
1!

What is AOSD
(Aspect-Oriented Software Development)?

Ana Moreira
amm@di.fct.unl.pt

© 2011 Ana Moreira 2

Need for Separation of Concerns

Development requires focusing
on one concern

at a time

Large … complex … distributed software systems

2!

Separation of Concerns

E. Dijkstra, A Discipline of Programming,
Prentice Hall, 1976, pp. 210

Edsger Dijkstra 1930-2002 © 2011 Ana Moreira 3

The Problem of Crosscutting Concerns

• Broadly-scoped concerns
− Distribution, security, real-time constraints, etc.
− Crosscutting in nature
− Severely constrain quality attributes and

separation of concerns

© 2011 Ana Moreira 4

3!

What are Crosscutting Concerns?

  A concern whose specification (and
implementation) is scattered among several other
concerns

  A concern that crosscuts various requirements sets
or units in the specification

  A broadly scoped property that has an effect on
multiple requirements with potential consequences
to later development stages

© 2011 Ana Moreira 5

6

Good modularity

•  XML parsing in org.apache.tomcat
−  red shows relevant lines of code
−  nicely fits in one box

XML parsing

[1998-2002 Palo Alto Research Center Incroporated]

Good modularization

4!

7

Good modularity

•  URL pattern matching in org.apache.tomcat
−  red shows relevant lines of code
−  nicely fits in two boxes (using inheritance)

URL pattern matching

[1998-2002 Palo Alto Research Center Incroporated]

Good modularization

8

Crosscutting Concerns Affect
Modularization

•  logging in org.apache.tomcat
−  red shows lines of code that handle logging
−  not in just one place
−  not even in a small number of places

logging is not modularized

[1998-2002 Palo Alto Research Center Incroporated]

Bad modularization

5!

Resulting Problems
•  Scattering

− The specification of one property is
not encapsulated in a single
requirements unit, e.g., a viewpoint,
a use case.

  Tangling
  Each requirements unit contains

descriptions of several properties or
different functionalities

© 2011 Ana Moreira 10

Consequences
• Redundancy

• Difficult to understand each concern and
each module

• Difficult to evolve each module

• Reduced reuse

• Increased developing time and cost

© 2011 Ana Moreira 11

6!

Crosscutting concerns

[R. Laddad (JavaWorld)]

© 2011 Ana Moreira 12

Aspect-Oriented Software
Development (AOSD)

Distribution

Security

Data
Management

AOSD tools, techniques
and

methodology

Distribution

Security

Data
Management

© 2011 Ana Moreira 13

7!

A Definition of AOSD

• AOSD: systematic identification,
modularisation, representation and
composition of crosscutting concerns [1]

 [1] Rashid, A., Moreira, A., Araujo, J. “Modularisation and Composition of
Aspectual Requirements”, Proceedings of 2nd International Conference on
Aspect-Oriented Software Development, ACM, 2003.

© 2011 Ana Moreira 14

Potential Benefits of AOSD
•  Improved ability to reason about problem domain

and corresponding solution

•  Reduction in application code size, development
costs and maintenance time

•  Improved code reuse

•  Requirements, architecture and design-level reuse

•  Improved ability to engineer product lines

•  Context-sensitive application adaptation

•  Improved modelling methods

© 2011 Ana Moreira 15

8!

Crosscutting: The Tracing Concern
class A {
 // some attributes
 void m1() {

 System.out.println(“Entering
 A.m1()”);

 // method code
 System.out.println(“Leaving

 A.m1()”);
 }

 String m2() {
 System.out.println(“Entering

 A.m2()”);
 // method code
 System.out.println(“Leaving

 A.m2()”);
 // return a string

 }

class B {
 // some attributes
 void m2() {

 System.out.println(“Entering
 B.m2()”);

 // method code
 System.out.println(“Leaving

 B.m2()”);
 }

 int m3() {
 System.out.println(“Entering

 B.m3()”);
 // method code
 System.out.println(“Leaving

 B.m3()”);
 // return an integer

 }
© 2011 Ana Moreira 16

 Aspect-Oriented Software Development beyond Programming © 2010 Ana Moreira 17

Wouldn’t it be Nice if …
class A {
 // some attributes
 void m1() {

 // method code
}

 String m2() {
 // method code
 // return a string

 }

class B {
 // some attributes
 void m2() {

 // method code
 }

 int m3() {
 // method code
 // return an integer

 }

aspect Tracing {

 when someone calls these methods

 before the call {System.out.println(“Entering ” + methodSignature);}

 after the call {System.out.println(“Leaving ” + methodSignature);}
}

© 2011 Ana Moreira 17

9!

Tangling and Scattering

Account Customer Loan

Data Classes

ATM PC Terminal Web

User Interface

Persistence Primary Functionality Security

© 2011 Ana Moreira 18

 Aspect-Oriented Software Development beyond Programming © 2010 Ana Moreira

Wouldn’t it be Nice if …

Account Customer Loan

Data Classes

ATM PC Terminal Web

User Interface

aspect
Persistence

aspect
Security

© 2011 Ana Moreira 19

10!

 Aspect-Oriented Software Development beyond Programming © 2010 Ana Moreira 20

The Notion of a Join Point
class A {
 // some attributes
 void m1() {

 // method code
}

 String m2() {
 // method code
 // return a string

 }

class B {
 // some attributes
 void m2() {

 // method code
 }

 int m3() {
 // method code
 // return an integer

 }

aspect Tracing {

 when someone calls these methods

 before the call {System.out.println(“Entering ” + methodSignature);}

 after the call {System.out.println(“Leaving ” + methodSignature);}
}

Type of
Join Point

Specific Join
Points in this
Program that

we are
Interested in

© 2011 Ana Moreira 20

AOSD: main steps

© 2011 Ana Moreira 21

11!

AOP
•  AspectJ (1997) http://aspectj.org/

•  Composition filters (1991) [Bergmans and Aksit]

•  DemeterJ/DJ (1993) [Lieberherr, Orleans, and Ovlinger]

•  Hyper/J (1999) [Ossher and Tarr]

•  CaesarJ http://caesarj.org/

•  Apostle, Aspect Programming em Smalltalk

•  AspectC, uma extensão para C
•  AspectC++, uma extensão para C++

•  JAC, Java Aspect Component [Pawlak, L. Seinturier, L.
Duchien, and G. Florin]

© 2011 Ana Moreira 22

AspectJ

•  Extension to Java

•  Developed at Xerox Park por Gregor Kyczales

•  Integrated in Eclipse
since 2002
www.eclipse.org/aspectj

[Gregor Kizales]

© 2011 Ana Moreira 23

12!

AspectJ: code generation

© 2011 Ana Moreira 24

AspectJ
• Join points

• Pointcuts

• Advices

• Aspects

• Aspect weaving

© 2011 Ana Moreira 25

13!

AspectJ
Joint points

• Join points: well-defined points in the
execution of a program
− Method call, Method execution
− Constructor call, Constructor execution
− Static initializer execution
− Object pre-initialization, Object initialization
− Field reference, Field set
− Handler execution
− Advice execution

© 2011 Ana Moreira 26

AspectJ
Pointcuts

•  A set of join point, plus, optionally, some of the
values in the execution context of those join
points.

•  Can be composed using boolean operators || ,
&&

• Matched at runtime

14!

Language
Advice

• Method-like mechanism used to declare that
certain code should execute at each of the join
points in the pointcut.

•  Advices:
− before
− around
− after

Aspect weaving

• Aspect weaving: makes sure that
applicable advice runs at the appropriate
join points.

•  In AspectJ, almost all the weaving is done
at compile-time to expose errors and
avoid runtime overhead.

15!

A guide tour of AspectJ

•  C has “hello word”

•  Lisp/Scheme have the “factorial” function

•  Smalltalk has the “Counter” class

•  Java has the “Observer” pattern

•  AspectJ has the “figure editor” system

© 2011 Ana Moreira 30

Figure editor example

•  A figure consists of several figure
elements. A figure element is either a
point or a line. Figures are drawn on
Display. A point includes X and Y
coordinates. A line is defined as two
points.

© 2011 Ana Moreira 31

16!

Crosscutting concern (1)

  Components are
- Cohesive
- Loosely Coupled
- Have well-defined interfaces

(abstraction, encapsulation)

Well done!
Now I would like an extension. Notify
ScreenManager if a FigureElement moves

© 2011 Ana Moreira 32

Crosscutting concern (2)
Now enhance the design to trace
the execution of all the operations

© 2011 Ana Moreira 33

17!

Example: “tracing” and “tracking”(1)

Tracer

traceEntry ()
traceExit ()

© 2011 Ana Moreira 34

Example: “tracing” and “tracking” (2)

© 2011 Ana Moreira 35

18!

Ana Moreira 2005/2006

Without AOP

© 2011 Ana Moreira 36

With AOP
aspect Tracing {

 pointcut traced():
 call(* Line.*) ||
 call(* Point.*);

 before(): traced() {
 println(“Enter ” +
 thisJoinPointStaticPart.getSignature());
 }

 after(): traced() {
 println(“Exit ” +
 thisJoinPointStaticPart.getSignature());
 }
}

© 2011 Ana Moreira

19!

Aspects modularized

© 2011 Ana Moreira 38

Main Value of Aspect-Orientation
•  Abstraction: abstract away from the details of how that

crosscutting concern, or aspect, might be scattered and
tangled with the functionality of other modules in the
system

•  Modularization: keep crosscutting concerns separated
regardless of how they affect or influence various other
modules in the system, so then we can reason about each
module in isolation – Modular Reasoning

•  Composition: the various modules need to relate to each
other in a systematic and coherent fashion so that one may
reason about the global or emergent properties of the
system – Compositional Reasoning

© 2011 Ana Moreira 39

20!

Pointers to Further Reading
•  AOSD Wiki at: http://www.aosd.net

•  Introduction to AOSD White Paper and AOSD Ontology available at:
http://www.aosd-europe.net

•  Communications of the ACM, Special Section on AOP, 44(10), October
2001

•  IEEE Software, Special Section on AOP, 23(1), Jan/Feb 2006

•  Aspect-Oriented Software Development, Filman, Elrad, Clarke, Aksit
(eds), Addison-Wesley 2004

•  Discovering Early Aspects, Baniassad, Clements, Araujo, Moreira,
Rashid, Tekinerdogan, IEEE Software 23(1), Jan/Feb 2006

•  Special Issue on Early Aspects, IEE proceedings - Software
Engineering - Volume 151, Issue 04, August 2004, (Rashid, Moreira,
Tekinerdogan (eds))

© 2011 Ana Moreira 40

