
316

Linear Logic in
Computer Science
Edited by
Thomas Ehrhard, Jean-Yves Girard, Paul Ruet

and Philip Scott

CAMBRIDGE
UNIVERSITY PRESS

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor:
Professor N.J. Hitchin,
Mathematical Institute, 24-29 St. Giles, Oxford OX1 3DP, UK

All the titles listed below can be obtained from good booksellers or from
Cambridge University Press. For a complete series listing visit
http://publishing.cambridge.org/stm/mathematics/lmsn/

285. Rational points on curves over finite fields, H. NIEDERREITER &
C. XING

286. Clifford algebras and spinors, 2nd edn, P. LoUNESTO
287. Topics on Riemann surfaces and Fuchsian groups, E. BUJALANCE,

A.F. COSTA & E. MARTINEZ (eds)
288. Surveys in combinatorics, 2001, J.W.P. HIRSCHFELD (ed)
289. Aspects of Sobolev-type inequalities, L. SALOFFE-COSTE
290. Quantum groups and Lie theory, A. PRESSLEY
291. Tits buildings and the model theory of groups, K. TENT
292. A quantum groups primer, S. MAJID
293. Second order partial differential equations in Hilbert spaces,

C. DA PRATO & J. ZABCZYK
294. Introduction to operator space theory, G. PISIER
295. Geometry and integrability, L. MASON & Y. NUTKU (eds)
296. Lectures on invariant theory, I. DOLGACHEV
297. The homotopy theory of simply-connected 4-manifolds, H.J. BAUES
298. Higher operads, higher categories, T. LEINSTER
299. Kleinian groups and hyperbolic 3-manifolds, Y. KOMORI,

V. MARKOVIC & C. SERIES (eds)
300. Introduction to Mobius differential geometry, U. HERTRICH-JEROMIN
301. Stable modules and the D(2)-problem, F.A.E. JOHNSON
302. Discrete and continuous nonlinear Schrodinger systems, M. ABLOWITZ,

B. PRINARI & D. TRUBATCH
303. Number theory and algebraic geometry M. REID & A. SKOROBOGATOV
304. Groups St Andrews 2001 in Oxford vol. 1, C.M. CAMPBELL,

E.F. ROBERTSON & G.C. SMITH (eds)
305. Groups St Andrews 2001 in Oxford vol. 2, C.M. CAMPBELL,

E.F. ROBERTSON & G.C. SMITH (eds)
306. Peyresq lectures on geometric mechanics and symmetry, J. MONTALDI

& T. RATIU (eds)
307. Surveys in combinatorics, 2003, C.D. WENSLEY (ed)
308. Topology, geometry and quantum field theory, U.L. TILLMANN (ed)
309. Corings and comodules, T. BRZEZINSKI & R. WISBAUER
310. Topics in dynamics and ergodic theory, S. BEZUGLYI & S. KOLYADA

(eds)
311. Groups: topological, combinatorial and arithmetic aspects,

T.W. MULLER (ed)
312. Foundations of computational mathematics: Minneapolis, 2002, F.

CUCKER et at. (eds)
313. Transcendental aspects of algebraic cycles, S. MULLER-STACH & C.

PETERS (eds)

London Mathematical Society Lecture Note Series: 316

Linear Logic in Computer Science

Edited by

Thomas Ehrhard
Institut de Mathcmatiques de Luminy, Marseille

Jean-Yves Girard
Institut de MathEmatiques de Luminy, Marseille

Paul Ruet
Institut de Mathematiques de Luminy, Marseille

Philip Scott
Department of Mathematics and Statistics, University of Ottawa

CAMBRIDGE
UNIVERSITY PRESS

'UBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge C132 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Ruiz de Alarc6n 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2004

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 10/13pt System LATJC2E [AUTHOR]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data available

ISBN 0 521 60857 0 paperback

Contents

Preface page vii
List of contributors ix
Part one: Tutorials 1

1 Category Theory for Linear Logicians R. Blute and Ph. Scott 3

2 Proof Nets and the a-Calculus S. Guerrini 65

3 An Overview of Linear Logic Programming D. Miller 119

4 Linearity and Nonlinearity in Distributed Computation G. Win-
skel 151

Part two: Refereed Articles 189
5 An Axiomatic Approach to Structural Rules for Locative Linear

Logic J.-M. Andreoli 191

6 An Introduction to Uniformity in Ludics C. Faggian, M.-R.
Fleury-Donnadieu and M. Quatrini 236

7 Slicing Polarized Additive Normalization 0. Laurent, L. Tor-
tora de Falco 247

8 A Topological Correctness Criterion for Multiplicative Non-
Commutative Logic P.-A. Mellies 283

Part three: Invited Articles 323
9 Bicategories in Algebra and Linguistics J. Lambek 325
10 Between Logic and Quantic: a Tract J.-Y. Girard 346

v

Preface

This volume is published in honour of the Azores summer school on Lin-
ear Logic and Computer Science held August 30 - Sept. 7, 2000 in St.
Miguel, Azores. It can be considered as the third in a series, following a
volume dedicated to the Cornell Linear Logic workshop of 1993 published
as vol. 222 in the LMSLNS series of Cambridge University Press, and
volumes dedicated to the Tokyo meeting of 1996 published as vol. 227(1-
2) and 294(3) of Theoretical Computer Science. The summer school was
attended by students and researchers from the different sites of the EU
Training and Mobility of Researchers project "Linear Logic in Computer
Science" (ERBFMRX-CT-97-0170, 1998 - 2002). The Organizing Com-
mittee consisted of: V. Michele Abrusci (University of Rome), Nuno
Barreiro (University of Lisbon), and Jose Luiz Fiadeiro (University of
Lisbon). The school included a series of tutorials, together with thematic
sessions covering applications and new directions.

The main purpose of this book is twofold: to give a detailed overview
of some well-established developments of Linear Logic under the guise
of four tutorials, and to present some of the more recent advances and
new directions in the subject through refereed contributions and invited
papers. This book does not pretend to exhaustively cover the field of
Linear Logic. In the spirit of the TMR "Linear" network, of which the
Azores summer school was the climax, we decided to pay particular at-
tention in this volume to the connections of Linear Logic with Computer
Science.

We thank the authors of the various contributions for their wide-
ranging and accessible presentations.

October 2003

Thomas Ehrhard
Jean-Yves Girard

Paul Ruet
Philip Scott

vii

Contributors

J.-M. Andreoli
Xerox Research Centre Europe, Grenoble, and Institut de Mathematiques
de Luminy. 163 avenue de Luminy, Case 907, 13288 Marseille Cedex
9, France.
andreoli®iml.univ-mrs.fr

R. Blute

Department of Mathematics and Statistics, University of Ottawa. Ot-
tawa, Ontario, KiN 6N5, Canada.
rblute®mathstat.uottawa.ca

C. Faggian
Dipartimento di Matematica Pura ed Applicata, University degli Studi
di Padova. Via Belzoni 7, 35131 Padova, Italy.
claudiat@math. unipd. it

M.-R. Fleury-Donnadieu
Institut de Mathematiques de Luminy. 163 avenue de Luminy, Case
907, 13288 Marseille Cedex 9, France.
mrd(Diml.univ-mrs.fr

J.-Y. Girard
Institut de Mathematiques de Luminy. 163 avenue de Luminy, Case
907, 13288 Marseille Cedex 9, France.
girardQiml.univ-mrs.fr

S. Guerrini
Dipartimento di Informatica, University degli Studi di Roma La
Sapienza. Via Salaria, 113, 00198 Roma, Italy.
guerrini®dsi.uniromal.it

ix

x Contributors

J. Lambek
Department of Mathematics and Statistics, McGill University. 805
Sherbrooke W, Montreal, Quebec, H3A 2K6, Canada.
lambek®math.mcgill.ca
0. Laurent
Preuves, Programmes et Systemes, Universite Denis Diderot. Case
7014, 2 Place Jussieu, 75251 Paris Cedex 05, France.
Olivier.Laurent@pps.jussieu.fr
P.-A. Mellies
Preuves, Programmes et Systemes, Universite Denis Diderot. Case
7014, 2 Place Jussieu, 75251 Paris Cedex 05, France.
Paul-Andre.Mellies®pps.jussieu.fr
D. Miller
INRIA - Futurs . Laboratoire d'Informatique LIX, Ecole Polytechnique.
Rue de Saclay, 91128 Palaiseau Cedex France.
dale.miller®inria.fr
M. Quatrini
Institut de Mathematiques de Luminy. 163 avenue de Luminy, Case
907, 13288 Marseille Cedex 9, France.
quatrini@iml.univ-mrs.fr

Ph. Scott
Department of Mathematics and Statistics, University of Ottawa. Ot-
tawa, Ontario, KIN 6N5, Canada.
phil®mathstat.uottawa.ca

L. Tortora de Falco

Dipartimento di Filosofia, Universite "Roma Tre". Via Ostiense, 234,
00146 Roma, Italy.
tortora®uniroma3.it

G. Winskel
Computer Laboratory, University of Cambridge. William Gates Build-
ing, JJ Thomson Avenue, Cambridge CB3 OFD, UK.
Glynn.Winskel®cl.cam.ac.uk

Part one
Tutorials

1

Category Theory for Linear Logicians
Richard Blute and Philip Scott

Department of Mathematics and Statistics
University of Ottawa

Abstract

This paper presents an introduction to category theory with an emphasis
on those aspects relevant to the analysis of the model theory of linear
logic. With this in mind, we focus on the basic definitions of category
theory and categorical logic.

An analysis of cartesian and cartesian closed categories and their re-
lation to intuitionistic logic is followed by a consideration of symmetric
monoidal closed, linearly distributive and *-autonomous categories and
their relation to multiplicative linear logic. We examine nonsymmetric
monoidal categories, and consider them as models of noncommutative
linear logic. We introduce traced monoidal categories, and discuss their
relation to the geometry of interaction. The necessary aspects of the
theory of monads is introduced in order to describe the categorical mod-
elling of the exponentials. We conclude by briefly describing the notion
of full completeness, a strong form of categorical completeness, which
originated in the categorical model theory of linear logic.

No knowledge of category theory is assumed, but we do assume knowl-
edge of linear logic sequent calculus and the standard models of linear
logic, and modest familiarity with typed lambda calculus.

1.0 Introduction

Category theory arose as an organizing framework for expressing the
maturality of certain constructions in algebraic topology. Its subsequent
applicability, both as a language for simply expressing complex relation-
ships between mathematical structures and as a mathematical theory
in its own right, is remarkable. Categorical principles have been put to

3

4 R. Blute and Ph. Scott

good use in virtually every branch of mathematics, in most cases leading
to profound new understandings.

Roughly a category is an abstraction of the principle that the mor-
phisms between objects of interest are just as important as the objects
themselves. So a category will consist of two classes, the class of ob-
jects and the class of morphisms between objects. One must have a
composition law, and each object must come equipped with a specified
identity morphism. This data must satisfy some evident axioms. From
this simple definition, an enormous theory follows. For example, one
next defines morphisms between categories; these are functors. One can
go on to define morphisms between functors; these are natural transfor-
mations, and on and on. There is a remarkably rich interaction between
these structures. As expositions of this theory, we highly recommend
[53, 21].

Categorical logic begins with the idea that, given a logic, one can
form a category whose objects are formulas and whose morphisms are
(equivalence classes of) proofs. The question of the proper notion of
equivalence is extremely important and delicate. We will examine it
in some detail below. There are several benefits to the formation of
this category. First, under this interpretation, the logic's connectives
are naturally exhibited as functors, and the logic's inference rules are
exhibited as natural transformations. Then models of the logic can be
simply defined as structure-preserving functors from this syntactic cate-
gory to a category with the appropriate structure. Second, the category
so formed will typically be freely generated in a certain sense, and can
thus be used to derive general information about all categories of the
same structure. The most well-developped examples of this idea are
the relations between intuitionistic logic and cartesian closed categories,
and between linear logic and *-autonomous categories. Both of these
relationships will be described below.

The goal of this paper is to establish sufficient categorical background
to understand these relationships and their consequences. We will in-
troduce cartesian closed categories (cccs) and describe the translation
between cccs and intuitionistic logic. This is the most well-established
example of categorical logic, and is the subject of the book [51]. This
is followed by a consideration of monoidal, symmetric monoidal closed,
linearly distributive and *-autonomous categories and the translation be-
tween these structures and multiplicative linear logic. One of the most
intriguing aspects of linear logic is that it is sufficiently flexible as a log-
ical system to allow one to define noncommutative versions. With this

Category Theory for Linear Logicians 5

in mind, we examine nonsymmetric monoidal categories, and consider
them as models of noncommutative linear logic. We will especially focus
on examples arising from the representation theory of Hopf algebras.

We also introduce traced monoidal categories, which arose indepen-
dently of linear logic, but were subsequently seen to provide the appro-
priate framework for the analysis of Girard's geometry of interaction.
Computationally, the most important fragment of linear logic is the ex-
ponential fragment, and its categorical structure leads one to the notion
of Seely model. The necessary aspects of the theory of monads is in-
troduced in order to describe the categorical modelling of the exponen-
tials. We conclude by briefly describing the notion of full completeness,
a strong form of categorical completeness, which originated in the cate-
gorical model theory of linear logic [3]. Full completeness is an excellent
example of the influence of categorical principles on logical semantics,
not just for linear logic, but for general logics.

No knowledge of category theory is assumed, but we do assume knowl-
edge of linear logic sequent calculus and the standard models of linear
logic. Also it would help to have a modest familiarity with typed lambda
calculus (as in Girard's [39]). This paper may be considered a compan-
ion to the article [59], but stressing the linear logic aspects. We note
that we only focus on aspects of category theory of immediate relevance
to linear logic. So important topics like limits and colimits are omitted.

1.1 Categories, Functors, Natural Transformations
1.1.1 Basics of Categories

A category C consists of two classes, Objects and Arrows, together with
dom

two functions Arrows Objects satisfying the following properties
cod

(we write A f B for: f E Arrows, dom(f) = A and cod(f) = B):

There are identity arrows A
idA A, for each object A,

There is a partially-defined binary composition operation on arrows,
denoted by juxtaposition,

AFB B-C
ABC

(defined only when doin(g) = cod(f)) satisfying the following equa-
tions:

6 R. Blute and Ph. Scott

(i) f idA = f = idB f, where A - B,
(ii) h(gf) _ (hg)f, where A L- B g) C - h , D.

A category is called large or small depending upon whether its class of
objects is respectively a proper class or a set, in the sense of Godel-
Bernays set theory. We denote by C(A, B) the collection of arrows A -+
B in the category C. A category is locally small if C(A, B) is a set,
for all objects A, B. It is convenient to represent arrows graphically.
Equations in categories are also typically represented graphically and
are called commutative diagrams.

Many familiar classes of structures in mathematics and logic can be
organized into categories. Here are some basic examples. Verification
that the set of arrows is closed under composition as well as satisfying
the axioms of a category is left as an exercise.

Set: This (large) category has the class of all sets as Objects, with all
set-theoretic functions as Arrows. Identity arrows and composition of
arrows are defined in the usual way.
Rel: This has the same objects as Set, but an arrow A R--' B is a
binary relation R C A x B. Here composition is given by relational
product, i.e. given A -L B --S-+ C,

A
SR C {(a, c) E A X C I]b E B such that (a, b) E R & (b, c) E S}

while the identity arrows A
.

A are given by the diagonal relations:
idA={(a,a)IaEA}.
Universal Algebras: Here Objects can be any equational class of
algebras (e.g. semigroups, monoids, groups, rings, lattices, heyting or
boolean algebras, . .). Arrows are homomorphisms, i.e. set-theoretic
functions preserving the given structure. Composition and identities
are induced from Set. We use boldface notation for the names of the
associated categories, e.g. Group, Lat, Heyt, for the categories of
groups, lattices, and Heyting algebras, resp.
Veck: Here Objects are vector spaces over a field k, and Arrows are
k-linear maps. We usually omit the subscript k, and write Vec for
short. An important subcategory of Vec is the category Vecfd of
finite dimensional vector spaces and linear maps. Of course, one can
also consider various classes of topological vector spaces and normed
spaces, with appropriate notions of map.
Top: Here objects are topological spaces and morphisms are contin-
uous maps. One can also consider various homotopy categories, i.e.

Category Theory for Linear Logicians 7

where the morphisms are homotopy equivalence classes of continuous
maps. It is from this sort of example that category theory originally
arose.
Poset: Here the objects are partially-ordered sets and morphisms are
monotone maps. A particularly important example arising in theo-
retical computer science is the category w-CPO of posets in which
ascending countable chains ai < ai+1 < ai+2 < ... have suprema,
and in which morphisms are poset maps preserving suprema of count-
able chains. Composition and identities are inherited from Set. For
an introduction to this and other aspects of domain theory, see [8].

Of course, those areas of mathematics that heavily use category theory,
e.g. algebraic topology, algebraic geometry, and homological algebra,
are replete with many more sophisticated examples.

The previous examples were large categories, i.e. in which the collec-
tions of objects form proper classes in the sense of set theory. We now
present some "small" categories, based on much smaller collections of
objects and arrows:

One: The category with one object and one (identity) arrow.
Discrete categories: These are categories where the only arrows are
identities. A set X becomes a discrete category, by letting the objects
be the elements of X, and adding an identity arrow x -, x for each
x E X. All (small) discrete categories arise in this way.
A monoid: A monoid M gives a category with one object, call it
CM, as follows: if the single object is *, we define CM(*, *) = M.
Composition of maps is multiplication in the monoid. Conversely,
note that every category C with one object corresponds to a monoid,
namely C(*, *).
A preorder: A preordered set P = (P, <) (where < is a reflexive &
transitive relation) may be considered as a category, whose objects are
just the elements of P and in which we define P(a, b) = {*} if a < b
and P(a, b) = 0 if a b. Thus, given two objects a, b E IP, there is at
most one arrow from a to b; moreover, there is an arrow a -, b in P
exactly when a < b. In this case, the category laws are exactly the
preorder conditions.
Graphs and finite categories: A graph (more precisely, a directed
multigraph), consists of a pair of sets, called Objects and Arrows,

dom
together with two functions Arrows Objects. Every (small) cat-

cod
egory has an underlying graph, obtained by simply ignoring the other

8 R. Blute and Ph. Scott

data beyond dom, cod. In particular, any finite category can be rep-
resented by simply drawing its underlying graph and assuming the
existence of all well-defined compositions of arrows. Notice that all
vertices in the underlying graph of a category have loops (given by
identity arrows). Indeed, another way of looking at a category is as a
kind of graph with additional structure (i.e. identity edges, a compo-
sition law and equations).

Graphs form a category Graph whose objects are graphs and whose

arrows are pairs of functions Arrowso Arrows, and Objectso 9-+
Objects, such that gdomo = dome f and gcodo = cods f.

1.1.2 Deductive systems as categories
In the 1960's, Lambek introduced the novel idea of using Gentzen's
methods in category theory and linguistics. His new approach involved
the use of proof-theoretical methods in constructing free categories and
for solving coherence (i.e. decision) problems. At the same time he
emphasized a fundamental new idea: arrows in (freely generated) cate-
gories are equivalence classes of proofs. Lambek's work raises a question
of particular relevance to linear logicians: what should the equations
between proofs be? There is no ultimate answer except that Lambek's
work would seem to say that the equations should be elegant and natu-
ral from the viewpoint of category theory. This section will follow [51]
closely. For more on the history of this area, see [51] and the references
therein.

Definition 1.1 A deductive system is a labelled directed graph (whose
objects are called formulas and whose arrows are called labelled se-
quents). There are certain specified arrows (called axioms) among which

are arrows AidA A, for all formulas A, and certain specified rules (called
"inference rules") for generating new arrows from old ones, among which

AfB B
cut

is the composition rule called "cut": A 9f , C , for all for-
mulas A, B, C.

A deductive system freely generates "labelled proof trees" by the follow-
ing procedure:

Axioms are proof trees.
The set of proof trees must be closed under the inference rules.

Category Theory for Linear Logicians 9

The root of a proof tree is called a "provable sequent", or "proof' for
short, while the leaves of the tree are axioms.

Example 1.2 Let g be a graph. The deductive system freely generated
from G is defined as follows:

(i) The formulas are the objects of 4 (also called atomic formulas).

(ii) The axioms consist of a distinguished identity axiom A id-" A,

for each formula A, together with all the arrows of G (the latter
are sometimes called nonlogical axioms).

(iii) Cut is the only rule of inference.

A deductive system freely generated from g forms a category F(g), the
category freely generated from g, whose objects are all the formulas and
whose arrows are equivalence classes of proofs. Namely, we impose equa-
tions between proof trees by taking the congruence relation generated
by the following equations:

A-*B BBB
AZ- B

AAA A-B
Af- B

= AFB

= A

B-C C-4D A-B B-9+C
A-4B B-9D _ A-9C Ch--+

A
(hg) f h(9f)

D A - D
An important special case is the following:

Example 1.3 (Deductive systems generated by discrete graphs)
A graph go is discrete if it has no arrows: it may be identified with a
set (of objects). The deductive system generated from the set go has
only atomic formulas (objects of 90) and for axioms it has only identity

axioms A ZdA, A, for atomic formulas A. F(go) is called the free category
generated from the set of objects go.

We will later consider freely generated categories with additional struc-
ture (i.e. with additional operations on formulas, and additional axioms
and rules of inference). It is possible conversely to define a category
as a certain kind of deductive system, although in that case it will not

10 R. Blute and Ph. Scott

necessarily be freely generated: the class of objects may simply be spec-
ified and the class of arrows merely closed under appropriate operations
and equations (see [51]). Moreover, if the category is large, like Set,
the objects and arrows form proper classes, which is not exactly what
logicians are familiar with.

1.1.3 Operations on categories
There are many ways of forming new categories out of old ones. Two
basic operations are the following:

Dualization: If C is a category, so is its dual COP, with the same objects,
but whose arrows are reversed (i.e. interchange dory and cod).
Clearly (C°p)°P = C and reversing all arrows changes commuta-
tive diagrams in C to commutative diagrams in C°p. In other
words, we have the following bijective correspondence:

f: in C
f : B--4A in COP

Products: If C, D are categories, so is their cartesian product C x D,
with the obvious structure: objects are pairs of objects, arrows
are pairs of arrows, composition and identities are defined com-
ponentwise.

Finally, we end with a useful notion:

Definition 1.4 A subcategory C of a category B is any category whose
class of objects and arrows are contained in those of B, respectively,
and which is closed under the "operations" in B of domain, codornain,
composition, and identity. C is a full subcategory of B if for all objects
A, B E C, C(A, B) = B(A, B). In other words, a full subcategory is
determined by just restricting the class of objects, since the arrows are
predetermined by B.

For example, we often consider small subcategories whose objects are
of "bounded size" within the large examples above: e.g. the full sub-
categories of (i) finite sets and (ii) finite dimensional vector spaces, and
more generally, for a fixed infinite cardinal n, sets (resp. vector spaces)
of cardinality (resp. dimension) bounded by ,.

Category Theory for Linear Logicians 11

1.1.4 Functors

If C, D are categories, a functor F : C --> D is a pair F = (Fob, Farr),
where Fob : Objects(C) -4 Objects(D), and similarly for arrows, satis-

fying the following (we omit the subscripts ob, arr): if A - B then
FA

F
FB with: F(gf) = F(g)F(f) and F(idA) = idFA. A functor

F : C°P -, D is sometimes called contravariant. From the definition of
the opposite category, a contravariant functor F preserves the identity
arrows, but reverses composition: F(gf) = F(f)F(g).

Examples 1.5

1. Forgetful (also called Underlying) Functors. These include forget-
ful functors U : Posets --> Set, U : Top -, Set, U : Alg -+ Set
(where Alg is any category of universal algebras and homomor-
phisms between them). U maps objects and arrows to their un-
derlying set (omitting the other structure).

Sometimes, one only forgets part of the structure, e.g. there are
several forgetful functors on TopGrp; we have U, : TopGrp -+
Grp which maps a topological group and a continuous group ho-
momorphism to its underlying group (and the underlying group
homomorphism), and similarly there is U2 : TopGrp -' Top.

2. Representable (or Hom) Functors. If A E C, we have the dual co-
and contravariant horns:

1. Covariant horn : C(A, -) : C --+ Set given by:

B

B -+ C

C(A, B)

C(A, f) : C(A, B) C(A, C)

where C(A, f)(g) = fg.

2. Contravariant horn: C(-, A) : C°P - Set given by:

B

B -I C

C(B, A)

C(f, A) : C(C, A) - C(B, A)

where C(A, f)(g) = gf.

3. Powerset Functors. There are co- and contravariant powerset
functors on Set:

12 R. Blute and Ph. Scott

(i) Covariant P : Set -+ Set given by:

A F--+ P(A)={X IXCAl
A -f-+ B P - - + P

where P(f)(X) = f [X]

(ii) Contravariant P : Set°" -+ Set given by:

A F-+ P(A)={X I XCAl
A f B - B AP f P P+- -+) -)() : ((

where P(f)(Y) = f-1[Y]

4. Free Algebra Functors. F : Set --+ Alg, where F(X) = the free
algebra generated by set X (e.g. Alg can be Mon, Grp, Vec,
etc.)

5. Identity and Inclusion Functors: For example, Id : Set -+ Set,
and the evident inclusion Inc : Vecfd °-+ Vec of finite dimensional
vector spaces among all vector spaces.

6. Dual Spaces: Let V E Vec and V1 = Lin(V, k), the dual space
of V. Exercise: show there are two functors: (-)1 : Vec°1' -+
Vec and (-)11 : Vec -+ Vec.
Typically, this functor would be denoted V*, but we will suggest
that in some settings, this notion of linear dual actually models
linear negation quite successfully, hence our choice of notation.

7. Let P and P' be posets, viewed as categories. We leave it to the
reader to verify that a functor F : P--+P' is the same thing as an
order-preserving function from P to P'.

1.1.5 Natural Transformations
Given functors F, G : C --+ D, a natural transformation is a family of
arrows, indexed by the objects of C, {BC : FC - GC I C E C} such that
for every f : C -+ D, the following diagram commutes:

FC B GC

Ffl I Gf

FD GD
Given n-ary functors F, G : C' -+ D, a family of arrows, indexed by

n-tuples of objects of C, aA,,... A : F(Al, , An) -+ G(Al, - - . , A,,,) is
said to be natural in A, if fixing all the other arguments A; , j 54 i, the

Category Theory for Linear Logicians 13

resultant family a... ,Ai... : F(. , Ai,) - G(. , Ai,.) determines
a natural transformation between functors C - D with respect to the
ith argument as variable.

Examples 1.6

1. Double Dual: Define B : Id Vec -4 Vec, where
By : V -, V11 is given by:

Ov(x)(f) = f(x) for f EV1,xEV.

Exercise: Verify that B is well-defined, and that the appropriate
natural transformation diagram commutes. It may be shown that
By is an isomorphism if and only if V is finite dimensional. How-
ever, note that if V is indeed finite dimensional, there is no natural
isomorphism q : Id -, (-)l, even though for each V, V = Vl in
this case. The reason is that any such isomorphism depends on a
choice of basis.

2. Functor Categories: Let C, D be categories, with C small. Let
Funct(C, D) be the category whose objects are functors from
C to D, and whose arrows are natural transformations between
them, where we compose natural transformations as follows: given
F, G, H E Funct(C, D), define

(V) 0) A HA = FA ----+ GA ___+ HA

for each object A E C. In particular, if C is small, and D = Set,
the category Funct(C°p, D) = Setc°7' is called the category of
presheaves on C.
If C is the small category with two objects and two non-identity
arrows, -a, one can identify Setcop with the category Graph
of small graphs.

3. There is a category Cat of small categories and functors between
them. There is a forgetful functor U : Cat ---r Graph which
associates to every small category C its underlying graph.

1.1.6 Adjoints and Equivalences
An arrow in a category is an isomorphism or iso if it has a two-sided
inverse. This corresponds to the usual mathematical notion of "isomor-
phism" in most familiar categories. In the case of functor categories, we
obtain the following related notions:

14 R. Blute and Ph. Scott

Natural Isomorphisms: A natural transformation F B + G is a natural
isomorphism if, for each A, FA OA) GA is an iso. We often write
F G (leaving 0 implicit) to denote such a natural isomorphism.

F
Isos of Categories: A pair of functors C . D is an isomorphism

G
of categories if GF = Idc and FG = IdD. This is much too strong
and rarely occurs in mathematics. A much more reasonable notion is
the following:

F
Natural Equivalence: A pair of functors C ; -- D is a natural equiv-

G
alence of categories if there are natural isomorphisms GF = Idc and
FG = IdD. We shall see many examples of this notion below.

Most mathematical duality theories, as in the case of the famous rep-
resentation theorems of Stone, Gelfand, and Pontrjagin, amount to
"contravariant" natural equivalences C = D°P. Barr's book [10] on
*-autonomous categories, which analyzes such duality theories, is an
important source of concrete models for (fragments of) linear logic. We
shall discuss this later.

One of the most important concepts in category theory is that of
F

adjoint functors. Given functors D C, we say F is left adjoint to
U

U (denoted F -I U) if there is a natural isomorphism

D(FC, D) = C(C, UD) .

That is, there is a family of arrows {ac,D : D(FC, D) -+ C(C, UD)}
which determines a natural isomorphism of functors (natural in C and
D), a-,- : D(F-, -) , C(-, U-). This isomorphism determines a
natural bijection of arrows

FC -+ D in D

C -+ UD in C.

Indeed, the statement that F is left adjoint to U is equivalent to the
following universal mapping property of the functor F: for each object
C E C, there is an object FC E D and an arrow rlC : C -+ UFC, such
that for any arrow f : C --+ UD E C, there is a unique f FC --+ D E D
satisfying: U(f*)77G = f, i.e.

Category Theory for Linear Logicians 15

UFC

77C

1

C f- UD

Exercise 1.7 (Adjoints)

(i) Prove the equivalence of F being left adjoint to U and the uni-
versal mapping property above.

(ii) Given adjoints F -1 U as above, show there are natural trans-
formations g : Idc -4 UF and E : FU -, Ida satisfying
(UE)(r)U) = idu and (EF)(Frl) = idF, where id denotes an iden-
tity natural transformation.

(iii) Show that there is a one-one correspondence between solutions
(F,77,(-)*) of the universal mapping problem in part (i) with
quadruples (F, U,,q, E) satisfying the equations in part (ii).

Notions defined by universal mapping properties are unique up to iso-
morphism. For example, adjoint functors determine each other uniquely
up to natural isomorphisms.

Adjoint functors abound in mathematics. Lawvere has used this in
an attempted axiomatic foundation for large parts of mathematics.

Examples 1.8 (Adjoints)

1. Galois Correspondences: Consider two pre-orders as categories,
with a pair of adjoint functors (order-preserving maps) between

F
them : (P, <) ' _ (Q, <). Then F H G means: F(a) < b iff a <

G
G(b), for all a E P, b E Q. Let j = GF : Q -* Q. This gives a
monotone closure operator satisfying: (i) a < j (a) and (ii) j2 (a) <
j(a), for all a E P

2. Free Algebras: In categories of universal algebras, the left ad-
F

joint to U exists, where Alg Set. Here F(X) is the
U

free (universal) algebra generated by the set X (for a still more
concrete example, replace Alg by the category Mon of monoids.
Then F(X) = X*, the free monoid on the set X.) In general,
/x : X - UFX is the "inclusion of generators" which maps the

16 R. Blute and Ph. Scott

set X into the underlying set of the free algebra F(X). The uni-
versal property of adjoint functors reduces to the familiar universal
property of free algebras.

3. Topological examples There is an evident forgetful functor
U: Top---Set. This functor has both left and right adjoints. We
leave it as an exercise to find them.

4. Free Structures and Free Categories: Generalizing the previ-
ous examples, left adjoints to forgetful functors typically deter-
mine "free" structures. A special case fundamental to categor-
ical logic is the construction of free (structured) categories on
graphs (see Exercise 1.9 below). We have an adjoint situation

F
Cat Graph in which the forgetful functor U has a left ad-

U

joint F, where F(9) is the free (small) category generated by a
(small) graph Q. More generally, we will later introduce free Carte-
sian, cartesian closed, and *-autonomous categories. The point is
that categorical logic allows us to construct such free categories
directly from the formulas and proofs of certain logics.

F
Exercise 1.9 Prove F -I U, where Cat _ Graph and F(G) is

U

the free (small) category generated by a (small) graph g. In particular
describe the rl and the E of the adjointness.

The next exercise is important: it illustrates Lawvere's slogan: many
categorical notions arise as adjoints to previously defined functors.

Exercise 1.10 (Categorical Structure via Adjoints)

1. For any category C, there is a unique functor to the one-object

category: C -
i

+ One. Postulating that C has a left (resp. right)
adjoint corresponds to saying C has an initial object 1 (resp. a
terminal object T). The universal properties say: for any object
C E C there is a unique arrow C IS. T (resp. a unique arrow 1 0- >
C). Letting {*} be any one-element set, this says: C(C, T) = {*}
and C(1, C) '= {*}.
E.g. In Set, 1= 0 and T = {*} (any one element set). In Vec,
1= T = {0}, the trivial space.

2. Products and Coproducts : For any category C, there is a diagonal
functor C -°- C x C. If we postulate a right adjoint i -A R, then for
all C, A, B E C, C x C(O(C), (A, B)) =' C(C, R(A, B)). Writing

Category Theory for Linear Logicians 17

R(A, B) = A x B, show that we have a natural isomorphism
C(C, A) x C(C, B) = C(C, A x B). We say A x B is the cartesian
product of A and B. Dually, postulating a left adjoint L -1 A
determines a coproduct (= product in C°"). Writing L(A, B) =
A + B, show that this satisfies C(A + B, C) -_ C(A, C) x C(B, C).
E.g. In Set, A x B exists and is the usual cartesian product, while
A + B exists and is the disjoint union. In Vecfd and Abelian
Groups, products and coproducts exist and coincide: V x W
V ® W. In Top, we obtain the usual product topology.

3. Exponentials: If C has products, prove that there is an induced
functor C x C -' C. Fix an object A E C. Consider the induced
functor C -- C, given on objects by C H C x A. Suppose that
- x A has a right adjoint (-) A. Show that this means there is a
natural isomorphism C(C x A, B) = C(C, BA). This property is
called cartesian closedness, and will be considered in the next sec-
tion. Verify that in Set, the exponentials BA exist, where BA is
the set of all functions from A to B. Investigate cartesian closed-
ness in some of the other categories we have mentioned. What
does it mean for a poset, considered as a category, to have prod-
ucts and exponentials? For a difficult problem, which categories
of topological spaces have exponentials? For a discussion of the
existence of topological cartesian closed categories, see [53].

1.1.7 Cartesian and Cartesian Closed Categories
We shall now begin a process of equationally axiomatizing categories
with products and function spaces, as introduced in Exercise (1.10)
above. These categories have significant connections to the proof theory
of certain intuitionist propositional calculi.

Definition 1.11 A cartesian category is a category with finite products,
i.e. binary products together with a terminal object.

Thus we have natural bijections:

C(C, T) = {*} (1.1)

C(C, A) x C(C, B) = C(C, A x B) (1.2)

We shall be interested in categories with a specified cartesian structure.
The following is a standard technique in categorical logic. Clearly we
must postulate that there is a terminal object T and a binary operation

18 R. Blute and Ph. Scott

on objects denoted A x B. What about arrows? We shall chase the
identity arrow starting from the RHS of isomorphism (1.2), since this is
the only distinguished structure we have at hand. So, letting C = A x B,
the identity arrow idaxB on the RHS maps to a pair of arrows on the
LHS, which we call projections A x B A, A x B 2. B. Conversely,
going from the LHS to the RHS of (1.2), we wish to internalize pairing:

given a pair of arrows C f + A and C --- g- B, define a "pairing" C
A x B. Using these operations, we will then impose equations specifying
the bijections (1.1), (1.2).

So, on arrows we postulate the following distinguished structure, for
all objects A, B, C:

Terminal: An arrow C
-Ic)

T
AB A,B

Projections: A x B A, A x B '-2-4B
C,A C-9+B

Pairing: C -+ A x B
The isomorphisms (1.1) , (1.2) above may be given equationally by

imposing the following identities (for all objects A, B, C):

!c=f, foranyf:C-+T (1.3)

7r1(f, 9) = .f , 72 (.f, 9) = 9 , (7r1 h, 72 h) = h (1.4)

where f :C-'A, g:C-+B, h:C -*AxB
Thus, a cartesian category with specified structure is given by the above
data: an object T, a binary operation x on objects, distinguished fami-
lies of arrows !C, 7rA,B, (f, g) for all objects A, B, C, satisfying the above
equations.

Exercise 1.12
(i) Work out specified cartesian structure for Set, Vecfd and Top.

(ii) Show that a poset P, considered as a category, is a cartesian
category if it is a A-semilattice with top element.

Example 1.13 (Deductive system for {n, T} generated by 90)
Let 4o be a discrete graph (cf. Exercise 1.3). We will now give an explicit
description of the deductive system generated by 9o. Formulas are freely
generated from atoms (i.e. objects of go), using {A, T}. Sequents are
freely generated from the following "axioms" and "rules":

!C

Axioms: AAA, A A B-4 A, A A B- B, C ---> T.

Category Theory for Linear Logicians 19

Rules: A -L B B --g--+ C cut C A C B pairing
ABC CI-' AAB

Finally, we obtain a cartesian category F(G0) (the free cartesian category
generated by the discrete graph go) by letting the objects be the formulas
and letting arrows be equivalence classes of proofs, where we impose
the smallest congruence relation forcing the equations (1.3), (1.4) of a
cartesian category to hold.

We generalize this example to arbitrary graphs in Exercise 1.15 below.

In general, categorical constructions given by universal mapping prop-
erties are only determined up to isomorphism. However in categorical
logic and proof theory, it is natural to consider categories with speci-
fied structure (as above) and "strict" functors, i.e. those preserving the
structure on the nose [51].

Definition 1.14 Cart is the category of cartesian categories and strict
cartesian functors, i.e. those preserving the structure on-the-nose:
F(A x B) = F(A) x F(B), F(T) = T.

There is a forgetful functor Cart U Graph. This functor has a left
adjoint Graph -' Cart, where for any graph G, F(G) is the cartesian
category freely generated from G.

Exercise 1.15 (Free Cartesian Categories) Let G be a graph. Fol-
lowing Examples 1.2 and 1.13, construct F(G) as a deductive system
and prove that F -I U. [Hint: Objects of F(G) are formulas in the
language IT, Al freely generated from the objects of G (i.e. consider the
objects of g as atomic formulae). Proofs are freely generated from the

Axioms in Example 1.13 along with all the arrows A -L B E G (consid-
ered as nonlogical axioms) using the rules. Finally, impose the smallest
congruence relation on proofs making F(G) a cartesian category.]

Definition 1.16 A cocartesian category is the dual of a cartesian cat-
egory, i.e. a category with binary coproducts and an initial object. A
cocartesian category with distinguished structure is obtained by dualizing
the cartesian case, i.e. we postulate the following distinguished struc-
ture, for all objects A, B, C:

20 R. Blute and Ph. Scott

Initial: An arrow 1 - C
a,e A,B

Injections: A n' - A + B , B t7 A + B
A f)C B-*C

Copairing: A + B [' C
The relevant equations specifying the isomorphisms in Exercise 1.10(2)

are obtained by dualizing equations (1.3), (1.4). Free cocartesian cate-
gories may be obtained by setting up an appropriate deductive system
for {1, V} using the above structure (cf. Exercise 1.15). It is common
to denote initial objects by 0, rather than I.

Cartesian Closed Categories. We now wish to equationally axioma-
tize those cartesian categories with specified exponentials (cf. Exercise
1.10).

Definition 1.17 A category C is cartesian closed (or a ccc) if it is
cartesian and, for each object A, the endofunctor C xA C has a right
adjoint, denoted (-)A.

The adjointness says that for each A, we have an isomorphism C(C x
A, B) = C(C, BA), natural in C and B.

To axiomatize specified exponential structure (on top of specified
cartesian structure) we specify: (i) there is also a binary operation BA
on objects; (ii) on arrows we postulate the following arrow schema and
unary rule-schema for generating new arrows from old, in addition to
the cartesian structure (for all objects A, B, C).

Evaluation: evAB : BA x A -, B
C x A f + B

Currying: C f BA

Finally, we impose the following equations in addition to the cartesian
equations:

(Beta) ev(f *7ri, 7r2) = f : C x A --> B
(Eta) (ev(g7ri, 7r2))* = g : C -, BA.

Thus, a cartesian closed category with specified structure is given by the
following data: a specified object T, two binary operations x and (-) (-1
on objects, the basic arrows

A,B A,B

A *A, ACT, AxB'-+ A, AxB'- B, BAxAe- B,

Category Theory for Linear Logicians 21

the unary rule of Currying, and two binary rules of composition and
pairing. Finally we postulate the equations of cartesian categories with
(Beta) and (Eta).

Exercise 1.18 Check that the equations guarantee the bijection
C(C x A, B) = C(C, BA), and this bijection is natural in C and B.

The category CCC is defined as follows: its objects are cartesian
closed categories with specified structure and its morphisms are func-
tors preserving the structure on the nose. There is a forgetful functor
CCC -U4 Graph.

Examples 1.19

1. Set (see Exercise 1.10) and more generally functor categories
(presheaves) Setc'p. In the case of Set, BA is the set of all func-
tions from A to B, ev is evaluation: ev(g, a) = g(a), and currying
is: f* (c) (a) = f (c, a), for all g E BA, f E BCX A, a c A, c E C.

2. w-CPO: Objects are posets in which ascending w-chains have
suprema. Arrows are functions preserving suprema of chains
(hence, monotone). Products are cartesian products, with point-
wise order structure, T = {*}, BA = w-CPO(A,B) with order
and sups defined pointwise (e.g. (V,, f.) (a) = V f. (a)). The rest
of the structure is induced from Set.

3. Heyting Semilattices: A cartesian closed poset (P, <, T, A, =)
is a poset satisfying, for all a, b, c E P,

a<T c<_a c<b
c<aAb

anb<a anb<b, cna<b if c<a=>b
So, ba = a = b is the largest element whose meet with a is less than
or equal to b. A Heyting Algebra (P,:5, T, A, =, V, 1) is a cartesian
closed poset with finite coproducts and an initial object. These
are the posetal models of intuitionistic propositional calculus.
The canonical example is due to Stone and Tarski: Let X E Top
be a topological space. Then 0(X), the poset of open subsets
of X, is a Heyting algebra: for U, V E O(X), U A V = U f1 V,
U V V =UUV, U=V =int((X \U)UV), T =X, 1=0.

4. Cat: The category of (small) categories in Example 1.6 is Carte-
sian closed. We have already introduced the notion of product

22 R. Blute and Ph. Scott

of two categories, and we leave it as an exercise to verify that the
appropriate functor category acts as an exponential in this setting.

5. Deductive Systems for {A, =, T} and free ccc's: In gen-
eral, ccc's will correspond to labelled deductions in intuitionistic
{A, =, T}-logic. We add to the cartesian {A, T}-fragment one new
axiom schema evA,B (evaluation) and one new rule of inference
(Currying) :

(A=> B)AAe B and

CAA -L B Curry

C -L (AMB)
We form F(g), the free ccc generated from graph 9, as follows.
Formulas are generated from the atomic formulas (i.e. objects
of g) using IT, A,=> }. Proofs are generated from the nonlogical
axioms (i.e. arrows of g) together with the axioms (identity),
(terminal), (projections), (evaluation) using the rules: (pairing),
and (currying). We impose the equations of ccc's between proofs.
The operation F(-) is functorial. Indeed, the forgetful functor U

F
has a left adjoint F, CCC Graph, with F(Cg) the free ccc

U
as described above.
Labels on proofs may be encoded by typed lambda terms, in the
familiar manner. This is detailed in [51]. For example, in the
currying rule above, f * = A,:: A f ((z, x)) where z : C.
Finally, the universal property of F(G) says the following: for
any ccc C and graph morphism J : 4 -* U(C), there is a unique
extension to a strict ccc-functor Q -11 i : F(9) -* C.

Exercise 1.20 (For A-calculus hackers) Verify in what sense
the equations (Beta) and (Eta) above correspond to their A-
calculus counterparts. Actually, (Beta)-as written-corresponds to
a restricted version of ,0-conversion, where we substitute a variable
rather than an arbitrary term.

6. CCC's = Typed Lambda Calculi: This example is basic to
categorical logic and proof theory. Cartesian closed categories are
equivalent to typed lambda calculi (with product types) in a strong
sense. Let CCC be the category of ccc's with specified structure
and strict ccc functors. Similarly, we may define the category
of typed A-calculi, whose objects are (not necessarily freely gener-
ated) typed lambda-calculi, and whose morphisms are translations,
i.e. interpretations strictly preserving the lambda structure (see

Category Theory for Linear Logicians 23

[51]). There is a natural equivalence of categories:

C
CCC Typed A-Calculus

L

Here, associated to every ccc C there is a typed lambda calculus
L(C), the internal language of C. Roughly speaking, the types of
L(C) are the objects of C and the terms are freely generated, using
the arrows of C as new term-forming operations (where currying
corresponds to A-introduction). The equations are generated by
the equalities in C. Conversely, C(L), the ccc syntactically gener-
ated by a lambda theory L, is essentially the closed term model,
viewed as a ccc (for details, see [51]). We remark that for this
to go through, we require that our languages (in this case typed
A-calculi) need not be freely generated (in the same sense that
deductive systems can be generalized). Moreover, F(g), the free
ccc generated by graph 9, is equivalent to C(L(q)), where L(9) is
the typed lambda calculus generated by the graph 4 (analogous
to L(C)).

This categorical equivalence of ccc's, typed lambda calculi, and
equivalence classes of proofs in intuitionistic deductive systems is
the ultimate categorical form of the Curry-Howard isomorphism,
and is due essentially to Lambek.

7. Presheaves. Set' gyp, the category of presheaves on C, is the
functor category whose objects are contravariant functors C°p ->
Set and whose maps are natural transformations between them.
Set is the special case when C = One. The ccc structure of
presheaves is given as follows:

T(A) = {*} GF x F - G is defined by:

(F x G) (A) = F(A) x G(A) evc(0, c) = Bc(idc, c), c E F(C).

GF'(A) = not(C(-, A) x F, G) 0* : H
GF.

is defined by:

BA(a)c(h, c) = Oc(H(h)(a), c),
where h : C -- A, a E H(A).

For some purposes, it is slightly more convenient to consider "co-
variant" presheaf categories SetV, which of course are included in
the previous case, by observing that Sety = Set(D,p),p

8. Special Case. G-Sets as presheaves.
Let G be a group, X a set. Let Sym(X) = the group of all
bijections of X. A G-set is a group homomorphism G -+ Sym(X).

24 R. Blute and Ph. Scott

Equivalently, a G-set is a left action map : G x X -* X, denoted
(g, x) " g.x satisfying:

(i) !G.x = x, for all x E X;

(ii) (9192) 'X, for all gi E G, x E X.

The category G-Set of G-sets and G-set maps is defined as follows.
Objects are G-sets. A G-set arrow X -> Y is an equivariant func-
tion, i.e. a Set-function f : X -+ Y such that for all g E G, x E X,
f (g.x) = g.f (x)
Exercise: G-Set - SetG, where in the right-hand-side, the group
G is considered as a category with one object (in which all arrows
are isos).

Hence G-Set is a ccc. The ccc-structure can be described as fol-
lows. Let X, Y be two G-sets.
Product: X x Y, with action y) _ (g.x,
Exponentials: YX (all set maps), with action (g f)(a) _

In particular, we have for
all f EYX,xEX,gEG.

9. Per(N). A per (partial equivalence relation) is a symmetric, tran-
sitive relation on a set. We shall consider the category of pers on
a functionally complete partial combinatory algebra. For exam-
ple, consider the Kleene algebra (N, .), in which m-n = {m}(n) is
the application of the m partial recursive function to input n. We
form the category Per (N) as follows: the objects of Per (N) are the
pers on N, denoted R, S, T, . The arrows of Per (N) are equiva-
lence classes of certain partial recursive functions, denoted by their
godel number. Given a partial recursive function {e} : N N, e
represents an arrow R -> S if dm, n[mRn = e-m e-n 1 and
e.mSe.n]. Two indices representing arrows e, e' : R - S are equiv-
alent, denoted e - e' : R -p S, if dm, n[mRn -- 1, f.

and e.mSe'.n] .
This structure forms a ccc. For products, the recursive bijec-
tion N x N - N, induces a pairing function (-, -). Define
(a, b)R x S(a', b') if aRa' and bSb'. For exponentials, define
(SR, ,SR) = (Per(N)(R, S), -), where - is the above equiva-
lence relation on indices. Getting the ccc structure, notably the
operation of Currying, requires some elementary recursion theory
(Kleene's s-m-n theorem) [9]. This example admits many general-
izations.

Category Theory for Linear Logicians 25

10. Coherence Spaces and Stable Maps. A coherence space A is
a family of sets satisfying:

(i) a E A and b C a implies b E A.
(ii) if BCAandifdc,c'EB(cUc'EA) thenUBEA.

In particular, 0 E A. Morphisms are stable maps, i.e. mono-
tone maps preserving pullbacks and filtered colimits. That is,
f : A -+ 13 is a stable map if (i) b C_ a E A implies f (b) C f (a),
(ii) f (Uic jai) = UiEI f (ai), for I directed, and (iii) a U b E A im-
plies f (a n b) = f (a) n f (b). This gives a category Coh. Every
coherence space A yields a reflexive-symmetric (undirected) graph
(JAI, C) where JAI = {a {a} E Al and a v b iff {a, b} E A. More-
over, there is a bijective correspondence between such graphs and
coherence spaces.
Given two coherence spaces A, 13 their product A x 13 is defined via
the associated graphs as follows: (JA x Cil, 0Axa) , with IA x BI
JAI + I13I = ({1} x JAI) U ({2} x IBI) where (1, a) CAxg(1, a') if
a Aa', (2, b) b') if b gab', and (1, a) OAxB(2, b) for
all a E JAI, b E J13I. The function space 5A = Coh(A, B) of stable
maps can be given the structure of a coherence space, ordered by
Berry's order: f g if for all a, a' E A, a' C a implies f (a') =
f (a) fl g(a'). For details, see [39]. This class of domains led to the
discovery of linear logic (cf. Example 1.37).

A bicartesian closed category (biccc) is a ccc with binary coproducts
and an initial object (often denoted by 0). It corresponds to the proof
theory of full intuitionistic propositional logic, i.e. of the connectives
{A,V,=,T,1}.

Exercise 1.21 A bicartesian closed category satisfies A B+C ti AB x Ac,
A° = 1 and the distributive law: (A + B) x C = (A x C) + (B x C).

Observe that until now we have been discussing the proof theory of
intuitionistic logics. What can we say about the proof theory of classical
logic? Writing -iA = OA = A = 0, notice that in any biccc there is a
canonical arrow or proof A -+ --A. A naive guess for a model for
classical logic is to demand that this arrow should be an isomorphism,
so A = -,-iA. Let us call such biccc's Boolean categories.

The following surprising theorem about biccc's also characterizes
Boolean categories. For a proof and discussion of this theorem, see
[51].

26 R. Blute and Ph. Scott

Theorem 1.22 (Joyal) In any biccc, there is at most one arrow A -, 0.
In particular, in the associated intuitionistic propositional calculus, there
is at most one proof of A --E1 and hence at most one proof of -,A, up
to equivalence of proofs.

Thus Boolean categories are necessarily preorders and, up to equivalence
of categories, the only such are boolean algebras!

So to understand the proof theory of classical logic requires a more so-
phisticated approach. It turns out that this involves categorical versions
of Parigot's Aµ-calculus and ideas arising from the notion of continu-
ations in programming language theory. The appropriate categorical
framework, called control categories, was developed by P. Selinger in
[611.

1.2 Monoidal and *-Autonomous Structures

Definition 1.23 A monoidal (or tensored) category (C, I, ®, a, P, r) is
a category C, with functor ® : C x C -+ C, unit object I E ob(C), and
specified isos: aABC : (A (9 B) ®C - A ®(B (9 C), 2A : I ®A A

rA : A ® I - - A satisfying the following: PI = rI : I ® I - I , as
well as:

A®(I®C) (A®I)®C

1®2CI IrA®1

A®C = A®C

A(B(CD)) - (AB)(CD) - ((AB)C)D

1®a

A((BC)D)
a

a®11

(A(BC))D

where we omit ®'s in the second diagram for typographical reasons.
This diagram is known as the Mac Lane pentagon.

A monoidal category is a very basic structure. There are any number
of additional structures one may add to this basic definition. The struc-
tures of relevance to this paper are symmetric structure, closed structure,
or traced structure. We now begin the description of these structures.

Category Theory for Linear Logicians 27

Suppose first that there is a natural isomorphism SAB : A®B -, B®A
satisfying the following three diagrams:

A®B SA,B B®A

(1)

A®B

B®I SB,I I®B

(2)

A ®(B ®C) - (A ®B) ®C SAO-,c C ®(A ®B)

(3) zdA®8B,c

A®(COB) - (A®C)®B SA,C-1- (C®A)®B

C is symmetric if diagrams (1), (2), and (3) commute.

Examples 1.24

1. Any cartesian category, with ® = x.
2. Any co-cartesian category (= finite coproducts), with ® = +
3. Rely. This is the category Rel whose objects are sets and whose

arrows are binary relations. The functor ® : Rel x Rel -* Rel is
defined as follows. On objects, ® = x, while on maps, A ® B
C ®D is given by: (a, b)R ®S(c, d) if aRc & bSd. The tensor unit
I = {*}, any one element set.

4. Rel+. This is again the category Rel, except ® = + (disjoint
union), I = 0, and where A ® B R®S

C ® D is given by:

(a, 0)R ® S(c, 0) if and only if aRc

(b, 1)R ® S(d, 1) if and only if bSd

where disjoint union in Set is given by: X +Y = X x {0} UY x {1}
5. Two important monoidal subcategories of Rel+ are:

(i) Pfn: Sets and partial functions.
(ii) PInj: Sets and partial injective functions.

6. Vecfd and Vec: (finite dimensional) vector spaces over k, where
k is a field. Here V ® W is taken to be the usual tensor product,
and I = k.

28 R. Blute and Ph. Scott

Next, it is natural to ask that the tensor product have an appropriate
adjoint, and this leads us to our next definition.

Definition 1.25 A symmetric monoidal closed category (smcc) C is a
symmetric monoidal category such that for all A E C, - ® A : C ---+ C has
a right adjoint A -o -, i.e. there is an isomorphism, natural in B, C,
satisfying C(C ®A, B) -' C(C, A -o B) . This is the monoidal analog of
cartesian closed category; A -o B is the "linear exponential" or "linear
function space". In particular there are evaluation and coevaluation
maps (A -o B) ® A -- B and C -+ (A -o (C 0 A)), satisfying the
adjoint equations.

Examples 1.26

1. Anyccc,with A®B=AxBandA-oB=ABB.
2. A poset P = (P, <) is an smcc if there are operations ®, -o: P2 -,

P, 1 E P satisfying:

(i) (P, (9, 1) is a commutative monoid.
(ii) ®, -o are functorial in the posetal sense: i.e. x < x', y < y'

implies x®y <x' ®y' and x' -o y < x -o y
(iii) (Closedness) x ® y < z if x < y -o z.

3. Girard's Phase Semantics: This is a posetal smcc, in the sense of
Example 2 above. Let M = (M, , e) be a commutative monoid.
Consider the poset P(M), the powerset of M. We view P(M) as
a poset ordered by inclusion. For X, Y E P(M), define

X®Y = {x.y I XEX,yEY}=defX-Y
X- Y = {z E M I C Y}

I = {e}

4. Vec, where V ® W is the usual algebraic tensor product and
V -o W = Lin(V, W). More generally, consider 7Z-Modules over
a commutative ring 7Z, with the standard algebraic notions of
V ®., W and V -o W = Hom(V, W).

5. MOD(G). This example extends groups acting on sets to groups
acting linearly on vector spaces. Let G be a group and V a vector
space. A representation of G on V is a group homomorphism
p : G --i Aut(V); equivalently, it is a left G-action G x V -+ V
(satisfying the same equations as a G-set) such that v F--, is

a linear automorphism, for each g c G. The pair (p, V) is called
a G-module or G-space. MOD(G) has as objects the G-modules

Category Theory for Linear Logicians 29

and as morphisms the linear maps commuting with the G-actions.
Define the smcc structure of MOD(G) as follows:

V ® W = the usual tensor product, with action determined by
g.(v ® w) =

V -o W = Lin(V, W), with action (g f) (v) = g- f (g-' v)
the contragredient action.

We recommend [32] as an introduction to group representation theory.

Exercise 1.27 Formulate intuitionistic linear logic (ILL) as a deductive
system, and show (with appropriate equations between proofs) it forms
an smcc.

We now come to the fundamental definition, which will correspond to
the proof theory of MLL. To model classical linear logic, we need an
involutive negation. In what follows, 1 should not be confused with
its use in the previous chapter (as an initial object). The idea is that
one chooses an object, which will be called 1, and then defines (linear)
negation via the formula Al = A -c1. However to make this negation
involutive, we should have A = A11, or since we are approaching this
categorically, A = A11. This leads to the definition of *-autonomous
category.

Definition 1.28 A *-autonomous category (C, ®, I, -c,1) is an smcc
with a distinguished dualizing object 1, such that (letting Al = A -01),
the canonical map µA : A -+ A11 is an iso, for all A (i.e. "all objects
are reflexive").

Facts about *-autonomous categories C:

We get a dualizing functor C°p L C s.t. C(A, B) = C(B1, A1)
which is a natural iso.

C is closed under duality of categorical constructions: e.g. C

has products if it has coproducts, pullbacks if pushouts, C is
complete if co-complete, etc.

(A -o B)' A®B' and I=11 Also A-oB=B1 -o A1.
We may define A ' B = (A1 ® B1)1. In general, ®#28, and
(in general) there is not even a C-morphism A ® B --+ A 2Y B.

30 R. Blute and Ph. Scott

As we shall see below, categorical models of MALL (multiplica-
tive, additive linear logic) will be *-autonomous categories with
products (and hence coproducts).

Example 1.29 Sets and relations. The category Rel,, with its usual
monoidal structure, is probably the simplest *-autonomous category.
The dualizing object is any one element set. We leave the details as an
exercise. We will consider this example further below when we introduce
compact closed categories.

Example 1.30 Finite-dimensional vector spaces. The category Vecfd,
with its usual monoidal structure, is also a *-autonomous category. The
dualizing object is the base field. We will also consider this example
further when we introduce compact closed categories.

Example 1.31 *-autonomous posets and lattices. Girard's phase se-
mantics [33] gives examples of *-autonomous lattices, i.e. structures
(P,:5, (9, I, -o, 1, n, v) which are posetal *-autonomous categories. One
method of construction is to consider closure operators j : P -* P such
that j (x) ®j (y) < j (x (9 y) . We consider the j-closed elements, i.e. the
fixed points Fix(j) = {p E P I j(p) = p}. We then seek to define a
*-autonomous structure on Fix(j).

For example, consider Girard's phase semantics (Example 1.26). Ob-
serve that the powerset of a monoid P(M) has both a lattice as well as
a phase semantics structure. Pick an arbitrary 1E P(M), and consider
(-)1 : P(M) - P(M) given by: X1 = {p I p.X C1}. Let j = (-)11.
On the set Fix(j) = (-)1--L-closed elements of P(M) (Girard calls them
facts), we define: G ®H = G 7'H = (G1.H')1,

GAH=GnH, GvH=(GuH)11

Example 1.32 Finiteness spaces. This example is due to T. Ehrhard
[30]. It is an elaboration of the category Rel. Let X be a set and
u,v C_ X subsets of X. Say that u and v are orthogonal, written u 1 v,
if u n v is finite. If .F is a set of subsets of X, write .F1 = {v C_ XJu 1
v for all u E .F}.

Ehrhard defines a finiteness space to be a pair (X,.F) where X is a
set and .F is a set of subsets of X such that .F11 = Y. A morphism
R: (X,.F)-4(Y, 9) is a subset R C X x Y such that for all u E F we
have R(u) E 9, and for all v E g1 we have R°P(v) E .F1. Here R°P
is the reciprocal of R. It is straightforward to verify that this is indeed

Category Theory for Linear Logicians 31

a category, with composition the usual relational composition. Then
define:

(X, 117)1 = (X, 2)

(X,F)®(Y,9)=(X xY,{uxvluEF,vEG}11)
1= (0, {0})

The rest of the details that we indeed have a *-autonomous category are
straightforward.

Example 1.33 Poset-valued sets. This is a class of models constructed
by de Paiva and Schalk [56], which can also be thought of as a general-
ization of Rel. One considers a *-autonomous poset, P, for example a
Girard quantale or a phase space, as described above. Then a P-valued
set is defined to be a pair (A, f) where A is a set and f : A--+P is a
function. A morphism between P-valued sets R: (A, f)-(B, g) is a re-
lation R: A---*B such that xRy implies f (x) < g(y). Then one defines
(A, f) ®(B, g) = (A x B, f (9g), where f ®g is defined using the monoidal
structure of P. The rest of the *-autonomous structure of P similarly
lifts to the category.

Example 1.34 Topological vector spaces. We have already mentioned
that the category of finite-dimensional vector spaces is *-autonomous,
with the usual notion of dual space acting as negation. If one only wishes
to consider discrete vector spaces, this is the best one can do. Indeed
it is a standard result that a vector space is isomorphic to its second
dual if and only if it is finite-dimensional, the problem being that the
second dual of an infinite-dimensional space is substantially larger than
the original space. If one wishes to consider infinite-dimensional spaces,
one must add an additional topological structure.

So one passes to a category in which the objects are topological vec-
tor spaces and the morphisms are linear continuous maps. The hope in
doing this is that in requiring continuity, one will decrease the size of
the dual space to such an extent that one will be able to obtain addi-
tional objects isomorphic to their second dual and still retain the closed
structure. It was the consideration of such spaces by Barr that led to
the original axiomatization of *-autonomy. One appropriate notion of
topology, introduced by Lefschetz, is the linear topology. This is the
notion that led Barr to his axiomatization. See [10, 13] for the details
of the following.

32 R. Blute and Ph. Scott

Definition 1.35 Let V be a vector space. A topology r on V is a linear
topology if it satisfies the following three properties:

r is Hausdorff.
The topology z makes V a topological vector space, i.e. addition and
scalar multiplication are continuous.
The origin has a neighborhood basis of open linear subspaces.

We get a category TVec when one takes as morphisms the linear, con-
tinuous maps. It can be shown that this is a symmetric monoidal closed
category. The tensor product in TVec is given by an appropriate topol-
ogy on the tensor of the underlying spaces, and the internal hom is
given by the space of linear, continuous maps, again with an appropri-
ate topology. This notion of topology is ideal in that one can show that
the usual embedding of V into its second dual is always a bijection. So
we have indeed reduced the second dual space to the appropriate size. If
one restricts to the category of objects for which the embedding is also
a homeomorphism, one obtains a category RTVec, and Barr demon-
strates:

Theorem 1.36 RTVec is a complete, cocomplete *-autonomous cate-
gory.

Example 1.37 Coherence spaces and linear maps. This example led to
linear logic. Recall the ccc Coh of coherence spaces and stable maps
was discussed at the end of Section 1.1.7, Example 10. A morphism
f : A -, B in Coh is linear if for any X C A such that for all b, c E X,
b U c E A, we have f (U X) = U{ f (b) I b c X}. Let Coh1Zn be the
subcategory of Coh consisting of coherence spaces and linear maps.
This is *-autonomous, via the familiar constructions [39].

Example 1.38 And many more.... The above list is by no means com-
prehensive. *-autonomous categories appear in many guises, in many
branches of mathematics. There are at least three additional examples
which should certainly be mentioned.

Game semantics. An extremely important class of examples
arises from game theory, with important computational prop-
erties. We recommend [6] as an introduction.
The Chu construction. This is a simple construction, which
applied to a symmetric monoidal closed category (with pull-
backs) canonically yields a *-autonomous category. Despite being

Category Theory for Linear Logicians 33

Arrow-generating Rules Equations

A J+B B 9+C
A -id + A A C equations of a category

A-B A' 9-4B' ® is a functorff'®gg'=(f®g)(f'®9)
A®A'f-(&-g+ B®B' id®id=id

A ® (B ® C) -2-4 (A ® B) ® C a, s, e are natural isos
A 0 B - B ® A and equations for smcc's

I®A-9+A

A®B-iC R
A (B -0 C) equations for monoidal closedness

(A®B)®A-"+B

r f-+ A r - B
r (A x B cartesian products

AxB-A AxB-*B
A-"+T

Fig. 1.1. SMCC's with Products.

straightforward, it would seem to have a number of remarkable
properties. The construction is due to Barr and Chu [10], and
has been studied extensively by Pratt. See [27] for one example
of the applicability of Chu spaces.
Recent work of Ehrhard and Regnier on Kothe spaces and the dif-
ferential lambda-calculus suggests a whole new avenue to explore
in the categorical semantics of linear logic. See [29, 31].

Summary of necessary structure. To aid comparison with proof
theory, let us finally sum up the situation so far.

Figure 1.1 gives us symmetric monoidal closed categories (smcc's) with
products. At this point we could also add coproducts, denoted + (or in
linear logic ®), and their associated equations, dual to products. But

34 R. Blute and Ph. Scott

Arrow-generating Rules Equations

A -*B
1

B1 -L Al (-)1 is contravariant functor

Al -i (A -o-L) These are natural isos
(A -o-L) -' Al

(A -o B) -i (B' -a A1) Natural strength iso

A --+ ((A -o-L) --o-L) natural iso

Fig. 1.2. Adding Negation.

as mentioned previously, once we have *-autonomous categories, we get
duality for free, essentially by De Morgan duality.

The equations in Figure 1.2 specify that the action of the functor (-)1
is given by a dualizing object I, and a natural iso (-)11 = id.

The next notion is much more familiar mathematically, although log-
ically it corresponds to a rather degenerate case of linear logic: the case
where ® = 2Y:

Definition 1.39 A compact closed category [49] is a symmetric monoidal
category such that for each object A there exists a dual object A*, and
canonical morphisms:

v:I-+A®A*
0: A*®A-+ I

such that evident equations hold. In the case of a strict monoidal cate-
gory, these equations reduce to the usual adjunction triangles.

Lemma 1.40

Compact closed categories are *-autonomous, with the tensor unit
as dualizing object.

As in any *-autonomous category in which the tensor unit is the
dualizing object, there is a canonical morphism A ® B--+A 28 B.
(This is an instance of a more general observation. Such cate-
gories validate the Mix rule, which states:

Category Theory for Linear Logicians 35

f-r i-A MixF r, A

This rule is not valid in linear logic, but the theory with Mix
added is of great interest.) For compact closed categories, this
map is an isomorphism.

Examples 1.41

Rely is compact. On objects, define A ® B = A -o B = A x B,
I =1= {*} (any 1-element set) and Al = A. On morphisms, if

A B, define B1 R Al = B A. It is easy to check that

Rely(C(9 A,B) =Relx(C,A-0B) =P(C x Ax B)

Relx (A, B) = Rely (Bl, A1)

(A(9 B)1=AxB=A-i®B1

Vecfd (finite dimensional vector spaces over field k) is also com-
pact: Here 1= k, V -0 W = Lin(V, W), so Vl = V -01=
Lin(V, k) = V*, the dual space of V. There is a natural isomor-
phism V = V** given by the canonical map V --> V**. Indeed,
an arbitrary vector space is finite dimensional if this canonical
map V -+ V** is an isomorphism.
Let P and P' be posets. An order ideal from P to P' is a relation
R C P x P' satisfying

x1 <p x2 & x2Ry2 & Y2 <p, Y1 x1Ry1

One readily verifies that order ideals do indeed form a category
with the inequality itself, viewed as a binary relation, acting as
identity. The compact closed structure of Rely extends readily,
except now P1 = PIP. See [57] for a detailed discussion of this
category.

What are monoidal functors between monoidal categories? Here there
may be several notions. Let us pick an important one:

Definition 1.42 A monoidal functor between monoidal categories is a
3-tuple (F, mI, m) where F : C -* D is a functor, together with two
natural transformations mI : I -.. F(I) and muv : F(U) ® F(V)

36 R. Blute and Ph. Scott

F(U (9 V) satisfying some coherence diagrams (which we omit). F is
strict if ml, muV are identities. A monoidal functor is symmetric if m
commutes with the symmetries: mB,ASFA,FB = F(SA,B)mA,B, for all
A, B.

Finally, we need an appropriate notion of natural transformation for
monoidal functors.

Definition 1.43 A natural transformation a : F -* G is monoidal if it
is compatible with both mI and mUV, for all U, V, in the sense that the
following equations hold:

alomj = ml
muv°(au (9 av) = au®v°muv

Let *-Autst be the category of *-autonomous categories and strict *-
autonomous functors. We wish to construct free such categories, i.e. to
find a left adjoint F to the forgetful functor U : *-Autst -+ Graph,
so F(G) will be the free *-autonomous category generated by the graph
G. The procedure is now familiar: one sets up an appropriate deductive
system (generated by G) for MLL (cf. Example 5 in Section 1.1.7) and
imposes the relevant equations between proofs. A related, but more del-
icate issue is to set up the fundamental equivalence of categorical logic,
as in Example 6 in Section 1.1.7 , between *-autonomous categories and
their internal logics, which are calculi of proof-terms. Thorny categori-
cal questions like dealing with the units and coherence equations must
also be taken into account.

These and related issues are discussed in the work of Cockett, Seely
and others, see [23, 24, 14, 15, 16], which begins with an alternate
approach to *-autonomous categories and the model theory of linear
logic. The starting point is the notion of linearly distributive categoryt.
Roughly, LDC axiomatize multiplicative linear logic in terms of tensor
and par, as opposed to tensor and negation. So an LDC is a category
with two monoidal structures which interact via a linear distribution.
One may then add negation as an additional structure.

Definition 1.44 A symmetric linearly distributive category (SLDC) is
a category C equipped with

Two bifunctors ®, ?8: C x C - C, together with objects and iso-
morphisms endowing C with two monoidal structures.

t Originally referred to as weakly distributive categories.

Category Theory for Linear Logicians 37

Linear distributivity natural transformations

(') W ABc : A ® (B 29 C) - (A 0 B) ' C

(ii) WABC : A ®(B ' C) (A ®C) 28 B

a number of coherence conditions.

A symmetric linearly distributive category with negation is an SLDC
together with an object function (-)1 on ob(C) and natural maps A ®
Al A 1, I r"-> A Al satisfying:

1 0A = (A2BA-L)®A
®

A?'(A-L®A)

'A'i s

A e' A 281

Theorem 1.45 (Cockett-Seely) SLDC's with negation are the same
as *-autonomous categories.

Let us give an example from the above reference.

Example 1.46 A shift monoid (lvi, 0, +, a) is a commutative monoid
with an invertible element a. Let x + y - a. Then note that
x.(y + z) = (x.y) + z, which is an instance of a linear distributiv-
ity. Shift monoids are exactly discrete linearly distributive categories.
Shift groups, i.e. shift monoids which are groups, are exactly discrete
*-autonomous categories. In the latter case, linear negation is defined
by x1=a-x.

The references cited above, beginning with the notion of linearly dis-
tributive category, extend the categorical analysis of linear logic in sev-
eral directions. Using (two-sided) proof nets, a natural deduction system
for various fragments of linear logic, the authors give explicit construc-
tions of free weakly distributive and *-autonomous structures [14], and
extend this idea to the exponential fragment [23]. In [24, 16], these ideas
are extended to include functors between linearly distributive categories
and a logic for the analysis of such functors is presented.

38 R. Blute and Ph. Scott

1.3 Monads and Exponentials
1.3.1 Monads

Monads (also called triples or standard constructions) arose in the 1960's
from the theory of adjoint functors and have played a central role in cat-
egory theory ever since. It turns out that many categories of interest
are "monadic", i.e. equivalent to categories of (Eilenberg-Moore) al-
gebras of a monad, and thus arise from a pair of adjoint functors, as
we discuss below. The general theory has many consequences, for ex-
ample "monadicity" is a far-reaching generalization of the concept of
"equationality" which includes not only traditional equational varieties
of universal algebras but also theories with infinitary operations as well
as certain topological categories (e.g. compact Hausdorff spaces).

More recently, monads have played an important role in theoretical
computer science. For example, the power set monad discussed below
(and its domain-theoretic variants introduced by Plotkin) are now a
standard tool in modelling nondeterminacy, while coalgebraic methods
are fundamental in concurrency theory. The influential work of E. Moggi
[55] introduced monads and coinonads into programming language se-
mantics as a kind of structuring tool: they permit a modular treatment
of such important programming features as exceptions, side-effects, non-
determinism, resumptions, dynamic allocation, etc.

Definition 1.47 A monad on a category C is a 3-tuple (T, 77, µ), where
T : C C is a functor, 77 : Id -* T (unit) and ,u : T2 --+ T (multiplica-
tion) are two natural transformations satisfying the following equations:

T T7_
T2 T3T T2

nT I zQ, l T/L I la

T2 T T2 - T

A comonad on D is a monad on D°p. Thus a comonad is a functor
G : D -* D, together with natural transformations e : G -+ Id (counit)
and 6 : G -, G2 (comultiplication) satisfying the dual of the diagrams
above.

Examples 1.48

1. Power Set Monad: The covariant power set functor P : Set -*
Set determines a monad (P, p,,q), where 77 : Id --+ P is given by:

Category Theory for Linear Logicians 39

71X (x) = {x} and u : P2 --> P is given by: ILA(.F) = UF, where
.F C P(A)

2. Adjoint Functors: The canonical examples of monads and comon-
F

ads arise from a pair of adjoint functors D C, where F -1
U

U. Let T = OF : C --> C. Following Exercise 1.7, there are natural
transformations 71: Id -4 UF and µ = UEF : UFUF -+ UF. We
leave it as an exercise to check the monad equations.
Continuing this example, we also obtain a comonad G = FU
D - D, where E : FU - Id and 5 = FrjU : FU -* FUFU.

In fact, every monad T : C -+ C arises from a pair of adjoint functors
F

V C. Although the category D is not unique, there are two natural
U

choices:

Theorem 1.49 (Kleisli, Eilenberg-Moore) Every monad (T, 77, p) on
F

C arises from a pair of adjoint functors V ' _ C for two choices of D,
U

now called the Kleisli and the Eilenberg-Moore categories, respectively.

The Kleisli Category of T :
D = Kleisli(T) is defined as follows: the objects of D are the
same as the objects of C. The hom-sets are defined as D(A, B) =
C(A,TB). We define the categorical structure of D as follows:

1. Identity arrows are defined by setting idA : A --+ A in V =
rlA: A-+ TA in C.

2. Composition in V is defined via composition in C as:

AFB BBC inD = A(TTg)f T2C- TC
f9A C A µc(TC

Tg)f
We leave it as an exercise to verify that the associated pair of

F
adjoint functors D C are given by: U(A) = T(A), U(h) =

U

7iBT(h) for any object A and any arrow h : A B in V =
Kleisli(T) and F(A) = A , F(f) = 77B f for objects A and arrows
f :A->Bin C.
The Eilenberg-Moore Category

The Eilenberg-Moore category V = CT of a monad T is defined as

B TC

A-LTB TBTg) T2C

40 R. Blute and Ph. Scott

follows: its objects are arrows TA A (called T-algebras) sat-
isfying: a7)A = idA and a4A = aT(a). Morphisms of T-algebras

are arrows A f L B E C commuting with the T-algebra structure.
The definition of objects and arrows in CT is illustrated by the
following commuting diagrams:

A -''"- TA T2A A TA TA T TB

T(a)1
la al

10

A TA - A A h--B
We leave it to the reader to check that CT is a category, with func-

F
tors CT - C given by: U(TA - - A) = A and U(h) = h

U

for objects and arrows in CT, and F(A) = T2 (A) -' TA and
F(f) = T(f) for objects and arrows in C.

Exercise 1.50

(i) The Kleisli category of the power set monad P on Set has sets for
objects and functions A P(B) for arrows. The arrows may be
identified with relations R C_ A x B. Check that composition in
the Kleisli category corresponds to relational composition. Con-
clude that Kleisli(P) = Rel.

(ii) The Eilenberg-Moore category of P is exactly the category of
sup-complete lattices and sup-preserving maps.

It may be shown that the Kleisli category of a monad is equivalent to
the full subcategory of the Eilenberg-Moore category consisting of all
free algebras, where free algebras in the Eilenberg-Moore category are
those of the form µA : T2A-'TA. .

We can dualize the entire discussion above and speak of the co-Kleisli
category of a comonad G : D -+ D, of Eilenberg-Moore categories of
coalgebras, etc. In this case, Co - Kleisli(G) will be equivalent to the
full subcategory of cofree coalgebras of the Eilenberg-Moore category of
G. This will be relevant for linear logicians, as we now show.

1.3.2 Adding Exponentials to Linear Logic
The deductive system for MALL, and the equations between proofs we
postulated previously, correspond to the theory of *-autonomous cat-
egories with products and coproducts. Although minor variations are

Category Theory for Linear Logicians 41

possible (e.g. weak vs ordinary products), the story so far seems to yield
a natural and satisfying categorical modelling of MALL proof theory.

Unfortunately, the exponentials are less clear: the structure seems less
canonical. Work by many categorical logicians has refined the original
Seely model (e.g. see [60, 11, 15]), resulting in interesting and reasonable
equations between proofs. We begin with seven basic derivations and
postulate equations which arise directly from the categorical point of
view.

A f-+B
Functoriality

M id l

!A _!f ,!B

I M1!I !A®!B !! !(A(9 B)ono nessa

Products I ---+!T !A®!B n-A8!(A&B)

r licti nD !A "A i Ae e o

Weakening !A EA, I

Contraction !A

Di in !A _a",!!Agg g

(Storage)

.

Let C be a model of MALL proofs, i.e. a *-autonomous category with
products (and hence coproducts). We postulate the following additional
equational data:

(!, MI, mAB) : C -t C is a monoidal endofunctor

!A -EA + A and !A a-a..!!A are monoidal natural transformations.

(!, 6, e) is a monoidal comonad.

nI, nAB are natural isomorphisms.

The associated adjunction structure (F, U, 71, E) between the co-Kleisli
category of ! and C is monoidal.
Various coherence equations [15, 46].

Having products and the canonical isomorphism !(A&B) = !A®!B gives
added features that must be postulated in weaker fragments (cf [11, 15]).
For example, the following are a consequence of the above properties:

Examples 1.51

(i) The endofunctor ! establishes an isomorphism of the following co-

42 R. Blute and Ph. Scott

commutative comonoids: I -!A --'-'4!A®!A = !(T f--- A -°
A&A)

(ii) The forgetful functor from the category of ®-comonoids in C,
say ®-Comonoids(C) - C has a right adjoint U -i ! rendering
(!A, eA, 5'.) a cofree,cocommutative ®-comonoid object in C.

Finally, we remark that the essence of Girard's original translation of
intuitionistic logic into CLL is the following observation:

Proposition 1.52 (Seely) The co-Kleisli category of the comonad
(!, 6,,-) is a cartesian closed category, in which A = B = !A -o B

Indeed, recall that in the co-Kleisli category of !, Hom(A, B) is defined
to be C(!A, B).

Examples 1.53

(i) The category Rel has exponentials. Let X be a set, and define !X
to be the set of all finite multisets on X. We leave the remaining
details to the reader. But we note that this is an instance of a
more general construction. Finite multisets on X could be written
as follows:

!X =0®X®X®9X®X®3X®5X...

Here 0 is the initial object, ® is disjoint union, which acts as
both product and coproduct in this category, and ®9 is the sym-
metrized tensor, and is expressed as a certain quotient (coequal-
izer). For example, X ®s X is the coequalizer of the identity and
the symmetry map. In general, the n'th symmetric group acts on
the n-fold tensor of X with itself, and the symmetrized tensor is
the coequalizer of all of these maps.
It was an observation of Barr that this formula works frequently,
but certainly not always. We recommend [46] as a reference which
considers these issues.

(ii) The inclusion Cohiin ti Coh has a left adjoint ! H y. Thinking
of a coherence space as a graph, !A = (Afin, C), where Afin is
the set of finite cliques in the graph A and where a v b if a U b
is a clique. The co-Kleisli category induced by this comonad is
equivalent to Coh. (see for example [63]).

Category Theory for Linear Logicians 43

(iii) The category of finiteness spaces described above also has an
exponential, as observed in [30]. Let (X, J7) be a finiteness space,
then define its exponential by

!(X,1) = (M(X),M(F))

where M(X) is the set of all finite multisets on X, and M(J)) is
an appropriate set of subsets. See [30] for further details.

1.4 Traced monoidal categories and the geometry of
interaction

Traced monoidal categories, introduced by Joyal, Street, and Verity [47],
provide a convenient framework for discussing iteration, parametrized
feedback and fixedpoints in computation, algebra of networks, and cat-
egorical aspects of Girard's Geometry of Interaction (GoI) program
[4, 40, 43].

Definition 1.54 A traced symmetric monoidal category is a symmetric
monoidal category (C, (9, I, s) with a family of functions TrX y : C(X ®
U, Y ®U) -) C(X, Y) pictured in Figure 1.3, called a trace, subject to
the following conditions:

(i) Natural in X, u, Uy (f)g = TrX, y (f (g (glu)) , where f
X(9 U--)Y®U,g:X'--'X,

(ii) Natural in Y, gTrX y (f) = TrX y, ((g (9 lu) f) , where f

(iii) Dinatural in U, TrX y((ly ®g) f) = TrX y(f (1X (9 g)) , where
f :X®U-*Y0U',g: U'-+ U,

(iv) Vanishing (I, II), TrX y (f) = f and TrX®v (g) _
TrX y(TrX®U,y(&U(g)), for f : X ® I - Y ®I and g
X®U®V-)Y®U®V.

(v) Superposing,

g ®TrX,y (f) = Trw®x,Z®y (g (9 f)

for f :X®U--+Y®U and g:W--'Z.
(vi) Yanking, Trg U(au,u) = lu

44 R. Blute and Ph. Scott

X

f

Y

U U

Fig. 1.3. The trace Trx,Y (f)

We think of TrX Y (f) as "feedback along U", as in Figure 1.3. Simi-
larly, the axioms of traced monoidal categories have a geometrical rep-
resentation given in [4] (Appendix 1).

Examples 1.55

1. The category Rely is traced. Let R : X x U --+ Y x U be a
morphism in Rely . Then Try(R) : X ---+ Y is defined by:
Trx,Y (R) (x, y) = 3u.R(x, u, y, u)

2. The category Vecfd is traced. Let f : V ® U ---+ W 0 U be
a linear map, where U, V, W are finite dimensional vector spaces
with bases {ui}, {v3}, {wk}. We define TrVw(f) : V -* W by:

Trv,w(f)(vi) = where f(vz®uj) = Eaj wk®um.27

j,k k,m

This reduces to the usual trace of f : U -i U when V and W are
one dimensional.

3. Note that both Rel and Vecfd are compact closed categories.
More generally [47], every compact closed category has a canonical
trace:

Oid B®U®Ul id(gey B(91 = BTr ,s(f) = A A®I
Z

A®U®U1 f

where ev' = evos.

4. The category w-CPO1 consists of objects of w-CPO with a
smallest element I, and maps of w-CPO that do not necessar-
ily preserve I. Here 0 = x, I = {1}. The (dinatural) family
of least-fixed-point combinators Yu : Uu -b U induces a trace,
given as follows (using informal lambda calculus notation): for
any f : X x U -+ Y x U, Tr .,Y(.f)(x) = fi(x,Yu(.u.f2(x,u))),
where fl = 7rlof : X x U -+ Y, f2 = 7r2of : X X U - U
and Yu(Au.f2(x,u)) = the smallest element u' of U such that
f2(x,u') = u'.

Category Theory for Linear Logicians 45

= XfY-Z

Fig. 1.4. Generalized Yanking

In the above examples, ® is based on (cartesian) product. Unfortunately,
these examples do not really illustrate the notion of feedback as data
flow: the movement of tokens through a network. This latter view,
emphasized in work of Abramsky and later Haghverdi and Hines (cf.
[4, 40, 43]), is illustrated by examples based on coproduct-like traces,
given below.

Exercise 1.56 (Generalized Yanking) Let C be a traced symmetric
monoidal category, with arrows f : X-'Y and g : Y-'Z. Then gof =
TrxyZ(sy,zo(f (9g)). Find an algebraic proof of this fact. Geometrically,
the reader should stare at the diagram in Figure 1.4 , and do a "string-
pulling" argument (cf. [47])

The next examples of traced monoidal categories arise in considering
"coproduct-like" traces, and are related to dataflow interpretations of
graphical networks. We illustrate this view with categories connected to
Rel.

Examples 1.57

1. Rel+ , the category Rel with x = +, disjoint union. Suppose
X+U Y+U is a relation. The coproduct injections induce four
restricted relations : Ruu, Ruy, Rxy, Rxu (for example, RxY C
X x Y is such that Rxy(x,y) = R(inc'u(x),ini'u(y)). Let R*
be the reflexive, transitive closure of the relation R. A trace can
be defined as follows:

TrX y(R) = RxY U U Ruy°RUU°Rxu
n>O

= Rxy U RuyoR. juoRxu. (1.5)

2. Consider the categories Pfn and PInj of sets and partial functions

46 R. Blute and Ph. Scott

(resp. sets and partial injective functions), as monoidal subcate-
gories of Rel+. The tensor product is given by the disjoint union
of sets, where we identify A + B = {1} x A U {2} x B (note that
this is not a coproduct in PInj, although it is a coproduct in

A,BPfn). There are the obvious injections ini : A -* A + B and
in2'B : B -> A+B as well as "quasiprojections" pi : A+B --' A
given by pl ((1, a)) = a (where pi ((2, b)) is undefined) and simi-
larly for P2 : A + B --> B.

Given a morphism f : X +U ---' Y+U, we may consider its four
"components" fXy : X --p Y, fxu : X -+ U, fUX : U -* X, and
fUU : U --- U obtained by pre- and post-composing with injections

and quasiprojections: for example, fXy = X-n,) X + U
Y + U Y, (See Figure 1.5).

X fXY Y
........ fUY...'..

fNU

U f0U U

Fig. 1.5. Components of f : X + U -+ Y + U

Both Pfn and Pinj are traced, the trace being given by the fol-
lowing iterative formula

TIX,Y(f) = fXY + fUYfuUfxu, (1.6)
nEw

which we interpret as follows: a family {hi}ic, : X ---p Y is said
to be summable if the hi's have pairwise disjoint domains and
codomains. In that case, we define their sum

(E
hi) (x) _

h3(x), if x E Dom(h2) for some j E I;

iEI
undefined, else.

From a dataflow view, particles enter through X, travel around a loop
on U some number n of times, then exit through Y. Numerous other
examples of such "coproduct-like" traces are studied in [4].

The iterative trace formulas (1.5) and (1.6) are versions of Girard's
Execution Formula from his GoI program. A general categorical frame-
work for discussing such traces, and their connections to Girard's original
work, is studied in Haghverdi's work [40].

Category Theory for Linear Logicians 47

On a more general level, starting with a traced monoidal category C,
we now describe a compact closed category Int(C) described in [47] (also
called G(C) in [1]) which captures in abstract form many of the features
of Girard's Geometry of Interaction program, as well as the general ideas
behind game semantics. We follow the treatment in Abramsky [1].

Definition 1.58 (The Int Construction) Given a traced monoidal
category C we define a compact closed category, Int(C), as follows [47, 1]:

Objects: Pairs of objects (A+, A-) where A+ and A- are objects
of C.

Arrows: An arrow f : (A+, A-) -b (B+, B-) in Int(C) is an
arrow f : A+ ® B- - A- ® B+ in C.

Identity: 1(A+ A_) = SA+,A-.

Composition: Arrows f : (A+, A-) -' (B+, B-) and g
(B+, B-) --+ (C+, C-) have composite gof : (A+, A-) --
(C+, C-) given by:

go f = TrA+®C_,A-®C+ (N(f (9g)a)

where a = (1A+ ®1B-(9 sc-,B+)(lA+ ®sc-,B- ®1B+) and Q
(1A- (&1C+ ®SB+,B-)/ 1A-

=
(&SB+,C+ ®1B-)(1A- ®1B+ (&sB-,C+).

Pictorially, g- f is given by symmetric feedback:
A+ I B+ IC-

A-

Tensor: (A+, A-) ® (B+, B-) = (A+ ® B+, A- ® B-) and for
(A+, A-) (B+, B-//) and g : (C+, C-) --' (D+, D-), f ®g
/

=
(1A- ®SB+,C- ®1D+)(f (9 g)(lA+ ®SC+,B- (9 1D-)

Unit: (I, I).

Duality: The dual of (A+, A-) is given by (A+, A-)1 = (A-, A+)
where the unit g : (I, I) (A+, A-) ® (A+, A-)' =def SA-,A+
and counit e : (A+, A-)1 ®(A+, A-) -+ (I, I) =def SA-,A+.

Internal Horns: As usual, (A+, A-) -o (B+, B-) = (A+, A-)' ®
(B+, B) = (A (& B+, A+ ®B).

48 R. Blute and Ph. Scott

Translating the work of [47] in our setting we obtain that Int(C) is a
kind of "free compact closure" of C at the bicategorical level (for which
the reader is referred to [47]):

Proposition 1.59 Let C be a traced symmetric monoidal category

(i) Int(C) defined above is a compact closed category. Moreover,
Fc : C -+ Int(C) defined by Fc(A) = (A, I) and Fe(f) = f is a
full and faithful embedding.

(ii) The inclusion of 2-categories CompCl '--+ TraMon of compact
closed categories into traced monoidal ones has a left biadjoint
with unit having component at C given by F.

Following Abramsky [1], we interpret the objects of Int(C) in a game-
theoretic manner: A+ is the type of "moves by Player (the System)"
and A- is the type of "moves by Opponent (the Environment)". The
composition of morphisms in Int(C) is connected to Girard's execution
formula . In [1] it is pointed out that g(Pinj) captures the essence of
the original Girard model, while g(w-CPO1) is the model of Gol in [2].

Finally, we remark that in [4], a general analysis of such algebraic
models of GoI is given. There it is shown how to use the above ab-
stract GoI construction to obtain models of the {!, -o} fragment of lin-
ear logic, presented in terms of linear combinatary algebras. These are
certain combinatory algebras (A,) equipped with a map ! : A -+ A and
constants B, C, I, K, W, D, 8, F satisfying the combinatory identities for
a Hilbert-style axiomatization of {!, -o} (see also [63]). The method is
sketched as follows.

Let C be a traced smc, with an endofunctor T : C -+ C and an ob-
ject (called a reflexive object) U E C with retractions U ® U a U,
I a U, and TU < U. Then if T satisfies some reasonable axioms and
setting V = (U, U) and I = (I, I), it is shown in [4] how the homset
Int(C)(I, V) = C(U, U) naturally inherits the structure of a linear com-
binatory algebra. For example, in the case of C = Pinj, N is such a
reflexive object, with endofunctor T(-) = N x (-). This example un-
derlies the original Girard GoI constructions. The model in [2] likewise
arises from Int(CPO1). Moreover, Girard's original operator-theoretic
models (in the category of Hilbert spaces), as well as Danos-Regnier's
small model [26] are also captured in the above framework using some
additional functorial structure (see [40], Section 6).

Category Theory for Linear Logicians 49

1.5 Nonsymmetric monoidal categories
One of the most appealing features of linear logic is its flexibility; one can
readily define variants of linear logic which either have a full exchange
rule or a very limited exchange rule. These variants correspond to the
varying degrees of symmetry that one gives to the tensor. In short, just
as there are nonsymmetric monoidal categories, there is nonsymmetric
linear logic. The most interesting examples of nonsymmetric monoidal
categories occur in the representation theory of Hopf algebras. Hopf
algebras arise in many areas of physics, computer science and combina-
torics. In this section, we review the basics of nonsymmetric monoidal
categories, how Hopf algebras provide examples, and how these examples
correspond to various types of linear logic.

If we drop the requirement that the tensor be symmetric, then one
should consider categories with two internal HOM's. Thus we should
have adjunctions of the form:

HOM(A (9 B, C) = HOM(B, A -0 C)
HOM(A ® B, C) = HOM(A, C o- B)

This is the definition of biautonomous category, an obvious generaliza-
tion of the symmetric case. Of course, if the tensor happens to be
symmetric, this will induce an isomorphism between the two HOM's.

Analogously, to define a nonsymmetric analogue of categories with
dualizing objects one needs two duals, Al and 'A. (The dualizing object
for each will be the same.) These will be subject to the isomorphisms:

1(A1) = (1A)1 = A

More specifically, a biautonomous category has a canonical morphism:

A -, '(A1) - /1A)1

and if this map is an isomorphism, then we have a bi-*-autonomous
category. (In general, there will be no relationship between A and A11
in the nonsymmetric case.)

We now discuss a variant of these categories.

Definition 1.60 If in a bi-*-autonomous category, the dualizing object,
1, has the property that:

1A=A1

or equivalently:

50 R. Blute and Ph. Scott

A -o1'=1o- A

then 1 is said to be cyclic. A *-autonomous category with such a dual-
izing object is also said to be cyclic.

In the posetal case, these are the Girard quantales, and were introduced
by Yetter in [64] and studied by Rosenthal [58]. A notion of proof net
for this theory is contained in [64].

Yetter's cyclic linear logic is obtained by replacing the usual exchange
rule with:

F- A,,A2,...,A,
f A,(l), Aa(2), ... , Acgn)

where a is a cyclic element of the symmetric group on n letters. It is
straightforward to verify that a *-autonomous category with a cyclic
dualizing object validates this rule.

Noncommutative linear logic, with the cyclic exchange rule would
seem to be the optimal level of noncommutativity. The theory has an
excellent semantics, sequent calculus and proof nets. Similarly well-
behaved structures for fully noncommutative linear logic have proven to
be much more problematic.

We note that the subject of noncommutative linear logic has not been
explored as extensively as other aspects of linear logic. In addition
to obtaining further noncommutative full completeness theorems, there
are also a number of logical variants of cyclic linear logic that should be
considered. Indeed, Ruet's recent variant, called simply noncommutative
logic, ultimately suggests that the number of noncommutative variants
may be almost endless. See [7] for an analysis of its syntax, as well as a
notion of proof net for this logic.

Ruet's logic is a mix of commutative and noncommutative elements.
In it, there are two sets of connectives, one an ordinary commutative
tensor and par and the other a cyclic noncommutative tensor and par.
Interaction between the two systems is mediated by a structural rule
called entropy.

It is hoped that for any possible version of noncommutative linear
logic, there is a corresponding notion of Hopf algebra (see below). For
Ruet's logic, there is the notion of entropic Hopf algebra developed in
[17].

Category Theory for Linear Logicians 51

1.5.1 Representations of Hopf algebras
We now introduce Hopf algebras as a means of constructing examples
of nonsymmetric monoidal closed categories. Hopf algebras are best
considered as a nonsymmetric generalization of the category MOD(G)
of G-modules (see Examples 1.26, Number 5). We recommend [48, 54] as
excellent introductions. We begin with some preliminaries. We assume
throughout a fixed, but arbitrary field k.

Definition 1.61 An (associative) algebra is a k-vector space H equipped
with maps m: H ® H -+ H and rl: k--+H which are called the multiplica-
tion and unit, and these must satisfy the evident equations for associa-
tivity and unit. Dually one may define a (coassociative) coalgebra as a
space with maps A : H-+ H ® H and E : H -, k satisfying the dual axioms.
Then a Hopf algebra is a k-vector space H equipped with an algebra
structure, a compatible coalgebra structure and a map S : H -+ H called
the antipode satisfying appropriate equations. The following chart sum-
marizes the necessary structure. All maps shown are linear.

Structure Equations
Algebra m: H ® H -* H Associativity and Unit:

(multiplication)
mo(m®id)=mo(id(9 m)

77: k--+H and
(unit) 71(1) is 2-sided unit for m.

Coalgebra A: H-'H ® H
(comultiplication) Coassociativity with

counit for comultiplication
e : H -+ k (dual to algebra structure).
(counit)

Bialgebra Algebra + Coalgebra A and a are algebra homs.
(Equivalently m, 71 are

coalgebra horns.)
Antipode S: H -> H Inverse to idH : H - H

under convolution

Here convolution refers to the operation on Homk(H, H) defined by (f *
g)(c) = m((f (9 g)(i c)). The identity for the convolution operation is
given by rle : H--+H. We say a Hopf algebra is (co)commutative if the
(co) multiplication is (co)commutative (i.e. the appropriate diagram or
its dual commutes [48, 54].)

52 R. Blute and Ph. Scott

Example 1.62 A particular Hopf algebra which provides the semantics
of cyclic linear logic is known as the shuffle algebra. It is an example of
an incidence algebra and is of fundamental importance in several areas
of mathematics. The terminology below is motivated by thinking of
shuffling a deck of cards.

Let X be a set and X* the free monoid generated by X. We denote
words (= strings) in X* by w, w', and occasionally z, z'.... Elements
x, y, - E X are identified with words of length 1, the empty word (=
unit of the monoid) is denoted by e, and the monoid multiplication is
given by concatenation of strings. We denote the length of word w by
Iwl. Let k[X*] be the free k-vector space generated by X. We consider
k[X*] endowed with the following Hopf algebra structure (cf. [20]):

(i) A = k[X*] is an algebra, i.e. comes equipped with an associative
k-linear multiplication (with unit) m : A ® A -* A:

W ®w' H E u (1.7)
uESh(w,w')

where Sh(w, w') denotes the set of "shuffled" words of length I wI + Iw'
obtained from w and w'. Here, a shuffle of w = a1 a,, and w' =
ai a' is a word of length m + n, say w" = cl c,,,,+n such that
each of the ai and a''. occurs once in w" ; moreover, within w", ai and
a' occur in their original sequential order. For example, if w = aba and
w' = be, we obtain the following set of shuffled words (where the letters
from w' are underlined)

ababc, abbac, abbac, babac, abbca, abbca, babca, abcba, bacba, bcaba

Thus the summation w.w' is equal to

ababc + 2abbac + babac + 2abbca + babca + abcba + bacba + bcaba

Note that we always denote the shuffle multiplication with as opposed
to the monoid multiplication, for which we use concatenation.

The unit y : k - A arises by mapping 1 p--' c.
(ii) A = k[X*] is a coalgebra, i.e. comes equipped with a coassociative

comultiplication (with counit) A : A -. A ® A, defined as:

0(w) = W1 ® W2 (1.8)
wl W2=w

Note that in the equation w1w2 = w we are using the original monoid
multiplication of X*. The above pair wlw2 is called a cut of w.

The counit E : A -+ k is defined by:

Category Theory for Linear Logicians 53

E(w)_ 1 ifw=e
(1.9)

0 else

Finally, there is an antipode defined as

S(w) = (1.10)

where w denotes the word w written backwards.

Proposition 1.63 A = k[X*] with the above structure forms a Hopf
algebra with involutive antipode.

1.5.2 H-Modules

In analogy with the notion of G-space, we may speak of the action of a
Hopf algebra H on a vector space V. This is a linear map p : H ® V - V
satisfying the analog of the action equations above:

Definition 1.64 Given a Hopf algebra H, a module over H is a vector
space V, equipped with a linear map called an H-action P: H ® V-'V
such that the following diagrams commute:

H®H®V id®P- H®V

mid

H®V ° V k®V

We will generally denote an H-action by concatenation, e.g. p(h (9 v) =
hv. Then the above diagrams translate, respectively, to: (hh')v = h(h'v)
and 77(1)v = v, for all h, h' E H, v c V. We shall frequently denote 77(1)
by 1H.

If (V, p) and (W, 'r) are modules, then a map of modules, sometimes
called an H-map, is a k-linear map f : V--+W such that the following
commutes:

54 R. Blute and Ph. Scott

H®V
nd®f H®W

P T

V f ' W
i.e. in the above notation, f (hv) = h f (v) for all h E H, V E V. We thus
obtain a category MOD(H).

The above definition is a straightforward generalization from group rep-
resentations; indeed, the latter arises as the special case H = k[G]. If U
and V are modules, then U ® V has a natural module structure given
by:

H®U®V o®Zd H®H®U®V H®U®H®V P®P U®V

Theorem 1.65 (See [54, 48] for details.) MOD(H) is a monoidal
category. If the Hopf algebra is cocommutative, then the tensor product
is symmetric. The unit for the tensor is given by the ground field with
the module structure induced by the counit of H.

Definition 1.66 Given an arbitrary Hopf algebra H with bijective an-
tipode, and two H-modules, A and B, we will define two new H-modules,
A -o B and B o- A, as follows. In both cases, the underlying space will
be A -ok B, the space of k-linear maps.

The action on B o- A is defined by:

(hf)(a) = > hif(S(h2)a) (1.11)

and the action on A -o B is defined by:

(hf) (a) = > h2f (S-1(hl)a) (1.12)

where 0(h) = h1 ® h2-

A proof of the following can be found in [54]. See that reference also
for the history of these constructions, many of which are due to that
author.

Category Theory for Linear Logicians 55

Theorem 1.67 Let H be a Hopf algebra with bijective antipode. Then
with the actions defined above, MOD(H) is a biautonomous category.
The adjoint relation:

HOM(A (9 B, C) = HOM(B, A -0 C)

holds whether or not the antipode is bijective. In the case of a cocom-
mutative Hopf algebra, the two internal HOM's are equal.

So the representation theory of Hopf algebras provides us access to a wide
variety of models of noncommutative (intuitionistic) linear logic. There
are several ways to extend this to obtain classical models. One could re-
strict to finite-dimensional representations, or again use the topological
category RTVec for representations. The expository paper [13] consid-
ers these ideas. In particular, we note the following as an example of
the usefulness of Hopf algebras.

Theorem 1.68 If H is a Hopf algebra with involutive antipode, then
its category of finite-dimensional representations or representations in
RTvec is a model of cyclic linear logic.

As a corollary, we obtain from Proposition 1.63 that the shuffle Hopf
algebra A = k[X*] models cyclic linear logic. Such Hopf algebras were
used to obtain a full completeness theorem for cyclic multiplicative linear
logic in [20]. This will be discussed in the next section.

1.6 Full Completeness and Representation Theorems
The most basic representation theorem of all is the Yoneda embedding:

Theorem 1.69 (Yoneda) If A is locally small, the Yoneda functor Y :
A -' SetA°p, where Y(A) = HomA(-, A), is a fully faithful embedding.

Indeed, Yoneda preserves limits as well as cartesian closedness. This
theorem, and its many variants, is critical to the development of category
theory and categorical model theory.

However we seek mathematical models which fully and faithfully rep-
resent proofs. From the viewpoint of a logician, these are completeness
theorems, but now at the level of proofs rather than provability. The
results are known as full completeness theorems. The terminology arose
in the work of Abramsky and Jagadeesan on full completeness for MLL
+ Mix in *-autonomous categories of games [3].

56 R. Blute and Ph. Scott

Definition 1.70 Let .F be a free category. We say that a categorical
model M is fully complete for .F or that we have full completeness of .F
with respect to M if, with respect to some interpretation of the genera-
tors, the unique free functor Q -]] :.F - M is full. It is even better to
demand that Q - 11 is a fully faithful representation.

For example, suppose .F = F(go) is a free structured category (e.g. free
ccc, *-autonomous, etc.) generated by the appropriate deductive system
on a discrete graph go. To say a categorical model M is fully complete
for F means: any arrow Q A]] - [B]] E M between definable objects
is itself definable, i.e. it must be of the form Q f

ll
for some (equivalence

class of a) proof f : A -* B in F. If the representation is fully faithful,
then f is unique. Thus, by Curry-Howard-Lambek, any morphism in
the model between definable objects is itself the image of a proof (or
program); and this proof is unique if the representation is fully faithful.

Such results are mainly of interest when the models M are "genuine"
mathematical models not a priori connected to the syntax. For example,
an explicit use of the Yoneda embedding Y :.F -4 Set F"' is not what
we want, since the target model Set-r'p depends too much on F.

Probably some of the earliest full completeness results were for free
ccc's (i.e. for simply typed lambda-calculi). Plotkin in the 1970's and
Statman in the 1980's studied lambda definability in terms of invariance
under logical relations on set-theoretic Henkin models.

In the case of Linear Logic, the fundamental paper of Abramsky and
Jagadeesan [3] proved full completeness for MLL + Mix, using categories
of games with certain history-free winning strategies as morphisms. It
is shown there that "uniform" history-free winning strategies are the
denotations of unique proof nets. An alternate notion of game, de-
veloped by Hyland and Ong, permits eliminating the Mix rule in such
game-theoretic full completeness theorems for the multiplicatives. These
results paved the way for the most spectacular application of these game-
theoretic methods: the solution of the full abstraction problem for PCF,
by Abramsky, Jagadeesan, and Malacaria and by Hyland and Ong. See
for example [45].

There have been a host of full completeness theorems for MLL + Mix,
MLL, Yetter's CyLL, and recently for MALL. Very roughly speaking,
we may distinguish two styles of fully-complete models in the literature:

Direct Models: These are subcategories of some ambient *-autonomous
category. The key idea is to impose an invariance or uniformity con-
dition to restrict the class of arrows between definable types to those

Category Theory for Linear Logicians 57

which are exactly the denotations of proofs. This is typical of the
original game theoretic fully-complete models mentioned above (where
proofs correspond to certain restricted kinds of winning strategies) as
well as to Hamano's direct full completeness theorem for MLL + Mix,
which uses a subcategory of RTVec restricted to certain Z-invariant
maps.

Functorial Models: This approach, and similar ones using relational
transformers and Reynolds' parametricity, uses techniques of functo-
rial polymorphism in [9]. The basic idea is to model formulas (i.e.
types) as multivariant functors over some base monoidal category,
and proofs as multivariant (dinatural) transformations. In the second
case, one uses similar relational methods. In either approach, one of-
ten imposes additional uniformity requirements on (di)natural families
to enable them to exactly correspond to proofs (e.g. in our previous
work [19, 20], we supposed dinatural families (discussed below) are
invariant under continuous group or Hopf-algebra actions.).

The functorial models and their variants provide a powerful and increas-
ingly popular framework for full completeness proofs. Uniformity is now
imposed over (di)natural families, with a much wider range of examples
than the direct models approach. But this flexibility comes at a price:
the functorial approach only applies to cut-free systems of LL, since di-
natural transformations (as well as logical relations) do not compose in
general. Hence functorial models, unlike direct models, are not a priori
categories.

Since the work of Ralph Loader in the early 1990's, later generalized
in work of Hyland and Tan, it has become increasingly important to
lift known full completeness theorems to larger base categories. The
techniques for doing this involve using a Chu space or Double Gluing
construction on top of the base. The point of the Chu or Double-gluing
construction is to eliminate various unwanted maps, e.g. moving from
a compact base category or one satisfying Mix to a more general *-
autonomous setting, and then to rebuild the whole functorial framework
at this level. Haghverdi [40] introduces a new class of full completeness
theorems for MLL by a 2-step process: first applying a GoI-model con-
struction to certain traced monoidal categories, then applying modified
Loader-Hyland-Tan techniques.

In the case of MALL, there are currently two full completeness the-
orems in the dinatural framework. Part of the difficulty here is that
the associated notion of proof-nets for MALL is highly non-trivial. The

58 R. Blute and Ph. Scott

first model, by Abramsky and Mellies [5] uses dinaturals over a base
category of so-called concurrent games, which are themselves related to
a kind of double-gluing construction. The second, by the authors and
Hamano [18] uses the dinatural framework on a double gluing category
over Ehrhard's category of hypercoherence spaces.

As an example of how full completeness theorems work, we now give
a brief picture of the dinatural results in the authors' papers [19, 20].

Definition 1.71 Let C be a category, and F, G : (C°")n x C" -* C
functors. A dinatural transformation 0 : F -+ G is a family of C-
morphisms 0 = {BA : FAA -i GAA I A E Cn} satisfying (for any
n-tuple f : A B E Cn):

FAA OA GAA

GAB
Bf

FBB °GBB
For a history of this notion, see [9].

Let C be a *-autonomous category. Given an MLL formula
cp(al, ... , an) built from ®, -a, ()1 , with type variables al, ... , an,
we inductively define its functorial interpretation lw(al,... , an)

ll
(C°p)n x Cn - C as follows (boldface letters are vectors of objects):

(AB) Bz if P(al, ... , an) = ai
Qcp l AZ if cp(al, ... , an) - aZ
Q 0i ®W2 fl (AB) W1] (AB) ® [cot (AB).

It is readily verified that cp1 I = Q cp
1 and Q cpl -o cp2

ll
(AB) _

cpl I (BA) -0 [[W2 I (AB), where A -o B is defined as (A ® B') '.
From now on, let C = RTVec. The set Dinat(F, G) of dinatural trans-

formations from F to G is a vector space, under pointwise operations.
We call it the proof space associated to the sequent F I- G (where we
identify formulas with definable functors.) If I- I' is a one-sided sequent,
then Dinat(r) denotes the set of dinaturals from k to Q 2y 11] .

The following is proved in [19, 20]. A binary sequent is one where each
atom appears exactly twice, with opposite variances. A diadditive dinat-
ural transformation is one which is a linear combination of substitution
instances of binary dinaturals.

Category Theory for Linear Logicians 59

Theorem 1.72 (Full Completeness for MLL + Mix) Let F and G
be formulas in MLL + Mix, interpreted as definable multivariant func-
tors on RTVec. Then the proof space Dinat(F, G) of diadditive dinatu-
ral transformations has as basis the denotations of cut-free proofs in the
theory MLL + Mix.

Example 1.73 The proof space of the sequent

al, al -0 02, 02 -0 a3, ... , On-1 -o an an

has dimension 1, generated by the evaluation dinatural. Thus any proof
of this sequent must be a scalar multiple of the evaluation dinatural.

The proofs of the above results actually yield a fully faithful representa-
tion theorem for a free *-autonomous category with Mix, whose homsets
are canonically enriched over vector spaces ([19]).

In the same paper we proved a similar Full Completeness Theorem and
fully faithful representation theorem for Yetter's Cyclic Linear Logic. In
this case one employs the category RTMOD(H) for a Hopf algebra H .

The particular Hopf algebra used is the shuffle Hopf algebra. Once again
we consider formulas as multivariant functors on RTVec, but restrict
the dinaturals to so-called H -uniform dinaturals 01v11,...,1 v,1, i.e. those
which are equivariant with respect to the H -action induced from the
atoms, for H -modules V% E RT.MOD(H). This is completely analogous
to the techniques used in logical relations.

Theorem 1.74 (Full Completeness for CyLL + Mix) Let F and G
be formulas in MLL + Mix, interpreted as definable multivariant func-
tors on RTVec. Let H be the shuffle Hopf algebra. Then the proof
space of H -uniform diadditive dinatural transformations has as basis
the denotations of cut-free proofs in the theory CyLL + Mix.

From the large literature on MLL full completeness theorems, we end by
discussing an interesting line of research stemming from seminal work
of Ralph Loader [52], who early on proved full completeness theorems
using a linear version of logical predicates. His work led M. Hyland
and A. Tan to introduce the method of double gluing [46, 62] as a new
categorical technique for generating fully complete functorial models.

Definition 1.75 Let C = (C, (9, I, (-)1) be a compact closed category.
We define a new category, GC, the double gluing category of C, whose
objects are triples A = (A, Ap, A,,p) where A is an object of C, where

60 R. Blute and Ph. Scott

Ap C C(I, A) is called a set of points of A and where App C C(A, I)
C(I, Al) is called a set of copoints of A.

A morphism f : A -, C3 in GC is a morphism f : A -> B in C such
that f (Ap) C Bp and f' (B ,p) C_ App. Composition and identities are
induced from the underlying composition and identities in C.

Proposition 1.76 For any compact closed category C, GC is a *-
autonomous category, in which

Al = (A1-, Ap, Ap)

A ®B = (A ®B, (A ®13)p, (A 0 B)rp)
IGC = (I, {idI},C(I, I))

where (A(9 B)p = {a ®/31a E Ap, 0 E 13p} and (A (& 8),p = GC(A, B-L).
The forgetful functor U : GC -+ C preserves the *-autonomous structure.

We remark that in a logical setting one can think of an object A E GC
as a formula A in C together with a collection of proofs of A (the set Ap)
and a collection of refutations of A (the set A,p). Also, we remark that
the double gluing construction works more generally for *-autonomous
categories C (see [18, 46]). An important special case is:

Example 1.77 GReI denotes the double gluing category over the cat-
egory Rely . Its objects are triples A = (A, Ap, App), where A is a set,
Ap C Rel(I, A) = P(A) and A,,p C Rel(A, I) = P(A) . A morphism
f : A - B of GReI is a relation R : A -+ B of Rel such that:

(image condition:) Va E Ap [a]R := {b E fl 13 a E a(a, b) E R} E 13p
(co-image condition:) V O E Carp R[,Q] := {a E a l3 b E /3(a, b) E R} E A,p

There are many interesting full subcategories of GReI, e.g. Loader's
Linear Logical Predicates and Totality Spaces [52], as well as Coh.

The Hyland-Tan approach to Loader's method is based on the fol-
lowing ideas. We start with a compact closed category C (e.g. C =
Rel). We look at multivariant MLL-definable functors on the double
gluing category GC and dinatural transformations between them. Full
completeness states that every such dinatural corresponds to a Danos-
Regnier MLL proof net pe. The method is as follows:

(i) Using the forgetful functor U: GC --+ C, the dinatural family 0
on GC is completely determined by arrows in C. It thus suffices
to prove a version of full completeness for compact categories C.
For Rel such a result holds, and it implies that every nontrivial

Category Theory for Linear Logicians 61

such dinatural 0 arises as a union of fixed-point-free involutions.
Instantiating 0 at appropriate subcategories of GRel determines
axiom links of a proof structure po.

(ii) One shows pe is a proof net, by showing it is acyclic and con-
nected, using further instantiations of 0 in GRe1.

Haghverdi [40] applied these techniques to compact closed categories
arising from GoI, e.g. of the form Int(C), for certain traced monoidal
categories C.

Finally, we should remark that GRe1 has products and coproducts,
so is a model of MALL. But neither GRel nor Dinat(GRe1) is fully
complete for MALL. Instead, it turns out that one must move to
Dinat(GHCoh), where HCoh is Ehrhard's category of hypercoherences
[28] in order to get a full completeness theorem for MALL (see [18]).

Acknowledgements

Both authors would like to thank the entire Equipe de Logique de la
Programmation (Luminy) and the TMR Network, along with the Direc-
tors Jean-Yves Girard and Laurent Regnier, for their kind hospitality
and support. We also acknowledge support from operating grants from
NSERC, Canada. Finally we thank Robert Seely and Mark Weber for
helpful comments.

Bibliography
[1] S. Abramsky , Retracing Some Paths in Process Algebra. In CONCUR 96,

Springer Lecture Notes in Computer Science 1119, pp. 1-17 (1996).
[2] S. Abramsky, R. Jagadeesan. New foundations for the geometry of

interaction. Information and Computation, 111, pp. 53-119, (1994).
[3] S. Abramsky, R. Jagadeesan, Games and Full Completeness for

Multiplicative Linear Logic, J. Symbolic Logic 59, pp. 543-574 (1994).
[4] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and

linear combinatory algebras. Mathematical Structures in Computer
Science 12, pp. 625-665, (2002).

[5] S. Abramsky, P.-A. Mellies. Concurrent games and full completeness.
Proceedings, Logic in Computer Science 1999. IEEE Press, (1999).

[6] S. Abramsky. Semantics of interaction: an introduction to game
semantics. in Semantics and logics of computation, edited by A. Pitts
and P. Dybjer, Cambridge University Press, (1997).

[7] V.M. Abrusci, P. Ruet. Non-commutative logic I : the multiplicative
fragment. Annals of Pure and Applied Logic 101 pp.29-64, (2000).

[8] R. Amadio, P.L. Curien. Domains and Lambda Calculi. Cambridge
University Press, (1998).

62 R. Blute and Ph. Scott

[9] E. Bainbridge, P. Freyd, A. Scedrov, P. Scott, Functorial polymorphism,
Theoretical Computer Science 70, pp. 1403-1456, (1990).

[10] M. Barr. *-autonomous categories. Springer Lecture Notes in
Mathematics 752, (1980).

[11] G. Bierman. What is a categorical model of intuitionistic linear logic? In
Proceedings of the Second International Conference on Typed Lambda
Calculus and Applications. Lecture Notes in Computer Science 902,
(1995).

[12] R. Blute. Linear logic, coherence and dinaturality. Theoretical
Computer Science, 115:3-41, 1993.

[13] R. Blute, Hopf algebras and linear logic, Mathematical Structures in
Computer Science 6, pp. 189-212, (1996).

[14] R. Blute, J. R. B. Cockett, R. A. G. Seely and T. Trimble. Natural
deduction and coherence for weakly distributive categories. Journal of
Pure and Applied Algebra 13, pp. 229-296, (1996)

[15] R. Blute, J. R. B. Cockett, R. A. G. Seely. ! and ?: Storage as tensorial
strength. Mathematical structures in Computer Science 6, pp. 313-351,
(1996).

[16] R. Blute, J. R. B. Cockett, R. A. G. Seely. The logic of linear functors.
Mathematical structures in Computer Science 12, pp. 513-539, (2002).

[17] R. Blute, F. Lamarche, P. Ruet. Entropic Hopf algebras and models of
non-commutative logic. Theory and Applications of Categories 10, pp.
424-460, (2002).

[18] R. Blute, M. Hamano, P. Scott. Softness of hypercoherences and MALL
full completeness. In preparation, (2003).

[19] R. Blute, P. Scott. Linear Lauchli semantics, Annals of Pure and
Applied Logic 77, pp. 101-142 (1996).

[20] R. Blute, P. Scott. The Shuffle Hopf algebra and noncommutative full
completeness. Journal of Symbolic Logic 63, pp. 1413-1435, (1998).

[21] F. Borceux. Handbook of Categorical Algebra Cambridge University
Press, (1993).

[22] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and
denotational semantics in multiplicative-additive linear logic. Annals of
Pure and Applied Logic 102, pp. 247-282, 2000.

[23] J. R. B. Cockett, R. A. G. Seely. Weakly distributive categories. Journal
of Pure and Applied Algebra 114, pp. 133-173, (1997).

[24] J. R. B. Cockett, R. A. G. Seely. Linearly distributive functors. Journal
of Pure and Applied Algebra 143, pp. 155-203, (1999).

[25] V. Danos, L. Regnier, The structure of multiplicatives, Arch. Math.
Logic 28, pp.181-203, (1989).

[26] V. Danos, L. Regnier. Proof-nets and the Hilbert space, In Advances in
Linear Logic, London Mathematical Society Lecture Notes Volume 222,
(1995).

[27] H. Devarajan, D. Hughes, G. Plotkin, and V. Pratt. Full completeness of
the multiplicative linear logic of Chu spaces. in Proceedings 14th
Annual IEEE Symposium on Logic in Computer Science, LICS'99,
Trento, Italy, July 1999.

[28] T. Ehrhard. Hypercoherences: a strongly stable model of linear logic.
Mathematical Structures in Computer Science 3, pp. 365-385, (1993).

[29] T. Ehrhard. On Kothe sequence spaces and linear logic. Mathematical
Structures in Computer Science 12, pp. 579-623, (2002).

Category Theory for Linear Logicians 63

[30] T. Ehrhard. Finiteness spaces, preprint, (2001).
[31] T. Ehrhard and L. Regnier. The differential lambda-calculus. To appear

in Theoretical Computer Science. 2003.
[32] W. Fulton, J. Harris. Representation Theory: A First Course. Springer

Verlag, (1991).
[33] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
[34] J.Y. Girard. Geometry of interaction I: interpretation of system F.

Proceedings of the ASL Meeting, Padova, 1988.
[35] J.Y. Girard. Linear Logic, its syntax and semantics. In Advances in

Linear Logic, London Mathematical Society Lecture Notes Volume 222,
(1995).

[36] J.Y. Girard. Geometry of Interaction III: accommodating the additives.
In Advances in Linear Logic, London Mathematical Society Lecture
Notes Volume 222, (1995).

[37] J.Y. Girard. Proof-nets: the parallel syntax for proof-theory, Logic and
Algebra, eds Ursini and Agliano, Marcel Dekker, New York 1996.

[38] J.Y. Girard. Locus Solum. Mathematical Structures in Computer
Science 11, pp. 301-506, (2001).

[39] J.Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. Cambridge
University Press, (1989)

[40] E. Haghverdi. Unique decomposition categories, geometry of interaction
and combinatory logic. Math. Structures Comput. Sci. 10, pp. 205-230,
(2000).

[41] M. Hamano. Z-modules and Full Completeness of Multiplicative Linear
Logic, Annals of Pure Appl. Logic 107 , pp. 165-191 (2001).

[42] M. Hamano. Pontrjagin Duality and Full Completeness for Multiplicative
Linear Logic (Without Mix), Math. Struct. in Comp. Science 10, pp.
231-259 (2000).

[43] P. Hines. The Algebra of Self-Similarity and its Applications. Thesis.
University of Wales, (1997).

[44] J. M. E. Hyland and C.-H. L. Ong. Fair Games and Full Completeness
for Multiplicative Linear Logic without the Mix-Rule. Preprint, 1993.

[45] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF.
Information and Computation, Volume 163, pp. 285-408, December 2000

[46] J. M. E. Hyland and A. Schalk. Glueing and orthogonality for models of
linear logic. Theoretical Computer Science 294, pp. 183-231, (2003).

[47] A. Joyal, R. Street and D. Verity. Traced monoidal categories.
Mathematical Proceedings of the Cambridge Philosophical Society,
119:425-446, 1996.

[48] C. Kassel. Quantum Groups. Springer-Verlag, (1995)
[49] G. M. Kelly and M. Laplaza. Coherence for compact closed categories.

Journal of Pure and Applied Algebra 19, pp. 193-213, (1980).
[50] Y. Lafont. Interaction nets. In Principles of Programming Languages

(POPL 1990), p. 95-108, (1990).
[51] J. Lambek, P. Scott. Introduction to Higher-Order Categorical Logic.

Cambridge University Press, (1988).
[52] R. Loader, Linear Logic, Totality and Full Completeness, Symposium of

Logic in Computer Science (LICS), pp. 292-298 (1994)
[53] S. Mac Lane. Categories for the Working Mathematician, volume 5 of

Graduate texts in Mathematics. Springer-Verlag, New York, 1971.
[54] S. Majid. Foundations of Quantum Group Theory. Cambridge University

64 R. Blute and Ph. Scott

Press, (2000).
[55] E. Moggi. Notions of computation and monads. Information And

Computation 93, 1991.
[56] V. de Paiva, A. Schalk. Poset-valued sets, or, How to build models for

linear logic, to appear in Theoretical Computer Science.
[57] R. Rosebrugh, R. Wood. Constructive complete distributivity IV,

Applied categorical structures 2, pp. 119-144, (1994).
[58] K. Rosenthal. Quantales and Their Applications. Pitman Research Notes

in Mathematics, (1990).
[59] P. Scott. Some aspects of categories in computer science, in Handbook of

Algebra, Volume 2, edited by M. Hazewinkel, North-Holland, pp. 1-77,
(2000).

[60] R.A.G. Seely. Linear logic, *-autonomous categories and cofree
coalgebras. Contemporary Mathematics, Volume 92. American
Mathematical Society, (1989).

[61] P. Selinger. Control categories and duality: on the categorical semantics
of the lambda-mu calculus. Math. Structures Comput. Sci. 11 , pp.
207-260 (2001).

[62] A. Tan. Full completeness for models of linear logic. Thesis, Cambridge
University, (1997).

[63] A. Troelstra. Lectures on Linear Logic, Cambridge University Press,
(1992).

[64] D. Yetter, Quantales and (noncommutative) linear logic, Journal of
Symbolic Logic 55, p. 41-64, (1990)

2
Proof Nets and the A-Calculust

Stefano Guerrini
Dipartimento di Informatica - University Roma La Sapienza

Abstract

In this survey we shall present the main results on proof nets for the
Multiplicative and Exponential fragment of Linear Logic (MELL) and
discuss their connections with A-calculus. The survey ends with a short
introduction to sharing reduction. The part on proof nets and on the
encoding of A-terms is self-contained and the proofs of the main theorems
are given in full details. Therefore, the survey can be also used as a
tutorial on that topics.

2.1 Introduction
In his seminal paper on Linear Logic [13], Girard introduced proof nets
in order to overcome some of the limitations of the sequent calculus for
Linear Logic. At the price of the loss of the symmetries of sequents, proof
nets allowed to equate proofs that in sequent calculus differ by useless
details, and gave topological tools for the characterization and analysis
of Linear Logic proofs. Moreover, because of the encoding of A-calculus
in the Multiplicative and Exponential fragment of Linear Logic (MELL),
it was immediately clear that proof nets might have become a key tool
in the fine analysis of the reduction mechanism, the dynamics, of A-
calculus. Such a property was even clearer after that Girard introduced
GOI (Geometry of Interaction [14]) and after the work by Danos and
Regnier on the so-called local and asynchronous ,0-reduction [33, 11].
However, the key step towards the full exploitation of proof nets in
the analysis of A-calculus dynamics was the discover by Gonthier et al.

t This work has been partially supported by the Italian MIUR Cofin Project "Reti
dimostrative: interazione e complessita".

65

66 S. Guerrini

[12] that Lamping's algorithm [25] for the implementation of A-calculus
optimal reduction [28] might be reformulated on proof nets using GOI.
Such a correspondence was successively analyzed in more depth in [2],
where it was shown that the paths definable in GOI coincide with the
paths used in optimal reductions [4].

This paper is mainly a survey on the more relevant results on MELL
proof nets and on their correspondence with A-calculus. The main ideas
of sharing graphs and optimal reductions are only sketched in the last
part of the paper. For a detailed study of the latter topics, we refer the
reader to [3, 22]. For a lack of space, many other interesting topics on
proof nets will not be treated in the paper; for instance, we shall not
consider the additives. Indeed, proof nets for the additives does not have
the same nice properties of those for MELL. Several attempts have been
tried in order to find a good formulation of additive proof nets (e.g.,
see [17] or [36]), but none of that approaches is completely satisfactory
yet. For more details on additives, see [35]. We shall not even consider
quantifiers. On the contrary of what happens for the additives, the
extension of proof nets to quantifiers does not pose any problem, see
[15]

Another interesting issue that we shall not cover in the survey are
the proof nets for classical calculi. For that purpose, we remark the
polarized proof nets introduced by Laurent in [27]. Such proof nets
allow to encode Aµ-calculus and are a nice tool for the analysis of the
computational content of classical logic.

Among the other topics that we shall not cover in the paper, we point
out the non-commutative proof nets for Cyclic Linear Logic [1], or for
Abrusci and Ruet's Non-Commutative Linear Logic [6].

Structure of the paper In section 2.2, we shall analyze multiplicative
proof nets, starting with Multiplicative Linear Logic (MLL) in 2.2.1. In
particular, we shall introduce proof structures (2.2.1.1), we shall give
the Danos-Regnier correctness criterion (2.2.1.2) and the correctness
criteria based on contractibility (2.2.1.3) and parsing (2.2.1.4), and we
shall see that every Danos-Regnier correct proof net can be sequen-
tialized (2.2.1.5); then, we shall define the notion of empire of a for-
mula (2.2.1.6), we shall study how to compute empires (2.2.1.7), and
we shall see the original sequentialization proof by Girard based on em-
pires (2.2.1.8). In 2.2.2, we shall study the proof nets of Intuitionis-
tic Multiplicative Linear Logic (IMLL); in particular, we shall see how
to transform any MLL proof into an I M LL proof by orienting the cor-

Proof Nets and the A-Calculus 67

responding net (2.2.2.1), and we shall see the so-called essential nets
(2.2.2.2). In 2.2.3, we shall briefly discuss the time complexity of the
algorithms implementing the criteria for proof net correctness. The sec-
tion ends with the cut-elimination rules for MLL proof nets, in 2.2.4, and
with an analysis of the problems that the introduction of unit cause in
the definition of proof nets, in 2.2.5.

In section 5.3.5, we shall add the exponentials and define the proof
nets for MELL. In particular, we shall introduce the key notion of ex-
ponential box (in 2.3.1), we shall extend the parsing algorithm already
seen for MLL to MELL (in 2.3.2), and we shall see that weakening leads
to the same problems caused by 1 in the definition of proof net correct-
ness (in 2.3.3). Finally, we shall define the rules for the elimination of
exponential cuts (in 2.3.4).

In section 2.4, we shall study the correspondences between proof nets
and A-calculus. In particular, in 2.4.1, we shall start with linear .-
calculus; in 2.4.2, we shall see the !A -o B encoding of A-terms into
proof nets; in 2.4.3, we shall define the correctness criterion for the
proof nets that are images of A-terms; in 2.4.4, we shall see that proof
nets allow to define an interesting operational equivalence on A-terms;
in 2.4.5, we shall extend the encoding of A-terms to the untyped case.

In section 2.5, we shall give a brief introduction to sharing reduction.
In particular, in 2.5.1, we shall see how to represent boxes by means of
indexes; in 2.5.2, we shall give an intuitive justification of the rules of
sharing reduction; in 2.5.3, we shall point out that optimal reduction is
a particular strategy of sharing reduction.

The parts on MELL nets and on the encoding of A-terms (section 2.2,
section 5.3.5 and part of section 2.4) are self-contained and the proofs
of the main theorems are given in full details. Thus, the survey can be
also used as a tutorial on these topics.

2.2 Multiplicative Proof Nets
2.2.1 MLL

The formulas of the multiplicative fragment without constants of Linear
Logic, MLL for short, are defined by

pI A2?BI A®B

where p ranges over a set of atoms and A, B range over M L L formulas.
The binary connective ' is named par, the binary connective ® is named

68 S. Guerrini

tensor. For every atom p, there is a dual atom p1 s.t. p-Ll = p. Duality
extends to every formula by

A11=A (A28B)1=A1®B1

Let us remark that (.)1 is not a connective of the logic. Then, in the
following, Al will denote the MLL formula that we can obtain from A
by application of the above rules. In particular, (A (9 B)1 = Al 28 B1.

The rules of MLL are given in Figure 2.1, where r and A denote
multisets of MLL formulas. If we define the linear implication -o as
A -o B = Al 2Y B, we get modus ponens as a derived rule, namely,
from a proof of F- A -o B and a proof of F- A we can get a proof of B.
Then, if we denote by A - B the fact that both F- A -o B and I- B -o A
are provable (that corresponds to I- A is provable if F- B is provable), it
is readily seen that A28B-B-7Aand A28 (B 28 C) - (A 28 B) 28 C,
and dually for the tensor, namely, par and tensor are commutative and
associative. For more details on MLL (and Linear Logic), we refer the
reader to [13, 10, 16].

ax
I A, Al

F-r, A I-A,A1
cutI- F,A

I F, A, B I- F, A I- A, B
29I-F,A29B I-F,A,A®B

Fig. 2.1. MLL.

2.2.1.1 Proof structures

The main drawback of MLL sequent calculus is that it distinguishes
proofs that differ by useless details. For instance, let us take

:111 :112 11

I- F, A, B, C F- A, D I- F, A, B, C .112

I-F,D,A,B,C®D F-F,A,A28B,C F-A,D
F-F,A,A28B,C®D F-F,A,A29B,C®D

That pair of proofs differ for the order in which the last two rules are
applied, but, as the principal formulas of the rules (A, B and A 28 B in
the 28-rule; C, D and C®D in the ®-rule) are disjoint, it would be better
to have a syntax that allows to apply the last two rules in parallel, or at
least, a syntax in which the two proofs have the same representation.

In order to find a parallel syntax, we move from sequents to graphs. In

Proof Nets and the A-Calculus 69

particular, we assume that each occurrence of a formula (in the following,
we shall simply say formula in the place of occurrence of a formula)
is the vertex of a graph and that each rule introduces a link between
its principal formulas. In this way, the two proofs seen above become
something like

Cl

F

A'' B C®D

G2

A

where G1i G2 are the graphs replacing 11, and 112, respectively. Let us
notice that the conclusions of 111 and 112 become the roots of the graph,
and that there is no ordering between the links replacing the last two
rules of 111 and 112.

In the following, we shall write I' D A, where r and A are disjoint
sequences of formulas, to denote that there is a link between the premises
F and the conclusions A-a link may have an empty set of conclusions
or an empty set of premises, but r and A cannot be simultaneously
empty. In MLL we have the following type of links (the type of the link
can be written above the link symbol D):

&A,A-L A,A- A,B>A2'B A,B>A®B

Figure 2.2 gives then graphical representation of MLL links.

ax

A-L Au
cut

A 'R B A®B

Fig. 2.2. MLL links.

Definition 2.1 (proof structure) An MLL proof structure is a set of
MLL links G where every formula is conclusion of one (and only one) link
and is premise of at most one link. The formulas that are not premises
of any link are the conclusions of G.

70 S. Guerrini

Let H C G, where G is a proof structure; we say that H is a (proof)
substructure of G. A formula is a premise of H if it is not conclusion of
any link in H. We write, H[0]'- P to denote that A are the premises
of H and P are its conclusions.

By the way, if H is an MLL proof ending with the sequent F- P (write
H 1-- P), the graph e5(H) that we obtain by replacing the rules in H
with the corresponding links is a proof structure with conclusions P.
However, it is readily seen that there are proof structures which are not
the image of any MLL proof.

Remark 2.2 Let us denote by #(xn) the number of rules of type x in a
proof II and by #(concln) the number of formulas in the last sequent of
II (i.e., the number of the conclusions of II). By induction on the length
of H, we can see that:

#(axn) - 1 = #((gn) + #(cutri)
#(axn) + 1 = #(Wn) + #(cutn) + #(concln)

2.2.1.2 Danos-Regnier correctness criterion

Let us denote by PS the set of the MLL proof structures. The image
O(MLL) of the MLL proofs is a proper subset of PS. In order to exploit
the fact that we are using graphs to represent proofs, we want a geo-
metric characterization of C5(MLL). Because of that, we shall associate
a family of graphs to every G E PS, the so-called switches of G, and
we shall say that G is a proof net when every switch of G is a tree.
By induction, we shall see that every G E O(MLL) is a proof net. In a
following section, see Theorem 2.13, we shall also see that every proof
net is in Q5(MLL).

Definition 2.3 (switch) A switch of G E PS is a symmetric binary
relation S over the vertices of G s.t. (A, B), (B, A) E S when one of the
following cases holds:

(i) >A,BEG;
(ii) A, B D E G;

(iii) A,C®DBEGorC,ADBEG;
(iv) A, C D B c G or C, A D BEG, but (C, B) VS.

Let SW(G) be the set of the switches of G. If S E SW(G), we shall
write A ^S B to denote that (A, B) E S and ATSB to denote that
(A, B) V S. We see that S is antireflexive and that it defines a graph

Proof Nets and the A-Calculus 71

over the vertices of G (see Figure 2.3, where the thick lines are the switch
edges introduced by the corresponding link), in which:

every axiom and every cut introduces an edge between its premises or
conclusions, respectively;
every tensor link introduces two edges that connect the premises of
the link to its conclusion;
every par link introduces one (and only one) edge that connects one
of its premises to its conclusion.

Al A B A B A
I

cut ® '8 or

Al A A®B A)p B

Fig. 2.3. Switch edges.

A)pB

The switching of a par link (i.e., the choice of which premise of the
par link is connected to the conclusion) is the source of non-determinism
in the construction of the switches of a proof structure. Because of this,
it is readily seen that ISW(G)I = 2#('8G).

Definition 2.4 (proof net) G E PS is Danos-Regnier correct or, equiv-
alently, G is a proof net, say G E PN, when every switch of G is con-
nected and acyclic.

Remark 2.5 Using the fact that in every tree there is one edge less than
the number of the vertices of the tree, we can see that the equations in
Remark 2.2 hold for every C E PN, if #(xG) is the number of links of
type x in G. In fact, the number of vertices in every switch of a proof
structure G is equal to the number of formulas in G, that is equal to
2#(axc) + #(2YG) + #((gG) (count the conclusions of the links in G),
but also equal to 2#(2'G) + 2#(®G) + 2#(cutc) + #(conclc) (count the
premises of the links in G); while the number of edges in every switch of
G is #(axc) + #(''G) + 2#((&G) + #(CUtG).

Remark 2.6 Let G' be the proof structure obtained by replacing a tensor
for every cut in G E PS. It is readily seen that G is DR-correct if G'
is DR-correct. Because of this, studying proof net correctness, we shall
frequently restrict w.l.o.g. to the case of cut free proof structures.

72 S. Guerrini

Remark 2.7 Given a proof structure G. Let < be the transitive and
reflexive closure of the relation -,<1 defined by A <1 B when A E r
and B E i and A i I' E G. Every ascending chain Al -< - - Ak

corresponds to a path in some switch of G. Now, let us assume that we
can find an ascending chain A -,<1 Al - - Ak A; by the fact that
every switch of a proof net is acyclic, G is not a proof net. Therefore,
when G is a proof net, 4 is antisymmetric, that is, is a partial order.

We aim at proving that the correctness criterion in Definition 2.4
gives exactly the proof structures that correspond to MLL proofs (The-
orem 2.13). The first step of that proof is easy.

Proposition 2.8 Q5(MLL) C PN, that is, 0(11) is a proof net for every
MLL proof H.

Proof By induction on the length of H.

The hard part in the proof of PN = Q5(MLL) is to show that
PN C Q5(MLL). In fact, we have to prove that every proof net G has
a sequentialization, that is, we have to show that there exists an or-
der among the links in G that corresponds to the order of the rules in
some MLL proof H s.t. Q5(H) = G. The original proof by Girard will be
presented in 2.2.1.8. In the next sections, we shall give another char-
acterization of proof nets in terms or graph rewriting that will lead to
a simple proof of sequentialization and that will give an efficient imple-
mentation of DR-correctness.

2.2.1.3 Contraction criterion

The D(anos-)R(egnier) correctness criterion gives a clean and useful
topological characterization of proof nets independent from the sequent
calculus. However, it does not help in finding an efficient algorithm for
the decision problem: "given G E PS, G E Q5(MLL)?". In fact, a direct
application of the DR-criterion leads to an exponential algorithm-we
have to repeat a linear test for an exponential number of switches.

In this section and in the following one, we shall see two other cor-
rectness criteria-contraction and parsing-based on the idea that from
the point of view of switches two correct substructures with the same
premises and conclusions are equivalent. Both these criteria lead to
quadratic time algorithms-or with some care in the implementation, to
n log n algorithms. Moreover, they are the base for a linear algorithm

Proof Nets and the A-Calculus 73

for proof net correctness. By mean of the parsing algorithm, we shall
also prove that C+3(MLL) = PN.

The definition of DR-correctness extends in the natural way to proof
substructures. Moreover, let us assume that H C G is DR-correct. In
order to verify if G E PN we do not need to check every switch of H, it
suffices to choose one switch of H and to verify all switching possibility
for the par links in G \ H. In fact, let us introduce a new kind of link,
named *-link,

Al,...,Ak B1,...,Bh

without any restriction on the number and the type of its premises and
conclusions (however, by the definition of link, in every r D A, ruA # 0
and F fl A = 0). The switching of a *-link is the least graph s.t.

Al''...^Ak^Bh
(see Figure 2.4 also). Now, let us replace a DR-correct substructure
H[F] t- A with the link F i. A. The verification of G can be reduced to
that of the new structure obtained by replacing H.

................

Au A2 Ak

Bu ... Bh
.....................

Fig. 2.4. *-link and the corresponding switching.

Definition 2.9 (*-structure) A *-structure G is a set of MLL links
and *-links s.t. every formula is conclusion of one (and only one) link
and is premise of at most one link. The definitions of switch and of
DR-correct *-structures are the natural extensions of Definition 2.3 and
Definition 2.4.

Lemma 2.10 Let H[r] t- A be a DR-correct substructure of G E PS.
G E PN iff the *-structure G[F D A/H] obtained by replacing r D A for
H in G is DR-correct.

Proof Every S E SW(G) is obtained by some S' E SW(G[F D A/H])
by replacing a tree for the switching tree of the *-link r D A. Moreover,
for every S' there is such an S. Therefore, as S is a tree if S' is a tree,
we conclude.

74 S. Guerrini

Lemma 2.10 suggests the contraction algorithm defined by the rules in
Figure 2.5 (this algorithm has been introduced with a different notation
in [9]). By the way, if R--'+S is any instance of the rules in Figure 2.5
and G = H ; R, then G__4G', with G' = H ; S; moreover, it is readily
seen that, when G is a *-structure, G' is a *-structure too.

A, Ay -L A, Al (D)

F c A,A,B; A, B>' A2?B _-4F1.&A2'B (D)

A,B>A®B-4A,Bt.A®B (D)

A, A-'>" -4 A,A1[
cut
(D)

F1 D Al, A ; A, F2 D A2 ' F1, F2 D Al, A2 (D)

Fig. 2.5. Contraction rules.

Proposition 2.11 Let G E PS with G i- r. We have that G E PN if
G --4* D F. Moreover, if G E PN, then D r is the only -4-normal form
of G.

Proof Let us prove the proposition for any *-structure G r- F. Namely,
let us prove that a *-structure G is DR-correct if G --'+* C' F.
First of all, let us notice the following corollary of Lemma 2.10: if G=AG',
then G is DR-correct if G' is DR-correct. Therefore, we can immediately
conclude that G -+* D F only if G is DR-correct. We left to prove that,
if G is DR-correct, then G D F and that this is its only normal form.
By the fact that contraction is strongly normalizing (every rule decreases
the following measure: #(ax) + JGJ), it suffices to prove that, when G
is DR-correct and contains more than one link, GAG' for some G' F- F.
The statement trivially holds when G is correct and contains at least
an axiom, or at least a tensor or at least a cut link. So, let us assume
that G is correct and contains par and *-links only. By Remark 2.7,
is a partial order and, by hypothesis, any maximal formula w.r.t. that
ordering is conclusion of a *-link D A. If A = F, either G is not DR-
correct or D A is the only link in G. So, A \ F j4 0. If some A E A
is premise of a *-link, we have a D-redex and G __4G' for some G'. If
every A E A \ F is premise of a par link, there must be A, B E A s.t.
A, B

D
C E G, otherwise we might construct a disconnected switch of

G; therefore, G --'+G' for some G', in this case too.

Proof Nets and the .\-Calculus 75

2.2.1.4 Parsing

The sequent calculus of MLL suggests another contraction algorithm.
The rules of this algorithm simulate the parsing of the proof structures
in C3(MLL) (see [24] and [18]) and are given in Figure 2.6. Such rules
ensure that C E C3(MLL) implies G -,+ D r, if G i- r.

5A,A1-4 A, Al (D)

r,A,B; A,BA29B r, A'8 B (D)

r, A; A,B; A,BDA®B-°» r,A,A®B (D)

. r,A;>O,A1;A,A1D-°4

Fig. 2.6. Parsing rules.

Proposition 2.12 Let G E PS with G t- r. Then, G E PN if G
r. Moreover, if G 'E PN, then D IF is the only %-normal form of G.

Proof First of all, let us notice that the *-structures that we get by
reduction of a proof structure contain *-links without premises only;
let us say that a *-structure with that property is a parsing *-structure.
Then, let us remark that the main point of the proof is to show that every
DR-correct parsing *-structure that contains more than one link contains
at least a -°+-redex; the rest is similar to the proof of Proposition 2.11.
Let G i- r be a DR-correct parsing *-structure. W.l.o.g., we can restrict
to the case in which G does not contain axioms. As a consequence, G
contains at least a *-link.
By Remark 2.6 we can assume w.l.o.g. that G is cut free. Moreover, let us

assume that G does not contain any D-redex. We see that, if G contains7F

more than one link, then every *-link in G has a conclusion that is
premise of a tensor (otherwise, G would have a disconnected switch). In
a cut and axiom free parsing *-structure, the first combinatorial equation
in Remark 2.2 becomes #(*c) = #(®c) + 1 (see Remark 2.5 also).
Therefore, by the pigeon hole principle, there is at least an A, B D C E G
s.t. A and B are both conclusions of *-links. As G is DR-correct, A and
B cannot be conclusions of the same *-link. Therefore, G contains at
least a D-redex.

For more details on the parsing technique, we refer to [18].

76 S. Guerrini

2.2.1.5 Sequentialization

By Proposition 2.8, Proposition 2.12 and the fact that every proof struc-
ture that contracts to a *-link corresponds to an MLL proof, we get the
sequentialization theorem.

Theorem 2.13 (sequentialization) Let G E PS with G t- F. Then,
G is a proof net if there is an MLL proof H s.t. C3(II) = G, that is,
O(MLL) = PN.

2.2.1.6 Empires

Let A be a formula in the proof net G. We denote by PNG(A) the set
of the proof nets in G that have A as a conclusions, namely,

PNG(A) ={H c C!Ht- PA and HE PN}

By the sequentialization theorem, PNG(A) is not empty. In fact, let us
take any proof 11 s.t. 0(H) = G; there is at least a subproof ° of 11 s.t.
A is in the final sequent of then, E PNG(A).

Lemma 2.14 PNG(A) is closed by intersection and union.

Proof Let Hu = M U N and Hi = M (1 N with M, N E PNG(A); it is
readily seen that Hi, H.,, E PS. Let Si E SW(H2) and S. E SW(H,,).
W.l.o.g., let us assume that Si is the restriction of S to H2; moreover,
let SM E SW(M) and SN E SW(N) be the restrictions of Su to M and
N, respectively. As Si and Su are subgraphs of some switch of G, they
are acyclic. So, we left to prove that Si and Su are connected.
Let B, C be two formulas in Hi. As M and N are proof nets, there are
a path cpM of S,,,, from B to C and a path cpN of SN from B to C. But,
cpM and coN are paths of Su and, as Su is acyclic, cpM = cpN. Therefore,
as cWM = cON is a path of Si too, we can conclude that Si is connected.
Let B, C be two formulas in Hu. The only relevant case is when B is in
M and C is in N. As M and N are proof nets, there are a path cWM of
SM from B to A and a path coN of SN from C to A. For cWM and c°N
are paths of Su also, by composition of cpM and cON, there is a path of
Su from B to C. Therefore, Su is connected.

The previous lemma allows to conclude that PNG(A) has a minimum
and a maximum w.r.t. to inclusion.

Proof Nets and the A-Calculus 77

Definition 2.15 The empire of A is the largest H E PNG(A). The
kingdom of A is the least H E PNG(A).

2.2.1.7 Algorithmic definition of empires

Given a proof net G, we present now a linear time algorithm for the
construction of the empire eG (A) of a formula A in G.

Definition 2.16 Let V6 (A) be the least set of formulas in C E PN s.t.:

(i) A E VC (A);
(ii) if B E VG (A) and B C, then C E Vc (A);
(iii) if B E VG(A) and either D B, B1 E C or D B', B E G, then

B'L E VG (A);

(iv) if B A and B E V6 (A) and either B, B' D E G or B1, B D
E G, with A j4 B'-, then B1 E VG (A);

(v) if B 0 A and B E V6 (A) and, for some C 0 A, either B,C D
DEC orC,B>0 DEG, then DEVV(A);

(vi) if B, C A and B, C E VI(A) and B, C D D E G, then D E
VI(A).

We want to prove that the proof structure

EG(A)={r>AEGIr,AEVG(A)}

is the empire of A (by construction, it is readily seen that EG(A) E PS).

Lemma 2.17 Given G E PN, let A be premise of some link of G with
conclusion C. There is S E SW(G) s. t. the path of S from A to B
touches formulas in V6 (A) only and does not traverse the edge A ^ C.

Proof By induction of the length of the derivation of B E V6 (A). El

By the latter lemma, the formula C below A cannot be in VG(A),
otherwise we might construct a switch with a cycle. Thus, EG(A) r- r, A
and, for every B E r, one of the following cases holds:

(i) B is a conclusion of G;

(ii) B,A>'CEGorA,BiCEG;
(iii) B,CDDEGorC,BDDEGforsome CVVG(A).

This allows to say that S E SW(G) is a principal switch of A when: for
every B E r, if B is premise of a par link with conclusion C, then B D C.

78 S. Guerrini

Lemma 2.18 Given G E PN, let A be premise of some link of G with
conclusion C and S be any principal switch of A. Then, B E V6(A) if
the path from A to B in S does not traverse the edge A ^ C.

Proof Let c be the path of S from A to B. Let D ^ E be an edge of
cp s.t. D E V6(A) and E V VV(A). By the definition of principal switch,
the only edge of S with that property is A ^ C. Therefore, it is readily
seen that, if cp does not traverses A ^ C, then B E VG(A), otherwise
B ¢ VC'! (A).

Summing up, we can conclude that VG (A) is the set of formulas in
the empire of A.

Proposition 2.19 Let A be any formula in G E PN. eG(A) = EG(A)

Proof W.l.o.g., let us assume that G is cut free (see Remark 2.6) and
that A is premise of a link with conclusion C (otherwise, add an axiom

B, Bl and a tensor A, B
D

C).
By hypothesis, every switch of EG(A) is acyclic; by Lemma 2.18, every
switch of EG(A) is connected. Therefore, EC(A) E PNG(A) and, by the
definition of empire, EG(A) C eG(A).
Now, let B be any formula of G s.t. B 0 VI(A). By Lemma 2.18,
the only path from A to B in a principal switch S traverses A ^ C.
Therefore, as C is not a formula of eG(A), the path that connects A to
B is not a path of eG(A) and B is not a formula in eG(A). Then, every
formula of ec(A) is a formula of EG(A), that is, eG(A) C EG(A).

2.2.1.8 Sequentialization via empires

The algorithm that constructs eG(A) can be used to give another proof
of the sequentialization theorem. Indeed, this is the original one given
by Girard, see [15] or [7].

Lemma 2.20 Let A and B be distinct formulas s.t. B 0 V6 (A). Then

(i) A E VG(B) implies eG(A) C ea(B);
(ii) A ¢ V6 (B) implies eG(A) fl eG(B) = 0.

Proof Given C E V6 (A), let ep be the path from A to C in a principal
switch S of B. Every formula in cp is in V6 (A) (by the fact that eG(A) E
PN). Moreover, if D ^ E is an edge crossed by ep, the only case in
which we can have D E V6 (B) and E ¢ VG (B) is when D = B and E is

Proof Nets and the A-Calculus 79

the conclusion of the link below B, if any (remind that, we are assuming
that S is a principal switch of B), but, as B V V6 (A) by hypothesis,
this is not the case. As a consequence, if A E VG(B), all the path cp is in
ec(B) and, in particular, C E VG(B); so, VG(A) C VG(B). Otherwise,
when A V VG(B), all the path cp is outside ec(B) and, in particular,
C ¢ VG(B); so, VG(A) n VG(B) = 0

The previous nesting property of empires induces a sequentialization
procedure. As usual, let us assume w.l.o.g. that G is cut free. If G I r, A
contains at least a par or tensor link and A is not conclusion of an axiom
(that is, G = G'; B, C > A), we have the following two possibilities:

(i) B, C D A. In this case, it is readily seen that G' E PN (remind
that we are assuming G E PN). Therefore, given a sequentializa-
tion of G' (by the induction hypothesis), we can get a sequential-
ization of G by appending a par rule to it.

(ii) B, C D A. In this case, by Lemma 2.20, ec(B) n ec(C) = 0, and
eG (B), ec (C) C ec (A). Now, let H = ec (B) ; ec (C) ; B, C >0 A;

the tensor link of A is splitting when G = H. By the previous
item, we can always reduce to the case in which no conclusion
of G is conclusion of a par link. Therefore, G is sequentializable
only if one of the tensors above its conclusion is splitting.

Remark 2.21 We have just seen that, when the link above the con-
clusion A is a par, we can get a sequentialization of the proof net in
which that par corresponds to the last rule of the sequentialized proof.
As a consequence, we say that the par rule is invertible, namely, a
par rule that introduces a par formula in the final sequent of a proof
can always be postponed to the end of the derivation. This is not the
case for the tensor link. For instance, let G1 i- A, B and G2 t- C, D
be two proof nets. It is readily seen that in any sequentialization of
G = Gl ; G2; A, C >" A ® C ; B, D >" B 2' D, the par rule must be
the last rule. However, even if we assume that every conclusion of the
proof net is conclusion of a tensor link, not every concluding tensor is
necessarily splitting (even if, there must be one). For instance, in the
proof net in Figure 2.7 (where G1, G2, G3 E PN), the tensor above C®B
is not splitting, while the one above A ® (B ?' C) it is.

Summing up, for a cut free proof net G that does not contain any
concluding par link (we assume that G has at least a concluding tensor
link, otherwise G is an axiom), the problem of finding a sequentialization

80 S. Guerririi

Cl

G2

B'8D C®E

A®(B'SD)

Fig. 2.7. Splitting tensor

G3

can be reduced to that of finding a splitting tensor. So, let us choose any

conclusion A0 of G s.t. B0, Co D Ao E G. If A0 is not splitting, there is
a conclusion D of ec(Bo) or eG(Co) that is not a conclusion of G. Let
Al be the conclusion of G s.t. Al -,<1 B1 D, where B1 is one of the
premises of the tensor link above A1, we see that Al 0 VV(BO) U VV (CO)
and Ao E VG (B1). Now, if Al is splitting, we have done; otherwise, let
us iterate the procedure. After k steps we get a sequence of distinct
conclusions A0, A,.... , Ak s.t. A0,. .. , Ak_1 E VG(Bk), where Bk is one
of the premises of the tensor above Ak. Therefore, we must eventually
terminate finding a splitting tensor (and the two proof nets in which the
tensor splits G).

Al- A
ax Fl-A A,A F-B

F,0I-B

r l- A t,Bl-C r,A l-B
r, A, A B I- C

-o L -oRrf- A -oB

cut

F,A,BI- C rl- A A I B
F,A®BI- C ®L r,z I- A®B

OR

Fig. 2.8. IMLL.

Proof Nets and the A-Calculus 81

2.2.2 IMLL

The sequent calculus for Intuitionistic MLL (IMLL) is given in Figure 2.8.
IMLL is a subsystem of MLL. In fact, let us take the polarized version of
MLL, say pMLL, defined by:

1. the formulas of pMLL are pairs (A, x), also written Ax, with x E
{+, -} and s.t. one of the following cases holds:

(a) A is an atom;
(b) x = + and either A = B+ 28 C- or A = B- 29 C+;
(c) x=+and A=B+®C+;
(d) x = - and either A = B+ ® C- or A = B- ® C+
(e) x=-andA=B-?8C-.

2. (A+)1 = A- and (A-)1 = A+ where = p1 and

Bx 2Y Cy = (Bx)1 0 (Cy)1 Bx ®Cy = (Bx)1 2 (Cy)1

3. the rules of pMLL axe those of MLL where MLL formulas are
replaced by pMLL formulas. This implies that:

(a) the principal formulas of the axiom and of the cut rule
have distinct polarities.

(b) every formula in the proof must be a valid pMLL formula;
therefore, the two premises of a par rule cannot be both
positive, while the two premises of a tensor rule cannot be
both negative.

(c) every sequent derivable in pMLL has the shape I- r, A+
where I' is a set of negative formulas.

Assuming that [A+] I = [A],, the following rules define a translation
function from positive pMLL formulas to IMLL formulas

[p], = p [A+ ®B+] I = [A], ®[B]
1

[A-'8 B+ll = [B+ 2Y A-]I = [(A-)1]I [B]1

The translation of a pMLL sequent into an IMLL sequent is defined by

[I- r, A+] 1= [r1] 1
I- [A+] I

where F1 is obtained by dualizing every formula in r and [F1ll is the
translation of every formula in r1.

It is readily seen that the function that replaces every pMLL sequent
A in a proof with the IMLL sequent [F 0]I maps any pMLL proof of

I- F, A+ into an IMLL proof of the sequent [F1]
I I- [A+] 1.

82 S. Guerrini

By the way, there is an inverse translation from IMLL to pMLL. In
fact, let us define the positive translation of an IMLL formula:

[p] p = p+ [A -o B]p = ([A]p' ?8 [B]p)+ [A ®B]p = ([A]p ®[B]p)

The translation of an I M LL sequent is

[r I- A]
p = F- [F]pp,[A]p

Again, the function that replaces every I M LL sequent A f- B in a proof
with the pMLL sequent [A f- B] p maps any I M L L proof of F I- A into a
pMLL proof of the sequent I- [F] P , [A]p.

Remark 2.22 The latter correspondence is not one to one for very
bureaucratic reasons, namely, because of [A- 2Y B+], = [B+ 2' A-]I =
[(A-)'], --o [B+]1. We might get a bijection by adding the connective
B °-- A (to get its rules, just replace B o- A in the rules for -o) with
[B+ 28 A]I = [B+]I o- [(A-)1]I, and [B o- A]p = [B]p 2? [A]P. But,
as we are in the commutative case, there is no real need for this.

2.2.2.1 Oriented proof nets

Polarity may be extended to proof nets. Namely, let us say that an
oriented proof structure is a pair (G, 7r) where G is a proof structure
and it is a map from the formulas of G to {+, -} that respects the
restrictions in Figure 2.9 (where only the polarities of the formulas have
been drawn).

Oriented proof structures can be used to represent pMLL and then
IMLL proofs also. In fact, let us assume w.l.o.g. that all the conclusions
of the axioms in G are atomic; the formulas in G can be replaced in a
natural way by polarized formulas. Moreover, as MLL sequentialization
11 of G is a valid derivation in pMLL, II corresponds to a sequentialization
in IMLL also.

Every switch S of an M LL proof net G defines a set of valid orientations
for G, one for every choice of a conclusion of G as the only positive
conclusion of the net. Therefore, fixed a conclusion of G, every S E
SW(G) gives a valid IMLL proof of [r]I L I- [A] I (see [7]).

Definition 2.23 Let A be a conclusion of the proof net C and S be a
switch of G. The orientation 7rA,s induced by the pair A, S is defined by
the following rules:

(i) iA,s(A) = +;

Proof Nets and the A-Calculus 83

ax m

+ +

cut cut

+

Fig. 2.9. Oriented links.

(ii) if 7rA,s(B) = + and B ^s C and either C, D D B E G or
D, C D BEG, then 7rA,S (C)

(iii) if 7rA,s(B) _ + and C, D D B E G, then 7rA,s(C) = 7rA,s(D) _
+;

(iv) if 7rA,s(B) + and either D B, Bl E G or D Bl, B E G, then
7rA,S(Bl) _ -;

(v) if 7rA,S(B) and B ^s D and either B, C D D E G or
21

C, B D D E G, then 7rA,s(D) _ -;

(vi) if 7rA,s(B) - and either B, C D D E G or C, B D D E G, then
7rA,S(D) = - and 7rA,S(C) = +;

(vii) if 7rA,S(B) and either B, B1 D E G or B', B D E G, then
7rA,S(B') = +.

The rules of the marking algorithm in Definition 2.23 correspond to
the algorithm: visit the tree of S rooted at the conclusion A and mark
every formula B according to the rules

(i) if B is the starting formula, then mark it with +;
(ii) if B is reached from the conclusion of the link below it or from

the other premise of a cut, then mark B with +;
(iii) if B is reached from the premise of the link above it or from the

other premise of an axiom, then mark B with -.

84 S. Guerrini

As S is connected and acyclic, the previous algorithm marks every
formula in G and 7rA,s is a well-defined orientation.

Remark 2.24 Let us say that a par link with conclusion C is positive
for the orientation 7r when 7r(C) = + and negative when 7r(C) _ -.
The marking algorithm put in evidence that only the switching positions
of positive pars have influence on the computed orientation. In fact, let
us take the orientation 7rA,s and let S' be a switch that differs from S
for the switching position of some negative par links only. We have that
7rA,s = 7rA,s' Therefore, if A is the positive conclusion of the proof net
G for the orientation 7r, we shall denote by
S of G s.t. 7rA,S = 7r

2.2.2.2 Essential nets

Proof nets for IMLL can be presented in a different way (see [26]). Let
(G, 7r) be the oriented proof net corresponding to the translation in pM LL
of the IMLL proof II. The essential net E corresponding to the orienta-
tion 7r of G is the least directed graph s.t. there is a directed edge from
B to C, say B'E C, when (see the thick lines in Figure 2.10):

(i) 7r(B) = + and B, C are the conclusions of an axiom;
(ii) 7r(C) = + and C is premise of the link with conclusion B;
(iii) 7r(B) = - and B, C are the premises of a cut;
(iv) 7r(B) = 7r(C) = - and B is premise of a link with conclusion C.

The positive conclusion A of (G, 7r) is the only root (or source) of E.
Then, let Sn be the directed switch obtained by orienting the edges of
a switch of G according to the rules in Figure 2.10. If S E SW,r(G),
then S, is a directed tree rooted at A, and every S, s.t. S E SW,(G)
(say S, E SW,(G) for short) is a subtree of E obtained by removing,
for every negative par link, one of the edges entering into its conclusion.
Indeed, E is the superposition of all the S, E SW.., (G); so, in E, there is
a path-not a unique one, in the general case-from A to every formula
B. Nevertheless, E is acyclic. In fact, a path cp of E is not a path of
some directed switch S, of E if it contains both the edges entering into
the conclusion of some negative par; therefore, let C rE B cp D 'E B
be the shortest path of E that contains both the premises C, D of a
negative par with conclusion B; by hypothesis, B cp D r'-E B is a cyclic
path of some directed switch of E; but, as every directed switch of E is
a tree, such a path co cannot exist. Summing up, E is a directed and
acyclic graph rooted at A.

Proof Nets and the \-Calculus 85

ax m
I\ I+ I+ /-Iu U

cut cut

+

+

Fig. 2.10. Essential-net edges.

Now, given a positive par with conclusion B, let C, D be the premises
of the par with 7r(C) = + and 7r(D) = -. As D is a conclusion of
the essential net eE(C) associated to eG(C), in every directed switch of
eE(C), and then in every directed switch of E, there is a path form C
to D. Moreover, as in every directed switch of E there is a path from
A to B, we can conclude that every path of E from A to D splits into
a path from A to B and a path from C to D connected by the directed
edge B C.

Summing up, let us say that a directed graph E is an essential struc-
ture when it has only one root, its vertices are polarized MLL formulas,
and its directed edges respect the orientations in Figure 2.10. The proof
structure G corresponding to E is a proof net only if E is acyclic and
satisfies the following property:

EN: every path from the root of E to the negative premise of a positive
par link passes through the conclusion of the par.

Proposition 2.25 The essential structure E associated to an oriented
proof structure (G, 7r) is an essential net, that is, G is a proof net if E
is acyclic and condition EN holds.

Proof The only if direction has been already proved. For the if direction
see [26].

86 S. Guerrini

Let us say that an I M LL formula A is linearly balanced when no atom
occurs twice in [A] p and the atom p occurs in [A] p if the atom pl
occurs in [A]p. It is readily seen that [A]p determines an oriented proof
net (G, 7r) and then an essential structure E. Therefore, we can take
E as the net representation of A. Moreover, in order to verify if A is
provable in I M LL, it suffices to verify if E is an essential net.

2.2.3 Computational complexity of correctness criteria

A direct implementation of DR-correctness leads to an exponential time
algorithm. The contraction and parsing algorithms naturally lead to
quadratic time algorithms.

Starting from parsing we can get a linear time algorithm for the veri-
fication of proof nets [21].

Another linear time algorithm can be achieved exploiting the proper-
ties of essential nets [31].

2.2.4 Cut-elimination

The cut-elimination procedure for MLL proof nets is defined by the fol-
lowing rules (see Figure 2.11 also)

DA, X; X,X'D; DX',Al (D/D)

cut D A, A'

A,BDA 9B; A2Y B,A'®B'5'; A',B'L A'®Bl
cut 5A, A' >; B,B'

where X and Xl in the first rule are occurrences of A and Al, respec-
tively.

The cut-elimination rules preserve DR-correctness. Therefore, if G E
PN and G G', then G' E PN. Moreover, they are confluent and, as
every rule decreases the number of links in the structure, cut-elimination
is terminating and the unique normal form of any proof net is cut free.

Theorem 2.26 If I- F is provable in MLL, there is a cut free MLL proof
of I- F.

Proof Nets and the A-Calculus 87

ax

1 -1
A Al A A

I

cut

A'BB A-L®B1
1

cut

cut

Fig. 2.11. MLL cut-elimination rules.

B Al B1

cut

cut

2.2.5 Units
The sequent calculus rules for the tensor unit 1 and for the par unit
1 = 1-L are r

H1 1 HF,1 1
It is readily seen that (A (9 1) - (1 (9 A) ' A and that (A 1) ti

(1'A)-A.
The natural way to extend proof nets to MLL plus units is by intro-

ducing two new links with no premises and one conclusion: D 1 and
1
D 1. The parsing algorithm for the system is that in Figure 2.6 plus
the rules:

t 1 - ° , t 1 (D)

Dr; D1

1°+ DF,1 (c)

By the way, if G '- IF is a proof structure that contains unit links, it is
still true that when G °il* D r, then G is the image of a sequent proof
II i- F; vice versa, although when G is the image of some proof there
is a parsing reduction from G to D r, it is no longer true that this is
the only parsing normal form of G. The problem is the representation
of 1. In fact, we can easily construct a proof net that reduces to G = D
A ; D 1; D B ; A,1 D C ; B, C D D; then, by reducing D A ; 1D 1,
we get G -°*

* D D; while, by reducing D B ; D 1, the parsing reduction
immediately ends with another normal form.

The key problem with the multiplicative units is that they cannot be
characterized by any criterion similar to DR-correctness for MLL without

88 S. Guerrini

units. In fact, let us restrict to the case in which L and 1 are the
only atomic formulas of the system. The syntax tree T of a formula
A of such a restricted system is a proof structure with conclusion A.
Therefore, deciding whether A is provable or not corresponds to verify
the correctness of the proof structure T. This fragment of linear logic
is NP-complete [29]; thus, we cannot get any polynomial correctness
criterion. Moreover, we cannot find a suitable notion of switch s.t. the
correctness of any proof net with 1-links can be verified by applying a
polytime test to every switch of the proof net. Such a criterion would
be in coNP and, by the previous remark on the NP-completeness of the
correctness criterion for the units only fragment, the existence of a coNP
criterion would imply coNP = NP, that is very unlikely.

Another possible representation for L would be to explicit its con-
nections with the formulas in the context that justifies its introduction
(e.g., by linking any formula in the context r to the rule 1). An easy
representation of such a connection might be an edge from every -L-link
to the formula A justifying it, a so-called jump. Otherwise, we might
decide to allow the introduction of L at the level of axioms only (it
is readily seen that this system has the same power of the general one
where L can be introduced at every point of the derivation). However,
none of that solutions is completely satisfactory. In fact, first of all, there
is no canonical way to link a -L-link to a formula or to an axiom that
justifies it. Moreover, both that solutions give problems when we try to
eliminate a cut below the formula of the axiom linked to the -L-link.

Another approach to the treatment of units-indeed, the original one
given by Girard (see [13])-would be to link every 1-link to the whole
proof net corresponding to the proof above its introduction. This cor-
responds to what we shall do for the representation of the so-called
exponentials; for every 1-link, we should introduce a box (see Defini-
tion 2.29) with its L as principal door and with no restriction on the
shape of the auxiliary door. Nevertheless, this amounts to loose, at least
for 1, some of the main advantages of proof nets, as we would distin-
guish two proof nets that simply differ for the permutation of a -L-rule
with the rule above it.

2.2.5.1 A relevant case

There are cases in which units can be represented as distinct links and
correctness can be formulated by a suitable extension of Definition 2.4.
In his thesis, Regnier [33] has shown that the formulas 1®A or A ®L-
and 1 28 A and A 28 1 by duality-are the problematic cases. In fact, let

Proof Nets and the A-Calculus 89

us say that A is a 1-formula when A is a par combination of 1-atoms
(that is, A = 1 or A = Al 29 A2 where Al, A2 are 1-formulas). It is
readily seen that A - 1, for every 1-formula A. By duality, we define
the 1-formulas as those obtained by tensor combination of 1-atoms.

Let us say that a formula A is well-formed when:

1. A is an atom, A is a 1-formula, or A is a 1-formula;
2. A = B 28 C and neither B nor C is a 1-formula, or A = B ® C

and neither B nor C is a 1-formula.

A proof structure C with units is well-formed when every formula in
G is well-formed.

Definition 2.27 A well-formed proof structure G with k 1-links is DR-
correct, G is a well-formed proof net, when every switch of G is acyclic
and has k + 1 connected components.

The rules for parsing well-formed proof nets are those in Figure 2.6
plus the rules

>A; >B; A,B>A®B'-+ c.A®B
>A; >B; A,B>A28B°+ B

Dr, A; >B; A,B>' A28B--P+ - r,A2YB

F,B; >A; A,BDA2'B°+ r F,A2'B

Dr, A; >B; A,BiA®B°+ c F,A®B
c F,B; >A; A,B>' A®B'4 c r,A®B

Any parsing structure obtained by the reduction of a well-formed proof
structure is well-formed. Moreover, in a well-formed parsing structure
the conclusion of a 1-link (1-link) can be any 1-formula (1-formula).

Proposition 2.28 Let G t- F, Al, ... , An be a proof structure s.t. the
conclusions Al, ... , An are the only 1-formulas among the conclusions
of G. Let N = A; D Al ; ... ; D An, when r = A for some
1-formula A, or N = i r ; D Al ; ... ; D A, , otherwise. Then, G is
well-formed and DR-correct if G -°-» N; moreover, if G is well-formed
and DR-correct, N is its only °+-normal form.

Proof First of all, let us remark that G -°> N only if G is well-formed.

90 S. Guerrini

Then, let us remark that DR-correctness is invariant under -4-reduction;
that is, if G--'+G', then G is DR-correct if G' is DR-correct. As a conse-
quence, we immediately get the if direction.
Let us assume that G is well-formed. By Remark 2.6, every cut whose
principal formula is not a 1-formula can be replaced by a tensor, as this
transformation preserves well-formedness. Otherwise, if the principal
formula is a 1-formula, it is readily seen that we have a substructure
Go = Gl ; G1 ; Al, Al D s.t. Go 0, where G1 F- Al and Gl '- Al,
and AL = Ai is a 1-formula (Al is a 1-formula). Therefore, w.l.o.g.
we can restrict to the cut free case. Now, let G °+* G' be any parsing
reduction such that G' does not contain any D-redex or any >-redex. It
is readily seen that G' = H ; D Al ; ... ; D An, for some well formed
proof structure H s.t.: (i) H is DR-correct if G' is DR-correct if G is
DR-correct (by the initial remark on the invariance of DR-correctness);
(ii) every 1-formula in H is one of the premises of a par link whose
other premise (and its conclusion) is not a 1-link; (iii) if I' = A for some
1-formula A, then H =

D
A. By (iii) and (i), we see that we left to show

that H % D P when H is DR-correct and r is not a 1-formula.
Let us proceed by induction on the number of 1-links in H. Let B be a
1-formula in H and let C and D be the other premise and the conclu-
sion of the par link below B. We see that the new structure obtained
by removing the 1-link above B and the par link below B and by re-
placing C for the occurrence of D in every formula X - C leads to a
DR-correct structure H' t- F' (if P = A, A with A < B, then P' = A, A'
where A' is obtained by replacing C for D in A); moreover, H -°, D I'
iff H' 24* D r. Therefore, by induction hypothesis, we conclude. Now,
let us assume that H does not contain any 1-link. Let H' be the struc-
ture obtained from H by replacing every 1-link in H with a *-link with
the same conclusion. We see that H' is DR-correct if H is DR-correct
and that H' ° D r if H D P. Therefore, by Proposition 2.12, we
conclude.

2.2.5.2 Cut-elimination

When units are introduced by means of links without connections to
other formulas or links in the net, as in the relevant case considered
above, the cut-elimination rule is

D1; 1,1 D; D1-' (DAD)

Proof Nets and the A-Calculus 91

It is readily seen that adding that rule to those in section 2.2.4 preserves
strong normalization and confluence.

2.3 The exponentials: MELL
MLL is too weak: as everything is linear, one can code linear A-calculus
only. In order to get A-calculus we have to add structural rules: con-
traction and weakening. However, adding the rules in an uncontrolled
way would destroy the system-we would just get a redundant system
for classical logic. Because of this, in order to control the use of the
structural rules, let us introduce two dual unary connectives ?, named
why-not, and !, named of-course, with (!A)-L =?A1, and the rules in
Figure 2.12, where ?I' stands for a set of ?-formulas ?Al, . . . , ?Ak.

F r, A !- r, ?A, ?A F- I' weakening
F- r ?A dereliction f- r ?A contraction r ?A

F-?r, A
promotion

F-?r, !A

Fig. 2.12. Exponential rules.

The connectives ? and ! are the exponentials and the fragment (with-
out constants) of linear logic formed of the rules of MLL (Figure 2.1)
plus the rules in Figure 2.12 is the so-called Multiplicative Exponential
fragment of Linear Logic, MELL for short.

In MELL the structural rules are allowed on ?-formulas only and the
promotion rule (the introduction rule for !) requires that the formulas
in the context, the auxiliary conclusions, are ?-formulas.

Let us remark the constraint in the promotion rule. The elimination
of a cut between a pair of exponential formulas requires the duplication
or the erasing of the proof ending with the !-formula, but, in order
to preserve the conclusions of the resulting proof, after a duplication,
we have to contract the auxiliary conclusions of the duplicated proof,
after an erasing, we have to introduce a weakening for every auxiliary
conclusion of the erased proof. In both cases, the operation is sound only
if all the auxiliary conclusions of the proof ending with the promotion
rule are ?-formulas. (We omit the cut-elimination rules of MELL sequent
calculus; we shall define cut-elimination directly for exponential proof
nets, see 2.3.4).

92 S. Guerrini

2.3.1 Boxes
The representation of exponential proof nets requires the introduction
of the links corresponding to the exponential rules (see Figure 2.13);
moreover, because of the side-condition on the promotion rule, we need
a new object named box.

Definition 2.29 (box) A box B is a proof structure whose conclusions
are ?-formulas but one, its principal door, which is the conclusion of an
!-link. The ?-conclusions of B are its auxiliary doors.

box

?A ?A ?A

A B

JL !A - ?A1 ?Ak

A . ?A ?A', ?A" c ?A ?A A !A

Fig. 2.13. Exponential links.

Definition 2.30 (exponential proof structure) An exponential proof
structure G with conclusions r (written G !- F) is a pair (G, B) s.t.:

(i) G !- I, a proof structure;
(ii) B is a set of boxes, one for each! -formula in G which is conclusion

of an !-link, that satisfies the so-called box nesting condition:
for every pair B1, B2 E 13, either B1 C B2 or B2 C B1, or
Bin B2 =0.

- -

According to the box nesting condition, two distinct boxes may nest
but not partially overlap. Moreover, two boxes cannot have the same
principal door, even if, they may share one or more auxiliary doors.

If G = (G, B) is an exponential proof structure, let us define IGI = G
and Go = B. The inclusion relation between proof structures naturally
extends to exponential proof structures. Namely, H C G if CHI C_ IGI
and HO C Go.

Let B E Go. If B = B ; A D !A is a box with principal door !A,
0

the proof structure B is the opened box of M. The (opened) proof box

Proof Nets and the A-Calculus 93

of B is the exponential proof structure B C G s.t. IBS = B (B C G

s.t JBI = B). In the following, given the proof box B '- ?r,!A (and its
0

opened proof box B r- ?r, A), we shall use the notation

B = [B; A !A]

or B = [B ; A D !A] r when we need to explicit the doors of the box.

2.3.2 Parsing
The rules for parsing exponential proof nets are those in Figure 2.6 plus
the rules

> r,A; A>?A'+

F, ?A', ?A" ; ?A', ?A" > ?A °>

mar; ?A°.

?r, A; A!A]-'-»

that applies to contexts in which the redex does not cross the border of
any box (i.e., [D ?A', ?A", A; A D !A]AA,, ; ?A', ?All D?A contains

an D-redex but not a D-redex).
An exponential proof structure G , r is sequentializable when G --*

D r. Remarkably, G is sequentializable only if every box in G0 is
sequentializable.

2.3.3 Weakening and DR-correctness
Exponential proof structures does not have a satisfactory definition of
correctness in the style of the DR-criterion. If we compare weakening and
1, we see that their rules have the same shape-as a matter of fact, the
1-rule is a particular case of weakening. Therefore, the issues pointed
out in 2.2.5 applies to weakening as well. By restricting the use of 1
(see 2.2.5.1), we have seen how to get a subsystem for which correctness
can be expressed by means of an extension of the DR-criterion. We
might try to do the same for weakening; for instance, by imposing that
no weakening formula is one of the premises of a tensor link (a weakening
formula is the conclusion of a weakening link or the contraction or the par
of two weakening formulas). However, by analysis of the cut-elimination

94 S. Guerrini

rules in 2.3.4, we see that such a constraint cannot be preserved by
cut-elimination. For instance,

C , C
cut G; C,?B >' C®?B; F. ?B

We might argue that this happens as the weakening formula is the
premise of a cut, which morally is a tensor. But we cannot force the
weakening to not be the premise of a cut-that would force to forbid the
cut of any conclusion containing a weakening formula as a subformula
as well-for that would correspond to forbid the weakening at all. If
we want to obtain a subsystem of MELL with a good definition of cor-
rectness, we have to require that no ?-formula might be the premise of
a tensor-by duality, that restriction extends to the par combination of
?-formulas as well. Remarkably, the subsystem of MELL in which we can
encode the A-calculus has that property (see 2.4.3). For that subsystem,
as for the well-formed proof structures with units (2.2.5.1), one has a
good formulation of DR-correctness (see [33]).

2.3.4 Cut-elimination
The cut-elimination rules of MELL are those of MLL (see section 2.2.4)
plus the rules (see Figure 2.14 also)

AD?A; ?A,!A-L D; [G; Al > !Al]
c u t A, Al ; G

?A' ?A" D ?A;
?A,

!AL >; [G; Al !AL
] A,,...,?Akcut

,L-"`, ?A' !A'1
cut G'; A" !A" A

f 7

TA111 p
]; [G//; ; A"1 !Al'-L

A
?A" A A7 ,,. 7 kl k

?A'1, ?A' >?Al ; ...?Ak, ?AZ'?Ak
?A; ?A !A-L G. Al > !AL ,AL

cut D
?Au ; ... ?Ak

[G'; B c !B] BA; ?A,!A1 5" G; Al > !A']o1

(D/D)

cut
1[G'; ?A,!A15'; [G; Al> !A-L]ol; B> !B]Po

Proof Nets and the A-Calculus 95

box

AL

0
?AL !A

I i

cut

?AL
L

cut

box

I

J

Al
L

cut

L-- IA ?r=
j box

?AL ?AL

L=!A

cut

box

?AL
L

?ALL

box

box

?r

?r

'= !Ascut cut

box

cut

box

cut

Fig. 2.14. Exponential cut-elimination rules.

96 S. Guerrini

Theorem 2.31 The cut-elimination of MELL is strongly normalizing
and confluent.

Proof See [13] or [9] or [23].

2.4 A-calculus

In order to analyze the correspondence between A-calculus and MELL,
let us start with the graph representation of A-terms induced by natural
deduction. On the left-hand-side of Figure 2.15, we have a natural de-
duction presentation of A-calculus where, in every judgment F I- t : A,
the multiset r contains all the occurrences of the variables free in t (that
is, if t contains k-occurrences of the free variable x of type A, then r
contains k copies of x : A).

The graph that we want to obtain for the A-term t is a tree with a node
for every subterm oft and s.t.: (i) the root of the tree is t itself; (ii) every
leaf of the tree is the occurrence of a free variable (therefore, on the left-
hand-side of a sequent F I- t : A, we have the set F of the leaves of the
tree, while on the right-hand-side we have the root t : A). The standard
tree representation of the natural deduction derivation corresponding to
the term t has as leaves the bound variables of t also, even if they are
marked as "discharged" and implicitly connected to their binders, i.e.,
to the rule in which they are discharged. So, in the spirit of proof nets,
it is natural to use a special kind of edge to connect every occurrence of
a bound variable to its binder.

The rules for the representation of the tree corresponding to a A-term
t, say the A-tree of t, are on the right-hand-side of Figure 2.15-the back-
connections from the variables to their binders are represented by means
of dashed lines. Thinking at that graph as a structure of links, we see
that we have a link for every constructor oft (the orientation of the edges
in the figure distinguishes the premises/conclusions of the links: an arrow
oriented towards/from the symbol of the link is a premise/conclusion).

Remark 2.32 If we consider the structures built by combination of A
and @-links, lambda-trees can be defined by mean of the following simple
correctness criterion: a structure is correct, it is a A-tree, if by erasing
the dashed edges we obtain a tree T and, for every dashed edge that
connects the node x to the A-link with conclusion u, the node it is an
ancestor of x in the tree T.

Proof Nets and the A-Calculus

x:AF- x:A
ax A:x

Ax.t : A -+ B

x:Agr IF,x:A,...,x:AF-t:B
rF-Ax.t:A->B

t:B

x:A-

st:B

F - s:A - B A I-t:A
I,AI- st:B s:A -'B t:A

Fig. 2.15. A-terms and A-trees.

97

2.4.1 Linear A-calculus

In order to see the correspondence between A-trees and proof nets, let
us start with the linear case. A A-term t is linear when every free vari-
able of t occurs exactly once and every proper subterm of t is linear.
In linear A-calculus types the linear implication -o replaces the intu-
itionistic implication -i. The natural deduction presentation of linear
A-calculus is the same as that in Figure 2.15, with the restriction that,
in the -cE-rule, r fl A = 0, and that in the -1-rule, x : A must occur
on the left-hand-side of the sequent-this means that it occurs exactly
once also.

A A
ax rI- s:A A,x:AI-t:B

r, A F- t[s/x] : B

I'F- s:A A,y:BF-t:C L r,x:AAI-t:B
__OR

r,A,x:A--oBF-t[xs/y]:C rI- Ax.t:A -aB

Fig. 2.16. Linear A-calculus.

cut

The linear A-calculus corresponds to the implicative fragment of IMLL,

98 S. Guerrini

see Figure 2.16, where each formula is decorated by a linear A-term. In
the -cL-rule and in the cut-rule we have the constraint that r l0 = 0;
in the --oL-rule we also require that x : A is fresh (i.e., that it does not
occur in r, A).

Given any linear A-term t of type A, there is a sequent derivation
ending with IT F- t : A, where I' is the set of the free variables in t. The
key of that correspondence between the natural deduction presentation
given in Figure 2.15 and the linear sequent calculus in Figure 2.16 is
the following translation of the -oE-rule where, in order to obtain the
application of the term s : A -o B to t : A, we have to introduce an
axiom corresponding to a spurious variable y : B, and a cut:

L F- t:A y :BF- y:B
I'F- s:A -c B A, z : A ---o B F-zt : B

F,OF- st:B

ax

-oL

cut

The encoding into the sequent calculus in Figure 2.16 allows to as-
sociate an MLL proof net to each A-term t : A with free variables F:
it suffices to take the proof net corresponding to the MLL derivation of
F F- t : A. In Figure 2.17, that correspondence is defined by means of
the rules that transforms a A-tree T into an oriented proof net N. The
resulting net has one positive conclusion only, and a negative conclusion
for every free variable in T.

Definition 2.33 (linear A-nets) A linear A-net is an oriented proof
net in which there are no positive tensors or negative pars.

The translation in Figure 2.17 transforms a linear A-tree into a linear
A-net. Vice versa, every linear A-net represents a linear A-tree, and
therefore a linear A-term. In fact, let us assume w.l.o.g. that: (i) every
conclusion of a tensor in the linear A-net N is the negative premise
of a cut and that every negative premise of a tensor is the negative
conclusion of an axiom; (ii) it is not the case that both the conclusions
of an axiom are premises of cut links or that both the premises of a
cut are conclusions of axiom links. (The previous conditions can always
be obtained by the insertion or the elimination of identity cut redexes).
By condition (i), we can reverse the transformation rules in Figure 2.17
and replace an La-link for every tensor and a A-link for every 28-link; by
condition (ii), the previous reverse transformation does not leave any
spurious axiom or cut. The graph T obtained in this way, apart for the
orientation of the edges that are reversed, is isomorphic to the essential

Proof Nets and the A-Calculus 99

s:A -oB

ax

x:A
x- B1 x+:B

st : B

t:A t+:A

Ax.t:A -o B

F-x+:A' x- :A1
ax

Fig. 2.17. From linear A-trees to MLL proof nets.

net of N (2.2.2.2). Moreover, by condition EN, for every A-link, the
path that connects the variable bound by a A-link to the root of the tree
crosses that A-link, that is, T is a linear A-tree (see Remark 2.32).

2.4.2 IMELL encoding of A-calculus

The encoding of full A-calculus requires the exponentials for the treat-
ment of non-linear variables. Reminding that the two-sided sequent
F F- A corresponds to the one-sided sequent I- F1, A, the exponential
fragment of intuitionistic MELL, say IMELL, are those in Figure 2.18. We
see that the !R-rule corresponds to a promotion, that the !L corresponds
to a dereliction, and that contraction and weakening (c-rule and w-rule,
respectively) are allowed on the left-hand-side only.

For the encoding of A-calculus into IMELL, the key case is the -4I-
rule. In fact, in order to encode it using -o, we need to contract several
occurrences of x : A into a single one (when x occurs more than once
in t), or to introduce an x : A (when x does not occur in t); both that

ax

st+ : B st : B1

s+:A1'&B s-:A®B1
cut

Ax.t+ : Al '8 B

100 S. Guerrini

r,AF-B F,!A,!AF-B FF- B !rF- A
r, !A F- B

!L
r, !A !- B c r, !A F- B W !r HA !R

Fig. 2.18. Exponential rules of IMELL.

operations are possible only if there is an ! in front of the type of x. As
a consequence, in the general case, we cannot directly replace -o for --p.
If we want to preserve the property that the derivation corresponding
to the A-term t of type A ends with a sequent with the multiset of the
occurrences of the free variables of t, we must use the correspondence

A--+B-!A--0B-?A-i 2Y B

and the translation rules in Figure 2.19, where the derivation rule de-
noted by the double line is one of the following possibility: (i) a series
of k contractions, when we have k > 1 occurrences of x : !A; (ii) a
weakening, when there is no x : !A; (iii) nothing, when there is only one
occurrence of x : !A in the initial sequent. By application of that rules,
the translated sequents have the shape !f' t- t : A, where !f' is a multiset
of pairs x : !B, one for each free occurrence of a variable in t.

ax c/wx:AF- x:A !L !r,x:!AF-t:Bx:!AF-x:A -OR
!rF-Ax.t:!A--oB

!OF- t:A !R
!AF-t:!A v:Bf- v:B

!rF-s:!A-oB !A,z:!A-o BF- zt:B
cut!r,!AF-st:B

Fig. 2.19. IMELL encoding of)-calculus.

ax

-O L

2.4.2.1 Other encodings

The translation of A-calculus corresponding to the encoding A - B
!A -o B is not the only possibility. Even if we can imagine many exotic
encodings, this translation and that corresponding to

A -->B =_ !(A --o B)

are the most used ones-both translations can be found in [13].

Proof Nets and the A-Calculus 101

The encodings !A -o B and !(A -o B) are usually referred to as call-
by-name and call-by-value, respectively. In fact, let us assume that a
box freezes the reduction of the cuts inside it, that is, let us assume
that a boxed net is a value. In the !(A -o B) encoding, a function is
a value and, during a computation, we can reduce inside the body of a
function only after the application of the function to a value. Therefore,
!(A -o B) corresponds to call-by-value. This is not the case in the
!A -o B encoding, where a box surrounds every argument of a function;
in this case, the argument of a function can be evaluated only after
its replacement inside the body of the function. Therefore, !A --o B
corresponds to call-by-name. For more details see [32].

2.4.3 A-nets

In the the previous sections we have seen how to translate A-trees into
A-nets. In 2.3.3 (and in 2.2.5), we have seen that (in the general case)
weakening links (and -L-links) does not allow to have a characterization
of MELL proof nets in the Danos-Regnier style. However, as in the
relevant case analyzed for 1-links (2.2.5.1), the weakening links are not
a problem in the proof nets resulting from the translation of A-terms.

Definition 2.34 (A-structure) Let us say that a well-formed A-formula
is any MELL formula in the following grammar:

T=pI ?Tl 2'T2I!Tl®T2

where p ranges over atomic formulas. A A-structure is an exponential
proof structure that contains well-formed A-formulas only. A A-structure
is closed when it has only one conclusion of type ?A1 '8 B - !A -o B,
for some A and B.

In particular, let us remark that A?®B, where A? is a par combination
of ?-formulas, is not well-formed and that the translation of a A-term
contains well-formed A-formulas only.

Definition 2.35 (exponential switch) A switch of a A-structure is a
graph obtained in the following way:

(i) replace any number of boxes with a *-link whose conclusions are
the doors of the box;

(ii) apply the usual switching rules for the multiplicative links;

102 S. Guerrini

(iii) apply the switching rule of pars to contractions and add an edge
for every !-link and every dereliction.

The switching edges corresponding to the exponential links are given
in Figure 2.20. We see that, for every !-link, we can either choose to
replace its box with the switch of the corresponding *-link, or to connect
the premise to the conclusion of the link; for the d-link, the premise is
directly connected to the conclusion of the link; for the contraction link,
we have two possibilities as in the case of the par. For all the other links,
we have the same switchings of MLL.

I

box

,a

6
B

.......... ?A

or

A

!A

A ?A ?A ?A ?A

?A ?A ?A

Fig. 2.20. Exponential switch edges.

Definition 2.36 (\-net) A A-structure G is correct, say that G is a
A-net, when every switch of G that contains k weakening links is acyclic
and has k + 1 connected components.

The !A -o B encoding ensures that the image of a closed A-term is a
closed A-net. However, there are many closed A-nets that are not images
(at least, according to the given translation) of a A-term, but that differ
from the image of a A-term for irrelevant details in the order of some
exponential rules. In particular, for the order in which the occurrences
of a variable are contracted, or for the place where that occurrences
are contracted. Moreover, in the translation in Figure 2.19, we have
not specified the shape of the tree of contraction links that merges the
occurrences of a variable into a unique node, as a consequence, we have

Proof Nets and the A-Calculus 103

many possibilities for the same term. On the other side, given a bound
variable, we have chosen to contract all its occurrences immediately
before the introduction of its binder-outside all the boxes surrounding
the occurrences of the variable-but other choices might be done. For
instance, we might decide to always keep only one occurrence of the
same variable in the context. According to this, the translation of an
application should be followed by a sequence of contractions merging the
variables that occur in both the sides of the application-in this way, it
is no longer true that a tree of contractions does not crosses the border
of any box.

?A ?A

?A

?A

box
?A

box

N

Fig. 2.21. Congruences.

?A

In order to equate all the previous possibilities, a first approach is
to consider the congruences in Figure 2.21. That congruences allow
to study the connections between A-calculus with explicit substitutions
(see [8]). A more compact approach is to collapse dereliction, contraction
and weakening links. The idea is to replace a cluster of that nodes
by a unique ?-link with k premises of the same type, say A, and one
conclusion with type ?A (see Figure 2.22). By the way, for k = 0, that
link corresponds to a weakening; for k = 1, it is a dereliction; for k > 1,
it corresponds to a tree of contractions with k derelictions at its leaves.

In a switch, every ?-link with k > 0 premises is replaced by a unique
edge that connects the conclusion of the link to one of its premises (see
Figure 2.22). The introduction of the ?-link forces a slight change in
the definition of boxes: the proviso that every auxiliary door of a box

?A ?A =

104 S. Guerrini

A A A

?A

Fig. 2.22. ?-link.

is a ?-formula becomes that every auxiliary door of a box must be the
premise of a ?-link (see Figure 2.23). We also remark that, moving from
the conclusion of a ?-link to any of its premises, we enter inside all the
boxes surrounding the occurrence of the variable corresponding to that
premise.

box

B

Al

L !A

?A1 ?Ak

Fig. 2.23. Reformulation of boxes in the presence of ?-links.

The introduction of ?-links and the corresponding modification of
boxes does not change the definition of A-nets. Definition 2.35 is still
valid if one takes the proper definition of switching for the ?-links; in
Definition 2.36 it suffices to assume that a weakening is a ?-link without
premises.

A recapitulation of the rules that transforms a A-tree into a .\-net with
?-links is given in Figure 2.24. That translation is well-defined for closed
A-terms only. The result of the translation of a closed A-term is a closed
A -net with only one conclusion of type !A -o B, for some A and B.

We also remark that the introduction of the ?-link collapses into a
unique rule the four exponential cut-elimination rules in Figure 2.14.
We omit to draw the rule, we simply remark that the elimination of a

cut between a k-ary ?-link and a box B creates k copies of B, one for

Proof Nets and the \-Calculus

,\x.t : ?A1 '8 B

t:B x:?A1

I x:A..... x:A- x:A1x:A1

ax

ax

st:B st:B1

s:?A1'8B s:!A®B1
cut

t: !A

Fig. 2.24. Translation of A-terms.

box

105

0

each premise of the ?-link, and that the i-th copy of B moves inside all
the boxes that have the i-th premise of the ?-link as auxiliary door.

Theorem 2.37 Let 91(t) be the proof net corresponding to the term t.
If t __2b* s, then M(t) 91(s).

As a consequence of the previous theorem and the fact that & is

confluent and strongly normalizing, we see that A-term normalization
and \-net normalization coincide.

106 S. Guerrini

Corollary 2.38 Let N be the normal form of 91(t). Then N = 91(s),
where s is the normal form of t.

2.4.4 a-equivalence
The compact representation of ?-links solves part of the problems only.
In fact, by analysis of the translation, it is readily seen that no A-net that
is image of a A-term contains an exponential cut. Moreover, if we analyze
in details the correspondence between A-net reduction and A-calculus ,i-
reduction, we see that every 3-rule corresponds to the elimination of
a multiplicative cut followed by the elimination of an exponential cut.
Therefore, let us assume to reduce some of the multiplicative cuts in
the A-net obtained by the translation of a A-term. The resulting A-net
cannot be the result of the translation of a A-term. Moreover, such a net
can be associated to several A-terms. In fact, let us define the following
translation:

(i) apply to the term t the translation in Figure 2.24;
(ii) if 9t(t) is the A-net obtained at the previous step, reduce all the

multiplicative cuts in 91(t) in order to obtain a A-net 010 (t) with-
out multiplicative cuts.

Now, let us define the a-equivalence as the congruence defined by the
following equations:

(Ax.u)vw =,, (Ax.uw)v if x FV(w)

(Ax.Ay.u)v Ay.(Ax.u)v if y FV(v)

We have that

91Q(u) ='Jl,(v) if u =Q V

For more details on the a-equivalence and for the proof of the previous
assertion we refer the reader to [34] or [33].

2.4.5 Pure proof nets
In the previous sections we have seen how to translate a typed A-term
into a MELL proof net. Such a translation can be extended to the pure
A-calculus. As usual, the key step in that extension is the introduction of
the isomorphism (0 --> 0) !-- 0, that in MELL becomes (!0 -o 0) 0.

In the pure A-nets corresponding to pure A-terms, the only positive
types are 0 and !0, while the only negative types are I and ?I, with the

Proof Nets and the A-Calculus 107

obvious dualities O1 = I and (!0)1 = U. Correspondingly, the links
that can appear in a pure A-net are those represented in Figure 2.25,
where X E {I,?I}.

Fig. 2.25. Pure proof net links.

We remark that there are no exponential axioms. In fact, in the
translation of A-terms, every variable corresponds to an axiom of type
0; moreover, because of the collapse of contraction and dereliction into
the ?-link, we would not be able to contract the ?I conclusion of an
axiom. All the results on the correctness of A-nets and the simulation of
Q-reduction hold for pure A-nets too. However, in the case of pure proof
nets * is confluent but not strongly normalizing (by the way, this is
coherent with Theorem 2.37). As a consequence, in the pure case, we
cannot have a correspondence between normal forms.

Theorem 2.39 If 91(t) `u`1* N, there is s s.t. t -0) * s and N -`4* 91(s).

For more details on pure A-nets, we refer the reader to [33].

2.5 Sharing graphs
The cut-elimination rule for the exponential cut is a global rule. In fact,
the reduction of an exponential cut involving a k-ary ?-link requires the
creation of k copies of the box associated to the !-link in the redex.
Thus, the cost of an exponential cut reduction cannot be bound by any
constant. Moreover, the duplication of a box creates k-copies of all the
reclexes already present in the box, or that will appear in it during the
reduction; as a consequence, in the general case, the duplication of a

108 S. Guerrini

box may cause the duplication of part of the work required to reach the
normal form.

In this section, we shall see that cut-elimination, and then /3-reduction,
can be implemented by a local rewriting system where every rule cor-
responds to the interaction of two links only, and that a particular re-
duction strategy of this rewriting system allows to avoid useless dupli-
cations. The latter property is related to the implementation of the
so-called A-calculus optimal reductions formalized by Levy in [28].

By means of a detailed analysis of /j-reduction, Levy was able to for-
malize the notion of useless duplication, and to give a lower bound to the
cost of /j-reduction on any machine that, by means of some smart shar-
ing technique, avoids useless duplications. Levy gave the requirements
that such optimal reduction machines should fulfill, but it was not able
to present any algorithm for the implementation of optimal reduction at
a cost equal to the lower-bound theoretically determined.

After more than ten years, Lamping [25] presented a graph algorithm
for optimal reduction that reached Levy's lower-bound in terms of the
number of /j-reductions executed, but that, as later discovered by As-
perti and Mairson [5], has a non-polynomial overhead w.r.t. the number
of /j-rules executed, because of some bookkeeping operations that makes
impossible to reach Levy's lower-bound. Indeed, Asperti and Mairson
showed that this is not a problem of Lamping's algorithm, but of any
algorithm that tries to implement Levy's optimal reduction. In [12],
Gonthier et al. showed that Lamping's algorithm could have been re-
lated to Girard's GOI (Geometry of Interaction [14]) and reformulated
in terms of Linear Logic proof nets. For a first approach to 3-reduction
in terms of GOI see [11, 34]. For more details on the relations between
GOI and optimal reductions see [2]. For a complete account of the results
on optimal reductions see [3].

In the following, we shall give the basic ideas that allow to obtain a lo-
cal rewriting system for the implementation of proof net cut-elimination,
and then of)-calculus /j-reduction, by means of the so-called sharing
graphs. Even if we tackle the problem starting from the idea of a local
implementation of cut-elimination, it is possible to see that optimal re-
ductions can be obtained as a reduction strategy of the rewriting system
that we shall introduce. More details on the results that we shall see
in the following can be found in [20]; for a more general approach to
sharing graphs, see [22].

Another solution to the local implementation of cut-elimination can
be found in [30].

Proof Nets and the A-Calculus 109

2.5.1 A-nets with levels

The first step for the local implementation of cut-elimination is to find a
local representation for boxes. The idea is to use an implicit representa-
tion of boxes based on indexes. In fact, as boxes are a sort of brackets,
we can associate to each node of the net a nesting depth level. According
to this, every formula in the net has a level, and the only links where
there is a difference between the levels of the premises and the levels
of the conclusions are the !-link and the ?-link (see Figure 2.26, where
at the nodes we have omitted the formulas, reporting the corresponding
levels only). In particular, given an !-link surrounded by n boxes, its
conclusion !A is at level n, while its premise A is at level 7z + 1, that is,
!A is outside the box of the !-link, while A is inside that box. Instead,
given a ?-link surrounded by n boxes, its conclusion ?A is at level n,
while any of its premises A is at level 71 + p, where p > 0 is the number
of box auxiliary doors crossed while moving from ?A to A.

ax I_ l
n n

cut

n+Pi 7z+Pk

Fig. 2.26. Levels.

71

Let us say that a A-structure with levels is a A-structure in which
every formula has a level and s.t. the restrictions on levels in Figure 2.26
hold.

Definition 2.40 (box) In a A-structure with levels, the box of an
link whose conclusion has level n is the largest connected subnet B that
contains the premise of the !-link and s.t. all the formulas in B have a
level greater than 7z.

Remark 2.41 The previous definition of box cannot be directly extended

110 S. Guerrini

to the whole case of MELL proof nets with levels, because of the pres-
ence of weakening. In the general case, weakening links may introduce
disconnected parts on the net, causing the loss of the connectedness of
boxes (for more details see 1191)-

A A-structure with levels can be transformed into a A-structure by as-
sociating to each !-link the box computed according to Definition 2.40.
If the boxes assigned in this way satisfy the box nesting condition-in
particular, every box has one principal port of !-type only-the cor-
rectness of the A-structure can be verified by applying the criterion in
Definition 2.36.

Definition 2.42 (A-net with levels) The switches of a A-structure
with levels can be obtained by application of Definition 2.35, provided
that the boxes of the structure are computed according to Definition 2.40.
A A-structure with levels G is correct, say that G is a A-net with lev-
els, when its boxes satisfy the box nesting condition and every switch of
G that contains k weakening links is acyclic and has k + 1 connected
components.

2.5.2 Sharing reduction
In the sharing reduction of A-nets with levels, the cut-elimination rule
for multiplicative cuts remains unchanged, while the cut-elimination rule
for exponential cuts is replaced by the rule in Figure 2.27.

n+Pi:...n+P. n+1 n+Pi71 +Pk

n n
i

cut

cut

Fig. 2.27. Sharing reduction: exponential cut rule.

7b+ 1

Instead of performing the duplication of the box B of the !-link in
the redex, the cut is replaced by a new kind of link named mux (or
multiplexer) with one premise and k conclusions, and an index n, named
the threshold of the roux, equal to the level of the cut formulas. In

0

this way, the inside of the box B is not duplicated but shared. In the

Proof Nets and the A-Calculus 111

following, we shall see that there is a complementary mux too, with k
premises and one conclusion. Because of this, we say that the premises
and the conclusions of a mux are its doors and that every mux has one
principal door only. The doors of a mux are connected to the ports of
the mux. Each auxiliary port of a mux has a naive, that is different from
the name of any other port of the same mux. The difference between
the level of any auxiliary door and the level of the principal door of a
mux is a constant proper of the corresponding port named the offset of
the port, and is always greater or equal than -1.

In order to complete the reduction, the sharing introduced by the
elimination of an exponential cut must be unfolded. According to this,
a mux is a link that dynamically performs a step-by-step duplication of
the links in the interior of some box, according to the rule in Figure 2.28.
Such a rule can be applied whichever is the type a of the duplicating
link and whichever is the formula of the a-link at the principal door of
the mux, provided that the side-condition in Figure 2.27 holds. If the
a-link has h + 1 premises/conclusions, after the application of the rule,
the mux splits in h copies; these copies of the mux proceed duplicating
in different directions. We remark that the offsets of the ports does not
change and that, when the a-link is a cut or an axiom, the doors of
the mux change their orientations-if they were premises, they become
conclusions, and vice versa.

no + 9i

no + qk

710

nl + 9k

7n<n; for i = 0, 1, . . . , k

Fig. 2.28. Sharing reduction: propagation rule.

The threshold m of the mux plays a key role in the duplication rule in
Figure 2.28, because of the side-condition that the level of any formula
connected to the duplicating link is greater than m. In fact, according
to the definition of box in Definition 2.40, a mux must duplicate all
and only the links that it can reach and whose formulas have a level

112 S. Guerrini

greater than m, that is, which are inside the box left shared by the
cut-elimination step that has introduced the mux.

According to the conditions on the formulas of a link (remind Fig-
ure 2.26), and to the fact that a box has one principal door only, we
see that a mux has completed its duplication task when it reaches the
auxiliary door of the duplicating box. Again, the threshold of the nmx
plays a key role in recognizing such a situation: a mux with threshold
m has reached the border of its box when it is at the premise of a ?-link
whose conclusion has level n < m. In this case, all the premises of the
mux become auxiliary doors of the new box, that is, they are added to
the premises of the ?-link pointed by the mux. The corresponding rule
is represented in Figure 2.29. The rule is named absorption, for we may
think that the mux is absorbed by the ?-link.

n.+p+qi n+p+qk n+p+qi . n+p+qk

n<na<n+p

n

Fig. 2.29. Sharing reduction: absorption rule.

There is another situation in which a mux completes its duplicating
task: when two copies of the same mux faces (this is a simplification, in
general it is not true that every pair of facing muxes that are copies of
the same mux annihilate, see Remark 2.43). The easiest way to under-
stand how that situation can be reached is by reducing the A-net corre-
sponding to (Azy.yzz)(Ax.x). After the reduction of the multiplicative
and exponential cuts corresponding to the ,0-redex in the term, the net
contains a binary mux that shares Ax.x. Then, after the duplication
of the 2?-link corresponding to the abstraction in Ax.x, we get a graph
with two complementary muxes that faces. At that point, in order to
complete the computation, the muxes must be replaced by direct con-
nections between the matching doors of the facing muxes, obtaining the
A-net of Ay.y(Ax.x)(Ax.x). The exact definition of the imix annihilation
rule that allows to remove two complementary muxes that face is given
in Figure 2.30. We see that the rule can be applied only when the two

Proof Nets and the A-Calculus 113

facing muxes have exactly the same shape, i.e., the same threshold, the
same number of doors, and the same offsets. After the annihilation of
the muxes, the formulas connected to any pair of matching doors col-
lapse into a unique formula with the same level (in all the rules we have
omitted the formulas at the nodes, however, it is not difficult to see that
after the reduction every node keeps the correct type).

n+qr n+qk

n+ql n+qk

n+ql... n.+qk

.................... Tl + rh

n+ql+rh
n+ql+rl n+qk+rhn +

qk+rl

n+ql n.+qk

swap

Fig. 2.30. Mux rules.

Let t be a A-term that contains a redex s.t. t -0 s. It is an easy exer-
cise to see that, after the reduction 91(t) N of the multiplicative
and of the exponential cut of the redex, we get a sharing graph s.t.
N -

91(s). Then, a sound and complete implementation of the usual
A-net reduction can be obtained by application of the following reduc-
tion strategy: after the sharing reduction of any exponential cut, applies
a sequence ofd-rules until all the muxes in the graph disappear.

However, we can do much better. In fact, what does it happen if,
instead of completing the me-reduction that leads to a new A-net, we
reduce a multiplicative or an exponential cut? The elimination of a
multiplicative cut does not pose any problem. Instead, the elimination of

n+qi

annihilation

n + qk

n+r1

nal < ni2

114 S. Guerrini

an exponential cut introduces into the net a new mux before that the old
ones have disappeared from the graph. In this way, we get two different
kinds of muxes in the net that correspond to distinct duplication tasks.
Therefore, we need a way to distinguish the two kinds of muxes in order
to avoid that their corresponding duplication tasks might interfere. After
realizing that such duplications may interfere only if the duplicating
boxes nest, we can exploit the fact that two boxes that nest cannot be
at the same level; therefore, we may use the thresholds of the muxes to
recognize when they come from different cuts.

In addition to the mux annihilation rule, we have a mux swap rule that
deals with the case in which the thresholds of two facing muxes differ,
e.g., ml < m2 (see Figure 2.30). We remark that the highest threshold
m2 is lifted by the offset of the ports that causes its duplication. The
reason should be intuitively clear. During its propagation, for each of
its auxiliary doors, a mux creates a new copy, lifted by the offset q
of the port (that is, q is added to the level of all the formulas at the
duplicated link), of any link that meets at its principal port. The mux
with the lower threshold mi corresponds to the duplication of a box
that contains the box that the mux with the higher threshold m2 is
duplicating. As a consequence, the mttx with threshold mt has already
traversed the border of the box associated to the mux with threshold
m2 and, correspondingly to every port a with offset q, has increased by
q the level of that border. Therefore, the threshold of the copy of the
higher mux connected to the port a of the lower mux must be increased
by q.

Remark 2.43 According to our simplified presentation, it seems that
two muxes annihilate when they are copies of the same mux, or swap
when they come from distinct muxes. In the general case, this is not
completely true. Two complementary muxes that face and annihilate
have always the same progenitor, but, two muxes that come from the
same progenitor may face with different thresholds. This situation cor-
responds to involved cases in which one of the copies of the duplicating
box enters inside another copy of the same box. According to the defini-
tion of the rules in Figure 2.30, in that case, the two muxes swap.

Finally, we have the complete rewriting system for sharing reduction.
The case without restrictions on the order in which the rules can be
applied is not as direct as the simplified case from which we started, and
the proofs of soundness and completeness of the sharing rewriting system

Proof Nets and the A-Calculus 115

are particularly involved (see [22] or [20]). Apart for the technical diffi-
culties in the proof, we can get a result similar to that of Theorem 2.37
and Theorem 2.39.

Theorem 2.44 The sharing reduction of a A-net with levels is confluent,
sound and complete. In particular, if t -% s, then '71(t) -' 01(s). Vice
versa, if 01(t) -h+ N, there is t - s s.t. N -' 1(s).

The previous theorem holds for A-nets and pure A-nets with levels. In
the typed case, we have strong normalization also.

2.5.3 Optimal reduction
If one tries to think at which is the best sharing reduction strategy for
the normalization of A-nets, one immediately realizes that the target is to
avoid useless duplications of redexes. In particular, we see that axioms
and cuts are not a problem-in our presentation their only purpose is to
preserve typing and orientation, so they might simply be erased-and
that for the other kind of links one must avoid to duplicate the link
when a mux arrives at one of its premises. More precisely, from the
point of view of its dynamics, a proof net can be seen as an interaction
net, see [24], that is, a graph in which every link has a principal door and
the interactions between links take place when two links are connected
through their principal doors. The rewriting rules definable in this way
suffice to perform the normalization of A-nets, as it can be seen that the
rules that change the A-term associated to the net are the multiplicative
and exponential rewriting rules only, and that, if some muxes interpose
between the principal doors of a 2810 or of a ?/! pair that has to interact,
after the application of a sequence of mux annihilation and swap rules,
that muxes move away leaving an interacting pair of 28/® or of ?/! links.
Actually, the existence of such a reduction sequence is ensured by the
fact that, in the sharing graph resulting from the reduction of a A-net, we
cannot have pairs of deadlocked muxes (i.e., muxes that are connected
through their principal doors and have the same thresholds, but that
differ for the number, the names or the offsets of their ports). The proof
of that key result is not trivial, moreover, it is one of the basic steps in
the proof of Theorem 2.44, but, if one assume as proved that theorem,
the fact that we cannot have deadlocks become a trivial corollary.

Summing up, one can define the following optimal reduction strategy:
the propagation rule can be applied only when the a-link in the redex

116 S. Guerrini

is an axiom or a cut, or when the principal door of the roux is the
conclusion of the a-link in the redex.

The number of /3-rules (pairs of multiplicative and exponential cuts)
executed by application of the optimal strategy in the reduction of 97(t)
is equal to the number of Levy's families in the A-term t. Thus, the
optimal sharing reduction strategy implements Levy's optimal reduction
(see [3]).

Bibliography
[1] V. M. Abrusci. Noncommutative proof nets. In J.-Y. Girard, Y. Lafont,

and L. Regnier, editors, Advances in Linear Logic, pages 271-296.
Cambridge University Press, 1995. London Mathematical Society
Lecture Note Series 222, Proceedings of the 1993 Workshop on Linear
Logic, Cornell Univesity, Ithaca.

[2] Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier.
Paths in the lambda-calculus: three years of communications without
understanding. In 9th Annual IEEE Symposium on Logic in Computer
Science (LICS'94), pages 426-436, Paris, France, July 1994. IEEE.

[3] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of
Functional Programming Languages. Number 45 in Cambridges Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

[4] Andrea Asperti and Cosiino Laneve. Paths, computations and labels in
the A-calculus. In C. Kirchner, editor, Rewriting Techniques and
Applications, Proceedings of the 5th International Conference, RTA 93,
volume 690 of Lecture Notes in Computer Science, pages 152-167,
Montreal, Canada, June 1993. Springer Verlag.

[5] Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not
elementary recursive. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL '98, pages 303-315, San Diego, CA, 1998. ACM Press.

[6] V. M. Abrusci and P. Ruet. Non-commutative logic I: the multiplicative
fragment. Annals Pure Appl. Logic, 101(1):29-64, 2000.

[7] G. Bellin and J. van de Wiele. Empires and kingdoms in MLL-. In J.-Y.
Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
pages 249-270. Cambridge University Press, 1995. London
Mathematical Society Lecture Note Series 222, Proceedings of the 1993
Workshop on Linear Logic, Cornell Univesity, Ithaca.

[8] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions
via cut elimination in proof nets. In 12th Annual IEEE Symposium on
Logic in Computer Science (LICS'97), pages 35-47. IEEE, June 1997.

[9] Vincent Danos. Une Application de la Logique Lineaire it l'Etude des
Processes de Normalisation (principalement du A-calcul). PhD Thesis,
Universite Paris 7, Paris, June 1990.

[10] V. Danos and L. Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181-203, 1989.

[11] Vincent Danos and Laurent Regnier. Local and asyncrhonous
beta-reduction. In IEEE, editor, 8th Annual IEEE Symposium on Logic

Proof Nets and the A-Calculus 117

in Computer Science (LICS '93), pages 296-306, Montreal, Canada,
1993.

[12] Georges Gonthier, Martin Abadi, and Jean-Jacques Levy. Linear logic
without boxes. In Proceedings, Seventh Annual IEEE Symposium on
Logic in Computer Science, pages 223-234, Santa Cruz, California,
22-25 June 1992. IEEE Computer Society Press.

[13] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1-102, 1987.

[14] Jean-Yves Girard. Geometry of interaction 1: Interpretation of system F.
In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic
Colloqium '88, pages 221-260. Elsevier (North-Holland), 1989.

[15] J.-Y. Girard. Quantifiers in linear logic II. Prepublications 19, Equipe de
Logique Mathematique, Univeriite Paris VII, jan 1991.

[16] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages
1-42. Cambridge University Press, 1995. Proceedings of the Workshop
on Linear Logic, Ithaca, New York, June 1993.

[17] Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In
P. Agliano and A. Ursini, editors, Logic and Algebra. Marcel Dekker,
New York, 1996.

[18] Stefano Guerrini and Andrea Masini. Parsing MELL Proof Nets.
Theoretical Computer Science, 254(1-2):317-335, March 2001.

[19] Stefano Guerrini, Simone Martini, and Andrea Masini. Proof nets,
garbage, and computations. Theoretical Computer Science,
253(2):185-237, February 2001.

[20] Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for
sharing proof nets. Theoretical Computer Science, 294(3):379-409,
February 2003.

[21] Stefano Guerrini. Correctness of multiplicative proof nets is linear. In
14th Annual IEEE Symposium on Logic in Computer Science (LICS
'99), pages 454-463, Trento, Italy, July 1999. IEEE Computer Society.

[22] Stefano Guerrini. A general theory of sharing graphs. Theoretical
Computer Science, 227(1-2):99-151, 1999.

[23] J.-B. Joinet. Etude de la normalisation du calcul des sequents classique a
travers la logique lineaire. PhD thesis, University Paris VII, January
1993.

[24] Y. Lafont. From proof nets to interaction nets. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages
225-247. Cambridge University Press, 1995. Proceedings of the
Workshop on Linear Logic, Ithaca, New York, June 1993.

[25] John Lamping. An algorithm for optimal lambda calculus reduction. In
Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, pages 16-30, San Francisco,
California, January 1990.

[26] Franccois Lamarche. Proof nets for intuitionistic linear logic I: Essential
nets. Preprint available at
http://hypatia.dcs.gmw.ac.uk/data/L/LamarcheF/prfneti.ps.gz,

1994.
[27] Olivier Laurent. Polarized proof-nets and aµ-calculus. Theoretical

Computer Science, 2002. To appear.
[28] Jean-Jacques Levy. Reductions Correctes et Optimales dans le

118 S. Guerrini

lambda-calcul. PhD Thesis, Universite Paris VII, Paris, 1978.
[29] P. Lincoln and T. Winkler. Constant-only multiplicative linear logic is

np-complete. Theoretical Computer Science, 135:155-169, 1994.
[30] Ian Mackie. Linear logic with boxes. In IEEE, editor, 13th Annual IEEE

Symposium on Logic in Computer Science (LICS '98), pages 309-320,
Indianapolis, Indiana, 1998.

[31] A. S. Murawski and C.-H. L. Ong. Dominator trees and fast verification
of proof nets. In 15th Annual IEEE Symposium on Logic in Computer
Science (LICS 2000), Santa Barbara, CA, June 2000. IEEE Computer
Society.

[32] Maraist, Odersky, Turner, and Wadler. Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. TCS: Theoretical Computer
Science, 228, 1999.

[33] Laurent Regnier. Lambda-Calcul et Reseaux. Phd Thesis, Universite
Paris 7, Paris, January 1992.

[34] Laurent Regnier. Une equivalence sur les lambda-termes. Theoretical
Computer Science, 126(2):281-292, April 1994. Note.

[35] Lorenzo Tortora de Falco. Reseaux, coherence et experiences
obsessionelles. Phd thesis, Universite Paris 7, Paris, January 2000.

[36] Lorenzo Tortora de Falco. The additive multiboxes. Annals of Pure and
Applied Logic, 2002.

3

An Overview of Linear Logic Programming
Dale Miller

INRIA - F'aturs & Laboratoire d'Informatique LIX, Ecole Polytechnique

Abstract

Logic programming can be given a foundation in sequent calculus by
viewing computation as the process of building a cut-free sequent proof
bottom-up. The first accounts of logic programming as proof search
were given in classical and intuitionistic logic. Given that linear logic
allows richer sequents and richer dynamics in the rewriting of sequents
during proof search, it was inevitable that linear logic would be used
to design new and more expressive logic programming languages. We
overview how linear logic has been used to design such new languages
and describe briefly some applications and implementation issues for
them.

3.1 Introduction

It is now commonplace to recognize the important role of logic in the
foundations of computer science. When a major new advance is made
in our understanding of logic, we can thus expect to see that advance
ripple into many areas of computer science. Such rippling has been ob-
served during the years since the introduction of linear logic by Girard
in 1987 [35]. Since linear logic embraces computational themes directly
in its design, it often allows direct and declarative approaches to compu-
tational and resource sensitive specifications. Linear logic also provides
new insights into the many computational systems based on classical
and intuitionistic logics since it refines and extends these logics.

There are two broad approaches by which logic, via the theory of
proofs, is used to describe computation [69]. One approach is the proof
reduction paradigm, which can be seen as a foundation for functional pro-

119

120 D. Miller

grarnming. Here, programs are viewed as natural deduction or sequent
calculus proofs and computation is modeled using proof normalization.
Sequents are used to type a functional program: a program fragment is
associated with the single-conclusion sequent A ----p G if the code has
the type declared in G when all its free variables have types declared for
them in the set of type judgments A. Abramsky [2] has extended this
interpretation of computation to multiple-conclusion sequents of linear
logic, A ---p r, where A and r are both multisets of typing judgments.
In that setting, cut-elimination can be seen as specifying concurrent
computations. See also [17, 60, 61] for related uses of concurrency in
proof normalization in linear logic. The more expressive types made
possible by linear logic have also been used to provide static analysis
of run-time garbage, aliases, reference counters, and single-threadedness
[34, 83, 91, 111].

Another approach to using proof theory to specify computation is
the proof search paradigm, which can be seen as a foundation for logic
programming. In this paper (which is an update to [71]), we first provide
an overview of the proof search paradigm and then outline the impact
that linear logic has made to the design and expressivity of new logic
programming languages.

3.2 Goal-directed proof search

When logic programming is considered abstractly, sequents directly en-
code the state of a computation and the changes that occur to sequents
during bottom-up search for cut-free proofs encode the dynamics of com-
putation. In particular, following the framework described in [80], a
logic programming language consists of two kinds of formulas: program
clauses describe the meaning of non-logical constants and goals are the
possible consequences considered from collections of program clauses. A
single-conclusion sequent A -' G represents the state of an idealized
logic programming interpreter in which the current logic program is A
(a set or multiset of formulas) and the goal is G. These two classes of
formulas are duals of each other in the sense that a negative subformula
of a goal is a program clause and a negative subformula of a program
clause is a goal formula.

An Overview of Linear Logic Programming 121

3.2.1 Uniform proofs

The constants that appear in logical formulas are of two kinds: logical
constants (connectives and quantifiers) and non-logical constants (pred-
icates and function symbols). The "search semantics" of the former is
fixed and independent of context: for example, the search for the proof
of a disjunction or universal quantifier should be the same no matter
what program is contained in the sequent for which a proof is required.
On the other hand, the instructions for proving a formula with a non-
logical constant head (that is, an atomic formula) are provided by the
logic program in the sequent.

This separation of constants into logical and non-logical yields two
different phases in proof search for a sequent. One phase is that of goal
reduction, in which the search for a proof of a non-atomic formula uses
the introduction rule for its top-level logical constant. The other phase
is backchaining, in which the meaning of an atomic formula is extracted
from the logic program part of the sequent.

The technical notion of uniform proofs is used to capture the notion
of goal-directed search. When sequents are single-conclusion, a uniform
proof is a cut-free proof in which every sequent with a non-atomic right-
hand side is the conclusion of a right-introduction rule [80]. An inter-
preter attempting to find a uniform proof of a sequent would directly
reflect the logical structure of the right-hand side (the goal) into the
proof being constructed. As we shall see, left-introduction rules are used
only when the goal formula is atomic and as part of the backchaining
phase.

A specific notion of goal formula and program clause along with a
proof system is called an abstract logic programming language if a se-
quent has a proof if and only if it has a uniform proof. As we shall
illustrate below, first-order and higher-order variants of Horn clauses
paired with classical provability [89] and hereditary Harrop formulas
paired with intuitionistic provability [80] are two examples of abstract
logic programming languages.

While backchaining is not part of the definition of uniform proofs,
the structure of backchaining is consistent across several abstract logic
programming languages. In particular, when proving an atomic goal,
applications of left-introduction rules can be used in a coordinated de-
composition of a program clause that yields not only a matching atomic
formula occurrence to the atomic goal but also possibly new goals for-
mulas for which additional proofs must be attempted [89, 80, 47].

122 D. Miller

3.2.2 Logic programming in classical and intuitionistic logics

In the beginning of the logic programming literature, there was one ex-
ample of logic programming, namely, the first-order classical theory of
Horn clauses, which was the logic basis of the popular programming
language Prolog. However, no general framework existed for connect-
ing logic and logic programming. The operational semantics of logic
programs was presented as resolution [11], an inference rule optimized
for classical reasoning. Miller and Nadathur [78, 65, 89] were probably
the first to use the sequent calculus to examine design and correctness
issues for logic programming languages. Moving to the sequent calculus
made it nature to consider logic programming in settings other than just
classical logic.

We first consider the design of logic programming languages within
classical and intuitionistic logic, where the logical constants are taken to
be true, A, V, D, V, and I (false and negation are not part of the first
logic programs we consider).

Horn clauses can be defined simply as those formulas built from true,
A, D, and V with the proviso that no implication or universal quanti-
fier is to the left of an implication. A goal in this setting would then
be any negative subformula of a Horn clause: more specifically, they
would be either true or a conjunction of atomic formulas. It is shown
in [89] that a proof system similar to the one in Figure 3.1 is complete
for the classical logic theory of Horn clauses and their associated goal
formulas. It then follows immediately that Horn clauses are an abstract
logic programming language. (The syntactic variable A in Figure 3.1
denotes atomic formulas.) Notice that sequents in this and other proof
systems contain a signature E as its first element: this signature contains
type declarations for all the non-logical constants in the sequent. Notice
also that there are two different kinds of sequent judgments: one with
and one without a formula on top of the sequent arrow. The sequent
E : A _ A denotes the sequent E : A, D --) A but with the D
formula being distinguished (that is, marked for backchaining).

Inference rules in Figure 3.1, and those that we shall show in sub-
sequent proof systems, can be divided into four categories. The right-
introduction rules (goal-reduction) are those using the unlabeled sequent
arrow and in which the goal formula is non-atomic. The left-introduction
rules (backchaining) are those with sequent arrows labeled with a for-
mula and it is on that formula that introduction rules are applied. The
initial rule forms the third category and is the only rule with a repeated

An Overview of Linear Logic Programming 123

E:A -+G1 E:A -+G2
E:A -true E:A -+G,AG2

D;

E: 0 -°_ A initial E: A A

E:0 -+A decide E:0°'n+ A

E:0 -4G E:L - A
CDDE:A + A

E:L -+ A
A + A

Fig. 3.1. In the decide rule, D E A; in the left rule for A, i E {1,2}; and in
the left rule for d, t is a E-term of type r.

E:i,D -+ G E,c:T:A --*G[c/x]
E:0 -+DJG E : A -+Hrx.G

Fig. 3.2. The rule for universal quantification has the proviso that c is not
declared in E.

occurrence of a schema variable in its conclusion. The decide rule forms
the forth and final category: this rule is responsible for moving a formula
from the logic program to above the sequent arrow.

In this proof system, left-introductions are now applied only on the
formula annotating the sequent arrow. The usual notion of backchaining
can be seen as an instance of a decide rule, which places a formula from
the program (the left-hand context) on top of the sequent arrow, and
then a sequence of left-introductions work on that distinguished formula.
Backchaining ultimately performs a linking between a goal formula and
a program clause via the repeated schema variable in the initial rule. In
Figure 3.1, there is one decide rule and one initial rule: in a subsequent
inference system, there are more of each category. Also, proofs in this
system involving Horn clauses have a simple structure: all sequents in a
given proof have identical left hand sides: signatures and programs are
fixed and global during the search for a proof. If changes in sequents are
meant to be used to encode dynamics of computation, then Horn clauses
provide a weak start: the only dynamics are changes in goals which
relegates such dynamics entirely to the non-logical domain of atomic
formulas. As we illustrate with an example in Section 3.6, if one can
use a logic programming language where sequents have more dynamics,

124 D. Miller

then one can reason about some aspects of logic programs directly using
logical tools.

Hereditary Harrop formulas can be presented simply as those formu-
las built from true, A, 3, and d with no restrictions. Goal formulas,
i.e., negative subformulas of such formulas, would thus have the same
structure. It is shown in [80] that a proof system similar to the one
formed by adding to the inference rules in Figure 3.1 the rules in Fig-
ure 3.2 is complete for the intuitionistic logic theory of hereditary Harrop
formulas and their associated goal formulas. It then follows immedi-
ately that hereditary Harrop formulas are an abstract logic program-
ming language. The classical logic theory of hereditary Harrop formulas
is not, however, an abstract logic programming language: Peirce's for-
mula ((p D q) D p) D p, for example, is classically provable but has
no uniform proof. The original definition of hereditary Harrop formu-
las permitted disjunctions and existential quantifiers at the top-level of
goal formulas. Such an extension makes little change to the logic's proof
theory properties but does help to justify its name since all positive
subformulas of program clauses are then Harrop formulas [43].

Notice that sequents in this new proof system have a slightly greater
ability to change during proof search: in particular, both signatures and
programs can increase as proof search moves upward. Thus, not all con-
stants and program clauses need to be available at the beginning of a
computation: instead they can be made available as search continues.
For this reason, the hereditary Harrop formulas have been used to pro-
vide logic programming with approaches to modular programming [67]
and abstract datatypes [66, 87].

3.2.3 Higher-order quantification and proof search
The impact of using higher-order quantification in proof search was sys-
tematically studied in the contexts of Horn clauses [78, 86, 89] and hered-
itary Harrop formulas [80, 90]. The higher-order setting for these studies
was done using the subset of Church's Simple Theory of Types [22] in
which the "mathematical axioms" of extensionality, infinity, choice, etc,
are not assumed.

Allowing quantification of variables of functional types only (that is,
not at predicate type) is not a challenge for the high-level treatment of
proof search. Such an extension to the first-order setting does make logic
programming much more expressive and more challenging to implement.
In particular, the presence of quantification at function types and of

An Overview of Linear Logic Programming 125

simply typed A-terms [22] endowed logic programming with the encoding
technique called higher-order abstract syntax [79, 45, 94]. It was, in fact,
the .Prolog programming language [88] in which this style programming
was first supported.

Allowing quantification at predicate type does provide some significant
challenges to the proof theoretical analysis of proof search: we illustrate
two such issues here.

One issue with predicate quantification is that during proof search, the
careful restriction to having program clauses on the left of the sequent
arrow and goal formulas on the right might be broken via higher-order
instantiation with terms containing logical connectives. For example,
consider a logic program containing the following two clauses:

VP[PaJgb] and Vx[gxDr].

Here, the first clause is a higher-order Horn clause following the defi-
nition in [89]. If we take an instance of this logic program in which P
in the first clause is instantiated by Aw.-iq w, we have clauses logically
equivalent to

[q a v q b] and Vx[q x r].

Notice that with respect to this second logic program the atomic goal
r has a classical logic proof but does not have a uniform proof. Thus,
the instance of a higher-order Horn clause does not necessarily result
in another higher-order Horn clause. Fortunately, for both the theory
of higher-order Horn clauses and higher-order hereditary Harrop for-
mulas, it is possible to prove that the only higher-order instances that
are required during proof search are those that preserve the invariance
of the initial syntactic restriction to Horn clauses or hereditary Harrop
formulas [80, 89].

A second issue is more related the operational reading of clauses: pro-
gram clauses are generally seen as contributing meaning to specific pred-
icates, such as those that, for example, define the relations of concate-
nation or sorting of lists. These predicate constants have occurrences at
strictly positive positions within program clauses: such a positive occur-
rence is called a head of a clause. If one allows predicate variables instead
of constants in such head positions, then in a sense, such program clauses
would be contributing meaning to any predicate. For this reason, head
symbols are generally restricted to be constants. If all head symbols
in a logic program are constant, it is also easy to show that that logic
program is consistent (that is, some formulas are not deducible from it).

126 D. Miller

If certain mild restrictions are placed on the occurrences of logical con-
nectives within the scope of non-logical constants (that is, within atoms),
then higher-order variants of Horn clauses and hereditary Harrop for-
mulas are known to be abstract logic programming languages [89, 80].
Higher-order quantification of predicates can provide logic programming
specifications with direct and natural ways to do higher-order program-
ming, as is popular in functional programming languages, as well as
providing a means of lexically scoping and hiding predicates [66].

Allowing higher-order head positions does have, at least, a theoreti-
cal interest. Full first-order intuitionistic logic is not an abstract logic
programming language since both V and I can cause incompleteness of
uniform proofs. For example, both

pVq-->qVp and Jx.B-)3x.B
have intuitionistic proofs but neither sequent has a uniform proof. As
we have seen above, eliminating disjunction and existential quantifi-
cation yields immediately abstract logic programming languages (at
least within intuitionistic logic). As is well known, higher-order quan-
tification allows one to define the intuitionistic disjunction B V C as
Vp((B D P) D (C D p) i p) and the existential quantifier 3x.Bx as
Vp((Vx.Bx j p) D p). Both of these formulas have the predicate vari-
able p in a head position. Notice that if the two sequents displayed
above are rewritten using these two definitions, the resulting sequents
would have uniform proofs. Felty has shown that higher-order intuition-
istic logic based on true, A, 3, and V for all higher-order types (with
no restriction of predicate variable occurrences) is an abstract logic pro-
gramming language [29].

3.2.4 Uniform proofs with multiple conclusion sequents
In the multiple-conclusion setting, goal-reduction should continue to be
independent not only from the logic program but also from other goals,
i.e., multiple goals should be reducible simultaneously. Although the se-
quent calculus does not directly allow for simultaneous rule application,
it can be simulated easily by referring to permutations of inference rules
[56]. In particular, we can require that if two or more right-introduction
rules can be used to derive a given sequent, then all possible orders of
applying those right-introduction rules can be obtained from any other
order simply by permuting right-introduction inferences. It is easy to
see that the following definition of uniform proofs for multiple-conclusion

An Overview of Linear Logic Programming 127

sequents generalizes that for single-conclusion sequents: a cut-free, se-
quent proof , is uniform if for every subproof T of 8 and for every
non-atomic formula occurrence B in the right-hand side of the end-
sequent of T, there is a proof 41' that is equal to T up to permutation of
inference rules and is such that the last inference rule in V introduces
the top-level logical connective occurring in B [69, 72]. The notion of
abstract logic programming language can be extended to the case where
this extended notion of uniform proof is complete. As evidence of the
usefulness of this definition, Miller in [69] used it to specify a 7r-calculus-
like process calculus in linear logic and showed that it was an abstract
logic programming language in this new sense.

Given this definition of uniform proofs for multiple conclusion sequent
calculus, an interesting next step would be to turn to linear logic and
start to identify subsets for which goal directed search is complete and
to identify backchaining rules. Fortunately and surprisingly, the work
of Andreoli in his PhD thesis [5] on focused proof search for linear logic
provides a complete analysis along these lines for all of linear logic.

3.3 Linear logic and focused proofs
As we have seen, the goal-directed proof search analysis of logic pro-
gramming in classical and intuitionistic logic revealed three general ob-
servations: (1) Two sets of formulas can be identified for use as goals
and as program clauses. (2) These two classes are duals of each other,
at least in the sense that a negative subformula of a formula in one class
is a formula in the other class. (3) Goal formulas are processed imme-
diately by a sequence of invertible right-rules and program clauses are
used via a focused application of left-rules know as backchaining.

Andreoli analyzed the structure of proof search in linear logic using
the notion of focused proof [5, 6]. His analysis made it possible to extend
the above three observations to all of linear logic and to provide a deep
and elegant explanation for why they hold. Andreoli classified the logical
connectives into two sets of connectives. Asynchronous connectives are
those whose right-introduction rule is invertible and synchronous con-
nectives are those whose right-introduction is not invertible; that is, the
success of applying a right-introduction rule for a synchronous connec-
tive required information from the context. (We say that a formula is
asynchronous or synchronous depending on the top-level connective of
the formula.) He also observed that these two classes of connectives are
de Morgan duals of each other.

128 D. Miller

Given these distinctions between formulas, Andreoli showed that a
complete bottom-up proof search procedure for cut-free proofs in linear
logic (using one-sided sequents) can be described roughly as follows: first
decompose all asynchronous formulas and when none remain, pick some
synchronous formula, introduce its top-level connective and then con-
tinue decomposing all synchronous subformulas that might arise. Thus
interleaving between asynchronous reductions and synchronous reduc-
tions yields a highly normalized proof search mechanism. Proofs built
in this fashion are called focused proofs.

A consequence of this completeness of focused proofs is that all of
linear logic can be seen as logic programming, at least once we choose
the proper presentation of linear logic. In such a presentation, focused
proofs capture the notion of uniform proofs and backchaining at the
same time. Since all of linear logic can be seen as logic programming,
we delay presenting more details about focused proofs until the next
section where we present several linear logic programming languages.

3.4 Linear logic programming languages
We now present the designs of some linear logic programming languages.
Our first language, Forum, provides a basis for considering all of linear
logic as logic programming. We shall also look at certain subsets of
Forum since they will allow us to focus on particular structural features
of proof search and particular application areas.

3.4.1 The Forum presentation of linear logic
The logic programming languages based on classical and intuitionistic
logics considered earlier used the connectives true, A, J, and V. We
shall now consider a presentation of linear logic using the corresponding
connectives, namely, T, &, and d, along with the distinctly linear
connectives --a, 1, 28, and ?. Together, this collection of connectives
yields a presentation of all of linear logic since the missing connectives
are directly definable using the following logical equivalences.

BlB-a1 O-T-c1 1-1-o 1 3x.B-(dx.B1)1
1)-o1 B®C-(B1&C1)1 B®Cn (B-L 2B

C1)1

This collection of connectives is not minimal: for example, ? and 28, can
be defined in terms of the remaining connectives

An Overview of Linear Logic Programming 129

?Bn (B--o1)= 1 and B'C-(B-o1)-a C.

Unlike many treatments of linear logic, we shall treat B = C as a
logical connective (which corresponds to !B -o C). From the proof
search point-of-view, the four intuitionistic connectives true, n, 3, and
`d correspond naturally with the four linear logic connectives T, &, =,
and d (in fact, the correspondence is so strong for the quantifiers that
we write them the same in both settings). We shall call this particular
presentation of linear logic the Forum presentation of linear logic or
simply Forum.

Notice that all the logical connectives used in Forum are asynchronous:
that is, their right-introduction rules are invertible. Since we are using
two sided sequents, asynchronous formulas have a synchronous behavior
when they are introduced on the left of the sequent arrow. Thus, goal
reduction correspondences to the reduction of asynchronous connectives
and backchaining correspondences to the focused decomposition of syn-
chronous connectives (via left-introduction rules).

The proof systems in Figures 3.1 and 3.2 that describe logic program-
ming in classical and intuitionistic logic used two styles of sequents:
E : A --+ G and E : A -D A, where A is a set of formulas. These
sequent judgments are generalized here to E : W; A -+ r; T (for goal-
reduction) and E : 41; A -° > A; T (for backchaining), where T and T
are sets of formulas (classical maintenance), A and F are multisets of
formulas (linear maintenance), A is a multiset of atomic formulas, and
D is a formula. Notice that placement of the linear context next to the
sequent arrow and classical context away from the arrow is standard no-
tation in the literature of linear logic programming, but is the opposite
convention used by Girard in his LU proof system [37].

The focusing result of Andreoli [6] can be formulated [72] as the com-
pleteness of the proof system for linear logic using the proof system
in Figure 3.3. This proof system appears rather complicated at first
glance, so it is worth noting the following organization of these inference
rules: there are 8 right-introduction rules, 7 left-introduction rules, 2
initial rules, and 3 decide rules. Notice that 2 of the decide rules place
a formula on the sequent arrow while the third copies of formula from
the classically maintained right context to the linear maintained right
context. This third decide rule is a combination of contraction and dere-
liction rule for ? and is used to "decide" on a new goal formula on which
to do reductions.

130 D. Miller

E:W;A-+B,r;T E:W;A-'c,r;T

E: _;A-+r;T E:W;A-B,c,F;T
:IY;A-+L,r;T E:IQ;A-+B2YC,F;T

E:';B,A-*c,r;T E:B,W;o-4 c,r;T
E:W;A---+B=c,r;T

y: T,E:41;O-4B[y/x],r;T E:41;0->r;B,T
E:T;A-4 dTx.B,I;T E:T;O?B,r;T

E: B,IV;O B-+A;T E:41;O B+A;T E:q';A-+A,B;B,T
E:B,I';A-+A;T E:W;B,A-+A;T E:q/;A-4A;B,T

E : W ;
A

A ; T E : B+ AT

E:q;D A;T
E:

E: T; E: E: w;AB L: :I A;T

E: 'P'7 Al, A2 Al,A2;T E: S11; AV ---+ AS T

>: '; 0, -+ A,, B; T E: W; A2 -° + A2; T
E: 4Y; Al, A2

B_-* A,,A2;T

E:x1r;O-A;T
E:W;O A;T

Fig. 3.3. A proof system for the Forum presentation of linear logic. The right-
introduction rule for d has the proviso that y is not declared in the signature
E, and the left-introduction rule for V has the proviso that t is a E-tern of
type T. In left-introduction rule for & , i E {1, 2}.

Because linear logic can be seen as the logic behind classical and in-
tuitionistic logic, it is possible to see both Horn clauses and hereditary
Harrop formulas as subsets of Forum. It is a simple matter to see that
the proof systems in Figures 3.1 and 3.2 result from restricting the proof
system for Forum in Figure 3.3 to Horn clauses and to hereditary Har-
rop formulas. Below we overview various other subsets of linear logic
that have been proposed as specification languages and as abstract logic
programming languages.

An Overview of Linear Logic Programming 131

E:P;L -*Gi E:IP;A-4G2
E:'P;O-4T

E:xP;A,GI -G2
E:T;A-+ G1=G2 E:%V;A-G1 G2

y: T, E:';D-bB[yIx]
E : 41; A - Vrx.B

E:T,D;z.---D
+ A E:T;A-°1A

E:T,D;A-+ A

E : X P ; L -D
A

E:41;A --4 A E: q/1 AC ------ A

E:W;A,-+G E:W;A2-°-*A E:41-A A
C-D+ AE : W; Al, A2 -- E : IF; A A

Fig. 3.4. The proof system for Lolli. The rule for universal quantification has
the proviso that y is not in E. In the V-left rule, t is a E-term of type T.

3.4.,E Lolli

The connectives 1, ', and ? force the genuinely classical feel of linear
logic. (In fact, using the two linear logic equivalences ? B - (B --o 1) =
1 and B 78 C - (B -o 1) -o C we see that we only need to add 1 to
a system with the two implication -o and = to get full classical linear
logic.) Without these three connectives, the multiple-conclusion sequent
calculus given for Forum in Figure 3.3 can be replaced by one with only
single-conclusion sequents.

The collection of connectives one gets from dropping these three con-
nectives from Forum, namely T, &, -o, and d, form the Lolli logic
programming language. Presenting a sequent calculus for Lolli is a sim-
ple matter. First, remove any inference rule in Figure 3.3 involving
1, 28, and ?. Second, abbreviate the sequents E : T; A ---1 G; - and
E : T; A -D + A; as E : W; A --p G and E : IF; A -°' A. The resulting
proof system for Lolli is given in Figure 3.4. The completeness of this
proof system for Lolli was given directly by Hodas and Miller in [48],
although it follows directly from the completeness of focused proofs [6],
at least once focused proofs are written as the Forum proof system.

132 D. Miller

3.4.3 Uncurrying program clauses
Frequently it is convenient to view a program clause, such as

V.x[G1 = G2 A],

which contains two goals, as a program clause containing one goal: the
formula

V .t[(! Gl (9 G2) -a A].

is logically equivalent to the formula above and brings the two goals into
the one expression ! Gl ® G2. Such a rewriting of a formula to a logically
equivalent formula is essentially the uncurrying of the formula, where
uncurrying is the rewriting of formulas using the following equivalences
in the forward direction.

H 1-o H
B --oC -o H (B(9 C)-oH

BAH !B-oH
(B-oH)&(C-oH) (BED C) -oH

Vx.(B(x) -o H) (]x.B(x)) -c H

(The last equivalence assumes that x is not free in H.) Allowing occur-
rences of 1, ®, !, ®, and 3 into goals does not cause any problems with
the completeness of uniform provability and some presentations of linear
logic programming language [48, 72, 95] allow for such occurrences.

3.4.4 Other subsets of Forum
Although all of linear logic can be seen as abstract logic programming, it
is still of interest to examine subsets of linear logic for use as specification
languages or as programming languages. These subsets are often moti-
vated by picking a small subset of linear logic that is expressive enough
to specify problems of a certain application domain. Below we list some
subsets of linear logic that have been identified in the literature.

If one maps true to T, A to &, and 3 to =>, then both Horn clauses
and hereditary Harrop formulas can be identified with linear logic for-
mulas. Proofs given for these two sets of formulas in Figures 3.1 and 3.2
are essentially the same as those for the corresponding proofs in Fig-
ure 3.4. Thus, viewing these two classes of formulas as being based on
linear instead of intuitionistic logic does not change their expressiveness.
In this sense, Lolli can be identified as being hereditary Harrop formulas

An Overview of Linear Logic Programming 133

extended with linear implication. When one is only interested in cut-
free proofs, a second translation of Horn clauses and hereditary Harrop
formulas into linear logic is possible. In particular, if negative occur-
rences of true, A, and D are translated to 1, ®, and -o, respectively,
while positive occurrences of true, A, and D are translated to T, &,
and ==>, respectively, then the resulting proofs in Figure 3.4 of the linear
logic formulas yield proofs similar to those in Figures 3.1 and 3.2 [48].
(The notion here of positive and negative occurrences are with respect to
occurrences within a cut-free proof: for example, a positive occurrence
in a formula on the left of a sequent arrow is judged to be a negative
occurrence for this translation.) Thus, if the formula

d.CA1A(A23A3)AA4)JA0]

appears on the left of the sequent arrow, it is translated as

dx[(Al ® (A2 = A3) ® A4) -o AO]

and if it appears on the right of the sequent arrow, it is translated as

Vx[(A1 & (A2 --o A3) & A4) . A0].

Historically speaking, the first proposal for a linear logic programming
language was LO (Linear Objects) by Andreoli and Pareschi [8, 9]. LO
is an extension to the Horn clause paradigm in which atomic formulas
are generalized to multisets of atomic formulas connected by 28. In
LO, backchaining is again multiset rewriting, which was used to specify
object-oriented programming and the coordination of processes. LO is
a subset of the LinLog [5, 6], where formulas are of the form

Ap)).

Here p > 0 and m > 0; occurrences of ti are either occurrences of -0
or =; G1,... G,,,, are built from 1, 2Y, ?, T, &, and d; and A1,... A,,,,
are atomic formulas. In other words, these are formula in Forum where
the "head" of the formula is not empty (i.e., p > 0) and where the goals
G1 i ... Gm do not contain implications. Andreoli argues that arbitrary
linear logic formulas can be "skolemize" (by introducing new non-logical
constants) to yield only LinLog formulas, such that proof search involv-
ing the original and the skolemize formulas are isomorphic. By applying
uncurrying, the displayed formula above can be written in the form

yy(G-o (Alag...gA,))

where G is composed of the top-level synchronous connectives and of

134 D. Miller

the subformulas Gl,... , G,,,,, which are all composed of asynchronous
connectives. In LinLog, goal formulas have no synchronous connective
in the scope an asynchronous connective.

3.4.5 Other language designs

Another linear logic programming language that has been proposed is
the Lygon system of Harland and Pym [52]. They based their design
on notions of goal-directed proof and multiple conclusion uniform proofs
[95] that unfortunately differ from those presented here. The operational
semantics for proof search that they developed is different and more
complex than the alternation of asynchronous and synchronous search
that is used for, say, Forum.

Let G and H be formulas composed of 1, 2Y, and V. Closed formulas
of the form Vt[G -o HI where H is not (logically equivalent to) 1 have
been called process clauses in [69] and are used there to encode a calculus
similar to the 7r-calculus: the universal quantifier in goals are used to
encode name restriction. These clauses written in the contrapositive
(replacing, for example, 28 with ®) have been called linear Horn clauses
by Kanovich and have been used to model computation via multiset
rewriting [55].

Various other specification logics have also been developed, often de-
signed directly to deal with particular application areas. In particular,
the language ACL by Kobayashi and Yonezawa [58, 59] captures simple
notions of asynchronous communication by identifying the send and read
primitives with two complementary linear logic connectives. Lincoln and
Saraswat have developed a linear logic version of concurrent constraint
programming [64, 107] and Fages, Ruet, and Soliman have analyzed
similar extensions to the concurrent constraint paradigm [31, 104].

Some aspects of dependent typed A-calculi overlap with notions of
abstract logic programming languages. Within the setting of intuition-
istic, single-side sequents, uniform proofs are similar to /3 -long normal
forms in natural deduction and typed A-calculus. The LF logical frame-
work [44] can be mapped naturally [28] into a higher-order extension of
hereditary Harrop formulas [80]. Inspired such a connection and by the
design of Lolli, Cervesato and Pfenning developed a linear extension to
LF called Linear LF [23, 24].

An Overview of Linear Logic Programming 135

3.5 Applications of linear logic programming
One theme that occurs often in applications of linear logic programming
is that of multiset rewriting: a simple paradigm that has wide applica-
tions in computational specifications. To see how such rewriting can be
captured in proof search, consider the rewriting rule

a, a, b c, d, e,

which specifies that a multiset can be rewritten by first removing two
occurrences of a and one occurrence of b and then have one occurrence
each of c, d, and e added. Since the left-hand of sequents in Figure 3.4
and the left- and right-hand sides of sequents in Figure 3.3 have multisets
of formulas, it is an easy matter to write clauses in linear logic which
can rewrite multisets when they are used in backchaining.

To rewrite the right-hand multiset of a sequent using the rule above,
simply backchain over the clause c 28 d ?8 e ---o a'8 a'8 b. To illustrate
such rewriting directly via Forum, consider the sequent E : ID; A -*
a, a, b, I'; T where the above clause is a member of T. A proof for this
sequent can then look like the following (where the signature E is not
displayed).

T;A -p c,d,e,I';T
b + b,T

cld?8e-aa28a786 a a b F; T
IV;A -) a,a,b,F;T

We can interpret this fragment of a proof as a rewriting of the multiset
a, a, b, r to the multiset c, d, e, r' using the rule displayed above.

To rewrite the left-hand context instead, a clause such as

a -o a -o b o (c -o d -o e -o Al) -o A0

or (using the uncurried form)

(a®a®b) ®((c®d(9 e) -o A,) ---o Ao

can be used in backchaining. Operationally this clause means that to
prove the atomic goal A0, first remove two occurrence of a and one of b
from the left-hand multiset, then add one occurrence each of c, d, and
e, and then proceed to attempt a proof of A1.

Of course, there are additional features of linear logic than can be used
to enhance this primitive notion of multiset rewriting. For examples, the

136 D. Miller

? modal on the right and the ! modal on the left can be used to place
items in multisets than cannot be deleted and the additive conjunction
& can he used to copy multisets.

Listed below are some application areas where proof search and linear
logic have been used. A few representative references for each area are
listed.

Object-oriented programming Capturing inheritance was a goal of
the early LO system [9] and modeling state encapsulation was a motiva-
tion [46] for the design of Lolli. State encapsulation was also addressed
using Forum in [26, 70].

Concurrency Linear logic is often been considered a promising declara-
tive foundation for concurrency primitives in specification languages and
programming languages. Via reductions to multiset rewriting, several
people have found encodings of Petri nets into linear logic [33, 3, 13, 27].
The specification logic ACL of Kobayashi and Yonezawa is an asyn-
chronous calculus in which the send and read primitives are identified
with two complementary linear logic connectives [58, 59]. Miller [69]
described how features of the 7r-calculus [85] can be modeled in linear
logic and Bruscoli and Guglielmi [14] showed how specifications in the
Gamma language [15] can be related to linear logic.

Operational semantics Forum has been used to specify the opera-
tional semantics of the imperative features in Algol [70] and ML [20]
and the concurrency features of Concurrent ML [72]. Forum was used
by Chirimar to specify the operational semantics of a pipe-lined, RJSC
processor [20] and by Chakravarty to specify the operational seman-
tics of a parallel programming language that combines functional and
logic programming paradigms [19]. Linear logic has also been used to
express and to reason about the operational semantics of security pro-
tocols [18, 73]. A similar approach to using linear logic was also applied
to specifying real-time finite-state systems [57].

Object-logic proof systems Intuitionistic based systems, such as the
LF dependent type system and hereditary Harrop formulas, are popular
choices for the specification of natural deduction proof systems [44, 30].
The linear logic aspects of both Lolli and Linear LF have been used
to specify natural deduction systems for a wider collection of object-
logics than are possible with these non-linear logic frameworks [48, 23].

An Overview of Linear Logic Programming 137

By admitting full linear logic and multiple conclusion sequents, Forum
provides a natural setting for the specification of object-level sequent
calculus proof systems. In classical linear logic, the duality between
left and rule introduction rules and between the cut and initial rules is
easily explained using the meta-level linear negation. Some examples
of specifying object-level sequent proof systems in Forum are given in
[70, 84, 105].

Natural language parsing Lambek's precursor to linear logic [62]
was motivated in part to deal with natural language syntax. An early
use of Lolli was to provide a simple and declarative approach to gap
threading and island constraints within English relative clauses [48, 49]
that built on an approach first proposed by Pareschi using intuitionistic
logic [93, 96]. Researchers in natural language syntax are generally quick
to look closely at most advances in proof theory, and linear logic has not
been an exception: for a few additional references, see [25, 82, 811-

3.6 Examples of reasoning about a linear logic program
One of the reasons to use logic as the source code for a programming lan-
guages is that the actual artifact that is the program should be amenable
to direct manipulation and analysis in ways that might be hard or im-
possible in more conventional programming languages. One method
for reasoning directly on logic programming involves the cut rule (via
modus ponens) and cut-elimination. We consider here two examples of
how the meta-theory of linear logic can be used to prove properties of
logic programs.

While much of the motivation for designing logic programming lan-
guages based on linear logic has been to add expressiveness to such
languages, linear logic can also help shed some light on conventional
programs. In this section we consider the linear logic specification for
the reverse of lists and formally show it is symmetric.

Let the constants nil and (::) denote the two constructors for lists.
Consider specifying the binary relation reverse that relates two lists if
one is the reverse of the other. To specify the computation of reversing
a list, consider making two piles on a table. Initialize one pile to the
list you wish to reverse and initialize the other pile to be empty. Next,
repeatedly move the top element from the first pile to the top of the
second pile. When the first pile is empty, the second pile is the reverse
of the original list. For example, the following is a trace of such a

138 D. Miller

computation.

(a::b::c::nil) nil
(b:: c:: nil) (a :: nil)

(c:: nil) (b:: a:: nil)
nil (c::b::a::nil)

In more general terms: first pick a binary relation rv to denote the
pairing of lists above (this predicate will be an auxiliary predicate to
reverse). If we wish to reverse the list L to get K, then start with the
atomic formula (rv L nil) and do a series of backchaining over the clause

VXVPVQ(rv P (X:: Q) -o rv (X:: P) Q)

to get to the formula (rv nil K). Once this is done, K is the result of
reversing L. The entire specification of reverse can be written as the
following single formula.

VLVK[Vrv ((VXVPVQ(rv P (X:: Q) --a rv (X:: P) Q)) =
rv nil K -a rv L nil) --a reverse L K]

Notice that the clause used for repeatedly moving the top elements of
lists is to the left of an intuitionistic implication (so it can be used any
number of times) while the formula representing the base case of the
recursion, namely (rv nil K), is to the left of a linear implication (thus
it must be used exactly once).

Consider proving that reverse is symmetric: that is, if (reverse L K)
is proved from the above clause, then so is (reverse K L). The informal
proof of this is simple: in the trace table above, flip the rows and the
columns. What is left is a correct computation of reversing again, but
the start and final lists have exchanged roles. This informal proof is
easily made formal by exploiting the meta-theory of linear logic. A
more formal proof proceeds as follows. Assume that (reverse L K) can
be proved. There is only one way to prove this (backchaining on the
above clause for reverse). Thus the formula

`drv((VXVPVQ(rv P (X :: Q) --a rv (X :: P) Q)) rv nil K -a rv L nil)

is provable. Since we are using logic, we can instantiate this quantifier
with any binary predicate expression and the result is still provable. So
we choose to instantiate it with the A-expression \x,\y(rv y x)1. The
resulting formula

(VXVPVQ(rv (X :: Q) P)1 -a (rv Q (X :: P)1)) =

An Overview of Linear Logic Programming 139

(rv K nil)-'- -o (rv nil L) 1

can be simplified by using the contrapositive rule for negation and linear
implication, and hence yields

(VXVPVQ(rv Q (X :: P) -o rv (X :: Q) P) rv nil L --o rv K nil)

If we now universally generalize on rv we again have proved the body
of the reverse clause, but this time with L and K switched. Notice that
we have succeeded in proving this fact about reverse without explicit
reference to induction.

For another example of using linear logic's meta-theory to reason di-
rectly on specifications, consider the problem of adding a global counter
to a functional programming language that already has primitives for,
say conditionals, application, abstraction, etc [72]. Now add get and inc
expressions: evaluation of get causes the counter's value to be returned
while evaluation of inc causes the counter's value to be incremented. Fig-
ure 3.5 contains three specifications, El, E2, and E3, of such a counter:
all three specifications store the counter's value in an atomic formula
as the argument of the predicate r. In these three specifications, the
predicate r is existentially quantified over the specification in which it
is used so that the atomic formula that stores the counter's value is it-
self local to the counter's specification (such existential quantification of
predicates is a familiar technique for implementing abstract datatypes in
logic programming [66]). The first two specifications store the counter's
value on the right of the sequent arrow, and reading and incrementing
the counter occurs via a synchronization between the eval-atom and the
r-atom. In the third specification, the counter is stored as a linear as-
sumption on the left of the sequent arrow, and synchronization is not
used: instead, the linear assumption is "destructively" read and then
rewritten in order to specify get and inc (counters such as these are de-
scribed in [48]). Finally, in the first and third specifications, evaluating
the inc symbol causes 1 to be added to the counter's value. In the second
specification, evaluating the inc symbol causes 1 to be subtracted from
the counter's value: to compensate for this unusual implementation of
inc, reading a counter in the second specification returns the negative of
the counter's value.

The use of ®, !, 3, and negation in Figure 3.5 is for convenience in
displaying these abstract datatypes. The curry/uncurry equivalence

11r(Ri Ga?RI)

140 D. Miller

El = 3r[(r 0)1
!VKVV(evalgetVK2'rVo- evalK2WrV))®
t1KVV(evalincV K2WrVo-K2Wr(V+1))]

E2 = 3r[(r 0) 1 ®

!VKVV(evalget (-V)K28rVo-K29rV)®
!VKVV(evalinc(-V)K2BrVo-K29r(V-1))]

E3 = 3r[(r 0) ®

!VKVV(evalgetV Ko- rV(9 (rV --oK))®
!VKVV(eval inc V Ko- rV®(r (V + 1) -o K))]

Fig. 3.5. Three specifications of a global counter.

directly converts a use of such a specification into a formula of Forum
(given a-conversion, we may assume that r is not free in G).

Although these three specifications of a global counter are different,
they should be equivalent in the sense that evaluation cannot tell them
apart. Although there are several ways that the equivalence of such
counters can be proved (for example, operational equivalence), the spec-
ifications of these counters are, in fact, logically equivalent. In particu-
lar, the three entailments El F- E2, E2 !- E3, and E3 F- El are provable
in linear logic. The proof of each of these entailments proceeds (in a
bottom-up fashion) by choosing an eigenvariable to instantiate the ex-
istential quantifier on the left-hand specification and then instantiating
the right-hand existential quantifier with some term involving that eigen-
variable. Assume that in all three cases, the eigenvariable selected is the
predicate symbol s. Then the first entailment is proved by instantiat-
ing the right-hand existential with Ax.s (-x); the second entailment is
proved using the substitution Ax.(s (-x))1; and the third entailment
is proved using the substitution Ax.(s x)1. The proof of the first two
entailments must also use the equations

{-0=0,-(x+1)=-x-1,-(x-1)=-x+1}.

The proof of the third entailment requires no such equations.
Clearly, logical equivalence is a strong equivalence: it immediately im-

plies that evaluation cannot tell the difference between any of these dif-
ferent specifications of a counter. For example, assume El !- eval M V T.
Then by cut and the above entailments, we have E2 I- eval M V T.

An Overview of Linear Logic Programming 141

3.7 Effective implementations of proof search

There are several challenges facing the implementers of linear logic pro-
gramming languages. One problem is how to split multiset contexts
when proving a tensor or backchaining over linear implications. If the
multiset contexts of a sequent have n > 0 formulas in them, then can be
as many as 2' ways that a context can be partitioned into two multisets.
Often, however, very few of these splits will lead to a successful proof.
An obvious approach to address the problem of splitting context would
be to do the split lazily. One approach to such lazy splitting was pre-
sented in [48] where proof search was seen to be a kind of input/output
process. When proving one part of a tensor, all formulas are given to
that attempt. If the proof process is successful, any formulas remaining
would then be output from that attempt and handed to the remain-
ing part of the tensor. A rather simple interpreter for such a model
of resource consumption and its Prolog implementation is given in [48].
Experience with this interpreter showed that the presence of the addi-
tive connectives - T and & - caused significant problems with efficient
interpretation. Several researchers have developed significant variations
to the model of lazy splitting. See for example, [21, 50, 63]. Similar im-
plementation issues concerning the Lygon logic programming language
are described in [112]. More recent approaches to accounting for re-
source consumption in linear logic programming uses constraint solving
to treat the different aspects of resources sharing and consumption in
different parts of the search for a proof [7, 51].

Based on such approaches to lazy splitting, various interpreters of
linear logic programming languages have been implemented. To date,
however, only one compiling effort has been made. Tamura and Kaneda
[110] have developed an extension to the Warren abstract machine (a
commonly used machine model for logic programming) and a compiler
for a subset of Lolli. This compiler was shown in [54] to perform surpris-
ingly well for a certain theorem proving application where linear logic
provided a particularly elegant specification.

3.8 Research in sequent calculus proof search

Since the majority of linear logic programming is described using sequent
calculus proof systems, a great deal of the work in understanding and
implementing these languages has focused on properties of the sequent
calculus. Besides the work mentioned already concerning refinements

142 D. Miller

to proof search, there is the related work of Galmiche, Boudinet, and
Perrier [32, 40], Tammet [109], and Guglielmi [42], and Gabbay and
Olivetti [39]. And, of course, there is the recent work of Girard on Locus
solum [38].

Below is briefly described three areas certainly deserving additional
consideration and which should significantly expand our understanding
and application of proof search and logic programming.

3.8.1 Polarity and proof search.
Andreoli observed the critical role of polarity in proof search: the no-
tion of asynchronous behavior (goal-reduction) and synchronous behav-
ior (backchaining) are de Morgan duals of each other. There have been
other uses of polarity in proof systems and proof search. In [37], Girard
introduced the LU system in which classical, intuitionistic, and linear
logics share a common proof system. Central to their abilities to live
together is a notion of polarity: positive, negative, and neutral. As
we have shown in this paper, linear logic enhances the expressiveness
of logic programming languages presented in classical and intuitionistic
logic, but this comparison is made after they have been translated into
linear logic. It would be interesting to see if there is one logic program-
ming language that contains, for example, a classical, intuitionistic, and
linear implication.

3.8.2 Non-commutativity.
Having a non-commutative conjunction or disjunction within a logic
programming language should significantly enhance the expressiveness
of the language. Lambek's early calculus [62] was non-commutative but
it was also weak in that it did not have modals and additive connectives.
In recent years, a number of different proposals for non-commutative
versions of linear logic have been considered. Abrusci [1] and later Ruet
and Abrusci [10, 1061 have developed one such approach. Remi Baudot
[12] and Andreoli and Maieli [4] developed focusing strategies for this
logic and have designed abstract logic programming languages based on
the proposal of Abrusci and Ruet. Alessio Guglielmi has proposed a
new approach to representing proofs via the calculus of structures and
presents a non-commutative connective which is self-dual [41]. Paola
Bruscoli has shown how that non-commutative connective can be used
to code sequencing in the CCS specification language [16]. Christian

An Overview of Linear Logic Programming 143

Retore has also proposed a non-commutative, self dual connective within
the context of proof nets [102, 103]. Finally, Pfenning and Polakow
have developed a non-commutative version of intuitionistic linear logic
with a sequential operator and have demonstrated its uses in several
applications [97, 100, 98, 99]. Currently, non-commutativity has the
appearance of being rather complicated and no single proposal seems to
be canonical at this point.

3.8.3 Reasoning about specifications.
One of the reasons for using logic to make specifications in the first place
must surely be that the meta-theory of logic should help in establish-
ing properties of logic programs: cut and cut-elimination will have a
central role here. While this was illustrated in Section 3.6, very little
of this kind of reasoning has been done for logic programs written in
logics programming languages more expressive than Horn clauses. The
examples in Section 3.6 are also not typical: most reasoning about logic
specifications will certainly involve induction. Also, many properties of
computational specifications involve being able to reason about all paths
that a computation may take: simulation and bisimulation are examples
of such properties [68]. The proof theoretical notion of firpoint [36] and
of definition [53, 77, 108] has been used to help capture such notions.
See, for example, the work on integrating inductions and definitions into
intuitionistic logic [74, 75, 76]. Extending such work to incorporate co-
induction and to embrace logics other than intuitionistic logic should
certainly be considered.

Of course, there are many other avenues that work in proof search and
logic programming design can take. For example, one can investigate
rather different logics, for example, the logic of bunched implications
[92, 101], for their suitability as logic programming languages. Model
theoretic semantics suitable for reasoning about linear logic specification
would certainly be desirable, especially if they can provide simple, nat-
ural, and compositional notions of meaning. Also, several application
areas of linear logic programming seems convincing enough that work on
improving the effectiveness of interpreters and compilers certainly seems
appropriate.

Acknowledgments Parts of this overview where written while the au-
thor was at Penn State University and was supported in part by NSF

144 D. Miller

grants CCR-9912387, CCR-9803971, INT-9815645, and INT-9815731.
Alwen Tiu provided useful comments on a draft of this paper.

Bibliography
[1] V. Michele Abrusci. Phase semantics and sequent calculus for pure

non-commutative classical linear propositional logic. Journal of
Symbolic Logic, 56(4):1403-1451, December 1991.

[2] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3-57, 1993.

[3] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the
`proof as computations' analogy. In Principles of Programming
Languages (POPL'90), pages 59-71. ACM, January 1990.

[4] J.-M. Andreoli and R. Maieli. Focusing and proof nets in linear and
noncommutative logic. In International Conference on Logic for
Programming and Automated Reasoning (LPAR), volume 1581 of LNAI.
Springer, 1999.

[5] Jean-Marc Andreoli. Proposal for a Synthesis of Logic and Object-Oriented
Programming Paradigms. PhD thesis, University of Paris VI, 1990.

[6] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297-347, 1992.

[7] Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure
and Applied Logic, 107(1):131-163, 2001.

[8] J.-M. Andreoli and R. Pareschi. Communication as fair distribution of
knowledge. In Proceedings of OOPSLA 91, pages 212-229, 1991.

[9] J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3-4):445-473, 1991.

[10] V. Michele Abrusci and Paul Ruet. Non-commutative logic I: The
multiplicative fragment. Annals of Pure and Applied Logic,
101(1):29-64, 2000.

[11] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29(3):841-862, 1982.

[12] Remi Baudot. Programmation Logique: Non commutativite et
Polarisation. PhD thesis, University Paris 13, Laboratoire
d'informatique de Paris Nord (L.I.P.N.), December 2000.

[13] C. Brown and D. Gurr. A categorical linear framework for petri nets. In
Logic in Comptuer Science (LICS'90), pages 208-219, Philadelphia, PA,
June 1990. IEEE Computer Society Press.

[14] Paola Bruscoli and Alessio Guglielmi. A linear logic view of Gamma style
computations as proof searches. In Jean-Marc Andreoli, Chris Hankin,
and Daniel Le Metayer, editors, Coordination Programming:
Mechanisms, Models and Semantics. Imperial College Press, 1996.

[15] Jean-Pierre Banatre and Daniel Le Metayer. Gamma and the chemical
reaction model: ten years after. In Coordination programming:
mechanisms, models and semantics, pages 3-41. World Scientific
Publishing, IC Press, 1996.

[16] Paola Bruscoli. A purely logical account of sequentiality in proof search.
In Peter J. Stuckey, editor, Logic Programming, 18th International
Conference, volume 2401 of LNAI, pages 302-316. Springer-Verlag, 2002.

An Overview of Linear Logic Programming 145

[17] Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic.
Theoretical Computer Science, 135:11-65, 1994.

[18] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell,
and Andre Scedrov. A meta-notation for protocol analysis. In
R. Gorrieri, editor, Proceedings of the 12th IEEE Computer Security
Foundations Workshop - CSFW'99, pages 55-69, Mordano, Italy,
28-30 June 1999. IEEE Computer Society Press.

[19] Manuel M. T. Chakravarty. On the Massively Parallel Execution of
Declarative Programs. PhD thesis, Technische Universitat Berlin,
Fachbereich Informatik, February 1997.

[20] Jawahar Chirimar. Proof Theoretic Approach to Specification Languages.
PhD thesis, University of Pennsylvania, February 1995.

[21] Iliano Cervesato, Joshua Hodas, and Frank Pfenning. Efficient resource
management for linear logic proof search. In Roy Dyckhoff, Heinrich
Herre, and Peter Schroeder-Heister, editors, Proceedings of the 1996
Workshop on Extensions to Logic Programming, pages 28-30, Leipzig,
Germany, March 1996. Springer-Verlag LNAI.

[22] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

[23] Iliano Cervesato and Frank Pfenning. A linear logic framework. In
Proceedings, Eleventh Annual IEEE Symposium on Logic in Computer
Science, pages 264-275, New Brunswick, New Jersey, July 1996. IEEE
Computer Society Press.

[24] Iliano Cervesato and Frank Pfenning. A Linear Logical Framework.
Information F9 Computation, 179(1):19-75, November 2002.

[25] M. Dalrymple, J. Lamping, F. Pereira, and V. Saraswat. Linear logic for
meaning assembly. In Proceedings of the Workshop on Computational
Logic for Natural Language Processing, 1995.

[26] Giorgio Delzanno and Maurizio Martelli. Objects in Forum. In
Proceedings of the International Logic Programming Symposium, 1995.

[27] U. Engberg and G. Winskel. Petri nets and models of linear logic. In
A. Arnold, editor, CAAP'90, LNCS 431, pages 147-161. Springer
Verlag, 1990.

[28] Amy Felty. Transforming specifications in a dependent-type lambda
calculus to specifications in an intuitionistic logic. In Gerard Huet and
Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University
Press, 1991.

[29] Amy Felty. Encoding the calculus of constructions in a higher-order
logic. In M. Vardi, editor, Eighth Annual Symposium on Logic in
Computer Science, pages 233-244. IEEE, June 1993.

[30] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order
logic programming language. In Ninth International Conference on
Automated Deduction, pages 61-80, Argonne, IL, May 1988.
Springer-Verlag.

[31] Franccois Fages, Paul Ruet, and Sylvain Soliman. Phase semantics and
verification of concurrent constraint programs. In Vaughan Pratt,
editor, Symposium on Logic in Computer Science. IEEE, July 1998.

[32] Didier Galmiche and E. Boudinet. Proof search for programming in
intuitionistic linear logic. In D. Galmiche and L. Wallen, editors,
CADE-12 Workshop on Proof Search in Type-Theoretic Languages,
pages 24-30, Nancy, France, June 1994.

146 D. Miller

[33] Vijay Gehlot and Carl Gunter. Normal process representatives. In
Proceedings of the Fifth Annual Symposium on Logic in Computer
Science, pages 200-207, Philadelphia, Pennsylvania, June 1990. IEEE
Computer Society Press.

[34] Juan C. Guzman and Paul Hudak. Single-threaded polymorphic lambda
calculus. In Proceedings of the Fifth Annual Symposium on Logic in
Computer Science, pages 333-343, Philadelphia, Pennsylvania, June
1990. IEEE Computer Society Press.

[35] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

[36] Jean-Yves Girard. A fixpoint theorem in linear logic. Email to the
linearOcs.stanford.edu mailing list, February 1992.

[37] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201-217, 1993.

[38] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer
Science, 11(3):301-506, June 2001.

[39] Dov M. Gabbay and Nicola Olivetti. Goal-Directed Proof Theory,
volume 21 of Applied Logic Series. Kluwer Academic Publishers, August
2000.

[40] Didier Galmiche and Guy Perrier. Foundations of proof search strategies
design in linear logic. In Symposium on Logical Foundations of
Computer Science, pages 101-113, St. Petersburg, Russia, 1994.
Springer-Verlag LNCS 813.

[41] Alessio Guglielmi and Lutz Straf3burger. Non-commutativity and MELL
in the calculus of structures. In L. Fribourg, editor, CSL 2001, volume
2142 of LNCS, pages 54-68, 2001.

[42] Alessio Guglielmi. Abstract Logic Programming in Linear
Logic-Independence and Causality in a First Order Calculus. PhD
thesis, University di Pisa, 1996.

[43] R. Harrop. Concerning formulas of the types A --+ B V C, A -+ (Ex)B(x)
in intuitionistic formal systems. Journal of Symbolic Logic, pages 27-32,
1960.

[44] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143-184, 1993.

[45] John Hannan and Dale Miller. Uses of higher-order unification for
implementing program transformers. In Fifth International Logic
Programming Conference, pages 942-959, Seattle, Washington, August
1988. MIT Press.

[46] Joshua Hodas and Dale Miller. Representing objects in a logic
programming language with scoping constructs. In David H. D. Warren
and Peter Szeredi, editors, 1990 International Conference in Logic
Programming, pages 511-526. MIT Press, June 1990.

[47] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic: Extended abstract. In G. Kahn, editor, Sixth
Annual Symposium on Logic in Computer Science, pages 32-42,
Amsterdam, July 1991.

[48] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation,
110(2):327-365, 1994.

[49] Joshua Hodas. Specifying filler-gap dependency parsers in a linear-logic
programming language. In K. Apt, editor, Proceedings of the Joint

An Overview of Linear Logic Programming 147

International Conference and Symposium on Logic Programming, pages
622-636, 1992.

[50] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic:
Theory, Design, and Implementation. PhD thesis, University of
Pennsylvania, Department of Computer and Information Science, May
1994.

[51] James Harland and David Pym. Resource-distribution via boolean
constraints. ACM Transactional on Computational Logic, 4(1):56-90,
2003.

[52] James Harland, David Pym, and Michael Winikoff. Programming in
Lygon: An overview. In Proceedings of the Fifth International
Conference on Algebraic Methodology and Software Technology, pages
391 - 405, July 1996.

(53] Lars Hallnas and Peter Schroeder-Heister. A proof-theoretic approach to
logic programming. II. Programs as definitions. Journal of Logic and
Computation, 1(5):635-660, October 1991.

[54] Joshua S. Hodas and Naoyuki Tamura. lolliCop - A linear logic
implementation of a lean connection-method theorem prover for
first-order classical logic. In R. Gore, A. Leitsch, and T. Nipkow,
editors, Proceedings of IJCAR: International Joint Conference on
Automated Reasoning, number 2083 in LNCS, pages 670-684, 2001.

[55] Max Kanovich. The complexity of Horn fragments of linear logic. Annals
of Pure and Applied Logic, 69:195-241, 1994.

[56] Stephen Cole Kleene. Permutabilities of inferences in Gentzen's calculi
LK and LJ. Memoirs of the American Mathematical Society, 10:1-26,
1952.

[57] M.I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time
finite-state systems in linear logic. In Second International Workshop on
Constraint Programming for Time-Critical Applications and
Multi-Agent Systems (COTIC), Nice, France, September 1998. Also
appears in the Electronic Notes in Theoretical Computer Science,
Volume 16 Issue 1 (1998) 15 pp.

[58] Naoki Kobayashi and Akinori Yonezawa. ACL - a concurrent linear logic
programming paradigm. In Dale Miller, editor, Logic Programming -
Proceedings of the 1993 International Symposium, pages 279-294. MIT
Press, October 1993.

[59] Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication
model based on linear logic. Formal Aspects of Computing, 3:279-294,
1994.

[60] Yves Lafont. Functional programming and linear logic. Lecture notes for
the Summer School on Functional Programming and Constructive
Logic, Glasgow, United Kingdom, 1989.

[61] Yves Lafont. Interaction nets. In Seventeenth Annual Symposium on
Principles of Programming Languages, pages 95-108, San Francisco,
California, 1990. ACM Press.

[62] J. Lambek. The mathematics of sentence structure. American
Mathematical Monthly, 65:154-169, 1958.

[63] Pablo Lopez and Ernesto Pimentel. A lazy splitting system for Forum.
In AGP'97: Joint Conference on Declarative Programming, 1997.

[64] P. Lincoln and V. Saraswat. Higher-order, linear, concurrent constraint
programming. Available as

148 D. Miller

ftp://parcftp.xerox.com/pub/ccp/lcc/hlcc.dvi., January 1993.
[65] Dale Miller. A theory of modules for logic programming. In Robert M.

Keller, editor, Third Annual IEEE Symposium on Logic Programming,
pages 106-114, Salt Lake City, Utah, September 1986.

[66] Dale Miller. Lexical scoping as universal quantification. In Sixth
International Logic Programming Conference, pages 268-283, Lisbon,
Portugal, June 1989. MIT Press.

[67] Dale Miller. A logical analysis of modules in logic programming. Journal
of Logic Programming, 6(1-2):79-108, January 1989.

[68] Robin Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

[69] Dale Miller. The 7r-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors, Proceedings of the 1992
Workshop on Extensions to Logic Programming, number 660 in LNCS,
pages 242-265. Springer-Verlag, 1993.

[70] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor,
Ninth Annual Symposium on Logic in Computer Science, pages 272-281,
Paris, July 1994. IEEE Computer Society Press.

[71] Dale Miller. A survey of linear logic programming. Computational Logic:
The Newsletter of the European Network in Computational Logic,
2(2):63 - 67, December 1995.

[72] Dale Miller. Forum: A multiple-conclusion specification language.
Theoretical Computer Science, 165(1):201-232, September 1996.

[73] Dale Miller. Encryption as an abstract data-type: An extended abstract.
In Iliano Cervesato, editor, Proceedings of FCS'03: Foundations of
Computer Security, pages 3-14, 2003.

[74] Raymond McDowell and Dale Miller. A logic for reasoning with
higher-order abstract syntax. In Glynn Winskel, editor, Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages
434-445, Warsaw, Poland, July 1997. IEEE Computer Society Press.

[75] Raymond McDowell and Dale Miller. Cut-elimination for a logic with
definitions and induction. Theoretical Computer Science, 232:91-119,
2000.

[76] Raymond McDowell and Dale Miller. Reasoning with higher-order
abstract syntax in a logical framework. ACM Transactions on
Computational Logic, 3(1):80-136, January 2002.

[77] Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding
transition systems in sequent calculus. TCS, 294(3):411-437, 2003.

[78] Dale Miller and Gopalan Nadathur. Higher-order logic programming. In
Ehud Shapiro, editor, Proceedings of the Third International Logic
Programming Conference, pages 448-462, London, June 1986.

[79] Dale Miller and Gopalan Nadathur. A logic programming approach to
manipulating formulas and programs. In Seif Haridi, editor, IEEE
Symposium on Logic Programming, pages 379-388, San Francisco,
September 1987.

[80] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125-157, 1991.

[81] Michael Moortgat. Categorial type logics. In Johan van Benthem and
Alice ter Meulen, editors, Handbook of Logic and Language, pages
93-177. Elsevier, Amsterdam, 1996.

An Overview of Linear Logic Programming 149

[82] Glyn Morrill. Higher-order linear logic programming of categorial
deduction. In 7th Conference of the Association for Computational
Linguistics, pages 133-140, Dublin, Ireland, 1995.

[83] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler.
Call-by-name, call-by-value, call-by-need and the linear lambda calculus.
Theoretical Computer Science, 228(1-2):175-210, 1999.

[84] Dale Miller and Elaine Pimentel. Using linear logic to reason about
sequent systems. In Uwe Egly and Christian G. Fermiiller, editors,
International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, volume 2381 of Lecture Notes in
Computer Science, pages 2-23. Springer, 2002.

[85] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, Part I. Information and Computation, pages 1-40, September
1992.

[86] Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic
Programming. PhD thesis, University of Pennsylvania, May 1987.

[87] Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping
constructs in logic programming: Implementation problems and their
solution. Journal of Logic Programming, 25(2):119-161, November 1995.

[88] Gopalan Nadathur and Dale Miller. An Overview of)Prolog. In Fifth
International Logic Programming Conference, pages 810-827, Seattle,
August 1988. MIT Press.

[89] Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal
of the ACM, 37(4):777-814, October 1990.

[90] Gopalan Nadathur and Dale Miller. Higher-order logic programming. In
Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, pages
499 - 590. Clarendon Press, Oxford, 1998.

[91] P. W. O'Hearn. Linear logic and interference control: Preliminary report.
In S. Abramsky, P.-L. Curien, A. M. Pitts, D. H. Pitt, A. Poigne, and
D. E. Rydeheard, editors, Proceedings of the Conference on Category
Theory and Computer Science, pages 74-93, Paris, France, 1991.
Springer-Verlag LNCS 530.

[92] P. O'Hearn and D. Pyin. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, June 1999.

[93] Remo Pareschi. Type-driven Natural Language Analysis. PhD thesis,
University of Edinburgh, 1989.

[94] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM-SIGPLAN Conference on Programming
Language Design and Implementation, pages 199-208. ACM Press, June
1988.

[95] David J. Pym and James A. Harland. The uniform proof-theoretic
foundation of linear logic programming. Journal of Logic and
Computation, 4(2):175 - 207, April 1994.

[96] Remo Pareschi and Dale Miller. Extending definite clause grammars with
scoping constructs. In David H. D. Warren and Peter Szeredi, editors,
1990 International Conference in Logic Programming, pages 373-389.
MIT Press, June 1990.

[97] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis,
Department of Computer Science, Caregnie Mellon, August 2001.

[98] Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic

150 D. Miller

non-commutative linear logic. In J.-Y. Girard, editor, Proceedings of the
4th International Conference on Typed Lambda Calculi and Applications
(TLCA'99), pages 295-309, L'Aquila, Italy, 1999. Springer-Verlag LNCS
1581.

[99] Jeff Polakow and Frank Pfenning. Relating natural deduction and
sequent calculus for intuitionistic non-commutative linear logic. In
Andre Scedrov and Achim Jung, editors, Proceedings of the 15th
Conference on Mathematical Foundations of Programming Semantics,
New Orleans, Louisiana, 1999.

[100] Jeff Polakow and Kwangkeun Yi. Proving syntactic properties of
exceptions in an ordered logical framework. In Fifth International
Symposium on Functional and Logic Programming (FLOPS 2001),
Tokyo, Japan, March 2001.

[101] David J. Pym. On bunched predicate logic. In G. Longo, editor,
Proceedings of LICS99: 14th Annual Symposium on Logic in Computer
Science, pages 183-192, Trento, Italy, 1999. IEEE Computer Society
Press.

[102] Christian Retore. Pomset logic: a non-commutative extension of
classical linear logic. In Proceedings of TLCA, volume 1210, pages
300-318, 1997.

[103] Christian Retore. Pomset logic as a calculus of directed cographs. In
V. M. Abrusci and C. Casadio, editors, Dynamic Perspectives in Logic
and Linguistics: Proof Theoretical Dimensions of Communication
Processes, pages 221-247, 1999.

[104] P. Ruet and F. Fages. Concurrent constraint programming and
non-commutative logic. In Proceedings of the 11`h Conference on
Computer Science Logic, Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[105] Giorgia Ricci. On the expressive powers of a Logic Programming
presentation of'Linear Logic (FORUM). PhD thesis, Department of
Mathematics, Siena University, December 1998.

[106] Paul Ruet. Non-commutative logic II: sequent calculus and phase
semantics. Mathematical Structures in Computer Science,
10(2):277-312, 2000.

[107] V. Saraswat. A brief introduction to linear concurrent constraint
programming. Available as
ftp://parcftp.xerox.com/pub/ccp/lcc/lcc-intro.dvi., 1993.

[108] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
222-232. IEEE Computer Society Press, June 1993.

[109] T. Tammet. Proof strategies in linear logic. Journal of Automated
Reasoning, 12:273-304, 1994.

[110] Naoyuki Tamura and Yukio Kaneda. Extension of warn for a linear logic
programming language. In T. Ida, A. Ohori, and M. Takeichi, editors,
Second Fuji International Workshop on Functional and Logic
Programming, pages 33-50. World Scientific, November 1996.

[111] Philip Wadler. Linear types can change the world! In Programming
Concepts and Methods, pages 561-581. North Holland, 1990.

[112] M. Winikoff and J. Harland. Implementing the Linear Logic
Programming Language Lygon. In Proceedings of the International
Logic Programming Symposium, pages 66-80, December 1995.

4

Linearity and Nonlinearity in
Distributed Computation

Glynn Winskel
Cambridge University Computer Laboratory

Abstract

The copying of processes is limited in the context of distributed compu-
tation, either as a fact of life, often because remote networks are simply
too complicated to have control over, or deliberately, as in the design of
security protocols. Roughly, linearity is about how to manage without a
presumed ability to copy. The meaning and mathematical consequences
of linearity are studied for path-based models of processes which are also
models of affine-linear logic. This connection yields an affine-linear lan-
guage for processes in which processes are typed according to the kind
of computation paths they can perform. One consequence is that the
affine-linear language automatically respects open-map bisimulation. A
range of process operations (from CCS, CCS with process-passing, mo-
bile ambients, and dataflow) can be expressed within the affine-linear
language showing the ubiquity of linearity. Of course, process code can
be sent explicitly to be copied. Following the discipline of linear logic,
suitable nonlinear maps are obtained as linear maps whose domain is
under an exponential. Different ways to make assemblies of processes
lead to different choices of exponential; the nonlinear maps of only some
of which will respect bisimulation.

4.1 Introduction

In the film "Groundhog Day" the main character comes to relive and
remember the same day repeatedly, until finally he gets it right (and
the girl). Real life isn't like that. The world moves on and we cannot
rehearse, repeat or reverse the effects of the more important decisions
we take.

151

152 G. Winskel

As computation becomes increasingly distributed and interactive the
more it resembles life in this respect, and the more difficult or impos-
sible it is for a state of computation to be frozen and copied, so that
interaction is most often conducted in a single irreversible run. Mathe-
matically, this amounts to a form of linearity, as it is understood within
models of linear logic.

Although it can be hard for processes to copy processes, it is generally
easy for processes to ignore other processes. For this reason distributed
computation often involves affine-linear maps.

To get an idea of the nature of affine-linear maps, imagine a network
of interacting processes with a single hole, into which a process, the
input process, may be plugged to form a complete process, the output
process. The network with the hole represents an affine-linear map;
given an input process, one obtains an output process.

The input process cannot be copied, but can be ignored. Conse-
quently, any computation path (or run) of the output process will have
depended on at most one computation path (or run) of the input. This
property of affine-linear maps rests on an understanding of the nature
of the computation paths of a process. The property can be simplified
provided we understand a computation path of the input processes to
also admit the empty computation path-a computation path obtained
even when the input process is ignored. Any output got while ignoring
the input process, results from the empty computation path as input.
An affine-linear map has the following property:

A computation path of the process arising from the application of an affine-
linear map to an input process has resulted from a single computation path,
possibly empty, of the input process.

As this suggests, an affine-linear map is determined by its action on
single, possibly empty, computation paths.

This article presents models of processes based on computation paths
and so can make precise the sense in which many operations on dis-
tributed systems are associated with affine-linear maps, investigates
the consequences of linearity and affine linearity for the important
equivalence of bisimulation, and delineates the boundaries of linearity
with respect to one, fairly broad, mathematical model, in which non-
deterministic processes are represented as presheaves.

Of course, sometimes code can be sent and copied, which can give rise
to maps which are not affine-linear. The presheaf model exposes how

Linearity and Nonlinearity in Distributed Computation 153

different manners of copying lead to different kinds of nonlinear maps,
some respecting bisimulation, others not.

4.2 Path-based models of processes
Consider processes, like those of CCS [24] and CSP [16], which can per-
form simple atomic actions, among which might be actions of synchro-
nisations. An old idea is to represent the nondeterministic behaviour
of a such a process as a "collection" of the computation paths it can
perform. If we interpret this idea literally, and may assume that actions
occur one at a time, we arrive at one of the early models of processes as
sets of traces, where a trace is a finite sequence of actions that the pro-
cess can perform [16]. It was realised very quickly that a problem with
the trace model is that it is blind to deadlock; two processes may have
the same trace sets and yet one may deadlock while the other does not
(see for instance the discussion in [23], Ch.1). To detect possible dead-
lock, one way or another, one needs to keep track of nondeterministic
branching in the representation of processes. An early proposal on how
to do this is to represent a process as a tree, where branching stands for
nondeterministic choice (cf. the synchronisation trees of [23]). The tree
is still a sort of "collection" of the process's computation paths but one
keeping track of where the paths overlap, through sharing a common
subpath as history. Now the model is too concrete; many different trees
represent what seems to be esentially the same behaviour, and this led
to equivalences such as bisimulation on trees and transition systems [24].

The trace and tree models of processes are based on different ideas
of what a "collection" of the computation paths means. A trace set
of a process simply expresses whether or not a path of a certain shape
is possible for the process. A tree expresses not only what paths are
present but also how paths are subpaths, or restrictions, of others. This
data, what paths are present and how they restrict to smaller paths, is
precisely that caught in a presheaf over a category, a category in which
the objects are path shapes and the maps express how one path shape
can extend to another. In the category of all such presheaves we can
view the tree as a colimit of its paths-another kind of "collection" of
its paths.

To illustrate the idea, suppose that actions are drawn from some al-
phabet L, and consider processes whose computation paths have the
shape of strings of actions, so members of L*. A subpath will be associ-
ated with a substring. Regard L* as a partial order where s < t if s is

154 G. Winskel

a substring of t. (So L* is also a category where we view there as being
an arrow from s to t precisely when s < t.)

A presheaf over L* is a functor from the opposite category (L*)°p,
where all the arrows are reversed, to the category of sets and functions
Set. Spelt out, a presheaf X over L* is a function which to each string
s gives a set X(s) and which to any pair of strings (s, t), with s < t,
gives a function X (s, t) : X (t) --p X (s) (note the reversal) in such a
way that identities and composition are respected: X(s, s) = 1X(9) for
each string s, and X (s, u) = X (s, t) o X (t, u) whenever s < t < u.

When thinking of a presheaf X as representing a process, for a string
s, the set X(s) is the set of computation paths of shape s that the process
can perform, and, when s < t, the function X (s, t) : X (t) ---> X (s) tells
how paths of shape t restrict to subpaths of shape s. For example, a
tree whose branches consist of strings of actions in L is easily viewed as
a presheaf X over L*. The set X (s) consists of all the branches of shape
s. The function X (s, t) : X (t) -- X (s) restricts a branch of shape t to
its sub-branch of shape s. The presheaf is rooted in the sense that the
set X(E) assigned to the empty string a is a singleton-its only element
is the root of the tree. Conversely, it is easy to see that a rooted presheaf
over L* determines a tree.

Suppose that we replace the category of sets used in the definition
of presheaves by the simple subcategory 2, consisting of two distinct
elements, the empty set, 0, and the singleton set, 1, with the only non-
identity map being 0 C 1. A functor X from (L*)OP to 2 is the same as
a monotonic function from the reverse order (L*)OP to the order 2, so
that if s < t then X (t) < X (s). When thinking of X as representing a
process, X(s) = 1 means that the process can perform a path of shape
s while X (s) = 0 means that it cannot. If X (t) = 1 and s < t, then
X (s) = 1. The functor X is a characteristic function for a trace set.

So trees and trace sets arise as variants of a common idea, that of
representing a process as a (generalised) characteristic function, in the
form of a functor from path shapes to measures of the extent to which
the path shapes can be realised by the process.

In what follows, we want to broaden computation paths to have more
general shapes than sequences of atomic actions, to allow actions to
occur concurrently in a computation path, and for individual actions to
have a more complicated structure. Later on, processes will be allocated
types; the type of a process will specify the shapes of computation path
it might perform.

Linearity and Nonlinearity in Distributed Computation 155

4.3 Processes as trace sets

To allow a broad understanding of the shape of computation paths, we
take a path order to be a partial order P in which the elements are path
shapes and the order p < q means that p can be extended to q. We
obtain a form of nondeterministic domain by imitating the definition of
presheaf category, but replacing the use of the category of sets, Set, by
its much simpler subcategory, 2. The category 2 is essentially a very
simple partial order consisting of 0 and 1 ordered by 0 C 1. A partial
order P can always be regarded as a category by taking the homset
iP(p, q) to be 1 if p < q, and 0 otherwise. Functors between partial
orders seen as categories correspond precisely to monotonic maps.

The functor category P = [IP°p, 2] consists of objects the functors from
iP°p to 2 and maps the natural transformations between them. A functor
from IP°P to 2 is essentially a monotonic function from PP to 2. It is not
hard to see that an object X of P corresponds to a downwards-closed
set given by {p E P I X(p) = 1}, and that a natural transformation
from X to Y in]P corresponds to the inclusion of {p E P I X(p) = 1}
in {p E P I Y(p) = 1}. So we can identify P with the partial order of
downwards-closed subsets of P, ordered by inclusion; the order P has
joins got simply via unions with the empty join being the least element
0. The partial orders obtained in this way are precisely the infinitely-
distributive algebraic lattices (see e.g., [27, 28]) and these are just the
same as prime algebraic lattices [25], and free join completions of partial
orders.

We are thinking of P as a nondeterministic domain [15, 14]. An object
in P is thought of as a denotation of a nondeterministic process which
can realise path shapes in P. An object in P is a trace set, like those
originally, in [16], but for general path shapes, standing for the set of
computation paths a process can perform. The join operation on P is a
form of nondeterministic sum.

This suggests that we take maps between nondeterministic domains
to be join preserving functions, the choice dealt with in the next sec-
tion. We will however be forced a little beyond this first mathematically
obvious choice.

4.3.1 A linear category of domains

We mentioned that P is a free join completion of a partial order P. We
spell this out. There is a monotonic map yp : P -+ P which on p yields

156 G. Winskel

y (p) = P(-, p); for p' E IP,

yp(p)(p) = 1 if p' < p, and 0 otherwise.

The map yTp satisfies the universal property that for any monotonic map
F : P -+ E, where E is a_partial order with all joins, there is a unique
join-preserving map G : P --+ E such that F = G o yp:

The proof of the universal property hinges on the fact that every object
of P is the join of the "complete primes", objects yp(p), below it. We
will use an "inner product" notation and describe G above as taking
XEIPtoF - X.

We can, in particular, instantiate E to a nondeterministic domain
Q, which certainly has all joins. By the universal property, monotonic
maps F : P -+ Q are in 1-1 correspondence with join-preserving maps
G : P -* Q. But monotonic maps F : P -, Q are just the same as
monotonic maps F : P --+ [Q°p, 2] and, uncurrying, these correspond
to monotonic maps H : P x Q°p -+ 2 and so to objects of IP'P x Q _
[(POP x Q)°p, 2].

So, on mathematical grounds it is natural to consider taking maps
between nondeterministic domains as functions which preserve all joins.
Such functions (often known as additive functions) compose as usual,
have identities and give rise to a category rich in structure. Call this
category Lin2; it consists of objects partial orders IP, Q, , with maps
G : P -+ Q the join-preserving functions from P to Q.

As we have just seen, we can regard a map from IP to Q in Line in
several ways and, in particular, as an object of 1P' x Q. Thus a map
in Line corresponds to a downward-closed subset of POP X Q and so
can be viewed as a relation between the partial orders P and Q, with
composition now given as the usual composition of relations.

This more symmetric, relational presentation exposes an involution
central in understanding Line as a categorical model of classical lin-
ear logic. The involution of linear logic, yielding IPl on an object
P, is given by POP; clearly downward-closed subsets of POP x Q corre-
spond to downward-closed subsets of (Q J)°p x POP, showing how maps
F : P -* Q correspond to maps Fl : Q°P -+ POP in Line. The ten-
sor product of P and Q is given by the product of partial orders P x Q

Linearity and Nonlinearity in Distributed Computation 157

and the function space from IP to Q by IP°" X Q. On objects P and Q,
products and coproducts are both given by P + Q, the disjoint juxta-
position of P and Q. One choice of interpretation of the exponential of
linear logic is got by taking !P, for a partial order P, to be the partial
order obtained as the restriction of IP to its finite (or isolated) elements.
(An element of a partial order is finite if whenever it is dominated by
a directed join, it is dominated by an element of the join.) The partial
order P, with the inclusion !IP ---> IP, is the free closure of !IP under di-
rected joins (the "ideal completion" of P.) Consequently, there is 1-1
correspondence between linear maps from !P to Q in Line and-Scott
continuous (i.e., directed-join preserving) functions from P to Q. In
fact, !(-) extends straightforwardly to a comonad on Line whose coK-
leisli category is isomorphic to the category of Scott continuous functions
between nondeterministic domains.

Linear maps preserve joins. The join of the empty set is 0, to be
thought of as a nil process, which is unable to perform any computation
path. So linear maps always send the nil process to the nil process.
Going back to the intuitions in the introduction, if a network context
gave rise to a linear map, then plugging a dead process into the network
would always be catastrophic, and lead to the whole network going dead.
We could extend to maps from !IP to Q, for objects P and Q in Line, but
by the properties of the exponential, this would allow arbitrary copying
of the argument process. All we often need is to allow maps to ignore
their arguments and this can be got much more cheaply, by moving to
a model of affine linear logic.

4.3.2 An affine-linear category of domains

A common operation in process algebras is that of prefixing a process by
an action, so that a computation path of the prefixed process consists
of first performing the action and then resuming by following a compu-
tation path of the original process. To understand prefix operations, we
first need to lift path shapes by an initial action.

The operation of lifting on a partial order P produces a partial order
P1, got by adjoining a new element 1 below a copy of P. Denote by
pj the copy in IPl of the original element p in P-each Lpj is assumed
distinct from 1. The order of PL is given by 1 < Lpj, for any p E P,
with Lpj < Lp'j if p < p' initially in P.

Prefixing operations on processes make essential use of an operation

158 G. Winskel

associated with lifting. The operation is the function

such that LXJ (1) = 1 and LX J (Lpj) = X (p) for X E P. The function
L-J is not a map from P to P1 in Line as it clearly does not preserve
joins of the empty set. It does however preserve all nonempty joins (i.e.,
joins of nonempty sets). This provides a clue as to how to expand the
maps of Line.

To accommodate the functions L-J we move to a slightly broader
category, though fortunately one that inherits a good many properties
from Lin2. The category Aff2 has the same objects, partial orders, but
its maps from P to Q, written F : P -* Q, are functions F
which need only preserve nonempty joins.

A map F : P Q in Aff2 is really a nonempty-join preserving func-
tion from P to Q, so takes a (denotation of a) nondeterministic process
with computation paths in P as input and yields a (denotation of a) non-
derministic process with computation paths in Q as output. Because the
map need only preserve nonempty joins it is at liberty to ignore the in-
put process in giving non-trivial output. Because the map preserves all
nonempty joins, if a computation path of the resulting output process
requires computation of the input process, then it only requires a single
computation path of the input process. The input process does not need
to be copied to explore the range of computation paths it might follow.

A map in Aff2 is determined by its action on computation paths
extended to include the empty path I. There is an embedding jp :

P1 -+ P which takes 1 to 0 and any LpJ to yp(p). The map jp satisfies
the universal property that for any monotonic map F : P1 -> E, where
E is a partial order with all nonempty joins, there is a unique nonempty-
join preserving map Ft : P -+ E such that F = Ft o jp:

The proof of the universal property rests on the fact that every X E P is
the nonempty join of the set consisting of all jp(p'), where p' E P1.i that
X dominates-this set is nonempty because it contains jp(1) (= 0).

By instantiating 9 to tQ where 0 is a partial order, we see that maps

Linearity and Nonlinearity in Distributed Computation 159

P -+ Q in Aff2 are in 1-1 correspondence with maps P1 - Q in Lin2,
and so to elements in (P1)°P x Q.

There is a unique (and obvious) way to extend the lifting operation
(-) 1 to a functor from Aff2 to Line so that the correspondence

Afr2(P,Q) L--- Lin2 (P-L, Q)

is natural in P E Aff2 and Q E Line. This exhibits the functor (-)1
as a left adjoint to the inclusion functor Line Aff2. Composing
the two adjoints, we obtain a comonad (-)1 on Line whose coKliesli
category is isomorphic to Aff2. Clearly, a map in Aff2 also belongs to
the subcategory Line if it is strict in the sense of preserving 0.

With the help of the comonad (-)j we have turned the model of
linear logic Line into a model Aff2 of affine linear logic (a model of
intuitionistic linear logic in which the structural rule of weakening is
satisfied through the unit of the tensor also being a terminal object-
[17]). Its operations are defined in terms of the corresponding operations
in Line. For example, its tensor 0 is defined so that

Op (9 Q)1=P1xQL,

a product, and so tensor in Lin2, of partial orders Pl and Q1. Its
function space is given by (P1)°P x Q. The category Aff2 has the same
products as Line. It does not have coproducts, though we will later see
a form of prefixed sum which is useful in giving semantics to process
languages.

4.4 Processes as presheaves
In order to take account of the branching structure of nondeterminis-
tic processes we move from a representation of a process as character-
istic function from computation-path shapes to 0 or 1 in the partial
order 2, and explore the variation where we measure the presence of a
computation-path shape in a process by a set in the category Set of
sets.

It is useful for later to broaden our understanding of shapes of com-
putation paths to be objects in a small category P. In our applications,
the category P is thought of as a path category, consisting of shapes of
paths, where a map e : p -> p' expresses how the path p extends to the
path p'. Let P be a small category. The category of presheaves over P,
written P, is the category [P°P, Set] with objects the functors from POP

160 G. 141inskel

(the opposite category) to the category of sets, and maps the natural
transformations between them.

A presheaf X : P°P - Set specifies for a typical path p the set X (p) of
computation paths of shape p. The presheaf X acts on a map e : p -+ p'
in P to give a function X(e) saying how p'-paths in X restrict to J>-
paths in X-several paths may restrict to the same path. In this way a
presheaf can model the nondeterministic branching of a process.

A presheaf category has all limits and colimits given pointwise. at
a particular object, by the corresponding limits or colimits of sets. In
particular, a presheaf category has all sums (coproducts) of presheaves;
the sum EiEjXi of presheaves Xi, i. E 1, over P has a contribution
EiEIX;(p), the disjoint union of sets, at p an object of P. The empty
sum of presheaves is the presheaf 0 with empty contribution at each p in
P. In process terms, a sum of presheaves represents a nondeterministic
spun of processes.

4.4.1 A linear category of presheaf models
A category of presheaves, P, is accompanied by the Yoneda embedding, a
functor y? : P P, which fully and faithfully embeds P in the category
of presheaves. For every object p of IF, the Yoneda embedding yields
p(p) = P(-, p). Presheaves isomorphic to images of objects of P under
the Yoneda embedding are called representables.

Via theYoneda embedding we can regard P essentially as a full subcat-
egory of P. Moreover P is characterized (up to equivalence of categories)
as the free colimit completion of P. In other words, the Yoneda embed-
ding yp satisfies the universal property that for any functor F : P £,
where £ is a category with all colimits, there is a colimit preserving fimc-
tor G £, determined to within isomorphism, such that F ^' Go y

The proof rests on the fact that any presheaf is a colimit of represei tables-
see e.g.! [22] P.43. We will describe G above as F F. -. _

In particular. Ave can take £ to be a presheaf category Q. As the uni-
versal property suggests, colimit-preserving functors between presheaf
categories are useful. Define the category Linnet to consist of small cat-

Linearity and Nonlinearity in Distributed Computation 161

egories IF, Q, , with maps G : P -' Q the colimit-preserving functors
from P to Q.

By the universal property, colimit-preserving functors G_ : IP -p Q
correspond to within isomorphism to functors F : P -' Q, and such
functors are in 1-1 correspondence with profunctors F : P -4 Q. Recall
that the category of profunctors from IP to Q, written Prof(IP, Q), is
the functor category [P x Q°p, Set], which clearly equals the category
of presheaves POP x Q, and is isomorphic to the functor category
We thus have the chain of equivalences:

Linset (P, Q) ' [P, c] = Prof (P, Q) = II Xp Q

Exactly analogously with the domain model Line in Section 4.3.1,
one can build a model of linear logic out of Linset, though there are
now subtleties, as what were previously functors must now be pseudo
functors (preserving composition only up to coherent isomorphism). In
particular, the involution of linear logic takes a map F : P -' Q to a
map F1 : Q°p ---+ PIP in Lins,.t via

Llnset(P, (Q) = POP X Q _ ((Q°p)°p X POP _- Linset((Q°p, IP°p) .

On objects, the tensor product of P and Q is given by the product of
categories P x Q and the function space from P to Q by PIP x Q. On
objects P and Q, products and coproducts are both given by P + Q, the
sum of categories P and Q. As for the exponential ! of linear logic, there
are many possible choices-see Section 4.8.2.

Just as in the domain case, maps in Linset are most often too re-
strictive. Maps in Linset preserve colimits and, in particular, sums and
the empty colimit 0, a property which is only the case for rather special
operations on processes.

4.4.2 An affine-linear category of presheaf models
Many operations associated with process languages do not preserve
sums, so arbitrary colimits. Prefixing operations only preserve con-
nected colimits (colimits of nonempty connected diagrams). Prefixing
operations derive from the functor L-] : P --' IP1. The lifted category
IP1 comprises a copy of P-the copy in IP1 of the original object p is
written Lp]-to which a new initial object I has been adjoined. (This
definition extends to categories the earlier definition of lifting on partial
orders, Section 4.3.2.) The functor [-] : P -+ IP1 adjoins a "root" to a
presheaf X in P in the sense that [XI ([p]) is X (p), for any p in IF, while

162 G. Winskel

LXJ (1) is the singleton set {*}, the new root being *; the restriction
maps are extended so that restriction to 1 sends elements to *. A map
from X to Y in P is sent to its obvious extension from [X] to LYJ in
IP1. Presheaves that to within isomorphism can be obtained as images
under L-j are called rooted [19].

Proposition 4.1 Any presheaf Y in IP1 has a decomposition as a sum
of rooted presheaves

Y = EiEY(1) LYij

where, for i E Y(1), the presheaf Yi in P is the restriction of Y to the
elements which are sent under Y to the element i over 1, i.e., for p E IP,

Yi(p) = {x E Y(Lp]) I (Yep)(x) = i}

where ep : 1 -+ Lp] is the unique map from 1 to p in P.

Intuitively, thinking of presheaves as processes, the presheaves Yi, where
i c Y(1), in the decomposition of Y a presheaf over lPl, are those
processes that Y can become after performing the initial action I.

The strict Yoneda embedding jp1 : lPl --> IP, sends 1 to 0 and else-
where acts like yp. The presheaf category IP, with the strict Yoneda em-
bedding jp is a free connected-colimit completion of IP1. Together they
satisfy the universal property that for any functor F : P -, E, where
E is a category with all connected colimits, there is a connected-colimit
preserving functor Ft E, determined to within isomorphism, such
that F = Ft o jp:

The central observation on which the proof relies is that any presheaf is
a connected coliinit of representables, jp(Lp]) with p in IP, together with
jp(1) = 0, the empty presheaf.

The universal property suggests the importance of connected-colimit
preserving functors. Define Aff set to be the category consisting of ob-
jects small categories IP, Q, , _with maps G : P -+ Q the connected-
colimit preserving functors G : P --+ Q between the associated presheaf
categories, and composition the usual composition of functors. A func-
tor which preserves colimits certainly preserves connected colimits, so

Linearity and Nonlinearity in Distributed Computation 163

Linset is a subcategory of Affset. The two categories, Linset and
Affset, share the same objects. We can easily characterise those maps
in Affset which are in Linset:

Proposition 4.2 Suppose F : P --+ 5 is a functor which preserves
connected colimits. The following properties are equivalent:

(i) F preserves all colimits,
(ii) F preserves all coproducts (sums),
(iii) F is strict, i.e., F sends the empty presheaf to the empty presheaf.

Because P is the free connected-colimit completion of P1, we obtain
the equivalence

Aff set (IF, Q) [P1, Q] ,

and consequently the equivalence

Aff set (IF, Q) - Linset (P1, Q)

The equivalence is part of an adjunction between Affset and Linset
regarded as 2-categories, in which the 2-cells are natural transformations.
We can easily extend lifting to a 2-functor (-)1 : Affset Linset;
for F : P Q in Affset, the functor F1 : Pi - Q1 in Linset takes
Y E IF1 with decomposition EiEy(1)LYii to F1(Y) = EiEy(1)LF(Yi)i.
Lifting restricts to a 2-comonad on Linset with Affset as its coKleisli
category.

The comonad (-)1 has turned the model of linear logic Linset into
a model Affset of affine linear logic (where the tensor unit is terminal).

4.4.3 Bisimulation
Presheaves are being thought of as nondeterministic processes on which
equivalences such as bisimulation are important in abstracting away from
inessential differences of behaviour. Bisimulation between presheaves is
derived from notion of open map between presheaves [18, 19].

A morphism h : X -+ Y, between presheaves X and Y, is open if for
all morphisms e : p --' q in IF1, any commuting square

i?(p) X

M01 Ih

7?(q) Y Y

164 G. Winskel

can be split into two commuting triangles

7I(p)

7P(e)1

7>P(4) Y

That the square commutes means that the path h o x in Y can be ex-
tended via e to a path y in Y. That the two triangles commute means
that the path x can be extended via e to a path z in X which matches
Y.

Open maps are a generalisation of functional bisimulations, or zig-zag
morphisms, known from transition systems [19]. Presheaves in P are
bisimilar if there is a span of open maps between them.t

The preservation of connected colimits by a functor between presheaf
categories is sufficient to ensure that it preserves open maps and bisim-
ulation.

Theorem 4.3 [11, 7] Let G : P -, Q be any connected- colimit preserving
functor between presheaf categories. Then G preserves open maps and
open-map bisimulation.

4.5 Constructions
We now describe the constructions which form the basis of a denotational
semantics for a language for affine-linear processes. The types of the
language will be interpreted as objects (in fact, path orders) and the
terms, describing processes with free variables, as maps of an affine
category. The constructions can be read as being in both the category
of domains Aff2 and the category of presheaf models Aff Set, sometimes
referring to their linear subcategories. By using the neutral language of
categories we can describe the operations in either set-up. Below Aff
can refer to either Aff2 or Aff set, and correspondingly Lin to either
Line or Linset. Aff set and Linset are 2-categories in which maps
are related by natural transformations. There, and so in the general
discussion with Aff, we can only characterise constructions to within
isomorphism of maps. Of course, isomorphism of maps coincides with

t We have chosen here to develop the definition of open map from the strict Yoneda
embedding rather than the Yoneda embedding. Maps between presheaves are

open with respect to strict Yoneda iff they are surjective and open with respect
to Yoneda.

Linearity and Nonlinearity in Distributed Computation 165

equality in the categorises of domains. Although the operations will
always be with respect to path orders they could all be extended easily
to small categories.

4.5.1 Sums and fixed points
Each object P is associated with (nondeterministic) sum operations, a
map E : &iEI P --i, P in Aff taking a tuple {Xi, I i E I}, to the sum
(coproduct) EjEIXi in P. The empty sum yields 0 E P. Finite sums, of
size k, are typically written as Xi + + Xk.

For objects P and Q, the category Aff (P, Q) of maps with natural
transformations, being equivalent to (P1)°p x Q, has all colimits and
in particular all w-colimits. Any operation G : Aff (IP, Q) --- Aff (IP, Q)
which preserves connected colimits will have a fixed point fix G : P -+ Q,
a map in Aff. We will build up the denotation of fixed points out of
composition in Aff . The composition G o F of maps F in Aff (IP, Q)
and G in Aff(Q,R), being got as the application G(F(-)), preserves
connected colimits in the argument F, and colimits in G.t

4.5.2 Tensor
The tensor product IP ® Q of path orders P, Q is given by the set (IP1 X
Q1) \ {(1,1)}, ordered coordinatewise, in other words, as the product
of P1 and Qi as partial orders but with the bottom element (1,1)
removed.

LetF:IP -+ IP'and G:Q->Q'. We define F®G:P®Q---SIP'®Q'
as the extension (cf. Sections 4.3.2 and 4.4.2) Ht of a functor

H:(IP(9 Q)1-'PI ®Q'.

Notice that (P ® (Q)1 is isomorphic to the product as partial orders
of P1 x Q1 in which the bottom element is then (1, 1). With this
realisation of (IP ® Q)1 we can define H : IP1 x Q1 -]P' Q' by taking

(H (p, q))(P , q') = LF(p)J (p') x LG(q)J (q')

for p E 1P1, q E Q1 and (p', q') E IP' ® Q'-on the right we use the
product (in Set, or 2 where it amounts to the meet).

t The story specialises to the category of domains Aff2. In a domain, colimits
reduce to joins and connected colimits to nonempty joins. In particular, w-colimits
amount to joins of w-chains. An operation between domains preserves (connected)
colimits if it preserves (nonempty) joins.

166 G. Winskel

The unit for tensor is the empty path order 0.
Objects X E P correspond to maps k : 0 -1, P sending 0 to X. Given

X E P and Y E Q we define X® Y E P Q to be the element pointed
to by X®Y:®->P®Q.

4.5.3 Function space
The function space of path orders P --o Q is given by the product of
partial orders (1P1)°p x Q. Thus the elements of P ---o Q are pairs, which
we write suggestively as (p - q), with p E PL, q E Q, ordered by

(p''-' q') (p'-' q) = p p' & q' q

-note the switch in order on the left.
We have the following chain of isomorphisms between partial orders:

]P ®Q -o IR = (1P (9 op x IR =]P10 x Q1 °p x IR P -o (Q R) .

This gives an isomorphism between P (& Q _0 R and P]R).

Thus there is a 1-1 correspondence curry from maps P ®Q -* R to
maps P --> (Q -c]R) in Aff; its inverse is called uncurry. We obtain
linear application, app : (P --o Q) ® P -' Q, as uncurry(1p,Q).

We shall write u t for the application of u of type P --o Q to t of type
P. The ability to curry justifies the formation of terms \x.u of type
P -o Q by lambda abstraction where u of type Q is a term with free
variable x of type P. Because of linearity constraints on the occurrence
of variables, we will have that an application (Ax.u)t will be isomorphic
to a substitution u[t/x]-see Lemma 2.

4.5.4 Products
The product of path orders P&Q is given by the disjoint union of P
and Q. An object of P&Q can be identified with a pair (X, Y), with
X E P and Y E Q, which provides the projections 7r1 : P&Q -' P
and 7r2 : P&Q --i Q. More general, not just binary, products &iEI]Pi
with projections lrj, for j E I, are defined similarly. From the universal
property of products, a collection of maps Fi : P -' Pi, for i E I, can be
tupled together to form a unique map (Fi)iEJ : P -* &iEI P1 with the
property that 7rj o (Fi)%EI = F3 for all j E I. The empty product is given
by 0 and as the terminal object is associated with unique maps P - 0,
constantly 0, for any path order P. Finite products, of size k, are most
often written as P1& . . &IPk.

Linearity and Nonlinearity in Distributed Computation 167

Because there are empty objects we can define maps in Lin from
products to tensors of path orders. For instance, in the binary case,
a : IP&Q -, P ® Q in Lin is specified by

(X, Y) F-- (X ®0) + (0 ®Y) .

The composition of such a map with the diagonal map of the product,
viz.

jP : P ding , p&p a, p ®IED

gives a weak form of diagonal map taking X to (X 0 0) + (0 (9 X).
General weak diagonal maps

6Pk : IP --+ 1P ®... ®IP

in Lin, from P to k copies of P tensored together, are defined analogously.
They will play a role later in the semantics of a general affine linear
language; weak diagonal maps allow the same argument to be used in
several different, though incompatible, ways.

4.5.5 Prefixed sums
The category Aff does not have coproducts. However, we can build a
useful sum in Aff with the help of the coproduct of Lin and lifting.
Let IPa, for a E A, be a family of path orders. As their prefixed sum,
EaEAaPa, we take the disjoint union of the path orders EQEAIPal, over
the underlying set UQEA{a} X (IPa)1i the latter path order forms a
coproduct in Lin with the obvious injections in1 : Pp, -p EaEAaPa,
for 0 C A. The injections a : IPp -, EaEAaIPa in Aff, for Q E A, are
defined to be the composition ,3 = in1(H- J). This construction is not a
coproduct in Aff. However, it does satisfy a weaker property analogous
to the universal property of a coproduct. Suppose Fa : IPa - Q are
maps in Aff for all a E A. Then, there is a mediating map

F : EaEAaPa -y 0

in Lin determined to within isomorphism such that

Foa=Fa
for all aEA.

Suppose that the family of maps Fa : IPa with a E A, has the
property that each Fa is constantly 0 whenever a E A is different from

168 C. Winskel

0 and that Fp is H : PO Q. Write Hop : EQEAaIPa --> Q for a choice
of mediating map in Lin. Then

H®p(,3Y) H(Y) , H©p(aZ) = 0 if a 54,3, H®p(EiEIXi) EiEIH@p(Xi),

where Y E]Pp, Z E IPa and Xi E EaEAaIPa for all i c I. In particular,
for empty sums, H@p(0) = 0.

For a general family Fa : IPa -4 Q, with a c A, we can describe
the action of the mediating morphism, to within isomorphism, on X E
r'aEA a as F(X) = EaEA(FF)@a(X)

If a term u of type Q with free variable x of type IP denotes H : Pp -'
tQ in Aff and t is of type EaEAaIPa, then we shall write

[t > ax u] tests or matches t denoting an
element of a prefixed sum against the pattern ax and passes the results
of successful matches for x on to u; the possibly multiple results of
successful matches are then summed together.

Because prefixed sum is not a coproduct we do not have that tensor
distributes over prefixed sum. However there is a map in Aff,

list : Q ®EaEAaIPa -+ EaEAa(Q ®IPa) ,

expressing a form of distributivity. The map dist is given as the exten-
sion Ht of the functor

H : Ql X (EaEAaIa)1 --+ EaEAa(Q (9 IPa)

where

H(4, (a,p)) = yEREAa(Q®P)(a, (4,p)) and H(4,1) = 0

Unary prefixed sums in Aff, when the indexing set is a singleton, are
an important special case as they amount to lifting.

4.5.6 Recursive type definitions
Suppose that we wish to model a process language rather like CCS but
where processes are passed instead of discrete values, subject to the
linearity constraint that when a process is received it can be run at most
once. Assume the synchronised communication occurs along channels
forming the set A. The path orders can be expected to be the "least"
to satisfy the following equations:

IP = TIP + E"EAa!C + E",EAa?IF , C = IP ®IP , IF = (IP -a IP) .

Linearity and Nonlinearity in Distributed Computation 169

The three components of process paths P represent paths beginning
with a silent (T) action, an output on a channel (a!), resuming as a
concretion path (in C), and an input from a channel (a?), resuming as
an abstraction path (in F). It is our choice of path for abstractions which
narrows us to an affine-linear process-passing language, one where the
input process can be run at most once to yield a single (computation)
path.

We can solve such recursive equations for path orders by several tech-
niques, ranging from Sophisticated methods providing inductive and
coinductive characterisations [8], to simple methods essentially based on
inductive definitions. Paralleling techniques on information systems [20],
path orders under the order

P<Q PCQ&(dp,pEP.p<_pp p<Qp)
form a (large) complete partial order with respect to which all the con-
structions on path orders we have just seen can be made Scott con-
tinuous. Solutions to equations like those above are then obtained as
(simultaneous) least fixed points.

4.6 An affine-linear language for processes
Assume that path orders are presented using the constructions with the
following syntax:

T ::=C I 'Il'l (9 T2 I
T1 -o T2

I EaEAaTa I '1C1&'Il'2

I P I µipi,. Pk.(Tl,... ,Tk)

All the construction names have been met earlier with the exception
of the notation for recursively defined path orders. Above P is drawn
from a set of variables used in the recursive definition of path orders;
µiP1i , Pk.(T1, , Tk) stands for the j-component (so 1 < j < k) of
the least solution to the defining equations

P1=T1, ..., Pk=Tk,
in which the expressions T1, , Tk may contain P1, , Pk. We shall
write µP1, , Pk.(Tl, , Tk) as an abbreviation for

(µ1P1,... Pk (T1,... ,Tk),..)µkPi,... Pk (T1,... ,Tk))

In future we will often use vector notation and, for example, write µ P . T
for the expression above, and confuse a closed expression for a path order
with the path order itself.

170 G. Winskel

The operations of Sections 4.3 and 4.5 form the basis of a syntax of
terms which will be subject to typing and linearity constraints:

t, u, v, x, y, z, (Variables)

0 1 Eiciti I (Sums)
rec x.t

I
(Recursive definitions)

ax.t I u v (Abstraction, application)
at I [t > ax = u] I (Injections and match)

(t, u) I
[t > (x, -) = u]
[t > (-, x) = u] (Pairing and match)

t (&u [t > x ®y = u] (Tensor and match)

The language, first introduced in [30], is similar to that in [1], being
based on a form of pattern matching. Accordingly, variables in the
pattern, like x in the pattern of [t > ax => u], are binding occurrences
and bind later occurrences of the variable in the body, u in this case.
We shall take for granted an understanding of free and bound variables,
and substitution on raw terms. In examples we will allow ourselves to
use + both in writing sums of terms and prefixed sums of path orders.

Let P1, , Pk be closed expressions for path orders and assume that
the variables x1, , xk are distinct. A syntactic judgement

x1 : 1P1, ... xk : Pk F- t : 0

stands for a map

xl : P1, ... xk : Pk t Pi ®... ®Pk

in Aff. We shall typically write r, or A, for an environment list xl
1P1, , xk : Pk. We shall most often abbreviate the denotation map to

Q , - - t - - +or even

Here k may be 0 so the environment list in the syntactic judgement is
empty and the corresponding tensor product the empty path order ®.

An affine-linear language will restrict copying and so substitutions of
a common term into distinct variables. The counterpart in the models
is the absence of a suitable diagonal map from objects P to P ® P. For
example the function X H X ® X from P to P- ®1P is not in general a
map in Aff.t Consider a term t(x, y), with its free variables x and y

t To see this, for example in Aff2, assume that 1P is the discrete order on the set
{a, b}. Then the nonempty sum x = yp(a) + yp(b) is not sent to

(ye(a) (9 ye(a)) + (7yp(b) ® yp(b)) = yp®p(a,a) + ye®p(b,b)

Linearity and Nonlinearity in Distributed Computation 171

shown explicitly, for which

x:1P,y:PI-t(x,y)

corresponding to a map P (&P c
x,y Q in Aff. This does not generally

entail that

x:PI-t(x,x):Q
-there may not be a corresponding map in Aff, for example if t(x, y) _
x ® y. There is however a condition on how the variables x and y occur
in t which ensures that the judgement x : P I- t(x, x) : Q holds and that
it denotes the map in Aff obtained as the composition

1P a , P ®p t x,y

-using the weak diagonal map seen earlier in Section 4.5.4. (For exam-
ple, in the term x + y, where x and y have the same type IP, only com-
putation at one of the arguments x and y is possible, and it is legitimate
to diagonalise to x + x to obtain an affine-linear map.) Syntactically,
this is assured if the variables x and y are not crossed in t according to
the following definition:

Definition 4.4 Let t be a raw term. Say a set of variables V is crossed
in t if there are subterms of t of the form

a tensor s ® u, an application (s u), or a match [v > u = s]

for which t has free occurrences of variables from V appearing in both
s and u.

For example, variables x and y are crossed in x 0 y, but variables x
and y are not crossed in (x + y) ® z. Note that a set of variables V is
crossed in a term t if V contains variables x, y, not necessarily distinct,
so that {x, y} is crossed in t. We are mainly interested in when sets of
variables are not crossed in a term. A set of variables {x1, , xk} not
being crossed in a term t ensures that computation paths at arguments
xl, - - , xk are in conflict-at most one can contribute to the computa-
tion path of t. Sets of variables of the same type which are not crossed
in a term will behave like single variables with regard to substitutions.

The term-formation rules are listed below alongside their interpreta-
tions as constructors on morphisms, taking the morphisms denoted by

as would be needed to preserve non-empty sums, but instead to

x ® x = ye®e(a, a) + yP®P(b, b) + ye®p(a, b) + yr®e(b, a)

with extra "cross terms."

172 C. Winskel

the premises to that denoted by the conclusion (along the lines of [2]).
We assume that the variables in any enviroment list which appears are
distinct.
Structural rules:

IP F- IP
interpreted as

P
1

P

A t: P interpreted as A
P

r,AF- t:P r ®0 ""I' ®®0'=0 t P

r,x:IP,y:Q' AFtR, interpreted via s ®IEn =' IlD ®Q asr,y:Q,x:P,AFtR
r®P®Q®o _ R

r®Q®P®0 1r®s®lo ..

Recursive path orders:

rF-t:Tj[,aP. d'/P] rF- t: yjP.lF
rF-t:µjP.T rF-t:Tj[µP.T/P]

where the premise and conclusion of each rule are interpreted as the
same map because pj P. Il and 'IF3 [p P . T / P] denote equal path orders.
Sums of terms:

r interpreted as , the constantly 0 map.

rF-t2:PforalliEI
FFEiEIti:P

Recursive definitions:

mt td r t; : , &1 iEIP F-,P

r, x : IP F- t : P {y, x} not crossed in t for all y in r
rF- recx.t:P '

't tdr
r®P-t-4P

In erp e a as I fixF p .

-see Section 4.5.1, where for g : F --- P the map F(g) : r --> P is the
composition

IrOg ,roP t P

Linearity and Nonlinearity in Distributed Computation 173

Abstraction:

r, x : P t : interpreted as r ®P
rF- \x.t:IP-cQ r curry t , (IP-o

Application:

rF-u:IP-oQ AF-v: IP

r,AF-uv:Q
0-'-,IP

interpreted as I, ®A u v (p -o Q) ®p app . f11

Injections and match for prefixed sums:

r F- t : Pp, where ,Q CA
interpreted as

r t-, IPp , where Q E A
r I- Qt : EaEAa?a r _i Pp EaEAC a

r,x:IPpF-u:Q, where)OEA. AF- t:EaEAalPa
r, O F- It > Qx III : Q

interpreted as

r ®1Pp -1L-4 Q A t-' EcEA aP®
r ®D lr®t r ® >aEA aPa dart . E,eAa(r (9 Pa)

Pairing and matches for products:

Ung

rF-t:IP r_-u:g interpreted
r t ,P

r r
F- t as

A - It > (x, -) = u] : R '

r®IP u-,]R 0 t ->IP&Q
r ®0 lr®aiot r ®IP P.

r, x : Q F- u : IR A F- t : IP&Q interpreted as

r ®Q -`---, P. A -t --, 1P&Q

r ®0 lr® a2ot r Q R

Tensor operation and match for tensor:

_":P OF-u:o r -t IP A
r,AF-t.®u:IP®o +interpretedas r®0 t u

)P

F, x : IP, y : Q F- it : IR A F- t : IP ®Q interpreted as
1,OF-[t>x0y=:> u]:IR

174 G. Winskel

r®IP®Q_i!_4R
r®A lr®tr(9 P ®Q --M, R

By a straightforward induction on the derivation of the typing judge-
ment we obtain:

Proposition 4.5 Suppose r, x : P F- t : Q. The set {x} is not crossed
in t.

Exploiting the naturality of the various operations used in the seman-
tic definitions, we can prove a general substitution lemma. It involves
the weak diagonal maps bk : P -) PO .. ® P of Section 4.5.4.

Lemma 1 (Substitution Lemma) Suppose

IF, X1 :IP, ,xk :IPF- t: Q

and that the set of variables {x1, , xk} is not crossed in t. Suppose
A F- u : P where the variables of r and A are disjoint. Then,

F, A F- t[u/xl, ... , u/xk] : 0

and

Qr, A F- t[u/xl, ...
, u/xk1: Q

Qr,x1:1P,...,xk:IPF-t:Qf o (lr®(bk0QAF-u:IP]J))

In particular, as singleton sets of variables are not crossed in well-formed
terms, we can specialise the Substitution Lemma to the following:

Corollary 4.6 If IF, x : P F- t : 0 and A F- u : P, where the variables of
r and A are disjoint, then r, A F- t[u/x] : (and

Qr,AF-t[u/x]:q =Qr,x:1PF-t:QJo(lr®JA F-u:Pfl

As consequences of Corollary 4.6, linear application amounts to sub-
stitution, and recursions unfold in the expected way:

Lemma 2 Suppose r F- (Ax.t) u : Q. Then, r F- t[u/x] : Q and

Qr F- (Ax.t) u : Q1 = Qr F- t[u/x] : Q .

Lemma 3 Suppose F F- rec x.t : P. Then F F- t[rec x.t/x] : P and

Qr F- rec x.t : IP] =' Jr F- t[rec x.t/x] : IP1 .

Linearity and Nonlinearity in Distributed Computation 175

The next lemma follows directly from the universal properties of pre-
fixed sum (the last property because the mediating map is in Lin, so
preserves sums):

Lemma 4 Properties of prefix match:

QrH[at>ox=> u]:Q =0 if a#Q,
jr H [F-'iElti > Qx = u] : Q EiEIQr F- [t{ > Ox u] : Q]

General patterns

We can write terms more compactly by generalising the patterns in
matches. General patterns are built up according to

p::=x10IapIp®gI(p,-)I(-,p)

A match on a pattern [u > p = t] binds the free variables of the pattern
p to the resumptions after following the path specified by the pattern
in u; because the term t may contain these variables freely the resump-
tions may influence the computation of t. Such a match is understood
inductively as an abbreviation for a term in the metalanguage:

[u>x=t]-(Ax.t)u, [u>0=t]-t,
[u > ap t] - [u > ax = [x > p = t]] for a fresh variable x,

[u > (p, -) = t] [u > (x, -) = [x > p = t]] for a fresh variable x,

[u > (-, p) = t] [u > (-, x) [x > p t]] for a fresh variable x,

[x>p=[y>q=t]]]forfreshx,y.

Let Ax®y.t stand for Aw.[w > x®y = t], where w is a fresh variable, and
write [u1 > pl, , uk > Pk t] to abbreviate [ul > P1 = [[uk >
pk P t] ... I.

4.7 Examples

The affine-linear language is remarkably expressive, as the following ex-
amples show. Through having denotations in Affset, all operations
expressible in the language will automatically preserve open-map bisim-
ulation.

176 G. Winskel

4.7.1 CCS

As in CCS, assume a set of labels A, a complementation operation pro-
ducing a from a label a, with d = a, and a distinct label T. In the
metalanguage we can specify the path order P as the solution tot

P = TP + EaEAaP + EaEAaP .

So P is given as /P.TP + EaEAaP + EaEAaP. There are injections from
P into its expression as a prefixed sum given as rt, at and at for a E A
and a term t of type P. The CCS parallel composition can be defined as
the following term of type P ® P -o P in the metalanguage:

Par = rec P. Ax 0 y. EOEAU{T} [x > ax' = a(P(x' (9 y))]+

EaEAU{T} [y > ay' = a(P(x 0 y'))]+

EaEA[x > ax', y > ay' = T(P(x' ® y'))]

The other CCS operations are easy to encode, though recursive defi-
nitions in CCS have to be restricted to fit within the affine language.
Interpreted in Aff2 two CCS terms will have the same denotation if
they have same traces (or execution sequences). By virtue of having
been written down in the metalanguage the operation of parallel compo-
sition will preserve open-map bisimulation when interpreted in Aff set
for this specific IP, open-map bisimulation coincides with strong bisimu-
lation. In Affset we can recover the expansion law by the properties of
prefix match-Lemma 4. In detail, write X IY for Par X ® Y, where X
and Y are terms of type P. Suppose

X = EaEAU{T}EiEI(a)aXi Y = EaEAU{r}EiEJ(a)aY7 .

Using Lemma 2, and then that the matches distribute over nondeter-
ministic sums,

=EaEAU{T} [X > ax' = a(x'IY)] + EaEAU{T} [Y > ay' a(X ly')]Xly
+ EaEA[X > ax', Y > ay' = T(x'1y')]

EaEAU{T}EiEI(a)a(XilY) + E«EAU{T}E,jEJ(a)a(X IYj)

+ EaEAEiEI (a),9EJ(a)T (Xi l Y9)

In similar ways it is easy to express CSP in the affine-linear language
along the lines of [4], and any parallel composition given by a synchro-
nisation algebra [31].

t In examples, for readablility, we will generally write recursive definitions of types
and processes as equations.

Linearity and Nonlinearity in Distributed Computation 177

4.7.2 A linear higher-order process language
Recall the path orders for processes, concretions and abstractions for
a higher-order language in Section 4.5.6. We are chiefly interested in
the parallel composition of processes, Parp,p of type P ® P -o P. But
parallel composition is really a family of mutually dependent operations
also including components such as Parr,c of type F ® C --0 P to say
how abstractions compose in parallel with concretions etc. All these
components can be tupled together in a product using &, and parallel
composition defined as a simultaneous recursive definition whose com-
ponent at P ® P -o P satisfies

PIQ =E"[P > ax = a(xIQ)]+
E.[Q > ay a(Ply)]+
Ea,[P > Of, Q > a!(s (9 r) T((f s)Ir)]+
E0.[P > a!(s (9 r), Q > Of = T(rl (f s))] ,

where we have chosen suggestive names for the injections and, for in-
stance, PIQ abbreviates Par.,p(P (9 Q). In the summations a E A and
a ranges over a!, a?, T for a E A.

4.7.3 Mobile ambients with public names
We can translate the Ambient Calculus with public names [6] into
the affine-linear language, following similar lines to the linear process-
passing language above. Assume a fixed set of ambient names n, m, - E

N. The syntax of ambients is extended beyond just processes (P) to in-
clude concretions (C) and abstractions (F), following [5]:

P ::=O I PIP I repP I n[P] I in n P I out n P I open n! P I

r P I mvin n! C I mvout n! C I open n? P I mvin n? F I x

C::=P®P
F ::=Ax.P

The notation for actions departs a little from that of [5]. Here some
actions are marked with ! and others with ?-active (or inceptive) actions
are marked by ! and passive (or receptive) actions by ?. We say actions a
and Q are complementary if one has the form open n! or mvin n! while
the other is open n? or mvin n? respectively. Complementary actions
can synchronise together to form a T-action. We adopt a slightly different
notation for concretions (P®R instead of (P)R) and abstractions (ax.P

178 G. Winskel

instead of (x)P) to make their translation into the affine-linear language
clear.

The usual conventions are adopted for variables. Terms are assumed
to be linear, in that a variable appears on at most one side of any parallel
compositions within the term, and subterms of the form repP have no
free variables. A replication repP is intended to behave as P I repP so
readily possesses a recursive definition in the affine-linear language.

Suitable path orders for ambients are given recursively by:

P = TP + EnEN in n P + EnCN oUt n P + EfEN open n!P+

EnENmvin n!C + EfENmvout n!C + EnENopen n?P + EnENmvin OF

c=P®P
IF=P -cP

The eight components of the prefixed sum in the equation for P cor-
respond to eight forms of ambient actions: T, in n, out n, open n!,
mvin n!, mvout n!, open n? and mvin n?. We obtain the prefixing op-
erations as injections into the appropriate component of P as a prefixed
sum.

Parallel composition is really a family of operations, one of which
is a binary operation between processes but where in addition there
are parallel compositions of abstractions with concretions, and even ab-
stractions with processes and concretions with processes. The family of
operations

IF®C-aP, (-I-):C®IF-a P,
IF(9 P-oIF, P(9 IF-o 1F,

(-I-) : C®P -cC, (-I-) : P®C -cc

are defined in a simultaneous recursive definition as follows:
Processes in parallel with processes:

PIQ =Ea[P > ax = a(xIQ)]+
E«[Q > ay = a(PIy)]+
En[P > open n!x, Q > open n?y = T(xl y)]+
En[P > open n?x, Q > open n!y = T(xl y)]+

En[P > mvin Of, Q > mvin n!(s (9 r) = T((f s)Ir)]+
En[P > mvin n!(s ® r), Q > mvin Of = T(rl (f s))]

Abstractions in parallel with concretions:

FIC=[C>s®r=(Fs)lr].

Linearity and Nonlinearity in Distributed Computation 179

Abstractions in parallel with processes:

FOP = ax.((F x)IP)

Concretions in parallel with processes:

CIP=[C>s®r=s®(rlP)] .

The remaining cases are given symmetrically.
Presheaves X, Y over P will have decompositions into rooted compo-

nents:

X - EcEiEX(a)aXi , Y = E-EjEX(-)aYj

-here a ranges over ambient actions. By the properties of prefix-match
(Lemma 4), their parallel composition satisfies the expansion law

X IY _- E"'EicX(a)a(XijY) + EQEjEY(«)a(X l1'j)+

EnEiEX(open n!),jEY(open n?)T(XiIYj) + EnEiEX(open n?),7EY(open n!)T(XiIYj)+

EnEiEX(mvin n!),jEY(ntvin n?)T(XiIYj) + EnEiEX(mvin n?),7EY(mvin n!)T(XilYj)

Ambient creation can be defined recursively in the affine-linear lan-
guage:

m[P] =[P > rx = rm[x]] +
En[P > inn x = mvin n!(m[x] ® 0)] +
En[P > out n x = mvout n!(m[x] ® 0)]+

[P > mvout m!(s (9 r) r(slm[r])] +
open m?P + mvin m?Ay.m[Ply] .

The denotations of ambients are determined by their capabilities: an
ambient m[P] can perform the internal (r) actions of P, enter a parallel
ambient (mvin n!) if called upon to do so by an in n-action of P, exit an
ambient n (mvout n!) if P so requests through an out n-action, be exited
if P so requests through an mvout m!-action, be opened (open m?),or
be entered by an ambient (mvin m?); initial actions of other forms are
restricted away. Ambient creation is at least as complicated as parallel
composition. This should not be surprising given that ambient creation
corresponds intuitively to putting a process behind (so in parallel with) a
wall or membrane which if unopened mediates in the communications the
process can do, converting some actions to others and restricting some
others away. The tree-containment structure of ambients is captured in
the chain of open m?'s that they can perform.

180 G. Winskel

By the properties of prefix-match, there is an expansion theorem for
ambient creation. For X with decomposition

X = EaEiEX(a)o'Xi ,

where a ranges over atomic actions of ambients,

m[X] _F'iEX(r)T m[Xi]
En>j6X(in n) mvin n!(m[Xj] (9 0)+

En>kEX(out n)mvout n!(m[Xk] ® 0)

ESCX(mvout m!) [XS > s ® r = T(sl m[r])]+

open m?X + mvin m?(Ay.m[Xjy]) .

4.7.4 Nondeterministic dataflow
The affine linear language allows us to define processes of the kind en-
countered in treatments of nondeterministic dataflow.

Define P recursively so that

P=aP+bP.

P consists of finite streams (or sequences) of a's and b's.
The recursively defined process A : P ---o P selects and outputs a's

from a stream of a's and while ignoring all b's:

A=Ax. [x>ax'=a(Ax')]+[x>bx =zl®(Ax')]

The recursively defined process F : P®IP produces two parallel streams
of a's and b's as output such that it outputs the same number of a's and
b's to both streams:

F = IF > z1 ®z2 = (azi) ®(az2) + (bzl) ® (bz2)]

The recursively defined process S : P -o (P (9 IP) separates a stream
of a's and b's into two streams, the first consisting solely of a's and the
second solely of b's:

S = Ax. [x > ax', (S x') > z1 ® z2 = (azi) ® z2]+
[x > bx', (S x') > z1 ® z2 = z1 ® (bz2)]

A subcategory of Affset supports a "trace operation" to represent
processes with feedback loops (see [13]). The trace operation is, however,
not definable in the present affine-linear language. It can be shown by
induction on the typing derivation of a term that:

Linearity and Nonlinearity in Distributed Computation 181

Proposition 4.7 Suppose r I- t : Q where r - xl : Pi, , xk : Pk
Let p be path in (P1 (9 . ®!Pk)L and q be a path in Q. The presheaf
denotation of a term r !- t : Q, applied to jp,®...®ik(p) as presheaf, has
a nonempty contribution at q if the trace-set denotation of r !- t : Q,
applied to (p) as a trace-set, contains q.

Thus, supposing that the trace operation of [13] were definable in the
presheaf semantics, we would obtain a compositional relational seman-
tics of nondeterministic datafiow with feedback, shown impossible by
the Brock-Ackerman anomaly [3].

4.8 Nonlinearity
Of course code can be copied, and this may lead to maps which are not
linear. According to the discipline of linear logic, nonlinear maps from
P to Q are introduced as linear maps from !P to Q-the exponential
applied to P allows arguments from P to be copied or discarded freely.

In the domain model of linear logic !P can be taken to be the finite-
join completion of P. Then, the nonlinear _-maps, _maps !P -f Q in Lin2,
correspond to Scott continuous functions P ' Q. A close analogue for
presheaf models is to interpret !P as the finite-colimit completion of P.
Note that now UP is a category, and no longer just a partial order. With
this understanding of !P, it can be shown that P with the inclusion func-
tor !P -+ P is the free filtered colimit completion of !P-see [21]. It
follows that -maps !P -+ Q in LinSet correspond, to withinisolnor-
phism, to continuous (i.e., filtered colimit preserving) functors P -1 5.
But, unfortunately, continuous functors from P to d need not send open
maps to open maps. This raises the question of whether other choices
of exponential fit in better with bisimulation.

Bear in mind the intuition that objects of P correspond to the shapes
of computation path a process, represented as a presheaf in P, might
perform. An object of !P should represent a computation path of an
assembly of processes each with computation-path shapes in P-the as-
sembly of processes can then be the collection of copies of a process,
possibly at different states. If we take !P to be the finite colimit com-
pletion of P, an object of !IP as a finite colimit would express how paths
coincide initially and then branch. One way to understand this object
as a computation path of an assembly of processes, is that the assembly
of processes is not fixed once and for all. Rather the assembly grows
as further copies are invoked, and that these copies can be made of a

182 G. Winskel

processes after they have run for a while. The copies can then them-
selves be run and the resulting processes copied. In this way, by keeping
track of the origins of copies, we can account for the identifications of
sub-paths.

This intuition suggests exploring other less liberal ways of copying,
without, for example, being able to copy after some initial run. We
will discover candidates for exponentials !IP based on computation-path
shapes of simple assemblies of processes, ones built out of indexed fam-
ilies. We start with an example.

4.8.1 An example
First observe the hopeful sign that maps which are not linear may
still preserve bisimulation. For example, a functor yielding a presheaf
H(X, Y), for presheaves X and Y over IF, which is "bilinear" or "affine
bilinear," in the sense that it is linear (i.e., colimit preserving) or affine
linear (i.e., connected-colimit preserving) in each argument separately,
when diagonalised to the functor giving H(X, X) for X in IF, will still
preserve open maps and bisimulation. A well-known example of a bi-
linear functor is the product operation on presheaves [18]; with one ar-
gument fixed, the product is left adjoint to the exponentiation in the
presheaf category, and so product preserves colimits, and thus open
maps, in each argument. On similar lines, it can be shown that the
tensor operations in Linset and Affset are bilinear and affine bilinear,
respectively. With this encouragement we look for alternative inter-
pretations of the exponential !, where the nonlinear maps !IP - Q in
Linset preserve open maps.

Because sum preserves open maps, by the remarks above, the functor
copy taking a presheaf X over IP to the presheaf

copy(X) =

over

!IP= 11+p+IP2+IP3+...+IPk+...

will preserve open maps. Here the superscripts abbreviate repeated ap-
plications of tensor in Linset. So IPk is the product of k copies of the
partial order IF, in which the objects are k-tuples of objects of IP-in par-
ticular, 1 is the partial order consisting solely of the empty tuple called
1 above. The presheaf Xk comprises k copies of X tensored together,
so that Xk(pi,... pk) = X(pi) x ... X X(pk).

Linearity and Nonlinearity in Distributed Computation 183

By supplying "coefficients" we can obtain various nonlinear maps. An
appropriate form of polynomial is given by a functor

F:!IP-*Q,
which splits up into a family of functors

Fk:IPk&Q, for ke

We can extend F to a functor F[-] = F copy(-) : P -* Q For X E IP,

F - is colimit-preserving it preserves open maps. So does copy.
Hence F[-] preserves open maps.

Note, that the original polynomial F is not determined to within
isomorphism by the functor F[-] it induces. (We can only hope for
such uniqueness if we restrict to polynomials which are symmetric, i.e.,
such that Fk = Fk o7r for all permutations 7r of the karguments.)

We write Poly (P, Q) for the functor category [!IP, Q] of polynomials
from P to Q. In order to compose polynomials, F E Poly(P, Q) and
G E Poly(Q, IR), we first define F' E Poly(IP, !Q) by taking

F' pn gl,'
q

, k)
_Fµ(s,,...,sk)=(P,,...Pn)FSlgl

x x F'Skgk ,

when (pi, , pn) E!P and (ql, , qk) E!Q. The operation u :

!!P -' P flattens, by concatenation, a tuple (sl, , 5k) of tuples
Sr = (Srl, , Sr.,,,,,,), for 1 < r < k, down to a tuple

µ(S1, ... , Sk) = (511, ... , Slnz 521, ... Sk1, ... Skmk)

So, the sum is indexed by all ways to partition (pl, , per,) into tuples
(sl, , Sk). Now, we can define the composition of polynomials to be

G o F= C. (F'-) E Poly(IP, IR)

At (p1, ... , pn) in !IP,

G o F(p1, ... , pn) ,Pn)Gk Fs1 x ... x Fsk

where Fs1 x Fsk, built using the tensor of Lin, is such that

Fs1 x ... Fsk(gl, ... , qk) = Fs1g1 x ... Fskgk

for (ql, , qk) in Q. The composition of polynomials is only defined
to within isomorphism; they form a bicategory Poly, rather than a
category.

Note that 0 = 1. In the special case where F :!® ---p Q, so that F

184 G. Winskel

merely points to a presheaf X in c, the composition GoF of a polynomial
G :!Q ']IS with the polynomial F is isomorphic to G[X]. So certainly
compositions of this form preserve open maps and bisimulation.

More generally, polynomials in Poly(IP, Q) and Poly(Q, III) corre-
spond to presheaves in (!IP)°P x Q and (!Q)°P x IR, respectively. So under
this correspondence polynomials are related by open maps and bisimu-
lation. It can be shown that the composition of polynomials in general
preserves open maps, so bisimulation, between polynomials.

However, the present interpretation of ! fails as a candidate for the
exponential of linear logic. This is because Poly is not cartesian-closed
in any reasonable sense. It easy to see that there is an isomorphism of
categories

Poly(R, IP&Q) = Poly (ll , IP) x Poly (ll , Q) ,

natural in R in Linset, showing the sense in which P&Q, given by jux-
taposition, remains a product in the bicategory of polynomials. There
is also clearly an isomorphism of functor categories

[!lPx!Q, R] - [!P, ((!(Q) OP X R)]

But, in general, !(IP&Q) and !lPx!Q are not isomorphic, so that (!Q)OP xlR
is not a function space for the polynomials with respect to -&-. The
difficulty boils down to a lack of symmetry in the current definition of UP,
where tuples like (pl, ,pk) and its permutations (p.,,(1), ,A,(k)) are
not necessarily related by any maps. Nor for that matter, are there any
maps from a tuple (pl, , pk) to a larger tuple (pi, , pk, , p.m),

even though intuitively the larger tuple would be a path of a larger
assembly of processes, so arguably an extension of the smaller tuple in
which further copies have been invoked.

To allow different kinds of polynomial, polynomials which can take
account of the symmetry there exists between different copies and also
permit further copies to be invoked as needed, we broaden the picture.

4.8.2 General polynomials
The example suggests that we take assemblies of processes to be families
where we can reindex copies, precisely how being prescribed in U, a
subcategory of sets in which the maps are the possible reindexings. A
U-family of a category A comprises (At)iEJ where i E I, with I an object
of U, index objects Ai in A. A map of families (f, e) : (Ai)iE1 -' (A')jEJ
consists of a reindexing function f : I -, J in U and e = (ei)ici, a family

Linearity and Nonlinearity in Distributed Computation 185

of maps ei : Ai -, A'(i) in A. With the obvious composition we obtain
.Fu(A), the category of U-families.

Imitating the example, we define the category of polynomials

Polyu(I, 0)

from P to Q, to be the functor category [.Fu (P), Q. Under sufficient con-
ditions, that U is small, has a singleton and dependent sums (a functor
E :.Fu(U) -+ U collapsing any family of sets in U to a set in U), we can
compose polynomials in the manner of the coKleisli construction. For
this we need to turn .Fu into a functor on polynomials for which we need
a "distributive law" converting a family of presheaves into a presheaf
over families of paths. It can be shown that provided all the maps in
U (the possible reindexings) are injective, composition of polynomials
preserves open maps and bisimulation. Provided U contains the empty
set, we can specialise composition, as in the example, to obtain a functor
F[-] : P -+ Q from a polynomial F in Polyu(IP, Q).

The example is now seen as the special case in which U consists of
subsets, possibly empty, of positive natural numbers {1, , n} with
identities as the only maps. In the special case in which U is the full
subcategory of Set consisting of the empty set and a singleton, poly-
nomials amount to functors PL -p d so to maps in Aff Sat. If we
take U to be 11 (finite sets with injections) or 18 (finite sets with bijec-
tions), we can repair an inadequacy in the example; then, .Fu(IP&Q) and
.Fu (1P) x -Fu(Q) are isomorphic, so that we obtain a function space for
the polynomials with respect to the product -&-. Both FI and F3
are good candidates for the exponential !-they also behave well with
respect to bisimulation.

There is a fly in the ointment however. The complete mathematical
story, in which one would see the polynomials as maps in a coKleisli con-
struction, uses bicategories and at least pseudo (co)monads on biequiv-
alent 2-categories. At the time of writing (December 2001) the theory
of pseudo monads, even the definitions, is not sufficiently developed.

4.9 Related work
This article presents two domain theories for concurrent computation.
One uses domains of a traditional kind, though in a non-traditional
way through being based on computation paths (though the path-based
domain theory here was anticipated in Matthew Hennessy's work on do-
main models of concurrency [14]). In the other domain theory, domains

186 G. Winskel

are understood as presheaf categories, accompanied by the bisimulation
equivalence got from open maps.

Just as there are alternatives to the domain theory of Dana Scott,
in particular, the stable domain theory of Gerard Berry, so are there
alternative denotational semantics of the affine-linear language. Mikkel
Nygaard and I have shown how to give an event-structure semantics to
the affine-linear language; both types and terms denote event structures.
(Event structures are a key "independence model" for computation, one
in which the concurrency of events is represented by their causal inde-
pendence.) The domain theory can be seen as analogous to the stable
domain theory of Berry. The presheaf semantics here and that based
on event structures differ at function spaces. In the fragment of the
affine-linear language without function spaces, the event-structure se-
mantics gives an informative representation of the definable presheaves;
elements of a definable presheaf correspond to finite configurations of an
event structure, with restriction in the presheaf matched by restriction
to a subconfiguration in the event structure. Tensor corresponds to a
simple parallel composition of event structures got by disjoint juxtapo-
sition. Unfortunately the event structures definable in the affine-linear
language can be shown too impoverished to coincide with those of the
event-structure semantics of CCS, given for example in [31].

Mikkel Nygaard and I are developing an operational semantics for the
affine linear language [26]. This work has also led us to an expressive
nonlinear language with a simple operational semantics; its denotational
semantics is based on a choice of exponential from Section 4.8. One aim
is to give an operational account of open-map bisimulation on higher-
order processes.

The semantics here does not cover name generation as in Milner's
7r-Calculus. Although one can give a presheaf semantics to the pi-
Calculus [9], we do not presently know how to extend this to also include
higher-order processes.

This article has demonstrated that linearity as formalised in linear
logic can play a central role in developing a domain theory suitable for
concurrent computation. At the same time, the mathematical neutrality
of the domain theories here begins to show how concurrency need not
remain the rather separate study it has become. There are unresolved
issues in extending the work of this article towards a fully-fledged domain
theory, one able to cope more completely with the range of models for
concurrency. Among them is the question of how to extend this work

Linearity and Nonlinearity in Distributed Computation 187

to include name generation, its relation with operational semantics, and
the place of independence models such as event structures.

Acknowledgements
A good deal of the background for this work was developed with Gian
Luca Cattani for his PhD [7]. Discussions with Martin Hyland and John
Power have played a crucial role in the ongoing work on nonlinearity. I
am grateful for discussions with my PhD student Mikkel Nygaard.

Bibliography
[1] S. Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111, 1-2, 3-57, 1993.
[2] T. Braiiner. An Axiomatic Approach to Adequacy. BRICS Dissertation

Series DS-96-4, 1996.
[3] J. Brock & W. Ackerman. Scenarios: A model of non-determinate

computation. In Proc. of Formalization of Programming Concepts,
LNCS 107, 1981.

[4] S.D. Brookes. On the relationship of CCS and CSP. In Proc. of
ICALP'83, LNCS 154, 1983.

[5] L. Cardelli & A. Gordon. A commitment relation for the ambient
calculus. Note ambient-commitment.pdf at
http://research.microsoft.com/ adg/Publications/, 2000.

[6] L. Cardelli & A. Gordon. Anytime, Anywhere. Modal logics for mobile
ambients. In Proc. of POPL'00, 2000.

[7] G. L. Cattani. PhD thesis, CS Dept., University of Aarhus,
BRICS-DS-99-1, 1999.

[8] G. L. Cattani, M. Fiore & G. Winskel. A Theory of Recursive Domains
with Applications to Concurrency. In Proc. of LICS '98.

[9] G. L. Cattani, I. Stark, & G. Winskel. Presheaf Models for the
7r-Calculus. In Proc. of CTCS '97, LNCS 1290, 1997.

[10] G. L. Cattani & G. Winskel. Presheaf Models for Concurrency. In Proc.
of CSL' 96, LNCS 1258, 1997.

[11] C. L. Cattani & G. Winskel. Profunctors, open maps and bisimulation.
Manuscript, 2000.

[12] G. L. Cattani, A. J. Power & G. Winskel. A categorical axiomatics for
bisimulation. In Proc. of CONCUR'98, LNCS 1466, 1998.

[13] T. Hildebrandt, P. Panangaden & G. Winskel. Relational semantics of
nondeterministic dataflow. In Proc. of CONCUR'98, LNCS 1466, 1998.

[14] M. Hennessy. A Fully Abstract Denotational Model for Higher-Order
Processes. Information and Computation, 112:55-95, 1994.

[15] M. Hennessy & G.D. Plotkin. Full abstraction for a simple parallel
programming language. In Proc. of MFCS'79, LNCS 74, 1979.

(16] C.A.R. Hoare. A model for communicating sequential processes. Tech.
Report PRG-22, University of Oxford Computing Lab., 1981.

[17] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and
Applied Logic, 69:73-106, 1994.

188 G. Winskel

[18] A. Joyal & I. Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70:51-86, 1994.

[19] A. Joyal, M. Nielsen & G. Winskel. Bisimulation from open maps.
Information and Computation, 127:164-185, 1996.

[20] G.Winskel & K.Larsen. Using information systems to solve recursive
domain equations effectively. LNCS 173, 1984.

[21] G.M. Kelly. Basic concepts of enriched category theory. London Math.
Soc. Lecture Note Series 64, CUP, 1982.

[22] S. Mac Lane & I. Moerdijk. Sheaves in Geometry and Logic.
Springer-Verlag, 1992..

[23] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
[24] R. Milner. Communication and concurrency. Prentice Hall, 1989.
[25] M. Nielsen, G.D. Plotkin & G. Winskel. Petri nets, Event structures and

Domains, part 1. Theoretical Computer Science, vol. 13, 1981.
[26] M. Nygaard & G. Winskel. Linearity in distributed computation. In

Proc. of LICS '02.
[27] G. Winskel. A representation of completely distributive algebraic

lattices. Report of the Computer Science Dept., Carnegie-Mellon
University, 1983.

[28] G. Winskel. An introduction to event structures. In Proc. of REX
summerschool in temporal logic, 'May 88, LNCS 354, 1988.

[29] G. Winskel. A presheaf semantics of value-passing processes. In
Proceedings of CONCUR'96, LNCS 1119, 1996.

[30] G. Winskel. A linear metalanguage for concurrency. In Proceedings of
AMAST'98, LNCS 1548, 1999.

[31] G. Winskel & M. Nielsen. Models for concurrency. In Handbook of Logic
in Computer Science, Vol.4, OUP, 1995.

Part two
Refereed Articles

5

An Axiomatic Approach to Structural Rules
for Locative Linear Logic

Jean-Marc Andreoli
Xerox Research Centre Europe, Grenoble, France and

Institut de Mathern.atiques de Luminy, France

Abstract

This paper proposes a generic, axiomatic framework to express and study
structural rules in resource conscious logics derived from Linear Logic.
The proposed axioms aim at capturing minimal concepts, operations
and relations in order to build an inference system which extends that
of Linear Logic by the introduction of structure and structural rules, but
still preserves in a very natural way the essential properties of any logical
inference system: Cut elimination and Focussing. We consider here
finite but unbounded structures, generated from elementary structures
called "places". The set of places is "isotropic", in that no single place
has a distinguished role in the structures, and each structure can be
"transported" into an isomorphic structure by applying a permutation
of places to the places from which it is built. The essential role of
these places in the definition of Logic has been shown in Ludics [6], and
leads to a locative reading of the traditional logical concepts (formulas,
sequents, proofs), which is adopted here. All the logical connectives
(multiplicatives, additives, exponentials) are expressed here in a locative
manner.

5.1 Introduction

Linear Logic [5] essentially differs from Classical Logic by the removal
of the structural axioms of Contraction and Weakening. However, it
retains other structural axioms, such as Exchange, which determine the
essential properties of the whole system. Thus, from a sequent calculus
point of view, Linear Logic sequents are built from a single constructor
(usually represented as the "comma") which is structurally considered

191

192 J.-M. Andreoli

associative-commutative, and hence, so are all the binary connectives.
The structure of commutative monoid underlying phase semantics also
results from this choice.

Various systems explore other syntactic structures for the sequents
and other structural axioms. For example, Non-Commutative logic [1,
10], a conservative extension of both Linear Logic and Cyclic Logic [11],
introduces order varieties as the structure for sequents (characterised
by the axioms of "See-Saw" and "co-See-Saw"). The expression of the
inference rules of the sequent system in this case relies in fact on two
kinds of structures, order varieties and orders, where orders are order
varieties viewed from a single point (that of the principal formula in
an inference). Order varieties are "isotropic", in that any point in a se-
quent can, at any time, be chosen as occurrence of the principal formula,
thus preserving the perfect symmetry of the system (this is essentially
the "focussing" result of [10], not to be confused with the Focussing
property [2, 3] which concerns commutative as well as non commuta-
tive Linear Logic and which has deeper implications). This duplicity
in structure between order and order varieties corresponds in fact to
a powerful intuition: when choosing a principal formula to perform an
inference, one takes a specific viewpoint which alters the perception of
the context. This intuition is the basis of all the development presented
here.

We present a class of logics, called Coloured Linear Logics, also based
on two kinds of structures, called "varieties" and "presentations" (a
generalisation of, respectively, the order varieties and orders of Non
Commutative Logic), together with abstract operators relating them.
However, instead of attempting to choose a priori what varieties and
presentations are, as in Non Commutative Logic, these structures are
left undefined. Thus concrete instances of Coloured Linear Logics can
be created from the pattern by different choices of structures and op-
erators. It is nevertheless possible to define a generic inference system,
using abstract varieties and presentations, and incorporating abstract
structural rules. Its inferences simply capture the basic intuition that
presentations are varieties "viewed from a specific viewpoint", that of
the principal formula being decomposed in an inference.

In order for this system to satisfy the essential properties of Cut elim-
ination and Focussing, characterising a real logic as more than an ar-
bitrary set of rules, it is necessary to constrain the variety-presentation
frameworks of Coloured Linear Logics. These constraints are expressed
as a set of axioms which variety-presentation frameworks must satisfy.

Structural Rules for Locative Linear Logic 193

For purpose of clarity, these axioms are introduced and discussed right
away in Section 5.2, without any explicit reference to their role, however
essential, in the sequent calculus. They give rise to a generic notion of
substitution, with an associativity result which is the cornerstone of the
whole system. The true motivations for the choice of these axioms ap-
pear in Section 5.3, where the sequent calculus is presented: the axioms
ensure the fundamental properties (Cut Elimination, Focussing) which
we expect from the calculus.

In a Coloured Linear Logic, as in Linear Logic, the sequent calculus
deals with formula occurrences rather than formulas themselves: the
structure of the sequents (presentations or varieties) is naturally defined
over occurrences, and two occurrences of the same formula must not
be confused. Occurrences are often kept implicit in the formulation of
sequent calculi, but it is useful to make them explicit, especially to be
able to keep track of the dependencies between the occurrences of for-
mulas in the conclusion sequent of an inference and the occurrences in
its premisses. One way of expliciting these dependencies is to use a
"locative" version of the calculus, where each formula occurrence ap-
pearing in a proof has a unique address, and the addresses keep track
of the formula/sub-formula dependencies. From that point of view, the
"loci" of Ludics [6] provide an appropriate representation for addresses.
The sequent calculus of Coloured Linear Logics is defined below in an
entirely locative manner, using "loci" only instead of the usual syntax
of formulas.

Note that this paper does not directly provide a solution to the general
problem of structure in Linear Logic. It only offers a convenient frame-
work in which to study this problem. The constraints expressed by the
axioms of that framework are minimal, and leave many choices unde-
cided as to the structures themselves and the structural rules (essentially
any context-free linear rewrite rule on varieties is a good candidate for
a structural rule). This degree of freedom is conceptually unsatisfac-
tory: Logic aims at Necessity, and there should be no room for arbitrary
choices. This issue can only be resolved by taking other perspectives to
the problem, for example proof nets, games or denotational semantics,
which could provide hints as to whether the whole approach makes sense
(i.e. how relevant is the fundamental intuition supporting the distinc-
tion introduced in Coloured Linear Logics between presentations and
varieties), and what the ultimate structure in a resource conscious logic
should be.

194 J.-M. Andreoli

5.2 Variety-Presentation Frameworks
5.2.1 Axioms

We make use of two basic abstract structures: presentations (w) and va-
rieties (a). Varieties are used below as the structural basis for sequents,
and presentations for sequents presented from the point of view of one
of their formula occurrences. We also make use of the following abstract
operators on varieties and presentations, with the following signature
(where p(E) denotes the set of subsets of E):

Occurrence-set ,i : VARIETY U PRESENTATION
'--' lµl : p(PRESENTATION)

A place is a presentation which is its own unique occurrence:

PLACE =def { x E PRESENTATION I IXI = {x} }

Note here that places are a derived concept, not a primary one.

Composition

Decomposition
Relaxation
Void

Wi : PRESENTATION , w2 : PRESENTATION
ti W1 * W2 : VARIETY

a VARIETY , x : PLACE -* (a)x : PRESENTATION
al VARIETY -< a2 : VARIETY
Q : PRESENTATION

We define the following axioms:

[Occurrence-set]:
The occurrence set of any presentation or variety µ is finite and con-
tains only places. The set of places is countably infinite.

I i-LI E pf (PLACE) PLACE - N

[Composition]:
For any presentations W1, W2,

IW1 * w21 = IW1I O IW2I
wl*W2=w2*W1

where O denotes the symmetric difference operator on sets, ie. AOB =
(A U B) \ (A n B), which is associative-commutative with neutral
0. Note that we could have restricted this axiom to the case where
Iw1I n IW2I = 0 (hence Iwl * w2I = Iw1I U Iw2I), since that is the only
case encountered later. Only, the more general formulation given here
simplifies the proofs of the theorems.

Structural Rules for Locative Linear Logic 195

[Decomposition]:
For any variety a, place x and presentation w:

xElal = x*(a)x=a
xOIwl A w*x=a = w=(a)x

This implies, by [Composition], that if x E lal then I(a)xI = IaI\{x}.
Hence, for a given x, the mapping a '--' (a)x (for any variety a having
occurrence x) and w i-+ w * x (for any presentation w not having
occurrence x) are inverse of each other.
[Commutation]:
For any variety a, presentations w1, W2 and places x1, x2,

x1 54 x2 A Iw1I n Iw2I = 0 A X1 E at \ Iw2I A X2 E lal \ Iw1I =
((a)xi * wl)x2 * w2 = ((a)x2 * W2).1 * W1

From the previous axioms, it is easy to show that, under the stated
condition, the two sides of the equality have the same occurrence set.
This axiom asserts that they are equal.
[Relaxation]:
For any varieties al, a2, presentation w and place x,

al-<a2 = Iall=Ia2l
x E lal I A al < a2 (al)x * w < (a2)x * w

Hence, relaxation applies only to varieties with the same occurrence
set and is compatible with decomposition/composition.
[Void]:
For any presentation w:

IwI=0 w=Q

Hence presentation Q has no occurrence and it is the only one. Given
a presentation w, the variety w * Q is written 0, and, by [Composi-
tion], we have IwI = IwI.
[Pair]:
There exists at least one presentation with two occurrences (or, equiv-
alently, at least one variety with three occurrences). Assuming that
the previous axioms hold, it can be shown that this axiom is equiva-
lent to the following condition: for any variety a, there exists at least
one presentation w such that a = W.

Definition 5.1 A variety-presentation framework is a pair of sets VARI-
ETY,PRESENTATION equipped with occurrence-set, composition, decom-

196 J.-M. Andreoli

position operators, relaxation relation and void element, satisfying all
the axioms above.

The last two axioms ([Void] and [Pair]) are only used in the treatment
of the exponentials (Section 5.3.5). The multiplicative-additive case only
relies on the other axioms.

5.2.2 Examples
In the following examples of variety-presentation frameworks, we assume
given an arbitrary countably infinite set P the elements of which are
called points. In each example, we define two mappings: one which
maps each presentation or variety p into a finite subset jp of P called
the support set of p, and one which maps each point p of P into a
presentation Tp called the promotion of p, such that the support set of
the promotion of p is exactly the singleton {p}.

j : VARIETY U PRESENTATION i-' pf(P)
T : P H PRESENTATION
VpEP jTp={p}

The occurrence set jpj of a variety or presentation p is then defined as
the set of promotions of the points of the support set of A.

IpI={TpIPEjp}
Hence, the places are exactly the promotions of the points of P. Indeed,

If p is a place, then {p} _ IpI = {Tp I p c jp} hence p = Tp for some
point p.
If p is a point, then ITpI _ {Tq I q E 1Tp} = {Tq I q E {p}} = {Tp}
hence Tp is a place.

The following examples are introduced by specifying the presentations
and varieties, together with the support and promotion mappings.

5.2.2.1 Sets

The most basic example of a variety-presentation framework is given by
Linear Logic, and captures its underlying structure of multiset.

Presentations and varieties are simply finite subsets of P with no
structure at all. The support set of a variety or presentation is itself
while the promotion of a point p is the singleton {p}.

Structural Rules for Locative Linear Logic 197

(a) Composition (b) Decomposition

s 0` s(4 =

5 1

)
I

,

0

Fig. 5.1. The basic operators of presentations and varieties on trees and algs

Composition is simply symmetric difference. Decomposition is asym-
metric difference. Relaxation is equality.

W1 * w2 = wl O w2 (a),, = a \ x a1 -< a2 q al = a2

5.2.2.2 Orders and order varieties

Non Commutative Logic also provides an example of variety-presentation
framework, which, in fact, was the starting point of this paper.

A presentation (resp. variety) is a pair (D, G) where D is a finite
subset of P and G C D2 (resp. G C D3) is the graph of an order
(resp. order variety) over D. The set D is the support set of the
presentation or variety. The promotion of a point p is the pair ({p}, 0),
ie. the trivial order over the singleton {p}.
The composition w1 * w2 of two presentations with disjoint support
sets D1, D2 is defined as in [10] (composition of orders). If D1, D2
are not disjoint, then w1 * w2 is defined as wl * w2 where w' is the
presentation wi restricted to Di \ (D1 n D2). By construction, wl, w2
are disjoint. In other words, when composing two orders, they are
first restricted to the points where they do not overlap.
The decomposition (a)x of a variety a along a place x E Jal is defined
as (a)p in [10], where p is the point of the support set of a whose
promotion is x.
Relaxation between varieties a1 = (D1, GI) and a2 = (D2, G2) is
simply defined as D1 = D2 and Gl C G2-

5.2.2.3 Trees and algs

Many examples of variety-presentation frameworks are based on graph-
like structures, possibly decorated with "colours", eg. trees and algs.

Presentations and varieties are binary trees (resp. ternary algs, ie.
rootless trees) whose internal nodes are labeled with colours and whose

198 J.-M. Andreoli

leaves are labeled with distinct points of P. The support set of a tree
or alg is the set of points at its leaves. The promotion of a point is
the degenerated tree reduced to a single leaf labelled by that point.
The composition of two disjoint presentations (trees) yields a variety
(alg), simply obtained by adding an edge between the roots of the two
trees (Figure 5.1a). If the two trees are not disjoint at their leaves,
the leaves they have in common are first "erased".
The decomposition of a variety (alg) along one of its occurrences (leaf)
yields a presentation (tree), obtained by selecting the chosen occur-
rence as the root (Figure 5.1b).
The Relaxation relation between varieties can be that induced by any
set of linear graph rewriting rules (linearity ensures that the alg struc-
ture is preserved).

In particular, consider the variety-presentation framework of trees and
algs with two colours and <, and with the following Relaxation rules

Associativity 11 (x 11 y) * (z 110 (y 11 z) * (t 11 x)

Associativity < (x < y) * (z < t) (y < z) * (t < x)
Commutativity (x y) * z -< (x 11 z) * y

Entropy (x y) * z (x < y) * z

Among these rules, Associativity and Commutativity are reversible,
while Entropy is not. It is easy to show, using the analysis of [10],
that this variety-presentation framework yields exactly the same logic
as the framework of order varieties and orders (recalled in the previous
example), or that of series-parallel order varieties and orders, namely
Non Commutative Logic.

5.2.2.4 Cyclic Colourings

Let A be an arbitrary set of colours, equipped with an order relation
-< and an involutive operation c F-+ c* which is compatible with (ie.

C1 -< C2 = ci -< c2). If D is a finite set, let D13 denote the set of triples of
pairwise distinct elements of D. A cyclic colouring over D is a mapping
p from D'3 into A, such that for all p1, p2, P3 E D!3

P(p2,p3,p1) = P(p1,p2,p3) n P(pl,p3,p2) = P(pl,p2,p3)*

Let 0 be a distinguished object outside P (eg. P itself).

A variety (resp. presentation) is a pair (D, p) where D C PU{O} such
that 0 0 D (resp. 0 E D) and p is a cyclic colouring over D. The
support set of the variety (or presentation) is D\{O}. For any point p,

Structural Rules for Locative Linear Logic 199

the promotion of p is the presentation ({O, p}, 0) based on the unique
cyclic colouring over {O, p} (the empty one, since {O, p}'3 = 0).
The composition of two presentations w1 = (D1, pi) and w2 = (D2, P2)
where D1 n D2 = {O} is the variety (D, p), where D = D1 U D2 \ {O}
and p is defined for any p1, P2, P3 E D13 by

P(p1, p2, p3) = Pi (ql, q2, q3)
where Vi = 1, 2, 3 qj = (if pi E Dj then pi else 0)

and j E {1, 2} is such that at least two elements out of {p1,p2,P3}
belong to D3. Under the assumption that D1 n D2 = {O}, the index
j is uniquely defined, ql, q2, q3 are pairwise distinct, and it is easy to
show that p is a cyclic colouring over D. Thus, for example,

pl, p2 E D1 A p3 E D2 P(pl, p2, p3) = P1 (P1, P2, O)

p1,p2,P3 E D1 P(P1,P2,P3) = P1(pl,p2,p3)

If Dl n D2 0 {O}, then w1 * w2 is defined as wi * w2 where wz is
the presentation wi restricted to Di = Di \ (D1 n D2 \ {O}). By
construction, D'1 n D2 = {O}.
The decomposition of a variety a = (D, p) along one of its occurrences
x = ({O, p}, 0) with p E D \ {O} is the presentation (D', p') where
D' = {O} U D \ {p} and p' is defined for any P1, P2, P3 E D''3 by

P'(pl,p2,p3) = P(qi, q2, q3)
where Vi = 1, 2, 3 qi = (if pi = 0 then p else pi)

The Relaxation relation is induced by the comparator -< on colours,
ie. for varieties a = (D, p) and a' = (D', p')

a a' a D = D' A dp1, p2, P3 E D13 P(P1, p2, p3) P'(PI) p2, p3)

5.2.2.5 Cyclic Relations

A special case of the previous example (Cyclic colourings) is given by
the set of colours i = with

In that case, it is easy to show that there is an isomorphism A between
cyclic colourings and ternary cyclic relations.

Proposition 5.2 Let A be the mapping from the set of cyclic colourings
over D into the set of ternary relations over D defined, for any cyclic

200 J.-M. Andreoli

colouring p, and any P1, P2, P3 E D13, by

A(P)(pi,P2,P3) to '4- P(P1,P2,p3)

A is injective and its image is exactly the set of ternary cyclic relations
over D. For any such relation 7Z, and any p1, P2, P3 E D13, we have

A-1(7)(P1,P2,P3) =
maxj ((if T (pl, P2, P3) then 4 else), (if 7Z(pl, p3, p2) then else))

Thus, we obtain a logic L of arbitrary ternary cyclic relations (not neces-
sarily cyclic orders as in Cyclic Logic). L is an extension of both Linear
Logic, Cyclic Logic and Non Commutative Logic (ie. provable formulas
in these logics are also provable in £). The extension is conservative for
Linear Logic and Cyclic Logic (ie. provable formulas in L which belong
to these logics are also provable in them), but it is not conservative for
Non Commutative Logic. For example, it is possible to show that the
following formula

a 28. (b 2, c) 29 ((a1 (9.4 c1) 2' (1(94 b1))

is provable in L. It also belongs to Non Commutative Logic (identify
with < and with 11) but is not provable there. Indeed, the proof in G
requires a Relaxation that generates a ternary cyclic relation which is
not an order variety, nor can it be further relaxed into an order variety.

5.2.2.6 Structads

Another axiomatisation of structural rules in Linear Logic is proposed
by [8], based on the notion of "structads" which are species [7] equipped
with a composition operator very close to the composition operator of
variety-presentation frameworks presented here. In fact, the two ax-
iomatisations, discovered independently, are very similar, at least when
restricted to the structads on a single polarity (called C-structads in [8]).
Thus, it is quite straightforward to derive, from each of the examples
of variety-presentation frameworks above, a corresponding C-structad,
and, vice versa, from each of the numerous examples of C-structads
in [8], a corresponding variety-presentation framework.

There are some differences between the two approaches though. Here,
we follow a strict policy for the management of places, consistent with
our locative perspective. No identification of structures, modulo "canon-
ical isomorphisms", is needed (technically, this comes from the fact that
we do not use the direct sum but the symmetric difference for the occur-
rence set of the composition of two presentations). We don't even need

Structural Rules for Locative Linear Logic 201

<

Fig. 5.2. Illustrations of the [Commutation] axiom

the "transport" operation of species, since it can be reconstructed from
the composition and decomposition operations (through the notion of
"relocator", introduced below).

5.2.3 Assignments, Substitutions
Given a variety-presentation framework (hence satisfying the axioms of
Section 5.2.1), it is possible to define a generic notion of substitution
on varieties and presentations. Note that, as usual with the ubiquitous
notion of substitution, expliciting it is a rather bureaucratic task, but
reveals interesting features about the deep structure of the objects at
hand.

Definition 5.3 Given a variety a, a presentation w and a place x, the
expression a[x -D w] denotes either the variety (a)., * w if x occurs in a
or a otherwise, and is called the substitution of x by w in a.

Substitutions can also be applied to presentations.

Definition 5.4 Let w, w' be presentations and x, y be places. The sub-
stitution of x by w' in w via y is the presentation

w[x-0ywI = ((w * y)Ix -°w'])y

Although y occurs in the expression defining w[x -0 w'], there exists an
infinite subset of places y for which the result does not depend on y.
Indeed:

Proposition 5.5 Let w, w' be presentations, and x be a place. Then
w[x yw'] is independent of the place y such that y V JwJ U Jw'J U {x}.
Furthermore, such a place exists (hence we can write w [.x -0 w'] without
subscript).

202 J.-M. Andreoli

Proof There exists infinitely many places such that y V Iwi U Iw'I U {x},
since IwI, Iw'I are finite, while there are infinitely many places. Now let
y, z V IwI U Iw'I U {x} such that y # z. Hence, if x E IwI, then by
the [Composition] axiom, we have x, y E I w * yl, and x V {z} and
y V w'I and {z} fl Iw'I = 0, so that we are in the conditions of the
[Commutation] axiom:

w[x--*yw'] * z = ((w * y)[x-flw'])y * z by Definition

= ((w * y)y * w')y * z by Definition

= ((w * y)y * z)1 * w' by the [Commutation] axiom

(w * z)1 * w' by the [Decomposition] axiom

w[x-zw'] * z by Definition.

Hence w[x - yw'] = w[x - Zw'] by the [Decomposition] axiom. The
case where x ¢ IwI is treated similarly.

We can now give several reformulations of the [Commutation] ax-
iom, implicitly containing the [Composition] and [Decomposition]
axioms.

Lemma 5 Let a, al, a2 be varieties, x1i x2 places and w1, w2 presen-
tations. If wi = x1 or w2 = x2 oT (xl x2 and Iw1I fl Iw2l = 0 and
x1 V Iw2I and X2 0 W11) then

a[xl -owl][x2--*w2] = a[x2-0w2][x1-4w1] (5.1)

If w2 = x2 or (x2 E Iw1I \ IaI and Iw21 n Iai = 0) then

a[xi -*wl] [x2 -*w2] =a [xi -'w1 [x2 -Dw2]] (5.2)

If xl E lain lal l and x2 E lain 1a21 and jai In 102l = 0 then

01[x1`(a2[x2-(a)x2])x1] = a2[x2-*(al[xl--*(a)X11)X2] (5.3)

Proof Simple case-by-case analysis. Figure 5.2 illustrates the main case
in each of the three statements. Note that (5.1) holds even if X1, x2 V IaI.

1-1

In the sequel, we are interested in the substitution of multiple places by
presentations. For this, we introduce the notion of presentation assign-
ment, to specify what has to be substituted by what, and of enumeration
of places, to specify in which order the substitutions should take place.

Structural Rules for Locative Linear Logic 203

Definition 5.6 An enumeration of the places is a bijection from N'
into the set of the places. A presentation assignment (or assignment for
short) is a mapping cp from places to presentations. Let D be a set of
places.

cp is said to be admissible on D if Vx, y E D x y

W(x) = x V cp(y) = y V (x V I W(y) I A y V I(x)I).
cp is said to be linear on D if
Vx,yED x y = Iw(x)JnIcp(y)I_0.
A relocator of D is a permutation a of the places which is ad-
missible on D.

cPLD is the assignment defined for all place x by
cOLD (x)=ifxEDthen xelse cO(x).

We can now define a generalised notion of substitution.

Definition 5.7 Let cp be an assignment, X an enumeration of the places
and a a variety. Let (ik)k=1...p be the (unique) increasing (finite) se-
quence of N° such that Ial = {Xi,,}k=1...p. The raw ca-substitution of a
ordered by X is the variety

c X a = a[Xii [Xip---oW(Xip)I

Lemma 5(5.1) states that, under certain conditions, the order in which
two substitutions are performed is irrelevant. This can be extended to
any number of substitutions as follows:

Proposition 5.8 Let cp be an assignment and a a variety. If cp is linear
and admissible on jal then cp X a is independent of the enumeration of
the places X. Furthermore, such an enumeration exists (hence we can
write cp a without any subscript).

Proof Essentially, we have to show that for any permutation µ over
{ 1, ... , p}, we have

a[Xil -0cO(Xil)] ... [X1D - W(XiOl a[Xiµ(1) -0 \^tµ(1) /1 ...
... AP(p) -* cp(Xila(P))1) (5.4)

Since any permutation of {1, . . . , p} is the composition of transpositions
n/n - 1, it is therefore sufficient to prove (5.4) when p is such a trans-
position, and we can furthermore assume that n = p (the other cases

204 J.-M. Andreoli

are obvious consequences of this one). Hence we have to prove

N[Xip- N[Xay-irn

[X2P -- 7' (X2p)]

where Q = a[Xi, cp(Xi,)] ... [Xjji_2 -o which is a straight-
forward application of Lemma 5(5.1) and the linearity and admissibility
of cp on lal.

We need the following lemmas:

Lemma 6 Let a be a permutation of the places and D a set of places.

a is a relocator of D Vx E a(D) fl D ax = x

Proof Simple manipulation of the definition.

Lemma 7 Let cp be an assignment, r a place and a a variety. If r E jal
and cP is linear and admissible on lal, then so is cpLr and

cP a = (cpLr a)[r-cp(r)]

Proof Straightforward application of Proposition 5.8, where the enu-
meration of the places is chosen in such a way that r is the last element
of jal. The only difficulty is to show that cpLr is linear and admissible on
D = jal. Admissibility is a direct consequence of the admissibility of cp
on D. Linearity is a bit less straightforward. If W(r) = r then cpLr= cp,
which is linear on D. Now assume W(r) # r and let x# y E D.

If x r and y :h r, then cpLr (x) = cp(x) and cPLr (y) = cp(y), and
by linearity of cp on D we have Icptr (x)l fl IcpLr (y)I = 0.
If x = r (hence y r), then PLr (x) = r and VP Lr (y) = cp(y). If
p(y) = y then, obviously, r V Icp(y)I. If V(y) $ y, since W(r) # r,
then by admissibility of cP on D, we have r Hence, in
both cases IcpLr (x)l fl Icplr (y)l = 0.

Lemma 8 Let cP be an assignment and a a variety. If cp is linear and
admissible on jal, then

IV al= U IcP(x)I
XEICE I

Structural Rules for Locative Linear Logic 205

Proof This is shown by induction on the cardinality of the set D = {x E
IaI/cp(x) # x}. If D = 0, then cp = Id on Jai and

=lal= U {x}= U Icp(x)I
xEkkI xEIal

Now, if D is not empty, choose r E D. By the induction hypothesis, we
have

r al = U IcPL, (x)I = U Iw(x)I U{r}
xEIaI xEIaj\{r}

A

Since cp L, is linear on D, this union is direct, hence r 0 A, and by
Lemma 7, we have

1w al =I (wLr a)[r- w(r)JI = (Ate {r}) \ {r} 0 Iw(r)f =A O Icp(r)I

By linearity of cp, we have A fl Icw(r)l = 0, hence the result.

Lemma 9 Let cp be an assignment, a a variety and or a relocator of Jai.

cp is linear on o-(jal) if and only if cpa is linear on jal.
If cp and cpa are linear and admissible on, respectively, a(jaI) and
al, then

Proof This is shown by induction on the cardinality of the set D = {x E
I al /cp(ax) # ax}. If D = 0 then cpo- = a on jai and cp = Id on a(jal),
and

Now, if D is not empty, choose r E D. Since cp is linear and admissible
on a(Ia1), by Lemma 7, so is cp LQr, and hence ep lar a is linear on Ial.
Let's now show that cplur a is also admissible on Jai. Let x y E lal
such that cpLa,. (ax) # x and cpLur (ay) 0 y.

If x 54 r and y 54 r, then co LQr (ax) = cp(ax) and ep LQr (ay) _
admissibility of cpa on Jai, we have x 0 IcpLar (ay)l

and y 7- I7' YO,' (ax) I.

If x = r (hence y 54 r), then cp Lar (ax) = ar and cp LQ,. (ay) _
W(ay).

- Suppose y = aT, hence y E a(Iaf) fl Jai, hence, by Lemma 6,
ay = y, hence y = r, contradiction. Thus, y 0 lwLQ,. (ax)I.

206 J.-M. Andreoli

- If cp(vr) # r, since sp(ay) # y, by admissibility of cpa on lal,
we have x = r 0 IPLCT (ay)l.

- If cp(ar) = r, hence r E Icp(ar)l and, by linearity of cpu on jal
we have x = r 0 1cpLQr (ay)j.

Thus, Wpb r and coL, r a are linear and admissible on, respectively,
a(jaj) and Ial. Furthermore, it is easy to show that for all x E jal,
we have

(color a) Lr (x) = (cWa) [r (x)

Hence,

(c Lcir (a a))[ar-ocp(ar)] by Lemma 7

= ((Wr v) a)[ar-0cp(ar)] by induction

a)Lr a)[r-0ar][ar-.(p(ar)]
by Lemma 7

((cPa)lr by (5.5)

((cPa)Lr a)[r-0cp(ar)] = (cpa) a
by Lemma 5(5.2) and Lemma 7

Definition 5.9 Let D be a set of places. Let cp be an assignment, X
an enumeration of the places, a a relocator of D and a a variety with
jal = D. The cp-substitution of a via a ordered by X is the variety

cP O'x;u a = cpa-1 x (a a)

Since, by definition, a relocator of lal is admissible (and obviously linear)
on jal, by Proposition 5.8, the notation or a need not be subscripted
by X. Furthermore, we have ja al = a(jal), and hence,

co x;Q a = a[Xi, - X,1] ... [Xip -0 Xjp] [Xjl -* cp(Xij] ... [XjP -° o(Xip)I

where a(jal) = {X 11..., XXp} with (jk)k=1...p strictly increasing and
Xik = for k = 1... p (the substitutions of a can be performed
in any order). In other words, the occurrences of a are first relocated and
then the raw substitution is performed. The relocator can be chosen in
such a way that cpQ-1 be admissible on a(jaj), in which case, assuming
cp is linear, cp >x;Q a becomes entirely independent of X. Interestingly,
it can also be shown independent of the "mediator" a:

Structural Rules for Locative Linear Logic 207

Proposition 5.10 Let cp be an assignment and a a variety such that cp
is linear on laI. The variety W>X;o a is independent of the enumeration
of the places X and of the relocator or such that coa-1 is admissible on
a(lal). Furthermore, such a relocator exists (hence we can write co>a
without any subscript).

lW>al = U Iw(x)I
xEIaJ

Moreover, when cp is admissible on lal, then cp > a = cp a.

Proof Let D = Ial (which is finite).

We first show that for any finite set of places D', there exists a
relocator of D outside D', i.e. such that a(D) n D' = 0. Indeed,
since D, D' are finite while there are infinitely many places, we
can choose a subset D" of places with the same cardinality as
D n D' and disjoint from D U D'. Let p be a bijection from
D n D' into D". Define a as the mapping from places to places
such that for all place x, if x is in D n D' then ax = µx, if x is
in D" then ax = p-lx, and if x is neither in D n D' nor in D"
then ax = x. By construction, a is a permutation of the places.

a(D) = a(D \ D') U a(D n D') = (D \ D') U D" hence
f a(D)nD=D\D'

a(D)nD'=0

By construction, or is the identity on D \ D'. Hence, by Lemma 6,
a is a relocator of D outside D'.
Now, choose a/ relocator a of D outside UxED l(x)l. Hence
a(D)nUxED 1W(X)1 = 0. Hence, Vy E a(D) a(D)nlwa-1(y)I = 0.
Therefore, a is a relocator of D such that cpa-1 is admissible on
a(D).
Finally, consider two relocators or, a' of D such that cpa is ad-
missible on a(D) (and idem for a'). Since cp is linear on D, so is
cpa-1 on a(D) (and idem for a').

- If a(D) n a'(D) = 0 then, by Lemma 6, au'-1 is a relocator
(hence admissible) on a'(D). Moreover, aa'-la' = a is admis-
sible on D (since it is a relocator). Hence, by Lemma 9, we
have

(5.6)

208 J.-M. Andreoli

By hypothesis, cpa-1 and spa-10'O' ' 1 = cpaj-1 are admissible
on, respectively, a(D) and a'(D). Hence, by Lemma 9, we have

cpa-1 (aa'-1 (a' a)) = spa' 1 (a' a) (5.7)

Combining (5.6) and (5.7) we get

coa-1 (a a) = (pa'-1 (a' a)

If a(D) fl a(D') 0, we can choose a relocator a" of D out-
side a(D) U a'(D) U UxED Icp(x)I. Hence, as above, waj-1 is
admissible on a"(D) and a(D) n a"(D) = a'(D) fl a"(D) = 0.
Hence, as in the previous case, we have

Wa-1 (a a) = cpa"-1 (a"
.

a) _ (pa'-1 (a' a)

Lemma 10 Let cp be an assignment, a a variety, r, s places. If cp is
linear on lal and r E Ial and s ¢ Ial U W(x)j, then

cp> a = (Wt., >(a[r-*s]))Is-W(r)]

Proof Left to the reader.

Up to now, we have applied multi-substitutions to varieties. It is easy
to extend this to presentations as follows.

Definition 5.11 Let cp be an assignment and w a presentation. Let y
be a place. The cp-substitution of w via y is the presentation

cp>yw=(W6D(w*y))y

Note that this definition assumes that cp Ly is linear on lw * yl. This
is always true for some values of y and, for these values, the result is
independent of y:

Proposition 5.12 Let cp be an assignment and w a variety such that
cp is linear on jwj. The presentation cp ry w is independent of the place
y such that y jwj U UxE1,,,1 JW(x)j. Furthermore, such a place exists
(hence we can write cp > w without any subscript).

kk>wi = U iW(x)I
xEIwI

Structural Rules for Locative Linear Logic 209

Proof There exist infinitely many places such that y 0 IwIUU.,,,, IcP(x)I,
since I w I as well as each I cp(x)I are finite, while there are infinitely many
places. Now, let y, z V I w I U UxEI,,I I W(x)I. Hence

(cpLZ >(w * z))[z-4y] by Definition 5.11
(W[y,x >((W * Z)[z-ay]))
[y - W ly,z (z)] [z ---o y] by Lemma 10
cp[y r(w * y) = (cp >y w) * y by Definition 5.11

To complete the loop, we now apply multi-substitutions to assignments
themselves.

Definition 5.13 Let cc, -% be assignments. The assignment co > 0 is
defined for all place x by (cp>z1))(x) = cpr (,0(x)) if ep is linear on 10(x)
and some arbitrary value otherwise.

Lemma 11 Let cp, 'O be assignments and D a set of places. If 0 is linear
on D and cp on U.CD I'O(x)I then cp > b is linear on D.

Proof Left to the reader.

We can now state the fundamental theorem of this section:

Theorem 5.14 Let cc, 0 be assignments and a a variety such that ii is
linear on jal and cp is linear on U.Cj"j 10(x)i.

cP>(0>a) = (cP>)>a

More generally, > is an associative operation on linear assignments (on
all the places).

Proof Proceed in two steps:

(i) Assume co is admissible on D = 10> al = UxEI,,,1 k'k(x)l and pro-
ceed by induction. If cp is not identity on D, choose r c D such
that cc(r) # r. Since r E D, there exists a place x E Jai such that
r E I'(x)l. Since 0 is linear on jai, for all y E jai \ {x} we have
r E *(x)l hence r 0 l (y)l hence cp[r= ep on IV)(y)l hence

(W1, >V)) (Y) = (c > ')(y) (5.8)

210 J.-M. Andreoli

Now, we have cp (0 > a) =

(w L, I,- (V a))[r-*(p(r)]
((coLr >,O) > a)[r-D P(r)]

((cPlr 4) LZ >(a[x-0z]))
Lr >V)) (x)] [r - W(r)]

((W[r >'P)L: >(a[x- z]))
[z -D (cPLT ')(x)) [r -° cP(r)}]
((W Lr 4)LZ >(a[x-0z]))
[z -o (cP V(x))]
((W > P) I. >(a[x-0z]))
1z (W >&)(x)]
(cP>'')>a

by Lemma 7
by induction hyp.

by Lemma 10 for some z

by Lemma 5(5.2)

by Lemma 7

by (5.8)
by Lemma 10

(ii) This result can easily be generalised to the case where cp is not
assumed admissible on D, using a relocator a and the result in
the admissible case:

W > (0 > a) = 0a-1 (a (0 > a)) _ (a > 0)) > a
Vx aI (cpa-l > (a>'))(x) = cpa-1 (a (0(x))) _

w> (0(x)) = (cP>0)(x)

We often use the following direct consequence of the theorem.

Corollary 5.15 Let cp be an assignment and w1, W2 presentations such
that lwl I fl Iw21 = 0 and cp is linear on Iw1I U 1w2 1. Then

cp> (W1 * W2) = (c,>w1) * (W >w2)

Proof Let 0 be a presentation assignment linear on Iw1 U w21 and let
X1, x2 be two distinct arbitrary places outside > w1 I U 10 > w21. Let µ

be an assignment such that µ(xi) = wi (for i = 1, 2). Thus µ is linear
on Ixl * x21. By definition and [Decomposition], we' have:

'fl D (x1 * 12) _ (x1 * 12)[x1 N(x1)][x2 -'/(X2)] = W(xl) *O(X2) (5.9)

Hence, cp D (WI * w2) = cP> (µ(x1) * µ(x2)) =

cp D (N D (x1 * x2)) by (5.9) where V = µ
(cp > lt) > (xl * x2) by Theorem 5.14

ft)(11) * µ)(x2)
(cp>w1) * (c,>w2) by (5.9) where iJi = cp>p

Structural Rules for Locative Linear Logic 211

5.3 Coloured Linear Logics
In this section, we assume given a variety-presentation framework, and
we build a generic sequent calculus using only the operations of that
framework. Essentially, a formula is a syntactic construct specifying a
structure (here a presentation) on the sets of its sub-formulas, while a
sequent is a syntactic construct specifying a structure (here a variety)
on its component formulas. This distinction is particularly thin, and
we propose a formulation of the sequent calculus where the two notions
of sequents and formulas are blurred. This avoids the introduction of
yet another concept like "composition modes" [9] or explicit operations
on which structural rules are stated as in the classical non associative
Lambek calculus [4].

5.3.1 A Locative Sequent Calculus
In fact, all we need is the capacity to explicitly address each formula
occurring in a proof, and, for each address, to determine the top-most
connective of the formula at that address. For addresses, we use the loci,
introduced in Ludics [6] with a similar purpose.

Definition 5.16 (Loci) We assume given an arbitrary (countably infi-
nite) set whose elements are called biases. A locus is a finite sequence
of biases.

In the sequel, we assume given a bijection between the set of loci and
that of places (of the variety-presentation framework). Such a bijection
always exists, since the set of places as well as that of loci are countably
infinite. We make use of the following notations:

e denotes the place corresponding to the empty locus.
For any place x, x denotes the mapping which maps any place y into
the place (written ±y) for which the locus is the concatenation of those
for x and Y.

For any place x, denotes the "inverse" mapping of ±, ie.
n(y) = if (y = ±z) then z else y

Definition 5.17 (Independence)

The prefix order on loci induces a corresponding arborescent order
on places:
x<y q 3z y=xz

212 J.-M. Andreoli

A set D of places is said to be independent if
dx,yED (x<yz*x=y)

We make use below of the following result which is a direct consequence
of Theorem 5.14 (and = Id).

Proposition 5.18 For any presentation w, and for any linear assign-
ment cp on I wI , if x ¢ IW > wI and IW > wl U {x} is independent, then cps
is linear and admissible on I± wl and

This provides an effective way to reduce any substitution to two raw
substitutions. For any place x satisfying the conditions, ± acts as the
relocator (although it is not strictly speaking a relocator, since it is not
a permutation).

Example 5.1

In the examples, we use the simple variety-presentation framework of
sets. Furthermore, we assume that the decimal digits 1, . .. , 9 are biases,
so that strings of digits, such as 256 or 1, represent loci, hence places.
Consider the presentation (set) w = J12, 13, 2} and the presentation as-
signment co = [12 : {13, 2},13 : {14,12}, 2 : {3}] (with arbitrary values
for the other places). The computation of w' = cp > w requires a reloca-
tion, because 12,13 are in Iwl and 13 appears in ep(12). Using a reloca-
tion, we obtain w' _ {13, 2, 14, 12, 3}. We can also use the proposition
above, choosing, say, x = 57. We thus have cps = [5712 : {13, 2}, 5713 :
114,121,572 : {3}] which applies to ± w = {5712,5713,572} and
yields w' by raw substitution. Note that the choice x = 1 is forbidden
(not independent from 12 E cp(13)) since 12, 113 would be in Ix wI

and 12 would appear in cp(113).

Definition 5.19 (Connectives) A (generalised) connective is a set
R of presentations such that the set IRI = UWER IwI is independent. A
polarity is an element of the set {+, -}. A polarised connective is a pair
written RS where R is a connective and s a polarity. We write IR8I =
IRI. If c is a polarised connective, and s a polarity, then cs denotes the
polarised connective obtained from c by multiplying its polarity by s (with
the obvious multiplication on polarities).

Essentially, a connective R corresponds in Ludics to a set of ramifica-
tions, except that we do not require here that SRI contain only biases,

Structural Rules for Locative Linear Logic 213

Let w be a presentation and W be a presentation assignment. Let x, x' be
places and R be a connective.

Logical rule Negative case: if x ¢ lwl

... Dr)
L(x, n-)W*x

with one premiss for each r E R.

Logical rule Positive case: if r E R and ep is linear on

... W(y) * xy L(y fl+
r)

(WDr) *x

with one premiss for each y E IrI.

Identities:

ifx#x'

A(=. x')

iflwlfllw'I=0

W*x W'*x of=)

Structural rule: if a -< a'

aa

w*W'

ITI and x lWorl

Fig. 5.3. The generic locative inference system of Coloured Linear Logics
(multiplicative-additive case)

but only that it be independent (which is weaker). In Ludics, a single
ramification represents a multiplicative connective, while here this is the
role of a presentation. As in Ludics, additivity is incorporated by con-
sidering sets of ramifications (here sets of presentations). The generic
locative inference system of Coloured Linear Logics in the multiplicative-
additive case is given in Figure 5.3. Its inferences operate on sequents
which are simply varieties.

The negative rule [L(x, R.-)] decomposes the connective R-. It mim-
ics the negative rule of Ludics, ie. a combination of "par" and "with"
of Linear Logic. It has one premiss for each element of R (possibly
none) and each premiss inherits the same context (that of the conclu-
sion).

The positive rule [L(x, R+, T)] decomposes the connective R+. It mim-
ics the positive rule of Ludics, ie. a combination of "tensor" and "plus"

214 J.-M. Andreoli

of Linear Logic. Each instance of the rule requires a choice of 'r c R
(recorded in the label). It has one premiss for each place occurring in
r (possibly none). Each premiss inherits a piece of the context of the
conclusion, filtered by r.

The identities, [A] (Axiom) and [C] (Cut) are the usual ones. Note
that the two premisses of the Cut rule share the same cut place.
The structural rule [S] allows inferences which "strengthen" their vari-
eties (when read bottom-up, or "weaken" them when read top-down),
such comparisons in strength being defined by the [Relaxation] re-
lation of the variety-presentation framework.

For each place x occurring in the conclusion of an inference, and for each
premiss of that inference, the structure of loci allows to trace exactly how
x is transported from the conclusion into that premiss: x may be deleted,
untouched, or expanded (ie. become ,k y). Thus, in a Logical inference,
the conclusion always consists of two disjoint sets of places: a singleton
containing the principal place, which is recorded in the label, and the
context. In each premiss, the context places are either untouched or
deleted, while the principal place is expanded. An important property,
which is always implicit in the traditional non-locative formulations of
sequent calculi, is that in each premiss, the places deriving from the
principal one (expanded) and those coming from the context (when not
deleted) are still disjoint. Here, as places are made explicit, we need an
explicit assumption to ensure this separation property.

Definition 5.20 (Inference trees) An inference tree is a tree labeled
with varieties, obtained by consistently assembling instances of the in-
ference rules of Figure 5.3, and such that

in each Cut inference, the cut place is different from and inde-
pendent of each of the places occurring in the conclusion;
the occurrence set of the root sequent (variety) is independent.

The separation property is then a direct consequence of the following
one:

Proposition 5.21 The occurrence set of any sequent (variety) in an
inference tree is independent. Any sub-tree of an inference tree is an
inference tree.

This is shown by induction on the depth of the tree.

Structural Rules for Locative Linear Logic 215

5.3.2 Cut Elimination

The Cut rule [C(x)] can be written equivalently (although less symmet-
rically) as follows (under the same side-conditions):

a x*w C r)
a[x -D w]

The axioms of variety-presentation frameworks have been chosen in such
a way as to make possible the definition of a Cut-elimination procedure,
which can be seen as the computation of the expression a(x -0 w] in
the conclusion of the Cut, using the axioms of the framework. This
procedure is defined below in the usual way (with reduction rules corre-
sponding to the usual cases of commutative conversion, symmetric and
asymmetric reductions). The locative calculus is untyped, so Cut re-
duction may fail, but we introduce later the appropriate notion of types
with the essential property that well typed inference trees (real proofs)
do not reduce to error. Reduction is defined by rewrite rules of the form

.Ira .7rb

wa*z Wb*z
Wa * Wb

C(r)
ir

where the lowest inference of the input inference tree is a Cut, and the
output inference tree depends on the input sub-trees Ira, 7rb.

Convention: in the inference trees, we make use of "dummy" infer-
ences whose premiss and conclusion are equal. The optional argument
in the label of such inferences is only used for reference purpose (eg. to
justify the equality).

5.3.2.1 Commutative conversions

Commutative conversions deal with the case where one premiss of the
Cut (eg. the left one) is preceded by an inference which does not intro-
duce the cut place. Hence, with a negative Logical inference [L(x, R-)]
for example, we must have Wa * z = w * x and x z (hence z E JwI and
x E Iwal) for some presentation w. This justifies the equality (e) in the
following reduction rule.

216 J.-M. Andreoli

w*x
Wa*z

(e)

L(x, R-)

Wa*Wb

Wb*z

Wb*z
C(.)

c(.)
W * (x r) [Z -* Wb]

(el)

w[z *wb] * (x T)

w[z-owb] * x

Wa * Wb
(e2)

L(x, R-)

Identity (el), it is a direct consequence of Corollary 5.15. As for (e2), we
have: w[z-owb]*x = (w*x)[z-DWb] by Corollary 5.15 and therefore w[z-
Wb] *X = (Wa * z) [z 'Wb] = Wa * Wb by identity (e) and [Decomposition].

The other commutative conversion cases are treated similarly.

5.3.2.2 Symmetric reduction: L-L case

Symmetric reductions deal with the case where each premiss of the Cut
is preceded by an inference which does introduce the cut place. We first
consider the L-L case where this introduction is performed by Logical
inferences [L(z, ca)] and [L(z, cb)] on both sides (where ca, cb are po-
larised connectives). If connectives Ca, cb are not dual of each other, the
reduction fails. This is the only such case of failure.

Wa*z
L(z, ca)

Wa * Wb

L(z, cb)
Wb*z

C(z) w ERROR if Ca, cb are not dual

We now assume that Ira, 7rb end with dual Logical inferences, respectively,
[L(z, R+, r)] and [L(z, R-)], for some R and T E R. In that case, we
can write the following reduction rule.

Structural Rules for Locative Linear Logic 217

... W(y)*zy...

((p>T) * z
L(s, R+, r)

w * (W >,r)

(P(ys) * zy3

w*z
L(z, R-)

(p(y1) * zy1 w * (z T)

O(y2) * 42 w * (z T)[zy1-W(yi)]
w * (z T)(41 -DW(y1)][zy2 -W(y2)]

(p(yn) * zyn w * (z T)[zy1 . (y1)] ... [zyn-1-0co(Yn-1)]

W * (z T)[zy1-DcP(y1)] ... [zyn-cO(yn)]

w * ((p D T)
(8)

where ITl = {y1 i ... , yn}. The identity (e) is justified by Proposition 5.18:

w * (z T)[zy1-D(p(y1)] ... [zyn-(p(yn)] = w * ((pi (i to- 7-))

=w*((pDT)

5.3.2.3 Symmetric reduction: A-A case

In the A-A case of symmetric reductions, the cut place is introduced in
both premisses of the Cut by an Identity axiom. In that case we have
the following reduction rule.

A(:, _) A(u,x*z y*z
c(o)

x*y
Mi x*y A(s, Y)

5.3.2.4 Asymmetric reduction

In the case of an asymmetric reductions, the cut place is introduced in
one premiss of the Cut by an Identity axiom and in the other by a Logical
rule, eg. [L(z, R+)] (the specific choice of element of R is ommitted here
as it plays no role). In that case we have the following reduction rule.

218 J.-M. Andreoli

w*z L(z, R+) A(y,y*z
C(z)

w

w*z

U) *Y

A(iu, yu)
... zu*yu ...

L(U, R+,

L(z, R+) L(z, R-)
y*z

c(:)
w*y

where, in the right sub-tree of the output inference tree, the lower logical
inference has one premiss for each r E R and, for each such T, the upper
logical inference has one premiss for each u E IT!.

The case where the left premiss of the input Cut is the conclusion of
a negative Logical inference is treated similarly. In both cases, there is
a slight difference with traditional Cut reduction. Traditionally, there
are two possibilities to deal with asymmetric reductions of the sort con-
sidered here:

One solution is to write a reduction rule of the form

IdI,F F, Fl
Cut r,FI, F

But this is not correct from a locative point of view. Indeed, if we
make the formula occurrences explicit, we get

r, F1 F21
F11 Id

F, F2
Cut r, F,

Although the output proof has the same type as the input proof, it
does not have the same conclusion (one occurrence of F has been
substituted by another).
The other solution is to reduce beforehand the identity axioms in the
input proof so as to make them scope over atoms only. In this way,
the situation where the cut formula is principal formula of a logical
rule on one side and participates in an identity axiom on the other
side simply cannot happen, as that would require the formula to be
both atomic and compound. Reduction of the identity axioms is done
by rules of the following form.

Structural Rules for Locative Linear Logic 219

F F1 Id
G

Gl
Id

IdF®G, F178G' F®G, Fl, GlF®G, Fl 'G' 78

In the solution presented here, the reduction of identity axioms is per-
formed on demand, when the Cut reduction needs it: the output in-
ference tree is obtained from the input one by performing one step of
reduction of the identity above the right premiss of the input Cut, and
it is the label of the Logical inference of the other premiss of the input
Cut which determines how to perform that reduction.

5.3.2.5 Termination of Cut Elimination

Theorem 5.22 Cut reduction on inference trees always terminates. If
the input inference tree 7r has no proper axioms and a conclusion a, then
any maximal sequence of reductions of 7r terminates either in error or in
an inference tree with no proper axioms, no Cut inference and the same
conclusion a.

Proof We give here a sketch of the proof, which follows quite naturally
the classical one for pure Linear Logic. For a given Cut inference [C(x)],
let D be the set of places y such that a logical inference with principal
place y appears above that Cut inference, and x < y (ie. the places where
the cut place is actually expanded). Define the degree of a Cut inference
as the number of elements of D, and its depth as the size of the inference
tree above it. In commutative conversions, the Cut inference is replaced
by Cut inferences with the same degree, but lower depth. In symmetric
reductions, the Cut inference is replaced by Cut inferences with a lower
degree. So, in both cases, some counter is strictly decreased. The only
problem comes from asymmetric reductions, which increases the depth
of the reduced Cut inference without reducing its degree. Consider for
example the inference tree 7r where T is a presentation and Irj = {a, b}:

W*(xDT)
W*x

L(x, { -})

W*y
y*x

C(:)

By asymmetric reduction applied to [C(x)], it reduces to 7r' (which is in
fact "bigger" than 7r):

220 J.-M. Andreoli

xa * ya
A(aa, 1%a) A(ab, Sib)

w*(x>r) (y>-r)*x
L(x,{r})w*x y*x

- L(y, {r}-)
C(x)

L(x,{r}+)

w*y

The degree of [C(x)] is unchanged and its depth increased. But then,
the only way to proceed with 7r', as far as [C(x)] is concerned, is by a
commutative conversion followed by a symmetric reduction, yielding

A(aa, y)

±a*ya Lo
A(ab, ,j b) C(aa)

±b * yb w * (± > -r) [tha -o ya]

w*(,>r)
L(y,{r})

w*y

C(ab)

Thus, [C(x)] is ultimately replaced by two Cut inferences of lower degree.

Note that we make no claim here about strong normalisation (all max-
imal reductions terminate with the same value). This is true only with
restrictions:

Consider the following commutative conversion:

w*x
L(x, 0-)

Wa * Wb

:ir
Wb*z

C(s)

w[z>Wb]*x

(w * x) [z D wb]

Wa * Wb

Here, the output inference tree cannot be re-written further (it does
not contain any Cut inference). If, on the other hand, 7r rewrites into
error, we obtain two maximal reductions, one leading to error and the
other one to a success. The same argument also applies to symmetric
or asymmetric reductions. This problem is eliminated by restricting
to an outer-most reduction strategy, which forces the reduction of 7r
to happen before the reduction above.
Consider also the following commutative conversions (which differ only
by the index i = 1 or i = 2):

L(-1, 0-)
X1 * Z

x1 * x2

L(x2, 0-)
X2 * z

C(.) w x * x L(xi, 0)

1 2

If the left premiss is commuted first, we obtain the output tree with i =
1, while if the second premiss is commuted first, we obtain the output
tree with i = 2. Although the two trees have the same conclusion,

Structural Rules for Locative Linear Logic 221

they are different. Again, here, a left-most reduction strategy avoids
the problem.

Definition 5.23 Let R, R' be (non-polarised) connectives, w E R a
presentation and x E 1wI a place. The expansion of R at w, x by R' is
the connective

R>,,xR' = R\{w}U{w[x-o(:b >w')] I w'ER'}

In other words, R c>4,,x R' is obtained by replacing w in R by all the
presentations obtained by substituting in w the place x by some presen-
tation of R' prefixed by x. Focussing, like Cut elimination, is a procedure
which executes rewriting steps on inference trees.

5.3.3.1 Compositions

Compositions (one negative, one positive) deal with the case where two
consecutive Logical inferences of the same polarity are such that the
principal place of the upper one is an expansion of the principal place
x of the lower one (ie. is of the form xa). For example, in the negative
case, this situation is characterised by the identity (e) below. or denotes
the presentation of the connective R labelling the lower inference, the
corresponding premiss of which is the conclusion of the upper inference.

5.3.3 Focussing

For each r'ER'

For each TER\{a} w'*ia
(e)

... W * (x > T) W* (x D a)
W*x

L(an, R'-)

L(r, R-)

For each r'ER'

For each rER\{a}

W * (D T)

W' * (±a D T')

W * (th> (a[a-o(o,>T')1))
W*X L(z, R"-)

222 J.-M. Andreoli

where R" = R >o,a R'. Identity (e') is justified as follows:

w' * (xa D T') _ (w' * xa) [xa --0 (xa D T')]

(w* (x > Q)) [xa -0 (xa > T')] by identity (e)
w * ((x Q) [xa (xa T')]) by Corollary 5.15
w * (x (v[a--0 (a T')])) easy to show

The positive Composition case is treated similarly.

5.3.3.2 Commutations

Commutations deal with the case where two consecutive Logical infer-
ences of the same or opposite polarity are such that the principal place y
of the upper one is independent of the principal place x of the lower one.
For example, with two positive inferences, this situation is characterised
by the identity (e) below. z denotes the place of presentation T labelling
the lower inference, the corresponding premiss of which is the conclusion
of the upper inference.

For each vElr'l

'O(v) * yv ...
For each uEIrI\{z} (w DT') * y

(e)

... cp(u) * xu ... cp(z) * xz

(cP D T) * x
L(x, R+, r)

For each uEIr1\{z} Z/J(t) * yt

... cp(u) * iu ... cp'(z) * xz

For each vEIr'I\{t} ((p' DT) * x
(e2)

10
A

Vi (v) * yv ... z/i'(t) * yt

('b'>T')*y
(e)

L(y, R +, r)

L(r. R+, r)

(cO > T) * x

In the input inference tree, cp, z/i are presentation assignments and we
assume that x, y are independent (condition for the commutation to be
possible). Hence xz E UVElr,l 1,0(v)J. Hence, there exists t E IT'I such
that xz E Iz/i(t)l. In the output inference tree, cp' and z/i' are assignments
defined as follows:

Vu E 17-1 cp'(u) = if u = z then ()(t) * yt)2z else W(u)
Vv E IT'I 0'(v) = if v = t then ((W'> T) * x)yt else O(v)

Structural Rules for Locative Linear Logic 223

Identity (el) and (e2) are direct consequences of the definitions of
Identity (e) is justified as follows:

(z()'DT')*y
(y T-')) * y by Proposition 5.18

_ (Pyljt (y T'))[yt-*((gyp DT) * x)yt] * y by def. of a/)' and Lemma 7
_ (06t I- (y T'))[yt-o (W± (± T)) * x)yt] * y by Proposition 5.18
_ (ylyt (i T'))[yt-0(((Wxl=z11- (± T))[xz-* (fi(t) * ,t)==]) * x)vt] * y

by definition of gyp' and Lemma 7

((yL t (, T')) * y)[yt T)) * x)[xz-o (i4(t) * yt)==1))vt]
C B A

=C[yt-o(B[xz-(A)xz])at] = B[Lbz(C[yt-0(A)yt])s.] by Lemma 5(5.3)
_ T)) * (y T')) * y)[yt-*(fi(t) * yt)vt])==]
_ T)) * x)[xz-* (((L t (y T')))[yt-o'/ (t)] * y)=z]
_ ((wxLxz (± T)) * x)[xz-o((y (y T')) * y)=z] by Lemma 7
_ (x T)) * x) [±z * ((4/) DT') * y)2;,] by Proposition 5.18
_ (x T)) * x)[iz-*(cp(z) *±z)xz] by the identification (e)
_ (WxLxz (x T))[xz-oca(z)] * x
_ (cpx (± T)) * x by Lemma 7
_ (cp D T) * x by Proposition 5.18

Example 5.2

In the variety-presentation framework of simple sets, we have

{11,21}UA {22}UB

{2} U (({11} U A) U B)

{11,2}DAUB {12}UC

L(2, {{1, 2})+)

L(1, {{1, 2}}+)
{1}U(({2}uAuB)UC)

{11,21}UA {12}UC
{1} U (({21} U A) U C)

{1,21}UAUC {22}UB

L(1, {{1, 2}}+)

L(2, {{1,2}}+)
{2} U (({1} U A U C) U B)

and we have indeed

{1}U(({2}UAUB)UC) = {2}U(({1}UAUC)UB) = {1,2}uAUBUC

This equality, which is obvious with sets, requires the demonstration
above to ensure that it also holds in any variety-presentation framework.

224 J.-M. Andreoli

Similarly, on can write a Commutation rule for each configuration of
L(x2R22inferences Al. (where {x1, x2} are independent), transforming it

into a configuration L(x), except when s2 = + and s1 = -.
L(x2,R2)

There are also Commutation rules transforming any configuration
L x,R- S

(

Si t fi ti L x,R+
S

resp' L(x,R n o a con gura (resp.on) L x,R-) S)'

5.3.3.3 Termination of Focussing

Clearly, the Commutation rules being reversible, the Focussing proce-
dure may never terminate in the usual sense. However, a form of ter-
mination may still be proved. The following definition characterises the
expected "terminal" states:

Definition 5.24 An inference tree is said to be polarised if,

omitting Structural inferences, consecutive Logical inferences are
always of opposite polarity,
Structural inferences occur only between a positive Logical infer-

ence above and a negative Logical inference below.

Theorem 5.25 The Focussing procedure terminates in the following
sense: if the input inference tree 7r has no proper axioms, no Cut infer-
ence and a conclusion a, then

(i) any finite sequence of Focussing steps from 7r terminates on an
inference tree of conclusion a;

(ii) any infinite sequence of Focussing steps from 7r contains twice
the same inference tree (ie. the same commutation rule has been
applied back and forth);

(iii) there is at least one sequence of Focussing steps from 7r which
terminates on a polarised inference tree.

Proof The first clause (preservation of the conclusion) is obvious, since
it is true of each Focussing step. To prove the second clause, note that
each Focussing step either decreases the set of places appearing in the
sequents of the inference trees (Composition cases), or preserves it, but
then it also preserves the set of labels of the inferences (Commutation
cases), and only re-arranges them. Now, for a given set of places and
labels, there are only finitely many inference trees using these places and
labels. The third clause is not so straightforward and its proof follows
that given for pure Linear Logic in [2].

Structural Rules for Locative Linear Logic 225

5.3.4 Proofs and Types
5.3.4.1 Type Maps

The Cut elimination procedure of the previous section operates on infer-
ence trees which are not typed and hence may result in error. Proofs are
well-typed inference trees for which the procedure never fails. We intro-
duce the notion of type map, meant to replace the traditional notion of
formula (and sequent) usually associated with typing. Basically, while
a traditional formula associates a connective to each path leading to a
(compound) sub-formula, a type map associates a generalised polarised
connective to any place.

Definition 5.26 (Type maps) A type map is a mapping from the set
of places to polarised connectives.

Example 5.3

Let's show how to represent atom-free formulas using type-maps. Con-
sider the formula F in Linear Logic:

F = ((A1 (9 A2) (9 A3) 28 ((B1 ® (B2 28 B3))&(C1 (9 C2))

where A1, A2, A3, B1, B2, B3, C1, C2 are arbitrary atom-free formulas.
Let's use places (loci) to denote the paths to the sub-formulas of F, with
the convention that the bias 1 (resp. 2) denotes the first (resp. second)
immediate sub-formula of a formula. Thus the place 21 denotes the 1-st
immediate sub-formula of the 2-nd immediate sub-formula of F, ie. the
sub-formula (B1® (B2 28 B3)) of F. The connectives 2Y, ®, &, ® are rep-
resented as the generalised connectives, respectively, {{1, 2}}-, {{1, 2}}+,
{{1}, {2}}-, {{1}, {2}}+. Hence, F at place c can be represented by any
type map satisfying:

r(E) _ {{1, 2}}- r(1) = {{1, 2}}+ r(11) _ {{1, 2}}+
r(2) _ {{1}, {2}}- r(21) = {{1}, {2}}+ r(212)

r(22) = {{1,2}}+ {{1,2}}-

assuming the sub-formulas A1, A2, A3, B1, B2, B3, C1, C2 are repre-
sented by r at places, respectively, 111,112,12,211,2121,2122,221,222.
Other representations are possible, eg. using other biases than 1,2 or
grouping together connectives (we will see below that this is legitimate
is a certain sense). Thus, grouping together the connectives of same
polarity, we could encode F by any type map satisfying

r(E) = {{1,21},{1,22}}- r(1) = {{11,12,2}}+

r(21) = {{1},{2}}+ r(212) = {{1,2}}-

['(22) = {{1,2}}+

with the same assumptions on sub-formulas A1, A2, A3, B1, B2, B3, C1, C2.
11

226 J.-M. Andreoli

As in the example above, in a type map, we are interested only in the
places that can be reached from the root.

Definition 5.27 (Equivalence on type maps) Let r be a type map.

A set D of places is said to be stable by r if {e}UU1CD Ir(x)I C D

The extension of r is the smallest set of places which is stable by
r.
Two type maps are said to be equivalent (notation -) if they have
the same extension and their restrictions to it are equal.

The extension of a type map always exists. Indeed, the set of all places
is always stable by r, and the intersection of any family of stable sets
is a stable set, so that the extension of r can equivalently be defined as
the intersection of all the sets of places which are stable by r. In the
sequel, we will essentially work with type maps modulo equivalence.

Definition 5.28 (Dualisation, Extraction, Substitution) Let r, A
be type maps, and s a polarity. The type maps r9, r J x and F[x : A]
where x is a place are defined for all place y by

rs(y) = r(y)s
rjx (y) = 1'(±y)
r[x : 0](y) = if (y = xz) then A(z) else r(y)

The first operation corresponds to dualising a formula. The second
operation corresponds to extracting a sub-formula at a given place. The
third operation corresponds to substituting a sub-formula at a given
place by a new formula. It is easy to show that these operations are
stable by equivalence of type maps, so that they are also defined on
equivalence classes:

Proposition 5.29 If r - r' then F8 - F'9 and rJx- r'Jx. ifr - r'
and 0-O'then r[x:A]-F'[x:A'].

In a proof, it will be necessary to detect if two sub-formulas are dual of
each other. For this, we introduce the notion of translocations.

Definition 5.30 (Translocations) Let r be a type-map, and s a po-
larity. A translocation on r of polarity s is an independent pair x, y of
places (notation (x; y)P) such that rJ (FJx)S

Structural Rules for Locative Linear Logic 227

Thus a translocation on F of polarity s is a pair of places typed by dual
formulas (if s = -) or identical formulas (if s = +).

Proposition 5.31 We have the following properties on translocations:

(x; y)r = (y; x)r (x7-; y)r A (y; z)r = (x; Z)88

5.3.4.2 Proofs

Definition 5.32 (Proofs, Types) Let r be a type map and 7r an in-
ference tree. 7r is said to be a proof of type r (notation 7r f- P) if one of
the following conditions holds

7r contains no inference (ie. it is reduced to a proper axiom).
7r ends with an inference L(x, R8) and its immediate sub-trees are
of type r and r(x) = Rs.
7r ends with an inference S and its immediate sub-tree is of type
r.
7r ends with an inference A(x, x') and (x; x') r .
7r ends with an inference C(x) and its immediate sub-trees are of
type, respectively, I'[x : 0+] and P[x : 0-] for some type map A.

Note that by proof we mean possibly open proof (ie. possibly with proper
axioms), so that all the sub-trees of a proof are proofs. Furthermore
proofs always have multiple types. In particular, if a type map I' is a
type for a proof, so is any type map equivalent to F. Hence, types can
be considered modulo equivalence. More precisely,

Proposition 5.33 Let 7r be a proof of conclusion a. Let 17,17' be type
maps

7r F P A Vx E I a I PJx= P'J1 = it F P'

This is shown by simple induction on the size of the proof.

5.3.4.3 Cut Elimination with Proofs

Theorem 5.34 Cut elimination applied to a proof never results in error,
and the output inference tree is a proof with the same types as the input
one.

Proof The demonstration is an adaptation of the traditional one. It
consists in showing that in each reduction step, if the input inference tree

228 J.-M. Andreoli

is a proof of type F, then so is the output inference tree (in particular, it
cannot be an error). We use the notations of Section 5.3.2 and consider
each case of reduction step:

Commutative conversions (Section 5.3.2.1):
Since Ira, is of type P[z : A], so is each of its own sub-proofs, and,
reporting in the output inference tree, we find that it is also a
proof of type P.
Symmetric reduction L-L (Section 5.3.2.2):
The sub-proofs ira, and irb which end with Logical inferences
L(z, ca,) and L(z, Cb) are of type, respectively, I'[z : A+] and
I'[z : A-] for some type map A, so we obtain that

Ca = I'[z : A+](z) = A+(E) Cb = r[z : A _1(Z) = A _(C)

Hence the two connectives are dual of each other, and we can-
not be in the case of the reduction that results in error. In the
succeeding reduction, we have:

(i) Each input proof of cp(yk) * zyk (left premiss of the input
Cut) is of type P[z : A+], and by Proposition 5.33, also of
type

r[zyi : Ai]i n [4k : Ok]

where Ai = Ajy;, and the substitutions are applied down-
ward from n to k (this is arbitrary, as the order of applica-
tion is irrelevant). Indeed, the only assignment that counts
is that of zyk, so the other ones can be chosen arbitrarily.

(ii) Similarly, the input proof of w * (z r) (right premiss
of the input Cut) is of type F[z : A-], and by Proposi-
tion 5.33, also of type

I'[zyi : Ai]'

(iii) By induction on k (starting at 1 upwards), we obtain that
each intermediate output inference tree of conclusion w *
(z T)[Zyi-cp(yi)] 1 is a proof of type

giyi : Ai]k±'

Hence, finally (for k = n), the output inference tree (of conclusion
w * (cp > T)) is a proof of type P.
Symmetric reduction A-A (Section 5.3.2.3):
Since Ira, 7rb are of type F[z : A+] and P[z : A-], respectively,

Structural Rules for Locative Linear Logic 229

we have (x;z)r[z:., and (y; z)r[Z:o_] hence, (y; z)r,Ez:a] and, by

Proposition 5.31, we have (x; y)r[.]. Therefore, the output in-
ference tree is a proof of type F[z : A], and by Proposition 5.33,
also of type r.
Asymmetric reduction (Section 5.3.2.4):
Since Ira, 7rb are of type r[z : A+] and r' = r[z : A-], respectively,
we have A(e) = R+ and (y; z)r,. Hence,

r'(z) = A-(e) = R- A r'(y) = r(z) = R+

Furthermore, it is easy to see that for each T E R and each u E 1TI,
we have (yu; iu) Thus, the left sub-tree of the output inference
tree is a proof of type r' and the output inference tree is a proof
of type F.

5.3.4.4 Focussing with Proofs

Definition 5.35 Let r, r' be type maps. We write r --, F' if for all
place x, either r'(x) = r(x) or there exist a polarity s, connectives R, R',
presentation w and place x' such that

wER x'Ejwj
F(x) = R9 F(x') = R's

Fl(x) = (Rc>,, x' R')s

Theorem 5.36 Let it be an inference tree and 7r' be a polarised inference
tree obtained by Focussing it.

If it is a proof of some type r, then 7r' is a proof of some type F'
such that r --+* r.
If 7r' is a proof of some type F', then it is a proof of some type r
such that r _* F'.

Proof Simple induction.

5.3.5 Dealing with Exponentials
In the previous section, generalised connectives were introduced as
combinations of the traditional multiplicative and additive connectives.
They are now further extended to also include exponentials.

We assume given a mapping b H b from the set of biases into itself,

230 J.-M. Andreoli

such that b = b for any bias. It is extended into a mapping on loci,
by bl . bn = bl bn, and hence on places. The idea here is that two
places such that x = y are considered replicas of each-other. For any
place x, the set of all its replicas is denoted

={yI y=x}
Places such that = x are called base places. Thus, for any place x,
the place i is a base place (master copy) and x is one of its copies. It is
easy to show that:

Proposition 5.37 For any places x, y, z:

X_X X=x xy=xy
< = 3y'EY x<y' A 3X" EX x'<y

x<y A x=y = x=y
Now, connectives can allow the unbounded use of a resource at place
x, simply by making available all the copies of that place, ie. . From
the typing point of view, the only constraint is that all the copies of the
same base place behave identically.

Definition 5.38 A (generalised) connective is a set R of pairs N Z w
where N is a finite set of places, w is a presentation and N, IwI are
disjoint, such that IRI = UNOWER N U IwI is independent and contains
only base places. Polarised connectives are of the form R9 where R is a
connective and s a polarity.

In each component N Z T of a connective, the set N is meant to hold all
the unbounded places. The inference system of Coloured Linear Logics
with exponentials is given in Figure 5.4. The nodes of the inferences
are labeled not by varieties as in the multiplicative-additive case, but by
pairs M z a where M is a possibly infinite set of places and a is a variety.
The set M captures the set of copies of unbounded places available at
each node.

In a negative inference L(x, R-), for each N Zr E R, the correspond-
ing premiss inherits the unbounded places of the conclusion but also
adds those in N prefixed by x.
In a positive inference L(x, R+, N Z T), for each y c ITI, the cor-
responding premiss inherits a piece of the unbounded places of the
conclusion. Furthermore, there is also a premiss for each y E N,

Structural Rules for Locative Linear Logic 231

Let w be a presentation, p be a presentation assignment and P be a [set of
places] assignment. Let x, x' be places, X be a set of places, and R be a
connective.

Logical rule Negative case: if x V jwj U M

... MUxNmw*(2>rr) ...
Mow*x

with one premiss for each N 0 T E R.

C(x)

Logical rule Positive case: if cp is linear on Ir and x 95 iW> 7-1 U P(1TI U N)

yEN

... P(y) z w(y) * ±y ... P(y) 0 ry
L(x, R+, N 0 r)

UITIUN P 0 ('p DT) * x

with N Z T E R and one premiss for each y E 1TI U N.

Identities:

ifx#x'

iflwlnlw'I=0

Mow*x M'0w'*x
MUM'0w*w'

Structural rule:

if a -< a' and M' M

M'0a'
M0a

L(s, R-)

ifX={i}

MUXOa M'0x
MUM'0a

Mow*x
P

MU{x}0a

C(x,s)

Fig. 5.4. The generic locative inference system of full Coloured Linear Logics
(with exponentials)

which also inherits a piece of the unbounded places of the conclusion
but none of the bounded places.
There is a new variant of the Cut rule, where the cut place is the
only bounded place in the right premiss while an arbitrary number of
copies of it, unbounded, appear in the left premiss.

Finally, there is a completely new inference rule, called Promotion and
denoted P. It enables the use of the unbounded places.

232 J.-M. Andreoli

The conditions defining inference trees (Definition 5.20) are modified as
follows:

in each Cut inference of the first type, the cut place is different from
and independent of each of the places occurring in the conclusion;
in each Cut inference of the second type, the cut place as well as its
copies in the left premiss are different from and independent of each
of the places occurring in the conclusion;
if the conclusion is M 0 a, then M and Jal are disjoint and M U Jal
is independent.

Proposition 5.21 is therefore extended accordingly:

At any sequent M 0 a in an inference tree, M and Jal are disjoint and M U Jal
is independent.

Type maps (Definition 5.26) are modified as follows:

A type map is a mapping from the set of base places to polarised connectives.

The conditions for an inference tree it to be a proof of type r (Defini-
tion 5.32) are modified as follows:

it contains no inference (ie. it is reduced to a proper axiom).
7r ends with an inference L(x, R9) and F(i) = R9 and each immediate
sub-tree of it is of type r.
it ends with an inference S or P and its immediate sub-tree is of type
r. _
it ends with an inference A(x, x') and x')P .

it ends with an inference C(x) or C(X, x) and its immediate sub-trees
are of type, respectively, F[i : 0+] and F[2: 0-] for some type map
0.

The main difference w.r.t. Definition 5.32 is the use of 2 instead of x in
the type constraints.

Definition 5.39 Let r be a base place and a a permutation over T (ie.
all the copies of r). Then the mapping

a* (x) = if (x = z y A u = r) then a (u) y else x

is well defined. For any tree it labeled with sequents, rrr,a denotes the
tree obtained by replacing each sequent M Z a in it by o-*(M) 0 Q* > a.

Structural Rules for Locative Linear Logic 233

Let's show that a* is well defined, ie. for any place x there is at most
one pair u, y such that x = uy and u = r. Indeed, assume x = uy = zi'y'
with u = u' = r. Hence u < x and u' < x, and, since < is a tree
ordering, we have u < u' or u' < u. But u = u'. By Proposition 5.37,
we get u = u' and hence y = y'.

Proposition 5.40 If 7r is an inference tree of conclusion M m a and
Vx E Jal i 14 r, then 7r'''' is an inference tree. Furthermore, if 7r is a
proof of type P then so is 7rT,°

Proof This is shown by induction. For example, if 7r is an inference tree
of the form

MU±NZw*(±DT)
Mow*x

then, 7r'''° is of the following form, with x' = u*(x):

L(x, R-)

:na,

Q* (M) U Q* (x N) 0 Q* > (w * (x r T))
(e)

... a* (M) U x' N a (a* > w) * (x' > T) ...
L(z', R-)

a* (M) (a* r w) * x'

Q*Mza*>(w*x)

By the induction hypothesis, 7r r,, is an inference tree. Hence, so is 7r
The identity (e) is justified as follows.

If x = uy for some u E r, let u' = u(u). Hence x' = li'y. Now, for
any place z, we have xz = ziyz and u*(xz) = li'yz = x'z. Hence

*x = V.
If x # uy for any u C r , hence, r X x (by Proposition 5.37)
and x' = x. By assumption 54 r. Hence r, i are distinct in-
dependent, and so are r, 'z for any place z. Hence (by Proposi-
tion 5.37) r, xz are distinct independent, and o.* (xz) = xz. Hence,
*x=x=x'.

Therefore, in both cases, a*x = V. Hence a*(x N) _ (9*-;-) (N) = x' N.
Similarly, Q* > (x > r) = (Q* > x) > r = x' D T.

Theorem 5.41 Theorems 5.22 and 5.3.¢ also hold with exponentials:

234 J.-M. Andreoli

Cut elimination on inference trees terminates and, for proofs, preserves
types (in particular, it does not fail).

The proof is essentially the same as in the multiplicative-additive case.
There is one interesting new symmetric reduction case where X = x =
F = r and a denotes the transposition x, x'.

MUX mw*x
P

:,r

MUXU{x}0w M'z
MUM'zw

MUXZw*x M10x C(.)
MUM'UXzw

MUM'zw

C(X U (x}, s')

M' z x'

Theorem 5.42 Theorems 5.25 and 5.36 also hold with exponentials:
Focussing on inference trees terminates in the sense of Theorem 5.25
and, for proofs, transforms types as stated in Theorem 5.36.

5.4 Conclusion
This paper extends results known for Linear Logic (Cut elimination and
Focussing) to Coloured Linear Logics, which include arbitrary (to a cer-
tain extent) structural rules. It is shown that a few axioms, defining
the variety-presentation frameworks, are sufficient to ensure the con-
sistency and the symmetry of the whole system. The basic intuition
behind these axioms is that at any point in a sequent proof, when dis-
tinguishing the principal formula for decomposition, the view of the rest
of the sequent (context) is altered by that choice (hence the need for
two kinds of structures: varieties, before the choice, and presentations,
after the choice). The axioms only impose loose constraints on the pos-
sible structural rules, so that all sorts of "monsters" can be imagined
(non-commutative, non-associative, multi-modal logics, possibly with
infinitely many non-redundant connectives etc.). This situation is not
satisfactory and requires further work, first to understand the relevance
of the basic intuition which led to it, and second, by taking alternative
viewpoints (proof-nets, semantics, etc.), to understand what essential

Structural Rules for Locative Linear Logic 235

properties have been lost or gained compared to the pure Linear Logic
case.

Acknowledgements
This paper owes a lot to Ludics. However, at the time when it was
started, Jean-Yves Girard was still in the process of developing Ludics,
and I preferred to adopt a more classical sequent calculus presentation
of things, using only basic elements of Ludics: the use of loci instead
of formulas, and the expression of proof manipulations (Cut elimination
and Focussing) in an exclusively locative manner. I did not introduce
the concept of designs, however essential to Ludics, although I believe
that today, that step could be taken.

This paper also owes a lot to Non Commutative Logic, and in par-
ticular to the many lively discussions with one of its proponents, Paul
Ruet.

Finally, I am grateful to the anonymous referee as well as the non
anonymous one (Franccois Lamarche) for their helpful comments.

Bibliography
[1] M. Abrusci and P. Ruet. Non-commutative logic is the multiplicative

fragment. Annals of Pure and Applied Logic, 101(1):29-64, 2000.
[2] J-M. Andreoli. Logic programming with focusing proofs in linear logic.

Journal of Logic and Computation, 2(3), 1992.
[3] J-M. Andreoli. Focussing and proof construction. Annals of Pure and

Applied Logic, 107(1):131-163, 2001.
[4] P. de Groote and F. Lamarche. Classical non associative lambek calculus.

Studia Logica, 71(2), 2002.
[5] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
[6] J-Y. Girard. Locus solum: From the rules of logic to the logic of rules.

Mathematical Structures in Computer Science, 2001.
[7] A. Joyal. Une theorie combinatoire des series formelles. Advances in

Mathematics, 42:1-82, 1981.
[8] F. Lamarche. On the algebra of structural contexts, 2002. Preprint.
[9] M. Moortgat. Categorial type logic. In J. van Benthem and A. ter

Meulen, editors, Handbook of Logic and Language, pages 93-177.
Elsevier Science, 1997.

[10] P. Ruet. Non-commutative logic ii: Sequent calculus and phase
semantics. Mathematical Structures in Computer Science,
10(2):277-304, 2000.

[11] D. Yetter. Quantales and (non-commutative) linear logic. Journal of
Symbolic Logic, 55(1):41-64, 1990.

6

An Introduction to Uniformity in Ludics
Claudia Faggian, Marie-Renee Fleury-Donnadieu and Myriam Quatrini

Institut de Mathematiques de Luminy

Abstract

In this note we develop explicit examples to help understanding the
role of uniformity in Ludics. This is the key notion which underlies
the move from behaviours to bihaviours, and is necessary to achieve full
completeness.

The research on full completeness for logic and A-calculus has moti-
vated a large amount of work, in particular over the past 10 years. J-Y.
Girard has presented in [1] and in [2] a new approach in a framework
called Ludics. The central notion in Ludics is that of design. A de-
sign corresponds to a proof, regarded under all possible points of view
(syntactical proof, A-term, function, clique, ...). Its orthogonal (counter-
proof, anti-clique, ...) is also a design. Both proofs and counter-proofs
are objects of the same nature. Then one can work with a set of designs
equal to its biorthogonal, the behaviour (logical formula, type, coherent
space,...). The main novelty of this approach is to overcome the duality
syntax/semantics : the way for full completeness is then open.

In Ludics there are two levels of completeness : (i) internal complete-
ness and (ii) full correspondence between ludic objects and logic. The
internal completeness is about the decomposition of a connective (in
some sense a counterpart of the sub-formula property). This is an es-
sential part but not the whole story of full completeness, that can be
stated as:
If 0 is a "good" design in the behaviour A associated to a closed II1
formula A then there is a MALL2 -proof of A which is interpreted by D.
(MALL2 is the second order linear propositional calculus presented in

[1]).

236

An Introduction to Uniformity in Ludics 237

In order to obtain this result, the notion of behaviour has to be en-
riched, becoming that of "bihaviour," where the central role is played
by the property of uniformity. Here we are interested in this notion.
Our aim is to help understanding the uniformity property. Why is it
necessary? How does it contribute to the completeness result?

In this note, we will omit some details. The calculus we refer to is
MALL2, the second order linear propositional calculus introduced in
[1]. However, for the purpose of our examples, the reader can think
of a standard two-sided calculus for multiplicative-additive linear logic,
augmented with the connective 1, the "shift", which simply changes the
polarity of a formula.

6.1 Why uniformity: examples
The full completeness theorem of Ludics is based on two ingredients:
internal completeness and uniformity. The former allows us to decom-
pose compound formulas (behaviours), while the latter takes care of the
atoms, in a sense we shall make precise.

Internal completeness is a striking property of Ludics connectives. A
connective is a way to compose new behaviours from given ones, where
a behaviour G is a set of designs closed under biorthogonal: G = G11
Internal completeness for the connectives of Ludics means that the set
of designs given by the construction is equal to its biorthogonal, hence
the slogan "there is no biorthogonal".

Let us take the example of ®. Given two distinct behaviours A and
B, A ® B is defined as A U B. This is a behaviour, as it turns out to be
equal to (A U B)1-L. The operation of biorthogonal does not add new
designs: the description in terms of A and B is complete. In fact, any
compound behaviour is born equal to its biorthogonal.

The consequence of internal completeness is that we have a direct
description of all the designs in a compound behaviour, as the biorthog-
onal does not introduce new objects. A nice example is that of ®.
The operation which composes two designs 21, B from distinct be-
haviours A and B, is enough to describe A ® B, which is defined as
{2t ® 93,21 E A, B E B}11. Again, the biorthogonal is not needed,
therefore for any D E A ® B we know we can decompose it as D1 ®Z2,
with D1 E A and D2 E B.

To any closed 11, formula F of MALL2, one can associate a behaviour
F which is its interpretation. One would like to say that any material,
"winning" design in F corresponds to a proof of F in MALL2 (full com-

238 C. Faggian, M.-R. Fleury-Donnadiev and M. Quatrini

pleteness). As it is well explained by Girard, the proof of completeness
can be resumed into a slogan: "find the last rule". Concretely, given
a design T), the whole process consists in "producing a last syntactical
rule."

If 0 belongs to the interpretation of the formula F, to decompose it is
always immediate for the negative formulae, and exploits the "internal
completeness" for the positive formulae.

In this way, we are able to find the premises of the rule, represented
by the designs D. E Fi, where Fi correspond to the subformulae of F.
The fact that each Di is again material and winning, allows us to carry
on the induction.

In practice one works with sequents of behaviours rather then single
formulae. We recall that the sequent of behaviours I- G is equal to G,
GF- isequaltoG--and:

E HF-Aiffforall(E E H QJ,e]EF-0,
EF- H, 0 if for all (E E H1 13, (El EF- A.

The "closure principle," which exploits associativity and separation,
allows us to reduce the problem to the decomposition of a single formula
at a time. As an example, consider a design a in F- P ® Q, R. Assuming

first focus on (the address of) P®Q, we cut I against a design E R-L
and produce a design la, IEJ which belongs to P ® Q. We are then able
to find a design 2 either in P or in Q. Suppose it is in P, we can retrieve
the wanted premise as the design a in F- P, R such that 0 = ill,

However, one need to be careful when dealing with the negative case,
such as E R F- P ® Q, where normalization entails a choice of the
premises. R depends on the interpretation of the atoms, which can be
whatever behaviour we like. When we cut a against a design in R, the
result also may depend on the choice of interpretation.

Think simply of R = X, where X is the interpretation of an atomt.
Even if we are able to decompose the design in P ® Q for any interpreta-
tion of X, we could not be able to put things together again, as we shall
illustrate. Internal completeness is no longer enough. The key point is
that the premises need to be uniquely defined.

Next examples are paradigmatic of the situations which involve uni-
formity, making it necessary to move from behaviours to bihaviours. In
Section 6.3 we will discuss the "identity axioms."

t This is a convention we adopt in all the paper.

An Introduction to Uniformity in Ludics 239

6.1.1 Example: a matter of focalization
Let us consider a behaviour X I- P, Q, where X is the interpretation of
an atom and P, Q are compound behaviours, respectively located in a
and T. Consider a design a with infinite premisses, one for each finite
subset of N:

(a, I) (T, J)
F- .I , a, T H . J, a, T

t: I- a, T
K, Pf (r))

In order to decompose P or Q we first need to cut a with a design in
X; for any choice we should have the same proof. However, let us take
X = {1), U Oi}11, where

2I: Dj:

I- .C
(C I) 0C (c, J)

The normal form Ea, ZI is

o,.i F- T

F- U, T

which first focalizes on a, the address of P. The normal form Ea, Z j
is instead

T.j F- a

F- a, T
(T,J)

which first focalizes on T. The "last rule" is therefore not uniquely
defined.

6.1.2 Example: decomposing P ® Q

Let a be a design of base E F- a belonging to the behaviour X F- P ® Qt;
X is located in f, P in a.1 and Q in a.2.

t We are making a slight simplification here, in fact P stands for j P and Q for I Q.

240 C. Faggian, M.-R. Fleury-Donnadieu and M. Quatrini

U.1 F 6.1
(a, {1})

a.2 F- e.J
(a, {2})

F- .I, a F- .J, a
Pf (N))

We interpret the atom as in the previous example. In order to de-
compose P ® Q, we cut a with a design D in X, to obtain a design in
P®Q.

If we cut a with DI, we obtain a design of the form

a.l F (a, {1})
F-a

which is in the component P.
If instead we cut with Dj, we obtain a design in the component Q:

Ha

Once again, it is impossible to associate a with a derivation of X I-
P ® Q. Depending on the design we choose in the atom interpretation,
we obtain once a design in X F- P and once a design in X F- Q.

6.2 From proofs to uniformity
All the designs in the previous examples are incarnated and daimon-
free, but we cannot associate a proof to them. The premises of the last
rule depend on the interpretation of the atom: different choices lead to
different rules. There is something "non-uniform" in this; we are going
to make explicit this intuition.

Consider as working example for the discussion a design a of base
l; F- a belonging to X F- P for any interpretation of the atom. The first
rule is necessarily (C, P f (N)), because X could be any behaviour, and
J,3,2] must converge for any possible 2. The content of uniformity is
that whatever premise the normalization with D selects, the proof should
"continue in the same way". We need to separate the designs according
to how they interact with the orthogonal. Unfortunatly, by definition
of the orthogonal, convergence does not allow us any discrimination.
To have a finer distinction, we need to consider a larger universe. The

An Introduction to Uniformity in Ludics 241

central role played by the premises of a leads to the notion of partial
design of a behaviour IF.

A partial design J' is a "part of a design" D E G: a subtree that has
the same base, but where some of the premises may be missing.

A typical example of partial design is a slice of a design D: a subtree
of 1) obtained selecting in all negative rules at most one premise. An
extreme example of partial designs are the empty ones ('id, Skunk).
GP denotes the set of all designs (total and partial) of a behaviour G.

Now we can express the fact that all the partial designs

(l;, {I})
CE-a

included in

l u

lead essentially to the same proof.

(C, Pf M)

It becomes natural to introduce on GP a partial equivalence rela-
tion (i.e. asymmetric and transitive relation) = which separates the
partial designs with respect to normalization. The key is that the equiv-
alence relation identifies the closed nets normalizing into Dai and those
normalizing into 'id.

Since designs and counter-designs (proofs and counter-proofs) have the
same status, we need to consider the partial equivalence on Gp' induced
by normalization, and come back by bi-orthogonal... Two partial designs
are in the same class, if their reactions against equivalent partial counter-
designs are the same.

As an example, the trivial equivalence relation is the one that identifies
all propert designs of GP (=l distinguishes all proper designs of GP-L).

In a sequent of behaviours X F- P, we want again that two partial
equivalent designs (saying 1) and Y) react in the same way against two
equivalent designs of X (saying (E and e') ; that means that QZ, (F] and
QD', !'J produce two equivalent designs in P.

On compound behaviours, the equivalence relations we are interested
in must conserve the properties of the connective. For example, the be-
haviour P ® Q is the union of the two distinct behaviours P, Q. The
equivalence relation keeps distincts designs coming from distinct be-

t Any positive design distinct from Dai and aid.

242 C. Faggian, M.-R. Fleury-Donnadieu and M. Quatrini

haviours, while two designs are equivalent if they are equivalent either
in P or Q.
A design 0 candidat to be a proof has to be equivalent to itself; it is
called uniform.

Let us summarize a few definitions:

(i) A bihaviour is a couple (G, =') equal to its biorthogonal.
(ii) Sequents of bihaviours. Consider the sequent Go F- G1i , G.

We obtain a bihaviour by considering the partial equivalence de-
fined by: (F' if boo =' Z0' E Go t1Oi = i c
Gin Q(F, Zo, D1, ... , On] = Q(', Zo, Oi, ... ;,n.

(iii) Compound bihaviours. Let (G1, =1) and (G2, ?'2) be two
disjoint bihaviours on the same base.

=c,®c, is defined by: for all Z, D' E (G1 ® G2)P 1 ='c,®c,
D' if Eli E {1, 2} such that 1) and 1' E Ci and Z =c. V.

-c1®c2 is defined by: for all D1 ®02, Vi ®V2 E (Cl ®C2)'
Z® c,®c2 V, ®V2 if 21 =G, 0i and Z2 =Gs D2

(iv) Uniform designs. Let D be a partial design in the bihaviour
(G, N),

2 is uniform if 2 2.

6.2.1 Back to the examples
We are now able to make precise the intuition that the designs in the
starting examples are not uniform.

6.2.1.1 On example 6.1.1 (Focalization)

Let us consider the example of Section 6.1.1. Both Qli, 011 and V, 1) J
are located on the base F- a, T. We close each of these nets, cutting with
Oai- on the base a F- and with St on the base T F-. We know that such
two partial designs belong to any negative (partial) behaviour.

tVai, = ... F- a.I ...
(a,Pf(N))

a F-

8kT = T ' (T' 0)

Since 1,3, 0I] first focus on a, while QJ, Oil first focus on T, it is immedi-
ate that 01 Q, DaiQ , 6f,l _ Oai, while Q l,3, 01 Q, OaiQ ,15f,l = 30.
We thus have that [[IJ, DI]] [[, D3]]. On the other hand, if we take on

An Introduction to Uniformity in Ludics 243

X the trivial relation that quotients all proper designs, we have DI = Jj.
The definition of sequent of bihaviours implies that 3 J: I is not uni-
form.

6.2.1.2 On example 6.1.2 (Plus)

Let us look at the example of section 6.1.2.
The two premises do not behave in the same way: one works in the

left component of P ®Q, the other works with the right one. We already
observed that Q , DA E P and Q,3, JjJ E Q. The equivalence relation on
a disjoint union of behaviours (P (D Q) distinguishes the element coming
from distinct components. Hence Q,3, 0I] Q3, DjJ. As in the previous
example, it is enough to consider on X the trivial equivalence to realize
that 3 is not uniform.

To show an uniform design in the same behaviour, let assume that
P = 4)(X) and Q = W(X) are distinct delocations of Xt.

Consider (E =
Sax

a.1 F 1'.I
VI E Pf(N) I- e.I, a

(f,Pf(N))
6F-Q

For any design 2, Q(F, DI = 4)(D)1. Hence, as soon as D, D' E X are
equivalent, so are and QE,

6.3 Uniformity and Fax
The proof of completeness goes on decomposing the positive formulas
of the sequent, and accumulating atoms on the left-hand side. This
process stops when it reaches a positive atom on the right-hand side:
F I- X, A. Ideally, we should have reached (the interpretation of) an
"identity axiom" X I- X. The only good inhabitant should be the design
that interpret the identity, or rather the infinite 71-expansion of it: the
'ax.

In the case of X F- X, 'ax is the only incarnated design which does not
make use of daimon. We do not need anything else to prove it. However,
to deal with the general case, uniformity become necessary to establish
the following central result ([1]):

To be precise, we whould write P =IT c(X) and Q =IT WY(X).
t Precisely, IT c(D).

244 C. Faggian, M.-R. Fleury-Donnadieu and M. Quatrini

Proposition 6.1 (Polymorphic Lemma) If a E F I- X, 0 is uniform,
incarnated and daimon-free then X E I' and a (essentially) behaves as
a 'ax

The essential case is X, X I- X.

Designs in X F- X

Uniformity is not required to prove that

,'ax is the only design a E X F- X which is stubborn and incarnated.

Proof: Let a E X I- X be a design based on 1 I- a. We first observe that
the first negative rule must be (1,Pf(N)), to allow 3 to converge with
any possible design.

Now we fix a ramification I and observe that the rule above I- 1 * I, a
cannot focalize on a 1 * is only a is available as focus, as one can check
choosing a convenient designs 0 which makes the cut Q,3, 01 fail when
the condition is not realized. Moreover, for the same argument, the only
possible rule is (a, I).
The last step is to check that the repartition of the addresses is one-to-
one:

a*i1 1*i
F-1*I,or

(a, I)

This also can be checked choosing a convenient 0 and applying combi-
natory arguments.

Designs in X, X F- X

Let now make explicite the two uniform designs in X, X I- X :.3ax1
and aax2. We can think of 'ax, as the first projection, i.e. that 3'ax1
maps a pair of designs of X (saying 21 (9 22) on a delocation of D1.
Suppose that the behaviours X in the left side of the sequent are located
on 1 and that they are disjoint (say we applied two delocations, the first
mapping all the bias on even biases, the second mapping the biases on
odd biases). The behaviour X in the right side of the sequent is located
on or by the delocation 0. Let lax1=

I-1*(IUJ),a
1I-a (*)

An Introduction to Uniformity in Ludics 245

(*) : (1, {I U J : I E Pf(2N), J E Pf(2N + 1)}).
,3ax2 is obtained by exchanging (a, I) with (a, J). Observe that

Q,3ax1, 21 ®Z21 = 0(D1) and Qjax2, D1 ®D21 = 6(D2).
The core of the Polymorphic Lemma really consists in showing that

,'ax, and a'ax2 are the only uniform incarnated and daimon-free
designs in X, X I- X.

The argument relies on the following points:
- the normalization between uniform designs produces an uniform design.
- the only uniform incarnated design in the behaviour (D = {!}11) is
D itself.

To sketch a case, if D1 # Z2 one considers the bihaviour X = D1
D2, and since Q13, D1 ® D2] E X, its incarnation must be either 1)1
or D2. Monotonicity of normalization then allows one to complete the
argument.

Observe that there are also plenty of non uniform designs in X, X
X. To have one we can build an a such that the premises above I-
1 * (I U J), a depend on I U J. For example we set that above Io U Jo
we have the same rules as in ax2 and for all the others I U J we have
the same rules as in aaxl. We then obtain the following design, where
again I contains only even bias, and J only odd bias.

,3axo.t, j.;

a*il-1*i
(a, I)

aaxa.j,i.j
... 0'* j l-1* j

(Q, Jo)
F-1*{I0UJ0},a ()l-1*{IUJ},Q

1l-a

(*) : (1, {IUJ : I E Pf(2N), J E Pf(2N + 1)}).
Observe that Q13, 01 ® D2] = 0(D1) or 0(D2) depending on the first

actions in D1 and D2.
Consider now any bihaviour X containing four designs Oi and Da (i =

1, 2) such that D1 = 0' but D1 D. We then have D1®D2 = V(902,
but Q3, D1 ® D21 _ D1 D2 = 1,3, 0' ® D. Then 3 is not uniform.

246 C. Faggian, M. -R. Fleury-Donnadieu and M. Quatrini

Bibliography
[1] J.-Y. Girard. Locus Solum. Mathematical Structures in Computer Sciences

11/301 - 506, 2001
[2] J.-Y. Girard. From foundation to ludics. This book
[3] C. Faggian. Sur la dynamique de la ludique : une etude de l'interaction.

These, Universite de la Mediterranee, 2002
[4] M-R Fleury-Donnadieu, Myriam Quatrini. First Order in Ludics. To

appear in Mathematical Structures in Computer Sciences

7

Slicing Polarized Additive Normalization
Olivier Laurenta, Lorenzo Tortora de Falcob

IML-CNRS Marseille
, Roma III

Abstract

To attack the problem of "computing with the additives", we introduce
a notion of sliced proof-net for the polarized fragment of linear logic. We
prove that this notion yields computational objects, sequentializable in
the absence of cuts. We then show how the injectivity property of deno-
tational semantics guarantees the "canonicity" of sliced proof-nets, and
prove injectivity for the fragment of polarized linear logic corresponding
to the simply typed A-calculus with pairing.

7.1 Introduction

The question of equality of proofs is an important one in the "proofs-
as-programs" paradigm. Traditional syntaxes (sequent calculus, natural
deduction, ...) distinguish proofs which are clearly the same as compu-
tational processes. On the other hand, denotational semantics identifies
"too many" proofs (two different stages of the same computation are
always identified). The seek of an object sticking as much as possible
to the computational nature of proofs led to the introduction of a new
syntax for logic: proof-nets, a graph-theoretic presentation which gives a
more geometric account of proofs (see [5]). This discovery was achieved
by a sharp (syntactical and semantical) analysis of the cut-elimination
procedure.

Any person with a little knowledge of the multiplicative framework of
linear logic (LL), has no doubt that proof-nets are the canonical repre-
sentation of proofs. But as soon as one moves from such a fragment, the
notion of proof-net appears "less pure". A reasonable solution for the
multiplicative and exponential fragment of LL (with quantifiers) does

247

248 0. Laurent, L. Tortora de Falco

exist (combining [2] and [7], like in [17]). Turning to multiplicative and
additive LL (MALL), the situation radically changes: since the introduc-
tion of proof-nets [5], the additives were treated in an unsatisfactory
way, by means of "boxes". Better solutions have been proposed in [9]
and [19], until the paper [11] introduced "the good notion" of proof-net
for cut-free MALL. But still, trying to deal with the full propositional
fragment means entering a true jungle. Of course, it is possible to sur-
vive (i.e. to compute) in this jungle, as shown in [5, 17]. So what?
The problem is that the objects (the proof-nets) used are definitely not
canonical.

Recently, a new fragment of LL appeared to have a great interest: in [6]
and [3] the polarized fragment of LL is shown to be enough to translate
faithfully classical logic. A study of proof-nets for such a fragment was
undertaken in [12], and the notion of [9] drastically simplified. In [15]
a proof of strong normalization and confluence of the cut-elimination
procedure is given for polarized LL, using the syntax of [5] (notice that
for full LL confluence is wrong and strong normalization is still not com-
pletely proven). Despite these positive results, the notion of proof-net
still appears as (more or less desperately, depending on the cases) non
canonical.

The first contribution of the present paper is the proposal of a math-
ematical counterpart for the term "canonical". And here is where de-
notational semantics comes into the picture: in [18], the question of in-
jectivity of denotational semantics is addressed for proof-nets. Roughly
speaking, denotational semantics is said to be injective when the equiv-
alence relation it defines on proofs coincides with the one defined by
the cut-elimination procedure. Our proposal is to let semantics decide
on the canonicity of some notion of proof-net: this is canonical when
there exists a (non contrived, obviously!) denotational semantics which
is injective with respect to the would-be canonical notion of proof-net.

Notice that this is a rather severe notion of canonicity. Indeed, proof-
nets for multiplicative LL are canonical (and this is probably true also
for MALL using [11]), but the previously mentioned extension to multi-
plicative and exponential LL is not guaranteed to be canonical: the time
being we only know that coherent (set and multiset based) semantics is
not injective for such proof-nets (see [18]). Finally, the known syntaxes

We will use the term canonical in an intuitive way, following the idea that a
canonical representation of a proof is not sensitive to inessential commutations of
rules.

Slicing Polarized Additive Normalization 249

for full LL (with additives) are obviously not canonical for the usual
semantics of linear logic.

The notion of slice was first introduced in [5]. The idea is very simple:
instead of dealing with both the components of an additive box "at the
same time", what about working with these two components separately?
This attitude is tempting because it ignores the superimposition notion
underlying the connective & (which is precisely the difficult point to
understand). It is shown in [9] that the correctness of the slices of a
proof-structure does not imply the correctness of the proof-structure
itself (see also [11]). However, this turns out to be true in a polarized
and cut-free framework (theorem 7.32).

In section 7.2, we give some intuitions on the original notion of slice
for MALL coming from [5].

We then define, in section 7.3, a notion of sliced proof-stricture for
polarized LL (definition 7.5), and we show how to translate sequent
calculus proofs into sliced proof-structures. To obtain canonical objects,
we deal with atomic axioms and proof-structures in the style of the
"nouvelle syntaxe" of Danos and Regnier [16]. For this purpose, we
introduce b-formulas which do not occur in sequent calculus, but are
very useful in our framework: a formula bA is necessarily the premise
of a ?-link. The notation (and the meaning) of bA is clearly very much
inspired from Girard's works on ludics [9] and on light linear logic [8].

We introduce in section 7.4 the relational semantics. We adapt the
definition of experiment of [5] to our framework, and we define the inter-
pretation of a sliced proof-structure (definition 7.13). Particular exper-
iments coming from [18] are also introduced (injective 1-experiments),
to be used later in section 7.8.

Section 7.5 is devoted to define and to study the notion of "cor-
rect" sliced proof-structure (or sliced proof-net). The polarization con-
straints allow to apply to our framework the correctness criterion of [12].
We define a sliced cut-elimination procedure (definition 7.21), we prove
that correctness is preserved by our sliced cut-elimination steps (theo-
rem 7.24) and that our semantical interpretation is sound (theorem 7.26).
Our sliced proof-nets are thus proven to be computational objects.

In section 7.6, we prove that in the absence of cuts, the correctness
criterion (plus some obviously necessary conditions on sets of slices) is
enough to "glue" in a unique way different slices: a sliced proof-net comes
from a sequent calculus proof (theorem 7.32). This result follows [12]

250 0. Laurent, L. Tortora de Falco

(where the &-jumps of [9] are removed) and [14] (where the remaining
jumps for weakenings are also removed).

Section 7.7 explains and justifies in details our method: the use of
injective denotational semantics as a witness of canonicity of our sliced
proof-nets.

The reader should notice that this is the very first time a notion
of proof-net containing the additives and the exponentials can really
pretend to be canonical.

Finally, section 7.8 shows that our method makes sense: there exist
interesting fragments of polarized LL for which denotational semantics
is injective (and thus the corresponding proof-nets are canonical), like
the A-calculus with pairing. The result that we prove is an extension of
the result of [18]. Thanks to a remark of L. Regnier on the A-calculus
(expressed by proposition 7.48), we could avoid to reproduce the entire
proof. We thus get injectivity only for relational semantics, but in a
quick and simple way.

Let us conclude by stressing the fact that the last section is simply
an example to illustrate the method explained in section 7.7, and it is
(very) likely that injectivity for coherent and relational semantics holds
for the whole polarized fragment. This would give canonical proof-nets
for polarized LL, that is for classical logic (see [15]).

7.2 A little history of slices
Slices were first introduced in [5], and the following examples come di-
rectly from the ideas of that work.

In this section, we only want to give some hints of what will be de-
veloped in the following ones. In particular, all the notions used here
simply have an intuitive meaning, and will be formally defined later.

Intuitively, a slice of a proof is obtained by choosing, for every occur-
rence of the rule &, one of the two premises. With the sequent calculus
proof obtained by adding a cut between

ax ax
ALA

BL' B

' Si $2
I- AL®BL,A F--AL®BLB

&
F- AL®BL7A&B

F (AL®BL)2'(A&B)

and

Slicing Polarized Additive Normalization 251

FA&B,Al®B1
ax

AA ax

HA- B-L. A
®1

F- (A & B) ® (Al ® Bl), A, Al ® B-i

one would like to associate a graph, like:

Al A
ax

B1

' ----------ry'----I

where the dashed box is an attempt to express some kind of "superim-
position" of two subgraphs. Choosing to work separately with each of
these two subgraphs means "slicing" the proof-net into the two following
slices (where the binary &-link is replaced by two unary &-links):

252 0. Laurent, L. Tortora de Falco

In [9], Girard shows that the correctness of slices is not enough to
ensure the correctness of the whole graph: it is easy to see that there
exists a proof-structure with conclusion A®(B&C), (Al 2Y Bl)®(A1 2Y
C'), with two correct slices, which is itself not correct. We will come
back to this point with our theorem 7.32.

Let's now give an intuition of a possible "sliced" cut-elimination pro-
cedure for the 2-sliced graph associated with the sequent calculus proof
of I- A, Al (D above.

By eliminating the 28/® cut in both the slices (notice that in a sliced
perspective this corresponds to two steps), one gets the 2-sliced struc-
ture:

which after (two) axiom steps reduces to:

Slicing Polarized Additive Normalization 253

Al-®B1 A

We meet here an important point: in one of the slices we have a &1/®i
cut which can be easily reduced, but in the second one we have a &2/®1
cut and no way of reducing it. By performing one step of cut-elimination
(the only possible one), we obtain the 2-sliced structure:

Al ® B1 A

AlED B1 A

254 0. Laurent, L. Tortora de Falco

and we now have to erase the slice containing the &2/®1
obtaining the 1-sliced proof-structure:

Al G B1

which eventually reduces to:

Al

Al ® B1 A

cut, thus

A

7.3 Sliced proof-structures
In a polarized framework, we define sliced proof-structures and give the
translation of sequent calculus proofs.

Definition 7.1 A polarized formula is a linear propositional formula
verifying the following constraints:

N ::= X N2YN I N&N ?P

P ::= X1 P®P I P®P !N

or a positive formula P prefixed by the symbol b (considered as a negative
formula).

LLPo1 [12] is the fragment of LL using only polarized formulas.

Lemma 7.2 Every sequent I- IF provable in LLPo1 contains at most one
positive formula.

Proof See [12].

Definition 7.3 (Proof-structure) A proof-structure is a finite ori-
ented graph whose nodes are called links, and whose edges are typed by

Slicing Polarized Additive Normalization 255

formulas of LLP0,. When drawing a proof-structure we represent edges
oriented up-down so that we may speak of moving upwardly or down-
wardly in the graph, and of links or edges "above" or "under" a given
link/edge. Links are defined together with an arity and a coarity, i.e.
a given number of incident edges called the premises of the link and a
given number of emergent edges called the conclusions of the link.

an axiom link or ax-link has no premise and two conclusions
typed by dual atomic formulas,
a cut link has two premises typed by dual formulas (which are
also called the active formulas of the cut link) and no conclusion,
a 28- (resp. ®-) link has two premises and one conclusion. If
the left premise is typed by the formula A and the right premise
is typed by the formula B, then the conclusion is typed by the
formula A 28 B (resp. A (9 B),
an !-link has no premise, exactly one conclusion of type !A and
some conclusions of b-types,
a b-link has one premise of type A and one conclusion of type bA,
a ?-link has k > 0 premises of type bA and one conclusion of type
M.

Let G be a set of links such that:

(a) every edge of G is the conclusion of a unique link;
(p) every edge of G is the premise of at most one link.

We say that the edges which are not premise of a link are the conclusions
of G.

We say that G is a proof-structure if with every !-link with conclusions
!A, br is associated a proof-structure with conclusions A, br (called its
box).

The links of the graph G are called the links with depth 0 of the proof-
structure G. If a link n has depth k in a box associated with an !-link of
G, it has depth k + 1 in G. The depth of an edge a is the depth of the
link of which a is conclusion. The depth of G is the maximal depth of
its links.

Convention: In the sequel, proof-structures will always have a finite
depth.

Remark 7.4 Notice that, by definition, the boxes of a proof-structure
satisfy a nesting condition: two boxes are either disjoint or contained
one in the other.

256 0. Laurent, L. Tortora de Falco

Notice also that the type of every conclusion of a box is a negative
formula.

Definition 7.5 (Sliced proof-structure) A sliced proof-structure is
a finite set S of slices such that all the slices have the same conclusions,
up to the ones of type b.

If S contains n slices, and if r, L are the conclusions of the slice s;,
of S, then r, b01, ... , bAn are the conclusions of S.

A slice s is a proof-structure possibly containing some unary &1-, &2-
(resp. 61-, 62-) links, whose premise has type A, B and whose con-
clusion has type A & B (resp. A ® B). With every !-link n of s with
main conclusion !C is now associated a sliced proof-structure Sn (which
is still called the box associated with n). This means, in particular, that
C appears in every slice of Sn, while every b-conclusion of n appears in
exactly one slice of Sn.

Definition 7.6 (Single-threaded slice) A single-threaded slice is a
slice s such that the sliced proof-structures associated with the !-links of
s contain only one slice, which is itself a single-threaded slice.

The notions of depth in a single-threaded slice, in a slice, and in a
sliced proof-structure are the straightforward generalizations of the same
notions for proof-structures given in definition 7.3.

Remark 7.7 With every sliced proof-structure S is naturally associated
a set of single-threaded slices, to which we will refer as the set of the
"single-threaded slices of S (or associated with S)" denoted by sgth(S).

Remark 7.8 Every formula A of a sliced proof-structure is a conclusion
of a unique link introducing A. (Notice that this is of course not the case
in any version of proof-nets for the full propositional fragment of LL).

We are now going to associate with every linear sequent calculus proof
a sliced proof-structure.

Definition 7.9 (Translation of the sequent calculus) Let. R be
the last rule of the (71-expanded) linear sequent calculus proof 7r. We

define the sliced proof-structure Sn (with the same conclusions as 7r) by
induction on 7r.

If R is an axiom with conclusions X, X1, then the unique slice
of S, is an axiom link with conclusions X, X1.

Slicing Polarized Additive Normalization 257

If R is a 28- or a E)-rule, having as premise the subproof 7r', then
Sn is obtained by adding to every slice of the link correspond-
ing to R.
If R is a ®- or a cut rule with premises the subproofs 7r, and 7r2,
then Sn is obtained by connecting every slice of Sn, and every
slice of S1., by means of the link corresponding to R. Notice that
if S,r, (resp. S,,,) contains k1 (resp. k2) slices, then S,r contains
k1 x k2 slices.
If R is a &-rule with premises the subproofs 7r1 and 7r2, then
Sn is obtained by adding a &1- (resp. &2-) link to every slice
of S.ir, (resp. Sr.) and by taking the union of these two sliced
proof-structures.
If R is a dereliction rule on A having as premise the subproof 7r',
then S,r is obtained by adding to each slice of S7, a b-link with
premise A and conclusion bA and a unary ?-link with premise bA
and conclusion ?A.
If R is a weakening rule on ?A, then S,r is obtained by adding a
?-link with arity 0 and conclusion ?A.
If R is a contraction rule on ?A having as premise the subproof 7r',
then by induction hypothesis, every slice of Sr, has two formulas
?A among its conclusions. By remark 7.8, these two formulas
are both conclusions of a ?-link. We replace the two ?-links by a
unique ?-link with the required arity, and thus obtain the slices of
S,r.
If R is a promotion rule with conclusions !C, ?A1, ... , ?An having
as premise the subproof 7r', then let si be one of the p > 1 slices of
S,,. For every slice s' of with conclusions C, ?A1, ... , ?An,
we call si the graph obtained by erasing the ?-links with conclu-
sions ?A1i ..., ?An. si is a slice with conclusions:

C,M11

with qj,j > 0. The unique slice of S is an !-link with conclu-
sions !C, bAi 1, ... , bAn°il, ... , bAf,p, ... , bAn;p , to which we add
for every 1 < j < n a ?-link having as premises bAJ i (1 < i < p
and 1 < k < qj,j) and as conclusion ?A;. The sliced proof-
structure associated with the unique !-link of S is the set of the
si (1 < i < p).

Remark 7.10 Let's try to give a more informal (but, hopefully clearer)
description of the last case of the previous definition. For every formula

258 0. Laurent, L. Tortora de Falco

?Aj, we replace the ?-link introducing it in each slice by a unique ?-link
in the (unique) slice of S.

Let us conclude the section by giving an example of the accuracy of
our sliced structures. The following sequent calculus proof:

ax ax
!- A, Al B B1
F- A,?A-L ?d I- B, ?Al, B1 ?w

F- A ?Al ?B-L
?w

B ?A-L ?B1
?d

!- A& B, ?A1, ?Bl
F- !(A & B), ?A1, ?B'

is translated as the sliced structure:

!(A & B) ?A1 ?B1

i

The previous structure is built inductively with respect to the depth:
with the sequent calculus proof one associates the graph consisting in
the !-link and in the two ?-links, and with the !-link are associated two
slices (the ones inside the two dashed rectangles).

Notice that following the Danos-Regnier representation of proof-nets
called "nouvelle syntaxe", consisting in "pulling down" the structural
rules, the two weakenings of the sequent calculus proof simply vanished.

7.4 Semantics
We consider the concrete semantics of experiments introduced in [5].
We develop here only the case of relational semantics but the notion of
experiment suits also very well coherent set-based and multiset-based
semantics (see [17]).

Our results (like the existence of an injective 1-experiment used in the
proof of lemma 7.49) will be completely proven only in the relational

Slicing Polarized Additive Normalization 259

case, but the extension to the coherent semantics is just a matter of
checking some minor details, consisting in the extension to our frame-
work of the results proven in [18] without the additives.

Definition 7.11 (Relational interpretation of formulas) The space
interpreting a formula A will be denoted in the sequel by A. It is a set,
defined by induction on the complexity of A:

X = X-L is any set;
A ® B = A 2Y B is the cartesian product of the sets A and B;
A & B = A ® B is the disjoint union of the sets A and B,
!A = ?A = bA is the set of finite multisets of elements of A.

Definition 7.12 (Experiment) If S is a sliced proof-structure, an
experiment of S is an experiment of one of the slices of S.

An experiment e of a slice s of S is an application which associates
with every edge a of type A with depth 0 of s an element e(a) of A, called
the label of a. We define such an application by induction on the depth
pofs.

If p = 0, then:

If a = al is the conclusion of an axiom link with conclusions the
edges a1 and a2 of type X and X1 respectively, then e(al) _
e(a2).
If a is the conclusion of a 28- (resp. ®-) link with premises a1
and a2, then e(a) = (e(ai),e(a2)).
If a is the conclusion of a link ®i (resp. &i), i E {1, 2} with
premise al, then e(a) = (i,e(ai)).
If a is the conclusion of a dereliction link with premise a1, then
e(a) = {e(al)J.
If a is the conclusion of a ?-link of arity k > 0, with premises
al, ... , ak, then e(a) = e(al) U . . . U e(ak), and e(a) E ?C (if k = 0
we have e(a) = 0).
If a is the premise of a cut link with premises a and b, then
e(a) = e(b).

If the conclusions of S are the edges al, ... , a, of type, respectively,
A1,. .. , Al, and e is an experiment of S such that Vi c {1, ... , l} e(ai) =
xi, then we shall say that (xi, ... , XI) E Al ' ...' A, is the result of
the experiment e of S. We shall also denote it by x1..... x1.

If p > 0, then e satisfies the same conditions as in case p = 0, and
for every !-link n with depth 0 in s and with conclusions c of type !C

260 0. Laurent, L. Tortora de Falco

and a1, ... , a, of type, respectively, bA1 i ... , bA1, there exist k > 0 exper-
iments e1, ... , ek of the sliced proof-structure S' associated with n such
that

e(c) = { x 1 , . .{x1, . , xk}, where xj is the label associated with the edge
of type C by e
If s' is the (unique!) slice of S' containing the edge a' with the
same type as a then e(at) is the union of the labels associated
with a' by the k experiments of s'. Notice that it might be the
case that none of the k experiments is defined on a'.: in this case
one has e(a3) = 0.

Of course, we have that e(c) E !C, and e(at) E bA, (this would be an
extra requirement in the coherent case).

Definition 7.13 (Interpretation) The interpretation or the seman-
tics of a sliced proof-structure S with conclusions F is the set:

QS] {ry E 2Y F : there exists an experiment e of S with result 'y},
where r is the space interpreting the 2' of the formulas of F.

Remark 7.14 The interpretation of a sliced proof-structure S depends
on the interpretation chosen for the atoms of the formulas of S. Once
this choice is made, QSJ is (by definition) the union of the interpretations
of the slices of S.

The reader should notice that the union of the interpretations of the
single-threaded slices of S is not enough to recover QS] (except in some
particular cases, for example when S is a cut-free proof-net, see sec-
tion 7.8). This is a crucial point (behind which hide the complex relations
between the additive and multiplicative worlds) showing the impossibility
of working only with single-threaded slices.

Indeed, were we working with a "single-threaded semantics", by cutting
the single-threaded version of the example at the end of section 7.3 (on
the formula !(A&B)) with the proof-net corresponding to the following
proof (which is a single-threaded slice since there is no &-rule):

ax

F-

ax
T AA

®1 B'
B1

82AA1®B1 HBA1®B1
A, ?(A1 ®B1)

ad
E- B, ?(A1 ®B1)

?d

!A, ?(A1 ®B1) !B,
?(A1 ®B1)

F- !A ®!B, ?(A1 ® B1), ?(A1 ® B1)
?c

F- !A ®!B, ?(A1 ®B1)

Slicing Polarized Additive Normalization 261

we would get a proof-net with an empty semantics. Moreover, applying
the cut-elimination procedure described in the next section (to the set
of single-threaded slices associated with that same net) would lead to an
empty set of slices.

The following notion of 1-experiment is a particular case of the more
general notion of n-obsessional experiment introduced in [18].

Definition 7.15 (1-experiment) An experiment e of a sliced proof-
structure S is a 1-experiment, when with every!-link of S one has (using
the notations of definition 7.12) k = 1, and el is a 1-experiment.

Remark 7.16 Let S be a sliced proof-structure.

(i) Let e be a 1-experiment of S. If a is any edge of S of type A,
then with a the experiment e associates at most one element of
A, whatever the depth of a is. In case e is not a 1-experiment,
this is (in general) the case only for the edges with depth 0.

(ii) The 1-experiments of S are exactly the 1-experiments of the
single-threaded slices of S.

(iii) We say that a 1-experiment e of a single-threaded slice s of S is
injective when for every pair of (different) axiom links Ill and n2
of s, if xl (resp. X2) is the (unique) label associated by e with the
conclusions of ni (resp. n2), then xl # x2.

(iv) If S contains no cut links, then there always exists an injective ex-
periment of any single-threaded slice of S (just associate distinct
labels with the axiom links and "propagate" them downwardly).
This is not that obvious in the coherent case (due to the presence
of ?-links): it is actually wrong in a non polarized framework,
even for single-threaded slices coming from sequent calculus proofs
(see (18]).

7.5 Proof-nets and cut-elimination
We now define a notion of correct sliced proof-structure: a proof-net
is a sliced proof-structure satisfying some geometrical condition. For
these sliced proof-nets, a "sliced" cut-elimination procedure is given: a
cut-elimination step is a step in one of the slices.

We show that the cut-elimination steps preserve the correctness of the
structures, and that the interpretation given by definition 7.13 is sound
(i.e. invariant with respect to these steps).

262 0. Laurent, L. Tortora de Falco

7.5.1 Definitions

Definition 7.17 (Acyclic sliced proof-structure) The correction
graph (see [12]) of a slice s is the directed graph obtained by erasing
the edges conclusions of s, forgetting the sliced proof-structure associ-
ated with every !-link with depth 0 in s and by orienting negative (resp.
positive) edges downwardly (resp. upwardly).

A single-threaded slice satisfies (AC) when its correction graph, so as
the correction graph of all its boxes, is acyclic.

A sliced proof-structure S is acyclic, when every single-threaded slice
associated with S satisfies (AC).

Definition 7.18 (Proof-net) Let S be an acyclic sliced proof-structure
without any b-conclusion. S is a proof-net if every slice of S has ex-
actly one b-link or one positive conclusion (at depth 0). Moreover, we
require that the sliced proof-structures (the boxes) S1,. .. , Sk, recursively
associated with the !-links of S also satisfy these properties.

Remark 7.19 More geometrically, notice that this only b-link (or link
above the positive conclusion) is the only non-weakening initial node
(without incident edge) of the correction graph.

Remark 7.20 It is easy (and standard) to show, by induction on the
sequent calculus proof, that the sliced proof-structure associated by defi-
nition 7.9 with a sequent calculus proof is a proof-net.

Notice that the condition given by definition 7.18 is nothing but the
proof-net version of lemma 7.2.

We come now to the definition of the cut-elimination procedure. If the
cut link c has depth n in the sliced proof-structure S, the cut-elimination
step associated with c will be a step for the sliced proof-structure asso-
ciated with the !-link (of depth n - 1) the box of which contains c.

Definition 7.21 (Cut-elimination) Let S be an acyclic sliced proof-
structure without b-conclusions. We define a one step reduct S' of S. Let
s E S and c be a cut link of s. We define {sz}tiEj, obtained by applying
some transformations to s. S' is the set of the slices obtained from S by
substituting {s'}iEI for s.

If c is a cut link of type ax, then {s'} is obtained, as usual, by
erasing the axiom link and the cut link.

Slicing Polarized Additive Normalization 263

If c is a cut link of type a'/®, let A and B (resp. Al and B1)
be the premises of the 2Y-link (resp. 0-link). {s'} is obtained by
erasing the ?8-link, the ®-link and the cut link and by putting two
new cut links between A and A', and B and B1.
If c is a cut link of type &i/®i, then {s'} is obtained by erasing
the two links and by moving up the cut link to their premises.

If c is a cut link of type &1/®2 (or &2/®1), then I = 0 (we
simply erase s). Moreover, if s is the unique slice of the sliced
proof-structure Sam, associated with the !-link n, we also erase the
slice containing n (and so on recursively...).

If c is a cut link of type !/? with a O-ary ?-link, then the !-link (to-
gether with its box) and its conclusion edges are erased. We then
erase the O-ary ?-link (and the cut) thus obtaining {s'} (notice
that some ?-links have lost some premises)-

If c is a cut link of type !/? with a 1-ary ?-link under a b-link,
let T be the sliced proof-structure associated with the !-link. With
each slice ti of T, we associate the slice si defined by erasing the
?-link and the b-link, by replacing in s the !-link by ti and by
cutting the main conclusion of ti with the premise of the b-link.

If c is a cut link of type !/? with a 1-ary ?-link whose premise is
a b-conclusion of an !-link l', let T be the sliced proof-structure
associated with l' and l be the cut !-link. Let ?A/!Al be the cut
formula. {s'} is obtained by erasing l and its conclusions and by
replacing the conclusion bA of l' by all the b-conclusions of 1. And
with this new !-link (which we still denote by 1') is associated a
sliced proof-structure T' obtained by replacing the (unique) slice
t of T having bA among its conclusions by the slice obtained by
adding to the conclusion of type bA oft a unary ?-link and cutting
its conclusion (of type ?A) with the conclusion of type !Al of 1.
(The sliced proof-structure associated with l remains unchanged).

If c is a cut link of type !/? with a n-ary ?-link l with n > 1,
then {s'} is obtained by creating a new unary ?-link l' having as
premise one of the premises of l (and erasing the corresponding
edge above 1), by duplicating the !-link and by cutting the copy
with the conclusion of l', every b-conclusion of the copy of the
!-link is premise of the same links as the edge it is a copy of
(namely, they are intuitively premise of the same ?-link). The
sliced proof-structures associated with the two copies of the !-link
are the same.

264 0. Laurent, L. Tortora de Falco

Remark 7.22 The attentive reader certainly noticed that there are ex-
actly two cases in which the previous definition requires the acyclicity
condition:

(i) when the two premises of a cut link are both conclusions of the
same axiom link,

(ii) when the two premises of a cut link are both conclusions of
the same !-link (in fact, in our framework, this means that the
premise of type ? of the cut link is the conclusion of a ?-link whose
premise is a conclusion of type b of the !-link).

In these two cases the cut-elimination procedure is not defined. By the
following section, the acyclicity of a sliced proof-structure is a sufficient
condition to ensure that cut-elimination never yields to these configura-
tions.

7.5.2 Preservation of correctness

Proposition 7.23 (Preservation of acyclicity) If S' is a sliced proof-
structure obtained from the acyclic sliced proof-structure S (without b
conclusions) by performing some steps of cut-elimination, then S' is
acyclic.

Proof We study every cut-elimination step, using the notations of defi-
nition 7.21:

For the &i/®j (i # j) and !/O-ary ? steps, we erase a part of the
graphs, such an operation cannot create cycles.
For the ax and &i/®i steps, some paths are replaced by shorter
ones changing nothing to cycles.

Slicing Polarized Additive Normalization 265

For the 28/® step, if p is a path containing a cycle in S', it must
use one of the two new cut links starting from the premise A of the
2Y-link and going to the premise Al of the (&-link, for example. If
p exists, then replacing in S the part from A to Al by the path
going from A through the 2w-link, the cut link and the (9-link to
Al would give a cycle in S.
For the !/1-ary ? step with a b-link just above the ?-link, if s'
contains a cycle p, either it is inside ti and thus comes from a
cycle in S or it goes outside ti, but due to the orientation, it is
impossible for a path to go outside ti and to come inside ti since
ti has only emergent edges (since it has only negative conclusions
from remark 7.4).

For the !/1-ary ? step with an !-link just above the ?-link: at the
depth p of the cut link, some paths are just replaced by shorter
ones, and this cannot create any cycle. At depth p + 1, adding a
cut and an !-link to an acyclic graph cannot create any cycle.

For the !/n-ary ? step (n > 1), if p is a cycle in S', it has to cross
one of the two residues of the cut link of S. But identifying the
two ?-links, the two cut links and the two !-links in p would give
a cycle in S thus p doesn't exist.

Theorem 7.24 (Preservation of correctness) If S' is a sliced proof-
structure obtained from the proof-net S by performing some steps of
cut-elimination, then S' is a proof-net.

Proof S' is acyclic by proposition 7.23. To conclude, we now prove that
if S' is a one-step reduct of S, then (whatever reduction step has been
performed) S' has exactly one positive conclusion or one b-link at depth
0 and in every slice of every box (assuming that the reduced cut has
depth 0 in S):

The multiplicative and additive steps are straightforward and the
!/0-ary ? step, too.

For the !/1-ary ? step with a b-link just above the ?-link, the b-
link at depth 0 is erased and replaced by the one coming from
every slice of the box of the !-link (which necessarily exists by
remark 7.4 and definition 7.18).

For the !/1-ary ? step with an !-link just above the ?-link, the

266 0. Laurent, L. Tortora de Falco

b-links and the positive conclusions at depth 0 are not modified
and at depth 1, we just add an !-node to a slice.
For the !/n-ary ? step (n > 1), some links are duplicated but the
b-links (and the positive conclusions) are unchanged.

7.5.3 Soundness of the interpretation
We are going to prove that the cut-elimination procedure previously
defined preserves the semantical interpretation. We use exactly the same
technique as in [5], and give the details of the proof only in the most
relevant cases. The proof is given for the relational semantics, and it
can be straightforwardly extended to both the set and multiset based
coherent semantics (see remark 7.27).

Remark 7.25 By induction on the sequent calculus proof 7r, one can
check that the semantics of 7r (as defined for example in [5]) is the se-
mantics of the sliced proof-structure S, of definition 7.9.

Theorem 7.26 (Semantical soundness) If S' is a sliced proof-
structure obtained from the acyclic proof-structure S without b-conclusions
by performing some steps of cut-elimination. Then QS = QS'J.

Proof Let IF be the conclusions of S and S' and y an element of 2' I'.
We show that there exist a slice s of S and an experiment e of s with
result -y, if there exist a slice s' of S' and an experiment e' of s' with
result y.

One has to check this is the case for every cut-elimination step defined
in definition 7.21. We will use for these steps the notations of defini-
tion 7.21. Let c be a cut link of a slice s of S. Notice that our claim
is obvious for the slices which are not concerned by the cut-elimination
step that we consider, and we then restrict to the other ones: we prove
that there exists an experiment e of s with result y, if there exist a slice
s' of {si}iE' and an experiment e' of s' with result y.

By induction on the depth of c in s, we can restrict to the case where
c has depth 0. The steps associated with the ax and 28/® cut links are
the same as in [5].

If c is a cut link of type &i/®i, and e is an experiment of s, let
(i, x) be the element of A & B = Al ® B1 associated by e with

Slicing Polarized Additive Normalization 267

the two edges premises of c. Then the experiment e' of s' we
look for is the "restriction" of e to s': the label associated by e
with the two premises of the unary &i and E links of s is x, and
x is also the label associated by e' with the two premises of the
"residue" of c in s'. For the converse, one clearly proceeds in the
same way.
If c is a cut link of type &1/®2 (or &2/®1), then there exists no
experiment of s (remember the condition of definition 7.12 on the
label of the premises of a cut link), and no experiment of {s2}=EI
(remember I = 0).
If c is a cut link of type !/? with a O-ary ?-link, then we are simply
applying the weakening step of [5].
If c is a cut link of type !/? with a 1-ary ?-link whose premise is
the conclusion of a b-link, let T be the sliced proof-structure asso-
ciated with the !-link. With each slice t1 of T, this step associates
a slice si.
Let e be an experiment of s, let {x} be the element of !A =?A'
associated by e with the two edges premises of c. By definition
of experiment, because the label of the conclusion of the !-link is
a singleton, there is a unique slice tt of the sliced proof-structure
T (associated with the !-link), and a unique experiment ei of ti
from which e is built. The label associated with the conclusion of
type A of tj will be x E A. Again by definition of experiment, the
label associated by e with the premise of type Al of the b-link is
x E A-L. We can then build (from ei) an experiment e' of s' with
the same result as e. For the converse, one proceeds in the same
way: an experiment e' of some slice si induces an experiment e2
of tti, and an experiment e of s.
If c is a cut link of type !/? with a 1-ary ?-link whose premise is
a conclusion (of type b) of the box associated with the !-link l'
(different from l), then there is nothing new with respect to the
commutative step of [5].
If c is a cut link of type !/? with a n-ary ?-link 1 with n > 1, then
let e be an experiment of s, let {x1, ... , xk} = al U U a,, be the
element of !A =?A' associated by e with the two edges premises
of c. Suppose that a1 is the label of the one among the premises
of the ?-link of arity n, which becomes the conclusion of the new
unary ?-link. We have {x1, ... , xk} = a1 U {yi, ..., y, }. This
splitting is actually a splitting of the k experiments of the sliced
proof-structure associated with the !-link. This remark is enough

268 0. Laurent, L. Tortora de Falco

to conclude the existence of an experiment e' of s' with the same
result as e. Conversely, let e' be an experiment of s'. Because the
sliced proof-structure associated with the two !-links is the same
we can build an experiment e of s with the same result as e'.

Remark 7.27 To prove the soundness of the (set and multiset based)
coherent semantics, one first needs to generalize the following result of [5]
to LLPO,: "if S is an acyclic sliced proof-structure with conclusions r
(where r contains no b formula), then QSJ is a clique of the coherent
space 28 F."

This result has to be used in the proof of the previous theorem in the
cases of !/? cuts.

7.6 Sequentialization for (cut-free) slices
We show that the conditions on sliced proof-structures given in defi-
nitions 7.17 and 7.18 yield a correctness criterion for cut-free proof-
structures (theorem 7.32): they allow to characterize exactly those proof-
structures coming from sequent calculus proofs.

A novelty due to our sliced presentation is that we have to be able
to glue together slices. Thanks to the polarization constraint this will
be possible, provided one restricts to cut-free proof-structures. In the
whole section, all our proof-structures will be cut-free.

Definition 7.28 (Equivalence of links) Let 81, 82 be two slices of a
sliced proof-structure S. Let n1 and n2 be two links of Si and s2 at depth
0 having the same negative non-b conclusion A. We define, by induction
on the number of links under A in s1, the meaning of n1 and n2 are
equivalent links denoted by nl = n2.

If A is a conclusion of s1 then it is also a conclusion of 52 and n1 =_ n2
if they are the links introducing A in sl and s2.

Let A be the premise of the unary link m1 (resp. m2) of sl (resp. s2)
and the conclusion of n1 (resp. n2): if m1 - m2i then n1 - n2.

Let A be the left or right premise of the binary link m1 (resp. M2)
of Si (resp. s2) and the conclusion of n1 (resp. n2): if m1 - m2i then
nl - n2.

It is clear that = is an equivalence relation on the negative links at
depth 0 of S.

Slicing Polarized Additive Normalization 269

Remark 7.29 If n1 = n2 then n1 and n2 are links of the same kind
except if n1 = &1 and n2 = &2.

Definition 7.30 (Weights) Let S be a sliced proof-structure and let
&1, ... , &k be the equivalence classes for =_ of the &-links at depth 0
of S. We associate with each &i an eigen weight pi that is a boolean
variable (in the spirit of [9]). The weight of a slice s of S is (with an
empty product equal to 1 by convention):

W(S) =11 pi 11 Pi
&i Es &z Es

and the weight of the set S is:

w(S) _ w(s)
sES

The sliced proof-structure S is full if w(S) = 1 and compatible if we
have w(s)w(t) = 0 for s# t.

Remark 7.31 We can now be more precise than in remark 7.20: the
sliced proof-structure associated by definition 7.9 with a cut-free sequent
calculus proof is a (cut-free) proof-net, which is full and compatible.

Theorem 7.32 (Sequentialization) If S is a cut-free sliced proof-
structure, S is the translation of an LLPO,t sequent calculus proof if and
only if S is a full and compatible proof-net.

Proof We prove the second implication by induction on the size of S
(the first one is remark 7.31). Since S has no b-conclusions, the conclu-
sions of the slices of S are the same. The size of a slice s is the triple
(depth (s), number of ?-links with arity at least 2 and depth 0,number of
links with depth 0), lexicographically ordered, and the size of S is the
sum (component by component) of the sizes of the slices of S.

Let s be a slice of S. We shall say that a link of s is terminal when
its conclusion is a conclusion of s.

If s has a terminal 2Y-link, a corresponding link appears in each
slice since they have the same conclusions. We can remove these
links in each slice and we obtain a sliced proof-structure S' veri-
fying the hypothesis of the theorem.

t The extension of this result to the multiplicative units is straightforward. The
case of T presents no real difficulty but requires a heavier treatment (see [13]).

270 0. Laurent, L. Tortora de Falco

If s has a terminal &-link, a corresponding link appears in each
slice. For some slices this link will be a &1-link (we call Si the set
of slices obtained by erasing the &1-links in these slices) and for
some others a &2-link (we call S2 the corresponding set without
the &2-links). We have to show that Si and S2 are full and
compatible. The weight of S1 (resp. S2) is obtained by taking
p = 1 (resp. p = 0) in p.w(S) (resp. P.w(S)) thus this weight is
1. Let s and t be two slices of S1 with weights wi (s) and wi (t),
their weights in S are p.wi(s) and p.wi(t) thus wi (s)wi (t) = 0
(idem for S2). We can now apply the induction hypothesis to Si
and S2.

Now, s has no terminal 29-links and no terminal &-links thus it has no
such links at depth 0 by polarization. This entails that s is the only slice
of S by compatibility.

Ifs has a terminal 0-ary ?-link, we can remove it: this corresponds
to a weakening rule.
If s has a terminal n-ary ?-link with n > 2, we break it into n
unary links, we apply the induction hypothesis and perform n - 1
contraction rules in the sequent calculus proof thus obtained.
If s has a unary ?-link under a b-link, we remove both of them,
and this corresponds to a dereliction rule. (Notice that we can
apply the induction hypothesis, because when removing the two
links we replace a b-link at depth 0 by a positive conclusion).
If none of the previous conditions is satisfied then s has no 2Y-,
&-, ?-links at depth 0 (except unary ?-links under !-links). This
means that if s has a terminal ®-link, it is the unique one and
it is splitting: we can apply the induction hypothesis to the two
sub-proof-structures.
If s has a terminal ®-link, we just remove it and apply the induc-
tion hypothesis.

If s doesn't correspond to any of the cases above, either it is an ax-
iom link (straightforward) or it is reduced to an !-link with a unary
?-link under each b-conclusion. Let S' be the box associated with the
!-link. By adding to the slices of S' some 0-ary ?-links (like in example
page 258) and a 1-ary ?-link under each b-conclusion, one gets a sliced
proof-structure S". Let 7r" be the proof obtained by sequentializing S",
the sequentialization 7r of S is obtained by adding a promotion rule to
7r". (As an exercise, the reader can apply this sequentialization method
to the sliced proof-structure of page 258).

Slicing Polarized Additive Normalization 271

Remark 7.33 Notice that (according to remark 7.8) every negative con-
clusion M 29 N (resp. M&N) of a proof-net S is the conclusion of a 2Y
(resp. &) link. The previous proof shows that there exists a sequential-
ization of S whose last rule introduces this formula. The reader might
have recognized a proof-net version of the reversibility of the connectives
2Y and &.

Remark 7.34 In fact, a(n apparently) stronger version of theorem 7.32
could be given: the reader certainly noticed that nowhere in the proof
of the theorem we have used the acyclicity property of our proof-nets.
This is simply due to the fact that every cut-free sliced proof-structure
S is acyclic. Indeed, a path starting from a positive edge of S upwardly
goes to an axiom link or an !-link and then goes down to a conclusion
stopping there; while a path starting from a negative edge goes directly
down to a conclusion and stops.

7.7 Computing with slices
We now introduce a general method, allowing to use denotational se-
mantics in order to guarantee the "canonicity" of our proof-nets. More
precisely, we introduce the notion of injective semantics (which comes
from [17]), and show how the existence of such a semantics is a witness
of the canonicity of our sliced proof-nets as computational objects.

Remark 7.35 We will use in the sequel the strong normalization prop-
erty for proof-nets with respect to the cut-elimination procedure. We do
not give the proof of such a result, which is proven in (151 (for LLPO1) in
the framework of polarized proof-nets with additive boxes.

Let F be a subsystem of our sliced proof-structures, and let Q.J be an
interpretation of the sliced proof-structures of F (satisfying theorem 7.26
and) injective: if Sl and S2 are two cut-free sliced proof-nets such that
(for every interpretation of the atomic formulas) QSI] = then Sl =
S2.

Another way to speak of injectivity is the following: Q.]J is injec-
tive when the semantical equivalence class of every proof-net contains a
unique cut-free proof-net. In this (strong) sense our objects are canon-
ical. In particular, such a property entails confluence: if S° and S2 are
two normal forms of the proof-net S, then by theorem 7.26 and injec-
tivity so = S.

272 0. Laurent, L. Tortora de Falco

Another crucial point is that injectivity allows to compute with the
sliced proof-structures of F coming from sequent calculus proofs. Indeed,
let 7r be any linear propositional sequent calculus proof, let S, be the
sliced proof-structure associated with 7r by definition 7.9, and let So be
the normal form of S. Now compute a normal form 7r0 of it semantically
correct (i.e. satisfying 7rj = Q7ro]), which can be done by performing
cut-elimination directly in sequent calculus in several different ways. By
remark 7.25, [7r]I = IS,] and Q7foj = QS"ll, by theorem 7.26, QS7 = QSoj,
and we know that Q7rj = Q7r0Jj. By injectivity, we can then conclude that
S,ro = So. In fact, our approach to injectivity (in section 7.8, and more
generally in [18]) is "to rebuild" a cut-free proof from its semantics: on
the one hand the injectivity property guarantees that any reasonable way
of computing with sliced proof-structures coming from sequent calculus
proof is sound (S,,O = So), and on the other hand the technique used to
prove injectivity suggests the possibility of semantically computing the
normal form (So) of a proof (7ro). This last approach is very close to the
so-called "normalization by evaluation" (see [1, 4]).

Summing up, one has:

it 70

S.R S7,.0

This diagram expresses a simulation property of the cut-elimination (in
sequent calculus) by proof-net reductions. The injectivity property of
the semantics allows to obtain such a result by semantical means.

Notice that the mentioned argument holds for any existing syntax for
LLP0, instead of sequent calculus (like proof-nets with additive boxes
see [5] and [15], multiboxes see [19], proof-nets with weights see [9]
and [12]): let R be a proof in such a system, it will always be possible
to translate R as a sliced proof-structure SR with the same semantics as
R (in the previously mentioned syntaxes, this is straightforward). Let
So be the normal form of SR. Let Ro be a normal form of R and let
SRO be the sliced proof-structure associated with R0. As before, we have

SO = SR.-
We are claiming that our proof-nets are canonical computational ob-

jects: they are actually the first example of such objects in presence of
the additive and exponential connectives. Indeed, (sliced) proof-nets are

Slicing Polarized Additive Normalization 273

computational objects by theorem 7.24, and they are canonical by the
injectivity property (as we already explained).

Notice that none of the previously mentioned polarized syntaxes can
really claim to yield a canonical representation of proofs: denotational
semantics is not injective for proof-nets with boxes nor multiboxes (even
though this last syntax realizes a much greater quotient on proofs), and
it is well-known that with a sequent calculus proof can be associated
several proof-nets with weights (and the cut-elimination procedure is
not always defined for such proof-nets).

We then have a new canonical syntax, independent from sequent cal-
culus, allowing to make correct computations. Despite the fact that we
don't have a procedure to sequentialize proof-nets with cuts, we know
that if we start from a sequentializable proof-net S, we eventually reach
a normal form So which is itself sequentializable. This means on the one
hand that nothing is lost, and on the other hand that the new objects
which naturally appear (and which are not necessarily sequentializable)
have a clear and well-structured computational behaviour. Actually, this
is precisely the point where our approach differs from the one of [11]:
we mainly focus on the computational behaviour of our objects (cut-
elimination), while [11]'s main issue is correctness. Indeed, the "proof-
nets" (i.e. the correct proof-structures) introduced by Hughes and Van
Glabbeek are all sequentializable and this is not the case of ours. How-
ever, the translation of sequent calculus into sliced proof-structures is
a function (this is not the case for [11]'s nets), and our cut-elimination
procedure is local (just perform it, separately, in each slice) while Hughes
and Van Glabbeek have to reduce all the slices at the same time. The
non-sequentializable sliced proof-structures naturally appearing during
(sliced) cut-elimination have a perfectly well-understood computational
behaviour, and we do not see any reason to reject them.

The equivalence relation on sequent calculus proofs defined by our
(sliced) proof-nets can be very well compared to the one defined by
ordinary proof-nets in the multiplicative fragment of linear logic.

But do there exist some (interesting) subsystems F of sliced proof-
structures with an injective semantics?

Such systems and semantics certainly exist in the absence of the ad-
ditives (see [18]), it is very likely also the case for [11]. The next section
gives a positive answer to the previous question in presence of both ad-
ditive and exponential connectives. We want to mention here that this

274 0. Laurent, L. Tortora' de Falco

is just a first (limited) result, and it is very likely that it can be extended
to full LLPO,.

7.8 An application: A-calculus with pairing
We prove that (relational) semantics is injective for the fragment ALLPO,
of LLPO,, which corresponds to the simply typed A-calculus with pairing.

Definition 7.36 (A-calculus with pairing)

t ::= x I Ax.t I (t)t 1 71t 1 ir2t I <t, t>

Definition 7.37 (Girard's translation) The types of the A-calculus
with pairing are translated as negative formulas as follows:

X X
A-4B M+ ?Al?8B
AAB A&B

and terms are translated by the straightforward extension of Girard's
translation [5, 2] for the A-calculus.

Let ALLPO, be the sub-system of LLPO, containing only the following
formulas:

N ::= X N&N ?P2'N
P X1 P®P !N®P

(and their sub-formulas) together with the bP-formulas, and such that
all the conclusions of proofs are negative formulas.

Terms are translated by proof-nets of ALLPO,. The constraint that ax-
iom links introduce only atomic formulas entails that the translation con-
tains an implicit 77-expansion of terms.

In the present section, in order to prove injectivity for ALLPO,, we
restrict to proof-structures, slices and sliced proof-structures of ALLPO,
without cut links (corresponding to normal terms).

Definition 7.38 Let s be a single-threaded slice. We denote by L(s) (the
"linearization" of s) the graph obtained by replacing every !-link n by the
associated slice. More precisely, if n is an !-link having a conclusion of
type !A with an associated slice sn, we replace n by a modified unary
!-link with as premise the conclusion A of sn; the b-conclusions of n are
replaced by the corresponding b-conclusions of sn.

Slicing Polarized Additive Normalization 275

Remark 7.39 If e is a 1-experiment of s, then with every edge a of type
A of L(s) is associated a unique label e(a) of A.

For the 1-experiment e, we will denote by eILlsl the labeling of the
edges of L(s) associated with e.

Lemma 7.40 Let s and s' be two single-threaded slices. Let e (resp. e')
be an injective 1-experiment of s (resp. s') with result y (resp. y').

If ry = ry', then L(s) = L(s') and eIL(s) = e'I L(8').

Proof Our claim is that the graph L(s) so as the labels of its edges are
completely determined by the types of the conclusions of s and by the
result of an injective 1-experiment of s. Indeed, let's start from some
edge a of L(s), with its type A and its label x E A. There are exactly
three cases in which either the type A of a is not enough to determine
the link of L(s) having a as conclusion or the link is known but the
bottom-up propagation of the labels is not obviously deterministic:

(i) A = C & D: then a might be conclusion of a &1- or of a &2-link.
But the label of a tells us which of these two cases holds, and
which is the label of the premise of the &-link.

(ii) A = C ® D: exactly like in the previous case.
(iii) A = ?C: then, because e is a 1-experiment, the cardinality of the

label of a is the arity of the ?-link with conclusion a. This also
implies that there is a unique way to determine the labels of the
premises of the ?-link.

To conclude, notice that the fact that e is injective allows to uniquely
determine the axiom links of L(s).

7.8.1 Recovering boxes in ALL,,,

We are now going to use in a strong way the particular shape of the
(sliced) proof-nets of ALL,.,. We show that for a single-threaded slice s
of this fragment, the graph L(s) contains as much information as s. In
other terms, once L(s) is known, the fact that s is a single-threaded slice
of a sliced proof-structure which is the translation of a term, uniquely
determines the way to "put" the boxes on the graph L(s).

Lemma 7.41 If s is a slice of a ALL,., proof-net, there is exactly one
b-link with depth 0 in every slice of every box of s.

276 0. Laurent, L. Tortora de Falco

Fig. 7.1. Combs

Proof Just the correctness criterion (theorem 7.32).

Lemma 7.42 Let s be a single-threaded slice, and a an edge of type A
of S.

If A is a negative (resp. positive) formula, then the graph above a is
a comb (see figure 7.1):

the teeth of the "negative comb" are edges of type ?, while the
backbone is made of unary &-nodes and of 2Y-nodes and moving
upwards along it one necessarily ends in the unique (negative)
atomic edge of the comb.

dually, the teeth of the "positive comb" are edges of type !, while
the backbone is made of ®-nodes and ®-nodes and moving up-
wards along it one necessarily ends in the unique (positive) atomic
edge of the comb.

We will speak of the comb associated with a. Notice that a is considered
as an edge of the comb.

Proof Immediate consequence of the definition of ALL,., and of the
definition of single-threaded slice.

Slicing Polarized Additive Normalization 277

Remark 7.43 As a consequence of the previous lemma, with every neg-
ative edge a of a single-threaded slice s, is associated an oriented path
4?a of s (see figure 7.2): it is the path with starting edge a (oriented up-
wardly), following the backbone of the negative comb up to the negative
atomic edge X of the comb, crossing the axiom link and its positive con-
clusion X -L (oriented now downwardly) and moving downwardly along
the backbone of a positive comb (crossing ®- and (&-links) until a b-link
is reached (there are no other possibilities).

We will refer to 4?a (in the sequel of the paragraph) as the oriented
path associated with the negative edge a.

Until the end of this section 7.8.1, we will fix the following notations
according to figure 7.2:

a is the (negative) edge premise of an !-link l of the single-threaded
slice s

B1 is the box associated with l
n is the last link of 4?a which is a b-link (by remark 7.43)

c is the (positive) premise of n
ll, ... , lk are the k > 0 !-links of s whose conclusions are the teeth of
the positive comb associated with c
B1, . . . , Bk are the boxes associated with ll, ... , lk

Remark 7.44 Every edge of s "above a" is contained in B1. Moreover,
all the links of 4?a (including n) are contained in B1.

Lemma 7.45 Every edge with depth 0 of B1 is either an edge of 4?a, or
the conclusion of the b-link n, or a tooth of one of the two combs of 4?a,
or the b-conclusion of a !-link.

Proof See figure 7.2.
Let G be the correction graph of B1 (see definition 7.17). The initial

nodes of G are n and the 0-ary ?-links. Every link in G is accessible
by an oriented path from an initial link, but any 0-ary ?-link is the
premise of a W-link (in)LLP0,) that must be also accessible through its
other premise. By induction on the number of links above this 28-link
we easily show that it is accessible from a non ?-link. So that every link
(except 0-ary ?-links) at depth 0 in BI is accessible from n. We said that
every conclusion of a 0-ary ?-link is the premise of a '-link, and we just

278 0. Laurent, L. Tortora de Falco

Fig. 7.2. Lemma 7.45 (dashed lines are given as examples)

proved that this 28-link is accessible from n: the conclusions of the 0-ary
?-links must then be teeth of the negative comb of 4)a.

We are now going to define a (partial) order relation on the !-links of
L(s), for every single-threaded slice s. We then show that this relation
coincides with the nesting of boxes and it is enough to recover the boxes
of s.

Definition 7.46 Let s be a single-threaded slice, let 1 and m be two
!-links of s and let a be the premise of l in L(s). We define the relation
<1 on the !-links of s as follows: m <1 1 if the oriented path (Da crosses
the ®-link of s having m as premise. We define the relation < as the
reflexive and transitive closure of <1.

Lemma 7.47 Let s be a single-threaded slice. If l (resp. m) is an !-link
of s and Bi (resp. B,,,,) is the box associated with l (resp. m), then m < I
if BI contains B,,,,.

Slicing Polarized Additive Normalization 279

In particular, this implies that the relation < is indeed a partial order
relation.

Proof Suppose that m < 1. From the nesting condition, it is clearly
enough to show that if m <1 1, then B1 contains m, and this is a conse-
quence of remark 7.44.

Conversely, suppose that B1 contains B,,,,. It is again enough to
consider the case in which B1 is the smallest box containing Bm. By
lemma 7.45, the conclusion of in is one of the teeth of the positive comb
of cI . We just proved that m <1 1.

Proposition 7.48 Let s and s' be two single-threaded slices of ALLPO,.
If L(s) = L(s'), then s = s'.

Proof The reason why this holds is that the paths of L(s) are the same
as the paths of s.

We still use figure 7.2 and show, by induction on the number of !-links
of L(s) smaller (with respect to <) than l (noting that it is a finite
number by lemma 7.47, since our graphs are finite), that once L(s) is
known, we know how to recover B1. By induction hypothesis, we know
how to recover B 1 ,.. . , Bk. By lemma 7.45, every edge with depth 0 of
B1 is either an edge of one of the two combs of (%, or the conclusion of
n. By remark 7.44, all the just mentioned edges are edges of B1. Then
B1 can only be the graph containing B1, . . . , Bk, the two combs of 4)a
(including the ?-links) and the conclusion of n.

7.8.2 Injectivity for)LLPO,

We prove the following lemma for relational semantics. It certainly holds
in the coherent case too, but a detailed proof would require some more
intermediate results.

In the sequel, we will write QS1 = always meaning that the
equality holds for every interpretation of the atoms of the formulas of S
and S'.

Lemma 7.49 Let S and S' be two sliced proof-structures with the same
conclusions.

If QS = QS'J, then sgth(S) = sgth(S'), where sgth(S) (resp. sgth(S'))
is the set of the single-threaded slices of S (resp. S').

280 0. Laurent, L. Tortora de Falco

Proof By contradiction, suppose that sgth(S) # sgth(S'). There exists a
single-threaded slice s of S which is different from all the single-threaded
slices of S'. Let e be an injective 1-experiment of s with result ry. Such an
experiment obviously exists, at least in the case of relational semantics.
From QS] = QS']1, there exists an experiment e' of S' with result 'y. It
is easy to convince oneself that e' is a 1-experiment of S' (see [18] for a
proof without additives). From remark 7.16, e' is then a 1-experiment
of a single-threaded slice s' of S'.

By lemma 7.40, we obtain that L(s) = L(s'), and then by proposi-
tion 7.48, s = s' which is a contradiction.

Definition 7.50 (b-free subgraph) The b-free subgraph of a slice s
is the graph obtained by keeping only the part of s at depth 0 and by
replacing every !-link by an !-link without any b-conclusion. This erases
some b-edges that are premises of ?-links.

Definition 7.51 (Non-contradiction of slices) Let s and s' be two
single-threaded slices with the same non-b conclusions, the fact that s
and s' are non-contradictory is defined by induction on the depth of s.
s and s' are non-contradictory if either there exists a &i (resp. &j) link
n (resp. n') of s (resp. s') at depth 0 such that n =_ n' and i # j, or
s and s' have the same 5-free subgraph and the boxes of s and s' are
non-contradictory.

A sliced proof-structure S is non-contradictory if for every pair of
single-threaded slices s and s' of S, s and s' are non-contradictory.

Theorem 7.52 (Injectivity) Let S and S' be two non-contradictory
proof-nets with the same conclusions.

If QSJ = QS'}j, then S = S'.

Proof By lemma 7.49, we have sgth(S) = sgth(S'). For a given set of non-
contradictory single-threaded slices, there is only one way to reconstruct
a sliced proof-structure: to glue (recursively with respect to the depth)
the single-threaded slices with the same part at depth 0.

Remark 7.53 The reader should not think that the hypothesis of "non-
contradiction" of proof-nets weakens our injectivity theorem: it is the
opposite! Indeed, our requirement for a sliced proof-structure to deserve
the name of proof-net is just that "it contains only correct slices" (see
definition 7.18). This (minimal) requirement is already enough to make

Slicing Polarized Additive Normalization 281

correct computations (theorem 7.24), which are also semantically sound
(theorem 7.26). But it is obvious that a set of correct slices is not se-
quentializable (in general), and we could prove theorem 7.32 only by
adding the "compatibility" and "fullness" conditions. A full and com-
patible proof-net is always non-contradictory, and the non-contradiction
hypothesis (weaker than the compatibility and fullness one) is already
enough to prove theorem 7.52.

7.8.3 Computing with the A-calculus slices

To apply the content of section 7.7 to \LLP,,, just notice that if S,ro is
the sliced proof-structure associated with the cut-free sequent calculus
proof 7ro, then by remark 7.31, S,r0 is full and compatible (thus non-
contradictory). If 7r is a sequent calculus proof of \LL,,,, and So is a
normal form of S,, then QS,ro]j = QSoJ and by theorem 7.52, So = S,ro.

Acknowledgments: We thank Laurent Regnier who suggested us the
property of the A-calculus expressed by proposition 7.48, thus allowing
us to (drastically) simplify the proof of theorem 7.52.

Bibliography
[1] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg.

Normalization by evaluation. In Prospects for hardware foundations
(NADA), volume 1546 of Lecture Notes in Computer Science, pages
117-137. Springer, 1998.

[2] Vincent Danos. La Logique Lineaire appliquee a l'etude de divers processes
de normalisation (principalement du A-calcul). These de doctorat,
Universite Paris VII, 1990.

[3] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new
deconstructive logic: linear logic. Journal of Symbolic Logic,
62(3):755-807, September 1997.

[4] Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Normalization by
evaluation with typed abstract syntax. Journal of Functional
Programming, 11(6):673-680, November 2001.

[5] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

[6] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical
Structures in Computer Science, 1(3):255-296, 1991.

[7] Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and Sambin,
editors, Nuovi problemi delta logica e delta filosofia delta scienza, pages
79-90, Bologna, 1991. CLUEB.

[8] Jean-Yves Girard. Light linear logic. Information and Computation,
143(2):175-204, 1995.

282 0. Laurent, L. Tortora de Falco

[9] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In
Ursini and Agliano, editors, Logic and Algebra, New York, 1996. Marcel
Dekker.

[10] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of
rules. Mathematical Structures in Computer Science, 11(3):301-506,
June 2001.

(11] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. In Proceedings of the eighteenth
annual symposium on Logic In Computer Science, pages 1-10. IEEE,
IEEE Computer Society Press, June 2003.

[12] Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended
abstract). In Jean-Yves Girard, editor, Typed Lambda Calculi and
Applications '99, volume 1581 of Lecture Notes in Computer Science,
pages 213-227. Springer, April 1999.

[13] Olivier Laurent. Etude de la polarisation en logique. These de doctorat,
Universite Aix-Marseille II, March 2002.

[14] Olivier Laurent. Polarized proof-nets and \µ-calculus. Theoretical
Computer Science, 290(1):161-188, January 2003.

[15] Olivier Laurent, Myriam Quatrini, and Lorenzo Tortora de Falco.
Polarized and focalized linear and classical proofs. Prepublication 24,
Institut de Mathematiques de Luminy, Marseille, France, September
2000. To appear in Annals of Pure and Applied Logic.

[16] Laurent Regnier. Lambda-Calcul et Reseaux. These de doctorat,
Universite Paris VII, 1992.

[17] Lorenzo Tortora de Falco. Reseaux, coherence et experiences
obsessionnelles. These de doctorat, Universite Paris VII, January 2000.
Available at: http://www.logique.jussieu.fr/www.tortora/index.html.

[18] Lorenzo Tortora de Falco. Obsessional experiments for linear logic
proof-nets. Quaderno 11, Istituto per le Applicazioni del Calcolo, Roma,
Italy, June 2001. To appear in Mathematical Structures in Computer
Science.

[19] Lorenzo Tortora de Falco. The additive multiboxes. Annals of Pure and
Applied Logic, 120(1-3):65-102, January 2003.

8

A Topological Correctness Criterion for
Multiplicative Non-Commutative Logic

Paul-Andre Mellies
CNRS, Universite Paris 7

Abstract

We formulate Girard's long trip criterion for multiplicative linear logic
(MLL) in a topological way, by associating a ribbon diagram to every
switching, and requiring that it is homeomorphic to the disk. Then, we
extend the well-known planarity criterion for multiplicative cyclic linear
logic (McyLL) to multiplicative non-commutative logic (MNL) and show
that the resulting planarity criterion is equivalent to Abrusci and Ruet's
original long trip criterion for MNL.

8.1 Introduction
In his seminal article [7] on linear logic, Jean-Yves Girard develops two
alternative notations for proofs:

a sequential syntax where proofs are expressed as derivation trees in
a sequent calculus,
a parallel syntax where proofs are expressed as bipartite graphs called
proof-nets.

The proof-net notation plays the role of natural deduction in intuition-
istic logic. It exhibits more of the intrinsic structure of proofs than the
derivation tree notation, and is closer to denotational semantics. Typ-
ically, a derivation tree defines a unique proof-net, while a proof-net
may represent several derivation trees, each derivation tree witnessing a
particular order of sequentialization of the proof-net.

The parallel notation requires to separate "real proofs" (proof-nets)
from "proof alikes" (called proof-structures) using a correctness criterion.
Intuitively, the criterion reveals the "geometric" essence of the logic, be-

283

284 P.-A. Mellies

yond its "grammatical" presentation as a sequent calculus. In the case
of MLL, the (unit-free) multiplicative fragment of (commutative) lin-
ear logic, Girard introduces a "long trip condition" which characterizes
proof-nets among proof-structures. The criterion is then extended to
full linear logic in [9].

The article is divided in two parts. In part one, we recall Girard's long
trip criterion (section 8.2) reformulate the criterion topologically (sec-
tion 8.3) and relate it to an alternative formulation by Vincent Danos
and Laurent Regnier (section 8.4). In part two, we shift from commu-
tative to non-commutative logic. So, we start by reformulating care-
fully the well-known planarity criterion for multiplicative cyclic logic
(McyLL) (section 8.5). And we recall multiplicative non-commutative
logic (MNL) (section 8.6) as well as the long trip criterion devised for
MNL by V. Michele Abrusci and Paul Ruet [3] (section 8.7). Finally, we
generalize to MNL the "planarity" criterion for McyLL (section 8.8) and
show that the criterion is equivalent to Abrusci-Ruet "long trip" crite-
rion (section 8.9). We conclude the article with an appendix discussing
the topological status of logics like MLL, McyLL or MNL (section 8.10).

8.2 Girard's long trip correctness criterion

We recall below the long trip correctness criterion, which appears in [7],
and characterizes the proofs of the (unit-free) multiplicative fragment of
linear logic (MLL).

MLL formulas and negation. An MLL formula is a tree with
leaves p, q, r, ... and p-L, q1, r1-,... called atoms, and binary connec-
tives ® and 28. The negation Al of a formula A is the formula defined
inductively by so-called de Morgan laws:

(A®B)1- = Bl 28 A1, (A 2' B)L = Bl®A1, (p)1 = p', (p1)1 = p.

It follows that (Al)l = A for every formula A.

MLL sequent calculus. - An MLL sequent is a finite sequence
of formulas, noted I- A0, ..., Ak_1. We usually write formulas as latin
letters A, B, C, and finite sequences of formulas as greek letters F, A.
A derivation tree is a tree with a sequent at each node, constructed

Topological Correctness Criterion 285

inductively by the five rules below.

F A1, A
(CuT)

f- r,A F-A1,A
I- r, A

f r,A F- B,A F- r,A,B
(®) Fr,A®B,A

(2g)

Pr,A?8B

I-F,A,B,A
(Excx)

F- F, B, A, A

MLL links. - An MLL link is a graph of the following form, whose
vertices are labelled with MLL formulas:

1. Axiom link

Al A

with two conclusions A and Al, and no premise,
2. Cut link

Al A

with two premises A and Al, and no conclusion,
3. ® and 28 links

A B A B

A®B A$B

where the formula A is the first premise, the formula B is the
second premise, and A ® B (or A'8 B) is the conclusion.

MLL proof-structures. - A proof-structure e is a graph constructed
with links such that every (occurrence of) formula is the conclusion of
one link, and the premise of at most one link. We define a conclusion
of a as a formula which is not the premise of any link. A link of e is
terminal when its conclusion is a conclusion of 9.

Every derivation tree defines a proof-structure, but conversely, not

286 P.-A. Mellies

every proof-structure is deduced from a derivation tree. The simplest
example is the proof-structure:

ax

Al A

A1® A

So, which proof-structures exactly are obtained from a derivation tree?
Here follows Girard's remarkable answer, the so-called long trip criterion.

Decorated formulas. - Call decorated formula a couple (A, T) or
(A, j) where A is an MLL formula and T or j is a tag. We write At and
Al for the decorated formulas (A, T) and (A, j). Now, for each axiom,
cut, ® or 28 link 1, we define two sets lin and l°"t of decorated formulas,
as follows:

lin is the set of all decorated formulas Al where A is a premise of 1,
and all decorated formulas AT where A is a conclusion of l;
l°"t is the set of all decorated formulas AT where A is a premise of 1,
and all decorated formulas Al where A is a conclusion of 1.

Switching positions. - For every link 1, a set S(l) of functions from
li" to l°"t is defined, called the switching positions of 1:

if l is an axiom link [A1, A], then S(l) = {ax} where

ax : (A1)T --* Al, AT --' (Al)l;

if l is a cut link [A1, A], then S(l) _ {cut} where

cut : (A1)1 - AT, Al H (A1)T;

if l is a ®-link [A, A ® B, B], then S(l) = {®R, ®L} where

OR : Al F--+ BT, B1 , (A (9 B)1, (A (9 B)T H AT,

®L Al F-+ (A®B)1,B1 F, AT,(A(9 B)T H BT;

if l is a'-link [A, A' B, B], then S(l) = {'R,'L} where

2YR: Al ,--* AT, BI - (A (9 B)1, (A (9 B)T - BT,

Topological Correctness Criterion

0

Fig. 8.1. Girard switching positions for tensor and par

?8L: Al H (A (9 B)1, B1 F -' BT, (A ®B)T ,-+ AT.

287

Long trip criterion. - A switching s of an MLL proof-structure 9 is
a function which associates a switching position s(l) E S(l) to every link
l of ®. The switched proof-structure trip(8, s) is the oriented graph with
vertices the decorated formulas labelling 6, and with an edge from Ax
to By if By = s(l)A', for some link l in 6, or Ax = Cl and By = CT,
for some conclusion C of 6.

Definition 8.1 (Girard) A Girard proof-net is a proof-structure 6
such that every switched proof-structure trip(O, s) contains a unique
cycle. This unique cycle is called the long trip.

Intuitively, every switching s defines a trajectory for a particle visiting
the proof. Each ® and ' link is visited according to one switching
position of figure 8.1; the particle rebounces on axioms, cuts and con-
clusions. A proof-structure is a proof-net when the particle visits every
part, without being captured into a cycle, this for every switching.

Three important properties are established in [7].

(i) soundness: every MLL derivation tree translates as a Girard
proof-net.

(ii) sequentialization: every Girard proof-net is the translation of an
MLL derivation tree. The proof is based on the notions of (max-
imal) empire, and splitting tensor.

(iii) cut-elimination: MLL enjoys cut-elimination.

8.3 Our topological reformulation
The characterization of proofs provided by Girard's criterion is not only
"geometric", it is also "computational". Expressed in game semantics,
the criterion characterizes proofs as uniform strategies which do not
deadlock during communication, and which interact with every part of

288 P.-A. Mellies

V/ WR "L
'&R OL

Fig. 8.2. Ribbon version of figure 8.1

the formula, see [1]. In fact, switchings should be understood as counter-
proofs in an extended "para-logic", see [10].

One technical point is that long trips are oriented in Girard's criterion.
However, the orientation may be avoided by reformulating the criterion
topologically. The idea is to replace oriented edges by ribbons, and to
apply the convention below.

Convention. -

Replace two oriented edges: by a ribbon:

According to the convention, the 0 and 2 switching positions of figure
8.1 are replaced by the ribbon diagrams of figure 8.2, while the (switching
position of) axiom and cut links are replaced by simple ribbons:

cut

Similarly, each conclusion C is replaced by a 2-dimensional "cul-de-sac":

UC

Now, every proof-structure O and every switching s induces a surface
ribbon(O, s) obtained by replacing every switched link and conclusion

Topological Correctness Criterion 289

of 6 by its ribbon diagram, and pasting all diagrams together. This
enables us to reformulate Girard's long trip criterion below, see also
section 8.4 for a proof that the two formulations are equivalent (lemma
8.4.)

Definition 8.2 (topological proof-net) A topological proof-net is a
proof-structure 6 such that the surface ribbon(O, s) is homeomorphic
to the disk, for every Girard switching s.

8.4 Danos and Regnier correctness criterion

Many alternative formulations of Girard's long trip criterion are possible.
We recall here the "tree" criterion formulated by Vincent Danos and
Laurent Regnier in [5]. A Danos-Regnier switching for an MLL proof-
structure O is the data for every -link of a switching position chosen
among 28R and 2'L:

7R IRL

Given a Danos-Regnier switching s, the switched graph graph(®, s) is
defined by replacing every 2Y-link in O by the corresponding switching
position. Danos and Regnier's formulation of the criterion follows.

Definition 8.3 (Danos-Regnier) A Danos-Regnier proof-net is a
proof-structure whose all switching graphs are trees, ie. connected and
acyclic graphs.

Herebelow, we establish that the three formulations of proof-net (Gi-
rard, Danos-Regnier, topological) are equivalent. The proof is not really
difficult, but informative enough to appear here. We will consider the
"shrink" operation contracting ribbons into one-dimensional edges, like
this:

290 P.-A. Mellies

Contract a ribbon:

It is worth observing that the operation "shrinks" the ribbon diagrams
of figure 8.2 into the Danos-Regnier switching positions above. In par-
ticular, the operation contracts the two OR and ®L positions into the
"invisible" Danos-Regnier switching position OR = ®L:

®R ®L

Every Danos-Regnier proof-net is a topological proof-net. -
Consider a Danos-Regnier proof-net O. Every (topological) switching s
defines a surface ribbon(O, s) which "retracts" as the tree graph(O, s).
Thus, the surface is a "thick tree" homeomorphic to the disk. We con-
clude.

Every topological proof-net is a Girard proof-net. - Consider
a topological proof-net O. Every (topological = Girard) switching s
defines a surface ribbon(O, s) homeomorphic to the disk. Its border
trip(O, s) is unique, therefore a long trip. We conclude.

Every Girard proof-net is a Danos-Regnier proof-net. This is
the only delicate step of our series of equivalence. We proceed by contra-
diction. Suppose that O is a Girard proof-net, and not a Danos-Regnier
proof-net. By definition, there exists a Danos-Regnier switching s such
that graph(O, s) is not a tree. The difficult point is to define a (topo-
logical = Girard) switching s' inducing a surface ribbon(O, s') with two
borders at least. When graph(@, s) is not connected, we take s' = s.

Topological Correctness Criterion 291

When graph(O, s) contains a cycle C, it is always possible to alter the
switching positions of the 0-links visited by C in ribbon(O, s) in such
a way that the altered switching s' verifies graph(O, s) = graph(O, s')
and that the cycle C "lifts" to a border of ribbon(O, s'). Note that
the resulting surface ribbon(O, s') has two borders at least. Each such
border induces a cycle in trip(O, s'). It follows that trip(O, s') is not a
long trip, and we conclude.

Lemma 8.4 The three formulations of MLL proof-net are equivalent.

Intuitively, the topological criterion stands halfway between Girard and
Danos-Regnier criteria, keeping the best of both worlds. For instance,
the switching position ®L is necessary to test a proof-structure in the
long trip criterion; but not in the Danos-Regnier and topological formu-
lations.

Lemma 8.5 In definition 8.2, switchings may be replaced by ®L-free
switchings.

This point is best illustrated by the proof-structure (8.1) pointed out by
Abrusci and Ruet [3]. Switching every 0-link as OR is enough to show
that O is not a topological proof-net - since the induced switching
surface is not planar. On the other hand, the surface has a unique
border... So, it takes one switching position ®L at least to detect that
(8.1) is not a Girard proof-net.

Al Bl A BU U
Al ® B1 A ® B

switched as

(A' ® B') ® (A (9 B)

(8.1)
This is the advantage of thinking topologically: the long trip criterion
counts the number of borders of ribbon(O, s) while the topological cri-
terion takes also into account its planarity and genus.

292 P.-A. Mellies

8.5 A planarity correctness criterion for cyclic linear logic
Suggested by Girard in [8] expounded by Yetter in [22] cyclic linear logic
(cyLL) is the variant of linear logic obtained by limiting the exchange
rule EXCH to cyclic permutations:

(cYExCH)
F Ao, ..., Ak-1

where f is a cyclic permutation.
f- Ad(o), ..., AC(k-1)

In this section, we consider McyLL, the multiplicative (unit-free) frag-
ment of cyclic linear logic. As in [3], we use the notations O for "next"
and V for "sequential" to distinguish the cyclic connectives from their
commutative counterparts ® and ?S. The definitions of formula, sequent
and proof-structure are the same in McyLL as in MLL, with the only
difference that the connectives O and V replace ® and ' everywhere,
respectively. Negation is defined as in MLL:

(AO B)1 = Bl°A1, (A°B)1 = B1 G) A1.

Except for the restriction on the exchange rule, the rules of McyLL are
the same as in MLL:

(Ax) (CUT
r, F- A-L, A

A A)

f r,A HB,L
(0

I- r,A,B
(°)) H r, A o B, A F- r, A°B

It is worth noting that the formula (A G) B) o A) is not provable
in McyLL, where A-eB is notation for Al°B. This is the reason why
the logic is called non-commutative.

Today, three correctness criteria are available for McyLL.

(i) A "planarity" criterion characterizes McyLL proof-nets as planar
MLL proof-nets. This criterion was observed by Girard at the
very first days of cyclic linear logic, and is well-known today.
It appears explicitly in [4, 16, 17]. Franccois Metayer delivers
an alternative but equivalent characterization of the logic in his
simplicial presentation [14].

(ii) A "long trip" criterion by V. Michele Abrusci adapts Girard's
correctness criterion for MLL, by (1) limiting o to the switching
position OR and (2) adding a new position V3 to the switching
positions of V. The criterion is formulated for McyLL in [2] and
extended to non-commutative logic (MNL) in [3]. The criterion

Topological Correctness Criterion 293

is exposed in section 8.7 where we also discuss a recent version of
the criterion by Virgil Mogbil and Quentijn Puite [15].

(iii) A recent "seaweed" criterion by Roberto Maieli [12] formulates a
criterion for McyLL and MNL in the fashion of Danos and Regnier
criterion for MLL. The idea is to replace trees by series-parallel
order varieties (seaweed).

We formulate very carefully the "planarity" criterion for McyLL, which
is not as straightforward as it seems. The first part of the criterion
requires that an McyLL proof-net a translates as an MLL proof-net a*.

Definition 8.6 (commutative translation) The commutative trans-
lation e* of an McyLL proof-structure a is the MLL proof-structure
obtained as the result of replacing every O and V link by ® and
respectively.

The second part of the criterion requires "planarity" of e, or more pre-
cisely planarity of the (orientable) surface ribbon(s) obtained as in
section 8.3, by replacing every {O, V, axiom, cut}-link and conclusion
in e by the associated ribbon diagram

U

The unexpected point is that planarity of ribbon(s) is not sufficient to
characterize McyLL proofs among McyLL proof-structures. Typically,
the McyLL proof-structure b of conclusion

k (A' vB1), (A O B)

is not sequentializable in McyLL, but its surface ribbon(s) is planar:

294 P.-A. Mellies

So, how should one characterize McyLL proof-nets? One possible an-
swer is to require that all conclusions of 0 lie on the same border
of ribbon(0). It is not very complicated to prove that this require-
ment added to planarity characterizes all cut-free proofs among cut-free
proof-structures. Unfortunately, the criterion is too weak to charac-
terize proofs with cuts, as witnessed by the example below of a non-
sequentializable McyLL proof-structure, with a unique conclusion.

Remark. - The proof-structure (8.3) is interpreted as a disk in
Metayer's simplicial presentation. This explains why Metayer's sequen-
tialization theorem for McyLL [14) is limited to cut-free proof-nets.

Planar logic. - At this point, it is tempting to define a conservative
logic over McyLL, which would capture exactly the idea of "planarity".
Let us call it planar logic. Its formulas are McyLL formulas, and its
sequents are finite sets of (occurrences of) McyLL sequents, written

f- I71 I ... I In

Each McyLL sequent Fj is called a component of the sequent. Two
sequents H F1 I ... I rn I 0 and I- F1 I ... I rn of the logic are generally

Topological Correctness Criterion 295

identified when A is the empty component. Planar logic enables general
exchange between components:

F-...IrIAI...
F-...IAIFI...

and cyclic permutations £ inside a component:

(cYExCH)
F- ... I Ao,..., Ak-1
... I A£(o), ..., Ae(k-1)

The remaining rules of planar logic follow:

...Ir,A A1,oI...
(Ax) Al, A

(CuT) H ... I F, A I .. .

(v)
- ---j r, A, A, B l- ... I r, A I- B, A I ...

H...I r,AVB i A (°) H...Ir,A®B,AI...
Every proof 7r of F- rl

I ... I
r,,,, of planar logic defines a McyLL proof-

structure 6 whose translation 9* is a MLL proof-net, and whose surface
ribbon (9) is planar with m + n borders o , ..., o and Tl, ..., T,t; each
border ai visits the formulas of ri in the order in which they appear in
the component; none of the remaining borders 7-j visits a conclusion of
e.

Conversely, every McyLL proof-structure 6 whose translation 9* is a
MLL proof-net, and whose surface ribbon(6) is planar, sequentializes
as a proof 7r of planar logic. Typically, the "twist" proof-structure (8.2)
sequentializes as the proof

Al, A f- B, BI
OA',AOB,Bl

E

VAlkB-IA0B

But (8.2) does not sequentialize as a proof of I- A-)-VB1-, A ® B. In a
similar way, the proof-structure (8.3) sequentializes as a derivation tree
of planar logic:

F A, Al F A. Al F B Bl F B, B1
0 0

F A, Al 0 A Al
v

F B, B1 0 B, B1
V

A-L OA, Al VA I-B1vB,B1OB FB1,B FAl,A0 v v
I- Al 0 A. (A1 VA) 0 (B1VB), Bl 0 B

v
F B1VB F- AlvA 0

F- (Al VA) 0 (B1VB)I(Al 0 A)v(Bl 0 B) (B1VB) 0 (Al VA)
cut

F (AlvA) 0 (B1vB)

296 P.-A. Mellies

It is worth noting that cut-elimination preserves the planarity of proof-
structures, but generally reduces the number of borders of the surface.
Typically:

Accordingly, planar logic enjoys the following cut-elimination property:
if 7r is a proof of I- ri I I Fm in planar logic, and 7r' is a proof obtained
after a series of cut-elimination steps applied to 7r, then ir' is a proof of
a sequent I- AI I I An which reduces to the sequent F- fI I P,,,,

by applying a series of "divide" rules:

(DIVIDE)
F-...I r,AI ...

H...I r I A I ...

Conservativity of planar logic over McyLL follows from this and the cut-
elimination property of McyLL, established in corollary 8.10. Indeed, the
cut-free proofs of a McyLL sequent I- F are the same in McyLL and in
planar logic.

Planar logic seems interesting for itself. But from now on, we stick to
cyclic linear logic, and characterize its sequentializable proof-structures,
notwithstanding the difficulties.

Index. Internal and external borders. - Given an McyLL proof-
structure O, and a border a of ribbon(0), we shall count the number
of V-links visited by the border a on their thick side, see (8.4). We call
this number the index of a. A border of index 0 is called external, and
a border of index more than 1 is called internal.

Topological Correctness Criterion 297

Conversely, the border of ribbon(O) which visits the thick side of a
given V-link of O, is called the internal border of this link.

The correctness criterion. - Example (8.2) and (8.3) suggest to
reinforce the definition of McyLL proof-net as follows.

Definition 8.7 (McyLL proof-net) An McyLL proof-net is an McyLL
proof-structure O such that,

(i) its commutative translation O* is an MLL proof-net,

(ii) its surface ribbon(O) is planar with a unique external border a,
(iii) a contains all the conclusions.

The criterion rejects the proof-structures (8.2) and (8.3) because one of
their conclusions lies on an internal border. The criterion rejects the
proof-structure (8.5) of conclusion f- (BOA) -.(AO B) as well, because
it is not planar.

Remark. - The criterion implies that every internal border is of index
exactly one in ribbon(O), when O is a McyLL proof-net. Indeed, by
condition 1, the surface ribbon(O) defines a surface homeomorphic to
the disk, when every V-link is replaced by a switching position ?8L or
'R. Consequently, the planar surface ribbon(O) has n + 1 borders,
where n is the number of V-links appearing in O. Since there exists
only one external border, each of the remaining n internal borders of
ribbon(O) visits exactly one V-link.

Soundness. - It is not difficult to show by induction that the criterion
is sound. At each step, one proves that the McyLL derivation tree of
I- A1, ..., Ak translates as an McyLL proof-net whose external border
visits the conclusions A,,..., Ak in the clockwise order (here, one assumes
implicitly that the surface is oriented.)

298 P.-A. Mellies

Planarity 1. - We recall one elementary property of planar surfaces,
which we shall use in our proof of sequentialization. If one pastes (with
glue) the two borders a1 and a2 of a planar surface S, on disjoints
segments A of al and B of a2, in such a way that orientation of S is
preserved, one obtains a surface S' which is:

planar when Ql = a2,
not planar when a1 # a2.

In the next lemma, the concept of splitting O-link or cut-link is adapted
from [7, 9].

Lemma 8.8 Suppose that O is an McyLL proof-structure whose MLL
translation O* is an MLL proof-net, and whose surface ribbon(O) is
planar. Then, either O is the axiom link, or every external border of
ribbon(O) visits one of the following:

the conclusion of a terminal V-link of O,
a splitting G)-link of E),
a splitting cut-link of O.

Proof By induction on the size of O. We suppose that every McyLL
proof-structure A strictly smaller than O verifies the property. Consider
an external border a of O. We proceed by case analysis.

[A] Suppose that O contains a terminal V-link l of conclusion AVB.
Remove the V-link l from O. The resulting McyLL proof-structure A
translates as an MLL proof-net A* and has a planar surface ribbon(A).
We proceed by case analysis.

1. either the external border a visits the conclusion of the terminal
V-link I of O, and we are done,

2. or the external border a does not visit the conclusion of the V-link
1. Since a is not the internal border of l either, a is the residual of an
external border a' of ribbon(A) which does not visit the conclusions
A and B of A. This shows already that A is not the axiom-link. By
induction hypothesis on A, two cases may occur. Either the external
border a' visits the conclusion of a terminal V-link m of A. In that
case, the V-link remains terminal in O, and a visits the conclusion of
m: we are done. Or the external border a' visits a splitting G)-link (or
cut-link) m of A, which splits A in two McyLL proof-structures Al and

Topological Correctness Criterion 299

A2. Since the border a visits the link m in e, the proof reduces to
showing that m is splitting in e. The surface ribbon(s) is the result of
glueing together the two conclusions A and B of ribbon(A). Planarity
of ribbon(s) implies that the two conclusions A and B appear on the
same border a" of ribbon(A). This border a" cannot be a' because a'
does not visit the formulas A and B. Since the border a' is the unique
border of ribbon(A) visiting both Al and A2, the border a" is either a
border of ribbon(A1) or border of ribbon(A2). In the former case, A
and B are conclusions of A1, in the latter case, A and B are conclusions
of A2. In both cases, the link m remains splitting in e, and we are done.

[B] Suppose that e does not contain any terminal V-link. In that case,
e* is an MLL proof-net with no terminal 28-link, and it follows that
the proof-structure a contains a splitting 0-link or cut-link 1, see [7, 9].
Remove the link l from e. The two resulting McyLL proof-structures
Al and A2 translate as MLL proof-nets Ai and A2 and define planar
surfaces ribbon(A1) and ribbon(A2). Either a visits both Al and A2:
in that case, we are done, because a visits the splitting link 1. Or the
border a visits Al only, or A2 only. Suppose that we are in the first
situation. It follows by induction hypothesis on A1, which cannot be the
axiom-link, that the external border a visits either the conclusion of a
terminal V-link m of A1, or a splitting E)-link m of A1, or a splitting
cut-link m of of A1. In the two last cases, we are done, because the link
m remains splitting in A. In the first case, note that the conclusion of
m is not the premise in e of the splitting link 1. Thus, the V-link m is a
terminal link in e, whose conclusion is visited by a. We conclude.

Sequentialization. - We prove that every McyLL proof-net sequen-
tializes as an McyLL derivation tree, theorem 8.9. The proof is not really
complicated, except for the cut-link case, which requires the preliminary
lemma 8.8.

Theorem 8.9 (McyLL sequentialization) Every McyLL proof-net is
the translation of an McyLL derivation tree.

Proof We show by induction on the number of connectives in e, that
there exists an McyLL derivation tree 7r sequentializing the McyLL
proof-net O.

Suppose that e contains a terminal V-link of conclusion AVB. Re-
move this V-link 1 from e. The resulting McyLL proof-structure A is

300 P.-A. Mellies

an McyLL proof-net. By induction hypothesis, there exists an McyLL
derivation tree 7r sequentializing A of, say, conclusion f- Ao, ..., A,,,_1.
Let i and j be the two indices 0 < i, j < n - 1 such that A = Ai and
B = A3 . We claim that j = i + 1 modulo n. Suppose not. Then, the
conclusions Ai+1, ..., Aj_1 appear on the segment of border between A
and B in A, thus on the internal border of a V-link l in ®. This con-
tradicts the hypothesis that 6 is a McyLL proof-net. We conclude that
j = i + 1 modulo n. The McyLL derivation tree 7r' sequentializing O
follows immediately from 7r, and we are done.

Suppose now that ® contains no terminal 0-link. We are done when
® is an axiom link. Otherwise, ®* is an MLL proof-net without terminal
2Y-link, and thus, there exists a splitting G)-link or cut-link l in ©, see
[7, 9]. Obviously, when l is a 0-link, it connects two McyLL proof-nets
Al and A2, and we conclude by a simple induction argument.

The remaining case, when there are only splitting cut-links, and no
splitting O-link, is more delicate. Indeed, removing an arbitrary splitting
cut-link l from 6 induces two McyLL proof-structures Al and A2; and
one of them, say A1i may not be a McyLL proof-net. This case happens
when A2 has a unique conclusion A, whose dual formula A-L appears
on an internal border of the surface ribbon(Al). Note that in this
"pathological" case, the cut-link l is visited by an internal border of
ribbon(O). The situation is illustrated by the cut-link number 2 in the
McyLL proof-net below:

(8.6)
In other words, we need to choose which splitting cut-link should be
removed first from a McyLL proof-net, if we want to sequentialize it.
Typically, the cut-link number 1 must be removed before the cut-link
number 2 in the McyLL proof-net (8.6). Fortunately, there is always a
correct choice, induced by lemma 8.8. By hypothesis, the proof-net O
does not contain any terminal V-link, nor splitting G)-link; moreover, by
definition of a McyLL proof-net, its translation O' is planar. It follows
by lemma 8.8 that the unique external border of O visits one splitting
cut-link l at least. We choose to remove this cut-link l from O first, and

Topological Correctness Criterion 301

avoid in this way the "pathological" case. So, we obtain two McyLL
proof-nets Al and A2 and conclude by a simple induction argument.

Planarity 2. - We recall another elementary property of planar sur-
faces, that we shall use in our proof of cut-elimination. If one cuts (with
scisors) a planar surface S which is connected, from a border al to a
border a2 of S, one obtains a surface S' with:

two connected components when al = a2,
one connected component and one border less than S, when al 0 0`2-

Cut-elimination. - The planarity criterion, definition 8.7, enables to
prove cut-elimination of McyLL in a simple and intuitive way.

Corollary 8.10 McyLL enjoys cut-elimination.

Proof We prove that McyLL proof-nets are preserved by cut-elimination.
Let O be an McyLL proof-net containing a cut-elimination pattern R.
We prove that the McyLL proof-structure A obtained after rewriting
the pattern R, is an McyLL proof-net. Cut-elimination in MLL ensures
already that A translates as an MLL proof-net A*. There remains to
show that ribbon(A) is planar, and has a unique external border visiting
all conclusions of A.

Topologically, cut-elimination consists in cutting (with scisors) the
surface separating two borders al and a2 of ribbon(O). One border,
say al, visits the internal border of the V-link I of R, while the other
border a2 visits the G)-link. Planarity of ribbon(A) follows. Besides,
the surface ribbon(A) is connected because A translates as an MLL
proof-net A*. We conclude that the two borders al and a2 are different
in ribbon(O).

Let a3 denote the border of ribbon(A) obtained by "merging" the
two borders al and a2 of ribbon(O). We mentioned that every internal
border of ribbon(O) has index one, for a McyLL proof-net like 0, see
the remark after definition 8.7. In particular, the V-link l is the unique
V-link visited internally by al. Since cut-elimination removes this V-link
1, the index of a2 and a3 are equal.

It follows that ribbon(A) has a unique external border a. This border
a is the border a3 when the border a2 is external, and the residual of
the external border of ribbon(O) when the border a2 is internal. In

302 P.-A. Mellies

each case, the border a visits all conclusions of A. We conclude that the
proof-structure A is a McyLL proof-net.

We have just proved that McyLL proof-nets are preserved by cut-
elimination. The end of the proof is easy. Suppose that 7r1 and 7r2 are
McyLL derivation trees of conclusion f- I', A and F A1, A. By sound-
ness, the derivation trees 7r1 and 7r2 define McyLL proof-nets Al and
A2, respectively. Now, connect Al to A2 by a cut-link between the con-
clusions A and Al. This defines a McyLL proof-net 0 which reduces
by cut-elimination to a cut-free McyLL proof-net 0'. The proof-net ®'
sequentializes to a cut-free McyLL derivation tree 7r', by theorem 8.9.
The derivation tree 7r' has conclusion F F, A. We conclude that McyLL
enjoys cut-elimination.

Remark. - The proof-structure (8.3) appears independently in Robert
Schneck's work on non-symmetric linearly distributive categories [21].
Motivated by this example, Schneck strengthens the planarity criterion
for negation-free multiplicative linear logic, and formulates a new crite-
rion, in a similar way as we do above.

8.6 Non commutative logic

Non commutative logic (NL) was introduced by Paul Ruet in his PhD
thesis [19] and developped with collaborators in a series of articles [3,
20, 13]. It is a conservative extension of both commutative linear logic
(LL) and cyclic linear logic (cyLL). The idea is to equip every sequent
F- Ao,..., Ak_1 with additional information on the relative positions of
the conclusions, provided by an order variety on the set of (occurrences
of) formulas A1i ..., Ak.

Order varieties. - An order variety a on a set X is a ternary relation
which is:

(i) cyclic: Vx, y, z E E, a(x, y, z) = a(y, z, x),

(ii) anti-reflexive: Vx, y E E, -ia(x, x, y),

(iii) transitive: Vx, y, z, t E E, a(x, y, z) A a(x, z, t) = a(x, y, t),
(iv) spreading: Vx, y, z, t E E, a(x, y, z) = a(t, y, z) V a(x, t, z) V

a(x, y, t).

The three first properties define a cyclic order, as introduced by Novak

Topological Correctness Criterion 303

in [18]. A cyclic order is total when it verifies the additional property:

Vx,y,zEE,x#y#z54 a(x,y,z)Va(x,z,y)

A total cyclic order is often called oriented cycle on X, because, at least
when X is finite, it can be described by a graph (X, which relates
x -, y when there exists no z E X such that a(x, z, y). This graph
contains a unique cycle, and a(x, y, z) simply means in that case that
"y stands between x and z".

Order varieties generalize total cyclic orders, like partial orders gen-
eralize total orders. Every order variety on X becomes a partial order
on X - {x} once an origin x is fixed in X - in a reversible way, in the
sense that the order variety on X may be reconstructed from the partial
order on X - {x}. The following properties are established in [3, 20].

Focusing. - Given an order variety a on X and an element x E X,
define the partial order ax on X - {x}, called focus of a on x, by:

Vy, Z E X - {x}, ax (y, z) a(x, y, z)

Conversely, given a partial order w = (X, <) on X and an element z E X,
define the binary relation on X:

Z

x < y t= x < y and z is comparable with neither x nor y.

Then, the order variety w on X, the closure of w on X, is defined as the
ternary relation W(x, y) z) on X:

z x yx<y<z or y<z<x or z<x<y or x<y or y<xz or z<x.

Parallel and series. - Given two partial orders w on X and w' on Y,
define the partial orders w I w' (called w parallel w') and w < w' (called
w series w') on X + Y.

x(W
W, x E X and yEX and xwy

)y x E Y and y E Y and xw'y

f xEX and yEY
x(w<w')y 4 xEX and yEX and xwy

I x E Y and yEY and xw'y

Glueing. - If w and w' are two partial orders on disjoint sets X and

304 P.-A. Mellies

Y, then the following equality holds:

w < W' = w I w' = w' < W

This enables to glue two partial orders w on X and w' on Y, and obtain
an order variety w * w' = w I w' on X + Y. The two main properties of
glueing are:

(ax)*x=a (w*x)x=w

for a an order variety on X, x an element of X, and w a partial order
on X - {x}.

Next and tensor. - Given two order varieties a on X and 3 on Y,
and two elements x E X and y c Y, one glues a and p together on
x and y, in a series or parallel fashion, to obtain an order variety on
(X - {x}) + (Y - {y}) + {z}:

a02,y,Q = ax<z<Qy = (,3y<ay)*x

a ®y'YO = ax I z I Ny = (Qy I ax) * z

Interior. - Every cyclic order a on X contains a largest order variety
qa. The order variety ba is called the interior of the cyclic order a, and
defined as

qa= nax*x
xEX

Notation. - Consider an order variety a on X, and a subset Y of X.
We write a NY the order variety obtained by restricting the ternary rela-
tion a to the subset Y of X. Given an element x of X, the order variety
a[zlx] is the order variety on (X - {x}) + {z} obtained by replacing x
by z in X.

Par. - Given an order variety a on X and two different elements
x, y c X, one defines the order variety a[z/x, y] on (X - {x, y}) + {z}
as

a[z/x,y] = b (a (x-{y} [zlx] n a [x-lx} [z/y])

We write a[x, y] when x and y are two different elements of X.

MNL. - The multiplicative fragment (without units) of non commu-
tative logic (MNL) extends both MLL and McyLL. Its formulas are

Topological Correctness Criterion 305

0 V V V

Fig. 8.3. Abrusci-Ruet switching positions for next and sequential

constructed using the connectives ®, 2' (from MLL) and 0, V (from
McyLL). Negation in MNL simply extends negation in MLL and McyLL.
An MNL sequent I- w is an order variety on a finite set of (occurrences
of) MNL formulas. An MNL derivation tree is a tree of MNL sequents
constructed according to the following rules.

A T)
F-w*A F- Al*w'

(C(x) FAl*A U I w*w'

(®) -w*A F-w'*B I- a [A, B]

!-(wIw') * A®B H a[A 2Y B/A, B]

(0) -w*A I- w'*B
!-(w<w') * AOB

F w*(A<B)
(v) I- w * AVB

8.7 Abrusci and Ruet's long trip criterion for MNL
In this section, we recall the correctness criterion for McyLL and MNL
developped by V. Michele Abrusci and then Paul Ruet in [2, 3]. The
criterion adapts Girard long trip condition for MLL, by:

keeping the switching positions of MLL for ® and 28 links,
considering 0-links as 0-links limited to the unique switching position
0=®R,
considering V-links as -links with the usual switching positions
VL =24 and VR =?8R, and an additional switching position V3.

Abrusci-Ruet switching positions appear in figures 8.1 and 8.3. Contrarily
to the other switching positions, the position V3 is not total: a V-link in
position V3 does not necessarily reemit a particle which enters it! Ac-
cordingly, Abrusci and Ruet weaken Girard's long trip condition in defi-
nition 8.12, and require only that, for a given proof-net 6 and switching
s, there exists a unique cycle in trip(®, s) which visits all the conclu-
sions, but not necessarily all the proof-net O.

306 P.-A. Mellies

MNL switching. - A switching of an MNL proof-structure ® is the
data of

a switching position in {®L, ®R} for every ®-link of ®,
a switching position in {2YL, 'R} for every 2Y-link of O,
a switching position in {V L, OR, 03} for every V-link of O.

Every MNL switching s defines a switched proof-structure trip(E), s) as
in section 8.2.

Bilaterality. - An additional (and technical) condition of "bilateral-
ity" is required on the cycle. The condition ensures for instance that
the proof-structure illustrated in (8.1) with ®-links replaced by G)-links,
is not a proof-net.

Definition 8.11 (bilateral) Let O be an MNL proof-structure, and s
an MNL switching of O. A trip a in trip(E), s) is bilateral if a is not of
the form

A',...,By,...,Ax,...,By

where A and B are occurrences of formulas in O, and T =1, 1 =T.

Abrusci-Ruet long trip criterion. -

Definition 8.12 (Abrusci-Ruet proof-net) An Abrusci-Ruet proof-
net is an MNL proof-structure O such that, for every MNL switching
s:

(i) there is exactly one cycle a in trip(®, s), called the long trip,
(ii) a contains all the conclusions,

(iii) a is bilateral.

Three important properties are established in [3].

(i) soundness: every MNL derivation tree of conclusion F- a trans-
lates as an Abrusci-Ruet proof-net 9, in such a way that a is
the largest order variety contained in each a,f where as denotes
the total cyclic order (or oriented cycle) on the conclusions of
defined by the long trip of trip(E), s), for s an MNL switching. It
is worth noting for section 8.8 that the characterization of a still
works when the switchings s are restricted to the {VL, VR}-free
ones,

Topological Correctness Criterion 307

(ii) sequentialization: every cut-free Abrusci-Ruet proof-net sequen-
tializes as an MNL derivation tree,

(iii) cut-elimination: MNL enjoys cut-elimination.

In fact, points 2. and 3. are proved using an alternative characterization
of Abrusci-Ruet proof-nets, rather than the original definition 8.12. -
see theorem 2.20 in [3], or the discussion in section 8.9.

Remark. - Virgil Mogbil and Quintijn Puite observe in [15] that
the bilaterality condition of definition 8.12 (point (iii)) may be replaced
by the condition that the MNL proof-structure O translates as a MLL
proof-net O`. Obviously, this condition also rejects the proof-structure
illustrated in (8.1).

8.8 A planarity correctness criterion for MNL
In this section, we extend to MNL the well-known planarity criterion
for McyLL, discussed at length in section 8.5. We will see in section
8.9 that the resulting planarity criterion for MNL reformulates topologi-
cally Abrusci-Ruet long trip criterion. Thus, just as in the commutative
case of MLL, the topological point of view federates seemingly different
correctness criteria (eg. planarity vs. long trip).

Topological switching. - A topological switching of an MNL proof-
structure 0 is simply defined as a {VL, VR}-free MNL switching of 0.
Alternatively, it is the data of

a switching position in {®L, ®R} for every ®-link of 0,
a switching position in {'L, 2YR} for every '-link of 0.

Switched surface. - To every MNL proof-structure 0 and topological
switching s, we associate the surface ribbon(O, s) by replacing every ®
and 28-link by the ribbon diagram corresponding to its MNL switching

V/ f, 'FR IFL
OR OL

and every O or V or axiom or cut-link and conclusion by the ribbon

308 P.-A. Mellies

diagram

U

Planarity criterion for MNL. - Just as for McyLL in section 8.5,
requiring planarity of ribbon(O, s) for every switching s is not sufficient
to characterize MNL proofs. We have seen that requiring in addition
that all conclusions lie on the same border of ribbon(8) is sufficient
to characterize cut-free McyLL proofs. Note that this is not even the
case in MNL. For instance, the cut-free proof-structure of conclusion
F- (B O A) --o (A O B) which is not sequentializable in MNL, has its two
switched surfaces planar, with all conclusions (= one conclusion in each
case) on the same border.

Fortunately, proof-structures like (8.7) may be rejected in the same way
as in McyLL: by considering external and internal borders. These no-
tions are adapted to MNL in the obvious way: given an MNL proof-
structure 6 and a topological switching s, the index of a border b of the
surface ribbon(6, s), is the number of internal sides of V-link of E the
border b visits; A border of ribbon(O, s) is external or internal when it
is of index 0, and of index 1 or more, respectively. The criterion below
is a "conservative" extension to MNL of definition 8.7 for McyLL.

Definition 8.13 (topological MNL proof-net) A topological MNL
proof-net is an MNL proof-structure O

1. whose commutative translation e* is an MLL proof-net,

Topological Correctness Criterion 309

and such that, for every topological switching s:

2. the switched surface ribbon(e, s) is planar and has a unique
external border a,

3. a contains all the conclusions.

Obviously, the proof-structure (8.7) is rejected by the criterion: its
unique conclusion lies on an internal border when 78 is switched in po-
sition 7YR.

Remark. - For the same reasons as in section 8.5, definition 8.7, it
follows from definition 8.13 that every internal border of ribbon(e, s) is
of index 1, when e is an MNL proof-net, and s is a topological switching.

Soundness. - Given a proof derivation 7r, its associated proof-
structure O in MNL, and a topological switching s, one proves by struc-
tural induction on 7r that the long trip in the proof-structure trip(e, s)
is precisely the external border of the switched surface ribbon(e, s).
It follows that the long trip of trip(e, s) visits the conclusions of a in
the same order as the external border of ribbon(e, s). By property of
soundness, in section 8.7, the order variety F- a is the maximal order
variety on the conclusions of a included in all oriented cycles induced
by the external border of ribbon(e, s), for s a topological switching of
e. Soundness follows easily.

Sequentialization. - Just as in [3, 12] we limit our sequentialization
theorem to cut-free MNL proof-nets.

Theorem 8.14 (MNL sequentialization) Every cut-free MNL proof-
net is the translation of an MNL derivation tree.

Proof The proof proceeds as in theorem 8.9 for 0 and V-links. ®-links
can be treated as 0-link, and 78-links are treated as follows. Suppose
that l is a terminal 78-link of conclusion A 78 B in a cut-free MNL proof-
net e. Let A be the proof-structure obtained by removing l from e. Its
MLL translation is a proof-net. There remains to check on A conditions
2 and 3 of definition 8.13. Let s be a topological switching of A, and
SL = s + {l -* L} and SR = s + {l F--42YR} the two associated topo-
logical switchings on e. Obviously, ribbon(A, s), ribbon(e, SL) and
ribbon(e, SR) denote the same surface S. Planarity of ribbon(A, s) fol-
lows. Moreover, the unique external border of ribbon(e, SL) (on which
A lies in ribbon(A, s)) and the unique external border of ribbon(e, SR)

310 P.-A. Mellies

(on which B lies in ribbon(A, s)) are necessarily the same border of S.
It follows that ribbon(A, s) has a unique external border, on which A
and B lie. We conclude that A is an MNL proof-net.

Cut-elimination. - The proof of cut-elimination for MNL follows a
purely topological argument, instead of the algebraic one presented by
Abrusci and Ruet in [3].

Corollary 8.15 MNL enjoys cut-elimination.

Proof Follows from soundness and sequentialization of MNL proof-nets
in the same way as corollary 8.10 follows from soundness and sequen-
tialization of McyLL proof-nets. The only difficulty is to establish that
MNL proof-nets are preserved by cut-elimination.

Consider a topological MNL proof-net a containing a cut-elimination
pattern, and the MNL proof-structure A obtained after cut-elimination
of the pattern. We prove that A is a proof-net. Two cases may occur: ei-
ther the cut-elimination pattern is "non-commutative", that is, involves
a O and a V link, in which case we proceed as in corollary 8.10, with
an obvious adaptation regarding preservation of uniqueness of the ex-
ternal border; or the cut-elimination pattern is "commutative", that is,
involves a ® link l® and a 2Y link by, with respective conclusions A ® B
and B1 2W A-'-, in which case we proceed as follows. We fix a topological
switching s of A, and consider the four topological switchings of e

sxY = s + (l,? -4?8x) + (l(& 1-4 ®Y)

for X, Y E {L, R}. From now on, we call S the surface obtained by
cutting (with scisors) the branch A of the ®-link l(& in ribbon(e, SLR)
Like ribbon(e, SLR), the surface S is planar. The cut-link between
l® and l7y has two borders a and T in S, which may be distinguished
by indicating that the surfaces ribbon(e, SLR) and ribbon(e, SLL) are
obtained from S by glueing the branch of conclusion A to the borders
or and r, respectively. We show by case analysis that ribbon(A, s) is
planar, and has a unique external border, which visits all the conclusions
of A.

[A] When the two borders a and r are different, planarity of both
ribbon(e, SLR) and ribbon(e, SLL) implies that the surface S is not
connected. More, S has two disconnected components Sl and S2, with
the branch A in one component, say S1, and the borders a and T in the

Topological Correctness Criterion 311

other component S2. The surface ribbon(A, s) is the result of glueing
A in S1 and Al in S2. This shows that ribbon(A, s) is planar. By
our correctness criterion, each border of the surface ribbon(B, SLR) or
ribbon(B, SLL) visits either all the conclusions of B, or the internal bor-
der of exactly one V-link. Call v the border of A in S1. We claim that
v does not visit any conclusion, nor any internal border of a V-link. We
proceed by contradiction. Suppose that the border v visits a conclusion
of Si; then, by the last remark on ribbon(B, sLR) or ribbon(B, sLL),
neither a nor r visits the internal border of a V-link in S2; thus, two
borders of ribbon(B, SLR) are external; this contradicts the hypothesis
that B is a proof-net. Suppose now that v visits the internal border
of a V-link; then, for the same reason as above, neither a nor 'r visits
the internal border of a V-link in S2, or a conclusion of S2; it follows
that the external border of ribbon(B, SLL) is the residual of the border
a after glueing T and v together; the border visits no conclusion of B;
according to the correctness criterion, the proof-net B does not have any
conclusion; this contradicts the fact that B translates as an MLL proof-
net. This proves our claim that v visits no internal border of a V-link,
and no conclusion of S1. From this, we conclude easily that just like
ribbon(B, SLR), the surface ribbon(A, s) has a unique external border,
visiting all the conclusions of A.

[B] When or = z, and the surface S has two connected components, we
call Si the component containing the branch A, and S23 the component
containing the border a = r. The surface ribbon(A, s) is connected
because the proof-structure A translates as a MLL proof-net. This en-
sures that the branch A-L appears in 523, not in Si; and implies that
the proof-structure ribbon(A, s) is planar. There remains to show that
ribbon(A, s) contains a unique external border, visiting all the conclu-
sions of A. We proceed by case analysis. Either a visits, or does not
visit, the branch with conclusion Al in S. When a visits A1, the surface
ribbon(B, SLR) may be deformed into ribbon(A, s) by letting the com-
ponent S1 "slide" along the border a of S23, until S1 reaches the branch
Al. It follows that, like ribbon(B, SLR), the surface ribbon(A, s) has
a unique external border visiting all conclusions of A.

Now, we treat the case when the border a does not visit the branch
with conclusion A-L in S. Let S' denote the surface obtained by cutting
(with scisors) the branch B-L in the surface S23. By planarity of S23 and
equality of borders a = T, the surface S' has two connected components:
one component, called S3, contains the branch with conclusion B1; the

312 P.-A. Mellies

other component, called S2i contains the cut-elimination pattern by, l®.
The three components S1, S2 and S3 are also the result of cutting (with
scisors) the branch B1 in ribbon(O, SLR), this resulting in two compo-
nents S12 and S3; then of cutting (with scisors) the branch A in 512i this
resulting in the two components S1 and S2. Let 0'1 denote the border
of A in S1, and a2 and 0'12 denote the border of the cut-elimination
pattern l®, 17g in S2 and S12 respectively. The surface ribbon(O, SRR)
is obtained by glueing the border 0'12 with the border of Al in S12 + S3.
Connectedness of ribbon(O, SRR) implies that A1- appears in the com-
ponent S3, not in the component S12. Now, let TA and TB denote the
borders of Al and Bl in the component S3, respectively. We claim
that TA and TB are different, and prove it as follows: the surface S is the
result of glueing a2 in S2 with TB in S3; if TA and TB were equal in S3,
the border a would visit Al, contradicting our hypothesis. Now, the
surfaces ribbon(O, SLR) and ribbon(O, sRR) are obtained by pasting
(with glue) the borders 0'12 in S12 with the borders TB and TA in S3,
respectively. It follows from this and the inequality TA # TB and an ar-
gument similar to case [A] that the border a12 visits no internal border
of a V-link, and no conclusion of 0. A fortiori, the border al of A in
S1, which is (in a sense) a segment of the border a12, visits no internal
border of a V-link, and no conclusion of O. We conclude easily that the
surface ribbon(A, s) which is obtained by glueing the conclusion Al in
S23 to the border a1 in S1, has a unique external border, visiting all the
conclusions of A.

[C] When a = T, and the surface S is connected, we may suppose by
symmetry, wlog. that the surface S' obtained by cutting (with scisors)
the branch B of the ®-link l® in ribbon(O, SRR) is also connected, and
that the two borders a' and T' of the cut-elimination pattern l2y, l® are
equal in S'. Removing the cut-link connecting B and B' in S induces
the same surface (denoted T) as removing the cut-link connecting A
and Al in S', or as removing the cut-elimination pattern by, l® from
the surface ribbon(O, sXy) for any X, Y E {L, R}. The equality a = T,
alternatively the equality a' = T', implies that the surface T has two
connected components. We call T1 the component of the conclusion B
and T2 the component of the conclusion B1, and claim that T1 is also the
component of the conclusion A and T2 the component of the conclusion
A-L. Indeed, consider the {o3}-free MNL switching s' of O obtained by
replacing in s every switching position V3 by the switching position OL;
let T' be the surface obtained from ribbon(O, SLR) or ribbon(O, sRR)

Topological Correctness Criterion 313

by cutting (with scisors) the two branches A and B of the ®-link l®.
Because e translates as an MLL proof-net O*, the surface T' has three
components: one component contains A, the other component contains
B, and the last component contains both Al and B1-. The surface T
is obtained by replacing some of the positions VL in s' by the position
V3 in s. Consequently, the two formulas Al and B1 which appear in
the same component of T', appear a fortiori in the same component of
T. The component T2 is this component of Al and B'; while T1 is the
component of A and B. Let aA and aB denote the respective borders
of the conclusions Al and B1 in T2.

Now, the surface ribbon(O, SLR) is obtained from S by gluing the
branch of conclusion A to the border a. The surface S is connected,
and the surface ribbon(O, sLR) is planar. So, the border a visits the
conclusion A in S. On the other hand, after cutting (with scisors) the
branch B in S, the border a becomes the border a' of B in T1. From
these two facts, it follows that the conclusions A and B lie on the same
border a' of the component T1. Glue these two conclusions A and B
together in T1, and call T' the resulting surface. The operation divides
the border a' of TI into two borders of V. The borders may be denoted
ai and a2 in such a way that (1) the surface ribbon(O, SLR) is obtained
by glueing Bl in T2 to al in T', and (2) the surface ribbon(O, SLL)
is obtained by glueing B1 in T2 to a2 in V. The correctness criterion,
together with an argument similar to case [A] implies that each border
ai and a2 visits exactly one internal border of a V-link in T'; and that
the border aB of Bl in T2 visits no internal border of a V-link, and no
conclusion of e. Now, the surface ribbon(e, SRR) is obtained by glueing
the conclusion A-- in T2 to ai in V. It follows from the correctness
criterion that (*) the border aA of Al in T' visits no internal border
of a V-link, and no conclusion of 0.

We claim that the two border aA and aB coincide in T2. Suppose
not: aA aB. In that case, the external border of ribbon(O, SLR) is
the residual of CA after glueing B' and a2. It follows that the external
border of ribbon(0, SLR) visits no conclusion of O by our previous
result (*). We conclude from our correctness criterion that 0 has no
conclusion, which contradicts the fact that 0 translates as a MLL proof-
net 0*. This establishes the claim: aA = aB. We are nearly done.
Recall that the border CA visits no internal border of a V-link, and no
conclusion of 0. It follows that ribbon(0, SLR) may be deformed into
ribbon(A, s) by "sliding" A along aA in T2, until it reaches A'. This

314 P.-A. Mellies

proves that ribbon(A, s) is planar, has a unique external border, which
visits all its conclusions.

Remark. - Try this alternative (but wrong!) definition of MNL proof-
net: relax the condition on internal and external borders, and consider
the class of MNL proof-structures a translating as an MLL proof-net 0',
and whose surface ribbon(e, s) is planar for every topological switching
s. It happens that the class is not closed under cut-elimination, as the
proof-structure below of conclusion !- (B 0 A) -.(A 0 B) illustrates.

It should be noted that in the figure above, we use a topological notation
for proof-structures, adapted from our notation for switchings. This is
discussed in the appendix, section 8.10.

8.9 The planarity vs. the long trip criterion for MNL
Here, we reformulate our definition of MNL topological proof-nets in
three different ways. The first formulation is topological, but emanci-
pated of all reference to MLL, in V. Michele Abrusci's style. We call
the second formulation intermediate because it prepares the third for-
mulation, in which any reference to the topology disappears. Planarity
is replaced by a well-bracketing condition on the 0-links of the switched
proof-structures. We benefit from the fact that this third formulation
appears already in [3] and characterizes Abrusci-Ruet proof-nets, to con-
clude that our planarity criterion coincides with the long trip criterion
for MNL.

Switched surface (2). - Here, we want to extend the definition of
section 8.8, and define a surface ribbon(O, s) for every MNL proof-
structure e and MNL switching s, instead of {VL, VR}-free switchings.
This is easy. The surface ribbon(e, s) is defined as before, except that

Topological Correctness Criterion 315

every V-link l is replaced by the ribbon diagram of its switching position
VG, VR or V3:

U

I I

Vj

The previous definitions of index, of external and internal borders are
extended in the obvious way: only V-links in position V3 increase the
index of a border of ribbon(O, s).

The emancipated criterion. - An alternative characterization of
topological MNL proof-nets follows, which does not mention commuta-
tive linear logic.

Lemma 8.16 An MNL proof-structure a is a topological MNL proof-
net if for every MNL switching s:

(i) the surface ribbon(O, s) is planar and has a unique external bor-
der a,

(ii) a contains all the conclusions.

Note that the formulation is very close to Abrusci and Ruet definition
8.12 of an MNL proof-net, except that bilaterality is replaced here by
planarity.

The intermediate criterion. - The next criterion makes the first
step towards a non topological reformulation of our topological crite-
rion, definition 8.13. Consider an MNL proof-structure e whose MLL-
translation is an MLL proof-net e*. Obviously, every V3-free switching
s of a defines a surface ribbon(O, s) homeomorphic to the disk. The
positions of each V-link I of O may be indicated on the unique border a
of ribbon(O, s):

by an opening bracket (I
by a closing bracket)i.

in such a way that the segment of a put inside brackets (I...) coincides
with the internal border of the surface ribbon(e, s + (1 -+ v3)). Then,
a necessary and sufficient condition for O to be a topological proof-net
is that, for every V3-free switching s of O:

316 P.-A. Mellies

1. the brackets (i and), may be pasted together in ribbon(O, s) in
such a way that the surface remains planar,

2. no conclusion of O appears inside brackets.

The well-bracketing criterion. - Now, we make topology disappear
entirely from the intermediate criterion, by reformulating the planarity
condition of point (i) as a well-bracketing condition on (I...)1.

Lemma 8.17 A MNL proof-structure O is a topological MNL proof-net
iff..

1. its MLL translation O* is an MLL proof-net,

and for every V3 -free switching s of O:

2. the brackets (1 and)j are well-bracketed on the border trip(O, s)
of ribbon(O, s),

3. no conclusion of O appears inside brackets.

The planarity and the long trip criteria coincide. - The series
of conditions in lemma 8.17 is already mentioned in [3], theorem 2.20,
where it characterizes Abrusci-Ruet MNL proof-nets. We conclude that

Theorem 8.18
The topological MNL proof-nets coincide with the Abrusci-Ruet MNL
proof-nets.

Remark. - The remark by Mogbil and Puite about bilaterality (see
the end of section 8.7) adapted to our topological setting, indicates that
the planarity condition of lemma 8.16 may be replaced by the hypothesis
that the proof-structure O translates as a MLL proof-net O*. Indeed, a
topological argument shows that in that case, the surface ribbon(O, s)
is planar for every MNL switching s. Suppose not: there exists a MNL
switching s making ribbon(O, s) non planar. Let s' denote the V3-free
switching obtained by switching as VL (or OR) all 0-links switched V3 in
the switching s. The surface ribbon(O, s') is homeomorphic to the disk
because O* is a MLL proof-net, and the MNL switching s' is V3-free.
Lemma 8.17 indicates that there exist two V-links ll and 12 switched
as V3 in the MNL switching s such that the surface ribbon(O, s") is
already non planar, when one alters s' into s" = s' + (ll,12 - p3). We
leave the reader check that the surface ribbon(O, s") has a unique bor-
der a, of index 2, which visits all the conclusions of O. This contradicts

Topological Correctness Criterion 317

the other hypothesis of lemma 8.16 (there exists a unique external bor-
der, which visits all conclusions) and we conclude that ribbon(O, s) is
planar, for every MNL switching s.

We also leave the reader check (hint: by a counter-example in McyLL)
that the planarity condition is necessary in our definition 8.13 of topolog-
ical proof-net, despite the fact that we assume that e translates as MLL
proof-net 6*. The difference with lemma 8.16 is that MNL switchings
are restricted here to topological (that is: {VL, OR}-free) switchings.

8.10 Appendix: is MNL an embedded logic?

In this article, we advocate that switchings are better expressed as topo-
logical objects, than as graphs. One may go further, and declare boldly
that proofs themselves are topological objects, from which switched sur-
faces are deduced by topological surgery. From that perspective, the
MLL proof 7r of I- Al ?? A defines a surface homeomorphic to the annu-
lus.

Each of the switching positions 28L and ''R of the''-link indicates to cut
(with scisors) the annulus 7r from one border o i to the other border o2.
In each case, one obtains a surface homeomorphic to the disk. Except
for inessential details in the presentation of proofs (ribbon diagrams vs.
simplicial complexes) this topological presentation may be found in [14].
It may be worth stressing that the topology of proofs is understood
internally. In particular, neither the proof theory, nor the topology,
reflects the fact that the annulus 7r may be embedded in several ways in
the ambient space, forming all kinds of "twisted knots" like:

etc...

318 P.-A. Mellies

The idea of representing a proof as a surface embedded in an ambi-
ent space appears in [6] where Arnaud Fleury interprets the exchange
rule as a "braided" permutation, and introduces a "twist" operation on
formulas, inspired by similar operations in tortile tensor categories [11].

In the resulting "embedded logic" MLL, every embedding of the annulus
7r in the ambient space happens to be a particular proof of the formula
f- Al -7 A. More generally. a MLL proof is either constructed sequen-
tially, or characterized geometrically (this is the correctness criterion) as
a proof-structure embedded in space, whose switchings are all homeo-
morphic to the disk. Similarly, one defines an embedded version McyLL
of McyLL, whose proofs 7r are the proofs of MLL verifying the extra
condition that 7r is planar, and has a unique external border visiting all
conclusions.

In contrast, there does not seem to exist any satisfactory embedded
version of MNL, for the following reason. Consider the MNL proof

I- Al, A I- B, Bl
I-Al,A®B,B-i 2' (8 8)
A1,(A®B) 28B'

v
.

I- A1v((A ®B) 28 B1)

As in the case of the annulus, there may be several way to embed the
proof in ambient space. We choose one of them, which we draw below.

In this particular embedding of the MNL proof (8.8). the switching po-
sition s

V --> V3 2Yi-4 2YR 0 H ®L

Topological Correctness Criterion 319

induces a surface admitting a "twist" between the formulas Al and
(A ®B) 29 B-t.

So, the switched surface, seen as embedded in ambient space, is not
planar. More generally, there exists no embedding of (8.8) able to induce
only planar MNL switching surfaces. The phenomenon is a consequence
of the see-saw rule of non-commutative logic, which says that every proof
of H A 28 B is also a proof of I- AVB. This principle is fine when the
topology of proofs is understood internally, but becomes problematic
when the topology of proofs is embedded in an ambient space - at
least in our ribbon presentation. Typically, the see-saw rule justifies the
last V-introduction rule of the derivation tree (8.8) which implies in turn
that the surface (8.9) is not planar.

8.11 Conclusion

In their correctness criteria [2, 3] Abrusci and Ruet characterize McyLL
and MNL proof-nets without mentioning commutative MLL. This con-
veyed the hope for a theory of McyLL and MNL "emancipated" from any
reference to MLL. In this article, we choose to step back, and understand
McyLL and MNL as commutative MLL + a planarity condition:

MLL + planarity of proof-nets, for McyLL,

MLL + planarity of switched proof-nets, for MNL.

One reason is that cut-elimination of McyLL and MNL follows essen-
tially from planarity - and its preservation by cut-elimination in MLL.
Another reason is that the switching positions 'L and ?8R are internal-
ized in MLL by the "linear" distributivity formulas below, see [5, 1]:

A®(B?8C) _o (A(9 B) 2'C, A®(B2Y C) ---B?8 (A®C).

320 P.-A. Mellies

In contrast, there exists (today) no such internal justification in McyLL
or MNL for the "emancipated" criteria formulated in [2, 3] and recalled
in sections 8.7 and 8.9.

To conclude, we will mention the open problem of designing a cor-
rectness criterion for MNL proof-structures with cuts. Abrusci and Ruet
illustrate this problem in [3] by exhibiting the MNL proof-net (8.10)
which cannot be sequentialized in MNL. (Here again, we use a topologi-
cal notation to draw the proof-net (8.10), as discussed in the appendix.)

(8.10)
Finding a satisfactory solution may require to alter MNL - as cyclic
linear logic was altered into planar logic in section 8.5. For what matters
is not the details of the logic, but its relationship to a geometric (or
computational) property of proofs, preserved by cut-elimination.

Acknowledgments

The author would like to thank Jean-Yves Girard for his reaction to a
first version of this work, Paul Ruet and Roberto Maieli for suggestions
and remarks, and Robin Cockett for mentioning the related work of
Robert Schneck.

Bibliography
[1] S. Abramsky and R. Jagadeesan. Games and Full Completeness for

Multiplicative Linear Logic. Journal of Symbolic Logic (1994), vol. 59,
no. 2, 543-574.

[2] V. M. Abrusci, Non-commutative proof-nets. In Advances in Linear Logic.
Cambridge University Press, 1995.

[3] V. M. Abrusci and P. Ruet. Non-commutative logic I : the multiplicative
fragment. Annals of Pure Appl. Logic, 101 (1):29-64, 2000.

Topological Correctness Criterion 321

[4] R. Blute, P-J Scott. The Shuffle Hopf Algebra and Noncommutative Full
Completeness, Journal of Symbolic Logic 63, pp. 1413-1435, 1998.

[5] V. Danos and L. Regnier, The structure of multiplicatives. Arch. for
Math. Logic, 28(3):181-203, 1989.

[6] A. Fleury, La regle d'echange. These de doctorat, U. Paris VII, Nov. 1996.
[7] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
[8] J.-Y. Girard. Towards a geometry of interaction. Contemp. Math.,

92:69-108, 1989.
[9] J.-Y. Girard. Proof nets: a parallel syntax for proofs. Logic and Algebra,

eds. Ursini and Agliano, Marcel Dekker, New York 1996.
[10] J.-Y. Girard. On the meaning of logical rules: syntax vs. semantics. In

Berger, U. and Schwichtenbergm H. editors, Computational logic, pages
215 - 272. Heidelberg. Springer Verlag, NATO series F 165. 1999.

[11] A. Joyal, R. Street, D. Verity. Traced Monoidal Categories, Mathematical
Proceedings of the Cambridge Philosophical Society, 119, 1996.

[12] R. Maieli. A new correctness criterion for multiplicative
non-commutative proof-nets. Archive for Mathematical Logic, 2002.

[13] R. Maieli and P. Ruet. Non-commutative logic III : focusing proofs.
Preprint Institut de Mathematique de Luminy, vol. 4, 2000.

[14] F. Metayer. Implicit Exchange in Multiplicative Linear Logic.
Mathematical Structures in Computer Science, 2000.

[15] V. Mogbil and Q. Puite. A bilateral-free notion of modules for
non-commutative logic. Manuscript, 2003.

[16] M. Nagayama and M. Okada. A graph-theoretic characterization
theorem for multiplicative fragment of Non Commutative Linear Logic.
Electronic Notes in Theoretical Computer Science 3 (1996). Full version
in Journal of Theoretical Computer Science 294(3):551-573, 2003.

[17] M. Nagayama and M. Okada. A new correctness criterion for the
proof-nets of Non Commutative Multiplicative Linear Logics. To appear
in Journal of Symbolic Logic.

[18] V. Novak. Cyclically ordered sets. Czech Math. J., 32(107):460-473, 1982.
[19] P. Ruet. Non commutative logic and concurrent constraint programming.

PhD thesis, Paris 7, 1997.
[20] P. Ruet. Non-commutative logic II : sequent calculus and phase

semantics. Mathematical Structures in Computer Science, 10(2), 2000.
[21] R. R. Schneck. Natural deduction and coherence for non-symmetric

linearly distributive categories. Theory and Applications of Categories,
Vol. 6, No. 9, 1999.

[22] D. N. Yetter. Quantales and (non-commutative) linear logic. Journal of
Symbolic Logic, 55(1), 1990.

Part three
Invited Articles

9

Bicategories in Algebra and Linguistics
Jim Lambek

McGill University

To Saunders Mac Lane on his 90th birthday.

Abstract
Reporting on applications of bicategories to algebra and linguistics led
me to take a new look at multicategories and polycategories: to replace
free monoids by free categories and to introduce a new notation for
Gentzen's cuts. This makes it clear that the equations holding in a multi-
or polycategory are just those of the 2-category which contains it. Thus,
a polycategory is almost the same as a 2-category whose underlying 1-
category is freely generated by a graph, except that the class of 2-cells
need not be closed under composition, but only under planar cuts.

9.0 Summary of contents
In Section 9.1 we point out that multicategories, slightly generalized, will
do for bicategories what they originally did for monoidal categories, i.e.
bicategories with one object. At the same time we introduce a new no-
tation for Gentzen's "cut", to present it as a special case of composition
in a 2-category.

In Section 9.2 we look at adjunctions in 2-categories and bicategories,
with the aim of studying those bicategories in which each 1-cell has
both a left and a right adjoint, namely compact noncommutative *-
autonomous categories with several 0-cells.

In Section 9.3 we give a short exposition of some applications of bicat-
egories to linguistics that were developed by Claudia Casadio and the
present author. These touch on three deductive systems: the syntactic
calculus, classical bilinear logic and compact bilinear logic.

325

326 J. Lambek

In Section 9.4 we take a new look at polycategories, which are to
classical bilinear logic as multicategories are to the syntactic calculus.
Equations in a polycategory are explained by viewing the latter as con-
tained in a 2-category.

In Section 9.5 we show that polycategories in the new sense will do
for the linear bicategories of Cockett, Seely and Koslowski what multi-
categories can do for Benabou's original bicategories.

In Section 9.6 we study adjoints in polycategories and show that, in a
polycategory with residual quotients and "zero" 1-cells, every 1-cell has
both a left and a right adjoint.

9.1 Multicategories recalled
A good part of my book "Lectures on rings and modules" [16] was de-
voted to the residuated bicategory of bimodules, although, at the time,
I did not know what a bicategory was. Later I learned from Benabou [4]
that a bicategory resembles a 2- category in having 0-cells (in my case
rings R, S,), 1-cells (bimodules RAS : S -+ R) and 2-cells (bimod-
ule homomorphisms f : RAS --> RAs), except that composition of
1-cells (the tensor product RAS (9 SBT) satisfies the usual identity laws
(R (9 A -' A = A ® S) and associative law only up to coherent isomor-
phism. All these properties of the tensor product of bimodules may be
derived from Bourbaki's [5] universal property, which stipulates a bilin-
ear mapping mAB : AB -' A ® B such that, for each bilinear mapping
f : AB -p C into a bimodule RCT, there is a unique homomorphism
g:A®B-+ Csuch that gomAB=f.

Influenced by an early collaboration with George Findlay, I was par-
ticularly interested in the fact that the bicategory of bimodules was
residuated, there being canonical isomorphisms

Horn (A (9 B, C) =' Hom (A, C/B) = Hom (B, A\C),

where

R(C/B)s = Homs(B,C),

s(A\C)T = HomR(A, C).

To explain the universal properties of ® (tensor), / (over) and \ (under)
in general bicategories, I introduced the concept of a multicategory [17]t

t The cited paper contains some mistakes, but these do not affect the concept of a
multicategory.

Bicategories in Algebra and Linguistics 327

[18]. A multicategory consisted of multilinear maps

f:A,...Am-.B
which might be viewed as context-free rules in grammar (I have reversed
the usual arrow to reflect the hearer's point of view), as deductions in
logic (called "sequents" by Gentzen, though here-without his structural
rules: interchange, contraction and weakening) or as multisorted oper-
ations in algebra (where one might write f al . a,,,, E B, the ai being
variables or indeterminates of type Ai).

Originally, I had assumed that the left side of a multilinear map lives
in the free monoid generated by a set, but one may as well let it live
in the free category generated by a graph, so that f becomes an arrow

T. The step of replacing a monoid by afrom S ('- .A'" T to S B
category, while obvious in the bimodule example, was taken in linguistics
by Brame [6] (who may not, however, agree with my [24] interpretation
of his ideas). It does not make sense in any logical system which admits
the interchange rule.

Among the multilinear maps are the identities 1A : A -' A, as in a
category, but composition is replaced by a more restricted notion, called
"cut" by Gentzen:

f :A -A g:rAO --pC
gorf0:rA0-.C

where capital Greek letters denote strings in the free monoid or chains
in the free category, say

A = R + S.

(At one time, I had written g & f for this cut, gaining simplicity at the
cost of sacrificing information.)

There are the expected identity and associative laws for the cut, but
also a kind of commutative law: if f : A ---p A, g : A' A' and
h:rAAA'e-*Cthen

(h o r f AA'e) o rAOge = (h o rAOge) o r f AA'e.

This and similar equations will become clear if we think of the multi-
category as being contained in a 2-category (see Section 9.4 below). It
should be pointed out that r and A here do not denote terms of the
multicategory, but merely serve to remove the ambiguity of the nota-
tion g& f by indicating where f is substituted into g. However, in the
2-category they may be interpreted as horizontal compositions of 1-cells.

328 J. Lambek

In earlier papers [18, 19] I found it useful to pass to an internal lan-
guage, where the 1-cells are thought of as sorts and variables of each
sort are admitted. Thus, to each operation f : Al . A, --> B there
is associated a term f al a,.. of sort B, where the ai are terms, e.g.
variables, of sort Ai. Then lA : A -> A gives rise to the term lAx = x,
where x is a variable of sort A. If 9, c" and d are appropriate strings of
variables,

gorfA:rAA ->C

gives rise to the term

(g o r f A) (c"5d) = gef :id,

which results by substituting f Y for x in gc"xd The associative, com-
mutative and identity laws can now be proved, provided we identify two
operations f and f whenever f i = f'Y is provable in the language. The
variables may be called "indeterminates" in algebra and "assumptions"
in logic.

Bourbaki's universal property for the tensor product stipulates a mul-
tilinear map mAB : AB -> A®B such that, for every f : rABA -> C,
there exists a unique g : rA ® BA -> C such that g c rmABA = f,
equivalently that

gc"mABabd = fc"abd

Similar universal properties may be given for the operations "over" and
"under". Thus, one stipulates a multilinear map eCB : (C/B)B -> C
such that, for every f : AB -> C there exists a unique g : A -> C/B
such that eCB o gB = f, equivalently that

eCBglb = fib.

It is now easy to prove that the operations ®, / and \ are bifunctors
and that ® is associative up to coherent isomorphism. In particular, one
can derive Mac Lane's famous pentagonal condition [28]. See e.g. [28],

where it was unnecessarily assumed that the multicategory has only one
0-cell.

Following Gentzen, one may reformulate the rules for tensor, over and
under as introduction rules on the left and on the right:

rABA ->C r -iA A >B
rA®BA->C ' FA->A®B '

Bicategories in Algebra and Linguistics 329

rC0--+0 A -+B AB-C
rC/BAD -+ D ' A C/B'

The rules for \ are obtained from those for / by taking the mirror image
on each side of the arrow. All these rules are subject to appropriate
equations.

While these introduction rules incorporate some cuts, no further cuts
are necessary. A categorical version of Gentzen's cut elimination theo-
rem asserts the following:

Proposition 9.1 Given a multicategory M, one may construct the free
residuated tensored multicategory F(M) generated by M without using
any cuts or identities, except those in M.

For example, lA®B and 1CIB may be constructed as follows:

A A B ---)B C ---)C B-,B
AB --->A (9 B (C/B)B -' C

A®B-+A®B C/B-4C/B
where we introduce ® first on the right and then on the left, but we
introduce / first on the left and then on the right. Similar rules hold for
the cartesian product and coproduct.

9.2 Adjoints in bicategories
I have lately become interested in adjoints in 2-categories and bicate-
gories. For the usual definition of a 2-category see [29]. For the present
purpose, a 2-category may be described as having 0-cells (objects), 1-
cells (arrows) and 2-cells (transformations). The first two constitute a
category and the last act as arrows between 1-cells subject to a vertical
composition

f:A-B g:B-*C
gof: A--+C

and identity arrows lA : A --> A rendering the 1-cells S -' R objects
of a category. The 2-cells can be composed with 1-cells and behave like
natural transformations in the familiar 2-category of categories: given

A F

T 4f ---411 tS R
B G

330 J. Larnbek

one has the commutative diagram

FA F FB

to

GA v GB
which may be interpreted mnemonically as describing the naturality of
t. Its diagonal defines the horizontal composition

tf =tBoFf =Gf otA.

Moreover, 1-cells distribute over composition of 2-cells:

F(gof)=FgoFf, (go f)H=gHo fH.
In the same spirit,

F1A = 1FA = 1FA.

The exchange property [29]

ugotf = (uot)(gof)

may be deduced. Conversely, one presentation of 2-categories may be
deduced from the traditional one by defining

to=t1A, Ff =1Ff.

An adjunction between 1-cells F : R -p S and U : S -* R in a 2-
category is given by transformations 77: 1R -f UF and E : FU -p 1S
such that

UE077U=lU, EFoF77=1F.

Proposition 9.2 Adjoints in a 2-category are unique up to isomor-
phism.

While this is well-known, I have never seen a proof and shall produce
one here, as it is a little tricky and because the same proof will also serve
for the analogous result for polycategories in Section 9.6 below.

Proof : Suppose, for example, that U has another left adjoint F' given
by 77' : 1R -i UF' and E' : F'U -p 1s. We claim that the composite
transformations

co=EF'oF77', 0=E'FoF'77

Bicategories in Algebra and Linguistics 331

are inverse to one another. Here, for example is a proof that 0 o cp = 1F:

ocp = 0oEF'oF7
= eF o FUo o Frj by naturality of e
= eF o FUE'F o FUF'77 o Fi7' by distributivity of FU

= EF o FUE'F o F(UF'77 o 77') by distributivity of F

= eF o FUe'F o F(77'UF o 77) by naturality of 77'

= eF o F(Ue' o 71'U)F o F77 by distributivity of F

= eF o F77 since Ue' o 77'U = lu
1F.

The notion of adjunction has been generalized to bicategories, e.g. by
Kelly [13] and Street and Walters [31]. When is F : R -i S left adjoint
to U : S -+ R? We require 2-cells IR --> U ® F and F ® U - IS
such that the composite 2-cell U -+ IR ® U -' (U ® F) ® U -'
U ® (F 0 U) ----4U 0 Is ---+ U is the identity on U and similarly for
the analogous 2-cell F --* F. For example, we may ask: when does a
bimodule RUS have a left adjoint SFR? (Note that IR is the bimodule
RRR.) I was surprised to find the answer in the exercises to Section 4.1
in my 1966 book: RUS has a left adjoint SFR if and only if Us is finitely
generated and projective, and then F = S/U.

I have become particularly interested in bicategories in which each
1-cell has both a left and a right adjoint. Such bicategories are called
compact, following Kelly [13]t. For expository purposes, let me now
confine attention to 2-categories with one object in which all 2-cells are
just partial orders.

A pregroup is a partially ordered monoid with two operations (-)e
and (-)r satisfying

aea --* 1 --+ aae, aar -- 1 --' ara

for each element a, the arrow denoting the partial order. In the discrete
case, when the arrow denotes equality, a pregroup is just a group. More

t Kelly used the word "compact" for symmetric monoidal categories in which each
object has a right adjoint. These are the compact *-autonomous categories of Barr
[2], and the concept was generalized to bicategories by Street and Walters [31].

332 J. Lambek

generally, in the cyclic$ case, when ae = a', a pregroup is just a partially
ordered group. My favorite example [21, 23] of a non-cyclic pregroup
is the monoid of unbounded monotone mappings f : Z -) Z under
composition with elementwise order. Then adjoints may be defined thus:

f' (y) = max{x E ZJ f (x) < y}

fe(y) = min{x E Z y < f(x)}.

For example, let f (x) = 2x, then

fr(y) = [y/2], fe(y) _ [(y + 1)/2].

We note that

.f rr (y) = 2y + 1 54 f (y);

but, of course, fre = f = fer. Other examples of pregroups are provided
by all natural languages, as we shall illustrate with English in the next
section.

9.3 Linguistic applications
We shall look at three possible applications of bicategories to linguistics,
see [9]. For expository purposes, we first confine attention to partially
ordered monoids:

(1) Residuated monoids, namely partially ordered monoids with two
operations / and \ such that

if if

(2) Grishin algebras, namely residuated monoids with a dualizing
element 0 such that

0/(a\0) = a = (0/a)\0.

It is convenient to write

0/a = at, a\0 = ar

and one can introduce a second associative operation + by defin-
ing

a + b = (be , ae)r = (br , ar)e

$ The word "cyclic" in this context is due to Yetter [34].

Bicategories in Algebra and Linguistics 333

(3)

such that

a+0=a=0+a.
One can then prove Grishin's mixed associative laws [12]:

c(a+b) ca+b, (a+b)c --* a+bc.

Pregroups as defined above. These may also be viewed as compact
Grishin algebras, in which

a+b=a.b, 0=1.
In the corresponding deductive systems, the arrow is not restricted to

be a partial order, but equality of arrows is usually ignored. The above
partially ordered monoids will then give rise to the following deductive
systems:

(1) The syntactic calculus, introduced in [15] to study sentence struc-
ture.

(2) Classical bilinear logic [1, 20] which was pioneered by Claudia
Casadio [7] for grammatical investigations.

(3) Compact bilinear logic, recently proposed by me [26] for linguistic
applications.

Each of these deductive systems becomes a monoidal category (that is,
a bicategory with one object), once attention is paid to equality between
arrows:

(1) A residuated monoidal category.
(2) A noncommutative *-autonomouns category.
(3) A compact noncommutative *-autonomous category.

As already pointed out, one may remove the restriction to one object.
In Linguistics, this step has already been taken by Brame [6].

The idea common to the linguistic applications of these three systems
is this: one assigns to each word, say of English, one or more syntactic
types, namely elements of the free residuated monoid, Grishin algebra
or pregroup generated by a partially ordered set of basic types and then
calculates the type or types of any string of words.

We shall illustrate this idea by looking at a single English sentence:

whom had she kissed-?

The dash at the end represents Chomsky's trace and is introduced for
comparison only.

334 J. Lambek

In (1), the words of this sentence are assigned the types

(4 /(q/o))((ql/p2)/7r3) r3(p2/o) -' q'.

The basic types employed here are:

q' = question,

q = yes-or-no question,

q1 = yes-or-no question in the present tense,

o = object,

p2 = past participle,

7r3 = third person singular pronoun.

The partial order on the set of basic types required for this example
stipulates q1 -' q -' q'.

Although the method advocated here received a belated acceptance by
a small group of linguists, I came to reject it myself for various reasons,
one being the following. When a person hears the words whom has, she
may calculate the type of this short string to be (q'/(P2/0))/7r3, but the
formal proof of this, carried out in the syntactic calculus, is fairly long
and, when put to paper, may occupy a quarter page. I had a strong
feeling that this kind of calculation could not reflect the pychological
reality of how people analyze speech.

In (2), the successive types for the same sentence are

(q' + oEege)(gl + p2 + i3)r3(p2 + 0t) q'.

Here the type of whom has is easily calculated algebraically to be q' +
oeep2 + rr3; the calculation makes repeated use of the mixed associative
laws.

In (3), the distinction between + and disappears and the successive
types of the given sentence are simply

(g oeege)(g1 p2i3)7r3(p2o) -' q',
L ----J L -I I

where the underlining indicates the cancellations

-' qq 7r37r3 P2 P2 p2 -- 1, o'PoPg1 e

Here the type of the initial segment whom has is immediately seen to
Ifbe q'op27r3

Bicategories in Algebra and Linguistics 335

The reader should not be misled by this single example that only /
and (-)P are useful in grammar and not \ and (-)T. For example, in
the sentenc

she kissed me

the transitive verb has types

+ S2 + o , 7rrS20eir3\(S2/0), 7r3 3

in the three systems respectively, where

52 = statement in the past tense.

I believe that a good approximation to English grammar can be obtained
by working with the free pregroup generated by a partially ordered set
of basic syntactic types. For a better approximation, however, freeness
must be abandoned. For example, it is difficult to justify the well-
formedness of

people she knows like pizza

by the methods outlined above. The problem here is that there is no
place for the type of the missing pronoun whom. To get around this,
one may have to admit grammatical rules not listed in the dictionary, in
other words, one may have to work with a pregroup which is not freely
generated by its basic types.

9.4 A new look at polycategories
If we adopt the slogan: don't ignore equality between deductions (also
known in linguistics as derivations, productions or rewrite rules), a pro-
duction grammar (also known as a semi-Thue system or rewrite system)
is just a 2-category whose underlying 1-category is the free monoid gen-
erated by a set. Some greater generality is achieved if we allow the
free category generated by a graph instead. In fact, for context-free
grammars this generality has been advocated by Brame [6].

We recall that a multicategory is essentially a context-free grammar
dealing with deductions of the form

f:A,...Am- B,
where juxtaposition on the left represents the tensor product, attention
being paid to equality between deductions. In the presence of Gentzen's

336 J. Lambek

structural rules (interchange, contraction and weakening), these deduc-
tions are Gentzen's sequents for intuitionistic logic and the tensor prod-
uct is just conjunction.

Gentzen also devised a deductive system for dealing with classical
logic. Its sequents have the form

f:Al...A,_ Bl...B7,
where juxtaposition on the left stands for conjunction and juxtaposition
on the right stands for disjunction, although, in place of juxtaposition
he had used commas on both sides. One may wonder why he did not
use a comma on the left and a semicolon, say, on the right, to suggest
the two different interpretations? We shall take advantage of his daring
notation to embed polycategories, our categorical version of his system
(in the absence of his structural rules) into 2-categories.

Polycategories may be regarded as underlying the grammar of Clau-
dia Casadio [7], where juxtaposition on the left and on the right of a
deduction represent the tensor and the cotensor, its De Morgan dual,
respectively. Compact polycategories, in which the tensor and coten-
sor are identified, are then essentially production grammars, hence 2-
categories whose underlying 1-category is freely generated. Polycate-
gories are like production grammars, except that composition of 1-cells
is restricted to cuts.

Cuts in polycategories have the form

f :A-TAO g:OAT -9
rg0oOf T:oDA4'-POO

subject to the restriction that I' or 4) is empty and A or ID is empty.
Thus there are four cases:

Case 1. 4) and W are empty and the conclusion is PgLo f : A -p rE) .

Case 2. (D and A are empty and the conclusion is Pgo f W : AT -) P©.
Case 3. P and A are empty and the conclusion is goO f' : 4)AT)8.
Case 4. T and r are empty and the conclusion is g1 o qbf : (PA ->

eo.
The four cases may be illustrated by the following planar diagrams

respectively:

A A A A

PAD PAT 4D AT cIAA
0 0 0 0

where the 2-cells f and g are represented by horizontal lines.

Bicategories in Algebra and Linguistics 337

In case the reader is still skeptical, here is a formal definition to con-
vince her that a polycategory can be embedded into a 2-category with
additional 2-cells.

Definition 9.3 A polycategory over a grapht has 0-cells, 1-cells, 2-cells
and equations between 2-cells:

its 0-cells are the nodes of the graph;
its 1-cells are the arrows of the free category generated by the
graph;
its 2-cells are certain arrows between 1-cells, r and A, assuming
that I' and A have the same source and target;
among the 2-cells are all the identity arrows 1A : A -- A, where
A is an arrow of the graph;
the set of 2-cells is closed under the four kinds of cuts listed above;
its equations are precisely those which hold in the 2-category
obtained by allowing all identity 2-cells and arbitrary composition
of 2-cells, provided we interpret a cut with premisses f : A -+
rAA and g : c1AIP -4 0 as the composition of rgO and (Df W, as
suggested by the above notation.

It was in order to get a grip on the possible equations between deduc-
tions that I had suggested the idea of a polycategory in [17]. However, I
did not take the trouble to spell out exactly what equations had to hold.
This was done by Szabo [32], although he allowed too many cases of
the cut for the substructural system of bilinear logic studied here. Poly-
categories were also investigated by Velinov [33], who considered many
variations, even the compact case. A detailed set of equations that meet
my approval were presented by Cockett and Seely [1992], who were us-
ing polycategories to introduce the tensor and cotensor into what they
then called "weakly distributive categories". In fact, they obtained an
equivalence between the category of polycategories and the category of
weakly distributive categories.

I believe that the present method of inferring all equations between
deductions from those valid in 2-categories is new. (We shall ignore here
another approach I have been exploring, which replaces the operations
that had proved useful in multicategories by binary relations.) We shall
look at a few examples of such equations. (A list of five such equations
will be found in Cockett and Seely [1992]. I have not checked whether

t By a graph is here understood what graph theorists call an "oriented multigraph".

338 J. Lambek

these five equations imply all the equations that can be inferred from
those of 2-categories.)

Example 9.4

ALFA AA - - - BIP B + e
Ai -) rDew

There are two ways of deriving the conclusion, depending on whether we
first compose g with f or h with g. These are represented by the two
sides of the equation

rch'Q o (rg o f A) = r((DhW o g) o f A,

which is justified by associativity and distributivity in a 2-category. Note
that the intermediate term

r(,DhIog)o fA

does not live in the polycategory, but in the embedding 2-category.

Example 9.5

A-rAA A 9+ OBT B

Here we have the equation

FOhWA 0 (rgA o f) = r(,DhW o g)A o f,

which is also justified by associativity and distributivity.

Example 9.6

(D A W!B rAABA-tee
e

Here the equation

(h o rAAgA) o r f ATA = (h o F f ABA) o FDAgA

may be reduced by associativity and distributivity to showing that

AAg o f f AB o OAg,

which follows from naturality of f.
These examples should support the claim that the equations holding

in a polycategory are precisely those which hold in the 2-category which
contains it. In retrospect, the same is true for a multicategory. Perhaps

Bicategories in Algebra and Linguistics 339

a polycategory should have been called a "sesqui-category"! The algebraic
derivations of the equations in the three examples above become redun-
dant if one relies instead on the planar diagrams which illustrate how
the conclusion is obtained:

A A

PA A F A A
(DB 41 OB T

O 9

4D '
r A A B A

e

where the horizontal lines represent the deductions f, g and h: two de-
ductions are identified if they give rise to the same diagram.

A final example will illustrate the behaviour of the identity arrow.

Example 9.7

A f +rAA A-LA
A -f+rAO

Here we have

r1A0o f =1rADof =f

9.5 Polycategories and linear bicategories
After composing the first draft of this paper, I was presented with a copy
of the article by Cockett, Koslowski and Seely [11], in which they devel-
oped the notion of "linear bicategory" and studied "linear adjoints", a
generalization of adjoints in the original bicategories of Benabou.

One purpose of multicategories had been to introduce the tensor prod-
uct ® and the corresponding identity 1-cells IR into a bicategory so that
their properties can be proved instead of having to be postulated. Poly-
categories will do the same for linear bicategories in helping to introduce
also the cotensor ® and the corresponding zero 1-cells OR. This pro-
gram had in fact been carried out by Cockett and Seely [1992], although
they had presented polycategories more directly than here.

We recapitulate the definitions of these operations in a present style
polycategory:

® is given by mAB : AB -=--+ A®B such that, for each f : FABO
®, there exists a unique g :'rA®B/ -+ O such that gormABO = f.
IR is given by iR : 1R -+ IR such that, for each f : IA ---+ 6, there
exists a unique g : rIRO -+ 0 such that g o riRO = f. Here 1R

340 J. Lambek

denotes the identity arrow R -+ R in a 2-category, that is, the empty
chain between r and 0 in R -A +.

0 is given by nAB : A 0 B -* AB such that, for each f : 0
rABO, there exists a unique g : 0 -p IA 0 BO such that rnABA o
g=f
OR is given by jR : OR -+ 1R such that, for each f : 0 --+ rA,
there exists a unique g : 0 -+ rORO such that rjRO o g = f.

A residuated polycategory has residual quotients / and \, the first of
which is introduced as follows:

/ is given by eAB : (A/B)B -' A such that, for each f : rB -+ AA,
there exists a unique g : F -+ AA/B such that AeAB o gB = f .

For \ one takes the mirror image of each side of the arrow.

One may also consider residual differences - (less) and - (from). For
a discussion of these see [20].

Gentzen style introduction rules for ® and IR take the following form,
while those for 0 and OR may be obtained by reversing the arrows:

rABO -+O F -+4?A 0->BT
rA ®BO -+ O ' - - - - + '

rope
rIRO)O '

1R-rIR.

The introduction rules for / have the form

rA0-+0 A -+B rB -+AA
rA/BAA , 0 IF ---+ AA/B'

while those for \ are obtained by taking the mirror image on each side
of the arrow.

Here, for example, is how one may construct the arrow

(A®B)®C-+A0(B®C),

representing one of Grishin's mixed associative laws:

A --+A B-+B
A OB --+AB C---+C

(A 0 B)C -> A(B ®C)
AED B)C-+A0(B®C)

AeB)®C->A0(B®C

' Bicategories in Algebra and Linguistics 341

One introduces first ® on the left and then ® on the right, next ® on
the right and then 0 on the left,

At first sight, it looks as though the system comprising all these oper-
ations should enjoy the cut elimination property.t Indeed, here are two
cut-free proofs:

A ---- A
A AO

1 A(O/A) O O A- A
I A(O/A) (O/A)A - O

I-&A®(O/A) (O/A)®A,O
where 1 denotes the empty string or chain and subscripts on 1, I and 0
have been omitted. Similarly one shows

I -, (B\O) ® B , B ® (B\O))01

and one obtains

B\O 10(B\0) (A®(O/A)) ®(B\O) -> A®((O/A) ®(B\O)).

Taking B = O/A, so that

(O/A) ® (B\O) 0,

one thus obtains a deduction

(O/A)\O - A.

Evidently, this can have no cut-free proof.

9.6 Adjoints in polycategories
The linear adjoints of Cockett, Koslowski and Seely may be traced back
to polycategories. In fact, the definition of adjoints for 2-categories given
in Section 9.2 remains valid for polycategories, once one realizes that the
compositions UE o r1U and eF o F71 are cuts, illustrating cases 2 and 4 of
Section 9.2:

71:1R-*UF E: FU 1S 77: 1R ---+ UF E: FU 1S

UE o 77U: U -----+ U EF o F7I : F --* F

The proof of Proposition 9.2 also remains valid for polycategories, so we
conclude:

t I had mistakenly thought so in [20], although a counterexample had been produced
by Abrusci [1].

342 J. Lambek

Proposition 9.8 In a polycategory any existing adjoints are unique up
to isomorphism.

When can we infer that adjoints exist?

Proposition 9.9 In a residuated polycategory with zero 1-cells, every
1-cell A : S --+ R has both a left and a right adjoint:

Ae = Os/A , AT = A\OR.

Proof : To show the existence of left adjoints, for example, we have to
define

EA : (Os/A)A -- 1s , 71A : 1R - A(OsIA)

and verify that

AEA o r1AA = 1A , EA(OSIA) 0 (Os/A)?)A = lolA

We define EA = j o eoA by the cut

eoA:(O/A)A-'O j:O-1
EA : (O/A)A ---> 1

and 77A : 1 --+ A(O/A) as the unique g : 1 -+ A(O/A) such that

AeOA o gA = f,

where f : A -* AO is the unique arrow such that

Ajof=1A:

A-LAO O--> 1 1 --g+ A(01A)
A --+ A A -> OA

Then

AEAo7AA=AjoAeQAogA=Ajof =1A.

To show the other equation to be proved, we recall that 1Ae is the
unique h : Ae -, Ae such that

eoA o hA = eoA.

Hence this equation has to be verified when

h=EAAeoAerJA.

Bicategories in Algebra and Linguistics 343

Indeed

eoA o hA eOA o o Ae17AA

EAO o AeAeOA o A177AA by naturality of EA

jO o eoAO o Ae f by definition of e", and 77A

Now, by Lemma 9.11 below, we may replace jO by Oj, hence this

= eoA o o Ae f by naturality of eoA

= eoA o Ae(lA) by definition of f

= eoA o 'A'A = eoA

Corollary 9.10 In a residuated polycategory with zero 1-cells, the zeros
are dualizing: for any 1-cell A : S ---> R,

(Os/A)\OR = A = Os/(A\OR)

Proof : If Ae is left adjoint to A, then both A and AT are right adjoints
of Ae, hence Ae1 = A by Proposition 9.8. Similarly Are = A.

Lemma 9.11 In a polycategory with zero 1-cells, jO = Oj.

Proof By the universal property of j : 0 -p 1, any 2-cell f : 00 ---p 1
gives rise to a unique g : 00 -* 0 such that j o g = f. Now take
f = j o Oj, then g = Oj. But, by naturality of j, j o Oj = j o jO, hence
g = jO.

9.7 Postscript

This article is an elaboration of a talk at the 1999 category conference in
Coimbra. Its major aim was to explain my idea of what the equations of
a polycategory should be. I had introduced this concept in 1969 without
spelling out these equations. In the mean time, attempts to produce such
equations axiomatically were made by several authors, though not in
agreement with one another. While the axioms provided by Cockett and
Seely are "sound", "completeness" with respect to the present treatment
remains to be shown: the equations of a polycategory should be those
that ensure its embedding into a 2-category to be faithful.

344 J. Lambek

Acknowledgements

This research was supported by grants from NSERC and SSHRC.

Bibliography
[1] V.M. Abrusci (1991), Phase semantics and sequent calculus for pure

noncommutative classical linear propositional logic, J. Symbolic Logic
56, 1403-1451.

[2] M. Barr (1979), *-Autonomous categories, Springer LNM 752.
[3] M. Barr (1995), Non-symmetric *-autonomous categories, Theoretical

Computer Science 139, 115-130.
[4] J. Benabou (1967), Introduction to bicategories, Springer LNM 47, 1-77.
[5] N. Bourbaki (1948), Algebre multilineaire, Hermann, Paris.
[6] M. Brame (1984, 1985, 1987), Recursive categorical syntax and morphology

I, II, III, Linguistic Analysis 14, 265-287; 15, 137-176; 17, 147-185.
[7] C. Casadio (1997), Unbounded dependencies in non-commutative logic, in:

Proc. Conference Formal Grammars, ESSLLI, Aix en Provence.
(8] C. Casadio (2001), Non-commutative linear logic in linguistics, Grammars

3/4, 1-19.
[9] C. Casadio and J. Lambek (2002), A tale of four grammars, Studia

Logica, 71, 315-329.
(10] J.R.B. Cockett and R.A.G. Seely (1997), Weakly distributive categories,

J. Pure & Applied Algebra 114, 133-173.
[11] J.R.B. Cockett, J. Koslowski and R.A.G. Seely (2000), Introduction to

linear bicategories, Math. Structures in Computer Science, 10, 165-203.
[12] V.N. Grishin (1983), On a generalization of the Ajdukiewicz-Lambek

system, in: Studies in non-commutative logics and formal systems,
Nauka, Moscow, 315- 343. English translation in: V.M. Abrusci and C.
Casadio (eds), New Perspectives in Logic and Formal Linguistics,
Bulzoni Editore, Roma 2002, 9-27.

[13] G.M. Kelly (1972), Many variable functorial calculus I, Springer LNM
281, 66-105.

[14] S.C. Kleene (1952), Introduction to metamathematics, Van Nostrand,
New York.

[15] J. Lambek (1958), The mathematics of sentence structure, Amer. Math.
Monthly 65, 154-169.

[16] J. Lambek (1968, 1976, 1986), Lectures on rings and modules, Blaisdell,
Waltham Mass.; Ginn, New York, N.Y.; Chelsea, New York, N.Y.

[17] J. Lambek (1969), Deductive systems and categories II, Springer LNM
87, 76- 122.

[18] J. Lambek (1989), Multicategories revisited, Contemporary Math. 92,
217- 239.

[19] J. Lambek (1993), Logic without structural rules, in: K. Dosen and P.
Schroeder-Heister (eds.), Substructural Logics, Studies in Logic and
Computation 2, Oxford Science Publications, 179-206.

[20] J. Lambek (1993), Prom categorial grammar to bilinear logic, ibid.,
207-237.

[21] J. Lambek (1994), Some Galois connections in elementary number
theory, J. Number Theory 47, 371-377.

[22] J. Lambek (1995), Bilinear logic in algebra and linguistics, in: J.-Y.

Bicategories in Algebra and Linguistics 345

Girard et al. (eds), Advances in Linear Logic, London Math. Soc.
Lecture Notes Series 222, Cambridge University Press.

[23] J. Lambek (1995), Some lattice models of bilinear logic, Algebra
Universalis 34, 541-550.

[24] J. Lambek (1999), Deductive systems and categories in linguistics, in:
H.J. Ohlbach and U. Reyle (eds), Logic, language and reasoning, Kluwer
Academic Publishers, Dordrecht, 279-294.

[25] J. Lambek (1999), Bilinear logic and Grishin algebras, in: E. Orlowska
(ed.), Logic at work, Essays dedicated to the memory of Helena
Rasiowa, Physica-Verlag, Heidelberg, New York, 604-612.

[26] J. Lambek (1999), Type grammars revisited, in: A. Lecomte, F. Lamarche
and G. Perrier (eds), Logical Aspects of Computational Linguistics,
Springer LNAI 1582, 1-27.

[27] F.W. Lawvere (1973), Metric spaces, generalized logic, and closed
categories, Rend. Sen. Mat. E Fis. Milano 43, 135-166.

[28] S. Mac Lane (1963), Natural associativity and commutativity, Rice
University Studies 49, 28-46.

[29] S. Mac Lane (1971), Categories for the working mathematician,
Springer-Verlag, New York, N.Y.

[30] K.I. Rosenthal (1994), *-autonomous categories of bimodules, J. Pure &
Applied Algebra 97, 188-201.

[31] R. Street and R.F.C. Walters (1978), Yoneda structures on 2-categories,
J. Algebra 50, 350-379.

[32] M.E. Szabo (1975), Polycategories, Communications in Algebra 3,
663-698.

[33] Y. Velinov (1988), An algebraic structure for derivations in rewriting
systems, Theoretical Computer Science 57, 205-224.

[34] D.N. Yetter (1990), Quantales and (non-commutative) linear logic, J.
Symbolic Logic 55, 41-64.

10

Between Logic and Quantic: a Tract
Jean-Yves Girard

Institut de Mathematiques de Luminy

Abstract

We present a quantum interpretation of the perfect part of linear logic
by means of quantum coherent spaces. In particular this yields a novel
interpretation of the reduction of the wave packet as the expression of
77-conversion, a. k. a, extensionality.

Acknowledgements: this work has been essentially carried out in Oc-
tober 2002, and issued as privately circulated notes in French. The
sources were my recent ludics, [9], that I was trying to make "quantic"
for a couple of years, in relation to my much older "geometry of interac-
tion", [6], an explanation of logic in terms of Hilbert space operators. In
Spring 2002, I got a definite jolt from the work of Selinger, [11], in par-
ticular his handling of "density matrices". This final version benefited
from discussion with colleagues interested in the interface with quantum
physics, Ctirad Klimcik, Thierry Paul, and Richard Zekri. It also bene-
fited from the intercession of St Augustine, an output of the discussions
led inside the informal group LGC "la Logique comme Geometrie du
Cognitif", whose aim is to reconsider various philosophical and method-
ological issues that were fumbled by the "linguistic turn" of last century,
see the page http://www.logique.jussieu/www.joinet.

10.1 Introduction

10.1.1 What is the question?

,,From the beginning, it has been clear that something should be clari-
fied between logic and quantic, that there was a logico-physical puzzle.

346

Between Logic and Quantic: a Tract 347

In such a delicate situation, the main question was to find the right
question.

10.1.1.1 The punishment of nature

According to Herodotus (VII,35), a tempest destroyed the military
bridges built by Xerxes over the Hellespont; he decided to punish na-
ture and to have the sea whipped. To some extent, this is what logi-
cians wanted to do to quantum physics, to punish it for being "against
common-sense". Among the untold things was surely the idea of a com-
plete schizophrenia between nature and spirit: our beautiful minds were
harboured by the wrong world and this was a mere accident. The logical
accounts of quantum phenomena were contrived on purpose, as in the
notorious quantum logic; the subliminal message being: "quantum or
not, just a matter of encoding".

10.1.1.2 The failure of quantum logic

We remember what happened to quantum logic -or worse, we no longer
remember. Technically speaking, the idea of replacing Boolean algebras
with the lattice of closed subspaces of a Hilbert space is obviously wrong:
there is a fine negation (the orthogonal complement), but nothing like
a decent conjunction, in other words there is no simple account of the
intersection of two spaces in terms of operators: 7r fl7r' = 7r Tr' only when
7r, 7r' commute. Worse, the expulsion of the Hilbert space in favor of ab-
stract "orthomodular lattices" didn't bring much water in this desert.
Viewed from a distance, there was a methodological mistake. Boolean
algebras are the truth values of classical logic, they are used as seman-
tics, the external world, in opposition with syntax, which deals with
us, as observers. Quantum logic wanted to keep the opposition seman-
tics/syntax, and, inside the same mould, slightly alter the semantics,
from something simple (Boolean algebras) to something artificial (the
closed subspaces of a Hilbert). But if there is something that the quan-
tum world refuses, this is this simple minded view of an external reality.
The logician Frege thought that any expression was denoting something;
but the word "impulsion", denotes nothing in quantum physics, worse, if
we want it to denote something, we are performing an irreversible dam-
age. In other words we cannot make a separation between the world and
its observation.
This explains the failure of quantum logic. There is little to say about
other attempted interpretations, for instance via Kripke models, which
are sort of branching parallel universes. These structures are so floppy

348 J. - Y. Girard

that they give us back what we want to see in them: they are indeed
Loyola models, they obey perinde ac cadaver.

10.1.2 Augustine vs. Thomas
We reverse the paradigm. We don't consider quantum as "immoral",
we no longer try to "tame" it through some do-it-yourself logic. On
the contrary, we consider the quantum world as nice, natural, welcom-
ing. So nice indeed that logic should be interpreted, given a new space
of freedom, inside the quantum world. This program forces me to say
a few words as to the opposition between essentialism and existential-
ism, between Thomas and Augustine, the respective fathers of these two
opposite conceptions.

10.1.2.1 Logical essentialism

Logic is surely born essentialist. And the essentialist interpretation is
still overwhelmingly dominant. Take for instance Tarski's definition of
truth: "A A B is true if A is true and B is true". The essence of
conjunction is primitive, all you can do is to express conjunction in
terms of a meta-conjunction... We can say the same about a subtler
logician, Kreisel, who proposed to reinterpret Brouwer's existentialist
paradigms inside a formal system given in advance. To sum up: there
are preexisting logical laws. Logical artifacts, proofs, models,... are
constructed accordingly to the law. The reward for obeying the law is
that everything goes right.

10.1.2.2 Logical Augustinism

The weak point of essentialism is that, if everything goes right, it means
that something could go wrong, but how is it possible when the artifacts
always follow the law? The Augustiniant approach would be to admit
that artifacts like proofs are anterior to logical declarations. Such was
the viewpoint of the intuitionistic school (Kolmogoroff, Heyting: proofs
as functions), and it seems that Godel shared this opinion. However,
the technical contents remained low.
Quantum is rather on the Augustinian side. An electronic spin is nei-
ther up or down w.r.t. a given axis, say Z. If we only admit spins in
these specific states, then we follow the logical laws governing boolean
operations. But nature may shuffle the cards, tilt the gyroscopes, so

t Augustine proposed to define Good end Evil, not as absolute manicheist essences,
but through their interaction.

Between Logic and Quantic: a Tract 349

that our would-be boolean has no definite spin on axis Z'. In an essen-
tialist approach, this is illegal, immoral, and the measure of the value
on this axis is simply forbidden. But we know from quantum physics
that this measurement can take place, and that it involves the process
known as the reduction of the wave packet, see section 10.5.3 for a logical
discussion. Anyway, it is plain that the quantum world follows no rule.

10.1.3 The input of intuitionistic and linear logics
10.1.3.1 Functional interpretations

Around 1930, an alternative explanation of logic was presented by Kol-
mogoroff and Brouwer's pen-holder, Heyting. Proofs were basically func-
tions, e.g., "a proof of A B is a function from proofs of A to proofs
of B". This (sloppy) definition supposed that, somewhere, lived func-
tions which were anterior to logic. In the late sixties, the Curry-Howard
isomorphism expounded the categorical aspects of logic (proofs as mor-
phisms) "a proof of A B is a morphism from A to B". These interpre-
tations gave more and more importance to the proof, seen as a program,
independent of logic. The original essentialist pattern was eventually
turned upside down: a proof of A becomes a program enjoying specifi-
cation A.

10.1.3.2 Locativity

It is obvious that the same program can enjoy distinct specifications,
this is known as subtyping. We shall encounter subtyping in this paper,
namely the subtyping Bool C Spin (a Boolean, i.e., an electronic spin
up or down w.r.t. the axis Z, is a spin, i.e., a general electronic spin).
What is specific about Spin is that it contains as many isomorphic
copies BoolA of Bool as we want (one for each point of the unit sphere
S2); the isomorphism is not difficult to explain as a spiritual property;
essentialism considers things as they should be. However, the fact that
Spin is the union of all BoolA cannot be explained in this way. This
has to do with things as they are, with their precise location, with their
physical incarnation, so to speak. In Augustinian words, the objects
come with a precise location, and isomorphism is the result of an accident
-or rather a voluntary delocation. Locativity can embody spiritualism,
whereas the converse is wrongt.

t Witness the failure of all attempts at axiomatising subtyping. Such a thing
shouldn't even be tried, since an axiomatisation keeps a distance between ob-

350 J. - Y. Girard

10.1.3.3 Linear logic and actions

The technical input of linear logic, see, e.g., [7], was to replace proofs as
functions with proofs as actions. In the linear implication A -o B, the
premise is destroyed. This perfect (or perfective) aspect of linear logic is
an essential novelty, in harmony with quantum phenomena, typically the
fact that a measurement alters the current state. Linear logic contains
also imperfect connectives, which are more "classical". They are not
studied in this paper: they require infinite dimension but, since this
work crucially depends on the convergence of the trace, their study has
been postponed.

10.1.3.4 Polarity

Why is the implication d3 = IV is wrong? The usual answer is that in
dx3y the y depends on x, whereas in]ydx, y is independent of x... This
"answer" is as original as Tarski's definition of truth; it would be more
honest to say "it is like this, period". I propose an explanation, based on
the concept of polarity (positive/negative). This major divide gradually
emerged from computer science in the years 1990, especially in the work
of Andreoli on proof-search, [1]. This notion roughly separates:

Positive / Negative

®, ® / &, 2'

active / passive

lira urn

synchronous / invertible

El / foo

explicit / implicit

object / subject

wave / measurement

The basic discovery of Andreoli is that operations of the same polarity
commute. When polarities differ, we only have post-commutation of
positive: a group +- can be replaced with a group -+ (like in usual
life, it is easy to postpone a decision). This is why VI = Id is wrong
and IV = V3 is correct.

ject and subject, hence treats objects up to isomorphism and cannot make sense
of an inclusion.

Between Logic and Quantic: a Tract 351

10.1.3.5 Program of work and achievements

Intuitionism brought "proofs as functions", linear logic proposed "proofs
as actions". We propose to refine this paradigm into "proofs as quan-
tum actions" : by this me mean that a proof of an implication A -o B
is any sort of transformation mapping "waves of type A" into "waves
of type B", among which we include pure unitary transformations as
well as pure measurements. Following a successful logical pattern, such
transformations should also be seen as "waves of type A -o B", not as
sort of "super-operators", like in Selinger's paper [11].
Hence proofs will be interpreted by operators. These operators should
contain as particular cases, the usual "density matrices" and also the
usual wave transformations and wave reductions, also expressed by her-
mitian operators. The only essentialist (i.e., "pulled out of a hat") con-
cession is the choice of various finite-dimensional Hilbert spaces, but this
is only because our formulas diverge in infinite dimension, otherwise we
would once for all fix a separable Hilbert space. The basic duality is
expressed by the formula:

u L v t* 0< tr(ue) < 1 (10.1)

It is to be remarked that logic will define various orderings between her-
mitians, and that a proper symmetry, such as the flip a(x (9 y) = y ® x
might be declared positive. This is because our framework embodies not
only waves, but also "negative" (in the sense of polarity) artifacts, i.e.,
wave transformations h uhu*.
The extension to infinite dimension, in relation to the bosonic or
fermionic behaviour of the imperfect (non-linear, traditional) part of
logic, is very exciting. But it seems that it deserves another treatment.

10.2 Commutative coherent spaces
Coherent spaces are usually presented in terms of a web, i.e., a carrier
X together with a reflexive and symmetric relation on X, its coherence.
We shall replace this essentialist approach, in which the coherence rela-
tion is primitive with an alternative existentialist, Augustinian, in which
coherence is the result of interaction. The starting remark is that we
are basically interested in cliques, i.e., coherent subsets of the carrier,
and that the negation deals with anti-cliques, i.e., incoherent subsets, so
that a clique and an anti-clique intersect on at most one pointt.

t The question of an Augustinian approach to related notions such as hypercoher-
ences, [3], is still open.

352 J.-Y. Girard

10.2.1 Revisiting coherent spaces

Definition 10.1 Let X be a set; two subsets a, b C X are polar when
their intersection is at most a singleton. In notations

a L b * (a fl b) < 1 (10.2)

We define the polar -A of a set A C P(X) of subsets of X by:

bE-A a daEA a . b (10.3)

A coherent space with carrier X is a subset X C 6'3(X) equal to its bipolar.
Equivalently, a coherent space is the polar of some subset; moreover the
map X M - X is an involution of coherent spaces with carrier X, the
(linear) negation.

The fact that we make heavy use of Hilbert spaces prompts us to adapt
the terminology and notations of linear logic: orthogonality, L and Al
are replaced with polarity, I and -A.
Let X be a coherent space with carrier X:

1. X contains the empty set and all singletons {x} (x E X); in
particular, X is not empty.

2. If a' C a E X, then a' E X: this is because (a' f1 b) (a f1 b).

3. If aCXanda0X,there arex,yEX,x0ysuch that {x,y}V
X: if b E - X is such that (a f1 b) > 2, let x, y be two distinct
elements of a f1 b.

4. If x, y E X are distinct, then {x, y} V X if {x, y} E - X: ob-
viously {x, y} cannot belong to both, moreover, if {x, y} 0
this means that some a E X contains two distinct points of {x, y}.

This suggests the following definition:

Definition 10.2 If X is a coherent space with carrier X, we define a
binary relation on X, coherence:

x %x y t> {x, y} E X (10.4)

By what precedes, coherence w. r. t. - X, C _x, is identical to incoher-
ence w. r. t. X :

x: xy 44- x=yVxZxy (10.5)

The following proposition establishes the equivalence between definition
10.1 and definition 10.2, the original definition of coherent spaces.

Between Logic and Quantic: a Tract 353

Proposition 10.1 Let X be a coherent space with carrier X, and let
a C X. Then a E X if a is a clique w.r.t. the coherence of X, namely,
ifdx,yea x-xy

proofgirard: Immediate.

10.2.2 Perfection vs. imperfection

Logic can be interpreted in coherent spaces: a formula become a co-
herent spaces and its proofs become elements (cliques) in it, see, e.g.,
[7]. Originally, coherent spaces were intended as an explanation of in-
tuitionistic logic. The main achievement was to interpret intuitionistic
(imperfect, see below) implication X = Y in two equivalent ways: ei-
ther by means of functions from X to Y or by means of a coherent space
X = Y. X = Y turned out to be a compound operation, made out of
two primitives, --o and !:

X => Y = !X-0Y (10.6)

The linear implication -o is causal, in the sense that, in a linear implica-
tion, the premise cannot be reused: X -o Y, enables one, given (a clique
in) X, to get (a clique in) Y, but the premise is destroyed. If one wants
to reuse the premise, one has to say something like "forever X", which
involves the construction of the exponential !X.
The main achievement of linear logic was not quite to change logical
connectives and rules, but to distinguish a primal linear layer, in which
things are performed once for all, that one should therefore called per-
fect, in analogy with linguistics: perfect tenses are used to denote a
punctual, well-defined action; in French, English, this is limited to the
past, in Russian, this is more systematic. Perfect connectives come as
dual pairs, ®/&, ®/28; duality means that each pair is swapped by linear
(perfect) negation, e.g., - (X (9 Y) = -X a8 -Y. The most important
connective is not part of this official list: linear (perfect) implication
X -o Y is indeed - X W Y.
Imperfection corresponds to general statements, e.g., mathematical the-
orems, or to repetitive actions. James Bond movies often have imperfect
titles "Diamonds are forever", "You only live twice" (compare to per-
fect titles like "Gunfight at the OK Corral" !). Imperfect implication =
does not correspond to linear maps, but rather to analytical maps, see

354 J. - Y. Girard

[8]t. Mathematically speaking, imperfection deals with infinity, whereas
perfection can reasonably live in a small (finite) world. This has a con-
sequence for this paper: quantum coherent spaces make a heavy use of
the trace which (basically) lives in finite-dimensional spaces. This means
that we shall forget the imperfect connectives !/? which would involve
infinite dimension and concentrate on the perfect ®/&, ®/28 /-o. Since
this paper is basically concerned with the relation logic/quantum, this
is not a major restriction: perfection is rather "'quantum" whereas im-
perfection is more "classical".

10.2.3 Perfect connectives
The basic perfect connectives are divided into additives and multiplica-
tives; additives make use of disjoint unions (later: direct sums), multi-
plicatives make use of cartesian products (later: tensor products).

10.2.3.1 Additives

Assume that the respective carriers X, Y of X, Y are disjoint (if not, do
the obvious thing!). Then we define X ®Y, "Plus", and X &Y, "With",
both with carrier X U Y:

Definition 10.3 ® and & are defined by the dual definitions:

X ®Y = X UY (10.7)

X&Y = {aUb;aEX,beY} (10.8)

Proposition 10.2 X ®Y and X &Y are coherent spaces; their respective
negations are - X& -Y and 'X® -Y.

proofgirard: Everything eventually amounts at showing that the spaces
X ® Y and - X& - Y are swapped by negation. Any c C X U Y can
uniquely be written c = a U b, with a C 1S, b C Y. c = a U b c - (X ®Y)
iffc L a' and c) b' for all a' E X, all b' E Y, i.e., if c E -X& -Y,
which shows that - (X ® Y) = -X& -Y.
From this we deduce that X ® Y C ' - (X ® Y) = ti (X& - Y).
But if c = a U b E - (. X& - Y), one of a, b must be empty: if
xEaCX,yEbCY,then {x,y}E-(-X& -Y),and-i(c I {x,y}).

And !X is a sort of symmetric (co)-algebra, much bosonic in spirit... but this is
beyond the scope of this paper.

Between Logic and Quantic: a Tract 355

Let us say that c = b; then c meets any a' U b' (a' E - X, b' E - Y) on
at most one point, which means that b I b', and that c c Y. From this,
X ®Y = -(-X& -Y).

The coherence relations related to additives work as follows: if x, x' E X,
then x C x' w.r.t. X ®Y or X & Y if they were coherent w.r.t. X, sim-
ilarly for y, y' E Y. The connectives differ as to the coherence between
xEXandyE':
X ® Y: incoherent, x -. y.
X & Y: coherent, x C y.

10.2.3.2 Multiplicatives

Assume that the respective carriers of X and Y are X and Y. Then we
define X ®Y, "Times", and X 28 Y, "Par", both with carrier X x V; we
start with the essentialist version (via coherence), and later discuss the
possibility of an existentialist version. The following abbreviations are
useful: x - yforxCyAx#y, x Syforx> yAx#y (equivalently,
x^y x y,x - yt-* x ,7y)

Definition 10.4 The respective coherences of "Times" and "Par" are
as follows:
in X ®Y, (x, y) (x', y') iff x x' and y C y'.
in X 2'Y, (x,y) - (x',y') ofx x' or y y'.

The two definitions are clearly dual; "Par" is an artificial creation, the
dual of "Times". Indeed "Par" is a contrived way to speak of linear
implication, X -o Y = ' X 2W Y, and X Y is better understood as
- X -o Y or -Y -o X. The coherence on X -o Y is obviously given by:
(x, y) ^ (x', y') if x C x' = y y'.

Definition 10.5 A function e from (cliques of) X to (cliques of) Y is
linear when it preserves all disjoint unions: if ai are disjoint cliques in
X whose union is still a clique, then

cp(U ai) = U w(ai)
i i

The following result is elementary, but essential:

Theorem 10.3 If A is a clique in X -o Y and a is a clique in X, define

[A]a := {y E Y; 3x E a (x, y) E Al (10.9)

356 J. - Y. Girard

Then [A]a is a clique in Y and the map a -.- [A]a is linear.
Moreover, any linear function cc from X to Y is of the form [A]., with
a unique A given by:

A = {(x, y); y E cp({x})} (10.10)

proofgirard: See the literature, e.g., [7]. The crucial point in the proof is
the fact that in (10.9), the x such that (x, y) E A is indeed unique.

Example 10.6 Since linearity is a preservation property, the identity
map is surely linear. The clique in X -0 X associated to it is the set
Ax = {(x, x); x E X}. This set is not the graph {(a, a); a E X} of the
function, it is much smaller, and depends only on the carrier X.

The theorem establishes a link between the cliques of the coherent space
X -o Y and the linear functions from X to Y; we could as well take
linear functions 0 from - Y to - X, using b M b [A] :

b[A]:={xEX; 3yEb (x,y)EA} (10.11)

and

A = {(x, y) ; x E '({y})} (10.12)

Let us now try an Augustinian definition of multiplicatives. There is no
problem as long as ® is concerned:

Proposition 10.4 X ®Y = {c ; 3a E X 3b E y c C a x b}.

proofgirard: If aEX,bEY,then axbEX®Y,and if cCaxb,we
still have c E X ® Y. Conversely, if c E X ® Y, let a, b be the respective
projections of c on X and Y; then c C a x b and a E X, b E Y.

But there is nothing of the like for the connective "Par", or equivalently,
linear implication. However the following is true:

Proposition 10.5 X -a Y = {A ; Va E X [A]a E Y}.

proofgirard: Trivial reformulation of theorem 10.3.

Moreover, [A]a is characterised as the unique subset of Y such that:

O([A]a fl b) = O(A n a x b) (10.13)

for any b E - Y, so what is the problem? Following the existentialist
pattern, existence (here: objects, functions) must be anterior to essence

Between Logic and Quantic: a Tract 357

(here: logical declarations). This means that we should be able to de-
fine [A]a for any subsets A C X x Y, a C X, in such a way that (10.13)
holds for all b C Y. But this is clearly impossible: we have an explicit
definition of [A]a in (10.9), and it is plain that (10.13) is satisfied if the
x such that (x, y) E A is unique. Our construction is essentialist in the
sense that [A]a is defined only when A, a "obey the law".
You may think that I am gilding the lily, asking for some fancy purity
criteria... And this is correct as long as we stay with usual (commuta-
tive) spaces: everything can be handled in terms of a well-defined set
of atoms (the singletons {x}, x E X). But imagine that the atoms are
no longer well-defined (no canonical base in a vector space), or, worse,
that there are no atoms at all (e.g. in a von Neumann algebra of type
distinct from I). By the way, in what follows (PCS, QCS), there will
be no direct, manageable, account of the tensor product in the style of
proposition 10.4, and our only hope will be the linear implication.

10.2.4 Probabilistic coherent spaces
In proceeding towards quantum, we must replace qualitative features
with quantitative ones. Here it is the place to remark that my first
glimpse of linear logic came from quantitative domains, [5], see also [2],
soon replaced with qualitative domains and coherent spaces. Indeed
there is something quantitative in coherent spaces, namely the unicity
of the x in (10.9), which is behind (10.13).
The idea will therefore to replace P(X) -the subsets of the carrier X-
with the space R(X) of all functions X L R+. We have in mind that,
instead of saying whether or not x E X belongs to a set, we rather give
a probability, which would mean 0 < f < 1; incoherence between two
atoms x, y now means that their mutual weights f (x), f (y) are such that
f (x) + f (y) < 1, which amounts to a mutual exclusion, in case f is a
characteristic function. But this is only a basic intuition: once for all,
forget about coherence, or any limitation of the values to the interval
[0, 1].

10.2.4.1 The bipolar theorem

Definition 10.7 Let X be a finite set; two functions f, g : X--,W are
polar when:

f (x) g(x) (10.14)
xEX

358 J. - Y. Girard

We define the polar of a set of positive functions as in definition 10.1,
and a probabilistic coherent space (PCS) as a set of positive functions
equal to its bipolar.

(10.14) is obviously inspired from (10.2), since, when f, g are the charac-
teristic functions of the subsets a, b C X, then >xEX f (x) g(x) = #(aflb).

Theorem 10.6 (Bipolar theorem) Let X be a PCS with carrier X;
then

(i) X is non-empty (in fact, Ox belongs to X).
(ii) X is closed and convex.

(iii) X is downward closed.

Conversely every subset of R(X) enjoying (i)-(iii) is a PCS.

proofgirard: That every PCS enjoys (i)-(iii) is a trifle. Conversely, as-
sume that X enjoys (i)-(iii) and that f 0 X. $t(X) is a closed con-
vex subset of the real Banach space RX. By Hahn-Banach, there is
a linear form cp such that W(X) < 1, p(f) > 1. This linear form
can be identified with an element of RX, i.e., a real-valued function 1a:
W(g) = >XEX g(x) h(x). Define the positive h' by h'(x) = sup(h(x), 0).
Obviously ExEx h'(x) f (x) _> ExCX h(x) f (x) > 1. If g E X, then
ExEX h'(x) - g(x) = F,.Gx h(x) g'(x) with g'(x) = 0 if h'(x) = 0,
g'(x) = g(x) otherwise; g' < g E X, hence g' E X by (iii), and
ExEX h'(x) . g(x) < 1. This shows that h' E - X, but -(h' I f),
hence f 0 X.

10.2.4.2 Additives

As before, additives are defined in case the carriers X and Y of X, Y are
disjoint, as a PCS with carrier X U Y. If f E R(X), g E 2(Y), I can
define f U g E l2(X U Y) in the obvious way. The set

X&Y:={f U g; f EX,gEY} (10.15)

is the polar of -X U -Y (modulo the obvious abuse which identifies
f E J(X) with f u Oy E R (X U Y), so that -X U -Y is indeed short
for If U g; f E -X, g e "Y, f= 0 V g= 0}). On the other hand X U Y
is not a PCS; X ®Y must be defined as - - (X U Y), with no hope of
removing the double negation. The bipolar theorem 10.6 yields:

Proposition 10.7

X®Y={,1fU(1-a)g;f EX,gEY,0<,\<1} (10.16)

Between Logic and Quantic: a Tract 359

proofgirard: The right-hand side is the convex hull of XUY. It obviously
enjoys conditions (i)-(iii).

10.2.4.3 Multiplicatives

As before, multiplicatives are defined as PCS with carrier X x Y, where
X and Y are the respective carriers of X, Y. But, in contrast with
section 10.2.3.2, the definition is really Augustinian.

Definition 10.8 If 4) E IJ2(X x V), if f E R(X), then one defines [4)]f E
2(Y) by:

E 4) (x, y) . f (x)
XEX

This makes sense because X is finite.

(10.17)

Theorem 10.8 The map 4) M [4)]. is a bijection from t(X x Y) onto
the set of linear maps from R(X) to lJ (Y).4) can be retrieved from its
associated linear map cp = [I)]. by means of:

(D (x, y) = cO(by)(Y) (10.18)

proofgirard: A linear map satisfies cp(Af +pg) = acp(f)+µcp(g), hence it
is determined by its values on the 8x, this is the explanation of equation
(10.18). Everything is straightforward.

In the basic case (subsets) this didn't work: if 1 and f are characteristic
functions, [4)l f need not be one (again the unicity of the x in (10.9)).

Definition 10.9 If X, Y are PCS with respective carriers X, Y, one
defines the PCS X -o Y, with carrier X x Y, as the set of all 4 such
that [4)]. maps X to Y.

Example 10.10 The characteristic function Ax of the diagonal belongs
to X -o X; in fact [Ox] f = f.

X -0 Y is obviously the polar of if x g; f c X, g c - Y}, this why it
is a PCS. It could as well be defined as the set of all 4) such that [D]
(whose definition is easy to figure out) sends -Y to -X.
LFrom -o, "Par" and "Times" follow, e.g., X ® Y := - (X -o - Y),
equivalently, X® Y = -- { f x g; f E X, g E Y}. The bipolar theorem
characterises this set as a closure under certain operations, but this is

360 J. - Y. Girard

not very manageable. Should we try to prove associativity of "Times",
it is much simpler to first establish it for the dual connective 28.

Proposition 10.9 "Par" is commutative, associative, and distributes
over "With".

proofgirard: Let us prove, for instance, that "Par" is associative. For
this, we pretend that cartesian product is reallyt associative, so that
we can write X x Y x 7G as the common carrier of X 2' (Y Z) and
(X ' Y) 28 Z. We use the possibility of expressing "Par" in two ways,
by means of [] or []. We get X 28 (Y 29 Z) _ {A; V f E - X dh E
- Z h[[A]f] E Y}, whereas (X 28 Y) 28 Z = {A; Vh E - Z df E
- X [h[A]] f E Y}. Everything amounts to checking that h[[A] f] _
[h[A]] f, which is obvious.
Similarly, if we want to prove that "Par" distributes over "With", by
establishing an isomorphism between X 28 (Y & Z) and (X 2' Y) & (X 28
Z), we express "Par" in terms of (and not in terms of which is
suitable for distribution on the left).

10.3 Generalisations
10.3.1 Kothe spaces

The restriction to finite carriers ensures the convergence of (10.18). In
the case of infinite carriers, one can liberalise the definition so as to
accept the value +oo. One can also use Kothe spaces: the objects are
functions from a carrier l[to R, and polarity is defined by:#

f I g a E If (a) g(i) < +00 (10.19)
iEI

This is what Ehrhard did in [4]; in that case, (10.18) does not always
make sense. However, everything works fine, as long as one does not try
to "change the basis", i.e., as long as one "stays commutative".

10.3.2 Continuous carriers: an interesting failure
There seems to be an alternative way to accommodate infinite carriers,
namely, to consider X as a measure space, typically the segment [0, 1]
with Lebesgue measure. It will turn out that this attempt fails, but

t Cartesian product, like "Par", is associative only up to isomorphism.
t The formula defines in fact what I call FinC, see definition 10.11.

Between Logic and Quantic: a Tract 361

sometimes a wrong idea is far more interesting than a "correct" one.
We only sketch the definitions:

Carriers: measure spaces (X, µ), X for short.

Objects: functions X L][F+ which are essentially bounded, i.e.,
f E LOO (X, R+).

Polarity: f I g a fx f- g dp < 1.

Application: given D, f with respective carriers X x Y and X, define
[4)]f, with carrier Y, by ([(D]f)(y) = fx 4)(x, y) - f(x) dlu(x)

The map 4) -'.+ [4)] associates to each (D with carrier X x Y a linear map
sending objects with carrier X to objects with carrier Y. Unfortunately,
this map is far from being surjective, the typical example being given
by the identity map (in case X = Y). The obvious candidate for this is
still 0, the characteristic function of the diagonal, see example 10.10.
But this function is likely to be almost everywhere null. This is where
we fail, and we shall meet the same obstacle when dealing with QCS.
This failed attempt introduced an important novelty, namely that the
basic duality should be seen as an integral (remember that we started
with an intersection). Since, following Connes, the non-commutative
integral is a trace, this explains the role played by the trace in a QCS.

10.3.3 Banach spaces

In [8], I introduced coherent Banach spaces as an explanation for logic.
These spaces were complex because of the use of analytic functions in
the imperfect case; they were also infinite dimensional, which forced one
to be careful with problems of reflexivity. Here we restrict our discussion
to real, finite dimensional, Banach spaces.

Norms Banach spaces are normed: X is a finite dimensional real Ba-
nach space, and -X is its dual, with dual norm, so that the identifica-
tion X = - - X makes sense. But what is this norm for? The answer
is that the norm measures incoherence, what corresponds to cliques of
a coherent space, to objects of a PCS, is now translated as a vector of
norm < 1.

362 J. - Y. Girard

Additives The underlying space is a direct sum X ®Y, only the norms
differ:

IIf ®9II x®Y = IIflix + II9IIY (10.20)

11f ® 9II x&Y = suP(IIf IIx, II9IIY) (10.21)

The two choices are dual.

Multiplicatives X -o Y is the space of linear maps from X to Y, en-
dowed with the usual supremum norm. X ®Y is the tensor product, en-
dowed with the usual tensor norm, defined as IIaIIx®Y = inf{Ei IIxiII x'
IIyi1IY}, the infimum being taken over all decompositions a = Ei xi yi.
Again the two choices are dual.

Polarity Certain norms are defined via supremum, this is the case for &
and -o (i.e., ?8), others in terms of sums (®, ®). The choice of supremum
corresponds to coherence, the choice of sum to incoherence. This distinc-
tion is a major divide of logic, known as polarity, see the introduction:
supremum is negative (observation-like), sum is positive (object-like).

Semi-norms There is a priori no room for semi-norms in this picture.
In usual mathematics, a semi-norm behaves like a norm on a quotient
space. However this is wrong in the case of logic, especially if we want to
accommodate Augustinian features such as subtyping. The subtyping
X C Y means that, on the same underlying vector space IE, we can
have more "coherent" objects, i.e., that the unit ball increases. In other
words, 11 II v < 11 . I I x : the norm decreases. It can decrease up to 0 on
certain vectors, and this explains why semi-norms naturally occur.

Positivity PCS were made of positive functions, hence they were an
ordered structure. The same is true of real Kothe spaces, which are
spaces of sequences. With Banach spaces, things are different, since
there is a priori no distinguished basis. However, remark the following
property:

Proposition 10.10 f E RX belongs to R(X) iff for all g E l(X) the
"scalar product"

E.EX f (x) 9(x) is positive.

proofgirard: Immediate.

Between Logic and Quantic: a Tract 363

This means that positivity itself can be defined in Augustinian style. We
shall make a heavy use of this when dealing with QCS... although QCS
are spaces of hermitian operators, which come with a natural ordering
(positive hermitians), we shall not content ourselves with the "standard"
notion of positivity. This can be very easily understood: if IIaII = 0 and
a # 0, then it is reasonable to assume that a can be identified with 0,
which means that 0 < a and 0 < -a. The a and -a cannot both be
positive hermitians.

10.3.4 The bipolar theorem, revisited
We shall complete our preliminary works with an alternative version of
the bipolar theorem 10.6 which requires some care. The setting is as
follows: IE is a finite-dimensional Euclidian space, equipped with the
bilinear form (I). Polarity is defined by means of:

x! y a 0<(xly)<1 (10.22)

The question is to determine bipolars.

Theorem 10.11 (Bipolar theorem) A subset C C IE is its own bipolar
if the following hold:

(i) 0 E C.
(ii) C is closed and convex.
(iii) If nxEC for alIn EN, then -xEC.
(iv) Ifx,yECifA,p>0 and Ax +µyEC, then AxE C.

proofgirard: (i) and (ii) are immediate. (iii): if nx E C for n E N, and
zE-C,then (xIz)E[0,1/n] for n E N, hence (-x z) = (xIz)=0E
[0, 1].

(iv): ifzC-C,then 0<(Ax+iyI z) < 1, 0 < (Ax I z), 0 < (py I z),
hence 0 < (Ax I z) < 1. By the way remark that (iv) yields a sort of
converse to (iii): if x, -x E C, then nx + n(-x) = 0 E C, hence nx E C.
We now prove the converse, and assume that C enjoys (i)-(iv); let C+
be the cone U71EN 71' C (= UAER+ A C). Then we can reformulate (iv)
as:

C=C+n(C-C+) (10.23)

Assume that b ¢ C, then, by (10.23), we have to consider two cases:

b V C+: using Hahn-Banach, one can find a vector d E IE such that
(b I d) < 0 < (c I d) for all c E C. By condition (ii) the subset

364 J. - Y. Girard

I = {c; do E N nc E C} is a vector space, moreover, (
I

d)

vanishes on I, so that we can write C = I®C', with C' = I'nC.
C' is compact: if we embed IE in the projective space, C' has
a compact closure, and its boundary corresponds to the lines
R - a which are included in C'. But there is no such line (all of
them have been gathered in I): the boundary is empty, and C'
is compact. From this, (I d) is bounded on C', hence on C, so
(b d) < 0 < (c

I
d) < A. By rescaling d we can assume that

A = 1, in which case d E -C, and b V --C.
b V C - C+: the same Hahn-Banach yields a vector d E IE such that

(p I d) < 1 < (b I d), for all p E C - C+. Assume that (c I d) < 0
for some c E C; then -nc E C - C+ for n E N and the values
(-nc I d) cannot be bounded by 1. From this we deduce that
0<(cId)<_1<(bld)forallcEC. Asabove, de-C, and
b V --C.

11

10.3.5 Norm and order
With the notations of theorem 10.11, in particular, D = ti C, C+ _

UnENn.C:

Definition 10.11 The domain Finc of C is the vector space C+ - C+
generated by C.

Proposition 10.12 Finc = (D fl (-D))1.

proofgirard: If c E C, d E D fl (-D), then (c
I
d) = 0, and the same

remains true for c E Finc, the linear span of C, so that Finc C (D fl
(-D))1. Conversely, if c Finc there is a vector d c (Finc)' such that
(c I d) # 0. But (Finc)- = C- C Dfl(-D), hence c V (Dfl(-D))'.

In other words, the domain of C is the orthogonal of the null space of
-C.

Definition 10.12 The domain Finc is naturally equipped with a semi-
norm II - IIc and a preorder -,<c:

IIxIIc = sup{J(x I d)I ; d E D}

x<cy VdED (xId)<(yId)

Between Logic and Quantic: a Tract 365

Let =c be the equivalence associated with

Proposition 10.13 The zero space OC of II ' IIc is identical to the zero
class modulo -c.

proo fgirard: Obvious.

In particular, FinC/OC is a partially ordered Banach space.

Proposition 10.14

1. C+ is the set of positive elements modulo -,<C.

2. oc = C+ n (-C+) = C n (-C).
3. The unit ball w.r.t. II ' IIc is (C - C+) n (C+ - C).

0

proofgirard: (i) and (iii) come respectively from the cases "b V C+" and
"b V C - C+" in the proof of theorem 10.11. (ii) is immediate.

The next properties are more or less reformulations of what we already
established.

(i) The partial order <c is continuous w.r.t. 11.11c: if 4C Yn and
(xn), (yn) are Cauchy sequences w.r.t. II 'IIC with limits x, y, then
x4Cy.

(ii) If 0 -,<c x -,<c y, then IIxMIc < I'JIIc.

(iii) If x E FinC, then there exists y, z >,-c 0 such that x = y - z and

IIyMI 5 IIxli

Now what is the relation between norm and order w.r.t. C and norm
and order w.r.t. -C? The question is not to establish any new result,
everything has been said, but to look for symmetries Cl - C. We
consider successively: equivalence, positivity, semi-norm.

Equivalence

x=cy dx',y'(x'--cy'=(xIy)=(x'Iy))
(10.24)

The introduction of the domain FinC, i.e., the fact of considering a
partial (non-reflexive) equivalence relation (PER) is responsible for this
symmetrical formulation.

366 J. - Y. Girard

Positivity

x E C+ t* Vy(y E (-C)+ = (x I y) > 0) (10.25)

The relation <C is a preorder on the domain Finc. I don't know how
to call a transitive relation enjoying weak reflexivity:

x-,< y=> x Ay-,< y (10.26)

"partial preorder" conflicts with the use of "partial" in "partial order".
I therefore propose to call it a "POR" (like we say "a PER").
The next result generalises the familiar decomposition of a hermitian
as a difference u = u+ - u- of two positive hermitians, see the default
choices in section 10.3.6.

Theorem 10.15 Given x E lE there are unique x+ E C+ and x- E
C)+ such that x = x+ - x- and (x+ I x-) = 0.

proofgirard: Let x+ be the projection of x on the convex set C, and
let x- := x - x+. It is well-known that x- is the unique y such that
(y I x - y) > (y I z) for all z E C. This last condition is easily shown to
be equivalent to y E ("C)+ and (y I x - y) = 0.

Semi-norm

of xC = inf {A ; Vy E C+ I (x I y) I < .\nf y--c} (10.27)

It is not the case that I(x I y)I <_ IIxIIC . IIy11-c for all x c Fine,
y E Fin,,,C. I am not sure that one should spend too much time on
this, since the choice of the norm makes sense for us only for positive
elements, as a way of defining coherence.

Proposition 10.16 If C C D, then:
Fine C FinD

<C C S<D

=C C -D
IIHIIC >_

The last inequality can be understood by extending 11
-

IIC into a total
function with values in [0, +oo].

Between Logic and Quantic: a Tract 367

10.3.6 Quantum coherent spaces
Let X be a finite-dimensional (complex) Hilbert space; let E = f(X)
be the set of hermitian (self-adjoint) operators on X. lE is a real vector
space (whose dimension is the square of the dimension of X) naturally
endowed with the scalar product

(u I v) := tr(uv) (10.28)

which makes it an Euclidian space: tr(uv) = tr(vu) = tr(ue), tr (u2) > 0
for u 54 0. Two hermitians are said to be polar when 0 < (u I v) < 1.

Definition 10.13 A quantum coherent space (QCS) with carrier X is
a subset of X C 71(X) equal to its bipolar.

Theorem 10.11 yields a characterisation of QCS. Some default choices
are given by:

Example 10.14

Negative default: N consists of all positive hermitians of norm < 1.
N+ therefore consists in all positive hermitians; on N+, 11 IIN

coincides with the usual (supremum) norm 11 11,,..

Positive default: P consists of all positive hermitians of trace < 1
P+ therefore consists in all positive hermitians; on P+, 11 lip
coincides with the usual trace norm IJull, = tr(uu*).

Hilbert-Schmidt default: H consists of all positive hermitians of
Hilbert-Schmidt norm less than 1. H+ therefore consists in
all positive hermitians; on H+, 11 IIH coincides with the usual
Hilbert-Schmidt norm tr(uu*). This choice is self-dual:
H = H.

In fact, P = - N; one basically uses Itr(uv)l < jjvjjl, and, for
u, v > 0, tr(uv) = 0 and tr(uxx*) = (u(x) I x).

10.4 Additives
10.4.1 Basics of quantum physics

Let us recall a few basics of quantum mechanics; we stay in finite di-
mension to avoid technical problems.

(i) The state of a system is represented by a wave function, i.e., a
vector x of norm 1 in some Hilbert space X.

368 J.-Y. Girard

(ii) A measurement is a hermitian operator 4) on X. To say that the
value of x w.r.t. 4) is A is the same as saying that 4)(x) = Ax.
This means that, under normal conditions, there is no value at
all. Moreover, if C, ' do not commute, they are likely to have
no common eigenvector, so x cannot have a value w.r.t. both of
them, as in the famous uncertainty principle. For instance the
Pauli matrices (see infra) which measure the spin along the axes
X, Y, Z, do not commute: if the spin is +1/2 along the axis Z,
then it is completely undetermined along X.

(iii) The process of measurement is a Procustus's bed, it forces the
system to "have a value". This means, that, after a measurement,
the wave function x is replaced with an eigenvector x' of 4). This
process is non-deterministic: in fact, if X is split as the direct sum
of the eigenspaces of 1D: X = EaXA, so that x = Eaxa, then x' is
one of the components xa, up to renormalisation (multiplication
by 1/jjxajj), and the probability of the transition x-'- xA/jjxajj is
IIxA 112. This process is known as the reduction of the wave packet,
reduction for short.

(iv) In this pattern, wave functions make sense up to multiplication by
any element of the unit circle. Typically, when we deal with the
spin of an electron, which is nothing but the quantum analogue
of a boolean, a rotation of 2ir will replace x with -x, without any
significant consequence.

(v) Density matrices have been introduced by von Neumann; they
take care of the scalar indetermination of wave functions, they
also take care of the probabilistic aspect of measurement. A den-
sity operator is a positive hermitian of trace 1. Density matrices
form a compact convex set, whose extremal points are opera-
tors of the form xx*, where x is a vector of norm 1, i.e., a wave
function, uniquely determined up to multiplication by a scalar of
modulus 1. When one performs a measurement, xx* is replaced
with EA xaxa*: this density operator is a "mixture", a convex
combination of extremal points xaxa*/IIxA112, with coefficients
IIxaII2 which correspond to the respective probabilities of each
transition.

(vi) One can iterate measurements, this means, apply this process to
an arbitrary density operator, not necessarily extremal. Con-
cretely, this means that, if we write our density matrix u as
a "matrix" (uaN,) w.r.t. the decomposition X = EaXA (u.\. E
£(X, Xa)), then the reduction of the wave packet consists in

Between Logic and Quantic: a Tract 369

annihilating the non-diagonal "coefficients" uaN,: after the mea-
surement, the density matrix becomes v = (uaN,), with vaa =
ua A, vaN, = 0 for A # µ.

(vii) The measurement process is irreversible: if u v through mea-
surement, then tr(v2) < tr(u2), i.e., the Hilbert-Schmidt norm
decreasest. If X is of dimension n, then the HS norm can vary
between 1 (extremal point xx*) and 1//, which corresponds to
1/n I, the "tepid mixture", which conveys no information at all.

10.4.2 Quantum booleans
10.4.2.1 Commutative booleans

With start with 2 x 2 matrices. As long as traditional logic is concerned,
there is little to say:

1. The booleans true, false are naturally represented by

1

[0 0] ' [0 11,

2. It is natural to think that a diagonal matrix LO 0µ] , with A+p =

1, A, µ > 0 represents a probabilistic boolean.

But, as soon as one "forgets the diagonal", i.e., when one considers
"booleans of arbitrary basis", then the three -nay the four- dimen-
sions of space come into the picture.

10.4.2.2 Space-time

Any hermitian can be written h = 1/2 + . t - z I
,

i.e.,
y

t.s0+x.s1+y.s2+z.s3i where t, x, y, z are real and the s2 are the Pauli ma-

trices 1/2 [l
1/2 [°

0]
1/2 [0

it 1/2 [o 0
Remark

that time t is nothing but the trace, t = tr(h). As to the determinant,
we get 4det(h) = (t2 - (x2 + y2 + z2)), the square of the pseudo-metrics.
Remark that tr((t.so+x.s1 +y.s2+z.s3)(t'.so+x'.sl+y'.s2+z'.s3)) _
tt'+xx'+yy'+zz'.
For 1 < i # j < 3, we have the anti-commutations s2.s1 + sj.s; = 0.
In order to characterise positive hermitians, remember that, modulo a

t The reduced hermitian is not smaller: the difference has null trace, and can hardly
be positive.

370 J. - Y. Girard

unitary transformation, uhu* = 10 Oul
, with A, p E R, so that h is

positive if A, M > 0. In other words, the condition det(h) > 0 (vectors
in position "time") characterises hermitiens which are either positive
or negative. Positive hermitians correspond to the further requirement
tr(h) > 0, i.e., to the "future cone".
The most general transformation preserving positive hermitians is of the
form h -,-+ uhu*, with det(u) = 1, i.e., u E SL(2): such transformations
correspond to the familiar positive Lorenz group, which is the group of
linear transformations preserving the pseudo-metrics and the future. By
the way, remark that the inverse of u E SL(2) is given by:

C: d) = (d
ab)

(10.29)

Therefore, inversion can be extended into an involutive anti-automorphism
of the C*-algebra M2(C) of 2 x 2 matrices. This anti-automorphism acts
on space-time by negating the spacial coordinates.
The positive Lorenz group admits as a subgroup the group SO (3) of
rotations, which modify only space: they correspond to trace-preserving
transformations, those who are induced by unitaries. In other words,
SO(3) admits a double covering by SU(2), the group of unitary trans-

f a b\
iformat

as + bb = 1. The rotations of axes X, Y, Z and angle 0 are induced
by the unitaries ezesk, i.e.,

[
cos 9/2 i sin 0/21 1 cos 0/2 sin 0/2
i sin 0/2 cos 0/2 - sin 0/2 cos 0/2

eie/2

IL 0

respectively. Remark the "heresy" consisting in dividing an angle by 2,
an operation with two solutions... This is why one speaks of a double
covering; this is also why a rotation of angle 27r acts on a spin (seen as
a wave function) by multiplying by -1.

10.4.2.3 Quantum booleans

"Classical" booleans correspond to projections on two 1-dimensional
subspaces which are distinguished by the matricial representation. A
quantum boolean will therefore be a subspace of dimension 1. By the
way, remark that this definition refuses any differentiation between true
and false: if the space E is a quantum boolean, its negation is E1, pe-
riod. By the way, remark that, due to problems of commutation, it will

Between Logic and Quantic: a Tract 371

be impossible to construct convincing binary connectives. It remains to
determine the subspaces of dimension 1, i.e., the matrices of orthogonal
projections of rank 1. Those are the hermitian matrices of trace 1 and
determinant 0, i.e., the points of space-time t.s0 + x.s1 + y.s2 + z.s3,
with t = 1, x2 +y2 + z2 = 1, which are therefore in 1- 1 correspondence
with the sphere S2. What we have just explained is the natural way to
speak of a quantum boolean, which also known to physicists as the spin
of an electron.

10.4.2.4 Probabilistic quantum booleans

Probabilistic quantum booleans (PQB) are just convex combinations of
quantum booleans, i.e., "density matrices", positive hermitians of trace
1. Any PQB can be diagonalised in an orthonormal basis. In which
respect is this unique?

(i) The PQB 11/2 1021 is diagonal in all bases. This is the extreme

form of non-unicity. J

(ii) Apart from this case, our boolean can be written Ab + (1 - A)c,
where b, c are quantum booleans and 0 < A < 1. A, b, c are
uniquely determined if we require 0 < A < 1/2.

The reduction of the wave packet occurs when we want to measure a
boolean, this corresponds to the measurement of a spin in physics. First
we must specify an orthonormal basis, and write operators as matrices

w.r.t. this base. Say that our PQB corresponds to the matrix (a bl
b c

then, after measurement, it becomes

a, false with probability c = 1 - a.

, i.e., true with probability

10.4.2.5 Negation

Specifying an orthonormal basis consists in chosing two orthogonal
subspaces of dimension 1, i.e., two quantum booleans 7r and 1 -
7r, whose four-dimensional coordinates are therefore (1, x, y, z) and
(1,-x,-,-z). The two vectors A = (x, y, z) and -A correspond
to two opposite directions on the same three-dimensional axis (spin
up, spin down). The symmetry w.r.t. the origin conies from the anti-

automorphism (a d) (d ab) of the C*-algebra M2(C) of 2 x 2

372 J. - Y. Girard

matrices. This transformation corresponds to negation. It must be re-
marked that, since symmetry w.r.t. the origin is of determinant -1, it
is not in SO(3), and therefore it is not induced by an element of SU(2).

10.4.2.6 Binary boolean connectives

Whereas negation does not need reduction, binary boolean connectives
will badly need it; there are two reasons for that.

(i) We cannot combine non-commuting 1-dimensional projections in
a way that will produce another projection.

(ii) Common sense tells us that, if we cannot distinguish between
true and false, then we cannot distinguish between conjunction
and disjunction.

Hence binary connectives will be probabilistic: they yield a PQB even
when the inputs are "pure" quantum booleans. Moreover, they depend
on the choice of a basis, and an order of evaluation; I give an example:

Lb

I V b]
c

[a+6 a' cb' first argument is "reduced"

in the canonical base: true with probility a, in which case the answer
l

is
110

00]
, false with probility c, in which case the answer is 1b, b .

There is a symmetrical choice which reduces the second argument. But
only a real Jivaro will choose the third possibility, which reduces both

r
arguments, yielding

a + ca' 0
L

0 cc'
which is in fact symmetrical, since

a + ca' = a' + ca = a + a' - aa'.

10.4.3 Quantum and additives
10.4.3.1 Basics

Definition 10.15 If X, Y are QCS with respective carriers X, Y, one
defines the additive combinations X ® Y and X & Y, as QCS of carrier
X®Y.

X®Y = {AuED (1-A)v; uEX,vEY,0<) 1}

X & Y = {w; XwX E X, YwY E Y}

As usual, we have identified the subspaces X and Y with the associated
orthogonal projections.

Between Logic and Quantic: a Tract 373

Proposition 10.17 ® and & are swapped by negation.

proofgirard: Essentially because (u (D v I u' ® v') = (u I 'a') + (v I v').

Remark that II - II x®Y and II -
II x&Y are not norms. This is because

this definition mistreats all hermitians which are not of the form u ® v.
W.r.t. an obvious matricial notation, every hermitian on X G V can be

written (w* W 1, with, u, v hermitian. If w 0, then this operator

has infinite norm in X ® Y. A contrario, its norm w.r.t. X & Y does not

depend on w: the null space Ox&Y contains all
(w*0

w0)_

10.4.3.2 Dimension 2

If X is of dimension 1, then N(X) is of dimension 1 (isomorphic to R) and
the three defaults of example 10.14 coincide, and yield the same QCS,
noted 1, which corresponds to the segment [0, 1] of IR. The ordering is
the usual ordering, and the norm the usual absolute value.
In dimension 2, ?-l(X) has dimension 4, and there are many choices.

Spin: the positive default. The elements of Spin are positive hermitians
of trace at most 1. They are not quite PCB, since a PCB is
of trace 1, they are sort of "partial PCB". Concretely, if we

measure an element (-b
bl

, it will yield "true" with probability

a, "false" with probability c, and nothing with probability 1-a-
c. This "nothing" is natural from the computational viewpoint:
if we assume that the measurement is done through a computing
device, then we are likely to wait before getting our probabilistic
answer "true" or "false". "Nothing" corresponds to the case of
a computing loop, i.e., when we wait too long.

".Spin: the negative default. The elements of -Spin are positive her-
mitians of (usual) norm at most 1. They should be understood
as "anti" -booleans.

1. The space 1 ® 1 consists of allBool: the "Plus" of two copies

c)
diagonal matrices Ca 0 I such that 0 < a, c < a + c < 1. This

QCS is a subset, a "subtype" of Spin. It has a well-defined
notion of truth and falsity.

-Bool: the negation of the former, i.e., 1& 1. It consists in all matrices
a b

b c
such that 0<a,c<1.

374 J. - Y. Girard

Now remark that our construction of Bool depends on the choice of
a 1-dimensional subspace (corresponding to "true"). This means that,
given any vector A E S2, there is a QCS made of "booleans of axis A",
noted BoolA.

Proposition 10.18 Spin = UAES2 BoolA.

proofgirard: Obviously BoolA C Spin. Conversely, if h c Spin, it can

be put in diagonal form (a 0)
, with 0 < a, c < a + c < 1, w.r.t. a

certain basis e, f. If A is the point of S2 corresponding to e, then
h E BoolA.

Corollary 10.16 -Spin= nAES2 ^' Boo1A.

10..4.3.3 Reduction: a discussion

In the next section, we shall deal with multiplicatives and linear impli-
cation. In particular, we shall be able to transform a boolean h E Spin
into something else by using an element of the QCS Spin -o ..., then
transform the result by means of another implication... Some of these
transformations will behave like negation (wave-like) others will use re-
duction. We try now to understand to which extent reduction is subjec-
tive. For this, we make an impossible thing, we assume that the process
of transformation is over, i.e., that in this sequence of successive impli-
cations, we have succeeded in "closing the system". This means that
there is an ultimate implication with values in 1. If I compose all my
implications, I eventually discover that a sequence of transformation,
eventually "closing the system" is exactly an anti-boolean k E - Spin.
The resulting output is objective: (h I k) = tr(hk). But the choice of k
(the transformations, observations made on h) is highly subjective, we
are biased, we are `on the side of k). If we are on the side of k, then put

k in diagonal form w.r.t. a basis e, f. Then h = Cb
bl , k = (o'0 0) ,

\ J 'y

so that (h I k) = ace + c'y. If h' = I a 0 I , then (h I k) = (h' I k), i.e.,

it is as if h had been reduced.
It may be the case that we know that f is a boolean in a certain base
(e.g., if f is the result of a measurement). Then we can select this

(a' 0 \ '
Cbase, in which case h = I 0 (,c, I , k =

Y
, and we can write

Between Logic and Quantic: a Tract 375

(h I k) = a'a' + c'-y'. In that case, we can "reduce" the observer k

into k' = (0 0

/
so that (h I k) = (h I k'). This shows the extreme

7
subjectivity of reduction.

10.5 Multiplicatives
10.5.1 Linear functionals

Theorem 10.19 Let X, Y be finite dimensional Hilbert space. Then

L(L(X), L(Y)) L(% (9 Y).

proofgirard: The complex vector space L(X) is generated by rank 1 en-
domorphisms xw*: xw*(y) = (y I w)x. If cp E C(,C(X),,C(Y), define
I' E C(X (9 Y) by

((P (X (9 y) I to (9 z) = (W (xw*)(y) I Z) (10.30)

Conversely, given (D E L(X ® Y), if f E L(X), then one defines 14)]f E
L(Y) by:

(([(DI f)(y) I z) = tr(ID . (f (9 yz*))

so that [(D]. E L(L(X), L(Y)).

Corollary 10.17 If 4) E 7-1(X (9 Y), if f E 7-1(X), then [4)] f E 7-1(Y).
The map 4) M [(D] is a bijection from 7i(X x Y) onto the set of linear
maps from 71(X) to 71(Y).

proofgirard: An easy computation shows that [*]f* = ([(D] f)*, hence a
hermitian 4) sends hermitians to hermitians. Conversely, if cp is a linear
map from 7.1(X) to 71(Y), then cp can be uniquely extended into a C-linear
map from L(X) to L(Y): W(u) = 1/2(cp(u+u*)+icp(iu* -iu)). Now the
C-linear maps obtained in this way are hermitian, i.e., cp(f *) = W(f)*,
and they are in 1-1 correspondence with hermitians of 71(X ® Y).

The essential property of [W]. is summarised by the equation

tr(([,D]f) g) = tr(,Ib . (f 0 g)) (10.32)

Example 10.18 If ax E 71(X (9 X) is such that a(x (g y) = y ®x (the
"flip"), then
([a](xw*)(y) Iz)=(ax®yI w(9 z)=(y®xI w(9 z)=(Y w)(xI z)
((xw*)(y) I z). Hence [a]xw* = xw* and by linearity [a] f = f.

376 J. - Y. Girard

Example 10.19 More generally, let u be any map from X to Y. Then
u ®u* maps X ®Y into Y ®X, and if axy is the `flip" from Y ®X to
X ®Y, then
U = a u ®u* E 7-l (X (9 1Y). It is immediate that [U] f = ufu*.

Example 10.20 Let 1x = E + F be a decomposition of the identity as a
sum of orthogonal projections (subspaces). Then R = a(E ® E + F (& F)
acts as follows: [R] f = E f E + F f F. R is a typical reduction operation,
it chops off the "non-diagonal" portions E f F and F f E of f.

One can wonder what is the status of the identity map of X ® Y. An
easy computation shows that [ix®y] (u) = tr(u) ly. Not very exciting...
But this will help us with our last example:

Example 10.21 If X is of dimension 2, then [lx®x - ax) (a b)
6 c

(cb ab
I , i.e., acts like negation. Remark that lx®x - ax = 27r,

where Tr is the orthogonal projection corresponding to the antisymmetric
(one-dimensional) subspace of X®X, i.e., the space of vectors x®y-y®x.

10.5.2 Connectives

Definition 10.22 Let X, Y be QCS with respective carriers X, Y. We
define the QCS X -o Y, with carrier X (9 Y, as the set of all 4) sending
X to Y:

X -o Y = {4); V f E X [4)l f E Y} (10.33)

X -0 Y could as well be defined by

X -0 Y = {(P; Vg E -Y g[4)] E -X} (10.34)

and also as - { f ® g; f E X, g E - Y}. This last expression shows
that X -o Y is a QCM. From this we can define X ?8 Y = - X -o Y
and X ®Y = -" { f ®g; f e X, g c Y}. As usual, 2Y is commutative,
associative, and distributive over & (all this up to isomorphism).
As usual, "Times" is more difficult to access than "Par". By equa-
tion (10.25) (and Hahn-Banach) one can characterise the "positive" cone
of a "Times", as the closure of the set of finite sums Lei fi®gi, fi, gi > Ot.

t This is obviously related to separable mixed states, see, e.g., [10].

Between Logic and Quantic: a Tract 377

In the same way, (10.27) can be used to determine the semi-norm asso-
ciated with a "Times".

Remark 10.23 It is important to remark that multiplicatives force
a departure from the standard ordering of hermitians. For instance,
assume that X,Y have been equipped with the positive defaults, e.g.,
X = Y = Spin. Then X -o Y will declare as positive any herrnitian
sending positive hermitians to positive hermitians. The most typical ex-
ample is the flip a which behaves like the identity map. But a is a proper
symmetry, not a positive hermitian. So X -o Y is more liberal as to posi-
tivity than expected. This means that, dually, X ® Y is more restrictive.
In fact, the positive cone of X ® Y is the closure of the set of finite
sums Ei fi ® gi,, fi, gi ? 0. Most positive hermitians on X ® Y cannot
be obtained in this way: take any orthogonal projection zz*, where z is
not a pure tensor!

10.5.3 r7-expansion and reduction
The question "is a function a graph?" is traditional in logic, and quite
scholastic. It is such a long time that people exchange the same argu-
ments; do they actually believe in what they say? There is peculiar form
of this question, known as "i7-conversion, and limited to the sole iden-
tity function. Given a logically compound formula F, then the identity
function admits two alternative descriptions, as a proof of C -o C:

Generic: since C is identical to C, the identity axiom maps C into C.
77-expanded: decompose C into components, A, B,..., and recompose

the identity functions of A, B, ..., in order to produce an identity
function of C.

The two processes are identified by all honest interpretations, i.e., inter-
pretations which are not contrived to make a difference between them.
This is why, in my own ludics, [9], everything was "i7-expanded", i.e.,
the identity was not primitive.
We shall show that qq-expansion is wrong, by differentiating the identity
from its 77-expansion in the case C = A ® Bt. For simplicity, let us
assume that A, B have both carriers of dimension 1. Our two identities
respectively correspond to:

The flip: the generic identity map of a space X of dimension 2. This

t But 77 stays correct in the case of a "Times" .

378 J.-Y. Gi rar d

1 0 0 0

0 0 1 0map writes as a = in any base a ®e e of
0 1 0 0

, ,

f®e,f®f of X®X.
0 0 0 1

The 77-expanded flip: it corresponds to putting together two identi-
ties. W.r.t. a specific base (corresponding to the decomposition

1 0 0 0

of C as a direct sum) it writes t= 0 0 0 0
,

0 0 0 0

0 0 0 1

a b)
= (b b)

, it is theThese two maps are clearly distinct: [a]

Cb

real identity. On the other hand, [t] (b b) = (0 O)
is a Procustus's

identity. It behaves as the identity w.r.t. matrices which already have the

right logical form I 0 0) , and those who don't follow the logical rule,

it chops off their a\nti-diagonal coefficients. Of course, if we remember
our basics, t is quite the reduction of the wave packet, corresponding to
the measurement of spin along the vertical axis Z.
In logic, only the identity can be 77-expanded, but this is an accident.

0 0 0 0

For instance the negation v = 0 1 -1 0
which is such that

0 -1 1 0

0 0 0 0

[v]

(b
b) = (cb abl w.r.t. a given base can be 77-expanded into v' _

0 0 0 0 f

0 0 1 0 ; obviously [v'] (a
b)

= C0
a

0
I: v' corresponds to a

0 0 0 0 /
measurement of the spin along the axis Z and a subsequent inversion.
To come back to the original question about functions and graphs. In
the "commutative" world, every function is bound to be a graph. This is
because everything is diagonal in a fixed basis. When the distinguished
bases disappear, the "atoms" disappear as well. 77-expansion corresponds
to the choice of a set of atoms (a basis), the decomposition of a function

Between Logic and Quantic: a Tract 379

along this basis, and its recomposition. This process is violently incorrect
in a non-commutative setting.

10.5.4 Still to be done
The main challenge is the extension to infinite dimension:

(i) First, the approach is not fully Augustinian, since the carriers
X, V are "pulled out of a hat". It would be nicer to fix once for
all a separable Hilbert space.

(ii) Second, the imperfect (infinite) part of logic needs to be studied
too. It is to be remarked that the exponential !A "forever A"
is much bosonic in spirit. In general the question of a possible
logical status for the two types of quantum symmetry (fermionic,
bosonic) is much exciting.

However, this stumbles on serious problems.

(i) Kothe spaces, as used by Ehrhard, see section 10.3.1, are perfect
as an infinite commutative Augustinian explanation of logic. One
can fix once for all a denumerable index set II and define polarity
by:

f L g I E f (i) . g(i)j < 1 (10.35)
iEII

But this approach does not allow significant changes of basis, and
is inappropriate for quantum.

(ii) Finite-dimensional Hilbert spaces give rise to type I,,, factors, i.e.,
"connected" von Neumann algebras. The most trivial generalisa-
tion is a type I,,. factor, i.e., the space 5(H) of bounded operators
on an infinite-dimensional Hilbert space. The main problem is
that such an algebra is semi-finite, i.e., trace makes sense, as
an element of [0, +oo], only for positive operators. But we badly
need equations like [ax®x]ax = ax, which has strictly no meaning
from this viewpoint.

(iii) Another direction would be type Ill factors, typically the fa-
mous matricial factor, which harbours a (unique) finite trace.
But tr(a 10 1) = tr(a) = 0 tr(1 1) = 1. The reason for this
vanishing of o, is the same as the reason of the vanishing of A in
section 10.3.2.

380 J. - Y. Girard

What is most likely to happen is the use of a matricial factor of type II,
together with the replacement of trace with determinant, det(1 - uv),
instead of tr(ue). But this involves geometry of interaction, see [6], and
this is quite another story.

10.5.5 Relation to quantum computing
Although it is not my primary interest, the relation to quantum com-
puting should be considered. It would be interesting to revisit Selinger's
language for quantum computation [11] in the spirit of QCS. However,
the use of loops in the style of geometry of interaction may suggest that
determinant might be more appropriate. Perhaps more appropriate (be-
cause explicitely based on linear logic) is the "quantum lambda-calculus"
recently proposed by van Tonder [12].

NON SI NON LA

Bibliography
[1] J.-M. Andreoli and R. Pareschi. Linear objects: logical processes with

built-in inheritance. New Generation Computing, 9(3 - 4):445 - 473,
1991.

[2] Nuno Barreiro and Thomas Ehrhard. Quantitative semantics revisited
(extended abstract). In Proceedings of the fourth Typed Lambda-Calculi
and Applications conference, volume 1581 of Lecture Notes in Computer
Science, pages 40-53. Springer-Verlag, 1999.

[3] T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. In
Girard, Lafont, and Regnier, editors, Advances in Linear Logic, pages 83
- 108, Cambridge, 1995. Cambridge University Press.

[4] T. Ehrhard. On Kothe sequence spaces and linear logic. Mathematical
Structures in Computer Science, 12:579-623, 2002.

[5] J.-Y. Girard. Normal functors, power series and A-calculus. Annals of
Pure and Applied Logic, 37:129 - 177, 1988.

[6] J.-Y. Girard. Geometry of interaction I: interpretation of system F. In
Ferro, Bonotto, Valentini, and Zanardo, editors, Logic Colloquium '88,
pages 221 - 260, Amsterdam, 1989. North-Holland.

[7] J.-Y. Girard. Linear logic, its syntax and semantics. In Girard, Lafont,
and Regnier, editors, Advances in Linear Logic, pages 1 - 42,
Cambridge, 1995. Cambridge University Press.

[8] J.-Y. Girard. Coherent Banach Spaces : a continuous denotational
semantics. Theoretical Computer Science, 227:275 - 297, 1999.

[9] J.-Y. Girard. Locus Solum. Mathematical Structures in Computer Science,
11:301 - 506, 2001.

[10] M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-state
entanglement and quantum communication. In Quantum Information:

Between Logic and Quantic: a Tract 381

An Introduction to Basic Theoretical Concepts and Experiments, volume
173 of Springer tracts in modern physics. Springer Verlag, 2001.

[11] P. Selinger. Towards a quantum computing language. Mathematical
Structures in Computer Science, 2003.

[12] A. van Tonder. A lambda-calculus for quantum computing. Technical
report, Dept of Physics, Brown university, Providence, RI, July 2003.

	Cover�
	Title Page�
	Copyright�
	Contents�
	Preface�
	List of contributors�
	Part one: Tutorials�
	1 Category Theory for Linear Logicians R. Blute and Ph. Scott�
	2 Proof Nets and the A-Calculus S. Guerrini�
	3 An Overview of Linear Logic Programming D. Miller�
	4 Linearity and Nonlinearity in Distributed Computation G. Winskel�
	Part two: Refereed Articles�
	5 An Axiomatic Approach to Structural Rules for Locative Linear Logic J.-M. Andreoli�
	6 An Introduction to Uniformity in Ludics C. Faggian, M.-R. Fleury-Donnadieu and M. Quatrini�
	7 Slicing Polarized Additive Normalization 0. Laurent, L. Tortora de Falco�
	8 A Topological Correctness Criterion for Multiplicative Non-Commutative Logic P.-A. Mellies�
	Part three: Invited Articles�
	9 Bicategories in Algebra and Linguistics J. Lambek�
	10 Between Logic and Quantic: a Tract J.-Y. Girard�

