
Object Constraint Language (OCL)

1

Métodos de Desenvolvimento de Software
Software Development Methods

(MDS)
2016/2017

A motivating example: A Mortgage System
2

1.A person may have a mortgage only on a house she owns.
2.The start date of a mortgage is before its end date.
How can we modify this diagram to express that?

◻Person with name and ID
◻Relation marriage

A motivating example: Marriage
3

How can we modify this diagram to express that a person can
not get married with herself?

History
4

◻First developed in 1995 as IBEL by IBM’s Insurance
division for business modelling
◻IBM proposed it to the OMG’s call for an
object-oriented analysis and design standard. OCL
was then merged into UML 1.1.
◻OCL was used to define UML 1.2 itself.

Companies behind OCL

◻Rational Software, Microsoft, Hewlett-Packard,
Oracle, Sterling Software, MCI Systemhouse, Unisys,
ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon,
Reich Technologies, Softeam

5

UML Diagrams are NOT Enough!

◻We need a language to help specifying additional
information in UML models.

⬜We look for some “add-on”, not a new language with
full specification capability.
⬜Why not first order logic? – Not OO.

◻OCL is used to specify constraints on OO systems.
⬜OCL is not the only one.
⬜But OCL is the only one that is standardized.
⬜Attention: OCL is not a programming language:

■No control flow, no side-effects.

6

Advantages of formal constraints
7

◻Better documentation
⬜Constraints add information about the model elements
and their relationships to the UML models

◻More precision
⬜OCL constraints have formal semantics; used to reduce
the ambiguity in the UML models

◻Communication without misunderstanding
⬜Using OCL constraints modelers can communicate
unambiguously

Where to use OCL?
8

◻Specify invariants for classes and types
◻Specify pre- and post-conditions for methods
◻As a navigation language
◻To specify constraints on operations
◻Test requirements and specifications

Combining UML and OCL

◻Without OCL expressions, many models would be
severely underspecified;
◻Without the UML diagrams, the OCL expressions
would refer to non-existing model elements,

⬜there is no way in OCL to specify classes and
associations.

◻Only when we combine the diagrams and the
constraints can we completely specify the model.

9

Elements of an OCL expression that are
associated with a UML model

10

◻OCLAny is the supertype of all types in OCL
◻basic types (direct subtypes of OCLAny):

⬜String, Boolean, Integer, Real
◻from the UML model:

⬜classes and their attributes
⬜enumeration types
⬜associations

Motivational Example: A Mortgage System
11

1.A person may have a mortgage only on a house she owns.
2.The start date of a mortgage is before its end date.

A person may have a mortgage only on a house she owns
1. context Mortgage context Mortgage
 invariant: self.security.owner = self.borrower invariant: security.owner = borrower

The start date of a mortgage is before its end date
2. context Mortgage context Mortgage
 invariant: self.startDate < self.endDate invariant: startDate < endDate

Motivational Example:
OCL specification of the constraints

12

When the name of an
association-end is missing at one of
the ends of an association, the name
of the type at the association end is
used as the role name.
If this results in an ambiguity, the role
name is mandatory.

If the role name is ambiguous, then it
cannot be used in OCL.

OCL Constraints

◻A constraint is a restriction on one or more values of
(part of) an object model/system.
◻Constraints come in different forms:

⬜invariant
■constraint on a class or type that must always hold.

⬜pre-condition
■constraint that must hold before the execution of an op.

⬜post-condition
■constraint that must hold after the execution of an op.

⬜guard
■constraint on the transition from one state to another.

13

OclAny - Supertype

OCL Expressions and Constraints

◻Each OCL expression has a type.
◻Every OCL expression indicates a value or object within the system.

⬜1+3 is a valid OCL expression of type Integer, which represents
the integer value 4.

⬜An OCL expression is valid if it is written according to the rules
(formal grammar) of OCL.

15

OCL Standard Types and operators
16

Let Expressions

Constraints (invariants), Contexts and Self

◻A constraint (invariant) is a boolean OCL expression
⬜ evaluates to true/false.

◻Every constraint is bound to a specific type (class, association
class, interface) in the UML model – its context.
◻The context objects may be denoted within the expression
using the keyword ‘self’.
◻The context can be specified by:

⬜Context <context name>
⬜A dashed note line connecting to the context figure in the

UML models
◻A constraint might have a name following the keyword
invariant.

18

OCL expression syntax

◻OCL expression may be broken down into three parts:
⬜The package context (optional)
⬜The expression context (mandatory)
⬜One or more expressions

package <packagePath>
 context <contexualInstanceName>: <modelElement>

 <expressionType> <expressionName>:
 <expressionBody>

 <expressionType> <expressionName>:
 <expressionBody>
 …
endpackage

Package context

expression context

expression

expression

19

package Package::SubPackage
 context X inv:
 ... some invariant ...
 context X::operationName(..)
 pre: ... some precondition ...
endpackage

OCL expression syntax

◻The context keyword introduces the context for the expression
⬜The keywords inv, pre, and post denote the stereotypes, respectively
«invariant», precondition», and «postcondition» of the constraint.

20

Navigation and naming rules

◻Rule 0 - Class names start with an uppercase letter and role
names with a lowercase letter
◻Rule 1 - While navigating from a class to another, if the role of
the destination class is defined then use it. Otherwise apply rule
2
◻Rule 2 - While navigating from a class to another, if the role of
the destination class is not defined, then use the name of the
destination class starting with a lowercase

21

Navigation and collections

◻OCL expressions can be built by navigating in the
class diagram
◻By definition, the result of navigating through just
one association is a Set
◻The result of navigating through more than one
association where at least one has multiplicity
many is a Bag.

⬜Exception: if the association is adorned with the
{ordered} tag, we get a Sequence.

22

Self: examples

Example 1:
context Company inv: self.numberOfEmployees > 50

The label inv: declares the constraint to be an «invariant»
constraint.

25

Self: examples

The label inv: declares the constraint to be an «invariant»
constraint.

Example 2:
context c: Company
 inv: c.numberOfEmployees > 50

26

Self: examples

The label inv: declares the constraint to be an «invariant»
constraint.

27

Example 3:
context Job
 inv: self.employer.numberOfEmployees >= 1
 inv: self.employee.age > 21

More Constraints

◻All players must be over 18.

◻The number of guests in each room doesn’t exceed
the number of beds in the room.

context Player inv:
self.age >=18

context Room
 inv:

guest -> size <= numberOfBeds

Room room guest Guest
numberOfBeds: Integer

*

Player
age(): Integer

The number of elements
in the collection self

28

Pre conditions, post conditions and
previous values

Account
balance : Real = 0

deposit(amount : Real)
Withdraw(amount : Real)
getBalance() : Real

context Account::withdraw(amount : Real)
pre: amount <= balance
post: balance = balance@pre – amount

context Account::getBalance() : Real
post: result = balance

Return value of operation

Balance before execution of operation

29

Expressing operation semantics

Date::isBefore(t:Date): Boolean =
if self.year = t.year then

if self.month = t.month then
self.day < t.day

else
self.month < t.month

endif
else

self.year < t.year
endif

30

context CustomerCard
 inv printedName:
 printedName = owner.title.concat(‘ ‘).concat(owner.name)

Invariants using Navigation over
Association Ends – Roles

31

Customer
name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard

valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,
 gold}
printedName: String

age():Integer
owner

card0..*

1

Where:
•printedName → a String
•owner → a Customer instance
•owner.title → a String
•owner.name → a String
•String is a recognized OCL type
•concat is a String operation, with signature concat(String): String

“The owner of the card of a membership must
be the customer in the membership”:

context Membership
 inv correctCard: card.owner = customer

Navigation from an association class can use the
classes at the association class end, or the role
names.
The context object is the association class instance.

LoyaltyProgram

enroll(c:Customer)

Membership

Customer
name: String
title:String
isMale: Boolean
dateOfBirth:Date

CustomerCard

valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,
 gold}
printedName: String

0..*0..*

age():
Integer

program

owner

card0..*
card

1

1 1

customer

Invariants using Navigation from Association
Classes

32

