
Object Constraint Language (OCL)

1

Aula 9

Métodos de Desenvolvimento de Software

(MDS)

2011/2012

Miguel Goulão

mgoul@fct.unl.pt

http://ctp.di.fct.unl.pt/~mgoul/

MDS 2011/2012 - M. Goulão

History
2

 First developed in 1995 as IBEL by IBM’s Insurance
division for business modelling

 IBM proposed it to the OMG’s call for an object-
oriented analysis and design standard. OCL was
then merged into UML 1.1.

 OCL was used to define UML 1.2 itself.

MDS 2011/2012 - M. Goulão

Companies behind OCL

 Rational Software, Microsoft, Hewlett-Packard,
Oracle, Sterling Software, MCI Systemhouse,
Unisys, ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon,
Reich Technologies, Softeam

3

MDS 2011/2012 - M. Goulão

UML Diagrams are NOT Enough!

 We need a language to help specifying additional
information in UML models.
 We look for some “add-on”, not a new language with

full specification capability.

 Why not first order logic? – Not OO.

 OCL is used to specify constraints on OO systems.
 OCL is not the only one.

 But OCL is the only one that is standardized.

 Attention: OCL is not a programming language:
 No control flow, no side-effects.

4

MDS 2011/2012 - M. Goulão

Advantages of formal constraints

MDS 2011/2012 - M. Goulão

5

 Better documentation

 Constraints add information about the model
elements and their relationships to the UML models

 More precision

 OCL constraints have formal semantics; used to reduce
the ambiguity in the UML models

 Communication without misunderstanding

 Using OCL constraints modelers can communicate
unambiguously

Where to use OCL?

MDS 2011/2012 - M. Goulão

6

 Specify invariants for classes and types

 Specify pre- and post-conditions for methods

 As a navigation language

 To specify constraints on operations

 Test requirements and specifications

Combining UML and OCL

 Without OCL expressions, many models would be
severely underspecified;

 Without the UML diagrams, the OCL expressions
would refer to non-existing model elements,

 there is no way in OCL to specify classes and
associations.

 Only when we combine the diagrams and the
constraints can we completely specify the model.

7

MDS 2011/2012 - M. Goulão

Elements of an OCL expression that are
associated with a UML model

MDS 2011/2012 - M. Goulão

8

 basic types: String, Boolean, Integer, Real

 from the UML model:

 classes and their attributes

 enumeration types

 associations

Example: A Mortgage System

MDS 2011/2012 - M. Goulão

9

1. A person may have a mortgage only on a house she owns.

2. The start date of a mortgage is before its end date.

A person may have a mortgage only on a house she owns

 1. context Mortgage context Mortgage

 invariant: self.security.owner = self.borrower invariant: security.owner =

borrower

The start date of a mortgage is before its end date

 2. context Mortgage context Mortgage

 invariant: self.startDate < self.endDate invariant: startDate < endDate

OCL specification of the constraints

MDS 2011/2012 - M. Goulão

10

When the name of an association-end is

missing at one of the ends of an

association, the name of the type at the

association end is used as the role name.

If this results in an ambiguity, the role

name is mandatory.

If the role name is ambiguous, then it

cannot be used in OCL.

OCL Constraints

 A constraint is a restriction on one or more values of
(part of) an object model/system.

 Constraints come in different forms:
 invariant

 constraint on a class or type that must always hold.

 pre-condition
 constraint that must hold before the execution of an op.

 post-condition
 constraint that must hold after the execution of an op.

 guard
 constraint on the transition from one state to another.

11

MDS 2011/2012 - M. Goulão

OCL Expressions and Constraints

 Each OCL expression has a type.

 Every OCL expression indicates a value or object
within the system.

 1+3 is a valid OCL expression of type Integer, which
represents the integer value 4.

 An OCL expression is valid if it is written according
to the rules (formal grammar) of OCL.

 A constraint is a valid OCL expression of type
Boolean.

12

MDS 2011/2012 - M. Goulão

Constraints (invariants), Contexts and Self

 A constraint (invariant) is a boolean OCL expression –
evaluates to true/false.

 Every constraint is bound to a specific type (class,
association class, interface) in the UML model – its context.

 The context objects may be denoted within the expression
using the keyword ‘self’.

 The context can be specified by:
 Context <context name>
 A dashed note line connecting to the context figure in the UML

models

 A constraint might have a name following the keyword
invariant.

13

MDS 2011/2012 - M. Goulão

Self: examples

Example 1:

context Company inv: self.numberOfEmployees > 50

The label inv: declares the constraint to be an «invariant» constraint.

14

MDS 2011/2012 - M. Goulão

Self: examples

The label inv: declares the constraint to be an «invariant» constraint.

Example 2:

context c: Company inv: c.numberOfEmployees > 50

15

MDS 2011/2012 - M. Goulão

Self: examples

The label inv: declares the constraint to be an «invariant» constraint.

16

MDS 2011/2012 - M. Goulão

Example 3:

context Job

 inv: self.employer.numberOfEmployees >= 1

 inv: self.employee.age > 21

More Constraints

 All players must be over 18.

 The number of guests in each room doesn’t exceed
the number of beds in the room.

context Player invariant:

self.age >=18

context Room invariant:

guest -> size <= numberOfBeds

Room
room guest

Guest

numberOfBeds: Integer
*

Player

age(): Integer

The number of elements

in the collection self

17

MDS 2011/2012 - M. Goulão

Pre conditions, post conditions and previous
values

Account

balance : Real = 0

deposit(amount : Real)

Withdraw(amount : Real)

getBalance() : Real

context Account::withdraw(amount : Real)

pre: amount <= balance

post: balance = balance@pre – amount

context Account::getBalance() : Real

post: result = balance

Return value of operation

Balance before execution of operation

18

MDS 2011/2012 - M. Goulão

Expressing operation semantics

Date::isBefore(t:Date): Boolean =

 if self.year = t.year then

 if self.month = t.month then

 self.day < t.day

 else

 self.month < t.month

 endif

 else

 self.year < t.year

 endif

It is not our aim in MDS

19

MDS 2011/2012 - M. Goulão

OCL Standard Types and operators
20

MDS 2011/2012 - M. Goulão

OCL expression syntax

 OCL expression may be broken down into three parts:

 The package context (optional)

 The expression context (mandatory)

 One or more expressions

package <packagePath>

 context <contexualInstanceName>: <modelElement>

 <expressionType> <expressionName>:

 <expressionBody>

 <expressionType> <expressionName>:

 <expressionBody>
 …

endpackage

Package context

expression context

expression

expression

21

MDS 2011/2012 - M. Goulão

package Package::SubPackage

 context X inv:

 ... some invariant ...

 context X::operationName(..)

 pre: ... some precondition ...

endpackage

OCL expression syntax

 The context keyword introduces the context for the
expression

 The keywords inv, pre, and post denote the stereotypes, respectively
«invariant», precondition», and «postcondition» of the constraint.

22

MDS 2011/2012 - M. Goulão

Example of a static UML Model

 Problem story:

 A company handles loyalty programs (class LoyaltyProgram) for companies (class
ProgramPartner) that offer their customers various kinds of bonuses. Often, the
extras take the form of bonus points or air miles, but other bonuses are possible.
Anything a company is willing to offer can be a service (class Service) rendered in
a loyalty program. Every customer can enter the loyalty program by obtaining a
membership card (class CustomerCard). The objects of class Customer represent
the persons who have entered the program. A membership card is issued to one
person, but can be used for an entire family or business. Loyalty programs can
allow customers to save bonus points (class loyaltyAccount) , with which they can
“buy” services from program partners. A loyalty account is issued per customer
membership in a loyalty program (association class Membership). Transactions
(class Transaction) on loyalty accounts involve various services provided by the
program partners and are performed per single card. There are two kinds of
transactions: Earning and burning. Membership durations determine various
levels of services (class serviceLevel).

23

MDS 2011/2012 - M. Goulão

LoyaltyProgram

enroll(c:Customer)

Service

condition: Boolean

pointsEarned: Integer

pointsBurned: Integer

description: String

0..* deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)

burn(i: Integer)

isEmpty(): Boolean

Customer

name: String

title:String

isMale: Boolean

dateOfBirth: Date

CustomerCard

valid: Boolean

validForm: Date

goodThru: Date

color: enum{silver,

 gold}

printedName: String

0..* 0..*

age(): Integer

program

owner

card 0..*
card

ProgramPartner

numberOfCustomers: Integer

partners

1..*

1..*

ServiceLevel

name: String

availableServices

0..*

{ordered} 1..*
0..1

0..*

actualLevel

Transaction

points: Integer

date:Date

program(): LoyaltyProgram

0..* transactions

card

transactions

0..*
transactions

0..*

Burning Earning

Date

$now: Date

 isBefore(t:Date): Boolean

isAfter(t:Date): Boolean

=(t:Date): Boolean

1

1

1

1

1

1

1

1

1

level

generatedBy

partner 1

account

Adapted example from [Warmer & Kleppe 1999]

Customer

name: String

title:String

isMale: Boolean

dateOfBirth: Date

CustomerCard

valid: Boolean

validForm: Date

goodThru: Date

color: enum{silver,

 gold}

printedName: String

age(): Integer

owner

card 0..*

1

Named invariant

Invariants on Attributes

MDS 2011/2012 - M. Goulão

25

 Invariants on attributes:
context Customer

 invariant agerestriction: age >= 18

context CustomerCard

 invariant correctDates:

 validFrom.isBefore(goodThru)

isBefore(Date):Boolean is a Date operation

 The class on which the invariant must be put is the
invariant context.

 For the above example, this means that the
expression is an invariant of the Customer class.

context CustomerCard

invariant printedName:

 printedName = owner.title.concat(‘ ‘).

concat(owner.name)

Where:

• printedName a String

• owner a Customer instance

• owner.title a String

• owner.name a String

• String is a recognized OCL type

• concat is a String operation, with signature

concat(String): String

Invariants using Navigation over Association
Ends – Roles

26

MDS 2011/2012 - M. Goulão

Customer

name: String

title:String

isMale: Boolean

dateOfBirth: Date

CustomerCard

valid: Boolean

validForm: Date

goodThru: Date

color: enum{silver,

 gold}

printedName: String

age(): Integer

owner

card 0..*

1

 “The owner of the card of a membership must
be the customer in the membership”:
context Membership

invariant correctCard: card.owner = customer

 Navigation from an association class
can use the classes at the association
class end, or the role names.

 The context object is the association
class instance.

LoyaltyProgram

enroll(c:Customer)

Membership

Customer

name: String

title:String

isMale: Boolean

dateOfBirth: Date

CustomerCard

valid: Boolean

validForm: Date

goodThru: Date

color: enum{silver,

 gold}

printedName: String

0..* 0..*

age(): Integer

program

owner

card 0..*
card

1

1 1

customer

Invariants using Navigation from Association
Classes

27

MDS 2011/2012 - M. Goulão

Object Constraint Language (OCL)

28

Aula 10

Métodos de Desenvolvimento de Software

(MDS)

2011/2012

Miguel Goulão

mgoul@fct.unl.pt

http://ctp.di.fct.unl.pt/~mgoul/

MDS 2011/2012 - M. Goulão

Navigation and naming rules

 Rule 0 - Class names start with an uppercase letter
and role names with a lowercase letter

 Rule 1 - While navigating from a class to another, if
the role of the destination class is defined then use
it. Otherwise apply rule 2

 Rule 2 - While navigating from a class to another, if
the role of the destination class is not defined,
then use the name of the destination class starting
with a lowercase

29

MDS 2011/2012 - M. Goulão

Navigation and collections

 OCL expressions can be built by navigating in the
class diagram

 By definition, the result of navigating through just
one association is a Set

 The result of navigating through more than one
association where at least one has multiplicity
many is a Bag.

 Exception: if the association is adorned with the
{ordered} tag, we get a Sequence.

30

MDS 2011/2012 - M. Goulão

The OCL Collection types

MDS 2011/2012 - M. Goulão

31

 Collection is a predefined OCL type
 Three different collections:

 Set (no duplicates)
 Bag (duplicates allowed)
 Sequence (ordered Bag)

 With collections type, an OCL
expression either states a fact
about all objects in the collection
or states a fact about the collection
itself, e.g. the size of the collection.

 Syntax:
 collection->operation

Collection Operations

 <collection> size

 isEmpty

 notEmpty

 sum ()

 count (object)

 includes (object)

 includesAll (collection)

32

MDS 2011/2012 - M. Goulão

Collections cont.

 <collection> select (e:T | <b.e.>)

 reject (e:T | <b.e.>)

 collect (e:T | <v.e.>)

 forAll (e:T* | <b.e.>)

 exists (e:T | <b.e.>)

 iterate (e:T1; r:T2 = <v.e.> | <v.e.>)

 b.e. stands for: boolean expression

 v.e. stands for: value expression

33

MDS 2011/2012 - M. Goulão

Collection operations

 The number of elements in the collection self: size()

 The information of whether an object is part of a collection:
includes()

 The information of whether an object isn't part of a collection:
excludes()

 The number of times that object occurs in the collection self:
count()

 The information of whether all objects of a given collection are part
of a specific collection: includesAll()

 The information of whether none of the objects of a given
collection are part of a specific collection: excludesAll()

 The information if a collection is empty: isEmpty()

 The information if a collection is not empty: notEmpty()

34

MDS 2011/2012 - M. Goulão

Collection operations

 Iterators over collections
 The selection of a sub-collection: select()
 When specifying a collection which is derived from

some other collection, but which contains different
objects from the original collection (i.e., it is not a sub-
collection) use: collect()

 The information of whether an expression is true for
all objects of a given collection: forAll()

 The addition of all elements of a collection: sum()
Elements must be of a type supporting the +
operation.

35

MDS 2011/2012 - M. Goulão

Collections operations summary
36

MDS 2011/2012 - M. Goulão

Specialized Collection Operations

E.g. Set{4, 2, 3, 1}.minus(Set{2, 3}) = Set{4, 1}

37

MDS 2011/2012 - M. Goulão

Specialized Collection Operations

E.g., Bag{1, 2, 3, 5}.including(6) = Bag{1, 2, 3, 5, 6}

38

MDS 2011/2012 - M. Goulão

Specialized Collection Operations

E,g, Sequence{1, 2, 3, 4}.append(5) = Sequence{1, 2, 3, 4, 5}

39

MDS 2011/2012 - M. Goulão

Collection Operations: examples

context Company inv:

 self.employee->reject(isMarried)->isEmpty()

context Company inv:

 self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person

from self.employee and evaluates age > 50 for this person. If this results in

true, then the person is in the result Set.

specifies that the collection of all the

employees older than 50 years is not

empty.

specifies that the collection of all

the employees who are not

married is empty.

40

MDS 2011/2012 - M. Goulão

Expressing uniqueness constraints

 Constraint: customer identifiers
should always be unique

Context Customer inv:

Customer.allInstances ->forAll(c1, c2: Customer | c1 <> c2 implies

c1.client_id <> c2.client_id)

 41

returns all instances of a given type

returns all instances of type Customer

41

MDS 2011/2012 - M. Goulão

Changing the context

context StoreCard

inv: printName = owner.title.concat(owner.name)

context Customer
inv: cards forAll (
 printName = owner.title.concat(owner.name))

Customer

printName:String

points: Integer
1..*

owner cards

StoreCard

name:String

title: String

golduser: Boolean

age():Integer

earn(p:Integer)

Note switch of context!

42

MDS 2011/2012 - M. Goulão

Example UML diagram

takes taken_by

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String

credit: Integer

weight: Integer

hours: Integer date: String

43

MDS 2011/2012 - M. Goulão

Constraints

 Modules can be taken iff they have more than seven
students registered

 The assessments for a module must total 100%

 Students must register for 120 credits each year

 Students must take at least 90 credits of CS modules
each year

 All modules must have at least one assessment worth
over 50%

 Students can only have assessments for modules
which they are taking

44

44

MDS 2011/2012 - M. Goulão

Constraint (a)

 Modules can be taken iff they have more than
seven students registered

 Note: when should such a constraint be imposed?

context Module

 inv: taken_bysize > 7

45

45

MDS 2011/2012 - M. Goulão

Constraint (b)

 The assessments for a module must total 100%

context Module

inv:

 set_work.weightsum() = 100

46

46

MDS 2011/2012 - M. Goulão

Constraint (c)

 Students must register for 120 credits each year

context Student

inv: takes.creditsum() = 120

47

47

MDS 2011/2012 - M. Goulão

Constraint (d)

 Students must take at least 90 credits of CS
modules each year

context Student

inv:

 takes select(code.substring(1,2) = ‘CS’).credit

 sum() >= 90

48

48

MDS 2011/2012 - M. Goulão

Constraint (e)

 All modules must have at least one assessment
worth over 50%

context Module

inv: set_workexists(weight > 50)

49

49

MDS 2011/2012 - M. Goulão

Constraint (f)

 Students can only have assessments for modules
which they are taking

context Student

inv: takesincludesAll(submits.for_module)

50

50

MDS 2011/2012 - M. Goulão

Invariants using Navigation through Cyclic
Association Classes

 Navigation through association classes that are cyclic requires use of roles
to distinguish between
association ends:

 object.associationClass[role]

 The accumulated score of an employee is positive:

context Person

inv:

 employmentRanking[bosses].score->sum()>0

Every boss must give at least one 10 score:

context Person

inv:

 employmentRanking[employees]->exists(score = 10)

Person

EmploymentRanking

*

* employees

bosses

score

Due to unary

association, we need

to state the direction

of the navigation

51

MDS 2011/2012 - M. Goulão

Invariants using Navigation through Qualified
Association

 To navigate qualified associations
you need to index the qualified
association using a qualifier

 object.navigation[qualifierValue, ...]
 If there are multiple qualifiers their values are

separated
using commas

 Examples

context LoyaltyProgram

 inv: serviceLevel[1].name = ‘basic’

context LoyaltyProgram

 inv: serviceLevel->exists(name = ‘basic’)

LoyaltyProgram

enroll(c:Customer)

ServiceLevel

name: String

0..1

levelNumber: Integer

52

52

MDS 2011/2012 - M. Goulão

Classes and Subclasses

 Consider the following constraint

 context LoyaltyProgram

 inv:

 partners.deliveredServices.transaction.points->sum() < 10,000

 If the constraint applies only to the Burning subclass, we can use
the operation oclType of OCL:

 context LoyaltyProgram

 inv:

 partners.deliveredServices.transaction

 ->select(oclType = Burning).points->sum() < 10,000

53

53

MDS 2011/2012 - M. Goulão

Classes and Subclasses

 “The target of a dependency is not its source”
context Dependency
inv: self.source <> self

 Is ambiguous: Dependency is both
a ModelElement and an Association class.

context Dependency

inv: self.oclAsType(Dependency).source <> self
inv: self.oclAsType(ModelElement).source -> isEmpty()

ModelElement

Note Dependency

*

*
target

source

54

54

MDS 2011/2012 - M. Goulão

References

 The Amsterdam Manifesto on OCL, In Object Modeling with the OCL
(LNCS2263) p115-149

 The Object Constraint Language, Precise Modeling with UML, Jos Warmer
and Anneke Kleppe, Addison-Wesley, 1999.

 Response to the UML 2.0 OCL RfP (ad/2000-09-03) Revised Submission,
Version 1.6 January 6, 2003

 Some Shortcomings of OCL, the Object Constraint Language of UML,
Mandana Vaziri and Daniel Jackson,1999

 http://www.klasse.nl/english/uml/ UML CENTER

 Informal formality? The Object Constraint Language and its application in
the UML metamodel, Anneke Kleppe, Jos Warmer, Steve Cook

 A Pratical Application of the Object Constraint Language OCL, Kjetil M°age

 The UML's Object Constraint Language: OCL Specifying Components,
JAOO Tutorial – September 2000, Jos Warmer & Anneke Kleppe

 OCL website: http://www.omg.org/uml/

55

55

MDS 2011/2012 - M. Goulão

http://www.klasse.nl/english/uml/

