
Software Quality – 2nd Assigment
Rita Macedo

Faculdade de Ciências e Tecnologia
Departamento de Informática

rp.macedo@campus.fct.unl.pt

Rodrigo Graças
Faculdade de Ciências e Tecnologia

Departamento de Informática
r.gracas@campus.fct.unl.pt

ABSTRACT
Reverse Engineering is an important process to analyze a system
code in order to understand its organization and to find problems
that can affect its usability and maintenance. In this report, we
apply this process with the help of tools to analyze two different
systems, JHotDraw and JUnit. By measure metrics and visualize
polymetric views, we begin to see the system organization and
which software areas can be more vulnerable to bugs and errors.
While going deeper into the analysis of the system, we find code
smells and disharmonies and propose ways of refactoring.

1. INTRODUCTION
In this report we are going to analyze two different types of
software programmed in Java in order to understand their
quality in terms of software design. The systems are JHotDraw
and JUnit4.
First, we are going to measure their most important metrics and
visualize them as an overview Pyramid (the explanation and
theory about the pyramid can be found in [2]). Next, we are
going to visualize the systems using treemap views to better
understand their organization. Last, we are going to analyze
these systems in terms of disharmonies and code smells. With
this analysis, we also propose some refactoring techniques that
can be applied in order to improve the overall design of these
systems.
According to the twenty-two code smells presented by Fowler
[1] we focus on analyzing six of them. The code smells with
more focus on this work are: Duplicated Code, Long Method,
Data Class, Refuse Bequest, Shotgun Surgery and Feature Envy.
We will also analyze disharmony presented in [3] – three
identity disharmony, God Class, Brain class and Brain Method,
two collaboration disharmony, Dispersed Coupling and
Intensive Coupling and one Classification Disharmony,
Tradition Breaker.
We also aim to analyze some Type Checking problems that can
be present in the systems, but also for other types of errors, like
quality or convention errors.
With this, we aim to identify the systems strong and weak points
and propose improvements on the problems we capture on our
way. This analysis will also be responsible to find out how these
systems could be better in terms of reuse and maintainability.
The report is divided into three chapters and it is structured as
follow:

• In Chapter 2 we present the main tools used to help us
identify the code smells and important metrics
evaluation of the systems;

• In Chapter 3 we present one of the systems used -
JHotDraw (version 5.2). In here we analyze the
overview pyramid, system’s organization,

identification of code smells and disharmonies using
the tools (presented in Chapter 2), and refactoring.

• Chapter 4 presents the second system – JUnit (version
4). Similar to Chapter 3, we also present the overview
pyramid and system’s organization, identification of
code smells, disharmonies and refactoring.

2. TOOLS USED
To help us analyze the two proposed systems, in terms of
metrics and organization we are going to use three different
tools, they are:

• infusion;
• Metrics;
• SourceMiner.

After that we will use a few tools that helps analyze code and
find disharmonies, code smells or simple errors in code. These
tools were used together to complement each other and provide
the best results possible. These tools are:

• JDeodorant;
• CodeProAnalytiX;
• SonarLint;
• JspIRIT;

2.1 inFusion
inFusion is a stand-alone software that calculates the most
important metrics of a given objected-oriented system and
returns them as an Overview Pyramid and a resumed
interpretation.

Figure 1. inFusion interface example

2.2 Metrics
Metrics is a simple plug-in software for eclipse that analyses a
system and returns a list of important metrics for the evaluation
of the system.

Figure 2. Interface of Metrics as a plugin in eclipse

2.3 SourceMiner
SourceMiner is a multiple view environment (MVE) design and
implemented as an Eclipse plug-in to enhance software
comprehension activities. It will be used to create treemap views
of the two software in analysis.

Figure 3. Example of a Tree Map view with SourceMiner

2.4 JDeodorant
JDeodorant is an eclipse plugin that identifies five specific code
smells – Duplicated Code, God Class, Long Method, Type
Checking and Feature Envy – and advices on the best course of
action, the best refactoring.
In this work this tool was specifically used to find God Classes,
Long Methods, Type Checking and Feature Envy.

Figure 4. View of Feature Envy code smell in JDeodorant

2.5 CodePro AnalytiX
CodePro Analytix is an Eclipse plugin that provides a set of
analysis tools – code audit, metrics, test generation, JUnit test
editing, code coverage and team collaboration features and
functionality – to facilitate the analysis and refactoring of the
code.
This tool was used in this project to find similar code.

Figure 5. Results for similar code in CodePro Analytix

2.6 SonarLint
SonarLint is an IDE extension, in this case used in eclipse, that
helps detect and fix quality issues in code.

Figure 6. Example of a sonarLint report

2.7 JSpIRIT
JSpiRIT is an eclipse plugin that helps identifying 10 code
smells presented by Lanza et al. [3]. This code smells are Brain
Class, Brain Method, Data Class, Disperse Coupling, Feature
Envy, God Class, Intensive Coupling, Refused Bequest, Shotgun
Surgery and Tradition Breaker. More about this tool can be read
in [8].

Figure 7. Example of JSpIRIT view of code smells

3. JHotDraw5.2
JHotDraw is a Java GUI framework to make technical and
structured Graphics.

Figure 8. JHotDraw interface example

3.1 Overview Pyramid and metrics
With inFusion we produced an overview Pyramid for JHotDraw
as seen next:

Figure 9. Overview Pyramid of JHotDraw 5.2 obtained with
infusion
From this Overview Pyramid we can interpret that:

• Class hierarchies tend to be tall and wide. (i.e.
inheritance tree tends to have many depth-levels and
base-classes with many derived sub-classes).

• Classes tend to:
o Contain an average number of methods;
o Be organized in average-sized packages;

• Methods tend to:

o Be rather short yet having a rather complex
logic (i.e. many conditional branches);

o Call few methods (low coupling intensity)
from many other classes (high coupling
dispersion);

If we run Metrics with JHotDraw system, we can also identify
some problems and minor improvements that can be worth
analyze and address. According to this plugin evaluation, there
are two main problems in the method intersect from the Geom
class:

• A McCabe Cyclomatic Complexity of 13, which is a
moderate risk for possible method bugs.

• And a significantly high number of parameters in one
method, in this case, 8 parameters.

Figure 10. Metrics view of JHotDraw

3.2 System organization and distribution
This section aims to understand and visualize JHotDraw
according to three dimensions: size, complexity and coupling.
We will use Treemap view from SourceMiner, in order to reveal
how well the systems are distributed across classes and
packages.

Figures 11, 12 and 13 are the results of SourceMiner with the
JHotDraw system. By analyzing the different views, we can
state that the JHotDraw is a well distributed system in terms of
size and complexity. There are more size variations with a
relative class complexity. And, in terms of coupling, there is
also a low coupling intensity with high coupling dispersion.

Figure 11. Treemap view of size dimension of JHotDraw

Figure 12. Treemap view of complexity dimension of
JHotDraw

Figure 13. Treemap view of coupling dimension of JhotDraw

3.3 Disharmonies, Code Smells and their
Refactorings

With the help of inFusion we were able to find some
disharmonies and code smells that can affect the quality of this
system:

• On the packages there is 1 unstable dependency;
• In relation to classes:

o There are 2 Data classes;
o There are 2 Refuse Parent Bequest.

• In relation to the method:
o there are 80 Feature Envy;
o there is 1 Brain Method;
o It was found 1 intensive coupling;
o There is 9 shotgun surgery.

Unfortunately, this tool doesn’t tell us which classes, methods
and packages have problems, so we will have to complement
this information with ones from other tools, specifically with
JDeodorant, JSpIRIT and Code Pro. In general, with this new
tools we obtain results a lot different than the results given by
inFusion but since this tools show which problems they refer to
we could analyze de code and accept them or not.
There are a few problems in terms of evolution of software,
these problems are related to a few code smells that can ease the
creation of bugs and errors and few errors of conventions that
can affect the understanding of the code.

Running the tools, we can right away say that this software has
no Long Methods, no Intensive Coupling, no Brain Method and
no Brain Class. This means that in this section we are going to
analyze and refactor 8 smells or disharmonies:

• Duplicated Code;
• FeatureEnvy;
• God Class;
• Tradition Breaker;
• Data Class;
• Refused Bequest;
• Shotgun Surgery;
• Dispersed Coupling.

3.3.1 Duplicated Code

Using CodePro we were able to find sevem similar codes that
given a closer look can be categorized as the Duplicated Code
smell and for that reason can be refactored. These codes are:

1. In the class JavaDrawApp the methods
createAnimationMenu and createWindowMenu;

2. In the class ElbowHandler the methods constrainX and
constrainY;

3. In the class ShortestDistanceConnector the method
findPoint has the same code repeated twice for the x-
dimension and the y dimension.

4. The classes PolygonScalehandle and
TriangleRotationHandle have each one a method
called getOrigin that have few differences between
each other.

5. In the classes ChangeConnectionHandle and
ConnectionHandle there are two methods that are
exactly the same in both – invokeStep and
findConnectableFigure;

6. In the class ChopBoxConnector there are two methods
very similar to each other, findStart and findEnd.

To refactor these codes, it would probably be adequate to use
one of two types of refactoring, Move Method or Extract
Method. For 5 this would be easy to do, we could simply extract
the method for one class that the other two have in common and
those two methods could simply call the new method. For 1, 2
and 6 the right thing to do could be creating a generic method
that would receive the variables that are different in both
presented methods and that could be called by them. For 3 the
solution could be to create different method that would receive
the variables and calculate the similar calculations. For 4 we
could do the same thing as for 1, 2 and 6 but this generic method
would have to be extracted to one class that both the other would
have in common.
With SonarLint we also identified a code duplication where two
methods in the same class (AbstractFigure) do exactly the same
thing but have different names, one of them should be change or
simple erased and substituted by the other one.

3.3.2 Feature Envy
In terms of Feature Envy, with JDeodorant we found two
methods in class PertFigure that seem to use too much data
from other classes (writeTask and readTask) and one method
that seems to do the same in the class FigureAttribute (method
write). These results are a lot different from the information
given by inFusion since it says it has 80 Feature Envy, for that

reason to complement this mixed information we also run
JSpIRIT that gives a result even bigger than inFusion – 130
other Feature Envy results.
Analyzing the methods given by JSpIRIT we can see that most
of this method in fact use and alter variables from other classes
and for that reason we can consider these 130 smells.
To correct this smell, we should use the refactoring Move
Method. For the sake of understanding this refactoring we are
not going to describe the refactoring of all the 133 smells, but
we are going to exemplify with the results given by JDeodorant.
Since the method writeTasks and the method write make
alterations in the class StorableOutput these methods should be
moved to that class, with the exception that the method write
keeps existing in the class FigureAttribute but calls the method
with the same name of the class StorableOutput. The same
happens for readTask but this method should be moved to the
class StorableInput.

3.3.3 God Class
10 God Classes were found in JHotDraw with JDeodorant which
is once again a bit different of what inFusion told us (it didn’t
identify any god class), complementing this information with
the one given by JSpIRIT we found 7 God Classes, two of them
being the same in both tools. To make sure all of them are God
Classes we analyzed the code and see that they can potentially
be God Classes. These classes are: Vector, DrawApplet,
FloatingTextField, StorableOutput, StorageFormatManager,
CompositeFigure, DrawApplication, TextFigure, NodeFigure
Iconkit, PolyLineFigure,StandardDrawingView,
LineConnection, PertFigure and ConnectionTool.
To refactor this classes, we will use Extract Class, which means,
we will break a God Class into one or more classes that have
specific objectives, taken a weight from the original class. Three
examples of this refactoring are presented in Figure. 14, Figure
15 and Figure 16.

Figure 14. Refactoring of the class StorageOutput

Figure 15. Refactoring of the class FloatingTextField

Figure 16. Refactoring of the class NodeFigure

3.3.4 Tradition Breaker
We found one Tradition Breaker with JSpIRIT (class
CompositFigure) which if we analyze a little bit further, we can
see that it is probably right, since the class doesn’t specialize a

lot of the inherited methods and mostly only adds brand new
services that don’t depend on the inherited functionality.
Looking at the inspection and refactoring process of a Tradition
Breaker in [3] it seems right to break this class in two,
extracting the independent parts as a new class.

3.3.5 Data Class
7 Data Classes where found with JSpIRIT (Figure,TextFigure,
PolyLineFigure, StandardDrawingView, Geom, DrawingView
and DrawApplication) but it is somewhat difficult to understand
if they are actually Data Class. In our point of view this classes
do a lot more than just hold data and for that reason they should
not be refactored at this point.

3.3.6 Refused Bequest
In relation to the smell Refused Bequest JSpIRIT found 26
results (TextTool, StandardDrawing, PolygonFigure,
TextFigure, MDI_DrawApplication, SplitPaneDrawApplication,
NodeFigure, PolyLineFigure, RoundRectangleFigure,
AnimationDecorator, LineConnection, JavaDrawApp,
ChangeConnectionHandle, CustomSelectionTool,
AtributeFigure, ConnectionHandle, GraphicalCompositeFigure,
ToolButton, RelativeLocator,CompositeFigure, PolygonTool,
PetFigure, ConnectionTool, URLTool, ImageFigure,
TriangleFigure).
Analyzing this classes further we can see that they do not refuse
interfaces but refuse some implementations, so this is not a very
strong smell in most of them since it’s alright to use subclassing
to reuse a bit of behavior. For example, the class TextFigure
extends AttributeFigure and doesn’t refuse the interface it
simple rewrites some methods, uses other from the superclass
and adds more methods than the original ones. For this reason,
this smell is also not going to be refactored.

3.3.7 Shotgun Surgery
23 methods suffering from Shotgun Surgery where found:

• methods displayBox, includes, canConnect, and
getAttribute from interface Figure;

• methods drawing and view from class AbstractTool;

• method drawing, selectionCount, clearSelection, and
checkDamage from interface DrawingView;

• method owner from interface Connector;

• methods writeStorable and writeInt from class
StorableOutput;

• method view from class DrawApplication;

• methods readStorable and readInt from class
StorableInput;

• methods listener, willChange and changed from
AbstractFigure;

• method nextFigure from FigureEnumeration;

• and methods owner and displayBox from class
AbstractHandle.

Analyzing them further we can see that these methods are in fact
called by many other classes and if change can affect a lot of
other methods.

What we propose to solve this problem is to create a new class
to where we would reunite all the methods connected to the
original one so that the methods are all together and can be
easily identified. If they are easily identified there is less
probability that we forget to correct one method when the
original one is changed.

3.3.8 Dispersed Coupling
It was found with SpIRIT 7 Dispersed Couplings
(UngroupCommand.execute, SelectionTool.mouseDown,
ShortestDistanceConnector.findPoint, DrawApplication.print,
PastCommand.execute, StandardLayouter.calculateLayout,
FigureAtributes.write). Most of these problems could imply that
these methods are also Brain Methods but since we didn’t
identify any Brain Methods with the tools, we will consider that
this methods are the rare cases in which the Dispersed Coupling
is not connected a Brain Method.
To refactor these methods, we propose a closer look at them and
trying to understand if they can’t pass part of the method to the
method he already invokes. Other option we propose, if the first
one is not possible, is to create one or more methods to
withdraw some of the weight of the original method.

3.3.9 Type Checking and other problems
Doing a Type Checking with JDeodorant we obtain two errors
one in the class ElbowConnection and other the class Execute. In
both of them the problem has to do with constants that affect the
behavior of the method. The suggestion is to use a refactoring
called Replace Type Code with a State/Strategy. The idea is that
we can transform those constants in state objects.
Running SonarLint gives more errors and problems that can
easily be corrected:

• Some packages are not name according to the
convention and should be renamed;

• A few classes have private variables that end up not
being used and for that reason should be erased;

• Some methods have parameters that are not used and
should be removed;

• Some variables are defined in interfaces, so they
shouldn’t also be declared in the classes that
implement those interfaces;

• There are unnecessary casts;

• There is a few synchronized class “Vector” that should
be replaced by an. Unsynchronized one;

• System.out should be replaced by System.err;

• There is one deprecated code that should be erased one
day;

• There are some missing deprecated notes;

• There should be nested comments to explain why
some methods are empty;

• There are a few unordered modifiers;

• There is one switch that is missing the default case;

• There a few methods that should just inherit the same
method of the superclass and not simply call it;

• There are casts missing;

• The is a commented line of code that should be
removed;

• There is one case insensitive operation that doesn’t
need the toLowerCase() method;

• There are if statements that could be merged;

• There are “Integer” constructors that should be
removed;

• The class BoxHandleKit should have a private
constructor to hide. The. implicit public one;

• There are a few imports that are unused and should be
removed;

• There are variables that are reintroduce instead of just
using the ones that were already declared.

Some of these errors are minor bugs and smells that probably
don’t actually affect the performance of the program but should
be altered so that the code complies with the conventions and is
easier to understand by other programmer that can have the
necessity to reuse or update the code.

4. JUnit4
JUnit is very popular unit testing framework for the Java
programming language. It is widely used for the development of
test-driven development.

4.1 Overview Pyramid and metrics

Figure 17. Overview Pyramid of JUnit4 obtained with
infusion
From the Overview Pyramid represent before we can interpret
that:

• Classes hierarchies tend to be tall and of average width
(i.e. inheritance trees tend to have many depths-levels
and base classes with several directly derived sub-
classes);

• Classes tend to:
o Be rather. small (i.e. have only. A few

methods);
o Be organized in fine-grained packages (i.e.

few classes per package);
• Methods tend to:

o Be rather short yet having a rather complex
logic (i.e. many conditional branches);

o Call few methods (low coupling intensity)
from many other classes (high coupling
dispersion);

4.2 System organization and distribution
This section aims to understand and visualize JUnit according to
three dimensions: size, complexity and coupling. We will use
Treemap view from SourceMiner, in order to reveal how well
the systems are distributed across classes and packages.
In Figures 18 and 19 we illustrate both views using size as
dimension. With Treemap, we can see that classes tend to have
few methods and methods tend to be short. This agrees with the
interpretation of the overview pyramid, from the last section.
With the Grid view, we can state that packages tend to have few
classPolygones and different sizes.
Figures 20 and 21 reveals that JUnit, in terms of complexity, is
well distributed across classes and are just a few that indicate
slightly more complex operations. With the Grid view, we can
state also that this complexity is well distributed across the
project packages.
Figure 22 represents coupling dimension and in here we can
state that JUnit is not a system that is intensively coupled by
method calls, but methods tend to call many other methods from
other classes, with a high coupling dispersion.

Figure 18. Treemap view of size dimension of JUnit4

Figure 19. Grid view of size dimension of JUnit4

Figure 20. Treemap view of complexity dimension of JUnit4

Figure 21. Grid view of complexity dimension of JUnit4

Figure 22. Treemap view of coupling dimension of JUnit4

4.3 Identity disharmonies and Code Smells
There are a few identity disharmonies that can affect the quality
of this system. The disharmonies identified are as follow:

• In relation to packages there are:
o 20 Cycling dependencies;
o 4 unstable dependencies;

• In relation to classes there are:
o 1 God Class;
o 1 Data class;
o 1 Refuse Parent Bequest;

• In relation to the method:
o there are 6 Feature Envy;
o there is 1 Brain Method;
o There are 4 Shotgun Surgery.

As said for JHotDraw, the inFusion tool give us this information
but doesn’t tell us where are these concrete problems. To
identify this exact problems, we will complement this
information with the ones given by JDedodorant, JSpIRIT and
Code Pro tools. Once again we will receive information from
different sources and with so, expect different results from the
ones given by inFusion, but we will analyze the code to validate
all this information.

We will also run SonarLint to see if there are problems in terms
of evolution of software, these problems are related to a few
code smells that can ease the creation of bugs few errors of
conventions that can affect the understanding of the code.

Running the tools, we can right away say that this software has
no Brain Method and no Brain Class. This means that in this
section we are going to analyze and refactor ten code smells or
disharmonies:

• Duplicated Code;
• Feature Envy;
• God Class;
• Tradition Breaker;
• Data Class;
• Refused Bequest;
• Shotgun Surgery;
• Dispersed Coupling;

• Intensive Coupling;
• Long Method.

4.3.1 Duplicated Code
Using CodePro we were able to find 11 similar codes patterns.
After inspecting each one of them, we filter the most similar
ones, they are:

• both runBefores() and runAfters() methods from
ClassRoadie and MethodRoadie classes;

• getSingleDataPointFields() and getDataPointFields()
from SpecificDataPointsSupplier class;

• both printFooter() from ResultPrinter and TextListener
classes;

• evaluate() from ExternalResource and RunAfters
classes;

• getAnnotatedFieldValues() and
getAnnotatedMethodValues() from TestClass class;

• equals() in TestWithParameters and TestClass class;
• and getSingleDataPointFields() and

getDataPointFields() from AllMembersSupplier class.

These are all methods that have similar code and we should
eliminate this duplication by using Extract Method followed by
a Pull Up Field in 1,2 and 4 bullet lists. We can also consider
Extract Class but in these cases, the classes are related, and we
shouldn’t add an extra class. In other bullet cases, we should just
Extract Method since the code is quite similar but not exactly
the same.

4.3.2 Feature Envy
By running JDeodorant in JUnit4, we found a serious of
methods that are using other methods from other target classes.
With the total of nineteen identified (contrary to inFusion results
– six feature envy). But, if we explore the most target accessed
features, we can see that the method testAbortedfrom the
JunitClassRunner class uses three methods from RunNotifier
class. Similar, there are other few methods that use other class
methods. For instance, printFooter (from ResultPrinter class)
and getNotifier (from JUnit4AdapterCache) are methods that
call a lot methods from the TestResult class. A lof of these
methods are not identified by inFusion, since there are not
critical. Furthermore, we’ve also compare these results against
the JSpIRIT tool and it also identify the same problems and plus
others.
Analyzing the different results methods from JspIRIT, we can
identify that are still other methods (not identified by
JDeodorant) that alter variables and call variables from other
target classes. With so, we can consider the total amount of 33
code smells in the system.
For all this code smell problems, we have some refactoring
opportunities that can be applied. The opportunity identified by
JDeodorant is the Move Method type. To give an example for
this type being applied, we can analyze the runCause method
from ErrorReportingRunner class. This method body is just
three method calls to get features from RunNotifier class. This
method logic should be moved to the target class since it is just
interested from the target class features.

4.3.3 God Class
A total of 23 possible God Classes are identified using
JDeodorant. InFusion identified one single God Class. JspIRIT
identified only 6. These six possible God classes are:
BlockJUnit4ClassRunner, Assert, TestCase, TestClass,
BaseTestRUnner and ParentTestRunner. After analyzing the
source code of all this possible classes, the most likely class that
performs and is responsible for the most system logic is the
Assert class. This class is a long class, with a lot of methods and
with a total cyclomatic complexity of 108. Since a God class is
a complex class that can potentially bring disharmonies to the
system, we should consider refactoring it. The refactor type to
be used in this God class cases is the Extract Class type, which
means that we should divide this class into multiple subclasses.

4.3.4 Tradition Breaker
Using JSpIRIT, we found two Tradition Breaker -
CategoryFilter and TemporaryFolder classes. These classes
extend the classes Suite and ExternalResource, respectively.
After performing a code analysis, we can validate the two
identified Traditional Breaker classes. These classes don’t use
all protected features from their parent classes and they add new
services that don’t depend on the inherited functionality.

4.3.5 Data Class
Contrary to one Data Class identified by inFusion, JSpIRIT
identified two possible Data Classes – TestRunner and
BaseTestRunner. According to Fowler’s definition [1] for the
Data Class code smell, these classes only have fields, getting
and setting methods for these fields. If we analyze the source
code for this two possible classes, in our opinion, we don’t think
that these classes apply to this definition. Yes, they are simple
classes, with fields and get/set methods, but they also have other
methods with extra functionality rather than retrieve the class
fields.

4.3.6 Refused Bequest
If we run JSpIRIT, 16 Refused Bequest were identified. The
classes are: BlockJUnit4CLassRunner, Categories,
TheoryAnchor, TestRunner, Theories, JUnit38ClassRunner,
JUnit4ClassRunner, CategoryFilter, ErrorReportingRunner,
TestCase, BlockJUNit4ClassRunnerWithParameters,
AllMembersSupplier, TemporaryFolder, FrameworkMethod,
FailOnTimeout and ParentRunner.

For instance, the TestCase class only overrides two methods
from their parent interface – Test - but this interface only has
two methods so, we this is not a Refused Parent Bequest case.
Other examples identified by the tools, are just possible cases
for refused bequest cases and, if we inspect the hierarchies for
these cases, it does not apply for Fowler’s definition that some
subclasses don’t use the inherited methods from their parents.

Other classes inherit other abstract classes with just one method.
This is also another case of a possible refused bequest, but if
validate in the code and the methods inherited are implemented.
With all this in mind, we don’t propose refactoring.

4.3.7 Shotgun Surgery
In terms of the Shotgun Surgery code smell, JSpIRIT results
found 6 possible cases. They are as follow:

• getRunner() from Request class;
• evaluate() from Statement class;
• invokeExplosively() and getName() from

FrameworkMethod class;
• and getAnnotatedMethods() and getJavaClass() from

TestClass class.

These are methods that are called by many other classes and
their change can alter many classes. But, in our opinion,
evaluate() method is not the case, since it is an abstract method,
meaning that it implementation can be override and thus, not
alter in a method alter chain “reaction”. And so, this result is
almost accurate as inFusion result, with 4 Shotgun Surgery
cases.

Fowler refactoring technique is the solution here for the other
cases. We propose to to create a new class where we would put
all behavior changes. The idea should be to arrange things in
order to have a common link between all changes.

4.3.8 Dispersed Coupling
With JSpIRIT we can identify the following 10 Dispersed
Couplings:

• validateDataPointFields() and
validadeDataPointMethods() from Theories class;

• makeDescription() from JUnit38ClassRunner class;
• validateTestMethods() from MethodValidator class;
• assertThrows() from Assert class.
• createTestUsingFieldInjection() from

BlockJUnit4ClassRunnerWithParameters class;
• getTrimmedStackTraceLines() and

getCauseStackTraceLines() from Throwables class;
• getTest() from BaseTestRunner class;
• and filter() from ParentRunner class

According to Lanza and Marinescu definition of dispersed
coupling, these methods communicate with an excessive number
of classes, whereby this communication calls just one or few
methods [3]. This type of disharmony could imply the existence
of Brain Methods. And inFusion, caught one and we can imply
it is one of these methods. The detection strategy here would be
to identify the methods that have a high dispersion of their
respective coupling.

Refactoring these operations need a more precise information
about the system but the strategy would be to identify the
methods affected by the Shotgun Surgery (in 4.3.7), and move
some of the method body to the methods it invokes. Before this,
we should have a good understanding about the JUnit domain
since we would add new abstractions to the system.

4.3.9 Intensive Coupling
This type of disharmony happens when a method is dependent
from many other operations, where these operations are

dispersed into two or more classes [3]. There are 5 cases of
Intensive Coupling in the JUnit system, identified by JSpIRIT.

These disharmonies are:
• validateTestMethods() from Theories class;
• addMultiPointMethods() from AllMembersSupplier

class;
• runTestMethod() from MethodRoadie class;
• order() from ParentRunner class;
• and addTestsFromTestCase() from TestSuite class.
These methods tend to call many methods, and they are
dispersed in few classes throughout the system. In the JUnit
system, the dispersion is not as low as expected and the
refactoring to be applied in this case should be to create one
class that will act as a provider for the multiple calls in
different methods.

4.3.10 Long Method
To identify this code smell, we used JDEodorant. This tool
identified 33 possible Long Methods. One example is the
method getTest() from the BaseTestRunneri class. This method
have almost 50 lines of codes and it should be a good solution to
decompose this method. This is not the case for a method with
lots of parameters (it only have one), so the Extract Method do
not apply, but rather a good technique should be to identify for
semantic distance between clumps of code. These clumps should
be worth extracting. Other cases for refactoring should be
consider and always have in mind to decompose into new
methods.

4.3.11 Type Checking and other problems
Similar to JHotDraw, when we do a Type Checking with
JDeodorant we obtain one problem that has to do with constants
that affect the behavior of the method. This problem happens in
the class BlockJUnit4ClassRunnerWithParameters on the
method. createTest. The suggestion is to use a refactoring called
Replace Type Code with a State/Strategy. The idea is that we
can transform those constants in state objects.
To finalize the analysis of the code we run SonarLint to find
some other problems that weren’t identified by the other tools.
These problems are:

• There is an ObjectOutputStream thar should be closed;

• There are two classes that should be renamed;

• There are a few generic wildcard types that should be
removed;

• There are three methods that should be refactored to
reduce the Cognitive Complexity;

• Some method should have nested comments to explain
why they are empty;

• System.out should be replaced by System.err;

• There is a few synchronized class “Vector” that should
be replaced by an. Unsynchronized one;

• There are two classes that should be rename or its
inheritance should be corrected;

• There are a few fields that should be renamed;

• There are method parameters that are unused and
should be removed;

• There are a few loops that should be refactored;

• There is an if statement that should be merged with the
enclosing one;

• There are a few public constructors that should be
hidden;

• A few try blocks should be extracted to a separate
method;

• There are two blocks of code that should be removed
or filled;

• There are deprecated codes that should be erased one
day;

• There are a few declarations of thrown exception that
should be removed;

• There are unnecessary casts that should be removed;

• There are a few methods that should be moved into
other classes;

• Some deprecated methods are being override and
shouldn’t be or should be marked as Deprecated;

• Some variables should be marked as final.

5. CONCLUSION
With this work we achieved our goal of analyzing a system not
only in terms of its metrics and organization but also in terms of
code smells, disharmonies and errors. By using different
techniques and tools to extract metrics of software we were not
only able to identify possible sources of problems and bugs, but
we were also able to propose different types of refactoring to
better the software quality, design and usability.
In terms of finding code smells there were a few discrepancies
between the tools but we were able to analyze the information
an
JHotDraw is a system well balanced, very polish in terms of
code and structure. But it also has a few problems not only in
terms of code smells but also in terms of conventions to which a
few refactorings should be consider.
On the other hand, JUnit is also a very well-known system used
by other Java programs, which explains the good design
structure, with a lot of packages, each with a low number of
classes. In comparison with JHotDraw in terms of metric it
seems as balanced but in terms of code smells and disharmonies
it seems to have a few more problems.
In general, both systems have code with a lot of quality in terms
of structure, organization and design that can only benefit with
from the refactoring proposed.

6. REFERENCES
[1] Fowler M. Refactoring: Improving the Design of Existing

Code, Addison-Wesley, 1999.

[2] JUnit - About[online] Retrieved (2 oct. 2018) from:
https://junit.org/junit4/

[3] Lanza M.; Marinescu R. Object-Oriented Metrics in
Practice. Springer-Verlag 2006. ISBN-10 3-540-24429-8

[4] JSpIRIT - Santiago Vidal [online]. Retrieved (16 oct.2018)
from:
https://sites.google.com/site/santiagoavidal/projects/jspirit

[5] JHotDraw download page at sourceforge [Online] Retrieved
(2 oct. 2018) from:
https://sourceforge.net/projects/jhotdraw/

[6] CodePro AnalytiX [online]. Retrieved (19 oct. 2018) from:
https://wiki.eclipse.org/images/7/75/CodeProDatasheet.pdf

[7] JDeodorant | Eclipse Plugins, Bundles and Products [online]
Retrieved (12 oct. 2018) from:
https://marketplace.eclipse.org/content/jdeodorant

[8] JSpIRIT: a flexible tool for the analizys of code smells
[online] Retrieved (20 oct. 2018) from:
https://www.researchgate.net/publication/300416283_JSpIR
IT_a_flexible_tool_for_the_analysis_of_code_smells

[9]
[10] Tools/Integration | OMD Source Code Analyzer [Online]

Retrieved (19 oct 2018) from:
https://pmd.github.io/latest/pmd_userdocs_tools.html#eclip
se

