
[Customer)

0-------10..-------o
NotFraudulent
[Claimant)

\-----o----~O}-------O----1
Handle
Small Claim <:>

<:>~
~Q

Q ~N01FraUdUlentC>
[BodyShop)

o

?B~~~:~~dl~Q
D~

o

~D

Figure 14.3. Strategic Dependency Model for letting the body shop handle claims.

concerns about possible fraud, which need to be addressed. Figure 14.3 shows
the Strategic Dependency Model for this alternative.

The Strategic Dependency Model encourages a developer to obtain a
deeper understanding of an organization and its business processes, beyond the
usual understanding based on activities and entity flows. It helps a developer to
identify what is at stake, for whom, and what impacts are likely if a dependency
is not met. This is done by focussing on intentional dependencies among actors.

The Strategic Dependency Model can provide hints about why a process
is structured in a certain way. However, it does not sufficiently support the
process of suggesting, exploring, and evaluating alternative target techniques.
That is the role of the Strategic Rationale Model.

14.3 THE STRATEGIC RATIONALE MODEL

A Strategic Rationale Model is a graph that describes the reasoning behind
relationships. This includes relationships between actors, between tasks, and
between actors and tasks. Thus it reveals the internal linkages that connect
external strategic dependencies.



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 375

Strategic Rationale Model

ReducedRisk
(OfLitigation]

+

Fast
(Claims
Processing)

Legend

+

Profitable
[Business]

+

Handle
(Small Claim,
By Agent)

Settle
Claim

LowCosts
(Admin)

Happy
(Customer)

Handle
(Small Claim,
By Body Shop)

o
o

.• #_""
Soltgoul '. .... ; Tusk

Goal D Resource

Inrerdependency link

Means-ends link

Tu.'k-DecompoJition link

+ Positive contribution

- Negative contribution

Figure 14.4. Strategic Rationale Model relating softgoals and tasks for insurance claims
handling.

A Strategic Rationale Model contains nodes and links, which are shown
in the Legend of Figure 14.4. There are four kinds of intentional elements
(nodes): softgoals, goals, tasks and resources. There are three kinds of links:
interdependency links from the NFR Framework, as well as means-ends links
and task decomposition links.

A process is often depicted as a collection of activities with entity flows
among them.! For example, a claims handling process would include such activ
ities as verifying the insurance policy coverage, collecting accident information,
determining who is at fault, appraising damages, and making an offer to settle.

Figure 14.4 shows the top softgoals and their refinements. This is quite
similar to a Softgoal Interdependency Craph (SIC) of the NFR Framework, in
which softgoals which are linked by interdependencies. Interdependency links
capture refinements in the downward direction, and contributions upwards.

1 For a survey of process modelling, see [Curtis92].



376 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Softgoals are refined into other softgoals. Contributions between soft
goals are shown as "+" and "-." Softgoals in the i* Framework are drawn as
NFR softgoals in the NFR Framework, since they work in basically the same
way. Contributions in the i* Framework are positive or negative; the NFR
Framework has a larger number of contribution types.

In moving towards a target system, tasks (dotted-line dark clouds) in
the i* Framework appear where one has operationalizing softgoals (solid-line
dark clouds) in the NFR Framework. Softgoals are refined into tasks in the
i* Framework, in the same way that softgoals are refined into operationalizing
softgoals in the NFR Framework. Thus tasks contribute to softgoals in the
i* Framework, just as operationalizing softgoals contribute to NFR softgoals
in the NFR Framework. As a reminder of this relationship, operationalizing
softgoals of the NFR Framework and tasks of the i* Framework are drawn
similarly.

Figure 14.4 shows three target techniques (tasks) for operationalizing
(realizing) the handling of claims. These are:

• handling claims centrally: This is the existing technique.

• handling small claims by the insurance agent: This is one proposed tech
nique.

• handling small claims by the body shop: This is the other proposed technique.

Each technique makes an impact on the softgoals, such as Happy
[Customer], Fast[C1aimsProcessing], and Profitable[Business]. For example, cen
tral claims handling can be slow, yet reduce the risk of loss, due to more
standardized and thorough review of claims. Handling small claims by the in
surance agent or body shop can be faster, and can help satisfy customer. Of
course, handling claims by the body shop runs the risk of loss due to fraud.
These positive and negative contributions to softgoals are shown in Figure 14.4.
Softgoals are evaluated to be satisficed or denied, as described in Part II.

A softgoal does not necessarily have a priori, clear-cut criteria for satis
faction. Although some of these can be measured and quantified, a qualitative
approach can be used at the stage of exploring the space of alternatives.

Softgoal refinements in this chapter often simultaneously change both
the type and topic of the softgoal. This is permitted in the NFR Framework,
but is not frequently used in the examples of this book.

As with the NFR Framework, the target system is shown at the bottom,
and related to the goal (comparable to functional requirements in the NFR
Framework) at the top right.

Figure 14.5 shows the Strategic Rationale Model for handling claims cen
trally. This model of the current configuration shows a decomposition of a task
into offspring tasks. This is comparable to the decomposition of operationaliz
ing softgoals into other operationalizing softgoals in the NFR Framework. In
turn, an offspring task is decomposed into goals, which are decomposed into
goals. All this is done within the actor boundary for claims handling.



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 377

Strategic Rationale Model

Legend

,-.,-,: Handle

/~tral~)

Verify ••• , ~ 1 .,.~ Make
[Policy] ' ...... " ' ...... ,. [Offer To Senle)

_,. Prepare

2
;'?~~~~iment

Determine
Whose Determine
Fault What Cost

To Senle

Determine , •• -':,
[Fautt] ""1" {"~ Determine.t. ..... ,. [CoSl To Senle)

Get ,-' -':
[Accident ' ...... ,.

___~f~ _

Accident
Details

,,,,- .......,
,/ \ Actor boundary

\'0'/'
-- ••••- ' Actor

Minimal
[Repairs)

Figure 14.5. Strategic Rationale Model for handling claims centrally.

A variety of dependencies are then stated which relate claims handling
to other actors, such as a witness and an appraiser. Note that the dependencies
in Figure 14.5 (See Legend of Figure 14.1) relate tasks as well as actors. In
addition, dependencies in the Strategic Rationale Model also relate softgoals
and resources.

In the Strategic Rationale Model, the graph contains softgoals with in
terdependencies, as well as means-ends relationships and task decompositions
(Figures 14.4 through 14.8). When a process element is expressed as a goal, this
means that there might be different possible ways of accomplishing it. A task
specifies one particular way of doing things (of accomplishing a goal), in terms
of a decomposition into subtasks, softgoals, subgoals and resources. In seeking
ways to redesign a business process, goals offer places to look for improvement.
An ambitious redesign effort needs to discover and rethink high-level goals - by



378 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Strategic Rationale Model

Handle
{"'~[Small Claim.
• ...... by Agent]

----------------

Handle a
Small Claim

--/".. .....,
/'" ,-,,-":, Handle "/ Jt....~Small Claim] \

" ,. ~ ''\tel,e,: \
f ,-'. \ .,. .1'* \\ 't......... ,-,,-':,. I
\ Verify t... •• r Make I
\. [Offer To I
\ [Policy] Prepare Sellle] J

, [Settlemen\ /
'.......... Offer] ,./--- ---

--------------------

Figure 14.6. Strategic Rationale Model for handling small claims by the insurance agent.

asking "why" questions - rather than being content with solutions to low-level
goals. Higher goals are discovered by asking "why" questions. Once sufficiently
high-level goals have been identified, alternatives may be sought by asking "how
else" the goals can be accomplished.

In the auto insurance example [Hammer93], the reengineering team
wanted to consider possible techniques, by identifying a high-level goal: to
settle claims. Not being restricted to current business practices for accomplish
ing this goal, the team proposed new techniques that involve new strategic
business relationships with insurance agents and body shops.

Figure 14.6 shows the Strategic Rationale Model for one new technique,
handling small claims by the insurance agent.

A dependency relates claims handling and the insurance agent. Note
their respective claims boundaries in the figure.

A task for the agent is then decomposed into several tasks. Note that
task decompositions always occur within the boundary of an actor.

On the other hand, strategic dependency links are always between differ
ent actors, and cross their actor boundaries.

Figure 14.7 shows the Strategic Rationale Model for another new tech
nique, handling small claims by the body shop.



ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 379

Strategic Rationale Model

Handle
....... [Small Claim, By Body Shop)

NotFraudulent$1..~. NotFraudulent
[Customer) [BodyShop)

+ +

,., -tr. -'-\0
~~~; ~~~;

Track Mon~or
[Customer Claim [Price&Qual~ ------

-----------~~~:~~-----------~:~~~-----------------
Handle a
Small Claim

Figure 14.7. Strategic Rationale Model for handling small claims by the body shop.

Observe that tasks can be refined into softgoals within the i* Framework.
In the NFR Framework, however, operationalizing softgoals cannot be refined
into NFR softgoals. It is interesting to observe that both the i* Framework
and the Performance Requirements Framework (Chapters 8 and 9) allow mul
tiple layers of refining NFR softgoals into operationalizations, which can then
in effect be refined into NFR softgoals at lower layers. This is done in differ
ent ways. The i* Framework allows tasks (which are akin to operationalizing
softgoals) to be refined directly into softgoals. The Performance Requirements
Framework uses a layering mechanism: a particular NFR softgoal can be re
fined into operationalizations at the same (or lower) layers; at the same time,
the particular NFR softgoal can also be refined into other NFR softgoals at
lower layers. This keeps within the restriction of the NFR Framework which
disallows operationalizing softgoals to be refined into NFR softgoals.

Figure 14.8 shows the overall Strategic Rationale Model. It displays the
existing approach and proposed alternatives for handling claims. It combines
earlier Figures 14.4 through 14.7. The top part of the model should be quite
understandable to those familiar with the NFR Framework.

The bottom half of the figure analyzes the strategic rationales for dif
ferent approaches to handling claims. From left to right, it shows the existing
technique, then the proposed techniques for handling small claims by the insur-

380 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Strategic Rationale Model

Profitable
(Business) Settle

Claim

" .. .--,,.-
Monitor
[Price&Quality
Statistics)

Tracit
(Customer Claim
Frequency)

+

Insurance
.....__ ---_ ~gent

/' r' ':. Handle ,
/ 1t'~small Claim] \

I ,.~.1 't'v·-: \
(....... ,.: r' ~ --.. ~
\ Verity Make I
\ [Policy) Prepare ~t~~JTj

'..... (Settlement /....._--?!f~~ __-_/

ReducedRisk
(OfLnigalion]

/~~~
Verify!- ~ Make
(Polql·....... \OfferToSeffle!

Prepare
,. • ISettlemenl

Whose~~ WhafCosf

De,:::e ;r: 1 To S~lle
(Faull) -flII\" ! ;. Determine1 --'l." (Cost To Settle)

Get !- ~
(Accident --",,'
In~] _

Figure 14.8. Overall Strategic Rationale Model for Claims Handling.

ance agent, and by the body shop. This analysis has an impact on the Softgoal
Interdependency Graph at the top of the figure.

The boundaries of the different actors are shown in the figure. Inter
estingly, different techniques have analysis clustered on different sides of actor
boundaries. For example, for claims are handled by the body shop, the analysis

ENTERPRISE MODELLING AND BUSINESS PROCESS REDESIGN 381

shows what the insurer will do to track possible fraud cases. On the other hand,
for claims handled by the insurance agent, who is presumably trustworthy, the
analysis shows what the agent do.

By explicitly representing means-ends relationships, the Strategic Ra
tionale Model provides a systematic way for exploring the space of possible
new process designs. Just as the NFR Framework offers catalogues to organize
knowledge of methods and correlations, in the i* Framework, generic knowledge
in the form of methods and rules can be used to suggest new techniques and
to identify related goals [Yu94d].

14.4 DISCUSSION

The concepts and techniques developed in the NFR Framework have applica
tions not limited to the design of software systems. This chapter has illustrated
an application of the NFR Framework to the area of enterprise modelling and
business process redesign. This uses concepts of the NFR Framework, including
softgoals, interdependencies, contributions and catalogues of knowledge.

As information systems are increasingly called upon to help alter the
strategic relationships among business work units and external players (such
as customers, suppliers, and business partners), models that are capable of
describing strategic relationships and to help reason about them are needed.
We have proposed one approach which emphasizes that organizations are made
up of strategic, intentional actors. The Strategic Dependency Model allows
the modelling of how strategic actors relate to each other intentionally. In
comparison, the Strategic Rationale Model allows modelling of the means-ends
reasoning done by actors concerning different ways of relating to each other
for accomplishing work. Moreover, the adoption of a conceptual modelling
approach facilitates the connection between organizational requirements and
information systems development, using a consistent knowledge-based approach
to software engineering (e.g. [Jarke92a,93b]).

Another application of the i* Framework is in the domain of software
processes. Software process improvement is very important to ensure quality
software. The i* Framework is applicable to software processes as well as
business processes [Yu94a].

A distinctive feature of the i* Framework is that it incorporates concepts
and techniques from the NFR Framework in several ways. These include soft
goals, which are refined, and make contributions along interdependency links.
Refinements are often drawn from catalogues of knowledge. In addition, the
source and target system descriptions are interrelated.

The i* Framework uses softgoals of the NFR Framework to complement
the more conventional notion of goal, as in artificial intelligence, to enrich
modelling and reasoning about relationships.

382 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

14.5 LITERATURE NOTES

This chapter is based on [Yu94c], and [Mylopoulos97] which was written by
John Mylopoulos, Alex Borgida and Eric Yu.

The i* Framework is presented in detail elsewhere [Yu93a,b]
[Yu94a,b,c,d]. The models are formally represented in the conceptual mod
elling language Telos [Mylopoulos91] and their semantics are based on inten
tional concepts such as goal, belief, ability, and commitment (e.g., [Cohen90]).

Goal-oriented reasoning is in a number of requirements engineering frame
works [Feather93] [Fickas85, 91,92] [Dubois94] [Dardenne91, 93].

Earlier presentations of the NFR Framework used the term "goal" for
what is now termed "softgoal." The i* Framework used the term "softgoal" for
that concept from the NFR Framework, and the name is now used in the NFR
Framework.

15 ASSESSMENT OF STUDIES

The NFR Framework has been applied to a number of case studies. We now
present some feedback on the NFR Framework and some studies.

Feedback is presented from the viewpoint of domain experts familiar
with the kinds of systems and organizations studied. This evaluation was ob
tained from interviewees who were not involved in the development of the NFR
Framework. They reviewed some of the studies of using the Framework to
deal with accuracy, performance and security requirements. To conclude the
chapter, we discuss methodological considerations for studies.

Through this feeback, we have gained further insights, which have helped
to improve the Framework. For example, feedback indicated the need to im
prove notation and terminology, and such changes have been reflected in the
preparation of this book.

15.1 FEEDBACK FROM DOMAIN EXPERTS

The feedback addresses a number of studies. These include those studied in
this book, which were summarized in Figure 10.1: credit card systems (Chap
ter 11) [Nixon93, 97a] [Chung93a,b, 95b] and income tax appeals (Chapter 12)
[Nixon94a, 97a] [Chung95b]. The feedback also addresses some systems stud
ied elsewhere, summarized in Figure 10.2: Cabinet documents management
[Chung93a, 95b] and health insurance systems [Chung93a, 95b].

384 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

How Interviews were Conducted

To obtain feedback, both positive and negative, interviews were conducted in
person or by telephone. Before the interviews, some written materials were cir
culated to the interviewees. The materials included an earlier draft of a paper
summarizing a number of studies of using the NFR Framework [Chung95b],
along associated questionnaires on NFRs developed for [Chung95b]. More de
tailed versions of the studies (including [Nixon93, 94a] [Chung93a,b]) were also
circulated to appropriate interviewees. l

For the income tax appeals system we interviewed Mr. Bill Polimenakos,
who is Project Leader of the InfoAccess Group in the Information Management
Systems Branch of Revenue Canada. For the Cabinet documents system we
interviewed Mr. Lou Melli, who is an independent systems consultant, not a
part of the government organization studied, who takes a consultative and
interactive approach to dealing with systems and their requirements. For the
health insurance study we interviewed Mr. Dominic Covvey, who is a medical
computing consultant and was a consultant to a commission of inquiry on the
confidentiality of medical records [Ontario80]. In addition, for the Credit Card
system studies (Chapter 11), which were based on a composite of information
from different credit card associations, we had an initial discussion (without
going through our questionnaire in detail) with Mr. Brian Brett, Manager of
Card Services Systems, Retail Banking for the Royal Bank of Canada.

The interviews generally followed parts of the questionnaires. Due to
limited interview time, however, not all questions were asked. Due to time con
straints on our part, there was not always sufficient time for these interviewees
to fully review our material in advance.

We present a composite of the responses. This is based on all interviews
conducted.

We classify the issues that were raised. There were major comments,
as well as responses on the NFR Framework, the application domains, and on
methodology.

Major Comments

First, we present the major comments, both positive and negative.
The interviewees said that the NFR Framework and its components

would be helpful for developers, and can be helpful in the broad domains stud
ied. The cataloguing of development techniques and NFR-specific knowledge
would be helpful, and in some cases is comparable to, or more advanced than
current practice in the domains considered. For medical systems, such cata
logues are not available to guide people. The softgoal interdependency graphs
and their components were considered helpful. However, all but one of the

1 Descriptions (including diagrams and notations) of the studies given to interviewees were
subsequently revised when presented in this book. Two of the interviewees have been asso
ciated with the University of Toronto.

ASSESSMENT OF STUDIES 385

interviewees did not initially understand the details of the softgoal interdepen
dency graphs. In all cases, this was remedied by an explanation of the NFR
Framework during the interview. Once understood, softgoal interdependency
graphs were appreciated by all. In preparing this book, we have endeavoured
to make softgoal interdependency graphs more understandable, and easier to
read, by improving naming and presentation.

In conducting the studies, we initially aimed to use t.he NFR Framework
to deal with real quality-related problems of large real systems. Concerning
applicability of the studies to the specific domains studied, the interviewees felt
that our studies were generally based on their domains, and illustrated our
approach. However, for both government administrative systems (tax appeals
and Cabinet documents), our softgoal prioritization, tradeoffs and resulting
SIGs were different than what they would have produced. Given our assump
tions, however, our results were understandable to them. We thus realized that
our lack of consultation with domain people during the study left gaps in our
domain knowledge. The medical interviewee could not evaluate our coverage
since its level of presentation was too shallow compared to the level of detail in
the particular system studied (which was old, ill-structured and difficult even
for experts to understand).

There was a warm appreciation of the potential ofthe NFR Framework's
applicability to the broader domains studied. One interviewee felt that our tech
niques could be used in the medical field, such as in developing procurement
criteria when enhancing products, both existing ones and those under develop
ment.

The issue of the scalability of the NFR Framework was raised. The
softgoal interdependency graphs were considered nice, but would the approach
work in a large system (e.g., credit cards)? This needs to be tested in practice.
At some level, large softgoal interdependency graphs may become cumbersome.

An open question concerning training costs and payoff was raised by sev
eral interviewees. Will the time and costs needed for training staff in the NFR
Framework and for developing softgoal interdependency graphs be surpassed
by payoffs during development?

Framework Responses

A number of responses addressed the NFR Framework.
There was an appreciation of the NFR Framework's emphases. One

interviewee considered its focus on evaluation important, while another felt the
evaluation approach needed explanation. The NFR type catalogue captured
the kinds of concepts needed, but more detail can be added to it. It was felt
that there is a need to clarify and meet requirements, and the Framework's
ability to refine and focus on priority softgoals was understood. In one study,
design rationale was found a little hard to understand.

The ability to be more formal when using the NFR Framework was con
sidered positive. However, the Framework would have to be usable to domain
and systems staff who currently work much more informally.

386 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

One interviewee questioned the NFR Framework's premise that the qual
ity of a product depends on the quality of the process that produces it. For
example, there can be quality processes which do not lead to quality products.

It was felt that it is good to deal with tradeoffs (correlations) early.
Currently, there is not a balanced treatment of tradeoffs for some medical
systems. They are secure, but rigid; to increase flexibility, security features may
be disabled. On the other hand, for some government systems, a consultant
can record conflict and synergy by using interviews and developing prototypes,
which are then discussed with the client.

The broad quality issues (performance, accuracy and security) we ad
dressed are of interest to the organizations. One open question is how one
determines the specific main (top-level) requirements. Furthermore, can soft
goals be dealt with in small clusters, and the results then combined?

A pplication-Domain Responses

Some important comments assessed our treatment of knowledge of the partic
ular domains, and the proportionality of our treatment.

For both government administrative systems, we learned in the inter
views that we did not give enough proportion to some important NFRs or
address the most important tradeoffs or workload components. We attribute
this to our lack of contact with domain people during the studies, once we had
obtained the documents. As a result, we lacked some knowledge about the
domain, its priorities and terminology.

Notably, in both administrative studies, we understated the importance
of accuracy, which must be met, even in the presence of a tradeoff.

In the Taxation appeals study, we treated time and space as important.
In fact, response time was important, but space was not (due to the relatively
small number of appeals). Also, our treatment did not decompose the workload
into interactive individual requests and periodic batch reporting. As a result,
we did not address the problem of maintaining both accuracy and speed when
batch reports are produced. This in fact was a central concern in the actual
system, and needed to be considered (along with some specific implementation
techniques, e.g., by keeping the system "read-only" when producing periodic
reports) to properly deal with important requirements and tradeoffs.

The Cabinet documents study did not always correspond to the domain
because we lacked some knowledge about the domain, its priorities and termi
nology. We treated security as a main softgoal, but in the domain, accuracy
actually predominated other NFRs. Another reason why security was less cru
cial than considered in the study, was that clients in the particular domain
seemed primarily interested in bringing the system into existence. In addition,
the system would not store the actual Cabinet documents, just "header infor
mation" (such as topic and date). In addition, we detected an interaction, but
it was among requirements which were minor in the domain.

ASSESSMENT OF STUDIES 387

We also found that some of our arguments about the domains were not
quite right, again due to our lack of knowledge about the domains and their
terminology.

Methodology Responses

Finally, some comments addressed methodological issues.

Some responses addressed lifecycle issues. Some of the larger systems
studied have quite structured methodologies, which deal with all phases of the
lifecycle (including post-development). How could the NFR Framework (which
to date has had some emphasis on the earlier phases) be suitably integrated with
other methodologies (which include production, testing, complaint handling,
and feedback)? And how can the Framework help large existing systems, not
built from scratch?

Both government agencies use interview-based approaches for require
ments acquisition, to ascertain the client's needs. One interviewee was able to
relate the NFR Framework's decomposition approach to an adaptive interview
based approach used by consultants in determining requirements of a small
government system.

One interviewee found it nice that an softgoal interdependency graph
can have a lot of documentation concisely in one page. There is the initial cost
of extra time to understand softgoal interdependency graphs the first time, but
the advantage is the expected future time savings, due to savings in the amount
of documentation. (Note however that the overall size of documentation is not
a problem in that organization.)

Training and Payback. Some interviewees pointed out that processes
and methodologies need people to be used in practice. A variety of people
(developers, administrators, etc.) would have to be trained in the use the NFR
Framework. The payback (both from improvement in software quality and in
methodology) needs to be determined. When does the approach start and stop
being cost-effective?

15.2 DISCUSSION: LESSONS LEARNED FOR CONDUCTING
STUDIES

We feel that comments from domain experts are valuable "reality checks" on our
work. In reviewing the interviews, we feel that future studies could benefit from
a more interactive and consultative approach, which would involve repeated
contact early in the study to ensure that we have appropriately captured the
priorities for requirements. This might allow studies to be closer to actual
problems in the organizations studied, and allow more specific evaluation of
the results of studies.

Our informal interviewing provided some initial feedback for the NFR
Framework and studies. However, they were only done for some studies, and
varied in the degree of detail covered (See the bottoms of Figures 10.1 and 10.2).

388 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In our approach to the studies, things developed a step at a time. After
studying a generic example (the research expense administration example), we
then tried studying a variety of real systems, and then obtained expert feedback.
However, we did not select an experimental methodology in advance.

In the future, we feel we could benefit from more thorough approaches.
To obtain results with experimental rigour, we should consider choosing an
experimental methodology, preferably from the start of the experiment. For
example, we could consider a number of design issues [Yin89] for case studies,
such as defining the objectives of a study, evidence to be considered, techniques,
etc. Another concern for rigour in the area of management information systems
is that case studies can address phenomena not directly observable, such as
human factors, organizational power and ergonomics. Hence, such studies seem
unable to meet the classical requirements of the "scientific method" (in the
natural sciences). Yet an approach has been given [A. Lee89] for them to meet
the requirements of rigorous research. This rigour is achieved by testing, among
other things, if a given theory is falsifiable and confirmable, and if it allows for
replicability and generalizability. In addition, when questionnaires are used, a
more thorough process for designing, implementing and analyzing them can be
used [Glushkovsky95].

Our studies were based on the documents, which varied in their nature
and granularity, making it harder to make comparisons. In addition, a great
deal of an organization's "culture" may not be explicitly stated in the docu
ments, yet is vital to understand the context of the system being developed.
We have not directly dealt with this issue, and using more of an interview-based
approach may help.

As future work, we would like to conduct larger studies, covering a larger
variety of systems. This could involve studies across a spectrum of developers
and also addressing additional factors, such as interplay between the NFR
Framework and its social setting, user acceptance or resistance, and seamless
integration into existing development tools Another avenue would be to use the
Framework from the start of a system development project.

It would be interesting to observe two teams working on the same task,
one using the NFR Framework, the other not, and to compare the results. In
another study, one team could use the Framework to develop an initial system,
followed by another team which would deal with change using the initial results.
This would help determine how easy it is to transfer SIGs between teams.

We would like to obtain more feedback on the NFR Framework and
studies from academic researchers and industrial practitioners. It would also
be helpful to address questions already raised during interviews. One open issue
is the scalability of the Framework with respect to large systems. There is also
the need to develop and evaluate methods of training users of the Framework
and tools.

ASSESSMENT OF STUDIES 389

15.3 LITERATURE NOTES

Feedback on the studies is presented in [Chung95b]. Questionnaires on NFRs
and the studies were developed for [Chung95b], and were used to conduct in
terviews with domain experts.

Thanks to Hui Liu (University of Jyviiskylii) for discussions, presented
in [Nixon97a], about methodologies for conducting studies.

POSTSCRIPT

To conclude the book, benefits of the NFR Framework, its current status, direc
tions for improvement, and future work are described.

SYNOPSIS

This book has presented the NFR Framework, a systematic framework for
dealing with non-functional requirements for software systems. By their nature,
NFRs are difficult to handle, often are stated briefly and ambiguously, interact
with each other, and have a global impact on a system. The NFR Framework
helps developers to systematically address NFRs.

In dealing with NFRs, we feel there is a need to offer a structured, sys
tematic approach, to help deal with the large space of development alternatives.
As the body of knowledge can grow, we see the need for an extensible approach.
Furthermore, developers' expertise is crucial for addressing NFRs. Hence usage
of the NFR Framework is interactive, giving control of the development process
to the developers, who use their expertise to build quality into systems.

The NFR Framework takes as its focal point the notion of softgoal, which
is more flexible than goals in logical formalisms. Rather than initially seeking
exact solutions, the Framework uses the notion of satisficing to obtain reason
able solutions. The Framework is also qualitative and process-oriented in its
representation and analysis of NFRs.

The NFR Framework offers facilities for stating softgoals and then re
fining them into more specific softgoals. Softgoal refinement is facilitated by
using catalogues of methods.

Contributions are used to represent the varying degrees of impact that
one softgoal has upon another. They offer a more flexible approach than logical
frameworks such as AND/OR trees.

Interactions and tradeoffs among softgoals can be detected via catalogues
of correlations. In moving towards target systems, softgoals are operational
ized, drawing on techniques from industrial and academic experience. Design
rationale is recorded, so that it is available for current and future use.

392 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

All this is recorded in a graphical record, the softgoal interdependency
graph. The graph can be evaluated to determine whether the decisions made
will satisfice (i.e., help to meet) the softgoals.

We feel that the softgoal interdependency graph helps to capture the
complex and dynamic development process. The development process could
be quite complex, as it could involve a large search space and occurrences of
conflicts, and quite dynamic, as a successful method application can become
unsatisfactory later when a conflict is encountered or a better solution is found.
A softgoal interdependency graph acts not only as a means for dealing with
NFRs, but also as a record of development history which can be used for later
review, justification and change.

The NFR Framework has been specialized to deal in detail with partic
ular NFRs, including accuracy, security and performance. These are some of
the NFRs which are crucial to the successful development and use of software
systems. Expertise and terminology for these NFRs have been captured and
catalogued using the NFR Framework. This has involved, for example, the use
of industrial and military concepts of security, and principles for building good
performance into systems. The concept of information flow has been fruitfully
applied to dealing with accuracy and security requirements. For performance
requirements, the Framework has been further specialized to deal with infor
mation systems. The characteristics, methods and specification languages of
information systems are addressed and data models features are used to further
organize the consideration of issues. Quite interestingly, the Framework was
able to be specialized to deal with different NFRs, even though the different
fields have diverse terminologies and techniques.

We have conducted empirical studies to apply the NFR Framework to
deal with a variety of NFRs (accuracy, performance and security) for a variety
of information systems. The studies reported in this book address a variety of
domains, by considering information systems for credit cards and government
administration (tax appeals). Other studies (health insurance, Cabinet docu
ments management, and bank loans) have been reported elsewhere [Chung93a,
95a,b, 96]. The systems vary in size, workload and the nature of their opera
tions.

The studies have illustrated the different aspects of the NFR Framework,
in showing how to build quality into a variety of systems. They show the use of a
number of refinement methods and operationalizations. They also illustrate the
capturing and organizing of a variety of knowledge - about NFRs, particular
domains and systems, and of particular development approaches and languages.

The studies have shown how domain information, organizational priori
ties and system characteristics can be used to develop solutions which are cus
tomized for the particular domain and system. They have also illustrated deal
ing with interactions between different types of NFRs. They have shown how
to resolve tradeoffs and conflicts, e.g., by using domain information. In the case
of performance, tradeoff resolution was consistent with principles [C. Smith86,
90] for building performance into systems.

POSTSCRIPT 393

The NFR Framework also helps a developer deal with defects in re
quirements, including ambiguities in descriptions, omissions of concerns, and
conflicts. This should help a developer attain the benefits of detecting defects
as early as possible [Boehm87], while avoiding the low rate of detection for
current techniques reported in [Schneider92].

To evaluate the NFR Framework and some of the studies, we obtained
some feedback from people familiar with some of the domains studied. There
was some initial support for the Framework. Facilities for cataloguing of knowl
edge and handling tradeoffs were appreciated. Our studies were based on their
domains and illustrated our approach. However our detailed conclusions in the
studies would not necessarily have been reached by people in the organizations
studied. This seems mainly due to our use of source documents without ongoing
contact with the organizations during the studies.

We have also presented applications to various areas, including software
architectural design, and business process redesign. These applications use the
core concepts of the NFR Framework, while drawing in concepts specific to
these application areas.

In dealing with software architecture, one may wish to deal with vari
ous non-functional requirements (e.g., performance, modifiability, security and
reusability) and their interactions, before making a commitment to a detailed
design. An initial application of the NFR Framework to software architecture
illustrated the use of different parts of the NFR Framework in addressing a
standard example problem in software architecture. It also illustrated the use
of the Framework outside the area of information system development.

The NFR Framework has also been applied to early phases of require
ments analysis for modelling of organizations, and for dealing with business
process redesign. Using concepts from the NFR Framework including softgoals
and satisficing, organizational objectives and strategies are linked with the work
processes and technologies that support them. The approach was illustrated
with a standard example.

STATUS OF THE NFR FRAMEWORK

Additional work on the NFR Framework is reported in detail elsewhere. These
include tool support, dealing with change, applying the NFR Framework to
decision support systems, and a study of software process improvement.

Tools. Tool support for the NFR Framework is possible, as demonstrated by
a family of NFR Tools [Chung93a, 94c, Nixon97a]. These prototypes help a
developer use the NFR Framework by organizing and cataloguing a variety of
kinds of knowledge. By using a knowledge base management language (Telos
[Mylopoulos90)) and associated tools (e.g., the ConceptBase knowledge base
management system [Jarke92b] as well as other Telos-based tools [Stanley95]
[Kramer95)), graphical and textual definition browsers are made available. The
Tool then helps the developer use the Framework to build softgoal interdepen-

394 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

dency graphs, select. methods from catalogues, detect correlations from cata
logues, and evaluate the satisficing of softgoals.

The tool supports the main components of the NFR Framework, for some
ofthe NFRs considered in this book. A "core" tool which has the mechanisms of
the NFR Framework (Part I of the book) can be extended to handle additional
NFRs. This can be done by adding modules for each particular NFR, without
changing the core mechanisms. Further work on tools is ongoing.

The NFR Tool grew out of the earlier Mapping Assistant [Chung91b] of
the DAIDA environment [Jarke92a, 93b] which provides support for all phases
of information system engineering. The Mapping Assistant aids the developer
by relating source descriptions and requirements to target alternatives. These
can be used to constrain the "mapping" of functional requirements objects into
design objects, and the mapping of design objects into implementation objects.

Dealing with Change. A study of a bank loan system [Chung95a, 96], ad
dressed a combination of several NFRs (accuracy, performance, informative
ness, etc.). We showed how the NFR Framework can be adapted to deal with
changes in requirements, workload, priorities, development techniques, and so
on. By using existing softgoal interdependency graphs as a starting point, we
were able to deal with changes quickly and effectively. The ability of the Frame
work to handle the aspect of change provides an additional payoff for the costs
of using this knowledge-based approach.

This suggests some extensions to the NFR Framework, particularly in
representing changes in strengths of softgoal achievement. The existing values
(which currently include satisficed, denied, etc.) could be augmented with ad
ditional "shadings" such as several degrees of satisficed, and several degrees of
denied. This would help us represent, for example, situations where a require
ment is initially satisficed, and subsequently also satisficed, but to a greater
degree. This could be viewed as adding some features of quantitative frame
works, while, at a high level of abstraction, retaining the features of a qualitative
framework.

Decision Support Systems. An initial application of the NFR Framework has
been made to decision support systems [Jurisica98], another class of systems
with a variety of NFRs. Case-based reasoning systems are one such type of sys
tem which use past experiences stored as cases (problem description, solution
and feedback information) in a case base, in order to solve a current problem
by searching for similar cases. An initial application of the NFR Framework
to case-based reasoning catalogued techniques for implementing a case-based
reasoner, and also used existing NFR catalogues, particularly for performance.
It then studied a case-based reasoner for a medical information system applica
tion, where performance, accuracy, and confidentiality were significant issues.
It considered tradeoffs, e.g., between performance and the accuracy of reason
ing, which selects a possible treatment and predicts the outcome. Interestingly,
the study also illustrated dealing with various changes. It would be interesting

POSTSCRIPT 395

to tryout the approach on a larger variety of case-based reasoning algorithms,
e.g., as presented in [Jurisica97], for a variety of domains with varying require
ments.

Similarly, selection among libraries of existing alternatives (e.g., soft
ware packages) may be of interest [Nixon94b]. One can imagine using the NFR
Framework to consider selection among alternatives, which may be encapsu
lated, e.g., in a database programming language. Along these lines, it would
be helpful to identify and define templates (portions of SIGs) for commonly
occurring patterns of refinement. To select among templates, one approach
would be to look for similarities, using a case-based reasoner.

Study of Software Process Improvement. Preliminary evidence that the NFR
Framework can improve the software development process is presented in [Cys
neiros99], which describes an adaptation of the NFR Framework, and an asso
ciated case study. The Entity-Relationship (E-R) model is adapted to include
NFRs, and the NFR Framework's SIGs are adapted to distinguish attributes
of data classes from other attributes. A number of conditions are presented
to ensure that an extended E-R model and an extended SIG are maintained
consistently. In a case study of a laboratory information system, three teams
worked on different laboratory areas, working independently except for a joint
validation at the end of the project. One team used the combined ER-NFR ap
proach to analyse NFRs, updating the SIG and the E-R model when omissions
(such as unrepresented entities and attributes) and conflicts were detected. The
other two teams did not use the NFR Framework, and each of the three teams
developed software for a different laboratory area. The combined ER-NFR ap
proach helped find changes in the data models causes by changes in NFRs. The
payoff of using the NFR Framework was fewer changes after software delivery,
i.e., lower maintenance costs. The overhead of using the combined ER-NFR
approach was estimated to be less than 10% of development time.

PROSPECTS FOR THE NFR FRAMEWORK

We also see a number of future directions for the NFR Framework.

An obvious next step would be to extend the NFR Framework to provide
a large number of specialized frameworks, each one dealing in detail with a
different NFR. This would in effect produce an "encyclopaedia of NFRs," with
detailed entries for many NFRs. Here we have presented accuracy, security and
performance in detail. We would like to look at other NFRs, such as reliability
and fault tolerance. We would continue using knowledge bases to collect generic
NFR types, methods and correlations.

The NFR Framework could be extended to deal with the combination of
quantitative and qualitative reasoning. This could draw on quantitative work
on metrics. For performance requirements, for example, this would include the
integration of quantitative performance prediction [Nixon\ll] with qualitative
selection among target alternatives.

396 NON·FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Further studies are ongoing. Case studies using the Framework are being
conducted at a telecommunications company, where the Framework is being
considered for assisting architectural design. Another recent case study ofNFRs
deals with a university's student records system, including requirements for
performance and Year 2000 compliance.

We would also like to see the NFR Framework applied during a greater
variety of phases of the software lifecycle, not just the phases illustrated in
this book (primarily requirements, conceptual design, and organizational mod
elling). For example, this could include testing, inspection and maintenance
phases. While the use of the Framework during these additional phases has
not been demonstrated in this book, we do feel such extensions can be done in
a similar manner, based on the work that has been shown in this book.

The NFR Framework has focussed on analysis of NFRs during soft
ware development, drawing on work on decision support and design rationale
[J. Lee91] for a broad range of design activities, not limited to software develop
ment. The components and aspects of the NFR Framework (such as facilities
for refining softgoals, dealing with tradeoffs and ambiguities, and catalogu
ing concepts and development techniques) may be able to be applied to more
general design tasks, beyond software design. For example, the use of three
different softgoals (representing NFRs, design rationale, and (target) opera
tionalizations) may be helpful in a variety of design contexts.

Concerning education and technology transfer, the NFR Framework has
been used in several graduate-level courses in software engineering, require
ments engineering, software architecture, and information systems design. The
Framework was able to be used to elucidate how NFRs can be used to directly
and systematically address quality concerns. Students working in industry
could readily see how the Framework can help deal with the real-life problems
they face at work.

Finally, we see two basic theses for which the work reported in this book
gives some evidence:

1. We see the NFR Framework as being independent of the particular
process that one uses to do requirements or software development. It can be
attached to waterfall, spiral or other processes. In other words, the NFR Frame
work is not autonomous. It could fit into a variety of frameworks for functional
requirements, e.g., data-flow diagrams [DeMarco78] or KAOS [Dardenne93]. It
is a complementary model, for capturing and analyzing NFRs.

2. We think that the NFR Framework is applicable not only to NFRs,
but to all kinds of requirements, including functional requirements. This is
because all requirements can be viewed as softgoals which compete with each
other and may have to be relaxed in order to accommodate other requirements.
Thus there can be a degree of hardness or softness associated with each softgoal.
Softgoals may be soft, or hard, or have a varying degree of softness or hardness.
This may even apply to hard constraints, e.g., performance of 500 transactions
per second. The developer might respond by offering 350 transactions per
second, plus good security, thus relaxing the stated requirements to handle

POSTSCRIPT 397

a collection of requirements. This allows a generalization of a view where
functional requirements are exclusively hard, and NFRs are exclusively soft.
This is a benefit of the NFR Framework, allowing reasoning about consistency
in a way that is more flexible than logical frameworks (See, e.g., [Nuseibeh93)).

LITERATURE NOTES

Parts of this Postscript are taken from [Nixon97a]. Our own evaluation of the
NFR Framework, and directions for the future, are presented in [Chung93a,
95b, Nixon97a].

Thanks to Michael Brodie and Florian Matthes for observations con
cerning selection among software libraries, Igor Jurisica for discussions on case
based reasoning, and Joachim Schmidt for suggestions on relating the NFR
Framework to work on database programming languages.

BIBLIOGRAPHY

[AI84] Artificial Intelligence, An International Journal, Special Volume on Qualita
tive Reasoning about Physical Systems, Vol. 24, No. 1-3, Dec., 1984.

[ANSI] Copies of ANSI standards can be obtained from: American National Stan
dards Institute: U. S. Standards on Systems Quality and Related Topics, New
York, NY.

[Abowd93] G. Abowd, R. Allen and G. Garlan, "Using Style to Understand Descrip
tions of Software Architectures," Software Engineering Notes, 18(5): 9-:W, 1993.
Proc. of SIGSOFT '93: Symposium on the Foundations of Software Engineering.

[Abrial88] J-R. Abrial, C. Morgan, M. Spivey, and T. Vickers, The Logic of 'B', 26
Rue des Plantes, Paris, 75014, Sept. 1988.

[Adam92] John A. Adam, "Threats and Countermeasures," IEEE Spectrum, vol. 29,
no. 8, Aug. 1992, pp. 21-28.

[Albano85] Antonio Albano, Luca Cardelli and Renzo Orsini, "Galileo: A Strongly
Typed, Interactive Conceptual Language." ACM TODS, Vol. 10, No.2, Aug. 1985.

[Albano89] Antonio Albano, Conceptual Languages: A Comparison of ADAPLEX,
Galileo and Taxis. In Joachim W. Schmidt and Costantino Thanos (Editors),
Foundations of Knowledge Base Management. Berlin: Springer-Verlag, 1989,
pp. 395-408.

[Amoroso91] E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska, and T. Starr,
"Towards an Approach to Measuring Software Trust," Proc. IEEE Symposium on
Security and Privacy, May 1991, pp. 198-218.

[Anderson89] John S. Anderson and Stephen Fickas, "A Proposed Perspective
Shift: Viewing Specification Design as a Planning Problem." In Proceedings,
Fifth International Workshop on Software Specification and Design, Pittsburgh,
PA, U.S.A., May 19-20, 1989. Washington, IEEE Computer Society Press, 1989,
pp. 177-184.

[Andrews87] Timothy Andrews and Craig Harris, "Combining Language and
Database Advances in an Object-Oriented Development Environment." In
Norman Meyerowitz (Editor), OOPSLA '87 Conference ProceEdings, Orlando, FL,
4-8 October 1987, SIGPLAN Notices, Vol. 22, No. 12, December 1987, pp. 430-440

400 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Anton96] A. I. Anton, "Goal-based Requirements Analysis." Proc., 2nd IEEE
International Conference on Requirements Engineering, April 1996.

[Aristotle, 350 B.C.] Aristotle, Topics. 350 B.C.

[Atkinson87] Malcolm P. Atkinson and O. Peter Buneman, "Types and Persistence
in Database Programming Languages." Computing Surveys, Vol. 19, No.2, June
1987, pp. 105-190.

[BIM89] BIM Prolog 2.4 Manual. BIM sa/nv, Belgium, 1989.

[Balzer85] Robert Balzer, "A 15 Year Perspective on Automatic Programming."
IEEE Transactions on Software Engineering, Vol. SE-11, No. 11, November 1985,
pp. 1257-1268.

[Barclays92] Barciays Bank PLC, The Barclays Code of Business Banking. London,
England, effective 31st Jan. 1992.

[Barclays93a] Barciays Bank PLC, The Barclays Code of Business Banking. Lon
don, England, May 1993.

[Barclays93b] Barciays Bank PLC, Annual Review f} Summary Financial State
ment, London, England, 1993.

[Barstow87] David Barstow, Artificial Intelligence and Software Engineering, Pro
ceedings, Ninth International Conference on Software Engineering, Monterey, CA,
USA, March 30 - April 2, 1987, pp. 200-211.

[Basili88] V. R. Basili and H. D. Rombach, "The TAME Project: Towards
Improvement-Oriented Software Environments," IEEE Trans. on Software Eng.,
vol. 14, no. 6, June 1988, pp. 758-773.

[Basili91] V. R. Basili and J. D. Musa, The Future Engineering of Software: A
Management Perspective, IEEE Computer, Vol. 24, No.9, Sept. 1991, pp. 90-96.

[Batory88] D. S. Batory, Concepts for a Database System Compiler. Technical
Report TR-88-01, Department of Computer Sciences, The University of Texas at
Austin, January 1988.

[Bauer76] F. L. Bauer, "Programming as an Evolutionary Process," Proc. 2nd
International Conf. on Software Engineering, Oct. 1976, pp. 223-234.

[Benzaken90] Veronique Benzaken, An Evaluation Model for Clustering Strategies
in the O2 Object-Oriented Database System. In S. Abiteboul and P. C. Kanellakis
(Editors), ICDT '90, Proceedings, Third International Conference on Database
Theory, Paris, 12-14 December 1990. Berlin: Springer-Verlag, 1990, pp. 126-140.

[BenzeI89] T. C. V. Benzel, "Developing Trusted Systems Using DOD-STD-2167A,"
5th Annual Computer Security Applications Conf., Tucson, Arizona, Dec. 4-8,
1989, pp. 166-176.

[Bishop97] Matt Bishop, Steven Cheung and Christopher Wee, "The Threat from
the Net." IEEE Spectrum, August 1997, pp. 56-63.

[Boehm76] B. W. Boehm, J. R. Brown and M. Lipow, "Quantitative Evauation
of Software Quality. In Proceedings, 2nd International Conference on Software
Engineering, San Francisco, CA, Oct. 1976. Long Branch, CA: IEEE Computer
Society, 1976, pp. 592-605.

[Boehm78] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod and
M. J. Merritt, Characteristics of Software Quality. Amsterdam: North-Holland,
1978.

BIBLIOGRAPHY 401

[Boehm86] B. W. Boehm, "A Spiral Model of Software Development and Enhance
ment", Vol. 11, No.4, ACM Software Eng. Notes, Aug. 1986.

[Boehm87] B. Boehm, "Industrial Software Metrics Top Ten List", IEEE Software,
Sept. 1987.

[Boehm94] B. Boehm, "Software Architectures: Critical Success Factors and Cost
Drivers," Proc., 16th Int. Conf. on Software Engineering, May 1994, p. 365.

[Boehm96] Barry Boehm and Hoh In, Identifying Quality-Requirement Conflicts.
IEEE Software, March 1996.

[Booch94] G. Booch, Object-Oriented Analysis and Design, with Applications.
Benjamin-Cummings, 1994.

[Booch97] G. Booch, I. Jacobson and J. Rumbaugh Unified Modeling Language User
Guide, Unified Modeling Language Reference Manual, Addison-Wesley, 1997.

[Borgida85a] Alexander Borgida, "Features of Languages for the Development of
Information Systems at the Conceptual LeveL" IEEE Software, Vol. 2, No.1,
January 1985, pp. 63-73.

[Borgida85b] Alexander Borgida, "Language Features for Flexible Handling of Ex
ceptions in Information Systems." ACM TODS, Vol. 10, No.4. Dec. 1985, pp. 565
603.

[Borgida85c] Alexander Borgida, Sol Greenspan and John MylopouIos, "Knowledge
Representation as the Basis for Requirements Specifications." IEEE Computer,
Vol. 18, No.4, April 1985, pp. 82-91.

[Borgida89] Alex Borgida, Matthias Jarke, John Mylopoulos, Joachim W. Schmidt
and Yannis Vassiliou, "The Software Development Environment as a Knowledge
Base Management System." In Joachim W. Schmidt and Costantino Thanos (Edi
tors), Foundations of [(nowledge Base Management. Berlin: Springer-Verlag, 1989,
pp. 411-442.

[Borgida90a] Alexander Borgida, John Mylopoulos, Joachim W. Schmidt, Ingrid
Wetzel, "Support for Data-Intensive Applications: Conceptual Design and Soft
ware Development." In Richard Hull, Ron Morrison and David Stemple (Editors),
Proceedings of the Second International Workshop on Database Programming Lan
guages, 4-8 June 1989, Salishan Lodge, Gleneden Beach, Oregon. San Mateo, CA:
Morgan Kaufmann, 1990, pp. 258-280.

[Borgida90b] Alexander Borgida, "Knowledge Representation, Semantic Modeling:
Similarities and Differences." In Proceedings, International Conference on Entity
Relationship Approach, Lausanne, Switzerland, October 1990.

[Borgida93] Alexander Borgida, John Mylopoulos and Joachim W. Schmidt, "The
TaxisDL Software Description Language." In M. Jarke (Ed.), Database Application
Engineering with DAIDA. Berlin: Springer-Verlag, 1993, pp. 65-84.

[Bowen85] T. P. Bowen, G. B. Wigle and J. T. Tsai, Specification of Software
Quality Attributes,

[Brataas92] G. Brataas, A. L. OpdaW, V. Vetiand and A. Sl1llvberg, Information
Systems: Final Evaluation of the IMSE. Tech. Rep., IMSE Project Deliverable
D6.6-2, SINTEF (Univ. of Trondheim), Norway, Feb. 27, 1992.

402 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Brataas96] Gunnar Brataas, Performance Engineering Method for Workflow Sys
tems: An Integrated View of Human and Computerised Work Processes. Dr.ing. the
sis, Information Systems Group, Faculty of Physics, Informatics and Mathematics,
Norwegian University of Science and Technology, 1996.

[Briand95] 1. Briand, W. 1. Melo, C. Seaman and V. Basili, "Characterizing and
Assessing a Large-Scale Software Maintenance Organization," Proc., 17th Int. Conf.
on Software Eng., Seattle, Washington, April 24-28, 1995.

[Brodie86] Michael Brodie and John Mylopoulos (editors), On Knowledge Base
Management Systems. New York: Springer-Verlag, 1986.

[Brooks87] F. P. Brooks, Jr., "No Silver Bullet: Essence and Accidents of Software
Engineering," IEEE Computer, Apr. 1987, Vol. 20, No.4, pp. 10-19.

[Brooks95] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engi
neering Addison Wesley Longman. 1995.

[Bubenko81] Janis A. Bubenko Jr. On Concepts and Strategies for Requirements
and Information Analysis, SYSLAB Report no. 4, Dept. of Computer Sciences,
Chalmers University of Technology, Goteborg, Sweden, 1981.

[Bubenko91] Janis A. Bubenko jr., Towards a Corporate Knowledge Repository.
Report No. 91-023-DSV, SYSLAB, Dept. of Computer & Systems Sciences, Royal
Institute of Technology and Stockholm University, Kista, Sweden, 1991.

[Bui87] T. Bui and T. R. Sivasankaran, "Cost-Effective Modeling for a Decision Sup
port System in Computer Security," Computers fj Security, vol. 6, no. 2, Apr. 1987,
pp. 139-151.

[CTCPEC92] Canaclian System Security Centre, The Canadian Trusted Computer
Product Evaluation Criteria, Version 2.0. Ottawa, Apr. 1992.

[Callahan93] J. R. Callahan, Software Packaging, Technical Report CS-TR-3093,
University of Maryland, 1993.

[Canadian Bankers91] Canadian Bankers' Association, MasterCard and Visa
Statistics, Toronto, Ont., Dec. 1991.

[Cao94] Cao, Jianqing; Qin, Mingwan; and He, Ming: A Development Process for
Engineering Project Management Information Systems Based on Semantic Data
Models. Proceedings, CAIA.94, The Tenth IEEE Conference on Artificial Intelli
gence for Applications, San Antonio, Texas, March 1-4, 1994.

[Casas86] Ignacio R. Casas, PROPHET: A Layered Analytical Model for Perfor
mance Prediction of Database Systems. Ph.D. Thesis, Dept. of Computer Science,
University of Toronto, March 1986. Technical Report CSRI-180, Computer Sys
tems Research Institute, University of Toronto, April 1986.

[Ceri90] Stefano Ceri and Jennifer Widom, Deriving Production Rules for Con
straint Management. In Dennis McLeod, Ron Sacks-Davis and Hans Schek (Edi
tors), Proceedings of the 16th International Conference on Very Large Data Bases,
Brisbane, Australia, 13-16 August 1990, pp. 566-577.

[Chan82] Arvola Chan, Sy Danberg, Stephen Fox, Wen-Te K. Lin, Ani! Nori and
Daniel Ries, Storage and Access Structures to Support a Semantic Data Model.
Proceedings, Eighth International Conference on Very Large Data Bases, Mexico
City, Sept. 8-10, 1982, pp. 122-130.

BIBLIOGRAPHY 403

[Chaudhri92] Vinay K. Chaudhri, John Mylopoulos and Vassos Hadzilacos, Con
currency Control for Knowledge Bases. Proceedings, Third International Confer
ence on I<nowledge Representation and Reasoning, Boston, Oct. 1992.

[Chen76] Peter Pin-Shan Chen, The Entity-Relationship Model - Toward a Unified
View of Data. ACM TODS, Vol. 1, No.1, March 1976, pp. 9-36.

[Chung84] Kyungwha Lawrence Chung, An Extended Taxis Compiler. M.Sc. The
sis, Dept. of Computer Science, University of Toronto, January, 1984. Also CSRG
Technical Note 37, 1984.

[Chung88] K. Lawrence Chung, Daniel Rios-Zertuche, Brian A. Nixon and John
Mylopoulos, "Process Management and Assertion Enforcement for a Semantic
Data Model." In J. W. Schmidt, S. Ceri and M. Missikof (Editors), Advances
in Database Technology - EDBT '88, International Conference on Extending
Database Technology, Venice, Italy, March 1988, Proceedings. Lecture Notes in
Computer Science, No. 303. Berlin: Springer-Verlag, 1988, pp. 469-487.

[Chung91a] Lawrence Chung, "Representation and Utilization of Non-Functional
Requirements for Information System Design." In R. Anderson, J. A. Bubenko, Jr.,
A. Sl1llvberg (Editors), Advanced Information Systems Engineering, Proceedings,
Third International Conference CAiSE '91, Trondheim, Norway, May 13-15, 1991.
Berlin: Springer-Verlag, 1991, pp. 5-30.

[Chung91b] K. Lawrence Chung, Panagiotis Katalagarianos, Manolis Marakakis,
Michalis Mertikas, John Mylopoulos and Yannis Vassiliou, "From Information Sys
tem Requirements to Designs: A Mapping Framework." Information Systems,
Vol. 16, No.4, 1991, pp. 429-461.

[Chung93a] Kyungwha Lawrence Chung, Representing and Using Non-Functional
Requirements: A Process-Oriented Approach. Ph.D. Thesis, Dept. of Computer
Science, University of Toronto, June 1993. Also Technical Report DKBS-TR-93
1.

[Chung93b] Lawrence Chung, "Dealing With Security Requirements During the
Development of Information Systems." In Colette Rolland, Fran<;ois Bodart and
Corine Cauvet (Editors), Advanced Information Systems Engineering, Proceed
ings, Fifth International Conference CAiSE '93, Paris, France, June 8-11, 1993.
Berlin: Springer-Verlag, 1993, pp. 234-251.

[Chung94a] Lawrence Chung, Brian A. Nixon and Eric Yu, "Using Quality Re
quirements to Drive Software Development." Workshop on Research Issues in the
Intersection Between Software Engineering and Artificial Intelligence, Sorrento,
Italy, May 16-17, 1994.

[Chung94b] Lawrence Chung, Brian A. Nixon and Eric Yu, "Using Quality Re
quirements to Systematically Develop Quality Software." Proceedings, Fourth In
ternational Conference on Software Quality, McLean, Virginia, October 3-5, 1994.
(Based on [Chung94a].)

[Chung94c] Lawrence Chung and Brian A. Nixon, Tool Support for Systematic
Treatment of Non-Functional Requirements. Manuscript, December 1994.

[Chung95a] Lawrence Chung, Brian A. Nixon and Eric Yu, "Using Non-Functional
Requirements to Systematically Support Change." RE '95, The Second IEEE In
ternational Symposium on Requirements Engineering, York, England, 27-29 March
1995, Los Alamitos, CA: IEEE Computer Society Press, 1995, pp. 132-139.

404 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Chung95b] Lawrence Chung and Brian A. Nixon, "Dealing with Non-Functional
Requirements: Three Experimental Studies of a Process-Oriented Approach." Pro
ceedings, 17th International Conference on Software Engineering, Seattle, WA,
U.S.A., April 24-28, 1995. pp. 25-37.

[Chung95c] Lawrence Chung, Brian A. Nixon and Eric Yu, "Using Non-Functional
Requirements to Systematically Select Among Alternatives in Architectural De
sign." In D. Garlan (ed.), Proceedings of the First International Workshop on
Architectures for Software Systems, Seattle, Washington, April 1995.

[Chung95d] Lawrence Chung, Brian A. Nixon and Eric Yu, "An Approach to Build
ing Quality into Software Architecture." CD-ROM Supplement to the Proceedings
of CASCON'95, Toronto, Nov. 7-9, 1995 (A revision of [Chung95c]).

[Chung96] Lawrence Chung, Brian A. Nixon and Eric Yu, "Dealing with Change:
An Approach Using Non-Functional Requirements." Requirements Engineering,
Vol. 1, No.4, 1996, pp. 238-260. (Printed 1997. A revision and extension of
[Chung95a].)

[Chung98] Lawrence Chung and Eric Yu, "Achieving System-Wide Architectural
Qualities," OMG-DARPA-MCC Workshop on Compositional Software Architec
tures. Monterey, CA, January 6-8, 1998.

[Chung99] L. Chung, D. Gross and E. Yu, "Architectural Design to Meet Stake
holder Requirements," Proceedings, First Working IFIP Conference on Software
Architecture (WICSA1). San Antonio, Texas, Feb. 22-24, 1999. (Based on
[Chung95c,d] [Chung93a] [Yu94b]).

[Clark87] D. D. Clark and D. R. Wilson, "A Comparison of Commercial and Mil
itary Computer Security Policies," Proc. IEEE Symp. on Security and Privacy,
1987, pp. 184-194.

[Coad90] P. Coad and E. Yourdon, Object-Oriented Analysis. Yourdon
Press/Prentice-Hall, 1990.

[Cohen90] P. R. Cohen and H. J. Levesque, "Intention is Choice with Commit
ment," Artif. Intell., 42 (3), 1990.

[Coleman91] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes &
P. Jeremaes, Object-Oriented Development: The FUSION Method, Prentice-Hall,
1991.

[Coleman94] D. Coleman, D. Ash, B. Lowther and P. Oman, "Using Metrics to
Evaluate Software System Maintainability." IEEE Computer, vol. 27, no. 8, Aug.
1994, pp. 44-49.

[Conklin88a] J. Conklin and M. L. Begeman, "glBIS: A Hypertext Tool for Ex
planatory Policy Discussions," Proc. Computer Supported Cooperative Work, 1988.

[Conklin88b] J. Conklin and M. L. Begeman, "glBIS: A Hypertext Tool for Ex
planatory Policy Discussions," ACM Transactions on Office Information Systems,
Vol. 6, No.4, 1988, pp. 303-331.

[Constable86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, 1. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and
J. Smith, Implementing Mathematics with the Nuprl Proof Development System.
Prentice Hall, 1986.

BIBLIOGRAPHY 405

[Constantopoulos95] Panos Constantopoulos, Matthias Jarke, John Mylopoulos,
Yannis Vaassiliou, "The Software Information Base: A Server for Reuse." VLDB
Journal, January 1995.

[Crocker84] Olga Crocker, Cyril Charney and Johnny Sik Leung Chiu, Quality
Circles: A Guide to Participation and Productivity, Methuen Publications, Ont.,
1984.

[Crocker89] S. D. Crocker, "Software Methodology for Development of a Trusted
BMS: Identification of Critical Problems." 5th Annual Computer Security Appli.
cations ConI, Tucson, Arizona, Dec. 4-8, 1989, pp. 148-165.

[Crosby79] Philip B. Crosby, Quality is Free. New York: McGraw-Hill, 1979.

[Cruz90] Isabel Cruz, Declarative Query Languages for Object-Oriented Databases.
Manuscript, Dept. of Computer Science, University of Toronto, March 1990.

[Curtis92] W. Curtis, M. I. Kellner and J. Over, "Process Modelling," Communi
cations of the A CM, Vol. 35, No.9, 1992, pp. 75-90.

[Cysneiros99] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite,
"Integrating Non-Functional Requirments into Data Modeling." To appear in
Proceedings, International Symposium on Requirements Engineering, 1999.

[DOD-STD-2167A] Department of Defense, Military Standard: Defense System
Software Development, Feb. 29, 1988.

[Dardenne91] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal-directed Re
quirements Acquisition," Science of Computer Programming, Special issue on 6th
Int. Workshop on Software Specification and Design, Como, Italy, 1991.

[Dardenne93] Anne Dardenne, Axel van Lamsweerde and Stephen Fickas, Goal
directed Requirements Acquisition. Science of Computer Programming, Vol. 20,
1993, pp. 3-50.

[DagstuhlWorkshop95] Dagstuhl Seminar on Software Architectures. Schloss
Dagstuhl, Saarland, Germany, 20-24 February 1995.

[Davenport93] T. H. Davenport, Process Innovation: Reengineering Work Through
Information Technology, Boston: Harvard Business School Press, 1993.

[Davenport94] Thomas H. Davenport, "Saving IT's Soul: Human-Centered Infor
mation Management." Harvard Business Review, March-April, 1994, pp. 119-131.

[Davis93] A. Davis, Software Requirements: Objects, Functions and States. Prentice
Hall, 1993.

[Dechter90] R. Dechter, From Local to Global Consistency. Proceedings, 8th Bien
nial Conference of the Canadian Society for Computational Studies of Intelligence,
Ottawa, Ontario, May 1990, pp. 231-237.

[de Kleer86] J. de Kleer, "Problem Solving with the ATMS," Artificial Intelligence
Vol. 28, pp. 127-162, 1986.

[DeMarco78] T. DeMarco, Structured Analysis and System Specification. New
York: Yourdon Press, 1978.

[De Michelis98] G. De Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopou
los, M. Papozoglou, J. W. Schmidt, C. Woo, E. Yu, "A Three-Faceted View of
Information Systems: The Challenge of Change." Communications of the ACM,
Vol. 41, No. 12, December 1998, pp. 64-70.

406 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Deming86] W. E. Deming, Out of the Crisis, Center for Advanced Engineering
Study, MIT, 1986.

[Denning79] D. E. Denning and P. J. Denning, "Data Security," ACM Computing
Surveys, vol. 11, no. 3, Sept. 1979, pp. 227-249.

[Denning84] D. E. Denning, "Cryptographic Checksums for Multilevel Database
Security," Proc. IEEE Symposium on Security and Privacy, 1984, pp. 52-61.

[DiMarco90] Chrysanne DiMarco, Computational Stylistics for Natural Language
Translation, Ph.D. Thesis, Dept. of Computer Science, Univ. of Toronto, 1990.

[DiMarco93] Chrysanne DiMarco and Graeme Hirst, "A Computational Theory of
Goal-Directed Style in Syntax", Computational Linguistics, 1993.

[Di Vito90] B. Di Vito, C. Garvey, D. Kwong, A. Murray, J. Solomon and A. Wu,
"The Deductive Theory Manager: A Knowledge Based System for Formal Verifi
cation ," Proc. IEEE Symposium on Security and Privacy, 1990, pp. 306-318.

[Dorfman90] M. Dorfman and R. Thayer (eds.) Standards, Guidelines and Exam
ples on System and Software Requirements Engineering. IEEE Computer Society
Press, 1990.

[Downing92] K. Downing and S. Fickas, "A Qualitative Modeling Tool for Specifi
cation Criticism." In Pericles Loucopoulos and Roberto Zicari (editors), Concep
tual Modeling, Databases and CASE: An Integrated View of Information Systems
Development. New York: John Wiley, 1992, pp. 507-517.

[Doyle79] J. Doyle, "A Truth Maintenance System." Artificial Intelligence, Vol. 12,
pp. 231-272, 1979.

[Dubois86] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert and A. Rifaut, "A
Knowledge Representation Language for Requirements Engineering," Proc. IEEE,
Vol. 74, No. 10, Oct. 1986, pp. 1431-1444.

[Dubois89] E. Dubois, "A Logic of Action for Supporting Goal-Oriented Elabora
tions of Requirements." Proc., 5th International Workshop on Software Specifica
tion and Design, Pittsburgh, PA, 1989, pp. 160-168.

[Dubois94] Eric Dubois, Phillippe Du Bois and Frederick Dubru, "Animating For
mal Requirements Specifications of Cooperative Information Systems." In Michael
Brodie, Matthias Jarke, Michael Papazolglou, Proceedings of the Second Interna
tional Conference on Cooperative Information Systems, Toronto, May 17-20, 1994,
pp. 101-112.

[Dubois96] Eric Dubois and Suchan Wu, "A Framework for Dealing with and
Specifying Security Requirements in Information Systems." In Proceedings, IFIP
SEC'96, 1996.

[Feather93] M. S. Feather, "Requirements Reconnoitering at the Juncture of Do
main and Instance." Proc., IEEE Int. Symp. on Requirements Eng., San Diego,
CA, January 4-6, 1993, pp. 73-76.

[Fenton97] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous €;I Prac
tical Approach, 2nd ed., International Thomson Computer Press, 1997.

[Fernandez89] E. B. Fernandez, E. Gudes and H. Song, "A Security Model for
Object-Oriented Databases," Proc. IEEE Symposium on Security and Privacy,
1989, pp. 110-115.

BIBLIOGRAPHY 407

[Fickas85] Stephen F. Fickas, Automating the Transformational Development of
Software. IEEE Transactions on Software Engineering, Vol. SE-11, No. 11, Novem
ber 1985, pp. 1268-1277.

[Fickas87] S. F. Fickas, Automating the Software Specification Process, Tech. Rep. 87
05, Compo Sci. Dept. Univ. of Oregon, Dec. 1987.

[Fickas88] Stephen Fickas and P. Nagarajan, "Being Suspicious: Critiquing Problem
Specifications," Proc. AAAI-88, Saint Paul, Minnesota, Aug. 21-26, 1988. pp. 19
24.

[Fickas91] Stephen Fickas, Rob Helm and Martin Feather, When Things Go Wrong:
Predicting Failure in Multi-Agent Systems. In Robert Balzer and John Mylopoulos
(Workshop Co-Chairs), International Workshop on the Development of Intelligent
Information Systems, Niagara-on-the-Lake, Ontario, April 21-23, 1991, pp. 47-53.

[Fickas92] Stephen Fickas and B. Robert Helm, Knowledge Representation and Rea
soning in the Design of Composite Systems. IEEE Transactions on Software En
gineering, Vol. 18, No.6, June 1992, pp. 470-482.

[Fishman87] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors,
J. W. Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.
Neimat, T. A. Ryan, and M. C. Shan, "Iris: An Object-Oriented Database Manage
ment System." ACM Transactions on Office Information Systems, Vol. 5, No.1,
1987.

[Flynn92] D. Flynn, Information System Requirements: Determination and Analy
sis. McGraw-Hill, 1992.

[Garlan92] D. Garlan, G. E. Kaiser, and D. Notkin, "Using Tool Abstraction to
Compose Systems," IEEE Computer, Vo. 25, June 1992. pp. 30-38.

[Garlan93] D. Garlan and M. Shaw, "An Introduction to Software Architecture,"
Advances in Software Engineering and Knowledge Engineering: Vol. I, World
Scientific Publishing Co., 1993.

[Garlan94] D. Garlan and D. Perry, "Software Architecture: Practice, Potential,
and Pitfalls," Proc. 16th Int. Conf. on Software Engineering, 1994, pp. 363-364.

[Garvin87] David. A. Garvin, "Competing on the Eight Dimensions of Quality,"
Harvard Business Review, Nov. - Dec. 1987, pp. 101-109.

[Gause89] D. Gause and G. Weinberg, Exploring Requirements. Dorset House, 1989

[Glushkovsky95] Eli A. Glushkovsky, Radu A. Florescu, Anat Hershkovits and
Daniel Sipper, "Avoid a Flop: Use QFD With Questionnaires." Quality Progress,
June 1995, pp. 57-62.

[Goldman83] Neil M. Goldman, "Three Dimensions of Design Development." Pro
ceedings of the National Conference on Aritificial Intelligence, Washington, D.C.,
August 22-26, 1983, pp. 130-133.

[GoteI94] O. C. Z. Gotel and A. C. W. Finkelstein, "An Analysis of the Require
ments Traceability Problem." Pmc., Int. Conf. on Requirements Eng., Colorado
Springs, 1994.

[Green76] C. Green, "The Design of the PSI Program Synthesis System," Proc. 2nd
International Conj. on Software Engineering, San Francisco, California, Oct. 1976,
pp.4-18.

408 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Green86] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich, "Report
on a Knowledge-Based Software Assistant," In C. Rich and R. C. Waters (eds.):
Readings in Artificial Intelligence and Software Engineering, Morgan Kaufmann
Publishers, Inc., 1986, pp. 377-428.

[Green94] Stewart Green, Goal-Driven Approaches to Requirements Engineering.
Technical Report No. 94/9, Department of Computing, University of the West of
England, Bristol, England, 1994.

[Greenspan82] Sol J. Greenspan, John Mylopoulos and Alex Borgida, Capturing
more world knowledge in the requirements specification. Proceedings, Sixth Inter
national Conference on Software Engineering, Tokyo, Japan, September 1982, pp.
225-234.

[Greenspan84] S. Greenspan, Requirements Modeling: A Knowledge Representa
tion Approach to Software Requirements Definition. Ph.D. Thesis, Dept. of Com
puter Science, Univ. of Toronto, 1984.

[Greenspan94] Sol Greenspan, John Mylopoulos, Alex Borgida, On Formal Re
quirements Modeling Languages: RML Revisited. Proceedings, International Con
ference on Software Engineering, Sorrento, Italy, May 16-21, 1994, pp. 135-147.

[Haberman86] N. Haberman, and D. Notkin, "Gandalf: Software Development
Environments," IEEE Transactions on Software Engineering 12 (12), Dec. 1986.

[Hahn91] U. Hahn, M. Jarke and T. Rose, "Teamwork Support in a Knowledge
Based Information Systems Environment," IEEE Trans. Software Eng., 17(5), May
1991, pp. 467-482,

[Hailstone91] "Quality Management and Software Engineering," In Darrel Ince
(Ed.) Software Quality and Reliability: Tools and Methods, Chapman & Hall,
T. J. Press (Padstow) Ltd., Padstow, Cornwall, UK, pp. 24-32.

[Hammer90] M. Hammer, Reengineering Work: Don't Automate, Obliterate, Har
vard Business Review, July-August 1990, pp. 104-112.

[Hammer93] M. Hammer and J. Champy, Reengineering the Corporation: A Man
ifesto for Business Revolution, HarperBusiness, 1993.

[Hammer95] Michael Hammer and Steven A. Stanton, The Reengineering Revolu
tion: A Handbook. HarperBusiness, 1995.

[Hartson76] H. Rex Hartson and David K. Hsiao, "Full Protection Specifications
in the Semantic Model for Database Protection Languages." Proceedings, ACM
Annual Conference, Houston, TX, Oct. 1976, pp. 90-95.

[Hauser88] J. R. Hauser and D. Clausing, "The House of Quality," Harvard Busi
ness Review, May-June 1988, pp. 63-73.

[Hayes79] Patrick H. Hayes, "The naive physics manifesto." In Donald Michie
(Editor), Expert Systems in the Microelectronic Age. Edinburgh University Press,
1979, pp. 242-270.

[Hayes87] I. Hayes (ed.), Specification Case Studies, Prentice Hall IntI., Englewood
Cliffs NJ, 1987.

[Heninger80] K. L. Heninger, "Specifying Software Requirements for Complex Sys
tems: New Techniques and Their Application," IEEE Trans. on Software Eng.,
vol. SE-6, no. 1, Jan. 1980, pp. 2-13, Reprinted in R. H. Thayer and M. Dorfman

BIBLIOGRAPHY 409

(eds.), Tutorial: System and Software Requirements Engineering, IEEE Computer
Society Press, 1990.

[Hoare78] C. A. R. Hoare, Communicating Sequential Processes. CACM, Vol. 21,
No.8, Aug. 1978, pp. 666-677.

[Hooton88] Alan R. Hooton, Ulises Aguero and Subrata Dasgupta, An Exercise in
Plausibility-Driven Design, IEEE Computer, pp. 21-31, July 1988.

[Hu1l87] R. Hull and R. King, "Semantic Database Modeling: Survey, Applications,
and Research Issues." Computing Surveys, 19(3), Sept. 1987, pp. 201-260.

[Humphrey89] Watts Humphrey, Managing the Software Process. Addison Wesley.
1989.

[Hyslop91] W. F. Hyslop, Performance Prediction of Relational Database Manage
ment Systems. Ph.D. Thesis, Dept. of Compo Sci., Univ. of Toronto, 1991.

[IEEE] IEEE standards can be obtained from: IEEE Computer Society: Publica
tions, software engineering standards, conferences, Washington, DC.

[IEEESoftware87] IEEE Software, Sept. 1987.

[ISO] Copies of ISO standards can be obtained from: American National Standards
Institute: U. S. Standards on Systems Quality and Related Topics, New York, NY.

[ITSEC89] German Information Security Agency, Criteria for the Evaluation of
Trustwol·thiness of Infor'mation Technology (IT) Systems, 1st Version, Bunde
sanzeiger, Kaln, Germany, 1989.

[ITSEC91] Office for Official Publications of the European Communities, Informa
tion Technology Security Evaluation Criteria, Provisional Harmonised Criteria,
Version 1.2, June 1991, Luxembourg.

[IWASSWorkshop95] Proceedings, ICSE-17 Workshop on Architectures for Soft
ware Systems, Seattle, WA, USA, 24-25 April 1995.

[Jackson83] Michael Jackson, System Development, Prentice-Hall, 1983.

[Jacobson92] I. Jacobson, M. Christerson, P. Johnsson & G. Overgaard, Object.
Oriented Software Engineering: A Use Case Driven Approach. Prentice-Hall, 1992.

[Jagadish92] H. V. Jagadish and Xiaolei Qian, Integrity Maintenance in an Object.
Oriented Database. In Li- Yan Yuan (Editor), Proceedings of the 18th Conference
on Verly Large Data Bases, Vancouver, B.C., August 23-27, 1992, pp. 469-480.

[Jain91] Raj Jain, The Art of Computer System Performance Analysis. New York:
Wiley, 1991.

[Jarke89] Matthias Jarke, Manfred Jeusfeld, and Thomas Rose, A Software Pro
cess Data Model for Knowledge Engineering in Information Systems. Information
Systems, Vol. 14, No.3, Fall 1989.

[Jarke92a] Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil
iou, "DAIDA: An Environment for Evolving Information Systems," ACM Trans
actions on Information Systems, Vol. 10, No.1, Jan. 1992, pp. 1-50.

[Jarke92b] Matthias Jarke (Editor), ConceptBase V3.1 User Manual. University of
Passau, 1992.

[Jarke93a] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe and Y. Vassiliou, Theo
ries Underlying Requirements Engineering: An Overview of NATURE at Genesis.

410 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Proceedings of the IEEE International Symposium on Requirements Engineering,
San Diego, CA, January 4-6, 1993. Los Alamitos, CA: IEEE Computer Society
Press, pp. 19-3I.

[Jarke93b] M. Jarke (Ed.), Database Application Engineering with DAIDA. Berlin:
Springer-Verlag, 1993,

[Jarke98] Matthias Jarke, "Architecture and Quality in Data Warehouses." EDBT
1998.

[Jeusfeld90] Manfred A. Jeusfeld, Michael Mertikas, Ingrid Wetzel, Matthias Jarke,
Joachim W. Schmidt, Database Application Development as an Object Modeling
Activity. In Dennis McLeod, Ron Sacks-Davis and Hans Schek (Editors), Proceed
ings of the 16th International Conference on Very Large Data Bases, Brisbane,
Australia, 13-16 August 1990, pp. 442-454.

[Johnson91] W. L. Johnson, M. S. Feather, D. R. Harris and K. M. Benner, "Repre-
sentation and Presentation of Requirements Knowledge." Manuscript,
USC/Information Sciences Institute, Oct. 199I.

[Juran64] J. M. Juran, Managerial Breakthrough, New York: McGraw-HilI Book
Co., 1964.

[Juran79] J. M. Juran, Frank M. Gryna Jr. and R. S. Bingham Jr. (Eds.), Quality
Control Handbook" 3rd Ed., New York: McGraw-HilI Book, 1979.

[Jurisica97] Igor Jurisica, Representation and Management Issues for Case-Based
Reasoning Systems. Ph.D. thesis, Dept. of Computer Science, University of Toronto,
1997.

[Jurisica98] Igor Jurisica and Brian A. Nixon, "Building Quality into Case-Based
Reasoning Systems." In Barbara Pernici and Costantino Thanos (Editors), Ad
vanced Information Systems Engineering, 10th International Conference, CAiSE'98,
Pisa, Italy, June 1998, Proceedings. Berlin: Springer, 1998, pp. 363-380.

Proceedings, CA iSE *98, The 10th Conference on Advanced Information Systems
Engineering. Pisa, Italy, June 8-12, 1998.

[KaindI97] H. Kaindl, "A Practical Approach to Combining Requirements Defini
tion and Object-Oriented Analysis." Annals of Software Engineering, Vol. 3, 1997,
pp. 319-343.

[Kant79] Elaine Kant, "A Knowledge-Based Approach to Using Efficient Estimation
in Program Synthesis." Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, Tokyo, August 20-23, 1979, pp. 457-462.

[Kant81] Elaine Kant and David R. Barstow, "The Refinement Paradigm: The
Interaction of Coding and Efficiency Knowledge in Program Synthesis." IEEE
Transactions on Software Engineering, Vol. SE-7, No.5, Sept. 1981, pp. 458-47I.

[Kant83] Elaine Kant, On the Efficient Synthesis of Efficient Programs. Artificial
Intelligence, Vol. 20, No.3, May 1983, pp. 253-305.

[Kaiser87] G. Kaiser and P. Feiler, "An Architecture for an Intelligent Assistant
in Software Development," Proc. International Conf. on Software Engineering,
Monterey, 1987.

[Karger88] P. A. Karger, "Implementing Commercial Data Integrity with Secure
Capabilities," Proc. IEEE Symposium on Security and Privacy, 1988, pp. 130
139.

BIBLIOGRAPHY 411

[Kazman94] R. Kazman, L. Bass, G. Abowd and M. Webb, "SAAM: A Method for
Analyzing the Properties of Software Architectures," Proc. Int. Conf. on Software
Engineering, May 1994, pp. 81-90.

[Keller90] Steven E. Keller, Laurence G. Kahn and Roger B. Panara, "Specifying
Software Quality Requirements with Metrics," In Tutorial: System and Software
Requirements Engineering, Richard H. Thayer and Merlin Dorfman (Eds.), IEEE
Computer Society Press, 1990, pp. 145-163.

[Kim89] Won Kim, Kyung-Chang Kim and Alfred Dale, "Indexing Techniques for
Object-Oriented Databases." In Won Kim and Frederick H. Lochovsky (Editors),
Object-Oriented Concepts, Databases, and Applications. New York: ACM Press,
and Reading, MA: Addison-Wesley, 1989. pp. 371-394.

[Kogure83] M. Kogure and Y. Akao, Quality Function Deployment and CWQC in
Japan. Quality Progress, Oct. 1983, pp. 25-29.

[Koubarakis89] Manolis Koubarakis, John Mylopoulos, Martin Stanley and Alex
Borgida, Telos: Features and Formalization. Technical Report KRR-TR-89-4,
Dept. of Computer Science, University of Toronto, 1989.

[Kramer95] Bryan M. Kramer, RepBrowser tool and documentation. Dept. of
Computer Science, University of Toronto, 1995.

[Laudon86] K. C. Laudon, "Data Quality and Due Process in Large Interorganiza
tional Record Systems," CACM, 29(1), Jan. 1986, pp. 4-11.

[Lauzon91] David Lazuon, Taxis-to-Telos Translator. Software developed at Uni
versity of Toronto, June 1991.

[Lawton98] G. Lawton, "Biometrics: A New Era in Security." IEEE Computer,
Vol. 31, No.8, Aug. 1998.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham and Kenneth
C. Sevcik, Quantitative System Performance. Englewood Cliffs, NJ: Prentice-Hall,
1984.

[A. Lee89] A. S. Lee, "A Scientific Methodology for MIS Case Studies," MIS Quar
terly, March, 1991, pp. 30-50.

[E. Lee92] E. S. Lee, P. I. P. Boulton, B. W. Thomson, and R. E. Soper, Composable
Trusted Systems, Tech. Report CSRI-272, Computer Systems Research Institute,
Univ. of Toronto, May 31, 1992.

[J. Lee90] Jintae Lee, SIBYL: A Qualitative Decision Management System. In P.
H. Winston and S. A. Shellard (Editors), Artificial Intelligence at MIT: Expanding
Frontiers, Vol. 1, Cambridge, MA: The MIT Press, 1990, pp. 105-133.

[J. Lee91] J. Lee, "Extending the Potts and Bruns Model for Recording Design
Rationale," Proc., 13th Int. Conf. on Software Eng., Austin, Texas, May 13-17,
1991, pp. 114-125.

[Leveson86] N. G. Leveson, "Software Safety: Why, What, and How." ACM Com
puting Surveys, Vol. 18, No.2, June 1986, pp. 125-163.

[Liew90] C. W. Liew, Feedback Directed Modification of Designs, Proc. 6th IEEE
Conference on AI Applications, 1990.

[Ledru95] Y. Ledru, "Specification and Animation of a Bank Transfer." In Proceed
ings of [(BSE '95, 10th [(nowledge-Based Software Engineering Conference. IEEE
Computer Society Press, 1995.

412 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Loucopoulos95] P. Loucopoulos and V. Karakostas, System Requirements Engi
neering. McGraw Hill, 1995.

[Lyu96] M. R. Lyu (ed.), Handbook of Software Reliability Engineering, McGraw
Hill, 1996.

[Lunt89] T. F. Lunt and J. K. Millen, Secure Knowledge-Based Systems, Tech. Rep.
SRI-CSL-90-04, SRI Int., Aug. 1989.

[Marmor-Squires89] A. Marmor-Squires, B. Danner, J. McHugh, L. Nagy, D.
Sterne, M. Branstad, and P. Rougeau, "A Risk Driven Process Model for the
Development of Trusted Systems," 5th Annual Computer Security Applications
ConI, Tucson, Arizona, Dec. 4-8, 1989, pp. 184-192.

[Martin73] J. Martin, Security, Accuracy, and Privacy in Computer Systems. En
glewood Cliffs, New Jersey: Prentice-Hall, 1973.

[Martin95] J. Martin and J. Odell, Object-Oriented Methods: A Foundation.
Prentice-Hall, 1995.

[MasterCard91] MasterCard International Annual Report, 1990. 1991.

[Matthes91] F. Matthes and J.W. Schmidt, "Bulk Types: Built-In or Add-On?"
In Paris Kanellakis and Joachim W. Schmidt (Editors), Database Programming
Languages: Bulk Types fj Persistent Data - The Third International Workshop.
August 27-30, 1991, Nafplion, Greece. San Mateo, CA: Morgan Kaufmann, pp. 33
54.

[Matthes92a] F. Matthes, A. Rudloff, J.W. Schmidt and K. Subieta, The Database
Programming Language DBPL: User and System Manual. FIDE Technical Report
FIDE/92/47, Fachbereich Informatik, Universitat Hamburg, July 1992.

[Matthes92b] F. Matthes and J.W. Schmidt, "Definition of the Tycoon Language
- A Preliminary Report." DBIS Tycoon Report 062-92, Fachbereich Informatik,
Universitat Hamburg, October 1992.

[Matthes93] F. Matthes and J.W. Schmidt, "DBPL: The System and its Environ
ment." In M. Jarke (Ed.), Database Application Engineering with DAIDA. Berlin:
Springer-Verlag, 1993, pp. 319-348.

[Matloff86] N. S. Matloff, "Another Look at the Use of Noise Addition for Database
Security," Proc. IEEE Symposium on Security and Privacy, 1986, pp. 173-180.

[McCabe87] T. J. McCabe and G. G. Schulmeyer, "The Pareto Principle Applied
to Software Quality Assurance," In G. G. Schulmeyer and J. I. McManus (Eds.)
Handbook of Software Quality Assurance, New York: Van Nostrand Reinhold, 1987,
pp. 178-210.

[Mettala92] E. Mettala and M. H. Graham (eds.), The Domain-Specific Software
Architecture Program, Technical Report CMU/SEI-92-SR-9, Carnegie Mellon Uni
versity, June 1992.

[Macaulay96] L. Macaulay, Requirements Engineering. Springer Verlag, 1996.

[Mertikas89] Michalis Mertikas, From Requirements Specifications to Design of In
formation Systems. Master's Thesis, Dept. of Computer Science, University of
Crete, 1989.

[Molmir93] Balint Molnar, A Methodology for Designing Responsive Information
Systems. Doctor of University Dissertation, Dept. of Mathematics and Computer
Sciences, Technical University of Budapest. 1993.

BIBLIOGRAPHY 413

[Moss90] J. Eliot B. Moss, "Addressing Large Distributed Collections of Persis
tent Objects: The Mneme Project's Approach." In Richard HuII, Ron Morrison
and David Stemple (Editors), Proceedings of the Second International Workshop
on Database Programming Languages, 4-8 June 1989, Salishan Lodge, Gleneden
Beach, Oregon. San Mateo, CA: Morgan Kaufmann, 1990, pp. 358-374.

[MoffettSS] J. D. Moffett and M. S. Sloman, "The Source of Authority for Com
mercial Access Control," IEEE Computer, vol. 21, no. 2, Feb. 1988, pp. 59-69.

[MostowS5] Jack Mostow, "Towards Better Models of the Design Process," AI Mag
azine, Vol. 6, No.1, pp. 44-57, Spring 1985.

[MotroS9] A. Motro, "Integrity = Validity + Completeness", A CM Trans. Database
Sys., vol. 14, no. 4, 1989, pp. 480-502.

[MusaS7] J. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement,
Prediction, Application, New York: McGraw-Hill, 1987.

[MylopoulosSO] John Mylopoulos, Philip A. Bernstein and Harry K. T. Wong, A
Language Facility for Designing Database-Intensive Applications. ACM TODS,
Vol. 5, No.2, June 1980, pp. 185-207.

[MylopoulosS6] John Mylopoulos, Alex Borgida, Sol Greenspan, Carlo Meghini
and Brian Nixon, Knowledge Representation in the Software Development Pro
cess: A Case Study. In H. Winter (Ed.), Artificial Intelligence and Man-Machine
Systems. Lecture Notes in Control and Information Sciences, No. 80. Berlin:
Springer-Verlag, 1986, pp. 23-44. Reprinted in Technical Note CSRI-43, Com
puter Systems Research Institute, University of Toronto, January 1987.

[Mylopoulos90] John Mylopoulos, Alex Borgida, Matthias .larke and Manolis
Koubarakis, "Telos: Representing Knowledge about Information Systems." ACM
Transactions on Information Systems, Vol. 8, No.4, Oct. 1990, pp. 325-362.

[Mylopoulos92a] John MylopouIos, Lawrence Chung and Brian Nixon, "Repre
senting and Using Non-Functional Requirements: A Process-Oriented Approach."
IEEE Transactions on Software Engineering, Special Issue on Knowledge Rep
resentation and Reasoning in Software Development, Vol. 18, No.6, June 1992,
pp. 483-497.

[Mylopoulos92b] John Mylopoulos, Vinay K. Chaudhri, Dimitris Plexousakis and
Thodoros Topaloglou, "A Performance-Oriented Approach to Knowledge Base
Management." Proceedings of the First International Conference on Information
and [(nowledge Management, Baltimore, MD, November 8-11, 1992.

[Mylopoulos92c] John Mylopoulos, "The PSN Tribe." Computers £3 Mathematics
with Applications, Vol. 23, Nos. 2-5, Jan.-March 1992, pp. 22:1-241.

[Mylopoulos95] J. Mylopoulos, E. Yu, Y. Lesperance, B. Nixon, L. Chung, H.
Levesque and R. Reiter, "Business Processes: Tools for Analysis and Re-design."
Software demonstration at CASCON '95 Conference, Toronto, Nov. 1995.

[Mylopoulos96] John Mylopoulos, Vinay K. Chaudhri, Dimitris Plexousakis, Adel
Shrufi and Thodoros Topaloglou, "Building Knowledge Base Management Sys
tems: A Progress Report." In VLDB Journal, Vol. 5, No.4, 1996, pp. 238-263.

[Mylopoulos97] J. Mylopoulos, A. Borgida and E. Yu, "Representing Software En-
gineering Knowledge." Automated Software Engineering, Vol. 4, No.3, July 1997,
pp. 291-317. Kluwer Academic Publishers.

414 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Mylopoulos98] John Mylopoulos, "Information Modelling in the Time of the Rev
olution." Information Systems, Vol. 23, Nos. 3-4, 1998, pp. 127-155.

[Mylopoulos99] J. Mylopoulos, L. Chung and E. Yu, "From Object-Oriented to
Goal-Oriented Requirements Analysis." Communications of the ACM, 1999.

[NIST90] "Draft #2 July 23, 1990, Guidelines and Recommendations on Integrity,"
prepared for the 3rd Integrity Workshop, National Institute of Standards and Tech
nology, Sept. 26, 1990.

[Neumann86] P. G. Neumann, "On Hierarchical Designs of Computer Systems for
Critical Applications," IEEE Trans. Software Eng., SE-12, no. 9, Sept. 1986,
pp. 905-920.

[Neumann91] P. G. Neumann (compiled), "Illustrative Risks to the Public in the
Use of Computer Systems and Related Technology," Software Engineering Notes,
vol. 16, no. 1, Jan. 1991, pp. 2-9.

[Nielsen93] J. Nielsen and R. L. Mack (eds.), Usability Inspection Methods. John
Wiley & Sons, Inc. 1993

[Nilsson71] N. Nilsson, Problem-Solving Methods in Artificial Intelligence. New
York, McGraw-Hill, 1971.

[Ning93] Jim Q. Ning, Kanth Miriyala and W. (Voytek) Kozaczynski, "An
b Architecture-driven, Business-specific, and Component-based Approach to Soft
ware Engineering," Proc. Int. Conf. on Software Reusability, 1993.

[Nixon83] Brian Andrew Nixon, A Taxis Compiler. M.Sc. Thesis, Dept. of Com
puter Science, University of Toronto, April 1983. Also CSRG Technical Note 33,
May 1983.

[Nixon84] Brian Nixon (editor), Taxis '84: Selected Papers. Technical Report
CSRG-160, Computer Systems Research Group, University of Toronto, June 1984.

[Nixon87] Brian Nixon, Lawrence Chung, David Lauzon, Alex Borgida, John My
lopoulos and Martin Stanley, "Implementation of a Compiler for a Semantic Data
Model: Experiences with Taxis." In Umeshwar Dayal and Irv Traiger (Editors),
A CM SIGMOD '87, Proceedings of Association for Computing Machinery Special
Interest Group on Management of Data, 1987 Annual Conference, San Francisco,
CA, May 27-29, 1987, SIGMOD Record, Vol. 16, No.3, Dec. 1987, pp. 118-13l.

[Nixon89] Brian A. Nixon, K. Lawrence Chung, David Lauzon, Alex Borgida, John
Mylopoulos and Martin Stanley, "Design of a Compiler for a Semantic Data
Model." In Joachim W. Schmidt and Costantino Thanos (Editors), Foundations
of Knowledge Base Management. Berlin: Springer-Verlag, 1989, pp. 293-343.
Also Technical Note CSRI-44, Computer Systems Research Institute, University
of Toronto, May 1987 (Incorporates material from [Nixon87] and [Chung88]).

[Nixon90] Brian Nixon and John Mylopoulos, "Integration Issues in Implementing
Semantic Data Models." In Fran<;ois Bancilhon and Peter Buneman (Editors), Ad
vances in Database Programming Languages. New York: ACM Press, and Reading,
MA: Addison-Wesley, 1990, pp. 187-217. (Workshop on Database Programming
Languages, Roscoff, France, September 1987.)

[Nixon91] Brian Nixon, "Implementation of Information System Design Specifica
tions: A Performance Perspective." In Paris Kanellakis and Joachim W. Schmidt
(Editors), Database Programming Languages: Bulk Types €3 Persistent Data -

BIBLIOGRAPHY 415

The Third International Workshop. August 27-30, 1991, Nafplion, Greece. San
Mateo, CA: Morgan Kaufmann, 1992, pp. 149-168.

[Nixon93] Brian A. Nixon, "Dealing with Perlormance Requirements During the
Development of Information Systems." Proceedings of the IEEE International
Symposium on Requirements Engineering, San Diego, CA, January 4-6, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1992, pp. 42-49.

[Nixon94a] Brian A. Nixon, "Representing and Using Performance Requirements
During the Development of Information Systems." In Matthias Jarke, Janis
Bubenko, Keith Jeffery (Eds.), Advances in Database Technology - EDBT '94, 4th
International Conference on Extending Database Technology, Cambridge, United
Kingdom, March 1994, Proceedings. Berlin: Springer-Verlag, 1994, pp. 187-200.

[Nixon94b] Brian A. Nixon, Some Possibilities for Integrating Research Results
from Database Programming Languages and Information System Quality Require
ments. Note written at Fachbereich Informatik, Universitat Hamburg, April 1994.

[Nixon97a] Brian Andrew Nixon, Performance Requirements for Information Sys
tems. Ph.D. Thesis, Dept. of Computer Science, University of Toronto, 1997. Also
forthcoming DKBS technical report.

[Nixon97b] Brian A. Nixon, "An Approach to Dealing with Perlormance Require
ments During Information System Development." Extended Abstract. Proceed
ings of the Doctoral Consortium of the Third IEEE International Symposium on
Requirements Engineering. Annapolis, MD, U.S.A., January 6, 1997, pp. 73-88
(Includes material from [Nixon97aJ).

[Nixon98] Brian A. Nixon, "Managing Performance Requirements for Information
Systems." In Proceedings of the First International Workshop on Software and
Performance, wasp '98, Santa Fe, New Mexico, U.S.A., October, 1998, pp. 131
144 (An extension and revision of [Nixon97bJ).

[Nixon99] Brian A. Nixon, "Management of Perlormance Requirements for Infor
mation Systems." Manuscript, April 1999 (Includes material from [Nixon98J).

[Nuseibeh93] B. Nuseibeh, J. Kramer and A. Finkelstein, "A Framework for Ex
pressing the Relationships Between Multiple Views in Requirements Specifica
tions," IEEE Trans. on Software Engineering, Vol. 20, No. 10, Oct. 1994, pp.
760-773.

[Oakland89] J. S. Oakland, "Total Quality Management," Proc. 2nd International
Conference on Total Quality Management, Oxford: Cotswold Press Ltd., 1989,
pp.3-17.

[Olle82] T. W. Oile, H. G. Sol and A. A. Verrijn-Stuart (editors), Information Sys
tems Design Methodologies: A Comparative Review. North-Hoiland, 1982.

[Ontario80] "The Ontario Health Insurance Plan Computer System," Chapter 17,
Volume II. In Report on the Commission of Inquiry into the Confidentiality of
Health Information, Vol. I, II, III. Toronto: J. C. Thatcher, Queen's Printer for
Ontario, Sept. 30, 1980.

[OpdahI92] Andreas Lothe Opdahl, Performance Engineering During Information
System Development. Dr.ing. thesis and Report 1992:5, Information Systems
Group, Faculty of Computer Science and Electrical Engineering, Norwegian In
stitute of Technology, University of Trondheim, Norway, November 19, 1992.

416 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Opdahl94] Andreas 1. Opdahl, "Requirements Engineering for Software Perfor
mance." Proceedings of REFSQ '94, the First International Workshop on Require
ments Engineering: Foundation of Software Quality. Utrecht, The Netherlands,
June 1994, pp. 16-32.

[Parker84a] Donn B. Parker and Susan H. Nycum, "Computer Crime," Communi
cations of the ACM, vol. 27, no. 4, Apr. 1984, pp. 313-315.

[Parker84b] Donn B. Parker, "The Many Faces of Data Vulnerability," IEEE Spec
trum, vol. 21, no. 5, May 1984, pp. 46-49.

[Parker91] D. B. Parker, "Restating the Foundation of Information Security," 2nd
Annual North American Information System Security Symp., Oct. 21-23, Toronto,
1991.

[Parmakson93] P. Parmakson, Representation of Project Risk Management Knowl
edge. M.Sc. Thesis, Institute of Informatics, Tallinn Technical Univ., Tallinn, Es
tonia, 1993.

[Parnas72] D.1. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM, Vol. 15, Dec. 1972, pp. 1053-1058.

[Perry84] T. S. Perry and P. Wallich, "Can Computer Crime be Stopped?", IEEE
Spectrum, Vol. 21, No.5, May 1984, pp. 34-45.

[Perry92] Dewayne E. Perry and Alexander 1. Wolf, "Foundations for the Study
of Software Architecture," A CM SIGSOFT Software Engineering Notes, Vol. 17,
No.4, 1992, pp. 40-52.

[Peckham88] Joan Peckham and Fred Maryanski, "Semantic Data Models." Com
puting Surveys, Vol. 20, No.3, Sept. 1988, pp. 153-189.

[Pfleeger89] Charles P. Pfleeger, Security in Computing. Prentice Hall, Englewood
Cliffs, New Jersey, 1989.

[Picciotto87] J. Picciotto, "The Design of an Effective Auditing Subsystem," Proc.
Symposium on Security and Privacy, 1987, pp. 13-22.

[PohI96] K. PoW, Process-Centered Requirements Engineering. Wiley, 1996.

[Potts88] C. Potts and G. Bruns, Recording the Reasons for Design Decisions, Proc.,
10th Int. Conf. on Software Eng., 1988, pp. 418-427.

[Potts94] C. Potts, K. Takahashi and A. Anton, "Inquiry-Based Requirements Anal
ysis." IEEE Software, March 1994, pp. 21-32.

[Pressman95] R. S. Pressman, Software Engineering: A Practitioner's Approach,
4th Edition, New York: McGraw-Hill, 1995.

[Quatrani98] T. Quatrani, Visual Modeling with Rational ROSE and UML, Addison
Wesley, 1998.

[Rabitti88] F. Rabitti, D. Woeld and W. Kim, "A Model of Authorization for
Object-Oriented and Semantic Databases," Proc. Int. Conf. EDBT, 1988.

[Ramesh92] Balasubramaniam Ramesh and Vasant Dhar, Supporting Systems De
velopment by Capturing Deliberations During Requirements Engineering. IEEE
Transactions on Software Engineering, ent. Vol. 18, No.6, June 1992, pp. 498-510.

[Rantfil78] Robert M. Rantfil, R €;I D Productivity, 2nd edition. Los Angeles:
Hughes Aircraft Co., 1978

BIBLIOGRAPHY 417

[Reubenstein90] Howard Reubenstein, Automated Acquisition of Evolving Infor
mal Descriptions, Ph.D. Thesis, Also Tech. Report 1205, MIT Artificial Intelli
gence Laboratory, 1990.

[Reubenstein91] Howard B. Reubenstein and Richard C. Waters, The Require
ments Apprentice: Automated Assistance for Requirements Acquisition. IEEE
Transactions on Software Engineering, Vol. 17, No.3, March 1991, pp. 226-240.

[Revenue Canada80] Revenue Canada, Taxation, Objections and Appeals, Infor
mation Circular 80-7. Ottawa, June 30, 1980.

[Revenue Canada89] Revenue Canada, Taxation, Inside Taxation. Ottawa, 1989.

[Revenue Canada91] Revenue Canada, Taxation, 1991 Taxation Statistics, An
alyzing 1989 T1 Individual Tax Returns and Miscellaneous Statistics. Ottawa,
1991.

[Revenue Canada92a] Revenue Canada, Taxation, Taxation Operations Manual,
Vol. 70: Objections and Appeals. Ottawa, 1992.

[Revenue Canada92b] Dept. of National Revenue, Taxation, Appeals Branch,
Quarterly Statistical Report for the Period Ended March 31, t 992. Ottawa, 1992.
Also reports for the (quarterly) periods ended: June 2, 1991; September 27, 1991;
and Jan. 3, 1992.

[Revenue Canada92c] Dept. of National Revenue, Taxation, Appeals Branch,
Number of days to reassess Notices of Objection for reassessments between January
1, 1992 and March 1992. Ottawa, 1992. Also reports for the periods between: Oct.
1, 1991 and Dec. 31, 1991; Apr. 1, 1992 and June 26, 1992; and June 27, 1992
and Sept. 25, 1992.

[Rios Zertuche90] Daniel Rios Zertuche and Alejandro P. Buchmann, Execution
Models for Active Database Systems: A Comparison. Technical Memorandum
TM-0238-01-90-165, GTE Laboratories, Waltham, MA, January 30, 1990.

[Robinson90] William N. Robinson, "Negotiation Behavior During Requirement
Specification." Proceedings, 12th International Conference on. Software Engineer
ing, Nice, France, March 26-30, 1990, pp. 268-276.

[Rockart91] J. F. Rockart and J. E. Short, "The Networked Organization and the
Management of Interdependence," In M. Scott Morton (ed.), The Corporation of
the 1990's - Information Technology and Organizational Transformation, 1991.

[Roman85] Gruia-Catalin Roman, "A Taxonomy of Current Issues in Requirements
Engineering," IEEE Computer, Vol. 18, No.4, Apr. 1985, pp. 14-23.

[Ross77] D. T. Ross and K. E. Shoman, "Structured Analysis for Requirements
Definition." IEEE Trans. Software Eng., Vol. SE-3, No.1, January 1977, pp. 6
15.

[Rozen91] Steve Rozen and Dennis Shasha, Rationale and Design of BULK. In Paris
Kanellakis and Joachim W. Schmidt (Editors), Database Programming Languages:
Bulk Types & Persistent Data - The Third International Workshop. August 27
30, 1991, Nafplion, Greece. San Mateo, CA: Morgan Kaufmann, pp. 71-85.

[Rozen93] Steve Rozen, Automating Physical Database Design: An Extensible Ap
proach. Ph.D. Dissertation, Dept. of Computer Science, New York University,
1993.

418 NON· FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy & W. Lorensen,
Object-Oriented Modelling and Design, Prentice Hall, 1991.

[Sche1l83] R. R. Schell, "Evaluating Security Properties of Computer Systems,"
Proc. IEEE Symposium on Security and Privacy, 1983, pp. 89-95.

[Sche1l87] Roger R. Schell and Dorothy E. Denning, "Integrity in Trusted Database
Systems," In Marshall D. Abrams and Harold J. Podell (Eds.) Tutorial: Computer
and Network Security, IEEE Computer Society Press, 1987, pp. 202-208.

[Schmidt88] J. W. Schmidt, H. Eckhardt, F. Matthes, DBPL Report. DBPL Memo
112-88, Fachbereich Informatik, Johann Wolfgang Goethe-Universitat, Frankfurt
am Main, Draft, November 1988.

[Schmidt89] Joachim W. Schmidt, Ingrid Wetzel, Alexander Borgida, John My
lopoulos, Database Programming by Formal Refinement of Conceptual Designs.
Data Engineering, Special Issue on Database Programming Languages, Vol. 12,
No.3, Sept. 1989, pp. 53-61.

[Schmidt94] J.W. Schmidt and F. Matthes, The DBPL Project: Advances in Mod
ular Database Programming. Information Systems, 1994.

[Schneider92] G. M. Schneider, J. Martin, and W. T. Tsai, "An Experimental
Study of Fault Detection in User Requirements Documents", ACM Trans. on Soft
ware Eng. and Methodology, 1(2), Apr. 1992, pp. 188-204.

[Schulmeyer87] G. Gordon Schulmeyer, "Software Quality Lessons from the Qual
ity Experts," In G. Gordon Schulmeyer and James I. McManus (Eds.) Handbookof
Software Quality Assurance, New York: Van Nostrand Reinhold, 1987, pp. 25-45.

[Sevcik81] Kenneth C. Sevcik, Data Base System Performance Prediction Using an
Analytical Model. Proceedings, Seventh International Conference on Very Large
Data Bases, Cannes, France, September 9-11, 1981, pp. 182-198.

[Shaw89] M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions,"
Proc., 5th International Workshop on Software Specification and Design, Pitts
burgh, PA, May 1989, pp. 143-146.

[Shlaer88] Object-Oriented Systems Analysis: Modeling the World in Data. S. Shlaer
& S. Mellor, Prentice-Hall, 1988.

[Shlaer92] Object Lifecycles: Modeling the World in States. S. Shlaer & S. Mellor,
Prentice-Hall, 1992.

[Simon81] Herbert A. Simon, The Sciences of the Artificial, Second Edition. Cam
bridge, MA: The MIT Press, 1981.

[C. Smith86] Connie U. Smith, Independent General Principles for Constructing
Responsive Software Systems. ACM Transactions on Computer Systems, Vol. 4,
No.1, Feb. 1986, pp. 1-31.

[C. Smith90] C. U. Smith, Performance Engineering of Software Systems. Reading,
MA: Addison-Wesley, 1990.

[D. Smith85] D. R. Smith, G. B. Kotik, and S. J. Westfold, "Research on Knowledge
Based Software Environments at Kestrel Institute," IEEE Transactions on Soft
ware Engineering, Special Issue on Artificial Intelligence and Software Engineering,
vol. SE-ll, no. 11, Nov. 1985, pp. 1278-1295.

BIBLIOGRAPHY 419

[G. Smith89] G. W. Smith, "Multilevel Secure Database Design: A Practical Ap
plication." 5th Annual Computer Security Applications Conf., Tucson, Arizona,
Dec. 4-8, 1989, pp. 314-32l.

[J. Smith77] John Miles Smith and Diane C. P. Smith, "Database Abstractions:
Aggregation and Generalization." ACM TODS, Vol. 2, No.2, June 1977, pp. 105
133.

[J. Smith83] John M. Smith, Stephen A. Fox and Terry A. Landers, ADAPLEX:
Rationale and Reference Manual. Technical Report CCA-83-08, Computer Cor
poration of America, Cambridge, MA, May 1983.

[Sommerville92] I. Sommerville, Software Engineering. fourth edition, Addison
Wesley, 1992.

[Spivey87] J. Spivey, The Z Notation Reference Manual, Programming Research
Group, Oxford University, 1987.

[Stanley95] Martin T. Stanley, Telos sh tool and documentat.ion. Dept. of Com
puter Science, University of Toront.o, 1995.

[Steinke90] G. Steinke, "Design Aspects of Access Control in a Knowledge Base
System," SECURICOM '90, Paris, March, 1990.

[Sterne91] D. F. Sterne, "On the Buzzword 'Security Policy'," Proc. IEEE Sympo
sium on Security and Privacy, 1991, pp. 219-230.

[Sullivan86] L.P. Sullivan, Quality Function Deployment. Quality Progress, June
1986, pp. 39-50.

[Sutcliffe96] Alistair Sutcliffe, "A Conceptual Framework for Requirements Engi
neering." Requirements Engineering, Vol. 1, No.3, 1996, pp.170-189.

[Svanks81] M. I. Svanks, Integrity Analysis: A Methodology for EDP Audit and
Data Quality Control, Ph. D. Thesis, Dept. of Computer Science, University of
Toronto, 1981.

[TCSEC85] U.S. Department of Defense, Trusted Computer Systems Evaluation
Criteria, DOD 5200.28-STD, Dec. 1985.

[TDL87] The Taxis Design Language (TDL). Final Version on TDL Design. Es
prit Project 892, DAIDA, Development of Advanced Interactive Data Intensive
Applications. Deliverable DES1.2, Sept. 1987.

[Taguchi90] Genichi Taguchi and Don Clausing, "Robust Quality," Harvard Busi
ness Review, Jan. - Feb. 1990, pp. 65-75.

[Tan89] Yang Meng Tan, A Program Design Assistant. Manuscript, Artificial Intel
ligence Laboratory, Massachusetts Institute of Technology, Jlme 1989.

[Teitelman81] T. Teitelman, and T. Reps, "The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment," Communications of the ACM,
Vol. 24, No.9, Sept. 1981.

[Thomson88] B. Thomson, E. S. Lee, P. I. P. Boulton, M. Stumm and D. M. Lewis,
A Trusted Network Architecture, Computer Systems Research Institute, Univ. of
Toronto, Oct. 1988.

[Thayer90] R. Thayer and M. Dorfman (eds.) System and Software Requirements
Engineering. IEEE Computer Society Press, 1990.

420 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Tompkins86] F. G. Tompkins and R. Rice, "Integrating Security Activities Into the
Software Development Life Cycle and the Software Quality Assurance Process,"
Computers & Security, vol. 5, no. 3, Sept. 1986, pp. 218-242.

[Toulmin58] S. Toulmin, The Uses of A rgument. Cambridge, England: Cambridge
University Press, 1958.

[Tsur84] Shalom Tsur and Carlo Zaniolo, An Implementation of GEM - Support
ing a Semantic Data Model on a Relational Back-end. In Beatrice Yormark (Edi
tor), SIGMOD '84 Proceedings, Boston, MA, June 18-21, 1984, SIGMOD Record,
Vol. 14, No.2, pp. 286-295.

[van Lamsweerde95] A. van Lamsweerde, R. Darimont and P. Massonet, "Goal
Directed Elaboration of Requirements for a Meeting Scheduler: Problems and
Lessons Learnt." RE '95, The Second IEEE International Symposium on Require
ments Engineering, York, England, 27-29 March 1995, Los Alamitos, CA: IEEE
Computer Society Press, 1995, pp. 194-203.

[Vassiliou90] Y. Vassiliou, M. Marakakis, P. Katalagarianos, L. Chung, M. Mer
tikas and J. Mylopoulos, IRIS - A Mapping Assistant for Generating Designs
from Requirements. In Proceedings, CAiSE '90: The 2nd Nordic Conference on
Advanced Information Systems Engineering, Stockholm, May 1991, pp. 307-338.

[Visa Canada90] Visa Canada Association, Visa Canada 1990 Regional Report.
Toronto, 1990.

[Visa International91] Visa International, 1990 Annual Report, Canada Region,
1991

[Waters85] Richard C. Waters, "The Programmer's Apprentice: A Session with
KBEmacs." IEEE Transactions on Software Engineering, Vol. 11, Nov. 1985,
pp. 1296-1320.

[Wedde1l87] Grant E. Weddell, Physical Design and Query Optimization for a Se
mantic Data Model (assuming memory residence). Ph.D. Thesis, Dept. of Com
puter Science, University of Toronto, April, 1987. Also Technical Report CSRI
198, Computer Systems Research Institute, University of Toronto.

[Westfold84] S. J. Westfold, "Very-High-Level Programming of Knowledge Repre
sentation Schemes," Proc. AAAI, 1984, pp. 344-349.

[WetzeI93] I. Wetzel, K.-D. Schewe, J .W. Schmidt and A. Borgida, Specification
and Refinement of Databases. In M. Jarke (Ed.), Database Application Engineering
with DAIDA. Berlin: Springer-Verlag, 1993, pp. 283-318.

[Wieringa97] R. Wieringa, Requirements Engineering: Frameworks for Understand
ing. Wiley, 1997.

[Winograd86] Understanding Computers and Cognition: A New Foundation for
Design, Ablex Pub. Corp., 1986.

[Wong81] Harry K. T. Wong, Design and Verification of Interactive Information
Systems Using TAXIS. Technical Report CSRG-129, Computer Systems Research
Group, University of Toronto, April 1991.

[Wood80] C. Wood, E. B. Fernandez and R. C. Summers, "Data Base Security:
Requirements, Policies, and Models," IBM Syst. J., vol. 19, no. 2, 1980, pp. 229
252.

BIBLIOGRAPHY 421

[Woodie83] P. E. Woodie, "Security Enhancement through Product Evaluation,"
Proc. IEEE symposium on Security and Privacy, 1983, pp. 96-1Ol.

[Wordsworth87] J. Wordsworth, A Z Development Method, IBM UK Lab Ltd.,
Winchester, 1987.

[Yakemovic90] K. C. B. Yakemovic and J. Conklin, "Observations on a Commercial
Use of an Issue-Based Information System", Proc., Computer Supported Coopera
tive Work, 1990, pp. 105-118.

[Yin89] Robert K. Yin, "Research Design Issues in Using the Case Study Method
to Study Management Information Systems." In James I. Cash, Jr. and Paul
R. Lawrence (editors), The Information Systems Research Challenge: Qualita
tive Research Methods, Volume 1. Harvard Business School Research Colloquium.
Boston: Harvard Business School, 1989, pp. 1-6.

[Yu93a] Eric S. K. Yu and John Mylopoulos, "An Actor Dependency Model of
Organizational Work - With Application to Business Process Reengineering."
Proceedings of Conference on Organizational Computing Systems, Milpitas, CA,
Nov. 1-4, 1993, pp. 258-268.

[Yu93b] Eric S. K. Yu, "Modelling Organizations for Information Systems Require
ments Engineering." Proceedings of the IEEE International Symposium on Re
quirements Engineering, San Diego, CA, January 4-6, 1993. Los Alamitos, CA:
IEEE Computer Society Press, 1992, pp. 34-41

[Yu93c] E. Yu, An Organization Modelling Framework for Information Systems Re
quirements Engineering, Proc., 3rd Workshop on Info. Tech. and Systems,
(WITS '93), Orlando, Florida, USA, December 4-5 1993, pp. 172-179.

[Yu94a] E. S. K. Yu and J. Mylopoulos, 'Understanding "Why" in Software Pro
cess Modelling, Analysis, and Design.' Proc., 16th Int. Conf. on Software Eng.,
Sorrento, Italy, May 1994, pp. 159-168.

[Yu94b] Eric S. K. Yu, Modelling Strategic Relationships for Process Reengineering.
Ph.D. Thesis, Dept. of Computer Science, University of Toronto, Dec. 1994. Also
Technical Repoprt DKBS-TR-94-6.

[Yu94c] E. Yu and J. Mylopoulos, "Towards Modelling Strategic Actor Relation
ships for Information Systems Development - with Examples from Business Pro
cess Reengineering." In P. De and C. Woo (eds.), Proceedings, 4th Workshop on
Information Technologies and Systems (WITS '94), Vancouver, B.C., December
1994, pp. 21-28.

[Yu94d] E. Yu and J. Mylopoulos, "Using Goals, Rules, and Methods To Support
Reasoning in Business Process Reengineering," Proc. 27th Hawaii Int. Conf.
System Sciences, Maui, Hawaii, Jan. 4-7, 1994, vol. IV, pp. 234-243.

[Yu95a] E. Yu, "Models for Supporting the Redesign of Organizational Work,"
Proc., Conf. on Organizational Computing Systems (COOCS'95), Milpitas, Cali
fornia, August 13-16, 1995, pp. 225-236.

[Yu95b] E. Yu and J. Mylopoulos, "From E-R to 'A-R' - Modelling Strategic Actor
Relationships for Business Process Reengineering." Int. Journal of Intelligent and
Cooperative Information Systems, World Scientific Publishing, Vol. 4, Nos. 2-3,
1995, pp. 125-144.

[Yu96] Eric S. K. Yu, John Mylopoulos and Yves Lesperance, "AI Models for Busi
ness Process Reengineering." IEEE Expert, August 1996, pp. 16-23.

422 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

[Zachman87) J. A. Zachman, "A Framework for Information Systems Architec
ture," IBM Systems Journal, Vol. 26, No.3, 1987.pp. 276-292.

[Zaniolo83) C. Zaniolo, The Database Language GEM. Proceedings, ACM SIGMOD
Conference on Management of Data, May 1983, pp. 207-218.

[Zave97) Pamela Zave, "Classification of Research Efforts in Requirements Engi
neering." Computing Surveys, Vol. 29, No.4, 1997, pp. 315-32l.

[Zisman78) Michael D. Zisman, Use of Production Systems for Modeling Concur
rent Processes. In D. A. Waterman and Frederick Hayes-Roth (Editors), Pattern
Directed Inference Systems. New York: Academic Press, 1978, pp. 53-68.

[Zultner91] R. E. Zultner, "The Deming Way: Total Quality Management for Soft
ware." People (3 Systems Conference, Boston, Sept. 1991.

[Zultner92] R. E. Zultner, "Quality Function Deployment (QFD) for Software:
Structured Requirements Explor ation," In G. G. Schulmeyer and J. I. McManus
(Eds.) Total Quality Management for Software, New York: Van Nostrand Rein
hold, 1992, pp. 297-317.

Index

80-20 prioritization rule, 142
80-20 rule, 347

ability, able, 371
access authorization, 204
access group method, 203
access many attributes per tuple, 271
access many tuples per relation, 271
access rule validation, 206
accuracy and information flow, 171
accuracy argumentation methods, 180
accuracy concepts, 163
accuracy correlation catalogues, 183
accuracy correlation rules, 181
accuracy decomposition methods, 167
accuracy of information items, 163
accuracy operationalization methods, 175
accuracy operationalization methods, cat-

egorization of, 178
accuracy operationalizing softgoals, 175
accuracy refinement methods, 167
accuracy requirements, 161
accuracy requirements for information

systems, 5
Accuracy Requirements Framework, 162,

194,392
accuracy requirements, credit card study,

323
accuracy softgoals, 208, 324
accuracy study, 291, 301
accuracy topic decomposition methods,

172
accuracy type decomposition methods,

167
accuracy types, 165
accuracy, class, 166
accuracy, one to one, 166
accuracy, property, 166
accuracy, timely, 166
accuracy, value, 166

accurate information reception method,
171

acquiring domain knowledge, 298
acquiring NFR-specific knowledge, 297
acquisition of knowledge, 297
activities (postconditions) of script tran

sitions, 257
activities, modelling of, 368
activity (postcondition) of a script transi

tion, 334
activity (postcondition, goal) of a Taxis

script, 337
actor boundary, 376
actors, 368, 370
addressing priority softgoals, 313
administrative study, 291, 331
administrative system for government,

study of, 293, 383
administrative system study, 292
administrative systems for government,

331
agent, 169
agent, source, intermediate and destina-

tion, 169
agents, 165
aggregation-decomposition methods, 173
alarm, 206
alarm method, 327
alternative techniques to achieve goals,

369,378
ambiguities, 393
ambiguities in requirements, 323
AND contribution, 60, 61
AND interdependency, modifying label

values of, 127
AND_HELPS combined contribution, 128,

173,233
applicability of studies to broader do

mains, 385

424 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

applicability of studies to specific do-
mains, 385

applicability of the NFR Framework, 292
applicabilityCondition, 96
application domain responses from ex

perts, 386
application to decision support systems

and case-based reasoning, 394
application to enterprise modelling and

business process redesign, 292,
367

application to software architecture, 292,
351

application-based enforcement of integrity
constraints, 274

applications, 292, 293
applications of the NFR Framework, 291,

393
approach to conducting studies, 297
archaeology mode, 300
architects, software, 354
architectural design alternatives, sys

tematically guiding selection
among, 352

architectural design knowledge, 356
architectural design, goal-driven and

process-oriented, 351
architectural design, software, 293, 351
architectural infrastructure, 353
architectural style, 354
architecture concepts, cataloguing, 354
architecture, application to software, 292,

351
architecture, information systems, 353
architecture, software, 393
argument, 33
argument, see also claim and design ratio

nale,33
argumentation decomposition methods,

see also refinement methods,
110

argumentation decomposition, see also
decomposition, 55, 123

argumentation method, 120
argumentation methods, 90
argumentation methods and templates,

119
argumentation methods and templates for

performance, 236
argumentation methods and templates for

security, 207
argumentation methods catalogue, 120
argumentation methods for accuracy, 180
argumentation methods, usage of do-

main characteristics, organiza
tional information, organiza
tional workload, system func-

tionality, and developer exper
tise, 120

argumentation, and prioritization, 120,
123

argumentation, see also refinement, 58
argumentative structure, 120
arguments, identification of, 298
assured service, see availability, 199
attribute layer, 222,261
attribute method, 108
attribute representation, 316
attribute selection method, 173, 174, 202
attribute, derived, 316
attribute, in functional requirements, 51
attributes method, 173
attributes of softgoals, 54
attributes, storage of, 319
audit trail, 206
audit trail based access rule validation,

208
auditing, 175, 177
auditing subsystem, 206
authentication, 205
authenticity, 194, 199
authorization, 177
availability, or assured service, 199

bank loan system, 296
behavioural requirements, 94
better information flow method, 178
biometrics, 205
BREAK contribution, BREAKS contri

bution (--), 63
building performance into systems, prin-

ciples, 219, 221, 233, 285, 305
building quality into systems, 391
business process redesign, 393
business process redesign and enterprise

modelling, application, 292,
367

business process reengineering, 367

Cabinet document management system,
293, 383

card key, 205
case studies, 6
case studies of a variety of NFRs, domains

and information systems, 292
case studies using the NFR Framework,

291
case studies, methodology, 297
case-based reasoning, application to, 393,

394
cat~ogue,5, 13,89,141,381
catalogue of knowledge, 17
catalogue of operationalization methods,

III

catalogue of security operationalization
methods, 204

catalogue of security types, 199
catalogue, argumentation methods, 120
catalogue, correlation, 89, 134
catalogue, evaluation, 73
catalogue, label values, 71
catalogue, NFR decomposition methods,

91
catalogue, NFR type, 51, 99
catalogue, refinement, 54
catalogue, refinement methods, 89
catalogue, see also method catalogue,

NFR Type catalogue, 17
catalogue, see also NFR type catalogue,

method catalogue, correlation
catalogue, 43

catalogues of knowledge, 381
catalogues of methods and correlations,

381,391
catalogues of methods and correlations in

enterprise modelling, 367
catalogues of performance methods, orga

nizing, 277
cataloguing software architecture con

cepts, 354
categorization method for security, 204
centralized enforcement of integrity con-

straints, 274
centring principle, 221, 232
certification, 177
change to the source schema, 316
change, dealing with, 296,353,393
changes in data models, 395
channels, 165
characteristics of confidentiality, 324
characteristics of domains studied, 293
characteristics of NFRs, 99, 166
characteristics of performance require-

ments, 221
characteristics of performance types, 221,

259
characteristics of security requirements,

199
characteristics, domain, 120
checkpoint method, 178
checksum, 206
claim softgoal , 48, 52
claim softgoal, see also claim, 33
claim template, 120
claim, see also argument and design ratio-

nale,35
claim, see also claim softgoal, 33
claim, see claim softgoal, 33, 52
clarification (disambiguation) of softgoals,

359

INDEX 425

class accuracy, see also property accuracy,
166

class attribute method, 203
class method, 202
Closed list of softgoals and interdependen-

cies, 137
clustering, 288
code components method, 229
code inheritance, 314
code inheritance and IsA hierarchies, 272
collections of items, and softgoal topic,

105
combined (family plan) retrieval, 136
commercial integrity, 199
common component in refinements of an

operationalization, 135
common operations (common code) method,

273, 315
common operations method, 273
compartmentalization method, 203
completeness, 195
completeness, see integrity, 199
component decomposition methods for

performance softgoals, 227
components, 353
compressed format, 235, 348
conceptual modelling, structural axes, or

organizational primitives, 172
conceptual source specifications, 250
condition for correlation rule, 182, 208
condition of a correlation, 131
conducting studies, methodology for, 387
confidentiality, 199
confidentiality softgoals, 324
confidentiality, or secrecy, 199
confirmation, 175
conflict detection, 189
conflict, see correlation, 129
conflicting label (b or a thunderbolt or C),

71
conflicts, 393, 395
connectors, 353
conservation method, 171
consistency, 166
consistency checking, 177
consistency, external, 166
consistency, internal, 166
consistency, internal and external, 172,

195
constraint, 16, 96
constraint layer, 261
constraint, temporal, 339
constraints, integrity, 331, 334
consultative processes, 331, 332
consumer-oriented attributes (software

quality factors), 2, 157
contribution, 13, 22, 85

426 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

contribution type, 22, 26, 60
contribution, extent, 63
contribution, see also interdependency,

17,48,54
contribution, sign, 63
contributions, 375, 381,391
correct information flow methods, 169
correctness of information, 194
correlation, 13, 129
correlation (implicit interdependency), 43
correlation catalogue, 19, 33, 42, 43, 89,

130, 134, 381, 391
correlation catalogue, specialization of,

363
correlation catalogues for accuracy, 183
correlation condition, 131
correlation rule, 238
correlation rule catalogue, 42
correlation rule, condition, 182, 208
correlation rules for accuracy require-

ments, 181
correlation rules for performance soft

goals, 238
correlation rules for security softgoals, 207
correlation, see also implicit interdepen

dency,30
correlation, see also implicit interdepen-

dency and tradeoff, 18
correlations, 48, 89, 358
correlations in enterprise modelling, 367
correlations, role of developer expertise,

domain information, and func
tional requirements in usage,
89

coupling NFRs with Functional Require
ments, 80

creativity of developers, 9
credit card authorization system, 293,

301, 383
credit card study, 291, 301
credit card system study, 292, 293
criteria for security evaluation, 214
critical parts of workload, 221
critical softgoals, 305
critical softgoals, see also priority soft-

goals, 49
criticality, 59, 204
criticality of performance softgoals, 231
criticality, see also prioritization, 26
curative methods, 178
customized solutions, 392
cyclic checking, 274, 275, 340

DAIDA environment for information sys
tem development, 4

data management facilities, 253
data management, decompositions for,

264

data model feature decomposition meth
ods, 275

data model features and languages, sub-
sets, 262

data models, changes in, 395
database programming languages, 395
DBPL language, 250
dealing with change, 393
decentralized enforcement of integrity

constraints, 274
decision link, design, 83
decision support systems, application to,

393,394
decision-making process, 51
decisions, impact of, 137
decomposition, 30
decomposition methods for accuracy soft

goals, 167
decomposition methods for performance

softgoals, 272, 275
decomposition methods for security soft

goals, 201
decomposition methods, see also NFR

decomposition methods, op
erationalization decomposition
methods, and argumentation
decomposition methods, 90

decomposition of an operationalization,
58

decomposition of operationalizing soft-
goals, 116

decomposition of softgoals, 359
decomposition on NFR type, 99
decomposition on softgoal topic, 105
decomposition, see also refinement, NFR

decomposition, operationaliza
tion decomposition, and argu
mentation decomposition, 54

decomposition, see also softgoal decompo-
sition, 19

defect detection, 393
deniable softgoal, 64
denied label (x or D), 71
denied softgoal, 64
denied softgoals, 39
dependee,370
dependencies, 377
dependencies and relationships in process

descriptions, strategic, 368
dependency link, 370
dependency, strategic, 370
depender, 370
dependum,370
derived attribute, 316
derived information method, 172, 202
descriptor of situations in the domain, 134
descriptors of situations, 182, 208, 237

descriptors, situation, 134
design, 4, 16
design alternative, 54
design catalogue, see catalogue, 5
design constraint, 54
design decision, 47, 48
design decision link, 83
design decisions, 3, 5
design knowledge catalogue (development

technique catalogue), 17
design methods, identification of, 298
design process, target or destination of, 27
design rationale, 48, 360, 391
design rationale, identification of, 298
design rationale, provision of, 299
design rationale, represented by claim

softgoals, 52
design rationale, see also claim and argu

ment,33
design technique, see also development

technique, 51
design tradeoff, 60
design, see also development, 47
design, software architectural, 293, 351
destination agent, 169
destination or target of design process, 27
determining main (top-level) require-

ments, 386
developer expertise, incorporated into ar

gumentation, 120
developer expertise, used in applying re

finement methods and correla
tions,89

developer-defined operations, 264
developer-defined operations method, 265
developer-directed development process,

47
developer-directed evaluation procedure,

71
developer-directed process, 391
developers, creativity of, 9
development, 16
development alternative, 54
development decision, 48
development decisions, record of, 224
development knowledge, 54
development methods, identification of,

298
development technique catalogue, see also

design knowledge catalogue,
and catalogue, 17

development technique, see also design
technique, development tech
nique,51

development technique, see method, 18
development techniques, 224, 251
development tradeoff, 60

INDEX 427

development, see also design, 48
developmental security, 199
dialectical style of reasoning, 8
disambiguation (clarification) of softgoals,

359
discretionary security, 201, 204
distributed intentionality, 368
diverse NFRs treated together, 326
divide-and-conquer paradigm, and NFR

decomposition methods, 91
document management system, 293, 383
documentation in SIG, 387
domain characteristics, 52
domain characteristics, incorporated into

argumentation, 120
domain characteristics, studies, 293
domain expert feedback on studies and

framework, 383, 393
domain feedback, 384
domain independence of general refine

ment methods, 104
domain information, 25
domain information used to resolve trade

offs, 362
domain information used to select storage

method,320
domain information, used in applying re

finement methods and correla
tions, 89

domain information, used in refinement
methods, 92

domain interviews to obtain feedback, 384
domain knowledge, 54
domain knowledge and proportionality of

its usage, 386
domain knowledge, acquiring, 298
domain responses from experts, 386
domain-independent refinement method

(generic method, 104
domain-specific correlation catalogue, 363
domain-specific refinement, 94
domains, NFRs and information systems,

studies of a variety of, 292
dominance, 59
dominance, see also prioritization, 26
dominant parts of workload, 221
dominant performance softgoals, 231
dominant softgoals, 313
dominant softgoals, see also priority soft-

goals, 49
dominant workload softgoals, 305
downward inference, 132
dynamic code inheritance, 272, 273
dynamic offset determination, 235

early collection and cataloguing of domain
and NFR knowledge, 18

early fixing, 233, 320

428 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

early fixing methods, 233
education, 396
efficient storage, 333
elements, 353
elements, intentional, 368
emphases of NFR Framework, 385
empirical studies, 392
empirical studies of a variety of NFRs,

domains and information sys
tems, 292

empirical studies using the NFR Frame
work, 291

encryption, 208
enterprise modelling and business process

redesign, application, 292, 367
enterprise modelling, operationalizations

in, 368
enterprise modelling, use of catalogues in,

367
enterprise modelling, use of correlations

in, 367
enterprise modelling, use of methods in,

367
enterprise modelling, use of satisficing in,

367
enterprise modelling, use of softgoal in,

367,368
enterprise modelling, use of softgoal inter-

dependency graph in, 367
entities, modelling of, 368
entity layer, 222, 261
entity management method, 266, 308, 316
Entity-Relationship (E-R) model, 222,

368, 395
epistemological features, 260
EQUAL contribution, EQUALS contribu-

tion (=), 70
evaluating softgoal achievement, 299
evaluation, 37, 48
evaluation catalogue, 73
evaluation of framework and studies, 383,

393
evaluation procedure, 13, 70
evaluation procedure (labelling algo-

rithm), 17,37
exception handling method, 178
execution ordering methods, 236, 273
exhaustive search, 274
exhaustive subclass method, 173
exhaustive subset method, 174
experiment design, 388
experimental methodology, 388
expert consultation, 177
expert feedback on framework and stud

ies, 383, 393
explicit aggregation method, 174
explicit interdependency, 30, 48, 130

extent of contribution, 63
external confidentiality, 326
external consistency, 166, 172, 195, 199
external security, 199, 202

factors for dealing with performance re-
quirements, 223

family plan, 221
family plan (combined) retrieval, 136
family plan method, 241
fast access to information, 333
features of source specification language,

224
feedback from studies, 300
feedback on framework and studies from

domain experts, 383, 393
few attributes per tuple, 270, 313
figures, legend for, xix, 21
figures, logos for, xix, 21
fingerprint, 205
fixing principle, 222
fixing, early, 233
fixing, late, 235
flow, information, 163
flow-through method, 229, 243, 277, 310,

320
focussing search, 369
follow-up service, partially automated,

332
formality of the NFR Framework, 385
framework and studies, feedback from do-

main experts, 383, 393
framework, questionnaires, 384
Framework, see NFR Framework, 47
from part to whole method, 174
functional and non-functional require-

ments, 370
functional goals, 257
functional requirement, definition, 6
functional requirements, 1, 18,40,223
functional requirements (FRs), 80
functional requirements for a KWIC sys-

tem, 352
functional requirements, role of developer

expertise, domain information,
and functional requirements in
usage, 89

functional requirements, used in refine
ment methods, 92, 94

functionality, 1
functionality of system, incorporated into

argumentation, 120
further operationalization, 58

generalization-specialization methods, 172
generic decomposition methods, 91
generic refinement method (domain-

independent),104

givens (preconditions) of a script transi
tion, 334

givens (preconditions) of a Taxis script,
337

givens (preconditions) of script transi-
tions, 257

global nature of NFRs, 51
goal, 369,376
goal dependency, 371
goal of a Taxis script, see activity, 337
goal, compared with softgoal, 47
goal-driven process, 137
goal-driven, process-oriented architec

tural design, 351
goal-oriented approach, 47
goal-oriented methodologies, related work,

143
goal-oriented requirements engineering,

148
goals, 368, 375
goals in logical formalisms, compared

with softgoals, 7
goals, functional, 257
good enough, 63
government administrative system, study

of, 293,383
government administrative systems, 331
graphical record for review, change and

reuse, 353
green book, 214
grid of linguistic and organizational fea

tures, 260
grid versus staircase of inherited at

tributes, 267

harmonious interactions, 141
harmonized criteria, 214
harmony, see correlation, 129
health insurance system, 296, 383
HELP contribution, HELPS contribution

(+),63
HELPS-AND combined contribution, 128,

233
horizontal splitting, 203, 269, 271,320
how else to achieve goals, 369, 378
HURT contribution, HURTS contribution

(-),63
hybrid code inheritance methods, 272

i* Framework usage of NFR Framework
concepts, 368

i* Framework, i-star Framework, 368
identification method, 205
identification of design rationale (argu

ments), 298
identification of development methods,

298

INDEX 429

identifying NFR softgoals, 298
identifying NFR-related concepts, 298
identifying priorities, 299
impact of decisions, 137
impact of decisions, and evaluation proce-

dure,70
impact, individual, 71
impact, see also contribution, 17
implementation, 4, 40
implementation components method, 227,

273,311,339
implementation experience, 251
implementation methods, identification

of,298
implementation technique, see also devel

opment technique, 51
implementation techniques for semantic

data models, 336
implementations, target, 250
implicit contribution, 132
implicit interdependency, 48, 130
implicit interdependency, see correlation,

30, 43
implicit interdependency, see correlation

and also tradeoff, 18
income tax appeal system study, 292
income tax appeals study, 291
income tax appeals system, study of, 293,

331, 383
indexing, 234
individual activities (postconditions) method,

276
individual activities method, 338
individual attribute method, 203
individual attribut.e security level method,

203
individual attributes method, 308, 320
individual components method, 276, 337
individual givens (preconditions) method,

276
individual impact, 71
individual locations method, 276
individual transitions method, 276, 337
individual-bulk operations method, 265
inexhaustive subclass method, 173
inference, downward, 132
inference, see also downward inference

and upward inference, 132
inference, upward, 134
informal SIG, see also softgoal interdepen-

dency graph (SIG), 21
information accuracy, 171
information flow, 163,304,392
information flow, methods, 168
information item, 199
information item, accuracy of, 163
information security, 197

430 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

information sensitivity, 201
information system architecture, 353
information system development, 4
information system development lan-

guages, 250
information system performance require-

ments, 249
information system security, 197
information systems, 5, 392
information systems, assumptions in, 372
information systems, language layers for

performance requirements, 259
information systems, NFRs and domains,

studies of a variety of, 292
information systems, performance issues,

263
inheritance hierarchies, 319
inheritance hierarchies (IsA hierarchies),

267
inheritance hierarchy layer, 261
inheritance method, 203
inputs and outputs for dealing with per

formance requirements, 223
insurance claims example, 370
integration issues for semantic data model

implementations, 252
integrity, 194, 199
integrity constraint layer, 261
integrity constraint, temporal, 339
integrity constraints, 273, 331, 332,334
integrity constraints, enforcement, 274
integrity constraints, operationalization

methods for, 340
intentional concepts, 369
intentional elements, 368
intentionality, distributed, 368
inte~layerinterdependencylink,310, 339
inter-layer interdependency link, 310
inter-layer interdependency links, 229
inter-layer refinement, 277, 338, 344
interacting nature of non-functional re-

quirements, 7
interaction among features of semantic

data models, 252
interaction, see also correlation, 130
interactions, 224
interactions (tradeoffs), 391
interactions among data models, imple

mentations and performance,
259

interactive design process and evaluation
procedure, 17

interactive evaluation procedure, 71
interactive processes, 331, 332
interdependencies, 3, 22
interdependency, 17, 48
interdependency links, 17, 375,381

interdependency, explicit, 130
interdependency, implicit, 130
interdependency, see also contribution

and refinement, 17
interdependency, see also refinement and

contribution, 54
interdependency, see also refinement, con

tribution, 48
interdependency, see also refinement,

contribution, implicit interde
pendency, explicit interdepen
dency, 30

intermediate agent, 169
internal confidentiality, 199, 326
internal consistency, 166, 172, 195
internal external method, 202
internal security, 199, 202
internal-external subtype method, 324
interrelating and refining NFR concepts,

298
interrelationships among softgoals, 48
interviews to obtain feedback, 384
IsA (specialization) hierarchy, 95
IsA hierarchies, 314, 319
IsA hierarchies (inheritance hierarchies),

267
IsA hierarchies of transactions, 272
IsA hierarchy layer, 261

Key Word in Context (KWIC), 351
kinds of softgoals, 48
knowledge acquisition, 297
knowledge catalogue, see catalogue of

knowledge, 17
knowledge of application domains stud

ied,386
KWIC system, functional requirements

for, 352
KWIC system, NFRs for, 353

label, 17,40, 85
label of softgoal, 54, 70
label value catalogue, 71
labelling algorithm, see evaluation proce

dure, 17, 37
language definition, 251
language layered structure for perfor

mance issues, 222
language layers for performance require

ments for information systems,
259

languages and data model features, sub
sets, 262

languages for information system develop
ment, 250

late fixing methods, 235
layered performance structures, 218

layered structure for performance issues,
222

layers for performance requirements for
information systems, 259

layers of performance softgoals, 338
layers of softgoal interdependency graphs

for performance requirements,
229

layers, linking, 310, 379
legend for figures, xix, 21
libraries of existing alternatives, 395
lifecycle issues, 387
lighter (weak) reasoning, 8
limiting access time, 206
linguistic features, 260
linking layers of a softgoal interdepen

dency graph, 310
linking softgoals and SIGs at different lay-

ers, 338
location of a script, 334
locations of a script, 257
logos for figures, xix, 21
logos of figures, 92
long-term process layer, 261
long-term process represented as a Script,

335
long-term process, see also script, 255
long-term processes, 331, 332, 334, 338,

339
long-term processes (scripts), 275
long-term processes, management time

softgoals for, 336

main (top-level) requirements, determina
tion of, 386

main memory, see also space performance,
221

major responses on framework and stud
ies from domain experts, 384

MAKE contribution, MAKES contribu-
tion (++), 63

management time, 258, 335
management time softgoal, 333
management time softgoals for long-term

processes, 336
management time softgoals, refinement to

time softgoals, 276
management time to time method, 277,

344
ManagementTime softgoal, 336
mandatory internal confidentiality, 327
mandatory security, 201, 204, 211
manual consultation, 181
mapping process, taking functional re

quirements to a target system,
83

means-ends links, 375

INDEX 431

medical information system application,
394

meeting performance requirements, 224
method, 13, 18, 23
method application, 92
method catalogue, 19, 42, 381, 391
method catalogue, see also catalogue, 18
method definition, 92
method parameterization, degrees of, 105,

108
method parameterization, see also type

parameterization of methods,
topic parameterization of meth
ods,94

method parameters, 94
methodology for conducting studies, 297,

387
methodology for experiments, 388
methodology responses from domain ex

perts re studies, 387
methods, 48, 356
methods for decomposition on NFR type,

99
methods for decomposition on softgoal

topic, 105
methods in enterprise modelling, 367
methods, identification of, 298
methods, see also refinement methods, 89
metrics, 2, 248
mgmt. time, see management time, 335
minimal security, 204
most specialized transaction version, 272
motivations, 368
multi-layer password, multiple password,

206
multiple inheritance, 254
mutual authentication, 206
mutual 10, 183

nature of non-functional requirements, 6
negative contribution, see also sign of con-

tribution, 63
negative correlations, 130
negative implicit contribution, 132
NFR catalogue, see also catalogue of

knowledge, 17
NFR Characteristics, 99
NFR concepts, refining and interrelating,

298
NFR decomposition method catalogue, 91
NFR decomposition methods, 90
NFR decomposition, see also decomposi

tion,55
NFR Framework, 4,47,391
NFR Framework applied to the i* Frame

work,368
NFR Framework questionnaires, 384
NFR Framework's emphases, 385

432 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

NFR Framework, applications, 393
NFR Framework, empirical studies, 392
NFR Framework, feedback on, 384
NFR Framework, formality, 385
NFR Framework, related work, 142
NFR Framework, responses from domain

experts, 385
NFR Framework, scalability, 385
NFR Framework, studies and applica

tions, 291
NFR Framework, training costs and pay-

off,385
NFR Framework, using, 298
NFR questionnaires, 384
NFR softgoal, 20, 50
NFR softgoals, 48
NFR softgoals at lower layers, 230, 344
NFR softgoals, global nature, 51
NFR softgoals, identification of, 298
NFR softgoals, operationalization of, 112
NFR standards, 158
NFR type, 49, 372
NFR type catalogue, 18, 42, 51, 99
NFR Type catalogue, see also catalogue,

17, 18
NFR type catalogue, used in method, 100
NFR type decomposition methods, 99
NFR type, see also type, 20, 21
NFR Types, 355
NFR, see also NFR softgoal, 20
NFR-related concepts, identification of,

298
NFR-specific decomposition methods, 92
NFR-specific knowledge, acquisition of,

297
NFRs (see non-functional requirements),

1
NFRs during software architectural de-

sign, addressing, 353
NFRs for a KWIC system, 353
NFRs, diverse, treated together, 326
NFRs, domains and information systems,

studies of a variety of, 292
NFRs, see also NFR softgoals, 48
noise addition, 206, 207
non-functional and functional require-

ments, 370
non-functional requirement, definition, 6
non-functional requirements, 15
non-functional requirements (NFRs), 1
non-functional requirements, characteris-

tics, 166
non-functional requirements, their na

ture, 6
non-priority softgoals, 348

observations from studies, 300

off-line studies, 300
offspring softgoal, 17
omissions, 393, 395
one to one accuracy, 166
ontological features, 260
Open list of softgoals and interdependen

cies, 137
OperatingCost methods, 105
operation components method, 228, 307,

316
operational method, 264
operational security, 199
operationalization, 16, 27, 57
operationalization decomposition, 58, 116
operationalization decomposition meth-

ods, 110
operationalization decomposi tion, see also

decomposition, 55
operationalization in KAOS, 147
operationalization methods, 90, 111
operationalization methods catalogue,

111
operationalization methods for accuracy

softgoals, 175
operationalization methods for integrity

constraints, 340
operationalization methods for perfor

mance softgoals, 233, 273, 275
operationalization methods for security

softgoals, 204
operationalization of NFR softgoals, 112
operationalization type, 113
operationalization, see also refinement, 57
operationalization-target link, 83
operationalizations, 51,360,391
operationalizations in enterprise mod-

elling, 368
operationalizations refined into NFR soft-

goals at lower layers, 231, 379
operationalizations, selection of, 137
operationalize, 27, 51
operationalized by, 27
operationalizing softgoal, 27, 48,51,376
operationalizing softgoals, 376
operationalizing softgoals not refined into

NFR softgoals, 230, 344
operationalizing softgoals, decomposition

of, 116
operationalizing softgoals, relationship to

tasks, 376
operations of a script transition, 257
operations, data management, 264
opportunities in relationships, 368
OR contribution, 61
orange book, 214
order of execution of operations. 310
organizational features, 260

organizational information, incorporated
into argumentation, 120

organizational primitives of conceptual
modelling, 172

organizational priorities, 25
organizational priorities, incorporated

into argumentation, 120
organizational priority, 18
organizational stakeholders, strategic re

lationships, 368
organizational workload, 18, 25, 223, 257,

293
organizational workload and performance

requirements, 257
organizational workload, incorporated

into argumentation, 120
organizing performance methods in cata

logues, 277
outputs and inputs for dealing with per

formance requirements, 223

parameterization of methods, degrees of,
105, 108

parameterization of methods, see also
type parameterization of meth
ods, topic parameterization of
methods, 94

parameters of methods, 94
parameters, compared to softgoal topics,

49
parent softgoal, 17
partial contribution, see also extent of

contribution, 63
partitioning softgoal topic via Subset

method,326
password, 205
payback of using the NFR Framework,

387
payoff and training cost of the NFR

Framework, 385
people and the usage of the NFR Frame-

work,387
perform first method, 310
performance argumentation methods, 236
performance component decomposition

methods, 227
performance concepts, 218, 219
performance correlation rules, 238
performance decomposition methods, 272,

275
performance issues for information sys

tems, 263
performance methods, organized in cata

logues, 277
performance operationalization methods,

233, 273, 275
performance prediction, 224, 395

INDEX 433

performance prediction, organized by lay-
ering, 222

performance refinement methods, 225
performance requirements, 217
performance requirements and layers

of softgoal interdependency
graphs, 229

performance requirements for information
systems, 5, 249

Performance Requirements Framework,
247,249,392

performance requirements study, 291
performance requirements, credit card

study, 305
performance requirements, inputs and

outputs for dealing with, 223
performance requirements, language lay

ers for information systems,
259

performance requirements, nature of, 219
performance requirements, tax appeals

case study, 331
performance softgoal topic decomposi

tions, 227
performance softgoals at lower layers, 230,

344
performance softgoals, layers, 338
performance softgoals, prioritization, 231
performance study, 291, 301, 331
performance sub-types method, 226
performance subtype decompositions, 225
performance type, 258
performance types, 219
performance types, characteristics, 221,

259
performance, definitions, 219
performance, layered structure for, 222
perturbation, 206
Petri net, 257
physical alarm, 206
policy manual consultation, 180, 181
positive contribution, see also sign of con-

tribution,63
positive correlations, 130
postcondition of a script transition, see

activity, 334
postcondition of a Taxis script, see activ

ity,337
postconditions of script transitions, see

activities, 257
pre-defined operations (primitive opera-

tions),264
precautionary methods, 178
preconditions of a script, see givens, 334
preconditions of a Taxis script, see givens,

337

434 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

preconditions of script transitions, see
givens, 257

prediction of performance, 224, 395
prediction of performance, organized by

layering, 222
preferential selection, 180
preventative methods, 178
primitive operations (pre-defined opera

tions, 264
primitive operations method, 265
primitive-developer-defined operations

method,264
principles, software performance engi-

neering,219,221,233,285,305
priorities, 293
priorities for system and organization, 223
priorities, identification of, 299
priorities, see also organizational priori

ties, 120
prioritization, 33, 55, 59, 180, 204, 307,

316,324,347,349
prioritization and tradeoffs, 328
prioritization and AND decompositions,

124
prioritization method, see also VitalFewTriv

ialMany, TrivialMany, 123
prioritization of performance softgoals,

231
prioritization of security softgoals, 211
prioritization of softgoals, 305, 360
prioritization of softgoals, see also criti-

cality and dominance, 25
prioritization template, 327
prioritization, and argumentation, 120,

123
prioritization, criticality, 59
prioritization, dominance, 59
priority, 18
priority based selection, 181
priority in the domain, 52
priority of softgoals, see also critical soft-

goals, dominant softgoals, 49
priority softgoals, 305
priority transaction, 306
procedure manual, users', 192
process descriptions, strategic dependen-

cies and relationships in, 368
process management time, 258
process modelling, 375
process, goal-driven, 137
process-oriented approach, 386, 391
process-oriented approaches to NFRs, 3
process-oriented, goal-driven architec-

tural design, 351
processing versus frequency tradeoff prin

ciple, 221, 241
product-oriented approaches to NFRs, 3

propagation rules, 87
proper subset method, 174
property accuracy, also class accuracy,

166
proportionality of use of domain knowl

edge, 386
providing design rationale, 299

qualitative and quantitative approaches,
395

qualitative and quantitative approaches
to performance, 285

qualitative approach, 391
qualitative approaches to NFRs, 3
quality assurance and control, related lit-

erature, 148
quality attribute, see also software qual

ity attribute, non-functional
requirement, 1, 15

quality control, 148
quality function deployment (QFD), 149
quality of the process that produces a

product, 386
quantitative and qualitative approaches,

395
quantitative approaches to NFRs, 3
questionnaires on NFRs, framework and

studies, 384

rapid posting method, 326
rationales, 368
redesign of processes, 370
reduce run-time reorganization method,

235
refinement catalogue, 54
refinement method application, 92
refinement method catalogue, 89
refinement method definition, 92
refinement methods, 90
refinement methods for accuracy soft

goals, 167
refinement methods for performance soft

goals, 225
refinement methods for security softgoals,

200
refinement methods, and use of functional

requirements, 94
refinement methods, domain indepen

dency of general ones, 104
refinement methods, drawing on domain

information, 92
refinement methods, drawing on func

tional requirements, 92
refinement methods, role of developer

expertise, domain information,
and functional requirements in
usage, 89

refinement methods, see also methods, 89

refinement, see also decomposition, oper
ationalization, and argumenta
tion, 54

refinement, see also interdependency, 17,
48, 54

refinements, 375, 381
refining an operationalizing softgoal , 342
refining and interrelating NFR concepts,

298
refining softgoals, 359
rejected softgoals, 39
related work for the NFR Framework, 142
relating functional requirements to NFRs,

40
relating goal and target system, 376
relating NFRs to functional requirements,

40
relating source and target descriptions,

381
relating source design and target system,

83
relating target system to goal, 376
relational data model layer, 260
relational database programming lan-

guage, 250
relationships and dependencies in process

descriptions, strategic, 368
relationships, strategic, 368
relative nature of non-functional require-

ments,6
replicate derived attribute, 271
representation of attributes, 316
requirements, 4
requirements acquisition, 387
requirements, ambiguities, 323
resolving tradeoffs via domain informa-

tion, 362
resource, 369
resource availability method, 180
resource dependency, 371
resource-related accuracy operationaliza-

tion methods, 178
resources,368,375
response time, 221
responses on application domain from ex

perts, 386
responses on framework and studies from

domain experts, 383, 393
responses on NFR Framework from do

main experts, 385
responses on study methodology from do-

main experts, 387
responsiveness, 219, 236
retracting a selection, 192
Rome Air Development Center (RADC,

Rome Laboratory), 2, 157

safety, 87

INDEX 435

satisficeable softgoal, 64
satisficed label (vi or 5),71
satisficed softgoal , 64
satisficed softgoals, 39
satisficing, 4, 37, 47
satisficing approach, 9, 391
satisficing in enterprise modelling, 367
scalability of the NFR Framework, 385
scheduling of scripts, 275
schema change method, 267
scope of protection, 198
script, 257
script (long-term process), 255
script components method, 276
script layer, 261
Script used to represent long-term pro-

cess, 335
script, Taxis, 334
scripts, see also long-term processes, 275
search, exhaustive, 274
search, selective, 274
secondary storage, see also space perfor

mance, 221
secrecy, see confidentiality, 199
security argumentation templates and

methods, 207
security assurance, 198
security auditing, 206
security concepts, 198
security correlation rules, 207
security decomposition methods, 201
security evaluation criteria, 214
security level, security class, 201
security levels, 211
security operationalization method cata-

logue, 204
security operationalization methods, 204
security refinement methods, 200
security requirements, 197
security requirements for software sys

terns, 5
Security Requirements Framework, 197,

213, 392
security requirements, characteristics, 199
security requirements, credit card study,

323
security softgoal, 199, 323
security study, 291, 301
security type catalogue, 199
security via SubType method, 201
security, information, 197
selected softgoals, 39
selection among alternatives, 363
selection among alternatives, organized

by layering, 222
selection of operationalizations, 137
selective attribute grouping, 269

436 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

selective checking, 275
selective search, 274
semantic data model, 250
semantic data model implementation ex

perience, 251
semantic data model implementation

techniques, 336
semantic data model integration issues,

252
semantic integrity constraint layer, 261
semantic integrity constraints, 273
semi-automatic design evaluation proce-

dure, 17
sensitive information, 207
sensitivity of information, 201
separation of duties, 206
several attributes per tuple, 270
SIG, see softgoal interdependency graph,

17,48,85
sign of contribution, 63
SIGs organised in layers, 338
SIGs, see softgoal interdependency graphs,

5
single-multiple attribute method, 266
situation descriptor, 53
situation descriptors, 134, 182, 208, 237
soft alarm, 206
softgoal, 4, 5, 8, 17, 20, 22, 37, 48, 369,

376, 391
softgoal achievement, evaluation of, 299
softgoal attributes, 54
softgoal decomposition, 20, 359
softgoal dependency, 371
softgoal in enterprise modelling, 367,368
softgoal interaction, 48
softgoal interde pendency graph (SIG),

375
softgoal interdependencies, 5
softgoal interdependency, 13
softgoal interdependency graph, 392
softgoal interdependency graph (SIG), 13,

17,85
softgoal interdependency graph (SIG) as

concise documentation, 387
softgoal interdependency graph in enter

prise modelling, 367
softgoal interdependency graphs, 5, 48
softgoal interdependency graphs (SIGs),

224
softgoal interdependency graphs at differ

ent layers, linking, 338
softgoal interdependency graphs, concise

ness, 141
softgoal interdependency graphs, multiple

layers for performance require
ments,229

softgoal interdependenies, 5

softgoal interrelationships, 48
softgoal kinds, 48
softgoal label, 54, 70
softgoal label, see also value, 40
softgoal priorities, 49
softgoal prioritization, 59, 360
softgoal refinement, 48, 54, 359, 391
softgoal refinement (disambiguation), 359
softgoal tag, 49
softgoal topic, 49, 105
softgoal topic decomposition methods,

105
softgoal topics, compared to standard pa-

rameters, 49
softgoal type, 49
softgoal type and topic, 372
softgoal, applied to organization mod-

elling, 293
softgoal, compared with goal, 47
softgoals, 13, 48, 368, 375, 381
softgoals at different layers, linking, 338,

379
softgoals, compared with goals in logical

formalisms, 7
softgoals, kinds, 48
softgoals, layers, 338
software architects, 354
software architectural design, 293, 351,

393
software architectural design, addressing

NFRs during, 353
software architecture concepts and ap

proaches, 353
software architecture concepts, catalogu-

ing,354
software architecture, application, 292
software architecture, application to, 351
software development, related work, 146
Software Performance Engineering (SPE),

236
software performance engineering princi

ples, 219, 221, 233, 285, 305
software process improvement, 393
software process improvement, study of,

395
software process redesign, application to,

381
software quality, 3
software quality assurance (SQA), 149
software quality attribute, 2, 15
software quality criteria (technically

oriented attributes), 2, 157
software quality factors (consumer-oriented

attributes), 2, 157
software quality metrics, 2
solutions, customized, 392
solutions, see operationalizations, 51

some negative contribution, SOME- con
tribution, 63

some positive contribution (SOME+), 63
SOME+ contribution, some positive con

tribution,63
SOME- contribution, some negative con-

tribution, 63
source agent, 169
source specification, 18, 250, 251
source specification language, features,

224
source specification of system, 224
space performance, 221
space requirements, 319
space subtypes method, 226
SPE, see Software Performance Engineer

ing, 236
specialization (IsA) hierarchy, 95
specialized, domain-specific correlation

catalogue, 363
specification, 40
specification language, features, 224
specificity of performance requirements,

221
splitting, horizontal, 269
splitting, vertical, 269
staircase of inherited attributes, 267
stakeholders, 369
stakeholders, strategic relationships among

organizational,368
standards, NFRs, 158
static code inheritance, 272, 273
static offset determination, 234, 313
storage of attributes, 319
storage requirements, 321
strategic dependency mode, 370
strategic dependency model, 368
strategic interests, 370
strategic rationale model, 368, 374
strategic relationships, 368
strategic relationships and dependencies

in process descriptions, 368
structural axes of conceptual modelling,

172
structural decomposition, and topic re-

finement methods, 91
structural modelling primitives, 105
structural requirements, 94
structured analysis, 368
student records system, study of, 396
studies, 292
studies and framework, feedback from do

main experts, 383, 393
studies of a variety of NFRs, domains and

information systems, 292
studies using the NFR Framework, case,

291

INDEX 437

studies, applicability to broad domains,
385

studies, applicability to specific domains,
385

studies, empirical, :192
studies, feedback from, 300
studies, methodology, 297
studies, methodology for conducting, 387
studies, observations from, 300
studies, questionnaires, 384
study of performance, 331
study of performance requirements, 291
study of performance, accuracy and secu-

rity, 291. 301
study, administrative, 291, 331
study, credit card, 291, 301
study, student records system, 396
study, telecommunications, 396
style, architectural, 354
sub-softgoal (subgoal), 20
sub-type, 19
sub-type method, performance, 226
Subclass decomposition method, 92
Subclass family of methods, 108
subclass hierarchy, used in refinement

method,94
Subclass method, 105
subclass method, 172, 202, 326
subgoal, see sub-softgoal, 20
subjective nature of non-functional re

quirements, 6
subset method, 174, 202, 326, 346
subsets of languages and data model fea

tures, 262
subtype decompositions for performance

requirements, 225
SubType family of methods, 105
subtype method, 323
SubType method for security, 201
subtype method, internal-external, 324
SubType methods, 117
SubType refinement method, 168
sufficient contribution, see also extent of

contribution, 63
superset method, 174
synergistic interactions, 141
synergy, 181
synergy, see also correlation, 130
system functionality, incorporated into

argumentation, 120
systematically guiding selection among

architectural design alterna
tives, 352

systems analysis, 368

tag of softgoal, 49
target, 18, 83
target implementations, 250

438 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

target or destination of design process, 27
target system, 40
task,369
task decomposition links, 375
task dependency, 371
tasks, 368, 375,376
tasks, relationship to operationalizing

softgoals, 376
tax appeals study, 291
tax appeals system, study of, 293, 331,

383
Taxis, 286
Taxis Design Languages, 286
Taxis semantic data model, 250, 261
TaxisDL, 262, 286
TaxisDL design language, 334
TDL,262
TDL, see Taxis, 286
technically-oriented attributes (software

quality criteria), 2, 157
technology transfer, 396
telecommunications study, 396
Telos conceptual modelling language, 382
Telos knowledge representation language,

277
template, claim, 120
templates for refinements, 395
temporal integrity constraint, 339
temporal integrity constraints, 336
throughput, see also time performance,

221
time for managing long-term processes

and integrity constraints (Mgmt
Time, 335

time performance, 221
time softgoal for managing long-term pro

cesses, 333
time softgoals , refined from management

time softgoals, 276
time subtypes method, 226
time, management, 258
time-ordered list, 340
time-space decomposition method, 225
time-space tradeoff, 305, 320, 346, 350
time-space tradeoffs, 328
timely accuracy, 166, 324
tool support, 393
top-level (main) requirements, determina-

tion of, 386
topic, 20, 21
topic decomposition methods, 105
topic decomposition methods for accu

racy, 172
topic decompositions for performance

softgoals, 227
topic of softgoal, 49, 105
topic parameterization of methods, 94

topic relation condition, 208
topic, softgoal, 372
topics, compared to standard parameters,

49
total quality management (TQM), 150
tradeoff, 60
tradeoffs, 33, 224,251,358,369
tradeoffs (correlations), 386
tradeoffs (interactions), 391
tradeoffs and prioritization, 328
tradeoffs resolved via domain information,

362
tradeoffs, see also correlation, 130
tradoff, see correlation and also implicit

interdependency, 18
training costs and payoff of the NFR

Framework, 385
training issues and the NFR Framework,

387
transaction calls and IsA hierarchies, 272
transaction hierarchies, 272, 314
transaction layer, 222, 261
transaction, priority, 306
transition components method, 276, 278,

337
transition of a script, 334
transitions of a script, 257, 336
trigger mechanism, 274
triggering, 275
triggering events, 94
TrivialMany, see also prioritization method,

124
truth maintenance systems (TMSs), 87
tuple manipulation, methods, 271
tuple storage, methods and correlations,

270
type (of softgoals), see also NFR type, 20,

21
type catalogue, see also NFR type cata

logue, 51, 99
type catalogue, see NFR type catalogue,

18
type decomposition methods, 99
type decomposition methods for accuracy,

167
type decompositions for performance re-

quirements, 225
type of an operationalization, 113
type of NFR, see NFR type, 49
type of softgoal, 49
type parameterization of methods, 94
type, performance, 258
type, softgoal, 372
types, accuracy, 165

uncompressed format, 233, 234
underdetermined label (U or blank), 71
unit flow, 165

UNKNOWN contribution ("?"), 63
upward inference, 134
users' procedure manual, 192, 212
using the NFR Framework, 298
utility, 199

validation, 175, 177
validation method, 178
validation resource availability method,

178
validity, 195
value accuracy, 166
value removal, 206
value, see also label, 40
variety of information systems, NFRs and

domains studied, 292
verification, 177, 208
vertical splitting, 203, 269, 271
vital few, 347
vital few trivial many prioritization tem

plate, 180

INDEX 439

vital few, trivial many, 207
VitalFewTrivialMany prioritization method,

123
voice recognition, 205
vulnerabilities in relationships, 368
vulnerability in relationships, vulnerable,

371

weak (lighter) reasoning, 8
weak negative label (W-), 71
weak positive label (W+), 71
why questions, motivations and ratio-

nales, 368, 378
workload, 18, 52, 223
workload, organizational, 257, 293
workload, see also organizational work-

load,120
world model within functional require

ments, 167

Year 2000 compliance, 396

About the Authors

Dr. Lawrence Chung received his Ph.D. in Computer Science in 1993 from
the University of Toronto, where he had previously received the B.Sc. and
M.Sc. degrees. He is currently an Assistant Professor of Computer Science at
the University of Texas at Dallas. His research interests include software en
gineering, requirements engineering, non-functional requirements, information
systems engineering and re-engineering, and software architectures.

Dr. Brian A. Nixon received his Ph.D. in Computer Science in 1997
from the University of Toronto, where he edited this book as a post-doctoral
fellow, and had previously received the B.Sc. and M.Sc. degrees. His Ph.D. the
sis deals with performance requirements for information systems. His research
interests include information system development (requirements, design, imple
mentation, performance), requirements engineering, software quality, semantic
data models, and applications of artificial intelligence to databases, software
engineering and programming languages.

Dr. Eric Yu is an Assistant Professor at the Faculty ofInformation Stud
ies at the University of Toronto. He received his Ph.D. from the Department of
Computer Science, University of Toronto in 1995. Before his Ph.D. studies, he
was a Member of Scientific Staff at Bell-Northern Research (Nortel Networks)
in Ottawa. His research interests include information systems, requirements
engineering, software architecture, the modelling of organizations and business
processes, and knowledge management.

Dr. John Mylopoulos is professor in the department. of Computer Sci
ence of the University of Toronto. He holds a Ph.D. from Princeton University,
was a senior fellow of the Canadian Institut.e for Advanced Research (CIAR),
is currently an AAAI fellow, and is serving as president of the Very Large
Databases Endowment. Mylopoulos received the first ever outstanding services
award given out by the Canadian Society for Computational Studies of Intel
ligence, and was the 1994 co-recipient of the most influential paper award of
the International Conference on Software Engineering. His research interests
include conceptual modelling, software repositories, requirements engineering
and knowledge management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

