
Object Constraint Language (OCL)

1

Métodos de Desenvolvimento de Software
Software Development Methods

(MDS)
2016/2017

Negation and If

Structured Objects: Tuples
3

Collection Types: Set, OrderedSet, Bag,
and Sequence

4

Collection Operations
5

Collection Operations

◻<collection> → size
 → isEmpty
 → notEmpty
 → sum ()
 → count (object)
 → includes (object)
 → includesAll (collection)
 → excludes (object)
 → excludesAll (collection)

6

Collection operations - description

size() - number of elements in the collection self

includes() - information of whether an object is part of a collection

excludes() - information of whether an object isn't part of a collection

sum() - addition of all elements of a collection

sum() elements must be of a type supporting the + operation.

count() - number of times that object occurs in the collection self

includesAll() - information of whether all objects of a given collection are

part of a specific collection

excludesAll() - information of whether none of the objects of a given

collection are part of a specific collection

isEmpty() - information of whether a given collection is empty

notEmpty() - The information if a collection is not empty.

7

Collection operations - conversions
8

Collections Access Operations
9

Collection Selection Operations
10

Collection Selection Operations (cont.)
11

Collections Iteration
12

Collections Iteration - Boolean

<collection>
 → forAll (e:T* | <b.e.>)
 → exists (e:T | <b.e.>)

b.e. stands for: boolean expression

13

The result of these Iterations is either true or false

Collections Iteration - Boolean
14

Collections Iteration: Selection

<collection>
 → select (e:T | <b.e.>)
 → reject (e:T | <b.e.>)
 → collect (e:T | <v.e.>)
 → any (e:T | <b.e.>)

b.e. stands for: boolean expression
v.e. stands for: value expression

15

The result of these Iterations is a collection of elements

Collections Iteration: Selection
16

Result is collection of Objects of the type of the
Set

Result is a Bag of Objects of any type

Collections: Iterate operation
17

Example:

Set{1,2,3,4,5}->iterate(x:Integer; y:Set(Integer)=Set{0}|
 y->including(x))

Collection Operations: examples

context Company inv:
 self.employee->reject(isMarried)->isEmpty()

context Company inv:
 self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person
from self.employee and evaluates age > 50 for this person. If this results in
true, then the person is in the result Set.

specifies that the collection of all the
employees older than 50 years is not
empty.

specifies that the collection of all
the employees who are not
married is empty.

18

Expressing uniqueness constraints

◻Constraint: customer identifiers should always
be unique

Context Customer inv:

Customer.allInstances ->forAll(c1, c2: Customer | c1 <> c2 implies
c1.client_id <> c2.client_id)

19

returns all instances of a given type

returns all instances of type Customer

19

Changing the context

context StoreCard
inv: printName = owner.title.concat(owner.name)

context Customer
inv: cards → forAll (
 printName = owner.title.concat(owner.name))

Customer

printName:String
points: Integer

1..*

owner cards

StoreCard

name:String
title: String
golduser: Boolean

age():Integer

earn(p:Integer)

Note switch of context!

20

Example UML diagram

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

21

Constraints

◻Modules can be taken iff they have more than seven students
registered
◻The assessments for a module must total 100%
◻Students must register for 120 credits each year
◻Students must take at least 90 credits of CS modules each year
◻All modules must have at least one assessment worth over 50%
◻Students can only have assessments for modules which they
are taking

22

22

Constraint (a)

Modules can be taken iff they have
more than seven students registered

Note: when should such a constraint
be imposed?

23

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

Constraint (a)

Modules can be taken iff they have
more than seven students registered

Note: when should such a constraint
be imposed?

24

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Module
inv: taken_by→size > 7

Constraint (b)

The assessments for a module must total
100%

25

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

Constraint (b)

The assessments for a module must total
100%

26

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Module
inv:
 set_work.weight→sum() = 100

Constraint (c)

Students must register for 120
credits each year

27

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

Constraint (c)

Students must register for 120
credits each year

28

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Student
inv: takes.credit→sum() = 120

Constraint (d)

Students must take at least 90
credits of CS modules each year

29

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

Constraint (d)

Students must take at least 90
credits of CS modules each year

30

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Student
inv:

takes →select(
 code.substring(1,2) = ‘CS’).credit

→sum() >= 90)

Constraint (e)

All modules must have at least one
assessment worth over 50%

31

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

Constraint (e)

All modules must have at least one
assessment worth over 50%

32

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Module
inv: set_work→exists(weight > 50)

Constraint (f)

Students can only have assessments for
modules which they are taking

33

takestaken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

context Student
inv:
takes→includesAll(submits.for_module)

Invariants using Navigation through Cyclic
Association Classes

Navigation through association classes that are
cyclic requires use of roles to distinguish between
association ends:

object.associationClass[role]

Person

EmploymentRanking

*

*employees

bosses

score

Due to unary association,
we need to state the
direction
of the navigation

34

The accumulated score of an employee is positive:
context Person
inv:

employmentRanking[bosses].score->sum()>0

Every boss must give at least one 10 score:

context Person
inv:

employmentRanking[employees]->exists(score = 10)

Classes and Subclasses

Consider the following constraint
context LoyaltyProgram
inv:
 partners.deliveredServices.transaction.points->sum() < 10,000

35

35

If the constraint applies only to the Burning subclass, we can use the operation
oclType of OCL:

context LoyaltyProgram
inv:

partners.deliveredServices.transaction
->select(oclType = Burning).points->sum() < 10,000

Classes and Subclasses

“The target of a dependency is not its source”

ModelElement

Note Dependency

*

*
target

source

36

36

context Dependency
 inv: self.source <> self

Is ambiguous!
Dependency is both a ModelElement and an Association class.

context Dependency
 inv: self.oclAsType(Dependency).source <> self
 inv: self.oclAsType(ModelElement).source -> isEmpty()

References

[1] OCL website: http://www.omg.org/uml/
[2] The Object Constraint Language, Precise Modeling with UML, Jos Warmer
and Anneke Kleppe, Addison-Wesley, 1999.
[3] The UML's Object Constraint Language: OCL Specifying Components, JAOO
Tutorial – September 2000, Jos Warmer & Anneke Kleppe
[4] http://www.db.informatik.uni-bremen.de/projects/USE-2.3.1/

37

37

Example of a static UML Model

A company handles loyalty programs (class LoyaltyProgram) for companies (class
ProgramPartner) that offer their customers various kinds of bonuses. Often, the
extras take the form of bonus points or air miles, but other bonuses are possible.
Anything a company is willing to offer can be a service (class Service) rendered in a
loyalty program. Every customer can enter the loyalty program by obtaining a
membership card (class CustomerCard). The objects of class Customer represent the
persons who have entered the program. A membership card is issued to one person,
but can be used for an entire family or business. Loyalty programs can allow
customers to save bonus points (class loyaltyAccount) , with which they can “buy”
services from program partners. A loyalty account is issued per customer
membership in a loyalty program (association class Membership). Transactions (class
Transaction) on loyalty accounts involve various services provided by the program
partners and are performed per single card. There are two kinds of transactions:
Earning and burning. Membership durations determine various levels of services
(class serviceLevel).

38

LoyaltyProgram

enroll(c:Customer)

Service

condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String

0..*deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

Customer
name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard

valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,
 gold}
printedName: String

0..*0..*

age(): Integer

program

owner

card0..*
card

ProgramPartner

numberOfCustomers: Integer

partners

1..*

1..*

ServiceLevel

name: String

availableServices

0..*

{ordered} 1..*
0..1

0..*

actualLevel

Transactio
npoints: Integer

date:Date

program(): LoyaltyProgram

0..*transactions

card

transactions
0..*transactions

0..*

Burning Earning

Date
$now: Date
isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean

1

1

1

1

1

1

1

1

1

level

generatedBy

partner 1

account

Adapted example from [Warmer & Kleppe 1999]

Customer
name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard

valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,
 gold}
printedName: String

age(): Integer

owner

card0..*

1

Named invariant

Invariants on Attributes
40

◻Invariants on attributes:
context Customer
 invariant agerestriction: age >= 18
context CustomerCard
 invariant correctDates:
 validFrom.isBefore(goodThru)

isBefore(Date):Boolean is a Date
operation

◻The class on which the invariant must be put is
the invariant context.
◻For the above example, this means that the
expression is an invariant of the Customer class.

Invariants using Navigation through
Qualified Association

To navigate qualified associations you need to index
the qualified association using a qualifier

object.navigation[qualifierValue, ...]
If there are multiple qualifiers their values are
separated using commas

Examples
context LoyaltyProgram

inv: serviceLevel[1].name = ‘basic’

context LoyaltyProgram
inv: serviceLevel->exists(name = ‘basic’)

LoyaltyProgram

enroll(c:Customer)

ServiceLevel

name: String

0..1

levelNumber: Integer

41

41

