
Interaction Diagrams

1

Métodos de Desenvolvimento de Software
(Software Development Methods)

(MDS)
2016/2017

Let’s continue the analysis process...

Motivation2

Previously...
3

 We have been studying:
 Use Cases

 Activity Diagrams

 Domain Class Diagrams

 OCL, to strengthen the business rules (including
diagram integrity restrictions)

 We are now revisiting and analyze the use cases in
greater detail (refine)
 Realizing Use Cases

Goals for Use Case Realization

4

 To understand which analysis classes interact with each other
in order to realize the behavior described in the Use Case

 To understand which message instances of those classes have
to be exchanged in between classes in order to produce a
certain behavior
 Which are the main operations of the analysis Classes?

 Which are the main attributes of the analysis classes?

 Which are the main relations between analysis classes?

 If necessary, update the Use Case model, requirements, and
analysis class model
 Essential to keep consistency !

Use Case Realization
5

 Set of Classes that interact in order to realize the
Use Case Behavior
 e.g. In the “Borrow Book” Use Case, the librarian Use

Case can interact with the “Book”, “Lending
Registration” and “User” analysis classes to be able to
realize the Use Case

Functional Requiriments Specification High Level System Specification

Use Case

Analysis Class Diagram

Interaction Diagram

Special Requirements

Refined Use Case

Use Case RealizationUse Case Realization

We are using the iterative method

6

 Analysis Class Diagrams tell a “story” about how
the classes interact so that their instances work
together in building the Use Case behavior

 The Interaction Diagrams show how class instances
cooperate to realize that behavior

 We can find new requirements in the process of
refining them

 The Use Cases can be refined even further

(Previously called Sequence Diagrams in
UML 1.0)

Interaction Diagrams7

Interaction
8

 Interaction are units of behavior of a classifier
 The classifier sets the context to an interaction
 In the Use Case realization, it is the Use Case the

classifier that sets the context
 When we detail an interaction, it is common to find

new operations and attributes in the analysis classes
 Therefore, we have to update and synchronize the class

diagrams!

Main Elements in an Interaction

9

 Lifeline – a single participant in an interaction

 Name – used to refer to the lifeline

 Type – Classifier name that the lifeline represents

 Selector – Boolean expression to specify a particular participant instance
(if it does not exist, the participant can be any instance of the
corresponding type)

 Represents how a classifier instance acts in the interaction

Main Elements in an interaction

10

 Messages – represent the communication in
between two lifelines in an interaction
 Sent messages
 Create and Destroy instances
 Send signal

Messages
11

 Messages can be
 Synchronous (who sends waits for answer)

 Asynchronous (who sends does not wait for answer)

 Return (returns focus of control)

 Create (new lifeline)

 Destroy (lifeline)

 Found (unknown origin)

 Lost (unknown destiny)

:A

Interaction Diagrams

12

 Show communication in between objects
 Goal:

 To specify the Use Case realization
 Specify how to realize an operation

 Two types:
 Sequence Diagrams
 Collaboration Diagrams

Interaction (UML1.0 Sequence Diagrams) and
Communication Diagrams (UML1.0 Collaboration Diagrams)

13

 Both specify the same information
 Each focuses in different aspect

 Sequence Diagrams (time oriented)
 Shows how messages are organized

 Do not show how to get the reception object

 Collaboration Diagram (space oriented)
 Show the static and dynamic relations in between objects

 The sequence of messages is explicitly shown

 Time is not one dimension

Interaction Diagrams14

Interaction Diagrams
15

 Show the required communication (message
exchange) between objects to execute a Use Case

 Source: Available information in the Use Case
models or other (e.g. Activity Diagrams).

 As the Use case describes all the perspectives over
a given functionality (including errors and
exceptions), we can opt to build a Sequence
Diagram per scenario.

Interaction Diagrams: notation
16

 Objects (rectangles) organized along the X axis

 Object Lifeline: dashed line to represent the existence
of an object in a given time length

 Messages (arrows), organized in time along the Y axis

 Control Flow: narrow rectangle to show the time
length since the object receives the message until it
answers (execution time of an operation);
 This time can include execution times of sub-operations.

Interaction Diagrams: room reservation

17

Example: recycling machine

18

start

: Customer
panel

: Deposit
item receiver

: Receipt
basis

: Deposit
item

: Receipt
printer

activate

new item

create

item()

receipt printReceipt

exists()

insertItem(Item)

print(Logo, Date)

printOn(ostream)
getName

getValue

print(STREAM)
delete

delete

inc

client

message
signal

scenario “authorized car to leave the parking
garage”

19

Problems while constructing
20

 It is not always obvious how to build the SD
 Control objects are involved when we detect that the

interface object leads/controls the execution;

 The SD can start to be built by using the three types of
objects as guides.

 Some construction rules:
 The first message is always sent by an actor

 The first message is always received by an interface object

 Add a control object when the interface object becomes a
decision maker

Step-by-step
21

PassSingleToll
GateManagement : VehicleDriver

1: Read

2: (green)

3: (amount)
Rule Number 1: when starting,
the system is seen as a black
box.

Rule Number 1: when starting,
the system is seen as a black
box.

Example: the car passes by the toll (e.g., “25 Abril” Bridge).Example: the car passes by the toll (e.g., “25 Abril” Bridge).

with an interface object

22

 : SingleToll
<<interface>>

Control&Data

 : VehicleDriver

2: CheckGizmo

3: RtnCheckGizmo

5: DisplayAmount(amount)

4: (green)

6: (amount)

1: Read

Rule Number 2: All messages
from/to actors pass by the interface
object.

Rule Number 2: All messages
from/to actors pass by the interface
object.

with interface objects and control

23

Rule number 3: we need control
objects for complex
functionalities.

Rule number 3: we need control
objects for complex
functionalities.

DataManagement
 : Single
Toll
<<interface>>

 : Gate
Processor
<<control>>

 : VehicleDriver

1: Read
2: CheckGizmo(id)

5: RtnCheckGizmo

11: DisplayAmount(amount)

3: CheckGizmo(id)

4: RtnCheckGizmo(ok)

6: GetType(id)

7: RtnGetType(type)

8: GetPrice(type)

9: RtnGetPrice(amount)

12: (amount)
13: AddUsage(id, amount)

10: (green)

with interface, control and entity objects

24

Rule number 4:
Control objects
centralize
processing
involving entity
objects.

Rule number 4:
Control objects
centralize
processing
involving entity
objects.

 : SingleToll
<<interface>>

 : Gate
Processor
<<control>>

 : Gizmo : Vehicle : Price
Table

 : Usage
Details : VehicleDriver

6: GetType(id)

7: RtnGetType(type)

8: GetPrice(type)

9: RtnGetPrice(amount)

1: Read
2: CheckGizmo(id)

3: Check Gizmo(id)

4: RtnCheckGizmo(ok)

5: RtnCheckGizmo(ok)

10: (green)

11: DisplayAmount(amount)
12: (amount) 13: AddUsage(id, amount)

with the toll components

25

 : Sensor
<<interface>>

 : SingleToll
<<interface>>

: GateProcessor
<<control>>

 : Gizmo : Vehicle : Price Table : Usage Details: Display
<<interface>>

 : Light
<<interface>> : VehicleDriver

1: Read 2: CheckGizmo(id)

11: TurnOn(green)

14: DisplayAmount(amount)

3: CheckGizmo(id)

6: RtnCheckGizmo(ok)

13: DisplayAmount(amount)

4: CheckGizmo(id)

5: RtnCheckGizmo(ok)

12: (green)

15: (amount)

7: GetType(id)

8: RtnGetType(type)

9: GetPrice(type)

10: RtnGetPrice(amount)

16: AddUsage(id, amount)

Rule number 5: the interface
objects can be several at the
same time.

Rule number 5: the interface
objects can be several at the
same time.

Alternative notation

26

 : Sensor : SingleToll GateProcessor
 : Gizmo : Vehicle : Price

Table
 : Usage
DetailsDisplay : Light : VehicleDriver

1: Read 2: CheckGizmo(id)

11: TurnOn(green)

14: DisplayAmount(amount)

3: CheckGizmo(id)

6: RtnCheckGizmo(ok)

13: DisplayAmount(amount)

4: CheckGizmo(id)

5: RtnCheckGizmo(ok)

12: (green)

15: (amount)

7: GetType(id)

8: RtnGetType(type)

9: GetPrice(type)

10: RtnGetPrice(amount)

16: AddUsage(id, amount)

Rule number 6: the interface
objects can be hierarchicaly
connected.

Rule number 6: the interface
objects can be hierarchicaly
connected.

Interaction Diagrams

27

Métodos de Desenvolvimento de Software
(MDS)

2016/2017

Combined Fragments and Operators28

Combined Fragments and Operators
29

 Combined Fragments divide the interaction
diagram in different areas with different behavior

 Composed by
 One Operator

 Determines how the operands execute

 One or more operands
 Zero or more guard conditions

 Determine whether if the operands execute or not

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation(Time invoc)

:Clock

InvocationTime FindLocation

TransportSchedule

loop
alt

ScheduleIntervalElapsed
FindLocation

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

[Now>interv+last]

[pos-lastpos>dist]

[Now>invoc]looploop

choicechoice

separatorseparator

guardguard

Combined Fragments and Operators
30

Combined
Fragment
Combined
Fragment

OperandOperand

OperandOperand

Types of Combined Fragments
31

 Alternatives (alt)
 Alternative choice of Behavior – one at most is going to be executed

 Depends on the guard (supports the “else” guard)
 (similar to a switch)

 Option (opt)
 Special alternative case where only one operand executes

 (similar to an if… then)

 Interruption (break)
 Represents one alternative that is executed instead of the rest of the fragment

 (similar to a break in a cycle)

 When the guard is true the operand executes, but not the rest of the interaction where it is
inserted, the enclosing interaction should be terminated.

– it is similar to if (guard){...; return;}

Break

Break

Types of Combined Fragments
34

 Cycle (loop)
 Optional Guard: [<min>, <max>, <Boolean-expression>]

 loop min, max [condition]
 loop min times, after, while condition is true, executes (max – min) times

 The absence of a guard means that there is no specified limit (like *)

 Reference (ref)
 Reference to other interaction

 Parallel (par)
 All the operands execute interleaved. However the UML specifies

that the interleaving of the event occurrences of the operands must
be done in such a way that the ordering in the original operand is
maintained

Types of Combined Fragments
35

 Critical (critical)
 The traces can not be interleaved with events of other lifelines,

which means that they execute without interruption

 Weak Sequencing (seq)
 The operands execute in parallel in the different lifelines, with

the following restriction: received events in the same lifeline,
created by different operands occurr in the same sequence as
the operands

 Strong Sequence(strict)
 The Operands are executed in strict sequence

Types of Combined Fragments
36

 Negative (neg)
 Identifies sequences that can not occur

 Ignore (ignore)
 Lists messages not shown on purpose

 Example: ignore {message1, message2, message3}

 Consider (consider)
 Lists messages intentionally included

 Example: consider {authenticateUser, sendEvelope, sendBody,
disconnect, shutdown}

 Assertion (assert)
 Represents the only valid behavior in a given interaction point

From Activities Diagrams toInteraction
Diagrams

37

 Activity -> Class operation
 Transition -> Message
 Branching-Merge -> Alt
 Fork-Join -> Par
 (Cycle: Backwards transition) -> Loop

Updating the Class Diagrams38

From Activities Diagrams to Interaction Diagrams

39

 The Domain Class Diagram must be completed
with the information of the Sequence Diagrams

 In particular:
 Lifeline -> Class

 Interface, control, (Entity)

 Message -> Operation
 Message and arguments -> Association
 Message -> Dependency

Partial Resulting Class Diagram
40

Vehicle
plateNumber

create()
getVehicle()

Owner
name
address
accNumber
bankId

create()
getOwner()

UsageDetails
date
amount

getUsage()
add()

GizmoDetails
Id
status

create()
getId()
checkId()

1..*

1

CurrentJourney
inGate
date

checkIfIn()
create()
remove()1..*

Camera
<<interface>>

takePhoto()

Light
<<interface>>

turnGreen()
turnYellow()

GateProcessor
<<control>>

checkId()

TollGate
<<interface>>

getId()

Sensor
<<interface>>

read()

1..*

1..*

1

1

1

DependencyDependency

Example: the car passes by a toll one way (e.g. Bridge 25 the Abril) Example: the car passes by a toll one way (e.g. Bridge 25 the Abril)

Interaction Diagram
41

 : Sensor : SingleToll GateProcessor
 : Gizmo : Vehicle : Price

Table
 : Usage
DetailsDisplay

 : Light : VehicleDriver

1: Read 2: CheckGizmo(id)

11: TurnOn(green)

14: DisplayAmount(amount)

3: CheckGizmo(id)

6: RtnCheckGizmo(ok)

13: DisplayAmount(amount)

4: CheckGizmo(id)

5: RtnCheckGizmo(ok)

12: (green)

15: (amount)

7: GetType(id)

8: RtnGetType(type)

9: GetPrice(type)

10: RtnGetPrice(amount)

16: AddUsage(id, amount)

Former Collaboration Diagrams in UML 1.0

Communication Diagrams42

Communication Diagrams
43

 A communication diagram is an interaction
diagram that stresses the structural organization of
the objects that send and receive messages.

 Shows the set of objects, links in between these
objects, and messages sent and received by these
same objects.

 It is useful to illustrate the dynamic view of the
system

Communication Diagram
44

 Shows a second way of expressing the sequence in
between events

 The objects are shown in linked rectangles
connected by lines that show links in between
them
 The numbers show the order in which the operations

are executed
 The numbers are written together with the names of

the messages, and an arrow shows the way of the flow

Communication Diagram: Simple example

45

: Class name : Class name

object name: Class name

attribute

attribute = value

1: Message name

2: Message name
(parameter list)

Communication Diagrams
46

 The numbering associated with the messages can
represent nesting
 E.g. 1.1 is the 1st message nested n message 1, 1.2 is

the second and so on...

 Semantic equivalence with the Interaction
Diagrams: can convert automatically a Interaction
Diagram into a Communication Diagram

Communication Diagrams with message nesting

47

1.1: makeReservation():void

1.2: makeReservation():void

1.4: [isRoom]

1.3: *[for each day] isRoom:=available():boolean

1.5: Notify

Communication diagram

:Display

:Light

:Sensor :SingleToll

:GateProcessor:Vehicle

:PriceTable

:UsageDetails

GizmoDetail

 : VehicleDriver

2: GetGizmo

3: CheckGizmo

6: RtnCheckGizmo
12: DisplayAmount

13: DisplayAmount

7: TurnGreen

8: GetType

9: RtnGetType

10: GetPrice11: RtnGetPrice

14: AddUsage

4: CheckGizmo

5: RtnCheckGizmo

1: Read

48

Communication vs Interaction
49

 Communication Diagrams
 Easy to rad and understand

 The message order is very clear and intuitive

 Show proper structures for cycles, concurrency, alternatives,
etc

 Require discipline while being constructed

 Communication diagrams
 Less demanding regarding discipline while constructing(we

don't know the exact place where the object will stay)

 The message order can be added later

 ...but are poorer

	Slide 1
	Motivation
	Previously...
	Goals for Use Case Realization
	Use Case Realization
	We are using the iterative method
	Interaction Diagrams
	Interaction
	Main Elements in an Interaction
	Main Elements in an interaction
	Messages
	Interaction Diagrams
	Sequence and Colaboration Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams: notation
	Sequence Diagrams: room reservation
	Example: recycling machine
	Slide 19
	Problems while constructing the SD
	SD, Step-by-step
	SD with an interface object
	SD with interface objects and control
	SD with interface, control and entity objects
	SD with the toll components
	SD: Alternative notation
	Slide 27
	Fragmentos combinados e operadores
	Fragmentos combinados e operadores
	Fragmentos combinados e operadores
	Tipos de fragmentos combinados
	Slide 32
	Slide 33
	Tipos de fragmentos combinados
	Tipos de fragmentos combinados
	Tipos de fragmentos combinados
	Dos diagramas de actividades aos DS
	Complementos ao Diagrama de Classes
	Dos diagramas de Sequência aos Diagramas de Classes
	Diagrama de classes (parcial) resultante
	Diagrama de sequência
	Diagrama de Colaboração
	Diagrama de Colaboração
	Diagrama de Colaboração
	Diagrama de Colaboração: exemplo simples
	Diagrama de colaboração (cont)
	Slide 47
	Diagrama de colaboração (portagem de ponto único)
	Colaboração vs Sequência

