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Preface

The Symposium on Logical Foundations of Computer Science series provides a
forum for the fast-growing body of work in the logical foundations of computer
science, e.g., those areas of fundamental theoretical logic related to computer
science. The LFCS series began with “Logic at Botik,” Pereslavl-Zalessky, 1989,
which was co-organized by Albert R. Meyer (MIT) and Michael Taitslin (Tver).
After that, organization passed to Anil Nerode.

Currently LFCS is governed by a Steering Committee consisting of Anil
Nerode (General Chair), Stephen Cook, Dirk van Dalen, Yuri Matiyasevich,
John McCarthy, J. Alan Robinson, Gerald Sacks, and Dana Scott.

The 2009 Symposium on Logical Foundations of Computer Science (LFCS
2009) took place in Howard Johnson Plaza Resort, Deerfield Beach, Florida,
USA, during January 3–6. This volume contains the extended abstracts of talks
selected by the Program Committee for presentation at LFCS 2009.

The scope of the symposium is broad and contains constructive mathematics
and type theory; automata and automatic structures; computability and ran-
domness; logical foundations of programming; logical aspects of computational
complexity; logic programming and constraints; automated deduction and inter-
active theorem proving; logical methods in protocol and program verification;
logical methods in program specification and extraction; domain theory log-
ics; logical foundations of database theory; equational logic and term rewriting;
lambda and combinatory calculi; categorical logic and topological semantics; lin-
ear logic; epistemic and temporal logics; intelligent and multiple agent system
logics; logics of proof and justification; nonmonotonic reasoning; logic in game
theory and social software; logic of hybrid systems; distributed system logics;
mathematical fuzzy logic; system design logics; other logics in computer science.

We thank the authors and reviewers for their contributions. We acknowledge
the support of Cornell University, the Graduate Center of the City University
of New York, and Florida Atlantic University.

We are grateful to Evan Goris for preparing this volume for Springer.

October 2008 Anil Nerode
Sergei Artemov
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Franco Montagna Università Degli Studi di Siena, Italy
Anil Nerode Cornell University, USA
Michael Rathjen University of Leeds, UK
Philip Scott University of Ottawa, Canada
Alex Simpson University of Edinburgh, UK
Anatol Slissenko Université Paris 12, France
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to Locally Finite Varieties of BL-Algebras
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Abstract. We are concerned with the subvariety of commutative, boun-
ded, and integral residuated lattices, satisfying divisibility and prelinear-
ity, namely, BL-algebras. We give an explicit combinatorial description
of the category that is dual to finite BL-algebras. Building on this, we
obtain detailed structural information on the locally finite subvarieties of
BL-algebras that are analogous to Grigolia’s subvarieties of finite-valued
MV-algebras. As an illustration of the power of the finite duality pre-
sented here, we give an exact recursive formula for the cardinality of free
finitely generated algebras in such varieties.

Keywords: BL-algebras, prime filters, dualities, free BL-algebras, sub-
varieties of BL-algebras, locally finite varieties.

1 Introduction

Hájek’s Basic Logic BL [8] is the logic of all continuous triangular norms and their
residua [4]. It is a fundamental object of study in the area of mathematical fuzzy
logic, whose aim is to develop formal systems to make inferences in the presence
of vagueness or uncertainty. The Lindenbaum-Tarski algebraic semantics of BL
is given by the variety of BL-algebras, that is, commutative, bounded, integral
residuated lattices satisfying divisibility and prelinearity.

To use such a tool as BL in practice, one needs to be able to manipulate
BL-algebras effectively. In this direction, combinatorial representations of BL-
algebras are of the foremost importance. In this paper we show that combi-
natorial representations are available for finite BL-algebras and locally finite1

subvarieties of BL-algebras. Towards this aim, we shall introduce a full-fledged
spectral duality for finite BL-algebras.
1 A variety of algebras is locally finite if each finitely generated member of the variety

is finite; equivalently, if finitely generated free algebras are finite.

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 S. Aguzzoli, S. Bova, and V. Marra

It turns out that dual objects are finite weighted forests, that is, forests labeled
with natural numbers. We define morphisms of weighted forests so as to provide
a natural categorical equivalence with the opposite of the category of finite BL-
algebras and their homomorphisms. Thus, any finite BL-algebra arises as the
algebra of parts of a weighted forest, in an appropriate sense.

The combinatorial structure of forests allows us to effectively compute prod-
ucts and coproducts in the dual category, and then the duality affords a transla-
tion back to finite BL-algebras. This provides us with a powerful tool to extract
structural information from finite BL-algebras. As an example of this machinery,
we study the BL-algebraic analogous of Grigolia’s subvarieties of finite-valued
MV-algebras, obtaining the exact structure of their dual weighted forests, to-
gether with an exact recursive formula for the cardinality of free finitely gener-
ated algebras in such varieties.

2 Preliminaries

We write N = {1, 2, . . .}, \ for set-theoretic difference, a|b if a, b ∈ N and a
divides b, and |A| for the cardinality of the set A.

A basic hoop is an algebra (A, �, →, ∧, ∨, �) of type (2, 2, 2, 2, 0) such that
(A, �, �) is a commutative monoid, (A, ∧, ∨) is a lattice, and the following prop-
erties hold:

(residuation) x � y ≤ z if and only if x ≤ y → z,
(integrality) x ∧ � = x,
(divisibility) x ∧ y = y � (y → x),
(prelinearity) (x → y) ∨ (y → x) = �;

equivalently, a basic hoop is a commutative, integral, divisible residuated lattice
satisfying prelinearity. Note that basic hoops form a variety since residuation
can be formulated by identities; see [8, 2.3.10]. A Wajsberg hoop is a basic hoop
satisfying ¬¬x = x. (Throughout, we use ¬x as an abbreviation for x → ⊥.)

A BL-algebra is an algebra (A, �, →, ∧, ∨, ⊥, �) of type (2, 2, 2, 2, 0, 0) such
that (A, �, →, ∧, ∨, �) is a bounded basic hoop, that is,

x ∧ ⊥ = ⊥

holds. In each BL-algebra, the operations ∧, ∨, and � are definable from the
other operations, as follows: x∧ y = x� (x → y), x∨ y = ((x → y) → y)∧ ((y →
x) → x), and � = ⊥ → ⊥; see [8, 2.1.10]. In the sequel, we shall therefore
feel free to use the shorter signature (A, �, →, ⊥) instead of the complete one,
whenever convenient.

A BL-algebra is called: a BL-chain, if the reduct (A, ∧, ∨, ⊥, �) is totally
ordered; a Gödel algebra, if it satisfies x � x = x (elements of a BL-algebra
satisfying x � x = x are said to be idempotent); and an MV-algebra [3] if it
satisfies ¬¬x = x.

We shall make use of the ordinal sum construction. Let {(Ai, �i, →i, �i)}i∈I ,
for I a linearly ordered set with minimum 0, be a family of totally ordered
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Wajsberg hoops such that Ai ∩ Aj = {�i} = {�j} for all i, j ∈ I, with
A0 bounded. Then the ordinal sum of the family {Ai}i∈I is the BL-algebra
(
⋃

i∈I Ai, �, →, ⊥0), where:

x � y =

⎧
⎪⎨

⎪⎩

x if x ∈ Ai, y ∈ Aj , i < j

x �i y if x, y ∈ Ai

y if x ∈ Ai, y ∈ Aj , j < i

x → y =

⎧
⎪⎨

⎪⎩

�0 if x ∈ Ai, y ∈ Aj , i < j

x →i y if x, y ∈ Ai

y if x ∈ Ai, y ∈ Aj , j < i

3 Spectral Duality for Finite BL-Algebras

Fix a finite BL-algebra A. Recall that a filter of A is a nonempty upper set2

F ⊆ A that is closed under �. Further, a filter F of A is prime if x → y ∈ F or
y → x ∈ F for each x, y ∈ F . We write Spec A for the (prime) spectrum of A, the
set of prime filters of A partially ordered by reverse inclusion. Congruences θ of
A are in bijection with filters F of A via F = {x ∈ A | (x, �) ∈ θ}. Prime filters
precisely correspond to those congruences θ on A such that A/θ is a BL-chain.
See [8, 2.3.14] for details.

For any finite BL-chain C we define the top part of C to be

T (C) = {x ∈ C | x > c, c the largest idempotent below �} .

The weighted spectrum of A is the function wSpec A : Spec A → N such that

p �→ |T (A/p)| ,

for every prime filter p ∈ Spec A.

Throughout, poset means finite partially ordered set (with the partial order
relation usually denoted by ≤). A forest is a poset such that the collection of
lower bounds of any given element is totally ordered. A weighted forest is a
function w : F → N, where F is a forest. Consider two weighted forests w : F →
N, w′ : F ′ → N. By a morphism g : w → w′ we mean an order-preserving map
g : F → F ′ that is

(M1) open (or is a p-morphism), i.e. whenever x′ ≤ g(x) for x′ ∈ F ′ and
x ∈ F , then there is y ≤ x in F such that g(y) = x′, and

(M2) respects weights, meaning that for each x ∈ F , there exists y ≤ x in
F such that g(y) = g(x) and w′(g(y)) divides w(y).

2 A lower set of a poset P is a subset D such that x ∈ D and y ≤ x ∈ P imply y ∈ D.
The smallest lower set containing a subset S ⊆ P is denoted ↓ S. Upper sets and
the notation ↑ S are defined analogously.
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Contemplation of these definitions shows that weighted forests and their mor-
phisms form a category. Let us write WF for the latter category, and FBL for the
category of finite BL-algebras and their homomorphisms.

It is possible to prove that wSpec A is a weighted forest for any finite BL-
algebra A. In fact, wSpec can be turned into a contravariant functor from FBL
to WF, as follows. Given a homomorphism h : A → B of finite BL-algebras, one
proves that there is a function

Spec h : Spec B → Spec A (1)

defined by
p ∈ Spec B �→ h−1(p) ∈ Spec A . (2)

Moreover, one checks that Spec h is an open order-preserving map from the
forest Spec B to the forest Spec A, and that it respects the weights of wSpec B
and wSpec A. Hence, Spec h defines a morphism

wSpec h : wSpec B → wSpec A

of weighted forests. Direct inspection now shows that wSpec sends identity maps
to identity maps, and preserves composition. To sum up, wSpec is a contravari-
ant functor from FBL to WF.

Conversely, we next construct a contravariant functor from weighted forests
to finite BL-algebras. If F is a forest, a subforest of F is any lower set of F .
If w : F → N is a weighted forest, a weighted subforest of w is defined as any
w′ : F ′ → N with F ′ a subforest of F such that w′(x) ≤ w(x) for all x ∈ maxF ′,
and w′(x) = w(x) otherwise. We write Sub w for the set of all weighted subforests
of w.

It turns out that Subw carries a natural structure of BL-algebra, as follows.
To begin with, writing ∅ : ∅ → N for the unique empty weighted forest, we set
⊥ = ∅, and � = w. To define �, consider subforests u : U → N and v : V → N

of w. Define a function a : U ∩ V → N ∪ {0} by

a(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(0, u(x) + v(x) − w(x)) if x ∈ maxU ∩ max V

u(x) if x ∈ maxU and x /∈ maxV

v(x) if x /∈ maxU and x ∈ maxV

w(x) otherwise,

for each x ∈ U ∩ V . Let E = {x ∈ U ∩ V | a(x) > 0}, and define u � v : E → N

by the restriction u � v = a � E.
Turning to implication, we define u → v. First, we set

A = F \ ↑ (U \ V ) ,

B = {x | x ∈ maxU ∩ max V and u(x) > v(x)} .



Applications of Finite Duality to Locally Finite Varieties of BL-Algebras 5

Then we set E = (A \ ↑ B) ∪ B. We define (u → v) : E → N by

(u → v)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(x) + w(x) − u(x) if x ∈ B

v(x) if x ∈ (U ∩ V ) \ (max U ∩ maxV )
w(x) − u(x) if x ∈ min U \ V

w(x) otherwise,

for each x ∈ E.
Lattice operations u ∨ v : U ∪ V → N and u ∧ v : U ∩V → N turn out to be as

follows:

(u ∨ v)(x) =

⎧
⎪⎨

⎪⎩

max(u(x), v(x)) if x ∈ U and x ∈ V

u(x) if x ∈ U and x /∈ V

v(x) if x /∈ U and x ∈ V

for each x ∈ U ∪ V , and

(u ∧ v)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(u(x), v(x)) if x ∈ maxU ∩ maxV

u(x) if x ∈ maxU and x /∈ maxV

v(x) if x /∈ maxU and x ∈ maxV

w(x) otherwise,

for each x ∈ U ∩ V , respectively.
It can now be proved that for any weighted forest w : F → N, the algebraic

structure
( Sub w, �, →, ∧, ∨, ⊥, �)

is a (finite) BL-algebra. To turn Sub into a contravariant functor from WF to
FBL, we take inverse images again. Namely, if g : w → w′ is a morphism between
the weighted forests w : F → N and w′ : F ′ → N, we define Sub g : SubF ′ →
SubF by

U ∈ SubF ′ �→ g−1(U) ∈ SubF .

One can prove that Sub g so defined is a homomorphism of BL-algebras. To sum
up, Sub is a contravariant functor from WF to FBL.

Finally, one can prove that wSpec and Sub yield a duality. Here we omit the
proof for space constraints.

Theorem 1 (Finite Duality). The category of finite BL-algebras and their
homomorphisms is dually equivalent to the category of weighted forests and their
morphisms. That is, the composite functors wSpec ◦ Sub and Sub ◦ wSpec are
naturally isomorphic to the identity functors on WF and FBL, respectively.

In particular, by [10, Thm. IV.4.1] the functor wSpec is essentially surjective,
and this yields the following representation theorem for finite BL-algebras.

Corollary 1. Any finite BL-algebra is isomorphic to (Sub w, �, →, ∧, ∨, ⊥, �),
for a weighted forest w : F → N that is unique to within an isomorphism of
weighted forests.
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While the previous corollary has already been proved in [6, §5] and, as a special
case of a more general construction, in [9, §6], the finite duality theorem is a
novelty. In the rest of the paper, we illustrate the potential of this duality for
the investigation, and possibly the classification, of locally finite subvarieties of
BL-algebras.

4 Grigolia’s Subvarieties of BL-Algebras

In the variety of BL-algebras, we adopt the abbreviation x ⊕ y for the binary
term operation

((x → (x � y)) → y) ∨ ((y → (y � x)) → x) .

In each MV-algebra, one has ((x → (x � y)) → y) ∨ ((y → (y � x)) → x) =
¬(¬x � ¬y), that is, ⊕ coincides with the �Lukasiewicz sum. Thus, our usage of
⊕ is consistent with standard MV-algebraic notation. Further, it is an exercise
to check that, in every BL-algebra, the operation ⊕ is commutative, associative,
and satisfies x⊕� = �; cf. [2, Definition 2.2]. Thus, we can consistently shorten
x ⊕ x ⊕ · · · ⊕ x to hx, and similarly x � x � · · · � x to xh, where in both cases x
occurs h many times, for h > 0 an integer. Finally, we set x0 = � and 0x = ⊥.

In [7, pag. 81–82], Grigolia axiomatized the variety MVk generated by the
k-element MV-chain �Lk, for each integer k ≥ 2, extending the axioms for MV-
algebras by the following axiom schemata.3

(G1) xk = xk−1,
(Gh) k(xh) = (h(xh−1))k, for every integer 2 ≤ h ≤ k − 2 that does not

divide k − 1.

For a given k ≥ 2, we define BLk to be the variety of BL-algebras satisfying
(G1–Gh), for all integers h such that 2 ≤ h ≤ k − 2, and such that h is not a
divisor of k − 1.

Note that BLk contains the variety of Gödel algebras. Indeed, one checks that
each Gödel algebra satisfies xh = xk and hx = kx for every h, k > 0, so that
axioms (G1) and (Gh) boil down to x = x.

For k, l ∈ N, we write Bl
k to denote the ordinal sum of l copies of �Lk.

Lemma 1. Fix k ≥ 2.

(1) The variety BLk is generated by {Bl
k | l ∈ N}.

(2) The variety BLk is locally finite.
(3) For a finite BL-algebra A, the following are equivalent.

(i) A ∈ BLk.
(ii) wSpec A has range included in the set of divisors of k − 1.

3 Here, Grigolia’s axioms are presented in the version adopted in [3, 8.5.1].
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Proof. (1) Suppose a term τ(X1, . . . , Xn) in the language of BL-algebras fails
— i.e., evaluates to an element �= � — in a BL-algebra B lying in BLk. Since
each BL-algebra is a subdirect product of BL-chains ([8, 2.3.16]), it is safe to
assume that B is a chain. By [1, Theorem 3.7], B is an ordinal sum of totally
ordered Wajsberg hoops, the first of which is bounded (equivalently, is an MV-
chain). Moreover, τ fails in a finitely generated subalgebra of B. Since a finitely
generated subalgebra of an ordinal sum of Wajsberg hoops is an ordinal sum
of finitely many components, we may assume that B is a finite ordinal sum
of Wajsberg hoops Wi, i = 1, . . . , l, with W1 an MV-chain. Either by direct
inspection, or by the argument in [11, Theorem 1], one sees it is safe to assume
l = n + 1. Since B satisfies (G1), if x ∈ Wi \ {�} then xk−1 is idempotent. But
then xk−1 must be the bottom of Wi. Indeed, it is well-known that the only
idempotents of linearly ordered Wajsberg hoops are the top and (when it exists)
the bottom element. Therefore, each Wi is an MV-chain. Since by hypothesis
this MV-chain satisfies (Gh) and (Gh) is ⊥-free, h ≥ 1, it follows that each Wi

lies in MVk. In conclusion, since MVk is generated by �Lk, τ fails in the ordinal
sum of n + 1 copies of �Lk, as was to be shown.
(2) This is an immediate consequence of the fact that MVk is locally finite by [3,
8.6.1], along with the observation that an n-generated BL-chain is the ordinal
sum of at most n + 1 summands.
(3) (i) ⇒ (ii). If p is a prime filter of A, the top part T (A/p) of the BL-chain A/p
can be made into an MV-chain lying in MVk by adding a bottom element to it,
and extending the operations in the only possible way. If such an MV-chain has
cardinality c, then c − 1 divides k − 1, hence (ii) follows.
(ii) ⇒ (i). Suppose A �∈ BLk. Then there is a prime filter p of A such that the
BL-chain A/p does not lie in BLk. Equivalently, A/p is an ordinal sum of finitely
many finite MV-chains �Lci , i = 1, . . . , u, and there exists j ∈ {1, . . . , u} such that
�Lcj does not lie in MVk. The latter condition means that cj − 1 does not divide
k − 1. Let q be the prime filter of A/p generated by the bottom of �Lcj+1 , if
j < u; otherwise, let q be the trivial filter {�} of A/p. Now |T ((A/p)/q)| does
not divide k − 1 by construction, and |T ((A/p)/q)| is in the range of wSpec A
by the isomorphism theorems.

5 The Weighted Spectrum of Free Algebras in BLk

We write Freen,k for the free n-generated algebra in BLk, for k ≥ 2 and n ≥ 0
an integer. By [3, 8.6.1], the free n-generated MV-algebra in MVk is given by
the direct product

FreeMVn,k =
∏

d | (k−1)

�Lα(n,d)
d+1 , (3)

where d ∈ N, α(0, d) is 0 if d > 1 and 1 if d = 1, and, for n ≥ 1,

α(n, d) = (d + 1)n +
∑

∅�=X⊆PrDiv (d)

(−1)|X|(gcd X + 1)n , (4)



8 S. Aguzzoli, S. Bova, and V. Marra

1

11

1

22

2

2

2

4

4

4

4

4

4

4

4

4

4

4 4 4 4 4

4 4 4 4 4

1

11

1

22

2

2

2

4

4

4

4

4

4

4

4

4 4 4 4

4 4 4 4

4 4

4

4

1

1

1

2

2

Fig. 1. α(1, 4) = 4, α(2, 4) = 5, α(4, 4) = 16 (left), and β(1, 4) = 1, β(2, 4) = 3,
β(4, 4) = 12 (right)

where PrDiv (d) is the set of coatoms in the lattice of divisors of d. Geometrically,
α(n, d) counts the number of points in [0, 1]n whose denominator is d.4 We now
define a variant of α. We let β(0, d) = 0 if d > 1 and 1 if d = 1, and, for n ≥ 1,

β(n, d) = dn +
∑

∅�=X⊆PrDiv (d)

(−1)|X|(gcd X)n . (5)

Geometrically, β(n, d) counts the number of points in [0, 1)n whose denomi-
nator is d — in other words, β does not take into account those points of [0, 1]n

having at least one coordinate set to 1. Compare Figure 1 for an example. No-
tice that letting L(d) = { (e1, e2) | lcm (e1, e2) = d }, where lcm (a, b) denotes
the least common multiple of integers a and b, we have

∑

(e1,e2)∈L(d)

β(h, e1)β(k, e2) = β(h + k, d) . (6)

We next use (5) to define a family of weighted forests that shall be proved dual
to free algebras in BLk. To this purpose, we introduce some additional notation.
If U is a forest we write U⊥ for the forest obtained from U by adding a new
bottom element ⊥. Further, if u : U → N is a weighted forest, we write u⊥ for
the weighted forest having U⊥ as domain, and such that u⊥ agrees with u over U ,
and u⊥(⊥) = 1. It is a standard fact that varieties of algebras are both complete
and cocomplete. If, moreover, V is a subvariety of the variety W, then a product
of V-algebras computed in V coincides with the same product computed in W.
Then Theorem 1 implies at once that WF has all finite coproducts. We write u+v
for the coproduct of the weighted forests u : U → N and v : V → N. Clearly, since
products in varieties of algebras are Cartesian, we have u+v : U +V → N, where
U + V is the disjoint union of U and V , and u + v agrees with u on U , and with
v on V . Thus, up to an isomorphism, any weighted forest can be written as a
coproduct

∑u
i=1 Ti of weighted trees in essentially just one way. Here, as usual,

a tree is a forest with a minimum element.
4 The denominator of a rational point (r1/s1, . . . , rn/sn), where ri, si ≥ 0 are integers

such that si �= 0 and ri and si are relatively prime, is the least common multiple of
the set si’s.
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For coproducts in varieties and subvarieties the situation is generally not as
simple. In our case, however, we have the following properties (proofs of the
following two lemmas are omitted for space constraints).

Lemma 2. (i) The category WF has all finite products. (ii) If u, v are weighted
forests, and u×v is their product with projections πu : u×v → u and πv : u×v →
v, then Subu × v, along with the injections Sub πu, Subπv, is the coproduct
of Subu and Sub v in the category of all BL-algebras. (iii) For each integer
k ≥ 2, coproducts computed in BLk coincide with coproducts computed in the
category of all BL-algebras. (iv) For any three weighted forests u, v, w, we have
u × (v + w) ∼= (u × v) + (u × w).

Note that, using (iv) in Lemma 2, we obtain the binomial expansion

(u + v)m ∼=
m∑

i=0

(
m

i

)

uivm−i ,

for any two weighted forests u, v. Here and in the sequel, in the expressions
involving products and coproducts we adopt the standard notation of elementary
arithmetic.

We now describe the finite products in the category WF. Let v : Fv → N and
w : Fw → N be two weighted forests. By Fv × Fw we mean the product of the
underlying forests as described in [5]. We further denote by πv : (Fv ×Fw) → Fv

and πw : (Fv × Fw) → Fw the associated projections. The product of v and w
in WF is the function (v × w) : (Fv × Fw) → N together with the projections πv

and πw, defined as follows.
Pick p ∈ Fv and q ∈ Fw. In case p �∈ min Fv and q �∈ min Fw there are exactly

three disjoint classes of points in Fv × Fw, denoted by (p|q), (p, q), (q|p), such
that all points in them project through πv to p and through πw to q. Further,
any point in Fv ×Fw that projects to p and q, respectively, falls into one of these
classes. In particular, by [5], each point in (p|q) is such that its predecessor in
Fv × Fw projects to p through πv and to the predecessor of q in Fw through πw.
The case of the class of points (q|p) is symmetric. Each point in (p, q) is such
that its predecessor in Fv × Fw projects to the respective predecessors through
both projections.

If exactly one point in {p, q} is minimal in the forest it belongs, say p ∈
min Fv, then there is exactly one point in Fv × Fw, precisely in (p|q), such
that its predecessor projects to p through πv and to the predecessor of q in Fw

through πw. If p ∈ min Fv and q ∈ min Fw then there is exactly one point in
Fv × Fw, classed in (p, q), such that πv(p, q) = p and πw(p, q) = q. Moreover,
(p, q) ∈ min(Fv × Fw).

Let r ∈ Fv × Fw be such that πv(r) = p and πw(r) = q. Then

(v × w)(r) =

⎧
⎪⎨

⎪⎩

w(q) if r ∈ (p|q)
v(p) if r ∈ (q|p)
lcm (v(p), w(q))) if r ∈ (p, q)
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where lcm (a, b) denotes the least common multiple of a, b ∈ N.
Throughout, let Pd denote the weighted tree consisting of just one point hav-

ing weight d, for d ∈ N. The description of finite products in WF given above
allows to prove the following properties.

Lemma 3. Let u⊥ and v⊥ be two trees in WF. If u �= ∅ �= v then

u⊥ × v⊥ ∼= (u × v⊥ + u × v + u⊥ × v)⊥ .

Further, PdPe
∼= Plcm (d,e), Pdu⊥ × Pev⊥ ∼= Plcm (d,e)(u⊥ × v⊥), P1u⊥ ∼= u⊥.

For k ≥ 2, we introduce the following definitions:

– M0
k = P1.

– For each integer n ≥ 1,

Mn
k =

∑

d|(k−1)

β(n, d)Pd .

Note in particular that if k−1 is prime, or equal to 1, then M1
k = P1+(k−2)Pk−1.

Lemma 4. Fix k ≥ 2. Set F 1
k = M1

k + (M1
k )⊥. Then

wSpec Free1,k
∼= F 1

k .

Proof. If S is any set and B is a BL-algebra, let us write BS for the BL-algebra
of all functions S → B endowed with the operations inherited pointwise from
B. By the argument proving (1) in Lemma 1, we know that if a term τ(X1)
in the language of BL-algebras fails in some BL-algebra lying in BLk, then it
must fail in B2

k. Hence, by standard universal-algebraic considerations, Free1,k

is (isomorphic to) the subalgebra of (B2
k)B2

k that is generated by the identity
function, the latter being a free generator. Let us write C ∼= �Lk and D ∼= �Lk

for the first and second summand of B2
k, respectively, and b for the bottom

element of D (i.e., the unique idempotent of B2
k besides top and bottom). A

trivial structural induction shows that any element f ∈ Free1,k is such that (i)
f(p/q) = r/q for p/q an irreducible fraction in [0, 2] such that q divides k − 1;
(ii) f(c) ∈ C for any c ∈ C; (iii) f(�) = ⊥ implies f(d) = ⊥, while f(�) = �
implies f(d) ≥ b, for any d ∈ D. Conversely, let f ∈ (B2

k)B2
k satisfy (i–iii)

above. A straightforward adaptation of [11, Thm. 2] shows that f ∈ Free1,k.
As an immediate consequence of this representation of Free1,k it follows that
Spec Free1,k is isomorphic to the underlying forest of F 1

k . A further computation
confirms that wSpec Free1,k is isomorphic to F 1

k . As a matter of fact, each prime
filter of Free1,k is singly generated by a function f ∈ Free1,k of one of the following
three types: (1) there exists c ∈ C \ {�} such that f(c) = � and f(a) = 0 for
all c �= a ∈ B2

k; (2) there exists d ∈ D \ {�} such that f(d) = f(�) = �, while
f(e) = b for all e ∈ D \ {d, �}, and f(c) = 0 for all c ∈ C \ {�}; (3) f(�) = �,
f(d) = b for all d ∈ D \ {�}, and f(c) = 0 for all c ∈ C \ {�}. Notice that the
only filter of type (3) includes all filters of type (2) and no other inclusions hold
in wSpec Free1,k.



Applications of Finite Duality to Locally Finite Varieties of BL-Algebras 11

1 2 1
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1 2 3 3 6 6 1

1 2 3 3 6 6

Fig. 2. F 1
3 (left) and F 1

7 (right)

Example 1. Figure 2 displays the weighted forest F 1
3 (to the left), and the

weighted forest F 1
7 (to the right).

For each k ≥ 2 and each integer n ≥ 1, let us define

Fn
k = F 1

k × · · · × F 1
k︸ ︷︷ ︸

n times

= (F 1
k )n .

Lemma 5. Fix k ≥ 2, and for each integer n ≥ 0,

Fn
k

∼= wSpec Freen,k .

Proof. By standard universal algebra, in any variety the free algebra on κ free
generators, for κ a cardinal, is isomorphic to the copower of κ-many copies
of the free algebra on one generator. Thus, Freen,k

∼=
∑n

i=1 Free1,k, where
the right-hand side coproduct is computed in BLk. Using Lemma 2 we have
wSpec Freen,k

∼= wSpec (
∑n

i=1 Free1,k) ∼=
∏k

i=1 wSpec Free1,k. By Lemma 4,
∏k

i=1 wSpec Free1,k
∼=

∏k
i=1 F 1

k = Fn
k , and the lemma is proved.

Our next objective is to obtain an explicit description of Fn
k for any n and k.

To this aim, we define the following weighted trees. Fix k ≥ 2, and an integer
d ≥ 1:

– T 0
k,d = Pd.

– For each integer n ≥ 1,

T n
k,d = Pd

⎛

⎝
n∑

i=1

∑

e|k−1

(
n

i

)

β(i, e)T n−i
k,e

⎞

⎠

⊥

.

Lemma 6. Fix integers k ≥ 2, d ≥ 1, and m ≥ 1.

(1) T 1
k,1

∼= (M1
k )⊥.

(2) T m
k,d

∼= PdT
m
k,1.

(3) Mm
k

∼= (M1
k )m.

(4) T m
k,d

∼= (T 1
k,d)

m.

Proof. (1) follows immediately from the definition of T 1
k,1, T 0

k,1 and M1
k . (2)

follows from Lemma 3 and the definition of T 1
k,1 and T m

k,1.
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(3) By induction on m. The base case is trivial. Write (M1
k )m as M1

k ×
(M1

k )m−1. By induction, Mm−1
k

∼= (M1
k )m−1. By Lemma 3, since products dis-

tribute over coproducts,

M1
k × Mm−1

k
∼=

∑

d|k−1

β(1, d)Pd ×
∑

e|k−1

β(m − 1, e)Pe

∼=
∑

d|k−1

∑

e|k−1

β(1, d)β(m − 1, e)Plcm (d,e)

∼=
∑

d|k−1

β(m, d)Pd
∼= Mm

k (by (6)).

(4) By induction on m. The base case is trivial. Write (T 1
k,d)

m as T 1
k,d ×

(T 1
k,d)

m−1. By induction T m−1
k,d

∼= (T 1
k,d)

m−1. Let

V =
m−1∑

i=1

∑

e|k−1

(
m − 1

i

)

β(i, e)T m−1−i
k,e ,

so PdV⊥ ∼= T m−1
k,d . By Lemma 3,

T 1
k,d × T m−1

k,d
∼= Pd

(
(M1

k )⊥ × V⊥
) ∼= Pd

(
(M1

k × V⊥)+(M1
k × V ) + (T 1

k,1 × V )
)
⊥ .

By distributivity and Lemma 3, since M1
k is a forest of one-point trees:

M1
k × V⊥ ∼=

∑

e|k−1

β(1, e)PeV⊥ ∼=
∑

e|k−1

β(1, e)T m−1
k,e ;

analogously,

M1
k × V ∼=

⎛

⎝
∑

e|k−1

β(1, e)Pe

⎞

⎠ ×

⎛

⎝
m−1∑

i=1

∑

e|k−1

(
m − 1

i

)

β(i, e)T m−1−i
k,e

⎞

⎠

∼=
m−1∑

i=1

∑

e1|k−1

∑

e2|k−1

(
m − 1

i

)

β(1, e1)β(i, e2)T
m−(i+1)
k,lcm (e1,e2)

∼=
m−1∑

i=2

∑

e|k−1

(
m − 1
i − 1

)

β(i, e)T m−i
k,e (by (6)) ;

finally,

T 1
k,1 × V ∼=

m−1∑

i=1

∑

e|k−1

(
m − 1

i

)

β(i, e)(T 1
k,1 × T m−1−i

k,e )

∼=
m−1∑

i=1

∑

e|k−1

(
m − 1

i

)

β(i, e)T m−i
k,e (Induction Hypothesis)

∼=
m−1∑

i=2

∑

e|k−1

(
m − 1

i

)

β(i, e)T m−i
k,e +

∑

e|k−1

(m − 1)β(1, e)T m−1
k,e .
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Summing up we have

T 1
k,d × T m−1

k,d
∼= Pd

(
(M1

k × V⊥) + (M1
k × V ) + (T 1

k,1 × V )
)
⊥

∼= Pd

⎛

⎝
m∑

i=1

∑

e|k−1

(
m

i

)

β(i, e)T m−i
k,e

⎞

⎠

⊥

,

as was to be proved.

Example 2. The rightmost trees in Figure 2 are T 1
3,1 (left) and T 1

7,1 (right). The
rightmost tree in Figure 3 is T 2

3,1.

We are finally in a position to exhibit the promised explicit description of
wSpec Freen,k.

Theorem 2. For each k ≥ 2 and each integer n ≥ 0,

Fn
k

∼=
n∑

i=0

∑

d|k−1

β(i, d)
(

n

i

)

T n−i
k,d .

Proof. By definition,

Fn
k = (F 1

k )n = (M1
k + (M1

k )⊥)n ∼= (M1
k + T 1

k,1)
n . (7)

Since products distribute over coproducts, (7) yields

(M1
k + T 1

k,1)
n ∼=

n∑

i=0

(
n

i

)

(M1
k )i(T 1

k,1)
n−i . (8)

By Lemma 6 along with the definition of M i
k, from (8) we deduce

(M1
k + T 1

k,1)
n ∼=

n∑

i=0

(
n

i

) ∑

d|k−1

β(i, d)PdT n−i
k,1 . (9)

As by Lemma 6.(2), PdT
n−i
k,1

∼= T n−i
k,d , the lemma follows from (9) at once.

Example 3. Figure 3 displays the weighted forest F 2
3 .

1 2 2 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2

1 2 1 2 1 2 1 2

Fig. 3. F 2
3 = (F 1

3 )2
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6 The Cardinality of Free Algebras in BLk

In this final section, we use Theorems 1 and 2 to obtain the cardinality of Freen,k.
We shall write t(k, n, d) for the cardinality of the BL-algebra SubT n

k,d, where
k ≥ 2, d ∈ N, and n ≥ 0 an integer.

Lemma 7. Fix k ≥ 2, and an integer n ≥ 0. Then t(k, 0, d) = d + 1, and

t(k, n, d) = d +
n∏

i=1

∏

e|k−1

t(k, n − i, e)(
n
i)β(i,e) .

Proof. Follows immediately from Lemma 6.(4).

Theorem 3. Fix k ≥ 2, and an integer n ≥ 0. Then:

|Freen,k| =
n∏

i=0

∏

d|k−1

t(k, n − i, d)(
n
i)β(i,d) .

Proof. Follows immediately from Theorem 2.

To conclude, in the following table we report the cardinalities of Freen,k for some
values of n and k, computed using Theorem 3. Approximations are from below.

n = 1 n = 2 n = 3
k = 2 6 342 137186159382
k = 3 42 28677559680 ∼ 2.255534588 · 1091

k = 4 1056 ∼ 4.587963634 · 1028 ∼ 1.230577614 · 10373

k = 5 22650 ∼ 1.525862962 · 1055 ∼ 4.141165490 · 10957

k = 6 6721056 ∼ 1.738126059 · 10106 ∼ 2.246803010 · 102299
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8. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)



Applications of Finite Duality to Locally Finite Varieties of BL-Algebras 15

9. Jipsen, P., Montagna, F.: The Blok-Ferreirim Theorem for Normal GBL-algebras
and its Application. Algebra Universalis (to appear)

10. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New
York (1998)

11. Montagna, F.: The Free BL-algebra on One Generator. Neural Network World 5,
837–844 (2000)



Completeness Results for Memory Logics

Carlos Areces1, Santiago Figueira2,3, and Sergio Mera2,�

1 INRIA Nancy Grand Est, France
2 Departamento de Computación, FCEyN, UBA, Argentina

3 CONICET, Argentina

Abstract. Memory logics are a family of modal logics in which standard
relational structures are augmented with data structures and additional
operations to modify and query these structures. In this paper we present
sound and complete axiomatizations for some members of this family.
We analyze the use of nominals to achieve completeness, and present
one example in which they can be avoided.

1 Modal Logics with Memory

Many attempts have been made in recent years to increase modal logic expres-
sivity by adding some notion of state to standard relational structures. This is
a natural need, since modal logics are used in many different scenarios as tools
for modeling behavior.

One example of how this can be achieved comes from epistemic logic with dy-
namic operators, which allow to express the evolution of knowledge by
knowledge-changing actions. Such logics are often called Dynamic Epistemic
Logics (DEL) [16], and a large number of DELs has been proposed [9,13,14,15].
These logics differ considerably in expressive power, but the common idea is
to express knowledge evolution by accessing and changing the model structure
through logic operators. An alternative approach comes from the software ver-
ification community, and the use of temporal logic with explicit global clocks
which are accessed and controlled through logic operators. The logic XCTL of
Harel et al. [10] is an example of this approach. Another example, also from
the software verification community, is the extension of temporal logic with a
concrete domain (e.g., the natural numbers with some operations like addition,
comparison, etc.) which is accessed via the so-called freeze operator [1,11]. In
the extended language, we can model qualitative properties using the temporal
operators, and concrete properties –such as weight, temperature, etc.– using the
new machinery. To cite yet another example, concrete domains have also been
added to description logics, with much the same aims [12].

We would like to take a step back, and analyze some of the basic intuitions
that most of the formal languages mentioned above have in common. We want
to try to investigate the idea of adding an explicit state to a model, and being
able to access (and modify) it via logical operators. And we would like to take
this idea in its simplest form, in order to be able to understand it in detail.
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We can take a standard relational structure and complement it with a data
structure, that will keep the state information we want to model. We will also add
to the logical language a collection of operations to modify and access the data
structure. Formally, given a relational structure 〈D, (Rr)r∈Rel, L〉 where D is a
non empty domain, (Rr)r∈Rel is a set of relations over D, and L : Atom → 2D is
a labeling function that assigns atomic properties to elements of D, we extend
the structure with a set S ⊆ D. We can think of S as a set of states that are
‘known’ to us, and it will represent our current ‘memory’. Even in this simple
setting we can define the following operators:

〈D, (Rr)r∈Rel, L, S〉, w |= ©rϕ iff 〈D, (Rr)r∈Rel, L, S ∪ {w}〉, w |= ϕ
〈D, (Rr)r∈Rel, L, S〉, w |= ©k iff w ∈ S.

As it is clear from the definition above, the ‘remember’ operator ©r (a unary
modality) just marks the current state as being ‘known’ or ‘already visited’, by
storing it in our ‘memory’ S. On the other hand, the zero-ary operator ©k (for
‘known’) queries S to check if the current state has already been visited. Notice
that the extension of S is dynamic and it can vary during the evaluation of a
formula; while the ‘concrete’ operation we can apply to S is simple membership.

Other operators can naturally be added, for example:

〈D, (Rr)r∈Rel, L, S〉, w |= ©eϕ iff 〈D, (Rr)r∈Rel, L, ∅〉, w |= ϕ.

I.e., we can use the erase operator ©e to completely wipe out the memory S.
We have introduced this family of logics, that we called memory logics, and
investigated its expressive power in [2,3,4].

The language we have just described is very flexible, and it can be used to
easily characterize model properties. For example if all states in the domain of a
model M satisfy the formula ©e©r 〈r〉©k then the relation Rr is reflexive (we wipe
out the memory, memorize the current point of evaluation and verify that it is
accessible). Similarly, if they satisfy ©e©r [r]〈r〉©k then Rr is symmetric (erase
memory, memorise the current point of evaluation and verify that all successors
can reach back to the memorized point). Actually, using ©e , ©r and ©k we can
express properties similarly as how it is done in the hybrid language HL(↓) [5].
But in [3,4] we have shown that the modal language extended with ©e , ©r and
©k is strictly less expressive than HL(↓).

In this article we are interested in providing complete axiomatizations for
these logics. With this aim in mind, we will include in the language also nom-
inals and the hybrid @ operator (see [5,6] for details on hybrid logics). As
discussed in [8], the hybrid machinery can be used to prove general complete-
ness results, and to axiomatize logics which are otherwise difficult to
characterize.

The rest of the paper is organized as follows. In the next section we formally
introduce the different logics we will investigate. In Sect. 3 we present a sound
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and complete axiomatization for HL(@, ©r , ©k )1, the basic modal logic extended
with nominals, @, and the ©r and ©k memory operators. Our axiomatization cru-
cially involves the use of nominals. As discussed in [3], the ©r and ©k operators
are very expressive, and even when added to the basic modal language, they
already give rise to an undecidable logic. In [3] we introduced a logic including
©r and ©k with additional constrains on how the modal and the memory oper-
ators interact. In that work we showed that although this logic is strictly more
expressive than ML, it turns out to be decidable. We will show a sound and
complete axiomatization for this logic in Sect. 4. Finally in Sect. 5 we discuss
completeness for a language including the ©e operator. We conclude in Sect. 6
with some final remarks.

2 Syntax and Semantics of Memory Logics

In this section we formally introduce the languages mentioned above, together
with some basic notation and notions related to completeness.

Definition 1 (Syntax). Let Prop = {p1, p2, . . .} (the propositional symbols),
Nom = {n1, n2, . . .} (the nominal symbols) and Rel = {r1, r2, . . .} (the relational
symbols) be pairwise disjoint, countable infinite sets. Let Atom = Prop ∪ Nom.
The set Forms of formulas in the signature 〈Prop, Nom, Rel〉 is defined as:

Forms ::= � | p | i | ©k | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | @iϕ | ©rϕ | ©eϕ,

where p ∈ Prop, i ∈ Nom, r ∈ Rel and ϕ, ϕ1, ϕ2 ∈ Forms. We use [r]ϕ as a
shorthand for ¬〈r〉¬ϕ.

Definition 2 (Semantics). Given a signature S = 〈Prop, Nom, Rel〉, a model
for S is a tuple 〈D, (Rr)r∈Rel, L, S〉, satisfying the following conditions: (i) D =
∅; (ii) each Rr is a binary relation on D; (iii) L : Atom → 2D is a labeling
function such that L(n) is a singleton whenever n ∈ Nom; and (iv) S ⊆ D.

Given the model M = 〈D, (Rr)r∈Rel, L, S〉 and w ∈ D, the semantics for the
different operators is defined as follows:

M, w |= � always
M, w |= p iff w ∈ L(p) p ∈ Atom

M, w |= ¬ϕ iff M, w |= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= 〈r〉ϕ iff there is w′ such that Rr(w, w′) and M, w′ |= ϕ
M, w |= @iϕ iff M, v |= ϕ where L(i) = {v}
M, w |= ©rϕ iff 〈D, (Rr)r∈Rel, L, S ∪ {w}〉, w |= ϕ
M, w |= ©k iff w ∈ S

M, w |= ©eϕ iff 〈D, (Rr)r∈Rel, L, ∅〉, w |= ϕ.

1 Our notational convention for naming logics is the following. We will call ML the
basic modal logic, with the standard modal operators. We will use HL for the modal
language extended with only nominals. And we will then list the additional opera-
tors included in the language. For example HL(@, ©r , ©k , ©e ) is the modal language
extended with nominals, and the @, ©r , ©k and ©e operators.
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Given a model M = 〈D, (Rr)r∈Rel, L, S〉 and states w1, . . . , wn ∈ D, we will
write M[w1, . . . , wn] for the model 〈D, (Rr)r∈Rel, L, S ∪ {w1, . . . , wn}〉.

Given a model M, we say that ϕ is valid on M and write M |= ϕ if for all
states w in the domain of M we have that M, w |= ϕ.

Definition 3 (Satisfiability, Validity, Completeness). Let C be a class of
models. We say that ϕ is satisfiable in C if there is a model M ∈ C and a state
w in the domain of M such that M, w |= ϕ. We say that ϕ is valid in C if ¬ϕ
is not satisfiable in C. The notions of satisfiability and validity can be extended
to set of formulas in the usual way. For example, we say that a set of formulas
Γ is satisfiable in a class of models C if there is a model M ∈ C and a state w
in the domain of M such that for all formulas ϕ ∈ Γ we have M, w |= ϕ. We
will note T (C) the set of all valid formulas in C.

Given an axiomatization A, a formula ϕ is a theorem of A if it is an axiom
in A, or it can be obtained by a finite number of applications of inference rules
in A from axioms of A. We write T (A) for the set of all theorems in A.

We say that a formula ϕ is consistent with respect to an axiomatization A
(or A-consistent) if ¬ϕ is not a theorem of A. The notion of consistency can
be extended to a set of formulas Γ by requiring that for no finite subset Γ f , the
formula

∧
Γ f → ¬� be a theorem of A.

Given an axiomatization A and a class of models C we say that A is sound
for C if T (A) ⊆ T (C), and that it is complete for C if T (C) ⊆ T (A). Complete-
ness can be equivalently defined in terms of consistency and satisfiability: A is
complete for C if every formula consistent in A is satisfiable in C.

Finally, we say that an axiomatization A is strongly complete with respect to
C, if every A-consistent set of formulas is satisfiable in C.

In this article we will present a number of axiomatizations and prove them
(strongly) complete with respect to different classes of models. The different log-
ical languages involved will be defined in terms of the operators introduced in
Definitions 1 and 2; and we will be interested mainly in the class of all models,
and the class {〈D, (Rr)r∈Rel, L, S〉 | S = ∅} of models with no previously ‘re-
membered’ states. This last class is a natural choice: in the absence of the ©e
operator, evaluating formulas on such models provides additional expressivity,
and the intuitive meaning of the remember and known operators are naturally
captured. For example the formula ©r 〈r〉©k characterizes reflexivity of Rr over
this class (that is, let M = 〈D, (Rr)r∈Rel, L, S〉 be an arbitrary model, except
that S = ∅, then M |= ©r 〈r〉©k if and only if Rr is reflexive). This no longer
holds when S is arbitrary. See [3] for further details.

As we mentioned in the introduction, we will also be interested in a logic in
which the behavior of the remember operator is highly coupled with the modal
transitions to ensure decidability. In this logic, every time we make a modal
step, we are constrained to remember the current state. We change the semantic
definition of 〈r〉 to be:

〈D, (Rr)r∈Rel, L, S〉, w |= 〈r〉ϕ iff ∃w′ ∈ D, Rr(w, w′) and
〈D, (Rr)r∈Rel, L, S ∪ {w}〉, w′ |= ϕ
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Axioms:
CT All classical tautologies Intro � (i ∧ p) → @ip
K@ � @i(p → q) → @ip → @iq Self-dual@ � @ip ↔ ¬@i¬p
K[r] � [r](p → q) → ([r]p → [r]q) Ref � @ii
Sym � @ij ↔ @ji Nom � (@ij ∧ @jp) → @ip
Agree � @j@ip ↔ @ip Back � 〈r〉@ip → @ip
Rem � @i(©rϕ ↔ ϕ[©k /(©k ∨ i)])
Rules:
MP If � ϕ and � ϕ → ψ then � ψ Gen[r] If � ϕ then � [r]ϕ
Name � j → ϕ then � ϕ (j not in ϕ) Gen@ If � ϕ then � @iϕ
Paste If � (@i〈r〉j ∧ @jϕ) → ψ then � (@i〈r〉ϕ) → ψ

(j 
= i and j is not in ϕ or ψ)
SortedSub1 If � ϕ then � ϕ[p/ψ] for any p ∈ Prop
SortedSub2 If � ϕ then � ϕ[i/j] for any i, j ∈ Nom

The expression ϕ[a/b] is the result of uniformly replacing all occurrences of a
in ϕ by b.

Fig. 1. Axiomatization for HL(@, ©r , ©k )

We call this logic ML− (HL− for the hybrid case). As we proved in [4],
ML−(©r , ©k ) is decidable and strictly more expressive than ML.

3 Completeness for HL(@, ©r , ©k )

This section is devoted to prove a completeness result for HL(@, ©r , ©k ). Our
axiomatization is shown in Fig. 1. It is an extension of the axiomatization for
HL(@) presented in [7].

The axiom characterizing the behavior of the memory operator is Rem. To
show soundness of the axiomatization, we only have to look at this new axiom.
Intuitively, the axiom says that, when standing in a state named by i, the act of
remembering the current state is equivalent to increase the extension of ©k with
i throughout the formula. Formally:

Lemma 1. Let M be a model and w ∈ M such that M, w |= i. Then, for all
v ∈ M, M[w], v |= ϕ iff M, v |= ϕ[©k /(©k ∨ i)].

Proof. By induction on ϕ. For the base case, if ϕ is a proposition symbol or a
nominal, then since ϕ = ϕ[©k /(©k ∨ i)] we have M[w], v |= ϕ iff M, v |= ϕ. For
the ©k case we have to prove M[w], v |= ©k iff M, v |= ©k ∨ i.

⇒) Assume that M[w], v |= ©k . If v = w, then M, v |= i, and therefore
M, v |= ©k ∨ i. If v = w, then M, v |= ©k , and hence M, v |= ©k ∨ i.

⇐) Let’s assume that M, v |= ©k ∨ i. If v = w, then M[w], v |= ©k . On the
other hand, if v = w, then we know that M[w], v |= ¬i, and therefore M, v |= ©k .
We conclude M[w], v |= ©k .

The conjunction, negation, diamond, @ and remember cases are straightfor-
ward, using the inductive hypothesis and the fact that the replacement operation
[©k /(©k ∨ i)] distributes over ∧, ¬, 〈r〉, @ and ©r .
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Corollary 1. Rem is sound over the class of all models.

Proof. Take an arbitrary model M and let w ∈ M be such that M, w |= i. By
definition M, v |= @i©rϕ iff M[w], w |= ϕ. Applying the previous lemma, this
happens iff M, w |= ϕ[©k /(©k ∨ i)] iff (by definition) M, v |= @iϕ[©k /(©k ∨ i)].

It is worth noting that having nominals in the language is a key feature to
describe the ©r /©k interaction with modal operators, and the Rem axiom strongly
uses this feature. The possibility to identify with a nominal the state in which
a remember operation is taking place allows us to fully describe the behavior of
this interaction.

We now turn to completeness. We will build a Henkin model using named
maximal consistent sets (MCSs) for an arbitrary consistent set (see [7] for further
details).

Definition 4. An MCS is named if and only if it contains a nominal. We call
any nominal belonging to an MCS a name for that MCS. Also, if Γ is an MCS
and i is a nominal, then we call {ϕ | @iϕ ∈ Γ} a named set yielded by Γ .
Furthermore we say that a model is named if every state in the model is the
denotation of some nominal (for all w ∈ D there is some nominal i such that
L(i) = {w}).

The idea behind the construction presented in [7] is that we can extract all the
information we need to build a named canonical model from a single MCS. We
start by noting that hidden inside any MCS there is a collection of named MCSs
with a number of relevant properties:

Lemma 2. Let Γ be an MCS. For every nominal i, let Δi be {ϕ | @iϕ ∈ Γ}.
Then, (i) for every nominal i, Δi is an MCS that contains i; (ii) for all nom-
inals i and j, if i ∈ Δj, then Δi = Δj; (iii) for all nominals i and j, @iϕ ∈
Δj iff @iϕ ∈ Γ ; and (iv) if i is a name for Γ then Γ = Δi.

Proof. We only sketch the proof, the full details can be found in [7]. Claim (i)
can be proved using Ref (to guarantee that i ∈ Δi), Gen@ and Self-dual@ (to
prove that Δi is an MCS). Claim (ii) is proved using Sym and Nom, Claim (iii)
follows by Agree. And Claim (iv) is obtained by Intro and Self-dual@.

Given a consistent set of formulas Σ, we can always expand it to an MCS Σ+

using the standard Lindenbaum’s Lemma. The problem is that nothing guar-
antees that this MCS will be named. In addition, as we want to extract named
MCSs from named sets yielded by Σ+, we have to ensure that there are enough
named MCSs to use as existential witnesses during the construction of the Henkin
model. Here is where the Name and Paste rules are useful. Expanding the lan-
guage with new nominals, the Name rule is going to solve our first problem, and
the Paste rule solves the second. We call an MCS Γ pasted iff @i〈r〉ϕ ∈ Γ implies
that for some nominal j, @i〈r〉j ∧ @jϕ ∈ Γ . Name and Paste guarantee that
any consistent set of formulas can be extended to a named and pasted MCS.
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Lemma 3 (Extended Lindenbaum Lemma). Let S = 〈Prop, Nom, Rel〉 be
a signature, let Nom′ be a countably infinite collection of nominals disjoint from
Nom, and let S′ be the signature obtained by extending S with Nom′. Then every
HL(@, ©r , ©k )-consistent set of formulas in S can be extended to a named and
pasted MCS in S′.

Proof. Full details can be found in [7]. The proof follows the standard Linden-
baum’s construction with the following modifications. Take a consistent set of
formulas Σ, and name it by adding a new nominal k (use Name to prove consis-
tency). Using an enumeration of all the formulas, we expand Σ step-by-step with
a formula that is consistent with the expanded set at each point. Because we want
the final MCS to be pasted, at the (m+1)-th step, when we are considering Σm

and the formula ϕm+1, if Σm∪{ϕm+1} is inconsistent, we set Σm+1 = Σm. Else,
if ϕm+1 has the form @i〈r〉ϕ, we set Σm+1 = Σm ∪{ϕm+1}∪{@i〈r〉j ∧@j〈r〉ϕ},
where j is new (relying on the Paste rule for consistency). If ϕm+1 does not have
the form @i〈r〉ϕ, we set Σm+1 = Σm ∪ {ϕm+1} as usual. Finally, we take the
infinite union of all the Σi.

Now we can define the model we need, using the named sets yielded by a named
and pasted MCS.

Definition 5. Let Γ be a named and pasted MCS. The named model yielded
by Γ is MΓ = (DΓ , (RΓ

r )r∈Rel, L
Γ , SΓ ). Here DΓ is the set of all named sets

yielded by Γ , RΓ
r (u, v) holds iff for all formulas ϕ, ϕ ∈ v implies 〈r〉ϕ ∈ u,

LΓ (a) = {w ∈ WΓ | a ∈ w} for any atom a, and SΓ = {w | ©k ∈ w}.

Note that MΓ is a well defined model, since by items (i) and (ii) of Lemma 2,
LΓ assigns to every nominal a singleton subset of DΓ . Using the fact that Γ is
named and pasted, we can prove the following Existence Lemma

Lemma 4 (Existence Lemma [7]). Let Γ be a named and pasted MCS, and
let M = 〈D, (Rr)r∈Rel, L, S〉 be the named model yielded by Γ . Suppose u ∈ M
and 〈r〉ϕ ∈ u. Then there is a v ∈ M such that Rr(u, v) and ϕ ∈ v

Now we are ready to prove the Truth Lemma that will lead us to the desired
completeness result. Before that, to treat the ©r case properly, we have to redefine
the complexity of the formulas, to be able to handle the substitutions made by
the Rem axiom.

Definition 6. We define the complexity of a formula as comp(ϕ) = 2(k+1)(r+
1)(d + 1) + v, where k, r and d are the number of occurrences of ©k , ©r and 〈r〉
respectively, and v is the number of occurrences of all the other possible symbols.

Note that with this definition, comp(©rϕ) > comp(ϕ[©k /(©k ∨ i)]).

Lemma 5 (Truth Lemma). Let M = 〈D, (Rr)r∈Rel, L, S〉 be the named
model yielded by a named and pasted MCS, and let u ∈ D. Then, for all formulas
ϕ, ϕ ∈ u iff M, u |= ϕ.
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Proof. By Induction on the structure of ϕ. The atomic, boolean and modal
cases are obvious (the Existence Lemma is used for the modal case, and the
©k case follows directly from the definition of SΓ ). We analyze the satisfaction
operators. Suppose M, u |= @iψ. This happens iff M, Δi |= ψ (by items (i) and
(ii) of Lemma 2, Δi is the only MCS containing i, and hence, by the atomic
case of the present lemma, the only state in M where i is true) iff ψ ∈ Δi (by
inductive hypothesis) iff @iψ ∈ Δi (using the fact that i ∈ Δi together with
Intro for the left-to-right direction and Intro and Self-dual@ for the right-to-left
direction) iff @iψ ∈ u (by Agree).

To finish let’s analyze the case for ©r . Given u ∈ M, we know that for some
nominal i we have u = Δi, so by definition, M, u |= i and i ∈ u. Suppose
M, u |= ©rψ. This happens iff M, u |= @i©rψ (because M, u |= i) iff M, u |=
@iψ[©k /(©k ∨i)] (by Corollary 1) iff M, u |= ψ[©k /(©k ∨i)] (again because M, u |=
i) iff ψ[©k /(©k ∨i)] ∈ u (by inductive hypothesis) iff @iψ[©k /(©k ∨i)] ∈ u (because
i ∈ u, using Intro for the left-to-right direction, and Self-dual@ and Intro for the
right-to-left direction) iff @i©rψ ∈ u (by the Rem axiom) iff ©rψ ∈ u (because
i ∈ u, applying again Intro and Self-dual@).

Theorem 1 (Completeness for HL(@, ©r , ©k )). Every MCS of formulas in
HL(@, ©r , ©k ) is satisfiable in a countable named model.

Proof. Let Σ be a consistent set of formulas from HL(@, ©r , ©k ). We use the
Extended Lindenbaum Lemma to expand it to a named and pasted set Σ+ in
an extended countable language. Let M be the named model yielded by Σ+. By
item (iv) of Lemma 2, because Σ+ is named, Σ+ is an element in the domain of
M. By the Truth Lemma, M, Σ+ |= Σ. The model is countable because each
state is named by some nominal in the extended language, and there are only
countably many of these.

This establishes strong completeness as desired. But in fact, we have done more.
Because our Henkin model is named, we can prove a more general result.

Definition 7. If a formula ϕ contains no propositional symbols (that is, its
atoms are nominals or ©k ), we say that ϕ is ©k -pure. Furthermore, if ϕ is a
©k -pure formula, we say that ψ is a ©k -pure instance of ϕ if ψ is obtained from
ϕ by uniformly substituting nominals for nominals. A formula ϕ is pure if its
atomic subformulas are only nominals.

The axiomatization we presented in Fig. 1 for HL(@, ©r , ©k ) has the following
property: for any set of pure formulas Π , if P is the logic obtained by adding
the formulas in Π as axioms, then P is complete with respect to the class de-
fined by Π .2 This result can be extended to ©k -pure formulas for the case of
HL∅(@, ©r , ©k ), the logic obtained over the class {〈D, (Rr)r∈Rel, L, S〉 | S = ∅}
of models with no previously remembered states.

We first state a property that will help us achieve the completeness result for
pure axioms.
2 These general completeness results are standard in hybrid logics. See [8] for further

details.
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Lemma 6. Let M = 〈D, (Rr)r∈Rel, L, S〉 be a named model.

1. Let ϕ be a pure formula, and suppose that for all pure instances ψ of ϕ,
M |= ψ. Then for any L′ and S′, 〈D, (Rr)r∈Rel, L

′, S′〉 |= ϕ.
2. Let S = ∅, ϕ be a ©k -pure formula, and suppose that for all ©k -pure instances

ψ of ϕ, M |= ψ. Then for any L′, 〈D, (Rr)r∈Rel, L
′, S〉 |= ϕ.

Proof. We only discuss item 2. Suppose that the hypothesis hold, but for some la-
beling L′, 〈D, (Rr)r∈Rel, L

′, ∅〉 |= ϕ. We can take ρ, a ©k -pure instance of ϕ, such
that ρ is obtained from ϕ replacing each nominal i by j, where L′(i) = L(j). By
an induction on the formula complexity, it is easy to see that (D, (Rr)r∈Rel, L, ∅)
|= ρ. This is a contradiction.

With the help of Lemma 6, and since we showed that we can build named
models from HL(@, ©r , ©k )-MCSs, a wide range of strong completeness results
can be established.

Theorem 2 ([7]). Let Π be a set of pure formulas and let A be the axiomati-
zation obtained by adding formulas in Π as axioms to the axiomatization shown
in Fig. 1. Then, every A-consistent set of formulas is satisfiable in a countable
named model in the class defined by Π.

Proof. Given an A-consistent set of formulas Ω, we can use the Extended Lin-
denbaum’s Lemma to extend it to a named an pasted A-MCS Ω+. The named
model MΩ that Ω+ gives rise to will satisfy Ω at Ω+. In addition, as every
formula in Π belongs to every A-MCS, we have that MΩ |= Π . Therefore, by
Lemma 6, MΩ is in the class of models defined by Π .

To finish this section, we will discuss an extension of the axiomatization pre-
sented above, to characterize HL∅(@, ©r , ©k ).

Theorem 3. The system obtained by extending the axiomatization in Fig. 1 with
the axiom (Empty) � ¬©k is sound and strongly complete for HL∅(@, ©r , ©k ).

Proof. Soundness of Empty is obvious for the class of HL∅(@, ©r , ©k )-models.
The completeness proof is as the one for HL(@, ©r , ©k ), but in addition, thanks
to Empty, all maximal consistent sets Δi are such that ¬©k ∈ Δi. Therefore, the
final model yielded by Γ , MΓ = 〈DΓ , (RΓ

r )r∈Rel, L
Γ , SΓ 〉, is such that SΓ = ∅,

and thus, it is a HL∅(@, ©r , ©k )-model.

Proposition 1. For the case of HL∅(@, ©r , ©k ), the result of adding Π, a set of
pure formulas, can be extended to a set Π of ©k -pure formulas

Proof. Trivial, using Lemma 6, and the same proof as in Theorem 3.

4 The Case for ML−(©r , ©k )

We will present a sound and complete axiomatization for ML−(©r , ©k ). In the
previous section we mentioned the importance of nominals to describe the interac-
tion between memory and modal operators. In this section we will show that if we



Completeness Results for Memory Logics 25

restrict ourselves to the logic in which we are constrained to remember the cur-
rent state every time we make a modal transition, nominals can be avoided. In this
logic we can describe the interaction between ©r and ©k at a propositional level.
This is not a coincidence. Because this logic has the tree model property [3,4], we
can asume that we evaluate ML−(©r , ©k )-formulas on trees, and since there are
no cycles, the remember operator has no real effect beyond the current state.

Given a formula ϕ, we define the formula ϕ� as the result of replacing all the
occurrences of ©k that are in ϕ at modal depth zero by �. Formally:

p� = p p ∈ Prop
©k � = �

(¬ϕ)� = ¬ϕ�

(ϕ1 ∧ ϕ2)� = ϕ�
1 ∧ ϕ�

2
(©rϕ)� = ©rϕ�

(〈r〉ϕ)� = 〈r〉ϕ

Lemma 7. M, w |= ©rϕ iff M, w |= ϕ�.

Proof. We proceed by induction. The case for ©k , the propositional symbols and
boolean connectives are straightforward. We analyze the other cases. For the case
ϕ = ©rψ. M, w |= ©r©rψ iff M, w |= ©rψ iff (by inductive hypothesis) M, w |= ψ�

iff M, w |= (ψ�)� iff (by inductive hypothesis) M, w |= ©r (ψ�) iff M, w |= (©rψ)�.
For the case ϕ = 〈r〉ψ. M, w |= ©r 〈r〉ψ iff (by definition) M[w], w |= 〈r〉ψ iff
(by definition of 〈r〉) there is a v ∈ M, Rr(w, v) such that M[w], v |= ψ iff (by
definition of 〈r〉) M, w |= 〈r〉ψ iff (by definition of 
) M, w |= (〈r〉ψ)�.

We are now ready to present the axiomatization. The axiomatization for
ML−(©r , ©k ) (shown in Fig. 2) is an extension of the axiomatization for the
basic modal logic [7], plus the axiom Rem− � ©rϕ ↔ ϕ�.

Soundness of Rem− follows from Lemma 7. We will prove completeness with
respect to the class of acyclic models, and therefore for the class of all models. We
will use a step-by-step construction. I.e., instead of building the entire canonical
model, we will carry out a stepwise selection from MCSs of the canonical model
of ML−(©r , ©k ) as our basic building blocks.3

We define Mc = 〈Dc, (Rc
r)r∈Rel, L

c, Sc〉, the ML−(©r , ©k ) canonical model,
in the usual sense (see [7] for details). That is, Dc is the set of all maximal
consistent sets of formulas of ML−(©r , ©k ), Rc

r(Γ, Δ) iff for all ϕ ∈ Δ, 〈r〉ϕ ∈ Γ ,
Γ ∈ Lc(p) iff p ∈ Γ and Sc = {Γ | ©k ∈ Γ}.

Definition 8. A network N = 〈N, (Rr)r∈Rel, v〉 is a triple where N is a count-
able non-empty set of elements, each Rr is a binary relation on N , and v is a
function that maps elements in N to maximal consistent sets.

We say that a network is coherent if (C1)
⋃

r∈Rel Rr defines an acyclic graph
and (C2) Rc

r(v(s), v(t)) for all s, t ∈ N such that Rr(s, t). A network is saturated

3 Alternatively, one can take the standard canonical model and then unravel it to
obtain a tree, and therefore acyclic, model.
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Axioms:
CT All classical tautologies
K[r] � [r](p → q) → ([r]p → [r]q)
Rem− � ©rϕ ↔ ϕ�

Rules:
MP If � ϕ and � ϕ → ψ then � ψ
Gen[r] If � ϕ then � [r]ϕ
Sub If � ϕ then � ϕ[p/ψ] for any p ∈ Prop

Fig. 2. Axiomatization for ML−(©r , ©k )

if whenever 〈r〉ψ ∈ v(s) for some s ∈ N , then there is a t ∈ N such that Rr(s, t)
and ψ ∈ v(t).

We want networks to play the role of models, so we have to check that we have
imposed the right conditions on a network to achieve this.

Definition 9. Let N = 〈N, (Rr)r∈Rel, v〉 be a network. We define the induced
labeling LN (p) = {s ∈ N | p ∈ v(s)}, the induced set of remembered states SN =
{s ∈ N | ©k ∈ v(s)}, and the induced model MN = 〈N, (Rr)r∈Rel, LN , SN 〉.
FN = 〈N, (Rr)r∈Rel〉 is called the underlying frame of N .

We are now ready to prove a Truth Lemma.

Lemma 8 (Truth Lemma). Let N = 〈N, (Rr)r∈Rel, v〉 be a coherent and
saturated network. Then, for all ϕ and s ∈ N ,

MN , s |= ϕ iff ϕ ∈ v(s).

Proof. Before we prove this lemma, let us observe the following property: let
M = 〈D, (Rr)r∈Rel, L, S〉 be an acyclic model, and let w, v ∈ D be such that
Rr(w, v). Then for all formulas ϕ, M[w], v |= ϕ iff M, v |= ϕ.

We now proceed by induction on ϕ. The propositional case, the ©k case and
the boolean cases are straightforward, given the definition of MN . Let’s suppose
that MN , s |= ©rψ. This happens iff (by Lemma 7) MN , s |= ψ� iff (by inductive
hypothesis) ψ� ∈ v(s) iff (by Rem− axiom) ©rψ ∈ v(s).

The 〈r〉 case: for the left-to-right direction, if MN , s |= 〈r〉ψ, then there
exists t ∈ N such that Rr(s, t) and MN [s], t |= ψ. Therefore, MN , t |= ψ. By
inductive hypothesis, ψ ∈ v(t). Because the network is coherent, and Rr(s, t),
then Rc

r(v(s), v(t)), and we conclude 〈r〉ψ ∈ v(s). For the other direction, let’s
suppose that 〈r〉ψ ∈ v(s). Because the network is saturated, there is a t ∈ N such
that ψ ∈ v(t) and Rr(s, t). By inductive hypothesis, MN , t |= ψ, so MN [s], t |=
ψ, and therefore by definition, MN , s |= 〈r〉ψ.

Summing up, we have reduced the problem of finding a model for an MCS Δ to
a search for a coherent and saturated network for Δ. The idea here is to start
with a coherent network and, one step at a time, remove the defects that are
preventing the network from being saturated.
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Definition 10. Let N be a network. We say that N has a saturation defect if
there is a node s ∈ N and a formula 〈r〉ψ ∈ v(s) such that there is not a t ∈ N ,
R(s, t) and ψ ∈ v(t).

Because a coherent network may have saturation defects, we have to say more
about what is the meaning of repairing a defect. We are going to extend a network
with a saturation defect with another where the defect is corrected.

Definition 11. Let N0 = 〈N0, R0, v0〉 and N1 = 〈N1, R1, v1〉 be two networks.
We say that N1 extends N0 if FN0 is a subframe of FN1 and v0 agrees with v1
on N0.

The following lemma states that a saturation defect of a finite coherent network
can always be repaired.

Lemma 9 (Repair Lemma). Let N be a finite and coherent network with a
saturation defect. Then there is a network N ′ extending N without that defect.

Proof. Because N has a a saturation defect, there is a node s ∈ N and a formula
〈r〉ψ ∈ v(s) such that there is not a t ∈ N , Rr(s, t) and ψ ∈ v(t). We define N ′ as

N ′ = N ∪ {s′} with s′ ∈ N
R′

r = Rr ∪ {(s, s′)}
v′ = v ∪ {(s′, Δ)}

where Δ is an MCS containing ψ such that Rc
r(v(s), Δ) (the existence of such

Δ can be proved through an Existence Lemma similar to Lemma 4). Clearly, N ′

is a coherent network extending N and does not have the previous defect.

Now we can prove the desired strong completeness result. We start with a single-
ton network, and we extend it step by step to a larger network using the Repair
Lemma. We obtain the saturated network we want by taking the union of our
sequence of networks.

Theorem 4. The axiomatization is strongly complete with respect to the class
of ML−(©r , ©k ) models.

Proof. Let S = {si | i ∈ ω}. Enumerate the potential saturation defects (the
set S × Forms). Given a consistent set Σ, expand it to an MCS Σ+. The initial
network is N 0 = 〈{s0}, ∅, (s0, Σ

+)〉, which is finite and coherent. Given a network
N i, i ≥ 0, where the minimal saturation defect is D, we define N i+1 as the
extension of N i (following the Repair Lemma) without that defect. If N i has no
saturation defects, then N i+1 = N i. Let N ω = 〈N, (Rr)r∈Rel, v〉 be:

N =
⋃

n∈ω

Nn Rr =
⋃

n∈ω

Rn
r v =

⋃

n∈ω

vn.

It is clear that N ω is saturated. For suppose not; let d be the minimal satura-
tion defect (with respect to the enumeration) of N ω, say d = dk. By construction,
there must be an approximation N i of N ω of which d is also a defect. There only
can be k defects that are less than d, so d will be repaired before the stage k + i
of the construction. This is a contradiction, so N ω is a coherent and saturated
network, and therefore MNω , s0 |= Σ.
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Axioms:
All the axioms from HL(@, ©r , ©k ) except Rem
Rem’ � @i(©rϕ ↔ ϕ�

i )
Erase1 � ©e¬©k
Erase2 � ©e s ↔ s s ∈ Prop ∪ Nom
Erase3 � ©e¬p ↔ ¬©e p
Erase4 � ©e (p ∧ q) ↔ (©e p ∧ ©e q)
Erase5 � ©e 〈r〉p ↔ 〈r〉©e p
Erase6 � ©e@ip ↔ @i©e p
Erase7 � @i(©e©rϕ ↔ ©eϕ�

i )
Rules:
All the rules from HL(@,©r , ©k )

Fig. 3. Axiomatization for HL(@, ©r , ©k , ©e )

5 The Erase Operator

In this section we present an axiomatization for HL(@, ©r , ©k , ©e ), taking as a
starting point the axiomatization for HL(@, ©r , ©k ) presented in Fig. 1. The first
thing we should notice is that the Rem axiom is no longer sound. For exam-
ple, take the valid formula @i©e (©k ∨ i) and use Rem to conclude @i©r©e©k .
This is clearly a contradiction, since after wiping out the memory, ©k cannot
be true. Observe that the problem lays in the interaction between ©r and ©e .
The replacement operation defined by Rem cannot be carried out through-
out the whole formula: it should avoid replacements within the scope of an
©e . More formally, for each formula ϕ and nominal i we define the formula ϕ�

i as
follows:

p�
i = p p ∈ Prop ∪ Nom

©k �
i = ©k ∨ i

(¬ϕ)�
i = ¬ϕ�

i

(ϕ1 ∧ ϕ2)�
i = ϕ1

�
i ∧ ϕ2

�
i

(©rϕ)�
i = ©rϕ�

i

(〈r〉ϕ)�
i = 〈r〉ϕ�

i

(@jϕ)�
i = @jϕ

�
i

(©eϕ)�
i = ©eϕ

Analogously to Lemma 1, we can use (·)� to characterize the behavior of the
©r operator and its interaction with the ©e operator.

Lemma 10. Let M be a model and w ∈ M such that M, w |= i. Then M, w |=
©rϕ iff M, w |= ϕ�

i .

This result naturally suggests an axiom Rem’ (shown in Fig. 3) that replaces
Rem. To characterize the ©e operator we should notice first that it behaves
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globally and that it does not change the evaluation point. This implies that there
is no interaction between ©e and ¬, ∧, 〈r〉 and @. To describe the interaction
between ©e and ©r we can again make use of the operation (·)�. The detailed
axiomatization is in Fig. 3.

Soundness of this axiomatization is straightforward. The completeness proof
uses the same techniques introduced in Sect. 3. The proof of the Truth Lemma
is carried out by induction in the structure of the formula, and the new axioms
handle the case for ©e by appropriately reducing the complexity.

6 Conclusions and Further Work

In this paper we presented several axiomatizations for some members of the
memory logic family. We showed how nominals can be an effective tool to achieve
completeness: by allowing to describe the precise interaction between ©r and
©k we could give a completeness result for HL(@, ©r , ©k ). Small variations of
this axiomatization leads us to completeness results for other languages, as we
showed for HL∅(@, ©r , ©k ) and HL(@, ©r , ©k , ©e ). Our intention was to give the
basic techniques to characterize memory operators using nominals, and not to
exhaustively list all possible languages. Observe that, for example, the logic
HL−(@, ©r , ©k ) can be easily axiomatized by replacing the Back axiom presented
in Fig. 1 by � @i〈r〉@jϕ → @jϕ[©k /(©k ∨ i)] (and similarly with the Paste
rule).

We also showed that nominals are not needed when we add constraints on how
〈r〉 interacts with ©r , giving a completeness result for ML−(©r , ©k ). The idea
behind this result lays in the fact that ML−(©r , ©k ) has the tree model property
and hence, we can describe the interaction between ©r and ©k at a propositional
level, independently of the modal operators.

We have not yet found suitable axiomatizations for certain memory logics.
Languages without the tree model property, and which do not have nominals
seem to be particularly hard to axiomatize. For example, we have not yet been
able to devise complete axiomatizations for ML(©r , ©k ) and ML−

∅ (©r , ©k ).
We are also interested in other memory operators, besides the ones presented

in this paper. A particularly interesting case is the forget operator ©f , a local
version of the erase operator. While the ©e operator has a global behavior, setting
the memory set S to ∅, we could conceive a local version which only eliminates
the current point of evaluation from S.

〈D, (Rr)r∈Rel, L, S〉, w |= ©fϕ iff 〈D, (Rr)r∈Rel, L, S \ {w}〉, w |= ϕ

We have proved that the logic HL(@, ©r , ©f , ©k ) is strictly more expressive than
HL(@, ©r , ©k ), but we don’t yet have a complete axiomatization. Even having
nominals present in the language, we don’t know how to characterize the inter-
action between ©r , ©f and ©k .
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Canonical Signed Calculi, Non-deterministic
Matrices and Cut-Elimination

Arnon Avron and Anna Zamansky
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Abstract. Canonical propositional Gentzen-type calculi are a natural
class of systems which in addition to the standard axioms and structural
rules have only logical rules where exactly one occurrence of a connective
is introduced and no other connective is mentioned. Cut-elimination in
such systems is fully characterized by a syntactic constructive criterion
of coherence. In this paper we extend the theory of canonical systems
to the considerably more general class of signed calculi. We show that
the extended criterion of coherence fully characterizes only analytic cut-
elimination in such calculi, while for characterizing strong and standard
cut-elimination a stronger criterion of density is required. Modular se-
mantics based on non-deterministic matrices are provided for every co-
herent canonical signed calculus.

1 Introduction

The possibility to eliminate cuts is a crucial property of useful sequent calculi. This
property was first established by Gerhard Gentzen in his classical paper “Investiga-
tions Into Logical Deduction” ([12]) for sequent calculi for classical and intuition-
istic logic. Since then many other cut-elimination1 theorems, for many systems,
have been proved by various methods. Now showing that a given sequent calculus
admits cut-elimination is a difficult task, often carried out using heavy syntactic
arguments and based on many case-distinctions. It is thus important to have some
useful simple criteria that characterize cut-elimination (i.e., conditions which are
both necessary and sufficient for having an appropriate cut-elimination theorem).

In the same seminal paper ([12]) Gentzen also established an important tra-
dition in the philosophy of logic, according to which the syntactic rules of a
proof system determine the semantic meaning of a logical connective in proof
systems of an “ideal type”. In [2] the idea of such “well-behaved” propositional
Gentzen-type systems was formalized by defining “canonical rules and systems”
in precise terms. These are systems which in addition to the standard axioms
and structural rules have only logical rules where exactly one occurrence of a

1 We note that by ‘cut-elimination’ we shall mean in this paper the existence of proofs
without (certain forms of) cuts, rather than an algorithm to transform a given proof
to a cut-free one (the term “cut-admissibility” is sometimes used for cases without
non-logical axioms, but this notion is too weak for our purposes).

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 31–45, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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connective is introduced and no other connective is mentioned. In these sys-
tems cut-elimination is fully characterized by a constructive syntactic criterion
of coherence. Moreover, the coherence of a canonical system is equivalent to the
existence of a semantic characterization of this system in terms of two-valued
non-deterministic matrices (Nmatrices), a natural generalization of the standard
multi-valued matrices (see e.g. [14]).

In this paper we extend the theory of canonical systems, in particular the
characterization of various forms of cut-elimination, to the class of signed calculi
([7,10]), of which Gentzen-type systems are particular (two-signed) instances. We
show that canonical signed calculi are indeed “well-behaved” in the two senses
discussed above. First of all, simple and constructive criteria for characterizing
various notions of cut-elimination can be defined for these calculi. Namely, we
show that the criterion of coherence, extended to the context of signed calculi,
fully characterizes only analytic cut-elimination in such calculi, while for char-
acterizing strong and standard cut-elimination, a strictly stronger criterion of
density is required. Secondly, we use finite Nmatrices to provide semantics for
canonical signed calculi, and demonstrate that the principle of modularity of
Nmatrices, which was studied in the context of various non-classical logics (see,
e.g. [4]), but never discussed in the context of canonical systems, applies also
in this context. We start by providing semantics for the most basic canonical
system, and then proceed to show that the semantics of a more complex system
is obtained by straightforwardly combining the semantic effects of each of the
added rules. As a result, the semantic effect of each syntactic rule taken sepa-
rately can be analyzed (which is impossible in standard multi-valued matrices).
This provides a concrete interpretation of Gentzen’s thesis that the meaning of
a logical connective is dictated by its introduction rules.

2 Preliminaries

In what follows, L is a propositional language and FrmL is the set of wffs of L.
V is a finite set of signs.
Signed calculi ([15,7,10]) manipulate sets of signed formulas, while the signs can
be thought of as syntactic markers which keep track of the formulas in the course
of a derivation.

Definition 1. A signed formula for L and V is an expression of the form s : ψ,
where s ∈ V and ψ is a formula of L. A signed formula s : ψ is atomic if ψ is
an atomic formula. A sequent is a finite set of signed formulas. A clause is a
sequent consisting of atomic signed formulas.

Formulas will be denoted by ϕ, ψ, signed formulas - by α, β, γ, δ, sets of signed
formulas - by Υ, Λ, sequents - by Ω, Σ, Π , sets of sets of signed formulas - by
Φ, Ψ and sets of sequents - by Θ, Ξ. We write s : Δ instead of {s : ψ | ψ ∈ Δ},
S : ψ instead of {s : ψ | s ∈ S}, and S : Δ instead of {s : ψ | s ∈ S, ψ ∈ Δ}.

Note 1. The usual (two-sided) sequent notation Γ ⇒ Δ can be interpreted as
{f : Γ} ∪ {t : Δ}, i.e. a sequent in the sense of Definition 1 over {t, f}.
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Definition 2. Let v be a function from the set of formulas of L to V.

1. v satisfies a signed formula γ =(l : ψ), denoted by v |= (l : ψ), if v(ψ) = l.
2. v satisfies a set of signed formulas Υ , denoted by v |= Υ , if there is some

γ ∈ Υ , such that v |= γ.

Thus sequents are interpreted as a disjunction of statements, saying that a par-
ticular formula takes a particular truth-value (interpreting sequents in a dual
way corresponds to the method of analytic tableaux, see e.g. [6,13]).

Non-deterministic matrices are a natural generalization of the notion of a
standard multi-valued matrix, in which the value of a complex formula can be
chosen non-deterministically out of a non-empty set of options. Below we shortly
reproduce the basic definitions from [2].

Definition 3. A non-deterministic matrix (Nmatrix) for L is a tuple M =
〈V , D, O〉, where:

– V is a non-empty set of truth values (signs).
– D (designated truth values) is a non-empty proper subset of V.
– For every n-ary connective � of L, O includes a corresponding function �̃ :

Vn → 2V \ {∅}.

A valuation v : FrmL → V is legal in an Nmatrix M if for every n-ary connec-
tive � of L:

v(�(ψ1, ..., ψn)) ∈ �̃(v(ψ1), ..., v(ψn))

Note that in deterministic matrices the truth-value assigned by a valuation v to
a complex formula is uniquely determined by the truth-values of its subformulas.
This is not the case in Nmatrices, as v makes a non-deterministic choice out of
the set of options �̃(v(ψ1), ..., v(ψn)) and so the semantics defined above is not
truth-functional.

Proposition 1. Let M = 〈V , D, O〉 be an Nmatrix for L and let vp be an M-
legal partial valuation defined on a set S of L-formulas closed under subformulas
(i.e., ψ1, ..., ψn ∈ S whenever �(ψ1, ..., ψn) ∈ S). Then vp can be extended to a
full M-legal valuation.

Definition 4. Let M = 〈V , D, O〉2 be some Nmatrix for L. For a set of sequents
Θ and a sequent Ω, Θ 
M Ω if for every M-legal valuation v: whenever v
satisfies all the sequents in Θ, v also satisfies Ω.

Definition 5. For a signed calculus G, we shall write Θ 
G Ω whenever a
sequent Ω is derivable from a set of sequents Θ in G. We say that M is a
strongly characteristic Nmatrix for G if Θ 
G Ω iff Θ 
M Ω.
2 The set of designated truth-values D in M = 〈V, D, O〉 is needed for defining the

consequence relation which is induced by M between sets of L-formulas and L-
formulas (see e.g. [5]). In contrast, the consequence relation �M used in this paper
is between sets of signed sequents and signed sequents, so the set of designated truth-
values plays no role in this context. However, the former consequence relation can
be fully characterized in terms of the latter, see e.g. [3].
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Note 2. Note that in the case of two-signed calculi (corresponding to Gentzen-
type systems, recall Note 1), if M is strongly characteristic for a (Gentzen-type)
system G, then M is also sound and complete for G in the standard sense.

3 Canonical Signed Calculi

We start by extending the notion of a “Gentzen-type canonical rule” from [2] to
the context of signed calculi:

Definition 6. A signed canonical rule for a language L and a finite set of signs
V is an expression of the form [Θ/S : �], where S is a non-empty subset of V, �
is an n-ary connective of L and Θ = {Σ1, ..., Σm}, where m ≥ 0 and for every
1 ≤ j ≤ m: Σj is a clause consisting of atomic signed formulas of the form a : pk

for a ∈ V and 1 ≤ k ≤ n.
An application of a signed canonical rule [{Σ1, ..., Σm}/S : �] is an inference
step of the following form:

Ω, Σ∗
1 ... Ω, Σ∗

m

Ω, S : �(ψ1, ..., ψn)

where ψ1, ..., ψn are L-formulas, Ω is a sequent, and for all 1 ≤ i ≤ m: Σ∗
i is

obtained from Σi by replacing pj by ψj for every 1 ≤ j ≤ n.

Example 1. 1. The standard Gentzen-style introduction rules for the classical
conjunction are usually defined as follows:

Γ, ψ, ϕ ⇒ Δ

Γ, ψ ∧ ϕ ⇒ Δ

Γ ⇒ Δ, ψ Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ψ ∧ ϕ

Using the notation from Note 1, we can write {f : Γ} ∪ {t : Δ} (that is,
ψ occurs with a sign ‘f ’ if ψ ∈ Γ and with a sign ‘t’ if ψ ∈ Δ), thus the
canonical representation of the rules above is as follows:

[{{f : p1, f : p2}}/{f} : ∧] [{{t : p1}, {t : p2}}/{t} : ∧]

Applications of these rules have the forms:

Ω ∪ {f : ψ1, f : ψ2}
Ω ∪ {f : ψ1 ∧ ψ2}

Ω ∪ {t : ψ1} Ω ∪ {t : ψ2}
Ω ∪ {t : ψ1 ∧ ψ2}

2. Consider a calculus over V = {a, b, c} with the following introduction rules
for a ternary connective ◦:

[{{a : p1, c : p2}, {a : p3, b : p2}}/{a, c} : ◦(p1, p2, p3)]

[{{c : p2}, {a : p3, b : p3}, {c : p1}}/{b, c} : ◦(p1, p2, p3)]

Their applications are of the forms:

Ω ∪ {a : ψ1, c : ψ2} Ω ∪ {a : ψ3, b : ψ2}
Ω ∪ {a : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}
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Ω ∪ {c : ψ2} Ω ∪ {a : ψ3, b : ψ3} Ω ∪ {c : ψ1}
Ω ∪ {b : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}

Definition 7. Let V be a finite set of signs.

1. A logical axiom for V is a sequent of the form {l : ψ | l ∈ V}.
2. The cut3 and weakening rules for V are defined as follows:

Ω ∪ {l : ψ | l ∈ L1} Ω ∪ {l : ψ | l ∈ L2}
Ω ∪ {l : ψ | l ∈ L1 ∩ L2}

cut

Ω
Ω, l : ψ

weak

where L1, L2 ⊆ V and l ∈ V.

The following proposition follows from the completeness of many-valued
resolution ([8]):

Proposition 2. Let Θ be a set of clauses and Ω - a clause. Then Ω follows
from Θ iff there is some Ω′ ⊆ Ω, such that Ω′ is derivable from Θ by cuts.

Corollary 1. For a set of clauses Θ, the empty sequent is derivable from Θ by
cuts iff Θ is not satisfiable.

Proof: Follows from the above proposition and the fact that Θ is unsatisfiable
iff the empty sequent follows from Θ.

We are now ready to define the notion of a “canonical signed calculus”:

Definition 8. We say that a signed calculus over a language L and a finite set
of signs V is canonical if it consists of:

1. All logical axioms for V.
2. The rules of cut and weakening (see Defn. 7).
3. A finite number of signed canonical inference rules.

Although we can define arbitrary canonical signed systems, our main quest is
for systems, the syntactic rules of which determine the semantic meaning of
the logical connectives they introduce. Thus we are interested in calculi with
a “reasonable” (or “non-contradictory”) set of rules, which allows for defining
a sound and complete semantics for the system (we shall later see that this is
also strongly related to cut-elimination). This can be captured by the following
simple syntactic coherence criterion (which is a generalization of the criterion in
[2] for canonical Gentzen-type systems).

Definition 9. We say that a canonical calculus G is coherent if Θ1 ∪ ... ∪ Θm

is unsatisfiable whenever [Θ1/S1 : �], ..., [Θm/Sm : �] is a set of rules of G, such
that S1 ∩ ... ∩ Sm = ∅.
3 The cut is a variation of the basic resolution rule of [8].
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Note 3. Obviously, coherence is a decidable property of canonical calculi. We also
observe that by Proposition 1, a canonical calculus G is coherent if whenever
{[Θ1/S1 : �], ..., [Θm/Sm : �]} is a set of rules of G, and S1 ∩ ...∩Sm = ∅, we have
that Θ1 ∪ ... ∪ Θm is inconsistent (i.e. the empty sequent can be derived from it
using cuts). Moreover, we will shortly see that it is not sufficient to check only
pairs of rules in the definition above, as it can be the case that S1 ∩ S2 �= ∅ and
S2 ∩ S3 �= ∅, but S1 ∩ S2 ∩ S3 = ∅.

Example 2. 1. Consider the canonical calculus G1 over L = {∧} and V = {t, f},
the canonical rules of which are the two rules for ∧ from Example 1. We can
derive the empty sequent from {{t : p1}, {t : p2}, {f : p1, f : p2}} as follows:

{t : p1} {f : p1, f : p2}
{f : p2}

cut {t : p2}
∅ cut

Thus G1 is coherent.

2. Consider the canonical calculus G2 over V = {a, b, c} with the following
introduction rules for the ternary connective ◦:

[{{a : p1}, {b : p2}}/{a, b} : ◦(p1, p2, p3)]

[{{a : p2, c : p3}}/{c} : ◦(p1, p2, p3)]

Clearly, the set {{a : p1}, {b : p2}, {a : p2, c : p3}} is satisfiable, thus G2 is
not coherent.

Next we define some notions of cut-elimination in canonical calculi:

Definition 10. Let G be a canonical signed calculus and let Θ be some set of
sequents.

1. A cut is called a Θ-cut if the cut formula occurs in Θ. We say that a proof
is Θ-cut-free if the only cuts in it are Θ-cuts.

2. A cut is called Θ-analytic if the cut formula is a subformula of some formula
occurring in Θ. A proof is called Θ-analytic4 if all cuts in it are Θ-analytic.
We say that a sequent Ω has a proper proof from Θ in G whenever Ω has a
Θ ∪ {Ω}-analytic proof from Θ in G.

3. A canonical calculus G admits (standard) cut-elimination if whenever 
G Ω,
Ω has a cut-free proof in G. G admits strong cut-elimination5 if whenever
Θ 
G Ω, Ω has in G a Θ-cut-free proof from Θ.

4. G admits strong analytic cut-elimination if whenever Θ 
G Ω, Ω has in
G a Θ ∪ {Ω}-analytic proof from Θ. G admits analytic cut-elimination if
whenever 
G Ω, Ω has in G a {Ω}-analytic proof.

4 This is a generalization of the notion of analytic cut (see e.g. [11]).
5 Strong cut-elimination was characterized for Gentzen-type systems in [5].
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Example 3. Consider the following calculus G′ for a language with a binary
connective ◦ and V = {a, b, c}. The rules of G′ are as follows:

R1 = [{{a : p1}}/{a, b} : ◦] R2 = [{{a : p1}}/{b, c} : ◦]

The following proof of {b : p1, c : p1, b : (p1 ◦ p2)} in G′ is proper, as the cut in
the final step is analytic:

{a : p1, b : p1, c : p1}
{b : p1, c : p1, b : (p1 ◦ p2), c : (p1 ◦ p2)}

R2
{a : p1, b : p1, c : p1}

{b : p1, c : p1, a : (p1 ◦ p2), b : (p1 ◦ p2)}
R1

{b : p1, c : p1, b : (p1 ◦ p2)}
cut

4 Modular Semantics for Canonical Calculi

We now describe a general method of providing modular semantics for canonical
signed calculi based on Nmatrices. But first let us explain the intuition behind
the need for non-determinism. Consider the standard Gentzen-type introduction
rules for negation, which can be represented as follows in terms of signed calculi:

[{t : p1}/{f} : ¬] [{f : p1}/{t} : ¬]

The corresponding semantics is of course the classical truth-table for negation,
according to which ¬̃(t) = f (corresponding to the first rule) and ¬̃(f) = t
(corresponding to the second rule). Now suppose we would like to follow in-
tuitionistic logic and discard the second rule, which corresponds to the law of
excluded middle. We have a case of underspecification, as it is unclear what
should now be the truth value of ¬̃(f). Nmatrices deal with underspecification
in a natural way: if ¬̃(f) is underspecified, then it can be either ‘t’ or ‘f ’, and
so we set ¬̃(f) = {t, f}.

We start by defining semantics for the most basic signed canonical calculus -
the one without any canonical rules.

Definition 11. G
(L,V)
0 is the canonical calculus for a language L and a finite

set of signs V, whose set of canonical rules is empty.

Henceforth we assume that our language L and the set of signs V are fixed, and
so we shall write G0 instead of G

(L,V)
0 . It is easy to see that G0 is (trivially)

coherent.
We now define a strongly characteristic Nmatrix for G0. It has the maximal

degree of non-determinism in interpreting all of the connectives of L.

Definition 12. Let M0 = 〈V , D, O〉 be the Nmatrix for L, in which for every
n-ary connective � of L: �̃(a1, ..., an) = V for every a1, ..., an ∈ V.

Theorem 1. M0 is a strongly characteristic Nmatrix for G0.
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Proof: The proof is a simplified version of the proof of Theorem 2 in the sequel.

Now we turn to the modular effects of canonical rules: each rule added to the ba-
sic canonical calculus imposes a certain semantic condition on the basic Nmatrix
M0, and coherence guarantees that these semantic conditions are not contra-
dictory. For formalizing this we shall need the following technical propositions:

Definition 13. Let V be a set of signs. For 〈a1, ..., an〉 ∈ Vn, the set of clauses
C〈a1,...,an〉 is defined as follows:

C〈a1,...,an〉 = {{a1 : p1}, {a2 : p2}, ..., {an : pn}}

Definition 14. We say that a set of clauses Θ is n-canonical if the only atomic
formulas occurring in Θ are in {p1, ..., pn}.

Corollary 2. Let Θ1, Θ2..., Θm be some n-canonical clauses. If the sets of clauses
C〈a1,...,an〉∪Θ1, ..., C〈a1,...,an〉∪Θm are satisfiable, then so is the set Θ1∪Θ2...∪Θm.

Corollary 3. Let Θ be an n-canonical clause. Θ∪C〈a1,...,an〉 is consistent iff for
every Ω ∈ Θ there is some 1 ≤ i ≤ n, such that ai : pi ∈ Ω.

Now we define the semantic condition corresponding to each canonical rule:

Definition 15. Let R be a canonical rule of the form [Θ/S : �]. Cond(R), the
refining condition induced by R is defined as follows:

Cond(R): For a1, ..., an ∈ V : if C〈a1,...,an〉 ∪ Θ is consistent, then
�̃(a1, ..., an) ⊆ S.

Intuitively, a rule [Θ/S : �] causes the deletion of all the truth-values which
are not in S. Whenever some rules [Θ1/S1 : �], ..., [Θm/S2 : �] “overlap”, their
overall effect leads to S1 ∩ ... ∩ Sm (as we will see below, the coherence of a
calculus guarantees that S1 ∩ ... ∩ Sm is not empty in such a case).

Definition 16. Let G be a signed canonical calculus.

1. Define an application of a rule [Θ/S : �] of G for some n-ary connective �
on −→a = 〈a1, ..., an〉 ∈ Vn as follows:

[Θ/S : �](−→a ) =

{
S if Θ ∪ C−→a is consistent
V otherwise

2. MG = 〈V , D, O〉 is the Nmatrix, in which for every n-ary connective � for
L and every −→a = 〈a1, ..., an〉 ∈ Vn:

�̃MG(−→a ) =
⋂

{[Θ/S : �](−→a ) | [Θ/S : �] ∈ G}

Proposition 3. If G is coherent, then MG is well-defined.
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Proof: It suffices to check that for every n-ary connective � and every a1, ..., an ∈
V , �̃MG(a1, ..., an) is not empty. Suppose by contradiction that for some n-
ary connective � and some a1, ..., an ∈ V , �̃(a1, ..., an) = ∅. But then there
are some rules [Θ1/S1 : �], ..., [Θ1/Sm : �], such that S1 ∩ ... ∩ Sm = ∅ and
Θ1 ∪ C〈a1,...,an〉, ..., Θm ∪ C〈a1,...,an〉 are consistent. By Corollary 2, Θ1 ∪ ...Θm ∪
C〈a1,...,an〉 is consistent, and so is Θ1∪...∪Θm, in contradiction to our assumption
about the coherence of G.

Example 4. Consider a calculus G with the following canonical rules for a unary
connective • for V = {t, f, �, ⊥}:

[{t : p1}/{t} : •] [{f : p1}/{f, ⊥} : •]

[{f : p1, ⊥ : p1}/{t, ⊥} : •]

and the rule for conjunction from Example 1:

[{{f : p1, f : p2}}/{f} : ∧]

Then the interpretations of ∧ and • in MG are as follows:

∧ t f � ⊥
t V {f} V V
f {f} {f} {f} {f}
� V {f} V V
⊥ V {f} V V

•
t {t}
f {⊥}
� V
⊥ {t, ⊥}

Let us explain how the truth-tables are obtained. We start with the basic Nma-
trix M0, for which •̃M0(x) = V and ∧̃M0(x, y) = V for every x, y ∈ V . Consider
the first rule for •. Since {{t : p1}} is only consistent with C〈t〉, this rule affects
•̃MG(t) by deleting the truth-values f, �, ⊥ from •̃M0(t), and so •̃MG(t) = {t}.
The second and the third rules both affect the set •̃MG(f) (since the sets {{f :
p1}} and {{f : p1, ⊥ : p1}} are both consistent with C〈f〉): the second rule deletes
the truth-values t, �, while the third deletes �, f from •̃M0 . Thus we are left with
•̃MG(f) = {⊥}. The third rule also dictates •̃MG(⊥) = {t, ⊥}. Finally, as we
have underspecification concerning •̃MG(�), in this case •̃MG(�) = {t, f, �, ⊥}.
As for the the rule for ∧, the set {{f : p1, f : p2}} is consistent with C〈x,y〉 when-
ever at least one of x, y ∈ V is ‘f ’, and so the rule deletes t, �, ⊥ from ∧̃M0(x, y)
for every such x, y.

Now suppose that we obtain a new calculus G′ by adding the following rule
for ∧ to G (clearly, G′ is still coherent):

[{{t : p1, � : p1}, {⊥ : p2, f : p2}}/{f, ⊥} : ∧]
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This rule deletes the truth-values t, � from ∧̃MG(x, y) for every x ∈ {t, �} and
y ∈ {f, ⊥}. Thus the truth-table for ∧ in MG′ is now modified as follows:

∧ t f � ⊥
t V {f} V {f, ⊥}
f {f} {f} {f} {f}
� V {f} V {f, ⊥}
⊥ V {f} V V

Note 4. It is easy to see that for a coherent calculus G, MG is the weakest refine-
ment of M0, in which all the conditions induced by the rules of G are satisfied.
Thus if G′ is a coherent calculus obtained from G by adding a new canonical rule,
M′

G can be straightforwardly obtained from MG by some deletions of options
as dictated by the condition corresponding to the new rule.

Note 5. It is easy to verify that for the two-sided case studied in [2], the Nma-
trix MG defined above is similar to the two-valued Nmatrix constructed there.
However, our construction of MG above is much simpler: a canonical calculus
in [2] is first transformed into an equivalent normal form calculus, which is then
used to construct the characteristic Nmatrix. The idea is to transform the cal-
culus so that each rule dictates the interpretation for only one tuple 〈a1, ..., an〉.
However, the above definition shows that the transformation into normal form
is not necessary and MG can be constructed directly from G.

Theorem 2. For every coherent canonical calculus G, MG is a strongly char-
acteristic Nmatrix for G.

Proof: The proof of strong soundness is not hard and is left to the reader. For
strong completeness, suppose that Ω has no proper proof from Θ in G. We will
show that this implies Θ �
MGΩ. It is a standard matter to show that Ω can be
extended to a maximal set Ω∗, such that (i) no Ω′ ⊆ Ω∗ has a Θ ∪{Ω}-analytic
proof from Θ in G, and (ii) all formulas occurring in Ω∗ are subformulas of
formulas from Θ ∪ {Ω}. We now show that Ω∗ has the following properties:

1. If �̃(a1, ..., an) = {b1, ..., bk} and it also holds that b1 : �(ψ1, ..., ψn), ..., bk :
�(ψ1, ..., ψn) ∈ Ω∗, then ai : ψi ∈ Ω∗ for some 1 ≤ i ≤ n.

2. For every formula ψ which is a subformula of some formula from Θ, there is
exactly one l ∈ V , such that l : ψ �∈ Ω∗.

Let us prove the first property. Suppose by contradiction that for some a1, ..., an

∈ V , �̃(a1, ..., an) = {b1, ..., bk} and b1 : �(ψ1, ..., ψn), ..., bk : �(ψ1, ..., ψn) ∈ Ω∗,
but for every 1 ≤ i ≤ n, ai : ψi �∈ Ω∗. By the maximality of Ω∗, for every
1 ≤ i ≤ n there is some Ω′

i ⊆ Ω∗, such that Ω′
i ∪ {ai : ψi} has a Θ ∪ {Ω}-

analytic proof from Θ in G. First observe that {b1, ..., bk} �= V (otherwise Ω∗

would contain a logical axiom, in contradiction to property (i) of Ω∗). Then by
definition of MG there are some rules in G of the form R1 = [Ξ1/S1 : �], ..., Rm =
[Ξm/Sm : �], such that Ξ1 ∪ C〈a1,...,an〉, ..., Ξm ∪ C〈a1,...,an〉 are consistent and
S1∩...∩Sm = {b1, ..., bk}. Now let 1 ≤ j ≤ m and Σ ∈ Ξj . By Corollary 3, there is
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some 1 ≤ kΣ ≤ n, such that (akΣ : pkΣ ) ∈ Σ (since Ξj ∪C〈a1,...,an〉 is consistent).
Now by our assumption, Ω′

kΣ
∪ {akΣ : ψkΣ } has a Θ ∪ {Ω}-analytic proof from

Θ in G. By applying weakening we get a Θ ∪ {Ω}-analytic proof of Ω′
kΣ

∪ Σ∗

from Θ in G for every Σ ∈ Ξj , where Σ∗ is obtained from Σ by replacing pr by
ψr for all 1 ≤ r ≤ n. By applying weakening and the canonical rule Rj , we get
a Θ ∪ {Ω}-analytic proof of

⋃
Σ∈Ξj

Ω′
kΣ

∪ Sj : �(ψ1, ..., ψn) from Θ in G. Thus
for all 1 ≤ j ≤ n, there is some Ωj ⊆ Ω, such that Ωj ∪ {Sj : �(ψ1, ..., ψn)} has
a Θ ∪ {Ω}-analytic proof from Θ in G. Now by applying Θ ∪ {Ω}-analytic cuts
(recall that we assumed that {b1, ..., bk} : �(ψ1, ..., ψn) ∈ Ω∗ and so �(ψ1, ..., ψn)
is a subformula of some formula from Θ∪{Ω}), we get a Θ∪{Ω}-analytic proof
of Ω1 ∪ ... ∪ Ωm ∪ {S1 ∩ ... ∩ Sm : �(ψ1, ..., ψn)} = Ω1 ∪ ... ∪ Ωm from Θ in G , in
contradiction to property (i) of Ω∗.

Now we prove the second property. Let ψ be a subformula of some formula
from Θ. Then there must be some l ∈ V , such that l : ψ �∈ Ω∗ (otherwise Ω∗

contains a logical axiom). Suppose by contradiction that there are some l1 �= l2,
such that l1 : ψ, l2 : ψ �∈ Ω∗. By the maximality of Ω∗, then there are some
Ω′

1, Ω
′
2 ⊆ Ω∗, such that Ω′

1 ∪ {l1 : ψ} and Ω′
2 ∪ {l2 : ψ} have Θ ∪ {Ω}-analytic

proofs from Θ in G. But then by applying (Θ ∪ {Ω}-analytic) cuts, we get a
Θ ∪ {Ω}-analytic proof of Ω′

1 ∪ Ω′
2 ⊆ Ω∗ from Θ in G, in contradiction to

property (i) of Ω∗.
Next we define the partial valuation v on the subformulas of Θ∪{Ω} as follows

by induction on the complexity of formulas. According to our goal, v is defined
so that v(ψ) �= s for every (s : ψ) ∈ Ω∗. First, let p be an atomic formula.
As Ω∗ cannot contain a logical axiom, there must be some s0 ∈ V , such that
(s0 : p) �∈ Ω∗. Define v(p) = s0. Suppose we have defined v for formulas with
complexity up to l, and let ψ = �(ψ1, ..., ψn), where each ψi is of complexity at
most l. Hence v(ψi) is already defined for each i. Now suppose that for every
1 ≤ i ≤ n: v(ψi) = ai and �̃(a1, ..., an) = {b1, ..., bk}. Then there must be some
b ∈ {b1, ..., bk}, such that (b : ψ) �∈ Ω∗ (otherwise by property 1 there would
be some j, such that (aj : ψj) ∈ Ω∗, contradicting the induction hypothesis).
Define v(ψ) = b. By the above construction, v is MG-legal and v �|=MGΩ∗. Now
let Σ ∈ Θ. Then there must be some a : ψ ∈ Σ, such that a : ψ �∈ Ω∗ (otherwise
Σ ⊆ Ω∗, while Σ has a Θ ∪{Ω}-analytic proof from Θ in G). By property 2, for
every l ∈ V \ {a}, (l : ψ) ∈ Ω∗. By the property of v proven above, v(ψ) �= l for
every V \ {a}. Thus v(ψ) = a, and so v |=MG Σ. By Proposition 1, the partial
valuation v can be extended to a full MG-legal valuation vf . Thus we have
constructed an MG-legal valuation vf , such that vf |=MG Θ, but vf �|=MGΩ.
Hence, Θ �
MGΩ.

From the proof of Theorem 2 we also have the following corollary:

Corollary 4. Any coherent canonical calculus admits strong analytic cut-
elimination.

Note 6. [3] provides a full axiomatization of finite Nmatrices: a canonical co-
herent signed calculus is constructed there for every finite Nmatrix. Theorem 2
provides the complementary link between canonical calculi and Nmatrices: every
canonical coherent signed calculus has a corresponding finite Nmatrix.
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5 Characterization of Cut-Elimination

In this section we provide a characterization of the notions of cut-elimination
from Defn. 10. We start with the following theorem, which establishes an exact
correspondence between coherence of canonical calculi, non-deterministic matri-
ces and strong analytic cut-elimination:

Theorem 3. Let G be a canonical calculus. The following statements concerning
G are equivalent.

1. G is coherent.
2. G has a strongly characteristic Nmatrix.
3. G admits strong analytic cut-elimination.
4. G admits analytic cut-elimination.

Proof: (1) ⇒ (2) by Theorem 2.
(1) ⇒ (3) by Corollary 4.
(3) ⇒ (4) by definition of strong analytic cut-elimination (Defn. 10).
Next we prove that (2) ⇒ (1). Suppose that G has a strongly characteristic Nma-
trix M and suppose for contradiction that G is not coherent. Then there are some
rules R1 = [Θ1 : /S1 : �], ..., Rm = [Θm : /Sm : �] in G, such that Θ = Θ1∪...∪Θm

is consistent and S1∩...∩Sm = ∅. By applying the rule Rj on Θj for all 1 ≤ j ≤ m,
we get a proof of Sj : �(p1, ..., pn). Then by applying cuts we derive the empty se-
quent from Θ1 ∪ ... ∪ Θm. Let v be any M-legal valuation which satisfies Θ (such
valuation exists since Θ is consistent). But by the strong soundness of M for G,
v must then satisfy the empty set, reaching a contradiction.

Finally, we prove that (4) ⇒ (1). Suppose that G admits analytic cut-
elimination but is not coherent. Then again there are some rules [Θ1 : /S1 :
�], ..., [Θm : /Sm : �] in G, such that Θ = Θ1 ∪ ... ∪ Θm is consistent and
S1 ∩ ...Sm = ∅. Let v be a valuation which satisfies Θ (such valuation exists since
Θ is consistent). Let Π be the set of all signed formulas a : pi (for 1 ≤ i ≤ n),
such that v(pi) �= a. Then for every Ω ∈ Θ: Π ∪ Ω is a logical axiom (indeed,
since v satisfies Ω there is some 1 ≤ j ≤ n, such that v(pj) : pj ∈ Ω. Then for
every a ∈ V \ {v(pj)}, a : pj ∈ Π). By applying the above rules and then cuts
Π is provable in G:

Π ∪ Ω1
1 ... Π ∪ Ω1

k1

Π ∪ S1 : �(p1, ..., pn) ...

Π ∪ Ωm
1 ... Π ∪ Ωm

km

Π ∪ Sm : �(p1, ..., pn)
Π

cut

where for all 1 ≤ j ≤ m: Θj = {Ωj
1, ..., Ω

j
kj

}. Π consists of atomic formulas
only and does not contain a logical axiom, and so it has no Θ ∪ {Ω}-analytic
proof in G (from ∅), in contradiction to our assumption that G admits analytic
cut-elimination.

Next we turn to strong cut-elimination. The following example shows that the
quadruple correspondence from Theorem 3 fails if one wants to eliminate also
analytic cuts:
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Example 5. Consider the calculus G′ from Example 3. Clearly, G′ is coherent.
An analytic proof of the sequent {b : p1, c : p1, b : (p1 ◦ p2)} is given in that
example. However, it is easy to show that this sequent has no cut-free proof in
G′. We will shortly see that by adding the rule R3 = [{{a : p1}}/{b} : ◦] to G′

cut-elimination is guaranteed.

Thus coherence is not a sufficient condition for strong cut-elimination. Therefore
a stronger condition is provided in the next definition:

Definition 17. A canonical calculus G is dense if for every a1, ..., an ∈ V and
every two rules of G [Θ1/S1 : �] and [Θ2/S2 : �], such that Θ1 ∪ Θ2 ∪ C〈a1,...,an〉
is consistent, there is some rule [Θ/S : �] in G, such that Θ ∪ C〈a1,...,an〉 is
consistent and S ⊆ S1 ∩ S2.

Note 7. It is easy to see that the density of a canonical calculus is decidable
(recall also the analogous Note 3 on coherence).

Lemma 1. Let G be a dense canonical calculus. Let [Θ1/S1 : �], ..., [Θm/Sm : �]
be such rules in G, that Θ1 ∪ ...∪Θm is consistent. Then for every a1, ..., an ∈ V,
for which Θ1, ..., Θm ∪ C〈a1,...,an〉 is consistent, there is some S ⊆ S1 ∩ ... ∩ Sm,
such that [Θ/S : �] is a rule in G and Θ ∪ C〈a1,...,an〉 is consistent.

Corollary 5. Every dense canonical calculus is coherent.

Proof: Suppose that G is dense and let [Θ1/S1 : �], ..., [Θm/Sm : �] be such
rules of G, that S1 ∩ ... ∩ Sm = ∅. Suppose by contradiction that Θ1 ∪ ... ∪ Θm

is consistent. By Lemma 1, there is some canonical rule [Θ/S : �] in G, such
that S ⊆ S1 ∩ ... ∩ Sm. By definition of a canonical rule (recall Defn. 6) S is
non-empty, in contradiction to our assumption. Thus G is coherent.

Now we can provide an exact characterization of canonical systems which admit
standard and strong cut-elimination:

Theorem 4. Let G be a canonical calculus. The following statements concerning
G are equivalent:

1. G is dense.
2. G admits cut-elimination.
3. G admits strong cut-elimination.

To prove the theorem, first we need the following propositions:

Proposition 4. Let G be a dense calculus. If Ω has no cut-free proof from Θ
in G, then Θ �
MGΩ.

Proof: Similar to the method used in the proof of Theorem 2.

Lemma 2. Let G be a coherent calculus over a language with an n-ary con-
nective �. Assume that G has at least one canonical rule [Θ/S0 : �], such that
Θ ∪ C〈a1,...,an〉 is consistent. Let Ω be a set of signed formulas of the form a : ψ,
where ψ ∈ {p1, ..., pn, �(p1, ..., pn)}. If Ω has a cut-free proof in G, then either
(i) Ω is a logical axiom, or (ii) �(p1, ..., pn) ∈ Ω and there is a rule [Ξ/S : �] in
G, such that Ξ ∪ C〈a1,...,an〉 is consistent and S ⊆ {a | a : �(p1, ..., pn) ∈ Ω}.



44 A. Avron and A. Zamansky

Proof of Theorem 4:
(1 ⇒ 3) : Let G be a dense calculus. Then by Proposition 5, it is also coherent
and so MG is well-defined. If Θ 
G Ω, then Θ 
MG Ω. Thus by Proposition 4, Ω
has a cut-free proof from Θ. Clearly, also (3 ⇒ 2) holds. It remains to show that
(2 ⇒ 1). Suppose that G admits cut-elimination and assume by contradiction
that G is not dense. Then there are some a1, ..., an ∈ V and some rules R1 =
[Θ1/S1 : �] and R2 = [Θ2/S2 : �], such that Θ1 ∪ Θ2 ∪ C〈a1,...,an〉 is consistent
and S1 ∩ S2 �= ∅, but there is no rule [Θ/S : �] in G, such that Θ ∪ C〈a1,...,an〉
is consistent and S ⊆ S1 ∩ S2. Now let Ω0 =

⋃
1≤i≤n{V \ {ai} : pi}. By lemma

3, for every Ω ∈ Θ1 ∪ Θ2, there is some 1 ≤ i ≤ n, such that ai : pi ∈ Ω. Thus
for every Ω ∈ Θ1 ∪ Θ2, Ω ∪ Ω0 is a logical axiom. Let Θ1 = {Ω1

1 , ..., Ω1
k} and

Θ2 = {Ω2
1 , ..., Ω2

m}. By applying the two canonical rules and then cuts we get a
proof of Ω0 ∪ S1 ∩ S2 : �(p1, ..., pn) in G:

Ω1
1 ∪ Ω0 ... Ω1

k ∪ Ω0

Ω0 ∪ S1 : �(p1, ..., pn)
R1

Ω2
1 ∪ Ω0 ... Ω2

m ∪ Ω0

Ω0 ∪ S2 : �(p1, ..., pn)
R2

Ω0 ∪ (S1 ∩ S2) : �(p1, ..., pn)
cut

However, since Ω0 ∪ (S1 ∩ S2) : �(p1, ..., pn) is not a logical axiom, by Lemma 2
it has no cut-free proof in G, in contradiction to our assumption.

Note 8 (A constructive proof). The semantic proof of cut-elimination in Theo-
rem 4 is not constructive, i.e. it does not provide an algorithm for eliminating
cuts in a derivation. A syntactic constructive proof can be obtained by an adap-
tation of the proof of Theorem 4.1 of [7] to the context of canonical calculi.

Finally, we turn to the special case of canonical calculi with two signs (this
includes the canonical Gentzen-type calculi of [2]) the following proposition can
be easily shown:

Proposition 5. A canonical calculus with two signs is dense iff it is coherent.

Corollary 6. The following statements concerning a two signed canonical cal-
culus G are equivalent6:

1. G is coherent.
2. G is dense.
3. G has a strongly characteristic Nmatrix.
4. G admits strong analytic cut-elimination.
5. G admits analytic cut-elimination.
6. G admits strong cut-elimination.
7. G admits standard cut-elimination.
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Abstract. In this paper we study several properties of the Exogenous
Probabilistic Propositional Logic (EPPL), a logic for reasoning about
probabilities, with the purpose of introducing a temporal version - Ex-
ogenous Probabilistic Linear Temporal Logic (EPLTL). In detail, we give
a small model theorem for EPPL and introduce a satisfaction and a model
checking algorithm for both EPPL and EPLTL. We are also able to pro-
vide a (weakly) complete calculus for EPLTL. Finally, we conclude by
pointing out some future work.

1 Introduction

Reasoning about probabilistic systems has been a very important research sub-
ject with applications in many fields such as security, performance analysis,
system verification, traffic analysis and even bioinformatics. In this context, the
use of formal methods, and in particular of logic, via syntactic (computer-aided
proof systems) and semantic (model-checking tools) approaches, has been highly
beneficial to the community.

In this paper we consider a temporalization of the Exogenous Probabilistic
Propositional Logic (EPPL) [16] to reason about the evolution of probability
distributions described by probabilistic programs and processes. The term ex-
ogenous was coined by Kozen in [11] to express that the probabilities had proper
syntax and were not hidden in the propositional symbols or connectives (like in
PCTL [1]). The state logic is an extension of the probabilistic logic proposed by
Fagin et al [8] where we allow to make classical restrictions over probabilistic
spaces. EPPL was initially introduced in [15] to reason about quantum states
and further developed in the context of a Hoare-like logic [5]. EPPL seman-
tics is obtained by taking the exogenous semantics approach to enrich a given
logic–the models of the enriched logic are sets of models of the given logic with
additional structure. This approach was inspired by the possible worlds seman-
tics originally proposed by Kripke [12] for modal logic. A model of EPPL is a
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set of possible valuations over propositional symbols (which, for instance, may
denote memory cells of a probabilistic program) along with a probability space
that gives the probability of each possible valuation. Indeed, as discussed in this
paper, EPPL models can be reformulated more precisely as Bernoulli stochastic
processes where the index space is the set of propositional symbols.

EPPL differs significantly from probabilistic arithmetical assertion logics, such
as the state logic of the probabilistic dynamic logic given in [11], where formulas
are interpreted as measurable functions and the connectives are arithmetical op-
erations such as addition and subtraction. Inspired by the dynamic logic in [11],
there are several important works in probabilistic Hoare logics, e.g. [10,17], where
the state formulas are either measurable functions or arithmetical formulas in-
terpreted as measurable functions. Intuitively, the Hoare triple {f} s {g} means
that the expected value of the function g after the execution of s is at least as
much as the expected value of the function f before the execution. Although
research in probabilistic logics with arithmetical state logics has yielded several
interesting results, the formulas themselves do not seem very intuitive. Indeed,
a high degree of sophistication is required to write down assertions needed to
verify relatively simple programs. For this reason, it is worthwhile to investi-
gate dynamic versions of truth-functional probabilistic logics, such as EPPL. In
this paper we present in detail a linear temporalization of EPPL, that we call
Exogenous Probabilistic Linear Temporal Logic EPLTL.

The contributions of this paper, taking into account the results presented in
[16] are significant. We show that we are able to adapt the technique by [8]
to obtain a small model theorem with polynomial bound. Capitalizing in the
small model theorem we are able to set a PSPACE bound to the SAT problem
for EPPL, which was previously thought to be in EXPSPACE [15]. From the
SAT algorithm we are able to derive a simpler Hilbert calculus for EPPL than
that presented in [16]. We also discuss in details the model-checking of the logic.
Moreover, we are able to provide a complete calculus for the temporal extension,
EPLTL, together with a SAT and model-checking algorithm.

This paper is structured as follows. In Section 2 we present the main results
concerning EPPL. In Section 3 we present the linear temporalization of EPPL,
and in Section 4 we point out some future directions.

2 Probabilistic State Logic

2.1 Syntax

Following the exogenous approach, the language of EPPL consists of formulas
at two levels. The formulas of the first level – basic formulae – allow us to
reason about program variables and states, that at this point we abstract as a
finite set of propositional symbols Λ. The formulas of the second level – global
formulae – allow us to perform probabilistic reason. We also consider probabilistic
terms, build over a set of real logic variables Z, to denote real numbers used for
quantitative reasoning at the global formulae level. The syntax of the language
is given by mutual recursion as presented in Table 1.
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Table 1. EPPL syntax

β := p � (¬β) � (β ⇒ β) basic formulae
t := z � 0 � 1 � (

∫
β) � (t + t) � (t · t) probabilistic terms

δ := (�β) � (β ⊥⊥ β) � (t ≤ t) � (∼δ) � (δ ⊃ δ) global formulae

where p ∈ Λ, z ∈ Z.

Concerning basic formulae, ranged over by β, β1, . . ., we assume the usual
propositional abbreviations for falsum ⊥, disjunction (β1∨β2), conjunction (β1∧
β2) and equivalence (β1 ⇔ β2).

The probability terms, ranged over by t, t1, . . ., denote the real numbers. We
assume a finite set of (deterministic) real variables, Z, ranging over algebraic
real numbers. The probability terms also contain the 0 and 1 real constants that,
together with addition, multiplication and the set of logical variables, allow us
to express all algebraic real numbers [2]. The probability term (

∫
β) denotes the

probability of the set of elements that satisfy β. The terms of the kind (
∫

β) shall
henceforth be called measure terms.

The global formulas, ranged over by δ, δ1, . . ., are built from modal formulas
(�β), independence formulas (β1 ⊥⊥ β2), comparison formulas (t1 ≤ t2) and the
connectives ∼, ⊃. The modal formula (�β) allows us to impose restrictions on
the probability space, namely to impose that all elements of the sample space
satisfy β. We shall also use (♦β) as an abbreviation for (∼(�(¬β))). Intuitively,
(♦β) is satisfied if there is at least one valuation in the probability measure
that satisfies β. Observe that � and ♦ are not full fledged modalities, since they
cannot be nested1. The independence formulas (β1 ⊥⊥ β2) states that the event
described by β1 is independent from the event β2.

Other global connectives {f , ∪, ∩, ≡} and comparisonpredicates {=, �=, ≥, <, >}
are introduced as abbreviations in the classicalway. For instance, the global falsum
f stands for (�p ∩ (∼�p)) and (t1 = t2) stands for ((t1 ≤ t2) ∩ (t2 ≤ t1)).

The notion of occurrence of a term t and a global formula δ1 in the global
formula δ is defined as usual. The same holds for the notion of replacing zero
or more occurrences of probability terms and global formulas. For the sake of
clarity, we shall often drop parentheses in formulas and terms if it does not lead
to ambiguity.

We shall also identify here a useful sublanguage of probabilistic state formulas
which do not contain any occurrence of a measure term.

κ := (α ≤ α) � (∼κ) � (κ ⊃ κ)
α := z � 0 � 1 � (α + α) � (α.α)

The terms of this sublanguage will be called analytical terms and the formulas
will be called analytical formulas. This language is relevant because it is possible
to apply the SAT algorithm for the existential theory of the real numbers to any
analytical formula.

1 We do not have formulas such as �(�β).
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2.2 Semantics

The models of EPPL are tuples m = (Ω, F , μ,X) where (Ω, F , μ) is a probability
space and X = (Xp)p∈Λ is a stochastic process over (Ω, F , μ) where each Xp is a
Bernoulli random variable, that is, Xp ranges over 2 = {0, 1}. Observe that each
basic EPPL formula β induces a Bernoulli random variable Xβ : Ω → 2 defined as
follows: X(¬β)(ω) = 1 − Xβ(ω); and X(β1⇒β2)(ω) = max((1 − Xβ1(ω)), Xβ2(ω)).
So, each basic formula β will represent the measurable subset {ω ∈ Ω : Xβ(ω) =
1}. Moreover, each ω ∈ Ω induces a valuation vω over Λ such that vω(p) = Xp(ω),
for all p ∈ Λ. Given an EPPL model m = (Ω, F , μ,X) and attribution ρ : Z → R

for real variables, the denotation of probabilistic terms is as follows:

– [[z]]m,ρ = ρ(z); [[0]]m,ρ = 0; [[1]]m,ρ = 1;
– [[t1 + t2]]m,ρ = [[t1]]m,ρ + [[t2]]m,ρ; [[t1.t2]]m,ρ = [[t1]]m,ρ.[[t2]]m,ρ; and
– [[(

∫
β)]]m,ρ =

∫
Xβ dμ = μ(X−1

β (1))

Note that the term [[(
∫

β)]]m,ρ gives the expected value of Xβ . Since Xβ is a
Bernoulli random variable, the expected value is the same as the probability of
observing an outcome ω, such that vω satisfies β.

Moreover, the satisfaction of global formulas is given by: m, ρ � (�β) iff Ω =
X−1

β (1); m, ρ � (β1 ⊥⊥ β2) iff Xβ1 ⊥⊥ Xβ2 ; m, ρ � (t1 ≤ t2) iff [[t1]]m,ρ ≤ [[t2]]m,ρ;
m, ρ � (∼δ) iff m, ρ �� δ; and m, ρ � (δ1 ⊃ δ2) iff m, ρ � δ2 or m, ρ �� δ1.

Probabilistic terms without occurrences of real variables are called closed
terms. A global formula only involving closed terms is called a closed global for-
mula. Clearly, the denotation of closed terms is independent of the attribution.
Consequently, the satisfaction of closed global formulas are also independent of
the attribution. So, in these cases, we drop the attribution from the notation.

Remark 1. To design a SAT algorithm for EPPL it is important to make some
observations on EPPL models. Let Vm = {vω : ω ∈ Ω} be the set of all valuations
over Λ induced by m. The basic cylinders, also called rectangles, of an EPPL
model m are the subsets B(b1 . . . bk) = {v ∈ Vm : v(p1) = b1, . . . , v(pk) = bk} for
k ≥ 0, p1, . . . , pk ∈ Λ and b1, . . . , bk ∈ 2. Let Bm be the set of all basic cylinders
of m. Observe that an EPPL model m = (Ω, F , μ,X) induces a probability space
Pm = (Vm, Fm, μm) over valuations, where Fm ⊆ 2Vm is the σ-algebra generated
by the basic cylinders Bm and μm is defined over basic cylinders by μm(B) =
μ({ω ∈ Ω : vω ∈ B}) for all B ∈ Bm. Moreover, given a probability space over
valuations, P = (V, F , μ) we can construct an EPPL model mP = (V, F , μ,X)
where Xp(v) = v(p). It is easy to see that m and mPm satisfy precisely the
same formulas. This means that it is enough for a SAT algorithm to search for
probability spaces over valuations.

Given that we are working towards a complete Hilbert calculus for EPPL through
a SAT algorithm, it is relevant to understand whether EPPL fulfills a small model
theorem. If this is the case then an upper bound on the size of the satisfying
models would imply the decidability of the logic (since it would be enough to
search for models up to this bound).
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Remark 2. The semantic of the independence formulas (β1 ⊥⊥ β2) allow us to
substitute in global formulas all its occurrences by the conjunction

((
∫

β1 ∧ β2) ≤ (
∫

β1)(
∫

β2))
⋂

((
∫

β1)(
∫

β2) ≤ (
∫

β1 ∧ β2)).

2.3 Small Model Theorem

To obtain a small model theorem we start by defining a quotient construction.
Let δ be an EPPL formula. We denote the sets of inequalities and basic subfor-
mulas occurring in δ by iq(δ) and bsf(δ), respectively. Moreover, we denote the
(finite) set of propositional symbols that appear in δ by prop(δ). Given a formula
δ and an EPPL model m = (Ω, F , μ,X), we define the following relation on the
sample space Ω: ω1 ∼δ ω2 iff Xp(ω1) = Xp(ω2) for all p ∈ prop(δ).

Let propω(δ) be the subset of propositional symbols of δ such that Xp(ω) = 1.
We denote by [ω]δ the ∼δ class of ω. Taking an EPPL model m = (Ω, F , μ,X) and
an EPPL formula δ, we define the quotient model m/ ∼δ= (Ω′, F ′, μ′,X′) where:
Ω′ = Ω/ ∼δ is the finite set of ∼δ classes; F ′ = 2Ω′

is the power set σ-algebra;
μ′(B) = μ(∪B) for all B ∈ F ′; and X ′

p([ω]δ) = Xp(ω) for all p ∈ Λ.
Next, we check that the quotient model is well defined.

Proposition 1. Let m = (Ω, F , μ,X) be an EPPL model and δ an EPPL for-
mula, then m/ ∼δ= (Ω′, F ′, μ′,X′) is a finite EPPL model .

Now, we prove that satisfaction is preserved by the quotient construction and,
consequentially, that any satisfiable formula has a finite discrete EPPL model
of size bounded by the formula length. We take the length of a basic formula,
probabilistic terms or global formula, to be the number of symbols required to
write the formula or term. The length of a formula or term ξ is denoted by |ξ|.

We are now able to establish a small model theorem for EPPL. We refer the
reader to the Appendix for a detailed proof of the result. Observe that at first
sight, to construct a model for a formula δ, we need O(2|δ|) algebraic real num-
bers to describe the probability measure of the σ-algebra over the propositional
symbols occurring in δ. However, adapting a technique for eliminating spurious
variables in linear programming (already used in [8]), we are able to set this
bound to be just linear.

Theorem 1 (Small Model Theorem). If δ is a satisfiable EPPL formula then
it has a finite model using at most 2|δ| + 1 algebraic real numbers.

The small model theorem does not put a bound on the size of the representation
of the algebraic real numbers. Indeed, an algebraic real number can be repre-
sented as the root of a polynomial of integers, and this polynomial could increase
without any bound. Fortunately, thanks to the fact that the existential theory
of the real numbers can be decided in PSPACE [4], we find a bound on the size
of the real representations in function of the size of the formula, which will lead
to a SAT algorithm for EPPL.
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2.4 Decision Algorithm for Satisfaction

The decision algorithm for EPPL satisfaction uses the decidability of the existen-
tial theory of the real numbers and the small model theorem. Before presenting
the algorithm we introduce some notation. Like before, given an EPPL formula
δ we will denote by iq(δ) the set of all subformulas of δ of the form (t1 ≤ t2).
Moreover, we denote by bf�(δ) the set of all subformulas of δ of the form �β,
by ip(δ) the set of all subformulas of the form β1 ⊥⊥ β2 and by at(δ) the set of
all global atoms of δ, that is, at(δ) = bf�(δ) ∪ iq(δ) ∪ ip(δ). By an exhaustive
conjunction ε of literals of at(δ) we mean that ε is of the form α1 ∩ . . . ∩ αk

where each αi is either a global atom or a negation of a global atom. Moreover,
all global atoms or their negation occur in ε, so, k = |at(δ)|. At this stage, we
consider the EPPL formula ε̂ where in ε all global atoms β1 ⊥⊥ β2 are substitute
by the global conjunction in Remark 2. Given a global formula δ, we denote
by δα

pα
the propositional formula obtained by replacing in δ each global atom

α with a fresh propositional symbol pα, and replacing the global connectives ∼
and ⊃ by the propositional connectives ¬ and ⇒, respectively. We denote by vε

the valuation over propositional symbols pα such that vε(pα) = 1 iff α occurs
positively in ε.

Given an exhaustive conjunction ε of literals of at(δ), we denote by lbf�(ε)
the set of basic formulas such that β ∈ lbf�(ε) if �β occurs positively in ε (that
is, not negated). Similarly, the set of basic formulas that occur nested by a ∼� in
ε is denoted by lbf♦¬(ε). Finally, we denote all the inequalities occurring in ε̂ by
liq(ε). This last set contains the new inequations introduced by the substitution
of the independence formulas.

Given a global formula α in liq(ε) we denote by α̂ the analytical formula
where all terms of the form (

∫
β) are replaced in α by

∑
v∈V,v�β xv where each

xv is a fresh variable. We need the PSPACE SAT algorithm of the existential
theory of the reals numbers [4], that we denote by SatReal. We assume that this
algorithm either returns no model, if there is no solution for the input system
of inequations, or a solution array ρ, where ρ(x) is the solution for variable x.
We denote by var(δ) the set of real logical variables that occur in δ. Given a
solution ρ for a system with X variables and a subset Y ⊆ X , we denote by ρ|Y
the function that maps each element y of Y to ρ(y).

Theorem 2. Algorithm 1 decides the satisfiability of an EPPL formula in
PSPACE.

2.5 Completeness

In [16] it is shown that a superset of axioms and inference rules in Table 2 is
a sound and a (weakly) complete axiomatization of EPPL. Herein, and thanks
to the EPPL SAT algorithm, we are able to show that the calculus presented in
Table 2 is weakly complete.

It is impossible to obtain a strongly complete axiomatization for EPPL (that
is, if Δ � δ then Δ � δ, for arbitrary large Δ, possibly infinite set) because the
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Algorithm 1: SatEPPL(δ)

Input: EPPL formula δ
Output: (V, μ) (denoting the EPPL model m = (V, 2V , μ,X)) and attribution ρ

or no model

compute bf�(δ), ip(δ), iq(δ) and at(δ);1

foreach exhaustive conjunction ε of literals of at(δ) such that vε � δα
pα

do2

compute lbf�(ε), lbf♦¬(ε) and liq(ε);3

foreach V ⊆ 2prop(δ) such that 0 < |V | ≤ 2|δ| + 1, V � ∧lbf�(ε) and4

V 
� β for all β ∈ lbf♦¬(ε) do
κ ←−

(∑
v∈V xv = 1

)
∩

(⋂
v∈V 0 ≤ xv

)
;5

foreach α ∈ liq(ε) do6

κ ←− κ ∩ α̂;7

end8

ρ ←− SatReal(κ);9

if ρ 
= no model then10

μρ ←− ρ|{xv:v∈V };11

ρρ ←− ρ|var(δ);12

return (V, μρ) and attribution ρρ;13

end14

end15

end16

return (no model);17

logic is not compact [16]. Nevertheless, weakly completeness is enough for software
verification, since a program specification generates a finite number of hypotheses.

Concerning the axiomatization of Table 2, we consider an Hilbert system -
recursive set of axioms and finitary rules. We recall the axiom schema ROF
is decidable thanks to Tarski’s result on the decidability of real ordered fields.
Thus, the axioms in Table 2 constitute a recursive set. Note that the ROF axiom
allow us to separate the reasoning about probabilities from the reasoning about
real numbers.

We can simplify the proof in [16] thanks to the SAT algorithm presented before.
The soundness of the calculus of Table 2 is straightforward, and so, we focus on the
completeness result.Again,we refer the reader to theAppendix for adetailedproof.

Theorem 3. The set of rules and axioms of Table 2 is a weakly complete ax-
iomatization of EPPL.

2.6 Model Checking

Given a finite set of propositional symbols Λ and using the small model theorem
we can consider that all EPPL models are defined over a discrete and finite
probability space.

Since for the model-checking procedure we have to deal with computer rep-
resentation and, in practice, probabilities are represented by floating points
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Table 2. HCEPPL : complete calculus for EPPL

Axioms
[CTaut] EPPL (�β) for each valid propositional formula β;
[GTaut] EPPL δ for each instantiation of a propositional tautology δ;
[Lift ⇒] EPPL (�(β1 ⇒ β2) ⊃ (�β1 ⊃ �β2));
[Eqv ⊥] EPPL (�⊥ ≡ f);
[Indep] EPPL (β1 ⊥⊥ β2) ≡ ((

∫
β1 ∧ β2) = (

∫
β1)(

∫
β2));

[ROF] EPPL (t1 ≤ t2) for each instantiation of a valid analytical inequality;
[Prob] EPPL ((

∫
�) = 1);

[FAdd] EPPL (((
∫
(β1 ∧ β2)) = 0) ⊃ ((

∫
(β1 ∨ β2)) = (

∫
β1) + (

∫
β2)));

[Mon] EPPL (�(β1 ⇒ β2) ⊃ ((
∫

β1) ≤ (
∫

β2)));
Inference rules
[MP] δ1, (δ1 ⊃ δ2) EPPL δ2.

and not symbolically by algebraic real numbers, we consider only EPPL models
m = (Ω, F , μ,X) specified with floating point arrays (like is usual in other prob-
abilistic model checkers, such as PRISM [14,13]). Observe that, since floating
point numbers are rational numbers, they are also algebraic real numbers and
so, the semantics given in Section 2.2 does not require any modification to deal
with floating points. We represent an EPPL model as a |Λ| × |Ω|-matrix X of
boolean values for the random variables and an |Ω|-array μ of real numbers for
the probabilities. The size of Ω is at most 2|Λ|. So, an EPPL models is stored in
memory by the record (μ,X).

Let δ be an EPPL global formula. We consider that in δ we have already
replace all occurrences of independence formulas (β1 ⊥⊥ β2) by inequalities as
describe in Remark 2.

We define the arrays bsf(δ) = (β1, . . . , βk), pst(δ) = (t1, . . . , ts) and gsf(δ) =
(δ1, . . . , δm, δ) as the ordered tuples of basic subformulas, probabilistic subterms
and global subformulas of δ, respectively, ordered by increasing length. An attri-
bution ρ for real logical variables is also represented by a finite array where the
dimension is determined by the number of real logical variables in the formula
|δ|, that is bounded by s (the length of pst(δ)). As usual for floating points, we
assume that the basic arithmetical operations take O(1) time.

Given an EPPL model m = (Ω, F , μ,X), an attribution ρ and a global formula
δ, the model-checking problem consists in determining whether m, ρ � δ. Model
checking of EPPL is detailed in Algorithm 2.
Theorem 4. Assuming that all basic arithmetical operations and that accessing
array/matrix values take O(1) time, Algorithm 2 takes O(|δ| · |Ω|) time to decide
if an EPPL model m = (Ω, F , μ,X) and attribution ρ satisfy δ.

3 Probabilistic Linear Time Logic

3.1 Linear Time Logic

Syntax. Weassumethat there is a countable setofpropositional symbolsΞ.Assum-
ing the set Ξ, the formulas of Linear Time Logic (LTL) are given in BNF notation as
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Algorithm 2: CheckEPPL(m, ρ, δ)

Input: EPPL model m = (μ,X), attribution ρ and a formula δ
Output: Boolean value G(|gsf(δ)|)
for i = 1 to |bsf(δ)| do /* this cycle iterates O(|δ|) times */1

switch βi do /* each case takes O(|Ω|) time */2

case p : B(i) = Xp;3

case (¬βj) : B(i) = 1 − B(j);4

case (βj ⇒ βl) : B(i) = max(1 − B(j), B(l));5

end6

end7

for i = 1 to |pst(δ)| do /* this cycle iterates O(|δ|) times */8

switch ti do /* each case takes O(|Ω|) */9

case z : T (i) = ρ(z) :;10

case 0 or 1 : T (i) = ti;11

case (
∫

βj) : T (i) = B(j).μ ; /* this case takes O(2|Ω|) */12

case (tj + tl) : T (i) = T (j) + T (l);13

case (tj .tl) : T (i) = T (j).T (l);14

end15

end16

for i = 1 to |gsf(δ)| do /* this cycle iterates O(|δ|) times */17

switch δi do /* each case takes O(|Ω|) */18

case (�βj) : G(i) = Π
|Ω|
l=1B(j, l) ; /* this case takes O(|Ω| − 1) */19

case (tj ≤ tl) : G(i) = (T (j) ≤ T (l));20

case (δj ⊃ δl) : G(i) = max(1 − G(j), G(l));21

end22

end23

θ := f � p � (θ ⊃ θ) � Xθ � θUθ

where p ∈ Ξ.

Semantics. The semantics of the temporal logic LTL is given using a Kripke
structure. A Kripke structure over a set of propositions Ξ is a tuple K = (S, R, L)
where S is a set, elements of which are called states; R ⊆ S ×S is a said to be the
accessibility relation and it is assumed that for every s ∈ S there exists s′ ∈ S
such that (s, s′) ∈ R′; and L : S → ℘(Ξ) is said to be a labeling function. Given
a Kripke structure, K = (S, R, L), an infinite sequence of states π = s1s2 . . . is
said to be a computation path if (si, si+1) ∈ R for all i ≥ 1. The semantics of
LTL is defined in terms of a Kripke structure K and a computation path π. The
LTL modalities contain symbols for temporal reasoning: X stands for next; and
U for until. The remaining temporal modalities, F and G, are easily obtained by
abbreviation: (Fθ) for ((∼f)Uθ); and (Gθ) for (∼F(∼θ)).

Given a Kripke structure K, a computation path π = s1 . . . of the Kripke
structure, and a LTL formula θ, the semantics is defined inductively in terms of
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Table 3. Semantics of LTL

K, π 
�LTL f ;
K, π �LTL p iff p ∈ L(s1) with π = s1, . . .;
K, π �LTL (θ1 ⊃ θ2) iff K, π 
�LTL θ1 or K, π �LTL θ2;
K, π �LTL Xθ iff K, π2 �LTL θ;
K, π �LTL (θ1Uθ2) iff there is some i ≥ 1 such that K, πi �LTL θ2 and

K, πj �LTL θ1 for 1 ≤ j < i.

a relation K, π � θ and is given in Table 3. We denote by πi the i-th suffix of π,
that is, the path si, si+1 . . .

A Kripke strucute K is a model of (or satisfies) the formula θ if K, π � θ for
every path π in K. As usual, we say that a set of formulas Θ entails the formula
θ, which we write Θ � θ, if a Kripke structure satisfying all the formulas in Θ
also satisfies θ.

Axiomatization. The temporal logic LTL enjoys a sound and complete axioma-
tization. The proof system HCLTL of LTL is given in Table 4.

The following result is proved in [9].

Theorem 5. The proof system HCLTL is sound and weakly complete with respect
to Kripke structures.

3.2 Exogenous Probabilistic Linear Time logic

Syntax. The formulas of Exogenous Probabilistic Linear Time Logic (EPLTL)
are obtained by enriching the probabilistic formulas with LTL modalities and
are depicted in Table 5. The temporal modalities Fθ and Gθ are introduced as
abbreviations. Observe that the connectives f and ⊃ are shared with EPPL.

Semantics. We now provide a semantics for EPLTL based on EPPL-parametrized
Kripke structures. An EPPL-parametrized Kripke structure is a tuple T =(S, R, L),

Table 4. HCLTL : complete calculus for LTL

Axioms
[Taut] All propositional tautologies with propositional symbols substituted

by LTL formulas;
[X1] LTL (∼Xθ1) ≡ (X∼θ1)
[X2] LTL (X(θ1 ⊃ θ2)) ⊃ (Xθ1 ⊃ Xθ2)
[G] LTL (Gθ1) ⊃ (θ1 ∩ (XGθ1))
[U1] LTL (θ1Uθ2) ⊃ (Fθ2)
[U2] LTL (θ1Uθ2) ≡ (θ2 ∪ (θ1 ∩ X(θ1Uθ2)))
Inference rules
[MP] θ1, (θ1 ⊃ θ2) LTL θ2

[XGen] θ1 LTL (Xθ1)
[Ind] (θ1 ⊃ θ2), (θ1 ⊃ (Xθ1)) LTL (θ1 ⊃ (Gθ2))
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Table 5. Language of EPLTL

θ := f � γ � (θ ⊃ θ) � (Xθ) � (θUθ) where γ is an EPPL formula.

Table 6. Semantics of EPLTL

T , π 
�EPLTL f
T , π �EPLTL γ iff m1, ρ1 �EPPL γ;
T , π �EPLTL (θ1 ⊃ θ2) iff T , π 
�EPLTL θ1 or T , π �EPLTL θ2;
T , π �EPLTL (Xθ) iff T , π2 �EPLTL θ;
T , π �EPLTL (θ1Uθ2) iff there is some i ≥ 1 such that T , πi �EPLTL θ2 and

T , πj �EPLTL θ1 for 1 ≤ j < i.

where S is a non-empty set of states; R ⊆ S × S is a total relation; and a
function L such that L(s) is a pair (m, ρ), for each s ∈ S, where m is an EPPL
model and ρ is an attribution. Like for Kripke structures, a computation path
is a infinite sequence π = m1ρ1, m2ρ2 . . . such that for any i ≥ 1, we have
(miρi, mi+1ρ2) ∈ R. Given an EPPL-Kripke structure T , a computational path
π in T and a EPLTL formula θ, the semantics of EPLTL is defined in terms of a
relation T , π �EPLTL γ given in Table 6.

An EPPL-Kripke structure T is said to satisfy an EPLTL formula θ, which we
denote by T �EPLTL θ, if T , π �EPLTL θ for all computational paths π in T . The
entailement relation is defined as for LTL.

3.3 Axiomatization

We are able to provide a weakly complete axiomatization of EPLTL capitalizing
on the complete LTL calculus HCLTL, which we present in Table 7. Please note
that although the completeness of the calculus may look trivial, the proof of com-
pleteness is subtle. This is because the connectives f and ⊃ are shared between
EPPL and LTL which may create new theorems that would not be obtained by
just adding the EPPL axioms to LTL axioms.

It is straightforward to check the soundness of the calculus, for this reason we
omit here the lengthy exercise of verifying that all axioms and inference rules
are sound.

Theorem 6 (Soundness). The axiomatization HCEPLTL is sound.

Table 7. HCEPLTL calculus for EPLTL

Axioms
[PTeo] All EPPL theorems;
[LTLTaut] All LTL theorems with propositional symbols substituted

by EPLTL formulas.
Inference rules
[PMP] θ1, (θ1 ⊃ θ2) QCTL θ2;
[Gen] θ1 LTL Gθ1.
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The completeness of the calculus is established by translating probabilistic
atoms into propositional symbols. Consider the subset of atomic EPPL formulas
pAtom (i.e., the set constituted by box formula (�β), independence formulas
(β1 ⊥⊥ β2) and comparison formulas (t1 ≤ t2)). Let Ξ be the countable set of
propositional symbols used to write LTL formulas. Given a fixed bijective map
λ : pAtom → Ξ (that translates each global atom to a LTL propositional symbol)
we can translate each EPPL formula θ to a LTL formula λ(θ) by extending
inductively λ on the structure of the formula θ (and preserving all connectives).
For simplicity, we denote λ(θ) just by θ̃. The map λ can also be used to translate
an EPPL-Kripke structure T = (S, R, L) to the Kripke structure T̃ = (S, R, L̃),
where p ∈ L̃(s) if L(s) �EPPL λ−1(p).

Lemma 1. Let T be an EPPL-Kripke structure.Then, T , π �EPLTL θ iff T̃ , π �LTL θ̃.

The next lemma shows that EPLTL incorporates both LTL and EPPL reasoning.

Lemma 2. Let θ be and EPLTL formula, if �LTL θ̃ then �EPLTL θ. Moreover, let γ
be an EPPL formula, if �EPPL γ then �EPLTL γ.

Proof. Follows directly from axioms LTLTaut and PTeo.

If one restricts just to EPPL formulas, EPLTL reasoning coincides with that of
EPPL.

Lemma 3. Let γ be an EPPL formula. Then �EPLTL γ iff �EPPL γ.

The following lemma is crucial to the proof of completeness.

Lemma 4. Let θ be an EPLTL formula such that �EPLTL θ. Then there is an
EPPL formula γθ such that �EPLTL γθ and �LTL (Gγ̃θ ⊃ θ̃).

We are now able to show the completeness of HCEPLTL.

Theorem 7. The axiomatization HCEPLTL is weakly complete.

Proof. Let �EPLTL θ be a valid EPLTL formula. With γθ as in Lemma 4 we have
that �LTL (Gγ̃θ ⊃ θ̃). Using LTL completeness we have �LTL (Gγ̃θ ⊃ θ̃). Now,
from Lemma 2 we get �EPLTL (Gγθ ⊃ θ).

Hence, we are able do the following derivation in EPLTL:

1) EPLTL γθ Lemma 4
2) EPLTL (Gγθ) Rule Gen at 1
3) EPLTL (Gγθ ⊃ θ) Lemma 4,Lemma 2
4) EPLTL θ Rule PMP at 2,3

Therefore, HCEPLTL is complete.
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3.4 SAT Problem

Let θ be the EPLTL formula that we want to test for satisfiability and at =
{γ1, . . . , γk} be the set of atomic EPPL formulas that are atoms of θ. Now for
each k-vector i ∈ {0, 1}k, consider the EPPL formula

δi =
k�

j=1

ϕj where ϕj =
{

γj if j-th bit of i is 1
(∼γj) otherwise (1)

Let K ⊆ {0, 1}k be such that δi is an EPPL consistent formula and let γθ =⊔
i∈K δi. Observe that �EPPL γθ and that for each EPPL model m, ρ there ex-

ists a unique i ∈ K such that m, ρ �EPPL δi. Given a Kripke structure K =
(S, R, L) that satisfies (G(γ̃θ) ∩ θ̃) and a path π starting at s ∈ S we denote
by (ms, ρs) an EPPL model that satisfies δi whenever K, π �LTL δ̃i. Moreover,
choose (ms, ρs) �= (ms′ , ρs′) whenever s �= s′ (this can be done just by changing
the assignments of variables not occurring in θ). We denote by TK the EPPL-
Kripke structure (SK, RK, id : SK → SK) where SK = {(ms, ρs) : s ∈ S} and
((ms, ρs), (ms′ , ρs′)) ∈ RK iff (s, s′) ∈ R. Finally, given a computation path
π = s1, . . . in K we denote by πK the computation path (ms1 , ρs1), . . . in TK.

The following theorem is the kernel of the EPLTL SAT algorithm.

Theorem 8. Let θ be a EPLTL formula. Then, (G(γ̃θ) ∩ θ̃) is LTL-satisfiable iff
θ is EPLTL-satisfiable. Moreover, K, π �LTL (G(γ̃θ) ∩ θ̃) iff TK, πK �EPLTL θ.

We are now able to show the SAT algorithm for EPLTL.

Algorithm 3: SAT Algorithm for EPLTL– SatEPLTL(θ)

Input: EPLTL formula θ
Output: T (an EPPL-Kripke structure satisfying θ) or no model

compute δi as in Equation (1) for all i ∈ 2k;1

let K = {i ∈ 2k : SatEPPL(δi) 
= “no model”} and2

M = {(mi, ρi) : i ∈ K and SatEPPL(δi) = (mi, ρi)};
let γθ =

⊔
i∈K δi;3

let K =SatLTL(G(γ̃θ) ∩ θ̃);4

if K =no model then5

return (no model);6

end7

return (TK constructed from the models stored in M);8

The SAT algorithm for EPLTL that we present is EXPSPACE, due to ap-
plying the PSPACE SAT algorithm of LTL [18] to a formula that has increased
exponentially. It is possible to improve this bound by adapting the LTL SAT al-
gorithm in order to cope with EPPL formulas. In a full version of the paper it is
worthwhile presenting this improvement, but for the sake of space, we preferred
herein to present a simpler algorithm.
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3.5 Model-Checking Problem

Similarly to the SAT algorithm, we provide a model-checking algorithm for
EPLTL that uses directly the PSPACE model-checking algorithm for LTL. This
makes the problem more or less trivial thanks to Lemma 1. Given the EPLTL
formula θ and a EPPL-Kripke structure T , we start by transforming T into a
classical Kripke structure T̃ by checking whether the EPPL models in T satisfy
or not the probabilistic atoms in θ. Then, it remains to model check in LTL
the Kripke structure T̃ against θ̃. Clearly, the model-checking procedure is in
PSPACE, since the translation of T into T̃ can be done in polynomial space.

4 Future Work

A research line we will pursue is on using SAT solvers for predicate abstrac-
tion [7]. We will explore how EPPL can be applied on probabilistic predicate
abstraction. Following the work on non-probabilistic verification of C-like pro-
grams [6] we also intend to analyze the probabilistic version of the bit-vector
logic [3]. We intend to implement and apply the model-checking algorithm to
case studies and check the power of the formalism against established temporal
probabilistic logics. The temporalization can also be generalized to more rich
logics such as the μ-calculus. Another research line to be pursued consists in
introducing quantifiers for the real variables that could nest with the temporal
modalities. Moreover, it is interesting to understand the relationship between
EPPL-parametrized Kripke structures and Markov chains.
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Abstract. In this paper we consider languages of labelled N-free posets
over countable and scattered linear orderings. We prove that a language
of such posets is series-rational if and only if it is recognizable by a finite
depth-nilpotent algebra if and only if it is bounded-width and monadic
second-order definable. This extends previous results on languages of
labelled N-free finite and ω-posets and on languages of labelled countable
and scattered linear orderings.

1 Introduction

It is known since the beginning of the 60’s that automata, rational expressions,
monadic second-order logic (MSO[<]) and finite monoids all have the same ex-
pressive power for the definition of languages of finite words. They have been
widely studied since that time, and adapted to more complex structures, like
infinite words, trees, or partially ordered labelled sets. The subject of this paper
is such an extension, from two different directions: languages of infinite words,
and languages of posets. Let us cite the works it relies on.

First, Büchi [6,7] initiated the study of automata on infinite words, in the
meaning that letters are indexed by ordinal numbers, and not just integers as
for the finite words case. He successfully used the equivalent expressive power of
automata and MSO[<] in order to exhibit decision procedures for the decidability
of this logic interpreted over ordinals. Extending the automata technique to trees,
Rabin [18] studied the decidability of the monadic second-order theory of trees,
from which he deduced decidability results on linear orders. Later, Bruyère and
Carton [5] introduced automata and equivalent rational expressions for words
whose shape is a countable and scattered linear ordering. These automata and
rational expressions were recently connected to MSO[<] by Bedon, Bès, Carton
and Rispal [2]. Adding the notion of parallelism to the notion of sequentiality in
words, Lodaya and Weil [14] defined automata, rational expressions and finite
algebra for languages of particular finite partially ordered sets, obtained using
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the letters and closure under sequential and parallel composition. This class of
posets corresponds precisely to the class of N-free posets [22,23]. The connection
between the results of Lodaya and Weil and MSO[<] has been established by
Kuske [11,12], together with an extension to the infinite (ω) composition of N-
free finite posets. Finally, Bedon and Rispal [3] recently extended the Kleene-like
theorems of Bruyère–Carton and Lodaya–Weil by defining automata and rational
expressions for languages of N -free posets with a sequential composition indexed
by a countable and scattered linear ordering.

This paper is a study of the connections between MSO[<], finite algebra and ra-
tional expressions for this class (denoted by SP �) of posets. We extend to SP � the
results of Kuske on N-free ω-posets and those of Bedon, Bès, Carton and Rispal
on countable and scattered linear orderings. We prove that MSO[<], finite depth-
nilpotent algebra and series-rational expressions have the same expressive power
for bounded-width languages of posets of SP �. The logical formalism is due to
Büchi, but interpreted over SP � rather than well-ordered structures. The series-
rational languages are those of Bruyère and Carton, extended with a commuta-
tive operation for finite parallel composition. Finally, the algebra are semigroups
equipped with a sequential product adapted for sequences of elements indexed by
scattered and countable linear orderings, and a commutative parallel composition
of elements. Informally speaking, such an algebra is depth-nilpotent if any nested
parallel composition leads to 0 beyond a fixed threshold. As the constructions are
effective, this gives in particular a decision procedure that relies on automata the-
ory for the theory of MSO[<] interpreted over bounded-width posets of SP �. This
decision result can also be obtained without automata theory, using for example
model-theoretical techniques as in [20], or the methods of [13]. As a corollary, the
inclusion problem of rational languages is also decidable.

The paper is organized as follows. Section 2 is devoted to basic definitions,
linear orderings and posets. Sections 3, 4 and 5 respectively introduce series-
rational languages, algebra and logic for posets over scattered and countable
linear orderings. The main result of the paper is stated in Section 6. It contains
in particular sketches of constructions to obtain a finite depth-nilpotent algebra
from a logical sentence, a logical sentence from a series-rational expression, and
a series-rational expression from a finite depth-nilpotent algebra, which shows
the equivalence between the three formalisms. Finally, Section 7 concludes.

2 Basic Definitions

We start by some basic definitions on linear orderings. We refer to [19] for a
survey on the subject. Let J be a set equipped with an order <. The ordering
J is linear if all elements are comparable : for any distinct j and k in J , either
j < k or k < j. For any linear ordering J , we denote by −J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering J
is dense if for any j and k in J such that j < k, there exists an element i of
J such that j < i < k. It is scattered if it contains no dense sub-ordering. The
ordering ω of natural integers is scattered. Ordinals are also scattered orderings.
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We denote by N the sub-class of finite linear orderings, O the class of countable
ordinals and S the class of countable scattered linear orderings.

Definition 1. A linear ordering J is complete if

– every non-empty sub-ordering K of J which is bounded above has a least
upper bound in J , and

– every non-empty sub-ordering K of J which is bounded below has a greatest
lower bound in J .

Example 1. Let α = ω and β = −ω. The scattered linear ordering γ = α + β is
not complete, as the part of γ composed of the elements of α (resp. β) does not
respect the first (resp. last) condition of the definition. However, ω + 1 + −ω is
complete.

Let J ∈ S be a countable and scattered linear ordering. An interval K of J is
a subset K ⊆ J such that ∀k1, k2 ∈ K, ∀j ∈ J , if k1 < j < k2 then j ∈ K. A
cut (K, L) of J is a partition of J into two intervals K and L such that all the
elements of K are less than all the elements of L. Thus J = K∪L and K∩L = ∅.
The set of all cuts of J is denoted by Ĵ = {(K, L)|K ∪ L = J ∧ ∀k ∈ K, ∀l ∈
L, k < l}. The set Ĵ is naturally equipped with the ordering (K1, L1) < (K2, L2)
if and only if K1 ⊂ K2. This linear ordering can be extended to J ∪ Ĵ by setting
j < (K, L) whenever j ∈ K for any j ∈ J and (K, L) ∈ Ĵ , and keeping the
orderings on the elements of J and of Ĵ . We set Ĵ∗ = Ĵ \ {(∅, J), (J, ∅)}.

A poset (P, <) is a set P partially ordered by <. In order to lighten the
notation we often denote the poset (P, <) by P . An antichain is a subset P ′ of
P such that all elements of P ′ are incomparable (with <). The width of P is

wd(P ) = sup{|E| : E is an antichain of P}

where sup denotes the least upper bound of the set. In this paper, we restrict
to countable scattered posets which are thus partially ordered countable sets
without any dense sub-ordering. Let (P, <P ) and (Q, <Q) be two disjoint posets.
The parallel composition of (P, <P ) and (Q, <Q) is the poset (P ∪ Q, <) where
x < y if and only if (x, y ∈ P and x <P y) or (x, y ∈ Q and x <Q y). The sum
(or sequential composition) P + Q of P and Q is the poset (P ∪ Q, <) such that
x < y if and only if one of the following conditions is true:

– x ∈ P , y ∈ P and x <P y;
– x ∈ Q, y ∈ Q and x <Q y;

– x ∈ P and y ∈ Q.

The sum of two posets can be generalized to any linearly ordered sequence of
pairwise disjoint posets: if J is a linear ordering and ((Pj , <j))j∈J is a sequence
of posets, then

∑
j∈J Pj = (∪j∈JPj , <) such that x < y if and only if (x ∈ Pj ,

y ∈ Pj and x <j y) or (x ∈ Pj and y ∈ Pk and j < k). The sequence ((Pj , <j))j∈J

is called a J-factorization, or factorization for short, of the poset
∑

j∈J Pj . The
only poset (∅, <) of width 0 is called empty poset and is denoted by ε.
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Definition 2. The class SP � of series-parallel scattered and countable posets is
the smallest class of posets containing the empty poset, the singleton and closed
under finite parallel composition and sum indexed by countable scattered linear
orderings.

The class SP � has a nice characterization in terms of graph properties: SP �

coincides with the class of scattered and countable N -free posets without infinite
antichain. A poset P is N-free if it does not contain N as a sub-poset, that is if it
does not contain elements p, q, r, s ∈ P such that the ordering relations between
those four elements are precisely p < r, q < r and q < s.

Theorem 1. [3] A poset belongs to SP � if and only if it is N -free, countable
and scattered, and without infinite antichain.

An alphabet is a set whose elements are called letters. In this paper, we use
only finite alphabet, thus the term “finite” is omitted. A poset labelled by A
is a poset (P, <) equipped with a labelling map l : P → A which associates a
letter to any element of P . The notion of a labelled poset corresponds to the
notion of pomset in the literature. Also, the finite labelled posets of width 1
correspond to the usual notion of words. In order to shorten the notation, we
make no distinction between a poset and a labelled poset. The class of posets
of SP � labelled by A is denoted by SP �(A). A language of SP �(A) is a subset
of SP �(A). The sequential and parallel composition of posets can naturally be
extended to languages. If L1, L2 ⊆ SP �(A), then

L1 · L2 = {P ∈ SP �(A) : ∃P1 ∈ L1 ∃P2 ∈ L2 such that P = P1 + P2}
L1 ‖ L2 = {P ∈ SP �(A) : ∃P1 ∈ L1 ∃P2 ∈ L2 such that P = P1 ‖ P2}

Let n be an integer. We denote by SP �
≤n(A) the set of posets of SP �(A) of width

at most n and by SP �
∗ (A) the class SP �(A) restricted to posets of finite width.

A language L has bounded-width if there exists an integer n such that L contains
only posets of width at most n.

We now focus on the definitions of algebras for the recognition of languages. A
semigroup (S, ·) is a set S equipped with an associative binary operation · called
product. A ‖-semigroup [14,15,16] (S, ·, ‖) is an algebra such that (S, ·) is a semi-
group and (S, ‖) is a commutative semigroup. In ambiguous contexts, the · and ‖
products are respectively called sequential (or series) and parallel. The
-semigroups are a generalization of semigroups for the recognition of words in-
dexed by countable and scattered linear orderings (see [8] for more details): a -
semigroup (S,

∏
) is a set equipped with a map

∏
(also called sequential product)

which associates an element of S to any countable and linearly ordered sequence
s = (sj)j∈J (with J ∈ S) of elements of S, such that

∏
(t) = t for any element t of

S and
∏

is associative (i.e. for any factorization of the sequence s into a sequence
of sequences (tj)j∈J′ ,

∏
(s) =

∏
((

∏
tj)j∈J′ )). Finally, a ‖ −-semigroup (S,

∏
, ‖)

is an algebra such that (S,
∏

) and (S, ‖) are respectively a − and a ‖-semigroup.
Recall that an algebra is finite if it is composed of a finite number of elements. Even
if a ‖ −-semigroup is finite, the description of the product

∏
is not finite since the



Logic and Bounded-Width Rational Languages 65

product of any sequence of countable length must be given. Actually, the sequen-
tial product of a finite ‖ −-semigroup can be described in a finite manner: we refer
to [8] for this description in the case of finite -semigroups, which also immediately
applies to finite ‖ −-semigroups. Even if the notion of a ‖ −-semigroup does not
really fit into the general framework of universal algebra, the following notions are
self understanding (we refer to [1] for precise definitions in the framework of uni-
versal algebra): sub-algebra, term, congruence, quotient, morphism between two
algebras of the same type (i.e. two semigroups, or ‖-semigroups, or -semigroups,
or ‖ −-semigroups), free algebra, terms.

In order to lighten the notation we often denote an algebra by its set of
elements: for example, we denote the semigroup (S, ·) by S. We denote by S1

the algebra S if S has an identity for all its operations, S ∪ {1} otherwise, 1
being an identity for all the operations. We also denote by A+, SP (A) [14,15,16]
and A� [8] respectively the free semigroup, ‖-semigroup, and -semigroup over
the set A. Let S and T be two algebras of the same type. Then S divides T if S
is the quotient of a sub-algebra of T . A morphism ϕ : S → T recognizes a subset
X of S if ϕ−1ϕ(X) = X . We say that T recognizes X if there exists a morphism
from S into T recognizing X . A subset X of an algebra S is recognizable if there
exist a finite algebra T with the same type as S and a morphism ϕ : S → T that
recognizes X .

Proposition 1. Let A be an alphabet. Then SP �(A) is the free ‖ −-semigroup
over A.

Example 2. Let A = {a, b} and L ⊆ SP �
≤2(A) be the language of non-empty

posets P such that P has width at most 2 and each letter a that appears into
a parallel part of P is incomparable with a b. Let S = {a, b, ab, p, 0, 1} be the
finite ‖ −-semigroup defined by the following ‖ commutative product: a ‖ a =
ab ‖ a = 0, p ‖ x = 0 for all x ∈ S, a ‖ b = ab ‖ b = ab ‖ ab = b ‖ b = p
and the sequential product

∏
such that, for any non-empty sequence (sj)j∈J

(J ∈ S − {∅}) of elements of S,

∏
((sj)j∈J ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a if (sj)j∈J contains only as
ab if (sj)j∈J contains at least one a and one b

b if (sj)j∈J contains only bs
p if (sj)j∈J contains only p, a, b, ab, with at least one p

The elements 1 and 0 are respectively neutral and a zero for both
∏

and ‖. Let
ϕ : SP �(A) → S be the morphism defined by ϕ(a) = a and ϕ(b) = b. Then
L = ϕ−1({a, b, ab, p}).

3 Series-Rational Languages

Let A be an alphabet. Let L and L′ be bounded-width languages of SP �(A).
The following operations are used in order to form the series-rational expressions
for bounded-width languages of labelled posets:
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L∗ = {
∑

j∈n

Pj |n ∈ N , Pj ∈ L}

Lω = {
∑

j∈ω

Pj |Pj ∈ L}

L−ω = {
∑

j∈−ω

Pj |Pj ∈ L}

L� = {
∑

j∈α

Pj |α ∈ O, α �= 0, Pj ∈ L}

L−� = {
∑

j∈−α

Pj |α ∈ O, α �= 0, Pj ∈ L}

L1  L2 = {
∑

j∈J∪Ĵ∗

Pj | J ∈ S − {∅}, Pj ∈ L1 if j ∈ J and Pj ∈ L2 if j ∈ Ĵ∗}

The class of series-rational languages over an alphabet A is the smallest con-
taining ε, {a} for all a ∈ A, and closed by finite union, finite sequential and parallel
compositions, finite sequential iteration ∗, ω and −ω-iterations, iteration on ordi-
nals � and reverse iteration on ordinals−� aswell as diamondoperator .We denote
by L(e) the language described by a series-rational expression e. If E ⊆ SP �(A),
then E� is an abbreviation for E  ε. Note that if ε �∈ E, then ε �∈ E�.

A language is linear-rational if it is series-rational without using the ‖ opera-
tor. Note that the linear-rational expressions are precisely those of Bruyère and
Carton [5] over words on scattered and countable linear orderings. The following
Theorem is a reformulation of a result of Carton and Rispal on recognizable
languages of words on scattered and countable linear orderings.

Theorem 2. [8] Let A be an alphabet, and L be a language of SP �
≤1(A). Then

L is linear-rational iff it is recognizable.

4 Algebra

We now define a pre-ordering relation ≺‖, on the elements of a ‖ −-semigroup
S, in order to adapt the notion of the depth of an element of a sp-algebra [14] to ‖
−-semigroups. If s, t ∈ S, then s ≺ t if and only if there exist x1, x2, x3, x4, x5 ∈
S1 such that s = x1(x2 ‖ (x3tx4))x5 and x2 ‖ (x3tx4) �= x3tx4. The relations
≺‖ and �‖ are respectively the transitive and reflexive-transitive closures of
≺. Observe that if S has a zero 0 or an identity 1 for all its operations, then
the last condition of the definition of ≺ ensures that 0 �≺‖ 0 and 1 �≺‖ 1. By
construction, �‖ is a pre-order on S. A ‖ −-semigroup S is depth-graded if,
for each s ∈ S, there exists an integer n such that each ≺‖-chain with s as
least element has length at most n. In a depth-graded algebra, the relation ≺‖
is irreflexive, and hence is a strict partial order. The depth of s, denoted dp(s),
is defined inductively on the elements of a depth-graded ‖ −-semigroup S by
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Fig. 1. A finite poset of depth 4. The depth of some sub-posets into frames is indicated.

dp(s)=

{
1 if there does not exist t ∈ S such that s ≺‖ t,
1 + sup{dp(t) : s ≺‖ t} otherwise.

A ‖ −-semigroup S has bounded depth if there exists an integer n such that
each ≺‖-chain is of length at most n. Observe that if S is bounded-depth, then
it is also depth-graded.

Example 3. The poset of Figure 3 has depth 4 and width 6. Observe that SP �(A)
is not depth-graded. Consider for example the poset P =

∑
i<ω Pi, where Pi

consists in i copies of the letter a, all set in parallel, for each i < ω. Then
P ∈ SP �(A), and dp(P ) is infinite. Observe that any poset of SP �

∗ (A) has finite
depth, and SP �

∗ (A) is depth-graded. However, SP �
∗ (A) does not have bounded-

depth.

A ‖ −-semigroup S is depth-nilpotent if it has bounded-depth and S − {1}
contains a 0 which is the only idempotent for the ‖ operation. The following
Lemma is an immediate adaptation of Lemma 3.5 of [15] to ‖ −-semigroups:

Lemma 1. Let S be a ‖ −-semigroup with bounded-depth. Then S is depth-
nilpotent iff for any s, t ∈ S − {1} with t �= 0, then s ‖ t �= t.

5 Logic

The monadic second-order (MSO[<]) logic is classical in set theory, and was first
set up by Büchi for words. In this paper the formulæ of MSO[<] are interpreted
over posets of SP �(A), labelled by the letter of the alphabet A. Formal logic is
used to specify a language by properties of its labelled posets, as for example
“every antichain X of a poset of the language such that X has at least two
elements contains at least two elements labelled by a”. We now outline the basic
notions on MSO[<]. We refer e.g. to [9,21] for more details.

We first focus on first-order logic. The first order variables are named by
lower-cases letters like x, y, z and are interpreted over elements of the posets. An
existential (∃) or an universal (∀) quantification can be applied to a variable:
in this case, the variable is said to be bounded to the quantifier. An unbounded
variable is free. The basic ingredients for formulæ construction are the atomic
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formulæ. If x, y and a are respectively two first-order variables and a letter of the
alphabet, then Ra(x) and x < y are atomic formulæ: the first one meaning that x
is associated to an element labelled by a and the other is self-understanding. The
logical symbols ∧, ∨ and ¬ are the usual connectives. Parenthesis ensure legibility
of formulæ. We write ϕ(x1, . . . , xn) to denote that ϕ has at most x1, . . . , xn as
free variables. A sentence is a formula without free variable.

The satisfaction relation |= between series-parallel labelled posets (P, <) and
logic formulæ is defined canonically. Let φ(x1, . . . , xn) be a formula having at
most x1, . . . , xn as free variables, (P, <) be a poset and p1, . . . , pn ∈ P . Then
(P, <), p1, . . . , pn |= φ(x1, . . . , xn) means that (P, <) satisfies ϕ when p1, . . . , pn

serve as respective interpretations for x1, . . . , xn.
We define the second-order logic MSO[<] as an extension of the first-order

logic. In MSO[<], variables that range over sets of elements of posets are also
allowed in addition to first-order variables. We use upper-cases letters like X, Y, Z
to name these variables, called second-order variables. Comparatively to first-
order logic, MSO[<] has one more form of atomic formula, which is self-under-
standing: x ∈ X , where x and X are respectively a first and a second-order
variable. The notions and notations introduced for first-order logic can naturally
be extended to second-order logic.

The language L(φ) of a sentence φ is the set of all labelled-posets satisfying
φ. A property p is definable in MSO[<] if there exists a formula of MSO[<] that
expresses p.

Let n be an integer, A an alphabet, P and P ′ two labelled posets. Following
the notation from [9], we write P ≡n P ′ if P and P ′ satisfy the same sentences of
quantifier rank ≤ n (the quantifier rank is the maximum number of nested quanti-
fiers in a formula). It is a well-known result that ≡n is an equivalence relation with
finitely many equivalence classes. Furthermore, SP (A)/≡n is a finite ‖-semigroup
(see for example Proposition 3.1.4 of [9]). This is only verification to check, using
the same arguments as in the proof of Proposition 3.1.4 of [9], that

Proposition 2. Let A be an alphabet and n an integer. Then SP �(A)/≡n (resp.
A�/≡n) is a finite ‖ −-semigroup (resp. -semigroup) that recognizes L(φ) for
any sentence φ of quantifier rank ≤ n.

In order to enhance readability of formulæ we use several notations and ab-
breviations for properties expressible in MSO[<]. The following are usual and
self-understanding: φ → ψ, X ⊆ Y , x = y. We denote “there exists an unique
x” by ∃!x, “x and y are different and not comparable” by x ‖ y, “there exists
a non-empty set X” by ∃X , “set X has cardinality j” by Cardj(X), where j
is any integer, “set X is an antichain” by Antichain(X), “sets U and V form
a partition of X” by Partition(U, V, X). All those properties are definable in
MSO[<]. A set X is finite iff every non-empty subset of X has a minimum and
a maximum. It is isomorphic to ω (resp. −ω) if it is linearly ordered, infinite
and every part of X with a maximum (resp. minimum) is finite. Again, all the
properties above are definable in MSO[<]. A simple transcription of Definition 1
into MSO[<] gives a monadic second-order formula that tests if an ordered set
is a complete linear ordering. Finally, we need the following abbreviation:
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X = U ⊕ V ≡ Partition(U, V, X) ∧ (∀u∀v u ∈ U ∧ v ∈ V → ¬u ‖ v)

Example 4. Let A = {a, b} be an alphabet and L ⊆ SP �(A) be the language of
posets verifying the property “every antichain X of a poset of the language such
that X has at least two elements contains at least two elements labelled by a”.
Let φ be the following sentence of MSO[<]. Then L(φ) = L.

φ ≡ ∀X Antichain(X) → ∃Y Y ⊆ X ∧ Card2(Y ) →
(∃x∃y x ∈ X ∧ y ∈ X ∧ x �= y ∧ Ra(x) ∧ Ra(y))

6 Equivalence

This section is devoted to the main result of this paper:

Theorem 3. Let A be an alphabet and L ⊆ SP �(A). Then the following asser-
tions are equivalent:

1. L is series-rational,
2. there exists a morphism ϕ : SP �(A) → S into a finite depth-nilpotent ‖ −-

semigroup S and X ⊆ S such that 0 �∈ X, L = ϕ−1(X), and ϕ(a) �= 1 for
all a ∈ A,

3. L has bounded-width and is definable by a sentence of MSO[<].

Example 5. Let A = {a, b} and L be the language of Example 2. Then L is the
language of the series-rational expression

e = ((A� + ε)a(A� + ε) ‖ (A� + ε)b(A� + ε) + A� + b� ‖ b�)�

and of the logical sentence

φe ≡ φwd∈{1,2} ∧ ∀x(Ra(x) ∧ ¬Flat(x)) → ∃y x ‖ y ∧ Rb(y)

where φwd∈{1,2} ≡ ∀XAntichain(X) → ∨1≤i≤2Cardi(X) and Flat(x) ≡ ∀y x =
y ∨ x < y ∨ y < x. Furthermore, it can be easily checked that the morphism of
‖ −-semigroups of Example 2, that recognizes L, also verifies the properties of
Theorem 3.

Observe that the language L of Example 4 is definable in MSO[<], but as it has
not bounded width it is not series-rational. It is also recognizable by a morphism
ϕ : SP �(A) → S, with S finite and depth-nilpotent, but it can be easily checked
by the reader that in this case 0 ∈ ϕ(L).

In the remainder of this section we will give a sketch of the proof of Theorem 3.
Proposition 3 shows that 2 implies 1, and Proposition 4 that 3 implies 2. The
proof of Proposition 3 essentially relies on an induction over the depth of s ∈
S − {0}. Theorem 2 solves the induction step dp(s) = 1. Proposition 4 relies on
Proposition 2, whose proof uses classical Ehrenfeucht-Fräıssé games arguments.
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Proposition 3. Let A be an alphabet, S be a finite depth-nilpotent ‖ −-semi-
group and ϕ : SP �(A) → S a morphism that recognizes L ⊆ SP �(A), such that
0 �∈ ϕ(L) and ϕ(a) �= 1 for all a ∈ A. Then L is series-rational.

Proposition 4. Let A be an alphabet, φ a monadic second-order sentence and m
an integer. Let L = L(φ) ∩ SP �

≤m(A). There exist a morphism ϕ : SP �(A) → S
into a finite depth-nilpotent ‖ −-semigroup S and X ⊆ S such that 0 �∈ X,
L = ϕ−1(X), and ϕ(a) �= 1 for all a ∈ A.

As a series-rational language has necessarily bounded-width, it remains to
show that it can also be defined using a sentence of MSO[<]. We now give a
sketch of the proof, which proceeds by induction on a series-rational expression
e, by extension of the ideas from [17]. For simplicity we do not consider the
empty poset in the discussion. Let P be a non-trivial poset such that P ∈ L(e).
Then by definition P is obtained from others posets of SP �(A) using the series-
rational operators. Let Q be such a non-empty subset of P . Then Q verifies two
properties. First, any element of P between two comparable elements of Q also
belongs to Q: we say that Q has the block property. Second, if an element x of
P is comparable with an element of Q and incomparable with another one, then
x belongs to Q: we say that Q has the good part property. Those two properties
are definable in MSO[<]. Let C be a non-empty good part of P which can be
decomposed into an union of maximal (with respect to inclusion) blocks. If such
a decomposition exists it is unique. We construct, by induction on e, a formula
ϕe(X) with exactly one free variable X , which is second-order, and such that
P, C |= ϕe(X) iff D ∈ L(e) for each maximal block D of C. The basic step
of the induction, where e is a letter, is trivial. The induction step where e has
the form e1 ‖ e2 (resp. e1 · e2) is easy: it suffices to express in MSO[<] that
each maximal block D of C can be partitioned into U and V such that all the
elements of U are incomparable with (resp. less than) all the elements of V . As
it can be verified that U and V are good parts of C, the induction hypothesis
applied on U, V, e1 and e2 permits to conclude. The other cases (∗, ω, −ω, �, −�

and ) use extensions of this principle. Let us focus on the case e = e′ω for
example, the other induction steps being similar. Let D be a maximal block of
C. Then D ∈ L(e) iff there exist J ∈ S and a factorization of D into a sum of
posets D =

∑
j∈J Dj, such that J is isomorphic to ω and Dj ∈ L(e′) for each

U

V

D4D3D2D1D0

D

Fig. 2. A poset D ∈ SP �(A) belongs to L(e′ω) iff it can be decomposed into D =∑
j∈ω Dj where Dj ∈ L(e′) for all j ∈ ω. Following this decomposition, D ∈ L(e′ω) iff

it can be decomposed into D = U ⊕V , where each maximal block of U or V is a Dj for
some j ∈ ω. A linear ordering W isomorphic to ω can be built by taking one element
in each maximal block of U and V .
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j ∈ J . The linear ordering J can be partitioned itself into J1 and J2 such that
if x ∈ Ji then x + 1 ∈ Jk for any x ∈ J , where i, k ∈ {1, 2} and i �= k. Thus,
D can be partitioned into U and V such that x ∈ U (resp. x ∈ V ) iff x ∈ Dj

for some j ∈ J1 (resp. j ∈ J2). Finally, D ∈ L(e) iff there exist U and V such
that D = U ⊕ V , each maximal (with respect to inclusion) block of U and V is
a Dj for some j ∈ J , and J is isomorphic to ω. As it can be verified that each
maximal block of U or V is a good part of P , the induction hypothesis can be
applied. Figure 2 illustrates such a factorization of D.
The formula ϕe′ω (X) is given below:

ϕe′ω (X) ≡ ∀Z MaxBlock(Z, X) → ∃U∃V Z = U ⊕ V ∧ ϕe1 (U)
∧ ϕe1(V ) ∧ (∀W Ordertype(W, U, V ) → Omega(W ))

Ordertype(Z, X, Y ) ≡ ∀B MaxBlock(B, X) → ∃!z z ∈ Z ∩ B

∧ ∀B MaxBlock(B, Y ) → ∃!z z ∈ Z ∩ B

For the other iteration operators, it suffices to change the test on W at the end
of the formula ϕe′ω . For example, if the iteration operator is �, Omega(W ) is
changed in order to check that W does not contain −ω as sub-ordering. The 
composition of languages is processed using very similar arguments, and relies
on Lemma 2, which gives another definition of , more adapted to a translation
in the formalism of MSO[<] than the one of Section 3.

Lemma 2. Let A be an alphabet and L1 and L2 be two languages of SP �(A).
Then P ∈ L1  L2 if and only if there exist a scattered and countable linear
ordering K �= ∅, a sequence (Pk)k∈K of posets of SP �(A) and a map f : K →
{1, 2} such that the following conditions are true:

1. P =
∑

k∈K Pk;
2. if f(k) = i and k + 1 ∈ K then f(k + 1) �= i;
3. if k ∈ K, k is not the last element of K, and k has no successor, then

f(k) = 2;
4. if k ∈ K, k is not the first element of K, and k has no predecessor, then

f(k) = 2;
5. if k is the first or the last element of K, then f(k) = 1;
6. K is complete;
7. f(k) = i implies Pk ∈ Li.

In order to conclude, it suffices to observe that P is a good part and a maximal
block of itself. Let ψe ≡ ∃X(∀x x ∈ X) ∧ ϕe(X). Then L(e) = L(ψe). As a
consequence:

Proposition 5. Let A be an alphabet and L ⊆ SP �(A). If L is series-rational,
then L = L(ψe) for any series-rational expression e such that L = L(e).

We finish by providing a last example.

Example 6. Let A = {a, b} and L ⊆ SP �(A) be the language of posets P of
width at most 2, such that, if a a appears in a parallel part P1 ‖ P2 of P , then
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P1 ‖ P2 is immediately followed by P3 such that wd(P3) = 1 and P3 contains
a b. Let e1 = (A + (b� ‖ b�))� + ε. The language of e1 is all the posets that do
not contain an a in parallel with another letter. Then L is the language of the
series-rational expression

e = (e1(((A� + ε)a(A� + ε)) ‖ A�)(A� + ε)b)�e1 + e1

and of the second-order monadic sentence interpreted over SP �(A)

φe ≡ φ≤2 ∧ ∀x∀y(Ra(x) ∧ x ‖ y) →
∃z x < z ∧ Rb(z) ∧ Flat(z) ∧ ∀w x < w < z → Flat(w) ∨ w ‖ y

where φ≤2 ≡ ∀XAntichain(X) → ∨i≤2Cardi(X) and Flat(x) ≡ ∀y x = y∨x <
y ∨ y < x.

We now turn to the definition of a finite ‖ −-semigroup recognizing L. Even
when a ‖ −-semigroup S has a finite number of elements, its description is
infinite because the result of the sequential product of any sequence of element
of S must be given, and there are an infinity of them. A consequence is that finite
‖ −-semigroups do not really fit in the general framework of universal algebra.
However, when the cardinal of S is finite, the sequential product can equivalently
be replaced by three operations of finite arity: the sequential product of two
elements, the ω repetition of an element and the reverse ω repetition. Formally,
let x ∈ S:

xω =
∏

(si)i∈ω where si = x for all i ∈ ω

x−ω =
∏

(si)i∈−ω where si = x for all i ∈ −ω

This technique was introduced by Wilke [24] in the case of finite ω-semigroups,
and applied to the case of -semigroups in [8]. We use it in this example.

Let S = {a, b, ab, p, q, r, 0, 1} be the finite ‖ −-semigroup defined by a ‖ a =
a ‖ b = a ‖ ab = ab ‖ b = ab ‖ ab = p, b ‖ b = (a ‖ b)b = q, b(b ‖ b) = b(a ‖ b)b =
r, b(a ‖ b) = s, p ‖ x = q ‖ x = r ‖ x = 0 for all x ∈ S and by the binary
sequential product, ω and −ω operations of Figure 3. It can easily be checked
that S is depth-nilpotent. Let ϕ : SP �(A) → S be the morphism defined by
ϕ(a) = a and ϕ(b) = b. Then L = ϕ−1({a, b, ab, q, r, 1}).

· a b ab p q r s

a a ab ab p q r s
b ab b ab s r r s
ab ab ab ab s r r s
p p q q 0 0 q p
q q q q p q q p
r r r r s r r s
s s r r 0 0 r s

a b ab p q r s

ω a b ab 0 q r r

a b ab p q r s

−ω a b ab 0 q q p

Fig. 3. A finite description of the sequential product of S
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7 Conclusion

The proof of the main result of the paper is effective. A consequence is that
MSO[<] interpreted over SP �

≤n is decidable. As a corollary, any question on
series-rational languages expressible in MSO[<], as for example the inclusion
problem of series-rational languages, is also decidable.

Linear-rational expressions were introduced in [5] as well as equivalent au-
tomata. It is known from [2] that a language of scattered and countable linear
structures is linear-rational if and only if it is in MSO[<]. When non-scattered
linear structures are taken into account, a shuffle operation [4] must be added
to linear-rational expressions to keep the equivalence with automata. Linear-
rational languages with shuffle are a strict subset of the languages of MSO[<]
interpreted over all countable linear structures.

A notion of automata accepting labelled posets of SP �(A) have been in-
troduced in [3], as well as equivalent rational expressions, called series-parallel
rational expressions. The series-parallel rational expressions are an extension
of the series-rational expressions, and automata equivalent to the latter, called
fork-acyclic, are a restriction of automata of the former. The link between series-
parallel rationality, series-rationality, automata and logic was first studied by
Lodaya and Weil [14] and Kuske [11] for finite and ω structures. In this case,
second-order definability coincides with series-rationality. One more assertion
could be added to Theorem 3:

Theorem 4. Let A be an alphabet and L ⊆ SP �(A). Then the following asser-
tions are equivalent:

1. L is series-rational,
2. there exists a morphism ϕ : SP �(A) → S into a finite depth-nilpotent ‖ −-

semigroup S and X ⊆ S such that 0 �∈ X, L = ϕ−1(X), and ϕ(a) �= 1 for
all a ∈ A,

3. L has bounded-width and is definable by a sentence of MSO[<],
4. L is accepted by a fork-acyclic automaton.

Finite ‖ −-semigroups have important properties. One of them was used in
Example 6: the sequential product can be equivalently replaced by operations
whose descriptions are finite. This makes finite ‖ −-semigroups really finite
algebraic objects. As another property, a particular finite ‖ −-semigroup can
be canonically attached to any recognizable language L of posets of SP �(A).
This finite ‖ −-semigroup, called the syntactic ‖ −-semigroup of L, divides
any ‖ −-semigroup recognizing L. In formal languages theory, this algebra plays
an important role. The importance of syntactic algebras is emphasized for infinite
structures: for example, contrary to the finite words case, a minimal automaton
can not any more be attached to a recognizable language of infinite words. The
existence of the syntactic ‖ −-semigroup of a recognizable language of SP �(A)
lays the foundation for the generalization of numerous results of formal languages
of infinite words.

Finally, let us mention the study of Ésik and Németh [10] on rational sets of
finite series-parallel posets, but with a non-commutative parallel composition.
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In this case, as in the commutative parallel case, rationality, regularity, recog-
nizability and logical definability all coincide for bounded-width languages.

Acknowledgements

The author wishes to express his thanks to the anonymous referees for helpful
remarks that have been used to improve the quality of this paper.

References

1. Almeida, J.: Finite semigroups and universal algebra. Series in algebra, vol. 3.
World Scientific, Singapore (1994)

2. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words
indexed by linear orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slis-
senko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010,
pp. 76–85. Springer, Heidelberg (2008)

3. Bedon, N., Rispal, C.: Series-parallel languages on scattered and countable posets.
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Abstract. We explore an intuitionistic fragment of Artëmov’s Logic of
Proofs as a type system for a programming language for mobile units.
Such units consist of both a code and certificate component. Dubbed the
Certifying Mobile Calculus, our language caters for both code and certifi-
cate development in a unified theory. In the same way that mobile code is
constructed out of code components and extant type systems track local
resource usage to ensure the mobile nature of these components, our sys-
tem additionally ensures correct certificate construction out of certificate
components. We present proofs of type safety and strong normalization
for a run-time system based on an abstract machine.

1 Introduction

We explore an intuitionistic fragment (ILP) of Artëmov’s Logic of Proofs (LP)
as a type system for a programming language for mobile units. This language
caters for both code and certificate development in a unified theory. LP may
be regarded as refinement of modal logic S4 in which �A is replaced by [s]A,
for s a proof term expression, and is read: “s is a proof of A”. It is sound and
complete w.r.t. provability in PA (see [Art95, Art01] for a precise statement) and
realizes all theorems of S4. It therefore provides an answer to the (long-standing)
problem of associating an exact provability semantics to S4 [Art95, Art01]. LP is
purported to have important applications not only in logic but also in Computer
Science [AB04]. This work may be regarded as a small step in exploring the
applications of LP in programming languages and type theory.

Modal necessity �A may be read as the type of programs that compute values
of type A and that do not depend on local resources [Moo04, VCHP04, VCH05]
or resources not available at the current stage of computation
[TS97, WLPD98, DP01b]. The former reading refers to mobile computation (�A
as the type of mobile code that computes values of type A) while the latter to
staged computation (�A as the type of code that generates, at run-time, a pro-
gram for computing a value of type A). See Sec. 7 for further references. We
introduce the Certifying Mobile Calculus or λCert

� by taking a mobile computa-
tion interpretation of ILP. ILP’s mechanism for internalizing its own derivations
provides a natural setting for code certification. A contribution of our approach
� Work partially supported by Instituto Tecnológico de Buenos Aires.
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is that, in the same way that mobile code is constructed out of code compo-
nents and extant type systems track local resource usage to ensure the mobile
nature of these components, our system additionally ensures correct certificate
construction out of certificate components. Mobile units consist of both a code
component and a certificate component. A sample λCert

� expression, one encoding
a proof of the ILP axiom scheme [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B where s, t are any
proof term expressions and A, B any propositions, is the following:

λa.λb.unpack a to 〈u•, u◦〉 in (unpack b to 〈v•, v◦〉 in (boxu◦·v◦ u•v•))

This is read as follows: “Given a mobile unit a and a mobile unit b, extract code
v• and certificate v◦ from b and extract code u• and certificate u◦ from a. Then
create new code u• v• by applying u• to v• and a new certificate for this code
u◦ · v◦. Finally, wrap both of these up into a new mobile unit.”. The syntax of
code and certificates is described in detail in Sec. 3. The new mobile unit is
created at the same current (implicit) world w. Moreover, the example assumes
that both a and b reside at w. The following variant M illustrates the case where
mobile units a and b reside at worlds wa and wb which are assumed different
from the current world w:
unpack fetch[wa] a to 〈u•, u◦〉 in(unpack fetch[wb] b to 〈v•, v◦〉 in (boxu◦·v◦ u•v•))

Here the expression fetch[wa] a is operationally interpreted as a remote call to com-
pute the value of a (a mobile unit) at wa and then return it to the current world.
Note that a and b occur free in this expression. Since b is a non-local resource it
cannot be bound straightforwardly by prefixing the above term with λb. Rather,
the code first must be moved from the current world w to wb; similarly for a:

λa.fetch [wb] (λb.fetch[w] M)

λCert
� arises from a Curry-de Bruijn-Howard interpretation of a Natural Deduc-

tion presentation of ILP based on a judgemental analysis of the Logic of Proofs
given in [AB07]. Propositions and proofs of ILP correspond to types and terms
of λCert

� . Regarding semantics, we provide an operational reading of expressions
encoding proofs in this system in terms of global computation. An abstract ma-
chine is introduced that computes over multiple worlds. Apart from the standard
lambda calculus expressions new expressions for constructing mobile units and
for computing in remote worlds are introduced. We state and prove type safety
of a type system for λCert

� w.r.t. its operational semantics. Also, we prove strong
normalization.

This paper is organized as follows. Sec. 2 briefly recapitulates ILPnd [AB07], a
Natural Deduction presentation of ILP. We then introduce a term assignment for
ILPnd and discuss differences with the term assignment in [AB07] including the
splitting of validity variables [AB07] into code and certificate variables. Sec. 4
introduces the run-time system of λCert

� , the abstract machine for execution of
λCert

� programs. Sec. 5 analyzes type safety and Sec. 6 strong normalization.
References to related work follows. Finally, we conclude and suggest further
directions for research. This is an extended abstract, full details may be found
in a companion technical report [BF].
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2 Natural Deduction for ILP

In previous work [AB07] a Natural Deduction presentation of ILP (ILPnd) is
introduced by considering two sets of hypotheses, truth and validity hypothe-
ses, and analyzing the meaning of the following Hypothetical Judgement with
Explicit Evidence:

Δ; Γ �A | s

Here Δ is a sequence of validity assumptions, Γ a sequence of truth assump-
tions, A is a proposition and s is a proof term. A validity assumption is written
v : A where v ranges over a given infinite set of validity variables and states that
A holds at all accessible worlds. Likewise, a truth assumption is written a : A
where a ranges over a given infinite set of truth variables and states that A holds
at the current world. We write x to denote either of these variables. The judge-
ment is read as: “A is true with evidence s under validity assumptions Δ and
truth assumptions Γ”. Note that s is a constituent of this judgement without
whose intended reading is not possible. The meaning of this judgement is given
by axiom and inference schemes (Fig. 1). We say a judgement is derivable if it
has a derivation using these schemes.

Proof Terms s, t ::= x | s · t | λa : A.s | !s | letc sbe v : A in t
Propositions A, B ::= P | A ⊃ B | [s]A
Truth Contexts Γ ::= · | Γ, a : A
Validity Contexts Δ ::= · | Δ, v : A

Minimal Propositional Logic Fragment

oVar
Δ; Γ, a : A,Γ ′ � A | a

Δ; Γ, a : A� B | s
⊃ I

Δ; Γ � A ⊃ B | λa : A.s

Δ; Γ � A ⊃ B | s Δ; Γ � A | t
⊃ E

Δ; Γ � B | s · t

Provability Fragment

mVar
Δ, v : A,Δ′; Γ � A | v

Δ; ·� A | s
�I

Δ; Γ � [s]A |!s

Δ; Γ � [r]A | s Δ, v : A; Γ � C | t
�E

Δ; Γ � C{v/r} | letc sbe v : A in t

Δ; Γ � A | s Δ; Γ � s ≡ t : A
EqEvid

Δ; Γ � A | t

Fig. 1. Explanation for Hypothetical Judgements with Explicit Evidence
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All free occurrences of a (resp. v) in s are bound in λa : A.s (resp. letc tbe v :
A in s). A proposition is either a variable P , an implication A ⊃ B or a validity
proposition [s]A. We write “·” for empty contexts and s{x/t} for the result of
substituting all free occurrences of x in s by t (bound variables are renamed
whenever necessary); likewise for A{x/t}.

A brief informal explanation of some of these schemes follows. The axiom
scheme oVar states that the judgement Δ; Γ, a : A, Γ ′�A | a is evident in itself.
Indeed, if we assume that a is evidence that proposition A is true, then we
immediately conclude that A is true with evidence a. The introduction scheme
for the [s] modality internalizes meta-level evidence into the object-logic. It states
that if s is unconditional evidence that A is true, then A is in fact valid with
witness s (i.e. [s]A is true). Evidence for the truth of [s]A is constructed from
the (verified) evidence that A is unconditionally true by prefixing it with a bang
constructor. Finally, �E allows the discharging of validity hypotheses. In order
to discharge the validity hypotheses v : A, a proof of the validity of A is required.
In this system, this requires proving that [r]A is true with evidence s, for some
evidence of proof r and s. Note that r is evidence that A is unconditionally true
(i.e. valid) whereas s is evidence that [r]A is true. The former is then substituted
in the place of all free occurrences of v in the proposition C. This construction
is recorded with evidence letc sbe v : A in t in the conclusion.

Since ILPnd internalizes its own derivations and normalization introduces iden-
tities on derivations at the meta-level, such identities must be reflected in the
object-logic too. This is the aim of EqEvid. The schemes defining the judgement
of evidence equality Δ; Γ � s ≡ t : A are the axioms for β equality and β equality
on � together with appropriate congruence schemes (consult [AB07] for details).
It should be noted that soundness of ILPnd with respect to ILP does not require
the presence of EqEvid. It is, however, required in order for normalization to be
closed over the set of derivations.

A sample derivation in ILPnd of [s](A ⊃ B)⊃[t]A⊃[s · t]B follows, where
Γ = a : [s](A ⊃ B), b : [t]A and Δ = u : A ⊃ B, v : A:

·; Γ � [s](A ⊃ B) | a

u : (A ⊃ B); Γ � [t]A | b

Δ; ·� A ⊃ B | u Δ; ·� A | v
⊃ E

Δ; ·� B | u · v
�I

Δ; Γ � [u · v]B |!(u · v)
�E

u : (A ⊃ B); Γ � [u · t]B | letc bbe v : A in !(u · v)
�E

·; Γ � [s · t]B | letc abeu : A ⊃ B in letc bbe v : A in !u · v
⊃ I

·; a : [s](A ⊃ B)� [t]A ⊃ [s · t]B | λb : [s]A.letc abeu : A ⊃ B in letc bbe v : A in !(u · v)
⊃ I

·; ·� [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B | λa : [s](A ⊃ B).λb : [t]A.letc abeu : A ⊃ B in letc bbe v : A in !(u · v)

3 Term Assignment

We assume a set {w1, w2, . . .} of worlds, a set {v•1 , v•2 , . . .} of code variables and
a set {v◦1 , v◦2 , . . .} of certificate variables. We use Σ for a (finite) set of worlds.
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Δ and Γ are as before. The syntactic categories of certificates, values and terms
are defined as follows:

s, t ::= a | v◦ | s · t | λa : A.s | !s | letc s be v◦ : A in t | fetch(s)
V ::= box s M | λa.M

M, N ::= a | v• | V | M N
| unpack M to 〈v•, v◦〉 in N | fetch[w] M

Certificates have two kinds of variables. Local variables a are used for abstracting
over local assumptions when constructing certificates. Certificate variables v◦

represent unknown certificates. s · t is certificate composition. !s is certificate
endorsement. letc s be v◦ : A in t is certificate validation, the inverse operation to
endorsement. Finally, fetch(s) certifies the fetch code movement operation to be
described shortly. Substitution of code variables for terms in terms (M{v•/N})
and substitution of certificate variables for certificates in certificates (t{v◦/s})
and in terms (M{v◦/s}) is defined as expected. An example of a certificate is
the following, which encodes a derivation of the first example presented in the
introduction:

λa : [s](A ⊃ B).λb : [t]A.letc a be u◦ : A ⊃ B in (letc b be v◦ : A in !(u◦ · v◦))

Values are a subset of terms that represent the result of computations of well-
typed, closed terms. A value of the form λa.M is an abstraction (free occurrences
of a in M are bound as usual) and one of the form box s M is a mobile unit
(composed of mobile code M and certificate s). A term is either a term variable
for local code a, a term variable for mobile code v•, a value V , an application
term M N , an unpacking term for extraction of code-certificate pairs from mobile
units unpack M to 〈v•, v◦〉 in N (free occurrences of v◦ and v• in N are bound
by this construct) or a fetch term fetch [w] M . In an unpacking term, M is the
argument and N is the body; in a fetch term we refer to w as the target of
the fetch and M as its body. The operational semantics of these constructs is
discussed in Sec. 4.

The term assignment results essentially (the differences are explained below)
from the schemes of Fig. 1 with terms encoding derivations and localizing the
hypotheses in Δ, Γ at specific worlds. Also, a reference to the current world is
added. Typing judgements take the form

Σ; Δ; Γ �M : A@w | s (1)

Validity and truth contexts are now sequences of expressions of the form v : A@w
and a : A@w, respectively. The former indicates that mobile unit v computing a
value of type A may be assumed to exist and to be located at world w. The latter
indicates that a local value a of type A may be assumed to exist at world w. The
truth of a proposition at w shall rely, on the one hand, on truth hypotheses in Γ
that are located at w, and on the other, on validity hypotheses in Δ that have
been fetched, from their appropriate hosts, to the current location w. Logical
connectives bind tighter than @, therefore an expression such as A ⊃ B@w
should be read as (A ⊃ B)@w.
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It should be mentioned that ILP is not a hybrid logic [AtC06]. In other words,
A@w is not a proposition of our object-logic. For example, expressions of the
form A@w ⊃ B@w′ are not valid propositions.

3.1 Typing Schemes

Typing schemes defining (1) are presented in Fig. 2 and discussed below. A first
difference with ILPnd is that the scheme EqEvid has been dropped. Although the
latter is required for normalization of derivations to be a closed operation (as al-
ready mentioned), our operational interpretation of terms does not rely on nor-
malization of Natural Deduction proofs. For a computational interpretation of ILP
based on normalization the reader may consult [AB07]. A further difference is that
�I has been refined into two schemes, namely �I and Fetch. The first introduces
a modal formula and states it to be true at the current world w. The second states
that all worlds accessible to w may also assume this formula to be true.

In this work mobile code is accompanied by a certificate. We speak of mo-
bile units rather than mobile code to emphasize this. Since mobile units are
expressions of modal types and validity variables v represent holes for values of
modal types, validity variables v may actually be seen as pairs 〈v•, v◦〉. Here v•

is the mobile code component and v◦ is the certificate component of the mobile
unit1. As a consequence, the modality axiom mVar of ILPnd now takes the fol-
lowing form, where judgement Σ � w ensures w is a world in Σ (it is defined by
requiring w ∈ Σ):

Σ � w
VarV

Σ; Δ, v : A@w, Δ′; Γ � v• : A@w | v◦

The schemes ⊃ I and ⊃ E form abstractions and applications at the current
world w. Applications of these schemes are reflected in their corresponding cer-
tificates. Scheme �I states that if we have a typing derivation of M that does
not depend on local assumptions (although it may depend on assumptions uni-
versally true) and s is a witness to this fact, then M is in fact executable at an
arbitrary location. Thus a mobile unit box s M is introduced. The Fetch scheme
types the fetch instruction. A term of the form fetch[w′] M at world w is typed
by considering M at world w′. We are in fact assuming that w sees w′ (or that w′

is accessible from w) at run-time. Moreover, since the result of this instruction
is to compute M at w′ and then return the result to w (cf. Sec. 4), worlds w′

and w are assumed interaccessible2. The unpack instruction is typed using the
scheme �E. Suppose we are given a term N that computes some value of type
C at world w and depends on a validity hypotheses v : A@w. Suppose we also
1 The “◦” is reminiscent of a wrapping with which the interior “•” is protected. Hence

our use of the former for certificates and the latter for code.
2 We are considering a term assignment for a Natural Deduction presentation of a

refinement of S4 (and not S5; see Lem. 3). This reading, which suggests symmetry
of the accessibility relation in a Kripke style model (and hence S5), is part of the
run-time interpretation of terms (cf. 7).
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Σ � w
VarT

Σ; Δ; Γ, a : A@w, Γ ′ � a : A@w | a

Σ; Δ; Γ, a : A@w �M : B@w | s
⊃ I

Σ; Δ; Γ � λa.M : A ⊃ B@w | λa : A.s

Σ; Δ; Γ �M : A ⊃ B@w | s Σ; Δ; Γ � N : A@w | t
⊃ E

Σ; Δ; Γ �M N : B@w | s · t

Σ � w
VarV

Σ; Δ, v : A@w, Δ′; Γ � v• : A@w | v◦

Σ; Δ; ·�M : A@w | s
�I

Σ; Δ; Γ � box s M : [s]A@w | !s

Σ; Δ; Γ �M : [s]A@w′ | t Σ � w
Fetch

Σ; Δ; Γ � fetch[w′] M : [s]A@w | fetch(t)

Σ; Δ; Γ �M : [r]A@w | s Σ; Δ, v : A@w; Γ � N : C@w | t
�E

Σ; Δ; Γ � unpack M to 〈v•, v◦〉 in N : C{v◦/r}@w | letc s be v : A in t

Fig. 2. Term assignment for ILPnd

have a term M that computes a mobile unit of type [r]A@w at the same world
w. Then unpack M to 〈v•, v◦〉 in N is well-typed at w and computes a value of
type C{v◦/r}. The certificate letc s be v : A in t encodes the application of this
scheme.

The following substitution principles reveal the true hypothetical nature of
hypotheses, both for truth and for validity. Both are proved by induction on the
derivation of the second judgement.

Lemma 1 (Substitution principle for truth hypotheses). If Σ; Δ; Γ1, Γ2�
M : A@w | s and Σ; Δ; Γ1, a : A@w, Γ2 � N : B@w′ | t are derivable, then so is
Σ; Δ; Γ1, Γ2 �N{a/M} : B@w′ | t{a/s}.

Lemma 2 (Substitution principle for validity hypotheses). If Σ; Δ1,
Δ2; · � M : A@w | s and Σ; Δ1, v : A@w, Δ2; Γ � N : B@w′ | t are derivable,
then so is Σ; Δ1, Δ2; Γ �N{v◦/s}{v•/M} : B{v◦/s}@w | t{v◦/s}.

Regarding the relation of this type system for λCert
� with ILPnd we have the

following result, which may be verified by structural induction on the derivation
of the first judgement. Applications of the Fetch scheme become instances of the
scheme J

J with copies of identical judgements in ILPnd.

Lemma 3. If Σ; Δ; Γ�A@w | s is derivable, then so is Δ′; Γ ′�A′ | s′ in ILPnd,
where Δ′ and Γ ′ result from Δ and Γ , respectively, by dropping all location qual-
ifiers and A′ and s′ result from A and s, respectively, by replacing all occurrences
of v• and v◦ by v and replacing all certificates of the form fetch(s) with s.

4 Operational Semantics

The operational semantics of λCert
� follows ideas from [VCHP04]. We introduce

an abstract machine over a network of nodes. Nodes are named using worlds.
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Computation takes place sequentially, at some designated world. We are, in
effect, modelling sequential programs that are aware of other worlds (other than
their local host), rather than concurrent computation. An abstract machine state
is an expression of the form W; w : [k, M ] (top of Fig. 3). The world w indicates
the node where computation is currently taking place. M is the code that is being
executed under local context k (M is the current focus of computation). The
context k is a stack of terms with holes (written “◦”) that represent the layers
of terms that are peeled out in order to access the redex. This representation
ensures a reduction relation that always operates at the root of an expression
and thus allows us to speak of an abstract machine. An alternative presentation
based on a small or big-step semantics on terms, rather than machine states,
is also possible. Continuing our explanation of the context k, it is a sequence
of terms with holes ending in either return w or finish. return w indicates that
once the term currently in focus is computed to a value, this value is to be
returned to world w. The type system ensures that this value is, in effect, a
mobile unit. If k takes the form finish, then the value of the term currently in
focus is the end result of the computation. Finally, k�l states that the outermost
peeled term layer is l. This latter expression may be of one of the following
forms: ◦ N indicates a pending argument, V ◦ a pending abstraction (that V
is an abstraction rather than a mobile unit is enforced by the type system) and
unpack ◦ to 〈v•, v◦〉 in N a pending unpack body.

Finally, W is called a network environment and encodes the current state of exe-
cution at the remaining nodes of the network. The domain of W is the set of worlds
to which it refers. Also, we sometimes refer to W; k as the network environment.

The initial machine state (over Σ = {w1, . . . , wn}) is W; w : [finish, M ], where
W = {w1 : ε, . . . , wn : ε} and w and M are any world and term, respectively.
Similarly, the terminal machine state is one of the form W; w : [finish, V ]. Note
that in a terminal state the focus of computation is a fully evaluated term (i.e.
a value).

Run − time system syntax

N ::= W; w : [k, M ]
W ::= {w1 : C1, . . . wn : Cn}
k ::= return w | finish | k � l
l ::= ◦ N | V ◦ | unpack ◦ to 〈v•, v◦〉 in N

C ::= ε | C: : k

Run − time system reduction schemes

(1) W; w : [k, MN ] −→ W; w : [k � ◦ N, M ]
(2) W; w : [k � ◦ N, V ] −→ W; w : [k � V ◦, N ]
(3) W; w : [k � (λa.M) ◦, V ] −→ W; w : [k, M{a/V }]
(4) W; w : [k, unpack M to 〈v•, v◦〉 in N ] −→ W; w : [k � unpack ◦ to 〈v•, v◦〉 in N, M ]
(5) W; w : [k � unpack ◦ to 〈v•, v◦〉 in N, box s M ] −→ W; w : [k, N{v◦/s}{v•/M}]
(6) {w : C; ws}; w : [k, fetch[w′] M ] −→ {w : C: : k; ws}; w′ : [return w, M ]
(7) {w : C: : k; ws}; w′ : [return w, V ] −→ {w : C; ws}; w : [k, V ]

Fig. 3. Operational semantics of λCert
�
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4.1 Reduction Schemes

The operational semantics is presented by means of a small-step call-by-value
reduction relation whose definition is given by the reduction schemes depicted
in Fig. 3. The first scheme selects the leftmost term in an application for re-
duction and pushes the pending part of the term (in this case the argument of
the application) into the context. Once a value is attained (which the type sys-
tem, described below, will ensure to be an abstraction) the pending argument is
popped off the context for reduction and the value V is pushed onto the context.
Finally, when the argument has been reduced to a value, the pending abstrac-
tion is popped off the context and the beta reduct placed into focus for the next
computation step. In the case that reduction encounters an unpack term, the
argument M is placed into focus whilst the rest of the the term is pushed onto
the context. When reduction of the argument of an unpack computes a value,
more precisely a mobile unit, the code and certificate components are extracted
from it and substituted in the body of the unpack term. Note that the schemes
presented up to this point all compute locally, we now address those that operate
non-locally. If a computation’s focus is on a fetch instruction, then the execution
context k is pushed onto the network environment for the current world w′ and
control transfers to world w. Moreover, focus of computation is now placed on
the term M . Finally, the context of computation at w is set to return w thus
ensuring that, once a value is computed, control transfers back to the caller. The
latter is the rôle of the final reduction scheme.

5 Type Soundness

This section addresses both progress (well-typed, non-terminal machine states
are not stuck) and subject reduction (well-typed machine states are closed under
the reduction). Recall from above that a machine state N is terminal if it is of
the form W; w : [finish, V ]. It is stuck if it is not terminal and there is no N

′ such
that N −→ N

′. Two new judgements are introduced, machine state judgements
and network environment judgements:

– Σ � W ; wj : [k, M ]
– Σ � W ; k : A@wj

The first states that W; wj : [k, M ] is a well-typed machine state under the set
of worlds Σ. The second states that the network environment together with the
local context is well-typed under the set of worlds Σ.

A machine state is well-typed (Fig. 4) if the following three requirements hold.
First W is a network environment with domain Σ. Second, M is closed, well-typed
code at world wj with certificate s that produces a value of type A, if at all. Finally,
the network environment should be well-typed. The type of W; finish has to be the
type of the term currently in focus and located at the same world as indicated in
the machine state. A network environment W; k � ◦ N is well-typed with type
A ⊃ B at world w under Σ, if the argument is well-typed with type A at w, and
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C.Finish
Σ � W ; finish : A@w

Σ � W ; k : B@w Σ; · ; ·�N : A@w | s
C.Abs

Σ � W ; k � ◦ N : A ⊃ B@w

Σ � W ; k : B@w Σ; · ; ·�V : A ⊃ B@w | s
C.App

Σ � W ; k � V ◦ : A@w

Σ � W ; k : B{v◦/t}@w Σ; v : A; ·�N : B@w | s
C.Box

Σ � W ; k � unpack ◦ to 〈v•, v◦〉 in N : [t]A@w

Σ � {w′ : C; ws} ; k : A@w′

C.Return
Σ � {w′ : C: : k; ws} ; return w′ : A@w

Σ = {w1, . . . , wn} W = {w1 : C1, . . . wn : Cn}
Σ; · ; ·�M : A@wj | s Σ � W ; k : A@wj MState

Σ � W ; wj : [k, M ]

Fig. 4. Typing schemes for machine states

the network environment W; k is well-typed with type B at the same world and
under the same set of worlds. Note that A ⊃ B is the type of the hole in the next
term layer in k, and shall be completed by applying the term in focus to N . This is
reminiscent of the left introduction scheme for implication in the Sequent Calculus
presentation of Intuitionistic Propositional Logic. This connection is explored in
detail in [Her94, CH00]. The C.App and C.Box schemes may be described in similar
terms. Regarding the judgement Σ � {w′ : C: : k; ws} ; return w′ : A@w, in order
to verify that the type A at w of the value to be returned to world w′ is correct,
the context at w′ must be checked, at w′, to see if its outermost hole is indeed
expecting a value of this type.

We now state the promised results. Both are proved by structural induction on
the derivation of the judgement Σ � N. Together these results imply soundness
of the reduction relation w.r.t. the type system: if a machine state is typable
under Σ and is not terminal, then a well-typed value shall be attained.

Proposition 1 (Progress). If Σ � N is derivable and N is not terminal, then
there exists N

′ such that N −→ N
′.

Proposition 2 (Subject Reduction). If Σ � N is derivable and N −→ N
′,

then Σ � N
′ is derivable.

6 Strong Normalization

We prove strong normalization (SN) of machine reduction by translating machine
states to terms of the simply typed lambda calculus with unit type (λ1,→). For
technical reasons (which we comment on shortly) we shall consider the following
modification of the machine reduction semantics of λCert

� obtained by replacing
the reduction scheme:

(2) W; w : [k � ◦ N, V ] −→ W; w : [k � V ◦, N ]
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Machine reduction
(λCert

� ) F(·)
�� Lambda reduction

(λCert
� ) T(·)

�� Simply typed lambda calculus
(λ1,→)

F (W; w : [finish, M ]) =def M
F (W; w : [k � ◦ N, M ]) =def F (W; w : [k, M N ])
F (W; w : [k � V ◦, N ]) =def F (W; w : [k, V N ])

F (W; w : [k � unpack ◦ to 〈v•, v◦〉 in N, M ]) =def F (W; w : [k, unpack M to 〈v•, v◦〉 in N ])
F ({w : C: : k; ws}; w′ : [return w, M ]) =def F ({w : C; ws}; w : [k, M ])

T (P ) =def P
T (A ⊃ B) =def T (A) ⊃ T (B)

T ([s]A) =def 1 ⊃ T (A)

T (a) =def a
T (v•) =def v unit

T (λa.M) =def λa.T (M)
T (M N) =def T (M)T (N)

T (box s M) =def λa.T (M), a fresh of type 1
T (unpack M to 〈v•, v◦〉 in N) =def (λv.T (N))T (M)

T (fetch[w] M) =def (λa.a)T (M)

Fig. 5. From machine reduction to the simply typed lambda calculus

by the following two new reduction schemes:

(2.1) W; w : [k � ◦ N, V ] −→ W; w : [k � V ◦, N ], N is not a value
(2.2) W; w : [k � ◦ V, λa.M ] −→ W; w : [k, M{a/V }]

These schemes result from refining (2) by inspecting its behavior in any non-
terminating reduction sequence. If N happens to be a value, then each (2) step
is followed by a (3) step. The juxtaposition of these two steps gives precisely
(2.2). The reduction scheme (2.1) is just (2) when N is not a value. It is clear
that every non-terminating reduction sequence in the original formulation can
be mimicked by a non-terminating reduction sequence in the modified semantics
in such a way that for each (2) step

– either it is not followed by a (3) step and thus becomes a (2.1) step or
– it is followed by a (3) step and hence (2) followed by (3) become one (2.2)

step.

Therefore, it suffices to prove SN of the modified system in order to deduce the
same property for our original formulation.

The proof of SN proceeds in two phases (Fig. 5). First we relate machine
reduction with a notion of reduction that operates directly on lambda terms via
a mapping F (·). Then we relate the latter with reduction in λ1,→ via a mapping
T (·). We consider the first phase. The map F (·) flattens out the local context
of a machine state in order to produce a term of λCert

� . This function is type
preserving, a result which is proved by induction on the pair 〈|W|, k〉, where |W|
is the size of W (i.e. the sum of the length of the context stacks of all worlds in
its domain).

Lemma 4. Let N be W; w : [k, M ]. If Σ � N is derivable, then there exist A and
s such that Σ; · ; ·�F (N) : A@w | s is derivable.
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In order to relate machine reduction in λCert
� with reduction in λ1,→ we introduce

lambda reduction. These schemes are standard except for the last one which states
that fetch terms have no computational effect at the level of lambda terms. It
should be mentioned that strong lambda reduction reduction is considered (i.e.
reduction under all term constructors).

Definition 1 (Lambda reduction for λCert
� ).

(λa.M)N −→β M{a/N}
unpack box s M to 〈v•, v◦〉 in N −→β� N{v•/M}{v◦/s}

fetch[w] M −→ftch M

We can now establish that the flattening map is also reduction preserving:

Lemma 5. If N −→1,2.1,4,7 N
′, then F (N) = F (N′).

If N −→2.2,3,5,6 N
′, then F (N) −→β,β�,ftch F (N′).

The second part of the proof consists in relating lambda reduction in λCert
� with

reduction in λ1,→. For that we introduce a mapping T (·) (Fig. 5) that associates
types and terms in λCert

� with types and terms in λ1,→. Function types are
translated to function types and the modal type [s]A is translated to functional
types whose domain is the unit type 1 and whose codomain is the translation
of A. Translation of terms is straightforward given the translation on types; the
case for fetch guarantees that each −→ftch step is mapped to a non-empty step
in λ1,→. T (·) over terms is both type preserving and reduction preserving. The
first of these is proved by induction over the derivation of Σ; Δ; Γ�M : A@w | s.

Lemma 6. If Σ; Δ; Γ �M : A@w | s is derivable in λCert
� , then Δ′, Γ ′�T (M) :

T (A) is derivable in λ1,→, where

1. Γ ′ results from replacing each hypothesis a : A@w by a : T (A) and
2. Δ′ results from replacing each hypothesis v : A@w by v : 1 ⊃ T (A).

The second is proved by induction on M making use of the fact that T commutes
with substitution of (the translation of) local variables (i.e. T (M){a/T (N)} =
T (M{a/N})). T does not commute with substitution of (the translation of)
validity variables (i.e. T (M){v/T (N)} 
= T (M{v/N}); take M = v•). However,
the following does hold and suffices for our purposes: T (M){v/λa.T (N)} −→∗

β

T (M{v•/N}{v◦/s}). The arrow −→∗
β denotes the reflexive, transitive closure of

−→β while −→+
β (below) denotes its transitive closure.

Lemma 7. If M −→β,β�,ftch N , then T (M) −→+
β T (N)

Our desired result may be proved by contradiction as follows. Let us assume,
for the time being, that −→1,2.1,4,7 reduction is SN. Suppose, also, that there
is an infinite reduction sequence starting from a machine state N1. From our
assumption this sequence must have an infinite number of interspersed −→2.2,3,5
reduction steps:
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N1 −→∗
1,2.1,4,7 N2 −→2.2,3,5 N3 −→∗

1,2.1,4,7 N4 −→2.2,3,5 N5 −→∗
1,2.1,4,7 N6 −→2.2,3,5 . . .

Then (Lem. 5) we have the following lambda reduction sequence over typable
terms (Lem. 4):

F (N1) = F (N2) −→β,β�,ftch F (N3) = F (N4) −→β,β�,ftch F (N5) =
F (N6) −→β,β�,ftch . . .

Finally, we arrive at the following infinite reduction sequence (Lem. 7) of
typable terms (Lem. 6) in λ1,→, thus contradicting SN of λ1,→:

T (F (N1)) = T (F (N2)) −→+
β T (F (N3)) = T (F (N4)) −→+

β T (F (N5)) =
T (F (N6)) −→+

β . . .

In order to complete our proof we now address our claim, namely that −→
1, 2.1, 4, 7 reduction is SN. It is the proof of this result that has motivated the
modified reduction semantics presented at the beginning of this section. First a
simple yet useful result for proving SN of combinations of binary relations that
we have implicitly made use of above.

Lemma 8. Let −→1 and −→2 be binary relations over some set X. Suppose
−→1 is SN and M is a mapping from X to some well-founded set such that:

1. x −→1 y implies M(x) = M(y)
2. x −→2 y implies M(x) > M(y)

Then −→1 ∪ −→2 is SN.

Lemma 9. −→1,2.1,4,7 reduction is SN.

Proof. First we prove SN of schemes (1) and (4). Then we conclude by resorting
to Lem. 8, introducing a measure M2 such that:

1. N −→1,4 N
′ implies M2(N) = M2(N′) and

2. N −→2.1,7 N
′ implies M2(N) > M2(N′).

We write |M | and |k| for the size of M and k, respectively. Also, we write
|k, M | to abbreviate |k|+ |M |. Consider the measure M1 of machine states over
pairs of natural numbers (ordered lexicographically):

M1(W; w : [k, M ]) =def 〈|W|, |M |〉

This measure strictly decreases when schemes (1) and (4) are applied3.
Measure M2 is defined as follows:

M2(W; w : [k, M ]) =def 〈|W|, |k, M | − len(k) − m(M)〉

where len(k) is the length of k and m is the following mapping from closed terms
to positive integers:
3 It also decreases when (7) is applied. However, it does not decrease when (2) is

applied.
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m(V ) =def 0
m(M N) =def 1 + m(M)

m(unpack M to 〈v•, v◦〉 in N) =def 1 + m(M)
m(fetch [w] M) =def 1

This measure decreases strictly for both (2.1) and (7), whereas it yields equal
numbers for (1) and (4).

We can finally state our desired result, whose proof we have presented above.

Proposition 3. −→ is SN.

7 Related Work

There are many foundational calculi for concurrent and distributed program-
ming. Since the focus of this work is on logically motivated such calculi we
comment on related work from this viewpoint. To the best of our knowledge,
the extant literature does not address calculi for both mobility/concurrency
and code certification in a unified theory. Regarding mobility, however, a num-
ber of ideas have been put forward. The closest to this article is the work of
Moody [Moo04], that of Murphy et al [VCHP04, VCH05, VCH07] and that of
Jia and Walker [JW04]. Moody suggests an operational reading of proofs in
an intuitionistic fragment of S4 also based on a judgemental analysis of this
logic [DP01a]. It takes a step further in terms of obtaining a practical program-
ming language for mobility in that it addresses effectful computation (references
and reference update). Also, the diamond connective is considered. Worlds are
deliberately left implicit. The author argues this “encourages the programmer
to work locally”. Murphy et al also introduce a mobility inspired operational
interpretation of a Natural Deduction presentation of propositional modal logic,
although S5 is considered in their work (both intuitionistic [VCHP04] and clas-
sical [VCH05]). They also introduce explicit reference to worlds in their pro-
gramming model. Operational semantics in terms of abstract machines is con-
sidered [VCHP04, VCH05] and also a big-step semantics on terms [Mur08]. Both
necessity and possibility modalities are considered. Finally, they explore a type
preserving compiler for a prototype language for client/server applications based
on their programming model [VCH07]. Jia and Walker [JW04] also present a
term assignment for a hybrid modal logic close to S5. They argue that the hy-
brid approach gives the programmer a tighter control over code distribution.
Finally, Borghuis and Feij [BF00] introduce a calculus of stationary services and
mobile values whose type system is based on modal logic. Mobility however may
not be internalized as a proposition. For example, �o(A ⊃ B) is the type of a
service located at o that computes values of B given one of type A. None of the
cited works incorporate the notion of certificate in their systems.

8 Conclusion

We present a Curry-de Bruijn-Howard analysis of an intuitionistic fragment (ILP)
of the Logic of Proofs LP. We start from a Natural Deduction presentation for
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ILP and associate propositions and proofs of this system to types and terms of
a mobile calculus λCert

� . The modal type constructor [s]A is interpreted as the
type of mobile units, expressions composed of a code and certificate component.
λCert

� has thus language constructs for both code and certificates. Its type system
is a unified theory in which both code and certificate construction are verified.
Indeed, when mobile units are constructed from the code of other mobile units,
the type system verifies not only that the former is mobile in nature (i.e. depends
on no local resources) but also that the certificate for this new mobile unit is
correctly assembled from the certificates of the latter.

Although we deal exclusively with the necessity modality, we hasten to men-
tion that it would be quite straightforward to add inference schemes for a pos-
sibility modality, in the line of related literature (cf. Sec. 7). A term of type
♦A is generally interpreted to denote a value of a term at a remote location.
However, a provability interpretation of this connective in an intuitionistic frag-
ment of LP has first to be investigated. Since LP is based on classical logic ♦
is ignored altogether. However, in an intuitionistic setting the interpretation of
♦ in possible world semantics is not as uncontroversial as that of the necessity
modality [Sim94, Ch.3]. Nevertheless one could explore this additional modality
from a purely programming languages perspective.

Although λCert
� is meant to be concept-of-proof language, it clearly does not

provide the features needed to build extensive examples. Two basic additions that
should be considered are references (and computation with effects) and recursion.
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Abstract. We extend the alternating-time temporal logics ATL and
ATL� with strategy contexts and memory constraints: the first extension
makes strategy quantifiers to not “forget” the strategies being executed
by the other players. The second extension allows strategy quantifiers to
restrict to memoryless or bounded-memory strategies.

We first consider expressiveness issues. We show that our logics can ex-
press important properties such as equilibria, and we formally compare
them with other similar formalisms (ATL, ATL� , Game Logic, Strat-
egy Logic, ...). We then address the problem of model-checking for our
logics, especially we provide a PSPACE algorithm for the sublogics in-
volving only memoryless strategies and an EXPSPACE algorithm for the
bounded-memory case.

1 Introduction

Temporal logics and model checking. Temporal logics (LTL, CTL) have been pro-
posed for the specification of reactive systems almost thirty years ago [13,7,14].
Since then, they have been widely studied and successfully used in many situa-
tions, especially for model checking—the automatic verification that a model of
a system satisfies a temporal logic specification.

Alternating-time temporal logic (ATL). Over the last ten years, ATL has been
proposed as a new flavor of temporal logics for specifying and verifying properties
in multi-agent systems (modeled as Concurrent Game Structures (CGS) [2]),
in which several agents can concurrently act upon the behaviour of the system.
In these models, it is not only interesting to know if something can or will
happen, as is expressed in CTL or LTL, but also if some agent(s) can control the
evolution of the system in order to enforce a given property, whatever the other
agents do. ATL can express this kind of properties thanks to its quantifier over
strategies, denoted 〈〈A〉〉 (where A is a coalition of agents). That coalition A has
a strategy for reaching a winning location is then written 〈〈A〉〉F win (where F
is the LTL modality for “eventually”).
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Our contributions. In this paper, we extend ATL and ATL� in two directions:
first, while ATL strategy quantifiers drop strategies introduced by earlier quan-
tifiers in the evaluation of the formula, our logics keep executing those strate-
gies. To achieve this idea, we naturally adapt the semantics of ATL� in order
to interpret a formula within a stategy context. Our new strategy quantifier,
written 〈·A·〉 , can for instance express that “A has a strategy s.t. (1) Player B
always has a strategy (given that of A) to enforce Φ and (2) Player C always has
a strategy (given the same strategy of A) to enforce Ψ”. This would be written
as follows: 〈·A·〉G

(
〈·B·〉 Φ ∧ 〈·C·〉Ψ

)
. Naive attempts to express this property in

standard ATL fail: in the ATL formula 〈〈A〉〉G ( 〈〈B〉〉Φ∧ 〈〈C〉〉Ψ), the coalitions do
not cooperate anymore; in 〈〈A〉〉G ( 〈〈A, B〉〉Φ∧ 〈〈A, C〉〉 Ψ), coalition A is allowed
to use different strategies when playing with B and C.

Our second extension consists in parameterising strategy quantifiers with the
resources (in terms of memory) allowed for strategies: we define the quantifier
〈·As·〉 with s ∈ (N ∪ {∞}), which restricts the quantification to strategies using
memory of size s (called s-memory strategies) for Player A. It is well-known that
memoryless strategies are enough to enforce ATL properties, but this is not the
case for ATL� formulae, nor for our extension of ATL (and ATL�) with strategy
contexts.

Our results are twofold: on the one hand, we study the increase in expres-
siveness brought by our extensions, comparing our logics to ATL and ATL� and
several related logics such as Game Logic [2], Strategy Logic [6] and qDμ [12], ...
We also illustrate their convenience with some sample formulas expressing e.g.
equilibrium properties.

On the other hand, we study the model-checking problem for our extensions:
while we only have a non-elementary algorithm for the most general logic, we
propose a polynomial-space algorithm for model-checking our logic in the mem-
oryless case, and extend it to an exponential-space algorithm for the bounded-
memory setting.

Related work. Recently, several works have focused on the same kind of exten-
sions of ATL, and come up with different solutions which we list below. Generally
speaking, this leads to very expressive logics, able to express for instance equi-
librium properties, and drastically increases the model-checking complexity.

– IATL [1] extends ATL with strategy contexts, with a similar definition as
ours, but it requires players to commit to a strategy, which they are not
allowed to modify in the sequel. This logic is then studied in the memoryless
case (which is proven to be a strict restriction to memory-based strategies).

– SL [6] extends temporal logics with first-order quantification over strategies.
This extension has been defined and studied only in the two-player turn-
based setting, where a non-elementary algorithm is proposed.

– qDμ [12] considers strategies as labellings of the computation tree of the
game structure with fresh atomic propositions. This provides a way of ex-
plicitly dealing with strategies. This extension is added on top of the decision
μ-calculus Dμ, yielding a very expressive, yet decidable framework.
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– Stochastic Game Logic [3] is a similar extension to ours, but for stochastic
games. It is undecidable in the general case, but proved decidable when
restricting to memoryless strategies.

Instead of defining a completely new formalism, we prefer sticking to an ATL-
like syntax, as we believe that our new modality 〈· · ·〉 is more intuitive than
the standard ATL modality 〈〈A〉〉 . Also, none of the above the extension has the
ability to explicitely restrict to bounded-memory strategies, which is of obvious
practical relevance and leads to more efficient algorithms.

Plan of the paper. Section 2 contains the definitions of our logics, and of our
bounded-memory setting. Section 3 deals with the expressiveness results, and
compares our extension with those cited in the related work above. In Section 4,
we consider the model-checking problem for our extensions, and provide algo-
rithms for the case of s-memory strategies. For lack of space, we refer to the full
version [4] of this paper for the detailled proofs.

2 Definitions

In this section we introduce classical definitions of concurrent game structures,
strategies and outcomes. We then define a notion of s-bounded memory strategies.
In the whole paper, AP denotes a finite non-empty set of atomic propositions.

2.1 Concurrent Game Structures

Concurrent game structures are a multi-player extension of classical Kripke
structures [2]. Their definition is as follows:

Definition 1. A Concurrent Game Structure (CGS for short) C is a 8-tuple
(Loc, �0, Lab, δ, Agt, M, Mov, Edg) where:

– Loc is a finite set of locations, �0 ∈ Loc is the initial location;
– Lab : Loc → 2AP is a labelling function;
– δ ⊆ Loc × Loc is the set of transitions;
– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– M is a finite, non-empty set of moves;
– Mov : Loc × Agt → P(M) � {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc×Mk → δ, where k = |Agt|, is a transition table. With each location

and each set of moves of the agents, it associates the resulting transition.

The size |C| of a CGS C is defined as |Loc| + |Edg|, where |Edg| is the size of
the transition table1. The intended behaviour is as follows [2]: in a location �,

1 Our results would still hold if we consider symbolic CGSs [10], where the transition
table is encoded through boolean formulas.
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each player Ai chooses one of his possible moves mAi and the next transition is
given by Edg(�, mA1 , ..., mAk

). We write Next(�) for the set of all transitions cor-
responding to possible moves from �, and Next(�, Aj , m), with m ∈ Mov(�, Aj),
for the restriction of Next(�) to possible transitions from � when player Aj makes
the move m.

2.2 Coalitions, Bounded-Memory Strategies, Outcomes

Coalitions. A coalition is a subset of agents. In multi-agent systems, a coalition A
plays against its opponent coalition Agt � A as if they were two single players.
We thus extend Mov and Next to coalitions:

– Given A ⊆ Agt and � ∈ Loc, Mov(�, A) denotes the set of possible moves
for coalition A from �. Those moves m are composed of one single move per
agent of the coalition, i.e., m = (ma)a∈A.

– Next is extended to coalitions in a natural way: given m = (ma)a∈A ∈
Mov(�, A), we let Next(�, A, m) denote the restriction of Next(�) to locations
reachable from � when every player Aj ∈ A makes the move mAj .

Strategies and outcomes. Let C be a CGS. A computation of C is an infinite se-
quence ρ = �0�1 . . . of locations such that for any i, �i+1 ∈ Next(�i). We write ρi

for the i-th suffix of ρ, and ρ[i...j] for part of ρ between �i and �j . In particular,
ρ[i] denotes the i + 1-st location �i. A strategy for a player Ai ∈ Agt is a func-
tion fAi that maps any finite prefix of a computation to a possible move for Ai,
i.e., satisfying fAi(�0 . . . �m) ∈ Mov(�m, Ai). A strategy is memoryless if it only
depends on the current state (i.e., fAi(�0 . . . �m) = fAi(�m)). A strategy for a
coalition A of agents is a set of strategies, one for each agent in the coalition. The
set of strategies (resp. memoryless strategies) for A is denoted Strat(A) (resp.
Strat0(A)).

A strategy for Aj induces a set of computations from �, called the outcomes
of fAj from � and denoted Out(�, fAj), that player Aj can enforce: �0�1 . . . ∈
Out(�, fAj) iff �0 = � and �i+1 ∈ Next(�i, Aj , fAj (�0 . . . �i)) for any i. Given a
coalition A, a strategy for A is a tuple FA containing one strategy for each player
in A: FA = {fAj |Aj ∈ A}. The domain of FA (dom(FA)) is A. The strategy fAj

for Aj is also denoted (FA)|Aj
; more generally, (FA)|B (resp. (FA)\B) denotes the

restriction of FA to the coalition A ∩ B (resp. A\B). The outcomes of FA from
a location � are the computations enforced by the strategies in FA: �0�1 . . . ∈
Out(�, FA) iff �0 = � and for any i, �i+1 ∈ Next(�i, A, (fAj (�0, . . . , �i))Aj∈A). Note
that Out(�, FA) ⊆ Out(�, (FA)|B) for any coalitions A and B, and in particular
that Out(�, F∅) represents the set of all computations from �.

It is also possible to combine two strategies F ∈ Strat(A) and F ′ ∈ Strat(B),
resulting in a strategy F◦F ′ ∈ Strat(A∪B) defined as follows: (F◦F ′)|Aj

(�0 . . . �m)
equals F|Aj

(�0 . . . �m) if Aj ∈ A, and it equals F ′
|Aj

(�0 . . . �m) if Aj ∈ B � A.
Finally, given a strategy F , an execution ρ and some integer i ≥ 0, we de-

fine the strategy F ρ,i corresponding to the behaviour of F after prefix ρ[0...i]
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as follows: F ρ,i(π) = F (ρ[0 . . . i] · π). Note that if F is memoryless, then
F ρ,i = F .

Bounded-memory strategies. Between general strategies (without bound over its
resources) and memoryless strategies, we can consider bounded-memory strate-
gies. Let s be a (binary-encoded) integer representing the size of the memory. We
define a bounded memory strategy as a memoryless strategy over the locations
of the CGS and a set of memory cells [11,16]: choosing the move depends on
both the location and the current memory cell, and after every move, the player
can “update” its memory by moving to another cell. The size of the memory is
then defined as the number of cells. Let Cell be the set of s + 1 memory cells
{0, . . . , s}.

Formally an s-memory strategy FA for Player A is a 3-tuple (Fmov, F cell, c)
where: Fmov is a mapping from Cell× Loc to M that associates a move with the
current memory cell and the current location of the CGS, F cell is a mapping from
Cell×Loc to Cell that updates the memory cell, and c is the current memory cell of
this strategy. For the sake of readability, given a bounded-memory strategy FA =
(Fmov, F cell, c), we still write FA(�) for Fmov(c, �).

The notions of computations and outcomes are easily extended to this new
setting: the set Next(�, A, FA(�)) contains the possible successor locations when
A plays from � according to FA. Of course, the memory cell of FA changes along
an execution ρ, and we define F ρ,i

A as the strategy (Fmov, F cell, ci) where ci is
defined inductively with: c0 = c and cj+1 = F cell(ρ[j], cj). Finally the outcomes
Out(�, FA) are the executions ρ = �0�1 . . . such that �j+1 ∈ Next(�j , A, F ρ,j

A (�j)).
Coalitions are handled the usual way: we use pairs (A, s) to represent a coali-

tion A ⊆ Agt and a memory-bounds vector s ∈ (N ∪ {∞})A which associates a
size s(Aj) with the memory that agent Aj ∈ A can use for its strategy. The set
of strategies for A with memory bound s is denoted Strats(A), and we omit to
mention the memory bound when none is imposed.

2.3 The Logic ATL�
sc,∞

We now define the logic ATL�
sc,∞ that extends ATL� with strategy contexts and

bounded-memory strategy quantifiers:

Definition 2. The syntax of ATL�
sc,∞ is defined by the following grammar:

ATL�
sc,∞  ϕs, ψs ::= P | ¬ϕs | ϕs ∨ ψs | 〈·A, s·〉ϕp | ·〉A〈· ϕs

ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕp Uψp

with P ∈ AP, A ⊆ Agt and s ∈ (N ∪ {∞})A. Formulas defined as ϕs are called
state formulas, while ϕp defines path formulas.

An ATL�
sc,∞ formula Φ is interpreted over a state � of a CGS C within a strategy

context F ∈ Strat(B) for some coalition B; this is denoted by � |=F Φ. The
semantics is defined as follows:



ATL with Strategy Contexts and Bounded Memory 97

� |=F 〈·A, s·〉ϕp iff ∃FA ∈ Strats(A). ∀ρ ∈ Out(�, FA◦F ). ρ |=FA◦F ϕp,

� |=F ·〉A〈· ϕs iff � |=F\A
ϕs,

ρ |=F ϕs iff ρ[0] |=F ϕs,

ρ |=F Xϕp iff ρ1 |=F ρ,1 ϕp,

ρ |=F ϕp Uψp iff ∃i. ρi |=F ρ,i ψp and ∀0 ≤ j < i. ρj |=F ρ,j ϕp.

Given a CGS C with initial location �0, and an ATL�
sc,∞ formula Φ, the model-

checking problem consists in deciding whether2 �0 |=∅ Φ.
The formula 〈·A, s·〉ϕ holds on a location � within a context F for a coalition B

iff there exists a s-memory strategy for A to enforce ϕ when B plays according
to the strategy F . We use 〈·A·〉 to denote the modality with no restriction
over the memory allowed for the strategies of A (i.e., the modality 〈·A, ∞A·〉 );
and we use 〈·A0·〉 as an abbreviation for 〈·A, 0A·〉 to consider only memoryless
strategies.

Conversely the modality ·〉A〈· removes the strategy for A from the current
context under which the formula is interpreted. The operator ·〉Agt〈· allows us
to empty the current context, and then we clearly have: � |=F ·〉Agt〈· ϕ ⇔ � |=F ′

·〉Agt〈· ϕ for any context F and F ′.
This entails that ATL�

sc,∞ contains ATL� (thus also CTL�). Indeed the classical
strategy quantifier of ATL�, namely 〈〈A〉〉 , does not handle strategy contexts:
〈〈A〉〉ϕ holds for a location � iff A has a strategy to enforce ϕ whatever the
choices of Agt\A. Clearly 〈〈A〉〉ϕ is equivalent to ·〉Agt〈· 〈·A·〉 ϕ.

Obviously the existence of an s-memory strategy for A to enforce ϕ entails
the existence of an s′-memory strategy if s′ ≥ s (i.e., s′(Aj) ≥ s(Aj) for all
Aj ∈ A). Note that the converse is not true except for special cases such as ATL
where memoryless strategies are sufficient (see [2,15]).

We will use standard abbreviations such as � = P ∨ ¬P , ⊥ = ¬�, Fϕ =
�Uϕ, etc.

Now we introduce several fragments of ATL�
sc,∞:

– ATL�
sc,b (with b ∈ N) is the fragment of ATL�

sc,∞ where the quantifiers 〈·A, s·〉
only use memory-bounds less than or equal to b. In particular, ATL�

sc,0 only
allows memoryless strategies.

– ATL�
sc is the fragment of ATL�

sc,∞ where no restriction over the memory is
allowed (any strategy quantifier deals with infinite-memory strategies).

– ATLsc,∞ contains the formulae where every temporal modality is in the im-
mediate scope of a strategy quantifier (i.e., the path formulae are restricted
to ϕs Uψs, ϕs Rψs—R is the “dual-until” modality—and Xϕs). It follows
from the above assertion that ATLsc,∞ contains ATL and CTL. We also define
the fragments ATLsc,b and ATLsc as above.

2 The context can be omitted when it is empty, and we can directly write � |= Φ.
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3 Expressiveness

In this section, we consider expressiveness issues, first illustrating the ability
of ATL�

sc,∞ to state interesting properties, and then comparing it with related
formalisms.

3.1 Some Interesting Formulas of ATL�
sc,∞

The new modalities 〈·A·〉 allow us to express many interesting properties over
the strategies of different players in a game. In [4], we show how our logics
can express the different properties that motivated the introduction of SL, qDμ

or IATL. Here we just give a few examples.

Nash equilibria. Given two players A1 and A2 having their own objectives Φ1
and Φ2, two strategies F1 and F2 for players 1 and 2 respectively form a Nash
equilibrium if there is no “better” strategy F ′

1 for A1 w.r.t. Φ1 when Player 2
plays according to F2, and vice versa. Given a strategy context F = (F1, F2),
the following formula holds in state � under F iff F1 and F2 form a Nash
equilibrium in �:

(
( 〈·A1·〉Φ1) ⇒ Φ1 ∧ ( 〈·A2·〉Φ2) ⇒ Φ2

)

This provides us with a way of expressing the existence of Nash equilibria having
extra properties.

Winning secure equilibria. The winning secure equilibrium [5] (WSE) is a stronger
notion of equilibrium: two strategies F1 and F2, for players 1 and 2 with objec-
tives Φ1 and Φ2 respectively, form a WSE if each player has no better strategy
for himself, and no worse strategy for his opponent. Again, the strategy con-
text F is a winning secure equilibrium in � iff the following formula holds in �
within F :

( 〈·A1·〉Φ1) ⇒ Φ1 ∧ ( 〈·A2·〉 Φ2) ⇒ Φ2 ∧
(

〈·A1·〉 (Φ1 ∧ ¬Φ2) ⇒ (Φ1 ∧ ¬Φ2)
)

∧
(

〈·A2·〉 (Φ2 ∧ ¬Φ1) ⇒ (Φ2 ∧ ¬Φ1)
)

Client-server interactions. Given a protocol where a server S has to treat the
requests of differents agents A1, ..., An, we can express that S has a strategy to
ensure that every agent Ai can act in order to make its requests to be granted.
Such a property can be stated as folows:

〈·S·〉G
[ ∧

i=1...n

(
reqi ⇒ 〈·Ai·〉F granti

)]

Clearly this property requires the use of strategy contexts because every agent
has to cooperate with the server (but not with other agents).
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3.2 Expressiveness of ·〉A〈· Quantifier

We have illustrated the use of modality ·〉A〈· by expressing the classical ATL�

modality 〈〈A〉〉 with ·〉Agt〈· 〈·A·〉 : we first forget the current strategy context and
then quantify over the existence of a strategy for A: relaxing is necessary because
it has to be a real strategy, i.e., correct for any choice for the other agents. In fact,
this modality does not add expressive power to ATL�

sc,∞:

Proposition 3. For any ATL�
sc,∞ formula Φ, there exists a formula Ψ contain-

ing no ·〉 · 〈· modality such that Φ ≡ Ψ .

Proof. Given a subset of agents C ⊆ Agt and Φ ∈ ATL�
sc,∞, we define formula Φ

C

recursively as follows (in this definition, [·C·] ϕ def= ¬ 〈·C·〉 ¬ϕ):

〈·A, s·〉Φ
C def= 〈·A, s·〉 [·C\A·] ΦC\A ·〉A〈· ΦC def= Φ

C∪A

ΦUΨ
C def= Φ

C
UΨ

C
XΦ

C def= XΦ
C

Φ ∧ Ψ
C def= Φ

C ∧ Ψ
C ¬Φ

C def= ¬Φ
C

P
C def= P

Now we have the following lemma:

Lemma 4. For any strategy context F , any subset C ⊆ dom(F ) and any for-
mula Φ ∈ ATL�

sc,∞ and any path formula Φp, we have:

� |=F\C
Φ ⇔ � |=F Φ

C

ρ |=F\C
Φp ⇔ ρ |=F Φp

C

Proof. The proof is done by structural induction over the formula. In this proof
we will use C′ as an abbreviation for the coalition C \ A. Moreover FB ranges
over strategies for coalition B.

– Ψ
def= 〈·A, s·〉 ϕ.

We have the following equivalences : � |=F 〈·A, s·〉 [·C′·] ϕC′
means by defini-

tion
∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F ). ρ |=FC′◦FA◦F ϕC′

,

Then the induction hypothesis yields

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F ). ρ |=(FC′◦FA◦F )\(C′)
ϕ,

or equivalently, since (FC′ ◦FA◦F )\C′ = FA◦(F\C):

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F ). ρ |=FA◦(F\C) ϕ,

or also
∃FA. ∀ρ ∈ Out(q, FA◦(F\C)). ρ |=(FA◦(F\C)) ϕ,
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since we have
⋃

FC′∈Strat(C′)

Out(q, FC′ ◦FA◦F ) = Out(q, FA◦(F\C)).

This leads to � |=F\C
〈·A, s·〉ϕ, which is the desired result.

– Ψ
def= ·〉A〈· ϕ. On the one hand, by the semantics of ATL�

sc,∞, we have that:

q� |=F\C
·〉A〈· ϕ iff � |=F\(C∪A) ϕ.

On the other hand, the induction hypothesis tells us that:

� |=F\(C∪A) ϕ iff � |=F ϕC∪A.

Gathering the two equivalences, we obtain the desired result.

– Ψ
def= ϕUψ. The semantics of ATL�

sc,∞ tells us that ρ |=F\C
Ψ if and only if

the following formal holds:

∃i. ρi |=(F\C)ρ,i ψ and ∀0 ≤ j < i. ρj |=(F\C)ρ,j ϕ.

By using the induction hypothesis, the above formula is equivalent to the
following one:

∃i. ρi |=F ρ,i ψ
C

and ∀0 ≤ j < i. ρj |=F ρ,j ϕC ,

which means that ρ |=F ϕC Uψ
C

. We thus obtain the desired result.

– The remaining cases are straightforward.

We can now finish the proof by considerng Ψ = Φ
∅

. �

3.3 Comparison with Other Formalisms

Figure 1 summarizes the expressiveness results for our logics. An arrow L → L′

denotes that L ≤ex L′, i.e., that L′ is at least as expressive as L (i.e., for any
formula in L, there exists an equivalent3 formula in L′). Note that in some
cases, the relation is strict and we have L < L′, see the corresponding theorems
for more details. The dotted arrows correspond to results proved in (the long
version of) this paper; plain arrows correspond to literature results (they are
labeled with bibliographic references) or direct syntactic inclusions.

The results about ATL, ATL�, CTL� and AMC are presented in [4]: most of
them are based on the ability of the new modalities with strategy contexts and/
or memory bounds to distinguish models that are alternating-bisimilar (and thus
satisfy the same formulas of the classical AMC fragments). The full version also
contains the proof that adding the quantification over bounded memory increases
the expressive power of ATLsc and ATL�

sc.
Here we only develop our results concerning Game Logic, which is a powerful

logic to handle properties over strategies, and we discuss the case of Strategy
Logic.
3 That is, having the same truth value in any location of any CGS under any context.
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SL

qDμ

ATL�
sc,∞ ATLsc,∞

ATL�
sc AMC

GL

ATL�

ATLsc

ATL

IATL

CTL

CTL�

[2]

[2]

Th. 5

×

[6]

×

[2]

×

×

Fig. 1. Expressiveness of ATLsc,∞ and ATL�
sc,∞ compared to classical logics

Comparison with Game Logic. Game Logic was introduced in [2] in order
to express the module-checking problem [9]. This logic is an extension of ATL�

where the existence of a strategy for A is written ∃∃A, and where it is possible to
deal explicitly with the execution tree induced by a strategy: given such a tree t, it
is possible to quantify (with modalities ∃ and ∀) over the executions inside t and
specify temporal properties. For example, the formula ∃∃A.((∃P UP ′)∧(∀F P ′′))
specifies the existence of a strategy FA for A s.t. in the tree induced by FA,
we have: (1) there exists a run along which P UP ′ holds and (2) every run
satisfies FP ′′. We have the following result:

Theorem 5. ATL�
sc >ex GL

Proof (sketch). First we give a translation from GL into ATL�
sc; given a GL for-

mula ϕ, we inductively define ϕ:

∃∃Aϕ
def= 〈〈A〉〉ϕ ∃ϕ

def= ¬ 〈·∅·〉 ¬ϕ P
def= P.

The other inductive rules are defined in the natural way. Note that if ϕ is a
GL tree-formula, then ϕ is an ATL�

sc state-formula. In this translation, we use
a strategy context to represent the tree used to interpret GL path- and tree-
formulae. In the following, given a state � of a CGS and a strategy F for some
coalition A, we use ExecTree(�, F ) to denote the subtree of the computation tree
from � whose infinite rooted paths are the elements of Out(�, F ). We must show
that for any GL path (resp. tree) formula ϕp (resp. ϕt), any path ρ in some
CGS and any strategy F for some coalition A, we have: (ExecTree(ρ[0], F ), ρ) |=
ϕp iff ρ |=F ϕp and ExecTree(ρ[0], F ) |= ϕt iff ρ[0] |=F ϕt. Here we just consider
the first equivalence (the second one can be treated in a similar way). The usual
induction steps are straightforward, thus we only consider the following two cases:

– ϕ = ∃∃A.ψ. Then ρ |=F ϕ means that there is a strategy F ′ for coalition A,
s.t. any computation ρ′ in Out(ρ[0], F ′) satisfies ψ. By i.h., this is equivalent
to ∃F ′ ∈ Strat(A). ∀ρ′ ∈ Out(ρ[0], F ′). (ExecTree(ρ[0], F ′), ρ′) |= ψ, hence to
ρ[0] |= ∃∃A.ψ because ψ is a tree formula. Now ∃∃A.ψ is a state formula that
can be interpreted over any execution tree with root ρ[0], in particular over
ExecTree(ρ[0], F ).
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¬a ¬bs0

a bs1

a ¬bs2 ¬a bs3

¬a ¬bs′
0

a bs′
1

a ¬bs′
2 ¬a bs′

3

S1 S2

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
〈2.1.3〉,〈2.2.1〉,〈2.3.2〉

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
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〈1.1.1〉
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〈1.2.2〉

〈1.1.1〉
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〈2.3.1〉
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〈2.2.3〉

〈3.1.2〉
〈3.2.2〉
〈3.2.3〉
〈3.3.3〉

Fig. 2. S1 and S2 cannot be distinguished by GL

– ϕ = ∃ψ. Then ρ |=F ϕ means that “not all the computations from ρ[0] and
following the strategy context F do not satisfy ψ”, and is then equivalent
to ∃ρ′ ∈ Out(ρ[0], F ). ρ′ |=F ψ. Again from the i.h. we obtain the existence
of a path in ExecTree(ρ[0], F ) satisfying ψ, and then ExecTree(ρ[0], F ) |=
∃ψ, which is equivalent to (ExecTree(ρ[0], F ), ρ) |= ϕ (as ϕ is a tree
formula).

Finally if we consider the case where ϕ is a state formula and F is the empty
strategy, we get that ϕ is an ATL�

sc equivalent formula for ϕ.
We have GL <ex ATL�

sc because the ATLsc formula 〈·A1·〉X ( 〈·A2·〉 X b ∧
〈·A3·〉X a) has no equivalent in GL. Indeed consider the CGSs S1 and S2 in
Figure 2. They satisfy the same GL formulas, since move 3 for Player 1 (in S2)
does not affect the sets of execution trees induced by all strategies for a fixed
coalition: for any coalition A and state q, we have ExecTree(q, StratS1(A)) =
ExecTree(q, StratS2(A)). Yet this move ensures that s′0 satisfies 〈·A1·〉X ( 〈·A2·〉X b∧
〈·A3·〉X a) (when players 2 and 3 respectively choose moves 2 and 1), while s0
does not. �

Comparison with Strategy Logic [6]. Strategy Logic has been defined in [6]
as an extension of LTL with first-order quantification on strategies. That player A
has a strategy to enforce ϕ is then written ∃σA. ∀σB. ϕ(σA, σB) where the
arguments (i.e., the strategies for the two players) given to ϕ indicate on which
paths ϕ is evaluated.

While this logic has only been defined on 2-player turn-based games, its defini-
tion can easily be extended to our n-player CGS framework. We conjecture that
ATLsc,∞ and SL are incomparable (proving those results seems to be especially
challenging due to the particular syntax of SL):

– SL can explicitly manipulate strategies as first-order elements. It can for
instance state properties such as ∃x1. ∃y1. ∃x2. ∃y2.

[
ϕ1(x1, y1)∧ϕ2(x2, y1)∧

ϕ3(x1, y2) ∧ ϕ4(x2, y2)
]

which (we conjecture) ATLsc,∞ cannot express due
to the circular constraint.
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– on the other hand, SL requires subformulas embedded in modalities to be
closed. As a consequence, formula ∃x1. ∀y1. [G (∃y2. [F p](x1, y2))](x1, y1)
is not an SL formula (because ∃y2. [F p](x1, y2) is not closed), while it is
expressed in ATLsc,∞ as 〈·A·〉G ( 〈·B·〉F p).

However, it should be noticed that the simple one-alternation fragment of SL
can be translated into ATL�

sc,∞. Indeed this fragment is built from formulas of
the form ∃x1. ∃y1. ∀x2. ∀y2.

[
ϕ1(x1, y2) ∧ ϕ2(x2, y1) ∧ ϕ3(x1, y1)

]
[6] which we

can express as 〈·A1·〉
[
ϕ1 ∧ 〈·A2·〉 (ϕ3 ∧ ·〉A1〈· ϕ2)

]
.

4 ATLsc,∞ and ATL�
sc,∞ Model-Checking

We begin with proving that model-checking is decidable for our logic. Still, as is
the case for Strategy Logic, the resulting algorithm is non-elementary. We thus
mainly focus on simpler cases (namely, memoryless and bounded-memory strate-
gies), where more efficient algorithms can be obtained.

Theorem 6. Model checking ATL�
sc,∞ formulas over CGS is decidable.

Proof (sketch). Our logic ATL�
sc can be translated into qDμ (see [4] for more

details). This yields decidability of ATL�
sc. Moreover, as we will see in Section 4.2,

it is possible to encode the bounded-memory strategies as memoryless strategies
over an extended CGS. Since memorylessness can be expressed with qDμ, this
provides an indirect algorithm for ATL�

sc,∞ model checking. �

4.1 Model-Checking ATL�
sc,0 and ATLsc,0

Theorem 7. The model checking problems for ATL�
sc,0 and ATLsc,0 over CGSs

are PSPACE-complete.

Proof. We only address the membership in PSPACE. The hardness proof is sim-
ilar to that of [3] (and is also detailled in [4]).

Let C be a CGS, � a location and F a memoryless strategy context, assigning
a memoryless strategy to each player of some coalition A. Since F contains only
memoryless strategies, it associates with each location one move for each agent
in A. Dropping the other moves of those agents, we get a CGS, denoted (C, F ),
whose set of executions is exactly the set of outcomes of F in C.

From this and the fact that a memoryless strategy can be stored in space O(|Q|),
we get a simple PSPACE model-checking algorithm for ATL�

sc,0 that relies on a
(PSPACE) model-checking algorithm for LTL. The main difficulty is that strat-
egy contexts prevent us from proceeding in a standard bottom-up fashion. As a
consequence, our algorithm consists in enumerating strategies starting from out-
ermost strategy quantifiers.

If ϕ is an ATL�
sc,0 path formula, we denote by Φ(ϕ) the set of outermost

quantified ϕ subformulae (i.e. of the form 〈·A·〉 ψ), and by σ(ϕ) the correspond-
ing LTL formula where all subformulae ψ ∈ Φ(ϕ) have been replaced by new
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propositions aψ. We enumerate all possible contexts, recursively calling the al-
gorithm at each step of the enumeration, and thus gradually taking care of each
labelling aψ. Algorithm 1 describes the procedure. �

Algorithm 1. : MC-ATL�
sc,0(C, F, �0, ϕ) – ATL�

sc,0 model checking

Require: a CGS C, F ∈ Strat0(A), l0 ∈ Loc and an ATL�
sc,0 path formula ϕ

Ensure: YES iff ∀λ ∈ Out(�0, F ), λ |=F ϕ
C′ := (C, F )
foreach ψ ∈ Φ(ϕ) do

case ψ = 〈·B0·〉 ψ′ :
for FB ∈ Strat0(B), � ∈ Loc do

if MC-ATL�
sc,0(C, FB ◦F, l, ψ′), then label l with aψ

case ψ = ·〉B〈· ψ′ :
for l ∈ Loc do

if MC-ATL�
sc,0(C, F\B, l, ψ′), then label l with aψ

return MC LTL (C′, l0, Aσ(ϕ))

Remark 1. Note that PSPACE-completeness straightforwardly extends to “mem-
oryless” extensions (i.e., with quantification over memoryless strategies) of ATL�

and SL. Since ATL objectives do not require memory, ATL0 is the same as ATL,
and its model-checking problem is PTIME-complete. Moreover a similar algo-
rithm would work for symbolic CGSs, a succinct encoding of CGS proposed
in [8,10]. Also notice that both the above algorithm and the PSPACE-hardness
proof can be adapted to IATL. This corrects the ΔP

2 -completeness result of [1].

4.2 Bounded-Memory Strategies

The case of bounded-memory strategies can be handled in a similar way as mem-
oryless strategies. Indeed as explained in Section 2.2, we can see an s-bounded
strategy for Player Ai as a memoryless strategy over an extended structure
containing the original CGS C and a particular CGS controlled by Ai and de-
scribing its memory. Formally, for a player Ai, we define the CGS M

s
Ai

as follows:
M

s
Ai

= (Agt, Loci
s, ∅, Loci

s × Loci
s, ∅, Mi

s ∪ {⊥}, Movi
s, Edgi

s) where

– Loci
s = {0, . . . , s} is the set of (unlabeled) locations;

– Mi
s is isomorphic to Loci

s (and we identify both sets),
– Movi

s and Edgi
s do not depend on the location: Movi

s allows only one move ⊥
to each player, except for player Ai, who is allowed to play any move in Mi

s.
Then Edgi

s returns the location chosen by Ai.

Let s ∈ N
Agt be a memory-bound vector. Now considering the product struc-

ture Cs =
∏

Ai∈Agt M
s(Ai)
Ai

× C, for all players Aj we can very simply export
s(Aj)-memory-bounded strategies of C to some memoryless strategies over Cs.
Indeed, given a player Aj , we do not want to consider all memoryless strategies f

over Cs but only the ones where Aj exclusively uses the information from M
s(Aj)
Aj
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(i.e., such that f(i1, . . . , ij , . . . , ik, l) = f(0, . . . , ij , . . . , 0, l)). Let RStrat0Cs
(Aj) be

this restricted set of such strategies ; clearly we have RStrat0Cs
(Aj) ⊆ Strat0Cs

(Aj).
Adapting the proof of Theorem 7 to memory-bounded strategies, we get:

Proposition 8. Let C = (Agt, Loc, �0, AP, Lab, M, Mov, Edg) be a CGS. Let ϕ ∈
ATL�

sc,b involving only s-memory quantifiers. Then ϕ can be checked in exponen-
tial space.

Proof. We run the algorithm of Theorem 7 over the structure Cs, restricting the
enumerations of Strat0Cs

(B) to those of RStrat0Cs
(B). �

Remark 2. – If the memory-bounds s were given in unary, our algorithm would
be PSPACE, since the LTL model-checking over the product structure can be
performed on-the-fly.

– Note that this algorithm can deal with formulas containing several subfor-
mulas 〈·A, s1·〉ϕ1, . . . , 〈·A, sp·〉ϕp with different memory bounds si (for the
same coalition A).

– Since our algorithm consists in enumerating the strategies, it could cope
with games of incomplete information, where the strategies would be based
on (some of) the atomic propositions labeling a location, rather than on the
location itself [15].

– Bounded-memory quantification can be defined also for the other formalisms
where memory-based strategies are needed, e.g. ATL� or SL. Our EXPSPACE
algorithm could easily be adapted to that case.

5 Conclusion

In this paper we propose powerful extensions of ATL and ATL� logics. These
extensions allow us to express many interesting and complex properties that
have motivated the definition of new formalisms in the past. An advantage of
these extensions is to treat strategies through modalities as in ATL and ATL�.

As future work, we plan to study the exact complexity of model-checking
ATLsc,∞ and ATL�

sc,∞, with the aim of finding reasonably efficient algorithms
for fragments of these expressive logics. Finally we think that the ability to deal
explicitly with bounded-memory strategies is an interesting approach to develop.
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Abstract. We recently introduced an extensional model of the pure
λ-calculus living in a canonical cartesian closed category of sets and re-
lations [6]. In the present paper, we study the non-deterministic features
of this model. Unlike most traditional approaches, our way of interpreting
non-determinism does not require any additional powerdomain construc-
tion. We show that our model provides a straightforward semantics of
non-determinism (may convergence) by means of unions of interpreta-
tions, as well as of parallelism (must convergence) by means of a binary,
non-idempotent operation available on the model, which is related to the
mix rule of Linear Logic. More precisely, we introduce a λ-calculus ex-
tended with non-deterministic choice and parallel composition, and we
define its operational semantics (based on the may and must intuitions
underlying our two additional operations). We describe the interpreta-
tion of this calculus in our model and show that this interpretation is
sensible with respect to our operational semantics: a term converges if,
and only if, it has a non-empty interpretation.

Keywords: λ-calculus, relational model, non-determinism, parallel com-
position, denotational semantics.

1 Introduction

Pure and typed λ-terms are specifications of sequential and deterministic
processes. Several extensions of the λ-calculus with parallel and/or non-
deterministic constructs have been proposed in the literature, either to increase
the expressive power of the language, in the typed [19,17,14] and untyped [4,5]
settings, or to study the interplay between higher order features and parallel/
non-deterministic features [16,8,9].

When introducing non-determinism in a functional setting, it is crucial to
specify what notion of convergence is chosen. Two widely used notions are:

– the must convergence: a non-deterministic choice converges if all its compo-
nents do. This characterizes the demonic non-determinism.

– the may convergence: a non-deterministic choice converges if at least one of
its components does. This characterizes the angelic non-determinism.
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The usual denotational models of functional calculi do not accommodate may
non-determinism: let true and false be two convergent terms1, whose deno-
tations in standard models are distinct. What semantic value should take the
non-deterministic term true + false, which may converges to true and to
false? The value should be both true and false if we want the semantics to
be invariant under reduction!

The typical way of interpreting “multi-valued” terms, like the one above, is
to use models based on powerdomains [18], often defined as filter models with
respect to suitable notions of intersection and union types [8,9]. The seman-
tics of true + false becomes some kind of join of both values, available in
the powerdomain (similar techniques are also used for interpreting must non-
determinism). In this framework, both kinds of non-determinism are modelled
by some idempotent, commutative and associative operations.

In a recent paper [11], Faure and Miquel define a categorical counterpart of the
syntactical notion of parallel execution: the aggregation monad. Powerdomains,
sets with union and multisets with multi-union are all instances of aggregation
monads (in categories of domains and of sets, respectively). In general, the notion
of parallel composition modelled by an aggregation monad is neither idempotent,
nor commutative, nor associative.

There are however models of the ordinary λ-calculus where aggregation,
considered as parallel composition (that is, as must non-determinism), can be
interpreted without introducing any additional structure, such as the above men-
tioned aggregation monads or powerdomain constructions.

This is the case in models of multiplicative exponential linear logic (MELL),
where aggregation can be interpreted by the mix rule, if available. This rule allows
to “put together” any two proofs whatsoever [7]. More precisely, parallel composi-
tion is obtained by combining the mix rule with the contraction rule. Indeed, mix
can be seen as a linear morphism X ⊗ Y � X`Y , so that there is a morphism
?A ⊗ ?A � ?A, obtained by composing the mix morphism ?A ⊗ ?A � ?A`?A
with the contraction morphism ?A`?A � ?A. This composite morphism defines
a commutative algebra structure on ?A, which is used to model the “parallel com-
position” of MELL proofs. Thus, to obtain a model of parallel λ-calculus, it is suf-
ficient to solve the equation D ∼= D ⇒ D, with an object D of shape ?A.

This is precisely what we did in [6], in a particularly simple model of linear
logic: the model of sets and relations. Similar constructions are possible in other,
richer models, such as the well known model of coherence spaces [12], or the
model of hypercoherences [10]: the mix rule is available there, as well as in
many other models. This shows that coherence (which prevents the above join
of true and false) is not an obstacle to the interpretation of the must non-
determinism in the pure λ-calculus2. Our model D of [6] satisfies the recursive
equation D = ?(A) where A = (D�)⊥, and therefore, D has the commutative

1 They could be the actual boolean constants in a typed λ-calculus with constants, or
the projections λxy.x, λxy.y as pure λ-terms.

2 In a typed language like PCF, this would be more problematic, since the object
interpreting the type of booleans does not have the above mentioned structure.
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algebra structure mentioned above. It is precisely this structure that we use for
interpreting parallel composition, just as Danos and Krivine did in [7] for an
extension of λμ-calculus with a parallel composition operation.

However, the category of sets and relations has another feature, which allows
for a direct interpretation of the may non-determinism as well: morphisms are
arbitrary relations between sets (interpreting types), and hence morphisms are
closed under arbitrary unions. Thanks to this union operation on morphisms,
may non-determinism can be interpreted directly, without introducing any ad-
ditional powerdomain construction or aggregation monad. Of course, this op-
eration is not available in the coherence or hypercoherence space models. Note
that, if we consider M + N → M as a reduction rule of our calculus, then
our semantics is not invariant under reduction, since the process of performing
non-deterministic choices entails a non recoverable loss of information. But the
situation is fundamentally similar with the powerdomain-based interpretations.

To summarize, in our model D, the semantic counterparts of may and must
non-determinism are at hand: they are simply the set-theoretic union and the
mix-based algebraic operation. In this framework, parallel composition is no
longer idempotent. This is quite natural if we consider each component of a
parallel composition as the specification of a process whose execution requires
the consumption of some kind of resources.

Contents. We introduce an extension of λ-calculus with parallel composition
and non-deterministic choice, called λ+‖-calculus, and we define its operational
semantics by associating with each term a generalized hnf (head normal form),
which is a set of multisets of terms whose head subterms are variables3. Roughly
speaking, the operational value of a term is the collection of all possible outcomes
of its head reductions. When the head subterm is M +N (may non-deterministic
choice), the head reduction goes on by choosing either M or N , and when the
head subterm is M‖N (must parallelism), the head reduction forks.

We provide the denotational semantics of the λ+‖-calculus in D, considered
as a λ-model, and endowed with two additional operations which turn it into a
semiring. We prove the soundness with respect to β-reduction, and we show that
the interpretations of the hnf’s of a term M are included in the interpretation of
M . Next, we generalize Krivine’s realizability technique to our extended calculus,
showing that our denotational model is sensible: the operational value of a term
is non-empty (i.e., a term is solvable) if, and only if, its denotation is non-empty.

2 Preliminaries

To keep this article self-contained we summarize some definitions and results
that will be used in the sequel. In particular, we present our semantic framework
MRel and we recall the construction of a specific reflexive object D of MRel,
which we have introduced in [6]. Our main reference for category theory is [1].

3 This is reminiscent of the capability semantics of [8], but we consider different notions
of convergence and of head normal form.
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2.1 Multisets and Sequences

Let S be a set. We denote by P(S) the collection of all subsets of S. A multiset m
over S can be defined as an unordered list m = [a1, a2, . . .] with repetitions such
that ai ∈ S for all i. A multiset m is called finite if it is a finite list, we denote by
[] the empty multiset. Given two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .]
the multi-union of m1, m2 is defined by m1 � m2 = [a1, b1, a2, b2, . . .]. We will
write Mf (S) for the set of all finite multisets over S.

We denote by � the set of natural numbers. Given two �-indexed sequences
σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) of multisets we define the multi-union of σ
and τ componentwise as σ�̄τ = (σ1 � τ1, σ2 � τ2, . . .). An �-indexed sequence
σ = (m1, m2, . . . ) of multisets is quasi-finite if mi = [] holds for all, but a
finite number of indices i. If S is a set, then we denote by Mf (S)(ω) the set
of all quasi-finite �-indexed sequences of multisets over S. We write � for the
�-indexed sequence of empty multisets, i.e., � is the only inhabitant of Mf (∅)(ω).

2.2 MRel: A Cartesian Closed Category of Sets and Relations

We now present the category MRel, which is the Kleisli category of the functor
Mf (−) over the �-autonomous category Rel of sets and relations. We provide
here a direct definition, since in the sequel we will not use explicitly the monoidal
structure of Rel.

– The objects of MRel are all the sets.
– A morphism from S to T is a relation from Mf (S) to T , in other words,

MRel(S, T ) = P(Mf (S) × T ).
– The identity of S is the relation IdS = {([a], a) | a ∈ S} ∈ MRel(S, S).
– The composition of s ∈ MRel(S, T ) and t ∈ MRel(T, U) is defined by:

t ◦s = {(m, c) | ∃(m1, b1), . . . , (mk, bk) ∈ s such that
m = m1 � . . . � mk and ([b1, . . . , bk], c) ∈ t}.

We now provide an overview of the proof of cartesian closedness.

Theorem 1. The category MRel is cartesian closed.

Proof. The terminal object � is the empty set ∅, and the unique element of
MRel(S, ∅) is the empty relation.

Given two sets S1 and S2, their categorical product S1&S2 in MRel is their
disjoint union:

S1&S2 = ({1} × S1) ∪ ({2} × S2)

and the projections π1, π2 are given by:

πi = {([(i, a)], a) | a ∈ Si} ∈ MRel(S1&S2, Si), for i = 1, 2.

Given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding morphism
〈s, t〉 ∈ MRel(U, S1&S2) is given by:

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .
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We will consider the canonical bijection between Mf (S1) × Mf(S2) and
Mf (S1 & S2) as an equality, hence we will still denote by (m1, m2) the cor-
responding element of Mf (S1&S2).

Given two objects S and T the exponential object S ⇒T is Mf (S) × T and
the evaluation morphism is given by:

evalST = {(([(m, b)], m), b) | m ∈ Mf (S) and b ∈ T } ∈ MRel((S⇒T )&S, T ) .

Given any set U and any morphism s ∈ MRel(U &S, T ), there is exactly one
morphism Λ(s) ∈ MRel(U, S⇒T ) such that:

evalST ◦〈Λ(s), IdS〉 = s,

namely, Λ(s) = {(p, (m, b)) | ((p, m), b) ∈ s}. �
The points of an object S, i.e., the elements of MRel(�, S), are relations between
Mf (∅) and S. These are, up to isomorphism, the subsets of S.

2.3 An Extensional Reflexive Object in MRel

A reflexive object of a cartesian closed category C (ccc, for short) is a triple
U = (U, A, λ) such that U is an object of C, and λ ∈ C(U ⇒ U, U) and
A ∈ C(U, U ⇒U) satisfy A ◦ λ = IdU⇒U . U is called extensional if, moreover,
λ ◦A = IdU ; in this case we have that U ∼= U ⇒U .

We define a reflexive object D in MRel, which is extensional by construction.
We let (Dn)n∈� be the increasing family of sets defined by:

– D0 = ∅,
– Dn+1 = Mf(Dn)(ω).

Finally, we set D =
⋃

n∈�Dn. So we have D0 = ∅ and D1 = {�} = {([], [], . . . )}.
The elements of D2 are quasi-finite sequences of multisets over a singleton, i.e.,
quasi-finite sequences of natural numbers, and so on.

We say that σ ∈ D has rank n if n ∈ � is minimum such that σ ∈ Dn.
In order to define an isomorphism in MRel between D and D⇒D = Mf (D)×

D just notice that every element σ = (σ1, σ2, . . .) ∈ D stands for the pair
(σ1, (σ2, . . .)) and vice versa.Given σ ∈ D and m ∈ Mf(D), we write m :: σ for
the element τ = (τ1, τ2, . . .) ∈ D such that τ1 = m and τi+1 = σi. This defines
a bijection between Mf (D) × D and D, and hence an isomorphism in MRel as
follows:

Proposition 1. (Bucciarelli, et al. [6]) The triple D = (D, A, λ) where:

– λ = {([(m, σ)], m :: σ) | m ∈ Mf (D), σ ∈ D} ∈ MRel(D⇒D, D),
– A = {([m :: σ], (m, σ)) | m ∈ Mf(D), σ ∈ D} ∈ MRel(D, D⇒D),

is an extensional reflexive object of MRel.

3 A Parallel and Non-deterministic λ-Calculus

In this section we introduce the syntax and the operational semantics of a parallel
and non-deterministic extension of λ-calculus that we call λ+‖-calculus.
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3.1 Syntax of λ+‖-Calculus

To begin with, we define the set Λ+‖ of λ-terms enriched with two binary op-
erators + and ‖, that is the set of terms generated by the following grammar
(where x ranges over a countable set Var of variables):

M, N ::= x | λx.M | MN | M + N | M‖N .

The elements of Λ+‖ are called λ+‖-terms and will be denoted by M, N, P, . . .
Intuitively, M +N denotes the non-deterministic choice between M and N , and
M‖N stands for their parallel composition.

As usual, we suppose that application associates to the left and λ-abstraction
to the right. Moreover, to lighten the notation, we assume that application and
λ-abstraction take precedence over + and ‖ . The notions of free and bound
variables of a term are defined in the obvious way.

A substitution is a finite set s = {(x1, N1), . . . , (xk, Nk)} such that xi �= xj

for all 1 ≤ i < j ≤ k. Given a λ+‖-term M and a substitution s as above, we
denote by Ms the term obtained by substituting simultaneously the term Nj

for all free occurrences of xj (for 1 ≤ j ≤ k) in M , subject to the usual proviso
about renaming bound variables in M to avoid capture of free variables in the
Nj ’s. If s = {(x, N)} we will write M [N/x] for Ms.

Note that, in general, M{(x1, N1), . . . , (xk, Nk)} �= M [N1/x1] · · · [Nk/xk]. For
instance, x{(x, y), (y, z)} = y, whereas x[y/x][z/y] = z. Actually, k-ary substi-
tutions will be only used in Section 5 in the proof of the adequacy lemma.

As a matter of notation, we will write 	P for a (possibly empty) finite sequence
of λ+‖-terms P1 . . . Pk and 
(	P ) for the length of 	P . It is easy to check that every
λ+‖-term M has the form λ	x.N 	P where N , which is called the head subterm of
M , is either a variable, a non-deterministic choice, a parallel composition or a
λ-abstraction. Notice that, in this last case, we must have 
(	P ) > 0.

3.2 Operational Semantics

The set Λh
+‖ ⊂ Λ+‖ of head normal forms4 (hnf ’s, for short) is the set of

λ+‖-terms whose head subterm is a variable (called head variable).
The intuitive idea of the head reduction of λ+‖-calculus underlying the notion

of “value” (formalized below) is the following:

– when a term has the head subterm of the form N1 + N2, either of the alter-
natives may be chosen to pursue the head reduction, and the final value is
the union of the values obtained by each choice. In particular, if one of the
choices produces a non-empty value, then the global value is non-empty.

– when a term has the head subterm of the form N1‖N2, the head reduction
forks, and the final value is obtained by “mixing” the values eventually ob-
tained. In particular, if the value of one of the subprocesses is empty, then
also the global value is.

4 This terminology is coherent with the one usually adopted for λ-calculus (see [2,
Def. 2.2.11]).
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Instead of defining the operational semantics of λ+‖-calculus via an explicit
(head) rewriting system, we associate with each M ∈ Λ+‖ the value eventually
obtained by head reducing M . In particular, we use union (resp. multi-union)
to get the value of M1 + M2 (resp. M1‖M2) out of the values of M1 and M2.

Definition 1. A multiple hnf is a finite multiset of hnf’s of λ+‖-calculus.
A value is a set of multiple hnf’s.

To help the reader to get familiar with these notions, we first provide some simple
examples of values (where5 I ≡ λx.x, Δ ≡ λx.xx and Ω ≡ ΔΔ):

– the value of I + Δ is {[I], [Δ]}. In other words, the term I + Δ has two
different multiple hnf’s, which are singleton multisets;

– the value of I‖Δ is {[I, Δ]}, then I‖Δ has just one multiple hnf;
– the values of I+Ω and I‖Ω are {[I]} and ∅, respectively. This is a consequence

of the fact that the value of Ω is the empty-set.

In general, the value H(M) of a λ+‖-term M can be characterized as the limit
of an increasing sequence (Hn(M))n∈� of “partial” values, which are defined by
induction on n ∈ � and by cases on the form of the head subterm of M .

Definition 2. Let M ≡ λ	x.N 	P be a λ+‖-term.

• H0(M) = ∅;

• Hn+1(M)=

⎧
⎪⎪⎨

⎪⎪⎩

{[M ]} if N ≡ y,
Hn(λ	x.Q[P1/y]P2 · · ·P�(�P )) if N ≡ λy.Q,

Hn(λ	x.N1 	P )∪ Hn(λ	x.N2 	P ) if N ≡ N1+N2,

{m1 � m2 | ∃mi ∈ Hn(λ	x.Ni
	P ) for i = 1, 2} if N ≡ N1‖N2.

Notice that, for all M ∈ Λ+‖ and n ∈ �, the value Hn(M) ⊂ Mf (Λh
+‖) is a

finite set of multiple hnf’s. Since the sequence (Hn(M))n∈� is increasing, we can
define the (final) value of M as its limit.

Definition 3. The value of a λ+‖-term M is defined by H(M) =
⋃

n∈�Hn(M).

Of course, H(M) may be infinite as shown in the example below.

Example 1. Consider the λ+‖-term M ≡ λn.0 + sn, where 0 ≡ λxy.y is the
0-th Church numeral and s ≡ λnxy.nx(xy) implements the successor function.
Let now C ≡ YM where Y is some fixpoint combinator. To have simpler cal-
culations, we suppose that YM reduces to M(YM) in just one step of head
β-reduction. Then, we get:

– H0(C) = ∅,
– H1(C) = H0(MC) = ∅,
– H2(C) = H1(MC) = H0(0 + sC) = ∅,
– H3(C) = H2(MC) = H1(0 + sC) = {[0]} ∪ H0(sC) = {[0]}.

Pursuing the calculation a little further, one gets H9(C) = {[0], [1]} and, even-
tually, H(C) = {[n] | n ∈ �}.
5 The symbol ≡ denotes syntactical equality.
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3.3 Solvability

We now present the natural notion of solvability for the λ+‖-calculus.

Definition 4. A λ+‖-term M is solvable if H(M) �= ∅. The set of solvable
terms will be denoted by N .

Among solvable terms, we single out the set N0 of hnf’s starting with a variable,
and the set N1 of solvable terms having a multiple hnf whose head variables are
free.

Definition 5. We set:

– N0 = {x	P | x ∈ Var and 	P ∈ Λ+‖}, and
– N1 = {M ∈ Λ+‖ | ∃[λ	x1.y1 	P1, . . . , λ	xk.yk

	Pk] ∈ H(M)∧(∀j = 1..k) yj /∈ 	xj}.

We end this section stating a technical proposition, which will be useful in Sec-
tion 5. The proof is not difficult (but quite long) and it is omitted.

Proposition 2. Let M ∈ Λ+‖ and x ∈ Var, then we have that:

(i) if Mx ∈ N then M ∈ N ,
(ii) if MΩ ∈ N1 then M ∈ N1,
(iii) if M ∈ N1 then MN ∈ N1 for all N ∈ Λ+‖.

Notice that in the case of the pure λ-calculus the analogous properties are trivial.

4 A Relational Model of λ+‖-Calculus

Exploiting the existence of countable products in MRel we have shown in [6]
that the reflexive object D = (D, A, λ) built in Section 2.3 can be turned into
a λ-model [2, Def. 5.2.1] (this was not clear before, since the category MRel
does not have enough points [1, Def. 2.1.4]). The underlying set of the λ-model
associated with D by our construction is the set of “finitary” morphisms in
MRel(DVar, D), where DVar is the Var-indexed categorical product of countably
many copies of D.

4.1 Finitary Morphisms in MRel

The morphisms in MRel(DVar, D) are sets of pairs whose first projection is a
finite multiset of elements in DVar, and whose second projection is an element
of D. Since categorical products in MRel are disjoint unions, a typical such pair
is of the form:

([(x1, σ
1
1), . . . , (x1, σ

n1
1 ), . . . , (xk, σ1

k), . . . , (xk, σnk

k )], σ)

where k, n1, . . . , nk ∈ �, x1, . . . , xk ∈ Var and σ1
1 , . . . , σ

nk

k , σ ∈ D.
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Notation 1. Given m ∈ Mf (DVar) and x ∈ Var, we set mx = [σ | (x, σ) ∈
m] ∈ Mf (D) and m−x = [(y, σ) ∈ m | y �= x] ∈ Mf(DVar).

In general, given an object U of a ccc C, we say that a morphism f ∈ C(UVar, U)
is “finitary” if it can be decomposed as f = fI◦πI for some finite set I of variables
(see [6, Sec. 3.1]). Working in MRel it is more convenient to take the following
equivalent definition.

Definition 6. A morphism r ∈ MRel(DVar, D) is finitary if there exists a finite
set I of variables such that for all (m, σ) ∈ r and x ∈ Var we have that mx �= []
entails x ∈ I.

We denote by MRelf (DVar, D) the set of all finitary morphisms.

4.2 The Model

From [6, Thm. 1] we know that (MRelf (DVar, D), •), where • is defined as usual
by r1 • r2 = eval ◦〈A ◦r1, r2〉, can be endowed with a structure of λ-model.

In order to interpret λ+‖-terms as finitary morphisms of MRel we are going
to define on MRel(DVar, D) two binary operations of sum and aggregation for
modelling non-deterministic choice and parallel composition, respectively, and
to prove that MRelf (DVar, D) is closed under these operations.

Definition 7. Let r1, r2 ∈ MRel(DVar, D), then:

– the sum of r1 and r2 is defined by r1 ⊕ r2 = r1 ∪ r2.
– the aggregation of r1 and r2 is defined by r1 � r2 = {(m1 � m2, σ1�̄σ2)

| ∃(mi, σi) ∈ ri, for i = 1, 2}.
Proposition 3. The set MRelf (DVar, D) is closed under sum and aggregation.

Proof. Straightforward. In both cases, the union of the finite sets of variables I1
and I2 given by the finiteness of the arguments of the operation, is a witness of
the finiteness of the result. �
Composition is right-distributive over sum and aggregation.

Proposition 4. Let r, s ∈ MRel(DVar, D) and t ∈ MRel(DVar, DVar), then:

– (r ⊕ s) ◦ t = (r ◦ t) ⊕ (s ◦ t),
– (r � s) ◦ t = (r ◦ t) � (s ◦ t).

Proof. Straightforward. �
The units of the operations ⊕ and � are 0 = ∅ and 1 = {([], �)}, respectively;
(MRelf (DVar, D), ⊕, 0) and (MRelf (DVar, D), �, 1) are commutative monoids.
Moreover, 0 annihilates � and aggregation distributes over sum. Summing up,
the following proposition gives an overview of the algebraic properties of
MRelf (DVar, D) equipped with application, sum and aggregation.

Proposition 5. – (MRelf (DVar, D), ⊕, �, 0, 1) is a commutative semiring.
– • is right-distributive over ⊕ and �.
– ⊕ is idempotent (whereas � is not).

Proof. Straightforward.
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4.3 The Absolute Interpretation

Before going through the formal definition of the interpretation of λ+‖-terms,
we present a short digression on the nature of such an interpretation.

In our framework, the λ+‖-terms will be interpreted as morphisms in
MRelf (DVar, D), i.e., as subsets of Mf(DVar) × D. The occurrence of a parti-
cular pair ([(x1, σ

1
1), . . . , (x1, σ

n1
1 ), . . . , (xk, σ1

k), . . . , (xk, σnk

k )], σ) in the interpre-
tation of a term M may be read as “in an environment ρ such that ρ(xi) =
[σ1

i , . . . , σni

i ] (for all i = 1, . . . , k) the interpretation �M �ρ contains σ”.
Hence, here there is no need of providing explicitly an environment to the

interpretation function as classically done for λ-models [2, Def. 5.2.1(ii)] because
the whole information is coded inside the elements of the λ-model itself.

On the other hand, the categorical interpretation of a term M is usually
defined with respect to a finite list of variables, containing the free variables of
M [2, Def. 5.5.3(vii)]. Intuitively, our interpretation is defined with respect to
the list of all variables, encompassing then all categorical interpretations.

These considerations lead us to the definition of �−� : Λ+‖ → MRelf (DVar, D)
below, that we call the absolute interpretation6 of λ+‖-terms:

– �x� = πx, for x ∈ Var,
– �M1M2� = eval ◦〈A ◦ �M1�, �M2�〉,
– �λx.M � = λ ◦Λ(�M � ◦ηx),
– �M1 + M2� = �M1� ⊕ �M2�,
– �M1‖M2� = �M1� � �M2�,

where ηx ∈ MRel(DVar&D, DVar) is defined componentwise, for y ∈ Var, by:

πy ◦ηx =
{

π2 if x ≡ y,
πy ◦π1 if x �≡ y.

In what follows, we will use the inductive characterization of the interpretation
of (some) λ+‖-terms provided by the proposition below:

Proposition 6

(i) �x� = {([(x, σ)], σ) | σ ∈ D},
(ii) �MN � = {(m0 � m1 � . . . � mk, σ) | ∃k ≥ 0, (m0, [τ1, . . . , τk] :: σ) ∈ �M �,

(mi, τi) ∈ �N � for 1 ≤ i ≤ k},
(iii) �λx.M � = {(m−x, mx :: σ) | (m, σ) ∈ �M �}.

Proof. Simple calculations based on the definitions of Section 2. �

We show now the soundness of the interpretation with respect to β-conversion,
which relies on the following lemma.

Lemma 1. If M, N ∈ Λ+‖ and x ∈ Var, then �M [N/x]� = �M � ◦ηx ◦〈Id, �N �〉.
6 See [15, Sec. 2.3.2] (and cf. [20]) for more details on the relations among the absolute,

algebraic and categorical interpretations, and on how the former allows to recover
the others.
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Proof. By structural induction on M . The cases M ≡ M1+M2 and M ≡ M1‖M2
are settled by using Proposition 4. For the other cases, one can use Proposition 6
and the following characterization: ηx ◦ 〈Id, �N �〉 = {([(y, σ)], (y, σ)) | σ ∈ D,
y �≡ x} ∪ {(m, (x, σ)) | (m, σ) ∈ �N �} ∈ MRel(DVar, DVar). �

Lemma 2. (Soundness) For all M, N ∈ Λ+‖ and x ∈ Var, we have �(λx.M)N �
= �M [N/x]�.

Proof. �(λx.M)N � = eval◦〈A ◦λ ◦Λ(�M � ◦ηx), �N �〉 = eval◦〈Λ(�M � ◦ηx), �N �〉
= �M � ◦ηx ◦〈Id, �N �〉 = by Lemma 1 = �M [N/x]�. �

We aim to prove that our model is sensible w.r.t. the operational semantics: a
λ+‖-term M has a non-empty interpretation if, and only if, M is solvable.

We start showing that the interpretation of every solvable term is non-empty
(for the converse we will adapt Krivine’s realizability method [13], see Section 5).
This is an immediate corollary of the following propositions stating that the
interpretation of a λ+‖-term includes the union of the interpretations of its
multiple hnf’s and that the interpretation of any hnf is non-empty.

Proposition 7. For all M ∈ Λ+‖, we have (
⊕

m∈H(M)(
⊙

N∈m �N �)) ⊆ �M �.

Proof. It is enough to show that (
⊕

m∈Hn(M)(
⊙

N∈m �N �)) ⊆ �M � holds for all
n ∈ �; we prove it by induction on n. The case n = 0 is trivial. The proof of the
inductive step goes by case analysis on the head subterm M ′ of M ≡ λ	z.M ′ 	P .

– The case M ′ ≡ x is trivial, and the case M ′ ≡ λy.Q is settled by Lemma 2.
– If M ′ ≡ Q1‖Q2, we start by observing that �M � = �λ	z.Q1 	P ���λ	z.Q2 	P �. This

is an easy consequence of the right distributivity of • over � (Proposition 5)
and of the fact that, by Proposition 6(iii), we have �λ	x.(R1‖R2)� = �λ	x.R1��
�λ	x.R2�, for all 	x ∈ Var and R1, R2 ∈ Λ+‖. Then, we can conclude by the
inductive hypothesis.

– The case M ′ ≡ Q1 + Q2 is similar, and simpler, once noted that �M � =
�λ	z.Q1 	P � ⊕ �λ	z.Q2 	P � (again, by Proposition 5 and Proposition 6(iii)). �

We now show that every hnf has a non-empty interpretation.

Proposition 8. For all x, 	y ∈ Var and 	Q ∈ Λ+‖ we have �λ	y.x 	Q� �= ∅.

Proof. By Proposition 6(iii), it is sufficient to prove that, for all x ∈ Var and
	Q ∈ Λ+‖, we have �x	Q� �= ∅. To conclude, it is easy to show by induction on k
that ([(x, �)], �) ∈ �xQ1 . . . Qk�. �

Theorem 2. For all M ∈ Λ+‖, if H(M) �= ∅ then �M � �= ∅.

Proof. Let [N1, . . . , Nk] ∈ H(M). By Proposition 7,
⊙

1≤i≤k �Ni� ⊆ �M �, and
by Proposition 8 �Ni� �= ∅ for 1 ≤ i ≤ k. We conclude that ∅ �=

⊙
1≤i≤k �Ni�

⊆ �M �. �



118 A. Bucciarelli, T. Ehrhard, and G. Manzonetto

5 Saturated Sets and the Realizability Argument

In this section, we generalize Krivine’s realizability technique [13] to λ+‖-calculus
and we use it for proving that λ+‖-terms having a non-empty interpretation are
all solvable. For notations and terminology, we mainly follow [3].

The saturation of a set S of terms expresses the fact that S is closed under
weak head expansions. For the pure λ-calculus, this amounts to the well known
condition of being closed under weak head β-expansion. For the extension of the
λ-calculus we are dealing with, three cases of weak head expansions, correspond-
ing to the possible shapes of the head term, must be considered.

Definition 8. A set S ⊆ Λ+‖ is saturated if the following conditions hold:

– if M [N/x]	P ∈ S then (λx.M)N 	P ∈ S,
– if (MQ‖NQ)	P ∈ S then (M‖N)Q	P ∈ S,
– if M 	P ∈ S and N ∈ Λ+‖ then (M + N)	P ∈ S.

We recall that the sets N0, N1 and N have been defined in Section 3.3. It is easy
to check that N is saturated, whilst N0 is not. In the realizability argument,
only saturated sets included within N0 and N will be considered.

Definition 9. The set Sath of “small” saturated subsets of Λ+‖ is defined by:

Sath = {S ⊆ Λ+‖ | S is saturated and N0 ⊆ S ⊆ N}.

Given A, B ⊆ Λ+‖, we define A → B = {M ∈ Λ+‖ | (∀N ∈ A) MN ∈ B}. The
operator → is contravariant in its first argument and covariant in its second one,
in other words, A → B ⊆ A′ → B′ for all A′ ⊆ A and B ⊆ B′.

Lemma 3. N0 ⊆ Λ+‖ → N0 ⊆ N0 → N ⊆ N .

Proof. The first inclusion follows by definition, the second one is a consequence
of the contravariance/covariance of the arrow. For the third one, it is enough to
prove that, for all M ∈ Λ+‖ and x ∈ Var, H(Mx) �= ∅ entails H(M) �= ∅; this
holds by Proposition 2(i). �

The set Sath enjoys the following closure properties.

Lemma 4. The set Sath is closed under the arrow operator, finite unions, finite
intersections, and under the map F : S �→ (Λ+‖ → S).

Proof. Given two sets S1, S2 ∈ Sath, it is straightforward to check that S1 ∩ S2,
S1 ∪ S2 ∈ Sath and that S1 → S2 and Λ+‖ → S2 are saturated. The inclusions
N0 ⊆ S1 → S2 ⊆ N and N0 ⊆ Λ+‖ → S2 ⊆ N follow easily from Lemma 3 and
contravariance/covariance of the arrow. �

We are going to define a function (−)• : D → Sath, satisfying (m :: σ)• =
m• → σ•, where, for a multiset m of elements of D, m• =

⋂
α∈m α• and, in

particular, []• = Λ+‖. Since � = [] :: �, the set �• must be a fixpoint of the
function F : S �→ (Λ+‖ → S). We now show that N1 is one of such fixpoints.
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Proposition 9. N1 ∈ Sath and N1 = Λ+‖ → N1.

Proof. The saturation of N1 and the fact that N0 ⊆ N1 ⊆ N are both trivial.
We now prove that N1 = Λ+‖ → N1. Let M ∈ Λ+‖ → N1. Since MΩ ∈ N1, we
get by Proposition 2(ii) that M ∈ N1. Conversely, let M ∈ N1 and N ∈ Λ+‖.
We conclude since, by Proposition 2(iii), we get MN ∈ N1. �

Observe that any element σ ∈ D may be written in a unique way as σ =
σ1 :: · · · :: σn :: �, with n ≥ 0 and σn �= [] (and of course σ1, . . . , σn have ranks
strictly smaller than that of σ). This is called the standard decomposition of σ.

Definition 10. Given σ ∈ D, we define (σ)• ∈ Sath by induction on the rank
k of σ. If k = 0, then σ• = �• = N1. If k > 0 then σ• = σ•

1 → · · · → σ•
n → N1,

where σ1 :: · · · :: σn :: � is the standard decomposition of σ.

Note that if m �= [] or σ �= �, then the standard decomposition of m :: σ is
m :: σ1 :: · · · :: σn :: �, where σ1 :: · · · :: σn :: � is the standard decomposition of
σ. Hence, (m :: σ)• = m• → σ• holds in general, since ([] :: �)• = �• = N1 =
Λ+‖ → N1.

We show now that the definition of (−)• fits well with parallel composition.

Lemma 5. Let M, N ∈ Λ+‖, σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) ∈ D and ρ =
σ�̄τ . If M ∈ σ• and N ∈ τ•, then M‖N ∈ ρ•.

Proof. Let ρn :: · · · :: ρ1 :: � be the standard decomposition of ρ. We have to
show that M‖N ∈ ρ•n → · · · → ρ•1 → N1. We prove it by induction on n.

If n = 0, then σ = τ = ρ = �. Hence, we conclude since �• = N1 and N1 is
closed under parallel composition.

If n > 0, then we have to show that, for all Q ∈ ρ•n, (M‖N)Q ∈ (ρ′)• where
ρ′ = ρn−1 :: · · · :: ρ1 :: �. Since M ∈ σ•

1 and N ∈ τ•
1 , we have that MQ ∈ (σ′)•

and NQ ∈ (τ ′)•, where σ′ = (σ2, σ3, . . .) and τ ′ = (τ2, τ3, . . .)•. Moreover, ρ′ =
σ′�̄τ ′ and the standard decomposition of ρ′ is strictly shorter than that of ρ. By
the inductive hypothesis, we get MQ‖NQ ∈ (ρ′)•. By saturation of (ρ′)•, we
conclude that (M‖N)Q ∈ (ρ′)•, and hence M‖N ∈ ρ•. �

We are now able to prove the promised adequacy lemma, which constitutes the
key tool in the realizability argument.

Definition 11. A substitution s = {(x1, N1), . . . , (xk, Nk)} is adequate for a
multiset m ∈ Mf (DVar) if:

– mx �= [] implies x ∈ {x1, . . . , xk}, for all x ∈ Var,
– Ni ∈ m•

xi
for all 1 ≤ i ≤ k.

Observe that, if a substitution is adequate for some multiset m ∈ Mf(DVar),
then it is adequate for all submultisets of m.

Lemma 6. (Adequacy lemma) Let M ∈ Λ+‖, (m, σ) ∈ �M � and s be a substi-
tution. If s is adequate for m, then Ms ∈ σ•.

Proof. By structural induction on M .
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– If M ≡ x, then m = [(x, σ)] by Proposition 6(i). If s is adequate for m, then
(x, N) ∈ s for some N ∈ [σ]•. Hence, we have that Ms = N ∈ [σ]• = σ•.

– If M ≡ PQ, then by Proposition 6(ii), we have m = m0 � m1 � . . . � mk for
some k ≥ 0, and τ1, . . . , τk ∈ D such that (m0, [τ1, . . . , τk] :: σ) ∈ �P � and
(mi, τi) ∈ �Q� for 1 ≤ i ≤ k. Observe now that, if s is adequate for m then
it is also adequate for m0, m1, . . . , mk, since they are all multisubsets of m.
By the inductive hypothesis we have that:

- Ps ∈ ([τ1, . . . , τk] :: σ)• = [τ1, . . . , τk]• → σ•,
- Qs ∈ τ•

1 , . . . , Qs ∈ τ•
k , which implies that Qs ∈ [τ1, . . . , τk]•.

Hence, we can conclude that (PQ)s ∈ σ•.
– If M ≡ λx.P , then by Proposition 6(iii), we have that m = m′

−x and
σ = m′

x :: σ′ for some (m′, σ′) ∈ �P �. Let s be an adequate substitution
for m′

−x and Q ∈ (m′
x)•. Since M is considered up to α-conversion, we can

suppose without loss of generality that x does not occur in s. It is clear that
s′ = s ∪ {(x, Q)} is adequate for m′ and hence, by the inductive hypothesis,
we get Ps′ ∈ (σ′)•. Now we have that Ps′ = (Ps)[Q/x] ∈ (σ′)• because
x does not appear in s. Since (σ′)• is saturated and (λx.Ps) = (λx.P )s
we have that (λx.P )sQ ∈ (σ′)•. From the arbitrariness of Q ∈ (m′

x)• we
conclude that (λx.P )s ∈ (m′

x)• → (σ′)• = (m′
x :: σ′)•.

– If M ≡ P + Q, then (m, σ) belongs to, say, �P �. Now, if s is adequate for m,
then we get by the inductive hypothesis that Ps ∈ σ• and we conclude, by
saturation of σ•, that (P + Q)s ∈ σ•.

– If M ≡ P‖Q, then m = m1 � m2 and σ = σ1�̄σ2 with (m1, σ1) ∈ �P �
and (m2, σ2) ∈ �Q�. If s is adequate for m then it is also adequate for
m1, m2 and, from the inductive hypothesis and Lemma 5, we conclude that
(P‖Q)s ∈ (σ1�̄σ2)•. �

Theorem 3. For all M ∈ Λ+‖, if �M � �= ∅ then M ∈ N .

Proof. Let (m, σ) ∈ �M �. The substitution sId = {(x, x) | mx �= []} is adequate
for m (note that Var ⊂ N0), and MsId = M . Hence, by the adequacy lemma,
we conclude that M ∈ σ• ⊆ N . �
By Theorem 2 and Theorem 3 we finally get our main result.

Theorem 4. For all M ∈ Λ+‖, H(M) �= ∅ ⇔ �M � �= ∅.

6 Conclusions and Further Work

We have defined a (relational) model D of a fairly standard parallel and non-
deterministic extension of the pure λ-calculus, equipped with a notion of obser-
vation given by an operator H . In this framework, full abstraction spells out as
follows: (∀M, N ∈ Λ+‖)[(∀C[−]) H(C[M ]) �= ∅ ⇒ H(C[N ]) �= ∅] iff �M � ⊆ �N �.
The “if” part of the previous statement (adequacy) is an easy consequence of
Theorem 4. Nevertheless, the “only if” part fails. Indeed, given I ≡ λx.x, we have
that �I� = {([], [σ] :: σ) | σ ∈ D)} and �I‖I� = {([], [σ, σ] :: (σ�̄σ)) | σ ∈ D)}.
Hence, �I� �⊆ �I‖I� whilst it is not difficult to check that I and I‖I are not sepa-
rable using contexts. As suggested by the counterexample, the next step towards
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full abstraction should be to enrich the syntax of the language by some “resource
sensitive” operator, to increase the discriminating power of contexts.

Finally, we already know from [15, Sec. 3.3] that the theory induced on the
pure untyped λ-calculus by our model D is H∗ (just as the theory induced by
Scott’s D∞); it would be interesting to generalize such a result to the extended
setting, as a step in the study and classification of λ+‖-theories, and models.
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Abstract. Justification Logic studies epistemic and provability phe-
nomena by introducing justifications/proofs into the language in the
form of justification terms. Pure justification logics serve as counter-
parts of traditional modal epistemic logics, and hybrid logics combine
epistemic modalities with justification terms. The computational com-
plexity of pure justification logics is typically lower than that of the
corresponding modal logics. Moreover, the so-called reflected fragments,
which still contain complete information about the respective justifica-
tion logics, are known to be in NP for a wide range of justification logics,
pure and hybrid alike. This paper shows that, under reasonable addi-
tional restrictions, these reflected fragments are NP-complete, thereby
proving a matching lower bound.

1 Introduction and Main Definitions

Justification Logic is an emerging field that studies provability, knowledge, and
belief via explicit proofs or justifications that are part of the language. A justifi-
cation logic is essentially a refined analogue of a modal epistemic logic. Whereas
a modal epistemic logic uses the formula �F to indicate that F is known to be
true, a justification logic uses t : F instead, where t is a term that describes a
‘justification’ or proof of F . This construction allows justification logics to rea-
son about both formulas and proofs at the same time, avoiding the need to treat
provability at the metalevel.

Because Justification Logic can reason directly about explicit proofs, it pro-
vides more concrete and constructive analogues of modal epistemic logics. For
example, the modal distribution axiom �(F → G) → (�F → �G) is replaced in
Justification Logic by the axiom s : (F → G) → (t :F → (s · t) :G). The latter re-
places the distribution axiom with a computationally explicit construction. Jus-
tification logics are very promising for structural proof theory and have already
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proven to be fruitful in finding new approaches to common knowledge ([Art06])
and Logical Omniscience Problem ([AK06]). For further discussion on the various
applications of Justification Logic, see [Art08b].

The goal of the present paper is to prove the NP-hardness of the Derivability
Problem for the reflected fragments of justification logics, matching the already
known upper bound. We begin by reviewing some definitions of justification
logics.

The first justification logic, the Logic of Proofs LP, was introduced by Arte-
mov [Art95] to provide a provability semantics for the modal logic S4 (see
also [Art01]). The language of LP

F ::= p | ⊥ | (F → F ) | t :F ,

t ::= x | c | (t · t) | (t + t) | ! t

contains an additional operator t :F , read ‘term t serves as a justification/proof
of formula F .’ Here p stands for a sentence letter, x for a justification variable,
and c for a justification constant.

Statements t :F can be seen as refinements of modal statements �F because
the latter say that F is known whereas the former additionally provide a ratio-
nale for such knowledge. This relationship is demonstrated through the recur-
sively defined operation of forgetful projection that maps justification formulas
to modal formulas: (t : F )◦ = �(F ◦), and commutes with Boolean connectives:
(F → G)◦ = F ◦ → G◦, where p◦ = p and ⊥◦ = ⊥.

Axioms and rules of LP:
A1. A complete axiomatization of classical propositional logic by finitely many

axiom schemes; rule modus ponens
A2. Application Axiom s : (F → G) → (t :F → (s · t) :G)
A3. Monotonicity Axiom s :F → (s + t) :F , t :F → (s + t) :F
A4. Factivity Axiom t :F → F
A5. Positive Introspection Axiom t :F → ! t :t :F
R4. Axiom Internalization Rule:

c :A
where A is an axiom and c is a justification constant

LP is the exact counterpart of S4 (note the similarity of their axioms): namely,
let X◦ = {F ◦ | F ∈ X} for a set X of justification formulas and let LP be
identified with the set of its theorems, then

Theorem 1 (Realization Theorem, [Art95, Art01]). LP◦ = S4.

For some applications (e.g., to avoid Logical Omniscience [AK06] or to study
self-referentiality [Kuz08c]) the use of constants needs to be restricted; this is
achieved using constant specifications. A constant specification CS is a set of
instances of rule R4:

CS ⊆ {c :A | A is an axiom, c is a justification constant} .

Given a constant specification CS, the logic LPCS is the result of replacing R4
in LP by its relativized version:
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R4CS . Relativized Axiom Internalization Rule:
c :A ∈ CS

c :A

For the Realization Theorem to hold, i.e., for (LPCS)◦ = S4, it is necessary and
sufficient that CS be axiomatically appropriate:

Definition. A constant specification CS is called:

– axiomatically appropriate1 if every axiom is justified by at least one constant;
– schematic2 if each constant justifies several (maybe 0) axiom schemes and

only them;
– schematically injective3 if it is schematic and each constant justifies no more

than one axiom scheme.

Whereas it is well known that the Derivability Problem for S4 is PSPACE-
complete ([Lad77]), it was shown in [Kuz00] that the same problem for LPCS
is in Πp

2 for any schematic CS (we always assume CS to be polynomial time
decidable); in particular, LP itself is in Πp

2 . Milnikel in [Mil07] proved a match-
ing lower bound, the Πp

2 -hardness of LPCS under the assumption that CS is
axiomatically appropriate and schematically injective.

The so-called reflected fragment rLP of the Logic of Proofs was first studied
by N. Krupski in [Kru03] (see also [Kru06]):

Definition. For any justification logic JLCS with a constant specification CS,
its reflected fragment is

rJLCS = {t :F | JLCS � t :F} .

We will write rJLCS � t :F to mean t :F ∈ rJLCS .

The reflected fragment bears complete information about the logic as the fol-
lowing theorem shows:

Theorem 2 ([Kru03, Kru06]). For any axiomatically appropriate CS,

LPCS � F ⇐⇒ (∃t)rLPCS � t :F .

The =⇒-direction constitutes the Constructive Necessitation Property (for de-
tails, see [Art01]); the ⇐=-direction easily follows from Factivity Axiom A4.

Theorem 3 ([Kru03, Kru06]). For any schematic CS, the Derivability Prob-
lem for rLPCS is in NP.

To prove this theorem, N. Krupski developed an independent axiomatization
for rLPCS that we will call the ∗-calculus.

1 The term is due to Fitting.
2 The term is due to Milnikel although the idea goes back to Mkrtychev.
3 The term is due to Milnikel.
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Axioms and rules of the ∗-calculus:

∗CS. For any c :A ∈ CS axiom c :A

∗A2. Application Rule
s : (F → G) t :F

s · t :G
∗A3. Sum Rule

s :F
s + t :F

t :F
s + t :F

∗A5. Positive Introspection Rule
t :F

! t :t :F

In this paper, we prove the matching lower bound for rLPCS , namely that
the Derivability Problem for rLPCS is NP-complete. The proof is by a many-
one polynomial-time reduction from a known NP-complete problem, the Vertex
Cover problem. As in Milnikel’s lower bound for LPCS , we have to impose the
additional restriction that CS is axiomatically appropriate and schematically
injective.

The paper is structured as follows. Section 2 defines a coding of a graph
by propositional formulas and shows how the existence of a vertex cover can
be described in terms of these formulas. Section 3 develops justification terms
that encode several standard methods of propositional reasoning. Although the
formulas that describe the existence of a vertex cover depend on the cover itself
rather than only on its size, Sect. 4 shows how to eliminate this dependency by
using the terms from Sect. 3 to encode particular derivations of the formulas from
Sect. 2. Section 5 finishes the proof of the polynomial-time reduction. Section 6
discusses extending this result to other justification logics.

2 Graph Coding and Preliminaries

A graph G = 〈V, E〉 has a finite set V of vertices and a finite set E of undirected
edges. We assume w.l.o.g. that V = {1, . . . , N} for some N , and we represent
an edge e between vertices k and l as the set e = {k, l} with the endpoints
denoted by v1(e) < v2(e). A vertex cover for G is a set C of vertices such that
each edge e ∈ E has at least one endpoint in C. The Vertex Cover problem is
the problem of, given a graph G and an L ≥ 0, determining if G has a vertex
cover of size ≤ L. The Vertex Cover problem is one of the classic NP-complete
problems.

We define below formulas FV , FC , and FG that will help build a many-one
reduction from Vertex Cover to rLPCS . These formulas will include large con-
junctions. To avoid the dependence of the LPCS -derivations on the vertex cover,
we will use balanced conjunctions (see [BB93]):

Definition. Each formula is a balanced conjunction of depth 0. If A and B are
both balanced conjunctions of depth k, then A ∧ B is a balanced conjunction of
depth k + 1.

Clearly, a balanced conjunction of depth k is also a balanced conjunction of
depth l for any 0 ≤ l ≤ k. Thus, we are mainly interested in how deeply a
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given formula is conjunctively balanced. For any conjunction C1 ∧ · · · ∧ C2k of
2k formulas, we assume that the omitted parentheses are such that the resulting
balanced conjunction has the maximal possible depth, i.e., depth ≥ k.

We also need to refer to Ci’s that form F = C1 ∧ · · · ∧ C2k . The following
inductive definition of depth k conjuncts, or simply k-conjuncts, generalizes the
definition of conjuncts in an ordinary conjunction:

Definition. Each formula is a 0-conjunct of itself. If C ∧ D is a k-conjunct of
formula F , then C and D are both (k + 1)-conjuncts of F .

For instance, the conjuncts of an ordinary conjunction are its 1-conjuncts; all Ci’s
in C1 ∧· · ·∧C2k are its k-conjuncts. More generally, any balanced conjunction of
depth k must have exactly 2k occurrences of k-conjuncts (with possibly several
occurrences of the same formula).

To make full use of balanced conjunctions, it is convenient to restrict attention
to instances of the Vertex Cover problem for graphs in which both the number
of vertices and the number of edges are powers of 2. These are called binary
exponential graphs. It is also helpful to only consider vertex covers whose size
is a power of 2; these we call binary exponential vertex covers. Fortunately,
the version of the Vertex Cover (VC) problem restricted to binary exponential
graphs and their binary exponential vertex covers is also NP-complete:

Theorem 4. The Binary Vertex Cover (BVC) problem of determining for a
given binary exponential graph G and a given l ≥ 0 whether G has a vertex
cover of size ≤ 2l is NP-complete.

Proof. Since BVC is an instance of the standard VC problem, and since VC is
NP-complete, it suffices to construct a polynomial-time many-one reduction
from VC to BVC. Suppose we are given an instance of VC; namely, we are
given a graph G0 and an integer L and wish to determine if G0 has a vertex
cover of size ≤ L. We give a polynomial time procedure that constructs a binary
exponential graph G and a value l so that G0 has a vertex cover of size ≤ L iff
G has a vertex cover of size ≤ 2l. The graph G is constructed in three stages;
each stage causes only a constant factor increase in the size of the graph.

Stage 1. Increasing the size of the vertex cover. Let 0 ≤ L′ < L such that
L + L′ = 2l − 1 for some integer l ≥ 0. The graph G′ = 〈V ′, E′〉 is obtained
from G0 by adding 2L′ new vertices broken into L′ disjoint pairs with the vertices
in each pair joined by a new edge (L′ new edges overall). G0 has a vertex cover
of size ≤ L iff G′ has a vertex cover of size ≤ 2l − 1.

Stage 2. Increasing the number of edges. Choose integer 0 < M ′′ ≤ |E′| such
that |E′| + M ′′ = 2m for some integer m ≥ 0. The graph G′′ = 〈V ′′, E′′〉 is
obtained by adding M ′′ + 1 new vertices to G′ with one of these vertices joined
to all M ′′ others (M ′′ new edges overall). G′ has a vertex cover of size ≤ 2l − 1
iff G′′ has a vertex cover of size ≤ 2l.

Stage 3. Increasing the number of vertices. Choose integer 0 ≤ N ′′′ < |V ′′| such
that |V ′′| + N ′′′ = 2n for some integer n ≥ 0. The graph G = G′′′ is obtained by
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adding N ′′′ isolated vertices to G′′. G′′ has a vertex cover of size ≤ 2l iff G′′′ has
a vertex cover of size ≤ 2l.

It is clear from the construction that G is a binary exponential graph such
that G0 has a vertex cover of size ≤ L iff G has a vertex cover of size ≤ 2l. ��
Definition. Let G = 〈V, E〉 be a binary exponential graph with edge set E =
{e1, . . . , e2m}. Let C = {i1, i2, . . . , i2l} ⊆ V be a possible binary exponential
vertex cover for G, where i1 < i2 < · · · < i2l . We define the following formulas:
a. FC = pi1 ∧ · · · ∧ pi2l

.
b. For each edge e = {k, l}, where k < l, Fe = pk ∨ pl = pv1(e) ∨ pv2(e).
c. FG = Fe1 ∧ · · · ∧ Fe2m .

The proof of the following properties of the translation is an easy exercise (� de-
notes derivability in classical propositional logic):
Lemma 5. For any binary exponential graph G = 〈V, E〉 and any binary expo-
nential set C ⊆ V ,
1. � FV → FG ;
2. � FV → FC ;
3. � FC → FG iff C is a vertex cover for G.
Our goal is to reduce BVC to derivability in rLPCS for a certain class of CS.
To this end, we take a particular derivation of FV → FG that proceeds by
first proving FV → FC , followed by an attempt at a proof of FC → FG that
succeeds iff C is a vertex cover. Finally, hypothetical syllogism (HS) is applied
to infer FV → FG. We further encode this derivation as a justification term t
so that rLPCS � t : (FV → FG) iff C is a vertex cover. In BVC we need to
determine whether there exists a vertex cover of (at most) a given size rather
than whether a given set of vertices is a vertex cover. Thus, t : (FV → FG) should
not depend on C but may (and should) depend on the size of C. Since C has
already been “syllogized away” from formula FV → FG, it remains to make sure
that term t only depends on the size of C. Although the derivations of FV → FC

and FC → FG have C explicitly present in them, the terms encoding them, and
therefore t, can be made independent of C. This is the main reason why we use
balanced conjunctions: this way all k-conjuncts are interchangeable.
Note about the use of constants. Throughout the paper, the minimum require-
ment on CS would be axiomatic appropriateness and schematicness. As a conse-
quence, we can always assume that for any axiom scheme there exists a constant
justifying it. So it makes sense to choose one such constant for each axiom
scheme. The list of names for these fixed constants along with the corresponding
axiom schemes consistently used in the paper can be found below:

rLPCS � c1 : (X → (Y → X))
rLPCS � c2 : ((X → (Y → Z)) → ((X → Y ) → (X → Z)))
rLPCS � c∧1 : (X ∧ Y → X)
rLPCS � c∧2 : (X ∧ Y → Y )
rLPCS � c∧ : (X → (Y → X ∧ Y ))
rLPCS � c∨1 : (X → X ∨ Y )
rLPCS � c∨2 : (Y → X ∨ Y )
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Note that we have assumed that certain axiom schemes are present among the
propositional axioms chosen for A1. The beginning of Sect. 5 discusses why this
assumption is not essential.

3 Justification Terms Encoding Propositional Reasoning

For all lemmas in the section, schematicness and axiomatic appropriateness are
sufficient for the ⇐=-direction; schematic injectivity is required for the =⇒-
direction only.

The size of terms is defined in a standard way: |c| = |x| = 1 for any constant
and any variable, |(t · s)| = |(t + s)| = |t| + |s| + 1, | ! t| = |t| + 1.

Lemma 6 (Encoding the Hypothetical Syllogism Rule). The operation

syl(t, s) =
(
c2 · (c1 · s)

)
· t

with |syl(t, s)| = |t| + |s| + 5 encodes the Hypothetical Syllogism Rule, i.e.,

rLPCS � syl(t, s) :H ⇐⇒ H = A → C such that for some B
rLPCS � t : (A → B) and rLPCS � s : (B → C).

Proof. (⇐=). Here is a derivation of t : (A → B), s : (B → C) � syl(t, s) :(A → C):

c1 : ((B → C) → (A → (B → C))) (∗CS)
s : (B → C) (Hyp)

c1 · s : (A → (B → C)) (∗A2)
c2 : ((A → (B → C)) → ((A → B) → (A → C))) (∗CS)

c2 · (c1 · s) : ((A → B) → (A → C)) (∗A2)
t : (A → B) (Hyp)

(c2 · (c1 · s)) · t : (A → C) (∗A2)

(=⇒). Consider an arbitrary derivation of syl(t, s) : H in the ∗-calculus. It can
easily be seen that any such derivation must have the same structure as the
one used for the ⇐=-direction above: the only difference can be in the choice of
axioms for constants c1 and c2 and of formulas for terms s and t. Since CS is
schematically injective, we know the form of axioms proven by c1 and c2. Thus,
we can shape this as a unification problem: find X1, Y1, X2, Y2, Z2, Xs, and Xt

such that rLPCS � s :Xs, rLPCS � t :Xt, and the following is a ∗-calculus deriva-
tion of s :Xs, t :Xt � syl(t, s) :H :

1. c1 : (X1 → (Y1 → X1)) (∗CS)
2. s : Xs (Hyp)
3. c1 · s : (Y1 → X1) (∗A2)
4. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
5. c2 · (c1 · s) : ((X2 → Y2) → (X2 → Z2)) (∗A2)
6. t : Xt (Hyp)
7. (c2 · (c1 · s)) · t : H (∗A2)
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To make the applications of rule ∗A2 work in lines 3, 5, and 7, the unification
variables have to satisfy the following equations:

X1 = Xs from 3. (1)
X2 → (Y2 → Z2) = Y1 → X1 from 5. (2)

X2 → Y2 = Xt from 7. (3)
X2 → Z2 = H from 7. (4)

By (1) and (2), Xs = X1 = Y2 → Z2. This equation combined with (3) and (4)
shows that H is indeed an implication that follows by HS from Xt and Xs

justified by t and s respectively. ��

Lemma 7 (Stripping k conjunctions). For any integer k ≥ 0 there exists a
term tk of size O(k) that encodes the operation of stripping k conjunctions, i.e.,

rLPCS � tk :D ⇐⇒ D = H → C, where C is a k-conjunct of H.

Proof. We prove by induction on k that the conditions are satisfied for

t0 = (c2 · c1) · c1 ,

tk+1 = syl(c∧1 + c∧2, tk) .

It is clear that |tk| = 8k + 5 because |t0| = 5 and |tk+1| = |tk| + 8.
Base case, k = 0. (⇐=). If C is a 0-conjunct of H , then H = C, and it is easy

to see that t0 corresponds to the standard derivation of the tautology C → C.
(=⇒). Any ∗-derivation of t0 :D must have the form:

1. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
2. c1 : (X1 → (Y1 → X1)) (∗CS)
3. c2 · c1 : ((X2 → Y2) → (X2 → Z2)) (∗A2)
4. c1 : (X3 → (Y3 → X3)) (∗CS)
5. (c2 · c1) · c1 : D (∗A2)

For ∗A2 from line 5 to be valid, it is necessary that D = X2 → Z2. It follows
from ∗A2 in line 3 that X2 → (Y2 → Z2) = X1 → (Y1 → X1), in which case
X2 = X1 = Z2. Therefore, D = X2 → X2, which is an implication from a
formula to its 0-conjunct.

Induction step. (⇐=). Let H be a formula with a (k + 1)-conjunct C. Then
H must be of the form H1 ∧ H2 with C being a k-conjunct of Hi for some
i = 1, 2. By the induction hypothesis, rLPCS � tk : (Hi → C) for this i. Since,
in addition, rLPCS � c∧1 : (H → H1) and rLPCS � c∧2 : (H → H2), by rule ∗A3,
rLPCS � (c∧1 + c∧2) : (H → Hi) for both i = 1 and i = 2. Then, by Lemma 6,
rLPCS � tk+1 : (H → C).
(=⇒). By the induction hypothesis, tk justifies only implications from a formula
to one of its k-conjuncts. It is clear from rule ∗A3 that c∧1 + c∧2 justifies only
implications from a formula to one of its 1-conjuncts. By Lemma 6, tk+1 justifies
only hypothetical syllogisms obtained from the latter and the former, but a
k-conjunct of a 1-conjunct of a formula is its (k + 1)-conjunct. ��
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Lemma 8. For any term s and any integer l ≥ 0 there exists a term conj(s, l)
of size O(|s|2l) with the following property:

rLPCS � conj(s, l) :D ⇐⇒ D = B → C1 ∧ · · · ∧ C2l such that
rLPCS � s : (B → Ci) for all i = 1, . . . , 2l.

Proof. We prove by induction on l that the conditions are satisfied for

conj(s, 0) = syl(s, t0) ,

conj(s, l + 1) =
(
c2 · syl

(
conj(s, l), c∧

))
· conj(s, l) .

It is not hard to see that |conj(s, l)| = 2l(|s|+19)−9 because |conj(s, 0)| = |s|+10
and |conj(s, l + 1)| = 2|conj(s, l)| + 9.

Base case, l = 0. (⇐=). For any C, rLPCS � t0 : (C → C) by Lemma 7. Then,
by Lemma 6, rLPCS � s : (B → C) implies rLPCS � syl(s, t0) :(B → C).
(=⇒). By Lemma 6, syl(s, t0) justifies only implications B → C for which there
exists an A such that rLPCS � s : (B → A) and rLPCS � t0 : (A → C). By
Lemma 7, the latter implies A = C. Therefore, rLPCS � s : (B → C).4

Induction step. (⇐=). Let H = C1 ∧ · · · ∧ C2l+1 with rLPCS � s : (B → Ci) for
all its (l+1)-conjuncts. Then H = H1 ∧H2 where C1, C2, . . . , C2l are l-conjuncts
of H1 and C2l+1, C2l+2, . . . , C2l+1 are l-conjuncts of H2. By the induction hy-
pothesis,

rLPCS � conj(s, l) :(B → H1) , (5)
rLPCS � conj(s, l) :(B → H2) . (6)

In addition, rLPCS � c∧ : (H1 → (H2 → H1 ∧ H2)); in other words,

rLPCS � c∧ : (H1 → (H2 → H)) . (7)

From (7) and (5) by Lemma 6, for s′ = syl(conj(s, l), c∧) we have

rLPCS � s′ : (B → (H2 → H)) .

Then, from (6) and rLPCS � c2 : ((B → (H2 → H)) → ((B → H2) → (B → H))):

rLPCS � c2 · s′ : ((B → H2) → (B → H)) and, finally,
rLPCS � (c2 · s′) · conj(s, l) :(B → H) .

It remains to note that conj(s, l + 1) = (c2 · s′) · conj(s, l).
(=⇒). By Lemma 6, the rule

t : (A → B) s : (B → C)
syl(t, s) :(A → C)

(Syl)

4 Note that, in general, conj(s, 0) = s does not satisfy the =⇒-direction.
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is admissible in the ∗-calculus. So any ∗-derivation of conj(s, l + 1) : D must
contain the following key elements (we have already incorporated the induction
hypothesis about conj(s, l) as well as Lemma 6):

1. conj(s, l) : (B → C1 ∧ C2 ∧ · · · ∧ C2l) (IH)
2. c∧ : (X∧ → (Y∧ → X∧ ∧ Y∧)) (∗CS)
3. s′ : (B → (Y∧ → X∧ ∧ Y∧)) (Syl)
4. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
5. c2 · s′ : ((X2 → Y2) → (X2 → Z2)) (∗A2)
6. conj(s, l) : (B′ → C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1) (IH)
7. (c2 · s′) · conj(s, l) : D (∗A2)

where rLPCS � s : (B → Ci) and rLPCS � s : (B′ → C2l+i) for i = 1, . . . , 2l. Let
us collect all unification equations necessary for this to be a valid fragment of a
∗-derivation:

C1 ∧ C2 ∧ · · · ∧ C2l = X∧ from 3. (8)
B → (Y∧ → X∧ ∧ Y∧) = X2 → (Y2 → Z2) from 5. (9)

B′ → C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1 = X2 → Y2 from 7. (10)
X2 → Z2 = D from 7. (11)

By (9) and (10), B = X2 = B′. Thus, rLPCS � s : (B → Ci) for i = 1, . . . , 2l+1.
Also

Y∧ = Y2 = C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1 ,

again by (9) and (10). So, by (8) and (9),

Z2 = X∧ ∧ Y∧ = (C1 ∧ C2 ∧ · · · ∧ C2l) ∧ (C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1) .

By (11), D is indeed an implication from B to this balanced conjunction for all
of whose (l + 1)-conjuncts term s justifies their entailment from B. ��
Lemma 9. For the term disj = c∨1 + c∨2 of size O(1),

rLPCS � disj :D ⇐⇒ D = B → H, where B is a disjunct of H.

Proof. Easily follows from ∗A3 and ∗CS. ��

4 Reduction from Vertex Cover, Part I

We now use the justification terms from the previous section to build a polyno-
mial-time many-one reduction from BVC to rLPCS . In this section, it is sufficient
for CS to be schematic and axiomatically appropriate.

Lemma 10. Let a term of size O(k2l) be defined by

tk→l = conj(tk, l) .

For any binary exponential graph G = 〈V, E〉 with |V | = 2k and any set C ⊆ V
of size 2l,

rLPCS � tk→l : (FV → FC) .
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Proof. |conj(tk, l)| = O
(
|tk|2l

)
= O(k2l).

All l-conjuncts pi of FC , where i ∈ C, must be k-conjuncts of FV . Thus, for
any of them by Lemma 7, rLPCS � tk : (FV → pi). Now, by Lemma 8, we have
rLPCS � conj(tk, l) :(FV → FC). ��
Lemma 11. Let a term of size O(l) be defined by

tl→edge = syl(tl, disj) .

For any binary exponential graph G = 〈V, E〉, any set C ⊆ V of size 2l, and any
edge e ∈ E,

rLPCS � tl→edge : (FC → Fe) ⇐⇒ e is covered by C.

Proof. |syl(tl, disj)| = |tl| + |disj| + 5 = O(l) + O(1) = O(l).
(⇐=). If i ∈ e ∩ C is the vertex in C that covers e, then pi is a disjunct of Fe,
so rLPCS � disj : (pi → Fe) by Lemma 9. But pi is also an l-conjunct of FC , so,
by Lemma 7, rLPCS � tl : (FC → pi). Finally, rLPCS � syl(tl, disj) : (FC → Fe) by
Lemma 6.
(=⇒). If C does not cover e, it is easy to see that FC → Fe is not valid, therefore,
rLPCS � s : (FC → Fe) for any term s. ��
Lemma 12. Let a term of size O(l2m) be defined by

sl→m = conj(tl→edge, m) .

For any binary exponential graph G = 〈V, E〉 with |E| = 2m and any set C ⊆ V
of size 2l,

rLPCS � sl→m : (FC → FG) ⇐⇒ C is a vertex cover for G.

Proof. |conj(tl→edge, m)| = O(|tl→edge|2m) = O(l2m).
(⇐=). If C is a vertex cover, then rLPCS � tl→edge : (FC → Fe) for all e ∈ E,
by Lemma 11. All m-conjuncts of FG are Fe’s with e ∈ E. Hence, by Lemma 8,
rLPCS � conj(tl→edge, m) :(FC → FG).
(=⇒). If C is not a vertex cover, by Lemma 5.3, formula FC → FG is not valid,
hence rLPCS � s : (FC → FG) for any term s. ��
Theorem 13. Let a term of size O(k2l) + O(l2m) be defined by

tk→l→m = syl(tk→l, sl→m) .

For any binary exponential graph G = 〈V, E〉 with |V | = 2k and |E| = 2m and
any integer 0 ≤ l ≤ k,

G has a vertex cover of size ≤ 2l =⇒ rLPCS � tk→l→m : (FV → FG) .

Proof. |syl(tk→l, sl→m)| = |tk→l| + |sl→m| + 5 = O(k2l) + O(l2m).
By Lemma 10, rLPCS � tk→l : (FV → FC) for any set C ⊆ V of size 2l. If G has

a vertex cover of size ≤ 2l, it can be enlarged to a vertex cover of size 2l. Let C be
such a vertex cover of size 2l. Then, by Lemma 12, rLPCS � sl→m : (FC → FG).
Thus, by Lemma 6, rLPCS � syl(tk→l, sl→m) :(FV → FG). ��
Note that the term tk→l→m depends only on size 2l of a vertex cover C and the
numbers of vertices and edges of G.
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5 Reduction from Vertex Cover, Part II

Earlier, we promised to show that the choice of a particular axiomatization for
the propositional logic has no impact on our results. Indeed, for all results in
Sect. 4 as well as for the ⇐=-directions in Sect. 3, any finite schematic axioma-
tization would suffice. For an alternative set of propositional axiom schemes, the
constants would simply be replaced by corresponding ground terms that justify
the former axioms in the new system. These new terms would have size O(1).
It follows from the proof of Theorem 13 that the derivation of FV → FG we
intended to represent by term tk→l→m fails. We use the condition of schematic
injectivity to make sure that no other derivation of tautology FV → FG acci-
dentally falls under the scope of tk→l→m. In doing so, it is instrumental that
we can provide a term (not necessarily a constant) that justifies all tautologies
from a particular scheme and only them. Although non-atomic terms contain-
ing + typically justify several schemes of formulas even if CS is schematically
injective, it is possible to justify all propositional tautologies by +-free terms
(see [Art01]), which justify at most one scheme. Using this observation, it is not
hard to show that our results (including the ones to follow in this section) are,
in fact, independent of the propositional axiom schemes chosen for A1.

To finish the polynomial-time reduction from BVC to rLPCS it now remains
to prove the other direction:

rLPCS � tk→l→m : (FV → FG) =⇒ G has a vertex cover of size ≤ 2l.

In this section, we again need the strongest restrictions on CS: to be axiomati-
cally appropriate and schematically injective.

Lemma 14 (Converse to Lemma 10)

rLPCS � tk→l :H =⇒
H = B → D,
where D is a balanced conjunction of depth ≥ l
whose all l-conjuncts are k-conjuncts of B.

Proof. By definition, tk→l = conj(tk, l), so by Lemma 8, it justifies only implica-
tions B → C1∧· · ·∧C2l with rLPCS � tk : (B → Ci) for i = 1, . . . , 2l. By Lemma 7,
term tk only justifies implications from a formula to its k-conjuncts. ��
Lemma 15 (Converse to Lemma 11)

rLPCS � tl→edge :H =⇒ H = B → D1 ∨ D2,
where either D1 or D2 is an l-conjunct of B.

Proof. By definition, tl→edge = syl(tl, disj). By Lemma 6, H can only be an
implication B → D such that rLPCS � tl : (B → C) and rLPCS � disj : (C → D)
for some C. By Lemma 9, the latter statement implies that D = D1 ∨ D2 with
C = Di for some i = 1, 2. By Lemma 7, Di is an l-conjunct of B. ��
Lemma 16 (Converse to Lemma 12)

rLPCS � sl→m :H =⇒
H = B → (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m),
where either Ci or Di is an l-conjunct of B
for each i = 1, . . . , 2m.
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Proof. By definition, sl→m = conj(tl→edge, m). By Lemma 8, H must be an
implication from some B to a balanced conjunction of depth ≥ m such that, for
all its m-conjuncts F , rLPCS � tl→edge : (B → F ). By Lemma 15, each of these
m-conjuncts must be a disjunction with one of the disjuncts being an l-conjunct
of B. ��

Theorem 17 (Converse to Theorem 13)

rLPCS � tk→l→m :H =⇒
H = B → (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m),
and there is a size ≤ 2l set X of k-conjuncts of B
with either Ci ∈ X or Di ∈ X for each i = 1, . . . , 2m.

Proof. By definition, tk→l→m = syl(tk→l, sl→m). By Lemma 6, H = B → F
with (a) rLPCS � tk→l : (B → Q), (b) rLPCS � sl→m : (Q → F ) for some Q.
From (a), by Lemma 14, Q = Q1 ∧ · · · ∧ Q2l whose all l-conjuncts Qi’s are also
k-conjuncts of B. So X = {Qi | i = 1, . . . , 2l} is a size ≤ 2l set (with possible
repetitions) of k-conjuncts of B. It follows now from (b), by Lemma 16, that F =
(C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m) with either Ci or Di being an l-conjunct of Q for
each i = 1, . . . , 2m, i.e., with either Ci ∈ X or Di ∈ X for each i = 1, . . . , 2m. ��

Theorem 18. For any binary exponential graph G = 〈V, E〉 with |V | = 2k and
|E| = 2m and any integer 0 ≤ l ≤ k,

rLPCS � tk→l→m : (FV → FG) ⇐⇒ G has a vertex cover of size ≤ 2l.

Proof. The ⇐=-direction was proven in Theorem 13. We now prove the =⇒-
direction. FV → FG already has the form prescribed by Theorem 17. The only
k-conjuncts of FV are sentence letters p1, . . . , p2k . Therefore, there must exist a
set X of ≤ 2l of these sentence letters such that for each m-conjunct Fe of FG

at least one of its disjuncts, pv1(e) or pv2(e), is in X . This literally means that
in G there is a set of ≤ 2l vertices that covers all edges. ��

Theorem 19. For an axiomatically appropriate and schematically injective CS,
derivability in rLPCS is NP-complete.

Proof. It was proven in [Kru03] that rLPCS is in NP. It is easy to see that both
FV and FG have size polynomial in the size of G. As for term tk→l→m, it was
shown in Theorem 13 that |tk→l→m| = O(k2l) + O(l2m), which is polynomial in
the size of G provided l ≤ k (BVC for l > k is trivial). Thus, Theorem 18 shows
that rLPCS is NP-hard. ��

6 Other Justification Logics

Justification counterparts J, JD, JT, J4, and JD4 of modal logics K, D, T, K4,
and D4 respectively have been developed in [Bre00] (see also [Art08a]). In ad-
dition, there are several hybrid logics combining justifications and epistemic
modalities for multiple agents: TnLPCS , S4nLPCS , and S5nLPCS (see [Art06]). It
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was shown in [Kuz08a] that their reflected fragments rJ4CS , rJD4CS , rTnLPCS ,
rS4nLPCS , and rS5nLPCS are axiomatized by the same ∗-calculus as rLPCS ,
whereas axiomatization for rJCS , rJDCS , and rJTCS is obtained by dropping ∗A5
for arbitrary terms while simultaneously integrating it into ∗CS for constants.
This immediately yields that the Derivability Problem for all these logics is in NP
for any schematic CS (see [Kuz08a]).

For lack of space, we cannot provide sufficient details here; we will just
mention that hybrid logics rTnLPCS , rS4nLPCS , and rS5nLPCS are conserva-
tive over rLPCS′ , where CS′ is the modality-free part of CS. On the other hand,
rJCS , rJDCS , rJTCS , rJ4CS , and rJD4CS are strictly weaker than rLPCS , but all
the reasoning involved in constructing term tk→l→m can easily be performed in
them too.

Theorem 20. For an axiomatically appropriate and schematically injective con-
stant specification CS, the Derivability Problem for rJCS , rJDCS , rJTCS , rJ4CS ,
rJD4CS , rTnLPCS , rS4nLPCS , and rS5nLPCS is NP-complete.
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Abstract. Pure, or type-free, Linear Logic proof nets are Turing com-
plete once cut-elimination is considered as computation. We introduce
modal impredicativity as a new form of impredicativity causing cut-
elimination to be problematic from a complexity point of view. Modal
impredicativity occurs when, during reduction, the conclusion of a resid-
ual of a box b interacts with a node that belongs to the proof net inside
another residual of b. Technically speaking, superlazy reduction is a new
notion of reduction that allows to control modal impredicativity. More
specifically, superlazy reduction replicates a box only when all its copies
are opened. This makes the overall cost of reducing a proof net finite and
predictable. Specifically, superlazy reduction applied to any pure proof
nets takes primitive recursive time. Moreover, any primitive recursive
function can be computed by a pure proof net via superlazy reduction.

Keywords: Linear logic, implicit computational complexity, proof
theory.

1 Introduction

Predicativity is a logical concept known from a century, starting from Russel’s
work. It has various technical meanings. All of them, however, refer implicitly or
explicitly to some form of aciclicity (see [3] for an excellent survey). Impredicative
definitions or logical rules in a logical system may lead to logical paradoxes. On
the other hand, if logical systems are interpreted as programming languages (via
the Curry-Howard correspondence), impredicativity may lead to type systems
and programming languages with high expressive power.

In this paper, we introduce the notion modal impredicativity. We start from
Linear Logic which gives first-order status to structural rules (on the logical
side) and to duplication and erasure (on the computational side). The very defi-
nition of modal impredicativity refers to boxes, i.e., those portions of proof nets,
related to the modal meaning of formulae, that may be duplicated. During cut-
elimination, a duplication occurs when a box interacts with a contraction node,
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Fig. 1. The pure proof net ΔΔ

which corresponds to an instance of the structural rule contraction in a logical
derivation. Boxes allow to structure proofs into layers: any rule instance has a
level, the number of boxes into which it is contained. Focusing our attention
to boxes is the reason why our notion of impredicativity is dubbed as modal.
Specifically, modal impredicativity occurs when, during reduction, the root of a
residual of a box b interacts with a node that belongs to the residual of the proof
net lying inside b. The paradigmatic example where an interaction of this kind
occurs is in the (pure) proof net in Figure 1, which encodes the prototypical non
normalizing lambda-term (λx.xx)(λx.xx). Call b the (unique) box in Figure 1.
After two reduction steps we get two copies b′ and b′′ of b. Two further reduction
steps plug the root of b′ as premise of the node X belonging to the second copy
b′′ of b. This is a basic form of one-step-long cycle, since the content of b interacts
with the root of b itself. Compared to what happens classically, self-copying plays
the rôle of self-application or self-definition. Notice that the cycles we are speak-
ing about can have length greater than one. As an example, consider the proof
net corresponding to the lambda term (λx.λy.xyx)(λx.λy.xyx)(λx.λy.xyx): it
includes two boxes b1 and b2 where b1 copies b2 and b2 copies b1.

Our long-term goal is to define proper restrictions on Linear Logic allowing
to control modal impredicativity. This paper is just the first step towards this
goal. What we define here is a new notion of reduction for Linear Logic proof
nets which rules out the previously described cyclic phenomenon dynamically,
i.e. at the level of the graph-theoretic rewriting relation which governs proof net
reduction. This way, we break impredicative cycles, while keeping the freedom
of statically compose pure proof nets.

Light Logics and Modal Impredicativity. We now recall how the known sub-
systems of Linear Logic, introduced as characterizations of certain complexity
classes, work. Let us call them light logics, for short. Proof-theoretically, they
parsimoniously use the contraction rule. On the computational side, they control
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the duplication of structure. Technically, we currently know two ways of control-
ling the use of duplication. One is stratification. The other one is what we like
to call boundedness.

Stratification is a structural constraint that, at the dynamic level, has the fol-
lowing meaning: one reduction step at level n can only increase the complexity
of the underlying proof at levels (strictly) higher than n. This is achieved by
dropping dereliction and digging as logical rules. The consequence is the control
over the dimension of every single reduct, that reflects on the overall control of
reduction time. The mechanism is implicit in the structural and combinatorial
properties of proofs and is totally independent from its logical soundness. In
stratified systems, the level of any node cannot change during reduction. As a
consequence, any stratified system, by definition, cannot be modally impredica-
tive because the nodes inside a box b cannot interact with the root of any copy
of b. Elementary Linear Logic, Light Linear Logic [6] and their affine versions
use stratification.

Concerning boundedness, recall that in ordinary Linear Logic, !A is seman-
tically equivalent to A∗ =

⋃
n∈N (A ⊗ . . . ⊗ A)

︸ ︷︷ ︸
n

. Boundedness refers to various

methodologies that, informally, put !A in correspondence to a finite subset of
A∗. Computationally, this means the number of copies of each box in a proof
can somehow be statically or dynamically predicted, i.e. bounded. This way,
we automatically get a system that cannot be modally impredicative, since in
bounded systems !A cannot be equal to !A ⊗ A (and this principle seems neces-
sary to have self-copying). Soft Linear Logic [8] and Bounded Linear Logic [4]
use boundedness.

Superlazy Reduction and Modal Impredicativity. Superlazy reduction is a new
notion of reduction for Linear Logic (pure) proof nets. It is specifically designed
to control modal impredicativity. Under superlazy reduction, any box b can
interact with a tree of contraction, dereliction, digging and weakening nodes only
if the global result of this interaction somehow reduces the overall complexity
of the proof net, namely when it produces (possibly many) “open” copies of b.
If this is not the case, reduction is blocked and cannot be performed. This way
modal impredicativity is automatically ruled out, since whenever the content of b
is copied, b as a box is destroyed and no residuals of b are produced. Technically,
this is ensured by prescribing that reduction can happen only when the box is
faced with a derelicting tree of nodes, a key notion introduced in Section 3.

Superlazy Reduction and Primitive Recursion. The calculus we obtain by adopting
superlazy reduction over pure proof nets is still powerful enough to characterize
the class PR of primitive recursive functions. We show the characterization under
a standard pattern. As for soundness, we prove that every pure proof net G can
be rewritten to its normal form in time bounded by a primitive recursive func-
tion in the size of G. This is remarkable by itself, since the mere fact that super-
lazy reduction computes something is interesting by itself, considered the strong
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requirements superlazy reduction must satisfy. As for completeness, every function
in PR can be represented as a pure proof net, even under superlazy reduction.

Superlazy Reduction and Expressive Power. We here want to make some obser-
vations about pure proof nets and superlazy reduction as a paradigmatic pro-
gramming language. The set of terms we can program with are pure proof nets
coming from Linear Logic. Namely, we can use every lambda-term as a program,
ΔΔ (Figure 1) included. However, we do not have the standard unconstrained
reduction steps, which, by simulating the usual beta-reduction, allow to embed
pure, i.e. untyped, lambda-calculus into pure proof nets. In particular, the proof
net ΔΔ is normal in our setting, the reason being that we can never reach a situa-
tion where the “amount” of open copies of the box it contains is known in advance.

Related Work. Several authors have used some notion of predicativity as a way
to restrict the expressive power of programming languages or logical systems.
We here recall some of them, without any hope of being exhaustive. In [11],
as a first example, Danner and Leivant presented a variant of second order
λ-calculus obtained imposing a restriction on second order quantification. Such
a restriction has semantic flavor: all the types have a rank, an ordinal number
and universal quantification can only be instantiated if the witness has a proper
rank. This way they get a characterization of primitive recursion. Another, ear-
lier, example is Leivant’s predicative recursion [9]: if predicativity is imposed on
ordinary primitive recursion (on any word algebra), one gets a characterization
of polynomial time computable functions. Further work shows how other classes
can be characterized with similar tools [10,12]. A final example is Simmons’ fine
analysis of tiering [14]. All the cited proposals, however, share a property which
make them fundamentally different from superlazy reduction: predicativity is
enforced through static constraints, i.e., constraints on programs rather than
on the underlying reduction relation. The first author has recently proposed a
characterization of primitive recursion by a fragment of Gödel’s T [1].

On the other hand, restricted notions of reduction on Linear Logic proof
nets have appeared in the literature. This includes, for example, Girard’s closed
reduction [5] or head linear reduction [13]. None of them, however, decreases
the expressive power of the logical systems on top of which they are applied, as
superlazy reduction does.

Paper Outline. Section 2 recalls pure, i.e., untyped, proof nets and defines dere-
licting trees and superlazy reduction. Section 3 proves the primitive recursive
soundness of superlazy reduction on pure proof nets. Section 4 shows that even
under superlazy reduction, pure proof nets remain expressive enough to repre-
sent all the primitive recursive functions. Section 5 presents some further devel-
opments on the ideas presented in the paper. An extended version of this paper
including all proofs is available [2].
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Fig. 2. Base cases

2 Pure Proof Nets

Pure proof nets are graph-like structures corresponding to proofs. The set of labels
for the nodes is {P , C, W , X , R�, L�, R⊗, L⊗, R!, L!, D, N}. All nodes, but P
and C, correspond to the usual proof net labels. We use P and C for the sake of
uniformity, getting graphs without dangling edges. Figure 2(a) says that a wire is
a proof net. Given the two proof nets in 2(b) we can build those in Figure 3. The
inductive rule at the end of Figure 2(a) introduces (modal) boxes.

Please notice that the proof nets introduced here are slightly different from
the usual ones. In particular, there is not any explicit node playing the rôle of the
cut rule or of axioms. Moreover, proof net conclusions are partitioned into one
proper conclusion and some premises. This way, proof nets get an intuitionistic
flavor which makes the correspondence with lambda-terms more evident.

Reduction Rules. The reduction rules for the proof nets are the usual ones.
We omit the obvious linear rules −→�, −→⊗, and we just recall the modal
reduction rules in Figure 4. Call −→ the contextual closure of the rewriting
steps −→�, −→⊗, −→D, −→X , −→W , −→N , −→M . The reflexive and transitive
closure of −→ is −→∗.

The reduction rules −→X and −→N are the only ones somehow increasing the
size of the underlying proof-net: the first one copies a box, while the second one
puts a box inside another box. Superlazy reduction, as we will see shortly, does
not simply eliminate those rules, but rather forces them to be applicable only
in certain contexts, i.e., only when those rules are part of a sequence of modal
rewriting rules which have a globally predictable behavior.

2.1 Superlazy Reduction

We shall be able to prove a soundness result about the cost of the reduction of
the proof nets relatively to a superlazy version of −→ that requires the notion
of derelicting tree.

Derelicting trees. For every proof net G, let us assume that the cost of traversing
any X-node of G is 0, any D-node is −1, any W -node is 0 and any N -node is
+1. The cost of a path from node u to node v is the sum of the costs of nodes
in the path including u and v. A derelicting tree in G is a subgraph t of G that
satisfies the following four conditions:
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Fig. 3. Inductive cases

1. t only contains nodes X, D, N, W ; so it must be a tree, and we call w its root;
2. the leaves of t are labelled either with D or with W ;
3. for every leaf v labelled with D in t, the cost of the path from w to v in t is

−1;
4. the cost of any other path in t starting from w is nonnegative.

Figure 5(a) shows an example of a derelicting tree. Conditions 1. and 2. are
trivially satisfied. The cost of v1v2v4v7v10 is −1 and the same for v1v3v6. Finally,
any other path starting from v1 has nonnegative cost. For example, v1v3v5v8 has
cost 1.
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Fig. 5. A generic derelicting tree (a) and a bounded spine (b)

Figure 5(b) depicts a remarkable instance of derelicting tree: an n-bounded
spine with n occurrences of X nodes that we shall represent as a dashed box
with name nX .

Superlazy Reduction Step and Rewriting System on Pure Proof Nets. The super-
lazy normalization step is →XNDW , defined in Figure 6, ∇t being any derelict-
ing tree. ��, �⊗, �M , �XNDW denote the surface contextual closure of the
rewriting steps −→�, −→⊗, −→M , −→XNDW . “Surface” means that we never
apply a reduction inside a box. � is the union of ��, �⊗, �M , �XNDW . The
reflexive and transitive closure of � is �∗.

Superlazy reduction is a very restricted notion of reduction. In particular, it is
almost useless when applied to proof nets obtained from ordinary lambda-terms
via the usual, uniform encoding. In particular:

• If terms are encoded via the so-called call-by-name encoding (i.e., the one
induced by Girard’s correspondence (A → B)◦ ≡ !A◦ � B◦), then any redex

G
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. . .

. . .

∇t

· · ·

→XNDW

∇t

· · ·

· · ·

∇t

G

. . .
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. . .

Fig. 6. Superlazy cut elimination step
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(λx.M)N where M consists of an application LP and x appears free in P ,
cannot be reduced in the corresponding proof net: a box would be faced with
something different from a derelicting tree.

• On the other hand, if terms are encoded via the call-by-value encoding (i.e.
via the correspondence (A → B)◦ ≡ !(A◦ � B◦)), then any redex (λx.M)N
where M consists itself of an abstraction λy.L and x appears free in L cannot
be reduced in the corresponding proof net.

Unfortunately, we do not even know any criteria allowing to guarantee that cer-
tain proof nets can be reduced to normal form (w.r.t. ordinary reduction) by
way of superlazy reduction. Moreover, there currently isn’t any result character-
izing the class of normal forms w.r.t. superlazy reduction; this is in contrast, for
example, to lambda calculus and call-by-value reduction, where the cbv normal
form of any (closed) term M (if any) is always a value. This is why proving
that proof nets are complete w.r.t. some given class of functions, under the
superlazy reduction, is non-trivial. Nonetheless, we explicitly prove the com-
pleteness of superlazy reduction (see Section 4). The next section shows why
both (A → B)◦ ≡ !A◦ � B◦ and (A → B)◦ ≡ !(A◦ � B◦) do not work well
here: superlazy reduction of any proof net always terminates in a time bounded
by suitable primitive recursive functions.

Linear Logic with superlazy reduction can be seen as a generalization of the
principles of Soft Linear Logic. Every time a box is replicated, that box is opened.
According to this vision, a derelicting tree with m leaves is similar to a multi-
plexor node of rank m. However, the structure of SLL gives a further restriction:
if k is the rank of the proof net G, that is the maximum rank of the multiplexers
in G, we are sure that every box of G will be copied at most k times. Such a
restriction leads to a polytime bound (see [8]).

3 Soundness

We prove the result starting with a restriction ↪→ on the relation �. ↪→ is simply
the union of ��, �⊗, �M and �XNDW , where any �M can only be applied
to nets which only contain �M redexes. In other words, �M is postponed as
much as possible. This makes our arguments simpler without loss of generality,
as we now show. ↪→k will denote a reduction with k steps of ↪→. Given a proof
G and any reduction relation →, [G]→ and ||G||→ denote the maximum length
of a reduction sequence starting in G (under →) and the maximum size of any
reduct of G (under →), respectively. |G| is the size of the proof net G.

Lemma 1. For every proof G, [G]� = [G]↪→ and ||G||� = ||G||↪→.

Proof. Whenever G �M F �x H and x �= M , there are F1, . . . , Fn (where
n ≥ 1) such that G �x1 F1 �x2 · · · �xn Fn �xn+1 H, and xi+1 = M whenever
xi = M . For example, if G �M F �XNDW H and the box copied in the second
step is exactly the one created by the first step, then clearly

G �XNDW J �XNDW H.
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As a consequence, for any sequence G1 � · · · � Gn there is another sequence
F1 ↪→ · · · ↪→ Fm such that G1 = F1, Gn = Fm and m ≥ n. This proves the first
claim. Now, observe that for any 1 ≤ i ≤ n there is j such that |Fj | ≥ |Gi|: a
simple case analysis suffices. This concludes the proof. �

The following definition is the main ingredient since it allows to structure the
proof of soundness inductively. A reduction sequence σ ≡ G �x1 F �x2 . . . �xk

H is said to be a (n, d)-box reduction when xi �= M for every 1 ≤ i ≤ k
and there are r ≤ n boxes b1, . . . , br between those at level 0 in G such that
the following conditions hold (let J1, . . . , Jr be the proof nets inside b1, . . . , br,
respectively):

• ∂(J1), . . . , ∂(Jr) < d.
• The box involved in any step �XNDW of σ is either a residual of b1, . . . , br

or a residual of a box appearing in one of J1, . . . , Jr.

Remark 1. A few observations about the above definition:

1. G may contain more than n boxes at level 0, or it may contain boxes whose
depth is greater than d;

2. H is not necessarily a normal form. It may contain boxes at level d, or
higher;

3. By definition, any node inside the boxes b1, . . . , br must have depth at least
1. This means that if σ is a (n, 0)-box reduction it is, in fact, talking about
boxes that contain proof nets with negative depth. They cannot exist, so σ
only uses the linear rewriting steps −→�, −→⊗;

4. By definition, every reduction starting at any net G is a (|G|, ∂(G))-box
reduction because |G| necessarily bounds the number n of boxes, and ∂(G)
bounds the value d;

5. The definition is a good one only because we are assuming to work without
the rule −→M . Otherwise (residuals of) boxes coming from b1, . . . , br could
be “merged” with (residuals of) boxes in G but not in the list.

Now we define a family of functions {fd : N × N → N}d∈N such that every
fd(n, m) bounds both the reduction cost and the size of the reducts, of every net
G when performing a (n, d)-box reduction on it:

f0(n, m) = m

fd+1(0, m) = m

fd+1(n + 1, m) = 1 + fd+1(n, m) + fd((2m + 1)fd+1(n, m), (2m + 1)fd+1(n, m))

By definition, all the functions fd are primitive recursive.

Lemma 2. For every d, n, m ∈ N, fd+1(n, m) ≥ fd(n, m) and fd(n + 1, m) ≥
fd(n, m).

The proof is by induction on n. We can prove the following:

Proposition 1. Let G be any proof net and let G ↪→k H be a (n, d)-box reduc-
tion sequence with k steps. Then k, |H | ≤ fd(n, |G|).
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Proof. We write m = |G|. We can proceed by induction on d:

• If d = 0, thanks to Remark 1.3 above, the reduction G ↪→k H only involves
multiplicative reduction steps. They strictly reduce the size of the underlying
net. So, |H |, k ≤ m = f0(n, m).

• Suppose the thesis holds for d and suppose G ↪→k H is a (n, d + 1)-box
reduction. We proceed by another induction, this time on n:
• If n = 0, then none of the boxes at level d + 1 can be reduced. As a

consequence, G ↪→k H only involves multiplicative reduction steps and,
again,

|H |, k ≤ m = fd+1(0, m).

• Suppose the thesis holds for n and suppose G ↪→k H is a n + 1-box re-
duction sequence at level d + 1. By definition, there are r ≤ n + 1 boxes
b1 . . . , br in G satisfying the definition above. There is clearly one index
t, where 1 ≤ t ≤ r such that bt is the last box being copied (among
b1, . . . , br) in the sequence G ↪→k H . Up to the point where bt is copied,
the reduction sequence can be considered as a (n, d+1)-box reduction se-
quence: the witness list of box is exactly b1, . . . , bt−1, bt+1, . . . , br. After bt

is copied, on the other hand, the reduction sequence under consideration
can be considered as a (|J |, d)-box reduction sequence, since all the boxes
that will be copied are part of the residual of the content of boxes in the
list b1, . . . , br. The reduction under consideration can be decomposed as
follows

G ↪→i F �XNDW J ↪→j H

where G ↪→i F is an (n, d + 1)-box reduction sequence, the step
F �XNDW J involves exactly bt and J ↪→j H is a (|J |, d)-box reduc-
tion. Now, observe that |bt| ≤ m. In |J | we will find at most |F | copies
of bt and at most |bt| copies of the underlying derelicting tree (which can
itself contain at most |F | nodes). Applying both inductive hypothesis, we
get

i, |F | ≤ fd+1(n, m)
|J | ≤ 2mfd+1(n, m) + |F |

j, |H | ≤ fd(|J |, |J |)

As a consequence:

k = i + 1 + j ≤ fd+1(n, m) + 1 + fd(|J |, |J |)
≤ fd+1(n, m) + 1 + fd((2m + 1)fd+1(n, m), (2m + 1)fd+1(n, m))

|H | ≤ fd(|J |, |J |) ≤ fd+1(n, m) + 1 + fd(|J |, |J |)
≤ fd+1(n, m) + 1 + fd((2m + 1)fd+1(n, m), (2m + 1)fd+1(n, m))

This concludes the proof. �

Corollary 1 (Soundness). For every n ∈ N there is a primitive recursive
function gn : N → N such that for every proof net G, [G]�, ||G||� ≤ g∂(G)(|G|).
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Proof. By Lemma 1, we can bound [G]↪→ and ||G||↪→ rather than [G]� and
||G||�. Now, observe that any reduction G ↪→k H is a (|G|, ∂(G))-box reduction,
followed by at most a linear number of M -reduction steps, which anyway shrinks
the size of the underlying proof net. The thesis follows from Proposition 1. �

4 Completeness

The goal is to show the existence of an embedding of any primitive recursive
function f into a pure proof net Gf such that Gf simulates f via superlazy
reduction. The existence of such an embedding is what we mean by completeness.

Our comments at the end of Section 2 should have convinced the reader about
the impossibility of proving completeness by the usual encoding of the untyped
lambda-calculus into pure proof nets. We really need to tailor the encoding of
data and programs in such a way that superlazy reduction works on them, i.e., we
want to be sure that a program applied to an argument reduces to the intended
result.

The details of the completeness proof do not fit here, but they can be found
in [2], where we also also develop a slightly more general proof of soundness.
Only the major ingredients towards completeness are reported here.

The first ingredient is the representation of natural numbers. Figure 7 in-
troduces the closed proof nets 0 and n, with n ≥ 1. A basic observation to
prove the completeness is that every n contains a n-bounded spine nX (see
Fig. 5(b) ). This implies that whenever n is applied to a box containing a proof
net G, superlazy reduction will copy the box n times and n copies of G will ap-
pear, one applied to the next one. Computing the successor of a natural number
can be done by a proof net, quite similarly to what happens in ordinary lambda
calculus. Now, at least, the key notion can be given. Let G be a proof net with a
single premise and a single conclusion. We write G � 〈n1, . . . , nm〉 to mean the
closed proof net with a single conclusion obtained by plugging the conclusion
of the net 〈n1, . . . , nm〉 (obtained by “tensoring” together n1, . . . , nm) into the
unique assumption of G. For every function f : N

m → N, with arity m ≥ 0, we

R�W

R�

C

≡
0

C

nX

nL�

R�

R�

C

. . .

n ≥ 1

≡
n

C

Fig. 7. Church numerals as proof nets
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shall say that a proof net Gf with one premise represents f iff Gf � 〈n1, . . . , nm〉
superlazily reduces to f(n1, . . . , nm), for every n1, . . . , nm ∈ N.

The second ingredient is the possibility of freely duplicate data, i.e., natural
numbers. This is possible even if the natural number being copied (or erased)
does not lie inside a box. Copying a natural number n involves applying a (boxed)
pair of successors and a pair of 0 to the net n. Erasing n, on the other hand,
can be performed by applying a boxed identity and another boxed identity to
n: this way n can be reduced itself to a boxed identity, which can be erased by
cutting it against a W node.

The first two ingredients allow to encode basic primitive recursive functions
and composition. To get the most important construction, namely primitive
recursion itself, a third ingredient is necessary, namely iteration. Iterating n times
a given function f , where n is a parameter, can be done by way of superlazy
reduction: putting the proof net representing f inside a box and apply the box
to n suffices. However, if the proof net representing f has some premises, the
resulting proof net would only accept boxed natural numbers as arguments,
and this would break the scheme which makes superlazy reduction works. The
solution consists in iterating only closed functions, exploiting the higher-order
nature of proof nets. The usual primitive recursion scheme can be finally obtained
by using the standard technique of simulating recursion by iteration.

Theorem 1 (Completeness). Every f in PR is represented by a proof net Gf .

5 Further Developments

As we explained in the Introduction, this paper is just the first step in a long-
term study about how to control modal impredicativity.

The are at least two distinct research directions the authors are following at
the time of writing. We recall the obtained results here, pointing to further work
for additional details and proofs.

First of all, the way we proved completeness of proof net reduction w.r.t.
primitive recursion suggests a way of capturing Hofmann’s non-size increasing
computation [7] by way of a proper, further restriction to superlazy reduction.
We basically need two constraints:

• Boxes can only be copied when they are closed, i.e., when they have no
premises.

• Any box b can only be copied if the proof net contained in b contains at most
one node X at level 0.

The obtained reduction relation is said to be the non-size increasing superlazy
reduction and is denoted with ⇒. With these constraints, non-size increasing
polytime computation can be simulated by pure proof nets. Moreover:

Theorem 2. For every n ∈ N there is a polynomial pn : N → N such that for
every proof net Π, [G]⇒, ||G||⇒ ≤ p∂(G)(|G|)
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The second direction we are considering concerns methods to keep modal im-
predicativity under control by more traditional static methods in the spirit of
light logics. Consider the equivalence between !A and !A⊗A. As already pointed
out, this equivalence is somehow necessary to get modal impredicativity. So, con-
trolling it means controlling modal impredicativity. Now, suppose that the above
equivalence holds but A only contains instances of the ! operator which are in-
trinsically different from the top-level one in !A. Morally, this would imply that
even if a contraction node is “in” A, it cannot communicate with the box in !A,
because they are of a different nature. This way modal impredicativity would
be under control. But the question is: how to distinguish different instances of
! from each other? One (naive) answer is the following: consider a generaliza-
tion of (multiplicative and exponential) Linear Logic where syntactically differ-
ent copies !a1 , !a2 , . . . of the modal operator ! are present. As an example, take
the set {!n}n∈N. Then, impose the following constraint: !aA is a legal formula
only if the operators !b1 , . . . , !bn appearing in A are all different from a, i.e., if
a �∈ {b1, . . . , bn}. We strongly believe that this way a system enjoying properties
similar to those of predicative recurrence schemes [9] can be obtained.

6 Conclusions

We described modal impredicativity and a concrete tool — superlazy reduction
— that controls it. Superlazy reduction on pure proof nets greatly influences the
expressive power of the underlying computational model: from a Turing complete
model we go down to first-order primitive recursive functions.

In a sentence, we learnt that the expressive power of a programming lan-
guage system can be controlled by acting on the dynamics (i.e., the underlying
reduction relation) without touching the statics (i.e., the language into which
programs are written). To get the complete picture, however, we still need tools
to predict which set of programs will be useful from a computational point of
view.

This could have potential applications in the field of implicit computational
complexity, where one aims at designing programming languages and logical sys-
tems corresponding to complexity classes. Indeed, the impact of ICC in applica-
tions crucially depends on the intensional expressivity of the proposed systems:
one should be able to write programs naturally.
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Abstract. We introduce and illustrate a graph calculus for proving
and deciding the positive identities and inclusions of fork algebras, i.e.,
those without occurrences of complementation. We show that this graph
calculus is sound, complete and decidable. Moreover, the playful na-
ture of this calculus renders it much more intuitive than its equational
counterpart.
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1 Introduction

In this paper we introduce and illustrate a graph calculus for deciding the positive
identities and inclusions of fork algebras, i.e., those having no occurrences of
complementation.

Relation algebras [15] are appropriate to formalize some aspects of program
methodology despite their limitations on expressive and proof powers. One of the
motivations for extending the relation algebraic formalism is capturing important
notions linked to storing and retrieving of data, which is beyond its range. An op-
erator introduced to this end is the fork operator [8], which is induced by a given
injective coding function ��, so that b��c can be regarded as an encoding of the or-
dered pair (b, c). Given (binary) relations X and Y on a base set U , by applying
fork to X and Y we obtain the relation {(a, b��c) : (a, b) ∈ X and (a, c) ∈ Y }.

For instance, given relations X1, X2, X3, X4 on a set U , fork can be used to
store the coded result of the application of X1, X2, X3, X4 to a single element
a ∈ U . That is, a pair (a, b) belongs to the relation obtained by iterated applica-
tion of fork to relations X1, X2, X3, X4 on U , iff there are b1, b2, b3, b4 ∈ U such
that b = b1��(b2��(b3��b4)) and (a, b1) ∈ X1, (a, b2) ∈ X2, (a, b3) ∈ X3, (a, b4) ∈
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X4. Fork can also be used to define projection operators to retrieve the data
stored. For instance, one can define a new constant operator π4

3 that outputs
the third coordinate of a quadruple, i.e., a pair (a, b) belongs to the relation π4

3
iff there are a1, a2, a3, a4 ∈ U such that a is the encoding a1��(a2��(a3��a4)) and
b is a3.

Abstractly, relation algebras can be defined by a set of identities specifying
the behavior of the Boolean and Peircean operators as follows. The former oper-
ators behave as in Boolean algebras. The latter operators behave as in involuted
monoid theory. One also adds an identity expressing a geometric aspect of the
interaction of Boolean and Peircean operators [9,14]. Fork algebras may be de-
fined by extending relation algebras with a new binary operator � (fork) and
the following three identities:

(a) (I �E)T � (E � I)T � I,
(b) (r � s) ◦ (t � q)T = (r ◦ tT) � (s ◦ qT),
(c) (r ◦ (I �E)) � (s ◦ (E � I)) = r � s.

One of the most important characteristics of the fork algebraic apparatus
is that it provides algebraic proofs of interesting program properties, such as
input-output specification of programs, including refinement and abstraction;
program behavior, including non-determinism and parallelism; program design
strategies, including case analysis and divide-and-conquer, etc. [8]. Indeed, fork
algebras are provided with an algebraic language where properties of program
(schemata) can be expressed as equations and inferred from other equationally
specified properties merely by replacing equals by equals.

Although the validity of some identities is easily established, this is not true
in general: the equational theories of relation and fork algebras are rather com-
plex [16]. Indeed, some non-algebraic mechanisms have been developed to cope
with the problem of establishing identities involving relations [4,13]. This paper
is a contribution in this line of development.

As a first step to overcome the difficulties mentioned above, we will introduce
a formal calculus whose formulas are graphs (defining relations) and whose rules
are used to derive graphs from graphs. We will prove that this calculus is sound,
complete and decidable for graph inclusions. The graphical system can be di-
rectly applied to the positive fork algebraic inclusions and identities. Positive
fork terms correspond to graphs and the graphical apparatus can be used to
decide the equalities and identities in a playful manner.

In Section 2 we describe the positive fork language +FL, its formal syntax and
semantics, as well as some examples of equations that are valid. In Section 3 we
introduce the positive fork calculus with graphs +FG. It is built as an extension
of the positive fork language hinging on an adequate notion of a graph labeled
with fork terms. We also introduce inference rules to transform graphs to graphs
illustrating their application. In Section 4 we establish the central metamath-
ematical results of soundness and completeness as well as decidability. These
results can be transferred directly to the the positive fork language. Section 5
closes the paper with some remarks and directions for future work.
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2 Positive Fork Language

The positive fork relational language +FL is a variant of the positive relational
language treated in [5,6] by introducing a new binary operator, called fork [8]
and restricting semantics to structured models (cf. below).

The +FL terms, typically denoted R, S, T , are generated from the set of re-
lational variables Rvar = {ri : i ∈ ω} by applying the relational operators E,
I, T, �, �, ◦, and � , according to the grammar R ::= ri | E | I | RT | R � S |
R � S | R ◦ S | R �S. The positive fork relational inclusions and equalities are
the expressions of the forms R � S and R = S, respectively.

A structured universe is a pair (M, ��), where M �= ∅ and �� : M × M → M is
an injective operation. Intuitively, a��b ∈ M codifies the pair (a, b) of elements of
M . The fork induced by �� in a structured universe (M, ��) is the binary operation
��� on relations on M given by R���S := {(a, b��c) ∈ M × M : aRb and aSc}.

A structured model is a triple M = (M, ��, rM
i )i∈ω , where (M, ��) is a structured

universe and rM
i ⊆ M × M for every i ∈ ω. The meaning [[R]]M of a term R

in a structured model M is defined similarly to the relational case (excluding
all references to the empty relation and to complementation) together with an
additional clause to treat the fork operator. Formally, given a structured model
M = (M, ��, rM

i )i∈ω, symbols E and I are interpreted, respectively, as the relations
M × M and {(a, a) : a ∈ M}; symbols �, �, T and ◦ as intersection, union,
conversion and composition of relations, respectively; and the meaning of a fork
term R �S is defined by [[R �S]]M ::= [[R]]M���[[S]]M.

Validity of inclusions and equalities are defined as usual. As examples of valid
formulas we have the three formulas (a), (b) and (c) taken as axioms for fork
algebras in Section 1. In the sequel, we will introduce the positive fork graph
calculus to prove valid inclusions.

3 Positive Fork Graph Calculus

In the positive graph relational calculus +RG [5,6], relations are represented by
(directed pseudo multi) graphs having two distinguished nodes and arcs labeled
by positive relational terms. In the positive fork graph calculus +FG, we shall
label arcs with positive fork relational terms and the graphs will represent binary
relations on structured universes. We would like to distinguish ordinary nodes
from those in the range of a star function.

We consider a fixed set Inod = {xn : n ∈ ω} of nodes, typically denoted by
x, y, z, u, v, w. Given set N ⊆ Inod, a node equation on N is a triple (u, v, w),
denoted u�v � w, with u, v, w ∈ N ; here w is the star of u and v, which are,
respectively, the first and the second components of w. A table on N is a set T
of node equations on N . With respect to a table T , we call a node w structured
iff there is some node equation u�v � w in T , otherwise, we call it atomic.

Graphically, we represent nodes by dots and node equations by two-source ar-
rows pointing to the structured node and displaying its first and second
components: a single line indicates the first component whereas a double line
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Fig. 2. Slice S with a structured node

indicates the second one. For instance, node equation u�v � w, where u, v, w
are pairwise distinct, is represented in Figure 1.

An arc is a triple (u, R, v), denoted uRv, where u, v are nodes, and R is a
+FL term. Graphically, we represent arcs by labeled arrows linking nodes.

A slice is a structure S = (N, T, A, x, y), where N is a non-empty set of
nodes, T is a table on N , A ⊆ N × Trm × N is a set of labeled arcs (Trm is
the set of +FL terms), and x, y are (not necessarily distinct) nodes in N , called
input and output, respectively. Graphically, we represent slices by directed arc-
labeled pseudo multi graphs with distinguished nodes x, y represented by −, +,
respectively. For instance, the slice S = ({x, u, v, w, y}, {u�v � w}, {xru, x(s �
I)v, w(E ◦ t)y}, x, y), having a structured node, is represented in Figure 2.

A positive fork graph, or simply a graph, typically denoted by G, H , is a finite
non-empty set of slices. A graph can be represented by the juxtaposition of the
representation of its slices. The +FG inclusions and equalities are expressions of
the forms G � H and G = H , respectively.

The semantics of slices and graphs are based on binary relations. First, given
a slice S = (N, T, A, x, y) and a structured model M with universe M , an
M-assignment for S is a function g : N → M such that (gu, gv) ∈ [[R]]M,
for every arc uRv in A, and gu��gv = gw, for every node equation u�v � w in
T . Now, the meaning of a slice S in a model M is the subset [[S]]M of M × M
defined by (a, b) ∈ [[S]]M iff gx = a, gy = b, for some M-assignment g for S. The
meaning of graph G = (Si)i∈I in M is [[G]]M =

⋃
i∈I [[Si]]M.

A +FG inclusion G � H holds in a model M, denoted M |= G � H , iff
[[G]]M ⊆ [[H ]]M. It is valid, denoted |= G � H , iff it holds in every model.
Analogously, we can define truth and validity for +FG equalities and prove results
similar to those described in Section 2 for +FL inclusions and equalities. In
particular, graphs G and H are called equivalent iff |= G = H .
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Table 1. Elimination/Introduction rules for transforming graphs

Unv
G ∪ {(N, A ∪ {uEv}, x, y)}

G ∪ {(N, A, x, y)} Idn
G ∪ {(N, A ∪ {uIv}, x, y)}
G ∪ {(N u

v
, A u

v
, x u

v
, y u

v
)}

Cnv
G ∪ {(N, A ∪ {uRTv}, x, y)}
G ∪ {(N, A ∪ {vRu}, x, y)}

Int
G ∪ {(N, A ∪ {uR � Sv}, x, y)}
G ∪ {(N, A ∪ {uRv, uSv}, x, y)}

Uni
G ∪ {(N, A ∪ {uR � Sv}, x, y)}

G ∪ {(N, A ∪ {uRv}, x, y), (N, A ∪ {uSv}, x, y)}

Cmp
G ∪ {(N, A ∪ {uR ◦ Sv}, x, y)}

G ∪ {(N ∪ {w}, A ∪ {uRw, wSv}, x, y)} if w �∈ N

(a) Relational rules

Frk
G ∪ {(N, T, A ∪ {uR �Sv}, x, y)}

G ∪ {(N ∪ {v1, v2}, T ∪ {v1�v2 � v}, A ∪ {uRv1, uSv2}, x, y)} if v1, v2 �∈ N

(b) Fork rule

The deductive apparatus of +FG is given by a set of graph transforming rules.
Some rules transform a graph into an equivalent one (usually used to put a graph
in normal form), while another rule will be used to compare graphs (usually in
normal form). We will use the node substitution notation u

v for replacing u by
v, which we extend naturally to pairs and triples as well as sets; e.g., for a set
A of arcs, we put Au

v := {wu
v Rz u

v : wRz ∈ A}.
The transformation rules are given in Tables 1, 2 and 3. Rules in Table 1(a)

cover the relational part of the fork graphs and the rule in Table 1(b) covers
similarly the fork operator. The star rules in Table 2 concern the graph tables.
The rules in these three tables can be applied in both directions. In fact, each one
of these rules is an abbreviation for two rules: downward and upward. The rules
in Table 1 allow the elimination (downwards) and the introduction (upwards) of
the operators. Table 3 presents the capital rule for comparing graphs.

We will explain each bidirectional rule in the downward direction. Each rule in
Tables 1 and 2 states that the meaning of graph does not change when applying
the local transformation specified in the rule, leaving the rest of graph untouched.
Soundness will follow from the explanations.

Rules in Table 1(a) concern the relational part of the fork graphs, being similar
to those of +RG [6]. Rule Unv allows erasing an arc labeled by E from a slice. Rule
Idn allows one to erase an arc uIv and a node u, renaming nodes and redirecting
arcs accordingly. Rule Cnv allows replacing an arc uRTv by vRu. Rule Int allows
one to replace an arc uR � Sv by two others uRv and uSv. Rule Uni allows
one to replace a slice C having an arc uR � Sv, by two other slices CR and CS ,
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Table 2. Star rules for transforming graphs

Tot
G ∪ {(N, T, A, x, y)}

G ∪ {(N ∪ {w}, T ∪ {u�v � w}, A, x, y)} if w �∈ N

Fnc
G ∪ {(N, T ∪ {u�v � w1, u�v � w2}, A, x, y)}

G ∪ {(N w1
w2

, (T ∪ {u�v � w1})w1
w2

, A w1
w2

, x w1
w2

, y w1
w2

)}

Inj
G ∪ {(N, T ∪ {u1�v1 � w, u2�v2 � w}, A, x, y)}

G ∪ {((N u1
u2

) v1
v2

, [(T ∪ u1�v1 � w)u1
u2

] v1
v2

, (A u1
u2

) v1
v2

, (x u1
u2

) v1
v2

, (y u1
u2

) v1
v2

)}

Table 3. Homomorphism rule GrCvr for transforming graphs

GrCvr
G

H
if G ← H

obtained from C by replacing the arc uR � Sv by a new arc: uRv for CR and
uSv for CS . Rule Cmp allows one to replace an arc uR ◦ Sv by two others, uRw
and wSv, with a new node w.

Table 1(b) presents the Frk rule concerning the fork operator: it allows one to
replace an arc uR �Sv by two other arcs uRv1 and uSv2, with two new nodes
v1 and v2.

Table 2 presents the rules concerning graph tables. Rule Tot allows one to
add a new node as the star of given nodes. Rule Fnc allows one to identify nodes
that are the star of the same pair of nodes. Rule Inj allows one to identify nodes
that are the first and the second components, respectively, of a node. Each one
of these rules is sound since �� is a total, injective function.

Table 3 presents the capital rule GrCvr: it allows one to infer a graph from
one covered under homomorphism. The notions involved are natural extensions
of the +RG case [6].

Given slices S = (N, T, A, x, y) and S′ = (N ′, T ′, A′, x′, y′), a homomorphism
from S′ to S (denoted θ : S′ → S) is a function θ : N ′ → N that preserves
the slice structure: θw�θu � θv ∈ T , for every node equation w�u � v in T ′;
θuRθv ∈ A, for every arc uRv in A′; θx′ = x and θy′ = y. Given graphs G and
H , we say that H covers G (denoted G ← H) iff, for each slice S of G, there is
a slice S′ of H and a homomorphism θ : S′ → S.

Rule GrCvr can be applied only downwards, but a special case of GrCvr can
be applied in both directions, namely, the derived rule ErUn for erasing useless
nodes presented in Table 4. A node is useless in a slice iff it is not distinguished
and does not occur in its arcs nor in its table.

An inclusion G � H is a +FG theorem, denoted � G � H , iff H can be
obtained from G by applications of the inference rules. We will call graphs G
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Table 4. Derived rule ErUn for erasing useless nodes

ErUn
N ∪ w, T, A, x, y

N, T, A, x, y
if w is useless

and H provably equivalent iff � G � H and � H � G. We call a proof normal iff
it consists of applications of elimination, star and ErUn rules, followed by a single
application of the GrCvr rule, followed by applications of introduction, star and
ErUn rules.

To illustrate the system in action, we associate to a fork relational term R its
graph GR := {({x, y}, ∅, {xRy}, x, y)}. Then, it is clear that [[GR]]M = [[R]]M, for
every model M. So, we can reduce inclusions between fork relational terms to
inclusions between their associated graphs: |= R � S iff � GR � GS . A graph
proof of the +FG axiom (a) is indicated in Figure 3.

+FG also can model a kind of parallel product through the introduction of the
operator cross. Given a pair of relations X and Y on a set U , by applying cross to
X and Y we obtain the relation {(��ab, ��cd) : (a, c) ∈ X and (b, d) ∈ Y }. A fork
algebraic definition of cross is given by [8]: r⊗s := ((I �E)T ◦ r) � ((E � I)T ◦ s).
In [8], ⊗ is extensively used to prove identities as

(d) (r � s) ◦ (t ⊗ u) = (r ◦ t) � (s ◦ u),

describing the iterated behaviour of the algebraic operators. Figure 4 contains
an equational proof of (d).

− +
(I �E)T � (E � I)T

�
Elim rules

=⇒

•

•

•

•

− +

��
�����

���

��
����

�
���

�
�

�
�

�
�

�
�

�
�

�
�

�

Inj
⇒

•

•
− +��

����

 ��

����
�

Fnc
⇒

•

•
−
+

��
����

�
GrCvr

⇒ −
+

Intr rules
=⇒

− +
I�

Fig. 3. Graph proof of fork axiom (a)
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(r � s) ◦ (t ⊗ u) = (r � s) ◦ (t ⊗ u)T
T

= (r � s) ◦ [((I �E)T ◦ t) � ((E � I)T ◦ u)]
TT

= (r � s) ◦ [[(I �E)T ◦ t ◦ (I �E)] � [((E � I)T ◦ u ◦ (E � I))]]
TT

= (r � s) ◦ [[(I �E)T ◦ t ◦ (I �E)]
T

� [(E � I)T ◦ u ◦ (E � I)]
T
]
T

= (r � s) ◦ [[(I �E)T ◦ tT ◦ (I �E)T
T
] � [(E � I)T ◦ uT ◦ (E � I)T

T
]
T

= (r � s) ◦ [[(I �E)T ◦ tT ◦ (I �E)] � [(E � I)T ◦ uT ◦ (E � I)]]
T

= (r � s) ◦ [[(I �E)T ◦ tT] � [(E � I)T ◦ uT]]
T

= [r ◦ [(I �E)T ◦ tT]
T
] � [s ◦ [(E � I)T ◦ uT]

T
]

= [r ◦ [tT
T ◦ (I �E)T

T
]] � [s ◦ [uTT ◦ (E � I)T

T
]]

= [r ◦ [t ◦ (I �E)]] � [s ◦ [u ◦ (E � I)]]
= (r ◦ t) � (s ◦ u).

Fig. 4. Equational proof of (d)

− +
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rules
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(r ◦ t) � (s ◦ u)�

Fig. 5. Graph proof of (d)

Figure 5 presents an alternative graph proof, based on the derived rule Paral
in Table 5, whose graph derivation is in Figure 6.

4 Metamathematics of the Fork Graph Calculus

In this section, we prove soundness, completeness and decidability of the positive
fork graph calculus with respect to the +FG valid inclusions. The approach
presented here is a substantial extension of the one given in [5], for +RG.

Soundness of +FG is an immediate consequence of the Lemma 1.

Lemma 1. Consider graphs G and H. If H is obtained from G by applications
of the rules in Tables 1, 2 and 4, then |= G = H. If H is obtained from G by the
rule GrCvr then |= G � H.

For the remaining results, we will define a normal form for graphs and show that
inclusion of graphs can be reduced to inclusion of their normal forms.
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Table 5. Derived introduction/elimination rule for ⊗

Paral
N, T, A ∪ {uR ⊗ Sv}, x, y

N ∪ {w1, w2, w3, w4}, T ∪ {w1�w3 � u, w2�w4 � v}, A ∪ {w1Rw2, w3Sw4}, x, y

if w1, w2, w3, w4 �∈ N

− +
r ⊗ s�

Parallel
definition

⇐⇒ − +
((I �E)T ◦ r) � ((E � I)T ◦ s)

�

Elim/Int
rules
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••

•

•

• •
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Fig. 6. Derivation of graph rule Paral

A table T induces a relation �T on (N × N) × N such that (u, v) �T w iff
u�v � w ∈ T . We call a table functional or injective iff the induced relation is
functional or injective, respectively.

A star-path in a slice is a sequence (u1, v1, . . . , un, vn, w) of nodes such that
un�vn � w ∈ T and for each i, 1 ≤ . . . i . . . ≤ n − 1, ui�vi � ui+1 ∈ T or
ui�vi � vi+1 ∈ T . A star-cycle in a slice is a sequence (u1, v1, . . . , un, vn) of
nodes such that un�vn � u1 ∈ T or un�vn � v1 ∈ T , and for each i, 1 ≤
. . . i . . . ≤ n − 1, ui�vi � ui+1 ∈ T or ui�vi � vi+1 ∈ T .

Now, we introduce the notion of essential node, which will play a central role
in the definition of normal form for graphs. A node v is essential in a slice S
if it is n-essential in S, for some n ∈ N. A node v is 0-essential in a slice S if
v is distinguished in S, or v is an extreme of an arc in S, or v is an element
of a star-cycle in S. A node v is n-essential in a slice S, for n > 0, if there is
a star-path (u1, v1, . . . , un, vn, w) in S such that v is not m-essential in S, for
m < n, w is 0-essential in S, and v = u1 or v = v1.

We call a graph G basic iff every arc in G is labeled by a relational variable,
functionally injective iff every table in G is functional and injective, and lean
iff every node in G is essential. We say that G is in normal form iff G is basic,
functionally injective and lean.
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Lemma 2 (Conversion to normal form). Every graph G can be effectively
converted (by elimination, star and ErUn rules) into a provably equivalent graph
νG in normal form.

Proof. By applying elimination rules we reduce G to a basic G1 (by induction
on the number of operators in the labels of arcs in the graph). By applying
rules Fnc and Inj we reduce G1 to a functionally injective G2 (by induction on
the number of nodes in the slices of the graph). We can reduce G2 to a lean
νG, noting that, as the table of G2 is injective, a non-essential node occurs in a
star-path or is useless. If it occurs in star-path, this star-path has a sink which
is not a 0-essential node and occurs in exactly one node-equation, whence this
sink can be eliminated by rule Tot. In the latter case, we use rule ErUn. We thus
effectively convert G into νG in normal form, they are provably equivalent since
the rules used are reversible.

Thus, by soundness, we can reduce inclusions to inclusion of normal forms.

Corollary 1 (Reduction). Given fork graphs G and H, |= G � H iff |= νG
� νH.

The next lemma is our main tool for establishing the remaining results. Its proof
is based on a construction of a model induced by a slice in normal form.

Lemma 3. Given fork graphs G and H in normal form, if |= G � H, then H
covers G.

Proof. Assume |= G � H . Let S = (N, T, A, x, y) be a slice of G. Construct
structured model MS = (N��, ��, rMS

i )i∈ω as follows:

– N�� :=
⋃

k∈N
Nk, with N0 := N and

Nk+1 := Nk ∪ {(u, v) ∈ Nk × Nk : ∀w ∈ Nk(u�v � w �∈ T )},
– rMS

i := {(u, v) ∈ N × N : uriv ∈ A},

– u��v :=
{

w if u�v � w ∈ T
(u, v) otherwise.

It is easy to see that (x, y) ∈ [[G]]MS .
Also, MS is a model, since by construction, �� is total as well as injective and

is functional. Since |= G � H , we have (x, y) ∈ [[H ]]MS . Thus, consider a slice
S′ = (N ′, A′, T ′, x′, y′) of H and an MS-assignment g : N ′ → N�� with gx′ = x,
gy′ = y.

We claim that the range of g is a subset of N . In fact, given v ∈ N ′, we
have that v is essential, since H is in normal form. If v is distinguished in S′,
or an extreme of an arc in S′, then gv ∈ N . If v is in a star-cycle in S′, then
gv ∈ N , since the nodes introduced in the construction of MS do not belong
to cycles. If v is in a star-path (u1, v1, . . . , un, vn, w) in S′ such that v = u1 or
v = v1 and w is a 0-essential node in S′, then, by previous cases, gw ∈ N . Since
un�vn � w ∈ T ′, we have gun��gvn = gw. Hence, gun�gvn � gw ∈ T . So,
gun, gvn ∈ N . Applying the same reasoning backwards, we obtain gv ∈ N .
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To show that g is a homomorphism from S′ to S, it remains to see that g
preserves arcs and tables, but this is clear, because g is an MS-assignment.1

We thus immediately have our central equivalences.

Proposition 1. Given fork graphs G and H, the following assertions are equiv-
alent.

1. The inclusion G � H is valid: |= G � H.
2. The inclusion νG � νH is valid: |= νG � νH.
3. νH covers νG: νG ← νH.
4. The inclusion G � H is a theorem: � G � H.

We thus have completeness (of normal) proofs and decidability.

Theorem 1. Given a fork graph G and H, consider the inclusion G � H.
(a) If G � H is valid, then there is a normal proof of H from G.
(b) The inclusion G � H is valid iff νH covers νG.

5 Perspectives

We have presented a graph calculus for proving and deciding the positive iden-
tities and inclusions of fork algebras. In this calculus, formulas are graphs and
the rules derive graphs from graphs. This calculus is sound, complete and decid-
able for graph inclusions. We have illustrated how this graphical apparatus can
be directly applied to the positive fork algebraic inclusions and identities. Our
fork calculus considered structured universes with a total injective function ��. A
natural extension would be providing sound and complete calculi for structured
universes with weaker restrictions imposed on ��.

Proofs of inclusions and identities from hypotheses are also interesting. Ex-
tending our system to cope with this non-decidable case will involve more elab-
orated work.

Pictures have been proposed as a tool to help investigating and applying
relational formalisms. Here, we mention three main lines of research. The ap-
proach based on the theory of allegories [1,2,3,4,10], the approach based on the
rewriting systems [11,12,13], and the logic systematic approach [3,5,6]. Each one
of these approaches has its own flavor, techniques of investigations and line of
results. Nevertheless, they are not completely disjoint sharing many character-
istics whose interactions deserve further investigation. The work reported here
may also be viewed as a first contribution in this direction in that we extend the
logic systematic approach to the positive fork language. We thus provide a basis
for a new formalism, which is not only more widely applicable but also provides
a common denominator of the above three lines of investigation.

1 For a node equation u�v � w ∈ T ’, we have gu��gv = gw, and as gw ∈ N , we have
gu�gv � gw ∈ T . For an arc uriv ∈ A′, we have (gu, gv) ∈ [[ri]]MS , and by the
definition of MS, one has gurigv ∈ A.
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Games on Strings with a Limited Order
Relation�
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Abstract. In this paper, we show how Ehrenfeucht-Fräıssé games can
be successfully exploited to compare (finite) strings. More precisely, we
give necessary and sufficient conditions for Spoiler/Duplicator to win
games played on finite structures with a limited order relation, that lies
in between the successor relation and the usual (linear) order relation,
and a finite number of unary predicates. On the basis of such condi-
tions, we outline a polynomial (in the size of the input strings) algorithm
to compute the “remoteness” of a game and to determine the optimal
strategies/moves for both players.

1 Introduction

Comparison games are mainly used to prove inexpressibility results or to es-
tablish normal forms for logics [1,2,3]. We take a different point of view: given
two (finite) structures, we use comparison games to determine how and where
they differ. Such an approach has a variety of applications in data match-
ing. For instance, it can be exploited in biological sequence comparison, where
left-to-right matches turned out to be inadequate. In [4], Montanari et al. have
considered structures provided with the successor relation s: they define a cri-
terion to measure the degree of similarity of labeled successor structures and
develop an algorithm to compute it. As an alternative, one may think of replac-
ing s with the linear order relation <; however, < does not preserve locality and
thus phenomena such as inversions (some parts may appear in a different order
in homologous sequences) cannot be dealt with. In this paper, we assume a more
general point of view by considering a relation that lies in between s and <. More
precisely, we study first-order Ehrenfeucht-Fräıssé games (EF-games for short)
played on structures with a limited ordering <p, called labeled <p-structures,
which is defined as follows: given a pair of positions i and j, we have that i <p j
if and only if i < j and j − i ≤ p. Relations s and < can be recovered as special
cases of <p for p equal to 1 and p greater than or equal to the maximum of
the lengths of the two sequences, respectively. From a technical point of view,
suitable abstractions are needed for describing winning strategies for EF-games
on labeled <p-structures, e.g., the distinction between rigid and elastic intervals,
that make the proofs much more involved.

The playground for a comparison game (on strings) is defined by a pair of
strings w, w′. A round consists in a Spoiler’s move followed by a Duplicator’s
� This work is partially supported by the MIUR project FIRB03-RBNE03B8KK.

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 164–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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one (hereafter we will abbreviate Spoiler as I and Duplicator as II). At each
round, I chooses one of the two strings and a position in it; II replays choosing a
position in the other string. A configuration is a “snapshot”of the playground at
a given stage of the game. We will write (w, w′, in, jn) to indicate the configura-
tion where in (resp., jn) is the tuple of positions already chosen in w (resp. w′).
A game with q rounds on (w, in) and (w′, jn) is denoted by Gq((w, in), (w′, jn));
a game that goes on until either I repeats a move (II wins) or the current po-
sition is not a partial isomorphism (I wins) is denoted by G((w, in), (w′, jn)). In
the following, we will write I(Gq) (resp., II(Gq)) to state that I (resp., II) has a
winning strategy in q rounds. The remoteness R(G) of G is the minimum q such
that I(Gq) (if such a q does not exist, we assume the remoteness to be infinite).
A move by I in G is optimal if, whatever II replies, the new game G′ has remote-
ness R(G′) ≤ R(G) − 1; similarly, II’s reply is optimal if R(G′) ≥ R(G) − 1 no
matter how I has played. The algorithmic complexity of EF-games has not been
thoroughly investigated. In [5], it is proved that, given two (finite) structures,
determining whether II(Gq(A, B)) is pspace-complete when the vocabulary con-
tains at least one binary and one ternary relation symbol. Efficient algorithms
for EF-games on specific classes of structures (equivalence relations, trees, unary
relation structures, Boolean algebras, and some natural extensions of them) are
given in [6]. In this paper, we provide a characterization of EF-games on labeled
<p-structures that allows us to answer the following questions in polynomial
time: given (w, in) and (w′, jn), what is the remoteness of G((w, in), (w′, jn))?
What are the sets of I’s and II’s optimal moves?

In [4], Montanari et al. propose an algorithm to solve EF-games on labeled
successor structures (LSSs) A, B in O(n log n) time, where n = |A| + |B|. The
solution consists in combining a local and a global strategy. More precisely, II(Gq)
iff the game is q-locally safe and q-globally safe. The former property ensures
that corresponding distinguished positions have the same relative positions up
to a threshold distance and that suitable corresponding neighborhoods spell
equal substrings in both words, so that II can correctly play q rounds within
such neighborhoods (local moves). The latter property is based on counting the
multiplicity and the degree of scattering of substrings “falling far away” from
distinguished positions. In the case of <p, the global strategy remains essentially
unchanged, while the local strategy is quite different. Let us suppose I’s moves
are coerced to be local. We first provide a necessary and sufficient condition
for II to win games in q rounds on structures devoid of unary predicates (q-
distance safety). Roughly speaking, distinguished positions give rise to “rigid”
and “elastic” intervals. Suppose that I and II play the game Gq((w, in), (w′, jn)).
If I chooses a new position in+1 inside one of the rigid intervals induced by a
distinguished position ih ∈ in, then II must choose a new position jn+1 such
that jn+1 − jh = in+1 − ih. If the new position is chosen inside one of the elastic
intervals induced by ih, then II must reply by choosing a new position inside
the elastic interval induced by jh, but not necessarily at the same distance. This
guarantees q-distance safety. To deal with unary predicates, we introduce an
additional condition (<p-safety for q-colors). The basic ingredient is a recursive



166 E. De Maria, A. Montanari, and N. Vitacolonna

notion of q-color, which presents some similarities with the one given in [1].
<p-safety for q-colors is guaranteed by constraining corresponding positions in
in, jn to have the same q-color. As a matter of fact, for p = 1 the above conditions
are equivalent to those for the successor relation s (as expected), while if p ≥
max(|w|, |w′|), then <p coincides with <. Similarly to the case of LSSs, the global
strategy essentially consists in comparing the multiplicity and the scattering of
r-colors, with 0 ≤ r ≤ q − 1, in the portions of w and w′ that are far away from
in and jn, respectively.

The paper is organized as follows. Section 2 provides some preliminary defini-
tions. Section 3 analyzes the basic case of local games on <p-structures. Section
4 takes into consideration local games on labeled <p-structures. Finally, global
games on labeled <p-structures are the subject of Sect. 5. Conclusions provide an
assessment of the achieved results and outline future work directions. Detailed
proofs and additional examples can be found in [7].

2 Basic Definitions

Let 〈R, n〉 denote a relation R with arity n and let τ = {〈R1, n1〉, . . . , 〈Rk, nk〉}
be a finite relational vocabulary. A τ -structure A is a tuple consisting of a set
A, called the domain, and an ni-ary relation RA

i ⊆ Ani for each 〈Ri, ni〉 ∈ τ .
As we already did in the introduction, we denote τ -structures with symbols A,
B, etc... In the following, we assume that every vocabulary implicitly contains
a symbol = interpreted as equality. Besides, we restrict our attention to finite
structures expanded with constants. A structure A with distinguished elements
a1, . . . , ak ∈ A is denoted by (A, ak). Given a structure A and A′ ⊆ A, the
substructure of A induced by A′ is the structure with domain A′ whose relations
are the relations of A restricted to A′.

Two structures (A,ah) and (B,bk), with h, k ≥ 0, are isomorphic, (A, ah) ∼=
(B,bk) for short, if h = k and there is an isomorphism f between A and B
such that f(aj) = bj , for 1 ≤ j ≤ k. A partial isomorphism between (A, ak)
and (B,bk), with k ≥ 0, is an isomorphism of the substructures of A and
B induced by ak and bk, respectively. Since we are interested in structures
associated with strings, we give further definitions for this special case. Let
Σ be a fixed alphabet, w ∈ Σ∗, and p ≥ 1. A labeled <p-structure is a pair
(w, in), where w = ({1, . . . , |w|}, <p, (Pa)a∈Σ), with i <p j if and only if 0 <
j − i ≤ p, for all i, j ∈ {1, . . . , |w|}, and i ∈ Pa if and only if w[i] = a for
all i ∈ {1, . . . , |w|}, and in are distinguished positions i1, . . . , in ∈ {1, . . . , |w|}.
Moreover, given i, j ∈ {1, . . . , |w|}, the distance δ(i, j) between w[i] and w[j]
is |i − j|. The k-distance δk(i, j) : N × N → N ∪ {∞} is a “truncated”distance
defined as follows: δk(i, j) = δ(i, j) if δ(i, j) ≤ k, δk(i, j) = ∞ otherwise.

3 Local Games on <p Structures

In this section we consider the simplified case of local games on strings devoid
of unary predicates. We provide necessary and sufficient conditions for II(Gq),
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for any given q. The first concept we introduce is the one of pstep, which can
be used to measure the “signed distance” between two elements in terms of the
number of intervals of length p separating them.

Definition 1. Let i, j, k, p ∈ N, with i, j, p > 0 and k ≥ p. We define the func-
tion pstep

(p)
k (i, j) as follows:

pstep
(p)
k (i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i = j

� δ(i,j)
p  if δk(i, j) < ∞ and i < j

�− δ(i,j)
p � if δk(i, j) < ∞ and i > j

∞ if δk(i, j) = ∞.

The next definition expresses pstep-safety of configurations (in the k-horizon).
Condition (1) refers to internal positions, while conditions (2) and (3) deal with
positions belonging to the prefix and the suffix, respectively.

Definition 2. Let p, k ∈ N, with k ≥ p. A configuration (w, w′, in, jn) is pstep-
safe in the k-horizon if the following conditions hold:

1. pstep
(p)
k (ir, is) = pstep

(p)
k (jr , js) ∀r, s ∈ {1 . . . n};

2. pstep
(p)
k−p(0, ir) = pstep

(p)
k−p(0, jr) ∀r ∈ {1 . . . n};

3. pstep
(p)
k−p(ir, |w| + 1) = pstep

(p)
k−p(jr , |w′| + 1) ∀r ∈ {1 . . . n}.

Local moves are defined on the basis of pstep-regions.

Definition 3. Let q > 0, w ∈ Σ�, and let in be a set of positions in w. The
pstep-region Pstepregp

q(w, in) is the set {j|δ(0, j) ≤ p ·(2q−1−1)∨ δ(j, |w|+1) ≤
p · (2q−1 − 1)∨ ∃r(1 ≤ r ≤ n ∧ δ(ir, j) ≤ p · 2q−1)}.

Definition 4. Let (w, w′, in, jn) be a configuration and let q > 0 be the number
of remaining moves. A move is local if it is played within Pstepregp

q(w, in) or
Pstepregp

q(w
′, jn).

Lemma 1 generalizes the condition of local safety for LSSs [4] by substituting
intervals of length p for single positions. If two positions in a string are sufficiently
close to each other, the corresponding positions in the other string must be at
the same “pstep distance”. In the following example, we provide a configuration
which is not pstep-safe in the (p · 23)-horizon. Moreover, we outline a strategy I
can adopt to win in 3 rounds.

Example 1. Consider the configuration in Fig. 1. It is immediate to verify that
is not pstep-safe in the (p · 23)-horizon. We show a strategy I can adopt to win
in 3 rounds.

(a) q = 3: pstep
(p)
8p (i1, i2) = 7 and pstep

(p)
8p (j1, j2) = 8. Hence, the configuration

is not pstep-safe in the (p · 23)-horizon and thus I(G3((w, i2), (w′, j2))). An
optimal move for I is to choose i3 = i1 + � 7

2� · p = i1 + 3p in w. An optimal
reply from II is to choose j3 = j1 + 3p in w′.



168 E. De Maria, A. Montanari, and N. Vitacolonna

Fig. 1. pstep-safety

(b) q = 2: pstep
(p)
4p (i3, i2) = 4 and pstep

(p)
4p (j3, j2) = ∞. Again, the configuration

is not pstep-safe in the (p · 22)-horizon and thus I(G2((w, i3), (w′, j3))). If I
chooses i4 = i3 + 4

2 · p = i3 + 2p in w, II can reply by choosing j4 = j3 + 2p
in w′.

(c) q = 1: pstep
(p)
2p (i4, i2) = 2 and pstep

(p)
2p (j4, j2) = ∞. Once more, the configu-

ration is not pstep-safe in the (p ·21)-horizon and thus I(G1((w, i4), (w′, j4))).
If I chooses i5 = i4 + p in w, it holds that i4 <p i5 and i5 <p i2. Hence, II
is not able to find an element j5 such that j4 <p j5 and j5 <p j2.

(d) q = 0: whatever II’s move at the previous round has been, I is the winner.

Lemma 1. Let w, w′ ∈ Σ�. If (w, w′, in, jn) is not pstep-safe in the (p · 2q)-
horizon, then I(Gq((w, in), (w′, jn))).

The next lemma shows that if two positions in a string are sufficiently close to
each other, that is, at a distance less than or equal to 2q − 1, the corresponding
positions in the other string must exactly at the same distance (as a matter of
fact, such a property holds for < as well).

As a preliminary step, for every k > 0, we introduce a function ϑk that
computes the truncated signed distance between two positions.
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Definition 5. Let i, j, k ∈ N, with i, j, k > 0. We define the function ϑk(i, j) as
follows:

ϑk(i, j) =
{

i − j if δk(i, j) < ∞
∞ otherwise.

Definition 6. A configuration (w, w′, in, jn) is ϑ-safe in the k-horizon if the
following conditions hold:

1. ϑk(ir, is) = ϑk(jr, js) ∀r, s ∈ {1 . . . n};
2. ϑk(0, ir) = ϑk(0, jr) ∀r ∈ {1 . . . n};
3. ϑk(ir, |w| + 1) = ϑk(jr, |w′| + 1) ∀r ∈ {1 . . . n}.

Lemma 2. Let w, w′ ∈ Σ� and q > 0. If (w, w′, in, jn) is not ϑ-safe in the
(2q − 1)-horizon, then I(Gq((w, in), (w′, jn))).

Observe that if we replace <p with s, that is, if we take p = 1, Lemma 2 becomes
a special case of Lemma 1.

Lemma 1 and Lemma 2 basically capture the features that <p has in common
with s and <, respectively. However, <p cannot simply be viewed as the compo-
sition of s and <. The distinctive features of <p, that differentiate it from s and
<, are captured by the following definition and will be taken into consideration
by Theorem 1.

Let us now introduce the key notions of “rigid” and “elastic” intervals induced
by the set of positions in (resp., jn).

Definition 7. Let q > 1 and i ∈ N. The 0th q-rigid interval induced by position
i is the closed interval ρ+

0,q(i) = ρ−0,q(i) = [i−α0
q, i+α0

q], where α0
q = 2q−1−1. The

kth right (resp., left) q-rigid interval induced by position i, with 0 < k ≤ 2q−2,
is the interval ρ+

k,q(i) = (c − αz
q , c + αz

q ] (resp., ρ−k,q(i) = [c − αz
q , c + αz

q)) where
c = i+kp (resp., c = i−kp) and αz

q = 1+
∑q−2

j=z−1(2
j−1) = 2q−1−2z−1−q+z+1,

where z = �log2 k + 1. The kth right (resp., left) q-elastic interval induced by
position i is the interval between the (k − 1)th and the kth q-rigid right (resp.,
left) interval.

It is worth noting that elastic intervals come into play only when p is large
enough with respect to q. More precisely, in a game Gq, for all 1 ≤ k ≤ 2q−2, the
kth (right or left) q-elastic interval induced by any position in in is not empty if
(and only if) p > αz

q +αz
q −1, where z = �log2(k−1)+1 for k > 1 and z = 0 for

k = 1, and z = �log2 k + 1. In Fig. 2 we show the right 5-rigid (resp., 5-elastic)
intervals induced by i, which are represented in black (resp., gray).

The role of rigid and elastic intervals in the evolution of a game is expressed
by Theorem 1. It can be intuitively explained as follows. Consider a game
Gq((w, in), (w′, jn)), with q > 1. If I chooses a new position in+1 inside a rigid
interval induced by the position ir ∈ in, that is, if |in+1 − ir| ∈ (kp−αz

q , kp+αz
q ]

for a suitable k, then II must choose a new position jn+1 such that jn+1 − jr =
in+1−ir. If I chooses a new position in+1 inside an elastic interval induced by ir,
then II must reply by choosing a new position inside the corresponding elastic
interval induced by jr, but not necessarily at the same distance.
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Fig. 2. Rigid and elastic intervals (q = 5; 2q−2 = 8)

Definition 8. Let q > 0. A configuration (w, w′, in, jn) is p-int-safe in the k-
horizon if the following conditions hold:

1. ∀r, s ∈ {1, . . . , n}, with r < s, if there exists 0 ≤ h ≤ 2k−1 such that is ∈
ρ+

h,k+1(ir) or js ∈ ρ+
h,k+1(jr), then is − ir = js − jr;

2. ∀r ∈ {1, . . . , n}, if there exists 0 ≤ h ≤ 2k−1 such that δ(0, ir) ∈ [hp+1, hp+
αz

k+1] or δ(0, jr) ∈ [hp + 1, hp + αz
k+1], where z = �log2 h + 1 for h > 0 and

z = 0 for h = 0, then δ(0, ir) = δ(0, jr);
3. ∀r ∈ {1, . . . , n}, if there exists 0 ≤ h ≤ 2k−1 such that δ(ir, |w| + 1) ∈

[hp+1, hp+αz
k+1] or δ(jr, |w′|+1) ∈ [hp+1, hp+αz

k+1], where z = �log2 h+1
for h > 0 and z = 0 for h = 0, then δ(ir, |w| + 1) = δ(jr, |w′| + 1).

Lemma 3. Let w, w′ ∈ Σ�. If (w, w′, in, jn) is p-int-safe in the q-horizon, with
q > 0, then it is ϑ-safe in the (2q − 1)-horizon.

Lemma 4. Let w, w′ ∈ Σ� and q > 0. If (w, w′, in, jn) is not p-int-safe in the
q-horizon, then I(Gq((w, in), (w′, jn))).

Proof. The proof is by induction on q.
Base case: q = 1. We distinguish three sets of cases:

1. (a) ∃r, s such that δ(ir, is) = 1, but δ(jr, js) �= 1 (or δ(ir, is) �= 1, but
δ(jr, js) = 1).

(b) ∃r, s such that δ(ir, is) = p, but δ(jr, js) �= p (or δ(ir, is) �= p, but
δ(jr, js) = p).

(c) ∃r, s such that δ(ir, is) = p+1, but δ(jr, js) �= p+1 (or δ(ir, is) �= p+1,
but δ(jr , js) = p + 1).

2. (a) ∃r such that δ(0, ir) = 1, but δ(0, jr) �= 1 (or δ(0, ir) �= 1, but δ(0, jr) =
1).

(b) ∃r such that δ(0, ir) = p + 1, but δ(0, jr) �= p + 1 (or δ(0, ir) �= p + 1,
but δ(0, jr) = p + 1).

3. (a) ∃r such that δ(ir, |w|+1) = 1, but δ(jr, |w′|+1) �= 1 (or δ(ir, |w|+1) �= 1,
but δ(jr , |w′| + 1) = 1).

(b) ∃r such that δ(ir, |w| + 1) = p + 1, but δ(jr, |w′| + 1) �= p + 1 (or
δ(ir, |w| + 1) �= p + 1, but δ(jr, |w′| + 1) = p + 1).

We provide the details for the first set of cases; the others are similar and thus
omitted.
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(a) The configuration is not ϑ-safe in the (21 − 1)-horizon and thus, by Lemma
2, I(G1((w, in), (w′, jn))).
(b) If δ(jr , js) > p, then the configuration is not a partial isomorphism. Hence,
we restricted our attention to the case in which δ(jr , js) < p. Furthermore, we
assume that ir − is and jr − js have the same sign (if this is not the case, the
configuration is not pstep-safe in the (p · 20)-horizon, and thus it is not a partial
isomorphism). Without loss of generality, let ir < is and jr < js. An optimal
move for I is to choose jn+1 = js −p. If II chooses in+1 < ir, then is − in+1 > p;
if II chooses in+1 > ir, then jn+1 < jr but in+1 > ir.
(c) If δ(jr, js) ≤ p, the configuration is not a partial isomorphism. Hence, let
δ(jr, js) > p + 1. Furthermore, let ir − is and jr − js have the same sign. With-
out loss of generality, let ir < is and jr < js. An optimal move for I is to
choose jn+1 = jr + p + 1(< js). If II replies with in+1 ≥ is, the configuration
is not a partial isomorphism; if II replies with in+1 < is, then δ(ir, in+1) ≤ p
while δ(jr , jn+1) = p+1 and thus the configuration is not a partial isomorphism.

Inductive step: q > 1. As in the base case, we distinguish three sets of cases:

1. (a) ∃r, s ∈ {1, . . . , n} such that δ(ir, is) ≤ 2q − 1 or δ(jr, js) ≤ 2q − 1 but
ir − is �= jr − js.

(b) ∃r, s ∈ {1, . . . , n}, ∃1 ≤ k ≤ 2q−1 such that is ∈ ρ+
k,q+1(ir) or js ∈

ρ+
k,q+1(jr) but ir − is �= jr − js.

2. (a) ∃r ∈ {1, . . . , n} such that δ(0, ir) ≤ 2q − 1 or δ(0, jr) ≤ 2q − 1, but
δ(0, ir) �= δ(0, jr).

(b) ∃r ∈ {1, . . . , n}, ∃1 ≤ k ≤ 2q−1 such that δ(0, ir) ∈ [kp+1, kp+αz
q+1] or

δ(0, jr) ∈ [kp+1, kp+αz
q+1], where z = �log2 k+1, but δ(0, ir) �= δ(0, jr).

3. (a) ∃r ∈ {1, . . . , n} such that δ(ir, |w|+1) ≤ 2q −1 or δ(jr, |w′|+1) ≤ 2q −1,
but δ(ir, |w| + 1) �= δ(jr, |w′| + 1).

(b) ∃r ∈ {1, . . . , n}, ∃1 ≤ k ≤ 2q−1 such that δ(ir, |w| + 1) ∈ [kp + 1, kp +
αz

q+1] or δ(jr , |w′| + 1) ∈ [kp + 1, kp + αz
q+1], where z = �log2 k + 1, but

δ(ir, |w| + 1) �= δ(jr , |w′| + 1).

As in the base case, we provide the details for the first set of cases; the others
are similar and thus omitted.
(a) Since the configuration is not ϑ-safe in the (2q − 1)-horizon, by Lemma 2
I(G1((w, in), (w′, jn))).
(b) Let us suppose that is ∈ ρ+

k,q+1(ir). We partition the rigid interval ρ+
k,q+1(ir)

into five parts and we follow a different strategy for each of them. Let c be the
center of ρ+

k,q+1(ir) and let αz
q+1, where z = �log k + 1, be its radius. Without

loss of generality, we assume that ir < is and jr < js. From left to right, the five
subintervals of ρ+

k,q+1(ir) we are going to consider are the following:

1. (c − αz
q+1, c − 2q−1]

2. [c − 2q−1 + 1, c]
3. (c, c + 2q−1 − 1]
4. [c + 2q−1, c + αz

q+1)
5. c + αz

q+1 (the right endpoint of ρ+
k,q+1(ir))
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Strategy 1: Let δ(ir, is) = kp−s, with s ∈ [2q−1, αz
q+1), where z = �log2 k+1,

and let δ(ir, is) > δ(jr , js) ≥ kp−(p+1) (if the last condition is not satisfied,
pstep-safety is violated and the thesis immediately follows). I chooses jn+1 =
jr−(2q−1−1). If II replies with in+1 �= ir−(2q−1−1), the configuration is not
ϑ-safe in the 2q−1-horizon, then I(Gq−1((w, in+1), (w′, jn+1))). If II replies
with in+1 = ir − (2q−1 − 1), then (kp >)δ(in+1, is) = kp − s + (2q−1 − 1) ≥
kp − αz

q+1 + 1 + (2q−1 − 1) = kp − αz
q + 1. From δ(in+1, is) > δ(jn+1, js),

it follows that the configuration is not p-int-safe in the (q − 1)-horizon and
thus I(Gq−1((w, in+1), (w′, jn+1))).

Strategy 2: Let δ(ir, is) = kp − s, with s ∈ [0, 2q−1 − 1], and let δ(ir, is) >
δ(jr, js) ≥ kp − (p + 1). I chooses jn+1 = js − kp. If II replies with
in+1 = is−kp, then 0 ≤ δ(in+1, ir) ≤ 2q−1−1 and δ(jn+1, jr) > δ(in+1, ir). It
immediately follows that the configuration is not ϑ-safe in the 2q−1-horizon
and thus I(Gq−1((w, in+1), (w′, jn+1))). If II replies with in+1 such that
δ(in+1, ir) = δ(jn+1, jr), then pstepp·2q−1(in+1, is) �= pstepp·2q−1(jn+1, js).
As a consequence, the configuration is not pstep-safe in the (p ·2q−1)-horizon
and thus I(Gq−1((w, in+1), (w′, jn+1))).

Strategy 3: Let δ(ir, is) = kp + s, with s ∈ (0, 2q−1 − 1], and let δ(ir, is) <
δ(jr, js) ≤ (k + 1)p. I chooses in+1 = is − kp. If II replies with jn+1 =
js − kp, then 0 < δ(ir, in+1) ≤ 2q−1 − 1. From δ(jr , jn+1) > δ(ir, in+1),
it follows that the configuration is not ϑ-safe in the 2q−1-horizon and thus
I(Gq−1((w, in+1), (w′, jn+1))). If II replies with jn+1 such that δ(ir, in+1) =
δ(jr, jn+1), then pstepp·2q−1(in+1, is) �= pstepp·2q−1(jn+1, js). As a conse-
quence, the configuration is not pstep-safe in the (p · 2q−1)-horizon and thus
I(Gq−1((w, in+1), (w′, jn+1))).

Strategy 4: Let δ(ir, is) = kp+s, with s ∈ [2q−1, αz
q+1), where z = �log2 k+1,

and let δ(ir, is) < δ(jr, js) ≤ (k + 1)p. I chooses in+1 = ir + 2q−1 − 1. If II
replies with jn+1 �= jq +2q−1 −1, the configuration is not ϑ-safe in the 2q−1-
horizon and thus I(Gq−1((w, in+1), (w′, jn+1))). If II replies with jn+1 = jr +
2q−1−1, then (kp <)δ(in+1, is) = kp+s−(2q−1−1) ≤ kp+αz

q+1−(2q−1−1) =
kp + αz

q . From δ(in+1, is) < δ(jn+1, js), it follows that the configuration is
not p-int-safe in the (q − 1)-horizon and thus I(Gq−1((w, in+1), (w′, jn+1))).

Strategy 5: Let δ(ir, is) = kp+αz
q+1, where z = �log2 k+1, and let δ(ir, is) <

δ(jr, js) ≤ (k + 1)p. I chooses jn+1 = jr + �k/2p + αz′

q , where z′ =
�log2�k/2 + 1. By definition, jn+1 ∈ ρ+

�k/2�,q(jr). If II replies with in+1 �=
ir+�k/2p+αz′

q , the configuration is not p-int-safe in the (q−1)-horizon and
thus I(Gq−1((w, in+1), (w′, jn+1))). If II replies with in+1 = ir+�k/2p+αz′

q ,
it is possible to show that in+1 ∈ ρ−�k/2	,q(is). From δ(in+1, is) �= δ(jn+1, js),
it follows that the configuration is not p-int-safe in the (q − 1)-horizon and
thus I(Gq−1((w, in+1), (w′, jn+1))).

Definition 9. A configuration (w, w′, in, jn) is q-distance-safe if it is pstep-safe
in the (p · 2q)-horizon and, if q > 0, it is p-int-safe in the q-horizon.

The next theorem takes advantage of previous lemmas to provide a necessary
condition for II to win.
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Theorem 1. [Necessary condition for II to win]
Let w, w′ ∈ Σ�. If (w, w′, in, jn) is not q-distance-safe, then I(Gq((w, in), (w′, jn))).

Proof. If (w, w′, in, jn) is not pstep-safe in the (p · 2q)-horizon, then, by Lemma
1, I(Gq((w, in), (w′, jn))); if q > 0 and (w, w′, in, jn) is not p-int-safe in the
q-horizon, then, by Lemma 4, I(Gq((w, in), (w′, jn))).

The next theorem states that q-distance-safety is also a sufficient condition for
II to win (in the restricted setting we are considering, where only local moves
are allowed).

Theorem 2. [Sufficient condition for II to win]
Let w, w′ ∈ Σ�. If (w, w′, in, jn) is q-distance-safe, then II(Gq((w, in), (w′, jn))).

4 Local Games on Labeled <p Structures

In this section, we consider the effects of adding unary predicates, that is, of
associating a label with each string position, to the local games studied in the
previous section. To this end, we introduce the notions of q-color of a position
and of q-color of an interval, which gives a recursive characterization of the labels
occurring in a suitable neighborhood of the position.

Definition 10. Let i, j, p ∈ N, with i, j, p ≥ 1. We define p-int+j (i) = [i + (j −
1)p + 1, i + jp] and p-int−j (i) = [i − jp, i − (j − 1)p − 1].

In the following definition, the q-color of positions is defined in terms of the
(q − 1)-color of intervals, which in its turn is defined in terms of the (q − 1)-
color of positions. Moreover, we distinguish between the q-color of an internal
interval and the q-color of prefix and suffix intervals. Finally, to keep definitions
as simple as possible, we assume all (fictitious) positions before position 1 and
after position |w| to be labeled by the special symbol $.

Definition 11. Let w ∈ Σ∗, q, p ∈ N, with p > 1, and i ∈ Z. The q-color of
position i in w, denoted by q-colw(i), is inductively defined as follows:

– the 0-color of i in w is the label w[i] for i ∈ {1 . . . |w|} and $ otherwise;
– the (q+1)-color of i in w is the ordered tuple σw

2q · · · σw
1 w[i]τw

1 . . . τw
2q where

for all 1 ≤ j ≤ 2q, τw
j is the q-color of p-int+j (i) and σw

j is the q-color of
p-int−j (i).

The q-color of the jth right (resp., left) interval [a, b] = p-int+j (i) (resp.,
p-int−j (i)) induced by i, abbreviated q-col-right-intj

w(a, b) (resp., q-col-left-intj
w(a,

b)), with 1 ≤ j ≤ 2q, is the ordered tuple twa . . . twa+γ1−1{twa+γ1
. . . twb−γ2

}tb−γ2+1. . .
twb (resp., twa . . . twa+γ2−1{twa+γ2

. . . twb−γ1
}tb−γ1+1 . . . twb )), where for all a ≤ k ≤ b,

twk =q-colw(k) and

γ1 =

⎧
⎨

⎩

αz
q+1 if q �= 0 and j − 1 ≤ 2q−1, where z = �log2(j − 1) + 1 for j > 1
and z = 0 for j = 1,

0 if q = 0 or j − 1 > 2q−1.

γ2 =
{

αz
q+1 − 1 if q �= 0 and j ≤ 2q−1, where z = �log2 j + 1

0 if q = 0 or j > 2q−1.
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For q > 0, the q-color of the jth prefix (resp., suffix) interval [a, b] = p-int+
j (0)

(resp., p-int−j (|w| + 1)), abbreviated q-col-prefjw(a, b) (resp., q-col-suffj
w(a, b)),

with 1 ≤ j ≤ 2q −1, q > 0, is the ordered tuple twa . . . twa+γ1−1{twa+γ1
. . . tb} (resp.,

{twa . . . twb−γ1
}twb−γ1+1 . . . tb), where ∀a ≤ i ≤ b, twi =q-colw(i) and

γ1 =

⎧
⎨

⎩

αz
q+1 if q �= 0 and j − 1 ≤ 2q−1, where z = �log2(j − 1) + 1 for j > 1
and z = 0 for j = 1,

0 if j − 1 > 2q−1.

The next definition introduces the notion of <p-safety for q-colors.

Definition 12. Let w, w′ ∈ Σ∗ and p, n, q ∈ N, with p > 0. A configuration
(w, w′, in, jn) is <p-safe for q-colors if the following conditions hold:

– ∀r ∈ {1, . . . , n}, q-colw(ir) =q-colw′(jr);
– ∀1 ≤ j ≤ 2q−1 − 1, with q > 1, (q − 1)-col-prefjw(p-int+

j (0)) = (q − 1)-col-
prefjw′(p-int+j (0));

– ∀1 ≤ j ≤ 2q−1 − 1, with q > 1, (q − 1)-col-suffj
w(p-int−j (|w| + 1)) = (q − 1)-

col-suffj
w′(p-int−j (|w′| + 1)).

Example 2. In Figs. 3 and 4 we show two configurations which are not <p-safe
for 2-colors. Moreover, for each of them, we outline a strategy I can adopt to
win in 2 rounds.

As for Fig. 3, a condition relative to the prefix of an interval is violated. We
have that 2-colw2 (i1) = σw

2 σw
1 w[i1]τw

1 τw
2 and 2-colw

′

2 (j1) = σw′

2 σw′

1 w′[j1]τw′

1 τw′

2 . If
we consider only the portions of w and w′ on the right of i1 and j1, we have that
τw
1 = . . . ..a{a, b}{..b{a, b}}, τw′

1 = . . . ..a{a, b}{..b{a, b}}, τw
2 = . . . ..a{a, b}{. . .},

and τw′

2 = . . . ..b{a, b}{. . .}. Since 1-colw(i1 + p + 1) �= 1-colw′(j1 + p + 1),
it holds that 2-colw(i1) �= 2-colw′(j1). Then I(G2((w, i1), (w′, j1))). An optimal
move for I is to choose i2 = i1 + p + 1 in w. II must choose a position within
[j1+p+1, . . . , j1+2p] in w′ labeled by a. Let us suppose II chooses j2 = j1+p+2.
The new configuration is not p-int-safe in the 1-horizon. If I chooses j3 = j1 +1,
it holds that j3 ≮p j2. Hence, II is not able to find a position i3 in w such that
i3 > i1 and i3 ≮p i2.

Fig. 3. Safety for q-colors (q = 2, Σ = {a, b}, p = 10)
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Fig. 4. Safety for q-colors (q = 2, Σ = {a, b}, p = 10)

As for Fig. 4, a condition relative to the interior of an interval is violated. We
have that 2-colw2 (i1) = σw

2 σw
1 w[i1]τw

1 τw
2 and 2-colw

′

2 (j1) = σw′

2 σw′

1 w′[j1]τw′

1 τw′

2 . If
we consider only the portions of w and w′ on the right of i1 and j1, we have that
τw
1 = . . . ..b{a}{..a{a, b}}, τw′

1 = . . . ..b{a}{..a{a, b}}, τw
2 = . . . ..a{a, b}{..b{a, b},

..a{a, b}}, and τw′

2 = . . . ..a{a, b}{..b{a, b}}. Since τw
2 �= τw′

2 (in particular,
{b{a, b}, a{a, b}} �= {b{a, b}}), it holds that 2-colw(i1) �= 2-colw′(j1). Then
I(G2((w, i1), (w′, j1))). An optimal move for I is to choose i2 = i1 + p + 4,
where w[i1 +p+4] = a. II must choose a position within [j1 +p+1, . . . , j1 +2p]
labeled by a. He can only choose j2 = j1 + p + 1. The new configuration is not
p-int-safe in the 1-horizon. If I chooses i3 = i1 + p + 1, it holds that i1 ≮p i3.
Hence, II is not able to find a position j3 in w′ such that j1 < j3 < j2 and
j1 ≮p j3.

The following theorem provides a necessary condition for II to win a local game
on labeled <p structures.

Theorem 3. [Necessary condition for II to win]
Let w, w′ ∈ Σ�, and p, q ∈ N, with p > 1. If (w, w′, in, jn) is not <p-safe for
q-colors, then I(Gq((w, in), (w′, jn))).

The next theorem gives a sufficient condition for II to win a local game on
labeled <p structures. It pairs the condition of q-distance-safety (Theorem 2)
with that of <p-safety for q-colors.

Definition 13. A configuration (w, w′, in, jn) is q-locally-safe if it is q-distance-
safe in the (p · 2q)-horizon and <p-safe for q-colors.

Theorem 4. [Sufficient condition for II to win]
Let w, w′ ∈ Σ�, and p, q ∈ N, with p > 1. If (w, w′, in, jn) is q-locally-safe, then
II(Gq((w, in), (w′, jn))).

To summarize, we have that q-local safety and <p-safety for q-colors are neces-
sary and sufficient conditions for II to have a winning strategy in q rounds when
I’s moves are coerced to be local.

We conclude the section by showing that it is possible to check in polynomial
time whether the q-colors of two positions in the two strings are equal or not.
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Fig. 5. The proposed representation of q-colw(i)

We take advantage of a suitable representation of q-colors, which is graphically
depicted in Fig. 5. The x-axis refers to string positions, while the y-axis refers
to q-colors. The q-color of a position i is represented by the label w[i] plus a set
of pointers (arrows) to the relevant (q −1)-colors, that is, to the (q −1)-colors of
positions i − δ, . . . , i − 1, i+ 1, . . . , i + δ, with δ = p · 2q−1. Labeled positions and
pointers give rise to a directed layered graph. The number of nodes and edges of
such a graph can be computed as follows. Let |w| = n. For 0 ≤ k < q, the number
of nodes of the graph at level k equals the number of k-colors to be computed,
that is, 2·p·

∑q−1
l=k 2l = O(n). Thus, the total number of nodes is O(n·q). As far as

the number of edges is concerned, for 1 ≤ k ≤ q, at level k the number of outgoing
edges is (2 · p

∑q−1
l=k 2l) · (2 · p · 2k−1) = O(n2). Hence, the total number of edges

is O(n2 · q). We partition the set of edges in two classes: continuous edges, that
point to colors that must occur at the same position within the corresponding
p-intervals (of the two strings) and dashed edges, that point to colors whose
position within the corresponding p-intervals (of the two strings) is irrelevant.
To compare the q-colors of two given positions (in the two strings), we build
the corresponding graphs and we visit them in a bottom-up fashion, that is, we
start from nodes representing 0-colors and we move upwards level-by-level. For
both graphs, we compute, at each level k, with 0 ≤ k < q, a table that, for every
k-color, keeps track of the its occurrences in the other graph. More precisely, for
each position 1 ≤ i ≤ 2 ·p ·

∑q−1
l=k 2l, we compute all the occurrences of k-col(i) in

the other graph. As a matter of fact, it suffices to search for the occurrences of
k-col(i) in the interval [i − (q − k) · (p − 1), . . . , i + (q − k) · (p − 1)]. Moreover, to
build the table at level k, we only need to look at the table at level k −1. Hence,
once the former has been computed, the latter can be deleted. The table at level
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0 can be easily computed by looking for the occurrences of each 0-color in the
other string. To build the table at level k, with 0 < k < q, we need to compare
k-colors in the two graphs. More precisely, for every position we must check the
presence of every (k − 1)-color it points to in the corresponding p-interval of the
other string. In fact, if a (k−1)-color is reached by a continuous arrow, it suffices
to check whether it occurs exactly at the same position within the corresponding
p-interval (in the other string). This can be done by accessing the table at level
k − 1. Once the first “k-comparison” has been done, the following ones can
exploit the outcomes of the “(k − 1)-searches” already performed, because the
computation of the k-colors of two neighbor positions requires the computation
of the (k−1)-colors of two portions of the string which only differ for a 1-position
shift.

The resulting algorithm has the following complexity. To build the table at
level k, we compare each of the O(n) k-colors of a string with each of the O(n) k-
colors in the other string. The comparison of two k-colors takes time O(p22k)(=
O(p2n)), because it requires to take into consideration p2k positions, that is,
entries of the table at level k-1, and to scan (part of) their occurrence list of
length O(p). Thus, the table at level k can be built in time O(p2n3). Since we
need to build q-1 tables, the overall time complexity is O(p2n3q). Given that q is
logarithmic in n (it is not difficult to show that if I has a winning strategy, then
he has a winning strategy in O(log n) rounds), the complexity of the algorithm
is O(p2n3 log n), which is polynomial in the length of the strings.

5 Global Games on Labeled <p Structures

In this section, we consider the general case, where we do not constrain I’s moves
to be local. The solution consists in combining a local and a global strategy. The
global strategy essentially requires to compare the multiplicity and scattering of
r-colors τ in the portions of w and w′ that are far away from already selected
positions.

Definition 14. Let q, p ∈ N
+, in be a set of positions in w and τ be a (q − 1)-

color. The (q,p)-free-multiplicity of τ in w, abbreviated ρ
(w,in)
(q,p) (τ), is the num-

ber of occurrences of τ in w which fall in Freep
q(w, in), where Freep

q(w, in) =
{1, . . . , |w|}\ Pstepregp

q(w, in).

Definition 15. Let P ⊆ N be a finite set. A k-blurred partition P of P is a
partition of P such that (i) for each A ∈ P and for each a, b ∈ A, δ(a, b) ≤ k,
and (ii) there is not a partition P′ satisfying (i) such that |P| > |P′|. The number
of classes of P is called k-blurring.

Definition 16. Let q, p ∈ N
+, in be a set of positions in w and τ be a (q − 1)-

color. The (q,p)-free-scattering of τ in w, abbreviated σ
(w,in)
(q,p) (τ), is the (p2q)-

blurring of {i| (q − 1)-colorw(i) = τ ∧ i ∈ Freep
q(w, in)}, where Freep

q(w, in) =
{1, . . . , |w|}\ Pstepregp

q(w, in).
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Let Δ
(w,in)
(w′,jn) = {τ | τ is a (q-1)-color, q > 0, and σ

(w,in)
(q,p) (τ) �= σ

(w′,jn)
(q,p) (τ) ∨

ρ
(w,in)
(q,p) (τ) �= ρ

(w′,jn)
(q,p) (τ)} be the set of words that I can exploit to win. The

next theorem provides a necessary condition for II to win.

Theorem 5. Let q, p, n ∈ N, with q, p > 0, and let (w, w′, in, jn) be a configura-
tion. If there exists a q − 1-color τ such that τ ∈ Δ

(w,in)
(w′,jn), then

I(G
q+min{σ

(w,in)
(q,p) (τ),σ(w′,jn)

(q,p) (τ)}((w, in), (w′, jn))).

A (necessary and) sufficient condition for II to win is given by the following
theorem.

Theorem 6. [Main Theorem]
Let w, w′ ∈ Σ∗ and p, q ∈ N, with p > 1. II(Gq((w, in), (w′, jn))) if and only if
the following conditions hold:

1. (w, w′, in, jn) is q-locally-safe;
2. for all (r − 1)-color τ ∈ Δ

(w,in)
(w′,jn), with 1 ≤ r ≤ q, σ

(w,in)
(i,p) (τ) > q − r and

σ
(w′,jn)
(i,p) (τ) > q − r.

Condition 2. means that I cannot detect any difference in q rounds if the scatter-
ing of the (r−1)-colors that have different multiplicity or scattering in (w, in) and
(w′, jn) is sufficiently high in both structures, where the thresholds depend on
the size of the (r−1)-colors (higher thresholds for smaller (r−1)-colors). The re-
moteness of G is thus r+min(σ(w,in)

(r,p) , σ
(w′,jn)
(r,p) ) and it can be intuitively explained

as follows: given a suitable τ ∈ Δ
(w,in)
(w′,jn), I can first choose min(σ(w,in)

(r,p) , σ
(w′,jn)
(r,p) )

occurrences of τ and then play a local move; after that, it is guaranteed that
the reached position is not (r − 1)-locally safe, so I can win the game by playing
r − 1 other local moves.

To compute the remoteness of two strings w and w′, we can thus proceed as
follows. Let n = min{|w|, |w′|}. As we already pointed out, this gives an upper
bound m = log n to the value of remoteness (unless the two strings coincide).
Hence, for i = 1, . . . , m, we search for an (i − 1)-color with a different scattering
or multiplicity in w and w′ (if any). As a preliminary step, we construct a layered
graph that represents the (m−1)-color of all the positions of the string w. Then,
we repeat the same construction for the string w′. Both the resulting graphs
consists of O(n log n) nodes and O(n2 log n) edges. Next, for i = 1, . . . , |w| and
k = 0, . . . , m − 1, we build a table that keeps track of the occurrences of the k-
color of position i in w and w′ (in fact, we must also deal with the k-colors of the
fictitious positions preceding position 1 and following position |w|; however, the
treatment of such cases does not affect the complexity of the building procedure).
Then, we repeat the same construction for w′. Both constructions take time
O(p2n3 log n). The resulting tables can then be exploited to compute multiplicity
and scattering of each k-color in time O(n). This last step globally takes time
O(n2 log n). The overall complexity of the computation is thus O(p2n3 log n).
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6 Conclusions

In this paper, we analyzed EF-games on labeled <p structures. The <p relation
features a mix of the characteristics of the successor relation s and the linear
order relation <. From s, it borrows the condition of pstep-safety (such a con-
dition is trivially satisfied in the case of <). Moreover, it shares the condition
of θ-safety with < (in the case of s, such a condition immediately follows from
pstep-safety). In addition, it features some distinctive characteristics, such as the
partition of the neighborhoods of selected positions in rigid and elastic intervals.

The paper identified necessary and sufficient winning conditions for I and II,
that allow one to compute the remoteness of a game and optimal strategies for
both players. Moreover, it provides a polynomial algorithm for the crucial step
in the computation of the remoteness, namely, checking whether the q-colors of
two distinct positions are equal.

We are currently comparing the values of the remoteness of real biological
sequences (in particular, DNA sequences of the plasmodium parasites), as well
as of artificial sequences, for different values of the parameter p. We are also
studying the case in which, instead of fixing the value of p in advance, we make
p a function of the size of the input sequences, e.g., a logarithmic function.
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mov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 293–309. Springer,
Heidelberg (2007)

7. De Maria, E., Montanari, A., Vitacolonna, N.: Games on strings with a limited
order relation. Technical Report 11/08, Department of Mathematics and Computer
Science, University of Udine, Italy (2008)



Complete Axiomatizations of MSO, FO(TC1) and
FO(LFP1) on Finite Trees�
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In particular, they all allow to express reachability, but at the same time, they
have the advantage of being decidable on trees.

As XML documents are tree-structured data, our results are particularly rel-
evant to XML query languages. Query languages are logical languages used to
make queries into database and information systems. In (19) and (8), MSO and
FO(TC1) have been proposed as a yardstick of expressivity on trees for these
languages. It is known that FO(LFP1) has the same expressive power as MSO
on trees, but the translations between the two are non-trivial, and hence it is
not clear whether an axiomatization for one language can be obtained from an
axiomatization for the other language in any straightforward way.

In applications to computational linguistics, finite trees are used to represent
the grammatical structure of natural language sentences. In the context of model
theoretic syntax, Rogers advocates in (17) the use of MSO in order to characterize
derivation trees of context free grammars. Kepser also argues in (11) that MSO
should be used in order to query treebanks. A treebank is a text corpus in which
each sentence has been annotated with its syntactic structure (represented as a
tree structure). In (12) and (20) Kepser and Tiede propose to consider various
transitive closure logics, among which FO(TC1), arguing that they constitute
very natural formalisms from the logical point of view, allowing concise and
intuitive phrasing of parse tree properties.

The remainder of the paper is organized as follows: in Section 1 we present
the concept of finite tree and the logics we are interested in together with their
standard interpretation. Section 2 merely states our three axiomatizations. In
Section 3, we introduce non standard semantics called Henkin semantics, for
which our axiomatizations are easily seen to be complete. Section 4 introduces
operations on Henkin structures: substructure formation and a general operation
of Henkin structures combination. We obtain Feferman-Vaught theorems for this
operation by means of Ehrenfeucht-Fräıssé games. In Section 5, we prove real
completeness (that is, on the restricted class of finite trees). For that purpose,
we consider substructures of trees that we call forests and use the general op-
eration discussed in Section 4 to combine a set of forests into one new forest.
Our Feferman-Vaught theorems apply to such constructions and we use them in
our main proof of completeness, showing that no formula of our language can
distinguish Henkin models of our axioms from real finite trees. We also point
out that every standard model of our axioms actually is a finite tree.

1 Preliminaries

1.1 Finite Trees

A tree is a partially ordered set such that the set of predecessors of any element
(or node) is well-ordered (a set is well-ordered if all its non-empty subsets have
a least element) and there is a unique smallest element called the root. We are
interested in finite node-labeled sibling-ordered trees : finite trees in which the
children of each node are linearly ordered. Also, the nodes can be labeled by
unary predicates. We will call these structures finite trees for short.
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Definition 1 (Finite tree). Assume a fixed finite set of unary predicate sym-
bols {P1, . . . , Pn}. By a finite tree, we mean a finite structure M = (M, <, ≺
, P1, . . . , Pn), where (M, <) is a tree (with < the descendant relation) and ≺
linearly orders the children of each node.

1.2 Three Extensions of First-Order Logic

In this section, we introduce three extensions of FO: MSO, FO(TC1) and
FO(LFP1). In the remaining of the paper (unless explicitly stated otherwise),
we will always be working with a fixed purely relational vocabulary σ (i.e. with
no individual constant or function symbols) and hence, with σ-structures. We
assume as usual that we have a countably infinite set of first-order variables.
In the case of MSO and FO(LFP1), we also assume that we have a countably
infinite set of set variables. The semantics defined in this section we will refer to
as standard semantics and the associated structures, as standard structures.

We first introduce monadic second order logic, MSO, which is the extension
of first-order logic in which we can quantify over the subsets of the domain.

Definition 2 (Syntax and semantics of MSO). Let At be a first-order
atomic formula, x a first-order variable and X a set variable, we define the
set of MSO formulas in the following way:

φ := At | Xx | φ ∧ ψ | φ ∨ ψ | φ → ψ | ¬φ | ∃x φ | ∃X φ

We use ∀Xφ (resp. ∀xφ) as shorthand for ¬∃X¬φ (resp. ¬∃x¬φ). We define
the quantifier depth of a MSO formula as the maximal number of first-order
and second-order nested quantifiers. We interpret MSO formulas in first-order
structures. Like for FO formulas, the truth of MSO formulas in M is defined
modulo a valuation g of variables as objects. But here, we also have set variables,
to which g assigns subsets of the domain. We let g[a/x] be the assignment which
differs from g only in assigning a to x (similarly for g[A/X ]). The truth of
atomic formulas is defined by the usual FO clauses plus the following:

M, g |= Xx iff g(x) ∈ g(X) for X a set variable

The truth of compound formulas is defined by induction, with the same clauses
as in FO and an additional one:

M, g |= ∃Xφ iff there is A ⊆ M such that M, g[A/X ] |= φ

The second logic we are interested in is monadic transitive closure logic, FO(TC1),
which extends FO by closing it under the transitive closure of binary definable
relations.

Definition 3 (Syntax and semantics of FO(TC1)). Let u, v, x, y be first-
order variables, φ(x, y) a FO(TC1) formula (which, besides x and y, possibly
contains other free variables), we define the set of FO(TC1) formulas in the
following way:

φ := At | Xx | φ ∧ ψ | φ ∨ ψ | φ → ψ | ¬φ | ∃x φ | [TCxyφ(x, y)](u, v)
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We use ∀xφ as shorthand for ¬∃x¬φ. We define the quantifier depth of a
FO(TC1) formula as the maximal number of nested first-order quantifiers and
TC operators. We interpret FO(TC1) formulas in first-order structures. The no-
tion of assignation and the truth of atomic formulas is defined as in FO. The
truth of compound formulas is defined by induction, with the same clauses as in
FO and an additional one:

M, g |= [TCxyφ](u, v)
iff

for all A ⊆ M , if g(u) ∈ A
and for all a, b ∈ M , a ∈ A and M, g[a/x, b/y] |= φ(x, y) implies b ∈ A,

then g(v) ∈ A.

Proposition 1. On standard structures, the following semantical clause for the
TC operator is equivalent to the one given above:

M, g |= [TCxyφ(x, y)](u, v)
iff

there exist a1 . . . an ∈ M with g(u) = a1 and g(v) = an

and M, g |= φ(ai, ai+1) for all 0 < i < n

Proof. Indeed, suppose there is a finite sequence of points a1 . . . an such that
g(u) = a1, g(v) = an, and for each i < n, M, g[x/ai; y/ai+1] |= φ. Then for any
subset A containing a1 and which is closed under φ, we can show by induction
on the length of the sequence a1 . . . an that an belongs to A. Now, on the other
hand, suppose that there is no finite sequence like described above. To show that
there is a subset A of the required form, we simply take A to be the set of all
points that “can be reached from u by a finite sequence”. By assumption, v does
not belong to this set and the set is closed under φ.

Intuitively this means that for a formula of the form [TCxyφ](u, v) to hold on a
standard structure, there must be a finite “φ path” between the points that are
named by the variables u and v.

Finally we will also be interested in monadic least fixpoint logic (FO(LFP1)),
which extends FO with set variables and an explicit monadic least fixpoint op-
erator. Consider a FO(LFP1) formula φ(X, x) and a structure M together with
a valuation g. This formula induces an operator Fφ taking a set A ⊆ dom(M)
to the set {a : M, g[a/X, A/X ] |= φ}. FO(LFP1) is concerned with least fixpoints
of such operators. If φ is positive in X (a formula is positive in X whenever
X only occurs in the scope of an even number of negations), the operator Fφ

is monotone (i.e. X ⊆ Y implies Fφ(X) ⊆ Fφ(Y )). Monotone operators always
have a least fixpoint LFP (F ) =

⋂
{X |F (X) ⊂ X} (defined as the intersection

of all their prefixpoints).

Definition 4 (Syntax and semantics of FO(LFP1)). Let X be a set variable,
x, y FO variables, ψ, ξ FO(LFP1) formulas and φ(x, X) a FO(LFP1) formula
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positive in X (besides x and X, φ(x, X) possibly contains other free variables),
we define the set of FO(LFP1) formulas in the following way:

ψ := At | Xy | ψ ∧ ξ | ψ ∨ ξ | ψ → ξ | ¬ψ | ∃x ψ | [LFPx,Xφ(x, X)]y

We use ∀xψ as shorthand for ¬∃x¬ψ. We define the quantifier depth of a
FO(LFP1) formula as the maximal number of nested first-order quantifiers and
LFP operators. Again, we can interpret FO(LFP1) formulas in first-order struc-
tures. The notion of assignation and the truth of atomic formulas are defined
similarly as in the MSO case. The truth of compound formulas is defined by
induction, with the same clauses as in FO and an additional one:

M, g |= [LFPx,Xφ]y
iff

for all A ⊆ dom(M), if for all a ∈ dom(M), M, g[a/x, A/X ] |= φ(x, X) implies
a ∈ A,

then g(y) ∈ A.

1.3 Expressive Power

There is a recursive procedure, transforming any FO(LFP1) formula φ into a
MSO formula φ′ such that M, g |= φ iff M, g |= φ′. The interesting clause is
([LFPx,Xφ(x, X)]y)′ = ∀X(∀x(φ(x, X)′ → Xx) → Xy). (The other ones are all
of the same type, e.g. (φ ∧ ψ)∗ = (φ∗ ∧ ψ∗).) This procedure can easily be seen
adequate by considering the semantical clause for the LFP operator.

Now there is also a recursive procedure transforming any FO(TC1) formula φ
into a FO(LFP1) formula φ′′ such that M, g |= φ iff M, g |= φ′′. The interesting
clause is ([TCxyφ](u, v))′′ = [LFPXyy = u∨∃x((Xx∧φ(x, y)′′))]v. Let us give an
argument for this claim. By Proposition 1 it is enough to show that [LFPXyy =
u ∨ ∃x(Xx ∧ φ(x, y)′′)]v holds if and only if there is a finite φ′′ path from u
to v. For the right to left direction, suppose there is such a path a1 . . . an with
g(u) = a1 and g(v) = an. Then, for any subset A of the domain, we can show
by induction on i that if for all ai (1 ≤ i ≤ n), ai = u ∨ ∃x((Ax ∧ φ(x, ai)′′)
implies ai ∈ A, then v ∈ A, i.e., [LFPXyy = u ∨ ∃x((Xx ∧ φ(x, y)′′))]v holds.
Now for the left to right direction, suppose there is no such φ′′ path. Consider
the set A of all points that can be reached from u by a finite φ′′ path. By
assumption, ¬Av and it holds that ∀y((y = u ∨ ∃x(Ax ∧ φ(x, y)′′)) → Ay), i.e.,
¬[LFPXyy = u ∨ ∃x(Xx ∧ φ(x, y)′′)]v.

It is known that on arbitrary structures FO(TC1) < FO(LFP1) < MSO (see
(5)) and on trees FO(TC1) <trees FO(LFP1) =trees MSO (see (19) and (16)). It
is also known that the (not FO definable) class of finite trees is already definable
in FO(TC1) (see for instance (12)), which is the weakest of the logics studied
here. We provide additional detail in Section 5.3.

2 The Axiomatizations

As many arguments in this paper equally hold for MSO, FO(TC1) and FO(LFP1),
we let Λ ∈ {MSO, FO(TC1), FO(LFP1)} and use Λ as a symbol for any one of them.
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FO1. Tautologies of sentential calculus
FO2. � ∀xφ → φx

t , where t is substitutable for x in φ
FO3. � ∀x(φ → ψ) → (∀xφ → ∀xψ)
FO4. � φ → ∀xφ, where x does not occur free in φ
FO5. � x = x
FO6. � x = y → (φ → ψ), where φ is atomic and ψ is obtained

from φ by replacing x in zero or more (but not necessarily
all) places by y.

Modus Ponens if � φ and � φ → ψ, then � ψ
FO Generalization if � φ, then � ∀xφ

Fig. 1. Axioms and rules of FO

COMP. � ∃X∀x(Xx ↔ φ), where X does not occur free in φ
MSO1. � ∀Xφ → φ[X/T ], where T (which is either a set variable

or a monadic predicate) is substitutable in φ for X.
MSO2. � ∀X(φ → ψ) → (∀Xφ → ∀Xψ)
MSO3. � φ → ∀Xφ, where X does not occur free in φ
MSO Generalization if � φ, then � ∀Xφ

Fig. 2. Axiom and inference rule of MSO

FO(TC1) axiom � [TCxyφ](u, v) → ((ψ(u) ∧ ∀x∀y(ψ(x) ∧ φ(x, y) → ψ(y))) → ψ(v))
where ψ is any FO(TC1) formula

FO(TC1) Generalization if � ξ → ((P (u) ∧ ∀x∀y(P (x) ∧ φ(x, y) → P (y))) → P (v)),
and P does not occur in ξ,
then � ξ → [TCxyφ](u, v)

Fig. 3. Axiom and inference rule of FO(TC1)

FO(LFP1) axiom � [LFPx,Xφ]y → (∀x(φ(x, ψ) → ψ(x)) → ψ(y))
where ψ is any FO(LFP1) formula and φ(x, ψ) is the result
of the replacement in φ(x, X) of each occurrence of X by ψ
(renaming variables when needed)

FO(LFP1) Generalization if � ξ → (∀x(φ(x, P ) → P (x)) → P (y)),
and P positive in φ does not occur in ξ,
then � ξ → [LFPX,xφ](y)

Fig. 4. Axiom and inference rule of FO(LFP1)
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T1. ∀xyz(x < y ∧ y < z → x < z) < is transitive
T2. ¬∃x(x < x) < is irreflexive
T3. ∀xy(x < y → ∃z(x <imm z ∧ z ≤ y)) immediate children
T4. ∃x∀y¬(y < x) there is a root
T5. ∀xyz(x < z ∧ y < z → x ≤ y ∨ y ≤ x) linearly ordered ancestors

T6. ∀xyz(x ≺ y ∧ y ≺ z → x ≺ z) ≺ is transitive
T7. ¬∃x(x ≺ x) ≺ is irreflexive
T8. ∀xy(x ≺ y → ∃z(x ≺imm z ∧ z � y)) immediately next sibling
T9. ∀x∃y(y � x ∧ ¬∃z(z ≺ y)) there is a least sibling
T10. ∀xy((x ≺ y ∨ y ≺ x) ↔ (∃z(z <imm x ∧ z <imm y) ∧ x �= y))

≺ linearly orders siblings

T11. ∀xy(x = y ∨ x < y ∨ y < x ∨ ∃x′y′(x′ < x ∧ y′ < y ∧ (x′ ≺ y′ ∨ y′ ≺ x′)))
connectedness

Ind. ∀x(∀y((x < y ∨ x ≺ y) → φ(y)) → φ(x)) → ∀xφ(x)

where
φ(x) ranges over Λ-formulas in one free variable x

and
x <imm y is shorthand for x < y ∧ ¬∃z(z < y ∧ x < z),
x ≺imm y is shorthand for x ≺ y ∧ ¬∃z(x ≺ z ∧ z ≺ y)

Fig. 5. Specific axioms on finite trees

The axiomatization of Λ on finite trees consists of three parts: the axioms of first-
order logic, the specific axioms of Λ, and the specific axioms on finite trees.

To axiomatize FO, we adopt the infinite set of axioms and the two rules
of inference given in Figure 1 (like in (6), except from the fact that we use
a generalization rule). To axiomatize MSO, the axioms and rule of Figure 2
are added to the axiomatization of FO. We call the resulting system �MSO.
COMP. stands for “comprehension” by analogy with the comprehension axiom
of set theory. MSO1 plays a similar role as FO2, MSO2 as FO3 and MSO3
as FO4. To axiomatize FO(TC1), the axiom and rule of Figure 3 are added to
the axiomatization of FO. We call the resulting system �FO(TC1). To axiomatize
FO(LFP1), the axiom and rule of Figure 4 are added to the axiomatization of
FO. We call the resulting system �FO(LFP1). We are interested in axiomatizing Λ
on the class of finite trees. For that purpose we restrict the class of considered
structures by adding to �Λ the axioms given in Figure 5. We call the resulting
system �tree

Λ . Note that the induction scheme in Figure 5 allows to reason by
induction on properties definable in Λ only. Also, for technical convenience, we
adopt the following convention:

Definition 5. Let Γ be a set of Λ-formulas and φ a Λ-formula. By Γ �Λ φ we
will always mean that there are ψ1, . . . , ψn ∈ Γ such that �Λ (ψ1 ∧ . . .∧ψn) → φ.

Now the main result of this paper is that on standard structures, the Λ theory
of finite trees is completely axiomatized by �tree

Λ . In the remaining sections we
will progressively build a proof of it.
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3 Henkin Completeness

As it is well known, MSO, FO(TC1) and FO(LFP1) are highly undecidable on ar-
bitrary standard structures (by arbitrary, we mean any sort of structure: infinite
trees, arbitrary graphs, partial orders. . . ) and hence not recursively enumerable.
So in order to show that our axiomatizations �tree

Λ are complete on finite trees,
we resort to a special trick, already used by Kees Doets in his PhD thesis (4).
We proceed in two steps. First, we show three Henkin completeness theorems,
based on non standard (so called Henkin) semantics for MSO, FO(TC1) and
FO(LFP1) (on the general topic of Henkin semantics, see (10), the original pa-
per by Henkin and also (15)). Each semantics respectively extends the class of
standard structures with non standard (Henkin) MSO, FO(TC1) and FO(LFP1)-
structures. By the Henkin completeness theorems, our axiomatic systems �tree

Λ

naturally turn out to be complete on the wider class of their Henkin-models.
But by compactness, some of these models are infinite. As a second step, we
show in Section 5 that no Λ-sentence can distinguish between standard and non-
standard Λ-Henkin-models among models of our axioms. This entails that our
axioms are complete on the class of (standard) finite trees, i.e., each Λ-sentence
valid on this class is provable using �tree

Λ . Now let us point out that Kees Doets
was interested in the completeness of first-order logic on finite trees. Thus, he
was relying on the FO completeness theorem and if he was working with non-
standard models of the FO theory of finite trees, he was not concerned with
non standard Henkin-structures in our sense. Hence, what makes the original-
ity of the method developed in this paper is its use of Henkin semantics. So
let us begin with the concept of Henkin-structure. Such structures are particular
cases among structures called frames and it is convenient to define frames before
defining Henkin-structures.

Definition 6 (Frames). Let σ be a purely relational vocabulary. A σ-frame
M consists of a non-empty universe dom(M), an interpretation in dom(M) of
the predicates in σ and a set of admissible subsets AM ⊆ ℘(dom(M)).

Whenever AM = ℘(dom(M)), M can be identified to a standard structure.
Assignments g into M are defined as in standard semantics, except that if X is
a set variable, then we require that g(X) ∈ AM.

Definition 7 (Interpretation of Λ-formulas in frames). Λ-formulas are
interpreted in frames as in standard structures, except for the three following
clauses. The set quantifier clause of MSO becomes:

M, g |= ∃Xφ iff there is A ∈ AMΓ such that M, g[A/X ] |= φ

The TC clause of FO(TC1) becomes:

M, g |= [TCxyφ](u, v)
iff

for all A ∈ AM, if g(u) ∈ A
and for all a, b ∈ dom(M), a ∈ A and M, g[x/a, b/y] |= φ imply b ∈ A,

then g(v) ∈ A.
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And finally the LFP clause of FO(LFP1) becomes:

M, g |= [LFPx,Xφ]y
iff

for all A ∈ AM, if for all a ∈ dom(M), M, g[a/x, A/X ] |= φ(x, X) implies
a ∈ A,

then g(y) ∈ A.

Definition 8 (Λ-Henkin-Structures). A Λ-Henkin-structure is a frame M
that is closed under Λ-definability, i.e., for each Λ-formula ϕ and assignment g
into M:

{a ∈ M |M, g[a/x] |= ϕ} ∈ AM

Remark 1. Note that any finite Λ-Henkin-structure is a standard structure, as
every subset of the domain is parametrically definable in a finite structure. Hence,
non standard Henkin structures are always infinite.

Theorem 1. Λ is completely axiomatized on Λ-Henkin-structures by �Λ, i.e.,
for every set of Λ-formulas Γ and Λ-formula φ, φ is true in all Λ-Henkin-
structures of Γ if and only if Γ �Λ φ.

Compactness follows directly from Definition 5 and Theorem 1, i.e., a possibly
infinite set of Λ-sentences has a model if and only if every finite subset of it has a
model. It also follows directly from Theorem 1 that �tree

Λ is complete on the class
of its Λ-Henkin-models. Nevertheless, by compactness the axioms of �tree

Λ are
also satisfied on infinite trees. We overcome this problem by defining a slightly
larger class of Henkin structures, which we will call definably well-founded Λ-
quasi-trees.1

Definition 9. A Λ-quasi-tree is any Λ-Henkin structure (T, <, ≺,
P1, . . . , Pn, AT ) (where AT is the set of admissible subsets of T ) satisfy-
ing the axioms and rules of �Λ and the axioms T1–T11 of Figure 5. A
Λ-quasi-tree is definably well founded if, in addition, it satisfies all instances of
the induction scheme Ind of Figure 5.

Corollary 1. A Λ-Henkin-structure satisfies the axioms of �tree
Λ if and only if

it is a definably well-founded Λ-quasi-tree.

4 Operations on Henkin-Structures

Let Λ ∈ {MSO, FO(TC1), FO(LFP1)}. As noted in Remark 1, every finite Λ-
Henkin structure is also a standard structure. Hence, when working in finite
model theory, it is enough to rely on the usual FO constructions to define op-
erations on structures. On the other hand, even though our main completeness
1 For a nice picture of a non definably well-founded quasi-tree see (1).
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result concerns finite trees, inside the proof we need to consider infinite (Λ-
Henkin) structures and operations on them. In this context, methods for form-
ing new structures out of existing ones have to be redefined carefully. We first
propose a notion of substructure of a Λ-Henkin-structure generated by one of its
parametrically definable admissible subsets:

Definition 10 (Λ-substructure). Let M = (dom(M), P red, AM) be a
Λ-Henkin-structure (where Pred is the interpretation of the predicates). We call
MFO = (dom(M), P red) the FO-structure underlying M. Given a parametrically
definable set A ∈ AM, the Λ-substructure of M generated by A is the structure
M � A = (〈A〉MF O , AM�A), where 〈A〉MF O is the FO-substructure of MFO gen-
erated by A (note that A forms the domain of 〈A〉MF O , as the vocabulary is
purely relational) and AM�A = {X ∩ A|X ∈ AM}.

Now, in order to show that Λ-substructures are Henkin-structures, we introduce
a notion of relativization and a corresponding relativization lemma. This lemma
establishes that for any Λ-Henkin-structure M and Λ-substructure M � A of M
(with A a set parametrically definable in M), if a set is parametrically definable
in M � A then it is also parametrically definable in M. This result will be useful
again in Section 5.2.

Definition 11 (Relativization mapping). Given two Λ-formulas φ, ψ having
no variables in common and given a FO variable x, we define REL(φ, ψ, x) by
induction on the complexity of φ and call it the relativization of φ to ψ:

– If φ is an atom, REL(φ, ψ, x) = φ,
– If φ :≈ φ1 ∧ φ2, REL(φ, ψ, x) = REL(φ1, ψ, x) ∧ REL(φ2, ψ, x) (similar for

∨, →, ¬),
– If φ :≈ ∃yχ, REL(φ, ψ, x) = ∃y(ψ[y/x]∧REL(χ, ψ, x)) (where ψ[y/x] is the

formula obtained by replacing in ψ every occurrence of x by y),
– If φ :≈ ∃Y χ, REL(φ, ψ, x) = ∃Y ((Y x → ψ) ∧ REL(χ, ψ, x)),
– If φ :≈ [TCyzχ](u, v), REL(φ, ψ, x) = [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧

ψ[z/x]](u, v),
– If φ :≈ [LFPXyχ]z, REL(φ, ψ, x) :≈ [LFPXyχ ∧ ψ[y/x]]z.

Lemma 1 (Relativization lemma). Let M be a Λ-Henkin-structure, g a val-
uation on M, φ, ψ Λ-formulas and A = {x | M, g |= ψ}. If g(y) ∈ A for
every variable y occurring free in φ and g(Y ) ∈ M � A for every set variable Y
occurring free in φ, then M, g |= REL(φ, ψ, x) ⇔ M � A, g |= φ.

Lemma 2. M � A is a Λ-Henkin-structure.

Proof. Take B parametrically definable in M � A, i.e., there is a Λ-formula φ(y)
and an assignment g such that B = {a ∈ dom(M � A) | M � A, g[a/y] |= φ(y)}.
Now we know that A is also parametrically definable in M, i.e., there is a Λ-
formula ψ(x) and an assignment g′ such that A = {a ∈ dom(M) | M, g′[a/x] |=
ψ(x)}. Assume w.l.o.g. that φ and ψ have no variables in common, we define
an assignment g∗ by letting g∗(z) = g′(z) for every variable z occurring in ψ
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and g∗(z) = g(z) otherwise. The situation with set variables is symmetric. Now
by Lemma 1, B = {a ∈ dom(M) | M, g∗[a/x] |= REL(φ, ψ, x)} and hence
B ∈ AM�A.

There is in model theory a whole range of methods to form new structures out of
existing ones. A standard reference on the matter is (7), written in a very general
algebraic setting. Familiar constructions like disjoint unions of FO-structures
are redefined as particular cases of a new notion of generalized product of FO-
structures and abstract properties of such products are studied. In particular, an
important theorem now called the Feferman-Vaught theorem for FO is proven.
We are particularly interested in one of its corollaries, which establishes that
generalized products of FO-structures preserve elementary equivalence. This is
related to our work in that we show an analogue of this result for a particular
case of generalized product of Λ-Henkin-structures that we call fusion, this notion
being itself a generalization of a notion of disjoint unions of Λ-Henkin-structures
that we also define.

Definition 12 (Disjoint union of Λ-Henkin-structures). Let σ be a purely
relational vocabulary and σ∗ = σ∪{Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new
monadic predicates. For any Λ-Henkin-structures M1, . . . , Mk in vocabulary σ
with disjoint domains, define their disjoint union

⊎
1≤i≤k Mi (or, direct sum) to

be the σ∗-frame that has as its domain the union of the domains of the structures
Mi and likewise for the relations, except for the predicates Qi, whose interpre-
tations are respectively defined as the domain of the structures Mi (we will use
Qi to index the elements of Mi). The set of admissible subsets A⊎

1≤i≤k Mi
is the

closure under finite union of the union of the sets of admissible subsets of the
Mi. That is:

– dom(
⊎

1≤i≤k Mi) =
⋃

1≤i≤k dom(Mi)

– P
⊎

1≤i≤k Mi =
⋃

1≤i≤k PMi (with P ∈ σ) and Q
⊎

1≤i≤k Mi

i = dom(Mi)
– A ∈ A⊎

1≤i≤k Mi
iff A =

⋃
1≤i≤k Ai for some Ai ∈ AMi

Definition 13 (f-fusion of Λ-Henkin-structures). Let σ be a purely rela-
tional vocabulary and σ∗ = σ ∪ {Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new
monadic predicates. Let f be a function mapping each n-ary predicate P ∈ σ
to a quantifier-free formula over σ∗ in variables x1, . . . , xn. For any Λ-Henkin-
structures M1, . . . , Mk in vocabulary σ with disjoint domains, define their f -
fusion to be the σ-frame

⊕f
1≤i≤k Mi that has the same domain and set of

admissible subsets as
⊎

1≤i≤k Mi. For any P ∈ σ, the interpretation of P in
⊕f

1≤i≤k Mi is the set of n-tuples satisfying f(P (x1 . . . xn)) in
⊎

1≤i≤k Mi.

An easy example of f -fusion on standard structures2 is the ordered sum of
two linear orders (M1, <1), (M2, <2), where all the elements of M1 are before

2 It is simpler to give an example on standard structures, because then, we do not
have to say anything about admissible sets.
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the elements of M2. In this case, σ consists of a single binary relation <, the
elements of M1 are indexed with Q1, those of M2 with Q2 and f maps < to
x < y ∨ (Q1x ∧ Q2y).

We show preservation results involving f -fusions of Λ-Henkin-structures.
Hence we deal with analogues of elementary equivalence for these logics and
we refer to Λ-equivalence.

Definition 14. Given two Λ-Henkin-structures M and N, we write M ≡Λ N
and say that M and N are Λ-equivalent if they satisfy the same Λ-sentences.
Also, for any natural number n, we write M ≡n

Λ N and say that M and N are
n-Λ-equivalent if M and N satisfy the same Λ-sentences of quantifier depth at
most n. In particular, M ≡Λ N holds iff, for all n, M ≡n

Λ N holds.

Now we are ready to introduce our “Feferman-Vaught theorems”. Comparable
work had already been done by Makowski in (14) for extensions of FO, but a
crucial difference is that he only considered standard structures, whereas we
need to deal with Λ-Henkin-structures. Our proofs make use of Ehrenfeucht-
Fräıssé games for each of the logics Λ. The MSO game, that we show to be
adequate, is rather straightforward and has already been used by other authors
(see for instance (13)). The FO(LFP1) game is borrowed from Uwe Bosse (2).
It also applies to Henkin structures, as careful inspection of its adequacy proof
shows. The FO(TC1) game has already been mentioned in passing by Grädel in
(9) as an alternative to the game he used and we show that it is adequate. It
looks also similar to a system of partial isomorphisms given in (3). However it
is important to note that this game is different from the FO(TC1) game which
is actually used in (9). The two games are equivalent when played on stan-
dard structures, but not when played on FO(TC1)-Henkin structures. This is
so because the game used in (3) relies on the alternative semantics for the TC
operator given in Proposition 1, so that only finite sets of points can be chosen
by players ; whereas the game we use involves choices of not necessarily finite
admissible subsets. These are not equivalent approaches. Indeed, on FO(TC1)-
Henkin structures a simple compactness argument shows that the semantical
clause of Proposition 1 (defined in terms of existence of a finite path) is not
adequate.

Using these games we show that f -fusions of Λ-Henkin-structures preserve
Λ-equivalence.

Theorem 2. Let Mi Ni with 1 ≤ i ≤ k be Λ-Henkin-structures. For any f such
as described in definition 13, whenever Mi ≡n

Λ Ni for all 1 ≤ i ≤ k, then also
⊕f

1≤i≤k Mi ≡n
Λ

⊕f
1≤i≤k Ni.

Corollary 2. For any Λ-Henkin-structures Mi with 1 ≤ i ≤ k,
⊕f

1≤i≤k Mi is
also a Henkin structure.

Analogues of Theorem 2 and Corollary 2 for disjoint union follow as well.
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5 Completeness on Finite Trees

5.1 Forests and Operations on Forests

In Section 5.2, we will prove that no Λ-sentence can distinguish Λ-Henkin-models
of �tree

Λ from standard models of �tree
Λ . More precisely, we will show that for each

n, any definably well-founded Λ-quasi-tree is n-Λ-equivalent to a finite tree. In
order to give an inductive proof, it will be more convenient to consider a stronger
version of this result concerning a class of finite and infinite Henkin structures
that we call quasi-forests. In this section, we give the definition of quasi-forest
and we show how they can be combined into bigger quasi-forests using the notion
of fusion from Section 4. Whenever quasi forests are finite, we simply call them
finite forests. As a simple example, consider a finite tree and remove the root
node, then it is no longer a finite tree. Instead it is a finite sequence of trees,
whose roots stand in a linear (sibling) order.3 It does not have a unique root, but
it does have a unique left-most root. For technical reasons it will be convenient
in the definition of quasi forests to add an extra monadic predicate R labelling
the roots.

Definition 15 (Λ-quasi-forest). Let T = (dom(T ), <, ≺, P1, . . . , . . . Pn, AT )
be a Λ-quasi-tree. Given a node a in T , consider the Λ-substructure of T gener-
ated by the set {x | ∃z(a � z ∧ z ≤ x)}, which is the set formed by a together
with all its siblings to the right and their descendants. The Λ-quasi-forest Ta is
obtained by labeling each root in this substructure with R (Rx ⇔def ¬∃y y < x).
Whenever T is a tree, we simply call Ta a forest.

We will show in our main proof of completeness that for each n and for each node
a in a Λ-Henkin definably well-founded quasi-tree, the Λ-quasi-forest Ta is n-Λ-
equivalent to a finite forest. Our proof will use a notion of composition of Λ-quasi-
forests which is a special case of fusion. Given a single node forest F1 and two Λ-
quasi-forests F2 and F3, we construct a new Λ-quasi-forest

⊕COMP (F1, F2, F3)
by letting the only element in F1 be the left-most root, the roots of F2 become
the children of this node and the roots of F3 become its siblings to the right. We
then derive a corollary of Theorem 2 for compositions of Λ-quasi-forests and use
it in Section 5.2.

Definition 16. Let σ = {<, ≺, R, P1, . . . , Pn}, be a relational vocabulary with
only monadic predicates except < and ≺. Given three additional monadic predi-
cates Q1, Q2, Q3, we define a mapping COMP from σ to quantifier-free formulas
over σ ∪ {Q1, Q2, Q3} by letting

– COMP (x < y) = x < y ∨ (Q1(x) ∧ Q2(y))
– COMP (x ≺ y) = x ≺ y ∨ (Q1(x) ∧ Q3(y) ∧ R(y))
– COMP (R(x)) = (Q3(x) ∧ R(x)) ∨ Q1(x))

Corollary 3. Let F1 be a single node forest and F2, F3 Λ-quasi forests. If F2 ≡n
Λ

F ′
2 and F3 ≡n

Λ F ′
3 then

⊕COMP (F1, F2, F3) ≡n
Λ

⊕COMP (F1, F
′
2, F

′
3).

3 Note that, as far as roots are concerned, two nodes can be siblings without sharing
any parent. This would not happen in a quasi tree.
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5.2 Main Proof of Completeness

Lemma 3. For all n ∈ N, every definably well-founded Λ-quasi-tree of finite
signature is n-Λ-equivalent to a finite tree. In particular, a Λ-sentence is valid
on definably well-founded Λ-quasi-trees iff it is valid on finite trees.

Proof. Let T be a Λ-quasi-tree, w.l.o.g. assume that a monadic predicate R labels
its root. During this proof, it will be convenient to work with Λ-quasi-forests.
Note that finite Λ-quasi-forests are simply finite forests and finite Λ-quasi-trees
are simply finite trees. Let Xn be the set of all nodes a of T for which it holds
that Ta is n-Λ-equivalent to a finite forest. We first show that ”belonging to Xn”
is a property definable in T (Claim 1). Then, we use the induction scheme to
show that every node of a definably well-founded Λ-quasi-tree (and in particular,
the root) has this property (Claim 2).

Claim 1: Xn is invariant for n + 1-Λ-equivalence (i.e., (T, a) ≡Λ
n+1 (T, b) implies

that a ∈ Xn iff b ∈ Xn), and hence is defined by a Λ-formula of quantifier depth
n + 1.

Proof of claim. Suppose that (T, a) ≡Λ
n+1 (T, b). We will show that Ta ≡Λ

n Tb,
and hence, by the definition of Xn, a ∈ Xn iff b ∈ Xn. By the definition of
Λ-quasi-forests, dom(Ta) = {x | ∃z(a � z ∧ z ≤ x)}. Let φ be any Λ-sentence of
quantifier depth n. We can assume w.l.o.g. that φ does not contain the variables z
and x (otherwise we can rename in φ these two variables). By lemma 1, (T, a) |=
REL(φ, ∃z(a � z ∧ z ≤ x), x) iff Ta |= φ. Notice that REL(φ, ∃z(a � z ∧ z ≤
x), x) expresses precisely that φ holds in (T, a) within the subforest Ta. Moreover,
the quantifier depth of REL(φ, ∃z(a � z∧z ≤ x) is at most n+1. It follows that
(T, a) |= REL(φ, ∃z(a � z ∧ z ≤ x), x) iff (T, b) |= REL(φ, ∃z(b � z ∧ z ≤ x), x),
and hence Ta |= φ iff Tb |= φ.

For the second part of the claim, note that, up to logical equivalence, there are
only finitely many Λ-formulas of any given quantifier depth, as the vocabulary
is finite. �

Claim 2: If all descendants and siblings to the right of a belong to Xn, then a
itself belongs to Xn.

Proof of claim. Let us consider the case where a has both a descendant and a
following sibling (all other cases are simpler). Then, by axioms T3, T5, T8, T9
and T10, a has a first child b, and an immediate next sibling c. Moreover, we
know that both b and c are in Xn. In other words, Tb and Tc are n-Λ-equivalent to
finite forests T ′

b and T ′
c. Now, we construct a finite Λ-quasi-forest T ′

a by taking a
COMP -fusion of T ′

b, T ′
c and of the Λ-substructure of T generated by {a}, which

unique element becomes a common parent of all roots of T ′
b and a left sibling

of all roots of T ′
c. So we get T ′

a =
⊕COMP (T � {a}, T ′

b, T
′
c)). It is not hard to

see that T ′
a is again a finite forest. Moreover, by the fusion lemma,

⊕COMP (T �
{a}, Tb, Tc)) ≡Λ

n T ′
a. Now to show that

⊕COMP (T � {a}, Tb, Tc)) is isomorphic to
Ta (which entails Ta ≡Λ

n T ′
a i.e. Ta is n-Λ-equivalent to a finite forest), it is enough
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to show ATa = A⊕ COMP (T �{a},Tb,Tc). It holds that A⊕ COMP (T �{a},Tb,Tc) ⊆ ATa

because we can define in Ta each such union of sets by means of a disjunction.
Now to show ATa ⊆ A⊕

COMP (T �{a},Tb,Tc), take A ∈ ATa , so A = A1 ∪ A2 ∪ A3
with A1 ∈ AT �{a}, A2 ∈ ATb

, A3 ∈ ATc . The domain of each of these three
structures is definable in Ta, let say φ1 defines dom(T � {a}), φ2 defines dom(Tb)
and φ3 defines dom(Tc). So each Ai component is definable in Ta (just take the
conjunction φi(x) ∧ Ax). But then Ai was already definable in

⊕COMP (T �
{a}, Tb, Tc) (by construction of this structure). �

It follows from these two claims, by the induction scheme for definable properties,
that Xn contains all nodes of the Λ-quasi-tree, including the root, and hence T is
n-Λ-equivalent to a finite tree. For the second statement of the lemma, it suffices
to note that every Λ-sentence has a finite vocabulary and a finite quantifier depth.

Theorem 3. Let Λ ∈ {MSO, FO(TC1), FO(LFP1)}. The Λ-theory of finite trees
is completely axiomatized by �tree

Λ .

Proof. Theorem 3 follows directly from Lemma 3 and Corollary 1.

5.3 The Set of �tree
Λ Consequences Defines the Class of Finite Trees

Proposition 2 shows together with Theorem 3 that on standard structures, the
set of �tree

Λ consequences actually defines the class of finite trees. That is, �tree
Λ

has no infinite standard model at all.

Proposition 2. Let Λ ∈ {FO(TC1), FO(LFP1), MSO}. On standard structures,
there is a Λ-formula which defines the class of finite trees.

Proof (Sketch of the proof). It is enough to show it for Λ = FO(TC1). It follows
by Section 1.3 that it also holds for MSO and FO(LFP1).

We merely give a sketch of the proof. For additional details we refer the reader
to (12). It can be shown that on standard structures, the finite conjunction of
the axioms T1–T11 in Figure 5 “almost” defines the class of finite trees, i.e. any
finite structure satisfying this conjunction is a finite tree. Now we will explain
how to construct an other sentence, which together with this one, actually defines
on arbitrary standard structures the class of finite trees. Let L be a shorthand
for the formula labelling the leaves in the tree (Lx ⇔def ¬∃yx < y) and R a
shorthand for the formula labelling the root (Rx ⇔def ¬∃yy < x). Consider
the depth-first left-to-right ordering of nodes in a tree and the FO(TC1) formula
φ(x, y) saying “the node that comes after x in this ordering is y”:

φ(x, y) :≈ (¬Lx ∧ x <imm y ∧ ¬∃zz ≺ y) ∨ (Lx ∧ x ≺imm y) ∨ (Lx ∧ ¬∃zx ≺
z ∧ ∃z(z < x ∧ z ≺imm y ∧ ¬∃ww < x ∧ z < w ∧ ∃uw ≺imm u))

There is also a FO(TC1) formula which says that “x is the very last node in this
ordering”. φ(x, y) can be combined with this formula into an FO(TC1) formula χ
expressing that the tree is finite by saying that (we rely here for the interpretation
of χ on the alternative semantics for the TC operator given in Proposition 1)
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“there is a finite sequence of nodes x1 . . . xn such that x1 is the root, xi+1 the
node that comes after xi in the above ordering, for all i, and xn is the very last
node of the tree in the above ordering”.

χ :≈ ∃u∃z(Rz ∧ [TCxyφ](z, u) ∧ ¬∃u′(u �= u′ ∧ [TCxyφ](u, u′)))

Theorem 4. The set of �tree
Λ consequences defines the class of finite trees.

Proof. By Proposition 2 we can express in Λ by means of some formula χ that
a structure is a finite tree. So χ is necessarily a consequence of �tree

Λ (as it is a
Λ-formula valid on the class of finite trees).

6 Conclusions

In this paper, taking inspiration from Kees Doets (4) we developed a uniform
method for obtaining complete axiomatizations of fragments of MSO on finite
trees. For that purpose, we had to adapt classical tools and notions from finite
model theory to the specificities of Henkin semantics. The presence of admis-
sible subsets called for some refinements in model theoretic constructions such
as formation of substructure or disjoint union. Also, we noticed that not every
Ehrenfeucht-Fräıssé game that has been used for FO(TC1) was suitable to use on
Henkin-structures. We focused on a game which doesn’t seem to have been used
previously in the literature. We also elaborated analogues of the FO Feferman-
Vaught theorem for MSO, FO(TC1) and FO(LFP1). We considered fusions of struc-
tures, a particular case of the Feferman-Vaught notion of generalized product and
obtained results which might be interesting to generalize and use in other contexts.

We applied our method to MSO, FO(TC1) and FO(LFP1), but it would be
worth also examining other fragments of MSO, such as monadic deterministic
transitive closure logic (FO(DTC1)) or monadic alternating transitive closure
logic (FO(ATC1)), see also (3).

Finally, an important feature of our main completeness argument is the way
we used the inductive scheme of Figure 5. Hence, extending our approach to
another class of finite structures would involve finding a comparable scheme.
We also know that we should focus on a logic which is decidable on this class,
as on finite structures recursive enumerability is equivalent to decidability. This
suggests that other natural candidates would be fragments of MSO on classes of
finite structures with bounded treewidth.
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Abstract. We study the multiagent epistemic logic CMAEL(CD)
with operators for common and distributed knowledge for all coalitions
of agents. We introduce Hintikka structures for this logic and prove that
satisfiability in such structures is equivalent to satisfiability in standard
models. Using this result, we design an incremental tableau based deci-
sion procedure for testing satisfiability in CMAEL(CD).

1 Introduction

Multiagent epistemic logics formalize reasoning about individual and collective
knowledge of agents in multiagent systems. Over the last three decades, such log-
ics have emerged as a useful tool for a number of applications in computer science
and AI, the most prominent among them being design, specification, and verifica-
tion of distributed systems ([6], [7], [3], [2], [10]). In this paper, we consider the
logic CMAEL(CD) (Coalitional Multi-Agent Epistemic Logic with Common
and Distributed knowledge), involving modal operators for individual knowledge
for each agent1, as well as operators for common and distributed knowledge among
any (non-empty) coalition of agents. Most of the multiagent epistemic logics stud-
ied so far only cover fragments of CMAEL(CD); e.g., the logic considered in [3]
contains, besides the individual knowledge modalities, the operator of distributed
knowledge only for the whole set of agents in the language, while [11] extends that
system with common knowledge operator for the whole set of agents. As far as we
know, no provably complete deductive system or a decision procedure has been de-
veloped so far forCMAEL(CD) (see, however, [1], where a tableau-baseddecision
procedure for a BDI logic involving full coalitions of agents is considered).

One of the major issues in applying multiagent epistemic logics to design
of distributed systems is the development of algorithms for constructive satis-
fiability testing of formulae, i.e, checking if a given formula is satisfiable and,
1 The notion of agent used in this paper is an abstract one; for example, agents can be

thought of as components of a distributed system.
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if so, constructing a model for it. The main purpose of this paper is to de-
velop a tableau-based algorithm for the constructive satisfiability problem for
CMAEL(CD). In the recent precursor [5] to the present paper, we have de-
veloped such an algorithm for the multiagent epistemic logic with operators of
individual knowledge, as well as common and distributed knowledge for the set
of all agents. In the present paper, we extend the results of [5] to CMAEL(CD).
The main challenge in this extension lies in handling the operators of distributed
knowledge parameterized by coalitions of agents. Thus, while the style of the
tableau procedure presented herein is similar to the one from [5], the proce-
dure itself (in particular, the termination-ensureing mechanism), as well as the
proof of its correctness, are more involved, the latter requiring more sophisti-
cated model-theoretic techniques than those used in [5], building on the ones
employed in [3] and [9]. Consequently, the present paper substantially focuses
on overcoming the challenges raised by the presence in the language of coalitional
distributed knowledge modalities.

The satisfiability-checking algorithms in [5] and the present paper build upon
the ideas underlying the incremental tableaux first proposed in [12] and recently
adapted to logics of strategic ability in multiagent systems in [4]. Besides our
belief that this approach to building decision procedures for logics for multiagent
systems is practically most optimal, the uniformity of method and style of the
tableaux in [4] and in the present paper is motivated by our intention to even-
tually integrate them into a tableau-based decision procedure for comprehensive
logical systems for reasoning about knowledge, time, and strategic abilities of
agents and coalitions in multiagent systems.

The structure of the paper is as follows: Section 2 presents the logic
CMAEL(CD); in Sections 3 and 4, we introduce Hintikka structures for the
logic and prove that satisfiability in these structures is equivalent to satisfi-
ability in models. In Sections 5 and 6, we present the tableau procedure for
CMAEL(CD)-satisfiability and sketch proofs of its soundless, completeness,
and termination, and briefly estimate its complexity. We conclude with an ex-
ample illustrating our tableau procedure and brief concluding remarks.

2 Syntax and Semantics of the Logic CMAEL(CD)

The language L of CMAEL(CD) contains a (finite or countable) set AP of
atomic propositions, whose arbitrary members we typically denote by p, q, r, . . .;
a finite, non-empty set Σ of names of agents, whose arbitrary members we typ-
ically denote by a, b . . . and whose subsets, called coalitions, we typically denote
by A, B, . . . (possibly with decorations); a sufficient repertoire of the Boolean
connectives; and, for every non-empty coalition A, the modal operators DA (“it
is distributed knowledge among A that . . . ”) and CA (“it is common knowledge
among A that . . . ”). The formulae of L are thus defined as follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | DAϕ | CAϕ,

where p ranges over AP and A ranges over non-empty subsets of Σ; the set of all
such subsets denoted by P+(Σ). The other Boolean connectives can be defined
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as usual. We denote formulae of L by ϕ, ψ, χ, . . . (possibly with decorations) and
omit parentheses in formulae whenever it does not result in ambiguity. We write
ϕ ∈ L to mean that ϕ is a formula of L.

The distributed knowledge operator DAϕ intuitively means that a “supera-
gent”, somebody who knows everything that any of the agents in A knows, can
obtain ϕ as a logical consequence of their knowledge. For example, if agent a
knows ψ and agent b knows ψ → χ, then D{a,b}χ is true even though neither
a nor b knows χ. The operators of individual knowledge Kaϕ (“agent a knows
that ϕ”), for a ∈ Σ, can then be defined as D{a}ϕ, henceforth written Daϕ.

The common knowledge operator CAϕ means that ϕ is “public knowledge”
among A, i.e., that every agent in A knows ϕ, and knows that every agent in A
knows ϕ, etc. For example, it is common knowledge among drivers that green
light means “go” and red light means “stop”. Formulae of the form ¬CAϕ are
referred to as (epistemic) eventualities, for the reasons given later on.

Formulae of L are interpreted over coalitional multiagent epistemic models. In
this paper, we also need the auxiliary notions of coalitional multiagent epistemic
structures and frames, which we now define.

Definition 1. A coalitional multiagent epistemic structure (CMAES, for short)
is a tuple G = (Σ, S, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ)), where

1. Σ is a finite, non-empty set of agents;
2. S �= ∅ is a set of states;
3. for every A ∈ P+(Σ), RD

A is a binary relation on S;
4. for every A ∈ P+(Σ), RC

A is the reflexive, transitive closure of
⋃

A′⊆ARD
A′ .

Definition 2. A coalitional multiagent epistemic frame (CMAEF) is a CMAES
F = (Σ, S, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ)), where each RD

A is an equivalence re-
lation satisfying the following condition:

(†) RD
A =

⋂
a∈ARD

a

If condition (†) above is replaced by the following, weaker, one:

(††) RD
A ⊆ RD

B whenever B ⊆ A,

then F is a coalitional multiagent epistemic pseudo-frame (pseudo-CMAEF).

Note that in every (pseudo-)CMAEF RD
A ⊆

⋂
a∈ARD

a , and hence⋃
A′⊆ARD

A′ =
⋃

a∈ARD
a . Thus, condition (4) of Definition 1 is equivalent to

requiring that, in (pseudo-)CMAEFs, RC
A is the transitive closure of

⋃
a∈ARD

a ,
for every A ∈ P+(Σ). Moreover, each RC

A in a (pseudo-)CMAEF is an equiva-
lence relation.

Definition 3. A coalitional multiagent epistemic model (CMAEM) is a tuple
M = (F, AP, L), where F is a CMAEF, AP is a set of atomic propositions, and
L : S �→ P(AP) is a labeling function, assigning to every state s the set L(s) of
atomic propositions true at s. If F is a pseudo-CMAEF, then M = (F, AP, L) is
a multiagent coalitional pseudo-model (pseudo-CMAEM).
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The satisfaction relation between (pseudo-)CMAEMs, states, and formulae is
defined in the standard way. In particular,

– M, s � DAϕ iff (s, t) ∈ RD
A implies M, t � ϕ;

– M, s � CAϕ iff (s, t) ∈ RC
A implies M, t � ϕ.

Definition 4. Given a (pseudo-)CMAEM M and ϕ ∈ L, we say that ϕ is
satisfiable in M if M, s � ϕ holds for some s ∈ M and say that ϕ is valid in
M if M, s � ϕ holds for every s ∈ M. Satisfiability and validity in a class of
(pseudo-)models are defined accordingly.

The truth condition for the operator CA can be re-stated in terms of reachability.
Let F be a (pseudo-)CMAEF with state space S and let s, t ∈ S. We say that t
is A-reachable from s if either s = t or, for some n ≥ 1, there exists a sequence
s = s0, s1, . . . , sn−1, sn = t of elements of S such that, for every 0 ≤ i < n, there
exists ai ∈ A such that (si, si+1) ∈ RD

ai
. It is then easy to see that the following

truth condition for CA is equivalent to the one given above:

– M, s � CAϕ iff M, t � ϕ whenever t is A-reachable from s.

Note also, that if Σ = {a}, then Daϕ ↔ Caϕ is valid for all ϕ ∈ L. Thus,
the single-agent case is trivialized and, therefore, we assume throughout the
remainder of the paper that Σ contains at least 2 agents.

3 Hintikka Structures

Despite our ultimate interest in satisfiability of (finite sets of) formulae in
CMAEMs, the tableaux we present check for the existence of a more general
kind of semantic structure for the input set of formulae than a model, namely
a Hintikka structure. In this section, we introduce Hintikka structures and show
that these structures satisfy the same sets of formulae as pseudo-CMAEMs; in
the next section, we show that CMAEMs satisfy the same sets of formulae as
pseudo-CMAEMs. Consequently, testing for satisfiability in a Hintikka structure
can replace testing for satisfiability in a CMAEM. In the following discussion, for
brevity, we only consider single formulae; the extension to finite sets of formulae
is straightforward.

The most fundamental difference between (pseudo-)models and Hintikka
structures is that while the former specify the truth value of every formula of
L at each state, the latter only do so for the formulae relevant to the evalua-
tion of a fixed formula θ. Another important difference is that the D-accessibility
relations in (pseudo-) models must satisfy the explicitly stated conditions of Def-
inition 2, while in Hintikka structures conditions are only imposed on the labels
of the states in such a way that every Hintikka structure generates, through the
construction of Lemma 2 below, a pseudo-CMAEM so that the “truth” of formu-
lae in the labels is preserved in the resultant pseudo-model. To define Hintikka
structures, we need the following auxiliary notion.

Definition 5. A set Δ ⊆ L is fully expanded if it satisfies the following condi-
tions (Sub(ψ) stands for the set of subformulas of ψ):
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1. if ¬¬ϕ ∈ Δ, then ϕ ∈ Δ;
2. if ϕ ∧ ψ ∈ Δ, then ϕ ∈ Δ and ψ ∈ Δ;
3. if ¬(ϕ ∧ ψ) ∈ Δ, then ¬ϕ ∈ Δ or ¬ϕ ∈ Δ;
4. if DAϕ ∈ Δ, then DA′ϕ ∈ Δ for every A′ such that A ⊆ A′ ⊆ Σ;
5. if DAϕ ∈ Δ, then ϕ ∈ Δ;
6. if CAϕ ∈ Δ, then Da(ϕ ∧ CAϕ) ∈ Δ for every a ∈ A;
7. if ¬CAϕ ∈ Δ, then ¬Da(ϕ ∧ CAϕ) ∈ Δ for some a ∈ A;
8. if ψ ∈ Δ and DA ∈ Sub(ψ), then either DA ∈ Δ or ¬DA ∈ Δ.

If the condition 4 is dropped, then Δ is simply expanded.

Definition 6. A coalitional multi-agent epistemic Hintikka structure
(CMAEHS for short) is a tuple (Σ, S, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ), H) such

that (Σ, S, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ)) is a CMAES, and H is a labeling of
the elements of S with sets of formulae of L satisfying the following constraints:

H1 if ¬ϕ ∈ H(s), then ϕ /∈ H(s), for every s ∈ S;
H2 H(s) is fully expanded, for every s ∈ S;
H3 if ¬DAϕ ∈ H(s), then (s, t) ∈ RD

A and ¬ϕ ∈ H(t) for some t ∈ S;
H4 if (s, t) ∈ RD

A , then DA′ϕ ∈ H(s) iff DA′ϕ ∈ H(t), for every A′ ⊆ A;
H5 if ¬CAϕ ∈ H(s), then (s, t) ∈ RC

A and ¬ϕ ∈ H(t) for some t ∈ S.

Definition 7. Let θ ∈ L, Θ ⊆ L, and H be a CMAEHS with state space S. We
say that H is a CMAEHS for θ, or that θ is satisfiable in H, if θ ∈ H(s) for
some s ∈ S; we say that Θ is satisfiable in H if Θ ⊆ H(s).

We now prove that θ ∈ L is satisfiable in a pseudo-CMAEM iff there ex-
ists a CMAEHS for θ. Given a pseudo-CMAEM M = (Σ, S, {RD

A}A∈P+(Σ),

{RC
A}A∈P+(Σ), AP, L), we define the extended labeling function L+ : S �→ P(L)

on M as follows: L+(s) = { ϕ | M, s � ϕ }. It is routine to check the following.

Lemma 1. Let M = (Σ, S, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ), AP, L) be a pseudo-
CMAEM satisfying θ and let L+ be the extended labeling on M. Then, (Σ, S,
{RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ), L

+) is a CMAEHS for θ.

Now, we argue in the opposite direction.

Lemma 2. Let θ ∈ L be such that there exists a CMAEHS for θ. Then, θ is
satisfiable in a pseudo-CMAEM.

Proof. Let H = (Σ, S, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ), H) be an CMAEHS for θ.
We construct a pseudo-CMAEM M′ satisfying θ out of H as follows.

First, for every A ∈ P+(Σ), let R′D
A be the reflexive, symmetric, and tran-

sitive closure of
⋃

A⊆BRD
B and let R′C

A be the transitive closure of
⋃

a∈AR′D
a .

Notice that RD
A ⊆ R′D

A and RC
A ⊆ R′C

A for every A ∈ P+(Σ). Second, let
L(s) = H(s) ∩ AP, for every s ∈ S. It is then easy to check that M′ =
(Σ, S, {R′D

A }A∈P+(Σ), {R′C
A }A∈P+(Σ), AP, L) is a pseudo-CMAEM.

To complete the proof of the lemma, we show, by induction on the structure
of χ ∈ L that, for every s ∈ S and every χ ∈ L, the following hold:
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(i) χ ∈ H(s) implies M′, s � χ;
(ii) ¬χ ∈ H(s) implies M′, s � ¬χ.

Let χ be some p ∈ AP. Then, p ∈ H(s) implies p ∈ L(s) and, thus, M′, s � p; if,
on the other hand, ¬p ∈ H(s), then due to (H1), p /∈ H(s) and thus p /∈ L(s);
hence, M′, s � ¬p.

Assume that the claim holds for all subformulae of χ; then, we have to prove
that it holds for χ, as well.

Suppose that χ is ¬ϕ. If ¬ϕ ∈ H(s), then the inductive hypothesis immediately
gives us M′, s � ¬ϕ; if, on the other hand, ¬¬ϕ ∈ H(s), then by virtue of (H2),
ϕ ∈ H(s) and hence, by inductive hypothesis, M′, s � ϕ and thus M′, s � ¬¬ϕ.

The case of χ = ϕ ∧ ψ is straightforward, using (H2).
Suppose that χ is DAϕ. Assume, first, that DAϕ ∈ H(s). In view of the

inductive hypothesis, it suffices to show that (s, t) ∈ R′D
A implies t ∈ H(t). So,

assume that (s, t) ∈ R′D
A . There are two cases to consider. If s = t, then the

conclusion immediately follows from (H2). If, on the other hand, s �= t, then
there exists an undirected path from s to t along the relations RD

A′ , where each
A′ is a superset of A. Then, in view of (H4), DAϕ ∈ H(t); hence, by (H2),
ϕ ∈ H(t), as desired.

Assume, next, that ¬DAϕ ∈ H(s). In view of the inductive hypothesis, it
suffices to show that there exist t ∈ S such that (s, t) ∈ R′D

A and ¬ϕ ∈ H(t). By
(H3), there exists t ∈ S such that (s, t) ∈ RD

A and ¬ϕ ∈ H(t). As RD
A ⊆ R′D

A ,
the desired conclusion follows.

Suppose now that χ is CAϕ. Assume that CAϕ ∈ H(s). In view of the in-
ductive hypothesis, it suffices to show that if t is A-reachable from s in M′,
then ϕ ∈ H(t). So, assume that either s = t or, for some n ≥ 1, there exists a
sequence of states s = s0, s1, . . . , sn−1, sn = t such that, for every 0 ≤ i < n,
there exists ai ∈ Σ such that (si, si+1) ∈ R′D

ai
. In the former case, the desired

conclusion follows from (H2). In the latter case, we can show by induction on
0 ≤ i < n that Dai(ϕ ∧ CAϕ) ∈ H(si). Then, Dan−1(ϕ ∧ CAϕ) ∈ H(sn−1), and
thus, in view of (H4) and (H2), ϕ ∈ H(t).

Assume, on the other hand, that ¬CAϕ /∈ H(s). Then, the desired conclusion
follows from (H6), the fact that RC

A ⊆ R′C
A , and the inductive hypothesis. �

Theorem 1. Let θ ∈ L. Then, θ is satisfiable in a pseudo-CMAEM iff there
exists a CMAEHS for θ.

Proof. Immediately follows from Lemmas 1 and 2. �

4 Equivalence of CMAEMs and Pseudo-CMAEMs

In the present section, we prove that pseudo-CMAEMs and CMAEMs satisfy the
same sets of formulae. The right-to-left direction is immediate, as every CMAEM
is a pseudo-CMAEM. For the left-to-right direction, we use a modification of
the construction from [3, appendix A1] to show that if θ ∈ L is satisfiable in
a pseudo-CMAEM, then it is satisfiable in a “tree-like” pseudo-CMAEM that
actually turns out to be a bona-fide CMAEM.
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Definition 8. Let M = (Σ, S, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ), AP, L) be a
(pseudo-) CMAEM and let s, t ∈ S. A maximal path from s to t in M is a
sequence s = s0, A0, s1, . . . , sn−1, An−1, sn = t such that, for every 0 ≤ i < n,
(si, si+1) ∈ RD

Ai
, but (si, si+1) ∈ RD

B does not hold for any B with Ai ⊂ B ⊆ Σ.
A segment ρ′ of a maximal path ρ starting and ending with a state is a sub-path
of ρ.

Definition 9. Let ρ = s0, A0 . . . , An−1, sn be a maximal path in M. The reduc-
tion of ρ is obtained by, first, replacing in ρ every longest sub-path sp, Ap, sp+1, . . . ,
Ap+q−1, sp+q such that sp = sp+1 = . . . = sp+q with sp (i.e., removing loops)
and, then, by replacing in the resultant path every longest sub-path sj , Aj , sj+1,
. . . , Aj+m−1, sj+m such that Aj = Aj+1 = . . . = Aj+m−1 with sj , Aj , sj+m (i.e.,
collapsing multiple consecutive transitions along the same relation with a single
transition). A maximal path is reduced if it equals its own reduction.

Definition 10. A (pseudo-)CMAEM M is tree-like if, for every s, t ∈ M, there
exists at most one reduced maximal path from s to t.

Lemma 3. If θ ∈ L is satisfiable in a pseudo-CMAEM, then it is satisfiable in
a (tree-like) CMAEM.

Proof. Suppose that θ is satisfied in a pseudo-CMAEM M=(Σ, S,{RD
A}A∈P+(Σ),

{RC
A}A∈P+(Σ), AP, L) at state s. To build a tree-like CMAEM satisfying θ, we

use a modification of the tree-unraveling. The only difference between our con-
struction and the standard tree-unraveling is that the state space of our tree
model is made up of all maximal paths in M rather than all paths whatsoever.

Let M′ = (Σ, S′, {R′D
A }A∈P+(Σ), {R′C

A }A∈P+(Σ), AP, L
′) be the submodel of

M generated by s. Then, M′, s � θ since M and M′ are locally bisimilar at s.
Next, we unravelM′ into a model M′′ = (Σ, S′′, {R′′D

A }A∈P+(Σ), {R′′C
A }A∈P+(Σ),

AP, L′′) as follows. First, call a maximal path ρ in M′ an s-max-path if the first
component of ρ is s. Denote the last element of ρ by l(ρ). Notice that s by itself is
an s-max-path. Now, let S

′′
be the set of all (not necessarily reduced) s-max-paths

in M′. For every A ∈ P+(Σ), let R∗D
A = { (ρ, ρ′) | ρ, ρ′ ∈ S′′and ρ′ = ρ, A, l(ρ′) }

and let, furthermore, R′′D
A to be the reflexive, symmetric, and transitive closure

of R∗D
A . Notice that (ρ, ρ′) ∈ R′′D

A holds iff one of the paths ρ and ρ′ extends the
other by a sequence of A-steps. Therefore, two different states in S′′ can only be
connected by R′′D

A for at most one maximal coalition A. Further, we stipulate the
following downwards closure condition: whenever (ρ, τ) ∈ R′′D

A and B ⊆ A, then
(ρ, τ) ∈ R′′D

B . The relations R′′C
A are then defined as in any CMAEF. To complete

the definition of M′′, we put L′′(ρ) = L′(l(ρ)), for every ρ ∈ S′′.
It is clear from the construction (namely, from the above downwards closure

condition) that M′′ is a pseudo-CMAEM. We now show that it actually is a
(tree-like) CMAEM and that it satisfies θ. To prove the first part of the claim,
we need some extra terminology.

We call a maximal path ρ1, A1, ρ2, . . . , An−1, ρn in M′′ primitive if, for every
0 ≤ i < n, either (ρi, ρi+1) ∈ R∗D

Ai
or (ρi+1, ρi) ∈ R∗D

Ai
. A primitive path

ρ1, A1, ρ2, . . . , An−1, ρn is non-redundant if there is no 0 ≤ i < n such that
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ρi = ρi+2 and Ai = Ai+1. Intuitively, in a non-redundant path we never go
from a state ρ (forward or backward) along a relation and then immediately
back to ρ along the same relation. Since the relations R∗D

A are edges of a tree,
it immediately follows that:

(‡) for every pair of states ρ, τ ∈ S′′, there exists at most one non-redundant
primitive path from ρ to τ .

Lastly, we call a primitive path ρ1, A, ρ2, . . . , A, ρn an A-primitive path.
We will now show that maximal reduced paths in M′′ stand in one-to-one

correspondence with non-redundant primitive paths. It will then follow from (‡)
that maximal reduced paths between any two states of M′′ are unique, and
thus M′′ is tree-like, as claimed. Let P = ρ1, A1, . . . , An−1, ρn, where ρ1 = ρ
and ρn = τ , be a maximal reduced path from ρ to τ in M′′. Since (ρi, ρi+1) ∈
R′′D

Ai
, there exists a non-redundant Ai-primitive path from ρi to ρi+1, which in

view of (‡) is unique. Let us obtain a path P ′ from ρ to τ by replacing in P
every link (ρi, Ai, ρi+1) by the corresponding non-redundant Ai-primitive path
from ρi to ρi+1. Call P ′ an expansion of P . In view of (‡), every path has a
unique expansion. Now, it is easy to see that P is a reduction of P ′. Since the
reduction of a given path is unique, too, it follows that there exists a one-to-one
correspondence between maximal reduced paths and non-redundant primitive
paths in M′′.

Next, we prove that R′′D
A =

⋂
a∈AR′′D

a for every A ∈ P+(Σ), and hence M′′

is a CMAEM. The left to right inclusion is immediate from the construction
(namely, the downward saturation condition). For the opposite direction, assume
that (s, t) ∈ R′′D

a holds for every a ∈ A. Then, for every a ∈ A, there exists a
path, and therefore a maximal reduced path, from s to t along relations R∗D

A′

such that a ∈ A′. As M′′ is tree-like, there is only one maximal reduced path
from s to t. Therefore, the relations RD

A′ linking s to t along this path are such
that A ⊆ A′ for every A′. Then, by the downwards closure condition, there is a
path from s to t along the relation R′′D

A and, hence, (s, t) ∈ R′′D
A , as desired.

Finally, it remains to prove that M′′ satisfies θ. First, notice that (ρ, τ) ∈
R′′

A iff there exists an A-primitive path from ρ to τ ; hence, as every R′
A is an

equivalence relation, if (ρ, τ) ∈ R′′
A, then (l(ρ), l(τ)) ∈ R′

A. It is now easy to
check that the relation Z = { (ρ, l(ρ) | ρ ∈ S′′ } is a bisimulation between M′′

and M′. Since (s, l(s)) ∈ Z, it follows that M′′, s � θ, and we are done. �

Theorem 2. Let θ ∈ L. Then, θ is satisfiable in a CMAEM iff there exists a
Hintikka structure for θ.

Proof. Immediate from Theorem 1 and Lemma 3. �

5 Tableaux for CMAEL(CD)

5.1 Basic Ideas and Overview of the Tableau Procedure

The tableau procedure for testing a formula θ ∈ L for satisfiability attempts
to construct a non-empty graph T θ (called tableau) representing all possible
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CMAEHSs for θ. The procedure consists of three major phases: construction,
prestate elimination, and state elimination. During the construction phase, we
build the pretableau Pθ—a directed graph whose nodes are sets of formulae
of two types: states and prestates2. States represent (labels of) states of the
CMAEHSs that the tableau attempts to construct, while prestates are “embryo
states”, expanded into states in the course of the construction. Formally, states
are expanded (recall Definition 5), while prestates need not be so. During the
construction phase, we produce a directed graph Pθ—called the pretableau for
θ—whose set of nodes properly contains the set of nodes of the tableau T θ we
are building. During the prestate elimination phase, we create a smaller graph
T θ

0 out of Pθ, called the initial tableau for θ, by eliminating all the prestates
of Pθ and adjusting its edges, as prestates have already fulfilled their role and
can be discharged. Finally, during the state elimination phase, we remove from
T θ

0 all states, if any, that cannot be satisfied in any CMAEHS, for one of the
three reasons discussed below. The elimination procedure results in a (possibly
empty) subgraph T θ of T θ

0 , called the final tableau for θ. If some state Δ of T θ

contains θ, we declare θ satisfiable; otherwise, we declare it unsatisfiable.
The philosophy underlying our tableau algorithm stems from the one un-

derpinning the tableau procedure for LTL from [12], also recently adapted to
Alternating-time temporal logic ATL in [4] and to a fragment of CMAEL(CD)
in [5]. The constructions from these papers, however, can not be directly trans-
ferred to the case of CMAEL(CD), for reasons explained below.

Usually, a tableau checks for satisfiability by decomposing the input formula
into “simpler” ones. In the classical propositional case, “simpler” implies shorter,
thus ensuring the termination of the procedure. Another feature of the tableaux
for classical propositional logic is that the decomposition into simpler formulae
results in a tree representing an exhaustive search for a Hintikka set (the classical
analogue of Hintikka structures) for the input formula θ. If at least one leaf of
the tree turns out to be a Hintikka set for θ, it is pronounced satisfiable.

These two features of the classical tableau method do not apply to logics
containing fixed point operators, such as CA.

First, decomposing of a formula CAϕ produces formulae of the form Da(ϕ ∧
CAϕ), which are not simpler than the initial formula; rather, they represent the
unfolding of the monotone operator whose fixed point is CAϕ. Hence, we cannot
take termination for granted and need to put a mechanism in place that would
guarantee it. In our tableaux, this mechanism is based on the judicious reuse
of (pre)states. Unlike the tableaux from [12] and [4], where these are reused
without any restrictions, reusing (pre)states in tableaux for CMAEL(CD) is
not always safe; hence, we will have to place some conditions on such reuse. These
conditions, while strict enough to make reusing (pre)states safe, are permissive
enough to guarantee the termination of the procedure.

2 We use “(pre)state” to refer to either state or prestate. The term “(pre)state” denotes
both a node of the tableau, which is a set of formulae, and that same set of formulae.
Since set-theoretically identical sets may appear as different nodes in the tableau,
to avoid ambiguity, we sometimes refer to the sets as “labels” of given (pre)states.
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Second, in the classical case, the only reason why the tableau might fail to
produce a Hintikka set for the input formula is that every attempt to build such
a set results in a collection of formulae containing a patent inconsistency—a pair
of formulae ϕ, ¬ϕ. In the case of CMAEL(CD), there are two other reasons,
as the tableau is meant to represent CMAEHSs, more complicated structures
than Hintikka sets. One reason has to do with eventualities: the presence of
an eventuality ¬CAϕ in the label of a state s of a CMAEHS H requires the
existence in H of an A-path from s to a state t whose label contains ¬ϕ. The
analogue of this condition in the tableau is called realization of eventualities.
Thus, all eventualities in a tableau should be realized in order for the tableau to
be “good”, i.e., to eventually produce a Hintikka structure. The other reason for
a tableau to be “bad” has to do with successor nodes—it may so happen that
some of the successors of a node s, necessary for the satisfaction of s, turn out
to be unsatisfiable; a “good” tableau can not contain such a node.

5.2 Construction Phase

As already mentioned, the tableau procedure attempts to produce a compact
representation of all possible CMAEHSs for the input formula; in this attempt,
it organizes an exhaustive search for such CMAEHSs. The pretableau Pθ built
at this phase contains two types of edge, as well as two types of node (states and
prestates).

One type of an edge, depicted by unmarked double arrows =⇒, represents the
expansion of the tableau as a search tree. The exhaustive search considers all
possible alternatives arising when prestates are expanded into states by branch-
ing in the disjunctive cases. Thus, when we draw a double arrow from a prestate
Γ to states Δ and Δ′ (depicted as Γ =⇒ Δ and Γ =⇒ Δ′, respectively), this
intuitively means that, in any CMAEHS, a state satisfying Γ has to satisfy at
least one of Δ and Δ′.

The second type of an edge represents transition relations in the CMAEHSs
which the procedure attempts to build. Accordingly, this type of edge is repre-
sented by single, bi-directed (as such transitions are ultimately meant to give
rise to symmetric relations) arrows marked with formulae whose presence in one
of the end nodes requires the presence in the tableau of the other end node,
reachable by a particular relation. All such formulae have the form ¬DAϕ (as
can be seen from Definition 6). Intuitively, if ¬DAϕ ∈ Δ, then some prestate
Γ containing ¬ϕ must be accessible from Δ by RD

A ; the reason we mark this
single arrow not just by the coalition A, but by formula ¬DAϕ, is that it helps
us remember not just what relation connects states satisfying Δ and Γ , but why
we had to create this particular Γ . This information will be needed when we
start eliminating prestates and then states.

Definition 11. Let X and X ′ be two (pre)states of the pretableau and let A ⊆ Σ
be a coalition of agents. We say that X ′ is A-reachable from X if there exists a
sequence of (pre)states X = X0, X1, . . . , Xm = X ′ such that for every 0 ≤ i < m,

either Xi =⇒ Xi+1 or Xi

¬DBi
ϕi←→ Xi+1 for some Bi ⊇ A and ϕi ∈ L.
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If X ′ is ∅-reachable from X, we say that X is a predecessor of X ′.
The immediate predecessor states of a given prestate are called its parents;

likewise for the immediate predecessor prestates of a given state.

Definition 12. Let X and X ′ be (pre)tates of a pretableau such that X ′ is A-
reachable from X. A defect with respect to X and X ′ in the pretableau is a pair
of formulas (DAψ, ¬ψ) such that DAψ ∈ X and ¬ψ ∈ X ′ or vice versa.

We are now in a position to state our construction rules. The first rule, (SR),
prescribes how to create states from prestates. Given a set Γ ⊆ L, we say that
Δ is a minimal expansion of Γ if Δ is (not necessarily fully) expanded, Γ ⊆ Δ,
and there is no Δ′ such that Γ ⊆ Δ′ ⊂ Δ and Δ′ is expanded.

Rule (SR) Given a prestate Γ , do the following:

1. Add all minimal expansions Δ of Γ as states ;
2. for each so obtained state Δ, put Γ =⇒ Δ;
3. if, however, the pretableau already contains a state Δ′ which is a predecessor

of Γ , has the same label as Δ, and is such that adding an =⇒-edge from
Γ to Δ′ does not create any defect with respect to Γ and Δ′, then do not
create a state with a label Δ, but put Γ =⇒ Δ′.

We denote by states(Γ ) the (finite) set { Δ | Γ =⇒ Δ }.
The second construction rule, (DR), prescribes how to create prestates from

states. This rule does not apply to patently inconsistent states, as such states
cannot be satisfied in any CMAEHS.

Rule (DR): Given a state Δ which is not patently inconsistent and ¬DAϕ ∈
Δ, do the following:

1. Create a new prestate3 Γ = {¬ϕ} ∪
⋃

A′⊆A{DA′ψ | DA′ψ ∈ Δ } ∪⋃
A′⊆A{ ¬DA′ψ | ¬DA′ψ ∈ Δ and ¬DA′ψ �= ¬DAϕ };

2. connect Δ to Γ with
¬DAϕ←→ ;

3. if, however, the pretableau already contains a prestate Γ ′ which is a prede-
cessor of Δ, has the same label as Γ , and is such that adding an

¬DAϕ←→ -edge
from Δ to Γ ′ does not create any defect with respect to Δ and Γ ′, then do
not add a prestate with label Γ , but simply connect Δ to Γ ′ with

¬DAϕ←→ .

Notice that the rules (SR) and (DR) have two built-in conditions for reusing
states and prestates. First, we only reuse the predecessors of a given (pre)state,
which amounts to looping back to the same branch of the pretableau tree—the
reuse of (pre)states from other branches is not allowed. Secondly, we only loop
back when this does not create a defect in the pretableau. These two conditions
are needed to make our procedure sound. Notice that there no conditions on
reuse of (pre)states in the tableau procedures in [12] and [4].
3 This clause propagates the subformulae ¬DA′ψ without this being absolutely nec-

essary. The rule can be optimized, but in its present form it significantly simplifies
proving completeness of the procedure.
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When building a tableau for θ ∈ L, the construction phase begins with cre-
ating a single prestate {θ}. Afterwards, we alternate between (SR) and (DR):
first, (SR) is applied to the prestates created at the previous stage of the con-
struction, then (DR) is applied to the states created at the previous stage. The
construction phase comes to an end when every prestate required to be added
to the pretableau has already been added (as prescribed in point 3 of (SR)), or
when we end up with states to which (DR) does not apply.

5.3 Termination of the Construction Phase

To show that the construction stage terminates, we use the concept of an ex-
tended closure of a formula.

Definition 13. Let θ ∈ L. The closure of θ is the least set of formulae cl(θ)
containing θ, closed under subformulae, and satisfying the following condition:
if CAϕ ∈ cl(θ), then Da(ϕ ∧ CAϕ) ∈ cl(θ) for every a ∈ A.

The extended closure of θ, denoted ecl(θ), is the least set such that ϕ, ¬ϕ ∈
ecl(θ) for every ϕ ∈ cl(θ).

Proposition 1. The construction of Pθ terminates for every formula θ.

Proof sketch. Clearly, ecl(θ) is finite. Therefore, the set of states and prestates of
Pθ is finite since they are all subsets of ecl(θ). Then, to prove that Pθ is finite
and, hence, the construction phase terminates, it is suffices to show that on every
branch of Pθ, we reuse each (pre)state only finitely many times. This will imply
that every branch of Pθ is finite and hence, by König’s lemma, Pθ itself is finite.

We only consider the case of reusing prestates; the case of reusing states is
very similar. Suppose that a state Δ needs an A-successor prestate and has a pre-
decessor prestate Γ with the same label. Suppose that reusing Γ would create a
(not previously existing) defect (DBψ, ¬ψ) with respect to Γ and Δ. This is only
possible if Δ is C-reachable from Γ for some coalition C such that B ⊆ A ∪ C,
while B �⊆ A (otherwise Γ would not be consistent and not B �⊆ C (otherwise,
the defect is already there). Then, instead of reusing Γ , the rule (DR) creates
a new prestate Γ ′ with the same label as Γ , which is an A-successor of Δ. But
then, next time when a successor prestate with the label of Γ is needed further
down the same branch, reusing Γ would be safe, because the A-transition from
Δ to Γ ′ breaks the path B-path from Γ to the current prestate, thus preventing
the same defect from occurring. Thus, the number of defects that can arise as a
result of reusing prestates has decreased, so eventually no defects will be possible
as a result of reusing prestates on the given branch, hence the creation of new
prestates on this branch will come to an end. �

5.4 Prestate Elimination Phase

At this phase, we remove from Pθ all the prestates and unmarked arrows, by
applying the following rule (the resultant graph is denoted T θ

0 and called the
initial tableau):
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(PR) For every prestate Γ in Pθ, do the following:

1. Remove Γ from Pθ;
2. If there is a state Δ in Pθ with Δ

χ←→ Γ , then for every state Δ′ ∈ states(Γ ),
put Δ

χ←→ Δ′;

5.5 State Elimination Phase

During this phase, we remove from T θ
0 states that are not satisfiable in any

CMAEHS. Recall, that there are three reasons why a state Δ of T θ
0 can turn

out to be unsatisfiable: Δ is patently inconsistent, or satisfiability of Δ requires
satisfiability of some other unsatisfiable “successor” states, or Δ contains an
eventuality that is not realized in the tableau. Accordingly, we have three elim-
ination rules, (E1)–(E3).

Formally, the state elimination phase is divided into stages; we start at stage 0
with T θ

0 ; at stage n+1, we remove from the tableau T θ
n obtained at the previous

stage exactly one state, by applying one of the elimination rules, thus obtaining
the tableau T θ

n+1. We state the rules below, where Sθ
m denotes the set of states

of T θ
m.

(E1) If {ϕ, ¬ϕ} ⊆ Δ ∈ Sθ
n, then obtain T θ

n+1 by eliminating Δ from T θ
n .

(E2) If Δ contains a formula χ = ¬DAϕ and all states reachable from Δ
by single arrows marked with χ have been eliminated at previous stages, obtain
T θ

n+1 by eliminating Δ from T θ
n .

For the third elimination rule, we need the concept of eventuality realization.
We say that the eventuality ξ = ¬CAϕ is realized at Δ in T θ

n if either ¬ϕ ∈ Δ or
there exists in T θ

n a finite path Δ0, Δ1, . . . , Δm such that Δ0 = Δ, ¬ϕ ∈ Δm, and
for every 0 ≤ i < m there exist χi = DBiψi such that Bi ⊆ A and Δi

χi←→ Δi+1.

(E3) If Δ ∈ Sθ
n contains an eventuality ¬CAϕ that is not realized at Δ in

T θ
n , then obtain T θ

n+1 by removing Δ from T θ
n .

We check for realization of ξ by running the following procedure that marks
all states that realize an eventuality ξ in T θ

n . Initially, we mark all Δ ∈ Sθ
n such

that ¬ϕ ∈ Δ. Then, we repeatedly do the following: if Δ ∈ Sθ
n is unmarked and

there exists at least one Δ′ such that Δ
DBψ←→ Δ′ for some B ⊆ A and ψ ∈ L and

Δ′ is marked, then Δ gets marked. The procedure ends when no more states get
marked. Note that marking is carried out with respect to a fixed eventuality ξ
and is, therefore, repeated as many times as the number of eventualities in (the
states) of a tableau.

We have so far described individual rules; to describe the state elimination
phase as a whole, we must specify the order of their application. First, we apply
(E1) to all the states of T θ

0 ; once this is done, we do not need to apply (E1)
again. The cases of (E2) and (E3) are more involved. After having applied
(E3) we could have removed all the states accessible from some Δ along the
arrows marked with some formula χ; hence, we need to reapply (E2) to the
resultant tableau to remove such Δ’s. Conversely, after having applied (E2),
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we could have thrown away some states that were needed for realizing certain
eventualities; hence, we need to reapply (E3). Therefore, we need to apply (E3)
and (E2) in a dovetailed sequence that cycles through all the eventualities.
More precisely, we arrange all eventualities occurring in the tableau obtained
from T θ

0 after having applied (E1) in a list: ξ1, . . . , ξm. Then, we proceed in
cycles. Each cycle consists of alternatingly applying (E3) to the pending even-
tuality (starting with ξ1), and then applying (E2) to the resulting tableau,
until all the eventualities have been dealt with. These cycles are repeated un-
til no state is removed in a whole cycle. Then, the state elimination phase
is over.

The graph produced at the end of the state elimination phase is called the
final tableau for θ, denoted by T θ, and its set of states is denoted by Sθ.

Definition 14. The final tableau T θ is open if θ ∈ Δ for some Δ ∈ Sθ; other-
wise, T θ is closed.

The tableau procedure returns “no” if the final tableau is closed; otherwise,
it returns “yes” and, moreover, provides sufficient information for producing a
finite model satisfying θ; that construction is sketched in Section 6.

6 Soundness, Completeness, and Complexity

The soundness of a tableau procedure amounts to claiming that if the input
formula θ is satisfiable, then the tableau for θ is open. To establish soundness of
the overall procedure, we use a series of lemmas showing that every rule by itself
is sound; the soundness of the overall procedure is then an easy consequence.
The proofs of the following two lemmas are straightforward.

Lemma 4. Let Γ be a prestate of Pθ such that M, s � Γ for some CMAEM
M and s ∈ M. Then, M, s � Δ holds for at least one Δ ∈ states(Γ ).

Lemma 5. Let Δ ∈ Sθ
0 be such that M, s � Δ for some CMAEM M and

s ∈ M, and let ¬DAϕ ∈ Δ. Then, there exists t ∈ M such that (s, t) ∈ RD
A and

M, t � {¬ϕ} ∪
⋃

A′⊆A{DA′ψ | DA′ψ ∈ Δ } ∪
⋃

A′⊆A{ ¬DA′ψ | ¬DA′ψ ∈
Δ and ¬DA′ψ �= ¬DAϕ }.

Lemma 6. Let Δ ∈ Sθ
0 be such that M, s � Δ for some CMAEM M and

s ∈ M, and let ¬CAϕ ∈ Δ. Then, ¬CAϕ is realized at Δ in T θ
n .

Proof idea. As ¬CAϕ is true at s, there is a path in M from s leading to a state
satisfying ¬ϕ. As the tableaux organize the exhaustive search, a chain of tableau
states corresponding to those states in the model will be produced. �

Theorem 3. If θ ∈ L is satisfiable in a CMAEM, then T θ is open.
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Proof sketch. Using the preceding lemmas, show by induction on the number of
stages in the state elimination process that no satisfiable state can be eliminated
due to (E1)–(E3). The claim then follows from Lemma 4. �

The completeness of a tableau procedure means that if the tableau for a formula
θ is open, then θ is satisfiable in a CMAEM. In view of Theorem 2, it suffices to
show that an open tableau for θ can be turned into a CMAEHS for θ.

Lemma 7. If T θ is open, then there exists a CMAEHS for θ.

Proof sketch. The CMAEHS H for θ is built out of the so-called final tree com-
ponents. Each component is a tree-like CMAES with nodes labeled with states
from Sθ, and is associated with a state Δ ∈ Sθ and an eventuality ξ ∈ cl(θ) (such
a component is denoted by TΔ,ξ). If ξ /∈ Δ, then TΔ,ξ is a simple tree, whose
root is labeled with Δ, that has exactly one leaf associated with each formula
¬DAψ marking an arrow from Δ to some Δ′ ∈ Sθ; this leaf is labeled by Δ′ and
connected to the root by relation RD

A . If ξ ∈ Δ, take the chain realizing χ at Δ
and give each node “enough” successors, as prescribed above for simple trees.
The crucial fact is that if ξ′ is an eventuality in Δ that is not “realized” inside
TΔ,ξ, then ξ′ belongs to every leaf of TΔ,ξ. This allows us to stitch up all the
TΔ,ξ’s into a Hintikka structure. The procedure is recursive. All the eventualities
are queued. We start from the component uniquely associated with θ (say, we
take TΔ,θ where Δ is the least numbered state containing θ; such a state exists
as the tableau is open) and then replace each leaf of the structure built so far
with the component associated with the set marking the leaf and the pending
eventuality. The procedure is repeated in cycles until we have attached enough
components to realize all eventualities. To obtain a CMAEHS, we put H(Δ) = Δ̂

for all Δ’s, where Δ̂ denotes the full expansion of Δ. �

Theorem 4 (Completeness). Let θ ∈ L and let T θ be open. Then, θ is satis-
fiable in a CMAEM.

Proof. Immediate from Lemma 7 and Theorem 2. �

As for complexity of the procedure, for lack of space, we only state that our
procedure runs in exponential time, which together with the lower bound from [8]
implies that CMAEL(CD)-satisfiability is ExpTime-complete.

7 Example

Let θ = ¬D{a,c}C{a,b}p ∧ C{a,b}(p ∧ q), where Σ = {a, b, c}. To save space, we
replace θ by the set of its conjuncts Θ = {¬D{a,c}C{a,b}p,C{a,b}(p ∧ q)}. The
picture on the left below represents the final pretableau for Θ, while the picture
on the right represents the initial tableau. Under the pictures, we list formulae
that occur in the labels of states and prestates.
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χ0 = ¬D{a,c}C{a,b}p; χ1 = ¬Da(p ∧ C{a,b}p); χ2 = ¬Db(p ∧ C{a,b}p);
Γ0 = {¬D{a,c}C{a,b}p,C{a,b}(p ∧ q)};
Δ0 = {¬D{a,c}C{a,b}p,C{a,b}(p ∧ q),Da[(p ∧ q) ∧ C{a,b}(p ∧ q)],

Db[(p ∧ q) ∧ C{a,b}(p ∧ q)], (p ∧ q) ∧ C{a,b}(p ∧ q), (p ∧ q), p, q};
Γ1 = {¬C{a,b}p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)]};
Δ1 = {¬C{a,b}p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)], ¬Da(p ∧ C{a,b}p), (p ∧ q) ∧ C{a,b}(p ∧ q),

(p ∧ q), p, q,C{a,b}(p ∧ q),Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]};
Δ2 = {¬C{a,b}p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)], ¬Db(p ∧ C{a,b}p), (p ∧ q) ∧ C{a,b}(p ∧ q),

(p ∧ q), p, q,C{a,b}(p ∧ q),Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]};
Γ2 = Γ ′

2 = {¬(p ∧ C{a,b}p),Da[(p ∧ q) ∧ C{a,b}(p ∧ q)]};
Γ3 = Γ ′

3 = {¬(p ∧ C{a,b}p),Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]};
Δ3 = Δ′

3 = Δ′′
3 = Δ′′′

3 = {¬p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)], (p ∧ q) ∧ C{a,b}(p ∧ q),
(p ∧ q), p, q,C{a,b}(p ∧ q),Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]};

Δ4 = Δ′
4 = Δ′′

4 = {¬C{a,b}p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)], ¬Da(p ∧ C{a,b}p),
(p ∧ q) ∧ C{a,b}(p ∧ q), (p ∧ q), p, q,C{a,b}(p ∧ q),Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]};

Δ5 = Δ′
5 = Δ′′

5 = {¬C{a,b}p,Da[(p ∧ q) ∧ C{a,b}(p ∧ q)], ¬Db(p ∧ C{a,b}p),
(p ∧ q) ∧ C{a,b}(p ∧ q), (p ∧ q), p, q,Db[(p ∧ q) ∧ C{a,b}(p ∧ q)]}.

During the state-elimination phase, states Δ3, Δ′
3, Δ′′

3 , and Δ′′′
3 are removed

due to (E1), as they contain a patent inconsistency (p, ¬p). Then, states Δ1, Δ2,
Δ4, Δ′

4, Δ′′
4 , Δ5, Δ′

5, and Δ′′
5 are eliminated due to (E3), as all of them contain

the unrealized eventuality ¬C{a,b}p. Finally, Δ0 gets eliminated due to (E2), as it
has lost all its successors along the arrow marked with χ0. Thus, the final tableau
for Θ is an empty graph; therefore, Θ is unsatisfiable.

8 Concluding Remarks

We have developed a sound and complete, incremental-tableau-based decision
procedure for the full coalitional multiagent epistemic logic CMAEL(CD). We
are convinced that this style of tableaux is more intuitive, practically more effi-
cient, and more flexible than the top-down tableaux, e.g., developed for a frag-
ment of this logic in [8], and therefore suitable both for manual and automated
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execution. In particular, it is amenable to extension with strategic abilities op-
erators of the Alternating-time temporal logic ATL, tableaux for which were
developed in [4]. Merging these two systems is a topic of our future work.
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Abstract. This work defines an extension CERES2 of the first-order
cut-elimination method CERES to the subclass of sequent calculus proofs
in second-order logic using quantifier-free comprehension. This extension
is motivated by the fact that cut-elimination can be used as a tool to
extract information from real mathematical proofs, and often a crucial
part of such proofs is the definition of sets by formulas. This is expressed
by the comprehension axiom scheme, which is representable in second-
order logic. At the core of CERES2 lies the production of a set of clauses
CL(ϕ) from a proof ϕ that is always unsatisfiable. From a resolution
refutation γ of CL(ϕ), a proof without essential cuts can be constructed.
The main theoretical obstacle in the extension of CERES to second-order
logic is the construction of this proof from γ. This issue is solved for the
subclass considered in this paper. Moreover, we discuss the problems that
have to be solved to extend CERES2 to the complete class of second-
order proofs. Finally, the method is applied to a simple mathematical
proof that involves induction and comprehension and the resulting proof
is analyzed.

1 Introduction

The discipline of proof mining deals with the extraction of information from
formal proofs. Different methods have been applied successfully (see [1], [2]).
This work considers the approach of using (partial) cut-elimination to extract
hidden information from proofs.

The first-order cut-elimination method CERES (cut-elimination by
resolution) has several advantages over the traditional reductive cut-elimination
methods: The main computational advantage is that the reductive methods are
subsumed by CERES (i.e. every proof obtained by a reductive method can also
be obtained by CERES, see [2]), and secondly, a non-elementary speed-up over
Gentzen’s method by the use of CERES is possible (see [3]). Another, purely
proof-theoretic, advantage is that a CERES method for a proof system provides
a strong regularity theorem on the structure of cut-free proofs: The result of
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applying CERES is a proof which is composed of instances of (otherwise un-
changed) parts of the original proof. This knowledge about the cut-free proofs
cannot be obtained by traditional reductive methods as they perturb the struc-
ture of the proof. The CERES method has been implemented in the CERES
system1. In this paper, we present the extension of CERES to CERES2, a cut-
elimination method for second-order logic, which is based on a set of clauses that
is extracted from a proof with cuts, the characteristic clause set.

The benefits of CERES2 over traditional cut-elimination methods are two-
fold: Firstly, the characteristic clause set can be regarded as the kernel of the
proof with cuts and as such can provide valuable information that a human could
not easily read off of a formal proof (for some evidence supporting this, see [4]
and [5]). Secondly, due to the use of a resolution calculus at the core of CERES2,
theoretical and practical advances in higher-order theorem proving may enhance
the power of the method.

An inherent limitation of the CERES method (and indeed of all first-order
cut-elimination procedures) is that proofs that use comprehension cannot be
handled in a straightforward way, as comprehension is essentially a second-order
property. In CERES2, we will be able to handle such proofs in a natural way.
The subclass of proofs we are considering here is the class of proofs where com-
prehension is restricted to quantifier-free formulas. This choice is motivated in
part by the fact that converting a resolution refutation to a sequent calculus
proof in the presence of arbitrary comprehension (and, therefore, skolemiza-
tion) is problematic. Indeed, it turns out that, in CERES2, the construction of
proof projections is a highly complicated matter, in contrast to the first-order
case.

Note that, due to lack of space, detailed proofs are not developed here, but
can be found in [6].

2 The Second-Order Language

Here, we consider a monadic second-order logic based on Church’s simply typed
λ-calculus [7] and fix the set of base types BT := {ι, o}, where ι denotes the type
of individuals and o the boolean type. The set T of types is built in the usual
inductive way over the BT . In contrast to the second-order logic as defined in
e.g. [8], we include in the language more objects of order ≤ 2 to allow skolem-
ization, although quantification is restricted to individuals and unary predicates
on individuals (i.e. variables of types ι and ι → o).

We assume given a set of symbols S together with a function τ : S �→ T
assigning types to symbols, where S can be partitioned into the sets V (individual
variables), CS (individual constants), FSn (function symbols), PCn (predicate
constants), PV (unary predicate variables) s.t.

1. For all x ∈ V , τ(x) = ι,
2. for all c ∈ CS , τ(c) = ι,

1 http://www.logic.at/ceres

http://www.logic.at/ceres
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3. for all f ∈ FSn, n ≥ 1: τ(f) = t1 → . . . → tn → ι where for 1 ≤ i ≤ n, ti = ι
or ti = ι → o,

4. for all P ∈ PC n, n ≥ 0: τ(P ) = t1 → . . . → tn → o where for 1 ≤ i ≤ n,
ti = ι or ti = ι → o,

5. for all X ∈ PV , τ(X) = ι → o.

We additionally require that each member of this partition is countably infi-
nite. We define PC :=

⋃
i≥0 PC i and FS :=

⋃
i≥1 FS i. The set of expressions E

is defined inductively in the usual way over the set of symbols together with the
symbols ¬, ∧, ∨, →, ∃, ∀, λ, ., (, ) (keeping in mind the restriction on the order of
the types and on the types of the quantified variables). We use infix notation for
familiar function symbols and predicates (e.g. +, =).

Definition 1. The set of second-order formulas or simply formulas SOF :=
{F | F ∈ E , τ(F ) = o}. If F ∈ SOF, F ≡ P (t1, . . . , tn), P ∈ PC ∪ PV , then F
is called atomic.

For atomic formulas P (t1, . . . , tn) we may also write t1 ∈ P (t2, . . . , tn). We define
the set of lambda terms LT := {t | t ∈ E , t ≡ λx.F, τ(F ) = o} and the set of
terms T := {t | t ∈ E , τ(t) = ι}. Polarity of subexpressions w.r.t. formulas and
sequents, strong and weak quantifiers, the scope of quantifiers, closed formulas,
β-reduction are defined as usual. We assume a variable convention (i.e. variables
are renamed appropriately to avoid conflicts).

As proof system for the input and output proofs of the CERES2 method, we
use the sequent calculus LKDe2. This calculus is based on LK2 as defined in
[9], which consists of the usual structural, propositional, and first-order rules
together with second-order quantifier introduction rules that incorporate com-
prehension. LKDe2 extends LK2 by rules for first-order equality handling:

Γ � Δ, s = t Π � Λ, A[s]
Γ, Π � Δ, Λ, A[t]

=: r1
Γ � Δ, t = s Π � Λ, A[s]

Γ, Π � Δ, Λ, A[t]
=: r2

LKDe2 also includes the rules =: l1 and =: l2, and rules for the introduction of
definitions (for details, see [10]). All the rules in LKDe2 are multiplicative. As
axioms we allow the usual tautological sequents A  A for an atomic formula
A as well as arbitrary atomic sequents without second-order variables (which is
useful for conveniently axiomatizing a background theory). Additionally, if C is a
set of atomic sequents, then we say that π is an LKDe2-proof from C if for every
initial sequent S of π, S is either an axiom, or S is in C. As an intermediary
calculus for the construction of a resolution refutation, we use the resolution
calculus discussed in the next section.

3 The Second-Order Resolution Calculus

In this section, we briefly present the resolution calculus we will need for the
CERES2 method. Note that in second-order logic, in contrast to first-order logic,
clauses are not closed under substitution, so the transformation of a formula to
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clause form has to be incorporated into the calculus, instead of being used just
in a preprocessing step.

To use a resolution calculus with CERES2, it must be possible to use the
resolution refutation of a particular set of clauses (the characteristic clause set,
see Section 4) as the skeleton of an LKDe2-proof that contains no non-atomic
cuts. Intuitively, the following requirements arise:

1. Only literals (i.e. atomic formulas and their negations) may be resolved.
2. It must be possible to produce a propositional resolution refutation from

instances of the refuted set of clauses.

Requirement 1 stems from the fact that CERES2 is a cut-elimination method,
and the resolution rule will be translated to the cut rule in LKDe2. Requirement
2 is due to the fact that substitution is integrated in the resolution calculus, while
this is not the case with LKDe2.

The resolution calculus we are considering here is a restricted version of the
higher-order resolution calculus defined by P.B. Andrews in [11].

Definition 2. We define a clause as a sequent C := A1, . . . , An  B1, . . . , Bm

with Ai, Bi atomic.

In this paper, the transformation to conjunctive normal form (CNF) is the stan-
dard transformation that preserves logical equivalence.

Definition 3. Let F be a quantifier-free formula. Let, modulo commutativity
and associativity of ∨, CNF(F ) ≡ (¬A1

1 ∨ . . . ∨ ¬A1
k1

∨ B1
1 ∨ . . . ∨ B1

l1
) ∧ . . . ∧

(¬An
1 ∨ . . .∨¬An

kn
∨Bn

1 ∨ . . .∨Bn
ln

). For i ∈ {1, . . . , n}, define the atomic sequent
Ci ≡ Ai

1, . . . , A
i
ki

 Bi
1, . . . , B

i
li
. Then the clause form of F is defined as the set

{C1, . . . , Cn}.
Let S ≡ F1, . . . , Fn  G1, . . . , Gm be a quantifier-free sequent, then the clause

form of S is defined as the clause form of (F1 ∧ . . . ∧ Fn) → (G1 ∨ . . . ∨ Gm).

A substitution is a pair of mappings: The first maps variables to terms, while the
second maps predicate variables to lambda terms. The result of the application
of a substitution σ to an expression e is e after replacing all variables by the
respective terms and all predicate variables by the respective lambda terms and
reducing to β-normal form, this will be denoted by eσ. A substitution is called
quantifier-free if all the (lambda-)terms are quantifier-free.

Definition 4. We define the application of a quantifier-free substitution σ to a
set of clauses C = {C1, . . . , Cn}, denoted S(C, σ), as the clause form of the set of
quantifier-free sequents {C1σ, . . . , Cnσ}. Note that this includes transformation
to CNF, therefore |S(C, σ)| ≥ |C|.

With this definition, we can state the rules of our resolution calculus.

Definition 5. In the following, C, D are clauses.

1. C is called instance of D if there exists a quantifier-free substitution σ s.t.
C ∈ S({D}, σ).
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2. C is called p-reduct of D if C is D after omission of some multiply occuring
atomic formulas on either side of the sequent.

3. Let L be an atom formula, C ≡ Γ, L  Δ and D ≡ Γ ′  L, Δ′, then the
clause Γ, Γ ′  Δ, Δ′ is called a resolvent of {C, D}.

Note that we defined resolution without the principle of most general unification
(mgu). While the mgu-principle is vital to proof search, the proof transformations
in CERES and CERES2 require resolution proofs after application of global
unifiers. Of course, this definition does not exclude the use of mgu-based provers
in the phase of proof search.

Additionally, we use paramodulation rules that allow equality reasoning on the
term level. The paramodulation rules are just the restrictions of the equational
rules of LKDe2 to atomic sequents. With this, we can define the notion of a
deduction in this calculus:
Definition 6. Let C be a set of clauses and let C be a clause. A sequence
C1, . . . , Cn is called an R-deduction of C from C if it fulfills the following con-
ditions: Cn ≡ C and for all i = 1, . . . , n:
– Ci ∈ C or
– Ci is an instance or a p-reduct of Cj for some j < i or
– Ci is a resolvent of {Cj , Ck} for some j, k < i or
– Ci is the result of paramodulation of {Cj , Ck} for j, k < i.

An R-deduction of the empty sequent  from C is called an R-refutation of C.
Finally, we state some lemmas that show that R-deductions can be transformed
to LKDe2-proofs. These will be useful for showing the effectiveness of the
CERES2 method in the next section.
Lemma 1. Let C ≡ Γ  Δ be a clause, D be a set of clauses, ψ be a LKDe2-
proof of Γ, Π  Λ, Δ from D with only quantifier-free cuts, let σ be a quantifier-
free substitution whose domain contains no variable which occurs free in Π ∪ Λ
and let Γ ∗  Δ∗ ∈ S({C}, σ). Then we can construct an LKDe2-proof ψ∗

of Γ ∗, Π  Λ, Δ∗ from S(D, σ) with only quantifier-free cuts and with |ψ∗| ≤
|ψ|+ρ(|Γσ  Δσ|), where ρ is exponential if σ substitutes for a predicate variable
in D, and polynomial otherwise.

Proof. By simulating the conjunctive normal form transformation in LKDe2

using cuts. For a complete proof, see [6].

Note that this result is weaker than the corresponding result in first-order logic:
the proofs constructed in that setting do not contain any cuts. Still, as our
interest is the extraction of information, this result suffices, as quantifier-free
cuts do not contain interesting mathematical information.
Lemma 2. Let R be an R-deduction of Γ  Δ from a set of clauses C. Then
there exists an LKDe2-proof ψ of Γ  Δ from D containing quantifier-free cuts
only, where D = {D | D ∈ S(C, σ) for some quantifier-free σ}.
Proof. By using Lemma 1 to replace instantiations, replacing resolution with
cut, replacing paramodulation by the equality rules, and replacing p-reducts by
contractions. For a full proof, see [6].
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4 The CERES2 Cut-Elimination Method

We now define the CERES2 method, which will turn out to be a cut-elimination
method for LKDe2-proofs using quantifier-free comprehension.

Definition 7. Let (R) be a weak second-order quantifier rule

A{X ← λx.F}, Γ  Δ

(∀X)A, Γ  Δ
∀2 : l

Γ  Δ, A{X ← λx.F}
Γ  Δ, (∃X)A ∃2 : r

then (R) is called quantifier-free if F does not contain quantifiers. We call an
LKDe2-proof π a QFC-proof if all its weak second-order quantifier rule appli-
cations are quantifier-free.

Note that as we allow non-tautological axioms, it is not in general possible
to eliminate all cuts. This leads to the following notion: An LKDe2-proof π is
called in atomic cut normal form (ACNF) if all cut-formulas of π are atomic. An
important technical tool in the CERES2 method is the skolemization of proofs:
this transformation removes strong quantifier rules from proofs and replaces the
respective variables by Skolem terms.

Definition 8. Let ψ be an LKDe2-proof. If the active formulas of all strong
quantifier rules in ψ are ancestors of cut-formulas, then ψ is said to be in Skolem
form.

The following proposition shows that from a QFC-proof, we can indeed obtain
a proof in Skolem form. Proofs in Skolem form allow the definition of proof
projections by leaving out rules from the proof, as no eigenvariable violations
can occur by doing so. This will be necessary to construct sound proofs in Def-
inition 10. We use the structural skolemization operator sk on formulas and
sequents, where sk replaces the strongly quantified variables by Skolem terms
and drops the corresponding quantifiers (see [12]).

Proposition 1. For every QFC-proof ψ of S there exists a QFC-proof ψ′ of
sk(S) in Skolem form.

Proof. We obtain ψ′ from ψ by dropping the strong quantifier rules going into
the end-sequent and, on the path to the end-sequent, replacing the strongly
quantified variables by the respective Skolem terms. For example, if S contains
a positive occurrence α of (∀X)A(X) and the premise of the ∀2 : r introducing
this quantifier is Π  Λ, A′(Θ) and t1, . . . , tn are the (lambda-)terms eliminated
by introductions of weak quantifiers dominating α and the corresponding skolem
term in sk(S) is λz.P (z, x1, . . . , xn), then we remove the ∀2 : r rule, replace its
premise by Π  Λ, A′(λz.P (z, t1, . . . , tn)), and modify the path to the end-
sequent so that the occurrences of t1, . . . , tn in the Skolem term are eliminated
by the weak quantifier rules. For a full proof, see [6].

Note that in this context, skolemization indeed does preserve validity (in contrast
to what is observed in [13]), because the proposition we just stated generates a
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proof of the skolemized formula from a proof of the unskolemized formula. As
LKDe2 is sound, the transformation is validity preserving. We now define some
notation that will be useful in describing CERES2.

Definition 9. Let ρ be a unary rule, σ a binary rule, ψ, χ QFC-proofs, then
ρ(ψ) is the QFC-proof obtained by applying ρ to the end-sequent of ψ, and
σ(ψ, χ) is the proof obtained from the proofs ψ and χ by applying σ.

Let P, Q be sets of QFC-proofs. Then PΓ�Δ := {ψΓ�Δ | ψ ∈ P}, where ψΓ�Δ is
ψ followed by weakenings adding Γ  Δ, and P ×σ Q := {σ(ψ, χ) | ψ ∈ P, χ ∈ Q}.

Let C = {Γ1  Δ1, . . . , Γm  Δm}, D = {Π1  Λ1, . . . , Πn  Λn} be sets of
clauses, then C × D := {Γi, Πj  Δi, Λj | i ≤ m, j ≤ n}.
We can now define the main parts of the CERES2-method: the characteristic
clause set and the set of proof projections of a proof π. The former will be
always unsatisfiable and give rise to a resolution refutation, while the latter will
allow the resolution refutation to be transformed into a proof of the end-sequent
of π.

Definition 10. Let π be a QFC-proof in Skolem form. For each rule ρ in π,
we define a set of cut-free QFC-proofs, the set of projections Pρ(π) of π, and a
set of clauses, the characteristic clause set CLρ(π) of π, at the position of ρ.

– If ρ corresponds to an initial sequent, let Γ1  Δ1 be the part of it which
consists of ancestors of cut formulas, let Γ2  Δ2 be the part which consists
of ancestors of the end-sequent of π and define

Pρ(π) := {Γ1, Γ2  Δ2, Δ1}
CLρ(π) := {Γ1  Δ1}.

– If ρ is a unary rule with immediate predecessor ρ′ with Pρ′(π)={ψ1, . . . , ψn},
distinguish:
(a) The active formulas of ρ are ancestors of cut formulas. Then

Pρ(π) := Pρ′(π)

(b) The active formulas of ρ are ancestors of the end-sequent. Then

Pρ(π) := {ρ(ψ1), . . . , ρ(ψn)}

Note that by assumption, all strong quantifier rules go into cuts, so ρ
cannot be a strong quantifier rule, so no eigenvariable violation can occur
here.

In any case, CLρ(π) := CLρ′(π).
– Let ρ be a binary rule with immediate predecessors ρ1 and ρ2.

(a) If the active formulas of ρ are ancestors of cut-formulas, let Γi  Δi

be the ancestors of the end-sequent in the conclusion sequent of ρi and
define

Pρ(π) := Pρ1(π)Γ2�Δ2 ∪ Pρ2(π)Γ1�Δ1

For the characteristic clause set, define

CLρ(π) := CLρ1(π) ∪ CLρ2(π)
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(b) If the active formulas of ρ are ancestors of the end-sequent, then

Pρ(π) := Pρ1(π) ×ρ Pρ2(π).

For the characteristic clause set, define

CLρ(π) := CLρ1(π) × CLρ2(π)

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic
clause set of π, CL(π) is defined as CLρ0(π), where ρ0 is the last rule of π.

Example 1. Consider the proof ψ:

a ∈ Θ � a ∈ Θ ¬ : r
� a ∈ Θ, a /∈ Θ

b ∈ Θ � b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ �
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ � a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) � a ∈ Θ
→: r

(∀X)(a ∈ X → b ∈ X) � b ∈ Θ → a ∈ Θ
∀2 : r

(∀X)(a ∈ X → b ∈ X) � (∀X)(b ∈ X → a ∈ X)

b ∈ P � b ∈ P a ∈ P � a ∈ P
→: l

b ∈ P → a ∈ P, b ∈ P � a ∈ P
→: r

b ∈ P → a ∈ P � b ∈ P → a ∈ P
∀2 : l

(∀X)(b ∈ X → a ∈ X) � b ∈ P → a ∈ P
cut

(∀X)(a ∈ X → b ∈ X) � b ∈ P → a ∈ P

where X, Θ are predicate variables, a, b are individual constants, P is a predicate
constant, and the lambda terms used in the ∀2 : l rules are λx.x /∈ Θ and
λx.x ∈ P . Then

CL(ψ) = ({ a ∈ Θ} × {b ∈ Θ }) ∪ { b ∈ P} ∪ {a ∈ P }
= {b ∈ Θ  a ∈ Θ;  b ∈ P ; a ∈ P }

and P(ψ) contains, among others, the proof

a ∈ Θ � a ∈ Θ ¬ : r
� a ∈ Θ, a /∈ Θ

b ∈ Θ � b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ �
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ � a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) � a ∈ Θ
w : r

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) � b ∈ P → a ∈ P, a ∈ Θ

Note that for the soundness of Definition 10, we need the assumption that π is in
Skolem form: if this were not the case, violations of eigenvariable conditions could
appear in the projections. We will now prove the main properties of CERES2.

Lemma 3. Let π be a QFC-proof in Skolem form. Then there exists an R-
refutation of CL(π).

Proof. Analogous to the proof of unsatisfiability of CL(π) for first-order logic
in [3] by removing all rules of π except the ancestors of the cuts, and removing
all formula occurrences in π except the ancestors of cuts, we construct a QFC-
proof ψ of  from CL(π).

As we know from e.g. [14], reductive cut-elimination in second-order logic
terminates, so we can apply it to ψ to eliminate all non-atomic cuts and obtain
a proof ψ′ of . First, note that ψ′ consists of atomic cut, contraction and
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permutation: weakening is automatically eliminated by cut-elimination. Denote
the set of initial sequents of a proof ϕ by init(ϕ). We will show that ψ′ can be
transformed into a proof ψ∗ s.t. init(ψ∗) consists of quantifier-free instances of
clauses in C. We can then take D as init(ψ∗). We proceed by induction on the
cut-elimination of ψ to obtain ψ′. As induction invariant, we take the following:
ψ′ can be transformed into a QFC-proof ψ∗ s.t. init(ψ∗) consists of quantifier-
free instances of clauses in C. For the base case, we take ψ∗ = ψ, so as init(ψ) =
init(ψ∗) and ψ uses quantifier free comprehension, the invariant holds.

1. The cut-eliminiation performs a rank reduction on ψ. Then the initial se-
quents of ψ and ψ′ coincide, except when performing rank reduction over
a contraction: Here, we perform adequate renamings of eigenvariables in ψ′

to keep regularity and take ψ∗ = ψ′. Clearly, init(ψ∗) consists of init(ψ)
together with some renamed variants of clauses in init(ψ), and the lambda
terms of the weak second-order quantifier rules are not changed, so the in-
variant holds.

2. The cut-elimination performs a grade reduction on ψ. The most interest-
ing subcase is: The grade reduction is performed on second-order quantifier
rules. Let σ = {X ← λx.F} be the substitution that is applied by the cut-
elimination. By (IH), σ is quantifier-free. Let init(ψ) = {Γ1  Δ1, . . . , Γn 
Δn}. Then

init(ψ′) = {(Γ1  Δ1)σ, . . . , (Γn  Δn)σ}
is a set of propositional sequents, so for 1 ≤ i ≤ n, we have cut-free proofs
ϕi of (Γi  Δi)σ from S({Γi  Δi}, σ). Then take ψ∗ to be ψ′ where the
leafs are replaced by the respective ϕi, then

init(ψ) = S({Γ1  Δ1}, σ) ∪ . . . ∪ S({Γn  Δn}, σ)

and the first part of the invariant holds. For the second part, note that as σ
is quantifier-free and no new second-order quantifier rules are introduced in
this step, all second-order quantifier rules are still quantifier-free.

ψ∗ readily gives rise to an R-refutation of CL(π): First, derive the necessary
instances of clauses in CL(π) used as leaves of ψ∗ using instantiation, then, when-
ever atomic cuts are used in ψ∗, apply resolution, and whenever contractions are
used in ψ∗, apply p-reduction.

Note that this lemma is just a theoretical tool to show the existence of a suitable
refutation — in practice, the reductive methods used in the proof of the lemma
are not used (as can be seen in the analysis of the example in Section 5).

We are now ready to define the CERES2 method and state our central result.

Definition 11. Let π be a QFC-proof of S. Then the CERES2 method is the
following algorithm:

1. Compute a QFC-proof πsk of sk(S).
2. Compute CL(πsk), P(πsk).
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3. Compute an R-refutation γ of CL(πsk).
4. Convert γ into an LKDe2-proof γ′ of  from CL(πsk).
5. Plug instances of the proofs in P(πsk) into the leaves of γ′ to obtain a proof

ψ of sk(S) containing quantifier-free cuts only.
6. Perform quantifier-free cut-elimination on ψ to obtain a proof ϕ of sk(S)

containing no non-atomic cuts.

Let us remark here that in step 6, any method for cut-elimination for quantifier-
free cuts can be used (e.g. reductive methods, “zero-th order” CERES). Further-
more, considering that the instantiations of quantifiers are the core information
in a proof, one can even leave out this step as the instantiations in ϕ and ψ
coincide.

Theorem 1. Let π be a QFC-proof of S. Then the CERES2 method transforms
π into an LKDe2-proof ϕ of sk(S) such that ϕ is in atomic-cut normal form.

Proof. Using Proposition 1, we convert π to πsk. By Lemma 3, there exists an
R-refutation γ of CL(πsk). By Lemma 2, from γ we can construct an LKDe2-
refutation γ′ of CL(πsk). Every initial sequent of γ′ is either a sequent A  A,
an axiom, or an instance C∗ of some C ∈ CL(πsk) under a substitution σ. Let
C ≡ Π  Λ and sk(S) ≡ Γ  Δ, then by Definition 10 we have a cut-free
QFC-proof ψC of Γ, Π  Λ, Δ. Let C∗ ≡ Π∗  Λ∗, then by Lemma 1, we can
construct LKDe2-proofs ψC∗ of Γ, Π∗  Λ∗, Δ that contain quantifier-free cuts
only. By plugging these proofs onto the leaves of γ′ and adding contractions at
the end, we obtain an LKDe2-proof of Γ  Δ containing quantifier-free cuts
only. By applying cut-elimination to this proof, we obtain the desired proof ϕ.

4.1 Extending CERES2

This work defines a method for cut-elimination for QFC-proofs. A natural ques-
tion is then, whether the method can be extended to stronger comprehension. In
the previous section, it was stated that skolemization is an important technical
tool in the context of the method, as it removes strong quantifier introduction
rules and because of this allows the definition of proof projections without caus-
ing violations of eigenvariable conditions.

When considering comprehension involving quantifiers, proof skolemization
has to be modified to achieve the same effect: it is not enough to skolemize the
end-sequent, as the active formulas of strong quantifier rules may be ancestors
of formulas removed by weak second-order quantifier rules and therefore, the
corresponding strong quantifiers will not be present in the end-sequent.

A tempting idea is, then, to simply skolemize the formulas that disappear
into weak second-order quantifier rules. This approach is investigated in [6] and
it turns out that weak quantifier rules cannot be skolemized within LKDe2 in
most cases; the class where this is possible is only slightly larger than QFC and
looks rather unnatural. So either we have to extend proof skolemization to more
involved proof transformations or new techniques for dealing with projections
containing strong quantifier rules have to be developed. A promising approach
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is to use strong quantifier rules which introduce a quantifier not from a free
variable but from a Skolem term as in [13].

5 CERES2 Example

We will now apply the CERES2 method to a QFC-proof ϕ. The proof under
consideration is a proof of the theorem

∑n
i=0 i = n(n+1)

2 by the least number
principle. As axioms the proof uses elementary axioms of arithmetic such as
associativity and commutativity of + and ∗, axioms for the neutral elements 0
and 1, and distributivity. The following axioms represent the recursive definition
of the series:

 Σ(n + 1) = Σ(n) + (n + 1) ;  Σ(0) = 0

We write 2 for 1 + 1. In the proof, � denotes the ancestors of a cut, double lines
indicate applications of propositional rules, and structural rules except cut are
omitted.

ϕ :=

ϕ1

...

LNP � IND�

ϕ2

...

IND� � (∀n)2 ∗ Σ(n) = n ∗ (n + 1)
cut

LNP � (∀n)2 ∗ Σ(n) = n ∗ (n + 1)

where

LNP ≡ (∀Y )((∃z)z ∈ Y → 0 ∈ Y ∨ (∃z)(z /∈ Y ∧ z + 1 ∈ Y ))
IND ≡ (∀X)(0 ∈ X ∧ (∀y)(y ∈ X → y + 1 ∈ X) → (∀y)y ∈ X)

This proof uses the fact that the least number principle implies induction as a
lemma; the use of this lemma will be removed by application of the CERES2

method, yielding a new proof that shows that the least number principle implies
the theorem, without the use of induction.

The proof ϕ1 specified below is exactly the proof of this lemma, and it is a for-
malization of the following argument: Assume the least number principle, and as-
sume that for an arbitrary set X , 0 ∈ X and if y ∈ X , then y +1 ∈ X , and assume
for contradiction that X �= N. Then the set X̄ = {x | x /∈ X} (or λx.x /∈ X in the
lambda notation) is not empty, so by the least number principle either

1. 0 ∈ X̄ . But 0 ∈ X by assumption, so 0 /∈ X̄ .
2. There is a z s.t. z /∈ X̄ and z + 1 ∈ X̄ . But then z ∈ X and by assumption

z + 1 ∈ X , so z + 1 /∈ X̄ .

So ϕ1 is

y0 ∈ X0 � y0 ∈ X�
0 ∀ : r, ∃ : r

� (∀y)y ∈ X�
0 , (∃z)z /∈ X0 ϕ1

1 →: l
0 ∈ X�

0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)�, LNPσ � (∀y)y ∈ X�
0

∀2 : l λx.x /∈ X0
LNP � 0 ∈ X0 ∧ (∀y)(y ∈ X0 → y + 1 ∈ X0) → (∀y)y ∈ X�

0
∀2 : r

LNP � IND�
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where

LNPσ ≡ (∃z)z /∈ X0 → 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0)

The proof ϕ1
1 is

0 ∈ X�
0 � 0 ∈ X0

¬ : l
0 ∈ X�

0 , 0 /∈ X0 �

z0 ∈ X0 � z0 ∈ X�
0 z0 + 1 ∈ X�

0 � z0 + 1 ∈ X0

z0 ∈ X0 → z0 + 1 ∈ X�
0 ,¬z0 /∈ X0 ∧ z0 + 1 /∈ X0 �

∃,∀ : l
(∀y)(y ∈ X0 → y + 1 ∈ X0)�, (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) �

∨ : l
0 ∈ X�

0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)�, 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) �

This completes the left hand side of the cut, showing that the least number
principle implies induction. The right hand side of the cut is a formalization of
the following induction proof of

∑n
i=0 i = n(n+1)

2 : The induction base is trivial.
For the induction step we want to show

n+1∑

i=0

i = n + 1 +
n∑

i=0

i =
(n + 1)((n + 1) + 1)

2

By the induction hypothesis this reduces to showing

n + 1 +
n(n + 1)

2
=

(n + 1)((n + 1) + 1)
2

which clearly holds.
The formalization of this argument is the proof ϕ2:

ϕ1
2

2 ∗ Σ(n0) = n0 ∗ (n0 + 1)� � 2 ∗ Σ(n0) = n0 ∗ (n0 + 1)
∀ : r, ∀ : l

(∀x)2 ∗ Σ(x) = x ∗ (x + 1)� � (∀n)2 ∗ Σ(n) = n ∗ (n + 1)
→: l

IND�
σ � (∀n)2 ∗ Σ(n) = n ∗ (n + 1)

∀2 : l λx.2 ∗ Σ(x) = x ∗ (x + 1)
IND� � (∀n)2 ∗ Σ(n) = n ∗ (n + 1)

where

INDσ ≡ 2 ∗ Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗ Σ(x) = x ∗ (x + 1) →
2 ∗ Σ(x + 1) = (x + 1) ∗ ((x + 1) + 1)) → (∀x)2 ∗ Σ(x) = x ∗ (x + 1)

We continue with ϕ1
2 — from this point on, we will omit � as all formula occur-

rences in the following proofs are cut ancestors:

� Σ(0) = 0

� 2 ∗ 0 = 0 � 0 = 0 ∗ (0 + 1)
=: r2

� 2 ∗ 0 = 0 ∗ (0 + 1)
=: r2

� 2 ∗ Σ(0) = 0 ∗ (0 + 1) ϕ2
2 ∧

� 2 ∗ Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗ Σ(x) = x ∗ (x + 1) → 2 ∗ Σ(x + 1) = (x + 1) ∗ ((x + 1) + 1))

Note that the left branch of ϕ1
2 proves the induction base. The proof ϕ2

2 will
in turn show the induction step:

� Σ(x0 + 1) = Σ(x0) + (x0 + 1) ϕ=
1 =: r2

2 ∗ Σ(x0) = x0 ∗ (x0 + 1) � 2 ∗ Σ(x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)
∀ : r

� (∀x)(2 ∗ Σ(x) = x ∗ (x + 1) → 2 ∗ Σ(x + 1) = (x + 1) ∗ ((x + 1) + 1))
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where ϕ=
1 is a proof of

2 ∗ Σ(x0) = x0 ∗ (x0 + 1)  2 ∗ (Σ(x0) + (x0 + 1)) = (x0 + 1) ∗ ((x0 + 1) + 1)

using purely equational reasoning. This completes the proof ϕ.
Skolemization of ϕ (for details on proof skolemization, refer to the proof of

Proposition 1 in [6]) yields a proof ϕsk of the sequent

(∀Y )((∃z)z ∈ Y → 0 ∈ Y ∨ (f(Y ) /∈ Y ∧ f(Y ) + 1 ∈ Y ))  2 ∗ Σ(s) = s ∗ (s + 1)

where f, s are the Skolem symbols. In the proof, the Skolem term f(λx.x /∈ X0)
replaces the eigenvariable z0 and the Skolem term s replaces the eigenvariable n0.

Remark 1. In all models of arithmetic and the left hand side of the sequent, a
suitable interpretation of f will be a function γ : P (N) �→ N such that for all
S ∈ P (N) with S �= ∅, 0 /∈ S, we have γ(S) = min(S)− 1. This is an example for
the natural interpretation of Skolem symbols, which in practice is often possible.

The characteristic clause set CL(ϕsk) can be written as:

CL(ϕsk) = CL(ϕ1
sk) ∪ CL(ϕ2

sk)

CL(ϕ1
sk) = ({0 ∈ X0 } × { f(λx.x /∈ X0) ∈ X0; f(λx.x /∈ X0) + 1 ∈ X0 })

×{ y0 ∈ X0}

CL(ϕ2
sk) = {2 ∗ Σ(s) = s ∗ (s + 1) } ∪ { Σ(x0 + 1) = Σ(x0) + (x0 + 1)}

∪{2 ∗ Σ(x0) = x0 ∗ (x0 + 1)  2 ∗ Σ(x0) = x0 ∗ (x0 + 1)}
∪{ Σ(0) = 0} ∪ PAX S

where PAX S is the set of axioms of arithmetic that are used in the proof ϕ1
2.

Modulo subsumption and tautology deletion, the characteristic clause set is:

CL(ϕsk) = { 0 ∈ X0  f(λx.x /∈ X0) ∈ X0, y0 ∈ X0; (I1)
0 ∈ X0, f(λx.x /∈ X0) + 1 ∈ X0  y0 ∈ X0; (I2)
2 ∗ Σ(s) = s ∗ (s + 1) ; (T 1)
 Σ(x0 + 1) = Σ(x0) + (x0 + 1); (S1)
 Σ(0) = 0} (S2)
∪PAX ′

S

where PAX ′
S is PAX S after subsumption and tautology deletion.

5.1 Refutation of the Characteristic Clause Set

We now define a resolution refutation of the characteristic clause set CL(ϕsk),
using the resolution calculus from Section 3.

The clauses (I1) and (I2) correspond to the induction axiom, while the clause
(T 1) is the negated theorem. For the refutation we will need the following in-
stances of the induction clauses produced from the substitution
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σ = 〈{y0 ← s}, {X0 ← λx.2 ∗ Σ(x) = x ∗ (x + 1)}〉:
(I1′) 2 ∗ Σ(0) = 0 ∗ (0 + 1)

 2 ∗ Σ(f(T )) = f(T ) ∗ (f(T ) + 1), 2 ∗ Σ(s) = s ∗ (s + 1)

(I2′) 2 ∗ Σ(0) = 0 ∗ (0 + 1), 2 ∗ Σ(f(T ) + 1) = (f(T ) + 1) ∗ ((f(T ) + 1) + 1)
 2 ∗ Σ(s) = s ∗ (s + 1)

where T ≡ λx.¬2 ∗ Σ(x) = x ∗ (x + 1). We start by deriving the induction base
using resolution, for this we need the clauses

(A1)  2 ∗ 0 = 0 ; (A2)  0 = 0 ∗ (0 + 1)

Note that (A1), (A2) ∈ PAX S . We now use paramodulation from (S2) into (A1)
to derive

(IB1)  2 ∗ Σ(0) = 0

Paramodulation from (IB1) into (A2) then yields

(IB)  2 ∗ Σ(0) = 0 ∗ (0 + 1)

We now resolve both (I1′) and (I2′) first with (IB) and then with (T 1) to obtain

(IH)  2 ∗ Σ(f(T )) = f(T ) ∗ (f(T ) + 1)
(IG) 2 ∗ Σ(f(T ) + 1) = (f(T ) + 1) ∗ ((f(T ) + 1) + 1) 

Note that (IH) corresponds to the induction hypothesis in the original proof,
while (IG) is the negation of what was proved in the induction step. Towards a
contradiction, we paramodulate (IG) with an instance of the second part of the
definition of the series, (S1), and get

(C1) 2 ∗ (Σ(f(T )) + (f(T ) + 1)) = (f(T ) + 1) ∗ ((f(T ) + 1) + 1) 
From clauses from PAX S , it is easy to derive (using paramodulation exclusively)
the clause

(C2)  2 ∗ (Σ(x0) + (x0 + 1)) = 2 ∗ Σ(x0) + 2 ∗ (x0 + 1)

Paramodulation from an instance of (C2) into (C1) yields

(C3) 2 ∗ Σ(f(T )) + 2 ∗ (f(T ) + 1) = (f(T ) + 1) ∗ ((f(T ) + 1) + 1) 

We can now use paramodulation to obtain from (C3) and (IH) the clause

(C4) (f(T ) ∗ (f(T ) + 1)) + 2 ∗ (f(T ) + 1) = (f(T ) + 1) ∗ ((f(T ) + 1) + 1) 
which is a wrong arithmetical statement. From clauses in PAX S it is now easy
to derive the dual clause (modulo substitution)

(C5)  x0 ∗ (x0 + 1) + 2 ∗ (x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)

We can now resolve (C4) with an instance of (C5) to obtain the empty se-
quent and complete the refutation. Note that although the clauses used in the
refutation correspond to the induction axiom, the proof constructed from the
refutation will be a proof by the least number principle. This will become clear
in the next section.
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5.2 Interpretation of the ACNF

In this section we will indicate the construction of the ACNF from the refutation
of CL(ϕsk) produced in the previous section. We will not give the full ACNF in
this section, as it is too large to display comfortably, but we will discuss its key
features.

The key information of a cut-free proof lies in the instantiations of the quan-
tifiers (the other information just pertains to propositional reasoning and struc-
tural manipulation of sequents), so we will investigate a projection that contains
such instantiations, namely the projection ϕ[(I1)] to the clause

(I1) ≡ 0 ∈ X0  f(S) ∈ X0, y0 ∈ X0

where S ≡ λx.x /∈ X0:

y0 ∈ X0 � y0 ∈ X0 ¬ : r
� y0 /∈ X0, y0 ∈ X0

∃ : r� (∃z)z /∈ X0, y0 ∈ X0 ψ
→: l

0 ∈ X0, (∃z)z /∈ X0 → (0 /∈ X0 ∨ (¬f(S) /∈ X0 ∧ f(S) + 1 /∈ X0)) � Δ
∀2 : l λx.x /∈ X00 ∈ X0, (∀Y )((∃z)z ∈ Y → (0 ∈ Y ∨ (f(Y ) /∈ Y ∧ f(Y ) + 1 ∈ Y ))) � Δ

where Δ ≡ f(S) ∈ X0, y0 ∈ X0 and ψ only consists of propositional inferences
from tautological initial sequents. In the refutation, the instance of (I1) un-
der the substitution σ = 〈{y0 ← s}, {X0 ← λx.2 ∗ Σ(x) = x ∗ (x + 1)}〉 is used,
therefore the projection used in the construction of the ACNF is ϕ[(I1)]σ (cf.
Lemma 1). This yields a projection with a rule application ∀2 : l λx.¬(2∗Σ(x) =
x ∗ (x + 1)). This use of comprehension is the key point in the argument of the
ACNF: while the proof by induction showed that the formula holds for all n (or
in other words, all n are in the set X), the proof by the least number property
shows that the negation of the formula holds for no n (or that X̄ is empty).

It is interesting to note that no matter what theorem is proved by induction
in the input proof, the proof of LNP  IND remains the same and therefore
also (I1) and ϕ[(I1)] remain unchanged. So as long as the clause (I1) is used in
the resolution refutation, the resulting ACNF will contain the above argument
where only the definition of the set X differs.

6 Future Work and Acknowledgment

There is still much to be done: We are working on extending CERES2 to larger
classes of proofs and investigating the use of existing higher-order resolution cal-
culi (see e.g. [15]) with CERES2. For semi-automated application of the method,
it will be necessary to replace the unrestricted substitution of our resolution cal-
culus by unification (see e.g. [16]). Also, the existing ANSI C++ implementation
of CERES is being extended to CERES2. This will allow practical application
of the method to larger and more interesting proofs.

Finally, we would like to thank the anonymous referees for their helpful com-
ments and suggestions for improvement of this paper.
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Abstract. The admissible rules of a logic are those rules under which the set of
theorems of the logic is closed. In a previous paper by the authors, formal sys-
tems for deriving the admissible rules of Intuitionistic Logic and a class of modal
logics were defined in a proof-theoretic framework where the basic objects of the
systems are sequent rules. Here, the framework is extended to cover derivability
of the admissible rules of intermediate logics and a wider class of modal logics,
in this case, by taking hypersequent rules as the basic objects.

1 Introduction

Investigations into logical systems typically focus on the derivability of formulas or
other structures within the system. However, the admissibility of rules for the system
may also play a key role. A rule is admissible for a logic (viewed as a consequence
relation) if adding it to the logic produces no new theorems. Such a notion is of in-
terest in Computer Science for (at least) two reasons. First, admissible rules show that
the derivability of certain formulas implies the derivability of stronger formulas, in the
sense that the latter derive the former but not vice versa, an example being the disjunc-
tion property, where the derivability of a disjunction implies that one of the disjuncts
is derivable. Second, equational unification can be formulated in terms of admissible
rules. A formula A is unifiable for a consistent logic L iff σA is a theorem of L for some
substitution σ. But this is equivalent to the claim that the rule A/q is not admissible in L
for any variable q not occurring in A. Finally, admissible rules are also interesting from
an algebraic perspective: they correspond to quasi-equations holding in the free algebra
with countably many generators (or the Lindenbaum algebra of the logic).

Classical Logic has no non-derivable admissible rules; that is, it is structurally com-
plete. However, for non-classical logics, this is no longer the case, and it is an interesting
and often quite challenging task to provide characterizations of admissibility for these
logics. In the case of modal and intermediate logics, a wide range of results for ad-
missible rules such as decidability and complexity have been obtained, in particular by
Rybakov [13]. Axiomatic-style presentations have been provided for wide classes of
intermediate logics by Iemhoff [7,8] (the case of Intuitionistic Logic was considered

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 230–245, 2009.
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independently by Rozière [12]) and modal logics by Jeřábek [10], both making crucial
use of Ghilardi’s work on unification and projective approximations [4,5].

In [9], the current authors introduced a proof-theoretic framework for admissibility:
analytic “Gentzen-style” proof systems for deriving the admissible rules of both Intu-
itionistic Logic and a class of “extensible” modal logics including K4, S4, and GL. The
key idea of this approach is that just as calculi for derivability in these logics can often
be presented using sequents, so the corresponding systems for admissibility can be pre-
sented using sequent rules as basic objects. Here, we extend this approach to both a class
of intermediate logics, including De Morgan Logic KC and the bounded cardinality log-
ics BC1, BC2, . . ., and a wider class of “mono-extensible” modal logics, including log-
ics such as GL.3, S4.2, etc. In this case, however, the natural home for derivability is not
sequents, but the framework of hypersequents – intuitively, disjunctions of sequents –
introduced by Avron in [1] and used to define calculi for families of both intermediate
logics (see e.g. [3]) and fuzzy logics (see e.g. [11]). Hence, for admissibility in these
logics, the basic objects of our systems will be hypersequent rules.

2 Admissible Rules

Let us assume for this paper that the logic L is treated as a consequence relation based on
a propositional language with binary connectives ∧, ∨, →, a constant ⊥, and sometimes
also a modal connective �. Other connectives are then defined as:

¬A=def A → ⊥ �=def ¬⊥ A ↔ B=def (A → B)∧(B → A) �A=def �A∧A

We denote (propositional) variables by p, q, r, . . ., formulas by A, B, C, . . ., and finite
sets of formulas by Γ, Π, Σ, Δ, Θ, Ψ . Formulas p → q and �p are called variable impli-
cations and boxed variables, respectively. We also write

∨
Γ and

∧
Γ where

∨
∅ = ⊥

and
∧

∅ = � for iterated disjunctions and conjunctions of formulas in a finite set Γ ,
and make use of the abbreviations:

�Γ =def {�A : A ∈ Γ} � Γ =def Γ ∪ �Γ (Γ ≡ �Γ ) =def {A ↔ �A : A ∈ Γ}

Typically, logical rules are asymmetric, having many premises but just one conclusion.
However, for admissibility, it is convenient to treat instead generalized rules of the form
Γ 	 Δ, where both Γ and Δ are sets of formulas. Intuitively, such a rule is admissible
for a logic L if whenever a substitution makes all the premises theorems of L, it also
makes one of the conclusions a theorem. More precisely, an L-unifier for a formula A is
a substitution σ such that �L σA. Then a generalized rule Γ 	Δ is L-admissible, written
Γ |∼L Δ, if each L-unifier for all A ∈ Γ , is an L-unifier for some B ∈ Δ.

Example 1. A nice example of an admissible generalized rule for Intuitionistic Logic
is the disjunction property, formulated as p ∨ q 	 p, q. If �IPC σ(p) ∨ σ(q), then either
�IPC σ(p) or �IPC σ(q). However, this rule is not admissible for Classical Logic; e.g.
for σ(p) = p and σ(q) = ¬p, plainly �CPC p ∨ ¬p, but �CPC p and �CPC ¬p.

Although admissibility and derivability do not coincide in general for non-classical log-
ics, Ghilardi in [4,5] identified classes of “projective” formulas A where the relationship
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“A |∼L B iff A �L B” holds for all formulas B. Let us make this precise. A formula A
is L-projective for a logic L if there exists a substitution σ, called an L-projective unifier
for A, such that �L σA and A �L σ(p) ↔ p for all variables p.

Lemma 1. Let L be an intermediate logic or a normal extension of K4:

(a) If A is L-projective, then A |∼L Δ iff A �L B for some B ∈ Δ.
(b) If A1, . . . , An are L-projective, then

∨n
i=1 Ai |∼L B iff

∨n
i=1 Ai �L B.

(c) If L′ extends L (as a consequence relation) and A1, . . . , An are L-projective formu-
las, then

∨n
i=1 Ai |∼L′ B iff

∨n
i=1 Ai �L′ B.

(d) If L′ extends a normal modal logic L (as a consequence relation) and A1, . . . , An

are L-projective formulas, then
∨n

i=1 �Ai |∼L′ �B iff
∨n

i=1 �Ai �L′ �B.

Proof. (a) The right-to-left direction is immediate. For the other direction, suppose that
A |∼L Δ where A is L-projective. Then there exists an L-projective unifier σ of A, such
that �L σB for some B ∈ Δ. Also A �L σB → B, so by modus ponens, A �L B.
(b) Again, the right-to-left direction is immediate. For the other direction, suppose that∨n

i=1 Ai |∼L B. Also then Ai |∼L B for i = 1 . . . n. By (a), Ai �L B for i = 1 . . . n
and hence

∨n
i=1 Ai �L B. For (c), let L′ be an extension of L and let A1, . . . , An be L-

projective formulas. Since L′ extends L, we get that A1, . . . , An are also L′-projective.
The result then follows from (b). For (d), as for (c), we get that A1, . . . , An are L′-
projective. Suppose that

∨n
i=1 �Ai |∼L′ �B. Then also �Ai |∼L′ �B for i = 1 . . . n.

Hence Ai |∼L′ B and by (a), Ai �L′ B for i = 1 . . . n. But then �Ai �L′ �B for
i = 1 . . . n and hence

∨n
i=1 �Ai �L′ �B. The other direction is almost immediate. ��

3 Modal Logics

In [9], formal systems were defined for deriving the admissible rules of extensible modal
logics by taking sequent rules as basic objects. Below, we recall this characterization
and show that it can be extended to a wider class of logics that we call mono-extensible
by taking our basic objects to be hypersequent rules.

3.1 Extensible and Mono-extensible Modal Logics

For a comprehensive account of modal logics, see e.g. [2]. Let us just recall that for any
normal modal logic L, an L-frame is such that every model on that frame is a model
of L, and an L-model is a model based on an L-frame. L has the finite model property
FMP if every refutable formula is refutable on a finite L-frame. For a Kripke model K
with accessibility relation R, the root of K is the cluster {k : ∀l = k(kRl)}, and Kk

denotes the Kripke model K restricted to the domain {l : kRl or k = l}. Two Kripke
models K1, K2 are variants of one another if they have the same nodes and accessibility
relation, and their forcing relations agree on all nodes except possibly the root.

Ghilardi [5] has given a characterization for projectivity for a wide range of modal
logics (following here the terminology of [10]).

Theorem 1 (Ghilardi [5]). A class of finite models K has the modal extension property
if for any model K , whenever Kk ∈ K for all k not in the root of K , there is a variant
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of K in K. For every normal extension L of K4 with the FMP, a formula is L-projective
iff its class of L-models has the modal extension property.

To get a handle on the modal extension property, we recall two useful constructions.

Definition 1. For frames F1, . . . , Fn, (
∑

Fj)i and (
∑

Fj)r are obtained by adding,
respectively, an irreflexive or a reflexive node beneath (connected to all nodes of) the
disjoint sum of F1 . . . Fn. A normal extension L of K4 with the FMP is extensible if for
all finite L-frames F1, . . . , Fn:

(i) (
∑

Fj)i is an L-frame unless L is reflexive;
(ii) (

∑
Fj)r is an L-frame unless L is irreflexive.

L is mono-extensible if it satisfies the above for n = 1; that is, for each finite L-frame F :
(i) F i is an L-frame, unless L is reflexive; (ii) F r is an L-frame, unless L is irreflexive.

L is linear-extensible if it is mono-extensible and linear; i.e. all rooted L-frames are
linear (or L proves �(�A → B) ∨ �(�B → A)).

Every extensible logic L obeys the modal disjunction property: if �L �A ∨ �B, then
�L �A or �L �B. I.e. �p∨�q 	�p, �q is L-admissible. Significant examples of these
logics include K4, S4, Grz, and GL. Linear-extensible logics (treated in [10]), which
include the logics S4.3, K4.3, and GL.3, and clearly do not satisfy the modal disjunction
property, are the most obvious examples of mono-extensible but not extensible logics.
Other interesting examples include the logics S4.2, K4.2, and GL.2 (also discussed in
[10]) which are mono-extensible but neither extensible nor linear-extensible.

3.2 Sequent Systems for Extensible Logics

Gentzen systems for derivability in many non-classical logics, in particular core modal
logics, can be obtained in the framework of sequents. Since order and multiplicity of
formulas is unimportant in the context of modal logics, we define a sequent S here as
an ordered pair of finite sets of formulas, written Γ ⇒ Δ. Such a sequent is said to be
L-derivable, written �L S, iff �L I(S) where I(Γ ⇒ Δ) =def

∧
Γ →

∨
Δ.

To obtain Gentzen-style proof systems for admissibility in extensible modal logics,
it is convenient again to use sequents, but this time at the level of rules. A generalized
sequent rule (gs-rule for short) R is an ordered pair of finite sets of sequents, written:

{Γi ⇒ Δi}n
i=1 	 {Πj ⇒ Σj}m

j=1

– R is L-admissible, written |∼L R, iff {I(Γi ⇒ Δi)}n
i=1

|∼L {I(Πj ⇒ Σj)}m
j=1.

– R is L-derivable, written �L R, iff
∧n

i=1 I(Γi ⇒ Δi) �L
∨m

j=1 I(Πj ⇒ Σj).

Note that A1, . . . , An |∼L B1, . . . , Bm iff |∼L (⇒ A1), . . . , (⇒ An) 	 (⇒ B1), . . . , (⇒
Bm). Hence a proof system for the admissibility of gs-rules is also a proof system for
the admissibility of generalized rules, and of course, rules in the usual sense.

Rules (now at the next level up) for gs-rules are sets of rule instances, each con-
sisting of a set of premises R1, . . . , Rn and a conclusion R; instances with no premises
being called initial gs-rules. They are defined here schematically, using p, q to stand
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Initial GS-Rules and Structural Rules

G � (Γ, A ⇒ A, Δ),H
(ID)

G � H
G, S � H

(W)�
G � H

G � S,H
�(W)

Anti-Cut and Projection Rules

G, (Γ, A ⇒ Δ), (Π ⇒ A, Σ), (Γ, Π ⇒ Σ, Δ) � H
G, (Γ, A ⇒ Δ), (Π ⇒ A, Σ) � H

(AC)
G, S � (Γ, �I(S) ⇒ Δ),H

G, S � H
(PJ)

where (Γ ⇒ Δ) ∈ H ∪ {⇒}

Right Logical Rules

G � (Γ, ⊥ ⇒ Δ), H
�(⊥⇒)

G � (Γ ⇒ Δ), H
G � (Γ ⇒ ⊥, Δ),H

�(⇒⊥)

G � (Γ ⇒ A, Δ), H G � (Γ ⇒ B, Δ),H
G � (Γ ⇒ A ∧ B, Δ),H

�(⇒∧)
G � (Γ, A, B ⇒ Δ),H
G � (Γ, A ∧ B ⇒ Δ),H

�(∧⇒)

G � (Γ, A ⇒ Δ), H G � (Γ, B ⇒ Δ),H
G � (Γ, A ∨ B ⇒ Δ),H

�(∨⇒)
G � (Γ ⇒ A, B, Δ), H
G � (Γ ⇒ A ∨ B, Δ), H

�(⇒∨)

G � (Γ ⇒ A, Δ), H G � (Γ, B ⇒ Δ), H
G � (Γ, A → B ⇒ Δ),H

�(→⇒)
G � (Γ, A ⇒ B, Δ),H

G � (Γ ⇒ A → B, Δ),H
�(⇒→)

Left Logical Rules

G � H
G, (Γ,⊥ ⇒ Δ) � H

(⊥⇒)�
G, (Γ ⇒ Δ) � H

G, (Γ ⇒ ⊥, Δ) � H
(⇒⊥)�

G, (Γ, A, B ⇒ Δ) � H
G, (Γ, A ∧ B ⇒ Δ) � H

(∧⇒)�
G, (Γ ⇒ A, Δ), (Γ ⇒ B, Δ) � H

G, (Γ ⇒ A ∧ B, Δ) � H
(⇒∧)�

G, (Γ ⇒ A, B, Δ) � H
G, (Γ ⇒ A ∨ B, Δ) � H

(⇒∨)�
G, (Γ, A ⇒ Δ), (Γ, B ⇒ Δ) � H

G, (Γ, A ∨ B ⇒ Δ) � H
(∨⇒)�

G, (Γ, B ⇒ Δ), (Γ ⇒ A, Δ) � H
G, (Γ, A → B ⇒ Δ) � H

(→⇒)�
G, (Γ, A ⇒ B, Δ) � H

G, (Γ ⇒ A → B, Δ) � H
(⇒→)�

G, (Γ, �p ⇒ Δ), (A ⇒ p) � H
G, (Γ, �A ⇒ Δ) � H

(�⇒)�
G, (Γ ⇒ �p, Δ), (p ⇒ A) � H

G, (Γ ⇒ �A, Δ) � H
(⇒�)�

where p does not occur in G, H, Γ , Δ, A in (�⇒)� and (⇒�)�.

Fig. 1. Core Modal Rules

[G, (�Γ ⇒ �Δ), (�Γ ⇒ A) � H]A∈Δ

G, (�Γ ⇒ �Δ) � H (V
i )

[G, (Γ ≡ �Γ ⇒ �Δ), (�Γ ⇒ A) � H]A∈Δ

G, (Γ ≡ �Γ ⇒ �Δ) � H
(Vr )

G, (Γ, Θ ⇒ Δ), (Π ⇒ Ψ, Σ), (Γ, Π, A ↔ �A ⇒ Σ, Δ) � H
G, (Γ, Θ ⇒ Δ), (Π ⇒ Ψ, Σ) � H

(AC� )

where Θ ∪ Ψ ⊆ {A, �A} and Θ, Ψ = ∅.

Fig. 2. Additional Extensible Modal Rules
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for variables, A, B for formulas, Γ, Π, Σ, Δ, Θ, Ψ for sets of formulas, S for sequents,
and G, H for sets of sequents. We call all sequents not in G or H for instances of such
rules, principal sequents. Such rules are L-sound if whenever |∼L Ri for i = 1 . . . n,
then |∼L R, and L-invertible, if whenever |∼L R, then |∼L Ri for i = 1 . . . n. Calculi for
extensible modal logics are defined in this framework as follows:

Theorem 2 ([9]). For an extensible modal logic L and gs-rule calculus GAML where:

(1) GAML extends the core modal rules of Figure 1.
(2) If L is not reflexive, then (Vi) is a rule of GAML.
(3) If L is not irreflexive, then (Vr) and (AC�) are rules of GAML.
(4) If �L S, then �GAML 	 S.
(5) If �GAML R, then |∼L R.

|∼L R iff �GAML R for any gs-rule R.

Note that the right logical rules of Figure 1 are just usual rules for modal logics embed-
ded into the gs-rule framework, and that the non-modal left logical rules are obtained
from these rules by replacing the conclusion sequent with the premise sequents (includ-
ing 	(⊥⇒), an instance of (W)	 but included here for uniformity). The (non-invertible)
modal rules, (�⇒)	 and (⇒�)	, decompose modal formulas on the left by replacing
the formula A in �A by a new variable p, soundness following from the fact that any
substitution for the conclusion can be extended (since p does not occur there) by subsi-
tuting A for p. The “projection rule” (PJ) allows sequents on the left to be used as modal
implications on the right, corresponding to the fact that derivability implies admissibil-
ity, while the “anti-cut” rule (AC) corresponds directly to the fact that the usual cut rule
is admissible in the logic. The more complicated “Visser rules” (Vi) and (Vr) reflect
the existence of non-derivable admissible rules for irreflexive and reflexive logics.

Example 2. In particular, we can obtain calculi for K4, GL, and S4 by adding (from left
to right) the first rule for K4, the second rule for GL, and the first and the third for S4:

G � (�Γ ⇒ A), H
G � (�Γ, Π ⇒ �A, Δ), H

G � (�Γ, �A ⇒ A), H
G � (�Γ, Π ⇒ �A, Δ), H

G � (�Γ, Π ⇒ Δ), H
G � (�Γ, Π ⇒ Δ), H

to the core modal rules, with (Vi) for GL, (Vr) and (AC�) for S4, and all three for K4.

3.3 Hypersequent Systems for Mono-extensible Logics

To deal with mono-extensible modal logics, we move beyond the sequent level. In par-
ticular, adapting slightly the usual definition (see e.g. Avron [1]), we define a hyperse-
quent to be a finite non-empty set of sequents, written S1 | . . . | Sn, and let �L G iff
�L I�(G) where I�(G) =

∨n
i=1 �I(Si). Hypersequent calculi are particularly useful

for characterizing intermediate logics (see e.g. [3]) and logics characterized by linearly
ordered structures [11]. An example of both is a calculus for the intermediate and fuzzy
Gödel-Dummett Logic LC, defined by adding a single rule to a hypersequent version of
Gentzen’s calculus LJ for Intuitionistic Logic.
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G, G � (�I�(G) ⇒ I�(H)),H
G, G � H (PJ)h

where H ∈ H ∪ {⇒}

G, (G | �Γ ⇒ �Δ), (G | {�Γ ⇒ C : C ∈ Δ}) � H
G, (G | �Γ ⇒ �Δ) � H (Vi )h

G, (G | Γ ≡ �Γ ⇒ �Δ), (G | {�Γ ⇒ C : C ∈ Δ}) � H
G, (G | Γ ≡ �Γ ⇒ �Δ) � H (Vr )h

G, (G | Γ, A ⇒ Δ), (H | Π ⇒ A, Σ)(G | H | Γ, Π ⇒ Σ, Δ) � H
G, (G | Γ, A ⇒ Δ), (H | Π ⇒ A, Σ) � H (AC)h

G, (G | Γ, Θ ⇒ Δ), (H | Π ⇒ Ψ, Σ), (G | H | Γ, Π, A ↔ �A ⇒ Σ, Δ) � H
G, (G | Γ, Θ ⇒ Δ), (H | Π ⇒ Ψ, Σ) � H (AC� )h

where (Θ ∪ Ψ) ⊆ {A, �A} and Θ, Ψ = ∅

Fig. 3. Additional Mono-Extensible Modal Rules

Extending gs-rules to the hypersequent case, a generalized hypersequent rule (gh-
rule for short) R is an ordered pair of sets of hypersequents, written:

G1, . . . , Gn 	 H1, . . . , Hm

If m ≤ 1, then R is called a single-conclusion gh-rule (sgh-rule for short).

– R is L-admissible, written |∼L R, iff {I�(Gi)}n
i=1

|∼L {I�(Hj)}m
j=1.

– R is L-derivable, written �L R, iff
∧n

i=1 I�(Gi) �L
∨m

j=1 I�(Hj).

A core set of rules for mono-extensible logics is obtained from the core modal rules by
adding a context variable G in the premises and conclusion standing for an arbitrary
context hypersequent; e.g. (⇒∧)	 becomes:

G, (G | Γ ⇒ A, Δ), (G | Γ ⇒ B, Δ) � H
G, (G | Γ ⇒ A ∧ B, Δ) � H (⇒∧)�h

Hypersequent versions of the projection and anti-cut rules of Fig. 2 are given in Fig 3.

Definition 2. The gh-version Rh of a rule schema R for gs-rules is obtained by replacing
each principal sequent S in R by G | S for a fixed hypersequent variable G.

Our starting point for a calculus for a mono-extensible modal logic L is rules on the
right of the 	 symbol that provide a sound and complete calculus for L-derivability.
We then expand this calculus with hypersequent versions of the core modal rules, and
versions of the appropriate Visser rules (Vi) and (Vr).

Definition 3. A calculus GAML is L-fitting for a mono-extensible modal logic L if:

(1) GAML extends the gh-versions of the core modal rules.
(2) If L is not reflexive, then (Vi)

h
of Fig. 3 is a rule of GAML.

(3) If L is not irreflexive, then (Vr)h and (AC�)h of Fig. 3 are rules of GAML.
(4) If �L G, then �GAML 	 G.
(5) If �GAML R, then |∼L R.
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Example 3. For non-reflexive logics, we can use (Vi) as follows, noting that the top
gh-rule is easily seen to be derivable using rules for K4 on the right:

� � (�(�A → B) ∨ �(�A ⇒ C)) ⇒ �(�A → (B ∨ C))

(�A ⇒ B | �A ⇒ C) � �(�(�A → B) ∨ �(�A ⇒ C)) ⇒ �(�A → (B ∨ C))
(W)�

(�A ⇒ B | �A ⇒ C) � (�A ⇒ B ∨ C)
(PJ)h

(�A ⇒ �B, �C), (�A ⇒ B | �A ⇒ C) � (�A ⇒ B ∨ C)
(W)�

(�A ⇒ �B, �C) � (�A ⇒ B ∨ C) (Vi)h

Proposition 1. Let L be a mono-extensible modal logic.

(a) All the core modal rules are L-sound.
(b) If L is irreflexive (in particular, a GL-extension), then (Vi)

h
is L-sound.

(c) If L is reflexive (equivalently, an S4-extension), then (Vr)h and (AC�) are L-sound.

Proof. Many parts of this proof are exactly as in the extensible case considered in [9].
It remains only to check the soundness of the Visser rules (Vi)

h
and (Vr)h. For the

former, it is sufficient to show I�(G | �Γ ⇒ �Δ) |∼L I�(G | {�Γ ⇒ C : C ∈ Δ}).
Suppose that �L σI�(G | {�Γ ⇒ C : C ∈ Δ}) for some substitution σ. If Δ = ∅,
then �L σI�(G) and since �L �¬�A ↔ �⊥ for any formula A, easily �L σI�(G |
�Γ ⇒). Suppose then that Δ = ∅. Since L has the FMP, let K be a finite L-model
refuting σI�(G | {�Γ ⇒ C : C ∈ Δ}) and let F be the frame of K . L is mono-
extensible and irreflexive, so F i is also an L-frame. Consider a model on the frame F i

for which the forcing in all nodes except the root is the same as in K , and no variables
are forced at the root. �I(�σΓ ⇒ �σΔ) and �I(σS) are refuted at the root for all
S ∈ G, so �L σI�(G | �Γ ⇒ �Δ) and we are done. Note that the extra boxes in the
interpretation I� of hypersequents is essential here, since we cannot conclude that G is
not forced at the root, but we can for I�(G).

For (Vr), we show I�(G | Γ ≡ �Γ ⇒ �Δ) |∼L I�(G | {�Γ ⇒ C : C ∈ Δ}).
Suppose that �L σI�(G | {�Γ ⇒ C : C ∈ Δ}) for some substitution σ. If Δ = ∅,
then �L σI�(G) and since �L �¬(A ↔ �A) ↔ �⊥ for any formula A, easily
�L σI�(G | Γ ≡ �Γ ⇒). Suppose then that Δ = ∅. Since L has the FMP, let K
be a finite L-model refuting σI�(G | {�Γ ⇒ C : C ∈ Δ}) and let F be the frame
of K . L is mono-extensible and reflexive, so F r is an L-frame with a reflexive root
r. By the reflexivity of r and since K forces σ(�Γ ), r forces σ(A) ↔ σ(�A) for
all A ∈ Γ . Hence r forces

∧
{σ(A) ↔ σ(�A) : A ∈ Γ} but refutes σ(

∨
�Δ). So

�L σI�(G | Γ ≡ �Γ ⇒ �Δ). ��

Notice that we have considered here only logics that are either reflexive or irreflexive,
meaning that logics such as K4.2 lacking these properties are currently beyond our
scope (although we believe that very similar methods should suffice for such cases).

We now turn our attention to establishing completeness for fitting calculi, restricting
our attention (at least to start with) to the single-conclusion case. First, we show that
L-derivable sgh-rules are also GAML-derivable.

Lemma 2. Let L be a mono-extensible modal logic and let GAML be L-fitting. If �L R,
then �GAML R for any sgh-rule R.
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Proof. Let R = (G 	 H) where |H| ≤ 1 and suppose that �L R. If H is {H}, or taking
H to be (⇒) if H = ∅, then

∧
G∈G I�(G) �L I�(H). But then since we are above K4,

using the modal deduction theorem:

�L

∧

G∈G
�I�(G) → I�(H)

GAML is L-fitting, so by repeated applications of (PJ)h, �GAML G 	 H as required. ��

Our task now is to reduce the L-admissibility of a gh-rule to the admissibility of more
manageable gh-rules. We introduce the following notions:

Definition 4. A gh-rule R = (G 	 H) is:

– modal-irreducible if G contains only variables and boxed variables.
– modal-semi-irreducible if G contains only variables and boxed variables, and on

the left of sequents possibly also equivalences of the form p ↔ �p.
– full with respect to a set of rules X if whenever R1, . . . , Rn/R is an instance of a rule

in X , then Ri ⊆ R for some i ∈ {1, . . . , n} (i.e. applying a rule in X backwards to
R adds no new sequents to the gh-rule).

It is an easy task (see e.g. [9]) – essentially following from the soundness of the usual
logical rules for modal logics – to show that the left logical rules are all L-invertible.
Moreover, each such rule (working upwards) removes an occurrence of a logical con-
nective from a sequent in a hypersequent on the left. Hence, if we define the complexity
of a sequent as the multiset of complexities (number of symbols) of its formulas, and
the complexity of a gh-rule as the multiset of complexities of its sequents, then it is a
standard inductive proof to show the following:

Lemma 3. Each L-admissible gh-rule can be derived from an L-admissible modal-
irreducible gh-rule using the left logical rules.

But now notice that there is a finite number of different semi-modal-irreducible se-
quents built from a fixed set of variables. Hence applying any number of rules with
the subformula property backwards to a modal-irreducible gh-rule will terminate with
gh-rules full with respect to that set.

Lemma 4. Let X ⊆ {(Vi)
h
, (Vr)h, (AC), (AC�), (∧⇒)	, (→⇒)	}. Then every

modal-irreducible L-admissible gh-rule can be derived using X from a set of semi-
modal-irreducible L-admissible gh-rules that are full with respect to X . If X does not
contain (AC�), then these gh-rules are modal-irreducible.

For the main part of the proof, we again consider only irreflexive and reflexive logics
(and single-conclusion gh-rules), treated by the following two theorems:

Theorem 3. If GAML is L-fitting for a mono-extensible irreflexive modal logic L, then
|∼L R iff �GAML R for any sgh-rule R.
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Proof. The right-to-left direction follows from the definition of L-fitting and Propo-
sition 1. For the left-to-right direction, it is sufficient by Lemma 4 to assume that
R = (G 	 H) is an L-admissible modal-irreducible sgh-rule that is full with respect
to (Vi) and (AC). Suppose now that:

G = (G1, . . . , Gn) and Gi = (Si
1 | . . . | Si

mi
) where Si

j = (Γ i
j ⇒ Δi

j).

Let A =
∧n

i=1 I�(Gi) =
∧n

i=1
∨mi

j=1 �I(Si
j). If A is inconsistent, then �GAML G 	 H

follows immediately by Lemma 2. We define:

Xj1,...,jn = {S1
j1 , . . . , S

n
jn

} and C =
∨

j1≤m1,...,jn≤mn

∧

S∈Xj1,...,jn

�I(S).

and observe that by distributivity: �L C ↔ A.
Now we come to the crucial point of the proof. Each irreflexive logic with the FMP

contains GL. Suppose that we can show that
∧

S∈Xj1,...,jn
I(S) is GL-projective or GL-

inconsistent for each j1 ≤ m1, . . . , jn ≤ mn. For H = {H} or taking H as ⇒ if H =
∅, it follows by Lemma 1 (d), that C �L I�(H) iff C |∼L I�(H). So since �L C ↔ A
and A |∼L I�(H), we get �L G 	 H. But then by Lemma 2, �GAML G 	 H as required.
Note that the fact that H consists of at most one hypersequent plays a crucial role here.

Hence we have proved the theorem once we have shown that each
∧

S∈Xj1,...,jn
I(S)

is either GL-projective or GL-inconsistent. To achieve this we make use of the result
established in [9], that a modal irreducible gs-rule that is full with respect to (Vi) and
(AC) is either projective or inconsistent. I.e. it is sufficient to show that Xj1,...,jn 	 H
is a modal irreducible gs-rule that is full with respect to (Vi) and (AC). The rest of this
proof will consist of a proof of this fact.

We call a set Xj1,...,jn minimal if it does not contain a proper subset Xh1,...,hn . It
suffices to establish the modal irreducibility and fullness with respect to (Vi) and (AC)
only for the gs-rules Xj1,...,jn 	H for which Xj1,...,jn is minimal. For suppose that there
is a Xh1,...,hn ⊂ Xj1,...,jn for which I(Xh1,...,hn) is GL-projective or GL-inconsistent.
Then �GAML Xh1,...,hn 	 H, and, since Xh1,...,hn ⊂ Xj1,...,jn , �GAML Xj1,...,jn 	 H.

Let us fix a minimal D = Xj1,...,jn for some j1 ≤ m1, . . . , jn ≤ mn. Clearly D 	 H
is modal-irreducible. The following two claims establish the fullness of D 	 H with
respect to (Vi) and (AC), which completes the proof.

Claim. D 	 H is full with respect to (Vi).

Proof. Suppose that D contains a sequent (�Γ ⇒ �Δ). Then G contains a hyperse-
quent (G | �Γ ⇒ �Δ). We have to show that it contains a sequent (�Γ ⇒ A) for

some A ∈ Δ. By the fullness of G 	 H with respect to (Vi)
h

, it follows that G contains
the hypersequent (G | {�Γ ⇒ A | A ∈ Δ}) (just G if Δ = ∅). By the definition of
D = Xj1,...,jn it follows that either (�Γ ⇒ A) belongs to D, in which case we are
done, or there is a sequent S in G that belongs to D. But it is not hard to see that in
this case there is a set Xh1,...,hn , corresponding to a disjunct of C, that is the result of
replacing (�Γ ⇒ �Δ) in D by S. But then Xh1,...,hn is a proper subset of D, contra-
dicting the minimality of D. Observe that we use here the fact that no hypersequent in
G, being just a set of sequents, can contain the same sequent twice.
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Claim. D 	 H is full with respect to (AC).

Proof. The proof is similar to the proof of the claim above, but let us spell it out nev-
ertheless. Suppose that D contains the sequents (Γ, A ⇒ Δ) and (Π ⇒ A, Σ). We
have to show that it contains the sequent (Γ, Π ⇒ Σ, Δ). Observe that G has to contain
hypersequents of the form (G | Γ, A ⇒ Δ) and (H | Π ⇒ A, Σ) for some hyperse-
quents G and H . By the fullness of G 	 H with respect to (AC)h, it follows that if D
does not contain the sequent (Γ, Π ⇒ Σ, Δ) it has to contain a sequent S from G or H .
In this case, replacing the (Γ, A ⇒ Δ) in D by S in case S occurs in G and replacing
(Π ⇒ A, Σ) by S otherwise, we obtain a set Xh1,...,hn , corresponding to a disjunct of
C, that is a proper subset of D, contradicting the minimality of D. ��

Theorem 4. If GAML is L-fitting for a mono-extensible reflexive modal logic L, then
|∼L R iff �GAML R for any sgh-rule R.

Proof. Since the reasoning is similar to the completeness proof for irreflexive logics
given above, we just explain the points of divergence and leave the details to the reader.
In this case, for the left-to-right direction, it is sufficient by Lemma 4 to assume that
R = (G 	 H) is a modal-semi-irreducible L-admissible sgh-rule that is full with respect
to (Vr)h, (AC)h, (AC�)h, (∧⇒)	h, and (→⇒)	h, and obtained by applying these rules
(backwards) to a modal-irreducible gh-rule. We then define Xj1,...,jn , C, and D as in
the irreflexive case. This time, since each reflexive extension of K4 contains S4, it is suf-
ficient to show that each

∧
S∈Xj1,...,jn

I(S) is either S4-projective or S4-inconsistent.
To achieve this we make use of the result established in [9], that a modal-semi-

irreducible gs-rule that is full with respect to (Vr)h, (AC)h, (AC�)h, (∧⇒)	h, and
(→⇒)	h, is either S4-projective or S4-inconsistent. I.e. it is sufficient to show that
D 	 H is a modal-semi-irreducible gs-rule that is full with respect to (Vr)h, (AC)h,
(AC�)h, (∧⇒)	h, and (→⇒)	h. The proofs of these facts are similar to the proofs of
the claims in the previous proof, and are left to the reader. ��

The obvious question remaining here (apart from extending beyond the reflexive and
irreflexive cases) is what happens in the case of multiple-conclusion rules. We just give
a partial answer here, leaving the general case for further investigation. First, we recall
from [10] that L has essentially single-conclusion admissible rules if whenever Γ |∼L Δ,
there exists A ∈ Δ ∪{⊥} such that Γ |∼L A. Jeřábek has shown the following using the
notion of filtering unification investigated by Ghilardi and Sacchetti in [6].

Theorem 5 ([10]). Every extension of K4.2 has essentially single-conclusion admissi-
ble rules. Moreover, any normal extension of K4.1 with essentially single-conclusion
admissible rules is an extension of K4.2.

Corollary 1. If GAML is L-fitting for a mono-extensible reflexive or irreflexive exten-
sion L of K4.2, then |∼L R iff �GAML R for any gh-rule R.

Let us note finally for this section that concrete systems for admissiblity can be defined
for mono-extensible logics such as S4.2, GL.3, etc. by adding to our core set of rules any
kind of calculus for derivability in these logics. In particular, hypersequent calculi can
be developed for many of these cases, but we omit the details here for space reasons.
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Initial GS-Rules, Structural Rules, Anti-Cut Rule, Projection Rule: as in the core modal rules.

Logical Rules: as in the core modal rules for ⊥, ∧, and ∨, plus:

G � (Γ, A → B ⇒ A, Δ), H G � (Γ, B ⇒ Δ), H
G � (Γ, A → B ⇒ Δ), H �(→⇒)i

G � (Γ, A ⇒ B),H
G � (Γ ⇒ A → B, Δ),H �(⇒→)i

G, (Γ, B ⇒ Δ), (Γ, A → B ⇒ A, Δ) � H
G, (Γ, A → B ⇒ Δ) � H

(→)�

G, (Γ ⇒ p, Δ), (p, A ⇒ B) � H
G, (Γ ⇒ A → B, Δ) � H (⇒→)�i

G, (Γ, p → q ⇒ Δ), (p ⇒ A), (B ⇒ q) � H
G, (Γ, A → B ⇒ Δ) � H (→⇒)�i

where p and q do not occur in G, H, Γ , and Δ in (→⇒)�i, (⇒→)�i.

Visser Rule

[G, (Γ ⇒ Δ), (Γ ⇒ A) � H]A∈Δ [G, (Γ ⇒ Δ) � (Γ Π , Π ⇒ Δ), H]∅�=Π⊆ΓΔ

G, (Γ ⇒ Δ) � H
(V)

where Γ contains only implications, and:

1. Γ Π = {A → B ∈ Γ : A ∈ Π}. 2. ΓΔ = {A ∈ Δ : ∃B (A → B) ∈ Γ}.

Fig. 4. The Calculus GAMI

4 Intermediate Logics

We turn our attention now to intermediate logics, recalling first the result of [8] that if
an intermediate logic L admits the following Visser rules, then they form a basis for the
admissible rules of L:

(Vn) (C → (An+1 ∨ An+2)) ∨ D / (
n+2∨

j=1

C → Aj) ∨ D

for n = 1, 2, . . ., where C =
∧n

i=1(Ai → Bi). In some cases, such as Gödel-Dummett
logic LC, the Visser rules (and hence all admissible rules) are derivable. Here we con-
sider some logics where this does not happen: in particular, de Morgan (or Jankov) logic
KC, axiomatized by adding the axiom ¬A ∨ ¬¬A to IPC, and the family of logics with
Kripke models of bounded cardinality BCn for n = 1, 2, . . . (noting that for n = 1, 2,
the Visser rules are in fact derivable).

We also recall Ghilardi’s useful characterization of IPC-projective formulas.

Theorem 6 (Ghilardi [4]). For Kripke models K1, . . . , Kn, let (
∑

i Ki)′ denote the
Kripke model obtained by attaching one new node below all nodes in K1, . . . , Kn where
no variables are forced. A class of Kripke models K has the extension property if for
every finite family of models K1, . . . , Kn ∈ K, there is a variant of (

∑
i Ki)′ in K. A

formula is IPC -projective iff its class of Kripke models has the extension property.

Figure 4 displays the gs-rule calculus GAMI for Intuitionistic Logic of [9]. In this case
it is the (non-invertible on the right) implication rules that use new variables on the left.

Theorem 7 ([9]). �GAMI R iff |∼IPC R for any gs-rule R.
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G, (G | Γ, A ⇒ Δ), (H | Π ⇒ A, Σ)(G | H | Γ, Π ⇒ Σ, Δ) � H
G, (G | Γ, A ⇒ Δ), (H | Π ⇒ A, Σ) � H (AC)h

G, G � (I(G) ⇒ I(H)), H
G, G � H (IPJ)

where H ∈ H ∪ {⇒}

G, (G | {Γ ⇒ A}A∈Δ) � H [G � (Γ Π , Π ⇒ Δ), H]Π⊆ΓΔ

G, (G | Γ ⇒ Δ) � H (V)h

where Γ contains only implications, and:

1. Γ Π = {A → B ∈ Γ : A 	∈ Π}. 2. ΓΔ = {A 	∈ Δ : ∃B (A → B) ∈ Γ}.

Fig. 5. Additional Rules for Intermediate Logics

Just as we stepped from extensible to mono-extensible modal logics, so we can step
here from a calculus for IPC to calculi for intermediate logics admitting the Visser
rules. Note, however, that we require a slightly different (more usual) interpretation
of hypersequents. For an intermediate logic L and hypersequent G, we write �L G iff
�L I(G) where I(G) =

∨
S∈G I(S). Also, a gh-rule R = (G1, . . . , Gn 	 H1, . . . , Hm)

is L-admissible, written |∼L R, iff {I(Gi)}n
i=1

|∼L {I(Hj)}m
j=1 and L-derivable, written

�L R, iff
∧n

i=1 I(Gi) �L
∨m

j=1 I(Hj). It will also be helpful to restrict the notion of
an sgh-rule a little further to an ssgh-rule: an sgh rule where not only is there at most
one hypersequent on the right, but also this hypersequent consists of just one sequent.
Essentially, the reason for this is that completeness results for hypersequent calculi
for intermediate logics given in the literature (see e.g. [3]) are typically restricted to
sequents rather than hypersequents.

Definition 5. A calculus GAML is L-fitting for an intermediate logic L if:

(1) GAML extends the core intermediate rules: gh-versions of the initial gs-rules, struc-
tural rules, and logical rules of GAMI, and the additional rules of Fig. 5.

(2) If �L S, then �GAML 	 S for any sequent S.
(3) If �GAML R, then |∼L R.

Lemma 5. The core intermediate rules are L-sound for every intermediate logic L ad-
mitting the Visser rules.

Proof. Let L be an intermediate logic admitting the Visser rules. We just consider (V)h

since other proofs are very similar to those for GAMI in [9]. Suppose that σ is an L-
unifier for I(H) for all H ∈ G and I(G | Γ ⇒ Δ), where Δ = {A1, . . . , An}.
Using the right set of premises, σ is an L-unifier for I(Γ Π , Π ⇒ Δ) for all Π ⊆ ΓΔ.
It suffices now to show that σ is an L-unifier for I(G | {Γ ⇒ A}A∈Δ). Suppose,
arguing contrapositively, that this is not the case. Then there exists a countermodel of L
for I(σ(G)) ∨

∨
A∈Δ I(σ(Γ ) ⇒ σ(A)). This implies that for every A ∈ Δ there are

countermodels KA such that KA is a model of L, KA � σ(
∧

Γ ), and KA � σ(A).
Since L admits the Visser rules, there is a variant K of (

∑
A∈Δ KA)′ that is a model

of L. Let Π = {D ∈ ΓΔ : K � σ(D)}. Observe that for all B → C ∈ Γ such that
B ∈ Π , either B ∈ Δ or K � σ(B). Note also that B ∈ Δ implies K � σ(B). Hence
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for all B ∈ Π it follows that K � σ(B), and so K � σ(B → C). It follows that
K � σ(

∧
(Γ Π ∪ Π)). Thus K � σ(

∨
Δ), a contradiction. ��

The difference between the rules (V)h and (V) is essentially due to the fact that IPC has
the disjunction property, while intermediate logics in general do not.

The core set of rules given above can be extended on the right to obtain proof sys-
tems for admissibility in various intermediate logics. In particular, we can make use of
hypersequent calculi provided for KC and BCn (n = 1, 2, . . .) in [3], to obtain:

– GAMKC consists of the core intermediate rules plus:

G � (G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2 | Γ1, Γ2 ⇒)

G � (G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2)
(J)

– GAMBCn for n = 1, 2, . . . consists of the core intermediate rules plus:

[G � (G | Γ1 ⇒ Δ1 | . . . | Γn+1 ⇒ Δn+1 | Γi, Γj ⇒ Δi)]1≤i<j≤n+1

G � (G | Γ1 ⇒ Δ1 | . . . | Γn+1 ⇒ Δn+1)
(BCn)

Corollary 2. GAMKC is KC-fitting and GAMBCn is BCn-fitting for n = 1, 2, . . ..

To prove completeness for L-fitting systems GAML for intermediate logics L admitting
the Visser rules, we proceed similarly to the case of mono-extensible modal logics. First
we can show, exactly as in Lemma 2 (except replacing the application of the modal
deduction theorem with the usual deduction theorem), that L-derivable ssgh-rules are
also GAML-derivable.

Lemma 6. Let L be an intermediate logic admitting the Visser rules and let GAML be
L-fitting. If �L R, then �GAML R for any ssgh-rule R.

As for Lemmas 3 and 4, applying the invertible left logical rules backwards reduces
any gh-rule to a gh-rule of a certain form (in this case with variable implications on
the left), and then applying the rules (V)h, (→)	h, and (AC)h exhaustively backwards
terminates with a set of gh-rules full with respect to these rules.

Lemma 7. A gh-rule G 	 H is implication-irreducible if all sequents in G contain only
variables on the right and variables and variable implications on the left. Every admis-
sible gh-rule is GAML-derivable from admissible implication-irreducible gh-rules that
are full with respect to (V)h, (→)	h, and (AC)h.

The completeness theorem is then established similarly to the proof for IPC in [9], the
main complication being that (as in the mono-extensible modal case) we now have to
take care of all the different disjuncts occurring in hypersequents on the left.

Theorem 8. For any intermediate logic L admitting the Visser rules and L-fitting cal-
culus GAML, |∼L R iff �GAML R for any ssgh-rule R.

Proof. The right-to-left direction follows directly from Lemma 5. For the left-to-right
direction, it is sufficient to assume (proceeding exactly as in the IPC-case) that
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R = (G 	 H) is an L-admissible implication-irreducible gh-rule that is full with re-
spect to (V)h, (→)	h, and (AC)h. The proof is similar to the completeness proofs for
the modal logics given above, but since some details are essentially different we will
sketch the proof for intermediate logics briefly.

Define C and Xj1,...,jn as in the modal completeness proofs above, but without
boxes. By Lemma 1 (d), if each I(Xj1,...,jn) is IPC-projective or IPC-inconsistent, then
�L G 	 H. But then by Lemma 6, �GAML G 	 H. It is then sufficient to show that each
consistent

∧
Xj1,...,jn

I(S) is IPC-projective or derives I(H). Recall that Xj1,...,jn is
called minimal if there is no Xh1,...,hn that is a proper subset of Xj1,...,jn . Reasoning
as in the modal case, it suffices to consider only minimal sets. Let D denote a minimal
set Xj1,...,jn . To show that D 	 H has the mentioned properties, we make use of the
result established in [9], that an implication-irreducible gs-rule that is full with respect
to (V)h, (→)	h, and (AC)h is either projective or derives I(H). I.e. it is sufficient to
show that D 	 H is an implication-irreducible gs-rule that is full with respect to (V)h,
(→)	h, and (AC)h. Proofs of these facts are similar to the claims in the completeness
proofs for modal logics. We will only treat (V)h, leaving the other cases to the reader.

Claim. D 	 H is full with respect to the rule (V)h.

Proof. Suppose that D contains a sequent (Γ ⇒ Δ), where Γ contains only implica-
tions. Thus G contains a hypersequent (G | Γ ⇒ Δ) for some hypersequent G. By the
fullness of (G	H) with respect to (V)h, it follows that either H contains (Γ Π , Π ⇒ Δ)
for some Π ⊆ ΓΔ, or D contains a sequent (Γ ⇒ A) for some A ∈ Δ, or D contains
a sequent S of G. In the first two cases we are done. In the last case, by replacing
(Γ ⇒ Δ) by S in D, we obtain a set Xh1,...,hn , corresponding to a disjunct of C, that
is a proper subset of D, contradicting the minimality of D. ��

Corollary 3. For L ∈ {KC, BC1, BC2, . . .}: |∼L R iff �GAML R for any ssgh-rule R.

As in the modal case, there exist essentially single-conclusion logics where the preced-
ing corollary extends to multiple-conclusion rules; indeed, we conjecture that this is the
case for all extensions of KC admitting the Visser rules.
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Abstract. Starting from Girard’s seminal paper on light linear logic
(LLL), a number of works investigated on systems derived from linear
logic to capture polynomial time computation within the computation-
as-cut-elimination paradigm.

The original syntax of LLL is too complicated, mainly because one
has to deal with sequents which not just consist of formulas but also
of ‘blocks’ of formulas. We circumvent the complications of ‘blocks’ by
introducing a new modality ∇ which is exclusively in charge of ‘additive
blocks’. The most interesting feature of this purely multiplicative ∇ is
the possibility of the second-order encodings of additive connectives.

The resulting system (with the traditional syntax), called Easy-LLL,
is still powerful to represent any deterministic polynomial time computa-
tions in purely logical terms. Unlike the original LLL, Easy-LLL admits
polynomial time strong normalization, namely, cut elimination terminates
in a unique way in polytime by any choice of cut reduction strategies.

1 Introduction and Summary

Girard[8] has introduced light linear logic (LLL) as a refinement of the ‘proofs-
as-programs’ paradigm to polynomial-time computation.

The basic idea of the representability of computation in purely logical terms
is the following.

Let every (binary) number m be associated with a certain cut-free proof πm

of a fixed formula, say Num. A function f mapping from numbers into numbers
is represented by a proof Π̃ of the sequent � Num⊥; Num, if for any number m, a
cut elimination procedure applied to the proof:1

πm

� Num
Π̃

� Num⊥; Num
� Num

(cut)

results in a cut-free proof πf(m) associated with f(m). An implicit fairness con-
dition is that the number of cut reductions must be in ‘polynomial’ accordance
with the time complexity of f .

Starting from Girard’s seminal paper on light linear logic[8], a number of
works investigated on systems derived from linear logic and corresponding to

1 To contract a number of inference rules, we will prefer one-side calculi. As usual in
linear logic, linear negation A⊥ is used as an abbreviation in the sense of the de
Morgan dual, except for atomic formulas p⊥.

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 246–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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computational complexity classes. Among others, we can here recall the works
by Asperti, Baillot, Lafont, Mairson, Roversi, Terui (see [1]-[16]). The intuition-
istic fragments of a number of systems are shown to capture polynomial time
computation within the computation-as-cut-elimination paradigm.

However, the underlying light logics do not behave well with respect to any
choice of cut reduction strategies. Thus the original LLL has been proved to
be only weakly polytime sound, where, in particular, we allow only a lazy cut-
elimination procedure not reducing the so-called additive commutative cuts[8].
Asperti’s Intuitionistic Light Affine Logic[1] works well as a calculus of intu-
itionistic proof-nets or as Terui’s term calculus[15] (the latter enjoys polytime
strong normalization), but due to unrestricted weakening cut elimination be-
comes non-deterministic within the classical version of Light Affine Logic.

The original syntax of LLL is too complicated, mainly because one has to deal
with sequents which not just consist of formulas but also of ‘blocks’ of formulas.
We circumvent the complications of ‘blocks’ by introducing a new modality ∇
which is exclusively in charge of ‘additive blocks’. The most interesting feature
of this purely multiplicative ∇ is the possibility of the second-order encodings of
additive connectives. The resulting system (with the traditional syntax), called
Easy-LLL, is still powerful to represent any deterministic polynomial time com-
putations in purely logical terms. Unlike the original LLL and the classical ver-
sion of light affine logic, Easy-LLL admits polynomial time strong normalization,
namely, cut elimination terminates in a unique way in polytime by any choice
of cut reduction strategies.

1.1 Light Linear Logic: Basics

LLL is dealing with the multiplicative connectives: ⊗ and its dual ..................................................
............
................................. , additive

connectives: & and its dual ⊕, and modalities: ! and its dual ?, § and its dual §⊥.
LLL is designed to accommodate the following modalities properties[8]:

(!A⊗!A) = !A, !A � 1, !(A&B) = (!A⊗!B), A � C
!A �!C , !A � §A, Γ � C

§Γ � §C . (1)

As compared to traditional sequent calculi, the syntax of LLL is much more
complicated. At the same level of formulas, it invokes also ‘blocks’ of formulas,
such as a ‘discharged formula’ [A] and a ‘comma expression’ 〈A1, A2, .., A�〉. As
a result, the application of the traditional cut-elimination argument for LLL
sequent calculus runs into essential technical difficulties, even within the frame-
work of proofnets.

The aim of the paper is to simplify LLL, resulting in a traditional sequent cal-
culus, called Easy-LLL, that meets the fundamental complexity-theoretic con-
straints of the original LLL, and, on the other hand, enjoys polynomial-time
strong normalization and the Church-Rosser property, and the strong repre-
sentability of polytime computation.
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Table 1. LLL from Girard[8] + “ � !1”. § and §⊥ are duals of each other.

Identity / Negation:

� A⊥; A
(identity) � Γ ; A � A⊥; Θ

� Γ ; Θ
(cut)

Multiplicatives:
� Γ ; A � Θ; B
� Γ ; Θ; (A ⊗ B) (times) � 1(one) � Γ ; A; B

� Γ ; (A
.................................................

............
.................................. B)

(par) � Γ
� Γ ; ⊥ (false)

Additives:
� Γ ; A � Γ ; B

� Γ ; (A&B) (with) � Γ ; � (true) � Γ ; A
� Γ ; (A ⊕ B) (plus1)

� Γ ; B
� Γ ; (A ⊕ B) (plus2)

Structure/Modalities:
� Γ ; Ai

� Γ ; 〈A1, .., Ai, .., A�〉 (A-dereliction) � Γ
� Γ ; 〈A1, .., A�〉 (A-weakening, �≥1)

� Γ ; [A]; [A]
� Γ ; [A] (M-contraction) � Γ

� Γ ; [A] (M-weakening) � Γ ; [A]
� Γ ; ?A (?-intro)

� 〈D1, .., D�〉; C
� [D1]; ..; [D�]; !C (!-rule, �≥0) � 〈D1〉; ..; 〈Dn〉; A1; ..; Am; C

� [D1]; ..; [Dn]; §⊥A1; ..; §⊥Am; §C
(§-rule, n, m≥0)

Second-Order Quantifiers:
� Γ ; A(p)

� Γ ; ∀pA(p)(for-all, p is not free in Γ ) � Γ ; A(B)
� Γ ; ∃pA(p)(there-exists)

To simplify our presentation,2 we enrich the original LLL[8] with “� !1” (see
Table 1). We omit the exchange rules, since we will deal with multisets of
formulas and ‘blocks’ (following [8], we use “;” as a separation mark).

Remark 1. To return to the original LLL[8], it suffices to restrict l ≥ 1 within
‘!-rule’, and omit the ‘A-weakening’ rule. The following example explains the
necessity of ‘A-weakening’ for the enriched LLL.

Example 1. When we allow “� !1”, we get an important “ !p � !(p&1)”:

� !1 � ?1⊥; ?p⊥; !(p&1)
� ?p⊥; !(p&1)

cut

Any candidate for a cut-free proof must be like this:

� p⊥; p
� 〈p⊥〉; p

???
� 〈p⊥〉; 1

� 〈p⊥〉; (p&1)
� [p⊥]; !(p&1)
� ?p⊥; !(p&1)

Hence, to savecut-eliminationfor LLL+“ � !1”,weneed,atthe least, ‘A-weakening’
of the form: � 1

� 〈p⊥〉; 1
2 Girard[8]: “Typically § will have a tendency to lose its self-duality, promotion with

empty context can be added to LLL with immediate simplifications.”
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1.2 Step 1: The Nabla-Version of LLL (LLL-∇)

To simplify Table 1 further, we take advantage of the fact that almost all blocks
in there include only one formula. Namely, a block of the form [A] is replaced
by the formula ?A with practically no difference[8]. Following the ‘?-intro’ rule
in letter and in spirit, we intend to replace a block of the form 〈A〉 with the
formula 	A, where 	 is a new modality.

Assume that ∇ is dual to 	. Then ‘A-dereliction’ and ‘A-weakening’ provide
that ∇A �A and ∇A �1. To save cut-elimination for this pair (∇, 	) at the
minimum cost, we need a rule of the form

∇B � C
∇B � ∇C

, or a more general version: ∇Γ � C
∇Γ � ∇C

Bringing all together, we define a nabla-version of LLL by Table 2.

Table 2. LLL-∇: The nabla-version of LLL. ∇ and  are duals of each other.

Identity / Negation:

� A⊥; A
(identity) � Γ ; A � A⊥; Θ

� Γ ; Θ
(cut)

Multiplicatives:
� Γ ; A � Θ; B
� Γ ; Θ; (A ⊗ B) (times) � 1(one) � Γ ; A; B

� Γ ; (A
.................................................

............
.................................. B)

(par) � Γ
� Γ ; ⊥ (false)

Structure/Modalities:
� Γ ; Ai

� Γ ; 〈A1, .., Ai, .., A�〉 (A-dereliction) � Γ
� Γ ; 〈A1, .., A�〉 (A-weakening, �≥1)

� D1; ..; Dn; C
� D1; ..; Dn; ∇C

(∇-rule, n≥0) � Γ ; 〈A〉
� Γ ; A

(-intro)

� Γ ; ?A; ?A
� Γ ; ?A (?-Contraction) � Γ

� Γ ; ?A (?-Weakening)

� 〈D1, .., D�〉; C
� ?D1; ..; ?D�; !C (!-rule, �≥0) � D1; ..; Dn; A1; ..; Am; C

� ?D1; ..; ?Dn; §⊥A1; ..; §⊥Am; §C
(§-rule, n, m≥0)

Second-Order Quantifiers:
� Γ ; A(p)

� Γ ; ∀pA(p) (for-all, p is not free in Γ ) � Γ ; A(B)
� Γ ; ∃pA(p) (there-exists)

Definition 1. We do not include the additives in our Table 2, since we will
define the additives as the following abbreviations, with providing the additive
rules of Table 1 (see also Remark 6):

(A& B) = ∃p (p ⊗ ∇(p −◦ A) ⊗ ∇(p −◦ B)); � = ∃p p;
(A ⊕ B) = ∀p ((∇(A −◦ p) ⊗ ∇(B −◦ p)) −◦ p); 0 = ∀p p.

Proposition 1. It is clear that LLL-∇ is a conservative extension of LLL+“ � !1”.

Proof. Replacing ∇A by (A&1) does not violate inference rules.
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(a)

•I1

���A⊥

�

•I2

��� B⊥

�.................................................
............
..................................

•J1

���A
�

•J2

��� B
�⊗�.................................................

............
..................................

�
(A⊥.................................................

............
.................................. B⊥)

�⊗

�
(A ⊗ B)

�cut

=⇒

I1

�
A⊥

J1

�
A

�cut

I2

�

J2

�
B

�cut

(b)

�⊥

�
⊥

�1

�
1

�cut
=⇒ “empty”

Fig. 1. The cut reduction rules for (⊗,
.................................................

............
.................................. ) and (1, ⊥)

(a)

•I

�A⊥(B)
��∃

�
∃qA⊥(q)

“∀-box1”

•

�
∀pA(p)

•

�
C1

•

�
. . . Ck

π1(p)
•

�
A(p)

•

�
C1

•

�
. . . Ck

�cut

=⇒ •I

�
A⊥(B)

π1(B)
•

�
A(B)

•

�
C1

•

�
. . . Ck

�cut

(b)

“∀-box1”

•

�
∀pA(p)

•

�
Γ

•

�
C⊥

π1(p)
•

�
A(p)

•

�
Γ

•

�
C⊥

π2(p)
•

�
C

•

�
Φ(p)

�cut

=⇒

“∀-box1”

π1(q)•

�
A(q)

•

�
Γ

•

�
C⊥

π2(p)
•

�
C

•

�
Φ(p)

�cut

•

�
∀qA(q)

•

�
Γ

•

�
Φ(p)

Fig. 2. (a) The (∀, ∃)-cut reduction. (b) The (side,∀)-cut reduction with renaming
(q is fresh).

Phase Semantics for LLL-∇

Along the lines of [9], we introduce a fibred (stratified) phase semantics for
LLL-∇. The basic idea is to interpret any formula of the new form ∇A as:

(∇A)∗ = (A∗ ∩ J)⊥⊥,

where J is a fixed submonoid of a monoid M such that J ⊆ {e}⊥⊥; here e
denotes the neutral element of M .
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(a) The (!, ?w)-cut reduction:

�W

�
?A⊥

“!-box1”

π1
•
�A

•
�B

•

�
!A

•

�
?B

�cut

=⇒ �W

�
?B

(b) The (!,!)-cut reduction:

“!-box1”

π1
•
�A

•
�C⊥

•

�
!A

•

�
?C⊥

“!-box2”

π2
•
�C

•
�B

•

�
!C

•

�
?B

�cut

=⇒

“!-box1”

π1
•

�
A

•

�
C⊥

“∇-box2”

π2
•
�C

•
�B

•

�
∇C

•

�
B

�cut

•

�
!A

•

�
?B

(c) The (!,C)-cut reduction:

•I1

���?A⊥

�

•I2

��� ?A⊥

�C�C

�
?A⊥

“!-box0”

π0
•
�A

•
�B

•

�
!A

•

�
?B

�cut •O1

=⇒

“!-box0”

π0
•
�A

•
�B

•

�
!A

•

�
?B

“!-box0”

π0
•
�A

•
�B

•

�
?B

•

�
!A

•
I1

�
?A⊥

•
I2

�
?A⊥

�C

�
?B

� ��cut �cut

•O1

Fig. 3. The cut reduction rules for!

A fibred phase space is introduced as a sequence of phase spaces M0,M1,. . . ,
with providing a certain one-way interaction between adjacent Mn+1 and Mn

by means of functions hn and fn.

Definition 2. A phase space (M, e, ⊥) is a commutative monoid M with a dis-
tinguished subset ⊥ ⊆ M ; here e stands for the neutral element of M . For any
subset X ⊆ M , define: X⊥ = {y∈M | ∀x∈X (xy∈⊥)}. A subset X ⊆ M is
closed iff X⊥⊥ = X. In particular, let 1l be the subset {e}⊥⊥. The phase space
induces a natural preorder on the underlying monoid compatible with monoid
multiplication: x � y ⇔ x∈{y}⊥⊥.

Definition 3. A homomorophism of phase spaces, or simply a phase homomor-
phism, is a monoid homomorphism h : M → M ′ such that h(⊥) ⊆ ⊥′.

Given a partial mapping f : M → M ′, we say that f is bounded by h, if
f(a) � h(a) for every a∈J , where J is the domain of f .

The mapping f has the intermediate value property if for every a and b
from J , there exists c∈J such that c � a and c � b, and f(a)f(b) = f(c).

Definition 4. A fibred phase space is a sequence

((Mn, en, ⊥n), hn, Jn, fn, Ln)n≥0,



252 M. Kanovich

where for each n,

(a) (Mn, en, ⊥n) is a phase space, hn : Mn+1 → Mn is a phase homomorphism,
(b) Jn is a submonoid of 1ln, and fn : Jn+1 → Mn is a mapping with the in-

termediate value property such that fn is bounded by hn, and, in addition,
fn(en+1) = en, and

(c) Ln is a submonoid of 1ln such that every element a of Ln is a weak idem-
potent, i.e., a �n a ·n a.

Definition 5. Given a fibred phase space ((Mn, en, ⊥n), hn, Jn, fn, Ln)n≥0, for
each formula A one associates a sequence of closed sets A∗0 , A∗1 ,. . . , A∗n ,. . . ,
in the following inductive way, starting with any assignment of closed sets p∗0 ,
p∗1 ,. . . , to propositional atoms p:

1∗n = 1ln, �∗n = Mn,
(A ⊗ B)∗n = (A∗n ·n B∗n)⊥n⊥n , (A⊥)∗n = (A∗n)⊥n ,
(A&B)∗n = (A∗n ∩ B∗n), (∇A)∗n = (A∗n ∩ Jn)⊥n⊥n ,

(§A)∗n = (hn(A∗n+1))⊥n⊥n , (!A)∗n = (fn(A∗n+1 ∩ Jn+1) ∩ Ln)⊥n⊥n .

For a ‘block’ of the form 〈A1, A2, .., A�〉, define:

〈A1, A2, .., A�〉∗n = ((A∗n
1 ∪ A∗n

2 ∪ · · · ∪ A∗n

� )⊥n ∩ Jn)⊥n .

The second-order case is considered as in [9]. A formula A is valid in the fibred
phase space, if for each n, en ∈A∗n in any valuation p∗0 , p∗1 ,. . . , to propositional
atoms p.

Theorem 1 (Strong Completeness)

(a) If an A is provable in LLL-∇, then A is valid in any fibred phase space.
(b) If a formula A is valid in any fibred phase space, then A is provable in LLL-∇

without the cut rule.

Corollary 1 (Cut-Elimination). Theorem 1 provide a semantic proof for cut
elimination in LLL-∇.

Remark 2. Corollary 1 cannot give more than the pure existence of cut-free
proofs. As for the traditional cut-reduction arguments where each of the cuts is
reduced to a number of cuts by dealing only with a pair of inference rules, the
problematic case caused by the full version of ‘!-rule’ is given in Example 2.3

Example 2. The cut below cannot be eliminated by the traditional argument
mentioned above:

. . .
� 〈A⊥〉; B
� ?A⊥; !B

. . .
� 〈B⊥, C⊥〉; D
� ?B⊥; ?C⊥; !D

� ?A⊥; ?C⊥; !D
(cut)

3 Girard[8]: “We shall define a lazy cut-elimination which terminates in polytime. The
result of the procedure is cut-free only in certain cases, but this is enough for us.”
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Remark 3. Nevertheless, with certain modifications to handle A-blocks, we can
define a syntactical strongly normalizing cut-elimination procedure for LLL-∇.

Proof Sketch. We treat a block 〈Γ 〉 as a ‘generalized 	-formula’, and replace
‘∇-rule’ in Table 2 with:

� 〈Γ1〉; . . . ; 〈Γn〉; C

� 〈Γ1〉; . . . ; 〈Γn〉; ∇C
(∇-rule′, n≥0) (2)

To capture strange cuts between ∇B and the ‘generalized 	-formula’ that in-
cludes B⊥, we add cut rules like this:

� 〈Γ 〉; ∇B � 〈B⊥, Φ〉; Θ

� 〈Γ, Φ〉; Θ
(cut′) (3)

Accordingly, the cut in the problematic case of Example 2 will be reduced to:
. . .

� 〈A⊥〉; B
� 〈A⊥〉; ∇B

. . .
� 〈B⊥, C⊥〉; D

� 〈A⊥, C⊥〉; D
� ?A⊥; ?C⊥; !D

(cut)

Withadditionalcutreductions,wecanprovideterminationbutinhyper-exponential
time. This huge bound is caused by the fact that we allow more than one conclusion
of the form ?Dj within the “!-rule” (Cf. Tables 2 and 3).

Table 3. The Inference Rules of Easy-LLL. ∇ and  are duals of each other.

Identity / Negation:

� A⊥; A
(identity) � Γ ; A � A⊥; Θ

� Γ ; Θ
(cut)

Multiplicatives:
� Γ ; A � Θ; B
� Γ ; Θ; (A ⊗ B) (times) � 1(one) � Γ ; A; B

� Γ ; (A
.................................................

............
.................................. B)

(par) � Γ
� Γ ; ⊥ (false)

Modalities:
� Γ ; A

� Γ ; A
(-dereliction) � Γ

� Γ ; A
(-weakening)

� D1; ..; Dn; C
� D1; ..; Dn; ∇C

(∇-rule, n≥0)

� Γ ; ?A; ?A
� Γ ; ?A (?-Contraction) � Γ

� Γ ; ?A (?-Weakening)

� D1; ..; D�; C
� ?D1; ..; ?D�; !C (!-rule, �=0, 1) � D1; ..; Dn; A1; ..; Am; C

� ?D1; ..; ?Dn; §⊥A1; ..; §⊥Am; §C
(§-rule, n, m≥0)

Second-Order Quantifiers:
� Γ ; A(p)

� Γ ; ∀pA(p) (for-all, p is not free in Γ ) � Γ ; A(B)
� Γ ; ∃pA(p) (there-exists)
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1.3 Step 2: The Easy Fragment of LLL (Easy-LLL)

Here we introduce a traditional syntactical fragment of LLL-∇, called Easy-LLL,
which is of our main interest.

Notice that the syntax of Table 2 is almost perfect: only one rule, the ‘!-rule’,
invokes a block of formulas. To get rid of blocks of formulas, we will confine
‘!-rule’ to �≤1 and replace a block 〈D〉 with the formula 	D. In Table 3 we
represent the resulting Easy fragment of LLL, which deals with formulas only.

Remark 4. From the provability point of view, Easy-LLL is weaker than LLL-∇.
One of the basic principles in LLL[8] is the ‘exponential isomorphism’ (see (1)):

(!p⊗!q) = !(p&q).

One direction: !(p&q) � (!p⊗!q), is easily provable in Easy-LLL. As for other
direction: (!p⊗!q) � !(p&q), it is provable in LLL-∇ (for the cost of its ‘mixed’
syntax with A-blocks), but it is not provable in Easy-LLL. It is unclear how
to incorporate (!p⊗!q) � !(p&q) into a traditional sequent calculus formalism
that admits cut elimination. E.g., by allowing �=2 in the “!-rule” in Table 3, we
‘jump’ to elementary functions computable in hyper-exponential time.

On the other hand, what we actually need to represent polytime computation
in [8,2] is a weaker form of the ‘exponential isomorphism’: (!p⊗!1) = !(p&1),
which is provable in Easy-LLL, as well.

Remark 5. We can show that Easy-LLL is sound and complete with respect to
the fibred phase semantics obtained from Definition 4 by omitting the require-
ment that “fn has the intermediate value property”.

In Section 2 we show that Easy-LLL enjoys strong normalization in polytime,
with providing a unique cut-free form. Namely, any proof is normalizable in
sd steps regardless of which sequence of cut reductions we take (here s is the
size of the proof, and the degree d is determined only by the nesting depth of
exponentials in the proof).

In Section 3 we show that Easy-LLL has the full expressive power of light
logics, and captures exactly polytime computation.

2 Easy-LLL: Strong Normalization in Polytime

In this section we will prove polytime strong normalization for Easy-LLL.

Definition 6. Any proof within Easy-LLL can be represented as a proofnet π [8].
In full accordance with the rules from Table 3, such a proofnet π consists of

nodes and boxes, some of them are connected by arrows, so that

(a) A node labelled by “axiom” has only two outgoing arrows labelled by formu-
las of the form A and A⊥, resp. A node labelled by “cut” has only two incoming
arrows labelled by formulas of the form A and A⊥, resp.
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(b) A node labelled by “⊗” or “..................................................
...........
.................................. ” has exactly two incoming arrows, labelled

by some A and B, and one outgoing arrow labelled by (A ⊗ B) or (A..................................................
............
................................. B), resp.

A node labelled by “1” or “⊥” has only an outgoing arrow labelled by 1 or ⊥.
(c) A node labelled by “	” has one incoming arrow, labelled by an A, and

one outgoing arrow labelled by 	A. A node labelled by “w” (representing 	-
weakening) has one outgoing arrow labelled by a formula of the form 	A. A node
labelled by a ∇-box of the form

“ν”

•

�
∇A

•

�
	B1

•

�
. . . 	Bk

π′
•
�
A

•
�

	B1
•
�

. . . 	Bk

has k+1 outgoing arrows labelled by the corresponding conclusions of the ∇-box.
(d) A node labelled by “C” (representing ?-contraction) has two incoming ar-

rows, labelled by one and the same ?A, and one outgoing arrow labelled by the
same ?A. A node labelled by “W” (representing ?-weakening) has one outgoing
arrow labelled by a formula of the form ?A. A node labelled by a !-box of the form

“e”

π′
•
�A

•
�

	B

•

�
!A

•

�
?B

has two outgoing arrows labelled by !A and ?B. A node labelled by the §-box
“b”

•

�
§A

•

�
§⊥Γ

•

�
?Φ

π′
•
�
A

•
�

Γ
•
�

	Φ

where Γ and Φ are multisets of formulas, has outgoing arrows labelled by the
conclusions of the §-box.

(e) A node labelled by “∃” has one incoming arrow, labelled by some A(B),
and one outgoing arrow labelled by ∃pA(p). A node labelled by the ∀-box

“A”

•

�
∀pA(p)

•

�
B1

•

�
. . . Bk

π′(p)•

�
A(p)

•

�
B1

•

�
. . . Bk
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has k+1 outgoing arrows labelled by the conclusions of the ∀-box. Here π′(p) is
a proofnet with a marked variable p, and each of the conclusions B1,. . . , Bk has
no free occurrences of p. The propositional variable p is considered to be bound
within the ∀-box.

(f) An unlabelled node has only an incoming arrow labelled by an A, which is
said to be a conclusion of π.

Definition 7. The size of a proofnet π is defined as the total number of all nodes
and boxes contained inside π.

In order to control the size of proofnets under cut reductions (see Lemma 1),
for any box E, we introduce an adjusted size w(E), call it the weight of box E,
as follows: w(E) = s(π′) + 2, where s(π′) is the size of the proofnet π′ inside E.

For a given nesting depth l of !-boxes and §-boxes inside π (we call it ‘level l’),
we take a ‘slice’ π(l) on level l as the collection of all nodes and boxes (together
with arrows) on the depth l. The number of these nodes and boxes is called the
size of π′ on level l (each box is counted as a one node).

Definition 8. Following the rules in Table 3, we develop a natural set of cut
reduction rules, which are collected in Figures 1, 3, 6, 7, and 2.

Lemma 1. We will list the basic peculiarities of our cut reduction rules:

(a) Each of the reductions does not mix levels.
(b) All reductions contract the size of a proofnet, except for (∇, ∇), (!, !), (!, §),

(§, §), (!, C), and (side, ∀).
(c) (∇, ∇) and (side, ∀) preserve the size of a proofnet (and even the names

of boxes), but put the cut at hand inside the corresponding expanded “box1”. The
effect is that this cut will not directly contact with “box1” in future.

(d) (!, !), (!, §) and (§, §) merge “box1” and “box2” so that the weight of the
new box (named as “box1”) does not exceed the sum of the weights of old boxes.

(e) (!, C) moves a box E′ from the position below a C-node to the positions
above the C-node, with E′ being doubled. A forest structure of C-nodes stable
under cut reductions is discussed in Definition 9 and Lemma 2.

Definition 9. We say that a C-node v2 is a C-son of a C-node v1, if these
C-nodes are connected by an alternating chain of !-boxes and cuts as shown in
Figure 4. (The empty chain is allowed.)

Lemma 2. Let π be a proofnet constructed for a proof within Easy-LLL. Then
the transitive closure of the relation “being a C-son” from Definition 9 is acyclic,
and C-nodes form a forest with respect to this relation. Moreover, given a level l
of π, the set of C-nodes on level l remains intact by any of cut reductions on
levels ≥ l. If v2 was a C-son of v1 beforehand, then v2 will be a C-son of v2
after the cut reduction has been performed. So that the forest of C-nodes formed
according to “being a C-son” can only grow up. Indeed, weakening cut reductions,
such as (∇, 	w)-cut reduction, can remove some trees from the forest.



Light Linear Logic with Controlled Weakening 257

§-box “b”
•
���§�

•
���?

�

•
��� ?

�C

•
���?

�

•
��� ?

�C
��?�

v2

��? �

v3•I1

���?
�

E1

���
•
? ���

•
!

�C �cut

E2

���
•
? ���

•
!

�cut �cut

. . .

���
•
? ���

•
!

�cut �cut

Ek

���
•
? ���

•
!

�cut �cutv1

��?�

•I0

���?
�C v0

�

Fig. 4. Here v1 is a C-son of v0, and v2 is a C-son of v1. The nodes v2 and v3 are
leaves in the forest formed by C-nodes w.r.t. “being a C-son”.

���?
�

v1

•I2

�
��?

�

•I3

�
�� ?
�C

���?�

v2•I1

�
��?

�

E1

�
��

•
? �

��

•
!

�C �cut

E2

�
��

•
? �

��

•
!

�cut �cut

. . .

�
��

•
? �

��

•
!

�cut �cut

Ek

�
��

•
? �

��

•
!

�cut �cut

E′

�
��

•
? �

��

•
!

�o1 �cut �
�

���?
�o1

v1

•I2

�
��?

�

•I3

�
�� ?
�C

���?�

v2•I1

�
��?

�

E′

�
��

•
! �

��

•
?

�cut �

E′

�
��

•
? �

��

•
!

�C �cut

E1

�
��

•
? �

��

•
!

�cut �

E2

�
��

•
? �

��

•
!

�cut �cut

. . .

�
��

•
? �

��

•
!

�cut �cut

Ek

�
��

•
? �

��

•
!

�cut �cut

Fig. 5. An !-box E′ moves through v1, resulting in that a twin copy of E′ appears on
each of the branches of v1.

Proof. The key case of (!, C) reduction is shown in Figure 5.
The (!, !), (!, §), and (§,§) reductions do not change the status of “being a C-

son”. Other reductions cannot destroy “being a C-son”. Some reductions such as
(!, §) reduction, or say (⊗,

.................................................
............
.................................. ) reduction, might have had the effect of seemingly

’merging’ different branches in the trees of C-nodes by means of a §-box “b”
like in Figure 4. But, according to Definition 9, which requires only !-boxes, the
corresponding nodes v2 and v3 remain leaves in the forest of C-nodes.

Theorem 2. Let π be a proofnet constructed for a proof within Easy-LLL.
Then whatever sequence of cut reductions we take, it terminates in sd steps,

with the size of any reduct being bounded by sd, where s is the size of π, and
the degree d is determined only by the maximum nesting depth of !-boxes and
§-boxes inside π.
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(a) The (∇, )-cut reduction:

•I

�A⊥

��

�
A⊥

“∇-box1”

•

�
∇A

•

�
B1

•

�
. . . Bk

π1
•

�
A

•

�
B1

•

�
. . . Bk

�cut

=⇒ •I

�
A⊥

π1
•

�
A

•

�
B1

•

�
. . . Bk

�cut

(b) The (∇, w)-cut reduction:

�w

�
A⊥

“∇-box1”

•

�
∇A

•

�
B1

•

�
. . . Bk

π1
•

�
A

•

�
B1

•

�
. . . Bk

�cut

=⇒
�w

�
B1

. . . �w

�
Bk

(c) The (∇,∇)-cut reduction:

“∇-box1”

•

�
∇A

•

�
Γ

•

�
C⊥

π1
•

�
A

•

�
Γ

•

�
C⊥

“∇-box2”

π2
•

�
C

•

�
Φ

•

�
∇C

•

�
Φ

�cut

=⇒

“∇-box1”

π1
•

�
A

•

�
Γ

•

�
C⊥

“∇-box2”

π2
•

�
C

•

�
Φ

•

�
∇C

•

�
Φ

�cut

•

�
∇A

•

�
Γ

•

�
Φ

Fig. 6. The cut reduction rules for ∇

Proof Sketch. For each depth l, let sl be the size of the ‘slice’ π(l) on level l;
nl be the number of ∇-boxes and ∀-boxes on level l; el be the number of !-boxes
on level l; and Cl be the number of C-nodes that are leaves in the forest formed
by C-nodes on level l according to Lemma 2.

Assume cut reductions α and β be applied in a row (α, then β), and α be
applied on level l, and β be applied on level l′ such that l′<l. It is clear that these
two reductions can commute, and the number of reductions does not decrease.
E.g., for β being a (!,C)-cut reduction, the resulting reductions are β, α, α.
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(a) The (!,§)-cut reduction:

“§-box1”

•

�
§A

•

�
§⊥Γ

•

�
?Φ

•

�
?C⊥

π1
•

�
A

•

�
Γ

•

�
Φ

•

�
C⊥

“!-box2”

π2
•
�C

•
�B

•

�
!C

•

�
?B

�cut

=⇒

“§-box1”

π1
•

�
A

•

�
Γ

•

�
Φ

•

�
C⊥

“∇-box2”

π2
•
�C

•
�B

•

�
∇C

•

�
B

�cut

•

�
§A

•

�
?B

•

�
§⊥Γ

•

�
?Φ

(b) The (§,§)-cut reduction:

“§-box1”

•

�
§A

•

�
§⊥Γ

•

�
?Φ

•

�
§⊥C⊥

π1
•

�
A

•

�
Γ

•

�
Φ

•

�
C⊥

“§-box2”

π2
•
�C

•
�Ξ

•

�
§C

•

�
Ξ ′

�cut

=⇒

“§-box1”

π1
•

�
A

•

�
Γ

•

�
Φ

•

�
C⊥

π2
•

�
C

•

�
Ξ

�cut

•

�
§A

•

�
Ξ ′

•

�
§⊥Γ

•

�
?Φ

Fig. 7. The cut reduction rules for ! and §

Hence, the ‘worst-case scenario’ is, first, to reduce all cuts on level 0, then on
level 1, then on level 2, and so on.

By examining non-size-contracting rules, we start with a rough estimate for
the number of cut reductions on level 0.

According to Lemma 1, each of the !-boxes that is in cut-contact with a C-node
from below (see Figure 5) will be multiplied and move up eventually beyond C-
nodes that are leaves in the forest formed by C-nodes on level 0. The maximum
number of the (!, !) and (!, C) reductions that could have been involved in is
bounded by C2

0 , and the maximum number of the additional !-boxes produced
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in the process is bounded by 2C0 ·e0. Therefore, the size of π(0) in the process
will be always bounded by s0+2C0e0.

Since a particular cut within (∇, ∇) and (side, ∀) reductions cannot directly
contact with the same “box1” twice, the number of such reductions is bounded
by s0 ·n0.

Bringing all together, the number of cut reductions on level 0 is bounded by
5s2

0 ≤ s3
0. In addition, Lemma 1 also provides that the size of π(1) will be kept

in range of 6s2
0s

2
1 ≤ s3

0s
2
1.

For simplicity, let sl =s0, for all l.
By repeatedly applying the above procedure, we conclude that every sequence

of cut reductions must terminate at most in s3
0+s15

0 +s75
0 +· · · steps, which

yields a polynomial bound of the form sd.

Theorem 3. Our system of cut reduction rules is locally confluent.

Proof. By examining all critical pairs.

Corollary 2. Our system of cut reductions has the Church-Rosser property. In
addition, every sequence of cut reductions terminates in polynomial time.

Proof. This follows from Theorems 2 and 3.

3 The Expressive Power of Easy-LLL

Corollary 3. Any polytime computable function is representable as a proof within
Intuitionistic Easy-LLL.

Proof. This easily follows from Girard-Asperti-Roversi’s result [8,14,2], as well as
from Murawski-Ong’s interpretation of Bellantoni-Cook’s safe recursion[13].

Remark 6. In fact, Easy-LLL yields immediate simplifications. For instance, we
can take advantage of ∇ in Definition 1 to provide “for free” the correct sim-
ulation of the additive boxes and related projections and conditionals within
classical proofnets (cf. Girard[8]):

(1) The ‘first projection’, presented with ‘plus1’, in a proof of the form (π0, π1,
π2 are cut-free):

π1 π2 π0

� Γ ; B � Γ ; B plus1
� Φ; B⊥

cut
� Γ ; (B&B) � Φ; (B⊥ ⊕ B⊥)

� Γ ; Φ

is reduced to the first component of the pair:

π1
� Γ ; B

π0
� Φ; B⊥

� Γ ; Φ
cut

(2) The ‘second projection’, presented with ‘plus2’, in a proof of the form:
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•I1

�
Ai(qi)

�

•I2

�
A⊥

i (qi)

��fi

�
qi

�fi

�
q⊥

i

�cut

=⇒
•I1

�
Ai(qi)

•I2

�
A⊥

i (qi)
�cut

Fig. 8. The cut reduction in the case of fixed-point rules

π1 π2 π0

� Γ ; B � Γ ; B plus2
� Φ; B⊥

cut
� Γ ; (B&B) � Φ; (B⊥ ⊕ B⊥)

� Γ ; Φ

is reduced to the second component of the pair:

π2
� Γ ; B

π0
� Φ; B⊥

� Γ ; Φ
cut

Notice that ∇A itself can be conceived of as a ‘projection’, since ∇∇A = ∇A.

Remark 7. Theorem 2 gives the exact upper bound for the expressive power of
Easy-LLL and its generalizations.

Corollary 4. Let f be a function representable as a proof in Easy-LLL enriched
with a number of fixed-point rules:

� Γ ; Ai(qi)
� Γ ; qi

and
� Γ ; A⊥

i (qi)
� Γ ; q⊥i

i=1, 2, . . .

where each of these Ai(qi) is a formula with a distinguished propositional vari-
able qi, the fixed-point of Ai. Then f is computed in polynomial time. The degree
of the polynomial is determined by the nesting depth of !-boxes and §-boxes within
a representation of f .

Proof. Theorem 2 still remains valid, when we invoke the cut reductions for
fixed-points in Figure 8.

4 Concluding Remarks

The ‘nabla’ modality has appeared here as a result of consecutive attempts
to simplify the original ‘mixed’ syntax of Girard’s light linear logic (LLL) in
accordance with the basic complexity-theoretic constraints of LLL[8].

First, we extend the original LLL by adding two rules: one that introduces
� !1, and ‘A-weakening’ that allows weakening on additive blocks (see Table 1).

The second step introduces LLL-∇ (see Table 2) by:
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– Substituting ?A for every occurrence of a block of the form [A].
– Substituting 	A for every occurrence of a block of the form 〈A〉, where 	

is dual to ∇. Indeed, it is observed that ∇A � A and ∇A � 1 are derivable
in LLL-∇.

– Introducing ‘∇-rule’, which is a non functorial promotion that preserves cut
elimination.

Remark 8. From a purely logical point of view, we obtain a logical system with
three modalities where everything is under control:

(i) The § modality is a multi-functorial modality that raises a level: A; B � C
yields §A; §B � §C.

(ii) A functorial modality ! is applied to formulas on which Contraction and
Weakening can apply but on the next level.

The main observations about the morphisms it defines are !A � (!A⊗!A), and
!A � 1, and !A � §A. See also Remark 4 about the ‘exponential isomorphism’ .

(iii) The ∇ modality controls Weakening but on the current level.
In fact, our ∇A can be conceived of as a purely multiplicative connective that

is served as the greatest lower bound of the additive (A&1). In particular, from
the point of [6], ∇A can be interpreted as !1A. The most interesting feature of
this purely multiplicative ∇ is the possibility of defining additive connectives
without the need of unrestricted weakening (see Definition 1). In fact, in pres-
ence of restricted weakening, as in linear logic, the additive connectives can be
encoded using second order quantification, but these encodings crucially need
the exponential modalities:

(A& B) = ∃p (p⊗ !(p −◦ A)⊗ !(p −◦ B)) (4)

Such modalities enjoy weaker properties in LLL, and thus the standard encodings
available in linear logic do not work for light logics (not even for elementary light
logic). To express additives, light affine logic invokes unrestricted Weakening[2].
In presence of unrestricted weakening, as in affine logic, the additive connectives
can be encoded as:

(A& B) = ∃p (p ⊗ (p −◦ A) ⊗ (p −◦ B)) (5)

But the cost of adding unrestricted weakening is the nondeterminism of cut-
elimination in Classical Light Affine Logic:

Example 3. (after Lafont)
A proof of the form

π1
� Γ

� Γ ; C⊥ W
π2

� Φ
� Φ; C

W

� Γ ; Φ
cut

(6)

can be reduced to
π1

� Γ
� Γ ; Φ

But the same proof (6) can be also reduced to
π2

� Φ
� Γ ; Φ
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Example 3 destroys the Church-Rosser property for classical affine logics. This
is the reason why, in the case of light affine logic, “in order to maintain the
proofs-as-programs paradigm, we are compelled to stick to the intuitionistic
version, in contrast to the case of Light Linear Logic, for which both classical
and intuitionistic formulations are possible.”(Terui[16])

It turns out that ∇ is actually all that we need to express additive connec-
tives by the second-order encodings. See also Remark 6, which emphasizes the
deterministic behaviour of cut elimination even for classical Easy-LLL.

Additive connectives are important because they can be used to obtain very
natural representations of programming constructs such as conditionals.

The last step in clarifying the rules of the system is about Easy-LLL (see Table 3),
obtained from LLL-∇ by:

– Restricting ‘!-rule’ to the form in which !C may depend on at most a single
assumption of the form 〈D〉.

– Substituting 	D for such a 〈D〉 in the just obtained ‘!-rule’.

We have proved that Easy-LLL, a traditional syntactical fragment of LLL,
captures deterministic polytime computation in an ‘ideal’ way:

(a) The intuitionistic fragment of Easy-LLL is powerful enough to represent all
polytime functions.

(b) Easy-LLL enjoys polytime strong normalization, which is within the paradigm:
‘cut-elimination as a polytime computation’.

(c) Easy-LLL cut reductions enjoy the Church-Rosser property, which is within
the paradigm: ‘cut-elimination as a deterministic computation’.

Our proof of polytime strong normalization for Easy-LLL is based on the
natural cut reductions directly produced from the rules of Easy-LLL.

The crucial non-trivial step of the proof is that we take advantage of a re-
stricted form of ‘!-rule’ in Table 3 to reveal a much deeper underlying forest
structure of C-nodes, which is stable under reductions (see Definition 9 and
Lemma 2). Having detected such a stable tree-like skeleton of C-nodes (which
represent the most problematic ?-contraction rule) provides a transparent and
clean construction for polynomial bounds in Theorem 2.

From the point of view of the complexity of applications, we believe that
Easy-LLL provides a reasonable balance between its expressive power (to capture
deterministic polytime computation) and its polytime strong normalization (to
guarantee polytime upper bounds):

(a) Though the syntax of Easy-LLL is traditional, Easy-LLL integrates all basic
principles of Girard’s light linear logic.

(b) Easy-LLL has a convincing phase semantics.
(c) Easy-LLL enjoys a transparent polytime strong normalization.
(d) It is shown that even additive-free fragment of light linear logic is capa-

ble of expressing polytime computation [11], but their proof is extremely
complicated.
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Easy-LLL is flexible enough to incorporate basic constructs, such as addi-
tives/conditionals, to simulate polytime computation in a natural way (cf.
[13,15,16,11]).

In closing, allowing �=2 within ‘!-rule’ in Table 3 yields elementary linear
logic[8]. By the same argument we can obtain a transparent proof of strong
normalization in elementary time for elementary linear logic[8].
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Abstract. We present FixIt(ALC), a novel procedure for deciding knowledge
base (KB) satisfiability in the Fuzzy Description Logic (FDL) ALC.
FixIt(ALC) does not search for tree-structured models as in tableau-based proof
procedures, but embodies a (greatest) fixpoint-computation of canonical mod-
els that are not necessarily tree-structured, based on a type-elimination process.
Soundness, completeness and termination are proven and the runtime and space
complexity are discussed. We give a precise characterization of the worst-case
complexity of deciding KB satisfiability (as well as related terminological and
assertional reasoning tasks) in ALC in the general case and show that our method
yields a worst-case optimal decision procedure (under reasonable assumptions).
To the best of our knowledge it is the first fixpoint-based decision procedure for
FDLs, hence introducing a new class of inference procedures into FDL reasoning.

1 Introduction

Description Logics (DLs) [1] are a popular family of formally well-founded and de-
cidable knowledge representation languages. DLs have a wide range of applications,
e.g., they form the basis for Semantic Web (SW) ontology languages used such as
OWL [11]. Fuzzy Description Logics (FDLs) [17] extend DLs to represent vague con-
cepts and relations, and as such are very well suited to cover for representing and reason-
ing with uncertainty, a requirement that naturally arises in many practical applications
of knowledge-based systems, in particular the SW; FDLs for instance fit very well to
the problem of multimedia information retrieval [9]. Another feature that makes FDLs
specifically interesting for the SW is a basic form of para-consistency, i.e. a statement
and its negation are possible to hold at the same time (to a certain extent). This al-
lows knowledge providers on the SW to disagree on the basic properties of data objects
and their interrelation without causing the (uninformative) explosion of the deductive
closure as in classical DLs.

So far, reasoning in Fuzzy DLs is mainly based on tableau-methods
(e.g.[3,7,15,16,17,20]). Further, [18] demonstrates how to use inference procedures for
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classical DLs to perform reasoning in (some) FDLs. Still, reasoning in FDLs is at least
as hard as reasoning in classical (crisp) DLs. Even in DLs of modest expressivity (e.g.
ALC [17,18,16] the fuzzy variant of the DL ALC [14]) the worst-case complexity of
reasoning is significant (cf. Section 3) even in restricted cases [17]. Therefore, it is clear
that there can not be a single inference method that works well on all problems.

Consequently, our goal is to enrich the range of available methods for reasoning with
FDLs with a fundamentally different approach. In practical applications of DLs (and
hence FDLs) a particularly important feature for representing domain models is the sup-
port of so-called general terminologies (see e.g. [16]), i.e., the possibility to capture (po-
tentially recursive) interdependencies between complex concepts in a domain model.
However, besides the tableau-based methods for DLs (e.g [16,7,20,3]) there are at present
no other FDL inference methods which can deal with general terminologies. We want to
provide an alternative to tableau-based methods that can deal with general terminologies.

The main contributions of the paper are as follows:
− We present a novel procedure FixIt(ALC) (cf. Section 4.2) for deciding knowl-

edge base (KB) satisfiability in the FDL ALC (cf. Section 2).
− We clarify the worst-case complexity of the reasoning task addressed by our algo-

rithm and show formally that the problem is EXPTIME-complete. From this result,
we can further establish EXPTIME-completeness for a range of related terminolog-
ical and assertional reasoning tasks (cf. Section 3).

− We formally prove soundness, completeness and termination of the algorithm (cf.
Section 4.2) and show that the runtime behavior of the proposed algorithm is worst-
case optimal (cf. Section 4.3).

− FixIt(ALC) generalizes a type-elimination-based decision procedure [12] for the
(classical) modal logic K (i.e. KBDD [10]) to the FDL ALC. Additionally we
integrate (fuzzy) ABoxes and general TBoxes which are not dealt with in KBDD.

− To the best of our knowledge it is the first fixpoint-based decision procedure that
has been proposed for FDL introducing a new class of inference procedures into
FDL reasoning.

− Besides the tableau-based methods in [16,7,20,3], it is the only approach to inte-
grate general terminologies in FDL reasoning and the first non-tableau-based one
that we are aware of. General terminologies are handled in a fundamentally differ-
ent way than in standard tableau-based method such as [16,7].

Our method is interesting especially regarding the last aspect since the handling of
general terminologies in standard tableau-based methods (e.g. [16,7]) is a major source
of non-determinism (cf. Section 5) and thus computational inefficiency. In our case no
non-deterministic choice is introduced by terminologies.

2 Preliminaries

We introduce ALC [17], the fuzzy variant of the Description Logic ALC [14] (the latter
can be seen as a syntactic variant of the multi-modal logic K(m) [13]). ALC provides
the starting point for more expressive FDLs [19] that have been proposed to fuzzify
major fragments of OWL [11].



Fuzzy Description Logic Reasoning Using a Fixpoint Algorithm 267

Syntax. Concept expressions are constructed from a signature Σ = (C,R, I) with
concept names C, role names R, and individual names I. The set of concept expres-
sions C(Σ) over Σ is defined as the smallest set of expressions that contains C, �
and is closed under the application of the concept constructors C � D (intersection),
C � D (union), ¬C (complement), and ∀R.C (universal role restriction) for R ∈ R
and C, D ∈ C(Σ) . We allow expressions ∃R.C for C ∈ C(Σ), R ∈ R and ⊥ and
treat them as shortcuts for ¬∀R.¬C and ¬� respectively. A TBox axiom (or general
concept inclusion axiom (GCI)) is an expression of the form C 	 D s.t. C, D ∈ C(Σ).
A terminology (or TBox) T is a finite set of TBox axioms. Syntactically, the vagueness
of descriptions becomes explicit only when describing specific instances and their inter-
relations: a (fuzzy) ABox axiom is either a 〈i : C �� d〉 or a 〈R(i, i′) ≥ d〉 s.t. i, i′ ∈ I,
d ∈ [0, 1], and ��∈ {≤, ≥, =}. An ABox A is a finite set of ABox axioms. Finally, a
knowledge base K = (T , A) consists of a TBox T and an ABox A. Let IndA ⊆ I de-
note the individual names that occur in A. We denote the set of all concept expressions
that occur as subexpressions in K by sub(K).

Semantics. Semantically, vagueness is reflected in the use of fuzzy sets and relations
when interpreting concepts and roles: an interpretation I = (ΔI , ·I) consists of a non-
empty set ΔI called the domain, and a function ·I which maps each concept name
C ∈ C to a fuzzy set CI : ΔI → [0, 1], each role name R ∈ R to a fuzzy relation
RI : ΔI × ΔI → [0, 1] and each individual name i ∈ I to an element iI ∈ ΔI . The
interpretation function ·I is extended to arbitrary concept expressions C ∈ C(Σ) as fol-
lows: 1. (C � D)I(o) = min(CI(o), DI(o)) 2. (C � D)I(o) = max(CI(o), DI(o))
3. (¬C)I(o) = 1 − CI(o) 4. (∀R.C)I(o) = inf o′∈ΔI {max(1 − RI(o, o′), CI(o′))}
5. �I(o) = 1 for all o ∈ ΔI , C, D ∈ C(Σ), R ∈ R. Note that, in contrast to classical
DLs, it does not hold that (C � ¬C)I = �I for all interpretations I, hence the need to
add � (or ⊥) to the language explicitly.

An interpretation I satisfies a TBox axiom α = C 	 D iff for all o ∈ ΔI it
holds that CI(o) ≤ DI(o), i.e. C is a fuzzy subset of D. I satisfies an ABox axiom
α = 〈i : C �� d〉 iff CI(iI) �� d. I satisfies an ABox axiom α = 〈R(i, i′) ≥ d〉 iff
RI(iI , i′I) ≥ d. In all these cases, we write I |= α. I satisfies a TBox T (or is a model
of T ) iff I |= α for all α ∈ T . I satisfies an ABox A (or is a model of A) iff I |= α
for all α ∈ A. Finally, I satisfies a knowledge base K = (T , A) (or is a model of K)
iff I |= T and I |= A.

Reasoning in ALC. Given a fuzzy KB K = (T , A), fuzzy ABox axioms or GCIs α
and concept expressions C, D ∈ C(Σ), we can analyze particular semantic character-
istics and interdependencies: We say that K is satisfiable (or consistent) iff there is a
model I for K. K entails α (denoted as K |= α) iff all models I of K satisfy α. Concept
C is subsumed by concept D (wrt. a KB K) iff K |= C 	 D. Two concepts C and D are
called equivalent (wrt. a KB K) iff for any model I of K it holds that CI(o) = DI(o)
for all o ∈ ΔI . Two concepts C and D are called disjoint (wrt. a KB K) iff for any
model I of K it holds that there does not exists an o ∈ ΔI such that CI(o) > 0 and
DI(o) > 0. A concept C is called satisfiable (wrt. a KB K) iff there exists a model I of
T such that CI(o) > 0 for some o ∈ ΔI . Further, one might want to compute the truth
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value bounds for a given ABox assertion α wrt. K to determine the possibility interval
that is enforced for α by the background knowledge in K: The greatest lower bound of
α wrt. K is defined as glb(α, K) := sup{d | K |= 〈α ≥ d〉} and the least upper bound
of α wrt. K is defined as lub(α, K) := inf {d | K |= 〈α ≤ d〉} (where sup ∅ = 0 and
inf ∅ = 1). Computing glb(α, K) and lub(α, K) is usually called the best truth value
bounds (BTVB) problem.

One of the most fundamental reasoning problems is to determine whether a given
fuzzy KB K is satisfiable. A lot of other reasoning tasks (e.g., checking for concept
satisfiability wrt. a TBox or the BTVB problem) can be reduced to KB satisfiability
checking [17] and therefore solved by a respective decision procedure. For this reason,
we consider KB satisfiability as the reasoning problem to be solved.

3 Complexity of Reasoning with Knowledge Bases

Deciding the satisfiability of KBs in ALC where the TBox T is restricted to axioms
of the form A 	 C or A ≡ C (for concept names A ∈ C and concept expressions
C ∈ C(Σ)) such that any concept name A occurs at most once on the left-hand side and
the TBox does not contain any cyclic dependencies between concept names is known to
be a PSPACE-complete problem [17]. For the general case of unrestricted terminologies
(allowing arbitrary GCIs C 	 D), we are not aware of any worst-case complexity
characterization. We show that determining the satisfiability of a KB in the general case
is EXPTIME-complete (which corresponds to the situation in the classical variant ALC).
Detailed proofs are omitted here but can be found in [6].

EXPTIME-Hardness. We show EXPTIME-hardness by a polynomial-time (many-one)
reduction of concept satisfiability wrt. general terminologies in the classical DL ALC
which is known to be an EXPTIME-hard problem [1, Chapter 3]. We define the necessary
reduction function as follows:

Definition 1 (Reduction). Let T denote a finite set of GCIs and C ∈ C(Σ) be any
concept expression. Then we define the reduction π(T, C) of the terminology T and the
concept expression C as π(T, C) := K where K = (T , A) is the ALC knowledge base
consisting of the TBox T := T ∪ T ∗ with T ∗ := {� 	 ¬D � D | D ∈ sub(T ∪ {C})}
and the ABox A := {〈i : C ≥ 1〉} for some new individual name i.

The intention of the additional TBox components T ∗ ensures that any model of T
(and hence π(T, C)) assigns only possibility degrees in {0, 1} to any concept (sub-)
expression occurring somewhere in T or C. In particular, any such model always as-
signs classical truth values to any concept name A ∈ C and any concept expression that
is constructed from a role R ∈ R (but not necessarily to the roles R ∈ R themselves).
Since for possibility degrees in {0, 1} the (fuzzy) semantics of concept constructors
in ALC coincides with the classical semantics in ALC, we know that a fuzzy inter-
pretation that satisfies T can be modified (easily) into a classical (i.e. crisp) model
of T. By the same line of argumentation, A ensures that in any model of π(T, C)
(and hence T ) the input concept C is ALC-satisfiable. The implication in the other
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direction is immediate since any crisp interpretation is a model of the additional TBox
components T ∗:

Proposition 1. C is satisfiable wrt. T in ALC iff π(T, C) is satisfiable in ALC.

It is straightforward to see that the many-one reduction π(T, C) can be computed in lin-
ear time (wrt. the size of T and C) for each finite set T of GCIs and concept expressions
C ∈ C(Σ). As an immediate consequence we get the following corollary:

Corollary 1 (EXPTIME-Hardness of KB Satisfiability). The problem of deciding the
satisfiability of KBs in ALC is EXPTIME-hard if GCIs are allowed.

EXPTIME-Membership. KB satisfiability in ALC is in EXPTIME since [18] shows that
checking KB satisfiability in ALC can be reduced (in polynomial time) to checking
KB satisfiability in ALC which is known to be in EXPTIME, since KB satisfiability is
in EXPTIME even for an extension of ALC, i.e. the more expressive DL SHIQ [21,
Corollary 6.30].

Theorem 1 (EXPTIME-Completeness of KB Satisfiability). The problem of deciding
the satisfiability of KBs in ALC is EXPTIME-complete if GCIs are allowed.

Besides KB satisfiability, one can show that also the following reasoning problems are
EXPTIME-complete: K |= C ≡ D, K |= C 	 D, concept disjointness wrt. K, concept
satisfiability wrt. K, K |= 〈o : C ≥ n〉, K |= 〈o : C ≤ n〉, and K |= 〈o : C = n〉; we
refer the reader for more details to [6].

4 A Decision Procedure Based on Fuzzy Type Elimination

We present a decision procedure for KB satisfiability in ALC which does not rely on
systematic search in the first place (as e.g. tableau-based methods), but instead con-
structs a canonical interpretation by means of a fixpoint construction. The so-
constructed (canonical) interpretation (if non-empty) satisfies the TBox of a KB and
allows to derive a model for the given knowledge base K iff K is satisfiable. In contrast
to tableau-based procedures a canonical interpretation is in general not tree-shaped.
Further, it can be shown that the number of iterations required to reach a fixpoint is
linear in the modal depth of K.

Preprocessing. Without loss of generality, we can restrict ourselves to normalized
knowledge bases [16], i.e. knowledge bases which contain only fuzzy ABox assertions
of the form 〈α ≥ d〉, by applying the following equivalent transformation fuzzy ABox
axioms: 〈i : C ≤ d〉 � 〈i : ¬C ≥ 1 − d〉 and 〈i : C = d〉 � 〈i : C ≥ d〉,
〈i : ¬C ≥ 1 − d〉. Further, we can assume that all axioms in K are in box normal form
(BNF) [10] (i.e. the only negative concept subexpressions are of the form ¬∀R.C or
negated atomic concept names ¬C), by exhaustively applying the following equivalent
transformation to concept expressions: ¬(C�D) � ¬C�¬D, ¬(C�D) � ¬C�¬D,
and ¬¬C � C. These preprocessing steps can be performed altogether in linear time
wrt. the size of the input KB.
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4.1 Basic Notions and Intuition

Types. Let K = (T , A) denote a normalized ALC knowledge base in BNF. The closure
of a knowledge base cl(K) is defined as the smallest set of concept expressions such that
for all C ∈ sub(K), if C is not of the form ¬D, then {C, ¬C} ⊆ cl(K). Further, let
PossDeg(K) denote the set of all relevant possibility degrees that can be derived from
K, i.e. PossDeg(K) = {0, 0.5, 1} ∪ {d|〈α ≥ d〉 ∈ A} ∪ {1 − d|〈α ≥ d〉 ∈ A}.
It has been shown in [17,18] that if K is satisfiable, then there is as well a model of
K which assigns possibility degrees in PossDeg(K) only. Hence, for our purposes we
do not need to consider arbitrary possibility degrees d ∈ [0, 1], but only the finite set
PossDeg(K) that can be derived from K.

We can then introduce the notion of a type, which allows to represent individuals of
an interpretation in a syntactic way:

Definition 2 (Fuzzy K-Type). A fuzzy K-type τ is a maximal subset of cl(K) ×
PossDeg(K) such that the following conditions are satisfied: 1. if 〈C, d〉 ∈ τ and
〈C, d′〉 ∈ τ then d = d′ 2. if C = ¬C′ then 〈C, d〉 ∈ τ iff 〈C′, 1 − d〉 ∈ τ 3. if
C = C′ � C′′ then 〈C, d〉 ∈ τ iff 〈C′, d′〉 ∈ τ and 〈C′′, d′′〉 ∈ τ and d = min(d′, d′′)
4. if C = C′ � C′′ then 〈C, d〉 ∈ τ iff 〈C′, d′〉 ∈ τ and 〈C′′, d′′〉 ∈ τ and d =
max(d′, d′′) 5. for all C 	 C′ ∈ T : if 〈C, d〉 ∈ τ and 〈C′, d′〉 ∈ τ then d ≤ d′ 6. if
C = � then 〈C, 1〉 ∈ τ .

Since cl(K) and PossDeg(K) are both finite sets, there are at most 2|cl(D)|·|PossDeg(K)|

different K-types. Each type τ can be seen as an individual and syntactically represents
all (fuzzy) properties that can be observed about that individual: 〈C, d〉 ∈ τ indicates
that the individual τ belongs to C with the possibility degree d. Hence, the set of all
K-types (or simply types) provides enough vocabulary to let us describe all kinds of
interpretations for K simply by fixing how to interconnect individuals (and therefore
types).

Canonical Model. It turns out that it is possible to connect types in a fixed (or canon-
ical) way, such that the interconnection defined is consistent with almost all properties
specified syntactically in the type. The interconnections can be derived from the types
themselves:

For a set of types T we can define for each role R a canonical accessibility relation
ΔR : T × T → PossDeg(K) that “maximally” interconnects types τ, τ ′ ∈ T with
possibility degree d ∈ PossDeg(K): let δ(d, d′) := 1 if d ≤ d′ and δ(d, d′) := 1 − d if
d > d′. Then, we can define ΔR by

ΔR(τ, τ ′) := min{δ(d, d′)|〈∀R.C, d〉 ∈ τ, 〈C, d′〉 ∈ τ ′}

if ∀R.C ∈ cl(K) for some C ∈ C, and ΔR(τ, τ ′) := 1 otherwise.
This way, we can construct a canonical interpretation IT for any given set of types T

using the canonical interconnection of types by ΔR as follows: IT = (T, ·IT ) with (i)
for any concept name C in K and any τ ∈ T we set CIT (τ) = d if 〈C, d〉 ∈ τ , and (ii)
RIT (τ, τ ′) = ΔR(τ, τ ′) for any role R in K and any τ, τ ′ ∈ T . Please note, that by our
definition of K-types, IT is well-defined for any concept name or role name. However,
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our definition deliberately leaves open the interpretation of individuals. We therefore
define in fact a class of canonical interpretations, each of which fixes a specific way of
how to interpret the individuals in a KB K.

The canonical interconnection in IT is chosen in such a way that all assignments of
possibility degrees to concepts of the form C = ∀R.C ∈ τ are lower bounds for the
possibility degrees that are in fact assigned by a canonical interpretation IT . Hence,
such a canonical interpretation is almost immediately a (canonical) model for the ter-
minology T , i.e. it satisfies that

CIT (τ) = d iff 〈C, d〉 ∈ τ (∗)

for almost all C ∈ cl(K) and therefore IT |= C 	 C′ for all C 	 C′ ∈ T by
clause (5) in our definition of K-types. That (∗) is satisfied by IT is straightforward
for the cases of concept names C, or complex concepts of the form C = C′ � C′′,
C = C′ � C′′, C = ¬C′ and the CIT (τ) ≥ d case for C = ∀R.C by our definition
of types and the definition of ΔR. The only cases where (∗) can be violated by IT

is for types τ containing universally role restricted concepts ∀R.C that are assigned a
possibility degree which is too small (wrt. the R-successor types τ ′ in IT ) to properly
reflect the semantics of ∀R.C in ALC, i.e. to coincide with the greatest lower bound of
the set

{max(1 − RIT (τ, τ ′), CIT (τ ′)) | τ ′ ∈ T }

Types τ in which the possibility degree assigned d to ∀R.C is too small to be consis-
tent with the semantics of ALC are called bad types. Bad types τ ∈ T can be detected
easily, since they satisfy that there exist R ∈ R, C ∈ C(Σ), d ∈ PossDeg(K) s.t.
〈∀R.C, d〉 ∈ τ and for all τ ′ ∈ T : if 〈C, d′〉 ∈ τ ′ then max(1 − ΔR(τ, τ ′), d′) > d.

This suggests the following simple algorithm (which uses a fuzzy type elimination
process at its core): in order to compute a maximal interpretation that satisfies all ter-
minological axioms, we start off with the maximal set of types (i.e all K-types) and
iteratively fix all problems that prevent (∗) from being satisfied by removing bad types.
This way, we must eventually reach a fixpoint after finitely many steps. If the resulting
set of types is non-empty, we know that (∗) must hold (since all problems have been
fixed) and therefore we can be certain that the corresponding canonical interpretation
satisfies T (and covers all other possible models of T at the same time). Hence, we
eventually need to check if all ABox axioms are satisfied by the canonical interpreta-
tion. If this is the case, we have found a model for K, otherwise, we know that there can
not be any interpretation that satisfies both T and A at the same time. In other words,
K is not satisfiable.

4.2 Algorithm

The type elimination process sketched above can be formalized as shown in Algo-
rithm 1. Note that the emptiness test for the fixpoint T is covered implicitly: if the
fixpoint T is empty, then the test in the if-statement fails trivially.

The termination, soundness, and completeness of our algorithm can be proven for-
mally (cf. [6] for full proofs):
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Algorithm 1. The Type Elimination-based Decision Procedure FixIt(ALC)

procedure satisfiable(K): boolean
T := {τ |τ is a K-type };
repeat

T ′ := T ;
T := T ′ \ badtypes(T ′);

until T = T ′ ;
if there exists a total function π : IndA → T s.t. 〈C,d′〉 ∈ π(o) and d ≤ d′ for each
〈o : C ≥ d〉 ∈ A, and ΔR(π(o), π(o′)) ≥ d for each 〈R(o, o′) ≥ d〉 ∈ A then

return true;
end
return false;

function badtypes(T ) : 2T

return {τ ∈ T |〈∀R.C, d〉 ∈ τ and for all τ ′ ∈ T : if 〈C, d′〉 ∈ τ ′ then
max(1 − ΔR(τ, τ ′), d′) > d};

Theorem 2 (Termination). For any ALC knowledge base K = (T , A) the algorithm
FixIt(ALC) terminates after finitely many steps with either true or false as return
value.

The following lemma is a key element of the soundness and completeness proof and
shows that by successively removing bad types we can indeed ensure that types encode
possibility degree assignments to concepts that coincide with the canonical interpreta-
tion, and that any such canonical interpretation is a model of the T .

Let T be the set of types that is computed as the fixpoint in the algorithm
FixIt(ALC), i.e. badtypes(T ) = ∅ and let IT = (T, ·IT ) be a canonical interpretation
for T as defined above.

Lemma 1. For each K-type τ , concept C ∈ cl(K) and d ∈ PossDeg(K) it holds that
CIT (τ) = d iff 〈C, d〉 ∈ τ . Further, IT |= T .

Theorem 3 (Soundness). If FixIt(ALC) returns true for a ALC knowledge base K =
(T , A), then K is satisfiable.

A second key element for the completeness proof is the following lemma that shows
that our canonical way of interconnecting types (in the fixpoint set) is maximal or the
strongest possible one in the following sense: the interconnection R of individuals o, o′

defined by any model I of K is covered by the canonical interconnection ΔR of the
respective types τ(o), τ(o′) representing o, o′ in I.

Lemma 2. Let I = (ΔI , ·I) be any model of K = (T , A). For each individual o ∈ ΔI

we define its corresponding type τ(o) := {〈C, d〉 ∈ cl(K) × PossDeg(K)|CI(o) = d}.
Then, ΔR(τ(o), τ(o′)) ≥ RI(o, o′) for all o, o′ ∈ ΔI .

Theorem 4 (Completeness). If an ALC knowledge base K = (T , A) is satisfiable,
then FixIt(ALC) returns true for K.
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This leads to the main result, which is an immediate consequence of Theorems 3, 4,
and 2:

Corollary 2. The algorithm FixIt(ALC) is a sound and complete decision procedure
for knowledge base satisfiability in ALC.

4.3 Runtime and Space Requirements

We now analyze the runtime and space requirements of our algorithm based on a naive
implementation model to derive upper bounds. The considered implementation works
directly on types and explicit representations of sets of types.

In the following we assume that the number p of different possibility degrees that
can occur in any KB K is fixed. This assumption seems realistic and does not restrict
applications of FDLs in practice, i.e., we can assume a limited (numerical) resolution of
sensors and algorithms (or humans) assigning possibility degrees to individual observa-
tions. Further, we consider the computation of the basic functions min ,max , 1 − d and
comparisons d ≤ d′ as atomic operations with unit costs.

Representation. According to Def. 2, a K-type τ is a function τ : cl(K) → PossDeg(K)
that satisfies a particular consistency property. Fix some total order 〈C1, C2, . . . , Ck〉 on
the subset cl+(K) of cl(K) that consists of all positive concept expression Ci ∈ cl(K).
Then, we can represent a type τ by a sequence of pairs

τ = 〈d1, d1〉, 〈d2, d2〉, . . . , 〈dk, dk〉

with k = |cl+(K)| ∈ O(|K|), where di represents the possibility degree assigned to
a positive concept subexpression Ci ∈ cl(K) and di represents the possibility degree
assigned to a negative concept subexpression ¬Ci ∈ cl(K). There are only finitely
many relevant possibility degrees. Assuming a binary encoding 〈·〉01 : PossDeg(K) →
{0, 1}p of possibility degrees, each such sequence requires at most 2·k ·log2(p) ∈ O(k)
bits. Clearly, not each such sequence represents a K-type. However, for any sequence
checking the consistency requirements from Def. 2 can be done time O(k · |T |) and
space O(1): property (1) is satisfied already by our encoding, properties (2)-(3) and (6)
can each be decided in O(k), property (5) requires O(k · |T |) computation steps. In any
case, we need only O(1) additional space for the computation.

The algorithm can be separated into three different phases: the initialization step, the
fixpoint computation, and the final test. We analyze all of these steps one-by-one.

Initialization Phase. To compute the set of all K-types, we generate any sequence
〈d1, d1〉, 〈d2, d2〉, . . . , 〈dk, dk〉 s.t. di, dk ∈ PossDeg(K). For each sequence this re-
quires at most 2k steps. Testing if such a generated sequence satisfies the consistency
requirements, takes at most O(k · |T |) steps and only constant additional space. Any
sequence that satisfies the consistency requirements is stored in a linked list. During the
initialization phase, we need to check p2k sequence, which requires O(p2k · k · |T |)
computation steps and O(p2k · k) space.
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Fixpoint Computation. The current set of types T in the fixpoint computation is rep-
resented as linked list from which elements are removed during this phase. Clearly,
the function δ(d, d′) can be computed in constant time. The computation of ΔR(τ, τ ′)
therefore can be performed in O(k2) computation steps and constant additional space
for any two given types τ, τ ′. Given a type τ ∈ T , we can then determine if τ is a bad
type (wrt. T ) in O(k · (|T | · k2)) = O(k3 · |T |) basic computation steps using constant
space only. This test has to be performed for all |T | types in T in order to compute T ′.
Removing a bad type from the current list of types T requires O(|T |) time and constant
additional space. To find out if we reached a fixpoint after an iteration, we can simply
use a boolean variable, which is set to false at the beginning of each loop and set to
true if a type is removed from the list. This requires at most O(|T |) additional assign-
ments and one boolean comparison during each iteration and constant additional space.
Hence, each iteration of the loop (to compute T ′) requires O((k3 + 1) · |T |2 + |T |)
computation steps and constant additional space.

Let t denote the size of the initial set of types T . Since we need at most t iterations
to reach a fixpoint, we can compute the fixpoint in at most O((k3 + 1) · t3 + t) steps
using O(t) additional memory units. Since t ≤ p2k, we can derive O((k3 + 1) · p6k +
p2k) as an upper bound on the number of computation steps performed for the fixpoint
computation and O(p2k) as an upper bound for the additionally required space.

Final Test. We can represent a total total mapping π : IndA → T as a mapping from
IndA to the index of an element in the list T . This requires, O(i · log2(t)) additional
memory units with i = |IndA| and lookups for values of π can be performed in O(t)
time using a hashing function and a subsequent iteration over the list representing T .
Given such a mapping π, we can therefore determine if the required property in the if-
statement in Algorithm 1 is satisfied by π in at most O(a ·(t ·k2)) steps (where a = |A|)
using O(1) additional memory only. We can generate any such mapping π : IndA → T
in at most O(i·log2(t)) steps. Further, there are at most ti different such mapping, which
we can generate and test one-by-one. Hence, we can implement that final test using at
most O(ti · (i · log2(t) + a · (t · k2))) = O(p2ki · (i · k · log2(p) + a · (p2k · k2))) steps
and O(i · k · log2(p)) additional memory units.

Overall runtime and space bounds. For an upper bound on the overall execution of the
algorithm, we can sum up the runtime and space bounds for the three different phases
above: In regard of runtime, the algorithm requires no more than O(p2k ·k · |T |+(k3 +
1) ·p6k +p2k +(p2ki ·(i ·k · log2(p)+a ·(p2k ·k2)))) computation steps. In regard of the
space, the algorithm requires no more than O(p2k ·k+p2k + i ·k · log2(p)+ |K|) space.
Since k, i ∈ O(|K|) and since we assume that p is a constant (and hence independent
from a size of a KB K), the algorithm requires at most exponentially many computations
steps and an exponential amount of memory in regard of the size of the input KB K.

This means that (under the realistic assumptions) our algorithm can be implemented
in a way that is worst-case optimal in regard of the runtime of the algorithm, since
by Theorem 1 the problem of determining the satisfiability of a KB in ALC requires
exponential time (wrt. the size of the input KB) in the worst case. Further, note that ap-
plying a standard tableau-based decision procedure (e.g. [1]) to (crisp) equisatisfiable
ALC-reduction of a general ALC KB usually yields only a NEXPTIME-upper-bound
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on the runtime of such an (indirect) decision procedure. Therefore, indirect reasoning
approaches by reduction to classical tableau-based methods usually can only give sub-
stantially worse runtime guarantees.

Consequently, the major obstacles when using the algorithm in practice are (i) the
exponential space requirement and (ii) the necessity to consider all types in τ ∈ T
during each loop one-by-one. These problems are mainly based on the fact that we
use explicit representations of set of types. A potential solution to these problems is
known from the area of Symbolic Model Checking [8] and has already been success-
fully applied for the implementation of the KBDD procedure in [10]: the use implicit
(or declarative) representations of sets of types by means of formulae and to implement
set-theoretic operations by formula modifications and (un)satisfiability tests. In partic-
ular, set-theoretic operations on sets can be implemented as set-at-a-time operations
instead of element-at-a-time operations which can speed up computation significantly.

5 Discussion: Reasoning with Terminologies in Fuzzy
Tableau-Based Methods

Tableau-methods can be used to determine the satisfiability of KBs. In order to detect
the satisfiability status of a given KB K = (T , A), they construct tree-structured labeled
graphs (i.e. completion graphs). The nodes in a completion graph represent individuals
in an interpretation I for K and the edges capture the interrelation of individuals via
roles in K. Node labels capture (bounds on) the degree to which the individual rep-
resented by the node is a member of a concept, edge labels specify (bounds on) the
degree of interrelation of the connected individuals wrt. roles. The completion graph is
initialized to represent the ABox A. Then, it is stepwise extended by analyzing concept
labels of nodes and interrelations. An expansion can create new labels for nodes and
edges and insert new nodes and edges into the graph. The extension process follows a
set of so-called completion rules which are exhaustively applied. During the comple-
tion process non-deterministic choices can appear: there might be more than one way to
extend the graph further, but we can not tell which of these extensions will eventually
lead to a successful construction of a model for K (if there is one). In order to stay
complete, all possible choices (for any node and any node label) need to be considered
as long as no model has been constructed yet. The latter can be determined by checking
labels for elementary contradictions (in regard of the specified bounds on membership
degrees). If no completion rules are applicable anymore and there are no labels to nodes
and edges which contain an elementary contradiction (i.e. we have a fully-expanded and
clash-free completion graph), then we found in fact a (witness for a) model for K. If no
such graph can be constructed at all, K is unsatisfiable.

Example. Consider the ABox A = {〈i : ∀R.¬B � ∃R.(B � C) ≤ 0.4〉, 〈i : ∀R.C ≥
0.7〉}. The completion process starts with the completion graph

i

L0 = {〈∀R.¬B 	 ∃R.(B � C) ≤ 0.4〉, 〈∀R.C ≥ 0.7〉}
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Since i can be a member of ∀R.¬B �∃R.(B �C) only up to degree 0.4, we can derive
upper bounds on the possibility degree for i wrt. ∀R.¬B and ∃R.(B �C) directly from
the semantics of the concept constructor � and update the label by two new constraints

i

L1 = L0 ∪ {〈∀R.¬B ≤ 0.4〉, 〈∃R.(B � C) ≤ 0.4〉}

To satisfy 〈∀R.¬B ≤ 0.4〉, we introduce a new R-successor node j, a constraint on the
degree of R-interrelation between i and j, and a constraint on the degree of membership
of j in ¬B. Both constraints follow immediately from the semantics of the universal role
restriction in ALC:

i

L1

j

L′
0 = {〈¬B ≤ 0.4〉}

{〈R ≥ 0.6〉}

To satisfy the constraint 〈∀R.C ≥ 0.7〉 ∈ L1 we add 〈C ≥ 0.7〉 to L′
0. Further, in ALC

〈¬B ≤ 0.4〉 ∈ L′
0 can be rewritten as 〈B ≥ 0.6〉

i

L1

j

L′
1 = {〈B ≥ 0.6〉, 〈C ≥ 0.7〉}

{〈R ≥ 0.6〉}

Finally, the only constraint that we did not consider yet is 〈∃R.(B � C) ≤ 0.4〉 ∈ L0.
To ensure the satisfaction of this concept expression, we need to add 〈B � C ≤ 0.4〉
(since the edge constraint 〈R ≥ 0.6〉 and the upper bound 〈R ≤ 0.4〉 are inconsistent
with each other):

i

L1

j

L′
2 = L′

1 ∪ {〈B � C ≤ 0.4〉}
{〈R ≥ 0.6〉}

Considering the semantics of the concept intersection in ALC, 〈B�C ≤ 0.4〉 is satisfied
iff 〈B ≤ 0.4〉 or 〈B ≤ 0.4〉 are satisfied. Hence, we face a non-deterministic choice
point in the completion process. Since all possible extensions lead to an unsatisfiable
constraint systems node j in the completion graph, we can conclude that the given
ABox A is unsatisfiable.

Tableau-based implementations deal with (or) non-deterministic choice points by
backtracking. Since for any choice, an unsatisfiable node might be detected only after
a lot of node label and graph extension steps, backtracking can become a very costly
operation.

Integration of GCIs. In order to integrate GCIs into the completion graph extension
process sketched above, standard tableau-based methods (e.g. [16], and similarly [7])
exploit the following observation: An interpretation I satisfies the GCI C 	 D (i.e. I |=
C 	 D) iff for all (relevant) possibility degrees n ∈ PossDeg(K) and all individuals
i ∈ ΔI either 〈i : C < n〉 or 〈i : D ≥ n〉 holds.

To reflect this property in the tableau completion process, a non-deterministic rule
for the extension of node labels is added to the inference system: for each node i in the
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completion graph, each GCI C 	 D in the TBox, and each (relevant) possibility degree
n, we either insert the constraint 〈i : C < n〉 or 〈i : D ≥ n〉 into the current node
label.

It is obvious that using this new inference rule GCIs essentially become the major
source of non-determinism for tableau-based inference procedures: for each node i ap-
pearing (somewhen) in the completion graph, we have a distinct alternative for each rel-
evant possibility degree n ∈ PossDeg(K) and each GCI C 	 D ∈ T . Hence, for each
node i on a path of length l in the completion graph, we get up to |PossDeg(K)| · |T |
different alternatives. This makes up to l|PossDeg(K)|·|T | distinct cases that need to be
considered during the completion process in the worst-case. It is further known [1] that
when supporting GCIs, the maximal path length in the completion graph can be limited
only by an upper bound that is (itself) exponential in the size of the input ABox A (us-
ing a technique called blocking). This gives a doubly-exponential runtime for tableau-
based methods in the worst case, such that without clever implementation techniques
and good heuristics for guiding the backtracking search, a tableau-based reasoner in-
tegration GCIs as described above might not be usable even in rather small practical
scenarios.

In this paper, we present a method that does not suffer from this problem, i.e. no
non-deterministic choice-points are introduced.

6 Related Work

Our method FixIt(ALC) generalizes the principle (i.e. a type elimination process) un-
derlying the top-down variant of the KBDD procedure proposed in [10] for the modal
logic K to the (more expressive) FDL ALC. Further, our method integrates (fuzzy)
ABoxes and TBoxes in the inference process both of which are not dealt with in KBDD.

Inference Algorithms for FDLs and Reasoning with GCIs. So far, reasoning in Fuzzy
DLs has been mostly based on tableau-methods (e.g., [7,15,16,17]). Most of these
methods do not support reasoning with general terminologies as it is possible with
FixIt(ALC). The first method ever to integrate GCIs into FDL reasoning is [16]. A
very similar approach is presented in [7] for the fuzzy variant of a more expressive DL,
namely SHI . Very recently, [20] proposed a novel and elegant method for reasoning
with GCIs (under a more general semantics than here) which is inspired by earlier works
on tableau-based reasoning in multi-valued logics. The method combines a tableau-
construction procedure with a Mixed Integer Linear Programming (MILP) solver that
serves as an oracle to the FDL tableau procedure. To the best of our knowledge there is
no other approach to deal with GCIs in FDLs available at present. FixIt(ALC) there-
fore represents an interesting enrichment of inference calculi toolbox for FDLs, since no
non-determinism is introduced by considering GCIs. A similar effect is achieved in [20]
by the substantial modification of a standard tableau-based method and an extension
with an MILP oracle: the tableau-expansion process does not become non-deterministic
by introducing GCIs. However, depending on the solution techniques applied inside the
MILP solver, non-determinism might simply be shifted from the tableau-construction
process into the MILP oracle. In such cases, respective computational inefficiencies
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would then simply be hidden in then MILP oracle, but not actually resolved. A very
similar approach that is not fixed to a specific semantics is presented in [3].

Further, [18] demonstrates how to use inference procedures for classical DLs to per-
form reasoning in (some) FDLs. This allows to use algorithms that have been developed
for classical DLs in FDL reasoning (for some FDLs) in an indirect way. Please note that
the KBDD procedure can not be used in such an indirect way to perform ALC reason-
ing, since both TBoxes and ABoxes are not supported.

[4,5] consider a fuzzy version of ALC using arbitrary continuous t-norms (and the
corresponding residuated implications) to define the semantics of the concept construc-
tors and proposes a method for deciding ∅ |= 〈C 	 D ≥ 1〉 and the satisfiability
of 〈C 	 D ≥ 1〉 by mapping to a (decidable) propositional fuzzy logic. The gener-
ated propositional problems can be exponentially bigger than the FDL input problem.
Although, the semantics considered in [4,5] is more general than here (but differs for
universal role restrictions), the proposed decision procedures cover more limited rea-
soning tasks, i.e. no background knowledge K is considered.

7 Conclusions and Future Work

We presented a novel procedure FixIt(ALC) for deciding knowledge base (KB) sat-
isfiability in the FDL ALC, introducing a new class of inference procedures into FDL
reasoning. Besides the tableau-based methods [3,7,16,20], it is the only (and the first
non-tableau-based) approach to integrate general terminologies in FDL reasoning that
we are aware of.

Additionally, we clarified the worst-case complexity of the reasoning problem that is
solved by the algorithm and showed that deciding the satisfiability of a KB in ALC is
an EXPTIME-complete problem. A discussion of a (straigthforward) implementation of
the algorithm based on explicit representations of types shows that our algorithm can
be implemented in a way that is worst-case optimal wrt. its runtime.

The main research questions that we want to address next are as follows: we will
study means of implicit representation of sets of fuzzy types known from Symbolic
Model Checking [8], in particular their implementation by means of Ordered Binary
Decision Diagrams (OBDDs) [2] similar to [10], therefore addressing the main obstacle
to apply the procedure in practice. A major question concerning optimization is clearly
how to implement the final test of the algorithm efficiently, e.g. by heuristic search using
the information in the ABox effectively to find the required mapping. The integration
of optimizations such as full vs. lean representations or particle vs. types as discussed
in [10] should be straightforward. We want to evaluate the effectiveness of the method
by an implementation and comparison to tableau-based systems for FDLs. Moreover,
we believe that it is interesting to study a bottom-up variant of KBDD in the context
of FDLs too, and to check if the integration of ABoxes can be done more efficiently
in such a variant. Finally, we would like to see to what extend the method can cover
other semantics for FDLs (e.g. other t-norms) and extended constructs, such as fuzzy
modifiers and concrete domains.
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Abstract. We address the problem of quantitative comparison of clas-
sical and intuitionistic logics within the language of the full propositional
system. We apply two different approaches, to estimate the asymptotic
fraction of intuitionistic tautologies among classical tautologies, obtain-
ing the same results for both. Our results justify informal statements
such as “about 5/8 of classical tautologies are intuitionistic”.

1 Introduction

It is a standard approach to use the notion of density [6,1] to analyse quanti-
tative relations between countable sets. The general idea is to consider subsets
of elements of bounded size, and to observe the uniform measure of one subset
in the other when the maximal allowed size tends to infinity. This approach
requires that the number of elements of bounded size is finite.

One of the first papers to address the quantitative aspects of intuitionistic
logic was [6], which (according to the authors) was partially motivated by the
short note in some paper of Statman saying:“It is a good bet but not a sure thing,
that ρ (type) contains a closed term”. Most results of that paper were formulated
in terms of inhabitation of types in simple λ-calculus. However, under Curry-
Howard isomorphism (see e.g. [8]), they translate directly to the framework of
intuitionistic logic.

The authors of [6] considered calculus with a finite number of ground types,
and only functional types. In terms of logical formulae it means that the number
of different variables in a formula was bounded by some constant, and the only
allowed connective was ⇒. The authors proved that at least 1/3 of classical
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tautologies are intuitionistic and gave some lower and upper bounds (dependent
on the number of allowed variables) for the density of intuitionistic tautologies
among all the formulae. They have also conjectured that, among the formulae
with the number of different variables bounded by any constant, the probability
that a classical tautology of size n, chosen uniformly at random, is intuitionistic,
tends to one, when n goes to infinity. The conjecture was known to be true
for the formulae using only one variable for the trivial reason that both sets of
tautologies are equal in this case.

Although the conjecture of [6] is false, a slight reformulation turned out to
be true. The authors of [3] proved that the lower bound for the density of in-
tuitionistic logic in the classical one tends to 1, when the number of allowed
variables tends to infinity. This counter-intuitive result raised a question about
the appropriateness of the approach. In fact, the assumption about the bounded
number of variables seemed to have a strong influence on the result. In the paper
[4] the authors suggested another approach, in which formulae was considered
up to a renaming of variables (i.e. two formulae which differ only in the naming
of variables were assumed to be equal). In that case the authors could deal with
formulae with an unbounded number of variables, while preserving the property
that there is only a finite number of formulae of bounded size. In that setup,
using methods similar as in [3], the authors obtained an analogous result - the
density is equal to 1. We want to emphasize at this point that the fact that
both results coincide is in our opinion no less surprising that the fact that the
densities tend to 1.

The work presented in this paper is a continuation of this research, considering
other languages of propositional formulae. Among them the most interesting is
the language which admits all the usual connectives ⇒, ∧, ∨, and the constant
⊥. We prove that in this case the coherence of the results in both approaches is
preserved, even though the limit is no longer equal to 1, but to 5/8.

2 Prerequisites and Results

For any set of finite elements A and n ∈ N we denote by A(n) the number of
elements of set A with size n (the element is finite if it has finite size).

Formulae and Terms. Let Var = {x1, x2, x3, . . .} be a countable set of vari-
ables, ⊥ be a constant, and C = {⇒, ∨, ∧} be a set of binary connectives. A term
in our system is a binary complete tree with internal nodes labelled by the ele-
ments of C and leaves labelled by the elements of Var∪{⊥} (precisely the tree is
rooted and planar i.e. the order of descendants matters). For every k ∈ N let Fk

denote the set of terms whose variables belong to the set Vark = {x1, . . . , xk}.
The set of all terms is denoted by Term. The size of a tree is its number of leaves.

Two terms are α-equivalent if they differ only in the naming of variables, i.e.
(ϕ, ψ) ∈ α if there exists injective relabelling function r : Var → Var, such that
we obtain ψ after relabelling variables from ϕ according to r. Clearly, α is an
equivalence relation. We denote Term/α by F∞. We use the name formula both
for terms and for elements from F∞.
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Intuitionistic Logic. For a general reference about intuitionistic logic we sug-
gest e.g. [8]. These are well known facts that every intuitionistic tautology is
classical, and that the converse is not true (even for implicational fragment). In
our proofs we use also the fact that the Heyting algebra of open subsets of R

(with respect to euclidean topology) is a complete model for the propositional
intuitionistic logic.

2.1 Main results

Let Cl, Int ⊂ Term denote the sets of terms which are respectively classical and
intuitionistic tautologies. For every k ∈ N we put

Clk = Cl ∩ Termk, Intk = Int ∩ Termk,

and
Cl∞ = Cl/α, Int∞ = Int/α.

Let a sequence (dk(n))n∈N be defined as: dk(n) = Intk(n)/Clk(n). Each frac-
tion dk(n) equals the probability that a formula, chosen uniformly at random
among the set of elements of Clk of size n, is an intuitionistic tautology. If the
sequence converges, its limit is denoted by Dk and is called the (relative) density
of Intk in Clk. We do not address the problem of existence of Dk. We use the
following bounds instead:

D−
k = lim inf

n→∞
dk(n), and D+

k = lim sup
n→∞

dk(n).

The first of our main results says:

lim
k→∞

D−
k = lim

k→∞
D+

k =
5
8
.

This is analogous to the approach taken in [3] for the implicational fragment.
In that case the limit was 1.

Considering the formulae “up to the names of variables” enables an arbitrary
number of different variables in formula, while preserving the property that
there is only a finite number of formulae with bounded size. In this approach we
consider the sequence (d∞(n))n∈N defined as follows: d∞(n) = Int∞(n)/Cl∞(n).

The second of our main results says that

lim
n→∞

d∞(n) =
5
8
.

We could give an informal interpretation that “about 5
8 of classical tautologies

are intuitionistic”. It was proved in [4] that the analogous approach for the
implicational fragments gives the density 1.

We derive both results in an unified way from some structural properties of
tautologies.
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2.2 Structure and Labelling

For every formula ϕ, the structure of ϕ is a binary tree constructed from ϕ by
forgetting about the labelling of its leaves (e.g. by changing it so that each leaf
is labelled by •). The definition can be naturally extended to the formulae from
F∞, since all the terms in each equivalence class have the same structure. The
set of structures in our system is denoted by T . It is the set of binary complete
trees with internal nodes labelled by ⇒, ∧ or ∨ and all leaves labelled by •.

We say that a node is an ⇒-node if the node is labelled with ⇒. We use an
analogous convention for the other connectives.

For a formula ϕ ∈ Fk with n leaves, a leaf labelling of ϕ is a function f :
{1, . . . , n} → Vark ∪ {⊥} such that f(i) coincides with the label at the i-th leaf
of ϕ. We call such a function a k-labelling of size n.

For a formula [ϕ] ∈ F∞ with n leaves, a leaf labelling of [ϕ] is the equiva-
lence relation R on the set {0, 1, . . . , n} consisting of all the pairs of numbers
of leaves which are labelled by the same symbol (variable or ⊥) and all the
pairs (0, j), (j, 0) for each leaf j labelled with ⊥. Note that the relation R does
not depend on the chosen representative of the equivalence class [ϕ]. It contains
information about which leaves are labelled by the same variable (but not by
which variable), and which leaves are labelled with ⊥. We call such a relation a
∞-labelling of size n.

As usual the size of a formula is the number of its leaves. We use the same
convention for the size of a structure. We denote by T (n) the number of trees
from T of size n.

Note, that in all the considered cases (bounded for every k ∈ N and un-
bounded) we have a one-to-one correspondence between the structure-labelling
pairs of the size n and the formulae of that size. That fact is reflected in simple
expressions for the numbers of formulae of size n. We have

Fk(n) = T (n)(k + 1)n, F∞(n) = T (n)B(n + 1), (1)

where B(n + 1) is the number of equivalence relations on the set {0, 1, . . . , n},
known as Bell number (see e.g. [5]).

2.3 Generating Functions

Within this paper we make an extensive use of the theory of generating functions
and analytic combinatorics (see [2]). All the generating functions in this paper
are ordinary ones.

We use a notation which always exposes the formal parameters of a generating
function. E.g. we write g(z) instead of g for some generating function

∑
n∈N

gnzn.
Although the notation may be a little bit misleading it provides a convenient way
of expressing substitutions for formal parameters. It is a standard convention to
denote by [zn]g(z) the coefficient gn (for the function g(z) defined as above).

One of the most basic generating functions in this paper is the one enumerat-
ing all the structures. We denote it by t(z). By a standard constructions we get
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an algebraic equation for t(z), where z marks the size:

t(z) = 3t(z)2 + z.

Solving this equation (and choosing the proper solution) we get

t(z) = (1 −
√

1 − 12z)/6.

The radius of convergence of t(z) is ρ = 1
12 , t(z) is bounded within its circle

of convergence, and t(ρ) = limz→Rρ− t(z) = 1
6 .

Lemma 1. Let f, g ∈ Z[[z]] be algebraic generating functions, having a common
unique dominating singularity at � ∈ R+. Suppose that these functions have
Puiseux expansions around � of the form

f(z) = cf + (z − �)
1
2 (df + o(1)) , g(z) = cg + (z − �)

1
2 (dg + o(1)) .

with both df , dg being nonzero. Then: limn→∞
[zn]f(z)
[zn]g(z) = limz→R�−

f ′(z)
g′(z) .

Using Theorem VII.8 from [2] we obtain this equality because both sides are
equal to df/dg.

3 Structural Properties of Tautologies

Within this section we consider structural properties of tautologies, which are in-
dependent of the approach we use (bounded or unbounded). In order to obtain
results independent from the kind of labelling, we use F to denote the set of for-
mulae under consideration, and the function Lab : N → N which for every n ∈ N

returns the number of all different labellings of the structure of size n. In par-
ticular we get results for the unbounded approach by setting F equal to F∞ and
Lab(n) = B(n+1). In an analogous way the results are translated to the bounded
case for every fixed number of variables k by substituting F with Fk and Lab(n)
with (k + 1)n. E.g. in this convention equations (1) are formulated as

F(n) = T (n)Lab(n).

Pointed Structures. An m-pointed structure is a pair (t, s) of a structure t
and a sequence of m different leaves of t. Usually we use a pointed structure
to encode some constraints on the allowed labellings. For example let A denote
some set of 1-pointed structures and consider the set of formulae FA, which
can be constructed from elements of A by the labellings which assign ⊥ to the
pointed leaf. For every structure a ∈ A of size n we are free to label all the
remaining leaves. Therefore, there are Lab(n−1) labellings which give a formula
from FA from the structure a. Therefore FA(n) � A(n)Lab(n − 1).
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Tree Decomposition. We say that a node v in a tree t ∈ T is k-shallow if the
path from the root to v goes at most k times to the left from a node labelled
with ⇒. We say it is a k-layer node if it is k-shallow but not (k − 1)-shallow.

To obtain an upper bound for the number of tautologies we focus on 3-shallow
leaves.

Let us consider the set of trees P ⊂ T such that every left subtree of every
node labelled with ⇒ is a leaf (i.e. all 1-layer nodes are leaves). Let p(t, u) be the
generating function for such trees with t marking leaves which are left sons of
⇒-node, and u marking the remaining leaves (t denotes a formal parameter, not
the generating function for all trees which we denote by t(z)). The generating
function is given implicitly by an initial condition and by the equation

p(t, u) = t · p(t, u) + 2p(t, u)2 + u, (2)

which reflects the fact that every such a tree is either an implication with the left
subtree being a 1-layer leaf and the right subtree belonging to P , or a conjunction
or a disjunction with both subtrees belonging to P , or a leaf (which is a 0-shallow
leaf).

Clearly, p(t(z), uz) is the generating function of all structures, with z marking
the size and u marking 0-shallow leaves. We define a sequence of generating
functions:

p�0(t, u) = t p�n+1(t, u) = p(p�n(t, u), u).

Each function p�n(t, u) is the generating function of the set of structures in
which all (n + 1)-layer nodes are leaves, with u marking n-shallow leaves, and
t marking leaves which are left sons of n-layer ⇒-nodes (i.e. all (n + 1)-layer
leaves). Since every node in every tree is an i-layer node for exactly one i, we
get for every n ∈ N, t(z) = p�n(t(z), z).

Proposition 1. For s, m ∈ N let T (m)
�s denote the set of m-pointed structures

with all pointed leaves being s-shallow (we call them s-shallow m-pointed struc-
tures). There exists a positive constant cs,m ∈ R such that

lim
n→∞

T (m)
�s (n)
T (n)

= cs,m.

Proof. Solving the equation (2) and using the fact that p(0, 0) = 0 we get

p(t, u) =
1
4
(1 − t −

√
(1 − t)2 − 8u).

It shows that the function p(t, u) is holomorphic in the set Dε = {(t, u) ∈ C
2 :

|t| � 1
6 + ε, |u| � 1

12 + ε} for some small positive ε ∈ R (note that t(ρ) = 1
6

and ρ = 1
12 ). By non-negativity of the coefficients of the expansion of p(t, u) at

0 we get that max(t,u)∈D0 |p(t, u)| = p(1
6 , 1

12 ) = 1
6 . Therefore each p�s(t, u) is

holomorphic in Dε (for some positive ε ∈ R) and so are all its partial derivatives,
in particular ∂mp�s(t,u)

(∂u)m . The latter function is exactly the generating function
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of s-shallow m-pointed structures in which all (m + 1)-layer nodes are leaves
(marked with variable t). It remains to substitute the generating function of all
structures for t to obtain the generating function for all s-shallow m-pointed
structures. We substitute u with z so that the variable z marks all the leaves
(after pointing we are no longer interested in s-shallow leaves). As a result we
obtain a function

pm,s(z) =
∂mp�s(t, u)

(∂u)m
|u:=z,t:=t(z),

which is the generating function of the set of all s-shallow m-pointed structures.
Let D̂ε denote the set Dε \ [ρ, ∞]. Then the function t(z) is analytically continu-
able to the set D̂ε, and since the outer function is holomorphic in D̂ε we know
that the function pm,s(z) is analytically continuable to that set. On the other
hand the combinatorial interpretation shows that pm,s(z) must have singularity
in ρ. Therefore we know that pm,s(z) has unique dominating singularity in ρ. In
fact we know also that the limit limz→Rρ− pm,s(z) < ∞, therefore the singularity
is not a pole. Since pm,s(z) is algebraic, the singularity must be a branching
point. By the fact that t(v2) is analytic at ρ we get that pm,s(v2) is analytic
as well, which shows that the branching type of pm,s(z) at ρ is 2 (we excluded
the existence of pole). Finally, the fact that limz→Rρ− p′m,s(z) = ∞ shows that
the singularity is of the square root type. A straightforward application of the
Lemma 1 proves the result.

In fact we need the Proposition 1 only for the sets T (2)
�3 , T (3)

�3 , T (4)
�3 , and the results

for these sets can be easily established by explicit calculations of their generating
functions.

Shallow Repetitions. For every formula ϕ and set of its leaves L we say that
ϕ has r repetitions among the leaves from L if r equals the difference between
the cardinality of L and the number of different variables assigned to the leaves
from L. If the set L is the set of k-shallow leaves we say that ϕ has r k-shallow
repetitions. Note, that the occurrence of the constant is treated as a repetition
e.g. the formula x ⇒ ⊥ has one repetition among all its leaves.

Proposition 2. Within the set of elements of F of size n, the fraction of formu-
lae with at least two 3-shallow repetitions is asymptotically bounded from above
by cLab(n−2)

Lab(n) . Formally, let F [�2]
�3 denote the set of formulae with at least two

3-shallow repetitions, we have

F [�2]
�3 (n)
F(n)

� c
Lab(n − 2)

Lab(n)

Proof. Every formula ϕ ∈ F [�2]
�3 satisfies at least one of the following properties:

A . ϕ contains two 3-shallow leaves labelled with ⊥;
B . ϕ contains one 3-shallow leaf labelled with ⊥ and two 3-shallow leaves

labelled by the same variable;
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C . ϕ contains three 3-shallow leaves labelled by the same variable;
D . two variables occur at least twice among 3-shallow leaves of ϕ.

Let FA, FB, FC , FD denote the sets of formulae from ϕ ∈ F [�2]
�3 with the

previous properties. Clearly

F [�2]
�3 (n) � FA(n) + FB(n) + FC(n) + FD(n),

and the inequality is usually strict.
Every formula from FA contains at least two 3-shallow leaves labelled with

⊥. Therefore it can be constructed from a 3-shallow 2-pointed structure by some
labelling which assigns ⊥ to the pointed leaves. Hence

FA(n) � T (2)
�3 (n) · Lab(n − 2).

An analogous reasoning for the other sets gives:

FB(n) + FC(n) � 2 · T (3)
�3 (n) · Lab(n − 2),

FD(n) � T (4)
�3 (n) · Lab(n − 2).

Using these equations and Proposition 1 we obtain

F [2]
�3(n)
F(n)

�
(T (2)

�3 (n) + 2T (3)
�3 (n) + T (4)

�3 (n))
T (n)

Lab(n − 2)
Lab(n)

∼ (c2,3 + 2c3,3 + c4,3) · Lab(n − 2)
Lab(n)

.

The above proposition will be used to show that we can neglect all formulae
with at least two 3-shallow repetitions, since the number of them will be shown
to be essentially smaller than the number of tautologies.

Simple Classical Tautologies. For a formula ϕ let a boolean valuation v1
ϕ

assign True only to those variables which have occurrences on the first layer,
and v1,3

ϕ only to those which have occurrences on the first or third layer. The
following proposition is a consequence of the fact that if there is no 1-shallow
repetitions in ϕ, then the formula is valuated to False by v1

ϕ.

Proposition 3. If a formula ϕ does not contain at least one 1-shallow repeti-
tion, it is not a classical tautology.

Definition 1. A positive path in a formula (tree) is a path from the root to
some node, which never crosses a ∧-node, and never goes left from a ⇒-node.
A node is called positive if there exists a positive path to it (see Fig. 1).

Definition 2. A negative path in a formula (tree) is a path from the root, which
contains a positive ⇒-node h, such that the path is going left from h and then
follows only ∧-nodes (if any). A node is called negative if there exists a negative
path to it (see Fig. 1).
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Fig. 1. From left to right: a positive path, not a positive path, a negative path, a tree
with a negative leaf labelled with ⊥

For every formula it is enough to valuate one of its positive nodes to True
or one of its negative nodes to False, to ensure that the valuation of the whole
formula is True.

These two definitions give rise to two large families of classical tautologies.

Observation 1. All the formulae in which some negative leaf is labelled with ⊥
are classical tautologies. The set of those formulae is denoted by S⊥ (see Fig. 1).

Observation 2. All the formulae in which some positive leaf is labelled by the
same variable as some negative leaf are classical tautologies. We denote this
family by SR.

We call the formulae from the set SR ∪ S⊥, simple tautologies. We focus on the
formulae with exactly one 2-shallow repetition and no more than one 3-shallow
repetition. The set of such formulae is denoted by H. In the next two propositions
we show that all tautologies belonging to H are simple.

Proposition 4. If a formula ϕ ∈ H \ S⊥ contains a 3-shallow leaf l labelled
with ⊥, then it is not a tautology.

Proof. If the leaf l is not 1-shallow then there are no 1-shallow repetitions and
the boolean function defined by the formula is not a tautology (Proposition 3).
If l is 0-shallow then we can use the valuation v1

ϕ which valuates all the 0-shallow
leaves to False and all the 1-layer leaves to True. In that case the formula is
valuated by v1

ϕ to False.
In the remaining case l is a 1-layer leaf but is not negative. Let s be the last

∨-node or ⇒-node on the path from the root to l. The node s is a 1-layer node,
because l is not negative.

Suppose that s is labelled by ∨. One of its subtrees does not contain shallow
occurrences of l. In that subtree all the 0-shallow leaves are valuated by v1,3

ϕ to
True (because they are all 1-layer in ϕ) therefore the whole subtree with root s
is valuated to True by v1,3

ϕ .
If s is labelled by ⇒ then let s2 be its left son. Clearly s2 is a 2-layer node.

Since we have only one 3-shallow repetition and it is realized by a 1-shallow
node labelled with ⊥, all the labels of 2-layer and 3-layer leaves are not repeated
among the 3-shallow leaves. Therefore the valuation v1,3

ϕ assigns False to all the
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2-layer leaves, and True to all the 3-layer leaves. Consequently, every 2-layer
node is valuated to False. Is means that also s2 is valuated to False, but then
s is valuated to True.

In both cases the only 1-layer nodes which are valuated by v1,3
ϕ to False are

below the node s, which is valuated to True anyway. Hence every 1-layer node
which is a left son of a 0-shallow node is valuated to True. But then all 0-shallow
nodes are valuated to False, which proves that ϕ is not a classical tautology.

Proposition 5. If a formula ϕ ∈ H \ SR contains a variable repetition, then it
is not a tautology.

Proof. If ϕ does not contain any 1-shallow repetition, then according to the
Proposition 3, the formula does not define a constant function. If both leaves
with repeated variable are on the same level, then the valuation v1

ϕ valuates all
the 0-shallow leaves to False and all 1-layer leaves to True, and the formula is
valuated by v1

ϕ to False.
Let l1, l2 be the 3-shallow leaves labelled with the same variable. We can

assume that l1 is 0-shallow and l2 is a 1-layer leaf. If l1 is not positive then there
exists a node s on the path from the root to l1, which is labelled with ∧. In that
case the only 0-shallow nodes which can be valuated to True by v1

ϕ are below
s. But s is valuated to False, because it is a ∧-node and one of its subtrees is
valuated by v1

ϕ to False (the one which does not contain l1).
In the remaining case we have two leaves l1, l2 labelled with the same variable,

such that l1 is positive (and hence 0-shallow), l2 is not negative but is a 1-layer
leaf. In this case we use boolean valuation b which assigns False only to those
variables which have occurrences among 0-shallow or 2-layer leaves. Then the
leaf l2 is valuated to False and we can use the same reasoning as in the case
when some not negative 1-layer leaves is labelled with ⊥, to prove that ϕ is not
a tautology.

We have

S⊥(n) + SR(n) − F [�2]
�3 (n) � Cl(n) � S⊥(n) + SR(n) + F [�2]

�3 (n) (3)

The lower bound comes from the fact that every formula which belongs to S⊥∩SR

has at least two 3-shallow repetitions. The upper bound is a consequence of
Propositions 4 and 5, which together say that all tautologies which are not
simple belong to F [�2]

�3 .

Simple Intuitionistic Tautologies. It is easy to show that all the formulae
from S⊥ are intuitionistic tautologies. This is not true for SR, and a simple
counterexample is x∨ (x ⇒ y). However, we can prove the following proposition
(e.g. by using the Heyting algebra of open subsets of R).

Proposition 6. A formula from SR ∩ H is an intuitionistic tautology if and
only if the positive prefix of the path leading to the negative leaf with the repeated
variable is a prefix of the path leading to the positive leaf with the repeated variable
(i.e. the last common node is a ⇒-node). The set of those formulae is denoted
by SRI (see Fig. 2).
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∨

⇒

∨

⇒

∧

α

∨

⇒

α

Fig. 2. A tree with a negative path and a positive path with the same prefix

Analogously to the inequality (3) we get

S⊥(n) + SRI(n) − F [�2]
�3 (n) � Int(n) � S⊥(n) + SRI(n) + F [�2]

�3 (n). (4)

4 Counting Simple Families

Within this section we denote by T (2,3,4)
≤3 (n) the value T (2)

�3 (n) + 2T (3)
�3 (n) +

T (4)
�3 (n). For any i ∈ N, a i-positive-pointed structure is a i-pointed structure,

whose pointed leaves are all positive (note that positivity of leaves depends only
on the structure). Negative-pointed structures are defined analogously. We use
the following sets of structures:

– TN - the set of 1-negative-pointed structures,
– TPN - the set of 2-pointed structures such that the first pointed leaf is positive

and the second one is negative,
– T

P̂N
- the subset of TPN consisting of all the structures for which the positive

prefix of the path to the negative pointed leaf is a prefix of the (positive)
path to the positive pointed leaf.

In the following propositions we give bounds on the number of elements of
S⊥ and SR of size n.
Proposition 7.

TN (n) · Lab(n − 1) − T (2,3,4)
≤3 (n) · Lab(n − 2) � S⊥(n) � TN (n) · Lab(n − 1).

Proof. From every 1-negative-pointed structure we can construct a formula from
S⊥ by a labelling which assigns ⊥ to the pointed leaf. If the pointed structure
has n leaves we have exactly Lab(n−1) such labellings. Since every formula from
S⊥ can be constructed in this way we get:

S⊥(n) � TN (n)Lab(n − 1).

The inequality is usually strict, since some formulae can be generated with more
than one structure-labelling pair of considered type. Those are exactly the for-
mulae, that have at least two negative leaves labelled with ⊥ (hence they have
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at least two 3-shallow repetitions). But the number of pairs which generate for-
mulae with that property is smaller than the number of pairs which generate all
the formulae with at least two 3-shallow repetition. We get (just as in the proof
of Proposition 2),

TN (n)Lab(n − 1) − T (2,3,4)
≤3 (n) · Lab(n − 2) � S⊥(n).

An analogous result holds for SR.
Proposition 8.

TPN (n) · Lab(n − 1) − T (2,3,4)
≤3 (n) · Lab(n − 2) � SR(n),

SR(n) � TPN (n) · Lab(n − 1)

We omit the technical proof.

Corollary 1. Applying the same reasoning for SRI as in Proposition 8, we get
both following inequalities

T
P̂N

(n) · Lab(n − 1) − T (2,3,4)
≤3 (n) · Lab(n − 2) � SRI(n),

SRI(n) � T
P̂N

(n) · Lab(n − 1).

4.1 Structural Limits

To prove our main results we need to calculate the following three “structural
limits”:

DN = lim
n→∞

TN (n)
T (n)

, DPN = lim
n→∞

TPN (n)
T (n)

, D
P̂N

= lim
n→∞

T
P̂N

(n)
T (n)

.

Proposition 9. DN = limn→∞
TN (n)
T (n) = 5

8 .

Proof. Let T (z) be the generating function for T and gN(y, z) be the generating
function for T , with z marking the size and y marking the leaves that can be
obtained from root by paths containing only ∧-nodes. It satisfies:

gN (y, z) = 2T (z)2 + gN(y, z)2 + yz.

Let fN (y, z) be the generating function for all structures with z marking the
size and with negative leaves marked with y. We have

fN (y, z) = fN (y, z)2 + gN(y, z)fN(y, z) + T (z)2 + z. (5)

The first term is obtained when the root is labelled by ∨. The second one, by
⇒, and the third term corresponds to ∧.

By a classical construction (pointing corresponds to differentiation), to obtain
the generating function for 1-negative-pointed structures SN(z) it is enough to
differentiate fN(y, z) with respect to the variable y, and then to substitute y by 1
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(we no longer need bivariate function). Algebraic calculations and the application
of the Lemma 1 give:

lim
n→∞

TN (n)
T (n)

= lim
n→∞

[zn]SN(z)
[zn]T (z)

= lim
z→R

1
12

−

SN ′(z)
T ′(z)

=
5
8
.

In the similar way we prove the following two propositions.

Proposition 10. DPN = limn→∞
TPN (n)
T (n) = 11

8 .

Proposition 11. D
P̂N

= limn→∞
T

P̂N
(n)

T (n) = 5
8 .

Using the bounds from the Proposition 7 and the limits we have computed,
we get:

S⊥(n)
F(n)

� TN (n)
T (n)

· Lab(n − 1)
Lab(n)

∼ 5
8

Lab(n − 1)
Lab(n)

and

S⊥(n)
F(n)

� TN (n)
T (n)

Lab(n − 1)
Lab(n)

−
T (2,3,4)
≤3 (n)
T (n)

Lab(n − 2)
Lab(n)

∼ 5
8

Lab(n − 1)
Lab(n)

− C
Lab(n − 2)

Lab(n)
,

for some C ∈ R. Analogous estimates (using values DPN and D
P̂N

) hold for SR

and SRI .

4.2 Main Results

Unbounded Case. The asymptotic behaviour of the Bell numbers is known
due to the result of Moser and Wyman [7]. We are going to use the following
property: B(n − 2)/B(n) = o(B(n − 1)/B(n)). The estimates from the previous
subsection specialize to the unbounded case; inequalities 3 and 4 gives:

Int∞(n)
F∞(n)

=
S⊥(n) + SRI(n)

F∞(n)
+ o

(
B(n)

B(n + 1)

)

∼ B(n)
B(n + 1)

(
10
8

+ o(1)
)

,

Cl∞(n)
F∞(n)

=
S⊥(n) + SR(n)

F∞(n)
+ o

(
B(n)

B(n + 1)

)

∼ B(n)
B(n + 1)

(
16
8

+ o(1)
)

therefore
Int∞(n)
Cl∞(n)

∼ 5
8
.
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Bounded Case. We specialize now to the case with the number of variables
bounded by k. We get

lim sup
n→∞

S⊥(n)
F(n)

� 5
8k

and

lim inf
n→∞

S⊥(n)
F(n)

� 5
8k

− C

k2 .

Analogous reasoning for families SR and SRI gives

lim sup
n→∞

SR(n)
F(n)

� 11
8k

lim inf
n→∞

SR(n)
F(n)

� 11
8k

− C

k2 ,

and

lim sup
n→∞

SRI(n)
F(n)

� 5
8k

lim inf
n→∞

SRI(n)
F(n)

� 5
8k

− C

k2 .

Therefore we get

lim sup
n→∞

Intk(n)
Clk(n)

�
lim supn→∞ Fk(n)−1(S⊥(n) + SRI(n) + F [�2]

�3 (n))

lim infn→∞ Fk(n)−1(S⊥(n) + SR(n) − F [�2]
�3 (n))

=
10
8k − o( 1

k )
2
k + o( 1

k )
∼k

5
8

and

lim inf
n→∞

Intk(n)
Clk(n)

�
lim infn→∞ Fk(n)−1(S⊥(n) + SRI(n) − F [�2]

�3 (n))

lim supn→∞ Fk(n)−1(S⊥(n) + SR(n) + F [�2]
�3 (n))

=
10
8k − o( 1

k )
2
k + o( 1

k )
∼k

5
8
.

Hence
lim

k→∞
D−

k = lim
k→∞

D+
k =

5
8
,

which is the second of our main results.

5 Final Remarks

The reasoning we used for the full propositional system is also appropriate for
other sets of connectives. If we allow only implication the method we presented
reconstructs the results from [3] and [4] (i.e. in this case the density of intuition-
istic logic in classical is 1). Adding conjunction and ⊥ to the system does not
change the situation. However, it suffices to consider the language which uses
only ⇒ and ∨ to observe a difference. For this language the asymptotic density
of intuitionistic logic in the classical one equals 3/13.

Finally, we want once again to emphasize that the coherence of the results in
the bounded and unbounded approaches is quite an interesting fact in itself. We
believe that Proposition 1 sheds some light on this phenomenon.
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Abstract. Justification Logic is a new generation of epistemic logics
which along with the traditional modal knowledge/belief operators also
consider justification assertions ‘t is a justification for F .’ In this paper,
we introduce a prefixed tableau system for one of the major logics of this
kind S4LPN, which combines the logic of proofs (LP) and epistemic logic
S4 with an explicit negative introspection principle ¬t :F → �¬t :F . We
show that the prefixed tableau system for S4LPN is sound and complete
with respect to Fitting-style semantics. We also introduce a hyperse-
quent calculus HS4LPN and show that HS4LPN is complete as far as we
confine ourselves to a case where only a single formula is to be proven.
We establish this fact by using a translation from the prefixed tableau
system to the hypersequent calculus. This completeness result gives us a
semantic proof of cut-admissibility for S4LPN under the aforementioned
restriction.

1 Introduction

The first system of Justification Logic, the Logic of Proofs (LP), is introduced by
Artemov ([1]) as a logic that can explicitly talk about proofs. An earlier sketch
of the Logic of Proofs was suggested by Gödel in [7]. Several variants have been
studied in combination with traditional modal logics. One such variant is S4LP,
which was introduced by Artemov and Nogina ([2]) and also studied by Fitting
([5]). This logic contains knowledge modality �F and justification assertions
t :F . Other examples are LPP ([10]) and GLA ([8]), both of which are combina-
tion of LP and provability logic (GL, or Gödel-Löb logic). Artemov and Nogina
in [2]1 introduced both logics, S4LP and S4LPN, using Hilbert-style axiomatic
systems. The latter is S4LP with explicit negative introspection ¬t :F → �¬t :F .
Fitting[5] and Renne[9] found destructive tableau systems for S4LP. But so far
no tableau system or sequent calculus for S4LPN or GLA has been proposed.
Moreover, since such a formula as �t : F ∨ �¬t : F is a theorem of S4LPN
and GLA, the task of finding cut-free destructive tableau systems for these log-
ics seems to be hopeless. In this paper we suggest more flexible frameworks to

1 We mostly follow the notation and the terminology of [2] concerning S4LPN.

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 295–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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give complete proof-systems for S4LPN. We first give a prefixed tableau sys-
tem for S4LPN in the sense of [4]. However, from a philosophical perspective,
one might think that a prefixed tableau system contain too much semantic in-
formation in the form of prefixes (cf., Avron [3]). To overcome this potential
weakness, we formulate a hypersequent calculus for the logic (HS4LPN) and
show that there is a way of converting a closed prefixed tableau to a proof in
HS4LPN. This gives us a restricted but sufficiently strong version of the com-
pleteness theorem for HS4LPN without Cut that allows provability of all valid
formulas. As a corollary, we will obtain a semantic proof of cut-admissibility for
HS4LPN.

2 Prefixed Tableau System for S4LPN and Its Semantics

We present the language of S4LPN and a Hilbert-style axiom system for S4LPN.
Proof terms and formulas in the language are as follows.2

t ::= x|a|!t|t1 ·t2|t1 + t2
A ::= Pi|⊥|A1 → A2|A1 ∧ A2|A1 ∨ A2|t :A|�A

The Hilbert-style axiomatic system of S4LPN given in [2] is as follows.

Axioms 0) Axioms of Propositional Logic
1) Axioms of explicit knowledge: 2) Axioms of implicit knowledge:
1. t :F → F 1. �F → F
2. t : (F → G) → (s :F → t·s :G) 2. �(F → G) → (�F → �G)
3. t :F →!t :t :F 3. �F → ��F
4. t :F → t + s :F , s :F → t + s :F
3) Connecting Axiom: 1. t :F → �F 2. ¬t :F → �¬t :F

Rules of Inference 1. Modus Ponens 2. Necessitation F/�F
3. c :A (Axiom Necessitation), where A is one of the above axioms

Now we present the prefixed tableau system. We use Fitting’s terminology for
basic notions in [4] and [6]. In particular, our prefix is a finite sequence of positive
integers that has only 1 as the initial element of a sequence. In σTϕ or σFϕ, σ
is a prefix of a signed formula Tϕ or Fϕ. σ′ is accessible from σ iff σ ≤ σ′ (≤
means that “is an (not necessarily proper) initial segment of”). σ′ is e-accessible
from σ iff 1 ≤ σ and 1 ≤ σ′.

1. Rules for Classical Propositional Logic. (α- and β-rules. See, [4].)
2. Rules for LP: ( Explicit ν-rules )

EK
σT t :ϕ
σ.nTϕ

(σ.n is used.) ET
σT t :ϕ
σTϕ

2 For the sake of brevity, we take ¬ϕ to be an abbreviation of ϕ → ⊥.
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E4
σT t :ϕ

σ.nT t :ϕ
(σ.n is used.) E4r

σ.nT t :ϕ
σT t :ϕ

EF
σFt :ϕ

σ.nFt :ϕ
(σ.n is used.) EFr

σ.nFt :ϕ
σFt :ϕ

3. Operational Rules on F’s :

!-rule
σF !t :t :ϕ
σFt :ϕ

·-rule
σF (s·t) :ϕ

σFt :ψ → ϕ|σFs :ψ

+-rule
σF (s + t) :ϕ

σFt :ϕ
σF (t + s) :ϕ

σFt :ϕ

4. Modal Rules: π-rule:
σF�ϕ

σ.nFϕ
(σ.n is new.)

ν-rules: K
σT�ϕ

σ.nTϕ
(σ.n is used.) T

σT�ϕ

σTϕ
4

σT�ϕ

σ.nT�ϕ
(σ.n is used.)

5. Constant Specification Rules: a branch is closed if it has σFc :A (A is an
axiom of S4LPN.)

We define a Fitting-style Kripke semantics for S4LPN. Let a triple (K, R, Re) be
a frame, where K is non-empty set, R is a reflexive and transitive relation on
K, Re is a reflexive, symmetric and transitive relation on K, and R ⊆ Re.

Let E be an evidence function: K × Trm −→ P(Fmla) such that
1. uRev implies E(u, t) ⊆ E(v, t) (Monotonicity)3

2. F → G ∈ E(u, t) and F ∈ E(u, s) implies G ∈ E(u, t·s)
3. F ∈ E(u, t) implies t :F ∈ E(u, !t)
4. E(u, s) ∪ E(u, t) ⊆ E(u, s + t)
5. CS ⊆ E(u, c).

Then, a Kripke model K can be defined as a quintuple (K, R, Re, E , V). V is a
function from propositional variables to subsets of K. We also define a forcing
� as a relation on K × Fmla that satisfies the following inductive property.

0. u � p if and only if u ∈ V(p) and u � ⊥ for all u ∈ K
1. � commutes with propositional connectives at each state.
2. u � �ϕ iff for every v ∈ K, s.t. uRv, v � ϕ
3. u � t :ϕ iff ϕ ∈ E(u, t) and for every v ∈ K, s.t. uRev, v � ϕ.
4. c :A ∈ CS implies K, u � c :A for every u ∈ K.

A signed formula Fϕ, Tϕ (written Φ schematically) is realized at a possible
world u of a model K if 1) the formula is Tϕ and K, u � ϕ or 2) the formula
is Fϕ and K, u � ϕ. A set S of prefixed, signed formulas is satisfiable if there
is a model K and a (partial) function N (called “interpretation”) from the pre-
fixes in S to possible worlds in K, such that if σΦ ∈ S, then Φ is realized at
N (σ) in K, where Φ is a signed formula and such an N satisfies the condition

3 Symmetry of uRev actually implies E(u, t) = E(v, t).
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(1) σ ≤ σ′ =⇒ N (σ)RN (σ′) and (2) 1 ≤ σ and 1 ≤ σ′ =⇒ N (σ)ReN (σ′). A
tableau branch is satisfiable if the set of prefixed formulas on it is satisfiable. A
tableau is satisfiable if some tableau branch is.

3 Soundness and Completeness of the Prefixed Tableau
System

We prove soundness and completeness of the prefixed tableau system.

Lemma 1. Suppose T is a satisfiable tableau. If any tableau rule for S4LPN is
applied to T , then the resulting tableau is still satisfiable.

Proof. Suppose a tableau is S4LPN-satisfiable because a branch θ of T is S4LPN-
satisfiable, i.e. its members are realized at N (σ) of model K. Suppose that a
tableau rule for S4LPN is applied to the tableau T . (We call the resulting tableau
T ′.) The entire proof is divided into two cases:

Case 1: Our tableau rule is not applied on the branch θ. Then, θ is still present
on the new tableau and θ is satisfiable, which makes T ′ obviously satisfiable.

Case 2: Our tableau rule is applied on the branch θ. Here we treat only rela-
tively complicated modal cases, due to the limitation of space.

Rules for LP. Explicit ν-rules:
EFr : Suppose σ.nFt : ϕ occurs on θ, EFr is applied and σFt : ϕ is added on θ.
By the assumption of the satisfiability of θ, Ft :ϕ is realized at N (σ.n) in K. So,
N (σ.n) � t :ϕ. Since 1 ≤ σ.n and 1 ≤ σ, N (σ.n)ReN (σ) (as σ.n is used and N
is already defined.) By symmetry of Re, we have N (σ)ReN (σ.n). By the truth
condition of t : ϕ, (1) ϕ /∈ E(N (σ.n), t) or (2) for some v, s.t. N (σ.n)Rev and
v � ϕ. We want to show N (σ) � t :ϕ, namely ϕ /∈ E(N (σ), t) or for some v, s.t.
N (σ)Rev and v � ϕ. By (1), N (σ)ReN (σ.n) and monotonicity, ϕ /∈ E(N (σ), t).
So, we can derive the desired disjunction from this. So, the first part is done.
Now for (2), pick a world v such that N (σ.n)Rev and v � ϕ, and name it as v1.
Since N (σ)ReN (σ.n), by transitivity, N (σ)Rev1. So, for some v, N (σ)Rev and
v � ϕ. So, again, from this, we can derive the desired disjunction easily. Hence,
N (σ) � t : ϕ. So, Ft : ϕ is realized at N (σ) in K. Therefore, θ ∪ {σFt : ϕ} is
satisfiable.

Operational Rules:
!-rule: Suppose σF !t : t :ϕ occurs in θ, !-rule is applied on !t : t :ϕ and σFt :ϕ is
added on θ. By the assumption of satisfiability of θ, F !t :t :ϕ is realized at N (σ) in
K. So, N (σ) �!t :t :ϕ. By the truth condition of !t :t :ϕ, (1) t :ϕ /∈ E(N (σ), !t) or
(2) there exists v, s. t. N (σ)Rev and v � t :ϕ. Here we want to show N (σ) � t :ϕ.
To show this, it suffices to show ϕ /∈ E(N (σ, t) or there exists v, s.t. N (σ)Rev
and v � ϕ. From (1), by the closure condition on E , ϕ /∈ E(N (σ), t). This suffices
to derive the desired disjunction ϕ /∈ E(N (σ), t) or there exists v, s.t. N (σ)Rev
and v � ϕ. So, N (σ) � t : ϕ. From (2), pick some state v1, s.t. N (σ)Rev1 and
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v1 � t : ϕ. From the second part, we can obtain ϕ /∈ E(v1, t) or there exists v,
s.t. v1R

ev and v � ϕ. For the latter, we pick some state v2, v1R
ev2 and v2 � ϕ.

Since N (σ)Rev1, by monotonicity, ϕ /∈ E(N (σ), t). So, we have ϕ /∈ E(N (σ), t),
or N (σ)Rev1 and v1R

ev2 and v2 � ϕ. By transitivity, the latter implies there
exists v, N (σ)Rev and v � ϕ. So, ϕ /∈ E(N (σ), t) or there exists v, N (σ)Rev
and v � ϕ. Hence, N (σ) � t :ϕ. So, Ft :ϕ is realized at N (σ). So, θ ∪ {σFt :ϕ}
is satisfiable.

·-rule: Suppose σFt·s :ϕ occurs on θ, ·-rule for t·s is applied and (1) σFt :ψ → ϕ
is added on θ or (2) σFs :ψ is added on θ (for any formula ψ). By the assumption
of satisfiability of θ, Ft·s :ϕ is realized at N (σ) in some K under some N (σ). So,
N (σ) � t·s :ϕ. By the truth condition, we have ϕ /∈ E(N (σ), t·s) or there exists v,
s.t. N (σ)Rev and v � ϕ. Here we want to show N (σ) � t :ψ → ϕ or N (σ) � s :ψ.
By the closure condition of E , ϕ /∈ E(N (σ), t·s) implies either ψ → ϕ /∈ E(N (σ), t)
or ψ /∈ E(N (σ), s). So, the disjunction implies (1) ψ → ϕ /∈ E(N (σ), t) or (2)
ψ /∈ E(N (σ), s) or (3) there exists v, s.t. N (σ)Rev and v � ϕ.

As in the previous case, for the first two cases, we can get the respective
disjunct of the goal statement; however, we need a further argument to derive
the goal statement from the last part. First, note that for any formula ψ, for any
K and for any u ∈ K, u � ψ ∨ ¬ψ. We pick some state v1 satisfying N (σ)Rev1
and v1 � ϕ. Since v1 � ψ ∨ ¬ψ, N (σ)Rev1 and v1 � ϕ and v1 � ψ or N (σ)Rev1
and v1 � ϕ and v1 � ψ. The former implies (4) there exists v, s.t. N (σ)Rev and
v � ψ → ϕ and the latter implies (5) there exists v, s.t. N (σ)Rev and v � ψ.

So, we have (1) or (2) or (4) or (5). Each of (1) and (4) implies that ψ →
ϕ /∈ E(N (σ), t) or there exists v, s.t. N (σ)Rev and v � ψ → ϕ. Each of (2)
and (5) implies that ψ /∈ E(N (σ), s) or there exists v, s.t. N (σ)Rev and v � ψ.
Hence, N (σ) � t :ψ → ϕ or N (σ) � s :ψ. So, Ft :ψ → ϕ is realized at N (σ) or
Fs : ψ is realized at N (σ). Therefore, after applying π-rule for t ·s, our branch
θ ∪ {σFt :ψ → ϕ} is satisfiable or θ ∪ {σFs :ψ} is satisfiable.

ν-rules for � (K, T, 4): These are the same as ordinary modal logics.
π-rule for �: The proof is similar to [4]. �

Theorem 1 (Soundness).
If ϕ has a prefixed S4LPN-tableau proof, then ϕ is valid in all models.

Proof. Suppose ϕ has an S4LPN-tableau proof, but is not S4LPN-valid. Say,
ϕ does not hold at world s of some S4LPN-model. Now a prefixed tableau
begins with 1Fϕ. Define an S4LPN-interpretation N by setting N (1) = s.
Since ϕ is not forced at s, i.e. s � ϕ, the starting S4LPN-tableau is S4LPN-
satisfiable (N (1) � (ϕ)), so {1Fϕ} is S4LPN-satisfiable. By the lemma, so is
every subsequent tableau. But an S4LPN-satisfiable tableau cannot be closed,
which contradicts the assumption that ϕ has a tableau proof. Therefore, if ϕ is
S4LPN-provable, then ϕ must be S4LPN-valid. �

We move on to the completeness theorem. Our proof is done by Lindenbaum-
Henkin construction in [6]. We start from some definitions. A set S of prefixed
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formulas is S4LPN-consistent if no S4LPN-tableau for a finite part of S is closed.
S is maximally S4LPN-consistent if S is S4LPN-consistent and no proper exten-
sion of S is S4LPN-consistent.4 S is π-complete provided, if σπ ∈ S, then for
some integer k, σ.kπ0 ∈ S (σ.kFϕ ∈ S). S omits infinitely many integers if the
set of integers that do not appear in prefixes in S is infinite.

Lindenbaum-Henkin construction:
Enumerate all formulas in the language of S4LPN: σ0Φ0, . . . , σnΦn, . . . .

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0 = S;
Sn+1 = Sn ∪ {σnΦn} if this is consistent and Φn is not π;

= Sn ∪ {σnπ, σn.kπ0} if Sn ∪ {σnΦn} is consistent,
Φn is π and σn.k is new;

= Sn otherwise.
Here ‘new’ means that σn.k does not occur in Sn or in π.
Now we state a few claims whose proofs are straightforward. (A) If S omits

infinitely many integers, then this will be the case with Sn. (B) If Sn ∪ {σnπ} is
consistent, then so is Sn ∪ {σnπ, σn.kπ0}, provided that σn.k is new. (C) If Sn

omits infinitely many integers, there will always be a new prefix.

Lemma 2. If S is consistent and omits infinitely many integers, then
⋃

n Sn

(= Sω) will be maximally consistent and π-complete.

Proof. Suppose S is consistent and omits infinitely many integers. We construct
Sω following the construction above. For maximally consistency of Sω, the proof
is essentially the same as a proof of maximal consistency of a Henkin construction
for first-order logic.

Claim. Sω is π-complete.
Proof. Suppose σF�ϕ ∈ Sω. Then, there exists n such that σ = σn and F�ϕ =
Φn and Sn ∪ {σnΦn} is consistent. (Otherwise, σF�ϕ would not be in Sω.) By
construction, σn.kFϕ has to be in Sn+1. Indeed, we can show the following. By
assumption, S omits infinitely many integers. So, Sn+1 omits infinitely many
integers (by claim (A)). Hence, by claim (C), it is always possible to find a new
k, s.t. σn.kFϕ ∈ Sn+1 ⊆ Sω, as desired. Therefore, Sω is π-complete. �(claim)

These suffice to show the lemma. �(lemma)

We construct a canonical Kripke model K = (K, R, Re, E , V) for S4LPN based
on this maximal consistent set. Let K be the set of prefixes that occur in Sω.
Possible worlds will be taken to be syntactic objects, prefixes, just as in the
usual Henkin construction objects in the domain are syntactic objects, terms in
the language. The accessibility relations R, Re, propositional valuation V and
evidence function E are given as follows: 1. σRσ′ iff σ is an initial segment of σ′

(σ ≤ σ′); 2. σReσ′ iff 1 ≤ σ and 1 ≤ σ′; 3. σ ∈ V(p) iff σTp ∈ Sω; 4. ϕ ∈ E(σ, t)
iff σFt :ϕ /∈ Sω.

4 In the following, we use “consistent” to mean “S4LPN-consistent.”
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Now we check that E , R and Re defined in the canonical model satisfy the
conditions of a model of S4LPN. However, by construction of our canonical
model, it is obvious that R is a reflexive and transitive relation and Re is an
equivalence relation. So, we focus on the conditions of E . We first prove a useful
proposition.

Proposition 1.
1. σFt :ϕ ∈ Sω if and only if σ′Ft :ϕ ∈ Sω (for any 1 ≤ σ and 1 ≤ σ′)
2. σT t :ϕ ∈ Sω if and only if σ′T t :ϕ ∈ Sω (for any 1 ≤ σ and 1 ≤ σ′)

Proof. 1. Suppose σFt :ϕ ∈ Sω but σ′Ft :ϕ /∈ Sω. Then, by maximal consistency,
Sω ∪{σ′Ft :ϕ} is inconsistent, namely there is a finite subset S1 of Sω ∪{σ′Ft :ϕ}
that has a closed tableau. However, if so, we can produce another closed tableau
by putting σFt : ϕ on top of it and applying EFr and EF finitely many times.
(First get 1Ft :ϕ from σFt :ϕ by using EFr and then get σ′Ft :ϕ by using EF
from 1Ft : ϕ.) This new closed tableau can be taken to be a closed tableau for
(S1\{σ′Ft : ϕ}) ∪ {σFt : ϕ}, since everywhere σ′Ft : ϕ is used, we can replace
them by the figure given above from σFt : ϕ. So, this set has a closed tableau.
Note that (S1\{σ′Ft :ϕ})∪{σFt :ϕ} ⊆ Sω. This implies that Sω is inconsistent.
Contradiction. The proof of the converse is similar. The proof of 2 is also similar
but with E4 and E4r. �

Proposition 2. The evidence function defined above satisfies the following con-
ditions: (1) monotonicity, (2) closure conditions, (3) constant specification.

Proof. (1) (Monotonicity) Suppose σReσ′ and ϕ ∈ E(σ, t). By definition, σFt :
ϕ /∈ Sω. So, proposition 1, σ′Ft :ϕ /∈ Sω. So, ϕ ∈ E(σ′, t).

(2) (Closure Conditions 2.) Suppose ϕ /∈ E(σ, t·s). By definition, σFt·s :ϕ ∈ Sω.
We consider applying t·s-rule to a finite subset of Sω.

Claim. σFt :ψ → ϕ ∈ Sω or σFs :ψ ∈ Sω.
Proof. First, we show that Sω ∪ {σFt : ψ → ϕ} is consistent or Sω ∪ {σFs : ϕ}
is consistent. Suppose otherwise, i.e., Sω ∪ {σFt : ψ → ϕ} is inconsistent and
Sω ∪ {σFs : ϕ} is inconsistent. Then, there exists a finite set S1 s.t. S1 ⊆
Sω ∪{σFt :ψ → ϕ} and σFt :ψ → ϕ ∈ S1 and S1 has a closed tableau and there
exists a finite set S2 s.t. S2 ⊆ Sω ∪ {σFs :ψ}, σFs :ψ ∈ S2 and S2 has a closed
tableau. (Note that since Sω is consistent, we have to use an additional formula
to close a tableau for each case.) These formulas are obtained by applying ·-rule.
So, we can construct another closed tableau for a finite set S1∪S2∪{σFt·s :ϕ} by
taking the tableau for S1 and S2 as branches of the new tableau and by applying
·-rule. However, S1 ⊆ Sω, S2 ⊆ Sω and {σFt·s :ϕ} ⊆ Sω. So, a finite set of Sω

has a closed tableau, which contradicts the consistency of Sω. By maximality,
σFt :ψ → ϕ ∈ Sω or σFs :ψ ∈ Sω. �

By definition, ψ → ϕ /∈ E(σ, t) or ψ /∈ E(σ, s).
(Closure Condition 3.) Suppose t :ϕ /∈ E(σ, !t). By definition, σF !t : t :ϕ ∈ Sω.

We want to show σFt :ϕ ∈ Sω. To show that, it suffices to show the consistency of
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Sω ∪{σFt :ϕ}, due to maximal consistency of Sω. Suppose otherwise, i.e. this set
is inconsistent. Then, there is a finite subset of this set that has a closed tableau.
Pick up one such closed tableau. Put σF !t :t :ϕ on top of it and apply !-rule, then
we can produce another closed tableau of a finite subset of Sω ∪ {σF !t : t : ϕ}.
However, σF !t : t : ϕ ∈ Sω. This implies Sω is inconsistent. Contradiction. So,
Sω ∪ {σFt : ϕ} is consistent and, by maximality of Sω, σFt : ϕ ∈ Sω. So, by
definition, ϕ /∈ E(σ, t).

Proofs for (Closure Condition 4.) and (3) Constant Specification are similar. �

Lemma 3 (Truth Lemma). For every signed formula Φ, σΦ ∈ Sω =⇒ σ
realizes Φ in the model K.

Proof. By induction on complexity of formulas. We show � and t : cases.
Case 1. Φ = T�ϕ. Suppose σT�ϕ ∈ Sω. By the tableau rule K and 4, Sω ∪

{σ.nTϕ, σ.nT�ϕ} is consistent for any σ.n occurring in Sω. So, by maximality,
σ.nTϕ, σ.nT�ϕ ∈ Sω, for any σ.n occurring in Sω. By using this combination
finitely many times, we can show that for any arbitrary sequence σ′, s.t. σ ≤ σ′,
σ′Tϕ ∈ Sω. By IH, σ′ realizes Tϕ in the model K. So, K, σ′ � ϕ. So, for any
σ′ ≥ σ, K, σ′ � ϕ. So K, σ � �ϕ. Hence, σ realizes T�ϕ in the model K.

Case 2. Φ = F�ϕ. Suppose σF�ϕ ∈ Sω. By π-completeness of Sω, σ.kFϕ ∈
Sω for some σ.k occurring in Sω. By IH, σ.k realizes Fϕ in the model K. So,
K, σ.k � ϕ. On the other hand, clearly, σ ≤ σ.k So, there exists σ.k ≥ σ,
K, σ.k � ϕ. So K, σ � �ϕ. Hence, σ realizes F�ϕ in the model K.

Case 3. Φ = T t :ϕ. Suppose σT t :ϕ ∈ Sω. It suffices to show that σ � t :ϕ. To
show this, it is suffices to show the two statements: (1) ϕ ∈ E(σ, t) and (2) for
all σ′, (σReσ′ ⇒ σ′ � ϕ). (1) is an immediate consequence of the definition of E
and σFt :ϕ /∈ Sω (by consistency). So, ϕ ∈ E(σ, t). To show (2), suppose σReσ′.
By definition, 1 ≤ σ and 1 ≤ σ′. Since σ and σ′ are related in this way, by the
proposition 1 combined with the rule ET, σT t :ϕ ∈ Sω implies σ′Tϕ ∈ Sω. By
IH, σ′ realizes ϕ in K. So, σ′ � ϕ. So, for all σ′, s.t. σReσ′, σ′ � ϕ. Therefore,
σ � t :ϕ. So, σ realizes t :ϕ in K.

Case 4. Φ = Ft : ϕ. Suppose σFt : ϕ ∈ Sω. It suffices to show σ � t : ϕ. To
show this, it is sufficient to show (1) ϕ /∈ E(σ, t) or (2) there exists σ′, s.t. σReσ′

and σ′
� ϕ. By the assumption, it is not the case that σFt : ϕ /∈ Sω. So, this

immediately implies ϕ /∈ E(σ, t). So, ϕ /∈ E(σ, t) or there exists σ′, s.t. σReσ′ and
σ′

� ϕ. So, σ � t :ϕ. Hence, σ realizes Ft :ϕ in K. �

Theorem 2 (Completeness). If ϕ is S4LPN-valid, then ϕ has a proof using
the tableau rules for S4LPN.

Proof. We show the contrapositive. Suppose ϕ is not provable using the prefixed
S4LPN-tableau rules. Then {1Fϕ} is S4LPN-consistent, and it omits infinitely
many integers. So, we can extend it to a maximally S4LPN-consistent, π-complete
set Sω by the above construction and the lemma 6. We can define a canonical
Kripke model K out of Sω. By Truth Lemma, we can show Fϕ is realized at 1
in K. So, there is a Kripke model K and a state σ such that K, σ � ϕ. �
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4 Hypersequent Calculus for S4LPN

Here we first present the hypersequent calculus HS4LPN. And then we give
a translation from the prefixed tableau system to a hypersequent calculus of
S4LPN. A hypersequent is a multiset of sequents, written as follows: Γ1 ⇒
Δ1| . . . |Γn ⇒ Δn.

1) Axiom: A ⇒ A ⊥⇒
2) External structural rules:5

EW
G

G|H EC
G|Γ ⇒ Δ|Γ ⇒ Δ

G|Γ ⇒ Δ

3) Internal structural rules:

LW
G|Γ ⇒ Δ

G|A, Γ ⇒ Δ
RW

G|Γ ⇒ Δ

G|Γ ⇒ Δ, A

LC
G|A, A, Γ ⇒ Δ

G|A, Γ ⇒ Δ
RC

G|Γ ⇒ Δ, A, A

G|Γ ⇒ Δ, A

4) Logical rules:

L∧ G|A, B, Γ ⇒ Δ

G|A ∧ B, Γ ⇒ Δ
R∧ G|Γ ⇒ Δ, A G|Γ ⇒ Δ, B

G|Γ ⇒ Δ, A ∧ B

L∨ G|A, Γ ⇒ Δ G|B, Γ ⇒ Δ

G|A ∨ B, Γ ⇒ Δ
R∨ G|Γ ⇒ Δ, A, B

G|Γ ⇒ Δ, A ∨ B

L → G|Γ ⇒ Δ, A G|B, Γ ⇒ Δ

G|A → B, Γ ⇒ Δ
R → G|A, Γ ⇒ Δ, B

G|Γ ⇒ Δ, A → B

5) Rules for S4�: L� G|A, Γ ⇒ Δ

G|�A, Γ ⇒ Δ
R� G|�Γ ⇒ A

G|�Γ ⇒ �A

6) Rules for Proof-terms of LP:

Lt
G|A, Γ ⇒ Δ

G|t :A, Γ ⇒ Δ
R· G|Γ ⇒ Δ, t :A → B G|Γ ⇒ Δ, s :A

G|Γ ⇒ Δ, t·s :B

R!
G|Γ ⇒ Δ, t :A

G|Γ ⇒ Δ, !t :t :A
R+

G|Γ ⇒ Δ, t :A
G|Γ ⇒ Δ, t + s :A

G|Γ ⇒ Δ, s :A
G|Γ ⇒ Δ, t + s :A

7) Constant Specification: ⇒ c :A
where A is an axiom of S4LPN.

8) Labeled Splitting6:
G|t :Γ1, Γ2 ⇒ s :Δ1, Δ2

G|t :Γ1 ⇒ s :Δ1|Γ2 ⇒ Δ2

5 Since we are assuming that all the sequents and hypersequents in our system are
multi-sets, so we do not need any exchange rules, internal or external.

6 Here t :Γ1 = t1 :ϕ1, . . . , tn :ϕn. The rule covers cases where t :Γ1 or s :Δ1 is empty
([3]). Note also that this rule has its origin in Avron’s modal splitting rule in his
hypersequent calculus for S5, which can handle the negative introspection in S5.
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9) Cut:
G1|Γ1 ⇒ Δ1, A G2|A, Γ2 ⇒ Δ2

G1|G2|Γ1, Γ2 ⇒ Δ1, Δ2

E.g., a derivation in HS4LPN.

t :A ⇒ t :A
t :A ⇒!t : t :A

t :A ⇒ | ⇒!t : t :A
a few logical rules

⇒ ¬t :A|¬!t : t :A ⇒
⇒ �¬t :A|¬!t : t :A ⇒

a few IW
¬!t : t :A ⇒ �¬t :A|¬!t : t :A ⇒ �¬t :A

¬!t : t :A ⇒ �¬t :A

By the following translation from hypersequents to formulas in the language
of S4LPN, we can prove that the Hilbert-style system S4LPN and HS4LPN are
deductively equivalent.

I(Γ1 ⇒ Δ1| . . . |Γn ⇒ Δn) = �(
∧

Γ1 →
∨

Δ1) ∨ · · · ∨ �(
∧

Γn →
∨

Δn)

Theorem 3. HS4LPN� Γ1 ⇒ Δ1| . . . |Γn ⇒ Δn if and only if S4LPN� �(
∧

Γ1
→

∨
Δ1) ∨ · · · ∨ �(

∧
Γn →

∨
Δn).

Proof. In both ways, a proof is given by induction on the length of derivation.
To derive Labeled Splitting (from right to left), we can use the fact S4LPN� (t1 :
A → t2 :B) → �(t1 :A → t2 :B). �

However, to show that Cut is admissible, we need another argument. Here we
give a semantic proof of cut-admissibility. Since the Hilbert-style system S4LPN
is sound and HS4LPN is equivalent to that system, HS4LPN is sound with respect
to the Kripke semantics given above. So, to show cut-admissibility, it suffices to
show completeness of HS4LPN without Cut (HS4LPN−) with respect to the same
semantics. We show completeness of HS4LPN− by providing a way of translating
a prefixed tableau proof to a proof in the hypersequent calculus, following [6].

We define a translation from the language of the prefixed tableau system
to that of the hypersequent calculus. Our translation mapping, which is called
s, is defined in two stages. First, we define a mapping t that maps a set of
prefixed formulas to a multi-set of multi-sets of signed formulas in the follow-
ing way. 1. The set of prefixed formulas is partitioned into subsets so that
all formulas with the same prefixes σi go into the same subset. 2. We strip
off prefixes from those partitioned prefixed formulas (for each σi). 3. For each
σi, we put together those signed formulas and the formulas of the form T�ψ
such that σjT�ψ ∈ S and σj < σi for some σj . (The prefix of T�ψ is a
proper initial segment of σi.) 4. We call the resulting set Hσi for each σi, i.e.
Hσi := {Φ|σiΦ ∈ S} ∪ {T�ϕ|∃σj < σi(σjT�ϕ ∈ S)}. 5. Hσi ’s get linearly or-
dered by using the lexicographic ordering induced by the partial order of σi’s.6.
We arrange those linearly ordered Hσi by using “|” in the hypersequent cal-
culus. So, we have Hσ1 |Hσ2 | . . . |Hσn . Our reading “|” is the same as that of
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hypersequent, so we have now constructed a multi-set of sets of signed formu-
las.7 Let St := Hσ1 |Hσ2 | . . . |Hσn .

Second, we consider a mapping that maps a multi-set of multi-sets of signed
formulas, i.e. Hσ1 |Hσ2 | . . . |Hσn , to a multi-set of sequents. This mapping can be
constructed by putting T formulas to the antecedent and F formulas to the succe-
dent for each case of Hσi . Namely, if Hσi = {Tϕ1, . . . , Tϕk, Fψ1, . . . , Fψm}, then
we map this to ϕ1, . . . , ϕk ⇒ ψ1, . . . , ψm. This is all we have to do for each Hσi ,
but, for simplicity, we officially define mapping for an entire multi-set of Hσi ’s.
We call this mapping u. So, we have (Hσ1 |Hσ2 | . . . |Hσn)u = ϕ1, . . . , ϕkσ1

⇒
ψ1, . . . , ψmσ1

| . . . |ϕ1, . . . , ϕkσn
⇒ ψ1, . . . , ψmσn

.
We finally define the desired mapping s as a composition of t and u, i.e., Ss :=

((St)u). So, Ss will be of the form Γ1 ⇒ Δ1| . . . |Γσi ⇒ Δσi | . . . |Γσn ⇒ Δσn .8

Lemma 4. Let S be a finite set of prefixed signed formulas (only with prefixes
that have the initial element 1). If there is a closed tableau for S using the prefixed
tableau system for S4LPN, then the hypersequent Ss is provable in HS4LPN−.

Proof. Proof by induction on the depth d of the tableau proof, where the depth
is the least number d such that there is a closed prefixed tableau in S4LPN for S
with d applications of tableau rules. Suppose a tableau for S closes with depth
d and, by IH, the theorem holds for sets that close with less than d. Suppose we
have made the first application of a tableau rule. We call the resulting set S′.
Then, to obtain a closed tableau, we only need d − 1 applications of the rules.
So, for any tableau rule, after this first application we can apply IH. Namely,
by IH, if there is a closed tableau for S′ by d − 1 applications of rules, then the
hypersequent (S′)s is provable in HS4LPN−. So, what is remaining is to show
how we can prove that hypersequent Ss which is obtained by mapping the set S
we had before we apply the rule, depending on which rule is applied as the first
step of a tableau proof.

Base Case: d = 0, i.e. the original set S itself is trivially a closed tableau.
Let S = {1Tψ1, . . . , σnTψn, σTϕ, σFϕ, 1Fρ1, . . . , σmFρm}. Then, Ss = ψ1 ⇒
ρ1| . . . |ψn ⇒ | . . . |ϕ ⇒ ϕ| . . . | ⇒ ρm. This hypersequent is provable in HS4LPN−

by an axiom ϕ ⇒ ϕ and applying IW and EW.
Inductive Cases: (We present representative cases of tableau rules.)9

7 Each Hσi will work as each sequent occurring in the hypersequent that we will
obtain as an image of the mapping s defined here. But each Hσi consists of only
signed formulas, so prefixes stop playing a mathematical role, once we are done with
the above arrangement.

8 In the following, we suppress the modal formulas added to sequents by our mapping,
unless we need to explicitly write them. Also, note that the original S is a set of
prefixed formulas and Ss is a multi-set of multi-sets, but due to the structural rules in
our hypersequent calculus, this difference does not produce any defect in preserving
derivability.

9 Except for the cases where we explicitly note, we adopt the notational convention
that for the original Γσ (or Δσ), we write the formula at issue explicitly. So, e.g.,
our “Γσ” is really Γσ\{t :ϕ}. Also, we suppress double lines even when several steps
are taken.
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Case 1. EFr.
Suppose σ.nFt : ϕ ∈ S. By the assumption, such an S has a closed tableau.

Also, since the first application of a rule in the tableau is EFr, S ∪ {σFt : ϕ}
has a closed tableau with depth d − 1. By IH, (S ∪ {σFt : ϕ})s is provable in
HS4LPN−, where this has the form Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, t : ϕ| . . . |Γσ.n ⇒
Δσ.n, t : ϕ| . . . |Γσm ⇒ Δσm . We show Ss, which is equal to Γ1 ⇒ Δ1| . . . |Γσ ⇒
Δσ|Γσ.n ⇒ Δσ.n, t : ϕ| . . . |Γσm ⇒ Δσm , is provable only by using rules of
HS4LPN−.

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, t :ϕ| . . . |Γσ.n ⇒ Δσ.n, t :ϕ| . . . |Γσm ⇒ Δσm

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ| ⇒ t :ϕ| . . . |Γσ.n ⇒ Δσ.n, t :ϕ| . . . |Γσm ⇒ Δσm

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ| . . . |Γσ.n ⇒ Δσ.n, t :ϕ|Γσ.n ⇒ Δσ.n, t :ϕ| . . . |Γσm ⇒ Δσm

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ| . . . |Γσ.n ⇒ Δσ.n, t :ϕ| . . . |Γσm ⇒ Δσm

Case 2. !.
Suppose σF !t : t :ϕ ∈ S. By the assumption, such an S has a closed tableau.

Also, the first application of a rule in the tableau is !-rule, and S ∪ {σFt : ϕ}
has a closed tableau with depth d − 1. By IH, (S ∪ {σFt : ϕ})s is provable in
HS4LPN−, i.e. HS4LPN−� Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, t :ϕ, !t : t :ϕ| . . . |Γσm ⇒ Δσm .
The following proof is enough to show the provability of Ss in HS4LPN−.

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, t :ϕ, !t : t :ϕ| . . . |Γσm ⇒ Δσm

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, !t : t :ϕ, !t : t :ϕ| . . . |Γσm ⇒ Δσm

Γ1 ⇒ Δ1| . . . |Γσ ⇒ Δσ, !t : t :ϕ| . . . |Γσm ⇒ Δσm

Case 3. K. Suppose σT�ϕ ∈ S. By the assumption, such an S has a closed
tableau with depth d. Since the first application of a rule in this tableau is K-
rule, S ∪{σ.nTϕ} has a closed tableau with depth d − 1. By IH, (S ∪{σ.nTϕ})s

provable in HS4LPN−. By definition of s, for any σ′ ≥ σ occurring in S∪{σ.nTϕ},
�ϕ ∈ Γσ′ . Since σ ≤ σ.n, in particular, �ϕ ∈ Γσ and �ϕ, ϕ ∈ Γσ.n. Let us
write down Γσ as Γ ′

σ, �ϕ and Γσ.n as Γ ′
σ.n, �ϕ, ϕ. So, the image of the set

given above by s has the form Γ1 ⇒ Δ1| . . . |Γ ′
σ, �ϕ ⇒ Δσ| . . . |Γ ′

σ.n, �ϕ, ϕ ⇒
Δσ.n| . . . |Γσm , �ϕ ⇒ Δσm .10 We show below that Ss, which is equal to Γ1 ⇒
Δ1| . . . |Γ ′

σ, �ϕ ⇒ Δσ|Γ ′
σ.n, �ϕ ⇒ Δσ.n| . . . |Γσm , �ϕ ⇒ Δσm , is provable in

HS4LPN−.

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �ϕ ⇒ Δσ| . . . |Γ ′

σ.n, �ϕ, ϕ ⇒ Δσ.n| . . . |Γσm , �ϕ ⇒ Δσm

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �ϕ ⇒ Δσ| . . . |Γ ′

σ.n, �ϕ, �ϕ ⇒ Δσ.n| . . . |Γσm , �ϕ ⇒ Δσm

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �ϕ ⇒ Δσ| . . . |Γ ′

σ.n, �ϕ ⇒ Δσ.n| . . . |Γσm , �ϕ ⇒ Δσm

Case 4. π-rule
Suppose σF�ϕ ∈ S. By the assumption, such an S has a closed tableau with

depth d. Since the first application of a rule in this tableau is π-rule, S∪{σ.nFϕ}
(n is new) has a closed tableau with depth d − 1.

By IH, we have the provability of (S ∪ {σ.nFϕ})s (σF�ϕ ∈ S) in the hy-
persequent calculus HS4LPN−. We have to consider a general case in which
10 Note that for σm, we have extra �ϕ if σ ≤ σm, due to our definition of mapping s.

We suppress other sequents. In the following, we always assume σm to be σ ≤ σm.
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S ∪ {σ.nFϕ} contains some σT�ϕ. So, let us assume �ϕi ∈ Γσ (1 ≤ i ≤ k).
Only here we use a notation Γσ := Γ ′

σ, �ϕ1, . . . , �ϕk. By definition of s and
σ ≤ σ.n, for the prefix newly introduced when π-rule is applied, we have Γσ.n =
�ϕ1, . . . , �ϕk = {�ϕ|�ϕ ∈ Γσ}. (Let us put Γσ.n = �ϕ1, . . . , �ϕk := �Γ ′′).11

Also, we have Δσ.n = {ϕ} and let us use the notation Δσ := Δ′
σ, �ϕ. So,

the above set has the form Γ1 ⇒ Δ1| . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |�Γ ′′ ⇒
ϕ| . . . |Γσm , �Γ ′′ ⇒ Δσm .

Ss is Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |Γσm , �Γ ′′ ⇒ Δσm .
Note that σ.n is new. One sequent in the hypersequent Γσ.n ⇒ Δσ.n disappears

when we reach the conclusion of the derivation in HS4LPN−, and this is what it
should be since the original set S for the prefixed tableau system did not have
formulas corresponding to that. We can emulate this feature of the prefixed
tableau system in HS4LPN− by EC.

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |�Γ ′′ ⇒ ϕ| . . . |Γσm , �Γ ′′ ⇒ Δσm

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |�Γ ′′ ⇒ �ϕ| . . . |Γσm , �Γ ′′ ⇒ Δσm

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |Γ ′
σm

, �Γ ′′ ⇒ Δσm

Γσ1 ⇒ Δσ1 | . . . |Γ ′
σ, �Γ ′′ ⇒ Δ′

σ, �ϕ| . . . |Γσm , �Γ ′′ ⇒ Δσm

This derivation shows the provability of Ss. �

Theorem 4 (Completeness). If a formula ϕ is valid in the semantics for
S4LPN, then HS4LPN− �⇒ ϕ.

Proof. Use completeness of the prefixed tableau system. Then, apply Lemma 4.
This is a special case of the lemma where S = {1Fϕ}. �

As a corollary, we can semantically prove cut-admissibility for HS4LPN.

Corollary 1. If HS4LPN�⇒ ϕ, then HS4LPN− �⇒ ϕ

Remark 1. In spite of its cut-admissibility, the hypersequent calculus HS4LPN
is not analytic, i.e. does not enjoy the subformula property, due to the rule R·.
So, the hypersequent calculus may not be useful for automated reasoning in the
logic. We leave this issue for future research.

References

1. Artemov, S.N.: Explicit Provability and Constructive Semantics. The Bulletin of
Symbolic Logic 7(1), 1–36 (2000)

2. Artemov, S.N., Nogina, E.: Introducing Justification into Epistemic Logic. J. Log.
Comput. 15(6) (2005)

11 Note that �Γ ′
σ.n can contain only �-ed formulas that come from Γσ, since σ.n is an

immediate successor of σ and that all the T� formulas whose prefix τ is such that
τ ≤ σ must already be in Γσ by the definition of mapping applied to S ∪ {σ.nFϕ}.
Also, Γσm must contain �Γ ′′, since the default assumption here is σ ≤ σm.



308 H. Kurokawa

3. Avron, A.: The Method of Hypersequents in the Proof Theory of Propositional
Non-classical Logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.)
Logic: from foundations to applications. Proc. Logic Colloquium, Keele, UK, 1993,
pp. 1–32. Oxford University Press, New York (1996)

4. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. Reidel Publishing
Company (1983)

5. Fitting, M.: Semantics and Tableaus for LPS4. Technical report, CUNY Ph.D.
Program in Computer Science Technical Report TR-2004016 (2004)

6. Fitting, M.: Modal Proof Theory. In: Handbook of Modal Logic. Elsevier, New
York (2006)
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Abstract. Just as forcing, or Boolean-valued models, produce a model
of ZF (when the meta-theory is, or the ground model satisfies, ZF), so
do Heyting-valued models satisfy IZF, which stands for Intuitionistic ZF,
the standard constructive re-working of the ZF axioms. In this paper, a
variant model is introduced (with truth values the Heyting algebra of
open sets of a topological space), along with a correspondingly revised
forcing or satisfaction relation. Such a model is shown to satisfy only a
fragment of IZF. Natural properties of the underlying topological space
are shown to imply stronger closure properties of the model. (It is impos-
sible, except in trivial cases, for Power Set to be satisfied.) This semantics
generalizes the second model of [9], which is the current semantics for
the special case of the underlying topological space being R.

Keywords: Constructivism, set theory, semantics, topology AMS clas-
sification 03F50, 03E70, 03C90.

1 Introduction

Topological interpretations of constructive systems were first studied by Stone
[15] and Tarski [16], who independently provided such for propositional logic.
This was later extended by Mostowski [12] to predicate logic. The first ap-
plication of this to any sort of higher-order system was Scott’s interpretation
of analysis [13,14]. Grayson [6,7] then generalized the latter to the whole set-
theoretic universe, to provide a model of IZF, Intuitionistic Zermelo-Fraenkel
Set Theory. Although not directly relevant to our concerns, it was soon real-
ized that topological semantics could be unified with Kripke and Beth models,
and all generalized, via categorical semantics; see [5] and [10] for good introduc-
tions. Here is introduced, not a generalized, but rather an alternative semantics
instead. (Incidentally, this semantics can also be understood categorically, as
determined by Streicher (unpublished).)

An instance of this semantics was already applied in [9] to the reals as a
topological space. The purpose there was to come up with a model of CZFExp

set theory in which the Dedekind cuts do not form a set. CZFExp contains the
Axiom of Exponentiation (the existence of function spaces), but not any stronger
Power Set-like axiom, most notably Aczel’s Subset Collection, which suffices to

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 309–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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prove the Dedekind cuts are a set. The essence of the construction there is that,
as in a traditional topological model, the truth value of set membership (σ ∈ τ ,
where σ and τ are terms) is an open set of R, but at any moment the terms
under consideration can collapse to ground model terms. (A ground model term
is the canonical image of a ground model set – think of the standard embedding
of V into V[G] in classical forcing.) Such a collapse does not make the variable
sets disappear, though. So no set could be the Dedekind cuts: any such candidate
could at any time collapse to a ground model set, but then it wouldn’t contain
the canonical generic because that’s a variable set, and this generic, over R, is a
Dedekind cut.1

This process of collapsing to a ground model set we call settling down. Our
purpose is to show how this settling semantics works in an arbitrary topological
space, not just R. This extension is not completely straightforward. Certain
uniformities of R allowed for simplifications in the definition of forcing (�) and
for proofs of stronger set-theoretic axioms, most notably Full Separation and
Exponentiation. In the next section, we prove as much as we can making no
assumptions on the topological space T being worked over; in the following
section, natural and appropriately modest assumptions are made on T so that
Separation and Exponentiation can be proven.

The greatest weakness in what can be proven in the general case is in the fam-
ily of Power Set-like axioms. This is no surprise, as the semantics was developed
for a purpose which necessitated the failure of Subset Collection (and hence of
Power Set itself). That Exponentiation ended up holding is thanks to the par-
ticularities of R, not to settling semantics. Rather, what does hold in general is
a weakened version of all of these Power Set-like axioms. The reason that Power
Set fails, like the non-existence of the set of Dedekind cuts above, is that any
candidate for the power set of X might collapse to a ground model set, and so
would then no longer contain any variable subset of X . However, that variable
subset might itself collapse, and then would be in the classical power set of X .
So while the subset in question, before the collapse, might not equal a member
of the classical power set, it cannot be different from every such member. That
is the form of Power Set which holds in the settling semantics:

Eventual Power Set: ∀X ∃C (∀Y ∈ C Y ⊆ X) ∧ (∀Y ⊆ X ¬∀Z ∈ C Y �= Z).
Although we will not need them, there are comparable weakenings of Subset

Collection (or Fullness) and Exponentiation:
Eventual Fullness: ∀X, Y ∃C (∀Z ∈ C Z is a total relation from X to Y )

∧ (∀R if R is a total relation from X to Y then ¬∀Z ∈ C Z �⊆ R).

1 For those already familiar with a similar-sounding construction by Joyal, this is
exactly what distinguishes the two. Joyal started with a topological space T , and
took the union of T with a second copy of T , the latter carrying the discrete topology
(i.e. every subset is open). So by Joyal, you could specialize at a point, but then every
set is also specialized there. Here, you can specialize every set you’re looking at at a
point, but that won’t make the ambient variable sets disappear. Alternatively, the
whole universe will specialize, but at the same time be reborn. For an exposition of
Joyal’s argument in print, see either [7] or [17] p. 805-807.
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Eventual Exponentiation: ∀X, Y ∃C ∀F if F is a total function from X to Y
then ¬∀Z ∈ C F �= Z.

It is easy to see that Power Set implies Fullness, which itself implies Expo-
nentiation. Essentially the same arguments will prove:

Proposition 1. Eventual Power Set implies Eventual Fullness, which in turn
implies Eventual Exponentiation.

As already stated, the original motivation of this work was to generalize an ex-
tant construction from one to all topologies. Now that it is done, other uses can
be imagined. There has been considerable interest lately in proof-theoretically
modest fragments of IZF which are still strong enough to do significant amounts
of mathematics, the most prominent of which is CZF (Constructive ZF) [1,2,3,4].
The theory identified here is incomparable with CZF, so its proof-theoretic
strength is unclear. If it turns out to be weak, perhaps it could be combined with
CZF to provide a slight strengthening of the latter while maintaining a similar
proof theory. In any case, the model-theoretic construction might be useful for
further independence results, the purpose of the first, motivating model. A long-
term project is some kind of classification of models, topological or otherwise;
having this unconventional example might help find other yet-to-be-discovered
constructions. A question raised by van den Berg is how the model would have
to be expanded in order to get a model of IZF. He observed that the recur-
sive realizability model based on (definable subsets of) the natural numbers [8]
(also discovered independently by Streicher in unpublished work), which satisfies
CZF + Full Separation (and necessarily not Power Set), is essentially just the
collection of subcountable sets from the full recursive realizability model [11],
and hence is naturally extendable to an IZF model. It is at best unclear how
the current model could be so extended. Somewhat speculatively, applications to
computer science are also conceivable, wherever such modeling might be natu-
ral. For instance, constructive logic can naturally be used to model computation
when objects are viewed as having properties only partially determined at any
stage; if in addition parallel computation is part of the programming paradigm,
it could be that a variable is passed to several parallel sub-computations, which
specify the variable more and in incompatible ways. This is similar to the current
construction, where there are two transition functions, both leading to the same
future but under one function the variable/generic is fully specified and under
the other it’s not.

2 The General Case

First we define the term structure of the topological model with settling, then
truth in the model (the forcing semantics), and then we prove that the model
satisfies some standard set-theoretic axioms.

Definition 1. For a topological space T , a term is a set of the form {〈σi, Ji〉 |
i ∈ I}∪{〈σh, rh〉 | h ∈ H}, where each σ is (inductively) a term, each J an open
set, each r is a member of T , and H and I index sets.
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The first part of each term is as usual. It suffices for the embedding x �→ x̂ of
the ground model into the topological model:

Definition 2. x̂ = {〈ŷ, T 〉 | y ∈ x}. Any term of the form x̂ is called a ground
model term.

For φ a formula in the language of set theory with (set, not term) parameters
x0, x1, ..., xn, then φ̂ is the formula in the term language obtained from φ by
replacing each xi with x̂i.

ˇ is the inverse of ,̂ for both sets/terms and formulas: ˆ̌τ = τ , ˇ̂x = x, ˆ̌φ = φ,

and ˇ̂
φ = φ.

The second part of the definition of a term plays a role only when we decide to
have the term settle down and stop changing. This settling down in described
as follows.

Definition 3. For a term σ and r ∈ T , σr is defined inductively on the terms
as {〈σr

i , T 〉 | 〈σi, Ji〉 ∈ σ ∧ r ∈ Ji} ∪ {〈σr
h, T 〉 | 〈σh, r〉 ∈ σ}.

Note that σr is a ground model term. It bears observation that (σr)s = σr.

Definition 4. For φ = φ(σ0, ..., σi) a formula with parameters σ0, ..., σi, φr is
φ(σr

0 , ..., σr
i ).

We define a forcing relation J � φ, with J an open subset of T and φ a formula.

Definition 5. J � φ is defined inductively on φ:
J � σ = τ iff for all 〈σi, Ji〉 ∈ σ J ∩ Ji � σi ∈ τ and vice versa, and for all

r ∈ J σr = τr

J � σ ∈ τ iff for all r ∈ J there is a 〈τi, Ji〉 ∈ τ and Jr ⊆ Ji containing r
such that Jr � σ = τi

J � φ ∧ ψ iff J � φ and J � ψ
J � φ ∨ ψ iff for all r ∈ J there is a Jr ⊆ J containing r such that Jr � φ or

Jr � ψ
J � φ → ψ iff for all J ′ ⊆ J if J ′ � φ then J ′ � ψ, and, for all r ∈ J , there

is a Jr ⊆ J containing r such that, for all K ⊆ Jr, if K � φr then K � ψr

J � ∃x φ(x) iff for all r ∈ J there is a Jr ⊆ J containing r and a σ such that
Jr � φ(σ)

J � ∀x φ(x) iff for all σ J � φ(σ), and for all r ∈ J there is a Jr ⊆ J
containing r such that for all σ Jr � φr(σ).

(Notice that in the last clause, σ is not interpreted as σr.)

Lemma 1. � is sound for constructive logic.

Lemma 2. T forces the equality axioms, to wit:

1. ∀x x = x
2. ∀x, y x = y → y = x
3. ∀x, y, z x = y ∧ y = z → x = z
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4. ∀x, y, z x = y ∧ x ∈ z → y ∈ z
5. ∀x, y, z x = y ∧ z ∈ x → z ∈ y.

Proof. 1: It is trivial to show via a simultaneous induction that, for all J and
σ, J � σ = σ, and, for all 〈σi, Ji〉 ∈ σ, J ∩ Ji � σi ∈ σ.

2: Trivial because the definition of J � σ =M τ is itself symmetric.
3: For this and the subsequent parts, we need a lemma.

Lemma 3. If J ′ ⊆ J � σ = τ then J ′ � σ = τ , and similarly for ∈.

Proof. By induction on σ and τ .

Returning to the main lemma, we show that if J � ρ = σ and J � σ = τ then
J � ρ = τ , which suffices. This will be done by induction on terms for all opens
J simultaneously.

For the second clause in J � ρ = τ , let r ∈ J . By the hypotheses, second
clauses, ρr = σr and σr = τr , so ρr = τr.

The first clause of the definition of forcing equality follows by induction on
terms. Starting with 〈ρi, Ji〉 ∈ ρ, we need to show that J ∩ Ji � ρi ∈ τ . We
have J ∩ Ji � ρi ∈ σ. For a fixed, arbitrary r ∈ J ∩ Ji let 〈σj , Jj〉 ∈ σ and
J ′ ⊆ J ∩ Ji be such that r ∈ J ′ ∩ Jj � ρi = σj . By hypothesis, J ∩ Jj � σj ∈ τ .
So let 〈τk, Jk〉 ∈ τ and Ĵ ⊆ J ∩ Jj be such that r ∈ Ĵ ∩ Jk � σj = τk. Let J̃

be J ′ ∩ Ĵ ∩ Jj . Note that J̃ ⊆ J ∩ Ji, and that r ∈ J̃ ∩ Jk. We want to show
that J̃ ∩ Jk � ρi = τk. Observing that J̃ ∩ Jk ⊆ J ′ ∩ Jj , Ĵ ∩ Jk, it follows by
the previous lemma that J̃ ∩ Jk � ρi = σj , σj =M τk, from which the desired
conclusion follows by the induction. So r ∈ J̃ ∩Jk � ρi ∈ τ. Since r ∈ J ∩Ji was
arbitrary, J ∩ Ji � ρi ∈ τ.

4: It suffices to show that if J � ρ = σ and J � ρ ∈ τ then J � σ ∈ τ . Let
r ∈ J . By hypothesis, let 〈τi, Ji〉 ∈ τ, Jr ⊆ Ji be such that r ∈ Jr � ρ = τi;
without loss of generality Jr ⊆ J . By the previous lemma, Jr � ρ = σ, and by
the previous part of the current lemma, Jr � σ = τi. Hence Jr � σ ∈ τ . Since
r ∈ J was arbitrary, we are done.

5: Similar, and left to the reader.

Lemma 4. 1. For all φ ∅ � φ.
2. If J ′ ⊆ J � φ then J ′ � φ.
3. If Ji � φ for all i then

⋃
i Ji � φ.

4. J � φ iff for all r ∈ J there is a Jr ⊆ J containing r such that Jr � φ.
5. For all φ, J if J � φ then for all r ∈ J there is a neighborhood Jr of r such

that Jr � φr.
6. For φ bounded (i.e. Δ0) and having only ground model terms as parameters,

T � φ iff φ̌ (i.e. V |= φ̌).

Proof. 1. Trivial induction. This part is not used later, and is mentioned here
only to flesh out the picture.

2. Again, a trivial induction. The base cases, = and ∈, are proven by induction
on terms, as mentioned just above.
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3. By induction. For the case of →, you need to invoke the previous part of
this lemma. All other cases are straightforward.

4. Trivial, using 3.
5. By induction on φ.
=: If r ∈ J � σ = τ then σr = τr. By the proof of the first part of the equality

lemma, T � σr = τr .
∈: If r ∈ J � σ ∈ τ , let τi, Ji, and Jr be as given by the definition of forcing

∈. Inductively, some neighborhood of r (or, by the previous case, T itself) forces
σr = τr

i . Since 〈τr
i , T 〉 ∈ τr , T � τr

i ∈ τr, and T � σr ∈ τr.
∨: If r ∈ J � φ ∨ ψ, suppose without loss of generality that r ∈ Jr � φ.

Inductively let Kr be a neighborhood of r forcing φr. Then Kr � φr ∨ ψr.
∧: If r ∈ J � φ ∧ ψ, let Jr and Kr be neighborhoods of r such that Jr � φ

and Kr � ψ. Then Jr ∩ Kr is as desired.
→: If r ∈ J � φ → ψ, then Jr as given in the definition of forcing → suffices.

(To verify the second clause in the definition of Jr � φr → ψr, use the fact that
(φr)s = φ and (ψr)s = ψ.)

∃: If r ∈ J � ∃x φ(x), let Jr ⊆ J and σ be such that r ∈ Jr � φ(σ). By
induction, let Kr be such that r ∈ Kr � φr(σr). So Kr � ∃x φr(x).

∀: If r ∈ J � ∀x φ(x), then Jr as given by the definition of forcing ∀ suffices.
6. A simple induction.

At this point, we are ready to show what is in general forced under this semantics.

Theorem 1. T forces:

Infinity
Pairing
Union
Extensionality
Set Induction
Eventual Power Set
Bounded (Δ0) Separation
Collection

Some comments on this choice of axioms are in order. The first five are unremark-
able. The role of Eventual Power Set was discussed in the Introduction. The re-
striction of Separation to the Δ0 case should be familiar, as that is also the case in
CZF and KP. By way of compensation, the version of Collection in CZF is Strong
Collection: not only does every total relation with domain a set have a bound-
ing set (regular Collection), but that bounding set can be chosen so that it con-
tains only elements related to something in the domain (the strong version). In the
presence of full Separation, these are equivalent, as an appropriate subset of any
bounding set can always be taken. Unfortunately, even the additional hypotheses
provided by Collection are not enough in the current context to yield even this
modest fragment of Separation, as will actually be shown at the beginning of the
next section. In fact, even Replacement fails, as we will see.
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Proof. – Infinity: ω̂ will do. (Recall that the canonical name x̂ of any set x
from the ground model is defined inductively as {〈ŷ, T 〉 | y ∈ x}.)

– Pairing: Given σ and τ , {〈σ, T 〉, 〈τ, T 〉} will do.
– Union: Given σ, the union of the following four terms will do:

• {〈τ, J ∩ Ji〉 | for some σi, 〈τ, J〉 ∈ σi and 〈σi, Ji〉 ∈ σ}
• {〈τ, r〉 | for some σi, 〈τ, r〉 ∈ σi and 〈σi, r〉 ∈ σ}
• {〈τ, r〉 | for some σi and K, 〈τ, K〉 ∈ σi, r ∈ K, and 〈σi, r〉 ∈ σ}
• {〈τ, r〉 | for some σi and K, 〈τ, r〉 ∈ σi, r ∈ K, and 〈σi, K〉 ∈ σ}.

– Extensionality: We need to show that T � ∀x ∀y [∀z (z ∈ x ↔ z ∈ y) → x =
y]. It suffices to show that for any terms σ and τ , T � ∀z (z ∈ σ ↔ z ∈ τ) →
σ = τ . (Although that is only the first clause in forcing ∀, it subsumes the
second, because σ and τ could have been chosen as ground model terms in
the first place.) To show that, for the second clause in forcing →, it suffices
to show that T � ∀z (z ∈ σr ↔ z ∈ τr) → σr = τr. But, as before, this
is already subsumed by choosing σ and τ to be ground model terms in the
first place. Hence it suffices to check the first clause in forcing →: for all J ,
if J � ∀z (z ∈ σ ↔ z ∈ τ), then J � σ = τ .
To this end, let 〈σi, Ji〉 be in σ; we need to show that J ∩ Ji � σi ∈ τ . By
the choice of J , J � σi ∈ σ ↔ σi ∈ τ . In particular, J � σi ∈ σ → σi ∈ τ .
By 4, part 2), J ∩ Ji � σi ∈ σ → σi ∈ τ . Since J ∩ Ji � σi ∈ σ (proof of 2,
part 1)), J ∩ Ji � σi ∈ τ . Symmetrically for 〈τi, Ji〉 ∈ τ .
Also, let r ∈ J . If σr �= τr, let 〈ρ, T 〉 be in their symmetric difference. By
the choice of J , for some neighborhood Jr of r, Jr � ρ ∈ σr ↔ ρ ∈ τr . This
contradicts the choice of ρ. So σr = τr .

– Set Induction (Schema): We need to show that T � ∀x ((∀y ∈ x φ(y)) →
φ(x)) → ∀x φ(x). The statement in question is an implication. The definition
of forcing → contains two clauses.
The first clause is that, for any open set J and formula φ, if J � ∀x(∀y ∈
x φ(y) → φ(x)) then J � ∀x φ(x). By way of proving that, suppose not. Let
J and φ provide a counter-example. By hypothesis,

∀σ J � ∀y ∈ σ φ(y) → φ(σ) (1)

and
∀r ∈ J ∃J ′ � r ∀σ′ J ′ � ∀y ∈ σ′ φr(y) → φr(σ′). (2)

Since J �� ∀xφ(x), either
∃σ J �� φ(σ) (3)

or
∃r ∈ J ∀J ′ � r ∃σ′ J ′ �� φr(σ′). (4)

If (4) holds, let r as given by (4), and then let J ′ be as given by (2) for that
r. By (4), ∃σ′ J ′ �� φr(σ′); let σ be such a σ′ – so J ′ �� φr(σ) – of minimal
V-rank. By (2), we have J ′ � ∀y ∈ σ φr(y) → φr(σ). If we can show that
J ′ � ∀y ∈ σ φr(y), then (by the definition of forcing →) we will have a
contradiction, showing that (4) must fail.



316 R.S. Lubarsky

To that end, we must show, unpacking the abbreviation, that J ′ � ∀y(y ∈
σ → φr(y)); that is,

∀τ J ′ � τ ∈ σ → φr(τ) (5)

and
∀s ∈ J ′ ∃K � s ∀τ K � τ ∈ σs → φr(τ), (6)

the latter because (φr)s = φr .
By way of showing (5), suppose J ′ ⊇ K � τ ∈ σ. Then K can be covered with
open sets Ki such that Ki � τ = σi and Ki ⊆ Ji where 〈σi, Ji〉 ∈ σ. Since σi

has strictly lower V-rank than σ, J ′ � φr(σi). Hence Ki � φr(τ). Since the
Kis cover K (by lemma 4, part 3)) K forces the same. We still have to show
that for all s ∈ J ′ there is a K � s such that for all K ′ ⊆ K if K ′ � τs ∈ σs

then K ′ � φr(τs). In fact, J ′ suffices for K: if J ′ ⊇ K ′ � τs ∈ σs then
K ′ � φr(τs). Moreover, this is the same argument as the one just completed,
with σs in place of σ. The only minor observation that bears making is that
the V-rank of σs is less than or equal to that of σ, so again when τ is forced
to be a member of σs its V-rank is strictly less than that of σ, so the choice
of σ carries us through.
To show (6), we claim that J ′ suffices for the choice of K: J ′ � τ ∈ σs →
φr(τ). Once more, this is just (5), with σs in place of σ.
This completes the proof that (4) must fail. Hence we have that the negation
of (4) must hold, namely

∀r ∈ J ∃J ′ � r ∀σ′ J ′ � φr(σ′), (7)

as well as (3). Let σ be of minimal V-rank such that J �� φ(σ). If we can show
that J � ∀y ∈ σ φ(y), then by (1) we will have a contradiction, completing
the proof of the first clause.
What we need to show are

∀τ J � τ ∈ σ → φ(τ) (8)

and
∀r ∈ J ∃J ′ � r ∀τ J ′ � τ ∈ σr → φr(τ). (9)

By way of showing (8), suppose J ⊇ K � τ ∈ σ; we need to show that
K � φ(τ). This is the same argument, based on the minimality of σ, as in
the proof of (5). The other part of showing (8) is

∀r ∈ J ∃J ′ � r ∀K ⊆ J ′ (K � τr ∈ σr ⇒ K � φr(τr)). (10)

Both (9) and (10) are special cases of (7).
This completes the proof of the first clause.
The second clause is that for all r ∈ T there is a J � r such that for all
K ⊆ J if K � ∀x ((∀y ∈ x φr(y)) → φr(x)) then K � ∀x φr(x). For any r,
let J be T . Then what remains of the claim has exactly the same form as
the first clause, with K and φr for J and φ respectively. Since the validity
of this first clause was already shown for all choices of J and φ, we are done.
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– Eventual Power Set: We need to show that T � ∀X ∃C ∀Y (Y ⊆ X →
¬∀Z(Z ∈ C → Y �= Z)). (Actually, we must also produce a C that contains
only subsets of X . However, to extract such a sub-collection from any C
as above is an instance of Bounded Separation, the proof of which below
does not rely on the current proof. So we will make our lives a little easier
and prove the version of EPS as stated.) Since the sentence forced has no
parameters, the second clause in forcing ∀ is subsumed by the first, so all we
must show is that, for any term σ, T � ∃C ∀Y (Y ⊆ σ → ¬∀Z(Z ∈ C →
Y �= Z)).
Let τ = {〈x̂, r〉 | σr = ŝ ∧ x ⊆ s}. This is the desired C. It suffices to show
that T � ∀Y (Y ⊆ σ → ¬∀Z(Z ∈ τ → Y �= Z)).
For the first clause in forcing ∀, we need to show that T � ρ ⊆ σ → ¬∀Z(Z ∈
τ → ρ �= Z). To do that, first suppose T ⊇ J � ρ ⊆ σ. (Note that that implies
that for all s ∈ J T � ρs ⊆ σs, so that 〈ρs, s〉 ∈ τ , and T � ρs ∈ τs.) We
must show that J � ¬∀Z(Z ∈ τ → ρ �= Z). It suffices to show that no non-
empty subset K of J forces ∀Z(Z ∈ τ → ρ �= Z) or ∀Z(Z ∈ τr → ρr �= Z)
(r ∈ J). For the former, we will show that K must violate the second clause
in forcing ∀. Let s ∈ K. Letting Z be ρs, as just observed, all of T will force
Z ∈ τs but nothing will force ρs �= Z. Similarly for the latter, by choosing
Z to be ρr. To finish forcing the implication, it suffices to show that for all
r T � ρr ⊆ σr → ¬∀Z(Z ∈ τr → ρr �= Z). Again, it suffices to let Z be ρr.
For the second clause in forcing ∀, for r ∈ T and ρ a term, it suffices to show
that T � ρ ⊆ σr → ¬∀Z(Z ∈ τr → ρ �= Z). This time letting Z by any ρs

suffices.
– Bounded Separation: The important point here is that, for φ bounded (Δ0)

with only ground model terms, J � φ iff T � φ iff V |= φ̌ (4, part 6).
We need to show that T � ∀X ∃Y ∀Z (Z ∈ Y ↔ Z ∈ X ∧ φ(Z)). This
means, first, that for any σ, T � ∃Y ∀Z (Z ∈ Y ↔ Z ∈ σ ∧ φ(Z)), and,
second, for any r ∈ T there is a J � r such that, for any σ, J � ∃Y ∀Z (Z ∈
Y ↔ Z ∈ σ ∧ φr(Z)). In the second part, choosing J to be T , we have an
instance of the first part, so it suffices to prove the first only.
Let τ be {〈σi, J ∩Ji〉 | 〈σi, Ji〉 ∈ σ and J � φ(σi)} ∪ {〈x̂, r〉 | 〈x̂, T 〉 ∈ σr and
T � φr(x̂)}. We claim that τ suffices: T � ∀Z (Z ∈ τ ↔ Z ∈ σ ∧ φ(Z)).
First, let ρ be a term. We need to show that T � ρ ∈ τ ↔ ρ ∈ σ ∧ φ(ρ).
Unraveling the bi-implication and the definition of forcing an implication,
that becomes J � ρ ∈ τ iff J � ρ ∈ σ ∧ φ(ρ), and J � ρr ∈ τr iff J � ρr ∈
σr ∧ φr(ρr). The first iff should be clear from the first part of the definition
of τ and the second iff from the second part of the definition, along with the
observation that forcing φr(ρr) is independent of J .
We also need, for each r ∈ T , a J � r such that for all ρ J � ρ ∈ τr ↔
ρ ∈ σr ∧ φr(ρ). Choosing J to be T and unraveling as above (recycling the
variable J) yields J � ρ ∈ τr iff J � ρ ∈ σr ∧ φr(ρ), and J � ρs ∈ τr iff
J � ρs ∈ σr ∧ φr(ρs). These hold because the only things that can be forced
to be in τr or σr are (locally) images of ground model terms, and the truth
of φr evaluated at such a term is independent of J .
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– Collection: Since only regular, not strong, Collection is true here, it would
be easiest to his this with a sledgehammer: reflect V to some set M large
enough to contain all the parameters and capture the truth of the assertion
in question; the term consisting of the whole universe according to M will
be more than enough. It is more informative, though, to follow through the
natural construction of a bounding set, so we can highlight in the next section
just what goes wrong with the proof of Strong Collection.
We need T � ∀x ∈ σ ∃y φ(x, y) → ∃z ∀x ∈ σ ∃y ∈ z φ(x, y). It suffices to
show that for any J if J � ∀x ∈ σ ∃y φ(x, y) then J � ∃z ∀x ∈ σ ∃y ∈
z φ(x, y), and the same relativized to r. The latter is a special case of the
former, so it suffices to show just the former.
By hypothesis, for each 〈σi, Ji〉 ∈ σ and r ∈ Ji ∩ J there are τir and Jir ⊆
Ji ∩ J , Jir � r such that Jir � φ(σi, τir). Also, for all r ∈ J there is a Jr � r
such that, for all 〈x̂, T 〉 ∈ σr , Jr � ∃y φr(x̂, y). For each s ∈ Jr, let τrx̂s and
K � s be such that K � φr(x̂, τrx̂s). By 4, part 5), K � φr(x̂, τs

rx̂s).
We claim that τ = {〈τir , Jir〉 | i ∈ I, r ∈ Ji ∩ J} ∪ {〈τs

rx̂s, r〉 | r ∈ J, 〈x̂, T 〉 ∈
σr, s ∈ Jr} suffices: J � ∀x ∈ σ ∃y ∈ τ φ(x, y).
Forcing a universal has two parts. The first is that for all ρ, J � ρ ∈ σ →
∃y ∈ τ φ(ρ, y). For the second, it suffices to show that for all r ∈ J and
terms ρ Jr � ρ ∈ σr → ∃y ∈ τr φr(ρ, y).
For the former, first suppose J ⊇ K � ρ ∈ σ. It should be clear that the
first part of τ covers this case. For the other part of forcing that implication,
for each r ∈ J , it suffices to show that Jr is as desired: for all K ⊆ Jr, if
K � ρr ∈ σr then K � ∃y ∈ τr φr(ρr, y). This is subsumed by the second
implication from above, to which we now turn.
To show Jr � ρ ∈ σr → ∃y ∈ τr φr(ρ, y), we need to show first that if
Jr ⊇ K � ρ ∈ σr then K � ∃y ∈ τr φr(ρ, y), and second that for all s ∈ Jr

there is a K � s such that if K ⊃ L � ρs ∈ σr then L � ∃y ∈ τr φr(ρs, y). By
choosing K to be Jr, the second is subsumed by the first. For that, it should
be clear that the second part of τ covers this case. In a bit more detail, it
suffices to work locally. (That is, it suffices to find a neighborhood of s ∈ K
forcing what we want, by 4.) Locally, ρ is forced equal to some x̂, where
〈x̂, T 〉 ∈ σr. As already shown, some neighborhood of s forces φr(x̂, τs

rx̂s),
and 〈τs

rx̂s, T 〉 ∈ τr by the second part of τ .

3 Separation and Exponentiation

If Separation were to hold (in the presence of the other axioms from above), then
Strong Collection would follow, which itself implies Replacement. Hence a power-
ful way to show that Separation is not forced is to give an example in which even
Replacement fails. In the example below, the offending formula is a Boolean com-
bination of Σ1 formulas; we do not know if simpler instances of Replacement, such
as for Σ1 or Δ0 formulas, are falsifiable or instead are actually forced.

Let Tn (n > 0) be the standard space for collapsing ℵn to be countable:
elements are injections from ℵ0 to ℵn, an open set is given by a finite partial
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function of the same type, an element is in that open set if it is compatible with
the partial function. Let T be the disjoint union of the Tns adjoined with an
extra element ∞:

⊎
n Tn ∪{∞}. A basis for the topology is given by all the open

subsets of each Tn, plus the basic open neighborhoods of ∞, which are all of the
form

⊎
n≥N Tn ∪ {∞} for some N .

This T falsifies Replacement. To state the instance claimed to be falsified, we
need several parameters. One is {〈n̂, ∞〉 | n ∈ ω}, which we will call ω−. Another
is the internalization of the function n �→ ℵn (n ∈ ω), which we will refer to via
the free use of the notation ℵ̂n, even when n is just a variable. Finally, we will
implicitly need ω̂ in the assertion “X is countable,” which is the abbreviation
for what you think (i.e. the existence of a bijection with ω̂). Note that “X is
uncountable” is taken as the negation of “X is countable.”

Proposition 2. T �� ∀x ∈ ω− ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂x is
uncountable)∧ (y = 1 ↔ ¬¬ℵ̂x is countable)] → ∃f ∀x ∈ ω−[(f(x) = 0∨ f(x) =
1) ∧ (f(x) = 0 ↔ ℵ̂x is uncountable) ∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)].

Proof. First we show that T forces the antecedent ∀x[x ∈ ω− → ∃!y [(y = 0∨y =
1) ∧ (y = 0 ↔ ℵ̂x is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂x is countable)]].

For the first clause in forcing ∀, we need to show that for all σ T � σ ∈
ω− → ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂σ is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂σ

is countable)]. The first clause in forcing that implication is vacuous, as no
open set will force σ ∈ ω−. The second clause is vacuous for all choices of r
except ∞, as then (ω−)r is empty. Finally, for r = ∞, it suffices to show that
T � ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂n̂ is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂n̂ is
countable)]. The term which is 0 on

⊎
0<i<n Tn and 1 on the rest of T suffices.

The second clause in forcing ∀ is similar.
Since T forces the antecedent of the conditional, it suffices to show that T does

not force the consequent: T �� ∃f ∀x ∈ ω−[(f(x) = 0 ∨ f(x) = 1) ∧ (f(x) = 0 ↔
ℵ̂x is uncountable)∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)]. If that were not the case,
there would be a term (we will ambiguously refer to as f) and a neighborhood
J of ∞ such that J � ∀x ∈ ω−[(f(x) = 0 ∨ f(x) = 1) ∧ (f(x) = 0 ↔ ℵ̂x is
uncountable) ∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)]. By 4, part 5), there would be
a K � ∞ such that K � ∀x ∈ ω̂[(f∞(x) = 0 ∨ f∞(x) = 1) ∧ (f∞(x) = 0 ↔ ℵ̂x

is uncountable) ∧ (f∞(x) = 1 ↔ ¬¬ℵ̂x is countable)]. K, being open, contains a
set of the form

⊎
n≥N Tn. Let M be N + 1. So K � (f∞(M̂) = 0 ∨ f∞(M̂) =

1) ∧ (f∞(M̂) = 0 ↔ ℵ̂M̂ is uncountable) ∧ (f∞(M̂) = 1 ↔ ¬¬ℵ̂M̂ is countable).
But f∞(M̂) is a ground model term, and so is (forced by K to be) equal to 0̂ or
1̂. Hence either K � ℵ̂M̂ is uncountable or K � ¬¬ℵ̂M̂ is countable. But neither
is the case, since K ⊇ TN � ℵ̂M̂ is uncountable and K ⊇

⊎
n>N Tn � ℵ̂M̂ is

countable.

In the example above, the problem around ∞ is that no neighborhood forces
just what gets collapsed and what doesn’t. It is this lack of homogeneity that is
the root cause of the failure of Separation.
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Definition 6. T is locally homogeneous around r, s ∈ T if there are neighbor-
hoods Jr, Js of r and s respectively and a homeomorphism of Jr to Js sending r
to s.

An open set U is homogeneous if it is locally homogeneous around all r, s ∈ U .
T is locally homogeneous if every r ∈ T has a homogeneous neighborhood.

Lemma 5. If U is homogeneous, φ contains only ground model terms, and U ⊇
V � φ (V non-empty), then U � φ.

Proof. Let r ∈ V . For s ∈ U , let Vr and Vs be the neighborhoods f the home-
omorphism given by the homogeneity of U . f(σ) can be defined inductively on
terms σ. (Briefly, hereditarily restrict σ to Vr and apply f to the second parts
of the pairs in the terms.) f(ψ) is then ψ with f applied to the parameters. It
is easy to show inductively on formulas that Vr � ψ iff Vs � f(ψ).

If φ contains only ground model terms, then f(φ) = φ. So U is covered by
open sets that force φ. Hence U � φ.

Theorem 2. If T is locally homogeneous then T � FullSeparation.

Proof. As in the proof of Bounded Separation from the previous section, we
have to show that, for any σ, T � ∃Y ∀Z (Z ∈ Y ↔ Z ∈ σ ∧ φ(Z)), only this
time with no restriction on φ. The choice of witness Y is slightly different. For
each r let Kr � r be homogeneous. Let τ be {〈σi, J ∩ Ji〉 | 〈σi, Ji〉 ∈ σ and
J � φ(σi)} ∪ {〈x̂, r〉 | 〈x̂, T 〉 ∈ σr and Kr � φr(x̂)}. The difference from before
is that in the latter part of τ membership is determined by what’s forced by Kr

instead of by T . We claim that τ suffices: T � ∀Z (Z ∈ τ ↔ Z ∈ σ ∧ φ(Z)).
For the first clause in forcing ∀, let ρ be a term. We need to show T � ρ ∈

τ ↔ ρ ∈ σ ∧ φ(ρ). By the first clause in forcing →, we have to show that for all
J J � ρ ∈ τ iff J � ρ ∈ σ ∧ φ(ρ), which should be clear from the first part of τ .
For the second clause in → it suffices to show that for all J ⊆ Kr J � ρr ∈ τr

iff J � ρr ∈ σr ∧ φr(ρr). Regarding forcing membership, all of the terms here
are ground model terms, so membership is absolute (does not depends on the
choice of J). If ρr enters τr because of the first part of τ ’s definition, then
we have σr

i = ρr, r ∈ J � φ(σi), r ∈ Ji, and 〈σi, Ji〉 ∈ σ. By 4, part 5),
some neighborhood Jr of r forces φr(σr

i ). By the lemma just above (applied to
Kr ∩ Jr), Kr forces the same. Hence we can restrict our attention to terms ρr

which enter τ because of τ ’s definition’s second part. Again by the preceding
lemma, for J non-empty, J � φr(ρr) iff Kr � φr(ρr), which suffices. (For J
empty, J forces everything.)

For the second clause in forcing ∀, it suffices to show that Kr � ρ ∈ τr ↔ ρ ∈
σr ∧ φr(ρ). If any J ⊆ Kr forces ρ ∈ τr or ρ ∈ σr, then locally ρ is forced to
be some ground model term, and we’re in the same situation as in the previous
paragraph.

It would be nice to turn the previous theorem into an iff. If that is false, it would
be interesting to see exactly what condition is equivalent to Full Separation.
Presumably it would have something to do with homogeneity, since the proof
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given seems so natural, but it’s possible that the correct condition, if weaker
than local homogeneity, would involve different issues. It’s also possible that
Separation has no natural correspondent on the topological side, which would
be very unfortunate, but still important to know.

We now turn our attention to Exponentiation.

Theorem 3. If T is locally connected, then T � Exponentiation.

Proof. Given terms σ and χ, let τ be {〈ρ, J〉 | J � ρ is a function from σ to
χ} ∪ {〈x̂, r〉 | x is a function from σ̌r to χ̌r}. (τ can be arranged to be set-sized
by requiring that ρ be hereditarily empty outside of J .) It suffices to show that
T � ∀z (z ∈ τ ↔ z is a function from σ to χ).

The first clause in forcing ∀ is that, for any term ρ, T � ρ ∈ τ ↔ ρ is a
function from σ to χ. That J � ρ ∈ τ iff J � “ρ is a function from σ to χ” is
immediate from the first part of τ . As for J � ρr ∈ τr iff J � “ρr is a function
from σr to χr”, by 4, part 6), both of those statements are independent of J ,
and the iff holds because of the second part of τ .

The crux of the matter is the second clause in forcing ∀: J � ρ ∈ τr iff J � “ρ
is a function from σr to χr”. Why can only ground model functions be forced
(locally) to be functions? For s ∈ J , let Ks ⊆ J be a connected neighborhood of
s. For each 〈σi, T 〉 ∈ σr, pick a 〈χi, T 〉 ∈ χ such that the value of (i.e. the largest
subset of Ks forcing) “ρ(σi) = χi” is non-empty. That set, along with the value
of “ρ(σi) �= χi”, is a disjoint open cover of Ks. Since Ks is connected, the latter
set is empty. So all of the values of ρ are determined by Ks, so Ks forces ρ to
equal a ground model term. Since J is covered by such sets, J also forces ρ to
be a ground model term.

Again, it would be nice to turn this into an iff, or, failing that, to know what
topological equivalent there is to Exponentiation.

An application of these theorems can be found in [9]. The second model pre-
sented there is the topological semantics of the current paper applied to R (with
the standard topology). R is homogeneous (not just locally so) and locally con-
nected, which is why that model satisfied Separation and Exponentiation. An
example where Exponentiation fails is if T is Cantor space. Forcing with T pro-
duces a random 0-1 sequence, which is a function from N to 2. So the canonical
generic is in a function space, but cannot be captured by any ground model set.
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Abstract. In answer set programming (ASP), one does not allow the
use of function symbols. Disallowing function symbols avoids the problem
of having logic programs which have stable models of excessively high
complexity. For example, Marek, Nerode, and Remmel showed that there
exist finite predicate logic programs which have stable models but which
have no hyperarithmetic stable model. Of course, by eliminating function
symbols, one loses a lot of expressive power in the language. In particular,
it is difficult to directly reason about infinite sets in ASP.

Blair, Marek, and Remmel [BMR08] developed an extension of logic
programming called set based logic programming. In the theory of set
based logic programming, the atoms represent subsets of a fixed universe
X and one is allowed to compose the one-step consequence operator with
a monotonic idempotent operator O so as to ensure that the analogue
of stable models are always closed under O. We show that if the sets
represented by the atoms in a finite set based program P are languages
accepted by finite automaton, and the operators involved in the construc-
tion have a certain natural property, then all the stable models of P are
languages accepted by finite automaton and one can effectively check
whether a language accepted by a finite automaton is a stable model
of the set based logic program. Thus in this setting, one can effectively
reason about certain classes of infinite sets.

1 Introduction

Computer Science for the most part reasons about finite sets, relations and func-
tions. There are many examples in computer science where adding symbols for
infinite sets or arbitrary function symbols into programming languages results in
big jumps in the complexity of models of programs. For example, finding the least
model of a finite Horn program with no function symbols can be done in linear
time [DG82] while the least model of finite predicate logic Horn program with
function symbols can be an arbitrary recursively enumerable set [Sm68]. If we
consider logic programs with negation, Marek and Truszczyński [MT93] showed
that the question of whether a finite propositional logic program has a stable
model is NP-complete. However Marek, Nerode, and Remmel [MNR94] showed
that the question of whether a finite predicate logic program with function sym-
bols possesses a stable model is Σ1

1 complete. Similarly, the stable models of
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logic programs that contain function symbols can be quite complex. Starting
with [AB90] and continuing with [BMS95] and [MNR94], a number of results
showed that the stable models of logic programs that allow function symbols
can be exceedingly complex, even in the case where the program has a unique
stable model. For example, Marek, Nerode and Remmel [MNR94] showed that
there exist finite predicate logic programs which have stable models but which
have no hyperarithmetic stable model.

While these type of results may at first glance appear negative, they had a
positive effect in the long run since they forced researchers and designers to limit
themselves to cases where programs can be actually processed. The effect was
that processing programs called solvers such as cmodels [BL02, GLM06], smodels
[SNS02], clasp [GKN+], ASSAT [LZ02], and dlv [LPF+] had to focus on finite
programs that do not admit function symbols. The designers of solvers have
also focused on the issues of both improving processing of the logic programs
(i.e. searching for a stable model) and improving the use of logic programs as
a programming language. The latter task consists of extending the constructs
available to the programmer to make programming easier and more readable.
This resulted in a class of solvers that found use in combinatorial optimization,
hardware verification and other applications.

Of course, by eliminating function symbols, one loses a lot of expressive power
in the language. One of the motivations of this paper was to find ways to extend
the ASP formalism to allow one to reason directly about infinite sets yet still
allow the programs to be processed in an effective manner. This requires a very
careful analysis of the complexity issues involved in the formalisms as well as
developing various ways to code the infinite sets involved in any given application
so that one can process information effectively. Part of our motivation is that
with the rise of the Internet, there are now many tools which use the Internet
as a virtual data base. While all the information on the Internet at any given
point of time is a finite object, it is constantly changing and it would be nearly
impossible to characterize the totality of information available in any meaningful
way. Thus, for all practical purposes, one can consider the information on the
Internet as an infinite set of information. Hence we need to consider ways in
which one can extend various formalisms in computer science to reason about
infinite objects.

The main goal of this paper is to show that there are extensions of the ASP
formalism where one can effectively reason about infinite languages which are
accepted by deterministic finite automata (DFAs). In particular, we shall show
that in a recent extension of logic programming due to Blair, Marek, and Remmel
[BMR08], one can effectively reason about languages which are accepted by
finite automaton. That is, in [BMR01], Blair, Marek, and Remmel developed an
extension of the logic programming paradigm called spatial logic programming
in which one can directly reason about regions in space and time as might be
required in applications like graphics, image compression, or job scheduling. In
spaital logic programming, one has some fixed space X be the intended universe
of the program rather than having the Herbrand base be the intended underlying
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universe of the program and one has each atom of the language of the program
specify a subset of X , i.e. an element of the set 2X .

As pointed out in [BMR08], if one reflects for a moment on the basic aspects
of logic programming with an Herbrand model interpretation, a slight change in
one’s point of view shows that it is natural to interpret atoms as subsets of the
Herbrand base. In ordinary logic programming, we determine the truth value of
an atom p in an Herbrand interpretation I by declaring I |= p if and only if
p ∈ I. However, this is equivalent to defining the sense, [[p]], of an atom p to be
the set {p} and declaring that I |= p if and only if [[p]] ⊆ I. By this simple move,
we have permitted ourselves to interpret the sense of an atom as a subset of a
set X rather than the literal atom itself in the case where X is the Herbrand
base of the language of the program.

It turns out that if the underlying space X has structure such as a topology
or an algebraic structure such as a group or vector space, then a number of other
natural options present themselves. That is, Blair, Marek, and Remmel [BMR08]
extended the theory of spatial logic programming to what they called set based
logic programming where one composes the one-step consequence operator of
spatial logic programing with a monotonic idempotent operator. For example,
if we are dealing with a topological space, one can construct a new one-step
consequence operator T by composing the one-step consequence operator for
spatial logic programming with an operator that produces the topological closure
of a set or the interior of a set. In such a situation, we can ensure that the
new one-step consequence operator T always produces a closed set or always
produces an open set. We say that an operator O : 2X → 2X is monotonic if
for all Y ⊆ Z ⊆ X , we have O(Y ) ⊆ O(Z) and we say that O is idempotent
for all Y ⊆ X , O(O(Y )) = O(Y ). Specifically, many familiar operators such
as closure, interior, or the span and convex-closure operators in vector spaces
over the rationals are monotonic idempotent operators. We call a monotonic
idempotent operator a miop. We say that a set Y is closed with respect to miop
O if and only if Y = O(Y ). By composing the one-step consequence operator
for spatial logic programs with the operator O, we can ensure that the resulting
one-step consequence operator always produces a fixed point of O.

Moreover, in such a setting, one also has a variety of options for how to
interpret negation. In normal logic programming, a model M satisfies ¬p if
p /∈ M . From the spatial logic programming point of view, when p is interpreted
as a singleton {p}, this would be equivalent to saying that M satisfies ¬p if
(i) {p} ∩ M = ∅, or (equivalently) (ii) {p} � M . When the sense of p is a
set with more than one element, it is easy to see that saying that M satisfies
¬p if [[p]] ∩ M = ∅ (strong negation) is different from saying that M satisfies
¬p if [[p]] � M (weak negation). This leads to two natural interpretations of
the negation symbol which are compatible with the basic logic programming
paradigm. When the underlying space has a miop cl, one can get even more
subsidiary types of negation by taking M to satisfy ¬p if cl([[p]]) ∩ M ⊆ cl(∅)
(strong negation) or by taking M to satisfy ¬p if cl([[p]]) � M (weak negation).
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Blair, Marek, and Remmel [BMR08] showed that set based logic programing
provides the foundations and basic techniques for crafting applications in the an-
swer set paradigm as described in [MT99, Nie99] and then [GL02, Ba03]. The ex-
pressive power of miops allows us to capture functions and relations intrinsic to the
domain of a spatial logic program, but independent of the program. This permits
set based logic programs to seamlessly serve as front-ends to other systems. Miops
play the role of back-end, or “behind-the-scenes”, procedures and functions.

The main goal of this paper is to show that the theory of deterministic finite
automata (DFA’s) can be integrated with the theory of set based logic program-
ming to give a setting where one can effectively reason about infinite sets. That
is, suppose that P is a finite set based logic program over a universe X where the
sets represented by atoms in P are languages contained in X which are accepted
by finite automaton and the miops O involved in P preserve regular languages,
i.e, if A is an automata such that the language L(A) accepted by A is contained
in X , then we can effectively construct an automaton B such that the language
L(B) accepted by B equals O(L(A)).Then, we shall show that the stable models
of P are languages accepted by finite automaton and one can effectively check
whether a language accepted by finite automaton is a stable model. Thus in this
setting, one can effectively reason about infinite sets.

The outline of this paper is as follows. In section 2, we shall give the basic
definitions of set based logic programming with miops. In section 3, we shall
review that basic properties of languages accepted by finite automata. In section
4, we shall show how the formalisms of finite automata can be incorporated into
the set based logic programming. Finally, in section 5, we give conclusions and
directions for further research.

2 Set Logic Programs: Syntax, Miops, and Semantics

We review the basic definitions of set based logic programming as introduced
by Blair, Marek, and Remmel [BMR08]. The syntax of set based logic programs
will essentially be the syntax of DATALOG programs with negation.

A set based augmented first-order language (set based language, for
short) L is a triple (L, X, [[·]]), where

(1) L is a language for first-order predicate logic (without function symbols other
than constants),
(2) X is a nonempty (possibly infinite) set, called the interpretation space, and
(3) [[·]] is a mapping from the atoms of L to the power set of X , called the sense
assignment. If p is an atom, then [[p]] is called the sense of p.

A set based logic program has three components.

1) The language L which includes the interpretation space and the sense
assignment.
2) The IDB (Intentional Database): A finite set of program clauses, each of
the form A ← L1, . . . , Ln, where each Li is a literal, i.e. an atom or the negation
of an atom, and A is an atom.
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3) The EDB (Extensional Database): A finite set of clauses of the form A ←
where A is an atom.

Given a set based logic program P , the Herbrand base of P is the Herbrand base
of the smallest set based language over which P is a set based logic program.

We shall assume that the classes of set based logic programs that we consider
are always over a language for first-order logic L with no function symbols except
constants, and a fixed set X . We let HBL denote the Herbrand base of L, i.e.
the set of atoms of L. We omit the subscript L when the context is clear. Thus
we allow clauses whose instances are of the following form:

C = A ← B1, . . . , Bn, ¬C1, . . . , ¬Cm. (1)

where A, Bi, and Cj are atoms for i = 1, . . . , n and j = 1, . . . , m. We let
head(C) = A, Body(C) = B1, . . . , Bn, ¬C1, . . . , ¬Cm, and PosBody(C)={B1, . . . ,
Bm}, and NegBody(C) = {C1, . . . , Cm}.

We let 2X be the powerset of X . Given [[·]] : HBL −→ 2X , an interpretation I
of the set based language L = (L, X, [[·]]) is a subset of X .

2.1 Examples of Monotonic Idempotent Operators

A second component of a set based logic program is one or more monotonic
idempotent operators O : 2X → 2X that are associated with the program.

For example, suppose that the interpretation space X is either Rn or Qn

where R is the reals and Q is the rationals. Then, X is a topological vector space
under the usual topology so that we have a number of natural miop operators:

1. opid(A) = A, i.e. the identity map is simplest miop operator,
2. opc(A) = Ā where Ā is the smallest closed set containing A,
3. opint(A) = int(A) where int(A) is the interior of A,
4. opconvex(A) = K(A) where K(A) is the convex closure of A, i.e. the smallest

set K ⊆ X such that A ⊆ K and whenever x1, . . . , xn ∈ K and α1, . . . , αn

are elements of the underlying field (R or Q) such that
∑n

i=1 αi = 1, then∑n
i=1 αixi is in K, and

5. opsubsp(A) = (A)∗ where (A)∗ is the subspace of X generated by A.

We should note that (5) is a prototypical example if we start with an algebraic
structure. That is, in such cases, we can let opsubstr(A) = (A)∗ where (A)∗ is the
substructure of X generated by A. Examples of such miops include the following:

(a) if X is a group, we can let opsubgrp(A) = (A)∗ where (A)∗ is the subgroup
of X generated by A,

(b) if X is a ring, we can let opsubrg(A) = (A)∗ where (A)∗ is the subring of X
generated by A,

(c) if X is a field, we can let opsubfld(A) = (A)∗ where (A)∗ is the subfield of
X generated by A,

(d) if X is a Boolean algebra, we can let opsubalg(A) = (A)∗ where (A)∗ is the
subalgebra of X generated by A or we can let opideal(A) = Id(A) where
Id(A) is the ideal of X generated by A, and
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(e) if (X, ≤X) is a partially ordered set, we can let opuideal(A) = Uid(A) where
Uid(A) is the upper order ideal of X (that is, the least subset S of X
containing A such that whenever x ∈ S and x ≤X y, then y ∈ S).

2.2 Set Based Logic Programming with Miops

Now suppose that we are given a miop op+ : 2X → 2X and Horn set based
logic program P over X . Here we say that a set based logic program is Horn if
its IDB is Horn. Blair, Marek, and Remmel [BMR08] generalized the one-step
consequence-operator of ordinary logic programs with respect to 2-valued logic
to set based logic programs relative to a miop operator op+ as follows. First, for
any atom A and I ⊆ X , we say that I |=[[·]],op+ A if and only if op+([[A]]) ⊆ I.
Then, given a set based logic program P with IDB P , let P ′ be the set of
instances of a clauses in P and let

TP,op+(I) = op+(I1 ∪ I2)

where I1 =
⋃

{[[a]] | a ← L1, . . . , Ln ∈ P ′, I |=[[·]],op+ Li, i = 1, . . . , n} and
I2 =

⋃
{[[a]] | a ← is an instance of a clause in the EDB of P}.

We then say that a supported model relative to op+ of P is a fixed point of
TP,op+ .

We iterate TP,op+ according to the following.

TP,op+ ↑0 (I) = I
TP,op+ ↑α+1 (I) = TP,op+(TP,op+ ↑α (I))
TP,op+ ↑λ (I) = op+(

⋃

α<λ

{TP,op+ ↑α (I)}), λ limit

It is easy to see that if P is a Horn spatial logic program and op+ is a miop, then
TP,op+ is monotonic. Blair, Marek, and Remmel [BMR08] proved the following.

Theorem 1. Given a miop op+, the least model of a Horn set based logic pro-
gram P exists and is closed under op+ , is supported relative op+, and is given
by TP,op+ ↑α (∅) for the least ordinal α at which a fixed point is obtained.

We note, however, that if the Herbrand universe of a set based logic program
is infinite (contains infinitely many constants) then, unlike the situation with
ordinary Horn programs, TP,op+ will not in general be upward continuous even
in the case where op+(A) = A for all A ⊆ X . That is, consider the following
example which was given in [BMR08].

Example 1. Assume that op+ is the identity operator on 2X . To specify a set
based logic program, we must specify the language, EDB and IDB. Let L =
(L, X, [[·]]) where L has four unary predicate symbols: p, q, r and s, and count-
ably many constants e0, e1, . . . , . X is the set N

⋃
{N} where N is the set of

natural numbers, {0, 1, 2, . . .}. [[·]] is specified by [[q(en)]] = {0, . . . , n}, [[p(en)]] =
{0, . . . , n + 1}, [[r(en)]] = N, and [[s(en)]] = {N}.
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The EDB is q(e0) ← and the IDB is: p(X) ← q(X) and s(e0) ← r(e0).

Now, after ω iterations upward from the empty interpretation, r(e0) becomes
satisfied. One more iteration is required to reach an interpretation that satisfies
s(e0), where the least fixed point is attained. �

Next we consider how we should deal with negation in the setting of miop op-
erators. Suppose that we have a miop operator op− on the space X . We do not
require that op− is the same as that miop op+ but it may be. Our goal is to
define two different satisfaction relations for negative literals relative to the miop
operator op− which are called strong and weak negation in [BMR08] 1.

For the rest of this paper, we shall think of a set based logic program P as a
set of clauses of the form (1) where it may be that either n or m equals 0. We let
horn(P ) denote the set of all Horn clauses in P and nohorn(P ) = P −horn(P ).

Definition 1. Suppose that P is a set based logic program over X and op+ and
op− are miops on X and a ∈ {s, w}.

(I) Given any atom A and set J ⊆ X , then we say
J |=a

[[·]],op+,op− A if and only if op+([[A]]) ⊆ J .
(II)s (Strong negation) Given any atom A and set J ⊆ X , then we say

J |=s
[[·]],op+,op− ¬A if and only if op−([[A]]) ∩ J ⊆ op−(∅).

(II)w (Weak negation) Given any atom A and set J ⊆ X , then we say
J |=w

[[·]],op+,op− ¬A if and only if op−([[A]]) � J .

Definition 2. For any given set J ⊆ X we define the strong Gelfond-Lifschitz
transform, GLs

J,[[·]],op+,op−(P ), of a program P with respect to miops op+ and
op− on 2X , in two steps. First, we consider all clauses in P ,

C = A ← B1, . . . , Bn, ¬C1, . . . , Cm (2)

where A, B1, . . . , Bn, C1, . . . , Cm are atoms. If for some i, it is not the case that
J |=s

[[·]],op+,op− ¬Ci, then we eliminate clause C. Otherwise we replace C by the
Horn clause

A ← B1, . . . , Bn. (3)

Then, GLs
J,[[·]],op+,R(P ) consists of the set of all Horn clauses produced by this

two step process.
We define the weak Gelfond-Lifschitz transform, GLw

J,[[·]],op+,op−(P ), of a pro-
gram P with respect to miops op+ and op− on 2X in a similar manner except
that we use |=w

[[·]],op+,op− in place of |=s
[[·]],op+,op− in the definition.

1 Lifschitz [Li94] observed that different modalities, thus different operators, can be
used to evaluate positive and negative part of bodies of clauses of normal programs.
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Note that since GLa
J,[[·]],op+,op−(P ) is a Horn set based logic program for either

a = s or a = w, the least model of GLa
J,[[·]],op+,op−(P ) relative to op+ is defined.

We then define the a-stable model semantics for a set based logic program P
over X relative to the miops op+ and op− on X for a ∈ {s, w} as follows.

Definition 3. J is an a-stable model of P relative to op+ and op− if and only
if J is the least fixed point of TGLa

J,[[·]],op+,op− (P ),op+ .

Next we give a simple example to show that there is a difference between s-stable
and w-stable models.

Example 2. Suppose that the space X = R2 is the real plane. Our program will
have two atoms {a, b}, {c, d} where a, b, c and d are reals. We let [a, b] and [c, d]
denote the line segments connecting a to b and c to d respectively. We let the
sense of the these atoms be the corresponding subsets, i.e. we let [[{a, b}]] = {a, b}
and [[{c, d}]] = {c, d}. We let op+ = op− = opconvex. The consider the following
program P .

(1) {a, b} ← ¬{c, d}
(2) {c, d} ← ¬{a, b}

There are four possible candidate for stable models in this case, namely (i) ∅,
(ii) [a, b], (iii) [c, d], and (iv) opconvex{a, b, c, d}. Let us recall that opconvex(X)
is the convex closure of X which, depending on a, b, c, and d may be either a
quadrilateral, triangle, or a line segment.

If we are considering s-stable models where J |=s
[[·]],op+,op− ¬C if and only if

op−(C) ∩ J = op−(∅) = ∅, then the only case where there are s-stable models if
[a, b] and [c, d] are disjoint in which (ii) case and (iii) are s-stable models.

If we are considering w-stable models where J |=w
[[·]],op+,op− ¬C if and only if

op−(C) � J , then there are no w-stable models if [a, b] = [c, d], (ii) is a w-stable
model if [a, b] � [c, d], (iii) is w-stable model if [c, d] � [a, b] and (ii) and (iii) are
w-stable models if neither [a, b] ⊆ [c, d] nor [c, d] ⊆ [a, b]. �
It is still the case that the a-stable models of a set based logic program P form
an antichain for a ∈ {s, w}. That is, we have the following result.

Theorem 2. Suppose that P is a set based logic program over X, op+ and op−

are miops on X, and a ∈ {s, w}. If M and N are a-stable models of P and
M ⊆ N , then M = N .

Proof. It is easy to see that in general if M ⊆ N , then

GLa
N,[[·]],op+,op−(P ) ⊆ GLa

M,[[·]],op+,op−(P ).

Hence the least fixed point of TGLa
N,[[·]],op+,op− (P ),op+ is a subset of the least fixed

point of TGLx
M,[[·]],op+,op− (P ),op+ . But if M ⊆ N and M and N are a-stable models,

then N equals the least fixed point of TGLa
N,[[·]],op+,op− (P ),op+ and M equals the

least fixed point of TGLa

M,[[·]],op+,op− (P ),op+ so that N ⊆ M . �
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3 Languages Accepted by Finite Automaton

In this section, we shall briefly list some of the basic properties of languages
accepted by finite automaton that we shall need.

Recall that a deterministic finite automaton (DFA) M is specified by a quin-
tuple M = (Q, Σ, δ, s, F ) where

Q is a finite alphabet of state symbols,
Σ is finite alphabet of input symbols,
δ : Q × Σ → Q is a transition function,
s in Q is the start state, and
F ⊆ Q is the set of final states.

We let L(M) denote the set of all words w accepted by M . A nondeterministic
automaton (NFA) M = (Q, Σ, δ, s, F ) is specified by similar 5-tuple except that
in this case δ ⊆ Q×Σ ×Q. It is well known that for any fixed finite alphabet Σ,
the set of languages L ⊆ Σ∗ accepted by DFA’s and the set languages of L ⊆ Σ∗

accepted by NFA’s are the same. Moreover, given any two DFA’s M1 and M2,
there are standard constructions of DFA’s M3, M4, and M5 such that

L(M3) = L(M1) ∩ L(M2),
L(M4) = L(M1) ∪ L(M2), and
L(M5) = Σ∗ − L(M1).

We shall denote these three DFA’s by M3 = M1 ∩ M2, M4 = M1 ∪ M2, and
M5 = M̄1

A crucial property of DFA’s is the pumping lemma.

Lemma 1. Let M = (Q, Σ, δ, s, F ) be a DFA and p = |Q|. Then for all words
w ∈ L(M) such that |w| ≥ p, we can write w = xyz for some x, y, z ∈ Σ∗ such
that

1. |xy| ≤ p,
2. |y| ≥ 1, and
3. xyiz ∈ L(M) for all i ≥ 0.

One immediate consequence of the pumping lemma is that we can effectively
decide whether L(M) is empty or finite. That is, we have the following lemmas.

Lemma 2. Let M = (Q, Σ, δ, s, F ) be a DFA. Then, L(M) is empty if and only
if for every w ∈ Σ∗ such that |w| < |Q|, w is not accepted by L(M).

Lemma 3. Let M = (Q, Σ, δ, s, F ) be a DFA. Then, L(M) is finite if and only
if for every w ∈ Σ∗ such that |Q| ≤ |w| < 2|Q|, w is not accepted by L(M).

Thus the complexity of the decision procedure to decide whether L(M) is empty
or finite depends directly on |Q| and |Σ|. The fact that we can effectively decide
if L(M) = ∅ also means that we can decide for any given DFA’s M1 and M2
whether

1. L(M1) ⊆ L(M2) since L(M1) ⊆ L(M2) if and only if L(M1 ∩ M̄2) = ∅,
2. L(M1) = L(M2) since L(M1) = L(M2) if and only if L(M1) ⊆ L(M2) and

L(M2) ⊆ L(M1), and
3. L(M1)∩L(M2) = ∅ since L(M1)∩L(M2) = ∅ if and only if L(M1 ∩M2) = ∅.
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4 Set Based Logic Programming with Automata

In this section, we shall consider finite set based logic programs P over L =
(L, X, [[·]]) where X = Σ∗ for some finite alphabet Σ. Thus P consists of clauses
of the form

C = A ← B1, . . . , Bn, ¬C1, . . . , Cm (4)

where A, B1, . . . , Bn, C1, . . . , Cm are atoms. We shall assume that X = Σ∗ for
some finite alphabet Σ and that for any clause of the form (4) in P ,

[[A]], [[B1]], . . . , [[Bn]], [[C1]], . . . , [[Cm]]

are all accepted by DFA’s whose alphabet of symbols is Σ. For the moment,
assume also that op+ and op− are the identity operators. For ease of
notation, we shall assume that for any atom A that appears in P , A is a DFA
whose over the alphabet Σ and that [[A]] = L(A).

Proposition 1. For every finite set based program P where op+ = opid, every
weak or strong stable model of P is a finite union of the sense assignments of
the heads of clauses in P .

Thus any weak or strong stable model of P must be a finite union of languages in
Σ∗ which are accepted by DFA’s and, hence, the stable model itself is accepted
by a DFA since languages accepted by DFA’s are closed under union. We claim
that if M is a DFA whose alphabet of symbols is Σ, then we can effectively
decide whether L(M) is a weak or strong stable model of P .

The first thing to observe is that we can effectively find the weak or strong
Gelfond-Lifschitz transform of P . That is, under our assumptions for any atom
A and any a ∈ {s, w},

1. L(M) |=a
[[·]],op+,op− A if and only if L(A) ⊆ L(M),

2. L(M) |=s
[[·]],op+,op− ¬A if and only if L(A) ∩ L(M) = ∅, and

3. L(M) |=w
[[·]],op+,op− ¬A if and only if L(A) � L(M).

It follows from the results in Section 3, that we can effectively decide whether
L(M) |=a

[[·]],op+,op− A, L(M) |=s
[[·]],op+,op− ¬A, and L(M) |=w

[[·]],op+,op− ¬A.
Hence, we can effectively construct GLs

L(M),[[·]],op+,op−(P) and GLw
L(M),[[·]],op+,op−(P).

Now suppose that Q is a finite Horn set based logic program over L =
(L, X, [[·]]) where X = Σ∗ for some finite alphabet Σ and op+ and op− are
the identity operators. Moreover, assume that for any atom A which appears in
Q, [[A]] is a language accepted by a DFA whose alphabet is Σ. Again, for ease
of notation, we shall assume that for any atom A that appears in P , A is a
DFA whose alphabet is Σ and that [[A]] = L(A). Then, we claim that we can
effectively construct a DFA M such that L(M) is the least model of Q. First,
we shall show that for all n ≥ 1, we can effectively construct a DFA Mn such
T n

Q,op+(∅) = L(Mn). Note that TQ,op+(∅) is equal to
⋃

{L(A) : A ← ∈ Q}.
Now if {A ← ∈ Q} is empty, then TQ,op+(∅) = ∅ and the least model of Q
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equals ∅ so that we simply let M1 be the one state DFA which has no accepting
state. Otherwise, suppose

{A : A ← ∈ Q} = {A0
1, . . . , A

0
n0

}.

Then, we set M1 = A0
1 ∪· · ·∪A0

n0
. Now assume that we have constructed a DFA

Mn such that T n
Q,op+(∅) = L(Mn). Then,

TQ,op+(L(Mn)) = op+(I1 ∪ I2)

where I1 =
⋃

{[[A]] | A ← B1, . . . , Bm ∈ Q, L(Mn) |=[[·]],op+ Bi, i = 1, . . . , n}
and I2 =

⋃
{[[A]] | A ← is a clause in the EDB of Q}.

Note that I1 ∪ I2 is finite since Q is finite. Since we can effectively decide
whether L(N) ⊆ L(Mn) for any DFA N , we can effectively decide whether
L(Mn) |=[[·]],op+ Bi for any atom Bi and hence we can effectively compute I1
and I2. Then we simply let L(Mn+1) be the DFA whose language is the union
of all the L(A) such that A ∈ I1 ∪ I2.

Finally, we can effectively check whether L(Mn+1) = L(Mn). Since the least
model of Q equals L(Mn) where n is the least integer such that L(Mn+1) =
L(Mn), we can effectively construct a DFA R such that L(R) is the least model
of Q.

It follows that we can effectively construct DFA’s Ms and Mw such that
L(Ms) is the least model of GLs

L(M),[[·]],op+,op−(P ) and L(Mw) is the least model
of GLw

L(M),[[·]],op+,op−(P ). Since we can effectively check whether L(M) = L(Ms)
and whether L(M) = L(Mw), it follows that we can effectively decide if L(M)
is a weak or strong stable model of P .

We can extend our analysis to finite set based logic programs P with miops
assuming that the miops for P satisfy the following property.

Definition 4. We say that a miop op : 2Σ∗ → 2Σ∗
is effectively automata

preserving if for any DFA M whose underlying alphabet of symbols is Σ, we can
effectively construct a DFA N whose underlying alphabet of symbols is Σ such
that L(N) = op(L(M)).

We will now give a number of examples of miops on regular languages.

Example 3. Suppose that Σ = {0, 1, . . . , m}. Then, the following are effectively
automata preserving operators.

(1) If N is a DFA whose underlying set of symbols is Σ, then we can define op :
2Σ∗ → 2Σ∗

by setting op(S) = S∪L(N) for any S ⊆ Σ∗. Clearly if S = L(M) for
some DFA M whose underlying set of symbols is Σ, then op(L(M)) = L(M ∪N)
so op is effectively automaton preserving.
(2)If N is a DFA whose underlying set of symbols is Σ, then we can define op :
2Σ∗ → 2Σ∗

by setting op(S) = S∩L(N) for any S ⊆ Σ∗. Clearly if S = L(M) for
some DFA M whose underlying set of symbols is Σ, then op(L(M) = L(M ∩N)
so op is effectively automata preserving.
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(3)If T is any subset of Σ, we can let op(S) = ST ∗. Again op will be an effectively
automata preserving miop since if M is DFA whose underlying set of symbols is
Σ, then let N be NFA constructed from M by adding loops on all the accepting
states labeled with letters from T . It is easy to see that N accepts L(M)T ∗

and then one can use the standard construction to find a DFA N ′ such that
L(N ′) = L(N). Note that in the special case where T equals Σ, we can think
of op as constructing the upper ideal of S in Σ∗ relative to the partial order .
That is, we say that for words u, v ∈ Σ∗, u  v if u is prefix of v, i.e. v is of the
form uw for some w ∈ Σ∗. For any poset (P, ≤P ), we say that a set U ⊆ P is
an upper ideal in P , if whenever x ≤P y and x ∈ P , then y ∈ P . Clearly, for the
poset (Σ∗, ), op(S) is the upper ideal of (Σ∗, ) generated by S.
(4) Let P = (Σ, ≤) be a poset. For any w, w′ ∈ Σ∗, we say that w′ is a factor of w
if there are words u, v ∈ Σ∗ with w = uw′v. Define the generalized factor order on
P ∗ by letting u ≤ w if there is a factor w′ of w having the same length as u such
that u ≤ w′, where the comparison of u and w′ is done componentwise using the
partial order in P . Again we can show that if op(S) is the upper ideal generated
by S the generalized factor order relative to P ∗, then op is an effectively automata
preserving miop. That is, if we start with a DFA M = (Q, Σ, δ, s, F ), then we
can modify M to an NFA that accepts op(L(M)) as follows. Think of M as
a digraph with edges labeled by elements of Σ in the usual manner. First, we
add a new start state s0. There are loops from s0 labeled with all letters in Σ.
There is also a λ-transition from s0 to the old start state s. We then modify
the transitions in M so that if there is an edge from state q to q′ labeled with
symbol r, then we add an edge from q to q′ with any symbol s such that r ≤ s.
Finally we add loops to all accepting states such that labeled with all letters in
in Σ.
(5) If we allow multiple representations of the infinite dimensional vector space
V∞ for the field GFq where q is prime, then the operator opsubsp can be thought
of an automaton preserving miop. Let Σ = {0, . . . , q − 1}. The standard way to
represent the elements of V∞ is to let 0 = 0 and think of a non-zero element
of V∞ as a finite sequence σ1 . . . σn where σn �= 0. The operations of scalar
multiplication and addition are then performed componentwise. In our case, we
will let any element σ ∈ V∞ have multiple representations, namely, σ can be
represented by σ0n for any n ≥ 0. Then, we let opsubsp(S) be the set of all
representatives of the subspace of V∞ generated by S. In what follows, we shall
only describe how to construct NFA’s that accept the desired languages since
the Myhill-Nerode Theorem allows us to construct in a uniform manner, for any
NFA M , a DFA D such that L(M) = L(D). First, consider miop op1 such that
op1(S) is the set of all representations of elements of S. If M is a DFA whose
underlying alphabet is Σ, then we can modify M to an NFA N that accepts
op1(S) as follows. First, any state q such that there is an n such that the word
0n starting at state q ends in an accepting state is an accepting state of N . In
particular, every accepting state of M is an accepting state of N . In addition,
we add loops labeled with 0 to all the accepting states of N .
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Next we let op2(S) denote the set of all representations of any element which is
a scalar multiple of an element of S. We claim op2 is also an automaton preserving
miop. That is, if M is a DFA whose underlying alphabet is Σ, then we can modify
M to an NFA N̄ that accepts op2(S) as follows. First, let N be the NFA such
that op1(L(M)) = L(N). The for each a ∈ {0, . . . , q−1}, let aN be the NFA that
is constructed from N by replacing each edge labeled with the letter x by an edge
labeled ax. Then, it is clear that L(aN) = {(aσ1) . . . (aσn) : σ1 . . . σn ∈ L(N)}
so that op2(L(M)) = L(N̄) where N̄ = 0N ∪ 1N ∪ · · · ∪ (q − 1)N .

Finally for any a, b ∈ {0, . . . , q − 1}, we let opa,b(S) denote the set of all
representatives of the form aσ + bτ such that σ, τ are in S and |σ| = |τ |. opa,b is
not a miop, but nevertheless for any DFA M , we can construct an NFA Ra,b such
that L(Ra,b) = opa,b(L(M)). First, let N = (Q, Σ, δ, s, F ) be the DFA such that
L(N) = op2(L(M)). Then, the set of states of Ra,b will be Q×Q, (s, s) will be the
start state of Ra,b, and F ×F will be the set of final states of Ra,b. Now suppose
that there are edges from p0 to p1 labeled with α and from q0 to q1 labeled with
β in N . Then, we will have an edge in Ra,b from (p0, q0) to (p1, q1) labeled with
aα + bβ. It is easy to see that L(Ra,b) = opa,b(L(M)). and hence if we let R be
the DFA such that R =

⋃
(a,b)∈Σ×Σ Ra,b, then S ⊆ L(R) ⊆ opsubsp(S) and L(R)

has the property that if s1, s2 ∈ S, then as1 + bs2 ∈ L(R) for any a, b ∈ GFq . By
a similar argument, we can construct for any finite sequence of distinct elements
a1, . . . , ar from GFq, a DFA Ua1,...,ar such that L(Ua1,...,ar ) equals the set of all
a1t1 + · · ·+ artr such that t1, . . . tr ∈ L(R). It then follows that opsubsp(S) equal
the union of L(Ua1,...,ar) over all possible finite sequence of distinct elements
from GFq and hence is we can construct a DFA U which accepts opsubsp(S).

It is then easy to check that if op+ : 2Σ∗ → 2Σ∗
, then for any Horn set based

logic program Q with the properties described above, we can construct a DFA
Mn such that T n

Q,op+(∅) = L(Mn) and, hence, we can effectively construct the
least model of Q. Thus we have the following result.

Theorem 3. Suppose that P is a finite set based logic program over L =
(L, X, [[·]]) where X = Σ∗ for some finite alphabet Σ and op+ : 2Σ∗ → 2Σ∗

and op− : 2Σ∗ → 2Σ∗
are effectively automaton preserving miops. Moreover,

assume that for any atom A which appears in Q, [[A]] is a language accepted by
a DFA whose underlying set of symbols is Σ. Then,

1. Every weak (strong) stable model of P is a language accepted by a DFA.
2. For any DFA M whose underlying set of symbols is Σ, we can effectively

decide whether L(M) is a weak or strong stable model of P .

Note that under the assumptions of Theorem 3, there are only finitely many
possible strong or weak stable models the program P , namely a union of the
sense of the head of certain clauses, and these are all recognizable by DFA’s.
Hence it is decidable whether such a set based logic program has a weak or
strong stable model and there is an algorithm to find all such weak or strong
stable models.
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5 Conclusions

We showed that if the senses of the atoms of a finite set based logic program P are
all regular languages over some fixed finite alphabet and the miops involved are
all automaton preserving miops, then we can effectively decide if P has weak or
strong stable model and there is an algorithm to find all weak and strong stable
models. In fact, it is not difficult to see that all the operations in searching for
either a weak or strong stable model of such programs are effective so that it
is possible to extend existing search engines to produce either weak or strong
stable models of such programs. However, we suspect that the problem of how
to optimize such extensions of existing search engines will be an interesting and
challenging research problem. Finite automaton are useful for carrying out a lot
of recognition tasks such as search for keywords or ensuring documents or strings
have a proper form so that our results show that we can add ASP programming
on top of such recognition tasks.

Finally, we should note that the key properties of DFA’s that we used here
was that languages accepted by DFA’s are closed under union, intersection, and
complementation and that we can effectively decide whether the language ac-
cepted by a DFA is empty. There are many other classes of automata such a tree
automata and Büchi automata that have similar properties so that the results
of this paper can easily be extended to cover such classes of automata.

Acknowledgments. The second author has been partially supported by NSF
grant DMS 0654060.
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Abstract. We give a sound and complete labeled natural deduction
system for an interesting fragment of CTL∗, namely the until-free version
of BCTL∗. The logic BCTL∗ is obtained by referring to a more general
semantics than that of CTL∗, where we only require that the set of
paths in a model is closed under taking suffixes (i.e. is suffix-closed)
and is closed under putting together a finite prefix of one path with the
suffix of any other path beginning at the same state where the prefix
ends (i.e. is fusion-closed). In other words, this logic does not enjoy the
so-called limit-closure property of the standard CTL∗ validity semantics.

1 Introduction

The importance of temporal logic in computer science has become clear since the
seminal work of Pnueli in 1977 [9]. Interesting applications include its use as a
tool for the specification and verification of programs and protocols, in the study
and development of temporal databases, as a framework within which to define
the semantics of temporal expressions in natural language, and as a language for
encoding temporal knowledge in artificial intelligence.

Many branching temporal logics have been proposed in the literature (see [3]
for a survey) varying both in the set of the operators used and in the semantics
adopted. In particular, the branching-time logic CTL∗ (full computation tree
logic [5]) has been shown to be especially useful in developing and checking the
correctness of reactive systems. In spite of its great relevance, the problem of pre-
senting a satisfactory deduction system or even an Hilbert-style axiomatization
for such a logic has been solved only recently in [12].

The aim of this work is to give a sound and complete deduction system for
an interesting fragment of CTL∗, namely the until-free version of BCTL∗ [14].
The logic BCTL∗, which coincides with the logic ∀LTFC described in [16], is
obtained by referring to a more general semantics than that of CTL∗, where
we only require that the set of paths in a model is closed under taking suffixes
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(i.e. is suffix-closed) and is closed under putting together a finite prefix of one
path with the suffix of any other path beginning at the same state where the
prefix ends (i.e. is fusion-closed). In other words, this logic does not enjoy the
so-called limit-closure property of the standard CTL∗ validity semantics.

The until-free BCTL∗ logic that we consider here, to which we give the name
BCTL∗

−, restricts the set of linear temporal operators to X and G (with the usual
intended meanings of “in the next time-instant” and “always in the future”
respectively) and includes the universal path quantifier ∀, but not the until
operator. As in CTL∗ (and unlike CTL), we do not constrain temporal operators
to be preceded by a path quantifier. From a semantic point of view, we refer to
the notion of bundled validity (see, e.g., [12]), which will be further clarified in
the following.

We give our natural deduction system for BCTL∗
− in the style of labeled de-

duction, a framework [6] that has been successfully employed for several non-
classical, and in particular modal, logics [15,19], since labeling provides a clean
and effective way of dealing with modalities and gives rise to deduction systems
with good proof-theoretical properties. The basic idea is that labels allow one to
explicitly encode additional information, of a semantic or proof-theoretical na-
ture, that is otherwise implicit in the logic one wants to capture. So, for instance,
instead of a formula A, we consider the labeled formula x : A, which intuitively
means that A holds at the world denoted by x within the underlying Kripke
semantics. We can also use labels to specify how worlds are related, e.g. the
relational formula xRy states that the world y is accessible from x.

It is possible to think of a temporal logic (at least the one we consider) as a
modal logic, where modal operators are used to reason on (and the accessibility
relation to model) the flow of time. In the light of this consideration, we give
here a labeled natural deduction system for BCTL∗

−, where labeling allows us to
formulate simple and intuitive natural deduction inference rules. We use labels
to refer to possible paths rather than to time points and this view leads to a
clean deduction system in which each operator (X, G, ∀) is seen as a modal
operator and is endowed with a proper accessibility relation. Relations between
the operators are expressed by means of structural rules that do not involve the
operators themselves directly.

We show in this paper that our system is sound and complete, and leave for fu-
ture work a detailed proof-theoretical analysis of the system (e.g. normalization),
as well as the investigation of implementing automatic proof search. Moreover,
we are currently working at extending the proposed approach to capture richer
and more interesting logics such as full CTL∗, for which this work provides a
stepping stone.

We proceed as follows. In Section 2, we give a brief presentation of the syntax
and semantics and of an axiomatization of BCTL∗

−. In Section 3, we give a
labeled natural deduction system for it, which we show in Section 4 to be sound
(with respect to the given semantics) and in Section 5 to be complete (with
respect to the given axiomatization). We conclude, in Section 6, by comparing
with related work and discussing future work.
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2 The Bundled Temporal Logic BCTL∗
−

We introduce here the logic BCTL∗
−, i.e. the until-free fragment of BCTL∗.

2.1 Syntax

Definition 1. Given a set P of propositional symbols, the set of well-formed
BCTL∗

− formulas is defined by the grammar

α ::= p |⊥| α ⊃ α | Xα | Gα | ∀α ,

where p ∈ P. The set of atomic formulas is P ∪ {⊥}.

The given syntax uses a minimal set of connectives, operators, and path quan-
tifiers. As usual, we can introduce abbreviations and use, e.g., ¬, ∧, ∨ for
the negation, the conjunction, and the disjunction, respectively. For instance,
¬α ≡ α ⊃⊥. We can also define other temporal operators, e.g. Fα ≡ ¬G¬α to
express that α holds sometime in the future, and the existential path quantifier,
i.e. ∃α ≡ ¬∀¬α.

To define a labeled deduction system for the logic BCTL∗
−, we extend the lan-

guagewitha set of labels and introduce thenotions of labeled formula and relational
formula. In the following, we will use the letters b, c, d, ... (sometimes subscripted
or superscripted) to denote labels, the symbol ϕ to denote a generic formula (either
labeled or relational) and the symbol Γ to denote a set of formulas.

Definition 2. Let L be a set of labels and let b, c ∈ L. If α is a well-formed
BCTL∗

− formula, then b : α is a labeled well-formed formula ( labeled formula or
lwff for short). The set of relational well-formed formulas ( relational formulas
or rwffs for short) is defined as follows:

ρ ::= b � c | b � c | b • c .

In the rest of the paper, we will assume given a fixed denumerable set L of labels.
Intuitively, in our system, a label is used to refer to a path of a computation.
Usually, presentations of branching time logics distinguish between

– state formulas, whose main operator is a boolean connective or a path quan-
tifier and which are evaluated with respect to a state, and

– path formulas, whose main operator is a linear temporal operator and which
are evaluated with respect to a path.

In our case, the intended meaning of an lwff b : α is that

– α holds in the initial state of b when α is a state formula, and that
– α holds in the path b when α is a path formula.

This will be further clarified in Section 2.2, where a semantics given only in
terms of paths will be presented.

In the rwffs, we use �, � and • with the following intended meaning:
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– b1 � b2 states that b2 is a suffix of b1, i.e. if b1 = s1, s2, ... then b2 = si, si+1, ...
for some i ≥ 1;

– b1�b2 states that b2 is the maximal proper suffix of b1, i.e. if b1 = s1, s2, s3, ...
then b2 = s2, s3, ...;

– b1•b2 states that b1 and b2 share the same initial state, i.e. if b1 = s1, s2, s3, ...
and b2 = s′1, s

′
2, s

′
3, ... then s1 = s′1.

2.2 Semantics

Several alternative semantics have been proposed for the branching-time logics
and some equivalence results have also been showed (see, e.g., [2]). In particu-
lar, we can give two main notions of validity: the full validity and the bundled
validity1 (for a detailed account see [3,12]). If we define a transition frame as
consisting of a set S of states and of a serial relation R on S, i.e. a relation such
that for every s in S there exists a t in S for which sRt holds, then the notion of
full validity is given by defining the semantics with respect to the set of all the
R-generable paths, i.e. of all the ω-sequences s1, s2, ... such that (si, si+1) ∈ R
for all i ∈ N.

In this work, we refer instead to the notion of bundled validity, which deter-
mines a smaller set of valid formulas and has been used to define the subset of
CTL∗ called ∀LTFC in [16] and BCTL∗ in [14]. Bundled validity is given by
considering a predefined subset P of paths that is required to be (as in bundled
transition frames of [14]):

1. suffix-closed, i.e. if the path s0, s1, s2... is in P then the path s1, s2, ... is also
in P ; and

2. fusion-closed, i.e. if s1, s2, ..., sn, sn+1, sn+2, ... and s′1, s
′
2, ..., sn, s′n+1, s

′
n+2, ...

are in P then s1, s2, ..., sn, s′n+1, s
′
n+2, ... is also in P .

However, here we prefer to consider a different but equivalent formulation given
by frames where the basic entities (or worlds, in a Kripke-style terminology) are
the paths of computation rather than the states. In fact, this view allows us to
present a more genuine Kripke-style semantics, closer to the interpretation we
want to give to the set of rules of our system.

We thus introduce (N × W)-structures [12], which are closely related to the
Kamp and Ockhamist structures, described respectively in [17] and [21].

Definition 3. A (floored) Ockhamist frame of countable height (in the following
just Ockhamist frame) is a triple (T , ≺, ) where:

1. T is the set of points;
2. ≺ is a transitive, anti-symmetric, irreflexive, linear relation on T , i.e.:

(a) ∀x, y, z. ((x ≺ y) ∧ (y ≺ z)) ⇒ (x ≺ z);
1 An example showing that the full and the bundled validity are distinct notions is

given by the formula α ≡ ∀G(p ⊃ ∃Xp) ⊃ (p ⊃ ∃Gp), where p is an atomic formula.
It is possible to check (see [12]) that α is valid with respect to the full semantics but
not with respect to the bundled one.
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Fig. 1. An Ockhamist frame (left) and the corresponding transition frame (right)

(b) ∀x, y. ¬ ((x ≺ y) ∧ (y ≺ x));
(c) ∀x. ¬ (x ≺ x);
(d) ∀x, y, z. ((x ≺ y) ∧ (x ≺ z)) ⇒ ((z ≺ y) ∨ (z = y) ∨ (y ≺ z));
(e) ∀x, y, z. ((y ≺ x) ∧ (z ≺ x)) ⇒ ((z ≺ y) ∨ (z = y) ∨ (y ≺ z));

3. {y | y ≺ x} is finite for each x ∈ T ;
4.  is an equivalence relation such that:

(a) if x  y then it is not the case that x ≺ y;
(b) if x  y and u ≺ x then there is a v such that v ≺ y and u  v;

5. there is an element 0 ∈ T such that for each w ∈ T , there is a w′ ∈ T such
that 0  w′ and either w′ ≺ w or w′ = w (the equivalence class 0/� is known
as the floor).

Intuitively, every Ockhamist point can be thought of as corresponding to a path
in a transition frame and the relation ≺ as the equivalent of the relation “is a
prefix of”, i.e. x ≺ y stands for “the path x is a prefix of the path y”. The branch-
ing nature of Ockhamist frames is hidden in the -equivalence relation, where
the idea is that each -class of points contains all the paths of the corresponding
transition frame that share a same initial state.

More precisely, there exists a translation [13] between Ockhamist frames and
bundled transition frames (as exemplified in Fig. 1) based on the fact that Ock-
hamist points correspond to paths in the transition frame while points related
by  correspond to paths with the same initial state.

In order to give a proper semantics for every linear temporal operator, we
require the lines of points defined by ≺ to be isomorphic to the natural numbers.

Definition 4. An Ockhamist frame (T , ≺, ) is an (N × W)-frame iff

1. there is some set W such that T = (N × W);
2. the order ≺ is defined by (n, u) ≺ (m, v) iff n < m and u = v.
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As usual, we obtain a structure by providing the frame a valuation function. In
this case, we also need to require that all points in a -equivalence class satisfy
the same set of atoms.

Definition 5. The structure (T , ≺, , V) is an (N × W)-structure iff (T , ≺, )
is an (N × W)-frame, V : (N × W) → 2P , and for all n ∈ N and for all u, v ∈ W,
if (n, u)  (n, v) then V(n, u) = V(n, v).

It is easy to show by induction the following lemma (see [13]), which will be
useful later on.

Lemma 1. Given an (N × W)-structure (T , ≺, , V) and two points (n, w) and
(m, v) in T , if (n, w)  (m, v) then n = m.

In order to give a semantics for our labeled system, we need to define explicitly
an interpretation of labels as worlds.

Definition 6. Given the set of labels L and an (N × W)-structure M = (T , ≺,
, V), where T = (N × W) for some set W, an interpretation is a function
λ : L → T that maps every label in L to a point in T .

We can now give the notion of truth directly for labeled and relational formulas.
Note that truth is defined by having the temporal operators X and G operate
along the ≺-lines of points, and the quantifier ∀ within a -equivalence class.

Definition 7. Given an (N × W)-structure M=(T , ≺, , V), where T =(N × W)
for some set W, and an interpretation λ on it, truth for an rwff or lwff ϕ is the
relation |=M,λ defined as follows:

�|=M,λ b :⊥;
|=M,λ b1 � b2 iff there exist n ∈ N and w ∈ W such that

λ(b1) = (n, w) and λ(b2) = (n + 1, w);
|=M,λ b1 � b2 iff λ(b1) = λ(b2) or λ(b1) ≺ λ(b2);
|=M,λ b1 • b2 iff λ(b1)  λ(b2);

|=M,λ b : p iff p ∈ V(λ(b));
|=M,λ b : α ⊃ β iff |=M,λ b : α implies |=M,λ b : β;
|=M,λ b : Xα iff for all b′, |=M,λ b � b′ implies |=M,λ b′ : α;
|=M,λ b : Gα iff for all b′, |=M,λ b � b′ implies |=M,λ b′ : α;
|=M,λ b : ∀α iff for all b′, |=M,λ b • b′ implies |=M,λ b′ : α.

When |=M,λ ϕ, we say that ϕ is true in M according to λ. By extension:

|=M,λ Γ iff |=M,λ ϕ for all ϕ ∈ Γ ;
Γ |=M,λ ϕ iff |=M,λ Γ implies |=M,λ ϕ;
|=M ϕ iff for every interpretation λ, |=M,λ ϕ;
|=M Γ iff for every interpretation λ, |=M,λ Γ ;
Γ |= ϕ iff for every (N × W)-structure M and interpretation λ,

Γ |=M,λ ϕ.

We will also write |=M,λ(b) α for |=M,λ b : α, which also illustrates how truth
for lwffs is related to the standard truth relation for modal and temporal logics.
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Definition 8. We call BCTL∗
− the set

{α | |=M b : α for every b and every (N × W)-structure M} .

The main goal of this paper is to provide a sound and complete natural deduction
system for BCTL∗

−, which we will do in Section 3.

2.3 A Hilbert-Style Axiomatization

We give now a Hilbert-style axiomatization, which we call H(BCTL∗
−), for the

logic BCTL∗
−. H(BCTL∗

−) consists of two sets of axioms (axioms for linear tem-
poral formulas and axioms for quantified formulas) and a set of inference rules.
For the first set of axioms, we refer to a standard axiomatization for until-free
LTL [16]:

(L1 ) Any tautology instance (L2 ) G(α ⊃ β) ⊃ (Gα ⊃ Gβ)
(L3 ) (X¬α ⊃ ¬Xα) ∧ (¬Xα ⊃ X¬α) (L4 ) X(α ⊃ β) ⊃ (Xα ⊃ Xβ)
(L5 ) Gα ⊃ α ∧ XGα (L6 ) G(α ⊃ Xα) ⊃ (α ⊃ Gα)

The second set of axioms ensures that the path modality ∀ behaves as a � in
the modal logic S5 and defines some interactions between the linear temporal
operators and the path quantifier. This set of axioms comes from [12] and is
slightly different from (but clearly equivalent to) the one in [16]:

(K∀) ∀(α ⊃ β) ⊃ (∀α ⊃ ∀β) (∀1 ) ∀α ⊃ ∀∀α (∀2 ) ∀α ⊃ α (∀3 ) α ⊃ ∀∃α
(Atom) p ⊃ ∀p for each atomic proposition p (Fusion) ∀Xα ⊃ X∀α

Finally, we have the inference rules of modus ponens and temporal and path
generalization:

(MP) If α and α ⊃ β then β
(NecX ) If α then Xα
(NecG) If α then Gα
(Nec∀) If α then ∀α

Soundness and completeness of this axiomatization can be easily verified by
adapting analogous proofs for similar axiom systems, as in the following lemma.

Lemma 2. The axiom system H(BCTL∗
−) is sound and complete for the logic

BCTL∗
−.

Proof. (Sketch) The proof mirrors the one given in [16] for BCTL∗, with respect
to which our axiom system only misses the two axioms concerning the operator
until, namely:

(L7 ) αUβ ⊃ Fβ

(L8 ) αUβ ↔ β ∨ (α ∧ X(αUβ))
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where we denote with ↔ the double implication.2

H(BCTL∗
−) is sound as it is a subset of the axiomatization in [16] and BCTL∗

−
structures coincide with BCTL∗ structures. A proof of completeness can be easily
obtained by adapting the one in [16], which consists of two parts: (i) first a
Henkin-style proof is given for the LTL axiomatization, by the definition of a
canonical model construction; (ii) then such a construction is extended in order
to consider the system for BCTL∗. We can modify such a proof for our case by
noticing that in (i) the axioms (L7) and (L8) are used along the proof only to
deal with formulas containing the operator until. We can use the same arguments
to show that the axioms (L1) − (L6) form a complete axiomatization for until-
free LTL (as it is done for example in [7]). It is also easy to observe that the
arguments in (ii) do not make use of the axioms (L7) and (L8). Thus we can
mirror part (ii) of the proof in [16] to extend our canonical model construction
for until-free LTL to a canonical model construction for BCTL∗

−. The main idea
here is to consider the equivalence relation between points of the linear canonical
model that satisfy the same state formulas and take such equivalence classes as
the points of the branching canonical model. �

3 The System N (BCTL∗
−)

The only known deduction system for CTL∗ is the Hilbert-style axiomatization
given in [12]. However, it is a non-standard automata-based axiomatization,
which makes use of “an unusual and unorthodox rule of inference” (as stated by
Reynolds himself in [14]). Furthermore, if one is interested in a meta-theoretical
and proof-theoretical analysis, Hilbert-style axiomatizations are not of a great
help. Natural deduction systems have a richer syntactic structure that can be
exploited to get interesting meta and proof-theoretical results. In particular, as
remarked in the introduction, labeled natural deduction fits in well with the
context of modal and temporal logics, by encoding into the syntax semantical
properties of such logics.

In this section, we give a labeled natural deduction system, which we call
N (BCTL∗

−), for an interesting fragment of CTL∗, the logic BCTL∗
− described in

Section 2. As we observed above, N (BCTL∗
−) provides a stepping stone for the

formalization of a similar system for CTL∗ that we are currently working on.
We remark that in the system N (BCTL∗

−) we do not make use of a proper
relational labeling algebra (as, e.g., in [19]) that contains rules that derive rwffs
from other rwffs or even lwffs. Since we are mainly interested in the deriva-
tion of logical formulas, we rather follow an approach that aims at simplifying
the system: we use relational formulas only as side-conditions for the deriva-
tion of labeled formulas (as in Simpson’s system for intuitionistic modal logic
[15]) and thus in N (BCTL∗

−) there are no rules whose conclusion is a relational
formula.

2 In fact, our set of axioms for the branching part slightly differs from the one in [16]
but the two are clearly equivalent, as remarked in [12].
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3.1 The Rules of N (BCTL∗
−)

The rules of N (BCTL∗
−) are given in Fig. 2. There are six kinds of rules, which

we describe in the following.

Rules for the Logical Connectives. The rules for the logical connectives
mirror those of other labeled natural deduction systems for modal logics [15,19].
⊃I and ⊃E are just the labeled version of the standard [10,18] natural deduc-
tion rules for implication introduction and elimination, where the notion of dis-
charged/open assumption is also standard (e.g. the formula [b : α] is discharged
in the rule ⊃I). The rule ⊥E is a labeled version of reductio ad absurdum, where
we do not enforce Prawitz’s side condition that α �=⊥ and we do not constrain
the world (b2) in which we derive a contradiction to be the same (b1) as in the
assumption.

Rules for the Temporal Operators and the Path Quantifier. The rules
for the introduction and the elimination of X, G and ∀ share the same structure
since they all have a “universal” formulation. In fact, let � be one of X, G, ∀
and let R respectively be one of �, �, •; the idea is that the meaning of b1 : �α
is given by the metalevel implication b1Rb2 =⇒ b2 : α for an arbitrary b2 R-
accessible from b1 (where the arbitrariness of b2 is ensured by the side-condition
on the introduction rules for X, G and ∀).

Rules for �. The rule ser� models the fact that every world has an immedi-
ate successor and thus ensures that the suffix-closure property (as described in
Section 2.2) is satisfied. The rule lin� specifies that such a successor must be
unique.

Rules for �. We recall that b1 � b2 intuitively means that b2 is a suffix of
b1. In terms of the given semantics, � denotes in the syntax the reflexive and
transitive closure of ≺ (see Definition 7). The rules refl � and trans � state
respectively the reflexivity and transitivity of �.

Rules for •. We recall from Section 2.2 that the symbol • in the syntax cor-
responds to the accessibility relation  in the semantics.  is defined as an
equivalence relation and thus we have the rules refl•, symm• and trans• that
express reflexivity, symmetry and transitivity of • respectively. It follows that ∀
behaves as the modal operator � does in the modal logic S5 .

Finally, atom• mirrors the property of (N × W)-structures according to which
if x  y then V(x) = V(y) (see Definition 5). Intuitively, with regard to transition
structures, it models the idea that two paths having the same initial state must
satisfy the same set of atomic propositions and is the equivalent of the axiom
(Atom) in Section 2.3.

Rules for Relations between the Operators. The rule base � expresses the
fact that the relation corresponding to � contains the relation corresponding to
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[b1 : α ⊃⊥]....
b2 :⊥
b1 : α

⊥E

[b : α]....
b : β

b : α ⊃ β
⊃I

b : α ⊃ β b : α

b : β
⊃E

[b1 � b2]....
b2 : α

b1 : Xα
XI

b1 : Xα b1 � b2

b2 : α
XE

[b1 � b2]....
b : α
b : α

ser� b1 � b2 b1 � b3 b2 : α

b3 : α
lin�

[b1 � b2]....
b2 : α

b1 : Gα
GI

b1 : Gα b1 � b2

b2 : α
GE

[b1 � b1]....
b : α
b : α

refl � b1 � b2 b2 � b3

[b1 � b3]....
b : α

b : α
trans �

[b1 • b2]....
b2 : α

b1 : ∀α
∀I

b1 : ∀α b1 • b2

b2 : α
∀E

[b1 • b1]....
b : α
b : α

refl• b1 • b2

[b2 • b1]....
b : α

b : α
symm•

b1 • b2 b2 • b3

[b1 • b3]....
b : α

b : α
trans•

b1 : p b1 • b2

b2 : p
atom• b1 � b2

[b1 � b2]....
b : α

b : α
base �

b1 � b2 b2 • b3

[b′ • b1] [b′ � b3]....
b : α

b : α
fusion

b0 : α b0 � b

[b0 � bi] [bi � bj ] [bi : α]....
bj : α

b : α
ind

In XI , b2 is fresh, i.e. it is different from b1 and does not occur in any assumption on
which b2 : α depends other than the discarded assumption b1 � b2.
In ser�, b2 is fresh, i.e. it is different from b and does not occur in any assumption on
which b : α depends other than the discarded assumption b1 � b2.
In GI , b2 is fresh, i.e. it is different from b1 and does not occur in any assumption on
which b2 : α depends other than the discarded assumption b1 � b2.
In ∀I , b2 is fresh, i.e. it is different from b1 and does not occur in any assumption on
which b2 : α depends other than the discarded assumption b1 • b2.
In atom•, p is an atomic proposition.
In fusion, b′ is fresh, i.e. it is different from b, b1, b2 and b3, and does not occur in any
assumption on which b : α depends other than the discarded assumptions b′ • b1 and
b′ � b3.
In ind , bi and bj are fresh, i.e. they are different from each other and from b and b0,
and do not occur in any assumption on which b : α depends other than the discarded
assumptions of the rule.

Fig. 2. The rules of N (BCTL∗
−)
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[b : α]2 [b � c]3

[b : G(α ⊃ Xα)]1 [b � d]4

d : α ⊃ Xα
GE [d : α]4

d : Xα
⊃E [d � d′]4

d′ : α
XE

c : α ind4

b : Gα GI3

b : α ⊃ Gα
⊃I2

b : G(α ⊃ Xα) ⊃ (α ⊃ Gα) ⊃I1

[b � c]2 [c • d]3

[b : ∀Xα]1 [b • b′]4

b′ : Xα
∀E

[b′ � d]4

d : α
XE

d : α
fusion4

c : ∀α ∀I3

b : X∀α XI2

b : ∀Xα ⊃ X∀α
⊃I1

Fig. 3. Proofs of the H(BCTL∗
−) axioms (L6 ) and (Fusion)

�: in the “path terminology”, it says that every path b is a prefix of its maximal
proper suffix.

The rule fusion strictly corresponds to the fusion-closure property (see Sec-
tion 2.2) of bundled transition frames, according to which the set of paths must
be closed under putting together a finite prefix of one path with the suffix of
any other path such that the prefix ends at the same state as the suffix begins.
In terms of the given semantics, it roughly corresponds to condition 4(b) in the
definition of an Ockhamist frame (Definition 3). In terms of the axiomatization
H(BCTL∗

−) in Section 2.3, it is the equivalent of the axiom (Fusion).
Finally, we have a rule ind modeling the induction principle underlying the

relation between � and �. It comes from the definition of (N × W)-frame (Defini-
tion 4), which requires the vertical lines of points to be isomorphic to the natural
numbers. The rule is given only in terms of relations between labels, since we
prefer (for proof-theoretical reasons) to restrict the treatment of operators in the
system to the specific rules for their introduction and elimination.

3.2 Derivations

Given the rules in Fig. 2, the notion of derivation is the standard one for natural
deduction systems [10,18]. We write Γ �N (BCTL∗

−) b : α to say that there exists
a derivation of b : α in the system N (BCTL∗

−) whose open assumptions are all
contained in the set of formulas Γ . A derivation of b : α in N (BCTL∗

−) where all
the assumptions are discharged is a proof of b : α in N (BCTL∗

−) and we then
say that b : α is a theorem of N (BCTL∗

−) (and write �N (BCTL∗
−) b : α).

As notation, we write
ϕ1 . . . ϕn

π
b : α



A Labeled Natural Deduction System for a Fragment of CTL∗ 349

to denote that π is a derivation of b : α whose set of assumptions may contain
the formulas ϕ1, . . . , ϕn.

As concrete examples, Fig. 3 contains the proofs of the H(BCTL∗
−) axioms

(L6 ) and (Fusion).

4 Soundness

Theorem 1. For every set Γ of labeled and relational formulas and every labeled
formula b : α, it holds that

Γ �N (BCTL∗
−) b : α ⇒ Γ |= b : α .

The proof proceeds by induction on the structure of the derivation of b : α. The
base case is when b : α ∈ Γ and is trivial. There is one step case for every rule
and we show only five representative cases.

Consider an application of the rule XI:

[b � b′]
π

b′ : α
b : Xα

XI

where π is a proof of b′ : α from hypotheses in Γ ′, with b′ fresh and with Γ ′ =
Γ ∪ {b � b′}. By the induction hypothesis, for all interpretations λ, if |=M,λ Γ ′

then |=M,λ b′ : α. We let λ be any interpretation such that |=M,λ Γ , and show
that |=M,λ b : Xα. Let (n, w) be any point such that λ(b) = (n, w). Since λ
can be trivially extended to another interpretation (still called λ for simplicity)
by setting λ(b′) = (n + 1, w), the induction hypothesis yields |=M,λ b′ : α,
i.e. |=M,(n+1,w) α, and thus |=M,λ b : Xα.

Consider an application of the rule ∀I:

[b • b′]
π

b′ : α
b : ∀α

∀I

where π is a proof of b′ : α from hypotheses in Γ ′, with b′ fresh and with
Γ ′ = Γ∪{b•b′}. By the induction hypothesis, for all interpretations λ, if |=M,λ Γ ′

then |=M,λ b′ : α. We let λ be any interpretation such that |=M,λ Γ , and show
that |=M,λ b : ∀α. Let (n, w) be any point such that λ(b) = (n, w). Now let us
consider an arbitrary point (n, w′) for some w′. Since λ can be trivially extended
to another interpretation (still called λ for simplicity) by setting λ(b′) = (n, w′),
the induction hypothesis yields |=M,λ b′ : α, i.e. |=M,(n,w′) α. Given that w′ is
arbitrary we can conclude |=M,λ b : ∀α.

Consider the case in which the last rule applied is GE:

π
b′ : Gα b′ � b

b : α
GE
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where π is a proof of b′ : Gα from hypotheses in Γ1, with Γ = Γ1 ∪ {b′ � b} for
some set Γ1 of formulas. By applying the induction hypothesis on π, we have:

Γ1 |= b′ : Gα .

We proceed by considering a generic (N × W)-structure M = (T , ≺, , V) and
a generic interpretation λ on it such that |=M,λ Γ and showing that this entails

|=M,λ b : α .

Since Γ1 ⊂ Γ , from the induction hypothesis we deduce |=M,λ b′ : Gα. Further-
more |=M,λ Γ entails |=M,λ b′ � b. Then, by Definition 7, we obtain |=M,λ b : α.

Let an application of fusion be the last rule application in the derivation of
b : α:

b1 � b2 b2 • b3

[b′ • b1] [b′ � b3]
π

b : α

b : α
fusion

where π is a proof of b : α from hypotheses in Γ2, with Γ = Γ1∪{b1�b2}∪{b2•b3}
and Γ2 = Γ1 ∪{b′ • b1}∪{b′� b3} for some set Γ1 of formulas. The side-condition
ensures that b′ is fresh in π. Hence, by applying the induction hypothesis on π,
we have

Γ2 |= b : α .

We proceed by considering a generic (N × W)-structure M = (T , ≺, , V) and
a generic interpretation λ on it such that |=M,λ Γ and showing that this entails

|=M,λ b : α .

From |=M,λ Γ , we deduce:

(i) there exists a point (n, w) ∈ T such that λ(b1) = (n, w) and λ(b2) =
(n + 1, w);

(ii) λ(b2)  λ(b3).

We know from Lemma 1 that λ(b3) = (n + 1, v) for some (n + 1, v) ∈ T . Then
by the property 4(b) of Ockhamist frames (Definition 3), the point (n, v) is such
that (n, v)  (n, w) = λ(b1). Now let us consider an interpretation λ′ which
differs from λ only for the point assigned to b′, namely λ′ = λ[b′ �→ (n, v)]. Note
that we have defined λ′ in a way such that |=M,λ′

b′ • b1 and |=M,λ′
b′ � b3.

Since b′ does not occur in Γ (by the side-condition on the application of fusion),
we have |=M,λ′

Γ1 and thus also |=M,λ′
Γ2. Then, by the induction hypothesis,

|=M,λ′
b : α. We conclude |=M,λ b : α by observing that the side-condition b′ �= b

ensures λ(b) = λ′(b).
Finally, consider the case in which the last rule applied is ind :

π′

b0 : α b0 � b

[b0 � bi] [bi � bj] [bi : α]
π

bj : α

b : α
ind
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where π is a proof of bj : α from hypotheses in Γ2 and π′ is a proof of b0 : α from
hypotheses in Γ1, with Γ = Γ1∪{b0 � b} and Γ2 = Γ1∪{b0 � bi}∪{bi�bj}∪{bi :
α} for some set Γ1 of formulas. The side-condition on ind ensures that bi and
bj are fresh in π. Hence, by applying the induction hypothesis on π and π′, we
have:

Γ2 |= bj : α and Γ1 |= b0 : α .

We proceed by considering a generic (N × W)-structure M = (T , ≺, , V) and
a generic interpretation λ on it such that |=M,λ Γ and showing that this entails

|=M,λ b : α .

First, we note that Γ1 ⊂ Γ and therefore |=M,λ Γ implies |=M,λ Γ1 and, by the
induction hypothesis on π′, |=M,λ b0 : α. Let λ(b0) = (n, w) for some (n, w) ∈ T .
From |=M,λ Γ , we deduce |=M,λ b0 � b and thus λ(b) = (n + k, w) for some
k ∈ N. We show by induction on k that |=M,λ b : α. As a base case, we have
k = 0; it follows that λ(b) = λ(b0) and thus trivially that |=M,λ b0 : α entails
|=M,λ b : α. Let us consider now the induction step. Given a label bk−1 such that
λ(bk−1) = (n + k − 1, w), we show that the induction hypothesis |=M,λ bk−1 : α
entails the thesis |=M,λ b : α. We can build an interpretation λ′ that differs from
λ only in the points assigned to bi and bj , namely λ′ = λ[bi �→ (n+k−1, w)][bj �→
(n+k, w)]. It is easy to verify that the interpretation λ′ is such that the following
three conditions hold:

(i) |=M,λ′
bi : α;

(ii) |=M,λ′
b0 � bi;

(iii) |=M,λ′
bi � bj .

Furthermore, the side-condition on the rule ind ensures that λ and λ′ agree on
all the labels occurring in Γ1, from which we can infer that also |=M,λ′

Γ1 must
hold. It follows that |=M,λ′

Γ2 and thus, by the induction hypothesis on π, that
|=M,λ′

bj : α. We conclude |=M,λ b : α by observing that λ′(bj) = λ(b).

5 Completeness

The proposed natural deduction system N (BCTL∗
−) consists of only finitary

rules; consequently, it cannot be strongly complete.3 In fact, it is easy to check
that {b : Xiα}i<ω |= b : Gα but (via soundness) we can see that {b : Xiα}i<ω �

b : Gα, where X0α is just α and Xi+1α stands for XXiα. Nevertheless, our system
N (BCTL∗

−) is weakly complete with respect to BCTL∗
−, namely:

Theorem 2. For every labeled formula b : α it holds:

|= b : α ⇒ �N (BCTL∗
−) b : α .

3 This is not a problem of our formulation: all the finitary deduction systems for
temporal logics equipped with at least the operators X and G have such a defect
(see, e.g., [8, Chapter 6]).



352 A. Masini, L. Viganò, and M. Volpe

The most “economic” way to prove the theorem is to show that N (BCTL∗
−) is

complete with respect to the axiomatization H(BCTL∗
−) given in Section 2.3,

which is sound and complete for the logic BCTL∗
−. That is, we need to prove

(i) that every axiom of H(BCTL∗
−) is provable in N (BCTL∗

−) and (ii) that
N (BCTL∗

−) is closed under the (labeled equivalent of the) rules of inference of
H(BCTL∗

−). Showing (ii) is straightforward and we omit it here. As for (i), we
have already given the proofs of the H(BCTL∗

−) axioms (L6 ) and (Fusion) in
Fig. 3. As a further example, we can prove axiom (L5 ) as follows

[b : Gα]1 [b � b]2

b : α
GE

b : α
refl �2

[b � c]3
[b � c]5 [c � d]4

[b : Gα]1 [b � d]6

d : α
GE

d : α
trans �6

d : α
base �5

c : Gα GI4

b : XGα XI3

b : α ∧ XGα
∧I

b : Gα ⊃ (α ∧ XGα) ⊃I1

where, for simplicity, we have employed the rule ∧I for conjunction introduction,
which is derived from the other propositional rules as is standard:

b : α1 b : α2

b : α1 ∧ α2
∧I abbreviates

[b : α1 ⊃ (α2 ⊃ ⊥)]1 b : α1

b : α2 ⊃ ⊥ ⊃E
b : α2

b : ⊥ ⊃E

b : (α1 ⊃ (α2 ⊃ ⊥)) ⊃ ⊥ ⊃I1

6 Conclusions

We have given a labeled natural deduction system for a fragment of CTL∗ —
BCTL∗ without until — and shown that it is sound and complete.

We have already considered some relevant related works in the previous sec-
tions. Other labeled natural deduction systems for branching time logics have
been proposed, e.g. [1] and [11] both give labeled natural deduction systems for
CTL. The main distinctive feature of our system is that reasoning only in terms
of paths gives us the possibility of considering also the path quantifier ∀ as a
modal operator and thus of getting a labeled system as clean as the ones for
other modal logics [15,19].

In [14], a tableau-based decision procedure for BCTL∗ is given. The tableau
construction differs from the traditional tree-shaped one and consists, like for
other tableau systems for temporal logics, e.g. [4,20], in starting with a graph
and iteratively pruning away some nodes until a success or a failure condition
is reached. We remark that the focus of our work, instead, mainly concerns the
definition of a deduction system with good proof-theoretical properties.

In fact, we are currently working on normalization for our system N (BCTL∗
−),

where the main difficulties arise, as in deduction systems for Peano Arithmetics
and as expectable, from the presence of a temporal induction principle. Further
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current work is oriented towards automated reasoning and towards extensions
of the system in order to capture richer logics such as CTL∗.
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Abstract. In [1], Fitting showed that the standard hierarchy of logics of
justified knowledge is conservative (e.g. a logic with positive introspection
operator ! is conservative over the logic without !). We do the same with
most logics of justified belief, but taking a semantic approach rather than
Fitting’s syntactic one. A brief example shows that conservativity does
not hold for logics of justified consistent belief.

1 Introduction

In [1], Fitting showed conservativity of logics of justified knowledge, including
JT, JT4 (also known as LP), and JT45 as well as many weaker logics. His proof
showed something stronger than simple conservation of validity; he showed that
simple omission of symbols missing in the smaller language, carefully done, leads
to a line-by-line translation of all proofs in the stronger logic into proofs in the
weaker one. He observed that his method did not extend to logics of justified
belief (such as J and J4) and left the question of conservativity in these logics
open.

For reasons I’ll mention below, what appear to me to be the obvious syntactic
approaches to conservativity in logics of justified belief do not work. However,
an approach based on extending models of the smaller logic to those of the
larger works out nicely. In this short note, I will outline the basic definitions of
logics of justified belief and a simple semantics for these. I will then present one
conservativity argument in detail (the conservativity of J4 over J) and outline
others in broad strokes. After an example showing the lack of conservativity of
JD4 over JD, I will close with a few comments on open problems.

2 Preliminaries

Modal logic has long been a way of attempting to formalize the idea of knowl-
edge and belief (among other concepts). What separates knowledge from “mere”
belief is the truth of what is known, reflected in the modal axiom scheme T
(�F → F ). I will assume the reader is familiar with the modal logics of belief
(the basic normal modal logic K with or without the assumption of positive
introspection �F → ��F ). I will deal later with the deontic axiom D and its
explicit counterpart, which insist on the consistency of belief.

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 354–364, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In a series of papers ([2], [3], [4] and others), Sergei Artemov defined the
Logic of Proofs (LP), partially as a solution to an open problem dating back to
Gödel ([5]) regarding the proper interpretation of the S4 modality as arithmetic
proof. However, LP proved useful and interesting well beyond answering Gödel’s
question, as a general way to make reasoning about knowledge explicit. Many
variations of Artemov’s original LP have appeared over the last decade or so,
and have come under the common heading of justification logics.

Why “justification” logics? Because in each of these systems, we augment
propositional logic with justification terms which are intended to make explicit
the reasons for knowing/believing a particular proposition. In a formula t : F ,
the justification term t makes explicit the reasons for asserting that formula F
(which may itself contain nested justification terms) is known/believed.

I will limit myself to fairly standard justification logics without truth axioms
(the analog of the modal axiom T), and will briefly define languages, axiom
systems, and a simple semantics before moving on to the main result of the
paper. The exposition will be quite limited, directed at setting up terminology
and notation for the main proof.

2.1 Languages

As implied several times above, we will be examining several logics of justified
belief, which will differ in the richness of their language. All logics of justified
belief contain justification terms, which include justification variables x1, x2, . . .
and justification constants c1, c2, . . .. In addition, a particular language may con-
tain one or more of the following symbols for operations on justification terms:

– · (binary)
– + (binary)
– ! (unary)

The intended meanings of these symbols are as follows:

– · is known as “application,” the idea being that if s is a justification for
believing F → G and t is a justification for believing F , then s · t is a
justification for believing G;

– + is known as “sum,” sort of a concatenation of justifications, the idea being
that s + t is justification for believing anything justified either by s or by t;

– ! is used to represent positive introspection, so that if t is the justification
for believing F , then !t is the justification for believing that t is justification
for believing F .

We will limit ourselves to ·, +, and !, since the negative introspection operator ?
is a recent addition to the literature and the history of results involving the other
operators is substantially richer; in addition, negative introspection presents dif-
ficulties for reasons mentioned in the concluding section of this paper.

We will define formulas as being built from atomic propositions P1, P2, . . .,
the propositional constant ⊥ and the implication operator → in the usual way; in
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addition, given any formula F and justification term t, we will allow the formula
t :F .

Following Fitting ([1]), as I will for much of the following section, I will adopt
the notation L(S) (where S is a subset of {·, +, !}) to indicate the language
where only justification operations from S are permitted, and B(S) to indicate
the logic of justified belief based on L(S).

2.2 Logics, Axiomatically

Of course languages with different sets of justification operators will have differ-
ent collections of axioms to govern the behavior of those operators.

– All justification logics include a propositionally complete set of classical ax-
iom schemes.

– If · ∈ S, include the axiom scheme s : (F → G) → (s :F → (s · t) :G) in B(S).
– If + ∈ S, include the axiom schemes s :F → (s + t) :F and t :F → (s + t) :F

in B(S).
– If ! ∈ S, include the axiom scheme t :F →!t :t :F in B(S).

All justification logics share the rule modus ponens (from F → G and F conclude
G), but they differ in their treatment of constants. Quoting Fitting, “Constant
symbols are intended to serve as justification of truths we cannot further analyze,
but our ability to analyze is dependent on available machinery.” Thus, variations
in the rules governing constants.

– The Axiom Necessitation Rule: If A is an axiom an c is a constant, then c :A
is a theorem.

– The Iterated Axiom Necessitation Rule: If A is an axiom and c1, c2, . . . , cn

are constants, then c1 :c2 : · · · :cn :A is a theorem.
– The Theorem Necessitation Rule: If X is a theorem and c is a constant, then

c :X is a theorem.

If both · and ! are in S, then B(S) needs only the Axiom Necessitation Rule. If
S has · but lacks !, then B(S) requires the Iterated Axiom Necessitation Rule,
and if S lacks ·, then B(S) requires the Theorem Necessitation Rule.

In what was just described above, each constant may serve as justification
for any axiom. One may also restrict the roles of various constants by means of
a constant specification, associating individual constants with sets of individual
instances of axioms. (In the case of the Iterated Axiom Necessitation rule, finite
sequences of constants are associated with sets of axiom instances, and in the
case of the Theorem Necessitation Rule constants are associated with sets of
theorems, of course.) When each constant is associated with all axioms, the
constant specification is called full.

Since {·, +, !} has eight subsets, we have just defined eight logics of justified be-
lief, but as far as I know, those lacking · have never been studied or found any ap-
plication. B({·, +}) is also known as J, the basic logic of justification and B{·, +, !}
is known as J4; both were defined by Brezhnev ([6]). Their counterparts without
+ are known as J− and J4− and were defined by Fitting in [7].
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2.3 A Simple Semantics

The original intended semantics for LP was arithmetic proofs, but a more adapt-
able semantics was defined by Fitting in [7], generalizing the idea of Kripke
models for modal logics. We will not have need of the full strength of Fitting
models here, though, and will revert to an older semantics due to Mkrtychev [8].
Mkrtychev models are essentially one-world Fitting models.

The first notion we will need is that of an evidence function, which is simply
any function E from justification terms in L(S) to sets of L(S) formulas. We
may impose additional conditions on E :

– If · is in S, we will insist that whenever F → G ∈ E(s) and F ∈ E(t) it is
also the case that G ∈ E(s · t).

– If + is in S, we will insist that E(s) ∪ E(t) ⊆ E(s + t).
– If ! is in S, we will insist that whenever F ∈ E(t), it is also the case that

t :F ∈ E(!t).

Finally, for an evidence function to be appropriate for a language L(S) and a
particular constant specification C in that language, it must behave properly on
constants.

– If · and ! are both in S, it must be that A ∈ E(c) for each axiom A ∈ C(c)
where c is a justification constant.

– If · is in S but ! is not in S, it must be that c2 : · · · : cn : A ∈ E(c1),
c3 : · · · :cn :A ∈ E(c2), . . . cn :A ∈ E(cn−1), and A ∈ E(cn) for each axiom A ∈
C(〈c1, c2 . . . , cn〉) where c1, c2, . . . , cn are justification constants. (n ≥ 1.)

– If S lacks ·, it must be that F ∈ E(c) for each theorem F ∈ C(c) where c is
a justification constant.

A (Mkrtychev) structure M for a language L(S) is a pair 〈E , V〉 where E is an
evidence function appropriate to L(S) and V is a propositional valuation.

We will define satisfaction of a formula F in a structure M (written M � F )
as follows:

– M � P for propositional variable P if and only if V(P ) is true.
– M � ⊥.
– M � F → G if and only if either M � F or M � G.
– M � t :F if and only if F ∈ E(t).

Kuznets ([9]) proved the soundness and completeness of Mkrtychev models for
B({·, +}) and B({·, +, !}). Essentially the same proof goes through for ·-free and
+-free logics of justified belief.

3 Conservativity

While Fitting’s approach to logics of knowledge [1] was entirely syntactic, my
approach will be entirely semantic, for reasons mentioned in the concluding
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section of this note. I will show that Mkrtychev models of weaker logics can be
extended to models of stronger logics while preserving the truth of formulas from
the less-expressive language. I will focus on extending B({·, +}) to B({·, +, !})
(that is, J to J4) but essentially the same argument works when adding + or
even · to a language.

Before I state the main result, a note constant specifications. While Iterated
Constant Necessitation is not necessary in logics with positive introspection (!),
it does no harm to include it. So if we want to find a constant specification
for J4 which will be conservative over J with some constant specification, the
J4-constant specification will need to extend the J-constant specification (which
might have permitted, for example, c1 :c2 :c3 : (P → P → P )). In our first result,
we will not extend the constant specification, but simply leave it intact.

Theorem 1. Let C be a constant specification in L({·, +}). If F ∈ L({·, +}) is
provable in B({·, +, !}) (that is, J4) under constant specification C, then F is
provable in B({·, +}) (that is, J) under constant specification C.

Proof. We will establish that any Mkrtychev model for J can be extended to
a Mkrtychev model for J4 which preserves the truth of !-free formulas. By the
completeness of Mkrtychev models for J, if F is not provable in J, then there
will be Mkrtychev model for J making F false. This will be extended to a J4
model in which F is also false, showing that F was not provable in J4 by the
soundness of Mkrtychev models.

We begin with a Mkrtychev model M for J. Recall that this means that we
have a propositional valuation V and an evidence function E with the properties
that E(s) ∪ E(t) ⊆ E(s + t) and whenever F → G ∈ E(s) and F ∈ E(t) it is also
the case that G ∈ E(s · t). The handy thing about a semantic approach logics of
belief is that beliefs need not have anything to do with the “real world” so we
do not have to worry any further about our propositional valuation V .

We will extend E to a J4-appropriate evidence function E ′ in stages. Because
we are leaving the constant specification alone, we need only one additional
property: that whenever F ∈ E ′(t) we also have t : F ∈ E ′(!t). (We essentially
taking the transitive closure of E .)

We will define En recursively, treating constants at the initial stage and closure

under operations at successive stages. We can then set E ′ =
∞⋃

n=0

En.

We begin by setting E0 = E . Now we can define En+1.

– If c is a justification constant, En+1(c) = En(c).
– If x is a justification variable, En+1(x) = En(x).
– En+1(s + t) = En(s + t) ∪ En(s) ∪ En(t).
– En+1(s · t) = En(s · t) ∪ {G|F → G ∈ En(s) and F ∈ En(t)}.
– En+1(!t) = En(!t) ∪ {t :F |F ∈ En(t)}.

The only evidence for formulas containing the ! operator will be justification
terms which themselves contain !.
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Lemma 1. If t is !-free and F ∈ En(t), then F is !-free as well.

Proof. We will prove this by induction, and the base (n = 0) case is trivial, since
E0(t) = E(t) and E was an evidence function in a !-free language.

For the inductive step of the proof, let us assume that F ∈ Ek+1(t). If F ∈
Ek(t) as well, we are finished by our inductive hypothesis. So let us assume that
F /∈ Ek(t). It is impossible by the definition of Ek+1 that t is a justification
constant or justification variable, so t is either u · v or u + v. (Recall that t was
!-free.)

– If t = u · v, then there is some G with G → F ∈ Ek(u) and G ∈ Ek(v). By
our inductive hypothesis, G → F is !-free, so F will be as well.

– If t = u + v, then either F ∈ Ek(u) or F ∈ Ek(v). In either case, we know by
our inductive hypothesis that F is !-free.

This ends the inductive argument and the proof of the first lemma.

Now we can get almost all of the way home with a second lemma.

Lemma 2. Let t and F be !-free. F ∈ E ′(t) if and only if F ∈ E(t).

Proof. That F ∈ E(t) implies F ∈ E ′(t) is immediate from the construction of
E ′.

To show the converse, we will prove that if F ∈ En(t) then F ∈ E(t) by
induction on n. Again, the base case is trivial.

For the induction, we may assume that if G ∈ Ek(s) then G ∈ E(s) for all !-free
pairs s and G. We wish to show that if F and t are !-free and F ∈ Ek+1(t) then
F ∈ E(t). If F ∈ Ek(t), we are done immediately by our inductive hypothesis. So
let us examine the other possible cases:

– If t = u · v and there is G ∈ Ek(v) with G → F ∈ Ek(u). Because u · v is
!-free, we know by our earlier lemma that it is also the case that G → F and
G are !-free. By our inductive hypothesis, G → F ∈ E(v) an G ∈ E(u). Since
E was an evidence function, it must be that F ∈ E(u · v).

– If t = u + v and F ∈ Ek(u), then by our inductive hypothesis, F ∈ E(u).
Because E was an evidence function, we know that E(u) ⊆ E(u + v), so
F ∈ E(u + v). The case for F ∈ Ek(v) is identical.

This completes the induction and the proof of our second lemma.

It is clear from the definition of E ′ that it is an evidence function appropriate to
the logic J4, so we can define a J4 Mkrtychev model M′ = 〈E ′, V〉 where V is
the propositional valuation from our original J-model M. What remains to be
shown is that if F is a !-free formula, then M � F if and only if M′ � F . We
can prove this by a very easy induction on the construction of F .

Because both M and M′ are built from the same propositional valuation
V the case for propositional variables is immediate, as is the case for ⊥. That
M � t : G if and only if M′ � t : G is immediate from the definition of � and
the second lemma above. The argument for F = G1 → G2 is standard and
straightforward.
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Of course we do not want to hamstring ourselves with constant specifications
for J4 which are entirely !-free. In particular, it would be good to have con-
servativity hold for axiomatically appropriate constant specifications. With a
few reasonable conditions, we can generalize Theorem 1 to a broader class of
constant specifications.

In the next theorem, I will assume that my constant specification for J is
schematic. In the context of Iterated Constant Necessitation, that means that
if a particular axiom A is in C(〈c1, c2, . . . , cn〉) for some sequence c1, c2, . . . , cn

of justification constants, then so are all other instances of the schema of which
A is an instance. In other words, entire schemas are specified by a particular
sequence of justification constants.

Secondly, I will assume that any constants in J4 used to justify instances of
positive introspection (t :F →!t :t :F ) will be new constants not appearing in the
original constant specification for J. (New axioms, new constants.) This would
be a corollary of having a schematically injective constant specification.1 For the
sake of simplicity, I will assume that there is a single such new constant and
refer to it as c!.

Let C1 be a schematic constant specification for J, and let C1(c!) = ∅. Let C2
extend C1 to a constant specification for J4 by the following:

– If A ∈ C1(c) for an axiom A in L({·, +}) and A′ is an instance of that same
axiom scheme but in the extended language L({·, +, !}), put A′ into C2(c).

– If A is a instance of the positive introspection scheme t :F →!t : t :F , put A
into C2(c!).

Note that if C1 is axiomatically appropriate, so will C2 be, though with unneces-
sary instances of iterated justification constants. If we start with any schematic
constant specification C for J4 with a single justification constant c! whose sole
role is as evidence of the positive introspection scheme, we can find a constant
specification C1 for J which extends to C.

Theorem 2. Let constant specification C2 extend constant specification C1 as
defined above. If F ∈ L({·, +}) and containing no instances of c! is provable in
B({·, +, !}) (that is, J4) under constant specification C2, then F is provable in
B({·, +}) (that is, J) under constant specification C1.

Proof. We will again establish that any Mkrtychev model for J can be extended
to a Mkrtychev model for J4 which preserves the truth of !-free and c!-free
formulas, subject to the conditions on constants mentioned just above. The proof
will be nearly identical in its outline to that of Theorem 1, but there will be one
small change to the construction of the extension E ′ of the evidence relation E ,
entailing some extra work in the lemmas.

As above, we begin with a Mkrtychev model M for J which respects the con-
stant specification C1, consisting of a propositional valuation V and an evidence
function E .
1 In a schematically injective constant specification, each constant corresponds to ei-

ther no axioms at all or all instances of a single axiom schema.
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This time when we extend E to a J4-appropriate evidence function E ′ we
will need two additional properties: First, we need to extend the behavior of
constants in E to include axioms from L({·, +, !}), and as before we need it to
be the case that whenever F ∈ E ′(t) we also have t :F ∈ E ′(!t).

We will again define En recursively, treating constants at the initial stage and

closure under operations at successive stages. We can still set E ′ =
∞⋃

n=0

En.

We begin with E0.

– If t is not a justification constant, let E0(t) = E(t).
– If c is a justification constant, let E0(c) = E(c) ∪ C2(c)

Now we can define En+1 exactly as in Theorem 1.

– If c is a justification constant, En+1(c) = En(c).
– If x is a justification variable, En+1(x) = En(x).
– En+1(s + t) = En(s + t) ∪ En(s) ∪ En(t).
– En+1(s · t) = En(s · t) ∪ {G|F → G ∈ En(s) and F ∈ En(t)}.
– En+1(!t) = En(!t) ∪ {t :F |F ∈ En(t)}.

At this point, we will need some notation and somewhat more complicated ver-
sion of Lemma 1.

Notation: If F is a formula in L({·, +, !}), let (F )‡ be F with all instances of
any justification term !t replaced with the fresh justification variable y, and all
instances of the justification constant c! replaced with c0 where P → (P → P ) ∈
C1(c0). Of course if F contains no occurrences of either ! or c!, then (F )‡ = F .

Revised Lemma 1. If t is !- and c!-free, then if F ∈ En(t), we have (F )‡ ∈
En(t) as well.

Proof. We will prove this, of course, by induction. First, for n = 0. If t is not a
justification constant and F ∈ E0(t), then F ∈ E(t). Because E was the evidence
function for a J-model in a language without ! or c!, we know that F is !- and
c!-free, meaning that (F )‡ is identical to F . A similar argument works in the
case that t is a justification constant and F ∈ E(c).

To complete the base case of the induction, we need to show that if F ∈ C2(c),
(F )‡ ∈ C2(c) as well. That is, we need to show that if F is an instance of a J4
axiom schema other than positive introspection (recall that c �= c!) then (F )‡ is
also an instance of that same schema. However, this is immediate from the fact
that ‡ leaves intact all instances of the justification operators · and + and all
propositional connectives. (For example, (s + t :G)‡ = (s)‡ + (t)‡ : (G)‡.)

For the inductive step of the proof, let us assume that F ∈ Ek+1(t). If F ∈
Ek(t) as well, we are finished by our inductive hypothesis. So let us assume that
F /∈ Ek(t). It is impossible by the definition of Ek+1 that t is a justification
constant or justification variable, so t is either u · v or u + v. (Recall that t was
!- and c!-free.)
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– If t = u · v, then there is some G with G → F ∈ Ek(u) and G ∈ Ek(v). By
our inductive hypothesis, (G → F )‡ ∈ Ek(u) and (G)‡ ∈ Ek(v). Since ‡ is not
concerned with propositional connectives, (G → F )‡ = (G)‡ → (F )‡. Since
we have (G)‡ ∈ Ek(v) and (G)‡ → (F )‡ ∈ Ek(u), the definition of Ek+1 tells
us that (F )‡ ∈ Ek+1(u · v).

– If t = u+v, then either F ∈ Ek(u) or F ∈ Ek(v). By our inductive hypothesis,
(F )‡ ∈ Ek(u) or (F )‡ ∈ Ek(v). By the definition of Ek+1, (F )‡ ∈ Ek+1(u+ v).

This ends the inductive argument and the proof of the first lemma.

The complexities of the first lemma lead to a few changes in the proof of second
lemma as well.

Revised Lemma 2. Let t and F be !- and c!-free. F ∈ E ′(t) if and only if
F ∈ E(t).

Proof. That F ∈ E(t) implies F ∈ E ′(t) is again immediate from the construction
of E ′.

To show the converse, we will as usual prove that if F ∈ En(t) then F ∈ E(t)
by induction on n.

If t is not a justification constant, then E0(t) = E(t). If t is a justification
constant c �= c!, C1 and C2 agree on F by the definition of C2. (Recall that F was
!- and c!-free.) Thus, if F ∈ E0(t) then F ∈ E(t).

Now we may assume that if G ∈ Ek(s) then G ∈ E(s) for all !- and c!-free pairs
s and G. We wish to show that if F and t are !- and c!-free and F ∈ Ek+1(t) then
F ∈ E(t). If F ∈ Ek(t), we are done immediately by our inductive hypothesis. So
let us examine the other possible cases:

– If t = u · v and there is G ∈ Ek(v) with G → F ∈ Ek(u). Because u ·
v is !- and c!-free, we know by our earlier lemma that it is also the case
that (G)‡ ∈ Ek(v) and (G → F )‡ ∈ Ek(u). Because we can move ‡ past
propositional connectives, and because F is !- and c!-free, we know that
(G → F )‡ = (G)‡ → (F )‡ = (G)‡ → F . Thus, we have (G)‡ ∈ Ek(v)
and (G)‡ → F ∈ Ek(u). By our inductive hypothesis, (G)‡ ∈ E(v) and
(G)‡ → F ∈ E(u). Because E was an evidence function for a Mkrtychev
model for J, it must be the case that F ∈ E(u · v).

– If t = u + v and F ∈ Ek(u), then by our inductive hypothesis, F ∈ E(u).
Because E was an evidence function, we know that E(u) ⊆ E(u + v), so
F ∈ E(u + v). The case for F ∈ Ek(v) is identical. (This case is unchanged
from the original version of the lemma.)

This completes the induction and the proof of our second lemma.

The remainder of the proof of the current theorem is both standard and identical
with the end of the proof of Theorem 1.

Similar proofs work to show the conservativity of, say, J4 over J4− (the +-free
fragment of J4). (In fact, the proofs of conservativity over +-free fragments
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have much less need for equivocation about constant specifications.) The only
substantial differences would come in the inductive steps of the lemmas.

For example, in the (revised) first lemma, we would need the following ar-
gument (for J4 over J4−, assuming that (F )− was defined analogously with
(F )‡):

– If t =!s, then F = s :G and G ∈ Ek(s). By our inductive hypothesis2 we know
that (G)− ∈ Ek(s) as well. Because t was +-free, so is s, so (s :G)− = s : (G)−.
Because (G)− ∈ Ek(s), s : (G)− ∈ Ek+1(!s), and so (s :G)− ∈ Ek+1(!s).

And in the second:

– If t =!s and F = s : G for some G ∈ Ek(s), then we know by our induc-
tive hypothesis3 that G ∈ E(s). Because E was a J4−-appropriate evidence
function, it must be that s :G ∈ E(!s).

The interested reader can work out details for other cases.

4 Consistent Belief

What we have been examining so far could be called the logic of “pure normal
belief” (with or without positive introspection). From a modal standpoint, the
only axioms are �(F → G) → �F → �G and possibly �F → ��F . No other
constraints are placed on what is believed. In logics of knowledge, consistency
of belief is automatic because things believed/known are also true, and no in-
consistency can be true. However, one can fairly simply mandate consistency of
beliefs without requiring that all which is believed be true. The modal axiom
D (from the word deontic4) ((�⊥) → ⊥) accomplishes this. This can also be
introduced in logics of justified belief as the axiom scheme (t :⊥) → ⊥.

In a way, insisting on consistent belief can be seen as a middle ground between
unconstrained (normal) belief and knowledge. This makes it surprising that while
J4 is conservative over J and JT4 over JT, it is not the case that JD4 is
conservative over JD. In other words, introspection can introduce inconsistencies
in otherwise consistent belief systems.

The potential that introspection has for havoc can be seen from a simple
example. I might both believe that the sky is blue and believe that I do not
believe that the sky is blue. (This could be expressed as x : P and y : ((x :
P ) → ⊥).) Absent positive introspection, I can hold both these beliefs. But in
the presence of positive introspection (and application), an inconsistent belief
appears. (From x :P deduce !x :x :P , and by application (y·!x) :⊥.)

The same example works in the absence of the operator +. I have not explored
the conservativity of JD over JD− or of JD4 over JD4−.
2 Having, of course, to do with +-free justification terms and formulas (G)− which

have had the +-terms stripped out.
3 Again, this would be a different hypothesis than in our original version of the lemma.
4 The word deontic denotes a connection to duty or obligation. The more common form

of the axiom D is �F → �F , which could be interpreted as “What is mandatory is
also permitted.” In normal modal logics, this scheme is equivalent to our formulation.
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5 Conclusion

In Fitting’s proof of conservativity for logics of knowledge [1], he showed that
not only conclusions but entire proofs could be preserved by careful elimination
of justification operators. However, his reduction relied heavily on the presence
of the truth axiom (t :F → F ) and its variants. For example, if we were trying to
eliminate occurrences of ! from a proof, and the justification term t contained !
(while u did not), the axiom u : F → (t + u) : F would become u : F → F , an
instance of the truth axiom.

Because the truth axiom is absent from logics of belief, Fitting’s approach does
not immediately generalize. What makes syntactic approaches to this problem so
difficult (at least for logics with the · operator on justification terms) is that, for
example, the operator ! can show up in wholly inessential ways in an internally
cut formula F while not appearing at all in the justifications for F . (By an
“internally cut” formula, I mean the F from the axiom s : (F → G) → (s :F →
(s · t) : G). F might contain instances of ! introduced in irrelevant ways.) This
same difficulty presents itself, as far as I could tell, regardless of whether one is
dealing with Hilbert-style proofs or sequent/tableau proofs.

Thus, one problem clearly still open in this area is the existence or impossi-
bility of direct translations of proofs in a stronger logic of belief to those in a
weaker logic of belief.

Also still open is conservativity of logics of belief with the negative introspec-
tion (?) operator. Because the arguments in the present paper relied heavily on
the monotonicity of the construction of the extension of evidence relations, they
would seem incompatible with negative introspection.
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Abstract. We present a foundational framework, which we call D, uni-
fying a lazy programming language with an impredicative constructive
set theory IZFR by means of dependent types. We show that unification
brings many benefits to both worlds. First, D supports two paramount
paradigms of creating reliable software: correctness by construction and
post-construction verification, while retaining the expressiveness of set
theory. Second, D provides new expressive power, which makes it possible
to internalize and prove inside D the standard meta-theoretic properties
of constructive systems, such as Numerical Existence Property and Pro-
gram Extraction. Finally, computation arising from the programming
language significantly enriches set theory, as we show that D is stronger
than IZFR and that its real numbers behave in a better way.

1 Introduction

Consider a simple recursive program:

f(0) = 0
f(n+1) = f(n) + 1

It is straightforward to prove that ∀n ∈ ω. f(n) = n. Just proceed by induction
on n, and the claim follows.

But is it really that simple? Just where exactly does this argument take place,
and how easy is it to fully formalize it? Two major answers are:

1. The argument is done where all mathematical developments are done: in set
theory. Numbers are formalized in the standard way and recursion is defined
using the Recursion Theorem. The syntax of the programming language can
be formalized using for example Gödel numbering or hereditarily finite sets,
and there are plenty of semantics to choose from.

2. The argument is done in a logic designed from the start to reason about pro-
grams, embedding programs and computation deeply inside, with an existing
computer tool which can be used for formalization. Prominent examples of
such logics are Higher Order Logic [1], versions of type theory [2,3] and
MinLog [4].

Sadly, none of the answers is really satisfactory. The formalization of arguments
in set theory, although a standard procedure from the mathematical point of
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view, is very difficult to apply in practice. The sheer amount of formalizations
needed to prove the recursion theorem and difficulties associated with formal-
ization of the syntax are probably the reason why to this day there exists only
one prover based on set theory used in practice to reason about programs [5].
Due to its closed nature, its capabilities are unclear.

These difficulties can be removed by using a logic designed with programs
in mind, such as HOL, type theory or MinLog. The price to pay, however, is
expressiveness and easiness of use. HOL is a very weak logic. The strongest
modern applied type theories are much weaker than ZFC, the standard foun-
dation of mathematics. It also remains to be seen whether types can repeat
the remarkable success of sets as a foundational basis and tool for
abstraction.

Our framework D provides a solution to these problems along with extra
benefits. Briefly, D unifies a lazy programming language P with impredica-
tive constructive set theory IZF with Replacement (IZFR), using weakly de-
pendent logic. Since P is an integral part of the logic, no time is lost on for-
malizing syntax and semantics. As the framework unifies sets and programs,
the logic available for reasoning about the programs is the standard set the-
ory. In this way D supports the post-construction verification paradigm —
it is possible to write the program first and then use set theory to reason
about it.

Furthermore, D possesses all properties desirable from the proof-theoretic
point of view, including Subject Reduction, Progress and Normalization. There-
fore, as we showed in the previous work [6,7], it also supports the correct-by-
construction paradigm: programs can be extracted from set theoretic proofs.
Moreover, D makes it possible to state and prove the properties of program
extraction directly inside of D, instead of using convoluted metatheoretical con-
structions.

Finally, the combination significantly influences the set-theoretical side. We
show that D is stronger than IZFR, by showing that a countable version of the
Axiom of Choice is derivable in D. The result implies that reals behave in D in
a much better way than in IZFR.

This paper is organized as follows. We present D in Sections 2 and 3 and
develop mathematics in it in Section 4. Therein we show how sets influence
programs and programs influence sets. Related work is discussed in Section 5.

2 The Informal Account of D

In this section we present our framework D informally. The fully formal account
follows in Section 3. D is based on two pillars: a dependent variant of construc-
tive set theory IZFR, which we call IZFT , and a lazy, functional programming
language, which we call P . The framework unifies these two worlds together.
As we shall see in Section 4, the unification makes it possible to use set theory
to reason about programs of P and for the computation in P to influence set
theory.
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– (IN) ∀a, b. a ∈ b ↔ ∃c. c ∈I b ∧ a = c
– (EQ) ∀a, b. a = b ↔ ∀d. (d ∈I a → d ∈ b) ∧ (d ∈I b → d ∈ a)
– (EMPTY) ∀c. c ∈I ∅ ↔ ⊥
– (PAIR) ∀a, b∀c. c ∈I {a, b} ↔ c = a ∨ c = b
– (OMEGA) ∀c. c ∈I ω ↔ c = ∅ ∨ ∃b ∈ ω. c = b ∪ {b, b}
– (SEPφ(p,a,f)) ∀f , a∀c. c ∈I Sφ(p,a,f)(a, f ) ↔ (p : c ∈ a) ∧ φ(p, c, f )
– (UNION) ∀a∀c. c ∈I

⋃
a ↔ ∃b ∈ a. c ∈ b

– (POWER) ∀a∀c. c ∈I P (a) ↔ ∀b. b ∈ c → b ∈ a
– (REPLφ(p,a,b,f)) ∀f , a∀c. c ∈I Rφ(p,a,b,f )(a, f ) ↔ (∀x. (p : x ∈ a) →

∃!y. φ(p, x, y, f )) ∧ (∃x. (p : x ∈ a) ∧ φ(p, x, c, f ))
– (INDφ(a,f)) ∀f . (∀a. (∀b. b ∈I a → φ(b, f )) → φ(a, f )) → ∀a. φ(a, f )

Fig. 1. The axioms of IZFT

P ::= x | λx. P | 0 | S(P ) | casenat(P, Q, x.R) [◦] ::= [◦] P | casenat([◦] , Q, x.R)

(λx. P ) O → O[x := P ] casenat(0, Q, x.R) → Q
casenat(S(P ),Q, x.R) → R[x := casenat(P, Q, x.R)]

Γ  0 : nat
Γ  P : nat

Γ  S(P ) : nat
Γ  P : nat Γ  Q : φ Γ, x : φ  R : φ

Γ  casenat(P, Q, x.R) : φ

Fig. 2. The programming language P

The theory IZFR, first introduced by Myhill [8], is a constructive counterpart
of ZF set theory in its version with Replacement. IZFT is a dependent exten-
sion of IZFR. The underlying logic of IZFT is the constructive first-order logic
extended with dependent conjunctions, dependent implications and the type of
natural numbers.

The axioms of IZFT are the same as in [9]: Empty Set, Pairing, Infinity,
Union, Power Set, ∈-Induction, dependent Separation and dependent Replace-
ment. They are listed in Figure 1. As usual [9,7], an intensional membership
relation ∈I is used as a building block for Extensionality and Leibniz axioms.

The programming language P is a lazy lambda calculus, with natural numbers
and the recursion combinator. We summarize it in Figure 2. Our framework does
not depend heavily on the choice of P ; any reasonable functional programming
language with type-theoretic semantics could be used instead.

Just as the set-theoretical layer of D makes it possible to reason about equality
of sets, its programming part makes it possible to reason about computational
equivalence of programs. We define the relation of computational equivalence as
the smallest contextually closed equivalence relation on programs containing the
reduction relation. We write P ≡ Q, if P is computationally equivalent to Q.
For example, 0 ≡ 0, (λx. x) 0 ≡ 0 and λy. (λx. x) 0 ≡ λy. 0.

The most difficult part of D to state informally is the glue between the
world of programming languages and the world of sets. If the reader feels that
our presentation is too informal, we recommend skipping to Section 3. We
adopt the notation M : φ for the fact that M is a proof of φ. As D is a
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dependent theory, these judgments are as integral to D as set-theoretical mem-
bership formulas A ∈ B. We can read M : φ as “M is a proof of φ” or “M
proves φ”.

First, for any program P of type nat, there is a corresponding element of ω,
which we denote by P . We define this injecting map so that 0 = ∅, S(P ) =
P ∪ {P} (recall that in set theory, n ∪ {n} denotes n + 1) and so that it is a
homomorphism wrt. computational equivalence and set equality: if P ≡ Q, then
P = Q.

Second, if M : t ∈ ω, then there is a corresponding program prog(M) of
type nat. This map is defined so that if M : ∅ ∈ ω, then prog(M) ≡ 0 and if
M : t ∪ {t} ∈ ω, then prog(M) ≡ S(prog(N)), where N : t ∈ ω results from M
in a natural way. Finally, if M, N, O prove t ∈ ω, u ∈ ω and t = u, respectively,
then prog(M) ≡ prog(N).

Although D might seem overwhelming at the first sight, we think these are
necessary ingredients to make D a proof-theoretically solid setting, while at the
same time a powerful programming language. Thanks to our axioms, a program-
mer can for example freely mix prog(M) terms with numbers entered by user,
as they both exist on equal grounds. We hope an implementation of D would
make an impact on bringing set theory closer to students, as it would enable
them to play and program directly with set-theoretic objects, in addition to see-
ing them as static objects in textbooks and on blackboards. The reader might
want to skim Section 4 to see how D is used in mathematics, before delving into
formalities of the next section.

3 The Formal Account of D

In this section we provide more detailed presentation of D. While it is essentially
self-contained, our previous work [7] provides ample extra background on the
design of the system.

3.1 The Terms of D

The terms of D are divided into four syntactic categories, encompassing proof
terms, programs, set terms and formulas. We will generally use letters M, N, O
for proof terms, P, Q for programs, s, t, u for set terms, φ, ψ, ϑ for formulas
and T, S for arbitrary terms. There are three kinds of variables. The first one,
denoted by letters p, q, r, intuitively corresponds to the propositional implication.
We call them proof variables. The second one, denoted by letters x, y, z, is used
in the programming language part of D. Finally, the third one, usually denoted
by letters a, b, c, intuitively corresponds to the first-order quantification. The
notation a, b. M stands for a term with its variables a, b bound. The notation T
stands for a sequence of terms. The free variables of a term M are denoted by
FV (M).

The terms of D are defined by means of an abstract grammar. The first
part of the grammar generates the proof terms. There are three groups of proof
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terms. The first group of the proof terms corresponds to the first-order logic with
dependent features:

M ::= p | M N | λp. M | inl(M) | inr(M) | fst(M) | snd(M) | 〈M, N〉 | magic(M)

case(M, p. N, p. O) | λ ∗ . M | let [∗, p] := M in N | [∗, M ] | M ∗ | | in(P ) | ax

Note that the first-order variables and set terms are not present in the proof
terms. Instead, they are replaced by ∗, a new symbol of the language. This is
because in set theory, the computational content of the first-order quantification
and terms is mostly nonexistent. This can be seen for example in McCarty’s
realizability definition [10] or in our erasure maps [11,9]. We hope to investigate
this topic further in the future.

The in(P ) term intuitively denotes the proof of the fact that P ∈I ω. The ax
term denotes proofs of computational equivalences.

The second group of the proof terms corresponds to the axioms of IZFT :

inProp(M) | inRep(M) | eqProp(M) | eqRep(M) | emptyProp(M) | emptyRep(M)
pairProp(M) | pairRep(M) | unionProp(M) | unionRep(M) | sepp,a,f .φProp(M)
sepp,a,f .φRep(M) | powerProp(M) | powerRep(M) | omegaProp(M) | omegaRep(M)
replp,a,b,f .φProp(M) | replp,a,b,f .φRep(M) | ind(M)

Intuitively, the Prop and Rep terms correspond to IZFT axioms. For example,
if M is a proof of t ∈I P (u), then powerProp(M) is a proof of t ⊆ u and if
M is a proof of t ⊆ u, then powerRep(M) is a proof of t ∈I P (u). As in our
previous work [11,9,7], we adopt the convention of using axRep and axProp
terms to tacitly mean all Rep and Prop terms, for ax being one of in, eq, empty,
pair, union, sep, power, omega and repl. With this convention in mind, we can
summarize the definition of the set-theoretic Prop and Rep terms as:

axProp(M) | axRep(M).

The third group of proof terms governs interaction between programs and sets.

inzRep(M) | inzProp(M) | insRep(M) | insProp(M) | eqpRep(M)

Roughly, the proof terms inzRep(M), inzProp(M) witness 0 being the empty
set, the proof terms insRep(M), insProp(M) witness S(P ) being the same thing
as P ∪ {P} and eqpRep(M) is used for a computational version of the Leibniz
axiom. The type system in Section 3.3 will make these remarks precise.

Having finished describing the proof terms, we proceed to programs:

P ::= x | λx. P | P Q | 0 | S(P ) | casenat(P, Q, x.R) | prog(M)

This is a simple lambda calculus with natural numbers, which can be viewed as
an extension of Gödel’s system T in a version with iterator. The only new thing
is the prog(M) term. The prog(M) term intuitively for any M : t ∈ ω denotes
the natural number corresponding to t. This intuition will be validated by the
reduction rules of P and the proof-theoretic properties of our framework. We
will not use the prog(M) terms for M which are not proofs of t ∈ ω.

The third part of the grammar generates the set terms:

t ::= a | ∅ | {t1, t2} | ω | P (t) |
⋃

t | Sp,a,f .φ(t, t) | Rp,a,b,f .φ(t, t) | P
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The P term intuitively denotes the member of ω corresponding to the program P .
The last part generates the formulas of D.

φ ::= ⊥ | nat | P ≡ Q | t ∈I u | t = u | t ∈ u | (p : φ) → ψ | (p : φ)∧ψ | φ∨ψ | ∀a. φ | ∃a. φ

The formulas (p : φ) → ψ and (p : φ) ∧ ψ are dependent versions of implica-
tion and conjunction. The variable p binds in ψ, which can mention p (inside of
prog(M) terms). Traditional formulas φ → ψ and φ ∧ ψ are defined as abbrevi-
ations for (p : φ) → ψ and (p : φ) ∧ ψ, where p is fresh.

There are two new atomic formulas which go beyond the dependent first-
order logic. First, the inclusion of the formula/type nat among formulas makes
it possible to use the machinery of the first-order logic to define types in P , via
the Curry-Howard correspondence principle. Second, we allow reasoning about
computational equivalence of programs by means of the formula P ≡ Q. The
proof system in Section 3.3 should shed more light on these issues.

That programs and proofs terms are separate syntactic categories in our sys-
tem is mostly a design choice. If one looked hard enough, one could find proof
terms behaving similarly to programs from a computational point of view. How-
ever, the separation makes it possible to apply our framework easily to more
complicated programming languages — it would be a simple exercise to extend
P to incorporate pairs, lists, algebraic datatypes and other features met in mod-
ern functional programming languages.

3.2 The Reduction Relation

The reduction relation, denoted by →, is deterministic and defined on proof
terms and programs. It arises from reduction rules and evaluation contexts. In
the reduction rules, we will use several proof terms corresponding to proofs of
simple set-theoretic facts. Due to the space constraints, we do not present the
full terms, but only state them as constants.

eqRefl : ∀a. a = a ii : ∀a, b. a ∈I b → a ∈ b zz : 0 = ∅ ss : S(P ) = P ∪ {P}

So, for example, eqRefl stands for a proof term corresponding to the proof of
∀a. a = a. The term ss does not depend on P .

Now we can present the reduction rules. To avoid cluttering of the rules (and
later also proofs), from now on we adopt the convention of using the _ character
to denote the subterms which are of no interest to us and to the definition/proof
in question.

The reduction rules are designed to make the Progress and Subject Reduction
lemmas provable. The first group is standard [7] for constructive set theories:

(λp. M) N → M [p := N ] (λ ∗ . M) ∗ → M fst(〈M,_〉) → M snd(〈_, N〉) → N
case(inl(M), p. N, p. _) → N [p := M ] case(inr(M), p. _, p. O) → O[p := M ]

axProp(axRep(M)) → M ind(M) → λ ∗ . M ∗ (λ ∗ .λx. ind(M) ∗)

There are two new rules governing the behavior of new proof terms:

in(0) → omegaRep(inl(zz)) in(S(P )) → omegaRep(inr([∗, 〈in(P ), ss〉]))
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Furthermore, programs reduce as well, in an expected way:

(λx.P ) O → O[x := P ]
casenat(0, Q, x._) → Q casenat(S(P ), Q, x.R) → R[x := casenat(P, Q,x.R)]

Finally, we show the two rules governing the behavior of programs coming from
set theory:

prog(inRep([∗, 〈omegaRep(inl(_)),_〉])) → 0

prog(inRep([∗, 〈omegaRep(inr([∗, 〈M, _〉)), _〉]])) → S(prog(M)))

We call the reduction rules specified so far atomic. To extend these rules to all
proof terms, we use the standard tool of evaluation contexts [12]. The evaluation
contexts of P describe the call-by-need (lazy) evaluation order:

[◦] ::= fst([◦]) | snd([◦]) | case([◦], _, _) | in([◦]) | axProp([◦]) | [◦] _ | magic([◦]) | [◦] ∗
casenat([◦], _, _) | prog([◦]) | prog(inRep([◦])) | prog(inRep([∗, [◦]])) |
prog(inRep([∗, 〈[◦], _〉])) | prog(inRep([∗, 〈omegaRep([◦]), _〉])) |
prog(inRep([∗, 〈omegaRep(inr([◦])), _〉])) |
prog(inRep([∗, 〈omegaRep(inr([∗, [◦]])), _〉]))

The reason for the large number of rules governing the behavior of prog(_) terms
is that the subterms need to be evaluated in order to reach the form allowing
the application of one of the atomic reduction rules.

We distinguish certain terms, listed below, as values.

λ_. _ | inr(_) | inl(_) | [_, _] |〈_, _〉 | axRep(_) | 0 | S(_)

Definition 1. We write M ↓ if the unique reduction sequence starting from
M terminates. We write M ↓ v, if v is the value M terminates at. We write
M →∗ N if M reduces to N in some number of steps.

3.3 The Proof System of D

We now introduce the proof system for D. Contexts, denoted by Γ , are finite
sets of pairs (p, φ), where p is a proof or program variable and φ is a formula.
The domain of a context Γ = p1 : φ1, . . ., pn : φn, denoted by dom(Γ ), is the set
{p1, . . ., pn}. The typing system is used to derive the judgments Γ � T : S, read
as “in environment Γ , T is of type S” or as “in environment Γ , T proves S”.

The first group of rules corresponds to the first-order logic with dependent
implications and conjunctions.

Γ, p : φ  p : φ
p /∈ dom(Γ )

Γ, p : φ  M : ψ

Γ  λp. M : (p : φ) → ψ
Γ  M : ⊥

Γ  magic(M) : φ

Γ  M : φ

Γ  λ ∗ . M : ∀a. φ
a /∈ FV (Γ )

Γ  M : (p : φ) → ψ Γ  N : φ

Γ  M N : ψ[p := N ]
Γ  M : ∀a. φ

Γ  M ∗ : φ[a := t]

Γ  M : φ Γ  N : ψ[p := M ]
Γ  〈M, N〉 : (p : φ) ∧ ψ

Γ  M : (p : φ) ∧ ψ

Γ  fst(M) : φ

Γ  M : (p : φ) ∧ ψ

Γ  snd(M) : ψ[p := fst(M)]
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Γ  M : φ[a := t]
Γ  [∗, M ] : ∃a. φ

Γ  M : ∃a. φ Γ, p : φ  N : ψ

Γ  let [∗, p] := M in N : ψ
a /∈ FV (Γ, ψ)

Γ  M : φ

Γ  inl(M) : φ ∨ ψ

Γ  M : ψ

Γ  inr(M) : φ ∨ ψ

Γ  M : φ ∨ ψ Γ, p : φ  N : ϑ Γ, p : ψ  O : ϑ

Γ  case(M, p. N, p. O) : ϑ

The second group of rules corresponds to the axioms of set theory.

Γ  M : φA(t, u)
Γ  axRep(M) : t ∈I tA(u)

Γ  M : t ∈I tA(u)
Γ  axProp(M) : φA(t, u)

Γ  M : ∀c. (∀b. b ∈I c → φ[a,f := b, t]) → φ[a, f := c, t]
Γ  ind(M) : ∀a. φ[f := t]

The third group of rules describes the typing system for the programs.

Γ  0 : nat
Γ  P : nat

Γ  S(P ) : nat
Γ  P : nat Γ  Q : φ Γ, x : φ  R : φ

Γ  casenat(P, Q,x.R) : φ

Γ  ax : P ≡ P

Γ  _ : P ≡ Q

Γ  ax : Q ≡ P

Γ  _ : P ≡ Q

Γ  ax : R[P ] ≡ R[Q]
R an arbitrary program

Γ  ax : P ≡ Q
P → Q atomic

Γ  _ : P ≡ Q Γ  _ : Q ≡ R

Γ  ax : P ≡ R

Finally, we present the rules glueing programs and sets together.

Γ  P : nat
Γ  in(P ) : P ∈I ω

Γ  M : ⊥
Γ  inzRep(M) : t ∈I 0

Γ  M : t ∈I 0
Γ  inzProp(M) : ⊥

Γ  M : t ∈I P ∪ {P}
Γ  insRep(M) : t ∈I S(P )

Γ  M : t ∈I S(P )

Γ  insProp(M) : t ∈I P ∪ {P }

Γ  M : t ∈I P Γ  _ : P ≡ Q

Γ  eqpRep(M) : t ∈I Q

Γ  M : t ∈ ω

Γ  prog(M) : nat

Γ  M : t ∈ ω Γ  N : u ∈ ω Γ  O : t = u

Γ  ax : prog(M) ≡ prog(N)

It is straightforward to show that D � IZFR. The standard properties of proof
systems and programming languages: Inversion, Canonical Forms, Substitution
Lemma, Weakening, Subject Reduction and Progress are proved using standard
techniques, presented for example in [12,13] and applied to set theories in [7].
Although the normalization proof does involve some interesting twists, due to
the space constraints we are forced to omit it. We prefer to give a more detailed
account of Section 4, as the material presented there is much more novel and
less established. We only remark that we use realizability as a proof technique,
in a manner similar to [14].

Theorem 1 (Normalization, ZF + Con(ZF)). If � T : S, then T ↓.

Corollary 1. D is consistent.
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4 Mathematics

In this section, we shall see how D brings sets and programs together and al-
lows them to interact. We will state and prove theorems using the properties
and expressive power of D. However, we prefer to think of D as one of many
possible axiomatizations of what could be termed dependent mathematics. We
hope that our theorems can stand on their own and we remain hopeful for better
axiomatizations to appear in the future.

Before we delve into proofs, let us ponder for a second about formulas in D.
The formulas are made of standard first-order and set-theoretic features, but they
can also use proof variables inside of prog(M) terms. The same comment applies
to programs and set terms. The unconstrained usage of these proof variables,
however, does not present immediate benefits, while it significantly complicates
notation. For this reason, we introduce a notion of supported terms.

Definition 2. A term T (which might be a program, a set term or a formula)
is supported by a context Γ and proof trees T1, . . ., Tn, if FV (T ) ⊆ dom(Γ ) and
if for any subterm S of T such that S = prog(M), there is i such that:

– For some t, Ti is a proof tree of Γ ∪ FVt(S) � M : t ∈ ω, and
– Any term U in Ti is supported by Γ ∪ FVt(U) and {T1, ..., Tn} \ {Ti},

where FVt(S) is the context consisting of all free variables of S bound in T by
dependent implications and conjuctions. For example, for T = (p : φ) ∧ prog(p)
and S = prog(p), FVt(S) = {(p, φ)}.

The weight of a supported term is the number of proof trees in its support.

Intuitively, in a supported term, all prog(M) terms are typed.1 For terms T
supported by Γ = p1 : φ1, . . ., pn : φn such that the free first-order variables of
Γ are a, we will use the notation T (a, p : ψ). Note that this notation agrees
with the standard first-order logic convention, as it (informally) says that the
free variables of T are among a, p : ψ.

Convention 2. From now on, all formulas, set terms and programs we use are
supported. We write (p, φ) ∈ FV (T ) if (p, φ) is in a supporting context of T .

Although we will rarely mention supporting contexts and proof trees explicitly,
the reader should always assume that they are implicitly carried around.

If (p, φ) ∈ FV (T ) (or a ∈ FV (T )), we write T ≡ T [p : φ] (or T ≡ T [a]), to
mark all occurences of p (or a) in T . We read T ≡ T [p : φ] as “T is written
as T [p : φ]”. With this notation, T [M ] denotes T [p := M ] and T [t] denotes
T [a := t], respectively.

We also restrict the possible dependencies in formulas and their intensionality.
Again, the reason is that full generality does not seem to be useful and that it
is detrimental to some of the developments. The restriction amounts to allowing
only first-order dependencies and extensional terms and formulas. Formally:
1 We could have as well avoided supported terms completely by incorporating the

notion into the typing system, at the price of vastly bloating proofs and the number
of proof rules. Lemma 2 could then be proved by simple induction on proof trees.
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Definition 3. We call a term/formula first-order, if it does not contain any
prog(M) terms. We call a formula φ(a, p : ψ) flat, if all ψ are first-order and if
for any subformula (p : φ1)

⊕
φ2, where

⊕
∈ {∧, →}, φ1 is first-order. We call a

formula extensional, if it does not contain any ∈I relational symbols. Extensional
formulas may contain computational equivalences.

Convention 3. From now on, all terms and formulas we consider are flat and
extensional.

Since D is a dependent framework, proof terms and proofs play an essential role
in the developments. There is no established tradition of presenting such develop-
ments in an informal mathematical discourse and our presentation is but a try. We
believe that as importance of dependent mathematics will grow, a well-established
discourse will evolve. For now, from the reader’s point of view, the most important
addition to the statements of set theory is a new judgment M : φ, read as “M is
a proof of φ” or “M proves φ”, with its formal counterpart Γ � M : φ, where Γ
implicitly contains all current assumptions and all supporting contexts.

We adopt three more convenient notational conventions. We write ∀a. (p : a ∈
b) → φ as ∀p : a ∈ b. φ and similarly ∃a. (p : a ∈ b)∧φ as ∃p : a ∈ b. φ. Moreover,
since the meaning of the dependent conjunction in the world of programs is much
closer to that of the (strong) existential quantifier, we will sometimes use the
notation Σn : φ. ψ to stand for (n : φ) ∧ψ. Finally, {p : a ∈ t | φ} stands for the
set S such that a ∈ S ↔ p : a ∈ t ∧ φ, existing due to the Separation axiom.

We start with the familiar Extensionality and Leibniz axioms.

Lemma 1 (Extensionality and Leibniz Axiom). ∀a, b. a = b ↔ ∀c. c ∈
a ↔ c ∈ b. Moreover, for any term t and a formula φ:

∀a, b. a = b → t[c := a] = t[c := b] and a = b → φ[c := a] → φ[c := b]

Proof. Just as in [9], using the assumption of extensionality of t, φ on the way.

We next prove a technical lemma of crucial importance for further developments.

Lemma 2 (Proof Irrelevance). Suppose N : Ψ and O : Ψ . If (p, Ψ) ∈ FV (φ),
then φ[p := N ] ↔ φ[p := O]. Furthermore, if (p, φ) ∈ FV (t), then t[p := N ] =
t[p := O]. Finally, if (p, φ) ∈ FV (P ), then P [p := N ] ≡ P [p := O].

Proof First let us write down the claim more formally. Suppose Γ � N : Ψ ,
Γ � O : Ψ and suppose Γ, p : Ψ is a supporting context of φ, t and P , where
p /∈ FV (Γ ). Then Γ � _ : φ[p := N ] ↔ φ[p := O], Γ � _ : t[p := N ] = t[p := O]
and Γ �: P [p := N ] ≡ P [p := O].

We proceed by lexicographical induction on the pair (“the weight of T ”, “the
structural complexity of T ”), where T is one of φ, t and P :

– Suppose P is prog(M). By the definition of supported programs, for some s,
Γ, p : Ψ � M : s ∈ ω. Since the weight of s is smaller than the weight of P , by
the induction hypothesis Γ � _ : s[p := N ] = s[p := O]. By the Substitution
Lemma, Γ [p := N ] � M [p := N ] : s[p := N ] ∈ ω and Γ [p := O] � M [p :=
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O] : s[p := O] ∈ ω. Since p /∈ FV (Γ ), Γ � M [p := N ] : s[p := N ] ∈ ω
and Γ � M [p := O] : s[p := O] ∈ ω. The following proof tree shows the
claim, where T, S and U are proof trees of Γ [p :=N ]�M [p :=N ] : s[p := N ] ∈
ω, Γ [p := O] � M [p := O] : s[p := O] ∈ ω and Γ � _ : s[p := N ] = s[p := O],
respectively.

T S U
Γ  ax : prog(M [p := N ]) ≡ prog(M [p := O])

– For the rest of programs, the claim follows trivially, due to the definition and
properties of computational equivalence ≡.

– For the set terms, the claim also follows easily, due to the Leibniz axiom.
– For the formulas, the atomic cases follow easily by Extensionality and the

Leibniz Axiom. The only interesting cases are the dependent formulas.
– Suppose φ is (q : φ1) → φ2. Since φ is flat, φ1 is first-order, so p /∈ FV (φ1).

It is not difficult to see that Γ, p : Ψ, q : φ1 supports φ2 (with the proof
tress inherited from φ) and that the weight of φ2 stays the same, so since
φ2 is structurally smaller tha φ, by the induction hypothesis Γ, q : φ1 � _ :
φ2[p := N ] ↔ φ2[p := O]. Therefore we can easily derive Γ, _ : φ1 → φ2[p :=
N ], q : φ1 � _ : φ2[p := O], from which the claim follows.

– Suppose φ is (q : φ1) ∧ φ2. Just as in the previous case, it is not difficult
to see that Γ, p : Ψ, q : φ1 supports φ2 and that its weight is the same as
the weight of φ, so by the induction hypothesis, Γ, q : φ1 � _ : φ2[p :=
N ] ↔ φ2[p := O]. Let Γ ′ = Γ, r : (q : φ1) ∧ φ2[p := N ]. By Weakening,
Γ ′, q : φ1 � _ : φ2[p := N ] ↔ φ2[p := O], so by the Substitution Lemma
Γ ′ � _ : φ2[p := N ][q := fst(r)] ↔ φ2[p := O][q := fst(r)] .Since Γ ′ � fst(r) :
φ1 and Γ ′ � snd(r) : φ2[p := N ][q := fst(r)], the claim easily follows. �

From now on, we work in D. In other words, all lemmas and theorems apart
from these labelled as schemas, have their formal counterparts in D.

Definition 4. P0 is the canonical proof of 0 ∈ ω. PS(n, q) is the canonical proof
of S(n) ∈ ω, given q : n ∈ ω. Formally:

P0 ≡ ii ∗ ∗ omegaRep(inl(eqRefl ∗))
PS(n, q) ≡ ii ∗ ∗ omegaRep(inr([∗, 〈q, eqRefl ∗〉])

Now we can derive our first truly new set-theoretical theorem: a dependent
induction principle. Roughly speaking, just as it is sufficient in standard proofs
by mathematical induction to consider only the cases for zero and successor, in
the dependent case it suffices to consider only the canonical proofs of membership
of respective sets in ω.

Theorem 4 (Dependent Induction Schema). For any φ such that (p, n ∈
ω) ∈ FV (φ), let φ ≡ φ[p, n]. If φ[P0, 0] and ∀q : n ∈ ω. φ[q, n] → φ[PS(n, q), n ∪
{n}], then ∀p : n ∈ ω. φ[p, n].

Proof. Consider the set A ≡ {p : n ∈ ω | φ[p, n]}.
First, by φ[P0, 0], 0 ∈ A. Second, take any n ∈ A. Then there is p : n ∈ ω

such that φ[p, n]. Therefore φ[PS(n, p), n ∪ {n}]. Since PS(n, p) : n ∪ {n} ∈ ω,
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n ∪ {n} ∈ A. Thus A contains 0 and is closed under successor, so as ω is the
smallest set containing 0 and closed under successor, ω ⊆ A.

So take any p : n ∈ ω. Since ω ⊆ A, n ∈ A, so there is r such that r : (q : n ∈
ω)∧φ[q, n]. Therefore fst(r) : n ∈ ω and snd(r) : φ[fst(r), n]. By Proof Irrelevance,
φ[fst(r), n] ↔ φ[p, n]. Therefore we also have φ[p, n], which shows the claim.

Lemma 3 (Program schema). For all programs P, Q, if P ≡ Q, then P = Q.

Proof. Suppose P ≡ Q and take any A ∈I P . Then A ∈I Q, so A ∈ Q. On the
other hand, suppose A ∈I Q. Since ≡ is symmetric, the claim easily follows.

Lemma 4 (Program schema). For any q :n∈ω, prog(PS(n, q))→∗S(prog(q)).

Lemma 5. For all p : n ∈ ω, prog(p) = n.

Proof. We proceed by dependent induction.

– Case P0 : ∅ ∈ ω. We need to show prog(P0) = ∅. Since prog(P0) → 0,
prog(P0) ≡ 0. By Lemma 3, prog(P0) = 0. Since zz : 0 = ∅, the claim
follows.

– Given p : n ∈ ω such that prog(p) = n, we need to show prog(PS(p)) = n ∪
{n}. By Lemma 4, prog(PS(p)) →∗ S(prog(p)), so prog(PS(p)) ≡ S(prog(p)).
By Lemma 3, prog(PS(p))=S(prog(p)). We also have S(prog(p)) = prog(p)∪
{prog(p)}. Since prog(p) = n, prog(p)∪ {prog(p)} = n ∪ {n}, thus the claim
follows. �

Since D normalizes, it is easy [7] to derive the disjunction, numerical existence
and term existence properties for D. However, D offers also a much better choice
— we can state and prove the numerical existence property inside D:

Lemma 6. ∀a ∈ ω. (φ(a) → Σn : nat. φ(n)).

Proof. Take any p : a ∈ ω such that φ(a). Set n = prog(p). We need to show
φ(prog(p)). By Lemma 5, prog(p) = a, so since we have φ(a), the claim follows
by the Leibniz axiom.

Corollary 2 (Numerical Existence Property).

(∃a ∈ ω. φ(a)) → Σn : nat. φ(n)

Definition 5. For M : ∃a ∈ ω. φ(a) we define nep(M) to be the term we obtain
from Corollary 2:

nep(M) : Σn : nat. φ(n)

Note that Corollary 2 states exactly what the Numerical Existence Property
usually says on a metalevel: if T � ∃a ∈ ω. φ(a), then there is a numeral n such
that T � φ(n). Thanks to normalization and the properties of D, we know that
fst(nep(M)) is such a numeral.

It would not be difficult to extend the system with booleans and internalize
the disjunction property in a similar way. The term existence property, however,
due to contradictions lurking around the corner [14], does not seem to be easily
internalizable.

The Numerical Existence Property is just the beginning. We can also state
and prove program extraction meaningfully:
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Theorem 5 (Program Extraction).

(∀x ∈ ω∃y ∈ ω. φ(x, y)) → Σf : nat → nat. ∀q : x ∈ ω. φ(x, f prog(q))

Proof. Suppose p : ∀x ∈ ω∃y ∈ ω. φ(x, y). Define f as follows. f takes n : nat
and returns fst(nep(p ∗ (ii ∗ ∗ in(n)))). To show correctness, take any q : x ∈ ω.
We know there is y ∈ ω such that φ(x, y). By the definition of f and properties
of nep, f prog(q) is the m : nat such that φ(prog(q), m). Since prog(q) = x, we
also have φ(x, m), so the claim follows.

The following version of the Axiom of Choice shows that the computation influ-
ences significantly the set-theoretic part of D. An interesting question, which we
leave open, is whether stronger forms of AC, such as Dependent Choice, could
be proved as well.

Theorem 6 (ACω,ω). If ∀x ∈ ω∃y ∈ ω. φ(x, y) then there is a function f :
ω → ω such that for all x ∈ ω, φ(x, f(x)).

Proof. Suppose p : ∀x ∈ ω∃y ∈ ω. φ. Define:

n(q) ≡ fst(nep(p ∗ (ii ∗ ∗ in(prog(q))))) and f ≡ {z | ∃q : x′ ∈ ω. z = (x′, n(q))}

We first show that f is a function. Take any q : x ∈ ω. Let y = n(q). It is easy
to see that n(q) : nat, so y ∈ ω. And obviously (x, y) ∈ f .

Now, take any y′ such that (x, y′) ∈ f . We need to show that y′ = y. Since
(x, y′) ∈ f , we know that there is q′ : x′ ∈ ω such that (x, y′) = (x′, n(q′)).
Therefore, x = x′ and y′ = n(q′). Since q : x ∈ ω, q′ : x′ ∈ ω and x = x′,
prog(q) ≡ prog(q′), therefore n(q) ≡ n(q′) and n(q) = n(q′), so y = y′.

Finally, take any q : x ∈ ω. We need to show that φ(x, f(x)). In other words,
that φ(x, n(q)). This follows by Lemma 4, the Leibniz axiom and the properties
of nep.

Corollary 3. In D, Dedekind real numbers and Cauchy real numbers are the
same. Furthermore, D is stronger than IZFR, as the first part of the claim does
not hold in IZFR.

Proof. The first part of the claim follows by Proposition 3.21 in [15]. We learned
the second part of the claim by personal communication with Lubarsky; it follows
easily from the first part of the claim and results of [16]. We were also informed
that it easily follows from results of [17] as well.

We conclude with the program and the claim we started with.

Lemma 7. Let f = λx. casenat(x, 0, y.S(y)). Then for all p : n ∈ ω, we have
f (prog(p)) ≡ prog(p).

Proof. We proceed by dependent induction on p : n ∈ ω. For P0 : 0 ∈ ω, we
have f (prog(P0)) →∗ 0 and also prog(P0) →∗ 0, so the claim follows. Suppose
we have the claim for q : n ∈ ω. We need to show it for PS(n, q) : S(n) ∈ ω. By
Lemma 4, prog(PS(n, q)) →∗ S(prog(q)), so f prog(PS(n, q)) →∗ S(prog(q)).
The claim follows by reflexivity of ≡.
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5 Conclusion

We have presented a new foundational framework, unifying sets and programs
and showed how the combination enriches both worlds. We believe this work is
but a first step into the realm of dependent set theory. The fact that it is possible
now to clearly delineate “concrete” computational objects from their set-theoretic
counterparts, yet allow them to interact in a unified setting, raises numerous inter-
esting questions. For example, how exactly does tinkering with the programming
language and its type system influence set theory? How far inside the realm of sets
can we go to discover the computational content hiding in the proofs?

A more concrete question concerns the formulation of D. We first proved the
normalization theorem for D and later restricted the system for the purpose of
dependent mathematics. While this approach allowed us to prove the normal-
ization theorem for a much stronger system, it would likely be an obstacle to
implementing D. Is there a nicer formulation of the restricted part of D?

We are hopeful to see answers to these questions.

5.1 Related Work

Dependent type theories, dating back to deBruijn’s Automath, implemented in
many systems [3,2,18], are a foundational setting which also integrates logic
with programs. Nuprl [2], in particular, is close to our D, since its programming
language is defined before the logic and can be extended freely.

[14] presents a dependent set theory IZFD, resulting by extending IZFR with
dependent implications, conjuctions and restricted Σ-types. IZFD does not have
nice proof-theoretic properties, such as Subject Reduction, and it does not sup-
port the post-construction-verification paradigm. It also does not have the Nu-
merical Existence Property, not to mention capability to internalize it.

Howe [19] combines a programming language with set theory to provide a
model for extensions of Nuprl. He does not provide a formal system to axiomatize
his model. Map theory [20] integrates programs and sets in a setting stronger
than ZFC. Since it does not have a nice axiomatization from the proof-theoretical
point of view, it does not support the correct-by-construction paradigm.

Constructive set theories have also been interpreted in computational frame-
works such as type theory [21] and deduction modulo [22]. [23,24] investigate
linear set theories. These investigations share the foundational character of our
work. Their goals and results are different from ours, however.

We are grateful to anonymous reviewers for their helpful comments.
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Product-Free Lambek Calculus Is NP-Complete

Yury Savateev�

Department of Mathematical Logic, Faculty of Mechanics and Mathematics,
Moscow State University, Moscow, 119991, Russia

Abstract. In this paper we prove that the derivability problems for
product-free Lambek calculus and product-free Lambek calculus allowing
empty premises are NP-complete. Also we introduce a new derivability
characterization for these calculi.

Introduction

Lambek calculus L was first introduced in [4]. It can be used for describing natu-
ral language syntax and for specifying formal languages (sets of finite words over
a finite alphabet). This is done in the framework of categorial grammars, where
all language-specific information is put in a lexicon and the derivation rules are
the same for all languages. Therefore, the derivability problem (whether or not
a given sequent is derivable) for Lambek calculus is important for applications.
The expressive power of Lambek categorial grammars equals that of context-free
grammars (see [6]).

Lambek calculus uses syntactic types that are built from primitive types using
three binary connectives: multiplication, left division, and right division. Natu-
ral fragments of Lambek calculus are the product-free Lambek calculus L(\, /),
which does not use multiplication, and the unidirectional Lambek calculi, which
have only one connective left: a division (left or right). Categorial grammars
based on these fragments have the same expressive power as grammars based on
the full version (the equivalence of unidirectional Lambek categorial grammars
and context-free grammars was proved in [2]).

For the non-associative variant of Lambek calculus the derivability can be
checked in polynomial time as shown in [3] (for the product-free fragment of the
non-associative Lambek calculus this was proved already in [1]).

In [5] NP-completeness was proved for the derivability problem for full asso-
ciative Lambek calculus. In [7] there was presented a polynomial algorithm for
its unidirectional fragments.

We show that the classical satisfiability problem SAT is polynomial time
reducible to the L(\, /)-derivability problem and thus L(\, /) is NP-complete.
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1 Product-Free Lambek Calculus

Product-free Lambek calculus L(\, /) can be constructed as follows. Let P =
{p0, p1, . . .} be a countable set of what we call primitive types. Let Tp be the
set of types constructed from primitive types with two binary connectives /, \.
We will denote primitive types by small letters (p, q, r, . . .) and types by capital
letters (A, B, C, . . .). By capital greek letters (Π , Γ , Δ,. . .) we will denote finite
(possibly empty) sequences of types. Expressions like Π → A, where Π is not
empty, are called sequents.

Axioms and rules of L(\, /):

A → A,
Φ → B ΓBΔ → A

ΓΦΔ → A
(CUT),

ΠA → B
Π → (B/A)

(→ /), Φ → A ΓBΔ → C
Γ (B/A)ΦΔ → C

(/ →),

AΠ → B
Π → (A\B)

(→ \), Φ → A ΓBΔ → C
ΓΦ(A\B)Δ → C

(\ →),

(Here Γ and Δ can be empty.)
In this paper we will consider two calculi — L(\, /) and L∗(\, /), called

product-free Lambek calculus allowing empty premises. In L∗(\, /) we allow the
antecedent of a sequent to be empty.

It can be shown that in these calculi every derivable sequent has a cut-
free derivation where all instances of the axiom are of the form p → p where
p ∈ P.

2 Reduction from SAT

Let c1 ∧ . . . ∧ cm be a Boolean formula in conjunctive normal form with clauses
c1 . . . cm and variables x1 . . . xn. The reduction maps the formula to a sequent,
which is derivable in L(\, /) (and in L∗(\, /)) if and only if the formula c1∧. . .∧cm

is satisfiable.
For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi stand

for the literal xi.
Note that 〈t1, . . . , tn〉 ∈ {0, 1}n is a satisfying assignment for the Boolean

formula c1 ∧ . . . ∧ cm if and only if for every j ≤ m there exists i ≤ n such
that the literal ¬tixi appears in the clause cj (as usual, 1 stands for “true” and
0 stands for “false”).

Let pj
i , q

j
i , a

j
i , b

j
i , c

j
i , d

j
i ; 0≤ i≤n, 0≤j≤m be distinct primitive types from P.
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We define the following families of types:

G0 � (p0
0\p0

n)

Gj � (qj
n/((qj

0\pj
0)\Gj−1))\pj

n

G � Gm

A0
i � (a0

i \p0
i )

Aj
i � (qj

i /((bj
i\aj

i )\Aj−1
i ))\pj

i

Ai � Am
i

C0
i � (c0

i \p0
i )

Cj
i � (qj

i /((dj
i\cj

i )\Cj−1
i ))\pj

i

Ci � Cm
i

E0
i (t) � p0

i−1

Ej
i (t) �

{
qj
i /(((qj

i−1/Ej−1
i (t))\pj

i−1)\pj−1
i ), if ¬txi appears in cj

(qj
i−1/(qj

i /(Ej−1
i (t)\pj−1

i )))\pj
i−1, if ¬txi does not appear in cj

F j
i (t) � (Ej

i (t)\pj
i )

Fi(t) � Fm
i (t)

H0
i � p0

i−1\p0
i

Hj
i � ((qj

i−1/(qj
i /Hj−1

i ))\pj
i−1)\pj

i

Hi � Hm
i

B0
i � a0

i

Bj
i � qj

i−1/(((bj
i/Bj−1

i )\aj
i )\pj−1

i−1 )

Bi � Bm
i \pm

i−1

D0
i � c0

i

Dj
i � qj

i−1/(((dj
i/Dj−1

i )\cj
i )\pj−1

i−1 )

Di � Dm
i \pm

i−1.

Let Πi denote the following sequences of types:

(Fi(0)/(Bi\Ai)) Hi ((Di\Ci)\Fi(1)).

Theorem 1. The following statements are equivalent:

1. c1 ∧ . . . ∧ cm is satisfiable.
2. L(\, /) � Π1 . . . Πn → G

3. L∗(\, /) � Π1 . . .Πn → G.

This theorem will be proven in section 4.
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3 Derivability Characterization

Let At be the set of atoms or primitive types with superscripts, {p(i)|p ∈ P, i ∈
Z}. Let FS be the free monoid (the set of all finite strings) generated by elements
of At. We will denote elements of FS by A, B, C and so on, by ε we will denote
the empty string.

Consider two mappings:

t : FS → P, t(Ap(i)) = p; d : FS → Z, d(Ap(i)) = i.

Let A � B denote that A is a strict prefix of B (i.e. there is C 	= ε ∈ FS such
that B = AC). We will denote such C as A�B. By A 
 B we will denote that
either A � B or A = B. We can define in the usual way the following notions:
min�, max�, inf�, sup�, [A, B]�, and (A, B]�.

For A ∈ FS, A 	= ε let PA = {B | B 
 A, B 	= ε}. The relation 
 is a total
order on PA.

Let α be a partial function on PA. For each such function we can define the
following:

B <α C ⇔ ∃n ≥ 1, αn(B) = C,

B ≤α C ⇔ B <α C ∨ B = C,

μ−
α (B) = min

�
(B, α(B)),

μ+
α (B) = max

�
(B, α(B)),

Fα(B) = {C | C ≤α B},

ν−
α (B) = inf

�
(Fα(B)),

ν+
α (B) = sup

�
(Fα(B)).

Consider two antiendomorphisms (·)← and (·)→ on FS defined by

(p(0))← = p(−1), (p(0))→ = p(1),

(p(i))← = (p(i))→ = p(−i−sgn(i)), for i 	= 0.

(A function f : X → X is an antiendomorphism if ∀a, b ∈ X, f(ab) = f(b)f(a).
In a free monoid it can be defined by its actions on the generators).

Consider �·� : Tp → FS, a mapping from Lambek types to elements of the free
monoid defined by

�p� = p(0), �(A/B)� = �B�→�A�, �(A\B)� = �B��A�←.

Let us define ϕ — the partial function on P�A� that reflects the structure of
the Lambek type A:

ϕ(A) =

{
inf�{B | A � B, |d(B)| = |d(A)| − 1}, if d(A) > 0;
sup�{B | B � A, |d(B)| = |d(A)| − 1}, if d(A) < 0.

It can be easily shown that the following facts hold:
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1. There is a unique A0 ∈ P�A� such that d(A0) = 0.
2. ϕ(A) is defined for every A 	= A0.
3. ≤ϕ is a partial order on P�A�.
4. For every i ∈ N such that i < |d(A)| there exists B such that |d(B)| = i and

A <ϕ B, for instance A ≤ϕ A0.
5. If A ∈ [μ−

ϕ (B), μ+
ϕ (B)]�, then A ≤ ϕ(B).

Suppose A, B ∈ P�A�. There exists C ∈ P�A� such that A ≤ϕ C, B ≤ϕ C, and for
all C

′ ∈ P�A� such that A <ϕ C
′ and A ≤ϕ C

′, C ≤ϕ C
′. Such C is called the

ϕ-join of A and B.
A set G ⊂ P�A� is called ϕ-closed if there is no A /∈ G such that ϕ(A) ∈ G.
Let NA = {B ∈ PA | d(B) = 2i + 1, i ∈ Z}.
Suppose we have a Lambek sequent A1 . . . An → B. Let

W = �(. . . (B/An)/ . . .)/A1� = �A1�
→ . . . �An�→�B�.

Let π be a function on PW, and ψ be a partial function defined by

ψ(A) =

{
π(A), if A ∈ NW;
ϕ(A), if A /∈ NW and d(A) 	= 0.

To characterize derivability of the sequent A1 . . . An → B we shall use the fol-
lowing conditions, which we call proof conditions.

1. If A ∈ NW, then π(A) /∈ NW and π2(A) = A for all A ∈ PW.
2. t(π(A)) = t(A).
3. μ−

π (A) � μ−
π (B) ⇒ μ+

π (A) � μ−
π (B) ∨ μ+

π (B) � μ+
π (A).

4. A ∈ NW =⇒ A <ψ ϕ(A) or equivalently ∀A ∈ PW, Fϕ(A) ⊂ Fψ(A).
5. A /∈ NW ∧ A 	= A0 =⇒ ∃B(B <ψ A ∧ B 	<ϕ A).

We will call G ⊂ PW π-closed if for all A ∈ G, π(A) ∈ G. It is readily seen that if
π satisfies proof conditions (1) and (3), then for every A ∈ NW, [μ−

π (A), μ+
π (A)]�

and PW \ [μ−
π (A), μ+

π (A)]� are π-closed. If π satisfies proof conditions (1) and
(2), then G cannot be π-closed if for given p ∈ P there are odd number of A ∈ G
such that t(A) = p.

Lemma 1. If π satifies proof condition (4), then ≤ψ is a partial order on PW.

Proof. Reflexivity and transitivity directly follow from the definition of ≤ψ.
Now lets prove antisymmetry. Suppose that there are B, C ∈ PW such that

B ≤ψ C and C ≤ψ B. If B 	= C then there is i > 0 such that ψi(B) = B and thus
for all j > 0, ψj(B) is defined.

If π satisfy proof condition (4) then if A ≤ϕ B then A ≤ψ B. There is A0 ∈ PW

such that d(A0) = 0, and for all A ∈ PW, A ≤ϕ A0. This means that B ≤ϕ A0
and thus B ≤ψ A0. The function ψ is not defined on A0. Contradiction.

Lemma 2. L∗(\, /) � A1 . . . An → B if and only if there exists π satisfying
proof conditions (1)-(4).

L(\, /) � A1 . . . An → B if and only if n > 0 and there exists π satisfying
proof conditions (1)-(5).
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Proof. Suppose that L(∗)(\, /) � A1 . . . An → B. Induction on the length of the
derivation.

If the sequent is of the form p → p, then W = p1p0, PW = {p1, p1p0}, NW =
{p1} and π such that π(p1) = p1p0 and π(p1p0) = p1 satisfies all necessary proof
conditions.

Suppose that the last step in the derivation of A1 . . . An → B was an applica-
tion of the rule (→ /). Then B = (C/D), L(∗)(\, /) � A1 . . . AnD → C and for
PW′ , where W

′ = �A1�
→ . . . �An�→�D�→�C� there exists π′ satisfying all neces-

sary proof conditions. But in this case W = W
′, and therefore this π′ works for

the sequent A1 . . . An → B too.
Suppose that the last step in the derivation of A1 . . . An → B was an appli-

cation of the rule (→ \). Then B = (C\D), W = �A1�
→ . . . �An�→�D��C�←,

L(∗)(\, /) � CA1 . . . An → D, and by induction hypothesis for PW′ , where

W
′ = �C�→�A1�

→ . . . �An�→�D�

there exists π′ satisfying all necessary proof conditions. Consider

β : PW′ → PW, β(A) =

{
�A1�

→ . . . �An�→�D�(A→−1
)←, if A 
 �C�→;

�C�→�A, if �C�→ � A.

Let π(A) = β(π′(β−1(A))). Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of A1 . . . An → B was an appli-

cation of the rule (/ →). Then A1 . . . An → B is of the form

C1 . . . (Ci/D)D1 . . .DkCi+1 . . . Cl → C

so that L(∗)(\, /) � C1 . . . Cl → C and L(∗)(\, /) � D1 . . .Dk → D.
Consider W

′ = �C1�
→ . . . �Cl�

→�C� and W
′′ = �D1�

→ . . . �Dk�→�D�. By in-
duction hypothesis there are π′ and π′′ — functions on PW′ and PW′′ respectively,
satisfying all necessary proof conditions.

Let C = �C1�
→ . . . �Ci�

→ and D = �D1�
→ . . . �Dk�→. Consider

β′ : PW′ → PW, β′(A) =

{
A , if A 
 C;
C(�D�→)→D(C�A) , if C � A;

and β′′ : PW′′ → PW, β′′(A) =

{
C(�D�→)→A , if A 
 D;
C((D�A)→)→ , if D � A;

.

Let π(A) =

{
β′(π′(β′−1(A))) , if A 
 C or C(�D�→)→D � A;
β′′(π′′(β′′−1(A))) , if C � A 
 C(�D�→)→D;

.

Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of A1 . . . An → B was an appli-

cation of the rule (\ →). Then A1 . . . An → B is of the form

C1 . . . Ci−1D1 . . . Dk(D\Ci) . . . Cl → C

so that L(∗)(\, /) � C1 . . . Cl → C and L(∗)(\, /) � D1 . . .Dk → D.
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Consider W
′ = �C1�

→ . . . �Cl�
→�C� and W

′′ = �D1�
→ . . . �Dk�→�D�. By in-

duction hypothesis there are π′ and π′′ — functions on PW′ and PW′′ respectively,
satisfying all necessary proof conditions.

Let C = �C1�
→ . . . �Ci−1�

→ and D = �D1�
→ . . . �Dk�→. Consider

β′ : PW′ → PW, β′(A) =

{
A , if A 
 C;
CD(�D�←)→(C�A) , if C � A;

and β′′ : PW′′ → PW, β′′(A) =

{
CA , if A 
 D;
CD((D�A)←)→ , if D � A;

.

Let π(A) =

{
β′(π′(β′−1(A))) , if A 
 C or CD(�D�←)→ � A;
β′′(π′′(β′′−1(A))) , if C � A 
 CD(�D�←)→;

.

Such π satisfies all necessary proof conditions.
Thus we proved one side of the lemma.
Now suppose that for the given sequent A1 . . . An → B, for PW there exists π

satisfying proof conditions (1)-(4).
Induction on total number of connectives in the sequent.
If there are no connectives, the sequent is of the form p1 . . . pn → q and

W = p
(1)
1 . . . p

(1)
n q(0). The function π satisfies proof condition (1), thus |NW| =

|PW \ NW|. This means that n = 1. So PW = {p
(1)
1 , p

(1)
1 q(0)} and NW = {p

(1)
1 }.

The function π satisfies proof condition (2), therefore p1 = q, and the sequent is
an axiom.

If B = (C/D), then the sequent A1 . . . AnD → C has less connectives then the
original sequent, but �A1�

→ . . . �An�→�D�→�C� = W, and therefore π satisfies
all necessary proof conditions for the new sequent. By inductional hypothesis
this means that L∗(\, /) � A1 . . . AnD → C and by applying the rule (→ /) we
get L∗(\, /) � A1 . . . An → B.

If B = (C\D), then the sequent CA1 . . . An → D has less connectives then
the original sequent.

Let W
′ = �C�→�A1�

→ . . . �An�→�D�. Consider

β : PW′ → PW, β(A) =

{
�A1�

→ . . . �An�→�D�(A→−1
)← , if A 
 �C�→;

�C�→�A , if �C�→ � A;
.

Let π′(A) = β−1(π(β(A))). Such π′ satisfies all necessary proof conditions. By in-
duction hypothesis this means that L∗(\, /) � CA1 . . . An → D, and by applying
the rule (→ \) we get L∗(\, /) � A1 . . . An → B.

Now we can only consider sequents of the form A1 . . . An → p. This means
theat W = �A1�

→ . . . �An�→p(0). Let A1 = π(W). Since π satisfies proof con-
dition (4) and ψ is not defined on W, ϕ(A1) = W. Therefore d(A1) = 1. Let
A1 = �A1�

→ . . . �Ai−1�
→

A
′′.
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Suppose that Ai = (C/D). This means that �Ai�
→ = �C�→(�D�→)→. There

exists a unique D0 ∈ P�D� such that d(D0) = 0. Consider

A2 = �A1�
→ . . . �Ai−1�

→�C�→(D→
0 )→ ∈ PW.

d(A2) = −2, ϕ(A2) = A1, ψ2(A2) = W, and there is no B ∈ PW such that
A2 � B and ϕ(B) = A1.

Also Fψ(A2) = [ν−
ψ (A2), ν+

ψ (A2)]�. Let us prove this statement. Consider
B ∈ [ν−

ψ (A), ν+
ψ (A)]�, B 	= A2. There exists C ∈ Fψ(A2) such that B 
 C and

ψ(C) 
 B. If C ∈ PW \ NW, then B ∈ [μ−
ϕ (C), μ+

ϕ (C)]�, and thus B ≤ψ ϕ(C) ≤ψ

A2. If C ∈ PW, then π(B) ∈ [μ−
ϕ (C), μ+

ϕ (C)]� ⊂ [ν−
ψ (A), ν+

ψ (A)]�. Since B <ψ A1,
this means that B <ψ A2.

Let ν+
ψ (A2) = �A1�

→ . . . �Al�
→. Consider

W
′ = �A1�

→ . . . �Ai−1�
→�C�→�Al+1�

→ . . . �An�→p(0)

and W
′′ = �Ai+1�

→ . . . �Al�
→�D�. Let C = �A1�

→ . . . �Ai−1�
→�C�→ and D =

�Ai+1�
→ . . . �Al�

→. Consider

β′ : PW′ → PW, β′(A) =

{
A , if A 
 C;
C(�D�→)→D(C�A) , if C � A;

,

and β′′ : PW′′ → PW, β′′(A) =

{
C(�D�→)→A , if A 
 D;
C((D�A)→)→ , if D � A;

.

Functions π′ = β′−1πβ′ and π′′ = β′′−1πβ′′ satisfy all necessary proof condi-
tions. By induction hypothesis this means that

L∗(\, /) � A1 . . . Ai−1CAl+1 . . . An → p

and L∗(\, /) � Ai+1 . . . Al → D. By applying the rule (/ →) we get

L∗(\, /) � A1 . . . An → p.

Suppose that Ai = (D\C). This means that �Ai�
→ = (�D�←)→�C�→. There

exists a unique D0 ∈ P�D� such that d(D0) = 0. Consider

A2 = �A1�
→ . . . �Ai−1�

→(D←
0 )→ ∈ PW.

d(A2) = 2, ϕ(A2) = A1, ψ2(A2) = W, and there is no B ∈ PW such that
B � A2 and ϕ(B) = A1. Like in previous case we can say that Fψ(A2) =
[ν−

ψ (A2), ν+
ψ (A2)]�.

Let ν−
ψ (A2) = �A1�

→ . . . �Al�
→q(j) for some q(j) ∈ At. Consider

W
′ = �A1�

→ . . . �Al�
→�C�→�Ai+1�

→ . . . �An�→p(0)

and W
′′ = �Al+1�

→ . . . �Ai−1�
→�D�.
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Let C = �A1�
→ . . . �Al�

→ and D = �Al+1�
→ . . . �Ai−1�

→. Consider

β′ : PW′ → PW, β′(A) =

{
A , if A 
 C;
CD(�D�←)→(C�A) , if C � A;

,

and β′′ : PW′′ → PW, β′′(A) =

{
CA , if A 
 D;
CD((D�A)←)→ , if D � A;

.

Functions π′ = β′−1πβ′ and π′′ = β′′−1πβ′′ satisfy all necessary proof condi-
tions. By induction hypothesis this means that

L∗(\, /) � A1 . . . AlCAi+1 . . . An → p

and L∗(\, /) � Al+1 . . . Ai−1 → D. By applying the rule (\ →) we get

L∗(\, /) � A1 . . . An → p.

Thus we fully proved the lemma for L∗(\, /).
Suppose we have π that satisfies proof conditions (1)-(5). We already proved

that L∗(\, /) � A1 . . . An → B. The construction given provides us with possible
last step of the derivation. Hence we can construct a derivation. If π satisfies proof
condition (5) this means that there will be no A2 such that Fψ(A2) = Fϕ(A2),
and thus there will be no steps in derivation that require sequents of the form
→ A. Thus L(\, /) � A1 . . . An → B.

The lemma is fully proven.

Lemma 3. Suppose we have two sequents A1 . . . An → B and C1 . . . Cm → D,
and L∗(\, /) � A1 . . . An → B.

Let W = �A1�
→ . . . �An�→�B� and W

′ = �C1�
→ . . . �Cm�→�D�. Suppose that

there is a mapping β : PW′ → PW such that the following holds:

1. β is injective,
2. For all A ∈ PW′ , t(β(A)) = t(A), d(β(A)) = d(A),
3. For all A, B ∈ PW′ , A � B if and only if β(A) � β(B).

Let G = {A ∈ PW | ¬∃B ∈ PW′ , β(B) = A}. If G is π-closed and ϕ-closed, then
L∗(\, /) � C1 . . . Cn → D.

Proof. Let ϕ′ be ϕ for PW′ . Since G is ϕ-closed, for all A ∈ PW′ , ϕ′(A) =
β−1(ϕ(β(A))). Since G is π-closed, π′ defined as β−1πβ is defined on all PW′ and
satisfies proof conditions (1)-(4). Therefore by lemma 2

L∗(\, /) � C1 . . . Cn → D.

Lemma 4. Suppose A ∈ NW and B is the ϕ-join of A and π(A). If π satisfies
proof conditions (1)-(4), then B /∈ NW.

Proof. Suppose that Bi ∈ NW. There is B1 such that A <ψ B1 and ϕ(B1) = B.
There is B2 such that π(A) <ψ B2 and ϕ(B2) = B. This means that A ≤ψ B1
and π(A) ≤ψ B2 and since ψ(A) = π(A), either B1 <ψ B2 or B2 <ψ B1. But
since ψ(B1) = ψ(B2) = B, we get B <ψ B. Contradiction.
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4 Proof of the Main Theorem

Consider W = �F1(t1)�→ . . . �Fn(tn)�→�G�.
If a primitive type occurs in the sequent F1(t1) . . . Fn(tn) → G it occurs

exactly twice. Let P
j+
i be the element of NW such that t(Pj+

i ) = pj
i and P

j−
i be

the element of PW \ NW such that t(Pj−
i ) = pj

i . In the same way we define Q
j+
i

and Q
j−
i .

The function π can only satisfy proof conditions (1) and (2) if for every i and
j, π(Pj+

i ) = P
j−
i and π(Qj+

i ) = Q
j−
i . If it is so then π satisfies proof conditions

(3) and (5).
The following facts hold:

1. d(Pm−
i ) = 0.

2. If ¬tixi does not appear in clause cj , then ϕ3(Pj−1+
i )=ϕ2(Qj−

i )=ϕ(Qj+
i−1)=

P
j−
i−1.

3. If ¬tixi appears in clause cj, then ϕ3(Qj+
i−1) = ϕ2(Pj−

i−1) = ϕ(Pj−1+
i ) = Q

j−
i .

4. ϕ4(Qj−
0 ) = ϕ3(Pj+

0 ) = ϕ2(Pj−1−
n ) = ϕ(Qj+

n ) = P
j−
n .

Lemma 5. For every 0 < i ≤ n and j > 0, P
j−1+
i <ψ Q

j−
i .

Proof. For i = n this is true, because

ψ3(Pj−1+
n ) = πϕπ(Pj−1+

n ) = πϕ(Pj−1−
n ) = π(Qj+

n ) = Q
j−
n .

Now suppose that for all i′ > i this was already proven.There are four possibilities:

1. If ¬ti+1xi+1 does not appear in clauses cj−1 and cj , then ψ2(Pj−1+
i ) = P

j−1+
i+1 ,

ψ2(Qj−
i+1) = Q

j−
i , and P

j−1+
i+1 <ψ Q

j−
i+1. Thus P

j−1+
i <ψ Q

j−
i .

2. If ¬ti+1xi+1 does not appear in the clause cj−1, but appears in cj , then
ψ3(Pj−1+

i ) = πϕπ(Pj−1+
i ) = πϕ(Pj−1−

i ) = π(Qj+
i ) = Q

j−
i .

3. If ¬ti+1xi+1 appears in the clause cj−1, but does not appear in cj , then
ψ2(Pj−1+

i ) = P
j−2+
i+1 , ψ2(Qj

i+1) = Q
j−
i , ϕ(Qj−1+

i+1 ) = P
j−1+
i+1 , P

j−2+
i+1 <ψ

Q
j−1−
i+1 , and P

j−1+
i+1 <ψ Q

j−
i+1. Thus P

j−1+
i <ψ Q

j−
i .

4. If ¬ti+1xi+1 appears in both clauses cj−1 and cj , then ψ2(Pj−1+
i ) = P

j−2+
i+1 ,

ψ2(Qj−1−
i+1 ) = Q

j−
i , and P

j−2+
i+1 <ψ Q

j−1−
i+1 . Thus P

j−1+
i <ψ Q

j−
i .

Lemma 6. For every 0 ≤ i < n and j > 0, Q
j+
i <ψ P

j−
i .

Proof. For i = 0 this is true, because

ψ3(Qj+
0 ) = πϕπ(Qj+

0 ) = πϕ(Qj−
0 ) = π(Pj+

0 ) = P
j−
0 .

Now suppose that for all i′ < i this was already proven.There are four possibilities:

1. If ¬tixi does not appear in clauses cj+1 and cj , then ψ2(Qj+
i ) = Q

j+
i−1,

ψ2(Pj−
i−1) = P

j−
i , and Q

j+
i−1 <ψ P

j−
i−1. Thus Q

j+
i <ψ P

j−
i .
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2. If ¬tixi does not appear in the clause cj+1, but appears in cj , then ψ3(Qj+
i ) =

πϕπ(Qj+
i ) = πϕ(Qj−

i ) = π(Pj+
i ) = P

j−
i .

3. If ¬tixi appears in the clause cj+1, but does not appear in cj , then ψ2(Qj+
i ) =

Q
j+
i−1, ψ2(Pj+1−

i−1 ) = P
j−
i , ϕ(Pj+

i−1) = Q
j+1+
i−1 , Q

j+
i−1 <ψ P

j−
i−1, and Q

j+1+
i−1 <ψ

P
j+1−
i−1 . Thus Q

j+
i <ψ P

j−
i .

4. If ¬tixi appears in both clauses cj+1 and cj , then ψ2(Qj+
i ) = Q

j+1+
i−1 ,

ψ2(Pj+1−
i−1 ) = P

j−
i , and Q

j+1+
i−1 <ψ P

j+1−
i−1 . Thus Q

j+
i <ψ P

j−
i .

From lemmas 5 and 6 we can conclude that if i > 0 and j ≤ j′ then P
j+
i <ψ P

j′+
i .

Lemma 7. If i < i′, then P
j+
i <ψ P

j+
i′ .

Proof. If ¬ti+1xi+1 appears in clause cj , then ψ2(Pj+
i ) = P

j−1+
i+1 and P

j−1+
i+1 <ψ

P
j+
i+1. If ¬ti+1xi+1 appears in clause cj+1, then ψ(Pj+1−

i ) = P
j+
i+1 and P

j−
i <ψ

P
j+1+
i . If neither of this is the case, then ψ2(Pj+

i ) = P
j+
i+1. This means that

P
j+
i <ψ P

j+
i+1 and thus P

j+
i <ψ P

j+
i′ .

Lemma 8. 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm if and only
if L∗(\, /) � F1(t1) . . . Fn(tn) → G and if and only if

L(\, /) � F1(t1) . . . Fn(tn) → G.

Proof. Suppose that 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm. In
view of lemmas 5 and 6 the only members of NW for which we have not proved
that π satisfies proof condition (4) are P

j+
0 .

We now prove that for every j, P
j+
0 <ψ ϕ(Pj+

0 ) = P
j−1−
n . There exist i

such that ¬tixi appears in clause cj . This means that ψ(Pj−
i−1) = P

j−1+
i and by

lemma 7 P
j+
0 <ψ P

j+
i and P

j−1+
i <ψ P

j−1+
n . Thus P

j+
0 <ψ ϕ(Pj+

0 ) = P
j−1−
n and

by lemma 2 we can now say that L∗(\, /) � F1(t1) . . . Fn(tn) → G.
Suppose that 〈t1, . . . , tn〉 is not a satisfying assignment for c1 ∧ . . .∧cm. There

exists j such that no ¬tixi appear in clause cj . This means that for i ≤ n,
ψ2i(Qj+

n ) = Q
j+
n−i, ψ(Pj−1−

n ) = Q
j+
n , and ψ(Qj−

0 ) = P
j+
0 . Thus P

j−1−
n <ψ P

j+
0 .

This means that π cannot satisfy proof condition (4). Thus by lemma 1 we have
L∗(\, /) 	� F1(t1) . . . Fn(tn) → G.

Since π satisfies proof condition (5),

L(\, /) � F1(t1) . . . Fn(tn) → G ⇔ L∗(\, /) � F1(t1) . . . Fn(tn) → G

and thus the lemma is fully proven.

Lemma 9. If L(\, /) � Π → A and Π ′ → A′ is the result of changing all
instances of primitive type p to primitive type q, then L(\, /) � Π ′ → A′.

Proof. If we change p to q throughout the derivation of Π → A, we will get the
derivation of Π ′ → A′.
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Lemma 10.

L(\, /) �Hi → Bi\Ai,

L(\, /) �Hi → Di\Ci,

L(\, /) �Fi(1) → B\A,

L(\, /) �Fi(0) → D\C.

Proof. Consider boolean formula (x1 ∨ x2) ∧ x1 ∧ . . . ∧ x1
︸ ︷︷ ︸

m clauses

.

Let F ′
1(1)F ′

2(0) → G′ be the sequent constructed for this formula. By Lemma 8
we can say that L(\, /) � F ′

1(1)F ′
2(0) → G′.

By changing pj
0 to aj

i , qj
0 to bj

i , pj
1 to pj

i−1, qj
1 to qj

i−1, pj
2 to pj

i , and qj
2 to qj

i ,
we get BiHi → Ai. By Lemma 9 this means that L(\, /) � BiHi → Ai.

Therefore L(\, /) � Hi → Bi\Ai.
By changing pj

0 to cj
i , qj

0 to dj
i , pj

1 to pj
i−1, qj

1 to qj
i−1, pj

2 to pj
i , and qj

2 to qj
i ,

we get DiHi → Ci. By Lemma 9 this means that L(\, /) � DiHi → Ci.
Therefore L(\, /) � Hi → Di\Ci.
Consider boolean formula c′1 ∧ . . . ∧ c′m, where

c′i =

{
(x1 ∨ x2), if literal ¬1xi appears in cj

x1, if literal ¬1xi doesn’t appear in cj

Let F ′
1(1)F ′

2(1) → G′ be the sequent constructed for this formula. By Lemma 8
we can say that L(\, /) � F ′

1(1)F ′
2(1) → G′.

By changing pj
0 to aj

i , qj
0 to bj

i , pj
1 to pj

i−1, qj
1 to qj

i−1, pj
2 to pj

i , and qj
2 to qj

i ,
we get BiFi(1) → Ai. By Lemma 9 this means that L(\, /) � BiFi(1) → Ai.

Therefore L(\, /) � Fi(1) → Bi\Ai.
Consider boolean formula c′1 ∧ . . . ∧ c′m, where

c′i =

{
(x1 ∨ x2), if literal ¬0xi appears in cj

x1, if literal ¬0xi doesn’t appear in cj

Let F ′
1(1)F ′

2(1) → G′ be the sequent constructed for this formula. By Lemma 8
we can say that L(\, /) � F ′

1(1)F ′
2(1) → G′.

By changing pj
0 to cj

i , qj
0 to dj

i , pj
1 to pj

i−1, qj
1 to qj

i−1, pj
2 to pj

i , and qj
2 to qj

i ,
we get DiFi(0) → Ci. By Lemma 9 this means that L(\, /) � DiFi(0) → Ci.

Therefore L(\, /) � Fi(0) → Di\Ci.

Lemma 11. L(\, /) � Πi → Fi(ti), where ti ∈ {0, 1}.

Proof. Using Lemma 10 we get

Hi → Di\Ci Fi(1) → Bi\Ai

Hi(Di\Ci)\Fi(1) → Bi\Ai
(\ →)

Fi(0) → Fi(0)
Fi(0)/(Bi\Ai)Hi(Di\Ci)\Fi(1) → Fi(0)

(/ →)
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and

Hi → Bi\Ai Fi(1) → Di\Ci

Fi(0)/(Bi\Ai)Hi → Di\Ci
(/ →)

Fi(1) → Fi(1)
Fi(0)/(Bi\Ai)Hi(Di\Ci)\Fi(1) → Fi(1)

(\ →)

Thus L(\, /) � Πi → Fi(0) and L(\, /) � Πi → Fi(1).

Lemma 12. If the formula c1∧. . .∧cm is satifiable, then L(\, /) � Π1 . . . Πn → G.

Proof. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . .∧cm. According
to Lemma 8 L(\, /) � F1(t1) . . . Fn(tn) → G. Now we apply Lemma 11 and the
cut rule n times.

Suppose L∗(\, /) � Π1 . . . Πn → G. Consider

W = �F1(0)/(B1\A1)�→�H1�
→�(D1\C1)\F1(1)�→ . . .

. . . �Fn(0)/(Bn\An)�→�Hn�→�(Dn\Cn)\Fn(1)�→�G�

By Lemma 2 for PW there exists π satisfying proof conditions (1)-(4).
Consider the following abbreviations:

F
0
i = �F1(0)/(B1\A1)�→�H1�

→�(D1\C1)\F1(1)�→ . . . �Fi(0)�→

Ai = F
0
i (�Ai�

→)→

Bi = Ai((�Bi�
←)→)→

Hi = Bi�Hi�
→

Ci = Hi(�Ci�
←)→

Di = Ci((�Di�
←)←)→

F
1
i = Di�Fi(1)�→

Lemma 13. If L∗(\, /) � Π1 . . . ΠiFi+1(ti+1) . . . Fn(tn) → G, then there is ti ∈
{0, 1} such that L∗(\, /) � Π1 . . .Πi−1Fi(ti) . . . Fn(tn) → G

Proof. Consider W
′ = F

1
i W

′′, where W
′′ = �Fi+1(ti+1)�→ . . . �Fn(tn)�→�G�. By

Lemma 2 for PW′ there exists π satisfying proof conditions (1)-(5).
Let W

′
0 = F

1
i−1�Fi(0)�→W

′′ and W
′
1 = F

1
i−1�Fi(1)�→W

′′.
For each j there are only two elements of PW′ such that t(A) = aj

i , two
elements such that t(A) = bj

i , two elements such that t(A) = cj
i , and two elements

such that t(A) = dj
i . This means that these pairs of elements are π-closed.

For each j there are six elements of PW′ such that t(A) = p0
i . Let us denote

them by P1, . . . , P6 so that P1 � . . . � P6. The following holds:

F
1
i−1 � P1 
 F

0
i � P2 
 Ai � Bi � P3 
 Hi � P4 
 Ci � Di � P5 
 F

1
i � P6.

{P1, . . . , P6} is π-closed. P1, P3, P5 ∈ NW. [P1, P2]�,[P3, P6]�, and [P4, P5]�
cannot be π-closed, therefore there are only two possibilities: either π(P1) = P4,
π(P3) = P2, and π(P5) = P6, or π(P1) = P6, π(P3) = P4, and π(P5) = P2.
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Suppose that π(P1) = P4, π(P3) = P2, and π(P5) = P6. Since [P1, P4]� is
π-closed, in (F1

i−1, Di]� the only elements for which we had not determined
π(A) are elements in (F1

i−1, F
0
i ]� and in (Ci, Di]� with t(A) = pj

i−1 and with
t(A) = qj

i−1. Notice that t(Di) = pm
i−1 and Di ∈ NW′ .

If i = 1, then there are only two variants for π(Di): one is p
m(l)
0 and the other

one is D1p
m(l)
0 , where l = 2 or l = 4. Therefore, since the ϕ-join of D1 and

D1p
m(l)
0 is F

1
1 ∈ NW′ , π(D1) = p

m(l)
0 and [pm(l)

0 , D1]� is π-closed.
If i > 1, then there are four variants for π(Di): F

1
i−1p

m(l)
i−1 , Dip

m(l)
i−1 , where l = 2

or l = 4, Hi−1p
m(2)
i−1 , and F

0
i−1p

m(−2)
i−1 . The second variant is ruled out. If π(Di) =

Hi−1p
m(2)
i−1 , then π(Di−1) = Di−1p

m(l)
i−2 , where l = 2 or l = 4, and the ϕ-join of

Di−1 and Di−1p
m(l)
i−2 is F

1
i−1 ∈ NW′ . If π(Di) = F

0
i−1p

m(−2)
i−1 then since the segment

(F0
i−1, Di]� is ϕ-closed and π-closed, G 	≤ψ F

0
i−1p

m(−2)
i−1 for all G /∈ (F0

i−1, Di]�.
But ψ2(Di) = ϕ(π(Di)) = ϕ(F0

i−1p
m(−2)
i−1 ) = F

0
i−1 /∈ (F0

i−1, Di]�. Therefore Di 	<ψ

ϕ(Di) = Hip
m(2)
i and proof condition (4) is not satisfied. Therefore π(Di) =

F
1
i−1p

m(l)
i−1 and (F1

i−1, Di]� is π-closed.
Therefore since (F1

i−1, Di]� is π-closed and ϕ-closed, by Lemma 3 for W
′
1 there

is π′ satisfying proof conditions (1)-(4) and

L∗(\, /) � Π1 . . .Πi−1Fi(1) . . . Fn(tn) → G.

Suppose that π(P1) = P6, π(P3) = P4, and π(P5) = P2.
Here in (F0

i , F
1
i ]� the only elements for which we had not determined π(A) are

elements in (Di, F
1
i ]� and in (F0

i , Ai]� with t(A) = pj
i+1 and with t(A) = qj

i+1.
Let E = F

0
i p

m(−2)
i+1 ∈ PW′ .

There are only two variants for π(E): one is F
0
i and the other one is F

1
i . The

ϕ-join of E and F
0
i is F

0
i ∈ NW. Therefore π(E) = F

1
i and (F0

i , F
1
i ]� is π-closed.

Therefore since (F0
i , F

1
i ]� is π-closed and ϕ-closed, by Lemma 3 for W

′
0 there

is π′ satisfying proof conditions (1)-(4) and

L∗(\, /) � Π1 . . .Πi−1Fi(0) . . . Fn(tn) → G.

Lemma 14. If L∗(\, /) � Π1 . . . Πn → G, then the formula c1 ∧ . . . ∧ cm is
satisfiable.

Proof. Applying n times Lemma 13, we get that there exists 〈t1, . . . , tn〉 ∈ {0, 1}n

such that L∗(\, /) � F1(t1) . . . Fn(tn) → G. By Lemma 8 this means that
〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm.

Since for all sequents L(\, /) � Π → A ⇒ L∗(\, /) � Π → A, Lemma 12 and
Lemma 14 together give us Theorem 1.
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Abstract. Bounded phase multi-stack pushdown automata have been
studied recently. In this paper we show that parity games over bounded
phase multi-stack pushdown systems are effectively solvable and winning
strategy in these games can be effectively synthesized. We show some
applications of our result, including a new proof of a known result that
emptiness problem for bounded phase multi-stack automata is decidable.

1 Introduction

A multi-stack pushdown system (mpds) has a finite set of control states and
a fixed number of stacks. The transition function of a mpds takes as input its
control state and topmost symbols of each stack and may (nondeterministically)
do a push or a pop operation on any stack along with a possible change in
control state of mpds. A mpds obviously generalizes a pushdown system pds as it
can have more than one stack. While pushdown systems can be used to model
sequential recursive programs, multi-stack pushdown systems can be used to
model a class of programs with both recursion and threads. Each thread has its
own stack for its procedures calls and communication among threads is through
the common finite states of mpds. Model checking of programs with threads is
an important problem and there have been several recent works, see [1,3,4,5,6],
in the area of model checking mpds and their variants. Some restrictions however
are needed to be imposed on mpds to get effectively checkable properties of the
model, as even simple properties such as reachability from one configuration to
another are undecidable for unrestricted mpds. A restriction considered in [4,5]
is bounded context switching. In a k context switching mpds we consider only
those runs of mpds which can be divided into k stages, where each stage is a
consecutive sequence of moves from the run in which push and pop operations
are performed only in one stack. While this seems a strong restriction, it has
been useful in practice and reachability analysis with this restriction has helped
uncover some errors. Bounded context switching mpds admit effective global
reachability analysis also. For a mpds M and a regular set C of configurations
of M , pre∗(C), the set of configurations of M from which a configuration in C
can be reached by M , is shown to be regular in [5]. Similarly post∗(C), the set of
configurations to which a configuration in C can be reached by M , is also shown
to be regular in [5].

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 395–408, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In [1], a more liberal version of mpds called bounded phase systems have been
considered. In a k−phase bounded mpds only those runs of mpds are considered
which can be divided into k stages where each stage is a consecutive sequence
of moves from the run in which pop operations are performed only in one stack
(push operations can be performed on any stack in a single phase). The class
of bounded phase mpds strictly includes the class of bounded context switching
mpds. In [1] emptiness problem of bounded phase multi-stack automata (mpda)
is shown to be decidable. Bounded phase mpds have also been used in model
checking of concurrent queues [3] and bounded phase multi-stack pushdown
transducers have been used to give an infinite automaton characterization of
complexity class of problems solvable in double exponential time, 2ETIME [2].

In model checking, it is often needed to consider richer properties than reach-
ability. This can be done meaningfully over restricted mpds also. For example,
existence of a bad infinite path in a bounded phase mpds implies the existence
of the same for the unrestricted mpds also. A general way to specify verifica-
tion problems is through infinite games [9], where evaluating a formula in a
model is equivalent to deciding if a player has a winning strategy in a game. For
example, evaluating a modal mu-calculus formula on a transition system can
be reduced to solving a parity game on a graph closely related to the transi-
tion system. Games can also be used to model reactive systems naturally. Two
player parity games over single stack pushdown systems (pds) have been stud-
ied in [9] where it is shown that these games can be effectively solved. That is,
there is an algorithm which from the description of a game can determine which
player has a winning strategy in the game starting from the initial configuration
of pds.

Two player games over mpds have not been studied so far. In this paper, we
study two player reachability and parity games over bounded phase mpds and
show them to be effectively solvable. Our solution is based on a fundamental
technique of Walukiewicz [9] which shows how to reduce a parity game on a
pushdown system to a parity game over finite state space. In [9] each time a
symbol is pushed in the stack, a set of states (along with priorities) is guessed
by player 0, the game now divides into two parts. In the first subgame player 1
verifies that if the symbol is popped then it is in one of the guessed states, in
the second game it is verified that if the pushed symbol is popped satisfying the
guessed conditions then the game is winning for player 0. This does not let the
stack grow in any subgame, only topmost symbol of the stack needs to be kept
in a game state along with some bounded auxiliary information, thus resulting
in a finite state game.

We extend this technique to the case of bounded phase mpds. To begin with,
we need to store the topmost symbol of each stack. The main difficulty in case
of more than one stack is that when a symbol in some stack i is pushed it is
not sufficient to guess the states and minimum priorities visited for popping
this symbol. The contents of stack j, j �= i, can change in an arbitrary way
between a push and the corresponding pop in stack i. For example, we may
have a sequence like pushi, pushj pushj popi, where subscript indicates the
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stack on which the operation is performed. In general, we may have an arbi-
trary number of push operations to stack j, j �= i between a matching push
and pop operation in stack i. The information about contents of stack j at the
time of pop in stack i is needed to simulate the mpds transitions after the popi.
The important issue is to see how much information about stack j is needed,
will a bounded amount of information suffice? Let us examine this, we need to
know at least the topmost symbol of stack j, say γ′, at the time of popi. In
addition to this, to abstract out the contents of stack j below γ′, we may need
something like popping condition for γ′ after popi. But this seems circular as
in identifying the popping condition for pushi we need to know the popping
condition for γ′ in stack j, j �= i. Further, the popping condition for γ′ of stack
j, j �= i, needs to be guessed at the time of pushi only. The apparent circu-
larity may be removed by looking at how the phase changes after various pop
operations involved. We formulate these conditions recursively using recursion
on the number of phases. This is the main technical contribution in our reduc-
tion of bounded phase mpds game to a finite state game. The size of the FSG,
we get is rather huge. It is a tower of exponentials of height k, the number of
phases of mpds. This is also the complexity of our decision procedure to solve
mpds game.

In [9] it is also shown that the winning strategy in pds game can be executed
by a pushdown automaton. This extends naturally to our setting, we show that
the winning strategy in bounded phase mpds game can be executed by a bounded
phase mpda. As a special case of our general game, we consider one player reach-
ability game, in which all configurations belong to player 0 only and the winning
condition is reaching some specified control state. Existence of winning strat-
egy for player 0 in this game is equivalent to the specified control state being
reachable from the initial configuration of mpds. In this case the size of our finite
state game reduces to double exponential in the number of phases allowed. This
special case gives us an alternative proof of one of the main results in [1] that the
emptiness problem of bounded phase mpda is decidable. Our proof uses quite
different technique than the ones used in [1]. In [1] a translation of bounded
phase words into finite trees is defined such that the image of this translation
is definable in monadic second order logic (MSO) over finite trees. Decidability
of MSO on the class of finite trees is then used in [1] to derive the result. The
complexity of our decision procedure matches the optimal complexity bound
obtained in [3]. Further, our strategy synthesis result when specialized to one
player reachability game, can be used to generate counter-examples in automatic
verification of safety properties of bounded phase mpds.

2 Preliminaries

Definition 1. A multi-stack pushdown system (mpds) is given as a tuple
(Q, Γ, l, δ, q0), where Q is a finite set of states, l is the number of stacks, Γ is
the stack alphabet and q0 is the initial state. The transition function δ is given
as δ = δi ∪ δr ∪ δe, where
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– δe ⊆ Q × Γ l × Q × [1 . . . l] × Γ ,
– δi ⊆ Q × Γ l × Q × [1 . . . l] × Γ ,
– δr ⊆ Q × Γ l × [1 . . . l] × Q.

(δe, δi, δr represent exchange, push and pop operations respectively). An mpds
operation depends on its control state and topmost symbols of all its stacks. Γhas
a special symbol ⊥ for marking bottom of a stack. ⊥ can’t be pushed, popped
or exchanged by any other symbol. For instance, if (q, γ̄, q′, j, γ) ∈ δe, where
γ̄ = γ1 . . . γl and γj = ⊥ then γ = ⊥. Also, if (q, γ̄, i, q′) ∈ δr then γi �= ⊥.

Definition 2. A configuration of multi-stack pushdown system (Q, Γ, l, δ, q0) is
a tuple (q, s1, . . . , sl), where q ∈ Q and si ∈ {⊥} × (Γ − {⊥})∗, for 1 ≤ i ≤ l.
One step transition t→ on configurations of mpds is defined as below, where γ̄ =
γ1 . . . γl.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i, γ) ∈ δe, s′i = si.γ and

s′j = sj.γj for j �= i, 1 ≤ j ≤ l.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i, γ) ∈ δi,

s′i = si.γi.γ and s′j = sj .γj for j �= i, 1 ≤ j ≤ l.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, i, q′) ∈ δr, s′i = si and

s′j = sj.γj for j �= i, 1 ≤ j ≤ l.

The initial configuration of mpds is defined as (q0, ⊥, . . . , ⊥).

Definition 3. A multi-step transition between configurations of mpds, on say

sequence t1t2 . . . tn of mpds moves, c
t1t2...tn� d is defined as follows. c

t1t2...tn� d

iff either n = 0 and c = d or there is a c′ s.t. c
t1→ c′ and c′

t2...tn� d. We write
c � d for a multi-step transition from c to d when the sequence of mpds moves
is not relevant.

Definition 4. Let c0 be the initial configuration of a mpds and let c be a config-
uration reached from c0 by a sequence t1t2 . . . tn of mpds moves. If the topmost
symbol of stack i is γ �= ⊥, then the push operation corresponding to the topmost
symbol of stack i is defined as the last unmatched push operation in stack i in
the sequence t1t2 . . . tn.

The previous definition is usually understood without explicitly mentioning it.
It may be noted however that because of exchange operations the push opera-
tion corresponding to γ may actually have pushed a symbol γ′, γ′ �= γ on the
stack. For example, after sequence pushγ1

1 , exchγ1,γ
1 , (where pushγ

i means push-
ing symbol γ to stack i, exchγ,γ′

i means replacing the topmost symbol γ of the
stack i by γ′) the topmost symbol on stack 1 is γ, but it corresponds to pushγ1

1
operation. Similarly, in sequence pushγ1

1 , exchγ1,γ
1 , pop1, the last pop matches

the first push operation pushγ1
1 .



Games on Multi-stack Pushdown Systems 399

Definition 5. A configuration d of multi-stack pushdown system (Q, Γ, l, δ) is
reachable from configuration c in m-phases if there are α1, . . . , αm where each
αi is a sequence of mpds moves with pop moves from at most one stack and
c

α1� c1
α2� c2 . . .

αm� cm = d .

We assume the reader to be familiar with standard notions of two player par-
ity games, such as game graph, plays, a winning strategy and parity winning
condition, see [12].

A 2-player k-phase mpds parity game is given as (H, Q0, Q1, M, Ω, k), where
H = (Q, Γ, l, δ, q0) is an mpds, Q = Q0⊕Q1 is a partition of states in player 0 and
player 1, M is a finite set of priorities and Ω : Q → M is a priority assignment
to each state in Q.

Vertices of our game graph are configurations of mpds. A vertex
(q, −, . . . , −) belongs to player i iff q ∈ Qi. priority of a vertex (q, −, . . . , −)
is defined as Ω(q). A player can move from c to c′ only if c → c′. A play is a
sequence of legal moves starting from the initial configuration. A phase in a play
is a consecutive sequence of moves such that in this sequence elements from at
most one stack are popped (though in a single phase elements may be pushed
to any stack). All plays in this game are k − phase bounded. That is a player
can not make a move that takes the play into (k + 1)th phase.

Remark1: Some authors take a play to be a sequence of moves which can not
be extended further, we use the descriptor maximal play for this and take a play
to be any sequence of moves as defined above.

Remark2: We could make the game graph more standard by taking its vertices
as triples (c, p, r) where c is an mpds configuration p ≤ k is the phase in play so
far and r ≤ l is the number of stack popped last. There is an edge from (c, p, r)
to (c′, p′, r′) iff c → c′ and as a result of this transition the phase changes from p
to p′ and the number of the last popped stack changes from r to r′ in the mpds
configuration.

Winning condition for a maximal play (play which can not be extended further)
ρ is defined as follows. If ρ is finite then the player whose turn it is to move
at the last vertex of ρ loses. If ρ is infinite then a priority i ∈ M is said to be
visited infinitely often iff there are infinitely many vertices with priority i in ρ.
ρ is winning for player 0 iff the minimum, among the set of priorities visited
infinitely often in ρ, is even.

Informally, having a winning strategy for player i, means that regardless of
player (1 − i)’s moves, player i can always play a move such that he wins the
resulting play. We will always consider games which start in a predefined initial
configuration. A game is called winning for player i if player i has a winning
strategy in it starting from the initial configuration.

Given a winning strategy τ for player 0, in game G, by a τ -play we mean a
play of G in which all moves of player 0 are according to τ . For configurations
c, c′ of G, c

τ→ c′ and c
τ� c′ mean that c′ is reachable from c in a τ -play in

one move or in an arbitrary number of moves respectively.
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3 Reducing MPDS Game to Finite State Game

3.1 Intuitive Idea

Let H = (Q, Γ, l, δ, q0) be a mpds and let G = (H, Q0, Q1, max, Ω : Q → M)
be a game structure on H, where Q = Q0 ⊕ Q1 and M = {0, . . . , max} is the
set of priorities assigned to vertices of the game. We use below notation T for a
sequence T1, . . . , Tl and T [C/i] for sequence T1, . . . , Ti−1, C, Ti+1, . . . , Tl, which
is the same as T except at ith position where it is C. We follow [8] in presentation
of our finite state game.

Most important vertices of the finite state game (FSG) are of the form
Check(q, p, r, γ, B, m), where q ∈ Q, p ∈ [1, k], r ∈ [0, l], γ = γ1 . . . γl with
each γi ∈ Γ , B = B1, . . . , Bl with each Bi ∈ τi and m = m1 . . . ml with
mi ∈ {0 . . .max}. Intuitively the vertex Check(q, p, s, γ, B, m) asserts that

– q is the state of the configuration.
– p is the current phase.
– r is the number of stack from which last pop operation was done (initially

it is set to 0).
– γi is the topmost symbol of stack i.
– mi is the minimum priority seen since the push operation corresponding

to the topmost symbol of stack i (if topmost symbol is ⊥, which is never
pushed, then mi = 0).

– Bi ⊆ ∪k
j=1Ni,j gives constraints to be met on popping the topmost element

of stack i (if stack i is empty then Bi = ∅).

When an element of stack i is popped, the resulting configuration, say d, is in a
phase belonging to [1, k]. Ni,j is the set of conditions related to pop operations
of stack i which result in configurations of phase j on popping. In a FSG play
for each element pushed in stack i a subset of all popping scenarios ∪k

j=1Ni,j is
guessed. Ni,j is defined below simultaneously for 1 ≤ i ≤ l using recursion on j,
starting from j = k going down to j = 1.

Definition 6. In this definition we assume that q, m, γ range over Q, M l, Γ l

respectively and p ranges over [1, l].

Ni,k = {(a1...ai−1, (q, k, γ, m), ai+1...al) | ap = ∅ p �= i}
For j, k > j ≥ 1,
Ni,j = {(a1...ai−1, (q, j, γ, m), ai+1...al) | ap ⊆ ∪k

r=j+1Np,r p �= i}.

Each element u ∈ Nij describes a scenario for popping an element of stack i.
Assume that the element is popped in mpds configuration c and the resulting
mpds configuration (after pop) is d. The tuple (q, j, γ, m) in a scenario u stip-
ulates that γ = γ1 . . . γl and m = m1 . . . ml, where for 1 ≤ r ≤ l, γr is the
topmost symbol of stack r in c and mr is the value in c whose interpretation
is as described above. q is the mpds state in d and j is the phase of d. at for
1 ≤ t ≤ l, t �= i, is a set of popping conditions for the topmost symbol γt of
stack t in configuration d. That is at stands for conditions in which γt can be
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popped. This uses recursively the conditions defined for popping a symbol. Note
that after popping stack i in d a pop in stack t will result in configuration of
phase > j. This ensures well defined nature of recursion. Also note that we use
at as a set of scenarios, instead of a single scenario for popping of γt in some
configuration after d. This is necessary in a two player game, because in a two
player game player 0 can only guarantee that the resulting mpds configuration
be one from a set (rather than a uniquely specified) of mpds configurations.

In the definition of Ni,k, at for t �= i, is taken to be ∅ because after popping
the symbol in stack i phase k is reached and no other stack can be popped, so
popping conditions for topmost symbol of stack t is not of any use now.

3.2 The Finite State Game (FSG)

Each mpds transition gives rise to some FSG transitions. We group transitions
of FSG according to mpds transitions (shown in bold) which give rise to them.

1. (q, γ,q′, i, γ′) ∈ δe, 1 ≤ i ≤ l.

(a) Check(q, p, r, γ, B, m) → Check(q′, p, r, γ[γ′/i], B, m′),
where m′

j = min(mj, Ω(q′)), for 1 ≤ j ≤ l.

2. (q, γ,q′, i, γ′) ∈ δi, 1 ≤ i < l.

(a) Check(q, p, r, γ, B, m) → Pushi(p, r, γ, B, m, q′, γ′)

(b) Pushi(p, r, γ, B, m, q′, γ′) → Claimi(p, r, γ, B, m, q′, γ′, C),

for all C ⊆ ∪k
j=1Ni,j .

(c) Claimi(p, r, γ, B, m, q′, γ′, C) → Check(q′, p, r, γ[γ′/i], B[C/i], m′),

where m′
j =

{
min(mj , Ω(q′)) if j �= i
Ω(q′) if j = i

(d) To check the game after corresponding popi operation.

Claimi(p, r, γ, B, m, q′, γ′, C) → Jumpi(q′′, j, γ, γ′′, m′, B′, m)

for all (a1...ai−1, (q′′, j, γ′′, m′), ai+1...al) ∈ C

where B′ = (a1...ai−1, Bi, ai+1...al).

(e) Jumpi(q′′, j, γ, γ′′, m′, B′, m) → Check(q′′, j, i, γ′′[γi/i], B′, m′′),

where m′′
j =

{
min(m′

j , Ω(q′′)) if j �= i
min(mi, m

′
i, Ω(q′′)) if j = i

3. (q, γ, i,q′) ∈ δr, 1 ≤ i ≤ l.

(a) Check(q, p, r, γ, B, m) → Win0 if C[(q′, p′, γ, m)/i] ∈ Bi
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(b) Check(q, p, r, γ, B, m) → Win1 if C[(q′, p′, γ, m)/i] �∈ Bi

where p′ =

⎧
⎨

⎩

1 if r = 0
p if r = i
p + 1 if r �= i

,

p′ ≤ k and C =
{

B if p′ < k

∅ if p′ = k
.

Priority of vertex v in FSG, denoted by λ(v), is defined as follows.
λ(Check(q, . . .)) = Ω(q), λ(Pushi(. . .)) = λ(Claimi(. . .)) = max and
λ(Jumpi(q, j, γ, γ′, n, B, m)) = ni, where n = n1 . . . nl. Vertex Check(q, . . .)
belongs to player j, j ∈ {0, 1}, iff q ∈ Qj . Vertices Pushi(...), belong to player
0 whereas vertices Claimi(...), belong to player 1, for 0 ≤ i < n. Each vertex
Jumpi(...) has a single outgoing edge so it is immaterial which player is assigned
to these vertices.

4 Relating Winning in MPDS Game and the FSG

Our main theorem is the following.

Theorem 1. A mpds game is winning for player 0 (from initial configura-
tion (q0, ⊥S , . . . , ⊥S)) iff FSG is winning for player 0 (from initial configura-
tion Check(q0, 1, 0, ⊥, ∅, 0)). Further, if mpds game is winning for player 0 then
player 0 has a winning strategy in mpds game that is computable by a multi-stack
automaton.

Proof. We present the construction of strategy automaton below, this is used
in proving the direction that a winning strategy for player 0 in FSG implies a
winning strategy in mpds game. The detailed correctness of this construction as
well as the other direction of the theorem that a winning strategy for player 0 in
mpds game implies a winning strategy in FSG, are given in full version of this
paper. Idea of the proofs is similar to that in [8], but we need to deal with more
involved cases as we argue for multi-stack pushdown systems. �

4.1 Strategy Automaton

Assuming that there is a winning strategy for player 0 in FSG from
Check(q0, 1, 0, ⊥, ∅, 0), we design a l stack pushdown automaton S which ex-
ecutes a winning strategy τ of player 0 in mpds game from mpds configuration
(q0, ⊥S , . . . , ⊥S).

Fix a history free winning strategy σ for player 0 in FSG from configuration
Check(q0, 1, 0, ⊥, ∅, 0) (such a strategy exists in any parity game, see [12]). Using
σ, we design a deterministic l stack pushdown automaton S as follows. Apart
from the stacks, S has an input and an output tape. S reads moves of player 1



Games on Multi-stack Pushdown Systems 403

from the input tape and outputs moves of player 0 on the output tape. Struc-
ture of S’s stacks, at any point in play, is the same as that of mpds stacks at
that point. For a symbol γ ∈ Γ in stack i of mpds, S stores at the correspond-
ing position in its stack i a tuple of the form (γ, B, m), where B ⊆ ∪k

j=1Ni,j

and m ∈ {0, 1, . . . , max}. The additional information (B, m) in stacks of S
records relevant information about the FSG play being simulated. Bottom of
stack marker for S is defined to be ⊥S = (⊥, ∅, 0). Control state of S is of the
form (q, p, r), where q is the current state in mpds game, p is the phase and r is
the stack from which mpds play can pop in phase p.

Configuration of S is defined as its state along with the contents of its stacks.
It subsumes the current mpds configuration in it. We define a function f from
configurations of S to vertices of FSG. If c is a configuration of S in which state
of S is (q, p, r) and top of the stack j symbol is (γj , Bj , mj), for 1 ≤ j ≤ l, then
f(c) = Check(q, p, r, γ, B, m). In strategy execution the following invariant is
maintained: if S is in configuration c then there is a σ play from f(c0) to f(c),
where c0 is the initial configuration of S.

Suppose S is in configuration c as above. The next move in the mpds play is
either read from the input tape (if q ∈ Q1) or S mimics the σ move (if q ∈ Q0)
from the corresponding FSG configuration f(c) = Check(q, p, r, γ, B, m). (Moves
from an mpds configuration and from the corresponding Check(. . .) vertex in
FSG are in 1 − 1 correspondence by design of FSG.)

4.2 Operation of S

Initially, S is in state (q0, 1, 0) and each stack of S is ⊥S . At any arbitrary point
in mpds play if S is in configuration c in which state of S is (q, p, r) and top
of the stack j symbol is (γj , Bj , mj), for 1 ≤ j ≤ l. Then for each mpds move
played in the mpds game, we describe actions performed by S. Stack and state
updation of S below is grouped by the moves of mpds regardless of whichever
player plays.

[I] (q, γ, q′, i, γ′) ∈ δe, 1 ≤ i ≤ l.
S sets top of the stack i symbol to (γ′, Bi, min(mi, Ω(q′))) and top
of the stack j (for j �= i) symbol to (γj , Bj , min(mj, Ω(q′))) and
changes its control state to (q′, p, r).

[II] (q, γ, q′, h, γ′) ∈ δi, 1 ≤ h ≤ l.
Let C ⊆ ∪k

t=1Nh,t be as in transition (2.b) in corresponding σ play.
S pushes (γ′, C, Ω(q′)) on stack h, topmost symbol of the stack j
(for j �= h) is changed to (γj , Bj , min(mj, Ω(q′))) and S changes its
control state to (q′, p, r).

[III] (q, γ, i, q′) ∈ δr, 1 ≤ i ≤ l.
S pops the topmost symbol from stack i. Let the resulting topmost
symbol in stack i (after the above pop) be (γ′, D, n). S modifies
it to (γ′, D, min(mi, n, Ω(q′))). S modifies the topmost symbol of
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stack j (for j �= i) to (γj , Bj , min(mj, Ω(q′))) and enters control
state (q′, p′, i), where

p′ =

⎧
⎨

⎩

1 if r = 0
p if r = i
p + 1 if r �= i

.

4.3 Complexity of Solving the Game

By the reduction in section 3, to solve the mpds game it suffices to solve the
associated FSG. In this section we estimate the size of FSG and the complexity
of solving it. Let us begin by defining a class of functions expn(m) iteratively as
follows.

exp1(m) = 2m and for n ≥ 1, expn+1(m) = 2expn(m).
Roughly, expn(m) is a tower of exponentials of height n. Let H be an mpds

and G be an mpds game on H as in section 3.1. For a set A, we let |A| denote
its cardinality. Then by definition 6,

|Ni,k| = |Q|.k.|M |l.|Γ |l, for all i.

|Ni,j | ≤ t.(
∏l

p=1 2Σk
r=j+1|Np,r|), for 1 ≤ j < k where t = |Q|.k.|M |l.|Γ |l.

|Ni,j | ≤ t.(
∏l

p=1 2k|Np,j+1|), using |Np,j+1| > |Np,r| for r > j + 1

|Ni,j | ≤ t.(2l.k|Ni,j+1|), because by symmetry |Np,j+1| = |Ni,j+1|,
for 1 ≤ p ≤ l.

|Ni,j | ≤ (2c.l.k|Ni,j+1|) for a constant c, using m.2m ≤ 22m.
This leads to |Ni,1| = expk−1(O(z)) and |B1| = expk(O(z)), where

z = l.k2.|Q|.|M |l.|Γ |l. The number of vertices in FSG is therefore expk(O(z)).
It is known that a game graph with n vertices, m edges and d priorities can

be solved in time O(m.nd), see [10].
Number of edges in FSG is bounded by [expk(O(z))]2, which is the same as

expk(O(z)). Number of distinct priorities in FSG is |M |. It follows that our
FSG can be solved and winning strategy can be constructed in time bounded by
expk(O(z.|M |)), where z = l.k2.|Q|.|M |l.|Γ |l as mentioned above.

5 One Player Case

Let H be an mpds and G be an mpds game on H as in section 3.1. In this section,
we consider the special case when all configurations belong to player 0, that is
Q = Q0. In this case popping conditions in definition 6 can be simplified as
follows.

Definition 7. In this definition we assume that q, m, γ range over Q, M l, Γ l

respectively and p ranges over [1, l].
Ni,k = {(a1...ai−1, (q, k, γ, m), ai+1...al) | ap = ∅ p �= i}
For j, k > j ≥ 1,
Ni,j = {(a1...ai−1, (q, j, γ, m), ai+1...al) | ap ∈ ∪k

r=j+1Np,r p �= i}.
Bi ∈ ∪k

j=1Ni,j
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Complexity analysis in this case becomes:
|Ni,k| = |Q|.k.|M |l.|Γ |l, for all i.

|Ni,j | ≤
∏l

p=1(Σ
k
r=j+1|Np,r|), for 1 ≤ j < k.

|Ni,j | ≤ (
∏l

p=1 k.|Np,j+1|) using |Np,j+1| > |Np,r| for r > j + 1.

|Ni,j | ≤ (k.|Ni,j+1|)l, because by symmetry |Np,j+1| = |Ni,j+1|, for 1 ≤ p ≤ l.

This leads to |Ni,1| = zlO(k)
and |B1| = zlO(k)

, for l ≥ 2 where z = |Q|.|M |.|Γ |.
The number of vertices in FSG is therefore zlO(k)

and it can be solved in time
z|M|.(lO(k)), where z = |Q|.|M |.|Γ |.

5.1 Bounded Phase Multi-stack Pushdown ω-Automata

We may also consider bounded phase multi-stack pushdown ω-automata on in-
finite words.

Definition 8. A bounded phase multi-stack pushdown parity ω-automaton is
given as a tuple (Q, Σ, Γ, l, k, δ, q0, M, Ω), where Q is a finite set of states, Σ is
an input alphabet and k is a bound on the number of phases. Γ, q0, l are the same
as in definition 1. δ = δi ∪δr ∪δe is also the same as in definition 1,2 except that
each transition of the automaton also depends on the current symbol being read
from the input tape apart from the state and the topmost symbols of all stacks.
Therefore

– δe ⊆ Q × Σ × Γ l × Q × [1 . . . l] × Γ ,
– δi ⊆ Q × Σ × Γ l × Q × [1 . . . l] × Γ ,
– δr ⊆ Q × Σ × Γ l × [1 . . . l] × Q.

A configuration of this automaton is the same as a mpds configuration along with
position of input head on the input tape. With each move the input head moves
one position to the right. A run of this automaton is a sequence of configurations
starting with the initial configuration and in which for any two consecutive
configurations the successor configuration is a result of some δ−transition on
the predecessor configuration. A run is accepting if the number of phases in it
are ≤ k and it satisfies the parity acceptance condition given by Ω. We have the
following theorem about such automata.

Theorem 2. Emptiness problem for bounded phase multi-stack pushdown
ω−automata with parity acceptance condition is decidable in time
(|Q|.|M |.|Γ |)|M|.(lO(k)), where Q, Γ, l, k, M are as in definition 8 and l ≥ 2.

Proof. Consider a bounded phase multi-stack ω-automaton M as in definition
8. We erase all input symbols from transitions of M and let all states belong to
player 0. This gives a one player mpds game. Winning in this game for player 0
is equivalent to M having an accepting run on some input, that is L(M) �= ∅.
By section 5, this mpds game can be solved in time (|Q|.|M |.|Γ |)|M|.(lO(k)). �
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5.2 Reachability in Bounded Phase mpds

In this section we study applications of our results to reachability problem among
configurations of mpds. Reachability easily reduces to parity winning condition.

Definition 9. Let H be a mpds with Q as its finite set of states. A set C of
configurations of H is regular if there is a finite multi-automaton which accepts
string s1#s2# . . . #sl starting from state q iff (q, s1, s2, . . . , sl) ∈ C.

The finite multi-automaton in the above definition is just a finite automaton
which has one initial state for each q ∈ Q. Finite multi-automata were introduced
in [11].

A slightly general version of reachability problem for mpds can be defined as
the following decision problem.

Definition 10. (Regular reachability problem) Given an mpds M and a regular
set R of configurations of M, is there a r ∈ R and such that configuration r is
reachable from the initial configuration.

Theorem 3. Regular reachability problem for bounded phase mpds is decidable
in time (|Q|.|Γ |)lO(k+l)

, where |Q| is the sum of states in input mpds and in input
multi-automaton accepting R, Γ is stack alphabet, k is the bound on phases and
l ≥ 2 is the number of stacks in the input mpds.

Proof. The idea is to add transitions to the input mpds to check if its configura-
tion is in R. This can be done in 2l phases. Easy details of this proof are given
in full version. �

Corollary 1. Emptiness problem of bounded phase nondeterministic multi-stack
pushdown automata is decidable in (|Q|.|Γ |)lO(k+l)

time where |Q| is the number
of states, Γ is stack alphabet, k is bound on phases and l ≥ 2 is the number of
stacks in input mpda.

Proof. Let given multi-stack pushdown automaton accept by reaching the final
state qf . We convert this mpda to mpds by erasing input symbols from transitions.
Emptiness problem of the given automaton is the same as regular reachability
problem of the resulting mpds with R = {qf} × (Γ ∗)l. �

If we keep fixed all parameters of mpda except the number of phases allowed, by
the above corollary we get the time complexity as a function of k, to be 22O(k)

.
This is same as the complexity of emptiness checking of an mpda in [2].

Consider a multi-stack pushdown system M with 3 stacks. Define it’s transi-
tion function so that if stack 1 is empty then it has no transition, otherwise it
pops a symbol from stack 1 and pushes a b on stack 2 and a c on stack 3. After
this M again checks stack 1 and repeats the same sequence of actions. If M starts
with initial configuration (q0, ⊥.an, ⊥, ⊥) then it reaches (q0, ⊥, ⊥.bn, ⊥.cn). This
shows that post∗ of a regular set is not regular. We do not have any example to
show that pre∗ of a regular set is not regular. In fact, we think that pre∗ of a
regular set is regular for bounded phase mpds.
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6 Conclusion

In this paper we have shown that parity games over bounded phase multi-stack
pushdown systems can be effectively solved. The complexity of our algorithm is
a tower of exponentials of the height same as the number of phases allowed. An
open question is that if this complexity can be improved or is there a matching
lower bound. In [7,8], winning regions in parity games over pds have been shown
to be regular. The same question can also be asked for two player parity games
over bounded context switching mpds and over bounded phase mpds. We think
that our techniques can be used to show that winning region in these games is
also regular. It will also be interesting to know if MSO theory of configuration
graphs of bounded phase mpds is decidable.

Finally, we have also mentioned application of our results in deciding empti-
ness of multi-stack bounded phase ω−automata. It seems interesting to study
the class of languages recognized by such ω−automata.

Acknowledgments. Financial support for this work is provided by Research I
Foundation.
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Abstract. Information systems support data privacy by granting access
only to certain (public) views. The data privacy problem is to decide
whether hidden (private) information may be inferred from the public
views and some additional general background knowledge. We study the
problem of provable privacy in the context of ALC knowledge bases.
First we show that the ALC privacy problem wrt. concept retrieval and
subsumption queries is ExpTime-complete. Then we provide a sufficient
condition for data privacy that can be checked in PTime.

1 Introduction

In the context of information systems, the problem of data privacy is to verify
whether the confidential information that is stored in a system is not provided to
unauthorized users and therefore, personal and other sensitive data remain pri-
vate. Data privacy issues are particularly critical in environments where sharing
and reuse of information are constantly applied.

Such an area is, for example, the semantic web. There, knowledge is rep-
resented by ontologies which provide formalizations of concept definitions for
an application domain. These ontologies are expressed in an ontology language.
OWL (Web Ontology Language) is the W3C endorsed standard language for this
purpose. The underlying formal framework of OWL are the so-called description
logics [1]. In the present paper we will study the privacy problem with respect
to the basic description logic ALC which is the simplest description logic that is
boolean closed.

It was always clear that privacy issues have to be considered in the context of
ontology languages. Let us cite the OWL Language Guide [2]: ‘...the capability to
merge data from multiple sources, combined with the inferential power of OWL,
does have potential for abuse. Users of OWL should be alert to the potential
privacy implications.’

The present paper is the continuation of our work started in [3,4]. There, we
introduced the problem of provable data privacy on views as follows. Assume
that some agent has access to a view provided by an information system. Ad-
ditionally, there is some background knowledge that is publicly available. The
privacy problem under this setting is to decide whether the user is not able to
infer - from the view and the background knowledge - any answer to a given
query q. That one cannot infer any answer to q is formalized as the set of certain
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c© Springer-Verlag Berlin Heidelberg 2009

{stouppa,tstuder}@iam.unibe.ch


410 P. Stouppa and T. Studer

answers to q is empty. If the problem is answered positively, we say that privacy
is preserved for q.

We will now use the notion of provable privacy to study a more general prob-
lem: namely, the problem of deciding data privacy on view definitions. The new
problem is now the following: given only a view definition instead of a complete
view, decide whether privacy is preserved on all possible views of that view def-
inition. We investigate the new problem for the case of ALC knowledge bases
with general concept inclusion axioms (GCIs). In such a knowledge base the do-
main is only partially known (incomplete), background knowledge is formalized
as a part of the knowledge base, and for the view and the privacy condition we
allow for concept retrieval and subsumption queries.

Let us now illustrate the difference between privacy on views and privacy on
view definitions. Our running example will be a business information system
storing information about account managers and their salaries.

Example 1. The background knowledge states that an account manager gets a
high or a low salary:

account manager = high � low.

Assume that an agent has access to the views defined by

{account manager, ¬high}

and that for some reason the extension of low should be hidden.
For the privacy problem on views, we assume that we are given the answers to

the views. For instance, assume {a} is the answer of the query account manager
and {b} is the answer to the query ¬high. In this case, privacy for low is pre-
served with respect to the given view, since for no individual we can infer that
it belongs to low.

For the privacy problem on view definitions, we do not assume that the answers
to the views are given. Rather the question is whether privacy is preserved
for all possible sets of answers. In our example, privacy is not preserved on
the view definition. Consider the following possibility: the answer to the query
account manager might be {a, b} and the answer to the query ¬high might be
{b}. In this case b must belong to low. Thus privacy is not preserved for low
with respect to the view definition.

In the next section, we present the syntax and the semantics of ALC, explain
how a query is answered on an ALC knowledge base, and recall from [3,4] the
problem of provable data privacy on a given view. Then, in Section 3 we define
data privacy on a view definition. We show that in order to decide this problem
it is enough to consider a finite number of possible views. As a corollary we
obtain that the problem is ExpTime-complete. Moreover, we present a syntactic
condition on the knowledge base and the view definition which is sufficient for
data privacy. This condition can be checked in PTime. We discuss related work
in Section 4. Then we conclude and give some directions for further work.
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This paper comes together with a technical report [5]. There we introduce a
deductive system for ALC and apply proof-theoretic techniques in order to give
detailed proofs of our results.

2 Preliminaries

The language of ALC consists of a countable set of individuals Ind, a countable
set of atomic concepts AConc, a countable set of roles Rol and the concepts built
on AConc and Rol as follows:

C, D := A | ¬A | C � D | C � D | ∀R.C | ∃R.C

where A ∈ AConc, R ∈ Rol, and C and D are concepts. Individuals are denoted
by a, b, c, . . ..

Note that the language includes only concepts in negation normal form. The
complement of a concept ¬(C) is inductively defined, as usual, by using the law
of double negation, de Morgan’s laws and the dualities for quantifiers. When
the scope of the negation is unambiguous, we also write ¬C instead of ¬(C).
Moreover, the constants � and ⊥ abbreviate A � ¬A and A � ¬A, respectively,
for some A ∈ AConc. The set of subterms s(C) of a concept C is defined by:

s(A) :={A} s(¬A) := {¬A}
s(C � D) :={C � D} ∪ s(C) ∪ s(D) s(QR.C) := {QR.C} ∪ s(C)

where � is either � or � and Q is either ∀ or ∃. Note that the complements of
atomic concepts are not decomposable. That means, for instance, the subterms
of A1 � ∃R.¬A2 are A1, ¬A2, ∃R.¬A2 and A1 � ∃R.¬A2.

Concepts are interpreted in the usual way:

Definition 1. An interpretation I consists of a non-empty domain ΔI and a
mapping (·)I that assigns

– to each individual a ∈ Ind an element aI ∈ ΔI

– to each atomic concept A ∈ AConc a set AI ⊆ ΔI

– to each role R ∈ Rol a relation RI ⊆ ΔI × ΔI

The elements of a domain are denoted by d, d1, d2, . . .. The interpretation I
extends then on concepts as follows:

(¬A)I = ΔI \ AI

(C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(∀R.C)I = {d1 ∈ ΔI | ∀d2 ((d1, d2) ∈ RI ⇒ d2 ∈ CI)}
(∃R.C)I = {d1 ∈ ΔI | ∃d2 ((d1, d2) ∈ RI & d2 ∈ CI)}

We can now define the notion of a knowledge base and its models. An ALC
knowledge base O is the union of
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1. a finite terminological set (TBox) of inclusion axioms that have the form
�  C,1 where C is called inclusion concept, and

2. a finite assertional set (ABox) of assertions of the form a : C (concept
assertion) or (a, b) : R (role assertion) where R is called assertional role and
C is called assertional concept.

We denote the set of individuals that appear in O by Ind(O). An interpretation
I is a model of

– an inclusion axiom �  C (I |= �  C) if CI = ΔI ,
– a concept assertion a : C (I |= a : C) if aI ∈ CI ,
– a role assertion (a, b) : R (I |= (a, b) : R) if (aI , bI) ∈ RI .

Let O be the ALC-knowledge base of a TBox T and an ABox A. An interpre-
tation I is a model of O if I |= φ, for every φ ∈ T ∪ A. A knowledge base O is
consistent if it has a model. Moreover, for ψ an inclusion axiom or an assertion,
we say that O |= ψ (in words, O entails ψ) if for every model I of O, I |= ψ
also holds.

The consistency problem for ALC is ExpTime-complete, see for instance [1].
The entailment problem is reducible to the consistency problem as follows:

Theorem 1. Let O be an ALC knowledge base and new be an individual not
belonging to Ind(O). Then,

– O |= �  C iff O ∪ {new : ¬C} is inconsistent and
– O |= a : C iff O ∪ {a : ¬C} is inconsistent.

Theorem 1 shows that an entailment can be decided in ExpTime. Moreover, the
inconsistency problem is reducible to the entailment problem and so, deciding
an entailment is an ExpTime-complete problem, too.

The reasoning tasks on an ALC knowledge base are formulated below as
queries. For the time being we consider only subsumption and retrieval queries.

Definition 2. An ALC query q is either a concept of ALC (called retrieval
query) or an inclusion axiom (called boolean query). The answer to a query q
with respect to an ALC knowledge base O (ans(q, O)) is given as follows where
tt is a special constant denoting ‘true’.

ans(�  C, O) := {tt} , if O |= �  C,
ans(�  C, O) := ∅ , if O �|= �  C,

ans(C, O) := {a ∈ Ind(O) | O |= a : C} .

A view definition V is a finite set of ALC queries.

Definition 3. A view VI of a view definition V is a total function with domain
V such that if 〈q, r〉 ∈ VI , then

1 This form does not restrict a knowledge base since an arbitrary inclusion C1 � C2

can be linearly transformed to its equivalent � � ¬C1 � C2.
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1. r ⊆ Ind and finite if q is a retrieval query,
2. r ⊆ {tt} if q is a boolean query.

We say, that an ALC knowledge base O entails a view VI (O |= VI) if for each
〈q, r〉 ∈ VI we have r = ans(q, O).

Note that a view can also be formulated as a set AVI of axioms and assertions.
We set

AVI := {�  C | 〈�  C, {tt}〉 ∈ VI} ∪
{a : C | there is a set In with 〈C, In〉 ∈ VI and a ∈ In}.

Our notion of a view entailed by a knowledge base relates to the standard notion
of entailment as follows. Let VI be a view of a view definition V such that
O |= VI for some O. For each retrieval query C in V and all individuals a we
have C(a) ∈ AVI iff O |= C(a). For each boolean query �  C in V we have
�  C ∈ AVI iff O |= �  C.

We turn now to the problem of provable data privacy wrt. views. This problem
has been examined for arbitrary data and knowledge bases in [3,4]. Here we
present the problem from the point of view of ALC knowledge bases and queries;
we additionally admit that the underlying knowledge base is always consistent.

The problem assumes that a user is granted access to a specific view VI and to
some general (background) knowledge of such a knowledge base. In our case we
assume that all information about the knowledge base is stated explicitly in it
and, therefore, the background knowledge coincides with a part of the knowledge
base. We call this knowledge base Obg.

Informally, we say that data privacy is preserved for a query q with respect
to 〈Obg, VI〉 if there are no answers to q that follow with certainty from the
information of VI and Obg. This can be made precise by the notion of certain
answer. The function certain(q, 〈Obg, VI〉) returns the answers to q that hold in
every knowledge base that - according to the user’s knowledge - could be the
actual one (a so-called possible knowledge base).

Definition 4. A knowledge base P is possible wrt. 〈Obg, VI〉 if P is consistent,
Obg ⊆ P, and P |= VI . By Poss〈Obg ,VI〉, we denote the set of all possible knowl-
edge bases with respect to 〈Obg, VI〉.
In the sequel we consider only 〈Obg, VI〉 tuples with Poss〈Obg,VI〉 �= ∅ which means
that O ∪ AVI is satisfiable.

Definition 5. The certain answers to a query q wrt. 〈Obg, VI〉 are defined by

certain(q, 〈Obg , VI〉) :=
⋂

P∈Poss〈Obg,VI 〉

ans(q, P).

Definition 6. Given a knowledge base Obg, a view VI and a query q, data pri-
vacy is preserved for q with respect to 〈Obg, VI〉 if

certain(q, 〈Obg, VI〉) = ∅.



414 P. Stouppa and T. Studer

Note that this privacy notion is based on positive answers only. So we may have
privacy for a query C even when we know with certainty that some individual
a does not belong to C. The extreme case is when � � ¬C is public knowledge.
Then we know that C must be empty and still we have privacy for C (since there
is no element for which we can infer that it belongs to C).

There are situations in which the certain answers to a query q can be computed
by issuing q against a particular fixed data or knowledge base, see for instance
[6,3]. In our setting, we simply can take Obg ∪ AVI for this purpose. Namely, we
have

certain(q, 〈Obg, VI〉) = ans(q, Obg ∪ AVI ).

Therefore, we immediately get the following result.

Theorem 2 (see [4, Corollary 1]). Data privacy is preserved for a query q
wrt. a view VI and a knowledge base Obg if and only if

ans(q, Obg ∪ AVI ) = ∅.

According to Definition 2, ans(q, Obg ∪ AVI ) can be computed by a number of
entailments which is linear the size of Obg ∪ AVI . If q is a retrieval query, then
we need one entailment check for each individual occurring in Obg ∪ AVI . If q
is a boolean query, then we trivially need only one entailment check. As it has
already been stated, the entailment problem is reducible to the consistency prob-
lem which is solvable in ExpTime. Therefore, Theorem 2 provides an ExpTime
decision procedure for the problem of data privacy on views.

The problem of ALC concept satisfiability wrt. a consistent TBox is also
ExpTime-hard, see [7] and [1]. Note that the proof in [1] does not necessar-
ily construct a consistent TBox, however an easy modification will do the job.
Therefore, the ALC data privacy problem is ExpTime-complete since we have
that a concept C is unsatisfiable wrt. a TBox T iff data privacy for �  ¬C
wrt. T and the empty view is not preserved.

Corollary 1. The problem of ALC data privacy for a query wrt. a view and a
knowledge base is ExpTime-complete.

3 Data Privacy on View Definitions

Let us now introduce the problem of provable data privacy wrt. view definitions.
First, we introduce the following auxiliary notion.

Definition 7. Let Obg be an ALC knowledge base and V be a view definition.
A view VI is based on 〈Obg, V 〉 if it satisfies the following: (i) VI is a view of V
and (ii) Poss〈Obg,VI〉 �= ∅.

Definition 8. Let Obg be an ALC knowledge base and V be a view definition.
Data privacy is preserved for q wrt. 〈Obg, V 〉 if for every view VI based on
〈Obg, V 〉, data privacy is preserved for q wrt. 〈Obg , VI〉. The data privacy prob-
lem on view definitions is to decide whether data privacy is preserved for q wrt.
〈Obg, V 〉.
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Example 2. We consider again the business information system storing infor-
mation about key accounts, account managers, and their salaries. The general
background knowledge states the following: An account manager gets a high or
a low salary, see (1). If someone gets a high salary, then she handles key accounts
only, see (2). The domain of the handles relation is the set of account managers,
see (3). Formally, Obg is the set of the following axioms:

account manager = high� low (1)
high  ∀handles.key account (2)

∃handles.� = account manager (3)

Consider the view definition V1 := {∃handles.key account}. Given this setting,
the following two statements, for example, hold:

privacy is preserved for key account with respect to 〈Obg, V1〉 (∗)
privacy is preserved for low with respect to 〈Obg, V1〉. (∗∗)

That means an agent who is granted access to the view provided by V1 cannot
infer which are the key accounts nor who gets a low salary.

To see (∗), simply observe that the only information we obtain from a non-
empty answer to the query in V1 is that the extension of key account cannot be
empty. However, we do not get any knowledge about which individual belongs to
it. There is a possible knowledge base in which only some individual a belongs to
key account and there is another possible knowledge base in which only some
other individual b belongs to key account. Therefore the set of certain answers
to key account is empty and thus privacy is preserved.

To see (∗∗), simply observe that we always can choose low to be the empty
concept, no matter what the answer to the query in V1 is.

Consider now the view definition

V2 := {∃handles.¬key account}.

Privacy is not preserved for low with respect to 〈Obg, V2〉. This can be seen as
follows. Assume that issuing the view query against some knowledge base KB
gives

a ∈ ans(∃handles.¬key account, KB),

for some individual a. By (2), we get KB |= a : ¬high and by (3) we find
KB |= a : account manager. Thus (1) yields KB |= a : low. We conclude that
privacy is not preserved for low.

The problem of data privacy on a view definition is decidable since it is enough
to consider only the views entailed by a finite set of knowledge bases P. Given
〈Obg, V 〉 and an individual new /∈ Ind(Obg), a knowledge base P is possible if

1. P ⊇ Obg and consistent,
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2. if �  C ∈ P then �  C ∈ Obg ∪ V , and
3. if a : C ∈ P then a : C ∈ Obg or (a ∈ Ind(Obg) ∪ {new} and C ∈ V ).

Then P is the set of all possible P wrt. 〈Obg, V 〉 and new.

Theorem 3. Let O be an ALC knowledge base and V be a view definition. Data
privacy is preserved for q wrt. 〈Obg, V 〉 if and only if, for every view VI of V
that is entailed by some P ∈ P, data privacy is preserved for q wrt. 〈Obg , VI〉.

A proof is presented in [5]. A naive ExpTime decision procedure for this problem
can be constructed directly from the above theorem: first compute P and all views
entailed by its knowledge bases, and then decide data privacy on each of these
views. Let P+ be the knowledge base constructed from Obg and V as follows:

P+ = {�  C ∈ V } ∪
⋃

{a : C | (a ∈ Ind(Obg) ∪ {new}) and C ∈ V }.

Then, P can be constructed by first computing all subsets of P+ and then check-
ing their consistency wrt. Obg. Since P+ can be constructed polynomially wrt.
the size of Obg and V , there are at most 2p(n) subsets of P+ of maximal cardinal-
ity p(n), where n is the total size of Obg, V and q. Since consistency is decidable
in ExpTime, computing P stays in ExpTime. Now, in order to compute the views
entailed by some P ∈ P, a polynomial number of entailments on every P ∈ P is
required. Therefore the computation of all views stays also in ExpTime. Finally,
Corollary 1 together with the fact that VI grows polynomially wrt. the size of V
and P , imply that the total time required for checking privacy on all of the (at
most) exponentially many views is again exponential wrt. n.

The problem of data privacy on view definitions is also ExpTime-hard as the
corresponding problem on views is polynomially reducible to this problem: data
privacy for q is preserved wrt. Obg and VI iff it is preserved wrt. Obg ∪ AVI and
the empty view definition.

Theorem 4. The problem of ALC data privacy on view definitions is ExpTime-
complete.

In the sequel we present a condition on Obg, V and q which can be decided in
PTime and implies data privacy for q wrt. 〈Obg, V 〉. Thus, we have a sufficient
condition for data privacy that can be checked efficiently. It is based on the
syntactic structure of the concepts that constitute the background knowledge
and the view definition. We begin by excluding some ‘common sense’ queries
from being potential secrets, because of their trivial (partial) answers.

Definition 9. A query q is trivial wrt. a tuple 〈Obg, V 〉 when

– ans(q, ∅) = {tt} (i.e. ∅ |= q) and q is a boolean query
– ans(�  q, ∅) = {tt}, q is a retrieval query C, and in addition

Ind(Obg) = ∅ implies ∃C ∈ V (Obg �|= �  ¬C).

A retrieval query might violate privacy only if some individuals are (potentially)
given in public. This is the reason for the condition posed on retrieval queries in
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the above definition. An ALC query qualifies as a privacy condition on a tuple
〈Obg, V 〉 if it is not trivial wrt. 〈Obg, V 〉.

Next, we define the boolean function safe() that decides whether a concept D

or a role R exhibits some information about q. Given a knowledge base Obg, a
view definition V and a privacy condition q on 〈Obg , V 〉, the information about
a concept D is safe if safe(D, q) returns 1; and the information of a role R is
safe if safe(R, 〈Obg, V, q〉) returns 1.

In the sequel, we use the following conventions. Concepts and roles of a tuple
〈Obg, V 〉 are all inclusion and assertional concepts, assertional roles, and retrieval
queries that appear in Obg or V . If a concept C2 has a subterm C1 then C2 is also
written as C2[C1]. If, in addition, there is an occurrence of C1 in C2 that is not
prefixed with a quantifier, then C2 may also be written as C2[C1]0. Similarly, if
we want to emphasize that C1 is not prefixed in C2 with an existential quantifier,
then C2 may also be written as C2[C1]0

∃
. For example, the concept A1�∀R2.¬A2

can be also written as A1 � ∀R2.¬A2[¬A2] or as A1 � ∀R2.¬A2[¬A2]0
∃

but not
as A1 � ∀R2.¬A2[¬A2]0.

Now, assume we are given a query qC where C is the inclusion or assertional
concept of q (i.e. qC = �  C or qC = C). The function safe() is defined on
concepts and roles as follows:

For a concept D, safe(D, qC) = 1 iff there are no D1 and C1 subterms of D

and C, respectively, of the form:

a. D1 = C1 = A, or
b. D1 = C1 = ¬A, or
c. D1 = QR.D2 and C1 = QR.C2,

where A ∈ AConc, R ∈ Rol and Q ∈ {∀, ∃}, and for which either

1. D[D1]0 and C[C1]0
∃

hold, or
2. D[D1]0, C[∃R.C′[C1]]0

∃
and C[∀R.C′′] hold.

For a role R and a tuple 〈Obg, V 〉, safe(R, 〈Obg, V, qC〉) = 1 iff:

1. C is not of the form C[∃R.C′]0 and
2. for every concept D2 for which there is a concept D1[∀R.D2]0

∃
of 〈Obg , V 〉,

safe(D2, qC) = 1.

The following theorem provides a sufficient condition for privacy on view defi-
nition. A proof can be found in our technical report [5]. There, the theorem is
established by proof-theoretic investigations of a sequent system for ALC.

Theorem 5. Given a consistent ALC knowledge base Obg, a view definition
V and a privacy condition q on 〈Obg, V 〉, data privacy is preserved for q wrt.
〈Obg, V 〉 if for every concept D and role R of 〈Obg , V 〉

safe(D, q) = safe(R, 〈Obg, V, q〉) = 1.

Moreover, it can be decided in PTime whether for every concept D and role R
of 〈Obg, V 〉 we have safe(D, q) = safe(R, 〈Obg, V, q〉) = 1.
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Example 3. Consider again the setting of Example 2. We can establish (∗) by
the previous theorem. Let q be the query key account. We have

safe(account manager, q) = safe(high � low, q) = safe(high, q)

= safe(∃handles.�, q) = 1.

We also have

safe(∀handles.key account, q) = 1

safe(∃handles.key account, q) = 1

since key account occurs only behind a quantifier in the concepts of Obg and V1.
Therefore the condition of Theorem 5 is satisfied and thus privacy is preserved
for key account.

However, Theorem 5 does not yield (∗∗) since low is an atomic subterm of
high � low which is not behind a quantifier.

4 Related Work

The notion of certain answer originates from the study of incomplete databases
[8] and is now a key notion in data integration [9,10] and data exchange [11,6].
Obviously, our work on privacy in ontologies is tightly related to privacy in
incomplete databases which has been studied by several authors.

Nash and Deutsch [12], for instance, study privacy for database integration.
Like us, they are interested in logical security. That is all an attacker can do is
issue queries and apply arbitrary computational power on the answers to these
queries together with background knowledge to obtain the secret. They introduce
several notions of privacy that are suitable for a data integration scenario and
study the corresponding algorithms.

Another approach is to preserve confidentially at runtime. At each query, it
is checked whether the answer would leak hidden information. If this is the case,
then the answer is distorted. Biskup and Weibert [13] adopt this approach for
incomplete databases. In their setting a database is simply a set of propositional
sentences and queries simply return yes, no, or undef. They investigate several
distortion methods (lying, refusal and a combination thereof) which guarantee
that a user cannot learn classified information.

Our notion of provable data privacy only guarantees that, given a concept C,
for no individual a we can infer a : C. Example 2 shows that (∗) holds even if
we know that key account cannot be empty. Perfect privacy is a much more re-
strictive notion than provable privacy. It guarantees that an answer to a query
does not change the attacker’s a priori belief about the secret. This belief is mod-
eled as a probability distribution with the assumption that the tuples in the se-
cret answer are independent events. Perfect privacy has been introduced in [14]
and generalized in [15]. Recently, a connection between perfect privacy and query
containment has been established [16] which allows to identify subclasses of con-
junctive queries for which enforcing perfect privacy is tractable. Dalvi et al. [17]
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argue that perfect privacy is often too restrictive for practical applications. They
provide a new probabilistic database model for practical privacy and study five
privacy characterizations for it, including perfect privacy and certain answers.

It is necessary to consider an attacker’s background knowledge when reasoning
about privacy. We have chosen a simple approach: we fix the background knowl-
edge and model it as a part of the knowledge base. The general case is when the
background knowledge is not given in advance. Recently, a formal study of this
so-called worst-case background knowledge has been initiated [18].

The problem of privacy aware access to ontologies is also addressed in [19].
There it is shown how view based query answering is able to conceal from the
user information that are not logical consequences of the associated authorization
views. The authors introduce several different semantics for view based query an-
swering which in turn conceal different amounts of information when applied to
the privacy problem. The semantics which corresponds to our approach is called
TBox-centered semantics. There the user is aware of the TBox which in our setting
is expressed by the TBox being part of the general background knowledge.

Grau and Horrocks [20] study different privacy guarantees for logic-based in-
formation systems. They present privacy preserving query answering as reason-
ing problems and establish a general connection between such reasoning problems
and probabilistic privacy guarantees. The reasoning problems they introduce are
related to certain notions of conservative extension which occur in the context
of modular ontologies.

5 Conclusions

We have studied the problem of provable data privacy on view definitions for
ALC knowledge bases. Our goal was to verify that a given privacy condition
holds on all possible views of a given definition. We have presented an ExpTime-
complete decision procedure for this privacy problem. Moreover, we have studied
a syntactic condition which is sufficient for provable privacy and which can be
decided in PTime.

Our work is preliminary in the sense that we treat only the case of ALC
knowledge bases and views that are simple queries. There are two important
generalizations of our results which will be addressed in future work.

First we have only considered ALC knowledge bases. ALC is the basic de-
scription logic language and therefore a natural candidate for an initial study.
However, current ontology languages are based on very expressive description
logics. Future work has to deal with, for instance, SHOIN (D) [21] which cor-
responds to OWL DL.

Second we restricted ourselves to concept retrieval and subsumption queries.
In this setting, Theorem 3 becomes a consequence of the tree model property.
Things are more complex if we also allow role expressions in a view. In a general
setting, one also has to consider (union) conjunctive queries over description
logics [22]. Then we cannot encode views as knowledge bases, and computing
certain answers becomes more difficult.
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Abstract. In our former work [K. Tadaki, Local Proceedings of CiE
2008, pp. 425–434, 2008], we developed a statistical mechanical inter-
pretation of algorithmic information theory by introducing the notion of
thermodynamic quantities, such as free energy F (T ), energy E(T ), and
statistical mechanical entropy S(T ), into the theory. We then discovered
that, in the interpretation, the temperature T equals to the partial ran-
domness of the values of all these thermodynamic quantities, where the
notion of partial randomness is a stronger representation of the com-
pression rate by program-size complexity. Furthermore, we showed that
this situation holds for the temperature itself as a thermodynamic quan-
tity. Namely, the computability of the value of partition function Z(T )
gives a sufficient condition for T ∈ (0, 1) to be a fixed point on par-
tial randomness. In this paper, we show that the computability of each
of all the thermodynamic quantities above gives the sufficient condition
also. Moreover, we show that the computability of F (T ) gives completely
different fixed points from the computability of Z(T ).

Keywords: Algorithmic randomness, fixed point theorem, partial ran-
domness, Chaitin’s Ω number, algorithmic information theory, thermo-
dynamic quantities.

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying
information-theoretic and probabilistic ideas to recursive function theory. One
of the primary concepts of AIT is the program-size complexity (or Kolmogorov
complexity) H(s) of a finite binary string s, which is defined as the length of
the shortest binary program for the universal self-delimiting Turing machine
U to output s. By the definition, H(s) is thought to represent the degree of
randomness of a finite binary string s. In particular, the notion of program-size
complexity plays a crucial role in characterizing the randomness of an infinite
binary string, or equivalently, a real number.

In [14] we developed a statistical mechanical interpretation of AIT. Especially,
in the development we introduced the notion of thermodynamic quantities, such
as partition function Z(T ), free energy F (T ), energy E(T ), statistical mechanical
entropy S(T ), and specific heat C(T ), into AIT. These quantities are real num-
bers which depend only on temperature T , any positive real number. We then
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proved that if the temperature T is a computable real number with 0 < T < 1
then, for each of these thermodynamic quantities, the partial randomness of its
value equals to T , where the notion of partial randomness is a stronger represen-
tation of the compression rate by means of program-size complexity. Thus, the
temperature T plays a role as the partial randomness of all the thermodynamic
quantities in the statistical mechanical interpretation of AIT. In [14] we further
showed that the temperature T plays a role as the partial randomness of the
temperature T itself, which is a thermodynamic quantity of itself. Namely, we
proved the fixed point theorem on partial randomness,1 which states that, for
every T ∈ (0, 1), if the value of partition function Z(T ) at temperature T is
a computable real number, then the partial randomness of T equals to T , and
therefore the compression rate of T equals to T , i.e., limn→∞ H(Tn)/n = T ,
where Tn is the first n bits of the base-two expansion of T .

In this paper, we show that a fixed point theorem of the same form as for Z(T )
holds also for each of free energy F (T ), energy E(T ), and statistical mechanical
entropy S(T ). Moreover, based on the statistical mechanical relation F (T ) =
−T log2 Z(T ), we show that the computability of F (T ) gives completely different
fixed points from the computability of Z(T ).

The paper is organized as follows. We begin in Section 2 with some prelim-
inaries to AIT and partial randomness. In Section 3, we review the previous
results [14] on the statistical mechanical interpretation of AIT and the fixed
point theorem by Z(T ), which is given as Theorem 3 in the present paper. Our
main results; the fixed point theorems by F (T ), E(T ), and S(T ), are presented
in Section 4, and their proofs are completed in Section 5. In the last section, we
investigate some properties of the sufficient conditions for T to be a fixed point
in the fixed point theorems.

2 Preliminaries

2.1 Basic Notation

We start with some notation about numbers and strings which will be used in
this paper. N = {0, 1, 2, 3, . . .} is the set of natural numbers, and N

+ is the set
of positive integers. Q is the set of rational numbers, and R is the set of real
numbers. Let f : S → R with S ⊂ R. We say that f is increasing (resp., non-
decreasing) if f(x) < f(y) (resp., f(x) ≤ f(y)) for all x, y ∈ S with x < y. We
denote by f ′ the derived function of f .

Normally, o(n) denotes any function f : N
+ → R such that limn→∞ f(n)/n =

0. On the other hand, O(1) denotes any function g : N
+ → R such that there is

C ∈ R with the property that |g(n)| ≤ C for all n ∈ N
+.

{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . .} is the set of finite binary strings,
where λ denotes the empty string. For any s ∈ {0, 1}∗, |s| is the length of s.
A subset S of {0, 1}∗ is called prefix-free if no string in S is a prefix of another

1 The fixed point theorem on partial randomness is called a fixed point theorem on
compression rate in [14].
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string in S. For any partial function f , the domain of definition of f is denoted
by dom f . We write “r.e.” instead of “recursively enumerable.”

Let α be an arbitrary real number. �α� is the greatest integer less than or
equal to α, and �α	 is the smallest integer greater than or equal to α. For any
n ∈ N

+, we denote by αn ∈ {0, 1}∗ the first n bits of the base-two expansion
of α − �α� with infinitely many zeros. For example, in the case of α = 5/8,
α6 = 101000.

We say that a real number α is computable if there exists a total recursive
function f : N

+ → Q such that |α − f(n)| < 1/n for all n ∈ N
+. We say that α

is left-computable if there exists a total recursive function g : N
+ → Q such that

g(n) ≤ α for all n ∈ N
+ and limn→∞ g(n) = α. On the other hand, we say that

a real number α is right-computable if −α is left-computable. The following (i)
and (ii) then hold:

(i) A real number α is computable if and only if α is both left-computable and
right-computable.

(ii) A real number α is right-computable if and only if the set { r ∈ Q | α < r }
is r.e.

See e.g. Weihrauch [16] for the detail of the treatment of the computability of
real numbers.

2.2 Algorithmic Information Theory

In the following we concisely review some definitions and results of algorithmic
information theory [4,5]. A computer is a partial recursive function C : {0, 1}∗ →
{0, 1}∗ such that domC is a prefix-free set. For each computer C and each
s ∈ {0, 1}∗, HC(s) is defined by HC(s) = min

{
|p|

∣
∣ p ∈ {0, 1}∗ & C(p) = s

}

(may be ∞). A computer U is said to be optimal if for each computer C there
exists d ∈ N with the following property; if C(p) is defined, then there is a p′

for which U(p′) = C(p) and |p′| ≤ |p| + d. It is easy to see that there exists an
optimal computer. Note that the class of optimal computers equals to the class
of functions which are computed by universal self-delimiting Turing machines
(see Chaitin [4] for the detail). We choose a particular optimal computer U as
the standard one for use, and define H(s) as HU (s), which is referred to as the
program-size complexity of s or the Kolmogorov complexity of s. It follows that
for every computer C there exists d ∈ N such that, every s ∈ {0, 1}∗,

H(s) ≤ HC(s) + d. (1)

Based on this we can show that there exists c ∈ N such that, for every s �= λ,

H(s) ≤ |s| + 2 log2 |s| + c. (2)

Chaitin’s halting probability Ω is defined by Ω =
∑

p∈dom U 2−|p|. For any
α ∈ R, we say that α is weakly Chaitin random if there exists c ∈ N such
that n − c ≤ H(αn) for all n ∈ N

+ [4,5]. Then Chaitin [4] showed that Ω is
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weakly Chaitin random. For any α ∈ R, we say that α is Chaitin random if
limn→∞ H(αn) − n = ∞ [4,5]. It is then shown that, for every α ∈ R, α is
weakly Chaitin random if and only if α is Chaitin random (see Chaitin [5] for
the proof and historical detail). Thus Ω is Chaitin random.

2.3 Partial Randomness

In the works [12,13], we generalized the notion of the randomness of a real
number so that the degree of the randomness, which is often referred to as the
partial randomness recently [2,9,3], can be characterized by a real number T
with 0 ≤ T ≤ 1 as follows.

Definition 1 (weak Chaitin T -randomness). Let T ∈ R with T ≥ 0. For
any α ∈ R, we say that α is weakly Chaitin T -random if there exists c ∈ N such
that Tn − c ≤ H(αn) for all n ∈ N

+. �

Definition 2 (T -compressibility). Let T ∈ R with T ≥ 0. For any α ∈ R,
we say that α is T -compressible if H(αn) ≤ Tn + o(n), which is equivalent to
lim supn→∞ H(αn)/n ≤ T . �

In the case of T = 1, the weak Chaitin T -randomness results in the weak Chaitin
randomness. For every T ∈ [0, 1] and every α ∈ R, if α is weakly Chaitin T -
random and T -compressible, then

lim
n→∞

H(αn)
n

= T. (3)

The left-hand side of (3) is referred to as the compression rate of a real num-
ber α in general. Note, however, that (3) does not necessarily imply that α is
weakly Chaitin T -random. Thus, the notion of partial randomness is a stronger
representation of compression rate.

Definition 3 (Chaitin T -randomness, Tadaki [12,13]). Let T ∈ R with
T ≥ 0. For any α ∈ R, we say that α is Chaitin T -random if limn→∞ H(αn) −
Tn = ∞. �

In the case of T = 1, the Chaitin T -randomness results in the Chaitin random-
ness. Obviously, for every T ∈ [0, 1] and every α ∈ R, if α is Chaitin T -random,
then α is weakly Chaitin T -random. However, in 2005 Reimann and Stephan
[9] showed that, in the case of T < 1, the converse does not necessarily hold.
This contrasts with the equivalence between the weak Chaitin randomness and
the Chaitin randomness, each of which corresponds to the case of T = 1. Re-
cently, Kjos-Hanssen [8] showed that the distinction between the weak Chaitin
T -randomness and the Chaitin T -randomness has important applications to the
research on the notion of T -capacitability and its related notions [7,10].
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3 The Previous Results

In this section, we review some results of the statistical mechanical interpretation
of AIT, developed by our former work [14]. We first introduce the notion of
thermodynamic quantities into AIT in the following manner.

In statistical mechanics, the partition function Zsm(T ), free energy Fsm(T ),
energy Esm(T ), entropy Ssm(T ), and specific heat Csm(T ) at temperature T are
given as follows:

Zsm(T ) =
∑

x∈X

e
− Ex

kBT , Fsm(T ) = −kBT ln Zsm(T ),

Esm(T ) =
1

Zsm(T )

∑

x∈X

Exe
− Ex

kBT , Ssm(T ) =
Esm(T ) − Fsm(T )

T
,

Csm(T ) =
d

dT
Esm(T ),

(4)

where X is a complete set of energy eigenstates of a quantum system and Ex is
the energy of an energy eigenstate x. The constant kB is called the Boltzmann
Constant, and the ln denotes the natural logarithm.2

We introduce the notion of thermodynamic quantities into AIT by perform-
ing Replacements 1 below for the thermodynamic quantities (4) in statistical
mechanics.

Replacements 1

(i) Replace the complete set X of energy eigenstates x by the set dom U of all
programs p for U .

(ii) Replace the energy Ex of an energy eigenstate x by the length |p| of a program
p.

(iii) Set the Boltzmann Constant kB to 1/ ln 2. �

For that purpose, we first choose a particular recursive enumeration p1, p2, p3,
p4, . . . of the infinite r.e. set domU as the standard one for use throughout the
rest of this paper.3 Then, motivated by the formulae (4) and taking into account
Replacements 1, we introduce the notion of thermodynamic quantities into AIT
as follows.

Definition 4 (thermodynamic quantities in AIT, [14]). Let T be any real
number with T > 0.

2 For the thermodynamic quantities in statistical mechanics, see e.g. Chapter 16 of [1]
and Chapter 2 of [15]. To be precise, the partition function is not a thermodynamic
quantity but a statistical mechanical quantity.

3 Actually, the enumeration {pi} can be chosen quite arbitrarily, and the results of
this paper is independent of the choice of {pi}. For simplicity, however, we require
{pi} to be a recursive enumeration of dom U in this paper.
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(i) The partition function Z(T ) at temperature T is defined as limk→∞ Zk(T )
where

Zk(T ) =
k∑

i=1

2−
|pi|
T .

(ii) The free energy F (T ) at temperature T is defined as limk→∞ Fk(T ) where

Fk(T ) = −T log2 Zk(T ).

(iii) The energy E(T ) at temperature T is defined as limk→∞ Ek(T ) where

Ek(T ) =
1

Zk(T )

k∑

i=1

|pi| 2−
|pi|

T .

(iv) The statistical mechanical entropy S(T ) at temperature T is defined as
limk→∞ Sk(T ) where

Sk(T ) =
Ek(T ) − Fk(T )

T
.

(v) The specific heat C(T ) at temperature T is defined as limk→∞ Ck(T ) where
Ck(T ) = E′

k(T ), the derived function of Ek(T ). �

Note that Z(1) = Ω in particular. Then Theorems 1 and 2 below hold for these
thermodynamic quantities in AIT.

Theorem 1 (properties of Z(T ) and F (T ), [12,13,14]). Let T ∈ R.

(i) If 0 < T ≤ 1 and T is computable, then each of Z(T ) and F (T ) converges
and is weakly Chaitin T -random and T -compressible.

(ii) If 1 < T , then Z(T ) and F (T ) diverge to ∞ and −∞, respectively. �
Theorem 2 (properties of E(T ), S(T ), and C(T ), [14]). Let T ∈ R.

(i) If 0 < T < 1 and T is computable, then each of E(T ), S(T ), and C(T )
converges and is Chaitin T -random and T -compressible.

(ii) If 1 ≤ T , then both E(T ) and S(T ) diverge to ∞. In the case of T = 1, C(T )
diverges to ∞.4 �

The above two theorems show that if T is a computable real number with
T ∈ (0, 1) then the temperature T equals to the partial randomness (and there-
fore the compression rate) of the values of all the thermodynamic quantities in
Definition 4.

Note that, in statistical mechanics or thermodynamics, among all thermody-
namic quantities one of the most typical thermodynamic quantities is temper-
ature itself. Thus, inspired by this fact in physics and the above observation
on the role of the temperature T in our statistical mechanical interpretation of
AIT, the following question arises naturally: Can the partial randomness of the
temperature T equal to the temperature T itself in our statistical mechanical
interpretation of AIT ? This question is rather self-referential. However, we can
answer it affirmatively in the following form.
4 It is still open whether C(T ) diverges or not in the case of T > 1.
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Theorem 3 (fixed point theorem on partial randomness, [14]). For ev-
ery T ∈ (0, 1), if Z(T ) is computable, then T is weakly Chaitin T -random and
T -compressible, and therefore limn→∞ H(Tn)/n = T . �

Theorem 3 is just a fixed point theorem on partial randomness, where the
computability of the value Z(T ) gives a sufficient condition for a real number
T ∈ (0, 1) to be a fixed point on partial randomness. Thus, the above observation
that the temperature T equals to the partial randomness of the values of the
thermodynamic quantities in the statistical mechanical interpretation of AIT is
further confirmed. In this paper, we confirm this observation much further by
showing that fixed point theorems of the same form as Theorem 3 hold also for
free energy F (T ), energy E(T ), and statistical mechanical entropy S(T ). For
completeness, we include the proof of Theorem 3 in Appendix A.

4 The Main Results

The following three theorems are the main results of this paper.

Theorem 4 (fixed point theorem by free energy). For every T ∈ (0, 1), if
F (T ) is computable then T is weakly Chaitin T -random and T -compressible. �

Theorem 5 (fixed point theorem by energy). For every T ∈ (0, 1), if E(T )
is computable then T is Chaitin T -random and T -compressible. �

Theorem 6 (fixed point theorem by statistical mechanical entropy).
For every T ∈ (0, 1), if S(T ) is computable then T is Chaitin T -random and
T -compressible. �

First, note that the weak Chaitin T -randomness of T in Theorems 3 is strengthen
to the Chaitin T -randomness of T , in Theorems 5 and 6.

The proof of Theorem 4 uses Theorems 8, 10, and 11 below. On the other
hand, the proofs of Theorems 5 and 6 use Theorems 9, 10, and 11 below. All
these proofs also use Theorem 7 below, where the thermodynamic relations in
statistical mechanics are recovered by the thermodynamic quantities of AIT.
We describe the detail of the proofs of Theorems 4, 5, and 6 in the next section.
Compared with the proof of Theorem 4, the proofs of Theorems 5 and 6 are
more delicate.

Theorem 7 (thermodynamic relations)

(i) F ′
k(T ) = −Sk(T ), E′

k(T ) = Ck(T ), and S′
k(T ) = Ck(T )/T for every k ∈ N

+

and every T ∈ (0, 1).
(ii) F ′(T ) = −S(T ), E′(T ) = C(T ), and S′(T ) = C(T )/T for every T ∈ (0, 1).
(iii) Sk(T ), Ck(T ) ≥ 0 for every k ∈ N

+ and every T ∈ (0, 1). There exists
k0 ∈ N

+ such that, for every k ≥ k0 and every T ∈ (0, 1), Sk(T ), Ck(T ) > 0.
Moreover, S(T ), C(T ) > 0 for every T ∈ (0, 1). �
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The proof of Theorem 7 uses Lemma 1 below. For each T ∈ (0, 1), we de-
fine W (T ) and Y (T ) as limk→∞ Wk(T ) and limk→∞ Yk(T ), respectively, where

Wk(T ) =
∑k

i=1 |pi| 2−
|pi|

T and Yk(T ) =
∑k

i=1 |pi|2 2−
|pi|
T .

Lemma 1

(i) For every T ∈ (0, 1), the limit values Z(T ), W (T ), and Y (Z) exist, and are
positive real numbers.

(ii) The sequence {Zk(T )}k of functions of T is uniformly convergent on (0, 1) in
the wider sense. The same holds for the sequences {Wk(T )}k and {Yk(T )}k.

(iii) The function Z(T ) of T is continuous on (0, 1). The same holds for the
functions W (T ) and Y (T ).

Proof. (i) Suppose that T is an arbitrary real number with T ∈ (0, 1).
First, we show that Yk(T ) converges as k → ∞. Since T < 1, there is l0 ∈ N

+

such that
1
T

− 2
log2 l

l
≥ 1

for all l ≥ l0. Then, since limk→∞ |pk| = ∞, there is k0 ∈ N
+ such that |pi| ≥ l0

for all i > k0. Thus, we see that, for each i > k0,

|pi|2 2−
|pi|
T = 2

−
(

1
T −2

log2|pi|
|pi|

)

|pi| ≤ 2−|pi|.

Hence, for each k > k0,

Yk(T ) − Yk0(T ) =
k∑

i=k0+1

|pi|2 2−
|pi|
T ≤

k∑

i=k0+1

2−|pi| < Ω = Z(1).

Therefore, since {Yk(T )}k is an increasing sequence of positive real numbers
bounded to the above, it converges to a positive real number as k → ∞, as
desired.

Note that 0 < Zk(T ) ≤ Wk(T ) ≤ Yk(T ) for every k ∈ N
+, and the sequences

{Zk(T )}k and {Wk(T )}k of positive real numbers are increasing. It follows that
Zk(T ) and Wk(T ) converge to a positive real number as k → ∞.

(ii) Note that, for every k ∈ N
+ and every t, T ∈ (0, 1) with t ≤ T ,

0 < Z(t) − Zk(t) =
∞∑

i=k+1

2−
|pi|

t ≤
∞∑

i=k+1

2−
|pi|
T = Z(T ) − Zk(T ).

It follows that the sequence {Zk(T )}k of functions of T is uniformly convergent
on (0, 1) in the wider sense. In the same manner, we can show that the sequences
{Wk(T )}k and {Yk(T )}k are uniformly convergent on (0, 1) in the wider sense.

(iii) Note that, for each k ∈ N
+, the mapping (0, 1) � T �→ Zk(T ) is a

continuous function. It follows from Lemma 1 (ii) that the function Z(T ) of T is
continuous on (0, 1). In the same manner, we can show that the functions W (T )
and Y (T ) of T are continuous on (0, 1). �
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Proof (of Theorem 7). (i) First, from Definition 4 we see that, for every k ∈ N
+

and every T ∈ (0, 1),

Fk(T ) = −T log2 Zk(T ),

Ek(T ) =
Wk(T )
Zk(T )

, (5)

Sk(T ) =
Wk(T )
TZk(T )

+ log2 Zk(T ), (6)

Z ′
k(T ) =

ln 2
T 2 Wk(T ), (7)

W ′
k(T ) =

ln 2
T 2 Yk(T ). (8)

Thus, by straightforward differentiation, we can check that the relations of The-
orem 7 (i) hold. For example, it follows from (6) and (5) that, for every k ∈ N

+

and every T ∈ (0, 1),

S′
k(T ) =

1
T

E′
k(T ) − 1

T 2

Wk(T )
Zk(T )

+
1

ln 2
Z ′

k(T )
Zk(T )

.

Using the definition Ck(T ) = E′
k(T ) and the equation (7) we see that, for every

k ∈ N
+ and every T ∈ (0, 1), S′

k(T ) = Ck(T )/T .
(ii) From (5), (7), (8), and the definition Ck(T ) = E′

k(T ), we see that, for
every k ∈ N

+ and every T ∈ (0, 1),

Ck(T ) =
ln 2
T 2

{
Yk(T )
Zk(T )

−
(

Wk(T )
Zk(T )

)2
}

. (9)

Using Lemma 1 above and the equations (6) and (9), we can check that the
sequences {−Sk(T )}k, {Ck(T )}k and {Ck(T )/T }k of functions of T are uniformly
convergent on (0, 1) in the wider sense. Thus, Theorem 7 (ii) follows immediately
from Theorem 7 (i).

(iii) From (6) we see that, for every k ∈ N
+ and every T ∈ (0, 1),

Sk(T ) = −
k∑

i=1

2−
|pi|

T

Zk(T )
log2

2−
|pi|

T

Zk(T )
.

Thus, Sk(T ) ≥ 0 for every k ∈ N
+. We also see that, for every k ≥ 2 and every

T ∈ (0, 1),

Sk(T ) ≥ −2−
|p1|

T

Zk(T )
log2

2−
|p1|

T

Zk(T )
> 0.

Hence, for every T ∈ (0, 1),

S(T ) ≥ −2−
|p1|

T

Z(T )
log2

2−
|p1|

T

Z(T )
> 0.
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On the other hand, from (9) we see that, for every k ∈ N
+ and every T ∈ (0, 1),

Ck(T ) =
ln 2
T 2

k∑

i=1

{|pi| − Ek(T )}2 2−
|pi|
T

Zk(T )
. (10)

Thus, Ck(T ) ≥ 0 for every k ∈ N
+ and every T ∈ (0, 1). We note that there exists

l ∈ N
+ such that |pl| ≤ |pi| for every i ∈ N

+. It is then easy to see that there
exists k0 ∈ N

+ such that, for every k ≥ k0 and every T ∈ (0, 1), |pl| < Ek(T ).
This is because there exists i ∈ N

+ such that |pl| < |pi|. Thus, by (10) we see
that, for every k ≥ max{l, k0} and every T ∈ (0, 1),

Ck(T ) ≥ ln 2
T 2 {|pl| − Ek(T )}2 2−

|pl|
T

Zk(T )
> 0. (11)

It is also easy to see that |pl| < E(T ) for every T ∈ (0, 1). It follows from (11)
that C(T ) > 0 for every T ∈ (0, 1). �

Theorem 8. Let f : (0, 1) → R. Suppose that f is increasing and there exists
g : (0, 1) × N

+ → R which satisfies the following four conditions:

(i) limk→∞ g(T, k) = f(T ) for every T ∈ (0, 1).
(ii) {(q, r, k) ∈ Q × (Q ∩ (0, 1)) × N

+ | q < g(r, k)} is an r.e. set.
(iii) For every T ∈ (0, 1), there exist a ∈ N, k0 ∈ N

+, and t ∈ (T, 1) such that,
for every k ≥ k0 and every x ∈ (T, t), g(x, k) − g(T, k) ≤ 2a(x − T ).

(iv) For every T ∈ (0, 1), there exist b ∈ N and k1 ∈ N
+ such that, for every

k ≥ k1,

2−
|pk+1|

T −b ≤ g(T, k + 1) − g(T, k).

Then, for every T ∈ (0, 1), if f(T ) is right-computable then T is weakly Chaitin
T -random.

Proof. The proof of Theorem 8 is obtained by slightly simplifying the proof of
Theorem 9 below. �

Theorem 9. Let f : (0, 1) → R. Suppose that f is increasing and there exists
g : (0, 1) × N

+ → R which satisfies the following four conditions:

(i) limk→∞ g(T, k) = f(T ) for every T ∈ (0, 1).
(ii) {(q, r, k) ∈ Q × (Q ∩ (0, 1)) × N

+ | q < g(r, k)} is an r.e. set.
(iii) For every T ∈ (0, 1), there exist a ∈ N, k0 ∈ N

+, and t ∈ (T, 1) such that,
for every k ≥ k0 and every x ∈ (T, t), g(x, k) − g(T, k) ≤ 2a(x − T ).

(iv) For every T ∈ (0, 1), there exist b ∈ N, c ∈ N
+, and k1 ∈ N

+ such that, for
every k ≥ k1,

|pk+1|c2−
|pk+1|

T −b ≤ g(T, k + 1) − g(T, k).

Then, for every T ∈ (0, 1), if f(T ) is right-computable then T is Chaitin
T -random.
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Proof. Suppose that f(T ) is right-computable and T ∈ (0, 1). Then there exists
a total recursive function h : N

+ → Q such that f(T ) ≤ h(m) for all m ∈ N
+

and limm→∞ h(m) = f(T ).
Since the condition (iii) holds for g, there exist a ∈ N, k0 ∈ N

+, and t ∈ (T, 1)
such that

g(x, k) − g(T, k) ≤ 2a(x − T ) (12)

for every k ≥ k0 and every x ∈ (T, t). We choose any one n0 ∈ N
+ such that

0.Tn+2−n < t for all n ≥ n0. Such n0 exists since T < t and limn→∞ 0.Tn+2−n =
T . Since Tn is the first n bits of the base-two expansion of T with infinitely many
zeros, we further see that T < 0.Tn + 2−n < t for all n ≥ n0.

On the other hand, since the condition (iv) holds for g, there exist b ∈ N,
c ∈ N

+, and k1 ∈ N
+ such that

|pk+1|c2−
|pk+1|

T −b ≤ g(T, k + 1) − g(T, k)

for every k ≥ k1. Without loss of generality, we can assume that k1 = k0. Thus,
since g(T, k) is increasing on k with k ≥ k0 and the condition (i) holds,

|pi|c 2−
|pi|

T −b < f(T ) − g(T, k) (13)

if i > k ≥ k0.
Now, given Tn with n ≥ n0, one can effectively find ke, me ∈ N

+ such that ke ≥
k0 and h(me) < g(0.Tn+2−n, ke). This is possible because f(T ) < f(0.Tn+2−n),
limk→∞ g(0.Tn + 2−n, k) = f(0.Tn + 2−n), and the condition (ii) holds for g. It
follows from f(T ) ≤ h(me) and (12) that f(T ) − g(T, ke) < g(0.Tn + 2−n, ke) −
g(T, ke) ≤ 2a−n. It follows from (13) that, for every i > ke, |pi|c 2−

|pi|
T −b < 2a−n

and therefore cT log2 |pi| − (a + b)T < |pi| − Tn. Thus, by calculating the set
{ U(pi) | i ≤ ke } and picking any one finite binary string s which is not in this
set, one can then obtain s ∈ {0, 1}∗ such that cT log2 H(s)−(a+b)T < H(s)−Tn.

Hence, there exists a partial recursive function Ψ : {0, 1}∗ → {0, 1}∗ such that

cT log2 H(Ψ(Tn)) − (a + b)T < H(Ψ(Tn)) − Tn

for all n ≥ n0. Applying this inequality to itself, we have cT log2 n < H(Ψ(Tn))−
Tn + O(1), for all n ∈ N

+. On the other hand, using (1), there is cΨ ∈ N

such that H(Ψ(Tn)) ≤ H(Tn) + cΨ for all n ≥ n0. It follows that cT log2 n <
H(Tn) − Tn + O(1). Hence, T is Chaitin T -random. �

Theorem 10. Let f : (0, 1) → R. Suppose that f is increasing and there exists
g : (0, 1) × N

+ → R which satisfies the following three conditions:

(i) For every T ∈ (0, 1), limk→∞ g(T, k) = f(T ).
(ii) For every T1, T2 ∈ (0, 1) with T1 < T2, there exists k0 ∈ N

+ such that, for
every k ≥ k0 and every x ∈ [T1, T2], g(x, k) ≤ f(x).

(iii) {(q, r, k) ∈ Q × (Q ∩ (0, 1)) × N
+ | q < g(r, k)} is an r.e. set.
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Then, for every T ∈ (0, 1), if f(T ) is right-computable then T is also right-
computable.

Proof. Suppose that T ∈ (0, 1). We choose any t1, t2 ∈ Q with 0 < t1 < T <
t2 < 1. Then, since the condition (ii) holds for g, there exists k0 ∈ N

+ such that
g(x, k) ≤ f(x) for every k ≥ k0 and every x ∈ [t1, t2]. Suppose further that f(T )
is right-computable. Then there exists a total recursive function h : N

+ → Q such
that f(T ) ≤ h(m) for all m ∈ N

+ and limm→∞ h(m) = f(T ). Thus, since f is
increasing and the condition (i) holds for g, we see that, for every r ∈ Q∩ [t1, t2],
T < r if and only if ∃ m ∃ k ≥ k0 h(m) < g(r, k). Since the condition (iii) holds
for g, the set { r ∈ Q∩ [t1, t2] | ∃m ∃ k ≥ k0 h(m) < g(r, k) } is r.e. and therefore
the set { r ∈ Q ∩ [t1, t2] | T < r } is r.e. It follows from T ∈ (t1, t2) that T is
right-computable. �

Theorem 11. Let f : (0, 1) → R. Suppose that there exists g : (0, 1) × N
+ → R

which satisfies the following six conditions:

(i) For every T ∈ (0, 1), limk→∞ g(T, k) = f(T ).
(ii) For every T ∈ (0, 1), there exists k0 ∈ N

+ such that, for every k ≥ k0,
g(T, k) < f(T ).

(iii) For every T ∈ (0, 1), there exist a ∈ N, k1 ∈ N
+, and t ∈ (T, 1) such that,

for every k ≥ k1 and every x ∈ (T, t), g(x, k) − g(T, k) ≥ 2−a(x − T ).
(iv) For every T ∈ (0, 1), there exist b ∈ N, c ∈ N, and k2 ∈ N

+ such that, for
every k ≥ k2,

g(T, k + 1) − g(T, k) ≤ |pk+1|b 2−|pk+1|/T+c.

(v) For each k ∈ N
+, the mapping (0, 1) � T �→ g(T, k) is a continuous function.

(vi) {(q, r, k) ∈ Q × (Q ∩ (0, 1)) × N
+ | q > g(r, k)} is an r.e. set.

Then, for every T ∈ (0, 1), if f(T ) is left-computable and T is right-computable,
then T is T -compressible.

Proof. Suppose that T ∈ (0, 1). Since the condition (ii) holds for g, there exists
k0 ∈ N

+ such that
g(T, k) < f(T ) (14)

for every k ≥ k0. Since the condition (iii) holds for g, there exist a ∈ N, k1 ∈ N
+,

and t ∈ (T, 1) such that

g(x, k) − g(T, k) ≥ 2−a(x − T ) (15)

for every k ≥ k1 and every x ∈ (T, t). Since the condition (iv) holds for g, there
exist b ∈ N, c ∈ N, and k2 ∈ N

+ such that

g(T, k + 1) − g(T, k) ≤ |pk+1|b 2−|pk+1|/T+c (16)

for every k ≥ k2. Without loss of generality, we can assume that k0 = k1 = k2.
Suppose further that T is right-computable and f(T ) is left-computable. Then

there exists a total recursive function A : N
+ → Q such that T < A(l) < t for
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all l ∈ N
+ and liml→∞ A(l) = T , and there exists a total recursive function

B : N
+ → Q such that B(m) ≤ f(T ) for all m ∈ N

+ and limm→∞ B(m) = f(T ).
Let u be an arbitrary computable real number with T < u < 1, and let

β =
∑∞

i=1 |pi|b 2−|pi|/u. Note that this limit exists and is weakly Chaitin u-
random (see Theorem 3.2 (a) of [13] and Theorem 3 (i) of [14]). Thus, the
base-two expansion of β contains infinitely many zeros and infinitely many ones.

Given n and β�Tn/u	 (i.e., the first �Tn/u	 bits of the base-two expansion of
β − �β�), one can effectively find ke ∈ N

+ such that ke ≥ k0 and

0.β�Tn/u	 + �β� <

ke∑

i=1

|pi|b 2−
|pi|

u .

This is possible since 0.β�Tn/u	 + �β� < β and β = limk→∞
∑k

i=1 |pi|b 2−|pi|/u.
Since β − (0.β�Tn/u	 + �β�) ≤ 2−�Tn/u	 ≤ 2−Tn/u, it is then shown that

∞∑

i=ke+1

|pi|b 2−
|pi|

u = β −
ke∑

i=1

|pi|b 2−
|pi|

u < 2−Tn/u.

Raising both ends of this inequality to the power u/T and using the inequality
xz + yz ≤ (x + y)z for real numbers x, y > 0 and z ≥ 1, we have

∞∑

i=ke+1

|pi|b 2−
|pi|
T ≤

∞∑

i=ke+1

|pi|
bu
T 2−

|pi|
T < 2−n.

Using (16) and the condition (i), it follows that

f(T ) − g(T, ke) <

∞∑

i=ke+1

|pi|b 2−
|pi|
T +c < 2c−n. (17)

On the other hand, since the condition (v) holds for g, g(T, ke)=liml→∞g(A(l),ke).
Obviously, g(T, ke) < f(T ) by (14). Thus, since the condition (vi) holds for g,
one can then effectively find le, me ∈ N

+ such that g(A(le), ke) < B(me). It
follows from (17) and (15) that

2c−n >f(T )−g(T, ke)≥B(me)−g(T, ke)>g(A(le), ke)−g(T, ke)≥2−a(A(le)−T ).

Thus, 0 < A(le)−T < 2a+c−n. Let rn be the first n bits of the base-two expansion
of the rational number A(le) with infinitely many zeros. Then | A(le) − 0.rn | <
2−n. It follows from | T − 0.Tn | < 2−n that | 0.Tn − 0.rn | < (2a+c + 2)2−n.
Hence, Tn = rn, rn ±1, rn ±2, . . . , rn±(2a+c+1), where Tn and rn are regarded
as a dyadic integer. Thus, there are still 2a+c+1 + 3 possibilities of Tn, so that
one needs only a + c + 3 bits more in order to determine Tn.

Thus, there exists a partial recursive function Φ : N
+ × {0, 1}∗ × {0, 1}∗ →

{0, 1}∗ such that, for every n ∈ N
+, there exists s ∈ {0, 1}∗ with the properties

that |s| = a + c + 3 and Φ(n, β�Tn/u	, s) = Tn. It follows from (2) that H(Tn) ≤
|β�Tn/u	|+o(n) ≤ Tn/u+o(n), which implies that T is T/u-compressible. Since
u is an arbitrary computable real number with T < u < 1, it follows that T is
T -compressible. �
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5 The Proofs of the Main Results

In this section we complete the proofs of our main results; Theorems 4, 5, and 6.

5.1 The Proof of Theorem 4

We first complete the proof of Theorem 4, based on Theorems 7, 8, 10, and 11,
as follows.

Let f : (0, 1) → R with f(T ) = −F (T ), and let g : (0, 1) × N
+ → R with

g(T, k) = −Fk(T ). First, it follows from Theorem 7 (ii) and (iii) that f is in-
creasing.

Obviously, limk→∞ g(T, k) = f(T ) for every T ∈ (0, 1). Using the mean value
theorem we see that, for every T ∈ (0, 1) and every k ∈ N

+,

2−
|pk+1|

T

Zk+1(T )
< ln Zk+1(T ) − ln Zk(T ) <

2−
|pk+1|

T

Zk(T )
. (18)

It follows that, for every T ∈ (0, 1) and every k ∈ N
+, g(T, k) < g(T, k +

1) and therefore g(T, k) < f(T ). At this point, the conditions (i) and (ii) of
Theorem 8, all conditions of Theorem 10, and the conditions (i), (ii), (v), and
(vi) of Theorem 11 hold for g.

Using (18) we see that, for every T ∈ (0, 1) and every k ∈ N
+,

T 2−
|pk+1|

T

Zk+1(T ) ln 2
< g(T, k + 1) − g(T, k) <

T 2−
|pk+1|

T

Zk(T ) ln 2
.

Thus, the condition (iv) of Theorem 8 and the condition (iv) of Theorem 11 hold
for g.

Using the mean value theorem and Theorem 7 (i) and (iii), we see that

Sk(T )(x − T ) ≤ g(x, k) − g(T, k) ≤ Sk(t)(x − T ) (19)

for every k ∈ N
+ and every T, x, t ∈ (0, 1) with T < x < t. On the other hand,

we see that, for every k ∈ N
+ and every T ∈ (0, 1),

Ek+1(T ) − Ek(T ) =
Zk(T ) |pk+1| − Wk(T )

Zk+1(T )Zk(T )
2−

|pk+1|
T .

Recall here that, for every T ∈ (0, 1), limk→∞ Zk(T ) and limk→∞ Wk(T ) exist
and are positive by Lemma 1 (i). It follows from limk→∞ |pk+1| = ∞ that, for
every T ∈ (0, 1), there exists k0 ∈ N

+ such that, for every k ≥ k0, Ek(T ) <
Ek+1(T ) and therefore Sk(T ) < Sk+1(T ) by (18). Using Theorem 7 (iii), we see
that, for every T ∈ (0, 1), there exists k1 ∈ N

+ such that, for every k ≥ k1,
0 < Sk1(T ) ≤ Sk(T ) < S(T ). Thus, using (19), for every T, t ∈ (0, 1) with
T < t, there exists k2 ∈ N

+ such that Sk2(T ) > 0 and for every k ≥ k2 and
every x ∈ (T, t), Sk2(T )(x−T ) ≤ g(x, k)− g(T, k) < S(t)(x−T ). Therefore, the
condition (iii) of Theorem 8 and the condition (iii) of Theorem 11 hold for g.

Thus, Theorem 8, Theorem 10, and Theorem 11 result in the following three
theorems, respectively.
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Theorem 12. For every T ∈ (0, 1), if F (T ) is left-computable then T is weakly
Chaitin T -random. �

Theorem 13. For every T ∈ (0, 1), if F (T ) is left-computable then T is right-
computable. �

Theorem 14. For every T ∈ (0, 1), if both F (T ) and T are right-computable
then T is T -compressible. �

Theorem 4 follows immediately from these three theorems.

5.2 The Proof of Theorem 5

We complete the proof of Theorem 5, based on Theorems 7, 9, 10, and 11, as
follows.

Let f : (0, 1) → R with f(T ) = E(T ), and let g : (0, 1) × N
+ → R with

g(T, k) = Ek(T ). First, by Theorem 7 (ii) and (iii), we see that E′(T ) = C(T ) > 0
for every T ∈ (0, 1). Thus f is increasing.

Obviously, limk→∞ g(T, k) = f(T ) for every T ∈ (0, 1). At this point, the
conditions (i) and (ii) of Theorem 9, the conditions (i) and (iii) of Theorem 10,
and the conditions (i), (v), and (vi) of Theorem 11 hold for g.

We see that, for every k ∈ N
+ and every T ∈ (0, 1),

Ek+1(T ) − Ek(T ) =
Zk(T ) |pk+1| − Wk(T )

Zk+1(T )Zk(T )
2−

|pk+1|
T . (20)

Recall here that, for every T ∈ (0, 1), limk→∞ Zk(T ) and limk→∞ Wk(T ) exist
and are positive by Lemma 1 (i). It follows from limk→∞ |pk+1| = ∞ that, for
every T ∈ (0, 1), there exist a ∈ N, b ∈ N, and k0 ∈ N

+ such that, every k ≥ k0,

|pk+1| 2−
|pk+1|

T −a ≤ g(T, k + 1) − g(T, k) ≤ |pk+1| 2−
|pk+1|

T +b. (21)

Thus, the condition (iv) of Theorem 9 and the condition (iv) of Theorem 11 hold
for g. It follows from (21) that, for every T ∈ (0, 1), there exists k0 ∈ N

+ such
that, every k ≥ k0, g(T, k) < g(T, k+1) and therefore g(T, k) < f(T ). Thus, the
condition (ii) of Theorem 11 holds for g.

Using Lemma 1 (ii) and (iii) in addition to Lemma 1 (i), we can show a
stronger statement than the inequalities (21). The stronger statement for the
lower bound of (21) is needed here. That is, based on (20), Lemma 1, and
limk→∞ |pk+1| = ∞, we can show that, for every T1, T2 ∈ (0, 1) with T1 < T2,
there exist a ∈ N and k0 ∈ N

+ such that, every k ≥ k0 and every x ∈ [T1, T2],

|pk+1| 2−
|pk+1|

x −a ≤ g(x, k + 1) − g(x, k).

It follows that the condition (ii) of Theorem 10 holds for g.
Now, using the mean value theorem and Theorem 7 (i), we see that, for every

k ∈ N
+ and every T, x, t ∈ (0, 1) with T < x < t, there exists y ∈ (T, x) such

that
g(x, k) − g(T, k) = Ck(y)(x − T ). (22)
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On the other hand, using (9) we see that, for every k ∈ N
+ and every T ∈ (0, 1),

Ck+1(T ) − Ck(T ) is calculated as

ln 2
T 2

2−
|pk+1|

T

Zk+1(T )

[

|pk+1|2 −
{

Wk+1(T )
Zk+1(T )

+
Wk(T )
Zk(T )

}

|pk+1|

+
{

Wk+1(T )
Zk+1(T )

+
Wk(T )
Zk(T )

}
Wk(T )
Zk(T )

− Yk(T )
Zk(T )

]

.

Thus, based on Lemma 1 and limk→∞ |pk+1| = ∞, we can show that, for every
T1, T2 ∈ (0, 1) with T1 < T2, there exist a ∈ N and k0 ∈ N

+ such that, every
k ≥ k0 and every y ∈ [T1, T2],

|pk+1|2 2−
|pk+1|

y −a ≤ Ck+1(y) − Ck(y).

It follows from Theorem 7 (iii) that, for every T1, T2 ∈ (0, 1) with T1 < T2, there
exist a ∈ N and k0 ∈ N

+ such that, every k ≥ k0 and every y ∈ [T1, T2],

0 < min Ck0([T1, T2]) ≤ Ck(y) < max C([T1, T2]), (23)

where min Ck0([T1, T2]) = min{ Ck0(z) | z ∈ [T1, T2] } and maxC([T1, T2]) =
max{ C(z) | z ∈ [T1, T2] }. In particular, max C([T1, T2]) exists. This is because
the function C(T ) of T is continuous on (0, 1) by Lemma 1 and (9). It follows
from (22) and (23) that, for every T, t ∈ (0, 1) with T < t, there exist a ∈ N,
b ∈ N, and k0 ∈ N

+ such that, for every k ≥ k0 and every x ∈ (T, t), 2−a(x−T ) ≤
g(x, k) − g(T, k) < 2b(x − T ). Therefore, the condition (iii) of Theorem 9 and
the condition (iii) of Theorem 11 hold for g.

Thus, Theorem 9, Theorem 10, and Theorem 11 result in the following three
theorems, respectively.

Theorem 15. For every T ∈ (0, 1), if E(T ) is right-computable then T is
Chaitin T -random. �

Theorem 16. For every T ∈ (0, 1), if E(T ) is right-computable then T is also
right-computable. �

Theorem 17. For every T ∈ (0, 1), if E(T ) is left-computable and T is right-
computable, then T is T -compressible. �

Theorem 5 follows immediately from these three theorems.

5.3 The Proof of Theorem 6

In a similar manner to the proof of Theorem 5 described in the previous subsection,
we can prove Theorem 6, based on Theorems 7, 9, 10, and 11. It is easy to convert
the proof of Theorem 5 into the the proof of Theorem 6, because of the similarity
between E′

k(T ) = Ck(T ) and S′
k(T ) = Ck(T )/T given in Theorem 7 (i).
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6 Some Properties of the Sufficient Conditions

In this section, we investigate some properties of the sufficient conditions for T
to be a fixed point in the fixed point theorems on partial randomness.

First note that the function F (T ) of T is a decreasing continuous function on
(0, 1) by Theorem 7 (ii) and (iii), and the set of all computable real numbers is
dense in (0, 1). Thus, we can easily show the following theorem for the sufficient
condition of Theorem 4. The exactly same theorem holds for each of Z(T ), E(T ),
and S(T ) also.

Theorem 18. The set { T ∈ (0, 1) | F (T ) is computable } is dense in (0, 1). �

Since the relation F (T ) = −T log2 Z(T ) holds from Definition 4, we can show
the following theorem.

Theorem 19. There does not exist T ∈ (0, 1) such that both Z(T ) and F (T )
are computable.

Proof. Contrarily, assume that both Z(T ) and F (T ) are computable for some
T ∈ (0, 1). Since F (T ) = −T log2 Z(T ) and 0 < Z(T ) < 1, it is easy to see
that T is computable. It follows from Theorem 1 (i) that Z(T ) is weakly Chaitin
T -random. However, this contradicts the assumption that Z(T ) is computable,
and the result follows. �

Thus, the computability of F (T ) gives completely different fixed points from the
computability of Z(T ). This implies that neither the computability of Z(T ) nor
the computability of F (T ) is the necessary condition for T to be a fixed point
on partial randomness at all.

In a similar manner, we can prove the following two theorems using the rela-
tions S(T ) = E(T )/T + log2 Z(T ) and S(T ) = (E(T ) − F (T ))/T , respectively.

Theorem 20. There does not exist T ∈ (0, 1) such that Z(T ), E(T ), and S(T )
are all computable. �

Theorem 21. There does not exist T ∈ (0, 1) such that F (T ), E(T ), and S(T )
are all computable. �

Using the property of a fixed point in the fixed point theorems, we can show the
following theorem.

Theorem 22. Sa∩Sb = ∅ for any distinct computable real numbers a, b ∈ (0, 1],
where Sa = { T ∈ (0, 1) | Z(aT ) is computable }.

Proof. Let T ∈ (0, 1), and let a be a computable real number with a ∈ (0, 1].
Suppose that Z(aT ) is computable. Then, by Theorem 3, limn→∞ H((aT )n)/n =
aT . It follows from H((aT )n) = H(Tn) + O(1) that limn→∞ H(Tn)/n = aT .

Thus, for every computable real numbers a, b ∈ (0, 1], if Sa ∩ Sb �= ∅ then
a = b. �
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As a corollary of Theorem 22, we have the following, for example.

Corollary 1. For every T ∈ (0, 1), if Z(T ) is computable, then Z(T/n) is
not computable for every n ∈ N with n ≥ 2. In other words, for every T ∈
(0, 1), if the sum

∑∞
i=1 2−|pi|/T is computable, then the corresponding power sum

∑∞
i=1

(
2−|pi|/T

)n
is not computable for every n ∈ N with n ≥ 2. �
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A The Proof of Theorem 3

For completeness, we prove here Theorem 3, based on Theorems 8, 10, and 11,
in a similar manner to the proof of Theorem 4 given in Section 5.

Let f : (0, 1) → R with f(T ) = Z(T ), and let g : (0, 1) × N
+ → R with

g(T, k) = Zk(T ). First, it follows that f is increasing.
Obviously, limk→∞ g(T, k) = f(T ) for every T ∈ (0, 1). It follows that, for

every T ∈ (0, 1) and every k ∈ N
+,

g(T, k + 1) − g(T, k) = 2−
|pk+1|

T .

Thus, for every T ∈ (0, 1) and every k ∈ N
+, g(T, k) < g(T, k + 1) and therefore

g(T, k) < f(T ). At this point, the conditions (i), (ii), and (iv) of Theorem 8,
all conditions of Theorem 10, and the conditions (i), (ii), (iv), (v), and (vi) of
Theorem 11 hold for g.

Using the mean value theorem we see that, for every k ∈ N
+ and every

T, x, t ∈ (0, 1) with T < x < t,

ln 2
t2

Wk(T )(x − T ) < g(x, k) − g(T, k) <
ln 2
T 2 Wk(t)(x − T ),

where Wk(T ) =
∑k

i=1 |pi| 2−
|pi|

T , as defined before Lemma 1 in Section 4. Note
that, for every t ∈ (0, 1), Wk(t) is increasing on k, and W (t) = limk→∞ Wk(t)
exists by Lemma 1 (i). Thus we see that

ln 2
t2

W1(T )(x − T ) < g(x, k) − g(T, k) <
ln 2
T 2 W (t)(x − T ),

for every k ∈ N
+ and every T, x, t ∈ (0, 1) with T < x < t. Therefore, the

condition (iii) of Theorem 8 and the condition (iii) of Theorem 11 hold for g.
Thus, Theorem 8, Theorem 10, and Theorem 11 result in the following three

theorems, respectively.

Theorem 23. For every T ∈ (0, 1), if Z(T ) is right-computable then T is weakly
Chaitin T -random. �

Theorem 24. For every T ∈ (0, 1), if Z(T ) is right-computable then T is also
right-computable. �

Theorem 25. For every T ∈ (0, 1), if Z(T ) is left-computable and T is right-
computable, then T is T -compressible. �

Theorem 3 follows immediately from these three theorems.
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Abstract. We study computational aspects of a probabilistic logic
based on a well-known model of induction by Valiant. We prove that
for this paraconsistent logic the set of valid formulas is undecidable.

1 Introduction

The probabilistic interpretation of quantifiers has a long tradition and has been
studied in many forms, often motivated by the difficulties of obtaining a complete
picture of the world outside the realm of mathematical formalisms. We will not
attempt to give an historical overview of the various approaches in the restricted
context of this brief paper, but instead confine the discussion to those sources
that are of direct relevance to it. More references to papers concerning probability
logic can be found in [6].

Valiant [10] and Terwijn [7] gave probabilistic interpretations of first-order
predicate logic based on Valiants model of pac-learning. In these interpretations
universal quantification in a model M is interpreted as “many”, where “many”
refers to a given probability distribution D on M and to a given error parame-
ter ε. These probabilistic interpretations were partly motivated by considerations
from computational learning theory. In this paper our concern is not the induc-
tion of formulas but the study of probabilistic truth itself. Both [10] and [7] are
predated by Keisler [5] (that also surveys many results of other researchers, no-
tably Hoover), in which a logic is studied with essentially the same probabilistic
interpretation of universal quantification, but with no other quantifiers, and with
a negation that is different from the one below. Our different interpretation of
negation allows for having the classical existential quantifier ∃ in the logic, some-
thing that Keislers logic does not have. A logic with a measure quantifier was
also introduced by H. Friedman (cf. Steinhorn in [1]), but this logic is even less
related to ours than Keislers. A recent study of a probabilistic logic extending
classical predicate logic that is motivated by inductive probabilistic reasoning is
Jaeger [4].
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We start by repeating the definition of probabilistic truth from [7]. For un-
explained measure-theoretic terminology we refer to Doob [3]. Fix a first-order
language with predicates and constants, possibly with equality, but no function
symbols. Let M be a classical model (consisting of a universe with interpreta-
tions of the predicates in the language) and let D be a probability measure on
M, i.e. a measure such that D(M) = 1. For a D-measurable subset X ⊆ M
we will sometimes write PrD

[
X

]
instead of D(X), to emphasize that we think

of these measures as probabilities. For the moment we just assume that D is a
probability measure. We will discuss an additional property that one can impose
on D in Section 2.

Given a property ϕ(x) for elements in a model M, and given an error param-
eter ε, one can calculate (using Chernoff bounds, cf. [7]) how large a sample of
x’s from M should be to be able to assert with a certain confidence 1− δ that at
least 1−ε of the x’s in M (in terms of the unknown measure D) satisfy ϕ(x). In
the context of such large samples, we want ∀xϕ(x) to mean that this is the case,
i.e. that at least 1 − ε of the x’s in M satisfy ϕ(x). In contrast, we want ∃xϕ(x)
to mean that an x was found in the sample that satisfies ϕ(x). ¬∃xϕ(x) should
mean that no such x was found, which is the same as saying that ∀x¬ϕ(x).
¬∀xϕ(x) means that not all sampled x’s satisfy ϕ(x), that is, the sample con-
tains an x with ¬ϕ(x), i.e. ∃x¬ϕ(x). These considerations are reflected in the
following definition. Note that we do not model induction of formulas here; at
this point we are solely interested in probabilistic truth.

Definition 1.1. (Truth definition) Given ε ∈ [0, 1], we inductively define the
relation M |=D,ε ϕ as follows.

1. For every prime formula ϕ (i.e. ϕ atomic or the negation of an atomic for-
mula), M |=D,ε ϕ if M |= ϕ.

2. The logical connectives ∧ and ∨ are treated classically, e.g. M |=D,ε ϕ ∧ ψ
if it holds that M |=D,ε ϕ and M |=D,ε ψ.

3. M |=D,ε ∃xϕ(x) if there exists x ∈ M such that M |=D,ε ϕ(x).

4. The case of negation is split into subcases as follows:
4.1. For ϕ atomic, M |=D,ε ¬¬ϕ if M |=D,ε ϕ. Furthermore, ¬ distributes in

the classical way over ∨ and ∧, e.g. M |=D,ε ¬(ϕ∧ψ) if M |=D,ε ¬ϕ∨¬ψ.

4.2. M |=D,ε ¬∃xϕ(x) if M |=D,ε ∀x¬ϕ(x).

4.3. M |=D,ε ¬∀xϕ(x) if M |=D,ε ∃x¬ϕ(x).

5. M |=D,ε ϕ → ψ if M |=D,ε ¬ϕ ∨ ψ.

6. M |=D,ε ∀xϕ(x) if PrD
[
x ∈ M : M |=D,ε ϕ(x)

]
� 1 − ε.

Note that in the above definition everything is treated classically, except the
interpretation of ∀xϕ(x) in Case 6. The treatment of negation requires some
care, since we no longer have that M |=D,ε ¬ϕ implies that M 	|=D,ε ϕ (though
the converse still holds).

Note that both M |=D,ε ∃xϕ(x) and M |=D,ε ∀x¬ϕ(x) may hold, since the
interpretation of the first is the classical one, but the interpretation of the second
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is that most x’s satisfy ¬ϕ(x). That is, the logic of |=D,ε is paraconsistent.
In [7] the above definition is motivated. In particular, the asymmetry in the
interpretation of ∃ and ∀ is motivated by an interpretation in which the truth of
first-order statements in an unknown model is established with a given degree
of confidence by taking samples from the model.

Case 5 defines A → B as ¬A ∨ B. We note that this is weaker than the
classical implication. Namely, the classical definition would say that B holds in
any model where A holds. Taking B = ⊥, where ⊥ is an inconsistency such as
∃x(R(x) ∧ ¬R(x)), we would thus obtain the classical negation of A. Taking for
A an existential statement, then since ∃ expresses classical existence we would
thus also obtain the classical universal quantifier ∀, and our logic would become
a strong extension of classical predicate logic, which is not what we are after.
Instead, ∃xϕ(x) → ⊥ by definition means ¬∃xϕ(x) ∨ ⊥, which is the same
as ∀x¬ϕ(x). Thus the above definition of implication takes on a probabilistic
interpretation: If we interpret ¬A by saying that A is unlikely, then A → B
holds if whenever A holds it is likely that B holds.

Note that for ε = 0 the truth definition does not coincide with the classical
one: If M |=D,0 ∀xR(x) there can still be a set of D-measure zero of x’s with
¬R(x). In the following we will exclude the pathological case of ε = 1. Note that
for ε = 1 all universal statements are always true, for example.

Proposition 1.1. (Prenex normal form) Every formula ϕ is semantically equiv-
alent to a formula ϕ′ in prenex normal form, that is, ϕ′ satisfies M |=D,ε ϕ ⇔
M |=D,ε ϕ′ for all models M, D, ε.

Proof. By Case 5 in Definition 1.1 we may assume that the formula is free of
implications. Case 4 in the definition allows us to rewrite all formulas by pushing
the negations inside, so that all negations occur only directly in front of an atomic
formula. We then pull all quantifiers outside: Clearly we can pull ∃ outside over
the connectives ∧ and ∨ since ∃ has the classical meaning. For ∀ we have to
check that

ϕ ∧ ∀xψ(x) ≡ ∀x(ϕ ∧ ψ(x)) (1)

and
ϕ ∨ ∀xψ(x) ≡ ∀x(ϕ ∨ ψ(x)) (2)

where ≡ denotes semantic equivalence, and under the usual proviso about x not
occurring free in ϕ. Indeed, for (1) we have

M |=D,ε ∀x
(
ϕ ∧ ψ(x)

)
⇐⇒ Pr

x

[
ϕ ∧ ψ(x)

]
� 1 − ε

⇐⇒ ϕ ∧ Pr
x

[
ψ(x)

]
� 1 − ε

⇐⇒ M |=D,ε ϕ ∧ ∀xψ(x).

The second statement is proved in exactly the same way, replacing ∧ by ∨. �

Definition 1.2. We will use the following terminology: By a probabilistic model
we will mean a triple M, D, ε as above, where ε ∈ [0, 1). In this case we also call
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the pair M, D an ε-model. For a given ε, a sentence ϕ is ε-satisfiable if there
are M and D such that M |=D,ε ϕ, and ϕ is ε-valid if M |=D,ε ϕ for every M
and D. Furthermore, ϕ is probabilistically satisfiable if ϕ is ε-satisfiable for some
ε < 1.

Note that all models are necessarily nonempty since they are measure spaces.
From Proposition 1.1 it is easy to see that for ε � ε′, every ε-valid formula is
ε′-valid. See also Proposition 3.2 below. In Section 2 we will amend Definition 1.2
by imposing an extra restriction on the probabilistic models.

Definition 1.3. Below we will use the shorthand notation �z for a series of vari-
ables z1, . . . , zn. Let us adopt here the convention that for a formula ϕ(�z) with
free variables �z it holds that M |=D,ε ϕ(�z) whenever there are �z ∈ M such that
M |=D,ε ϕ(�z). So we think of unbound variables as being existentially quantified.

2 The Measurability of Predicates

In Case 6 of Definition 1.1 we require in particular that the set
{
x ∈ M : M |=D,ε ϕ(x)

}

is D-measurable. One can argue that it is natural to require a bit more than
this, namely that

for every k-ary predicate R occurring in ϕ the set of k-tuples
satisfying R is Dk-measurable, (3)

where Dk denotes the product measure on Mk. This is a natural assumption:
When we are talking about probabilities over certain predicates we may as well
require that all such probabilities exist, even if in some cases this would not be
necessary. The property (3) and its consequences are discussed more extensively
in [8]. Henceforth, we will assume property (3).

3 The Set of 0-Valid Formulas

In this section we make some preliminary remarks about the set of 0-valid for-
mulas. We start by repeating an easy preliminary result from [7].

Lemma 3.1. Let D be a probability distribution on M such that for all x ∈ M,
D({x}) 	= 0. Then for every formula ϕ, M |= ϕ ⇐⇒ M |=D,0 ϕ.

Proof. One direction follows from the fact that classical validity implies prob-
abilistic validity, since the only difference is that the probabilistic interpreta-
tion of ∀ is weaker. For the converse direction, if D is as in the lemma and
PrD

[
x ∈ M : M |=D,0 ϕ(x)

]
= 1 then in fact (∀x ∈ M)

[
M |=D,0 ϕ

]
. So

the interpretation of ∀ is in fact the classical one, and hence every formula is
interpreted classically. �
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Proposition 3.1. The 0-valid formulas coincide with the classically valid
formulas.

Proof. That every classically valid formula is also probabilistically valid was
already noted above. For the converse, suppose that ϕ is not classically valid.
Then there is a countable model M such that M 	|= ϕ. Since M is countable,
there is a distribution D on M such that for all x ∈ M, D({x}) 	= 0. But then
by Lemma 3.1, M 	|=D,0 ϕ. Hence ϕ is not 0-valid. �

Note however that we do not have that every 0-satisfiable sentence is classically
satisfiable; a counterexample is ∃xR(x) ∧ ∀x¬R(x).

Proposition 3.2. (Terwijn [7]) For all ε < ε′, the set of ε-valid formulas is
strictly included in the set of ε′-valid ones.1

Proposition 3.3. Let ϕ(�x) be a formula with free variables �x such that for every
probabilistic model M, D and every �x ∈ M

∀ε > 0
(
M |=D,ε ϕ(�x)

)
=⇒ M |=D,0 ϕ(�x). (4)

If furthermore ∀�xϕ(�x) is ε-valid for every ε > 0, then ∀�xϕ(�x) is 0-valid.

Proof. By induction on the number of ∀-quantifiers it suffices to prove this for
∀xϕ(x), where ϕ(x) satisfies (4). So suppose ϕ(x) satisfies (4). Then

∀ε > 0 M |=D,ε ∀xϕ(x) =⇒ ∀ε > 0 PrD
[
x : M |=D,ε ϕ(x)

]
� 1 − ε

=⇒ ∀ε > 0 PrD
[
x : M |=D,ε ϕ(x)

]
= 1

=⇒ Pr
D

( ∞⋂

n=2

{
x : M |=D, 1

n
ϕ(x)

})
= 1

=⇒ PrD
[
x : M |=D,0 ϕ(x)

]
= 1

=⇒ M |=D,0 ∀xϕ(x).

Here the second to last implication follows because ϕ satisfies (4). So if for every
ε > 0 the sentence ∀xϕ(x) is ε-valid then it is 0-valid. �

Following standard notation, let ∀n∃m denote the class of L-sentences in prenex
form with at most n ∀-quantifiers followed by at most m ∃-quantifiers. Similarly,
let ∃∗ and ∀∗ denote the fragments defined by any finite number of ∃ or ∀
quantifiers. Note that in contrast to the classical case, under the probabilistic
interpretation we do not have that for example the ∀2-fragment is closed under
conjunctions. To see this, notice that the pair of formulas ϕ0 = ∀x∀yRxy ∧
1 The proof in [7] actually does not take the extra measurability condition (3) into

consideration. However an alternative proof using similar ideas of this result can be
given that also respects (3).
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∀x∀y¬Ryx and ϕ1 = ∀x∀y(Rxy ∧ ¬Ryx) are not semantically equivalent. One
can for example prove that whereas both formulas are 1

3 -satisfiable, ϕ0 has a
finite 1

3 -model, but ϕ1 has not, cf. [8]. Hence, to put ϕ0 in prenex form we have
to rename variables and put more than two quantifiers in the prefix.

Corollary 3.1. For every ϕ ∈ ∀∗∃∗, if ϕ is not 0-valid then there is an ε > 0
such that ϕ is not ε-valid.

Proof. It suffices to note that every formula ϕ of the form ∃�yP (�x, �y), where P is
a propositional combination of atomic predicates, satisfies (4). This is because
if M |=D,ε P (�x, �y) then M |=D,0 P (�x, �y). �

At this point we do not know whether Corollary 3.1 holds for all sentences ϕ,
i.e. whether

⋂
ε>0 ε-valid = 0-valid.2

4 The Undecidability of the ε-Valid Formulas

In this section we prove that the set of ε-valid formulas is undecidable for every ε.
Note that for ε = 0 the set of ε-valid formulas coincides with the classically valid
formulas by Proposition 3.1, and hence is Σ0

1 -complete.

Definition 4.1. Given a probabilistic model M, D and a subset X ⊆ M with
D(X) > 0, we define the restriction of M to X , denoted by M�X , as the model
with universe X obtained from M by restricting all relations to X , and with the
probability distribution on X defined by multiplying D with a factor 1/D(X).

Theorem 4.1. For every rational ε ∈ [0, 1), the set of ε-valid formulas is
Σ0

1 -hard.

Proof. Suppose that 0 < m < n and that ε = 1 − m
n . We build a many-one

reduction from the 0-valid formulas to the ε-valid ones, i.e. we show that there is
a computable function f such that ϕ is 0-valid if and only if f(ϕ) is ε-valid. Note
that this suffices since by Proposition 3.1 the 0-valid formulas coincide with the
classically valid ones, and these are of course undecidable.

The idea of the proof is to introduce new parts X0, . . . Xn−1 into a given model
to “dilute” the meaning of the ∀-quantifiers in ϕ. We consider suitably relativized
versions ϕXi1 ...Xim of ϕ relative to fractions Xi1 , . . . , Xim of m out of the n Xi’s.
In ϕXi1 ...Xim the existential quantifiers range over Xi1 and Xi2 , . . . , Xim are used
to dilute the ∀ quantifiers in such a way that ϕ holds in Xi1 with error 0 if and
only if ϕXi1 ...Xim holds in Xi1 ∪ . . . ∪ Xim with error 0. If Xi1 ∪ . . . ∪ Xim has
weight � m

n then the latter holds if and only if ϕXi1 ...Xim holds in X0∪. . .∪Xn−1
with error at most ε. The main problem is to express all this correctly in such
2 Note however that the same proof will not work, since in general (4) fails for ∃∀-

formulas. Corollary 3.1 was used in an earlier version of the proof of Theorem 4.1, in
which a reduction was built from the formulas in the ∀3∃-fragment. This fragment
is undecidable by a result of Surányi [2, Theorem 3.1.16]
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a way that a 0-countermodel to ϕ can be transformed to ε-countermodel of the
relativized version. The proof below would be would be considerably simpler if
we could express D(X) > m

n . To circumvent this technical difficulty, we resort
to considering all possible combinations i1 . . . im.

Formally, given a first-order formula ϕ, let X0, . . . , Xn−1 be fresh unary pred-
icates, i.e. predicates not occurring in ϕ. Define the sentence

n-split = ∀x
((

X0(x) ∨ . . . ∨ Xn−1(x)
)

∧
∧

i<n

[
Xi(x) ↔

∧

j �=i

¬Xj(x)
])

that says that M splits into n parts. Note that since n-split is purely universal
we have that M probabilistically satisfies ¬n-split if and only if it satisfies it
classically, hence if M 	|=D,ε ¬n-split then really M |= n-split classically. In
the following we use set-theoretic notation such as x ∈ X0 ∪ . . . ∪ Xn−1 as a
shorthand for the formula X0(x) ∨ . . . ∨ Xn−1(x). We also write D(X) � m

n for
the sentence ∀x(X(x)). (Note that since ε = 1 − m

n this last sentence expresses
precisely this fact.) Given a sentence ϕ and a choice i1, . . . , im of m different
numbers from the set {0, . . . , n − 1}, define a relativized version ϕXi1 ...Xim of ϕ
by recursively replacing ∃x everywhere by ∃x(Xi1 (x) ∧ . . .) and all occurrences
of ∀x by ∀x

(
x ∈ Xi2 ∪ . . . ∪ Xim ∨ (x ∈ Xi1 ∧ . . .)

)
.3 For every ϕ define

f(ϕ) = ¬n-split ∨
∨

i1...im

(
D(Xi1 ∪ . . . ∪ Xim) � m

n ∧ ϕXi1 ...Xim

)
.

Here the disjunction is over all choices i1 . . . im of m different numbers from
the set {0, . . . , n − 1}. Now if ϕ is 0-valid and M 	|=D,ε ¬n-split then M splits
into X0 . . . Xn−1. By Lemma 4.1 there is always a choice of i1 . . . im such that
D(Xi1 ∪ . . . ∪ Xim) � m

n . Without loss of generality D(Xi1 ) > 0, for if this
does not hold we can permute i1 . . . im. But then by Lemma 4.2 we have that
M |=D,ε ϕXi1 ...Xim . Hence f(ϕ) is ε-valid.

Conversely, suppose that ϕ is not 0-valid, say that M 	|=D,0 ϕ. We show that
there is a model M′,D′ such that M′ 	|=D′,ε f(ϕ). Let M′ consist of the n
disjoint parts X0, . . . , Xn−1, where each Xi is a copy of M where in addition
every element satisfies the unary predicate Xi. The predicates on M′ are defined
exactly as in M within each given copy Xi, and are defined arbitrarily across
different copies. Under D′ we give each of X0 . . . Xn−1 weight 1

n . The structure of
D′ on each Xi is like D on M, multiplied with the factor 1

n , that is, D′ is the sum
of n copies of 1

n ·D. Notice that by definition M′ does not ε-satisfy ¬n-split, and
that it ε-satisfies D(Xi1 ∪ . . . ∪ Xim) � m

n for any choice i1 . . . im of m different
numbers from {0, . . . , n − 1}. Given any such choice i1 . . . im, let M′�Xi1 ∪ . . . ∪
Xim , D′′ be the restriction of M′ to Xi1 ∪. . .∪Xim . (Cf. Definition 4.1.) So D′′ on
Xi1∪. . .∪Xim is D′ multiplied with 1/D′(Xi1∪. . .∪Xim) = n

m . Now suppose that
M′ |=D′,ε ϕXi1 ...Xim . Then by Lemma 4.3, M′�Xi1 ∪. . .∪Xim |=D′′,0 ϕXi1 ...Xim .
But since Xi1 is a copy of M, this easily implies M |=D,0 ϕ: By definition of
ϕXi1 ...Xim , witnesses for existential quantifiers can be found in Xi1 , and universal
3 If m = 1 then we replace ∀x by ∀x(x ∈ Xi1 ∧ . . .).
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quantifiers hold with D′′-measure 1 in M′�Xi1 ∪ . . . ∪ Xim , hence also with D-
measure 1 in Xi1 . Thus we have M |=D,0 ϕ, contrary to the assumption. Hence
M′ also does not ε-satisfy ϕXi1 ...Xim , and thus M′ witnesses that f(ϕ) is not
ε-valid. �

Lemma 4.1. Suppose that n � m � 1 and that ai ∈ R are such that

n−1∑

i=0

ai = 1.

Then there are m ai’s such that their sum is greater than or equal to m
n .

Proof. The average over the ai is 1
n , so the m largest of them sum up to at

least m
n . �

Lemma 4.2. In the proof of Theorem 4.1, suppose that M 	|=D,ε ¬n-split, that
D(Xi1 ∪ . . . ∪ Xim) � m

n , and that D(Xi1 ) > 0. Then M |=D,ε ϕXi1 ...Xim .

Proof. This follows because ϕ is 0-valid, hence it holds with error 0 in M�Xi1 ,
which is defined since D(Xi1 ) > 0 (cf. Definition 4.1). Loosely speaking, M |=D,ε

ϕXi1 ...Xim holds because witnesses for the existential quantifiers can be found
in Xi1 since ϕ holds in M�Xi1 , and the universal quantifiers in ϕXi1 ...Xim are
satisfied since D(Xi1 ∪ . . . ∪ Xim) � m

n and the error on Xi1 is 0. More formally,
the lemma follows from the following claim. Let D′ denote the distribution on
M�Xi1 .
Claim. If M�Xi1 |=D′,0 ϕ then M |=D,ε ϕXi1 ...Xim . The claim is proved by
formula induction. By Proposition 1.1 we may assume that ϕ is in prenex normal
form and that all negations occur directly in front of atomic predicates. The
induction step for ∃ is trivial by definition of ϕXi1 ...Xim , so the only case that
requires attention is the induction step for ∀. So suppose that ϕ = ∀xψ(x). Then

ϕXi1 ...Xim = ∀x
(
x ∈ Xi2 ∪ . . . ∪ Xim ∨

(
x ∈ Xi1 ∧ ψ(x)Xi1 ...Xim

))
. (5)

If M�Xi1 |=D′,0 ϕ then

PrD′
[
x ∈ Xi1 : M�Xi1 |=D′,0 ψ(x)

]
� 1.

By induction hypothesis, for every x ∈ Xi1 with M�Xi1 |=D′,0 ψ(x) we have
M |=D,ε ψ(x)Xi1 ...Xim . It then follows from D(Xi1 ∪ . . . ∪ Xim) � m

n that

PrD
[
x ∈ M : x ∈ Xi2 ∪ . . . ∪ Xim ∨

(
x ∈ Xi1 ∧ ψ(x)Xi1 ...Xim

)]
� m

n = 1 − ε

hence M |=D,ε ϕXi1 ...Xim . �

Lemma 4.3. In the proof of Theorem 4.1 we have that

M′ |=D′,ε ϕXi1 ...Xim =⇒ M′�Xi1 ∪ . . . ∪ Xim |=D′′,0 ϕXi1 ...Xim .
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Proof. Again we prove this by induction on ϕ. By Proposition 1.1 we may assume
that ϕ is in prenex normal form and that all negations occur directly in front
of atomic predicates. Then all the steps in the induction are trivial, except the
case of universal quantification. So suppose that ϕ = ∀xψ(x). Then ϕXi1 ...Xim

is of the form (5). Denoting ψ(x)Xi1 ...Xim by ψ̂(x) we then have

M′ |=D′,ε ϕXi1 ...Xim =⇒

PrD′
[
x ∈ M′ : x ∈ Xi2 ∪ . . . ∪ Xim ∨

(
x ∈ Xi1 ∧ M′ |=D′,ε ψ̂(x)

)]
� m

n =⇒

PrD′
[
x ∈ M′ : x ∈ Xi2 ∪ . . . ∪ Xim∨

(
x ∈ Xi1 ∧ M′�Xi1 ∪ . . . ∪ Xim |=D′′,0 ψ̂(x)

)]
� m

n =⇒

PrD′′
[
x ∈ Xi1 ∪ . . . ∪ Xim : x ∈ Xi2 ∪ . . . ∪ Xim∨

(
x ∈ Xi1 ∧ M′�Xi1 ∪ . . . ∪ Xim |=D′′,0 ψ̂(x)

)]
�

m
n

D(Xi1 ∪ . . . ∪ Xim)
= 1

=⇒ M′�Xi1 ∪ . . . ∪ Xim |=D′′,0 ϕXi1 ...Xim .

Here the second implication follows by the induction hypothesis. �

5 Finite Models and Decidability

It is shown in [8] that the downward Löwenheim-Skolem theorem fails for ε-logic:
Not every infinitely ε-satisfiable sentence has a countable model. The next result
shows that countable probabilistic models are in a way analogous to classical
finite models:

Theorem 5.1. Let ϕ be a sentence. Then

∀M finite M |= ϕ ⇐⇒ ∀M countable∀D ∀ε > 0 M |=D,ε ϕ.

Proof. (If) If M is finite and ∀ε > 0 M |=D,ε ϕ then classically M |= ϕ: If M
has n elements then take D the uniform distribution on M assigning to every
element probability 1

n and take ε < 1
n . Then there can be no exceptions to

∀-statements.
(Only if) The idea is simply that if M is countable then most of the weight

under D is concentrated on finitely many elements of M. If ϕ holds classically
in all finite models, ϕ also holds on these finitely many elements. More precisely;
Fix ε > 0 and a countable probabilistic model M, D, and suppose that ϕ is
classically valid on all finite models. Let M′ ⊆ M be finite such that M′ has
weight at least 1− ε under D. Since M′ is finite we have M′ |= ϕ. But then also
M |=D,ε ϕ, since clearly all existential quantifications from ϕ are satisfied within
M, and all universal quantifications have at most ε exceptions in weight. �
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Notice that it is essential that in Theorem 5.1 we exclude the case ε = 0, since
otherwise by Lemma 3.1 we would obtain all classical validities instead of only
the finitely valid sentences.

Corollary 5.1. The set
{
ϕ : ∀M countable∀D∀ε > 0 M |=D,ε ϕ

}

is Π0
1 -complete.

Proof. By Trakhtenbrot’s theorem [9] (a result that was independently obtained
by Craig) the set

{
ϕ : ∀M finite M |= ϕ

}
of finitely valid first-order sentences

is Π0
1 -complete. �

In Terwijn [8] it is proven that for fixed ε we do not have the finite model
property: There are ε-satisfiable sentences without a finite ε-model. (Cf. the
examples quoted on page 446.) Nevertheless, we make the following

Conjecture 5.1. For rational ε ∈ [0, 1), it is decidable whether ϕ is ε-satisfiable.

Note that a positive answer to Conjecture 5.1 does not contradict the undecid-
ability from Theorem 4.1 because, in contrast to the classical case, under the
probabilistic interpretation we do not have that ϕ is valid if and only if ¬ϕ is
not satisfiable, even if ε = 0. For example the sentence ϕ = ∃xR(x) ∧ ∀x¬R(x)
is probabilistically satisfiable, but its negation ¬ϕ is ∀x¬R(x) ∨ ∃xR(x), which
is even classically valid.
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Abstract. A bialgebra is a structure which is simultaneously an alge-
bra and a coalgebra, such that the algebraic and coalgebraic parts are
“compatible”. In this paper, we apply the defining diagrams of algebras,
coalgebras, and bialgebras to categories of semimodules and semimodule
homomorphisms over a commutative semiring. We then show that formal
language theory and the theory of bialgebras have essentially undergone
“convergent evolution”. For example, formal languages correspond to
elements of dual algebras of coalgebras, automata are “pointed represen-
tation objects” of algebras, automaton morphisms are instances of linear
intertwiners, and a construction from the theory of bialgebras shows how
to run two automata in parallel. We also show how to associate an au-
tomaton with an arbitrary algebra, which in the classical case yields the
automaton whose states are formal languages and whose transitions are
given by language differentiation.

1 Introduction

Automata and formal languages are standard objects of study in theoretical
computer science. Classically, they have been studied from the algebraic per-
spective, focusing on transition matrices of automata, algebraic operations de-
fined on formal power series, etc., as in the Kleene-Schützenberger theorem.
Recently, automata have been studied from a coalgebraic perspective, focusing
on the co-operations of transition and observation, and the coalgebraic notion
of bisimulation. See, for example, [16].

In this paper, we treat automata and formal languages from a bialgebraic
perspective: one that includes both algebraic and coalgebraic structures, with
appropriate interactions between the two. This provides a rich framework to
study automata and formal languages. Using bialgebras, we can succinctly ex-
press operations on automata, operations on languages, maps between automata,
language homomorphisms, derivatives of languages, and the interactions among
them. This raises the possibility of using methods and results from bialgebra
theory to study problems in the theory of automata and formal languages such
as the problem of constructing a proof of the equivalence of two nondeterministic
automata accepting the same language (see Section 10 for further discussion).
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We proceed by defining a bialgebra B on the set of all finite words over an
alphabet Σ. The algebraic operation of multiplication describes how to “put
words together”; it is essentially concatenation. The coalgebraic operation of
comultiplication, a map B → B ⊗B, describes how to “split words apart”; there
are several comultiplications of interest. Note that this comultiplication is not
the co-operation on automata used in [16], and so provides another example of
the utility of co-operations in computer science.

Given an algebra A, we are interested in the structures on which A acts, i.e., its
representation objects. We can encode an automaton as a representation object
of A equipped with a start state and an observation function. These automata
compute elements of the dual module of A, which we view as formal languages.
Automaton morphisms, i.e., linear maps between automata which preserve the
language accepted, are shown to be instances of linear intertwiners. Given a
coalgebra C, the dual module of C also corresponds to a set of languages. A
standard result is that a comultiplication on a coalgebra C defines a multipli-
cation on the dual module; i.e., languages can be multiplied. If a structure is a
bialgebra, these two views of formal languages interact nicely, and we can use
a bialgebraic construction to “run two automata in parallel.” In the other di-
rection, given an algebra A, we show how to associate an automaton to A in a
natural way. In the classical case, this corresponds to an automaton with formal
languages for states and transitions given by Brzozowski derivatives.

Other authors have explored the role of bialgebras in the theory of automata
and formal languages. In [8] and [9], Grossman and Larson study the question of
which elements of the dual of a bialgebra can be represented by the action of the
bialgebra on a finite object and prove the Myhill-Nerode theorem using notions
from the theory of algebras. Our definition of an automaton is a straightfor-
ward generalization of theirs. However, we expand the perspective of [8] and [9]
from bialgebras over fields to bialgebras over semirings. This generalization al-
lows (for example) nondeterministic automata and their automaton morphisms
to be expressed in the language of bialgebras. In [4] and [5], Duchamp et al.
examine rationality-preserving operations of languages defined using various co-
multiplications on the algebra of input words, and construct the corresponding
automata. They also apply these ideas to problems in combinatorial physics.

This paper is organized as follows. In Section 2, we define algebras, coalgebras,
and bialgebras over a commutative ring R. In Section 3, we give the definitions
of semirings and semimodules, and recall some useful facts and constructions.
Section 4 contains the definition of the tensor product of two semimodules over
a commutative semiring. Using this definition, in Section 5 we explain how to
apply the defining diagrams of algebras, coalgebras, and bialgebras to categories
of semimodules and semimodule homomorphisms over a commutative semiring.
In Section 6, we use algebras to define automata, and in Section 7, we explore the
relation between coalgebras of words and algebras of formal languages. In Section
8, we discuss bialgebras, tensor products of automata, and convolution products
of languages. Section 9 contains a demonstration of how to endow an arbitrary
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algebra with an automaton structure. The conclusion and future directions are
in Section 10.

2 Algebras, Coalgebras, and Bialgebras

In this section, we define algebras, coalgebras, and bialgebras over a commutative
ring R. This material is completely standard; see [15] or [17] (note that a Hopf
algebra/quantum group is a special case of a bialgebra).

2.1 Algebras

We recall the definition of an R-algebra.

Definition 2.1. Let R be a commutative ring. An R-algebra A is a ring A
together with an injection η : R → A such that η(R) is contained in the center
of A and η(1R) = 1A.

Remark 2.1. The function η is called the unit map. It is frequently defined as
an arbitrary ring homomorphism R → A. Since we require η to be an injection,
we abuse notation and treat R as a subset of A.

To define an R-algebra diagrammatically, consider A as an R-module. Multi-
plication in A is an R-bilinear map A × A → A, by distributivity and the fact
that R is contained in the center of A. By the universal property of the tensor
product, multiplication defines a unique R-linear map μ : A⊗A → A (all tensor
products in this section are over R). Associativity of multiplication means that
the following diagram commutes:

A ⊗ A ⊗ A
μ⊗1A

������������
1A⊗μ

������������

A ⊗ A

μ
������������� A ⊗ A

μ
�������������

A.

The properties of the unit map can be expressed by the following commutative
diagram (Recall that A ⊗ R ∼= A ∼= R ⊗ A):

A

1A

��η⊗1A

1A⊗η
�� A ⊗ A

μ �� A.

Hence the diagrammatic definition of an R-algebra is an R-module A together
with R-module homomorphisms μ : A ⊗ A → A and η : R → A such that the
above diagrams commute.
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Example 2.1. Let K be a field, and let x, y be indeterminates. Let A be the set of
polynomials over noncommuting variables x, y with coefficients in K. Addition
and multiplication of polynomials make A into a ring. To make A into an algebra,
define η(k) to be the constant polynomial f(x, y) = k for k ∈ K.

Structure-preserving maps between algebras are called algebra maps.

Definition 2.2. Let A and B be R-algebras. An algebra map is an R-linear
map
f : A → B such that f(a1a2) = f(a1)f(a2) for all a1, a2 ∈ A, and f(1A) = 1B.

Algebra maps can also be defined diagrammatically.

Definition 2.3. Let A, B, be R-algebras. An algebra morphism is an R-linear
map f : A → B such that

A ⊗ A
f⊗f ��

μA

��

B ⊗ B

μB

��
A

f �� B

R
ηA

����
��

��
�

ηB

		�
��

��
��

�

A
f �� B.

Given two algebras A and B, A ⊗ B becomes an algebra with multiplication

(a ⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.

Diagrammatically, this multiplication can be expressed as a morphism

(A ⊗ B) ⊗ (A ⊗ B)
∼=

1A⊗σ⊗1B

�� (A ⊗ A) ⊗ (B ⊗ B)
μA⊗μB �� A ⊗ B.

Here σ : A ⊗ B → B ⊗ A; σ(a ⊗ b) = (b ⊗ a) is the usual transposition map.
The unit of A ⊗ B is given by

R
∼= �� R ⊗ R

ηA⊗ηB�� A ⊗ B.

2.2 Coalgebras

Dualizing the defining diagrams of an R-algebra yields an R-coalgebra.

Definition 2.4. Let R be a commutative ring. An R-coalgebra (C, Δ, ε) is an
R-module C and an R-linear coassociative function Δ : C → C ⊗ C, called
comultiplication, along with a linear counit map ε : C → R.

Coassociativity of Δ means that the following diagram commutes:

C ⊗ C ⊗ C

C ⊗ C

Δ⊗1C



����������
C ⊗ C

1C⊗Δ
������������

C.

Δ

������������� Δ



�����������
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Diagrammatically, the axioms of the counit map are given by:

C
Δ ��

1C

��
C ⊗ C

ε⊗1C

1C⊗ε
�� C.

When performing calculations involving comultiplication, we often write

Δ(c) =
∑

i

c(1) ⊗ c(2)

to express how c is “split” into elements of C ⊗ C.

Example 2.2. Let P the set of polynomials over noncommuting variables x, y
from Example 2.1. The map Δ : P → P ⊗ P , defined on monomials w by
Δ(w) = w ⊗ w and extended linearly to all of P , is coassociative. The counit
map ε : P → R is evaluation at (1,1).

Coalgebras also have structure-preserving maps.

Definition 2.5. Let C, D be R-coalgebras. A coalgebra map is an R-module
homomorphism g : C → D such that (g ⊗ g) ◦ ΔC = ΔD ◦ g and εC = εD ◦ g.
The diagrams are the duals of the diagrams for algebra maps.

Given coalgebras C and D, there is a natural coalgebra structure on C ⊗ D.
Comultiplication and counit are defined by

C ⊗ D
ΔC⊗ΔD �� (C ⊗ C) ⊗ (D ⊗ D)

∼=
1C⊗σ⊗1D

�� (C ⊗ D) ⊗ (C ⊗ D).

C ⊗ D
εC⊗εD�� R ⊗ R ∼= R.

2.3 Bialgebras

A R-bialgebra is an R-module which is both an R-algebra and an R-coalgebra,
such that the two structures are compatible.

Definition 2.6. Let R be a commutative ring. An R-bialgebra (B, μ, η, Δ, ε) is
an R-module B which is a both an algebra and a coalgebra, satisfying:

Δ(ab) = Δ(a)Δ(b), Δ(1) = 1 ⊗ 1, ε(ab) = ε(a)ε(b), ε(1) = 1.

Note that the product Δ(a)Δ(b) takes place in the algebra structure on
B ⊗ B. The defining diagrams for a bialgebra are as follows:

B ⊗ B
μ ��

Δ⊗Δ

��

B
Δ �� B ⊗ B

B ⊗ B ⊗ B ⊗ B
1B⊗σ⊗1B �� B ⊗ B ⊗ B ⊗ B

μ⊗μ

��
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B ⊗ B
ε⊗ε ��

μ

��

R ⊗ R
η⊗η ��

∼=
��

B ⊗ B

B
ε �� R

η �� B

Δ

��

B
ε

		�
��

��
��

�

R

η
������� 1R �� R.

Remark 2.2. Note the “self-duality” of the defining diagrams of a bialgebra:
swapping Δ for μ, ε for η, and reversing the direction of each arrow yields the
same diagrams.

Example 2.3. Let M be a monoid and R a commutative ring. Let R(M) be the
free R-module on M . Define multiplication in R(M) by extending multiplication
in M linearly. This operation along with unit map η(r) = r1M forms an R-
algebra structure on R(M). There is an R-coalgebra structure on R(M); define

Δ(m) = m ⊗ m

ε(m) = 1

for m ∈ M and extend linearly to R(M). A straightforward calculation shows
that this is an R-bialgebra structure on R(M). Note that this includes Example
2.1 and 2.2 as a special case.

Finally, we give the definition of a bialgebra map.

Definition 2.7. Let B, B′ be bialgebras. A function f : B → B′ is a bialgebra
map if f is both an algebra map and a coalgebra map.

3 Semirings and Semimodules

The above definition of a bialgebra is valid for any commutative ring R. However,
in the theory of automata and formal languages, it is desirable to work over
semirings, which are “rings without subtraction”.

Definition 3.1. A semiring is a structure (K, +, ·, 0, 1) such that (K, +, 0) is a
commutative monoid, (K, ·, 1) is a monoid, and the following laws hold:

a(b + c) = ab + ac

(b + c)a = ba + ca

0a = a0 = 0

for all a, b, c ∈ K. If (K, ·, 1) is a commutative monoid, then K is said to be a
commutative semiring. If (K, +, 0) is an idempotent monoid, then K is said to
be an idempotent semiring.



A Bialgebraic Approach to Automata and Formal Language Theory 457

The representation objects of semirings are known as semimodules.

Definition 3.2. Let K be a semiring. A left K-semimodule is a commutative
monoid M along with a left action of K on M . The action satisfies the following
axioms:

(k1 + k2)m = k1m + k2m

k1(m1 + m2) = k1m1 + k1m2

(k1k2)m = k1(k2m)

1Km = m

k10M = 0M = 0Km1

for all k1, k2 ∈ K, m1, m2 ∈ M . If addition in M is idempotent, M is said to be
an idempotent left K-semimodule.

Right K-semimodules are defined analogously. If K is commutative, then every
left K-semimodule can be regarded as a right K-semimodule, and vice versa. In
this case we omit the words “left” and “right”.

Semimodules can be combined using the operations of direct sum and direct
product.

Definition 3.3. Let K be a commutative semiring and {Mi | i ∈ I} be a col-
lection of K-semimodules for some index set I. Let M be the cartesian product
of the underlying sets. The direct product of the Mi’s, denoted

∏
Mi, is the set

M endowed with pointwise addition and scalar multiplication. The direct sum of
the Mi’s, denoted

⊕
Mi, is the subsemimodule of

∏
Mi in which all but finitely

many of the coordinates are 0.

Homomorphisms, congruence relations, free semimodules, and factor semimod-
ules are all defined standardly. In the sequel, we will use elementary facts about
them without comment. See [7] for definitions and proofs. We end this section a
useful proposition about commutative semimodules.

Proposition 3.1. Let K be a commutative semiring and M a K-semimodule.
The set Hom(M, K) of all K-linear maps from M to K is a K-semimodule.

Proof. The usual proof for a module over a commutative ring is valid in this
case. Commutativity of K is needed to show that the resulting functions are
K-linear.

4 Tensor Products over Commutative Semirings

We wish to apply the defining diagrams of algebras, coalgebras, and bialgebras to
categories of K-semimodules and K-linear maps for K a commutative semiring.
To do this, we need a notion of the tensor product of K-semimodules. Unfor-
tunately, the literature contains multiple inequivalent definitions of the tensor
product of K-semimodules: the tensor product as defined in [7] is not the same
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as the tensor product defined in [14] or [10]. In fact, the tensor product defined
in [7] is the trivial K-semimodule when applied to idempotent K-semimodules.

We proceed by assuming that K is commutative and following the construc-
tion of the tensor product of modules over a commutative ring in [13]. This is
essentially the construction used in [14] and [10]. The point is to work in the
appropriate category and construct an object with the appropriate universal
property.

We recall the universal property of the tensor product over a commutative
ring R. Let M1, M2, ..., Mn be R-modules. Let C be the category whose objects
are n-multilinear maps

f : M1 × M2 × · · · × Mn → F

where F ranges over all R-modules. To define the morphisms of C, let

f : M1 × M2 × · · · × Mn → F and g : M1 × M2 × · · · × Mn → G

be objects of C. A morphism f → g is an R-linear map h such that h ◦ f = g. A
tensor product of M1, M2, ..., Mn, denoted M1 ⊗R M2 ⊗R · · ·⊗R Mn, is an initial
object in this category. When it is clear from context, we omit the subscript on
the ⊗ symbol. By standard category-theoretic arguments, the tensor product is
unique up to isomorphism.

Let K be a commutative semiring and M1, M2, ..., Mn be K-semimodules.
Let T be the free K-semimodule on the set M1 × M2 × · · · × Mn. Let ≡ be the
congruence relation on T generated by the equivalences

(m1, ..., mi +Mi m′
i, ..., mn) ≡ (m1, ..., mi, ..., mn) +T (m1, ..., m

′
i, ..., mn)

(m1, ..., kmi, ..., mn) ≡ k(m1, ..., mi, ..., mn)

for all k ∈ K, mi, m
′
i ∈ Mi, 1 ≤ i ≤ n.

Let i : M1×M2×···×Mn → T be the canonical injection of M1×M2×···×Mn

into T . Let φ be the composition of i and the quotient map q : T → T/ ≡.

Lemma 4.1. The map φ is multilinear and is a tensor product of M1,M2, ..., Mn.

Proof. Multilinearity of φ is obvious from its definition. Let G be a K-
semimodule and

g : M1 × M2 × · · · × Mn → G

be a K-multilinear map. By freeness of T , there is an induced homomorphism
(K-linear map) γ : T → G such that the following diagram commutes:

T

γ

��

M1 × M2 × · · · × Mn

i

����������������

g

���������������

G.
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The homomorphism γ defines a congruence relation, denoted ≡γ , on T via

t ≡γ t′ iff γ(t) = γ(t′)

for all t, t′ ∈ T . Since g is K-multilinear, we have ≡ ⊆ ≡γ , where ≡ is the
congruence relation used in the definition of the tensor product. Therefore γ can
be factored through T/ ≡, and there is a K-linear map g∗ : T/ ≡ → G making
the following diagram commute:

T/ ≡

g∗

��

M1 × M2 × · · · × Mn

φ

���������������

g

��														

G.

The image of φ generates T/ ≡, so g∗ is uniquely determined.

For xi ∈ Mi, we denote φ(x1, x2, ..., xn) by x1 ⊗ x2 ⊗ · · · ⊗ xn. Tensor products
enjoy many useful properties.

Lemma 4.2. Let K be a commutative semiring and N, M1, M2, ..., Mn be K-
semimodules. Then:

1. There is a unique isomorphism

(M1 ⊗ M2) ⊗ M3 → M1 ⊗ (M2 ⊗ M3)

such that (m1 ⊗ m2) ⊗ m3 
→ m1 ⊗ (m2 ⊗ m3) for all mi ∈ Mi.
2. There is a unique isomorphism M1 ⊗ M2 → M2 ⊗ M1 such that

m1 ⊗ m2 
→ m2 ⊗ m1 for all mi ∈ Mi.
3. K ⊗ M1 ∼= M1
4. Let φ : M1 → M3 and ψ : M2 → M4 be K-linear maps. There is a unique

K-linear map φ ⊗ ψ : M1 ⊗ M2 → M3 ⊗ M4 such that
(φ ⊗ ψ)(m1 ⊗ m3) = φ(m1) ⊗ ψ(m2) for all m1 ∈ M1, m2 ∈ M2.

5. N ⊗
⊕n

i=1 Mi
∼=

⊕n
i=1 N ⊗ Mi

Proof. In [13], these properties are proven for tensor products over commutative
rings. The proofs rely on the universal property of the tensor product and are
also valid in this case.

5 K-Algebras, K-Coalgebras, and K-Bialgebras

Let K be a commutative semiring. We define K-algebras, K-coalgebras, and
K-bialgebras by applying the relevant diagrams from Section 2 to the category
of K-semimodules and K-linear maps.
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Example 5.1. Let Σ = {x, y} be a set of noncommuting variables. Let P be
the set of polynomials over Σ with coefficients from the two-element idempotent
semiring K. Multiplication of polynomials is readily seen to be a bilinear function
P × P → P , and therefore corresponds to a K-linear map P ⊗K P → P .
Moreover, this map satisfies the associativity diagram. The map η : K → P
such that η(k) 
→ λxy.k satisfies the defining diagram of the unit map, and so P
together with these maps forms a K-algebra. The map defined on monomials as
Δ(w) = w⊗w and extended linearly to all of P is easily seen to be coassociative.
Defining ε(p(x, y)) = p(1, 1) makes P into a K-coalgebra. Furthermore, these
maps satisfy the compatibility condition of a K-bialgebra, and so P is a K-
bialgebra. We call constructions involving P “the classical case” and use P as
an example throughout the sequel.

More generally, R(G) from Example 2.3 with an underlying commutative
semiring is a K-bialgebra.

6 K-Algebras and Automata

We use actions of K-algebras on K-semimodules to represent transitions of
automata.

Definition 6.1. Let A be a K-algebra and M be a K-semimodule. A left action
of A on M is a K-linear map A ⊗ M → M , denoted �, satisfying

(aa′) � m = a � (a′ � m)

1 � m = m

for all a, a′ ∈ A, m ∈ M .

Right actions are defined analogously as K-linear maps � : M ⊗ A → M . To
define an automaton, we also need a start state and an observation function.

Definition 6.2. A (left) automaton C = (M, A, s, �, α) consists of the following:

1. A K-algebra A, a K-semimodule M , and a left action � of A on M .
2. An element s ∈ M , called the start vector.
3. A linear map α : M → K, called the observation function.

That is, automata are “pointed observable representation objects” of a K-algebra
A. Right automata are defined similarly using a right action �. In the sequel,
we will only give “one side” of a theorem or definition involving automata; the
other follows mutatis mutandis.

Example 6.1. Consider the matrix representation of a classical two-state au-
tomaton with input alphabet {x, y}:

([
1
0

]

,

[
0 x
y 0

]

,

[
1
0

])

.
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The leftmost matrix encodes the fact that the first state of the automaton is the
start state. The 2 × 2-matrix encodes the transitions of the automaton, and the
rightmost encodes the fact that the first state of the automaton is also the accept
state. It is easy to see that this automaton accepts all words in {x, y}∗ of the
form (xy)∗. Cf. automata encodings in [12]. We now translate this automaton
to the framework of K-algebras.

Let K be the two-element idempotent semiring. Let S be the free K-
semimodule on the set {s1, s2}, and let P be defined as in Example 5.1. De-
fine a right action of the generators of P on S as follows:

[
k1s1 k2s2

]
� x =

[
k1s1 k2s2

]
[

0 1
0 0

]

[
k1s1 k2s2

]
� y =

[
k1s1 k2s2

]
[

0 0
1 0

]

and extend to an action of P on M . The start vector is
[
1 0

]

and the observation function is

α
([

k1s1 k2s2
])

=
[
k1s1 k2s2

]
[
1
0

]

.

Automata compute elements of Hom(A, K), as in [8].

Definition 6.3. Let C = (M, A, s, �, α) be a left automaton. The language ac-
cepted by C is the function ρC : A → K such that

ρC(a) = α(a � s).

Lemma 6.1. The function ρC as defined above is an element of Hom(A, K).

Proof. Immediate since � and α are K-linear maps.

Much of the theory of automata concerns functions between automata which
preserve the language accepted; these also have algebraic analogs.

Definition 6.4. Let C = (M, A, sC , �C , αC) and D = (N, A, sD, �D, αD) be left
automata over a K-algebra A. An automaton morphism from C to D is a map
φ : M → N such that

φ(sC) = sD (1)

φ(a �C m) = a �D φ(m) (2)

αC(m) = αD(φ(m)) (3)

for all m ∈ M, n ∈ N, a ∈ A.
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Remark 6.1. Let V and W be modules. In the theory of algebras, a linear func-
tion f : V → W which satisfies (2) is known as a linear intertwiner. In the
theory of automata, functions formally similar to automaton morphisms have
been called linear sequential morphisms [1], relational simulations [2], boolean
bisimulations [6], and disimulations [18]. Disimulations are based on the bisim-
ulation lemma of Kleene algebra [12].

Algebra maps can be used to translate the input of an automaton.

Definition 6.5. Let A, A′ be K-algebras and f : A → A′ a K-algebra map.
Suppose A′ acts on a K-semimodule M . Then A also acts on M according to
the formula

a � m = f(a) � m

for a ∈ A, m ∈ M. This is known as the pullback of the action of A′.

Automata theorists will recognize pullbacks as the main ingredient in the proof
that regular languages are closed under inverse homomorphisms.

Let A be an arbitrary K-algebra. Elements of Hom(A, K) can be added since
Hom(A, K) is a K-semimodule by Proposition 3.1. Given two automata C and
D, there is an automaton accepting ρC + ρD.

Definition 6.6. Let C = (M, A, sC , �C , αC) and D = (N, A, sD, �D, αD) be left
automata over a K-algebra A. The direct sum of C and D is the automaton
C ⊕ D = (M ⊕ N, A, (sC , sD), �C⊕D, αC ⊕ αD) where

�C⊕D : A ⊗ (M ⊕ N) → M ⊕ N,

�C⊕D(a ⊗ (m, n)) = ((a �C m), (a �D n))

and
αC⊕D : M ⊕ N → K,

αC⊕D(m, n) = αC(m) + αD(n).

The verification that �C⊕D is an action of A on M ⊕ N is straightforward.

Theorem 6.1. Let C = (M, A, sC , �C , αC) and (N, A, sD, �D, αD) be left au-
tomata over a K-algebra A. Then ρC⊕D(a) = ρC(a) + ρD(a) for all a ∈ A.

Proof. Follows from the definitions:

ρC⊕D(a) = αC⊕D(a �C⊕D (sC , sD))

= αC⊕D(a �C sC , a �D sD)

= αC(a �C (sC)) + αD(a �D (sD))

= ρC(a) + ρD(a).
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7 K-Coalgebras and Formal Languages

Let C be a K-coalgebra. By Proposition 3.1, Hom(C, K) is a K-semimodule un-
der the operations of pointwise addition and scalar multiplication. The coalgebra
structure of C defines an algebra structure on Hom(C, K).

Definition 7.1. Let (C, Δ, ε) be a K-coalgebra and f, g ∈ Hom(C, K). The con-
volution product of f and g is defined by

f ∗ g = μK ◦ (f ⊗ g) ◦ Δ.

Proposition 7.1. Let (C, +, Δ, ε) be a K-coalgebra. Hom(C, K) is a K-algebra
with associative multiplication given by the convolution product and unit

η : K → Hom(C, K)

η(k) = kε.

In particular, the multiplicative identity is εC .

Proof. The proof for coalgebras over a commutative ring suffices; it uses only
the coassociativity of Δ and the universal property of the tensor product. See
[15] or [17].

Example 7.1. Let P be as in Example 5.1. Note that an element of Hom(P, K)
is completely determined by its values on monomials, which can be viewed as
words in {x, y}∗. Thus there is a one-to-one correspondence between subsets of
{x, y}∗ and elements of Hom(P, K).

The comultiplication defined on monomials as Δ(w) = w ⊗ w and extended
linearly to all of P defines a multiplication (via the convolution product) on
Hom(P, K). This multiplication is essentially pointwise multiplication of char-
acteristic functions, i.e., intersection of subsets of {x, y}∗. The multiplicative
identity is the language {x, y}∗, corresponding to the f ∈ Hom(P, K) such that
f(w) = 1 for all monomials w.

8 K-Bialgebras and Running Automata in Parallel

We have seen that a K-algebra A allows us to define automata which take
elements of A as input. These automata compute elements of Hom(A, K). A
coalgebra structure on A allows to multiply elements of Hom(A, K). We now
discuss the relation between products on Hom(A, K) and automata.

We first treat the case in which A is both a K-algebra and a K-coalgebra,
without assuming that A is a K-bialgebra. Let C = (M, A, sC , �C , αC) and
D = (N, A, sD, �D, αD) be automata. Applying the convolution product to ρC

and ρD yields

ρC ∗ ρD(a) = μK ◦ (
∑

i

ρC(a(1) � sC) ⊗ ρD(a(2) � sD)).
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Consider the following comultiplications defined on the monomials of P :

Δ1(w) = w ⊗ w

Δ2(w) =
∑

w1w2=w

w1 ⊗ w2

extended linearly to P . Also consider the comultiplication defined as

Δ3(x) = 1 ⊗ x + x ⊗ 1

Δ3(y) = 1 ⊗ y + y ⊗ 1

and extended to all of P as a bialgebra. We have seen that Δ1 yields the intersec-
tion of two languages. A simple calculation shows that Δ2 yields concatenation of
languages and Δ3 the shuffle product (see [4] and also [15], Proposition 5.1.4). In
other words, the convolution product determines a formula with comultiplication
as a parameter. Different choices of comultiplication yield different products of
languages. When the languages are given by automata, we can use this formula
to obtain a succinct expression for the product of the two languages.

Of course, it would be even better if we could get an automaton accepting
the product of the two languages. For a K-bialgebra, there is an easy way to
construct such an automaton. It relies on a construction from the theory of
bialgebras.

We emphasize that a bialgebra structure is not necessary for an automaton
accepting ρC ∗ ρD to exist. Consider Δ2 and Δ3. They agree on x and y, which
generate P as an algebra, so at most one of them can be an algebra map; Δ3 is
an algebra map by definition. Therefore Δ2 is not part of a bialgebra, and so we
cannot use the construction to get an automaton accepting the concatenation of
two languages. Such an automaton exists, of course, but it is not given by this
construction.

Suppose now that B is a K-bialgebra. The first step is to define an action of
B on M ⊗ N from actions of B on M and N .

Definition 8.1. Let B be a K-bialgebra which acts on K-semimodules M and
N . Then B acts on M ⊗ N according to the formula

b �M⊗N (m ⊗ n) =
∑

i

b(1) �M m ⊗ b(2) �N n.

See Chapter 1 of [15] for a proof that this is an action.

Definition 8.2. Let C = (M, B, sC , �C , αC) and D = (N, B, sD, �D, αD) be
automata over a K-bialgebra B. The tensor product of C and D, denoted C⊗D,
is the automaton (M ⊗ N, B, sC ⊗ sD, �M⊗N , αC ⊗ αD).

Remark 8.1. Since K ⊗ K ∼= K, αM ⊗ αN : M ⊗ N → K.

Theorem 8.1. Let C = (M, B, sC , �C , αC) and D = (N, B, sD, �D, αD) be left
automata over a K-bialgebra B. Then ρC⊗D = ρC ∗ ρD.



A Bialgebraic Approach to Automata and Formal Language Theory 465

Proof.
ρC⊗D(b) = αC⊗D(b �C⊗D (sC ⊗ sD))

= αC⊗D(
∑

i

b(1) �C sC ⊗ b(2) �D sD)

∑

i

αC(b(1) �C sC)αD(b(2) �D sD)

= ρC ∗ ρD(b).

In the classical case, this corresponds to “running two automata in parallel”.

9 Algebras to Automata

Finally, we show how to define an automaton on an arbitrary K-algebra A.

Lemma 9.1. Let A be a K-algebra which acts on a K-semimodule M from
the left. For a ∈ A, x ∈ M , let ha(x) = ax. Then Hom(M, K) is a right A-
semimodule via

f � a = f ◦ ha(x)

for f ∈Hom(M, K), a ∈ A.

Proof. This is another standard algebraic fact. To see that the map
� :Hom(M, K) ⊗ A → Hom(M, K) is K-linear, just verify that the associated
map Hom(M, K) × A → Hom(M, K) is K-bilinear. The function � defines a
right action on Hom(M, K) because

f � ab(x) = f(abx) = (f ◦ ha) ◦ hb(x) = (f � a) � b(x).

for a, b ∈ A, x ∈ M .

Given a K-algebra A, multiplication defines a left K-semimodule action of A on
itself, and hence a right K-semimodule action of A on Hom(A, K).

Theorem 9.1. Let K be a commutative semiring and A a K-algebra. Let f ∈
Hom(A, K). Then (Hom(A, K), A, f, �, α) is an automaton, where

f � a = f ◦ ha(x),

α(f) = f(1).

Proof. This follows from Lemma 9.1 and the verification that α : Hom(A, K) →
K is K-linear, which is straightforward.

Example 9.1. Let P be as in Example 5.1. As shown in Example 7.1, we can view
elements of Hom(P, K) as formal languages over {x, y}. For f ∈ Hom(P, K), α(f)
is 1 if and only if the associated language contains the empty word, and 0 oth-
erwise. For each f ∈ Hom(P, K), f ◦ hx(w) = f(xw). That is,

f ◦ hx(w) = 1 ↔ f(xw) = 1.

In other words, f �x is the Brzozowski derivative of f with respect to the letter x.
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10 Conclusion and Future Work

We have shown that automata and formal languages can be expressed naturally
using the language of bialgebras, and that the two theories have several analogous
structures and constructions. The next step is to use this correspondence to solve
problems of interest to computer science. We give two examples that we hope to
develop.

Proofs and Proof Complexity

Automaton morphisms are interesting for their proof-theoretic properties. Given
any two equivalent (classical) finite nondeterministic automata C and D (with-
out ε-transitions), there exists a sequence of automata and automaton morphisms
in the indicated directions witnessing the equivalence:

C ← accessible dfa → minimal dfa ← accessible dfa → D.

The automaton morphisms can be encoded as matrices over the two-element
idempotent semiring. Here “accessible dfa” refers to the dfa obtained by the
subset construction, with the inaccessible states removed. This means that au-
tomaton morphisms can be used as the sole “rule of inference” in a complete
proof system for (classical) finite automaton equivalence [18]. The above proofs
are exponential in size in the worst case, because of determinization. However,
given two equivalent finite automata, there may be other, shorter proofs. A
trivial example is the fact that two isomorphic automata are related by an au-
tomaton morphism; there is no need to determinize. We hope to use the theory
of (bi)algebras to understand the question: “What makes it difficult to prove
two equivalent automata equivalent?” in this proof system. We would also like
to investigate the relation between final automata and coinduction [16] and the
automaton in Example 9.1.

Other Types of Automata

We plan to investigate other types of automata using this framework - for exam-
ple, stochastic automata, quantum automata [3] or automata on guarded strings
[11]. The hope is to provide a general framework in which generalizes related
concepts in the theory of automata and “automaton-like” structures, and also
to adapt the above proof system to these cases.
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