
Java Concepts, 5th Edition

Java Concepts Page 1 of 4

Java Concepts, 5th Edition

Java Concepts

FIFTH EDITION

Cay Horstmann

SAN JOSE STATE UNIVERSITY

 John Wiley & Sons, Inc.

978-0-470-10555-9

Java Concepts Page 2 of 4

Java Concepts, 5th Edition

Chapter 1 Introduction

Chapter 2 Using Objects

Chapter 3 Implementing Classes

Chapter 4 Fundamental Data Types

Chapter 5 Decisions

Chapter 6 Iteration

Chapter 7 Arrays and Array Lists

Chapter 8 Designing Classes

Chapter 9 Interfaces and Polymorphism

Chapter 10 Inheritance

Chapter 11 Input/Output and Exception Handling

Chapter 12 Object-Oriented Design

Chapter 13 Recursion

Chapter 14 Sorting and Searching

Chapter 15 An Introduction to Data Structures

Chapter 16 Advanced Data Structures

Chapter 17 Generic Programming

1

1

226

226

586

586

626

626

764

Java Concepts Page 3 of 4

Java Concepts, 5th Edition

Chapter 18 Graphical User Interfaces

Java Concepts Page 4 of 4

Java Concepts, 5th Edition

Chapter 1 Introduction

CHAPTER GOALS

• To understand the activity of programming

• To learn about the architecture of computers

• To learn about machine code and high-level programming languages

• To become familiar with your computing environment and your compiler

• To compile and run your first Java program

• To recognize syntax and logic errors

The purpose of this chapter is to familiarize you with the concept of programming. It

reviews the architecture of a computer and discusses the difference between machine

code and high-level programming languages. Finally, you will see how to compile

and run your first Java program, and how to diagnose errors that may occur when a

program is compiled or executed.

1.1 What Is Programming?

You have probably used a computer for work or fun. Many people use computers for

everyday tasks such as balancing a checkbook or writing a term paper. Computers are

good for such tasks. They can handle repetitive chores, such as totaling up numbers or

placing words on a page, without getting bored or exhausted. Computers also make

good game machines because they can play sequences of sounds and pictures,

involving the human user in the process.

The flexibility of a computer is quite an amazing phenomenon. The same machine can

balance your checkbook, print your term paper, and play a game. In contrast, other

machines carry out a much narrower range of tasks—a car drives and a toaster toasts.

To achieve this flexibility, the computer must be programmed to perform each task. A

computer itself is a machine that stores data (numbers, words, pictures), interacts with

devices (the monitor screen, the sound system, the printer), and executes programs.

2

Chapter 1 Introduction Page 1 of 43

Java Concepts, 5th Edition

Programs are sequences of instructions and decisions that the computer carries out to

achieve a task. One program balances checkbooks; a different program, perhaps

designed and constructed by a different company, processes words; and a third

program, probably from yet another company, plays a game.

A computer must be programmed to perform tasks. Different tasks require different

programs.

Today's computer programs are so sophisticated that it is hard to believe that they are

all composed of extremely primitive operations.

A computer program executes a sequence of very basic operations in rapid

succession.

A typical operation may be one of the following:

• Put a red dot onto this screen position.

• Send the letter A to the printer.

• Get a number from this location in memory.

• Add up two numbers.

• If this value is negative, continue the program at that instruction.

A computer program tells a computer, in minute detail, the sequence of steps that are

needed to complete a task. A program contains a huge number of simple operations,

and the computer executes them at great speed. The computer has no intelligence—it

simply executes instruction sequences that have been prepared in advance.

A computer program contains the instruction sequences for all tasks that it can

execute.

To use a computer, no knowledge of programming is required. When you write a term

paper with a word processor, that software package has been programmed by the

manufacturer and is ready for you to use. That is only to be expected—you can drive a

car without being a mechanic and toast bread without being an electrician.

2

3

Chapter 1 Introduction Page 2 of 43

Java Concepts, 5th Edition

A primary purpose of this book is to teach you how to design and implement computer

programs. You will learn how to formulate instructions for all tasks that your programs

need to execute.

Keep in mind that programming a sophisticated computer game or word processor

requires a team of many highly skilled programmers, graphic artists, and other

professionals. Your first programming efforts will be more mundane. The concepts

and skills you learn in this book form an important foundation, but you should not

expect to immediately produce professional software. A typical college program in

computer science or software engineering takes four years to complete; this book is

intended as an introductory course in such a program.

Many students find that there is an immense thrill even in simple programming tasks.

It is an amazing experience to see the computer carry out a task precisely and quickly

that would take you hours of drudgery.

SELF CHECK

1. What is required to play a music CD on a computer?

2. Why is a CD player less flexible than a computer?

3. Can a computer program develop the initiative to execute tasks in a better

way than its programmers envisioned?

1.2 The Anatomy of a Computer

To understand the programming process, you need to have a rudimentary

understanding of the building blocks that make up a computer. This section will

describe a personal computer. Larger computers have faster, larger, or more powerful

components, but they have fundamentally the same design.
3

Chapter 1 Introduction Page 3 of 43

Java Concepts, 5th Edition

Figure 1

Central Processing Unit

At the heart of the computer lies the central processing unit (CPU) (see Figure 1). It

consists of a single chip (integrated circuit) or a small number of chips. A computer

chip is a component with a plastic or metal housing, metal connectors, and inside

wiring made principally from silicon. For a CPU chip, the inside wiring is enormously

complicated. For example, the Pentium 4 chip (a popular CPU for personal computers

at the time of this writing) contains over 50 million structural elements called

transistors—the elements that enable electrical signals to control other electrical

signals, making automatic computing possible. The CPU locates and executes the

program instructions; it carries out arithmetic operations such as addition, subtraction,

multiplication, and division; and it fetches data from storage and input/output devices

and sends data back.

At the heart of the computer lies the central processing unit (CPU).

The computer keeps data and programs in storage. There are two kinds of storage.

Primary storage, also called random-access memory (RAM) or simply memory, is fast

but expensive; it is made from memory chips (see Figure 2). Primary storage has two

disadvantages. It is comparatively expensive, and it loses all its data when the power is

turned off. Secondary storage, usually a hard disk (see Figure 3), provides less

3

4

Chapter 1 Introduction Page 4 of 43

Java Concepts, 5th Edition

expensive storage that persists without electricity. A hard disk consists of rotating

platters, which are coated with a magnetic material, and read/write heads, which can

detect and change the patterns of varying magnetic flux on the platters. This is

essentially the same recording and playback process that is used in audio or video

tapes.

Data and programs are stored in primary storage (memory) and secondary storage

(such as a hard disk).

Some computers are self-contained units, whereas others are interconnected through

networks. Home computers are usually intermittently connected to the Internet via a

dialup or broadband connection. The computers in your computer lab are probably

permanently connected to a local area network. Through the network cabling, the

computer can read programs from central storage locations or send data to other

computers. For the user of a networked computer, it may not even be obvious which

data reside on the computer itself and which are transmitted through the network.

Figure 2

A Memory Module with Memory Chips

Most computers have removable storage devices that can access data or programs on

media such as floppy disks, tapes, or compact discs (CDs).

4

5

Chapter 1 Introduction Page 5 of 43

Java Concepts, 5th Edition

Figure 3

A Hard Disk.
5

Chapter 1 Introduction Page 6 of 43

Java Concepts, 5th Edition

Figure 4

A Motherboard

To interact with a human user, a computer requires other peripheral devices. The

computer transmits information to the user through a display screen, loudspeakers, and

printers. The user can enter information and directions to the computer by using a

keyboard or a pointing device such as a mouse.

The CPU, the RAM, and the electronics controlling the hard disk and other devices are

interconnected through a set of electrical lines called a bus. Data travel along the bus

from the system memory and peripheral devices to the CPU and back. Figure 4 shows

a motherboard, which contains the CPU, the RAM, and connectors to peripheral

devices.

Figure 5 gives a schematic overview of the architecture of a computer. Program

instructions and data (such as text, numbers, audio, or video) are stored on the hard

disk, on a CD, or on a network. When a program is started, it is brought into memory

where it can be read by the CPU. The CPU reads the program one instruction at a time.

As directed by these instructions, the CPU reads data, modifies it, and writes it back to

RAM or to secondary storage. Some program instructions will cause the CPU to

5

6

Chapter 1 Introduction Page 7 of 43

Java Concepts, 5th Edition

interact with the devices that control the display screen or the speaker. Because these

actions happen many times over and at great speed, the human user will perceive

images and sound. Similarly, the CPU can send instructions to a printer to mark the

paper with patterns of closely spaced dots, which a human recognizes as text

characters and pictures. Some program instructions read user input from the keyboard

or mouse. The program analyzes the nature of these inputs and then executes the next

appropriate instructions.

The CPU reads machine instructions from memory. The instructions direct it to

communicate with memory, secondary storage, and peripheral devices.

Figure 5

Schematic Diagram of a Computer

SELF CHECK

4. Where is a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as

addition and multiplication?

6

7

Chapter 1 Introduction Page 8 of 43

Java Concepts, 5th Edition

 RANDOM FACT 1.1: The ENIAC and the Dawn of

Computing

The ENIAC (electronic numerical integrator and computer) was the first usable

electronic computer. It was designed by J. Presper Eckert and John Mauchly at the

University of Pennsylvania and was completed in 1946. Instead of transistors,

which were not invented until two years after it was built, the ENIAC contained

about 18,000 vacuum tubes in many cabinets housed in a large room (see The

ENIAC figure). Vacuum tubes burned out at the rate of several tubes per day. An

attendant with a shopping cart full of tubes constantly made the rounds and replaced

defective ones. The computer was programmed by connecting wires on panels.

Each wiring configuration would set up the computer for a particular problem. To

have the computer work on a different problem, the wires had to be replugged.

Work on the ENIAC was supported by the U.S. Navy, which was interested in

computations of ballistic tables that would give the trajectory of a projectile,

depending on the wind resistance, initial velocity, and atmospheric conditions. To

compute the trajectories, one must find the numerical solutions of certain

differential equations; hence the name “numerical integrator”. Before machines like

ENIAC were developed, humans did this kind of work, and until the 1950s the

word “computer” referred to these people. The ENIAC was later used for peaceful

purposes, such as the tabulation of U.S. census data.

The ENIAC

7

8

Chapter 1 Introduction Page 9 of 43

Java Concepts, 5th Edition

1.3 Translating Human-Readable Programs to Machine

Code

On the most basic level, computer instructions are extremely primitive. The processor

executes machine instructions. CPUs from different vendors, such as the Intel Pentium

or the Sun SPARC, have different sets of machine instructions. To enable Java

applications to run on multiple CPUs without modification, Java programs contain

machine instructions for a so-called “Java virtual machine” (JVM), an idealized CPU

that is simulated by a program run on the actual CPU. The difference between actual

and virtual machine instructions is not important—all you need to know is that

machine instructions are very simple, are encoded as numbers and stored in memory,

and can be executed very quickly.

Generally, machine code depends on the CPU type. However, the instruction set of

the Java virtual machine (JVM) can be executed on many CPUs.

A typical sequence of machine instructions is

1. Load the contents of memory location 40.

2. Load the value 100.

3. If the first value is greater than the second value, continue with the instruction

that is stored in memory location 240.

Actually, machine instructions are encoded as numbers so that they can be stored in

memory. On the Java virtual machine, this sequence of instruction is encoded as the

sequence of numbers

21 40
16 100
163 240

When the virtual machine fetches this sequence of numbers, it decodes them and

executes the associated sequence of commands.

How can you communicate the command sequence to the computer? The most direct

method is to place the actual numbers into the computer memory. This is, in fact, how

8

9

Chapter 1 Introduction Page 10 of 43

Java Concepts, 5th Edition

the very earliest computers worked. However, a long program is composed of

thousands of individual commands, and it is tedious and error-prone to look up the

numeric codes for all commands and manually place the codes into memory. As we

said before, computers are really good at automating tedious and error-prone activities,

and it did not take long for computer programmers to realize that computers could be

harnessed to help in the programming process.

Because machine instructions are encoded as numbers, it is difficult to write

programs in machine code.

In the mid-1950s, high-level programming languages began to appear. In these

languages, the programmer expresses the idea behind the task that needs to be

performed, and a special computer program, called a compiler, translates the

high-level description into machine instructions for a particular processor.

High-level languages allow you to describe tasks at a higher conceptual level than

machine code.

For example, in Java, the high-level programming language that you will use in this

book, you might give the following instruction:

if (intRate > 100)
 System.out.println("Interest rate error");

This means, “If the interest rate is over 100, display an error message”. It is then the

job of the compiler program to look at the sequence of characters if (intRate >

100) and translate that into

21 40 16 100 163 240 . . .

Compilers are quite sophisticated programs. They translate logical statements, such as

the if statement, into sequences of computations, tests, and jumps. They assign

memory locations for variables—items of information identified by symbolic names—

like intRate. In this course, we will generally take the existence of a compiler for

granted. If you decide to become a professional computer scientist, you may well learn

more about compiler-writing techniques later in your studies.

Chapter 1 Introduction Page 11 of 43

Java Concepts, 5th Edition

A compiler translates programs written in a high-level language into machine code.

SELF CHECK

6. What is the code for the Java virtual machine instruction “Load the

contents of memory location 100”?

7. Does a person who uses a computer for office work ever run a compiler?

1.4 The Java Programming Language

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems

designed a programming language that they code-named “Green” for use in consumer

devices, such as intelligent television “set-top” boxes. The language was designed to

be simple and architecture neutral, so that it could be executed on a variety of

hardware. No customer was ever found for this technology.

Java was originally designed for programming consumer devices, but it was first

successfully used to write Internet applets.

Gosling recounts that in 1994 the team realized, “We could write a really cool

browser. It was one of the few things in the client/server mainstream that needed some

of the weird things we'd done: architecture neutral, real-time, reliable, secure”. Java

was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995.

Since then, Java has grown at a phenomenal rate. Programmers have embraced the

language because it is simpler than its closest rival, C++. In addition, Java has a rich

library that makes it possible to write portable programs that can bypass proprietary

operating systems—a feature that was eagerly sought by those who wanted to be

independent of those proprietary systems and was bitterly fought by their vendors. A

“micro edition” and an “enterprise edition” of the Java library make Java programmers

at home on hardware ranging from smart cards and cell phones to the largest Internet

servers.

9

10

Chapter 1 Introduction Page 12 of 43

Java Concepts, 5th Edition

Java was designed to be safe and portable, benefiting both Internet users and

students.

Because Java was designed for the Internet, it has two attributes that make it very

suitable for beginners: safety and portability. If you visit a web page that contains Java

code (so-called applets—see Figure 6 for an example), the code automatically starts

running. It is important that you can trust that applets are inherently safe. If an applet

could do something evil, such as damaging data or reading personal information on

your computer, then you would be in real danger every time you browsed the Web—

an unscrupulous designer might put up a web page containing dangerous code that

would execute on your machine as soon as you visited the page. The Java language has

an assortment of security features that guarantees that no evil applets can run on your

computer. As an added benefit, these features also help you to learn the language

faster. The Java virtual machine can catch many kinds of beginners' mistakes and

report them accurately. (In contrast, many beginners' mistakes in the C++ language

merely produce programs that act in random and confusing ways.) The other benefit of

Java is portability. The same Java program will run, without change, on Windows,

UNIX, Linux, or the Macintosh. This too is a requirement for applets. When you visit

a web page, the web server that serves up the page contents has no idea what computer

you are using to browse the Web. It simply returns you the portable code that was

generated by the Java compiler. The virtual machine on your computer executes that

portable code. Again, there is a benefit for the student. You do not have to learn how

to write programs for different operating systems.

10

11

Chapter 1 Introduction Page 13 of 43

Java Concepts, 5th Edition

Figure 6

An Applet for Visualizing Molecules ([1])

At this time, Java is firmly established as one of the most important languages for

general-purpose programming as well as for computer science instruction. However,

although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to

making it really simple to write basic programs. A certain amount of technical

machinery is necessary in Java to write even the simplest programs. This is not a

problem for professional programmers, but it is a drawback for beginning students. As

you learn how to program in Java, there will be times when you will be asked to be

satisfied with a preliminary explanation and wait for complete details in a later chapter.

Chapter 1 Introduction Page 14 of 43

Java Concepts, 5th Edition

Java was revised and extended many times during its life—see Table 1. In this book,

we assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one semester. The Java language itself

is relatively simple, but Java contains a vast set of library packages that are required to

write useful programs. There are packages for graphics, user interface design,

cryptography, networking, sound, database storage, and many other purposes. Even

expert Java programmers cannot hope to know the contents of all of the packages—

they just use those that they need for particular projects.

Java has a very large library. Focus on learning those parts of the library that you

need for your programming projects.

Using this book, you should expect to learn a good deal about the Java language and

about the most important packages. Keep in mind that the central goal of this book is

not to make you memorize Java minutiae, but to teach you how to think about

programming.

Table 1 Java Versions

Version Year Important New Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML

5 2004 Generic classes, enhanced for loop, auto-boxing,

enumerations

6 2006 Library improvements

SELF CHECK

8. What are the two most important benefits of the Java language?

9. How long does it take to learn the entire Java library?

11

12

Chapter 1 Introduction Page 15 of 43

Java Concepts, 5th Edition

1.5 Becoming Familiar with Your Computer

You may be taking your first programming course as you read this book, and you may

well be doing your work on an unfamiliar computer system. Spend some time

familiarizing yourself with the computer. Because computer systems vary widely, this

book can only give an outline of the steps you need to follow. Using a new and

unfamiliar computer system can be frustrating, especially if you are on your own.

Look for training courses that your campus offers, or ask a friend to give you a brief

tour.

Set aside some time to become familiar with the computer system and the Java

compiler that you will use for your class work.

Figure 7

A Shell Window

Step 1. Log In

If you use your home computer, you probably don't need to worry about this step.

Computers in a lab, however, are usually not open to everyone. You may need an

account name or number and a password to gain access to such a system.

12

13

Chapter 1 Introduction Page 16 of 43

Java Concepts, 5th Edition

Step 2. Locate the Java Compiler

Figure 8

An Integrated Development Environment

 Computer systems differ greatly in this regard. On some systems you must

open a shell window (see Figure 7) and type commands to launch the compiler.

Other systems have an integrated development environment in which you can write

and test your programs (see Figure 8). Many university labs have information sheets

and tutorials that walk you through the tools that are installed in the lab. Instructions

for several popular compilers are available in WileyPLUS.

13

14

Chapter 1 Introduction Page 17 of 43

Java Concepts, 5th Edition

Step 3. Understand Files and Folders

As a programmer, you will write Java programs, try them out, and improve them.

Your programs are kept in files. A file is a collection of items of information that are

kept together, such as the text of a word-processing document or the instructions of a

Java program. Files have names, and the rules for legal names differ from one

system to another. Some systems allow spaces in file names; others don't. Some

distinguish between upper- and lowercase letters; others don't. Most Java compilers

require that Java files end in an extension—.java; for example, Test.java. Java

file names cannot contain spaces, and the distinction between upper- and lowercase

letters is important.

Figure 9

Nested Folders

Chapter 1 Introduction Page 18 of 43

Java Concepts, 5th Edition

Files are stored in folders or directories. These file containers can be nested. That is,

a folder can contain not only files but also other folders, which themselves can

contain more files and folders (see Figure 9). This hierarchy can be quite large,

especially on networked computers, where some of the files may be on your local

disk, others elsewhere on the network. While you need not be concerned with every

branch of the hierarchy, you should familiarize yourself with your local

environment. Different systems have different ways of showing files and directories.

Some use a graphical display and let you move around by clicking the mouse on

folder icons. In other systems, you must enter commands to visit or inspect different

locations.

Step 4. Write a Simple Program

In the next section, we will introduce a very simple program. You will need to learn

how to type it in, how to run it, and how to fix mistakes.

Step 5. Save Your Work

You will spend many hours typing Java program code and improving it. The

resulting program files have some value, and you should treat them as you would

other important property. A conscientious safety strategy is particularly important

for computer files. They are more fragile than paper documents or other more

tangible objects. It is easy to delete a file accidentally, and occasionally files are lost

because of a computer malfunction. Unless you keep a copy, you must then retype

the contents. Because you probably won't remember the entire file, you will likely

find yourself spending almost as much time as you did to enter and improve it in the

first place. This costs time, and it may cause you to miss deadlines. It is therefore

crucial that you learn how to safeguard files and that you get in the habit of doing so

before disaster strikes. You can make safety or backup copies of files by saving

copies on a floppy or CD, into another folder, to your local area network, or on the

Internet.

Develop a strategy for keeping backup copies of your work before disaster strikes.

14

15

Chapter 1 Introduction Page 19 of 43

Java Concepts, 5th Edition

SELF CHECK

10. How are programming projects stored on a computer?

11. What do you do to protect yourself from data loss when you work on

programming projects?

 PRODUCTIVITY HINT 1.1: Understand the File System

In recent years, computers have become easier to use for home or office users.

Many inessential details are now hidden from casual users. For example, many

casual users simply place all their work inside a default folder (such as “Home”

or “My Documents”) and are blissfully ignorant about details of the file system.

But you need to know how to impose an organization on the data that you create.

You also need to be able to locate and inspect files that are required for

translating and running Java programs.

If you are not comfortable with files and folders, be sure to set aside some time to

learn about these concepts. Enroll in a short course, or take a web tutorial. Many

free tutorials are available on the Internet, but unfortunately their locations

change frequently. Search the Web for “files and folders tutorial” and pick a

tutorial that goes beyond the basics.

 PRODUCTIVITY HINT 1.2: Have a Backup Strategy

Come up with a strategy for your backups now, before you lose any data. Here are

a few pointers to keep in mind.

• Select a backup medium. Floppy disks are the traditional choice, but they

can be unreliable. CD media are more reliable and hold far more

information, but they are more expensive. An increasingly popular form of

backup is Internet file storage. Many people use two levels of backup: a

folder on the hard disk for quick and dirty backups, and a CD-ROM for

higher security. (After all, a hard disk can crash—a particularly common

problem with laptop computers.)

15

16

Chapter 1 Introduction Page 20 of 43

Java Concepts, 5th Edition

• Back up often. Backing up a file takes only a few seconds, and you will

hate yourself if you have to spend many hours recreating work that you

easily could have saved.

• Rotate backups. Use more than one set of disks or folders for backups, and

rotate them. That is, first back up onto the first backup destination, then to

the second and third, and then go back to the first. That way you always

have three recent backups. Even if one of the floppy disks has a defect, or

you messed up one of the backup directories, you can use one of the others.

• Back up source files only. The compiler translates the files that you write

into files consisting of machine code. There is no need to back up the

machine code files, because you can recreate them easily by running the

compiler again. Focus your backup activity on those files that represent

your effort. That way your backups won't fill up with files that you don't

need.

• Pay attention to the backup direction. Backing up involves copying files

from one place to another. It is important that you do this right—that is,

copy from your work location to the backup location. If you do it the wrong

way, you will overwrite a newer file with an older version.

• Check your backups once in a while. Double-check that your backups are

where you think they are. There is nothing more frustrating than finding out

that the backups are not there when you need them. This is particularly true

if you use a backup program that stores files on an unfamiliar device (such

as data tape) or in a compressed format.

• Relax before restoring. When you lose a file and need to restore it from

backup, you are likely to be in an unhappy, nervous state. Take a deep

breath and think through the recovery process before you start. It is not

uncommon for an agitated computer user to wipe out the last backup when

trying to restore a damaged file.
16

Chapter 1 Introduction Page 21 of 43

Java Concepts, 5th Edition

1.6 Compiling a Simple Program

You are now ready to write and run your first Java program. The traditional choice for

the very first program in a new programming language is a program that displays a

simple greeting: “Hello, World!”. Let us follow that tradition. Here is the “Hello,

World!” program in Java.

ch01/hello/HelloPrinter.java

1 public class HelloPrinter
2{
3 public static void main(String[] args)
4 {

5 // Display a greeting in the console window
6
7 System.out.println (“Hello, World!”);
8 }
9}

Output

 Hello, World!

We will examine this program in a minute. For now, you should make a new program

file and call it HelloPrinter.java. Enter the program instructions and compile

and run the program, following the procedure that is appropriate for your compiler.

Java is case sensitive. You must enter upper- and lowercase letters exactly as they

appear in the program listing. You cannot type MAIN or PrintLn. If you are not

careful, you will run into problems—see Common Error 1.2.

Java is case sensitive. You must be careful about distinguishing between upper- and

lowercase letters.

On the other hand, Java has free-form layout. You can use any number of spaces and

line breaks to separate words. You can cram as many words as possible into each line,

public class HelloPrinter{public static void
main(String[]

16

17

Chapter 1 Introduction Page 22 of 43

Java Concepts, 5th Edition

args){// Display a greeting in the console window
System.out.println("Hello, World!");}}

You can even write every word and symbol on a separate line,

public
class
HelloPrinter
{
public
static
void
main
(
. . .

However, good taste dictates that you lay out your programs in a readable fashion. We

will give you recommendations for good layout throughout this book. Appendix A

contains a summary of our recommendations.

Lay out your programs so that they are easy to read.

When you run the test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 10 and 11). The exact location

depends on your programming environment.

Now that you have seen the program working, it is time to understand its makeup. The

first line,

public class HelloPrinter

starts a new class. Classes are a fundamental concept in Java, and you will begin to

study them in Chapter 2. In Java, every program consists of one or more classes.

Classes are the fundamental building blocks of Java programs.

The keyword public denotes that the class is usable by the “public”. You will later

encounter private features. At this point, you should simply regard the

17

18

Chapter 1 Introduction Page 23 of 43

Java Concepts, 5th Edition

public class ClassName
{
 . . .
{

as a necessary part of the “plumbing” that is required to write any Java program. In

Java, every source file can contain at most one public class, and the name of the public

class must match the name of the file containing the class. For example, the class

HelloPrinter must be contained in a file HelloPrinter.java. It is very

important that the names and the capitalization match exactly. You can get strange

error messages if you call the class HELLOPrinter or the file

helloprinter.java.

Figure 10

Running the HelloPrinter Program in a Console Window
18

Chapter 1 Introduction Page 24 of 43

Java Concepts, 5th Edition

Figure 11

Running the HelloPrinter Program in an Integrated Development

Environment

The construction

public static void main(String[] args)
{
}

defines a method called main. A method contains a collection of programming

instructions that describe how to carry out a particular task. Every Java application

must have a main method. Most Java programs contain other methods besides main,

and you will see in Chapter 3 how to write other methods.

18

19

Chapter 1 Introduction Page 25 of 43

Java Concepts, 5th Edition

Every Java application contains a class with a main method. When the application

starts, the instructions in the main method are executed.

The parameter String[] args is a required part of the main method. (It contains

command line arguments, which we will not discuss until Chapter 11.) The keyword

static indicates that the main method does not operate on an object. (As you will

see in Chapter 2, most methods in Java do operate on objects, and static methods

are not common in large Java programs. Nevertheless, main must always be static,

because it starts running before the program can create objects.)

Each class contains definitions of methods. Each method contains a sequence of

instructions.

At this time, simply consider

public class ClassName
{
 public static void main(String[] args)
 {
 . . .
 }
}

as yet another part of the “plumbing”. Our first program has all instructions inside the

main method of a class.

The first line inside the main method is a comment

// Display a greeting in the console window

This comment is purely for the benefit of the human reader, to explain in more detail

what the next statement does. Any text enclosed between // and the end of the line is

completely ignored by the compiler. Comments are used to explain the program to

other programmers or to yourself.

Use comments to help human readers understand your program.

19

20

Chapter 1 Introduction Page 26 of 43

Java Concepts, 5th Edition

The instructions or statements in the body of the main method—that is, the statements

inside the curly braces ({})—are executed one by one. Each statement ends in a

semicolon (;). Our method has a single statement:

System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. However, there are many

places where a program can send that string: to a window, to a file, or to a networked

computer on the other side of the world. You need to specify that the destination for

the string is the system output—that is, a console window. The console window is

represented in Java by an object called out. Just as you needed to place the main

method in a HelloPrinter class, the designers of the Java library needed to place

the out object into a class. They placed it in the System class, which contains useful

objects and methods to access system resources. To use the out object in the System

class, you must refer to it as System.out.

To use an object, such as System.out, you specify what you want to do to it. In this

case, you want to print a line of text. The println method carries out this task.

You do not have to implement this method—the programmers who wrote the Java

library already did that for us—but you do need to call the method.

Whenever you call a method in Java, you need to specify three items (see Figure 12):

A method is called by specifying an object, the method name, and the method

parameters.

1. The object that you want to use (in this case, System.out)

2. The name of the method you want to use (in this case, println)

3. A pair of parentheses, containing any other information the method needs (in

this case, ”Hello, World!”). The technical term for this information is a

parameter for the method. Note that the two periods in

System.out.println have different meanings. The first period means

“locate the out object in the System class”. The second period means “apply

the println method to that object”.
20

Chapter 1 Introduction Page 27 of 43

Java Concepts, 5th Edition

Figure 12

Calling a Method

A sequence of characters enclosed in quotation marks

”Hello, World!”

is called a string. You must enclose the contents of the string inside quotation marks so

that the compiler knows you literally mean ”Hello, World!”. There is a reason

for this requirement. Suppose you need to print the word main. By enclosing it in

quotation marks, ”main”, the compiler knows you mean the sequence of characters

main, not the method named main. The rule is simply that you must enclose all text

strings in quotation marks, so that the compiler considers them plain text and does not

try to interpret them as program instructions.

A string is a sequence of characters enclosed in quotation marks.

You can also print numerical values. For example, the statement

System.out.println(3 + 4);

displays the number 7.

The println method prints a string or a number and then starts a new line. For

example, the sequence of statements

System.out.println("Hello");
System.out.println("World!");

prints two lines of text:

Hello
World!

20

21

Chapter 1 Introduction Page 28 of 43

Java Concepts, 5th Edition

There is a second method, called print, that you can use to print an item without

starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line

007

SYNTAX 1.1 Method Call

object.methodName (parameters)

Example:

System.out.println("Hello, Dave!")

Purpose:

To invoke a method on an object and supply any additional parameters

SELF CHECK

12. How would you modify the HelloPrinter program to print the words

“Hello,” and “World!” on two lines?

13. Would the program continue to work if you omitted the line starting with

//?

14. What does the following set of statements print?

System.out.print("My lucky number is");
System.out.println(3 + 4 + 5);

 COMMON ERROR 1.1: Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a

common error. It confuses the compiler, because the compiler uses the semicolon to

find where one statement ends and the next one starts. The compiler does not use

21

22

Chapter 1 Introduction Page 29 of 43

Java Concepts, 5th Edition

line breaks or closing braces to recognize the end of statements. For example, the

compiler considers

 System.out.println("Hello")
 System.out.println("World!");

a single statement, as if you had written

 System.out.println("Hello")
System.out.println("World!");

Then it doesn't understand that statement, because it does not expect the word

System following the closing parenthesis after ”Hello”. The remedy is simple.

Scan every statement for a terminating semicolon, just as you would check that

every English sentence ends in a period.

 ADVANCED TOPIC 1.1: Alternative Comment Syntax

In Java there are two methods for writing comments. You already learned that the

compiler ignores anything that you type between // and the end of the current line.

The compiler also ignores any text between a /* and */.

/* A simple Java program */

The // comment is easier to type if the comment is only a single line long. If you

have a comment that is longer than a line, then the /* … */ comment is simpler:

/*

 This is a simple Java program that you can use to try out

 your compiler and virtual machine.
*/

It would be somewhat tedious to add the // at the beginning of each line and to

move them around whenever the text of the comment changes.

In this book, we use // for comments that will never grow beyond a line, and /*

… */ for longer comments. If you prefer, you can always use the // style. The

readers of your code will be grateful for any comments, no matter which style you

use.

22

23

Chapter 1 Introduction Page 30 of 43

Java Concepts, 5th Edition

1.7 Errors

Experiment a little with the HelloPrinter program. What happens if you make a

typing error such as

System.ouch.println("Hello, World!");
System.out.println("Hello, World!);
System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will say that it has no clue what you

mean by ouch. The exact wording of the error message is dependent on the compiler,

but it might be something like “Undefined symbol ouch”. This is a compile-time error

or syntax error. Something is wrong according to the language rules and the compiler

finds it. When the compiler finds one or more errors, it refuses to translate the program

to Java virtual machine instructions, and as a consequence you have no program that

you can run. You must fix the error and compile again. In fact, the compiler is quite

picky, and it is common to go through several rounds of fixing compile-time errors

before compilation succeeds for the first time.

A syntax error is a violation of the rules of the programming language. The

compiler detects syntax errors.

If the compiler finds an error, it will not simply stop and give up. It will try to report as

many errors as it can find, so you can fix them all at once. Sometimes, however, one

error throws it off track. This is likely to happen with the error in the second line.

Because the closing quotation mark is missing, the compiler will think that the);

characters are still part of the string. In such cases, it is common for the compiler to

emit bogus error reports for neighboring lines. You should fix only those error

messages that make sense to you and then recompile.

The error in the third line is of a different kind. The program will compile and run, but

its output will be wrong. It will print

Hello, Word!

This is a run-time error or logic error. The program is syntactically correct and does

something, but it doesn't do what it is supposed to do. The compiler cannot find the

Chapter 1 Introduction Page 31 of 43

Java Concepts, 5th Edition

error. You, the programmer, must flush out this type of error. Run the program, and

carefully look at its output.

A logic error causes a program to take an action that the programmer did not intend.

You must test your programs to find logic errors.

During program development, errors are unavoidable. Once a program is longer than a

few lines, it requires superhuman concentration to enter it correctly without slipping

up once. You will find yourself omitting semicolons or quotes more often than you

would like, but the compiler will track down these problems for you.

Logic errors are more troublesome. The compiler will not find them—in fact, the

compiler will cheerfully translate any program as long as its syntax is correct—but the

resulting program will do something wrong. It is the responsibility of the program

author to test the program and find any logic errors. Testing programs is an important

topic that you will encounter many times in this book. Another important aspect of

good craftsmanship is defensive programming: structuring programs and development

processes in such a way that an error in one part of a program does not trigger a

disastrous response.

The error examples that you saw so far were not difficult to diagnose or fix, but as you

learn more sophisticated programming techniques, there will also be much more room

for error. It is an uncomfortable fact that locating all errors in a program is very

difficult. Even if you can observe that a program exhibits faulty behavior, it may not at

all be obvious what part of the program caused it and how you can fix it. Special

software tools (so-called debuggers) let you trace through a program to find bugs—

that is, logic errors. In Chapter 6 you will learn how to use a debugger effectively.

Note that these errors are different from the types of errors that you are likely to make

in calculations. If you total up a column of numbers, you may miss a minus sign or

accidentally drop a carry, perhaps because you are bored or tired. Computers do not

make these kinds of errors.

This book uses a three-part error management strategy. First, you will learn about

common errors and how to avoid them. Then you will learn defensive programming

strategies to minimize the likelihood and impact of errors. Finally, you will learn

debugging strategies to flush out those errors that remain.

23

24

Chapter 1 Introduction Page 32 of 43

Java Concepts, 5th Edition

SELF CHECK

15. Suppose you omit the // characters from the HelloPrinter.java

program but not the remainder of the comment. Will you get a

compile-time error or a runtime error?

16. How can you find logic errors in a program?

 COMMON ERROR 1.2: Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not

always be completely obvious from the error messages what went wrong. Here is a

good example of how simple spelling errors can cause trouble:

public class HelloPrinter
{
 public static void Main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

This class defines a method called Main. The compiler will not consider this to be

the same as the main method, because Main starts with an uppercase letter and the

Java language is case sensitive. Upper- and lowercase letters are considered to be

completely different from each other, and to the compiler Main is no better match

for main than rain. The compiler will cheerfully compile your Main method, but

when the Java virtual machine reads the compiled file, it will complain about the

missing main method and refuse to run the program. Of course, the message

“missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler is on the wrong

track, it is a good idea to check for spelling and capitalization. All Java keywords

use only lowercase letters. Names of classes usually start with an uppercase letter,

names of methods and variables with a lowercase letter. If you misspell the name of

a symbol (for example, ouch instead of out), the compiler will complain about an

“undefined symbol”. That error message is usually a good clue that you made a

spelling error.

24

25

Chapter 1 Introduction Page 33 of 43

Java Concepts, 5th Edition

1.8 The Compilation Process

Some Java development environments are very convenient to use. Enter the code in

one window, click on a button to compile, and click on another button to execute your

program. Error messages show up in a second window, and the program runs in a third

window. With such an environment you are completely shielded from the details of the

compilation process. On other systems you must carry out every step manually, by

typing commands into a shell window.

No matter which compilation environment you use, you begin your activity by typing

in the program statements. The program that you use for entering and modifying the

program text is called an editor. Remember to save your work to disk frequently,

because otherwise the text editor stores the text only in the computer's memory. If

something goes wrong with the computer and you need to restart it, the contents of the

primary memory (including your program text) are lost, but anything stored on the

hard disk is permanent even if you need to restart the computer.

An editor is a program for entering and modifying text, such as a Java program.

When you compile your program, the compiler translates the Java source code (that is,

the statements that you wrote) into class files, which consist of virtual machine

instructions and other information that is required for execution. The class files have

the extension .class. For example, the virtual machine instructions for the

Hello-Printer program are stored in a file HelloPrinter.class. As already

mentioned, the compiler produces a class file only after you have corrected all syntax

errors.

The Java compiler translates source code into class files that contain instructions for

the Java virtual machine.

The class file contains the translation of only the instructions that you wrote. That is

not enough to actually run the program. To display a string in a window, quite a bit of

low-level activity is necessary. The authors of the System and PrintStream

classes (which define the out object and the println method) have implemented all

necessary actions and placed the required class files into a library. A library is a

25

26

Chapter 1 Introduction Page 34 of 43

Java Concepts, 5th Edition

collection of code that has been programmed and translated by someone else, ready for

you to use in your program.

Figure 13

From Source Code to Running Program

The Java virtual machine loads the instructions for the program that you wrote, starts

your program, and loads the necessary library files as they are required.

The steps of compiling and running your program are outlined in Figure 13.

Figure 14

The Edit-Compile-Test Loop
26

Chapter 1 Introduction Page 35 of 43

Java Concepts, 5th Edition

Programming activity centers around these steps. Start in the editor, writing the source

file. Compile the program and look at the error messages. Go back to the editor and fix

the syntax errors. When the compiler succeeds, run the program. If you find a run-time

error, you must look at the source code in the editor to try to determine the reason.

Once you find the cause of the error, fix it in the editor. Compile and run again to see

whether the error has gone away. If not, go back to the editor. This is called the edit–

compile–test loop (see Figure 14). You will spend a substantial amount of time in this

loop when working on programming assignments.

The Java virtual machine loads program instructions from class files and library

files.

SELF CHECK

17. What do you expect to see when you load a class file into your text

editor?

18. Why can't you test a program for run-time errors when it has compiler

errors?

CHAPTER SUMMARY

1. A computer must be programmed to perform tasks. Different tasks require

different programs.

2. A computer program executes a sequence of very basic operations in rapid

succession.

3. A computer program contains the instruction sequences for all tasks that it can

execute.

4. At the heart of the computer lies the central processing unit (CPU).

5. Data and programs are stored in primary storage (memory) and secondary

storage (such as a hard disk).

6. The CPU reads machine instructions from memory. The instructions direct it to

communicate with memory, secondary storage, and peripheral devices.

26

27

Chapter 1 Introduction Page 36 of 43

Java Concepts, 5th Edition

7. Generally, machine code depends on the CPU type. However, the instruction set

of the Java virtual machine (JVM) can be executed on many CPUs.

8. Because machine instructions are encoded as numbers, it is difficult to write

programs in machine code.

9. High-level languages allow you to describe tasks at a higher conceptual level

than machine code.

10. A compiler translates programs written in a high-level language into machine

code.

11. Java was originally designed for programming consumer devices, but it was first

successfully used to write Internet applets.

12. Java was designed to be safe and portable, benefiting both Internet users and

students.

13. Java has a very large library. Focus on learning those parts of the library that

you need for your programming projects.

14. Set aside some time to become familiar with the computer system and the Java

compiler that you will use for your class work.

15. Develop a strategy for keeping backup copies of your work before disaster

strikes.

16. Java is case sensitive. You must be careful about distinguishing between

upper-and lowercase letters.

17. Lay out your programs so that they are easy to read.

18. Classes are the fundamental building blocks of Java programs.

19. Every Java application contains a class with a main method. When the

application starts, the instructions in the main method are executed.

20. Each class contains definitions of methods. Each method contains a sequence of

instructions.

21. Use comments to help human readers understand your program.

27

28

Chapter 1 Introduction Page 37 of 43

Java Concepts, 5th Edition

22. A method is called by specifying an object, the method name, and the method

parameters.

23. A string is a sequence of characters enclosed in quotation marks.

24. A syntax error is a violation of the rules of the programming language. The

compiler detects syntax errors.

25. A logic error causes a program to take an action that the programmer did not

intend. You must test your programs to find logic errors.

26. An editor is a program for entering and modifying text, such as a Java program.

27. The Java compiler translates source code into class files that contain instructions

for the Java virtual machine.

28. The Java virtual machine loads program instructions from class files and library

files.

FURTHER READING

1. http://jmol.sourceforge.net/applet/ The web site for the

jmol applet for visualizing molecules.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

Here is a list of all classes, methods, static variables, and constants introduced in this

chapter. Turn to the documentation in Appendix C for more information.

java.io.PrintStream
 print
 println
java.lang.System
 out

28

29

Chapter 1 Introduction Page 38 of 43

Java Concepts, 5th Edition

REVIEW EXERCISES

★ Exercise R1.1. Explain the difference between using a computer program

and programming a computer.

★ Exercise R1.2. What distinguishes a computer from a typical household

appliance?

★ Exercise R1.3. Rank the storage devices that can be part of a computer

system by

a. Speed

b. Cost

c. Storage capacity

★★Exercise R1.4. What is the Java virtual machine?

★ Exercise R1.5. What is an applet?

★ Exercise R1.6. What is an integrated programming environment?

★ Exercise R1.7. What is a console window?

★★Exercise R1.8. Describe exactly what steps you would take to back up your

work after you have typed in the HelloPrinter.java program.

★★Exercise R1.9. On your own computer or on a lab computer, find the exact

location (folder or directory name) of

a. The sample file HelloPrinter.java, which you wrote with the

editor

b. The Java program launcher java.exe or java

c. The library file rt.jar that contains the run-time library

★ Exercise R1.10. How do you discover syntax errors? How do you discover

logic errors?

Chapter 1 Introduction Page 39 of 43

Java Concepts, 5th Edition

★★Exercise R1.11. Write three versions of the HelloPrinter.java

program that have different syntax errors. Write a version that has a logic

error.

★★★Exercise R1.12. What do the following statements print? Don't guess;

write programs to find out.

a. System.out.println(“3 + 4”);

b. System.out.println(3 + 4);

c. System.out.println(3 + “4”);

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P1.1. Write a program NamePrinter that displays your name

inside a box on the console screen, like this:

Do your best to approximate lines with characters, such as |, -, and +.

★ Exercise P1.2. Write a program FacePrinter that prints a face, using

text characters, hopefully better looking than this one:

Use comments to indicate the statements that print the hair, ears, mouth, and

so on.

★ Exercise P1.3. Write a program TicTacToeBoardPrinter that prints a

tic-tac-toe board:

29

30

Chapter 1 Introduction Page 40 of 43

Java Concepts, 5th Edition

★ Exercise P1.4. Write a program StaircasePrinter that prints a

staircase:

★★Exercise P1.5. Write a program that computes the sum of the first ten

positive integers, 1 + 2 + ⋯ + 10. Hint: Write a program of the form

public class Sum10
{
 public static void main(String[] args)
 {
 System.out.println();
 }
}

★★Exercise P1.6. Write a program Sum10Reciprocals that computes the

sum of the reciprocals 1/1 + 1/2 + ⋯ + 1/10. This is harder than it sounds.

Try writing the program, and check the result. The program's result isn't

likely to be correct. Then write the denominators as floating-point numbers,

1.0, 2.0, …, 10.0, and run the program again. Can you explain the

difference in the results? We will explore this phenomenon in Chapter 4.

★★Exercise P1.7. Type in and run the following program:

 import javax.swing.JOptionPane;
public class DialogViewer
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null, "Hello,
World!");
 System.exit(0);
 }
}

Then modify the program to show the message “Hello, your name!”.

30

31

Chapter 1 Introduction Page 41 of 43

Java Concepts, 5th Edition

★★Exercise P1.8. Type in and run the following program:

 import javax.swing.JOptionPane;
public class DialogViewer
{
 public static void main(String[] args)
 {
 String name =
JOptionPane.showInputDialog("What is your name?");
 System.out.println(name);
 System.exit(0);
 }
}

Then modify the program to print “Hello, name!”, displaying the name that

the user typed in.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 1.1. This project builds on Exercises P1.7 and P1.8. Your

program should read the user's name, then show a sequence of two dialog

boxes:

• First, an input dialog box that asks: “What would you like me to

do?”

• Then a message dialog box that says: “I'm sorry, (your name). I'm

afraid I can't do that.”

ANSWERS TO SELF-CHECK QUESTIONS

1. A program that reads the data on the CD and sends output to the speakers

and the screen.

2. A CD player can do one thing—play music CDs. It cannot execute programs.

3. No—the program simply executes the instruction sequences that the

programmers have prepared in advance.

31

32

Chapter 1 Introduction Page 42 of 43

Java Concepts, 5th Edition

4. In secondary storage, typically a hard disk.

5. The central processing unit.

6. 21 100

7. No—a compiler is intended for programmers, to translate high-level

programming instructions into machine code.

8. Safety and portability.

9. No one person can learn the entire library—it is too large.

10. Programs are stored in files, and files are stored in folders or directories.

11. You back up your files and folders.

12. System.out.println(”Hello,”); System.out.println(”

World!”);

13. Yes—the line starting with // is a comment, intended for human readers.

The compiler ignores comments.

14. The printout is My lucky number is12. It would be a good idea to

add a space after the is.

15. A compile-time error. The compiler will not know what to do with the word

Display.

16. You need to run the program and observe its behavior.

17. A sequence of random characters, some funny-looking. Class files contain

virtual machine instructions that are encoded as binary numbers.

18. When a program has compiler errors, no class file is produced, and there is

nothing to run.

Chapter 1 Introduction Page 43 of 43

Java Concepts, 5th Edition

Chapter 2 Using Objects

CHAPTER GOALS

• To learn about variables

• To understand the concepts of classes and objects

• To be able to call methods

• To learn about parameters and return values

T To implement test programs

• To be able to browse the API documentation

• To realize the difference between objects and object references

G To write programs that display simple shapes

Most useful programs don't just manipulate numbers and strings. Instead, they deal

with data items that are more complex and that more closely represent entities in the

real world. Examples of these data items include bank accounts, employee records,

and graphical shapes.

The Java language is ideally suited for designing and manipulating such data items, or

objects. In Java, you define classes that describe the behavior of these objects. In this

chapter, you will learn how to manipulate objects that belong to predefined classes.

This knowledge will prepare you for the next chapter in which you will learn how to

implement your own classes.

2.1 Types and Variables

In Java, every value has a type. For example, “Hello, World” has the type

String, the object System.out has the type PrintStream, and the number 13

has the type int (an abbreviation for “integer”). The type tells you what you can do

with the values. You can call println on any object of type PrintStream. You

can compute the sum or product of any two integers.

33

33

34

Chapter 2 Using Objects Page 1 of 67

Java Concepts, 5th Edition

In Java, every value has a type.

You often want to store values so that you can use them at a later time. To remember

an object, you need to hold it in a variable. A variable is a storage location in the

computer's memory that has a type, a name, and a contents. For example, here we

declare three variables:

String greeting = "Hello, World!";
PrintStream printer = System.out;
int luckyNumber = 13;

The first variable is called greeting. It can be used to store String values, and it

is set to the value “Hello, World!”. The second variable stores a PrintStream

value, and the third stores an integer.

You use variables to store values that you want to use at a later time.

Variables can be used in place of the objects that they store:

printer.println(greeting); // Same as System.out.println("Hello,

World!")

printer.println(luckyNumber); // Same as System.out.println(13)

SYNTAX 2.1 Variable Definition

typeName variableName = value;

or

typeName variableName;

Example:

String greeting = “Hello, Dave!”;

Purpose:

To define a new variable of a particular type and optionally supply an initial value

When you declare your own variables, you need to make two decisions.

34

35

Chapter 2 Using Objects Page 2 of 67

Java Concepts, 5th Edition

• What type should you use for the variable?

• What name should you give the variable?

The type depends on the intended use. If you need to store a string, use the String

type for your variable.

It is an error to store a value whose class does not match the type of the variable. For

example, the following is an error:

String greeting = 13; // ERROR: Types don't match

You cannot use a String variable to store an integer. The compiler checks type

mismatches to protect you from errors.

When deciding on a name for a variable, you should make a choice that describes the

purpose of the variable. For example, the variable name greeting is a better choice

than the name g.

Identifiers for variables, methods, and classes are composed of letters, digits, and

underscore characters.

An identifier is the name of a variable, method, or class. Java imposes the following

rules for identifiers:

• Identifiers can be made up of letters, digits, and the underscore (_) and dollar

sign ($) characters. They cannot start with a digit, though. For example,

greeting1 is legal but 1greeting is not.

• You cannot use other symbols such as? or %. For example, hello! is not a

legal identifier.

• Spaces are not permitted inside identifiers. Therefore, lucky number is not

legal.

• Furthermore, you cannot use reserved words, such as public, as names; these

words are reserved exclusively for their special Java meanings.

Chapter 2 Using Objects Page 3 of 67

Java Concepts, 5th Edition

• Identifiers are also case sensitive; that is, greeting and Greeting are

different.

By convention, variable names should start with a lowercase letter.

These are firm rules of the Java language. If you violate one of them, the compiler will

report an error. Moreover, there are a couple of conventions that you should follow so

that other programmers will find your programs easy to read:

• Variable and method names should start with a lowercase letter. It is OK to use

an occasional uppercase letter, such as luckyNumber. This mixture of

lowercase and uppercase letters is sometimes called “camel case” because the

uppercase letters stick out like the humps of a camel.

• Class names should start with an uppercase letter. For example, Greeting

would be an appropriate name for a class, but not for a variable.

If you violate these conventions, the compiler won't complain, but you will confuse

other programmers who read your code.

SELF CHECK

1. What is the type of the values 0 and “0”?

2. Which of the following are legal identifiers?

Greeting1
g
void
101dalmatians
Hello, World
<greeting>

3. Define a variable to hold your name. Use camel case in the variable name.

2.2 The Assignment Operator

You can change the value of an existing variable with the assignment operator (=). For

example, consider the variable definition

35

36

Chapter 2 Using Objects Page 4 of 67

Java Concepts, 5th Edition

Use the assignment operator (=) to change the value of a variable.

int luckyNumber = 13;

If you want to change the value of the variable, simply assign the new value:

luckyNumber = 12;

The assignment replaces the original value of the variable (see Figure 1).

In the Java programming language, the = operator denotes an action, to replace the

value of a variable. This usage differs from the traditional usage of the = symbol, as a

statement about equality.

Figure 1

Assigning a New Value to a Variable

Figure 2

An Uninitialized Object Variable

It is an error to use a variable that has never had a value assigned to it. For example,

the sequence of statements

int luckyNumber;

System.out.println(luckyNumber); // ERROR—uninitialized

variable

36

37

Chapter 2 Using Objects Page 5 of 67

Java Concepts, 5th Edition

is an error. The compiler will complain about an “uninitialized variable” when you use

a variable that has never been assigned a value. (See Figure 2.)

The remedy is to assign a value to the variable before you use it:

All variables must be initialized before you access them.

int luckyNumber;
luckyNumber = 13;

System.out.println(luckyNumber); // OK

Or, even better, initialize the variable when you define it.

int luckyNumber = 13;

System.out.println(luckyNumber); // OK

SYNTAX 2.2 Assignment

variableName = value;

Example:

luckyNumber = 12;

Purpose:

To assign a new value to a previously defined variable

SELF CHECK

4. Is 12 = 12 a valid expression in the Java language?

5. How do you change the value of the greeting variable to “Hello,

Nina!”;?

2.3 Objects, Classes, and Methods

An object is an entity that you can manipulate in your program. You don't usually

know how the object is organized internally. However, the object has well-defined

behavior, and that is what matters to us when we use it.

Chapter 2 Using Objects Page 6 of 67

Java Concepts, 5th Edition

Objects are entities in your program that you manipulate by calling methods.

You manipulate an object by calling one or more of its methods. A method consists of

a sequence of instructions that accesses the internal data. When you call the method,

you do not know exactly what those instructions are, but you do know the purpose of

the method.

Figure 3

Representation of the System.out Object

A method is a sequence of instructions that accesses the data of an object.

For example, you saw in Chapter 1 that System.out refers to an object. You

manipulate it by calling the println method. When the println method is called,

some activities occur inside the object, and the ultimate effect is that text appears in

the console window. You don't know how that happens, and that's OK. What matters is

that the method carries out the work that you requested.

Figure 3 shows a representation of the System.out object. The internal data is

symbolized by a sequence of zeroes and ones. Think of each method (symbolized by

the gears) as a piece of machinery that carries out its assigned task.

In Chapter 1, you encountered two objects:

• System.out

• “Hello, World!”

37

38

Chapter 2 Using Objects Page 7 of 67

Java Concepts, 5th Edition

These objects belong to different classes. The System.out object belongs to the

class PrintStream. The “Hello, World!” object belongs to the class

String. A class specifies the methods that you can apply to its objects.

You can use the println method with any object that belongs to the

PrintStream class. System.out is one such object. It is possible to obtain other

objects of the PrintStream class. For example, you can construct a

PrintStream object to send output to a file. However, we won't discuss files until

Chapter 11.

A class defines the methods that you can apply to its objects.

Just as the PrintStream class provides methods such as println and print for

its objects, the String class provides methods that you can apply to String

objects. One of them is the length method. The length method counts the number

of characters in a string. You can apply that method to any object of type String.

For example, the sequence of statements

String greeting = “Hello, World!”;
int n = greeting.length();

sets n to the number of characters in the String object “Hello, World!”. After

the instructions in the length method are executed, n is set to 13. (The quotation marks

are not part of the string, and the length method does not count them.)

The length method—unlike the println method—requires no input inside the

parentheses. However, the length method yields an output, namely the character

count.

Figure 4

A Representation of Two String Objects

38

39

Chapter 2 Using Objects Page 8 of 67

Java Concepts, 5th Edition

In the next section, you will see in greater detail how to supply method inputs and

obtain method outputs.

Let us look at another method of the String class. When you apply the

toUpperCase method to a String object, the method creates another String

object that contains the characters of the original string, with lowercase letters

converted to uppercase. For example, the sequence of statements

String river = “Mississippi”;
String bigRiver = river.toUpperCase();

sets bigRiver to the String object “MISSISSIPPI”.

When you apply a method to an object, you must make sure that the method is defined

in the appropriate class. For example, it is an error to call

System.out.length(); // This method call is an error

The PrintStream class (to which System.out belongs) has no length method.

Let us summarize. In Java, every object belongs to a class. The class defines the

methods for the objects. For example, the String class defines the length and

toUpperCase methods (as well as other methods—you will learn about most of

them in Chapter 4). The methods form the public interface of the class, telling you

what you can do with the objects of the class. A class also defines a private

implementation, describing the data inside its objects and the instructions for its

methods. Those details are hidden from the programmers who use objects and call

methods.

The public interface of a class specifies what you can do with its objects. The

hidden implementation describes how these actions are carried out.

Figure 4 shows two objects of the String class. Each object stores its own data

(drawn as boxes that contain characters). Both objects support the same set of

methods—the interface that is specified by the String class.

SELF CHECK

6. How can you compute the length of the string “Mississippi”?

Chapter 2 Using Objects Page 9 of 67

Java Concepts, 5th Edition

7. How can you print out the uppercase version of “Hello, World!”?

8. Is it legal to call river.println()? Why or why not?

2.4 Method Parameters and Return Values

In this section, we will examine how to provide inputs into a method, and how to

obtain the output of the method.

Some methods require inputs that give details about the work that they need to do. For

example, the println method has an input: the string that should be printed.

Computer scientists use the technical term parameter for method inputs. We say that

the string greeting is a parameter of the method call

A parameter is an input to a method.

System.out.println(greeting)

Figure 5 illustrates passing of the parameter to the method.

Technically speaking, the greeting parameter is an explicit parameter of the

println method. The object on which you invoke the method is also considered a

parameter of the method call, called the implicit parameter. For example,

System.out is the implicit parameter of the method call

The implicit parameter of a method call is the object on which the method is

invoked.

System.out.println(greeting)

Some methods require multiple explicit parameters, others don't require any explicit

parameters at all. An example of the latter is the length method of the String

class (see Figure 6). All the information that the length method requires to do its

job—namely, the character sequence of the string—is stored in the implicit parameter

object.

39

40

Chapter 2 Using Objects Page 10 of 67

Java Concepts, 5th Edition

The length method differs from the println method in another way: it has an

output. We say that the method returns a value, namely the number of characters in

the string. You can store the return value in a variable:

The return value of a method is a result that the method has computed for use by the

code that called it.

int n = greeting.length();

You can also use the return value as a parameter of another method:

System.out.println(greeting.length());

Figure 5

Passing a Parameter to the println Method

Figure 6

Invoking the length Method on a String Object

40

41

Chapter 2 Using Objects Page 11 of 67

Java Concepts, 5th Edition

The method call greeting.length() returns a value—the integer 13. The return

value becomes a parameter of the println method. Figure 7 shows the process.

Not all methods return values. One example is the println method. The println

method interacts with the operating system, causing characters to appear in a window.

But it does not return a value to the code that calls it.

Let us analyze a more complex method call. Here, we will call the replace method

of the String class. The replace method carries out a search-and-replace

operation, similar to that of a word processor. For example, the call

river.replace(“issipp”, “our”)

constructs a new string that is obtained by replacing all occurrences of “issipp” in

“Mississippi” with “our”. (In this situation, there was only one replacement.)

The method returns the String object “Missouri” (which you can save in a

variable or pass to another method).

As Figure 8 shows, this method call has

• one implicit parameter: the string “Mississippi”

• two explicit parameters: the strings “issipp” and “our”

• a return value: the string “Missouri”

Figure 7

Passing the Result of a Method Call to Another Method
41

Chapter 2 Using Objects Page 12 of 67

Java Concepts, 5th Edition

Figure 8

Calling the replace Method

When a method is defined in a class, the definition specifies the types of the explicit

parameters and the return value. For example, the String class defines the length

method as

public int length()

That is, there are no explicit parameters, and the return value has the type int. (For

now, all the methods that we consider will be “public” methods—see Chapter 10 for

more restricted methods.)

The type of the implicit parameter is the class that defines the method—String in

our case. It is not mentioned in the method definition—hence the term “implicit”.

The replace method is defined as

public String replace(String target, String
replacement)

To call the replace method, you supply two explicit parameters, target and

replacement, which both have type String. The returned value is another string.

When a method returns no value, the return type is declared with the reserved word

void. For example, the PrintStream class defines the println method as

public void println(String output)

41

42

Chapter 2 Using Objects Page 13 of 67

Java Concepts, 5th Edition

Occasionally, a class defines two methods with the same name and different explicit

parameter types. For example, the PrintStream class defines a second method, also

called println, as

A method name is overloaded if a class has more than one method with the same

name (but different parameter types).

public void println(int output)

That method is used to print an integer value. We say that the println name is

overloaded because it refers to more than one method.

SELF CHECK

9. What are the implicit parameters, explicit parameters, and return values

in the method call river.length()?

10. What is the result of the call river.replace(“p”, “s”)?

11. What is the result of the call greeting.replace(“World”,

“Dave”).length()?

12. How is the toUpperCase method defined in the String class?

2.5 Number Types

Java has separate types for integers and floating-point numbers. Integers are whole

numbers; floating-point numbers can have fractional parts. For example, 13 is an

integer and 1.3 is a floating-point number.

The double type denotes floating-point numbers that can have fractional parts.

The name “floating-point” describes the representation of the number in the computer

as a sequence of the significant digits and an indication of the position of the decimal

point. For example, the numbers 13000, 1.3, 0.00013 all have the same decimal digits:

13. When a floating-point number is multiplied or divided by 10, only the position of

the decimal point changes; it “floats”. This representation is related to the “scientific”

42

43

Chapter 2 Using Objects Page 14 of 67

Java Concepts, 5th Edition

notation 1.3 × 10
−4

. (Actually, the computer represents numbers in base 2, not base 10,

but the principle is the same.)

If you need to process numbers with a fractional part, you should use the type called

double, which stands for “double precision floating-point number”. Think of a

number in double format as any number that can appear in the display panel of a

calculator, such as 1.3 or −0.333333333.

Do not use commas when you write numbers in Java. For example, 13,000 must be

written as 13000. To write numbers in exponential notation in Java, use the notation

En instead of “×10
n
”. For example, 1.3 × 10

−4
 is written as 1.3E-4.

You may wonder why Java has separate integer and floating-point number types.

Pocket calculators don't need a separate integer type; they use floating-point numbers

for all calculations. However, integers have several advantages over floating-point

numbers. They take less storage space, are processed faster, and don't cause rounding

errors. You will want to use the int type for quantities that can never have fractional

parts, such as the length of a string. Use the double type for quantities that can have

fractional parts, such as a grade point average.

There are several other number types in Java that are not as commonly used. We will

discuss these types in Chapter 4. For most practical purposes, however, the int and

double types are all you need for processing numbers.

In Java, the number types (int, double, and the less commonly used types) are

primitive types, not classes. Numbers are not objects. The number types have no

methods.

In Java, numbers are not objects and number types are not classes.

However, you can combine numbers with operators such as + and −, as in 10 + n or

n − 1. To multiply two numbers, use the * operator. For example, 10 × n is written

as 10 * n.

Numbers can be combined by arithmetic operators such as +, −, and *.

Chapter 2 Using Objects Page 15 of 67

Java Concepts, 5th Edition

As in mathematics, the * operator binds more strongly than the + operator. That is,

x + y * 2 means the sum of x and y * 2. If you want to multiply the sum of x

and y with 2, use parentheses:

(x + y) * 2

SELF CHECK

13. Which number type would you use for storing the area of a circle?

14. Why is the expression 13.println() an error?

15. Write an expression to compute the average of the values x and y.

2.6 Constructing Objects

Most Java programs will want to work on a variety of objects. In this section, you will

see how to construct new objects. This allows you to go beyond String objects and

the predefined System.out object.

To learn about object construction, let us turn to another class: the Rectangle class

in the Java class library. Objects of type Rectangle describe rectangular shapes—

see Figure 9. These objects are useful for a variety of purposes. You can assemble

rectangles into bar charts, and you can program simple games by moving rectangles

inside a window.

Note that a Rectangle object isn't a rectangular shape—it is an object that contains

a set of numbers. The numbers describe the rectangle (see Figure 10). Each rectangle

is described by the x- and y-coordinates of its top-left corner, its width, and its height.

43

44

Chapter 2 Using Objects Page 16 of 67

Java Concepts, 5th Edition

Figure 9

Rectangular Shapes

Figure 10

Rectangle Objects

It is very important that you understand this distinction. In the computer, a

Rectangle object is a block of memory that holds four numbers, for example x = 5,

y = 10, width = 20, height = 30. In the imagination of the programmer who uses a

Rectangle object, the object describes a geometric figure.

Use the new operator, followed by a class name and parameters, to construct new

objects.

To make a new rectangle, you need to specify the x, y, width, and height values. Then

invoke the new operator, specifying the name of the class and the parameters that are

required for constructing a new object. For example, you can make a new rectangle

with its top-left corner at (5, 10), width 20, and height 30 as follows:

44

45

Chapter 2 Using Objects Page 17 of 67

Java Concepts, 5th Edition

new Rectangle(5, 10, 20, 30)

Here is what happens in detail.

1. The new operator makes a Rectangle object.

2. It uses the parameters (in this case, 5, 10, 20, and 30) to initialize the data of the

object.

3. It returns the object.

Usually the output of the new operator is stored in a variable. For example,

Rectangle box = new Rectangle(5, 10, 20, 30);

The process of creating a new object is called construction. The four values 5, 10, 20,

and 30 are called the construction parameters. Note that the new expression is not a

complete statement. You use the value of a new expression just like a method return

value: Assign it to a variable or pass it to another method.

Some classes let you construct objects in multiple ways. For example, you can also

obtain a Rectangle object by supplying no construction parameters at all (but you

must still supply the parentheses):

new Rectangle()

This expression constructs a (rather useless) rectangle with its top-left corner at the

origin (0, 0), width 0, and height 0.

SYNTAX 2.3 Object Construction

new ClassName(parameters)

Example:

new Rectangle(5, 10, 20, 30)
new Rectangle()

Purpose:

To construct a new object, initialize it with the construction parameters, and return

a reference to the constructed object
45

Chapter 2 Using Objects Page 18 of 67

Java Concepts, 5th Edition

SELF CHECK

16. How do you construct a square with center (100, 100) and side length 20?

17. What does the following statement print?

System.out.println(new Rectangle().getWidth());

 COMMON ERROR 2.1: Trying to Invoke a Constructor

Like a Method

Constructors are not methods. You can only use a constructor with the new

operator, not to reinitialize an existing object:

box.Rectangle(20, 35, 20, 30); // Error–can't reinitialize

object

The remedy is simple: Make a new object and overwrite the current one.

box = new Rectangle(20, 35, 20, 30); // OK

2.7 Accessor and Mutator Methods

In this section we introduce a useful terminology for the methods of a class. A method

that accesses an object and returns some information about it, without changing the

object, is called an accessor method. In contrast, a method whose purpose is to modify

the state of an object is called a mutator method.

An accessor method does not change the state of its implicit parameter. A mutator

method changes the state.

For example, the length method of the String class is an accessor method. It

returns information about a string, namely its length. But it doesn't modify the string at

all when counting the characters.

The Rectangle class has a number of accessor methods. The getX, getY,

getWidth, and getHeight methods return the x- and y-coordinates of the top-left

corner, the width, and the height values. For example,

45

46

Chapter 2 Using Objects Page 19 of 67

Java Concepts, 5th Edition

double width = box.getWidth();

Now let us consider a mutator method. Programs that manipulate rectangles frequently

need to move them around, for example, to display animations. The Rectangle

class has a method for that purpose, called translate. (Mathematicians use the

term “translation” for a rigid motion of the plane.) This method moves a rectangle by a

certain distance in the x- and y-directions. The method call,

box.translate(15, 25);

moves the rectangle by 15 units in the x-direction and 25 units in the y-direction (see

Figure 11). Moving a rectangle doesn't change its width or height, but it changes the

top-left corner. Afterwards, the top-left corner is at (20, 35).

This method is a mutator because it modifies the implicit parameter object.

Figure 11

Using the translate Method to Move a Rectangle

SELF CHECK

18. Is the toUpperCase method of the String class an accessor or a

mutator?

19. Which call to translate is needed to move the box rectangle so that

its top-left corner is the origin (0, 0)?

46

47

Chapter 2 Using Objects Page 20 of 67

Java Concepts, 5th Edition

2.8 Implementing a Test Program

In this section, we discuss the steps that are necessary to implement a test program.

The purpose of a test program is to verify that one or more methods have been

implemented correctly. A test program calls methods and checks that they return the

expected results. Writing test programs is a very important activity. When you

implement your own methods, you should always supply programs to test them.

In this book, we use a very simple format for test programs. You will now see such a

test program that tests a method in the Rectangle class. The program performs the

following steps:

1. Provide a tester class.

2. Supply a main method.

3. Inside the main method, construct one or more objects.

4. Apply methods to the objects.

5. Display the results of the method calls.

6. Display the values that you expect to get.

Whenever you write a program to test your own classes, you need to follow these steps

as well.

Our sample test program tests the behavior of the translate method. Here are the

key steps (which have been placed inside the main method of the

Rectangle-Tester class).

Rectangle box = new Rectangle(5, 10, 20, 30);

// Move the rectangle
box.translate(15, 25);

// Print information about the moved rectangle
System.out.print(“x: ”);
System.out.println(box.getX());
System.out.println(“Expected: 20”);

47

48

Chapter 2 Using Objects Page 21 of 67

Java Concepts, 5th Edition

We print the value that is returned by the getX method, and then we print a message

that describes what value we expect to see.

This is a very important step. You want to spend some time thinking what the expected

result is before you run a test program. This thought process will help you understand

how your program should behave, and it can help you track down errors at an early

stage.

Determining the expected result in advance is an important part of testing.

In our case, the rectangle has been constructed with the top left corner at (5, 10). The

x-direction is moved by 15 pixels, so we expect an x-value of 5 + 15 = 20 after the

move.

Here is a complete program that tests the moving of a rectangle.

ch02/rectangle/MoveTester.java

 1 import java.awt.Rectangle;
 2
 3 public class MoveTester
 4 {
 5 public static void main(String[] args)
 6 {
 7 Rectangle box = new Rectangle(5, 10,
20, 30);
 8

 9 // Move the rectangle
10 box.translate(15, 25);
11

12 // Print information about the moved rectangle
13 System.out.print(“x: ”);
14 System.out.println(box.getX());
15 System.out.println(“Expected: 20”);
16
17 System.out.print(“y: ”);
18 System.out.println(box.getY());
19 System.out.println(“Expected: 35”);
20 }
21 }

Chapter 2 Using Objects Page 22 of 67

Java Concepts, 5th Edition

Output

x: 20
Expected: 20
y: 35
Expected: 35

For this program, we needed to carry out another step: We needed to import the

Rectangle class from a package. A package is a collection of classes with a related

purpose. All classes in the standard library are contained in packages. The

Rectangle class belongs to the package java.awt (where awt is an abbreviation

for “Abstract Windowing Toolkit”), which contains many classes for drawing

windows and graphical shapes.

Java classes are grouped into packages. Use the import statement to use classes

that are defined in other packages.

To use the Rectangle class from the java.awt package, simply place the

following line at the top of your program:

import java.awt.Rectangle;

Why don't you have to import the System and String classes? Because the

System and String classes are in the java.lang package, and all classes from

this package are automatically imported, so you never need to import them yourself.

SYNTAX 2.4 Importing a Class from a Package

import packageName.ClassName;

Example:

import java.awt.Rectangle;

Purpose

To import a class from a package for use in a program

48

49

Chapter 2 Using Objects Page 23 of 67

Java Concepts, 5th Edition

SELF CHECK

20. Suppose we had called box.translate(25, 15) instead of

box.translate(15, 25). What are the expected outputs?

21. Why doesn't the MoveTester program need to print the width and

height of the rectangle?

22. The Random class is defined in the java.util package. What do you

need to do in order to use that class in your program?

 ADVANCED TOPIC 2.1: Testing Classes in an Interactive

Environment

Some development environments are specifically designed to help students explore

objects without having to provide tester classes. These environments can be very

helpful for gaining insight into the behavior of objects, and for promoting

object-oriented thinking. The BlueJ environment (shown in Testing a Method Call

in BlueJ) displays objects as blobs on a workbench. You can construct new objects,

put them on the workbench, invoke methods, and see the return values, all without

writing a line of code. You can download BlueJ at no charge from [1]. Another

excellent environment for interactively exploring objects is Dr. Java [2].

Testing a Method Call in BlueJ

49

50

Chapter 2 Using Objects Page 24 of 67

Java Concepts, 5th Edition

2.9 The API Documentation

The classes and methods of the Java library are listed in the API documentation. The

API is the “application programming interface”. A programmer who uses the Java

classes to put together a computer program (or application) is an application

programmer. That's you. In contrast, the programmers who designed and implemented

the library classes such as PrintStream and Rectangle are system programmers.

You can find the API documentation on the Web [3]. Point your web browser to

http://java.sun.com/javase/6/docs/api/index.html. Alternatively,

you can download and install the API documentation onto your own computer—see

Productivity Hint 2.1.

The API (Application Programming Interface) documentation lists the classes and

methods of the Java library.

The API documentation documents all classes in the Java library—there are thousands

of them (see Figure 12). Most of the classes are rather specialized, and only a few are

of interest to the beginning programmer.

Locate the Rectangle link in the left pane, preferably by using the search function

of your browser. Click on the link, and the right pane shows all the features of the

Rectangle class (see Figure 13).

Figure 12

The API Documentation of the Standard Java Library

50

51

Chapter 2 Using Objects Page 25 of 67

Java Concepts, 5th Edition

Figure 13

The API Documentation for the Rectangle Class

The API documentation for each class starts out with a section that describes the

purpose of the class. Then come summary tables for the constructors and methods (see

Figure 14). Click on the link of a method to get a detailed description (see Figure 15).

As you can see, the Rectangle class has quite a few methods. While occasionally

intimidating for the beginning programmer, this is a strength of the standard library. If

you ever need to do a computation involving rectangles, chances are that there is a

method that does all the work for you.
51

Chapter 2 Using Objects Page 26 of 67

Java Concepts, 5th Edition

Figure 14

The Method Summary for the Rectangle Class

Figure 15

The API Documentation of the translate Method

51

52

Chapter 2 Using Objects Page 27 of 67

Java Concepts, 5th Edition

Appendix C contains an abbreviated version of the API documentation. You may find

the abbreviated documentation easier to use than the full documentation. It is fine if

you rely on the abbreviated documentation for your first programs, but you should

eventually move on to the real thing.

SELF CHECK

23. Look at the API documentation of the String class. Which method

would you use to obtain the string “hello, world!” from the string

“Hello, World!”?

24. In the API documentation of the String class, look at the description of

the trim method. What is the result of applying trim to the string “

Hello, Space !”? (Note the spaces in the string.)

 PRODUCTIVITY HINT 2.1: Don't Memorize—Use Online

Help

The Java library has thousands of classes and methods. It is neither necessary nor

useful trying to memorize them. Instead, you should become familiar with using the

API documentation. Since you will need to use the API documentation all the time,

it is best to download and install it onto your computer, particularly if your

computer is not always connected to the Internet. You can download the

documentation from

http://java.sun.com/javase/downloads/index.html.

2.10 Object References

In Java, a variable whose type is a class does not actually hold an object. It merely

holds the memory location of an object. The object itself is stored elsewhere—see

Figure 16.

We use the technical term object reference to denote the memory location of an object.

When a variable contains the memory location of an object, we say that it refers to an

object. For example, after the statement

52

53

Chapter 2 Using Objects Page 28 of 67

Java Concepts, 5th Edition

An object reference describes the location of an object.

Rectangle box = new Rectangle(5, 10, 20, 30);

Figure 16

An Object Variable Containing an Object Reference

Figure 17

Two Object Variables Referring to the Same Object

Figure 18

A Number Variable Stores a Number

the variable box refers to the Rectangle object that the new operator constructed.

Technically speaking, the new operator returned a reference to the new object, and

that reference is stored in the box variable.

53

54

Chapter 2 Using Objects Page 29 of 67

Java Concepts, 5th Edition

It is very important that you remember that the box variable does not contain the

object. It refers to the object. You can have two object variables refer to the same

object:

Rectangle box2 = box;

Now you can access the same Rectangle object both as box and as box2, as

shown in Figure 17.

Multiple object variables can contain references to the same object.

However, number variables actually store numbers. When you define

int luckyNumber = 13;

then the luckyNumber variable holds the number 13, not a reference to the number

(see Figure 18).

You can see the difference between number variables and object variables when you

make a copy of a variable. When you copy a primitive type value, the original and the

copy of the number are independent values. But when you copy an object reference,

both the original and the copy are references to the same object.

Number variables store numbers. Object variables store references.

Consider the following code, which copies a number and then changes the copy (see

Figure 19):

int luckyNumber = 13;

int luckyNumber2 = luckyNumber;

luckyNumber2 = 12;

Now the variable luckyNumber contains the value 13, and luckyNumber2

contains 12.

Now consider the seemingly analogous code with Rectangle objects.

Rectangle box = new Rectangle(5, 10, 20, 30);

Chapter 2 Using Objects Page 30 of 67

Java Concepts, 5th Edition

Rectangle box2 = box; // See Figure 20

box2.translate(15, 25);

Figure 19

Copying Numbers

Since box and box2 refer to the same rectangle after step , both variables refer to

the moved rectangle after the call to the translate method.

54

55

Chapter 2 Using Objects Page 31 of 67

Java Concepts, 5th Edition

Figure 20

Copying Object References

There is a reason for the difference between numbers and objects. In the computer,

each number requires a small amount of memory. But objects can be very large. It is

far more efficient to manipulate only the memory location.

Frankly speaking, most programmers don't worry too much about the difference

between objects and object references. Much of the time, you will have the correct

intuition when you think of “the object box” rather than the technically more accurate

“the object reference stored in box”. The difference between objects and object

55

56

Chapter 2 Using Objects Page 32 of 67

Java Concepts, 5th Edition

references only becomes apparent when you have multiple variables that refer to the

same object.

SELF CHECK

25. What is the effect of the assignment greeting2 = greeting?

26. After calling greeting2.toUpperCase(), what are the contents of

greeting and greeting2?

 RANDOM FACT 2.1: Mainframes—When Dinosaurs

Ruled the Earth

When International Business Machines Corporation (IBM), a successful

manufacturer of punched-card equipment for tabulating data, first turned its

attention to designing computers in the early 1950s, its planners assumed that there

was a market for perhaps 50 such devices, for installation by the government, the

military, and a few of the country's largest corporations. Instead, they sold about

1,500 machines of their System 650 model and went on to build and sell more

powerful computers.

The so-called mainframe computers of the 1950s, 1960s, and 1970s were huge.

They filled rooms, which had to be climate-controlled to protect the delicate

equipment (see A Mainframe Computer). Today, because of miniaturization

technology, even mainframes are getting smaller, but they are still very expensive.

(At the time of this writing, the cost for a typical mainframe is several million

dollars.)

These huge and expensive systems were an immediate success when they first

appeared, because they replaced many roomfuls of even more expensive

employees, who had previously performed the tasks by hand. Few of these

computers do any exciting computations. They keep mundane information, such as

billing records or airline reservations; they just keep lots of them.

IBM was not the first company to build mainframe computers; that honor belongs

to the Univac Corporation. However, IBM soon became the major player, partially

because of technical excellence and attention to customer needs and partially

because it exploited its strengths and structured its products and services in a way

Chapter 2 Using Objects Page 33 of 67

Java Concepts, 5th Edition

that made it difficult for customers to mix them with those of other vendors. In the

1960s, IBM's competitors, the so-called “Seven Dwarfs”—GE, RCA, Univac,

Honeywell, Burroughs, Control Data, and NCR—fell on hard times. Some went out

of the computer business altogether, while others tried unsuccessfully to combine

their strengths by merging their computer operations. It was generally predicted that

they would eventually all fail. It was in this atmosphere that the U.S. government

brought an antitrust suit against IBM in 1969. The suit went to trial in 1975 and

dragged on until 1982, when the Reagan Administration abandoned it, declaring it

“without merit”.

A Mainframe Computer

Of course, by then the computing landscape had changed completely. Just as the

dinosaurs gave way to smaller, nimbler creatures, three new waves of computers

had appeared: the minicomputers, workstations, and microcomputers, all

engineered by new companies, not the Seven Dwarfs. Today, the importance of

56

57

Chapter 2 Using Objects Page 34 of 67

Java Concepts, 5th Edition

mainframes in the marketplace has diminished, and IBM, while still a large and

resourceful company, no longer dominates the computer market.

Mainframes are still in use today for two reasons. They still excel at handling large

data volumes. More importantly, the programs that control the business data have

been refined over the last 30 or more years, fixing one problem at a time. Moving

these programs to less expensive computers, with different languages and operating

systems, is difficult and error-prone. In the 1990s, Sun Microsystems, a leading

manufacturer of workstations and servers—and the inventor of Java—was eager to

prove that its mainframe system could be “downsized” and replaced by its own

equipment. Sun eventually succeeded, but it took over five years—far longer than it

expected.

2.11 Graphical Applications and Frame Windows

This is the first of several sections that teach you how to write graphical applications:

applications that display drawings inside a window. Graphical applications look more

attractive than the console applications that show plain text in a console window.

The material in this section, as well as the sections labeled “Graphics Track” in other

chapters, are entirely optional. Feel free to skip them if you are not interested in

drawing graphics.

A graphical application shows information inside a frame window: a window with a

title bar, as shown in Figure 21. In this section, you will learn how to display a frame

window. In Section 3.9, you will learn how to create a drawing inside the frame.

To show a frame, construct a JFrame object, set its size, and make it visible.

To show a frame, carry out the following steps:

1. Construct an object of the JFrame class:

JFrame frame = new JFrame();

2. Set the size of the frame

frame.setSize(300, 400);

57

58

Chapter 2 Using Objects Page 35 of 67

Java Concepts, 5th Edition

This frame will be 300 pixels wide and 400 pixels tall. If you omit this step the

frame will be 0 by 0 pixels, and you won't be able to see it.

3. If you'd like, set the title of the frame.

frame.setTitle("An Empty Frame");

If you omit this step, the title bar is simply left blank.

4. Set the “default close operation”:

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Figure 21

A Frame Window

When the user closes the frame, the program automatically exits. Don't omit this

step. If you do, the program continues running even after the frame is closed.

5. Make the frame visible.

frame.setVisible(true);

58

59

Chapter 2 Using Objects Page 36 of 67

Java Concepts, 5th Edition

The simple program below shows all of these steps. It produces the empty frame

shown in Figure 21.

The JFrame class is a part of the javax.swing package. Swing is the nickname

for the graphical user interface library in Java. The “x” in javax denotes the fact that

Swing started out as a Java extension before it was added to the standard library.

We will go into much greater detail about Swing programming in Chapters 3, 9, 10,

and 18. For now, consider this program to be the essential plumbing that is required to

show a frame.

ch02/emptyframe/EmptyFrameViewer.java

 1 import javax.swing.JFrame;
 2
 3 public class EmptyFrameViewer
 4 {
 5 public static void main(String[] args)
 6 {
 7 JFrame frame = new JFrame();
 8
 9 frame.setSize(300, 400);
10 frame.setTitle(“An Empty Frame”);
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON
12
13 frame.setVisible(true);
14 }
15 }

SELF CHECK

27. How do you display a square frame with a title bar that reads “Hello,

World!”?

28. How can a program display two frames at once?

2.12 Drawing on a Component

This section continues the optional graphics track. You will learn how to make shapes

appear inside a frame window. The first drawing will be exceedingly modest: just two

Chapter 2 Using Objects Page 37 of 67

Java Concepts, 5th Edition

rectangles (see Figure 22). You'll soon see how to produce more interesting drawings.

The purpose of this example is to show you the basic outline of a program that creates

a drawing. You cannot draw directly onto a frame. Whenever you want to show

anything inside a frame, be it a button or a drawing, you have to construct a component

object and add it to the frame. In the Swing toolkit, the JComponent class represents

a blank component.

Figure 22

Drawing Rectangles

Since we don't want to add a blank component, we have to modify the JComponent

class and specify how the component should be painted. The solution is to define a

new class that extends the JComponent class. You will learn about the process of

extending classes in Chapter 10. For now, simply use the following code as a template.

In order to display a drawing in a frame, define a class that extends the

JComponent class.

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)

59

60

Chapter 2 Using Objects Page 38 of 67

Java Concepts, 5th Edition

 {
 Drawing instructions go here
 }
}

The extends keyword indicates that our component class,

RectangleComponent, inherits the methods of JComponent. However, the

RectangleComponent is different from the plain JComponent in one respect:

The paintComponent method will contain instructions to draw the rectangles.

Place drawing instructions inside the paintComponent method. That method is

called whenever the component needs to be repainted.

When the window is shown for the first time, the paintComponent method is

called automatically. The method is also called when the window is resized, or when it

is shown again after it was hidden.

The paintComponent method receives an object of type Graphics. The

Graphics object stores the graphics state—the current color, font, and so on, that are

used for drawing operations.

The Graphics class lets you manipulate the graphics state (such as the current

color).

However, the Graphics class is primitive. When programmers clamored for a more

object-oriented approach for drawing graphics, the designers of Java created the

Graphics2D class, which extends the Graphics class. Whenever the Swing toolkit

calls the paintComponent method, it actually passes a parameter of type

Graphics2D. Programs with simple graphics do not need this feature. Because we

want to use the more sophisticated methods to draw two-dimensional graphics objects,

we need to recover the Graphics2D. This is accomplished by using a cast:

The Graphics2D class has methods to draw shape objects.

Use a cast to recover the Graphics2D object from the Graphics parameter of

the paintComponent method.

60

61

Chapter 2 Using Objects Page 39 of 67

Java Concepts, 5th Edition

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;
 . . .
 }
}

Now you are ready to draw shapes. The draw method of the Graphics2D class can

draw shapes, such as rectangles, ellipses, line segments, polygons, and arcs. Here we

draw a rectangle:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 . . .
 Rectangle box = new Rectangle(5, 10, 20,
30);
 g2.draw(box);
 . . .
 }
}

Following is the source code for the RectangleComponent class. Note that the

paintComponent method of the RectangleComponent class draws two

rectangles.

As you can see from the import statements, the Graphics and Graphics2D

classes are part of the java.awt package.

ch02/rectangles/RectangleComponent.java

 1 import java.awt.Graphics;
 2 import java.awt.Graphics2D;
 3 import java.awt.Rectangle;
 4 import javax.swing.JComponent;
 5
 6 /**

 7 A component that draws two rectangles.

Chapter 2 Using Objects Page 40 of 67

Java Concepts, 5th Edition

 8 */
 9 public class RectangleComponent extends
JComponent
10 {
11 public void paintComponent(Graphics g)
12 {

13 // RecoverGraphics2D
14 Graphics2D g2 = (Graphics2D) g;
15

16 // Construct a rectangle and draw it
17 Rectangle box = new Rectangle(5, 10,
20, 30);
18 g2.draw(box);
19

20 // Move rectangle 15 units to the right and 25 units

down
21 box.translate(15, 25);
22

23 // Draw moved rectangle
24 g2.draw(box);
25 }
26 }

In order to see the drawing, one task remains. You need to display the frame into

which you added a component object. Follow these steps:

1. Construct a frame as described in the preceding section.

2. Construct an object of your component class:

RectangleComponent component = new
RectangleComponent();

3. Add the component to the frame:

frame.add(component);

4. Make the frame visible, as described in the preceding section.

The following listing shows the complete process.

61

62

Chapter 2 Using Objects Page 41 of 67

Java Concepts, 5th Edition

ch02/rectangles/RectangleViewer.java

 1 import javax.swing.JFrame;
 2
 3 public class RectangleViewer
 4 {
 5 public static void main(String[] args)
 6 {
 7 JFrame frame = new JFrame();
 8 frame.setSize(300, 400);
 9 frame.setTitle(“Two rectangles”);
10 frame.setDefaultCloseOperation(JFrame.EXIT
11
12 RectangleComponent component = new
RectangleComponent();
13 frame.add(component);
14
15 frame.setVisible(true);
16 }
17 }

Note that the rectangle drawing program consists of two classes:

• The RectangleComponent class, whose paintComponent method

produces the drawing

• The RectangleViewer class, whose main method constructs a frame and a

RectangleComponent, adds the component to the frame, and makes the

frame visible

SELF CHECK

29. How do you modify the program to draw two squares?

30. How do you modify the program to draw one rectangle and one square?

31. What happens if you call g.draw(box) instead of g2.draw(box)?

62

63

Chapter 2 Using Objects Page 42 of 67

Java Concepts, 5th Edition

 ADVANCED TOPIC 2.2: Applets

In the preceding section, you learned how to write a program that displays graphical

shapes. Some people prefer to use applets for learning about graphics programming.

Applets have two advantages. They don't need separate component and viewer

classes; you only implement a single class. And, more importantly, applets run

inside a web browser, allowing you to place your creations on a web page for all the

world to admire.

Applets are programs that run inside a web browser.

To implement an applet, use this code outline:

public class MyApplet extends JApplet
{
 public void paint(Graphics g)
 {

 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;

 // Drawing instructions go here
 . . .
 }
}

This is almost the same outline as for a component, with two minor differences:

1. You extend JApplet, not JComponent.

2. You place the drawing code inside the paint method, not inside

paintComponent.

The following applet draws two rectangles:

ch02/applet/RectangleApplet.java

 1 import java.awt.Graphics;
 2 import java.awt.Graphics2D;
 3 import java.awt.Rectangle;
 4 import javax.swing.JApplet;
 5

Chapter 2 Using Objects Page 43 of 67

Java Concepts, 5th Edition

 6 /**

 7 An applet that draws two rectangles.
 8 */
 9 public class RectangleApplet extends
JApplet
10 {
11 public void paint(Graphics g)
12 {

13 // Prepare for extended graphics
14 Graphics2D g2 = (Graphics2D) g;
15

16 // Construct a rectangle and draw it
17 Rectangle box = new
Rectangle(5, 10, 20, 30);
18 g2.draw(box);
19

20 // Move rectangle 15 units to the right and 25

units down
21 box.translate(15, 25);
22

23 // Draw moved rectangle
24 g2.draw(box);
25 }
26 }

To run this applet, you need an HTML file with an applet tag. HTML, the

hypertext markup language, is the language used to describe web pages. (See

Appendix H for more information on HTML.) Here is the simplest possible file to

display the rectangle applet:

To run an applet, you need an HTML file with the applet tag.

ch02/applet/RectangleApplet.html

1 <applet code=“RectangleApplet.class”
width=“300” height=“400”>
2 </applet>

If you know HTML, you can proudly explain your creation, by adding text and

more HTML tags:

63

64

Chapter 2 Using Objects Page 44 of 67

Java Concepts, 5th Edition

ch02/applet/RectangleAppletExplained.html

 1 <html>
 2 <head>
 3 <title>Two rectangles</title>
 4 </head>
 5 <body>
 6 <p>Here is my <i>first
applet</i>:</p>
 7 <applet code=“RectangleApplet.class”
width=“300” height=“400”>
 8 </applet>
 9 </body>
10 </html>

An HTML file can have multiple applets. Simply add a separate applet tag

for each applet.

You can give the HTML file any name you like. It is easiest to give the HTML

file the same name as the applet. But some development environments already

generate an HTML file with the same name as your project to hold your

project notes; then you must give the HTML file containing your applet a

different name.

To run the applet, you have two choices. You can use the applet viewer, a

program that is included with the Java Software Development Kit from Sun

Microsystems. You simply start the applet viewer, giving it the name of the

HTML file that contains your applets:

appletviewer RectangleApplet.html 64

Chapter 2 Using Objects Page 45 of 67

Java Concepts, 5th Edition

The applet viewer only shows the applet, not the HTML text (see An Applet in

the Applet Viewer).

You view applets with the applet viewer or a Java-enabled browser.

You can also show the applet inside any Java 2–enabled web browser, such as

Netscape or Mozilla. (If you use Internet Explorer, you probably need to

configure it. By default, Microsoft supplies either an outdated version of Java

or no Java at all. Go to the web site [4] and install the Java plugin.) An Applet

in a Web Browser shows the applet running in a browser. As you can see, both

the text and the applet are displayed.

2.13 Ellipses, Lines, Text, and Color

In Section 2.12 you learned how to write a program that draws rectangles. In this

section you will learn how to draw other shapes: ellipses and lines. With these

graphical elements, you can draw quite a few interesting pictures.

65

Chapter 2 Using Objects Page 46 of 67

Java Concepts, 5th Edition

To draw an ellipse, you specify its bounding box (see Figure 23) in the same way that

you would specify a rectangle, namely by the x- and y-coordinates of the top-left

corner and the width and height of the box.

However, there is no simple Ellipse class that you can use. Instead, you must use

one of the two classes Ellipse2D.Float and Ellipse2D.Double, depending

on whether you want to store the ellipse coordinates as single- or double-precision

floating-point values. Because the latter are more convenient to use in Java, we will

always use the Ellipse2D.Double class. Here is how you construct an ellipse:

Figure 23

An Ellipse and Its Bounding Box

Ellipse2D.Double ellipse = new Ellipse2D.Double(x, y,
width, height);

The class name Ellipse2D.Double looks different from the class names that you

have encountered up to now. It consists of two class names Ellipse2D and Double

separated by a period (.). This indicates that Ellipse2D.Double is a so-called

inner class inside Ellipse2D. When constructing and using ellipses, you don't

actually need to worry about the fact that Ellipse2D.Double is an inner class—

just think of it as a class with a long name. However, in the import statement at the

top of your program, you must be careful that you import only the outer class:

65

66

Chapter 2 Using Objects Page 47 of 67

Java Concepts, 5th Edition

Ellipse2D.Double and Line2D.Double are classes that describe graphical shapes.

import java.awt.geom.Ellipse2D;

Drawing an ellipse is easy: Use exactly the same draw method of the Graphics2D

class that you used for drawing rectangles.

g2.draw(ellipse);

To draw a circle, simply set the width and height to the same values:

Ellipse2D.Double circle = new Ellipse2D.Double(x, y,
diameter, diameter);
g2.draw(circle);

Figure 24

Basepoint and Baseline

Notice that (x, y) is the top-left corner of the bounding box, not the center of the

circle.

To draw a line, use an object of the Line2D.Double class. A line is constructed by

specifying its two end points. You can do this in two ways. Simply give the x- and

y-coordinates of both end points:

Line2D.Double segment = new Line2D.Double(x1, y1, x2,
y2);

Or specify each end point as an object of the Point2D.Double class:

Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);

66

67

Chapter 2 Using Objects Page 48 of 67

Java Concepts, 5th Edition

Line2D.Double segment = new Line2D.Double(from, to);

The second option is more object-oriented and is often more useful, particularly if the

point objects can be reused elsewhere in the same drawing.

You often want to put text inside a drawing, for example, to label some of the parts.

Use the drawString method of the Graphics2D class to draw a string anywhere

in a window. You must specify the string and the x- and y-coordinates of the basepoint

of the first character in the string (see Figure 24). For example,

The drawString method draws a string, starting at its basepoint.

g2.drawString(“Message”, 50, 100);

2.13.1 Colors

When you first start drawing, all shapes and strings are drawn with a black pen. To

change the color, you need to supply an object of type Color. Java uses the RGB

color model. That is, you specify a color by the amounts of the primary colors—red,

green, and blue—that make up the color. The amounts are given as integers between

0 (primary color not present) and 255 (maximum amount present). For example,

Color magenta = new Color(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding

a bright purple color called magenta.

For your convenience, a variety of colors have been predefined in the Color class.

Table 1 shows those predefined colors and their RGB values. For example,

Color.PINK has been predefined to be the same color as new Color(255,

175, 175).

When you set a new color in the graphics context, it is used for subsequent

drawing operations.

To draw a rectangle in a different color, first set the color of the Graphics2D

object, then call the draw method:

g2.setColor(Color.RED);

Chapter 2 Using Objects Page 49 of 67

Java Concepts, 5th Edition

g2.draw(circle); // draws the shape in red

If you want to color the inside of the shape, use the fill method instead of the

draw method. For example,

g2.fill(circle);

fills the inside of the circle with the current color.

Table 1 Predefined Colors and their RGB Values

Color RGB Value
Color.BLACK 0, 0, 0
Color.BLUE 0, 0, 255
Color.CYAN 0, 255, 255
Color.GRAY 128, 128, 128

Color.DARKGRAY 64, 64, 64
Color.LIGHTGRAY 192, 192, 192
Color.GREEN 0, 255, 0
Color.MAGENTA 255, 0, 255
Color.ORANGE 255, 200, 0
Color.PINK 255, 175, 175
Color.RED 255, 0, 0
Color.WHITE 255, 255, 255
Color.YELLOW 255, 255, 0

The following program puts all these shapes to work, creating a simple drawing (see

Figure 25).

ch02/faceviewer/FaceComponent.java

 1 import java.awt.Color;
 2 import java.awt.Graphics;
 3 import java.awt.Graphics2D;
 4 import java.awt.Rectangle;
 5 import java.awt.geom.Ellipse2D;
 6 import java.awt.geom.Line2D;
 7 import javax.swing.JPanel;
 8 import javax.swing.JComponent;
 9
10 /**

11 A component that draws an alien face.
12 */
13 public class FaceComponent extends JComponent
14 {

67

68

68

69

Chapter 2 Using Objects Page 50 of 67

Java Concepts, 5th Edition

15 public void paintComponent(Graphics g)
16 {

17 // Recover Graphics2D
18 Graphics2D g2 = (Graphics2D) g;
19

20 // Draw the head
21 Ellipse2D.Double head = new
Ellipse2D.Double(5, 10, 100, 150);
22 g2.draw(head);
23

24 // Draw the eyes
25 Line2D.Double eye1 = new
Line2D.Double(25, 70, 45, 90);
26 g2.draw(eye1);
27
28 Line2D.Double eye2 = new
Line2D.Double(85, 70, 65, 90);
29 g2.draw(eye2);
30

31 // Draw the mouth
32 Rectangle mouth = new Rectangle(30,
130, 50, 5);
33 g2.setColor(Color.RED);
34 g2.fill(mouth);
35

36 // Draw the greeting
37 g2.setColor(Color.BLUE);
38 g2.drawString(“Hello, World!”, 5,
175);
39 }
40 }

ch02/faceviewer/FaceViewer.java

 1 import javax.swing.JFrame;
 2
 3 public class FaceViewer
 4 {
 5 public static void main(String[] args)
 6 {
 7 JFrame frame = new JFrame();
 8 frame.setSize(300, 400);
 9 frame.setTitle(“An Alien Face”);

69

Chapter 2 Using Objects Page 51 of 67

Java Concepts, 5th Edition

10 frame.setDefaultCloseOperation(JFrame.
11
12 FaceComponent component = new
FaceComponent();
13 frame.add(component);
14
15 frame.setVisible(true);
16 }
17 }

Figure 25

An Alien Face

SELF CHECK

32. Give instructions to draw a circle with center (100, 100) and radius 25.

33. Give instructions to draw a letter “V” by drawing two line segments.

34. Give instructions to draw a string consisting of the letter “V”.

35. What are the RGB color values of Color.BLUE?

36. How do you draw a yellow square on a red background?

69

70

Chapter 2 Using Objects Page 52 of 67

Java Concepts, 5th Edition

 RANDOM FACT 2.2: The Evolution of the Internet

In 1962, J.C.R. Licklider was head of the first computer research program at

DARPA, the Defense Advanced Research Projects Agency. He wrote a series of

papers describing a “galactic network” through which computer users could

access data and programs from other sites. This was well before computer

networks were invented. By 1969, four computers—three in California and one in

Utah—were connected to the ARPANET, the precursor of the Internet. The

network grew quickly, linking computers at many universities and research

organizations. It was originally thought that most network users wanted to run

programs on remote computers. Using remote execution, a researcher at one

institution would be able to access an underutilized computer at a different site. It

quickly became apparent that remote execution was not what the network was

actually used for. Instead, the “killer application” was electronic mail: the transfer

of messages between computer users at different locations.

In 1972, Bob Kahn proposed to extend ARPANET into the Internet: a collection

of interoperable networks. All networks on the Internet share common protocols

for data transmission. Kahn and Vinton Cerf developed protocols, now called

TCP/IP (Transmission Control Protocol/Internet Protocol). On January 1, 1983,

all hosts on the Internet simultaneously switched to the TCP/IP protocol (which is

used to this day).

Over time, researchers, computer scientists, and hobbyists published increasing

amounts of information on the Internet. For example, the GNU (GNU's Not

UNIX) project is producing a free set of high-quality operating system utilities

and program development tools [5]. Project Gutenberg makes available the text of

important classical books, whose copyright has expired, in computer-readable

form [6]. In 1989, Tim Berners-Lee started work on hyperlinked documents,

allowing users to browse by following links to related documents. This

infrastructure is now known as the World Wide Web (WWW).

The first interfaces to retrieve this information were, by today's standards,

unbelievably clumsy and hard to use. In March 1993, WWW traffic was 0.1% of

all Internet traffic. All that changed when Marc Andreesen, then a graduate

student working for NCSA (the National Center for Supercomputing

70

71

Chapter 2 Using Objects Page 53 of 67

Java Concepts, 5th Edition

Applications), released Mosaic. Mosaic displayed web pages in graphical form,

using images, fonts, and colors (see The NCSA Mosaic Browser figure).

Andreesen went on to fame and fortune at Netscape, and Microsoft licensed the

Mosaic code to create Internet Explorer. By 1996, WWW traffic accounted for

more than half of the data transported on the Internet.

The NCSA Mosaic Browser

CHAPTER SUMMARY

1. In Java, every value has a type.

2. You use variables to store values that you want to use at a later time.

3. Identifiers for variables, methods, and classes are composed of letters, digits,

and underscore characters.

4. By convention, variable names should start with a lowercase letter.

Chapter 2 Using Objects Page 54 of 67

Java Concepts, 5th Edition

5. Use the assignment operator (=) to change the value of a variable.

6. All variables must be initialized before you access them.

7. Objects are entities in your program that you manipulate by calling methods.

8. A method is a sequence of instructions that accesses the data of an object.

9. A class defines the methods that you can apply to its objects.

10. The public interface of a class specifies what you can do with its objects. The

hidden implementation describes how these actions are carried out.

11. A parameter is an input to a method.

12. The implicit parameter of a method call is the object on which the method is

invoked.

13. The return value of a method is a result that the method has computed for use by

the code that called it.

14. A method name is overloaded if a class has more than one method with the same

name (but different parameter types).

15. The double type denotes floating-point numbers that can have fractional parts.

16. In Java, numbers are not objects and number types are not classes.

17. Numbers can be combined by arithmetic operators such as +, −, and *.

18. Use the new operator, followed by a class name and parameters, to construct

new objects.

19. An accessor method does not change the state of its implicit parameter. A

mutator method changes the state.

20. Determining the expected result in advance is an important part of testing.

21. Java classes are grouped into packages. Use the import statement to use

classes that are defined in other packages.

71

72

Chapter 2 Using Objects Page 55 of 67

Java Concepts, 5th Edition

22. The API (Application Programming Interface) documentation lists the classes

and methods of the Java library.

23. An object reference describes the location of an object.

24. Multiple object variables can contain references to the same object.

25. Number variables store numbers. Object variables store references.

26. To show a frame, construct a JFrame object, set its size, and make it visible.

27. In order to display a drawing in a frame, define a class that extends the

JComponent class.

28. Place drawing instructions inside the paintComponent method. That method

is called whenever the component needs to be repainted.

29. The Graphics class lets you manipulate the graphics state (such as the current

color).

30. The Graphics2D class has methods to draw shape objects.

31. Use a cast to recover the Graphics2D object from the Graphics parameter

of the paintComponent method.

32. Applets are programs that run inside a web browser.

33. To run an applet, you need an HTML file with the applet tag.

34. You view applets with the applet viewer or a Java-enabled browser.

35. Ellipse2D.Double and Line2D.Double are classes that describe

graphical shapes.

36. The drawString method draws a string, starting at its basepoint.

37. When you set a new color in the graphics context, it is used for subsequent

drawing operations.

72

73

Chapter 2 Using Objects Page 56 of 67

Java Concepts, 5th Edition

FURTHER READING

1. http://www.bluej.org The BlueJ development environment.

2. http://drjava.sourceforge.net The Dr. Java development

environment.

3. http://java.sun.com/javase/6/docs/api/index.html

The documentation of the Java API.

4. http://java.com The consumer-oriented web site for Java

technology. Download the Java plugin from this site.

5. http://www.gnu.org The web site of the GNU project.

6. http://www.gutenberg.org The web site of Project Gutenberg,

offering the text of classical books.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.awt.Color
java.awt.Component
 getHeight
 getWidth
 setSize
 setVisible
java.awt.Frame
 setTitle
java.awt.geom.Ellipse2D.Double
java.awt.geom.Line2D.Double
java.awt.geom.Point2D.Double
java.awt.Graphics
 setColor
java.awt.Graphics2D
 draw
 drawString
 fill
java.awt.Rectangle
 translate
 getX
 getY
 getHeight

Chapter 2 Using Objects Page 57 of 67

Java Concepts, 5th Edition

 getWidth
java.lang.String
 length
 replace
 toLowerCase
 toUpperCase
javax.swing.JComponent
 paintComponent
javax.swing.JFrame
 setDefaultCloseOperation

REVIEW EXERCISES

★ Exercise R2.1. Explain the difference between an object and an object

reference.

★ Exercise R2.2. Explain the difference between an object and an object

variable.

★ Exercise R2.3. Explain the difference between an object and a class.

★★Exercise R2.4. Give the Java code for constructing an object of class

Rectangle, and for declaring an object variable of class Rectangle.

★★Exercise R2.5. Explain the difference between the = symbol in Java and in

mathematics.

★★★Exercise R2.6. Uninitialized variables can be a serious problem. Should

you always initialize every int or double variable with zero? Explain

the advantages and disadvantages of such a strategy.

★★Exercise R2.7. Give Java code to construct the following objects:

a. A rectangle with center (100, 100) and all side lengths equal to 50

b. A string “Hello, Dave!”

Create objects, not object variables.

★★Exercise R2.8. Repeat Exercise R2.7, but now define object variables that

are initialized with the required objects.

73

74

Chapter 2 Using Objects Page 58 of 67

Java Concepts, 5th Edition

★★Exercise R2.9. Find the errors in the following statements:

a. Rectangle r = (5, 10, 15, 20);

b. double width = Rectangle(5, 10, 15,
20).getWidth();

c. Rectangle r;

r.translate(15, 25);

d. r = new Rectangle();

r.translate("far, far away!");

★ Exercise R2.10. Name two accessor methods and two mutator methods of

the Rectangle class.

★★Exercise R2.11. Look into the API documentation of the Rectangle

class and locate the method

void add(int newx, int newy)

Read through the method documentation. Then determine the result of the

following statements:

Rectangle box = new Rectangle(5, 10, 20, 30);
box.add(0, 0);

If you are not sure, write a small test program or use BlueJ.

★ Exercise R2.12. Find an overloaded method of the String class.

★ Exercise R2.13. Find an overloaded method of the Rectangle class.

★GExercise R2.14. What is the difference between a console application and a

graphical application?

★★GExercise R2.15. Who calls the paintComponent method of a

component? When does the call to the paintComponent method occur?

★★GExercise R2.16. Why does the parameter of the paintComponent

method have type Graphics and not Graphics2D?

74

75

Chapter 2 Using Objects Page 59 of 67

Java Concepts, 5th Edition

★★GExercise R2.17. What is the purpose of a graphics context?

★★GExercise R2.18. Why are separate viewer and component classes used for

graphical programs?

★GExercise R2.19. How do you specify a text color?

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★TExercise P2.1. Write an AreaTester program that constructs a

Rectangle object and then computes and prints its area. Use the

getWidth and getHeight methods. Also print the expected answer.

★TExercise P2.2. Write a PerimeterTester program that constructs a

Rectangle object and then computes and prints its perimeter. Use the

getWidth and getHeight methods. Also print the expected answer.

★★Exercise P2.3. Write a program called FourRectanglePrinter that

constructs a Rectangle object, prints its location by calling

System.out.println(box), and then translates and prints it three

more times, so that, if the rectangles were drawn, they would form one large

rectangle:

★★★Exercise P2.4.The intersection method computes the intersection

of two rectangles—that is, the rectangle that is formed by two overlapping

rectangles:

75

76

Chapter 2 Using Objects Page 60 of 67

Java Concepts, 5th Edition

You call this method as follows:

Rectangle r3 = r1.intersection(r2);

Write a program IntersectionPrinter that constructs two

rectangle objects, prints them, and then prints the rectangle object that

describes the intersection. Then the program should print the result of the

intersection method when the rectangles do not overlap. Add a

comment to your program that explains how you can tell whether the

resulting rectangle is empty.

★★Exercise P2.5. In the Java library, a color is specified by its red, green, and

blue components between 0 and 255. Write a program BrighterDemo

that constructs a Color object with red, green, and blue values of 50, 100,

and 150. Then apply the brighter method and print the red, green, and

blue values of the resulting color. (You won't actually see the color—see

Section 2.13 on how to display the color.)

★★Exercise P2.6. Repeat Exercise P2.5, but apply the darker method twice

to the predefined object Color.RED. Call your class DarkerDemo.

★★Exercise P2.7. The Random class implements a random number generator,

which produces sequences of numbers that appear to be random. To

generate random integers, you construct an object of the Random class, and

then apply the nextInt method. For example, the call

generator.nextInt(6) gives you a random number between 0 and 5.

Chapter 2 Using Objects Page 61 of 67

Java Concepts, 5th Edition

Write a program DieSimulator that uses the Random class to simulate

the cast of a die, printing a random number between 1 and 6 every time that

the program is run.

★★★Exercise P2.8. Write a program LotteryPrinter that picks a

combination in a lottery. In this lottery, players can choose 6 numbers

(possibly repeated) between 1 and 49. (In a real lottery, repetitions aren't

allowed, but we haven't yet discussed the programming constructs that

would be required to deal with that problem.) Your program should print

out a sentence such as “Play this combination—it'll make you rich!”,

followed by a lottery combination.

★★TExercise P2.9. Write a program ReplaceTester that encodes a string

by replacing all letters “i” with “!” and all letters “s” with “$”. Use

the replace method. Demonstrate that you can correctly encode the

string “Mississippi”. Print both the actual and expected result.

★★★Exercise P2.10. Write a program HollePrinter that switches the

letters “e” and “o” in a string. Use the replace method repeatedly.

Demonstrate that the string “Hello, World!” turns into “Holle,
Werld!”

★★GExercise P2.11. Write a graphics program that draws your name in red,

contained inside a blue rectangle. Provide a class NameViewer and a

class NameComponent.

★★GExercise P2.12. Write a graphics program that draws 12 strings, one each

for the 12 standard colors, besides Color.WHITE, each in its own color.

Provide a class Color-NameViewer and a class

ColorNameComponent.

★★GExercise P2.13. Write a program that draws two solid squares: one in

pink and one in purple. Use a standard color for one of them and a custom

color for the other. Provide a class TwoSquareViewer and a class

TwoSquareComponent.

★★★GExercise P2.14. Write a program that fills the window with a large

ellipse, with a black outline and filled with your favorite color. The

76

77

Chapter 2 Using Objects Page 62 of 67

Java Concepts, 5th Edition

ellipse should touch the window boundaries, even if the window is

resized.

★★GExercise P2.15. Write a program to plot the following face.

Provide a class FaceViewer and a class FaceComponent.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 2.1. The GregorianCalendar class describes a point in time,

as measured by the Gregorian calendar, the standard calendar that is

commonly used throughout the world today. You construct a

GregorianCalendar object from a year, month, and day of the

month, like this:

GregorianCalendar cal = new GregorianCalendar();
// Today's date
GregorianCalendar eckertsBirthday = new
GregorianCalendar(1919,
 Calendar.APRIL, 9);

Use constants Calendar.JANUARY . . . Calendar.DECEMBER

to specify the month.

The add method can be used to add a number of days to a

GregorianCalendar object:

cal.add(Calendar.DAY_OF_MONTH, 10); // Now cal is ten

days from today

This is a mutator method—it changes the cal object.

The get method can be used to query a given GregorianCalendar

object:

77

78

Chapter 2 Using Objects Page 63 of 67

Java Concepts, 5th Edition

int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);
int month = cal.get(Calendar.MONTH);
int year = cal.get(Calendar.YEAR);
int weekday = cal.get(Calendar.DAY_OF_WEEK);

 // 1 is Sunday, 2 is Monday, ..., 7 is Saturday

Your task is to write a program that prints the following information:

• The date and weekday that is 100 days from today

• The weekday of your birthday

• The date that is 10,000 days from your birthday

Use the birthday of a computer scientist if you don't want to reveal your

own birthday.

★★★GProject 2.2. Run the following program:

import java.awt.Color;
import javax.swing.JFrame;
import javax.swing.JTextField;
public class FrameTester
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(200, 200);
 JTextField text = new JTextField
("Hello, World!");
 text.setBackground(Color.PINK);
 frame.add(text);
 frame.setDefaultCloseOperation(JFrame.EXIT_
 frame.setVisible(true);
 }
}

Modify the program as follows:

• Double the frame size

• Change the greeting to “Hello, your name!”

• Change the background color to pale green (see Exercise P2.5)
78

Chapter 2 Using Objects Page 64 of 67

Java Concepts, 5th Edition

ANSWERS TO SELF-CHECK QUESTIONS

1. int and String

2. Only the first two are legal identifiers.

3. String myName = “John Q. Public”

4. No, the left-hand side of the = operator must be a variable.

5. greeting = “Hello, Nina!”;

Note that

String greeting = “Hello, Nina!”;

is not the right answer—that statement defines a new variable.

6. river.length() or “Mississippi”.length()

7. System.out.println(greeting.toUpperCase());

8. It is not legal. The variable river has type String. The println

method is not a method of the String class.

9. The implicit parameter is river. There is no explicit parameter. The return

value is 11.

10. “Missississi”

11. 12

12. As public String toUpperCase(), with no explicit parameter and

return type String.

13. double

14. An int is not an object, and you cannot call a method on it.

15. (x + y) * 0.5

16. new Rectangle(90, 90, 20, 20)

78

79

Chapter 2 Using Objects Page 65 of 67

Java Concepts, 5th Edition

17. 0

18. An accessor—it doesn't modify the original string but returns a new string

with uppercase letters.

19. box.translate(−5, −10), provided the method is called

immediately after storing the new rectangle into box.

20. x: 30, y: 25

21. Because the translate method doesn't modify the shape of the rectangle.

22. Add the statement import java.util.Random; at the top of your

program.

23. toLowerCase

24. “Hello, Space !”—only the leading and trailing spaces are trimmed.

25. Now greeting and greeting2 both refer to the same String object.

26. Both variables still refer to the same string, and the string has not been

modified. Recall that the toUpperCase method constructs a new string

that contains uppercase characters, leaving the original string unchanged.

27. Modify the EmptyFrameViewer program as follows:

frame.setSize(300, 300);
frame.setTitle(“Hello, World!”);

28. Construct two JFrame objects, set each of their sizes, and call

setVisible(true) on each of them.

29. Rectangle box = new Rectangle(5, 10, 20, 20);

30. Replace the call to box.translate(15, 25) with

box = new Rectangle(20, 35, 20, 20);

31. The compiler complains that g doesn't have a draw method.

32. g2.draw(new Ellipse2D.Double(75, 75, 50, 50));

79

80

Chapter 2 Using Objects Page 66 of 67

Java Concepts, 5th Edition

33. Line2D.Double segment1 = new Line2D.Double(0, 0,
10, 30);

g2.draw(segment1);
Line2D.Double segment2 = new Line2D.Double(10, 30,
20, 0);
g2.draw(segment2);

34. g2.drawString(“V”, 0, 30);

35. 0, 0, 255

36. First fill a big red square, then fill a small yellow square inside:

g2.setColor(Color.RED);
g2.fill(new Rectangle(0, 0, 200, 200));
g2.setColor(Color.YELLOW);
g2.fill(new Rectangle(50, 50, 100, 100));

Chapter 2 Using Objects Page 67 of 67

Java Concepts, 5th Edition

Chapter 3 Implementing Classes

CHAPTER GOALS

• To become familiar with the process of implementing classes

• To be able to implement simple methods

• To understand the purpose and use of constructors

• To understand how to access instance fields and local variables

• To appreciate the importance of documentation comments

G To implement classes for drawing graphical shapes

In this chapter, you will learn how to implement your own classes. You will start

with a given design that specifies the public interface of the class—that is, the

methods through which programmers can manipulate the objects of the class. You

then need to implement the methods. This step requires that you find a data

representation for the objects, and supply the instructions for each method. You then

provide a tester to validate that your class works correctly. You also document your

efforts so that other programmers can understand and use your creation.

3.1 Levels of Abstraction

3.1.1 Black Boxes

When you lift the hood of a car, you will find a bewildering collection of

mechanical components. You will probably recognize the motor and the tank for

the wind-shield washer fluid. Your car mechanic will be able to identify many other

components, such as the transmission and the electronic control module—the

device that controls the timing of the spark plugs and the flow of gasoline into the

motor. But ask your mechanic what is inside the electronic control module, and you

will likely get a shrug.

81

81

82

Chapter 3 Implementing Classes Page 1 of 71

Java Concepts, 5th Edition

It is a black box, something that magically does its thing. A car mechanic would

never open the box—it contains electronic parts that can only be serviced at the

factory. Of course, the device may have a color other than black, and it may not

even be box-shaped. But engineers use the term “black box” to describe any device

whose inner workings are hidden. Note that a black box is not totally mysterious.

Its interaction with the outside world is well-defined. For example, the car

mechanic can test that the engine control module sends the right firing signals to the

spark plugs.

Why do car manufacturers put black boxes into cars? The black box greatly

simplifies the work of the car mechanic, leading to lower repair costs. If the box

fails, it is simply replaced with a new one. Before engine control modules were

invented, gasoline flow into the engine was regulated by a mechanical device called

a carburetor, a notoriously fussy mess of springs and latches that was expensive to

adjust and repair.

Of course, for many drivers, the entire car is a “black box”. Most drivers know

nothing about its internal workings and never want to open the hood in the first

place. The car has pedals, buttons, and a gas tank door. If you give it the right

inputs, it does its thing, transporting you from here to there.

And for the engine control module manufacturer, the transistors and capacitors that

go inside are black boxes, magically produced by an electronics component

manufacturer.

In technical terms, a black box provides encapsulation, the hiding of unimportant

details. Encapsulation is very important for human problem solving. A car

mechanic is more efficient when the only decision is to test the electronic control

module and to replace it when it fails, without having to think about the sensors and

transistors inside. A driver is more efficient when the only worry is putting gas in

the tank, not thinking about the motor or electronic control module inside.

However, there is another aspect to encapsulation. Somebody had to come up with

the right concept for each particular black box. Why do the car parts manufacturers

build electronic control modules and not another device? Why do the transportation

device manufacturers build cars and not personal helicopters?

82

83

Chapter 3 Implementing Classes Page 2 of 71

Java Concepts, 5th Edition

Concepts are discovered through the process of abstraction, taking away inessential

features, until only the essence of the concept remains. For example, “car” is an

abstraction, describing devices that transport small groups of people, traveling on

the ground, and consuming gasoline. Is that the right abstraction? Or is a vehicle

with an electric engine a “car”? We won't answer that question and instead move on

to the significance of encapsulation and abstraction in computer science.

3.1.2 Object-Oriented Design

In old times, computer programs manipulated primitive types such as numbers and

characters. As programs became more complex, they manipulated more and more

of these primitive quantities, until programmers could no longer keep up. It was just

too confusing to keep all that detail in one's head. As a result, programmers gave

wrong instructions to their computers, and the computers faithfully executed them,

yielding wrong answers.

Of course, the answer to this problem was obvious. Software developers soon

learned to manage complexity. They encapsulated routine computations, forming

software “black boxes” that can be put to work without worrying about the

internals. They used the process of abstraction to invent data types that are at a

higher level than numbers and characters.

At the time that this book is written, the most common approach for structuring

computer programming is the object-oriented approach. The black boxes from

which a program is manufactured are called objects. An object has an internal

structure—perhaps just some numbers, perhaps other objects—and a well-defined

behavior. Of course, the internal structure is hidden from the programmer who uses

it. That programmer only learns about the object's behavior and then puts it to work

in order to achieve a higher-level goal.

83

84

Chapter 3 Implementing Classes Page 3 of 71

Java Concepts, 5th Edition

Figure 1

Levels of Abstraction in Automotive Design

Figure 2

Levels of Abstraction in Software Design

Chapter 3 Implementing Classes Page 4 of 71

Java Concepts, 5th Edition

Who designs these objects? Other programmers! What do they contain? Other

objects! This is where things get confusing for beginning students. In real life, the

users of black boxes are quite different from their designers, and it is easy to

understand the levels of abstraction (see Figure 1). With computer programs, there

are also levels of abstraction (see Figure 2), but they are not as intuitive to the

uninitiated. To make matters potentially more confusing, you will often need to

switch roles, being the designer of objects in the morning and the user of the same

objects in the afternoon. In that regard, you will be like the builders of the first

automobiles, who singlehandedly produced steering wheels and axles and then

assembled their own creations into a car.

There is another challenging aspect of designing objects. Software is infinitely

more flexible than hardware because it is unconstrained from physical limitations.

Designers of electronic parts can exploit a limited number of physical effects to

create transistors, capacitors, and the like. Transportation device manufacturers

can't easily produce personal helicopters because of a whole host of physical

limitations, such as fuel consumption and safety. But in software, anything goes.

With few constraints from the outside world, you can design good and bad

abstractions with equal facility. Understanding what makes good design is an

important part of the education of a software engineer.

3.1.3 Crawl, Walk, Run

In Chapter 2, you learned to be an object user. You saw how to obtain objects, how

to manipulate them, and how to assemble them into a program. In that chapter, your

role was analogous to the automotive engineer who learns how to use an engine

control module, and how to take advantage of its behavior in order to build a car.

In this chapter, you will move on to implementing classes. A design will be handed

to you that describes the behavior of the objects of a class. You will learn the

necessary Java programming techniques that enable your objects to carry out the

desired behavior. In these sections, your role is analogous to the car parts

manufacturer who puts together an engine control module from transistors,

capacitors, and other electronic parts.

In Chapters 8 and 12, you will learn more about designing your own classes. You

will learn rules of good design, and how to discover the appropriate behavior of

84

85

Chapter 3 Implementing Classes Page 5 of 71

Java Concepts, 5th Edition

objects. In those chapters, your job is analogous to the car parts engineer who

specifies how an engine control module should function.

SELF CHECK

1. In Chapters 1 and 2, you used System.out as a black box to cause

output to appear on the screen. Who designed and implemented

System.out?

2. Suppose you are working in a company that produces personal finance

software. You are asked to design and implement a class for

representing bank accounts. Who will be the users of your class?

3.2 Specifying the Public Interface of a Class

In this section, we will discuss the process of specifying the behavior of a class.

Imagine that you are a member of a team that works on banking software. A

fundamental concept in banking is a bank account. Your task is to understand the

design of a BankAccount class so that you can implement it, which in turn allows

other programmers on the team to use it.

You need to know exactly what features of a bank account need to be implemented.

Some features are essential (such as deposits), whereas others are not important (such

as the gift that a customer may receive for opening a bank account). Deciding which

features are essential is not always an easy task. We will revisit that issue in Chapters

8 and 12. For now, we will assume that a competent designer has decided that the

following are considered the essential operations of a bank account:

In order to implement a class, you first need to know which methods are required.

• Deposit money

• Withdraw money

• Get the current balance

In Java, operations are expressed as method calls. To figure out the exact

specification of the method calls, imagine how a programmer would carry out the

85

86

Chapter 3 Implementing Classes Page 6 of 71

Java Concepts, 5th Edition

bank account operations. We'll assume that the variable harrysChecking contains

a reference to an object of type BankAccount. We want to support method calls

such as the following:

harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

Note that the first two methods are mutators. They modify the balance of the bank

account and don't return a value. The third method is an accessor. It returns a value

that you can print or store in a variable.

As you can see from the sample calls, the BankAccount class should define three

methods:

• public void deposit(double amount)

• public void withdraw(double amount)

• public double getBalance()

Recall from Chapter 2 that double denotes the double-precision floating-point type,

and void indicates that a method does not return a value.

When you define a method, you also need to provide the method body, consisting of

statements that are executed when the method is called.

public void deposit(double amount)
{
 body—filled in later
}

You will see in Section 3.5 how to fill in the method body.

Every method definition contains the following parts:

• An access specifier (usually public)

• The return type (such as void or double)

• The name of the method (such as deposit)

Chapter 3 Implementing Classes Page 7 of 71

Java Concepts, 5th Edition

• A list of the parameters of the method (if any), enclosed in parentheses (such

as double amount)

• The body of the method: statements enclosed in braces

The access specifier controls which other methods can call this method. Most

methods should be declared as public. That way, all other methods in a program

can call them. (Occasionally, it can be useful to have private methods. They can

only be called from other methods of the same class.)

A method definition contains an access specifier (usually public), a return type,

a method name, parameters, and the method body.

The return type is the type of the output value. The deposit method does not return

a value, whereas the getBalance method returns a value of type double.

SYNTAX 3.1 Method Definition

accessSpecifier returnType

methodName(parameterType parameterName, . . .)
{
 method body
}

Example:

public void deposit(double amount)
{
 . . .
}

Purpose:

To define the behavior of a method

Each parameter (or input) to the method has both a type and a name. For example, the

deposit method has a single parameter named amount of type double. For each

parameter, choose a name that is both a legal variable name and a good description of

the purpose of the input.

86

87

Chapter 3 Implementing Classes Page 8 of 71

Java Concepts, 5th Edition

Next, you need to supply constructors. We will want to construct bank accounts that

initially have a zero balance, by using the default constructor:

BankAccount harrysChecking = new BankAccount();

What if a programmer who uses our class wants to start out with another balance? A

second constructor that sets the balance to an initial value will be useful:

BankAccount momsSavings = new BankAccount(5000);

To summarize, it is specified that two constructors will be provided:

• public BankAccount()

• public BankAccount(double initialBalance)

A constructor is very similar to a method, with two important differences.

• The name of the constructor is always the same as the name of the class (e.g.,

BankAccount)

• Constructors have no return type (not even void)

Just like a method, a constructor also has a body—a sequence of statements that is

executed when a new object is constructed.

Constructors contain instructions to initialize objects. The constructor name is

always the same as the class name.

public BankAccount()
{
 body—filled in later
}

The statements in the constructor body will set the internal data of the object that is

being constructed—see Section 3.5.

Don't worry about the fact that there are two constructors with the same name—all

constructors of a class have the same name, that is, the name of the class. The

compiler can tell them apart because they take different parameters.

87

88

Chapter 3 Implementing Classes Page 9 of 71

Java Concepts, 5th Edition

When defining a class, you place all constructor and method definitions inside, like

this:

public class BankAccount
{
 // Constructors
 public BankAccount()
 {
 body—filled in later
 }
 public BankAccount(double initialBalance)
 {
 body—filled in later
 }
 // Methods
 public void deposit(double amount)
 {
 body—filled in later
 }
 public void withdraw(double amount)
 {
 body—filled in later
 }
 public double getBalance()
 {
 body—filled in later
 }
 private fields—filled in later
}

You will see how to supply the missing pieces in the following sections.

The public constructors and methods of a class form the public interface of the class.

These are the operations that any programmer can use to create and manipulate

BankAccount objects. Our BankAccount class is simple, but it allows

programmers to carry out all of the important operations that commonly occur with

bank accounts. For example, consider this program segment, authored by a

programmer who uses the BankAccount class. These statements transfer an amount

of money from one bank account to another:

// Transfer from one account to another
double transferAmount = 500;
momsSavings.withdraw(transferAmount);

Chapter 3 Implementing Classes Page 10 of 71

Java Concepts, 5th Edition

harrysChecking.deposit(transferAmount);

SYNTAX 3.2 Constructor Definition

accessSpecifier ClassName(parameterType
parameterName, . . .)
{
 constructor body
}

Example:

public BankAccount(double initialBalance)
{
 . . .
}

Purpose:

To define the behavior of a constructor

SYNTAX 3.3 Class Definition

accessSpecifier class ClassName
{
 constructors
 methods
 fields
}

Example:

public class BankAccount
{
 public BankAccount(double initialBalance) {. .
.}
 public void deposit(double amount) {. . .}
 . . .
}

Purpose:

To define a class, its public interface, and its implementation details

88

89

Chapter 3 Implementing Classes Page 11 of 71

Java Concepts, 5th Edition

And here is a program segment that adds interest to a savings account:

double interestRate = 5; // 5% interest
double interestAmount
 = momsSavings.getBalance() * interestRate /
100;
momsSavings.deposit(interestAmount);

As you can see, programmers can use objects of the BankAccount class to carry

out meaningful tasks, without knowing how the BankAccount objects store their

data or how the BankAccount methods do their work.

Of course, as implementors of the BankAccount class, we will need to supply the

internal details. We will do so in Section 3.5. First, however, an important step

remains: documenting the public interface. That is the topic of the next section.

SELF CHECK

3. How can you use the methods of the public interface to empty the

harrys-Checking bank account?

4. Suppose you want a more powerful bank account abstraction that keeps

track of an account number in addition to the balance. How would you

change the public interface to accommodate this enhancement?

3.3 Commenting the Public Interface

When you implement classes and methods, you should get into the habit of

thoroughly commenting their behaviors. In Java there is a very useful standard form

for documentation comments. If you use this form in your classes, a program called

javadoc can automatically generate a neat set of HTML pages that describe them.

(See Productivity Hint 3.1 for a description of this utility.)

A documentation comment is placed before the class or method definition that is

being documented. It starts with a /**, a special comment delimiter used by the

javadoc utility. Then you describe the method's purpose. Then, for each method

parameter, you supply a line that starts with @param, followed by the parameter

name and a short explanation. Finally, you supply a line that starts with @return,

89

90

Chapter 3 Implementing Classes Page 12 of 71

Java Concepts, 5th Edition

describing the return value. You omit the @param tag for methods that have no

parameters, and you omit the @return tag for methods whose return type is void.

Use documentation comments to describe the classes and public methods of your

programs.

The javadoc utility copies the first sentence of each comment to a summary table

in the HTML documentation. Therefore, it is best to write that first sentence with

some care. It should start with an uppercase letter and end with a period. It does not

have to be a grammatically complete sentence, but it should be meaningful when it is

pulled out of the comment and displayed in a summary.

Here are two typical examples.

/**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
*/
public void withdraw(double amount)
{
 implementation—filled in later
}
/**
 Gets the current balance of the bank account.
 @return the current balance
*/
public double getBalance()
{
 implementation—filled in later
}

The comments you have just seen explain individual methods. Supply a brief

comment for each class, explaining its purpose. The comment syntax for class

comments is very simple: Just place the documentation comment above the class.

/**
 A bank account has a balance that can be changed
by
 deposits and withdrawals.
*/
public class BankAccount
{

90

91

Chapter 3 Implementing Classes Page 13 of 71

Java Concepts, 5th Edition

 . . .
}

Your first reaction may well be “Whoa! Am I supposed to write all this stuff?” These

comments do seem pretty repetitive. But you should take the time to write them, even

if it feels silly.

It is always a good idea to write the method comment first, before writing the code in

the method body. This is an excellent test to see that you firmly understand what you

need to program. If you can't explain what a class or method does, you aren't ready to

implement it.

What about very simple methods? You can easily spend more time pondering

whether a comment is too trivial to write than it takes to write it. In practical

programming, very simple methods are rare. It is harmless to have a trivial method

overcommented, whereas a complicated method without any comment can cause real

grief to future maintenance programmers. According to the standard Java

documentation style, every class, every method, every parameter, and every return

value should have a comment.

Provide documentation comments for every class, every method, every parameter,

and every return value.

The javadoc utility formats your comments into a neat set of documents that you

can view in a web browser. It makes good use of the seemingly repetitive phrases.

The first sentence of the comment is used for a summary table of all methods of your

class (see Figure 3). The @param and @return comments are neatly formatted in

the detail description of each method (see Figure 4). If you omit any of the comments,

then javadoc generates documents that look strangely empty.

This documentation format should look familiar. The programmers who implement

the Java library use javadoc themselves. They too document every class, every

method, every parameter, and every return value, and then use javadoc to extract

the documentation in HTML format.
91

Chapter 3 Implementing Classes Page 14 of 71

Java Concepts, 5th Edition

Figure 3

A Method Summary Generated by javadoc

Figure 4

Method Detail Generated by javadoc

91

92

Chapter 3 Implementing Classes Page 15 of 71

Java Concepts, 5th Edition

SELF CHECK

5. Suppose we enhance the BankAccount class so that each account has

an account number. Supply a documentation comment for the constructor

public BankAccount(int accountNumber, double
initialBalance)

6. Why is the following documentation comment questionable?

/**
 Each account has an account number.
 @return the account number of this account
*/
public int getAccountNumber()

 PRODUCTIVITY HINT 3.1: The javadoc Utility

Always insert documentation comments in your code, whether or not you use

javadoc to produce HTML documentation. Most people find the HTML

documentation convenient, so it is worth learning how to run javadoc. Some

programming environments (such as BlueJ) can execute javadoc for you.

Alternatively, you can invoke the javadoc utility from a command shell, by

issuing the command

javadoc MyClass.java

or, if you want to document multiple Java files,

javadoc *.java

The javadoc utility produces files such as MyClass.html in HTML format,

which you can inspect in a browser. If you know HTML (see Appendix H), you

can embed HTML tags into the comments to specify fonts or add images. Perhaps

most importantly, javadoc automatically provides hyperlinks to other classes

and methods.

You can run javadoc before implementing any methods. Just leave all the

method bodies empty. Don't run the compiler—it would complain about missing

92

93

Chapter 3 Implementing Classes Page 16 of 71

Java Concepts, 5th Edition

return values. Simply run javadoc on your file to generate the documentation for

the public interface that you are about to implement.

The javadoc tool is wonderful because it does one thing right: It allows you to

put the documentation together with your code. That way, when you update your

programs, you can see right away which documentation needs to be updated.

Hopefully, you will update it right then and there. Afterward, run javadoc again

and get updated information that is timely and nicely formatted.

3.4 Instance Fields

Now that you understand the specification of the public interface of the

BankAccount class, let's provide the implementation.

First, we need to determine the data that each bank account object contains. In the

case of our simple bank account class, each object needs to store a single value, the

current balance. (A more complex bank account class might store additional data—

perhaps an account number, the interest rate paid, the date for mailing out the next

statement, and so on.)

An object stores its data in instance fields. A field is a technical term for a storage

location inside a block of memory. An instance of a class is an object of the class.

Thus, an instance field is a storage location that is present in each object of the class.

An object uses instance fields to store its state—the data that it needs to execute its

methods.

The class declaration specifies the instance fields:

public class BankAccount
{
 . . .
 private double balance;
}

93

Chapter 3 Implementing Classes Page 17 of 71

Java Concepts, 5th Edition

Figure 5

Instance Fields

An instance field declaration consists of the following parts:

• An access specifier (usually private)

• The type of the instance field (such as double)

• The name of the instance field (such as balance)

Each object of a class has its own set of instance fields. For example, if

harrysChecking and momsSavings are two objects of the Bank-Account

class, then each object has its own balance field, called

harrysChecking.balance and momsSavings.balance (see Figure 5).

Each object of a class has its own set of instance fields.

Instance fields are generally declared with the access specifier private. That

specifier means that they can be accessed only by the methods of the same class, not

by any other method. For example, the balance variable can be accessed by the

deposit method of the BankAccount class but not the main method of another

class.

93

94

Chapter 3 Implementing Classes Page 18 of 71

Java Concepts, 5th Edition

You should declare all instance fields as private.

public class BankRobber
{
 public static void main(String[] args)
 {
 BankAccount momsSavings = new
BankAccount(1000);
 . . .
 momsSavings.balance = -1000; // Error
 }
}

Encapsulation is the process of hiding object data and providing methods for data

access.

In other words, if the instance fields are declared as private, then all data access must

occur through the public methods. Thus, the instance fields of an object are

effectively hidden from the programmer who uses a class. They are of concern only

to the programmer who implements the class. The process of hiding the data and

providing methods for data access is called encapsulation. Although it is theoretically

possible in Java to leave instance fields public, that is a very uncommon practice. We

will always make instance fields private in this book.

SYNTAX 3.4 Instance Field Declaration

accessSpecifier class ClassName
{
 . . .
 accessSpecifier fieldType fieldName;
 . . .
}

Example:

public class BankAccount
{
 . . .
 private double balance;
 . . .

94

95

Chapter 3 Implementing Classes Page 19 of 71

Java Concepts, 5th Edition

}

Purpose:

To define a field that is present in every object of a class

SELF CHECK

7. Suppose we modify the BankAccount class so that each bank account

has an account number. How does this change affect the instance fields?

8. What are the instance fields of the Rectangle class?

3.5 Implementing Constructors and Methods

Now that we have determined the instance fields, let us complete the BankAccount

class by supplying the bodies of the constructors and methods. Each body contains a

sequence of statements. We'll start with the constructors because they are very

straightforward. A constructor has a simple job: to initialize the instance fields of an

object.

Constructors contain instructions to initialize the instance fields of an object.

Recall that we designed the BankAccount class to have two constructors. The first

constructor simply sets the balance to zero:

public BankAccount()
{
 balance = 0;
}

The second constructor sets the balance to the value supplied as the construction

parameter:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
}

To see how these constructors work, let us trace the statement

95

96

Chapter 3 Implementing Classes Page 20 of 71

Java Concepts, 5th Edition

BankAccount harrysChecking = new BankAccount(1000);

one step at a time. Here are the steps that are carried out when the statement executes.

• Create a new object of type BankAccount.

• Call the second constructor (since a construction parameter is supplied).

• Set the parameter variable initialBalance to 1000.

• Set the balance instance field of the newly created object to

initialBalance.

• Return an object reference, that is, the memory location of the object, as the

value of the new expression.

• Store that object reference in the harrysChecking variable.

Let's move on to implementing the BankAccount methods. Here is the deposit

method:

public void deposit(double amount)
{
 double newBalance = balance + amount;
 balance = newBalance;
}

To understand exactly what the method does, consider this statement:

harrysChecking.deposit(500);

This statement carries out the following steps:

• Set the parameter variable amount to 500.

• Fetch the balance field of the object whose location is stored in

harrysChecking.

• Add the value of amount to balance and store the result in the variable

newBalance.

• Store the value of newBalance in the balance instance field, overwriting

the old value.

Chapter 3 Implementing Classes Page 21 of 71

Java Concepts, 5th Edition

The withdraw method is very similar to the deposit method:

public void withdraw(double amount)
{
 double newBalance = balance - amount;
 balance = newBalance;
}

SYNTAX 3.5 The return Statement

return expression;
or
return;

Example:

return balance;

Purpose:

To specify the value that a method returns, and exit the method immediately. The

return value becomes the value of the method call expression.

There is only one method left, getBalance. Unlike the deposit and withdraw

methods, which modify the instance fields of the object on which they are invoked,

the getBalance method returns an output value:

public double getBalance()
{
 return balance;
}

The return statement is a special statement that instructs the method to terminate

and return an output to the statement that called the method. In our case, we simply

return the value of the balance instance field. You will later see other methods that

compute and return more complex expressions.

Use the return statement to specify the value that a method returns to its caller.

96

97

Chapter 3 Implementing Classes Page 22 of 71

Java Concepts, 5th Edition

We have now completed the implementation of the BankAccount class—see the

code listing below. There is only one step remaining: testing that the class works

correctly. That is the topic of the next section.

ch03/account/BankAccount.java

 1 /**
 2 A bank account has a balance that can be
changed by
 3 deposits and withdrawals.
 4 */
 5 public class BankAccount
 6 {
 7 /**
 8 Constructs a bank account with a
zero balance.
 9 */
 10 public BankAccount()
 11 {
 12 balance = 0;
 13 }
 14
 15 /**
 16 Constructs a bank account with a
given balance.
 17 @param initialBalance the initial
balance
 18 */
 19 public BankAccount(double initialBalance)
 20 {
 21 balance = initialBalance;
 22 }
 23
 24 /**
 25 Deposits money into the bank
account.
 26 @param amount the amount to deposit
 27 */
 28 public void deposit(double amount)
 29 {
 30 double newBalance = balance +
amount;
 31 balance = newBalance;

97

98

Chapter 3 Implementing Classes Page 23 of 71

Java Concepts, 5th Edition

 32 }
 33
 34 /**
 35 Withdraws money from the bank
account.
 36 @param amount the amount to withdraw
 37 */
 38 public void withdraw(double amount)
 39 {
 40 double newBalance = balance -
amount;
 41 balance = newBalance;
 42 }
 43
 44 /**
 45 Gets the current balance of the
bank account.
 46 @return the current balance
 47 */
 48 public double getBalance()
 49 {
 50 return balance;
 51 }
 52
 53 private double balance;
 54 }

SELF CHECK

9. The Rectangle class has four instance fields: x, y, width, and

height. Give a possible implementation of the getWidth method

10. Give a possible implementation of the translate method of the

Rectangle class.

 HOW TO 3.1: Implementing a Class

This is the first of several “How To” sections in this book. Users of the Linux

operating system have how to guides that give answers to the common questions

“How do I get started?” and “What do I do next?”. Similarly, the How To sections

in this book give you step-by-step procedures for carrying out specific tasks.

98

99

Chapter 3 Implementing Classes Page 24 of 71

Java Concepts, 5th Edition

You will often be asked to implement a class. For example, a homework

assignment might ask you to implement a CashRegister class.

Step 1 Find out which methods you are asked to supply.

In the cash register example, you won't have to provide every feature of a real cash

register—there are too many. The assignment should tell you which aspects of a

cash register your class should simulate. You should have received a description,

in plain English, of the operations that an object of your class should carry out,

such as this one:

• Ring up the sales price for a purchased item.

• Enter the amount of payment.

• Calculate the amount of change due to the customer.

For simplicity, we are looking at a very simple cash register here. A more

sophisticated model would be able to compute sales tax, daily sales totals, and so

on.

Step 2 Specify the public interface.

Turn the list in Step 1 into a set of methods, with specific types for the parameters

and the return values. Many programmers find this step simpler if they write out

method calls that are applied to a sample object, like this:

CashRegister register = new CashRegister();
register.recordPurchase(29.95);
register.recordPurchase(9.95);
register.enterPayment(50);
double change = register.giveChange();

Now we have a specific list of methods.

• public void recordPurchase(double amount)

• public void enterPayment(double amount)

• public double giveChange()

Chapter 3 Implementing Classes Page 25 of 71

Java Concepts, 5th Edition

To complete the public interface, you need to specify the constructors. Ask

yourself what information you need in order to construct an object of your class.

Sometimes you will want two constructors: one that sets all fields to a default and

one that sets them to user-supplied values.

In the case of the cash register example, we can get by with a single constructor

that creates an empty register. A more realistic cash register would start out with

some coins and bills so that we can give exact change, but that is beyond the scope

of our assignment.

Thus, we add a single constructor:

• public CashRegister()

Step 3 Document the public interface.

Here is the documentation, with comments, that describes the class and its

methods:

/**
 A cash register totals up sales and computes
change due.
*/
public class CashRegister
{
 /**
 Constructs a cash register with no money
in it.
 */
 public CashRegister()
 {
 }
 /**
 Records the sale of an item.
 @param amount the price of the item
 */
 public void recordPurchase(double amount)
 {
 }

 /**

99

100

Chapter 3 Implementing Classes Page 26 of 71

Java Concepts, 5th Edition

 Enters the payment received from the
customer.
 @param amount the amount of the payment
 */
 public void enterPayment(double amount)
 {
 }

 /**
 Computes the change due and resets the
machine for the next customer.
 @return the change due to the customer
 */
 public double giveChange()
 {
 }
}

Step 4 Determine instance fields.

Ask yourself what information an object needs to store to do its job. Remember,

the methods can be called in any order! The object needs to have enough internal

memory to be able to process every method using just its instance fields and the

method parameters. Go through each method, perhaps starting with a simple one or

an interesting one, and ask yourself what you need to carry out the method's task.

Make instance fields to store the information that the method needs.

In the cash register example, you would want to keep track of the total purchase

amount and the payment. You can compute the change due from these two

amounts.

public class CashRegister
{
 . . .
 private double purchase;
 private double payment;
}

Step 5 Implement constructors and methods.

Implement the constructors and methods in your class, one at a time, starting with

the easiest ones. For example, here is the implementation of the

recordPurchase method:

100

101

Chapter 3 Implementing Classes Page 27 of 71

Java Concepts, 5th Edition

public void recordPurchase(double amount)
{
 double newTotal = purchase + amount;
 purchase = newTotal;
}

Here is the giveChange method. Note that this method is a bit more

sophisticated—it computes the change due, and it also resets the cash register for

the next sale.

public double giveChange()
{
 double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
}

If you find that you have trouble with the implementation, you may need to rethink

your choice of instance fields. It is common for a beginner to start out with a set of

fields that cannot accurately reflect the state of an object. Don't hesitate to go back

and add or modify fields.

Once you have completed the implementation, compile your class and fix any

compiler errors.

Step 6 Test your class.

Write a short tester program and execute it. The tester program can carry out the

method calls that you found in Step 2.

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new
CashRegister();
 register.recordPurchase(29.50);
 register.recordPurchase(9.25);
 register.enterPayment(50);
 double change = register.giveChange();
 System.out.println(change);
 System.out.println("Expected: 11.25");

Chapter 3 Implementing Classes Page 28 of 71

Java Concepts, 5th Edition

 }
}

The output of this test program is:

11.25
Expected: 11.25

Alternatively, if you use a program that lets you test objects interactively, such as

BlueJ, construct an object and apply the method calls.

3.6 Unit Testing

In the preceding section, we completed the implementation of the BankAccount

class. What can you do with it? Of course, you can compile the file

BankAccount.java. However, you can't execute the resulting

BankAccount.class file. It doesn't contain a main method. That is normal—

most classes don't contain a main method.

A unit test verifies that a class works correctly in isolation, outside a complete

program.

In the long run, your class may become a part of a larger program that interacts with

users, stores data in files, and so on. However, before integrating a class into a

program, it is always a good idea to test it in isolation. Testing in isolation, outside a

complete program, is called unit testing.

To test your class, you have two choices. Some interactive development

environments have commands for constructing objects and invoking methods (see

Advanced Topic 2.1). Then you can test a class simply by constructing an object,

calling methods, and verifying that you get the expected return values. Figure 6

shows the result of calling the getBalance method on a BankAccount object in

BlueJ.

Alternatively, you can write a tester class. A tester class is a class with a main

method that contains statements to run methods of another class. A tester class

typically carries out the following steps:

101

102

Chapter 3 Implementing Classes Page 29 of 71

Java Concepts, 5th Edition

To test a class, use an environment for interactive testing, or write a tester class to

execute test instructions.

1. Construct one or more objects of the class that is being tested.

2. Invoke one or more methods.

3. Print out one or more results.

4. Print the expected results.

Figure 6

The Return Value of the getBalance Method in BlueJ

The MoveTester class in Section 2.8 is a good example of a tester class. That class

runs methods of the Rectangle class—a class in the Java library.

102

103

Chapter 3 Implementing Classes Page 30 of 71

Java Concepts, 5th Edition

Here is a class to run methods of the BankAccount class. The main method

constructs an object of type BankAccount, invokes the deposit and withdraw

methods, and then displays the remaining balance on the console.

We also print the value that we expect to see. In our sample program, we deposit

$2,000 and withdraw $500. We therefore expect a balance of $1500.

ch03/account/BankAccountTester.java

 1 /**
 2 A class to test the BankAccount class.
 3 */
 4 public class BankAccountTester
 5 {
 6 /**
 7 Tests the methods of the BankAccount
class.
 8 @param args not used
 9 */
 10 public static void main(String[] args)
 11 {
 12 BankAccount harrysChecking = new
BankAccount();
 13 harrysChecking.deposit(2000);
 14 harrysChecking.withdraw(500);
 15 System.out.println(harrysChecking.getBalance
 16 System.out.println("Expected: 1500");
 17 }
 18 }

Output

1500
Expected: 1500

To produce a program, you need to combine the BankAccount and the

BankAccountTester classes. The details for building the program depend on

your compiler and development environment. In most environments, you need to

carry out these steps:

1. Make a new subfolder for your program.

Chapter 3 Implementing Classes Page 31 of 71

Java Concepts, 5th Edition

2. Make two files, one for each class.

3. Compile both files.

4. Run the test program.

Many students are surprised that such a simple program contains two classes.

However, this is normal. The two classes have entirely different purposes. The

Bank-Account class describes objects that compute bank balances. The

BankAccountTester class runs a test that puts a BankAccount object through

its paces.

SELF CHECK

11. When you run the BankAccountTester program, how many objects

of class BankAccount are constructed? How many objects of type
BankAccountTester?

12. Why is the BankAccountTester class unnecessary in development

environments that allow interactive testing, such as BlueJ?

 PRODUCTIVITY HINT 3.2: Using the Command Line

Effectively

If your programming environment allows you to accomplish all routine tasks using

menus and dialog boxes, you can skip this note. However, if you must invoke the

editor, the compiler, the linker, and the program to test manually, then it is well

worth learning about command line editing.

Most operating systems (including Linux, Mac OS X, UNIX, and Windows) have

a command line interface to interact with the computer. (In Windows XP, you can

get a command line window by selecting “Run …” from the Start menu and typing

cmd.) You launch commands at a prompt. The command is executed, and on

completion you get another prompt.

When you develop a program, you find yourself executing the same commands

over and over. Wouldn't it be nice if you didn't have to type commands, such as

javac MyProg.java

103

104

Chapter 3 Implementing Classes Page 32 of 71

Java Concepts, 5th Edition

more than once? Or if you could fix a mistake rather than having to retype the

command in its entirety? Many command line interfaces have an option to do just

that, by using the up and down arrow keys to recall old commands and the left and

right arrow keys to edit lines. You can also perform file completion. For example,

to select the file BankAccount.java, you only need to type the first couple of

letters and then hit the “Tab” key.

The details depend on your operating system and its configuration—experiment on

your own, or ask a “power user” for help.

3.7 Categories of Variables

We close this chapter with two sections of a more technical nature, examining

variables and parameters in some detail.

You have seen three different categories of variables in this chapter:

1. Instance fields (sometimes called instance variables), such as the balance

variable of the BankAccount class

2. Local variables, such as the newBalance variable of the deposit method

3. Parameter variables, such as the amount variable of the deposit method

These variables are similar in one respect—they all hold values that belong to specific

types. But they have a couple of important differences. The first difference is their

lifetime.

Instance fields belong to an object. Parameter variables and local variables belong

to a method—they die when the method exits.

An instance field belongs to an object. Each object has its own copy of each instance

field. For example, if you have two BankAccount objects (say,

harrysChecking and momsSavings), then each of them has its own balance

field. When an object is constructed, its instance fields are created. The fields stay

alive until no method uses the object any longer. (The Java virtual machine contains

an agent called a garbage collector that periodically reclaims objects when they are

no longer used.)

104

105

Chapter 3 Implementing Classes Page 33 of 71

Java Concepts, 5th Edition

Local and parameter variables belong to a method. When the method runs, these

variables come to life. When the method exits, they die immediately (see Figure 7).

Figure 7

Lifetime of Variables

For example, if you call

105

106

Chapter 3 Implementing Classes Page 34 of 71

Java Concepts, 5th Edition

harrysChecking.deposit(500);

then a parameter variable called amount is created and initialized with the parameter

value, 500. When the method returns, the amount variable dies. The same holds for

the local variable newBalance. When the deposit method reaches the line

double newBalance = balance + amount;

the variable comes to life and is initialized with the sum of the object's balance and

the deposit amount. The lifetime of that variable extends to the end of the method.

However, the deposit method has a lasting effect. Its next line,

balance = newBalance;

sets the balance instance field, and that field lives beyond the end of the deposit

method, as long as the BankAccount object is in use.

The second major difference between instance fields and local variables is

initialization. You must initialize all local variables. If you don't initialize a local

variable, the compiler complains when you try to use it.

Instance fields are initialized to a default value, but you must initialize local

variables.

Parameter variables are initialized with the values that are supplied in the method call.

Instance fields are initialized with a default value if you don't explicitly set them in a

constructor. Instance fields that are numbers are initialized to 0. Object references are

set to a special value called null. If an object reference is null, then it refers to no

object at all. We will discuss the null value in greater detail in Section 5.2.5.

Inadvertent initialization with 0 or null is a common cause of errors. Therefore, it is

a matter of good style to initialize every instance field explicitly in every constructor.

SELF CHECK

13. What do local variables and parameter variables have in common? In

which essential aspect do they differ?

Chapter 3 Implementing Classes Page 35 of 71

Java Concepts, 5th Edition

14. During execution of the BankAccountTester program in the

preceding section, how many instance fields, local variables, and

parameter variables were created, and what were their names?

 COMMON ERROR 3.1: Forgetting to Initialize Object

References in a Constructor

Just as it is a common error to forget to initialize a local variable, it is easy to

forget about instance fields. Every constructor needs to ensure that all instance

fields are set to appropriate values.

If you do not initialize an instance field, the Java compiler will initialize it for you.

Numbers are initialized with 0, but object references—such as string variables—

are set to the null reference.

Of course, 0 is often a convenient default for numbers. However, null is hardly

ever a convenient default for objects. Consider this “lazy” constructor for a

modified version of the BankAccount class:

public class BankAccount
{
 public BankAccount() {} // No statements
 . . .
 private double balance;
 private String owner;
}

The balance is set to 0, and the owner field is set to a null reference. This is a

problem—it is illegal to call methods on the null reference.

If you forget to initialize a local variable in a method, the compiler flags this as an

error, and you must fix it before the program runs. If you make the same mistake

with an instance field in a class, the compiler provides a default initialization, and

the error becomes apparent only when the program runs.

To avoid this problem, make it a habit to initialize every instance field in every

constructor.

106

107

Chapter 3 Implementing Classes Page 36 of 71

Java Concepts, 5th Edition

3.8 Implicit and Explicit Method Parameters

In Section 2.4, you learned that a method has an implicit parameter—the object on

which the method is invoked—and explicit parameters, which are enclosed in

parentheses. In this section, we will examine these parameters in greater detail.

Have a look at a particular invocation of the deposit method:
momsSavings.deposit(500);

Now look again at the code of the deposit method:

public void deposit(double amount)
{
 double newBalance = balance + amount;
 balance = newBalance;
}

The parameter variable amount is set to 500 when the deposit method starts. But

what does balance mean exactly? After all, our program may have multiple

Bank-Account objects, and each of them has its own balance.

Of course, since we deposit the money into momsSavings, balance must mean

momsSavings.balance. In general, when you refer to an instance field inside a

method, it means the instance field of the object on which the method was called.

Thus, the call to the deposit method depends on two values: the object to which

momsSavings refers, and the value 500. The amount parameter inside the

parentheses is called an explicit parameter, because it is explicitly named in the

method definition. However, the reference to the bank account object is not explicit in

the method definition—it is called the implicit parameter of the method.

The implicit parameter of a method is the object on which the method is invoked.

The this reference denotes the implicit parameter.

If you need to, you can access the implicit parameter—the object on which the

method is called—with the keyword this. For example, in the preceding method

invocation, this was set to momsSavings and amount was set to 500 (see Figure

8).

107

108

Chapter 3 Implementing Classes Page 37 of 71

Java Concepts, 5th Edition

Every method has one implicit parameter. You don't give the implicit parameter a

name. It is always called this. (There is one exception to the rule that every method

has an implicit parameter: static methods do not. We will discuss them in Chapter

8.) In contrast, methods can have any number of explicit parameters—which you can

name any way you like—or no explicit parameter at all.

Next, look closely at the implementation of the deposit method. The

statement
double newBalance = balance + amount;

actually means

double newBalance = this.balance + amount;

When you refer to an instance field in a method, the compiler automatically applies it

to the this parameter. Some programmers actually prefer to manually insert the

this parameter before every instance field because they find it makes the code

clearer. Here is an example:

Use of an instance field name in a method denotes the instance field of the implicit

parameter.

public void deposit(double amount)
{
 double newBalance = this.balance + amount;
 this.balance = newBalance;
}

You may want to try it out and see if you like that style.

You have now seen how to use objects and implement classes, and you have learned

some important technical details about variables and method parameters. In the next

chapter, you will learn more about the most fundamental data types of the Java

language.

Chapter 3 Implementing Classes Page 38 of 71

Java Concepts, 5th Edition

Figure 8

The Implicit Parameter of a Method Call

SELF CHECK

15. How many implicit and explicit parameters does the withdraw

method of the BankAccount class have, and what are their names and

types?

16. In the deposit method, what is the meaning of this.amount? Or,

if the expression has no meaning, why not?

17. How many implicit and explicit parameters does the main method of

the BankAccount-Tester class have, and what are they called?

 COMMON ERROR 3.2: Trying to Call a Method Without

an Implicit Parameter

Suppose your main method contains the instruction

withdraw(30); // Error

The compiler will not know which account to access to withdraw the money. You

need to supply an object reference of type BankAccount:

BankAccount harrysChecking = new BankAccount();
harrysChecking.withdraw(30);

108

109

Chapter 3 Implementing Classes Page 39 of 71

Java Concepts, 5th Edition

However, there is one situation in which it is legitimate to invoke a method

without, seemingly, an implicit parameter. Consider the following modification to

the BankAccount class. Add a method to apply the monthly account fee:

public class BankAccount
{ . . .
 public void monthly-Fee()
 {
 withdraw(10); // Withdraw $10 from this
account
 }
}

That means to withdraw from the same bank account object that is carrying out the

monthly-Fee operation. In other words, the implicit parameter of the

withdraw method is the (invisible) implicit parameter of the monthlyFee

method.

If you find it confusing to have an invisible parameter, you can always use the

this parameter to make the method easier to read:

public class BankAccount
{ . . .
 public void monthlyFee()
 {
 this.withdraw(10); // Withdraw $10 from
this account
 }
}

 ADVANCED TOPIC 3.1: Calling One Constructor from

Another

Consider the BankAccount class. It has two constructors: a constructor without

parameters to initialize the balance with zero, and another constructor to supply an

initial balance. Rather than explicitly setting the balance to zero, one constructor

can call another constructor of the same class instead. There is a shorthand

notation to achieve this result:

public class BankAccount
{

109

110

Chapter 3 Implementing Classes Page 40 of 71

Java Concepts, 5th Edition

 public BankAccount (double initialBalance)
 {
 balance = initialBalance;
 }
 public BankAccount()
 {
 this(0);
 }
 . . .
}

The command this(0); means “Call another constructor of this class and supply

the value 0”. Such a constructor call can occur only as the first line in another

constructor.

This syntax is a minor convenience. We will not use it in this book. Actually, the

use of the keyword this is a little confusing. Normally, this denotes a

reference to the implicit parameter, but if this is followed by parentheses, it

denotes a call to another constructor of this class.

 RANDOM FACT 3.1: Electronic Voting Machines

In the 2000 presidential elections in the United States, votes were tallied by a

variety of machines. Some machines processed cardboard ballots into which voters

punched holes to indicate their choices (see Punch Card Ballot figure). When

voters were not careful, remains of paper—the now infamous “chads”—were

partially stuck in the punch cards, causing votes to be miscounted. A manual

recount was necessary, but it was not carried out everywhere due to time

constraints and procedural wrangling. The election was very close, and there

remain doubts in the minds of many people whether the election outcome would

have been different if the voting machines had accurately counted the intent of the

voters.

Subsequently, voting machine manufacturers have argued that electronic voting

machines would avoid the problems caused by punch cards or optically scanned

forms. In an electronic voting machine, voters indicate their preferences by

pressing buttons or touching icons on a computer screen. Typically, each voter is

presented with a summary screen for review before casting the ballot. The process

Chapter 3 Implementing Classes Page 41 of 71

Java Concepts, 5th Edition

is very similar to using an automatic bank teller machine (see Touch Screen

Voting Machine figure).

It seems plausible that these machines make it more likely that a vote is counted in

the same way that the voter intends. However, there has been significant

controversy surrounding some types of electronic voting machines. If a machine

simply records the votes and prints out the totals after the election has been

completed, then how do you know that the machine worked correctly? Inside the

machine is a computer that executes a program, and, as you may know from your

own experience, programs can have bugs.

Punch Card Ballot

In fact, some electronic voting machines do have bugs. There have been isolated

cases where machines reported tallies that were impossible. When a machine

reports far more or far fewer votes than voters, then it is clear that it

malfunctioned. Unfortunately, it is then impossible to find out the actual votes.

Over time, one would expect these bugs to be fixed in the software. More

insidiously, if the results are plausible, nobody may ever investigate.

Many computer scientists have spoken out on this issue and confirmed that it is

impossible, with today's technology, to tell that software is error free and has not

been tampered with. Many of them recommend that electronic voting machines

should be complemented by a voter verifiable audit trail. (A good source of

110

111

Chapter 3 Implementing Classes Page 42 of 71

Java Concepts, 5th Edition

information is [1].) Typically, a voter-verifiable machine prints out the choices that

are being tallied. Each voter has a chance to review the printout, and then deposits

it in an old-fashioned ballot box. If there is a problem with the electronic

equipment, the printouts can be counted by hand.

As this book is written, this concept is strongly resisted both by manufacturers of

electronic voting machines and by their customers, the cities and counties that run

elections. Manufacturers are reluctant to increase the cost of the machines because

they may not be able to pass the cost increase on to their customers, who tend to

have tight budgets. Election officials fear problems with malfunctioning printers,

and some of them have publicly stated that they actually prefer equipment that

eliminates bothersome recounts.

What do you think? You probably use an automatic bank teller machine to get cash

from your bank account. Do you review the paper record that the machine issues?

Do you check your bank statement? Even if you don't, do you put your faith in

other people who double-check their balances, so that the bank won't get away

with widespread cheating?

At any rate, is the integrity of banking equipment more important or less important

than that of voting machines? Won't every voting process have some room for

error and fraud anyway? Is the added cost for equipment, paper, and staff time

reasonable to combat a potentially slight risk of malfunction and fraud? Computer

scientists cannot answer these questions—an informed society must make these

tradeoffs. But, like all professionals, they have an obligation to speak out and give

accurate testimony about the capabilities and limitations of computing equipment.

111

112

Chapter 3 Implementing Classes Page 43 of 71

Java Concepts, 5th Edition

Touch Screen Voting Machine

3.9 Shape Classes

We continue the optional graphics track by discussing how to organize complex

drawings in a more object-oriented fashion. Feel free to skip this section if you are

not interested in graphical applications.

When you produce a drawing that is composed of complex parts, such as the one in

Figure 9, it is a good idea to make a separate class for each part. Provide a draw

method that draws the shape, and provide a constructor to set the position of the

shape. For example, here is the outline of the Car class.

It is a good idea to make a class for any part of a drawing that that can occur more

than once.

public class Car
{

Chapter 3 Implementing Classes Page 44 of 71

Java Concepts, 5th Edition

 public Car(int x, int y)
 {
 // Remember position
 . . .
 }
 public void draw(Graphics2D g2)
 {
 // Drawing instructions
 . . .
 }
}

Figure 9

The Car Component Draws Two Car Shapes

You will find the complete class definition at the end of this section. The draw

method contains a rather long sequence of instructions for drawing the body, roof,

and tires.

To figure out how to draw a complex shape, make a sketch on graph paper.

The coordinates of the car parts seem a bit arbitrary. To come up with suitable values,

draw the image on graph paper and read off the coordinates (Figure 10).

112

113

Chapter 3 Implementing Classes Page 45 of 71

Java Concepts, 5th Edition

The program that produces Figure 9 is composed of three classes.

Figure 10

Using Graph Paper to Find Shape Coordinates

• The Car class is responsible for drawing a single car. Two objects of this class

are constructed, one for each car.

• The CarComponent class displays the drawing.

• The CarViewer class shows a frame that contains a CarComponent.

Let us look more closely at the CarComponent class. The paintComponent

method draws two cars. We place one car in the top-left corner of the window, and

the other car in the bottom right. To compute the bottom right position, we call the

getWidth and getHeight methods of the JComponent class. These methods

return the dimensions of the component. We subtract the dimensions of the car:

Car car1 = new Car(0, 0);
int x = getWidth() - 60;
int y = getHeight() - 30;
Car car2 = new Car(x, y);

113

114

Chapter 3 Implementing Classes Page 46 of 71

Java Concepts, 5th Edition

Pay close attention to the call to getWidth inside the paintComponent method

of CarComponent. The method call has no implicit parameter, which means that

the method is applied to the same object that executes the paintComponent

method. The component simply obtains its own width.

Run the program and resize the window. Note that the second car always ends up at

the bottom-right corner of the window. Whenever the window is resized, the

paintComponent method is called and the car position is recomputed, taking the

current component dimensions into account.

ch03/car/CarComponent.java

 1 import java.awt.Graphics;
 2 import java.awt.Graphics2D;
 3 import javax.swing.JComponent;
 4
 5 /**
 6 This component draws two car shapes.
 7 */
 8 public class CarComponent extends JComponent
 9 {
 10 public void paintComponent(Graphics g)
 11 {
 12 Graphics2D g2 = (Graphics2D) g;
 13
 14 Car car1 = new Car(0, 0);
 15
 16 int x = getWidth() - 60;
 17 int y = getHeight() - 30;
 18
 19 Car car2 = new Car(x, y);
 20
 21 car1.draw(g2);
 22 car2.draw(g2);
 23 }
 24 }

ch03/car/Car.java

 1 import java.awt.Graphics2D;
 2 import java.awt.Rectangle;
 3 import java.awt.geom.Ellipse2D;

114

115

Chapter 3 Implementing Classes Page 47 of 71

Java Concepts, 5th Edition

 4 import java.awt.geom.Line2D;
 5 import java.awt.geom.Point2D;
 6
 7 /**
 8 A car shape that can be positioned
anywhere on the screen.
 9 */
 10 public class Car
 11 {
 12 /**
 13 Constructs a car with a given top-left
corner.
 14 @param x the x-coordinate of the
top-left corner
 15 @param y the y-coordinate of the
top-left corner
 16 */
 17 public Car(int x, int y)
 18 {
 19 xLeft = x;
 20 yTop = y;
 21 }
 22
 23 /**
 24 Draws the car.
 25 @param g2 the graphics context
 26 */
 27 public void draw(Graphics2D g2)
 28 {
 29 Rectangle body
 30 = new Rectangle(xLeft, yTop + 10,
60, 10);
 31 Ellipse2D.Double frontTire
 32 = new Ellipse2D.Double(xLeft +
10, yTop + 20, 10, 10);
 33 Ellipse2D.Double rearTire
 34 = new Ellipse2D.Double(xLeft +
40, yTop + 20, 10, 10);
 35
 36 // The bottom of the front windshield
 37 Point2D.Double r1
 38 = new Point2D.Double(xLeft + 10,
yTop + 10);
 39 // The front of the roof
 40 Point2D.Double r2

Chapter 3 Implementing Classes Page 48 of 71

Java Concepts, 5th Edition

 41 = new Point2D.Double(xLeft + 20,
yTop);
 42 // The rear of the roof
 43 Point2D.Double r3
 44 = new Point2D.Double(xLeft + 40,
yTop);
 45 // The bottom of the rear windshield
 46 Point2D.Double r4
 47 = new Point2D.Double(xLeft + 50,
yTop + 10);
 48
 49 Line2D.Double frontWindshield
 50 = new Line2D.Double(r1, r2);
 51 Line2D.Double roofTop
 52 = new Line2D.Double(r2, r3);
 53 Line2D.Double rearWindshield
 54 = new Line2D.Double(r3, r4);
 55
 56 g2.draw(body);
 57 g2.draw(frontTire);
 58 g2.draw(rearTire);
 59 g2.draw(frontWindshield);
 60 g2.draw(roofTop);
 61 g2.draw(rearWindshield);
 62 }
 63
 64 private int xLeft;
 65 private int yTop;
 66 }

ch03/car/CarViewer.java

 1 import javax.swing.JFrame;
 2
 3 public class CarViewer
 4 {
 5 public static void main(String[] args)
 6 {
 7 JFrame frame = new JFrame();
 8
 9 frame.setSize(300, 400);
 10 frame.setTitle(“Two cars”);
 11 frame.setDefaultCloseOperation(JFrame.EXIT_ON
 12

115

116

Chapter 3 Implementing Classes Page 49 of 71

Java Concepts, 5th Edition

 13 CarComponent component = new
CarComponent();
 14 frame.add(component);
 15
 16 frame.setVisible(true);
 17 }
 18 }

SELF CHECK

18. Which class needs to be modified to have the two cars positioned next to

each other?

19. Which class needs to be modified to have the car tires painted in black,

and what modification do you need to make?

20. How do you make the cars twice as big?

 HOW TO 3.2: Drawing Graphical Shapes

You can write programs that display a wide variety of graphical shapes. These

instructions give you a step-by-step procedure for decomposing a drawing into

parts and implementing a program that produces the drawing.

Step 1 Determine the shapes that you need for the drawing.

You can use the following shapes:

• Squares and rectangles

• Circles and ellipses

• Lines

The outlines of these shapes can be drawn in any color, and you can fill the insides

of these shapes with any color. You can also use text to label parts of your drawing.

Some national flag designs consist of three equally wide sections of different

colors, side by side:

116

117

Chapter 3 Implementing Classes Page 50 of 71

Java Concepts, 5th Edition

You could draw such a flag using three rectangles. But if the middle rectangle is

white, as it is, for example, in the flag of Italy (green, white, red), it is easier and

looks better to draw a line on the top and bottom of the middle portion:

Step 2 Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes.

• For rectangles, you need the x- and y-position of the top-left corner, the

width, and the height.

• For ellipses, you need the top-left corner, width, and height of the bounding

rectangle.

• For lines, you need the x- and y-positions of the starting point and the end

point.

• For text, you need the x- and y-positions of the basepoint.

117

118

Chapter 3 Implementing Classes Page 51 of 71

Java Concepts, 5th Edition

A commonly-used size for a window is 300 by 300 pixels. You may not want the

flag crammed all the way to the top, so perhaps the upper-left corner of the flag

should be at point (100, 100).

Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can

often find exact proportions for a particular flag by doing a bit of Internet research

on one of several Flags of the World sites.) For example, if you make the flag 90

pixels wide, then it should be 60 pixels tall. (Why not make it 100 pixels wide?

Then the height would be 100 · 2 / 3 ≈ 67, which seems more awkward.)

Now you can compute the coordinates of all the important points of the shape:

Step 3 Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

Rectangle leftRectangle
 = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle
 = new Rectangle(160, 100, 30, 60);
Line2D.Double topLine
 = new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine
 = new Line2D.Double(130, 160, 160, 160);

If you are more ambitious, then you can express the coordinates in terms of a few

variables. In the case of the flag, we have arbitrarily chosen the top-left corner and

the width. All other coordinates follow from those choices. If you decide to follow

the ambitious approach, then the rectangles and lines are determined as follows:

Chapter 3 Implementing Classes Page 52 of 71

Java Concepts, 5th Edition

Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);
Rectangle rightRectangle = new Rectangle(
 xLeft + 2 * width / 3, yTop,
 width / 3, width * 2 / 3);
Line2D.Double topLine = new Line2D.Double(
 xLeft + width / 3, yTop,
 xLeft + width * 2 / 3, yTop);
Line2D.Double bottomLine = new Line2D.Double(
 xLeft + width / 3, yTop + width * 2 / 3,
 xLeft + width * 2 / 3, yTop + width * 2 /
3);

Now you need to fill the rectangles and draw the lines. For the flag of Italy, the left

rectangle is green and the right rectangle is red. Remember to switch colors before

the filling and drawing operations:

g2.setColor(Color.GREEN);
g2.fill(leftRectangle);
g2.setColor(Color.RED);
g2.fill(rightRectangle);
g2.setColor(Color.BLACK);
g2.draw(topLine);
g2.draw(bottomLine);

Step 4 Combine the drawing statements with the component “plumbing”.

public class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 // Your drawing code goes here
 . . .
 }
}

In our example, you can simply add all shapes and drawing instructions inside the

paintComponent method:

public class ItalianFlagComponent extends
JComponent
{

118

119

Chapter 3 Implementing Classes Page 53 of 71

Java Concepts, 5th Edition

 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 Rectangle leftRectangle
 = new Rectangle(100, 100, 30, 60);
 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }
}

That approach is acceptable for simple drawings, but it is not very object-oriented.

After all, a flag is an object. It is better to make a separate class for the flag. Then

you can draw different flags at different positions and sizes. Specify the sizes in a

constructor and supply a draw method:

public class ItalianFlag
{
 public ItalianFlag(double x, double y, double
aWidth)
 {
 xLeft = x;
 yTop = y;
 width = aWidth;
 }
 public void draw(Graphics2D g2)
 {
 Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);
 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }

 private int xLeft;
 private int yTop;
 private double width;
}

You still need a separate class for the component, but it is very simple:

119

120

Chapter 3 Implementing Classes Page 54 of 71

Java Concepts, 5th Edition

public class ItalianFlagComponent extends
JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 ItalianFlag flag = new ItalianFlag(100,
100, 90);
 flag.draw(g2);
 }
}

Step 5 Write the viewer class.

Provide a viewer class, with a main method in which you construct a frame, add

your component, and make your frame visible. The viewer class is completely

routine; you only need to change a single line to show a different component.

import javax.swing.*;
public class ItalianFlagViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(300, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 ItalianFlagComponent component = new
ItalianFlagComponent();
 frame.add(component);
 frame.setVisible(true);
 }
}

 RANDOM FACT 3.2: Computer Graphics

Generating and manipulating visual images is one of the most exciting applications

of the computer. We distinguish different kinds of graphics.

Diagrams, such as numeric charts or maps, are artifacts that convey information to

the viewer (see Diagrams figure). They do not directly depict anything that occurs

in the natural world, but are a tool for visualizing information.

120

121

Chapter 3 Implementing Classes Page 55 of 71

Java Concepts, 5th Edition

Scenes are computer-generated images that attempt to depict images of the real or

an imagined world (see Scene figure). It turns out to be quite challenging to render

light and shadows accurately. Special effort must be taken so that the images do

not look too neat and simple; clouds, rocks, leaves, and dust in the real world have

a complex and somewhat random appearance. The degree of realism in these

images is constantly improving.

Manipulated images are photographs or film footage of actual events that have

been converted to digital form and edited by the computer (see Manipulated Image

figure). For example, film sequences in the movie Apollo 13 were produced by

starting from actual images and changing the perspective, showing the launch of

the rocket from a more dramatic viewpoint.

Computer graphics is one of the most challenging fields in computer science. It

requires processing of massive amounts of information at very high speed. New

algorithms are constantly invented for this purpose. Displaying an overlapping set

of three-dimensional objects

Diagrams
121

Chapter 3 Implementing Classes Page 56 of 71

Java Concepts, 5th Edition

Scene

Manipulated Image

121

122

Chapter 3 Implementing Classes Page 57 of 71

Java Concepts, 5th Edition

with curved boundaries requires advanced mathematical tools. Realistic modeling

of textures and biological entities requires extensive knowledge of mathematics,

physics, and biology.

CHAPTER SUMMARY

1. In order to implement a class, you first need to know which methods are

required.

2. A method definition contains an access specifier (usually public), a return

type, a method name, parameters, and the method body.

3. Constructors contain instructions to initialize objects. The constructor name is

always the same as the class name.

4. Use documentation comments to describe the classes and public methods of

your programs.

5. Provide documentation comments for every class, every method, every

parameter, and every return value.

6. An object uses instance fields to store its state—the data that it needs to execute

its methods.

7. Each object of a class has its own set of instance fields.

8. You should declare all instance fields as private.

9. Encapsulation is the process of hiding object data and providing methods for

data access.

10. Constructors contain instructions to initialize the instance fields of an object.

11. Use the return statement to specify the value that a method returns to its

caller.

12. A unit test verifies that a class works correctly in isolation, outside a complete

program.

122

123

Chapter 3 Implementing Classes Page 58 of 71

Java Concepts, 5th Edition

13. To test a class, use an environment for interactive testing, or write a tester class

to execute test instructions.

14. Instance fields belong to an object. Parameter variables and local variables

belong to a method—they die when the method exits.

15. Instance fields are initialized to a default value, but you must initialize local

variables.

16. The implicit parameter of a method is the object on which the method is

invoked. The this reference denotes the implicit parameter.

17. Use of an instance field name in a method denotes the instance field of the

implicit parameter.

18. It is a good idea to make a class for any part of a drawing that that can occur

more than once.

19. To figure out how to draw a complex shape, make a sketch on graph paper.

FURTHER READING

1. http://verifiedvoting.org A site with information on voter-verifiable voting

machines, founded by Stanford computer science professor David Dill.

REVIEW EXERCISES

★ Exercise R3.1 Why is the BankAccount(double

initialBalance) constructor not strictly necessary?

★ Exercise R3.2 Explain the difference between

BankAccount b;

and

BankAccount b = new BankAccount(5000);

★ Exercise R3.3 Explain the difference between

new BankAccount(5000);

123

124

Chapter 3 Implementing Classes Page 59 of 71

Java Concepts, 5th Edition

and

BankAccount b = new BankAccount(5000);

★ Exercise R3.4 What happens in our implementation of the BankAccount

class when more money is withdrawn from the account than the current

balance?

★ Exercise R3.5 What is the value of b.getBalance() after the

following operations?

BankAccount b = new BankAccount(10);
b.deposit(5000);
b.withdraw(b.getBalance() / 2);

★★Exercise R3.6 If b1 and b2 refer to objects of class BankAccount,

consider the following instructions.

b1.deposit(b2.getBalance());
b2.deposit(b1.getBalance());

Are the balances of b1 and b2 now identical? Explain.

★★Exercise R3.7 What is the this reference? Why would you use it?

★★Exercise R3.8 What does the following method do? Give an example of

how you can call the method.

public class BankAccount
{
 public void mystery(BankAccount that,
double amount)
 {
 this.balance = this.balance - amount;
 that.balance = that.balance + amount;
 }
 . . . // Other bank account methods
}

★★Exercise R3.9 Suppose you want to implement a class

SavingsAccount. A savings account has deposit, withdraw, and

getBalance methods like a bank account, but it has a fixed interest rate

that should be set in the constructor, together with the initial balance. An

124

125

Chapter 3 Implementing Classes Page 60 of 71

Java Concepts, 5th Edition

addInterest method should be provided to add the earned interest to

the account. This method should have no parameters since the interest rate

is already known. It should have no return value since the new balance can

be obtained by calling getBalance. Give the public interface for this

class.

★★Exercise R3.10 What are the accessors and mutators of the

CashRegister class?

★ Exercise R3.11 Explain the difference between a local variable and a

parameter variable.

★ Exercise R3.12 Explain the difference between an instance field and a

local variable.

★★GExercise R3.13 Suppose you want to write a program to show a

suburban scene, with several cars and houses. Which classes do you

need?

★★★GExercise R3.14 Explain why the calls to the getWidth and

getHeight methods in the CarComponent class have no explicit

parameter.

★★GExercise R3.15 How would you modify the Car class in order to show

cars of varying sizes?

 Additional review exercises are available in Wiley PLUS.

PROGRAMMING EXERCISES

★ Exercise P3.1. Write a BankAccountTester class whose main

method constructs a bank account, deposits $1,000, withdraws $500,

withdraws another $400, and then prints the remaining balance. Also print

the expected result.

★ Exercise P3.2. Add a method

public void addInterest(double rate)

Chapter 3 Implementing Classes Page 61 of 71

Java Concepts, 5th Edition

to the BankAccount class that adds interest at the given rate. For

example, after the statements

BankAccount momsSavings = new BankAccount(1000);
momsSavings.addInterest(10); // 10% interest

the balance in momsSavings is $1,100. Also supply a

BankAccountTester class that prints the actual and expected balance.

★★Exercise P3.3. Write a class SavingsAccount that is similar to the

BankAccount class, except that it has an added instance field

interest. Supply a constructor that sets both the initial balance and the

interest rate. Supply a method addInterest (with no explicit

parameter) that adds interest to the account. Write a

SavingsAccountTester class that constructs a savings account with

an initial balance of $1,000 and an interest rate of 10%. Then apply the

addInterest method and print the resulting balance. Also compute the

expected result by hand and print it.

★★Exercise P3.4. Implement a class Employee. An employee has a name (a

string) and a salary (a double). Provide a constructor with two parameters

public Employee(String employeeName, double
currentSalary)

and methods

public String getName()
public double getSalary()
public void raiseSalary(double byPercent)

These methods return the name and salary, and raise the employee's salary

by a certain percentage. Sample usage:

Employee harry = new Employee("Hacker, Harry",
50000);
harry.raiseSalary(10); // Harry gets a 10% raise

Supply an EmployeeTester class that tests all methods.

125

126

Chapter 3 Implementing Classes Page 62 of 71

Java Concepts, 5th Edition

★★Exercise P3.5. Implement a class Car with the following properties. A car

has a certain fuel efficiency (measured in miles/gallon or liters/km—pick

one) and a certain amount of fuel in the gas tank. The efficiency is

specified in the constructor, and the initial fuel level is 0. Supply a method

drive that simulates driving the car for a certain distance, reducing the

amount of gasoline in the fuel tank. Also supply methods

getGasInTank, returning the current amount of gasoline in the fuel

tank, and addGas, to add gasoline to the fuel tank. Sample usage:

Car myHybrid = new Car(50); // 50 miles per gallon
myHybrid.addGas(20); // Tank 20 gallons
myHybrid.drive(100); // Drive 100 miles
double gasLeft = myHybrid.getGasInTank(); // Get
gas remaining in tank

You may assume that the drive method is never called with a distance that

consumes more than the available gas. Supply a CarTester class that

tests all methods.

★★Exercise P3.6. Implement a class Student. For the purpose of this

exercise, a student has a name and a total quiz score. Supply an appropriate

constructor and methods getName(), addQuiz(int score),

getTotalScore(), and getAverageScore(). To compute the

latter, you also need to store the number of quizzes that the student took.

Supply a StudentTester class that tests all methods.

★ Exercise P3.7. Implement a class Product. A product has a name and a

price, for example new Product(”Toaster”, 29.95). Supply

methods getName, getPrice, and reducePrice. Supply a program

ProductPrinter that makes two products, prints the name and price,

reduces their prices by $5.00, and then prints the prices again.

★★Exercise P3.8. Provide a class for authoring a simple letter. In the

constructor, supply the names of the sender and the recipient:

public Letter(String from, String to)

Supply a method

126

127

Chapter 3 Implementing Classes Page 63 of 71

Java Concepts, 5th Edition

public void addLine(String line)

to add a line of text to the body of the letter.

Supply a method

public String getText()

that returns the entire text of the letter. The text has the form:

Dear recipient name:
blank line

first line of the body

second line of the body

. . .
last line of the body

blank line

Sincerely,
blank line

sender name

Also supply a program LetterPrinter that prints this letter.

Dear John:
I am sorry we must part.
I wish you all the best.
Sincerely,
Mary

Construct an object of the Letter class and call addLine twice.

Hints: (1) Use the concat method to form a longer string from two shorter

strings. (2) The special string "\n" represents a new line. For example,

the statement

body = body.concat("Sincerely,").concat("\n");

adds a line containing the string “Sincerely” to the body.

★★Exercise P3.9. Write a class Bug that models a bug moving along a

horizontal line. The bug moves either to the right or left. Initially, the bug

moves to the right, but it can turn to change its direction. In each move, its

position changes by one unit in the current direction. Provide a constructor

Chapter 3 Implementing Classes Page 64 of 71

Java Concepts, 5th Edition

public Bug(int initialPosition)

and methods

public void turn()
public void move()
public int getPosition()

Sample usage:

Bug bugsy = new Bug(10);
bugsy.move(); // now the position is 11
bugsy.turn();
bugsy.move(); // now the position is 10

Your BugTester should construct a bug, make it move and turn a few

times, and print the actual and expected position.

★★Exercise P3.10. Implement a class Moth that models a moth flying across

a straight line. The moth has a position, the distance from a fixed origin.

When the moth moves toward a point of light, its new position is halfway

between its old position and the position of the light source. Supply a

constructor

public Moth(double initialPosition)

and methods

public void moveToLight(double lightPosition)
public void getPosition()

Your MothTester should construct a moth, move it toward a couple of light

sources, and check that the moth's position is as expected.

★ Exercise P3.11. Implement a class RoachPopulation that simulates

the growth of a roach population. The constructor takes the size of the

initial roach population. The breed method simulates a period in which

the roaches breed, which doubles their population. The spray method

simulates spraying with insecticide, which reduces the population by 10%.

The getRoaches method returns the current number of roaches. A

program called RoachSimulation simulates a population that starts out

127

128

Chapter 3 Implementing Classes Page 65 of 71

Java Concepts, 5th Edition

with 10 roaches. Breed, spray, and print the roach count. Repeat three more

times.

★★Exercise P3.12. Implement a VotingMachine class that can be used for

a simple election. Have methods to clear the machine state, to vote for a

Democrat, to vote for a Republican, and to get the tallies for both parties.

Extra credit if your program gives the nod to your favored party if the

votes are tallied after 8 p.m. on the first Tuesday in November, but acts

normally on all other dates. (Hint: Use the GregorianCalendar

class—see Programming Project 2.1.)

★★GExercise P3.13. Draw a “bull's eye”—a set of concentric rings in

alternating black and white colors.

Your program should be composed of classes BullsEye,

BullsEyeComponent, and BullsEyeViewer.

★★GExercise P3.14. Write a program that draws a picture of a house. It could

be as simple as the accompanying figure, or if you like, make it more

elaborate (3-D, skyscraper, marble columns in the entryway, whatever).

Implement a class Houseand supply a method draw(Graphics2D

g2) that draws the house.

★★GExercise P3.15. Extend Exercise p3.14 by supplying a House

constructor for specifying the position and size. Then populate your

screen with a few houses of different sizes.

128

129

Chapter 3 Implementing Classes Page 66 of 71

Java Concepts, 5th Edition

★★GExercise P3.16. Change the car drawing program to make the cars

appear in different colors. Each Car object should store its own color.

Supply modified Car and CarComponent classes.

★★GExercise P3.17. Change the Car class so that the size of a car can be

specified in the constructor. Change the CarComponent class to make

one of the cars appear twice the size of the original example.

★★GExercise P3.18. Write a program to plot the string “HELLO”, using only

lines and circles. Do not call drawString, and do not use

System.out. Make classes LetterH, LetterE, LetterL, and

LetterO.

★★GExercise P3.19. Write a program that displays the Olympic rings. Color

the rings in the Olympic colors.

Provide a class OlympicRingViewer and a class

OlympicRingComponent.

★★GExercise P3.20. Make a bar chart to plot the following data set. Label

each bar. Make the bars horizontal for easier labeling.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

 Additional programming exercises are available in WileyPLUS.

129

130

Chapter 3 Implementing Classes Page 67 of 71

Java Concepts, 5th Edition

PROGRAMMING PROJECTS

★★★Project 3.1. In this project, you will enhance the BankAccount class

and see how abstraction and encapsulation enable evolutionary changes

to software.

Begin with a simple enhancement: charging a fee for every deposit and

withdrawal. Supply a mechanism for setting the fee and modify the

deposit and withdraw methods so that the fee is levied. Test your

resulting class and check that the fee is computed correctly.

Now make a more complex change. The bank will allow a fixed number

of free transactions (deposits or withdrawals) every month, and charge

for transactions exceeding the free allotment. The charge is not levied

immediately but at the end of the month.

Supply a new method deductMonthlyCharge to the

BankAccount class that deducts the monthly charge and resets the

transaction count. Produce a test program that verifies that the fees are

calculated correctly over several months.

★★★Project 3.2. In this project, you will explore an object-oriented

alternative to the “Hello, World” program in Chapter 1.

Begin with a simple Greeter class that has a single method,

sayHello. That method should return a string, not print it. Use BlueJ

to create two objects of this class and invoke their sayHello methods.

That is boring—of course, both objects return the same answer.

Enhance the Greeter class so that each object produces a customized

greeting. For example, the object constructed as new Greeter(”

Dave”) should say ”Hello, Dave”. (Use the concat method to

combine strings to form a longer string, or peek ahead at Section 4.6 to

see how you can use the + operator for the same purpose.)

Add a method sayGoodbye to the Greeter class.

Chapter 3 Implementing Classes Page 68 of 71

Java Concepts, 5th Edition

Finally, add a method refuseHelp to the Greeter class. It should

return a string such as ”I am sorry, Dave. I am afraid I
can't do that.”

Test your class in BlueJ. Make objects that greet the world and Dave,

and invoke methods on them.

ANSWERS TO SELF-CHECK QUESTIONS

1. The programmers who designed and implemented the Java library.

2. Other programmers who work on the personal finance application.

3. harrysChecking.withdraw(harrysChecking.getBalance())

4. Add an accountNumber parameter to the constructors, and add a

getAccount-Number method. There is no need for a

setAccountNumber method—the account number never changes after

construction.

5.

/**
 Constructs a new bank account with a given
initial balance.
 @param accountNumber the account number for
this account
 @param initialBalance the initial balance for
this account
*/

6. The first sentence of the method description should describe the method—

it is displayed in isolation in the summary table.

7. An instance field

private int accountNumber;

needs to be added to the class.

8. You can't tell from the public interface, but the source file (which is a part

of the JDK) contains these definitions:

130

131

Chapter 3 Implementing Classes Page 69 of 71

Java Concepts, 5th Edition

private int x;
private int y;
private int width;
private int height;

9.

public int getWidth()
{
 return width;
}

10. There is more than one correct answer. One possible implementation is as

follows:

public void translate(int dx, int dy)
{
 int newx = x + dx;
 x = newx;
 int newy = y + dy;
 y = newy;
}

11. One BankAccount object, no BankAccountTester object. The

purpose of the BankAccountTester class is merely to hold the main

method.

12. In those environments, you can issue interactive commands to construct

BankAccount objects, invoke methods, and display their return values.

13. Variables of both categories belong to methods—they come alive when the

method is called, and they die when the method exits. They differ in their

initialization. Parameter variables are initialized with the call values; local

variables must be explicitly initialized.

14. One instance field, named balance. Three local variables, one named

harrysChecking and two named newBalance (in the deposit and

withdraw methods); two parameter variables, both named amount (in

the deposit and withdraw methods).

15. One implicit parameter, called this, of type BankAccount, and one

explicit parameter, called amount, of type double.

131

132

Chapter 3 Implementing Classes Page 70 of 71

Java Concepts, 5th Edition

16. It is not a legal expression. this is of type BankAccount and the

BankAccount class has no field named amount.

17. No implicit parameter—the method is static—and one explicit parameter,

called args.

18. CarComponent

19. In the draw method of the Car class, call

g2.fill(frontTire);
g2.fill(rearTire);

20. Double all measurements in the draw method of the Car class.

Chapter 3 Implementing Classes Page 71 of 71

Java Concepts, 5th Edition

Chapter 4 Fundamental Data Types

CHAPTER GOALS

• To understand integer and floating-point numbers

• To recognize the limitations of the numeric types

• To become aware of causes for overflow and roundoff errors

• To understand the proper use of constants

• To write arithmetic expressions in Java

• To use the String type to define and manipulate character strings

• To learn how to read program input and produce formatted output

This chapter teaches how to manipulate numbers and character strings in Java. The

goal of this chapter is to gain a firm understanding of the fundamental Java data

types.

You will learn about the properties and limitations of the number types in Java. You

will see how to manipulate numbers and strings in your programs. Finally, we cover

the important topic of input and output, which enables you to implement interactive

programs.

4.1 Number Types

In Java, every value is either a reference to an object, or it belongs to one of the eight

primitive types shown in Table 1.

Java has eight primitive types, including four integer types and two floating-point

types.

Six of the primitive types are number types, four of them for integers and two for

floating-point numbers.

133

133

134

Chapter 4 Fundamental Data Types Page 1 of 69

Java Concepts, 5th Edition

Each of the integer types has a different range—Advanced Topic 4.2 explains why

the range limits are related to powers of two. Generally, you will use the int type for

integer quantities. However, occasionally, calculations involving integers can

overflow. This happens if the result of a computation exceeds the range for the

number type. For example:

A numeric computation overflows if the result falls outside the range for the

number type.

int n = 1000000;

System.out.println(n * n); // Prints-727379968

The product n * n is 10
12
, which is larger than the largest integer (about 2 · 10

9
).

The result is truncated to fit into an int, yielding a value that is completely wrong.

Unfortunately, there is no warning when an integer overflow occurs.

Table 1 Primitive Types

Type Description Size
int The integer type, with range −2,147,483,648 …

2,147,483,647 (about 2 billion)

4 bytes

byte The type describing a single byte, with range −128 …

127

1 byte

short The short integer type, with range −32768 … 32767 2 bytes
long The long integer type, with range

−9,223,372,036,854,775,808 …

9,223,372,036,854,775,807

8 bytes

double The double-precision floating-point type, with a range

of about ±10
308

 and about 15 significant decimal digits

8 bytes

float The single-precision floating-point type, with a range of

about ±10
38
 and about 7 significant decimal digits

4 bytes

char The character type, representing code units in the

Unicode encoding scheme (see Advanced Topic 4.5)

2 bytes

boolean The type with the two truth values false and true (see

Chapter 5)

1 bit

134

135

Chapter 4 Fundamental Data Types Page 2 of 69

Java Concepts, 5th Edition

If you run into this problem, the simplest remedy is to use the long type. Advanced

Topic 4.1 shows you how to use the arbitary-precision BigInteger type in the

unlikely event that even the long type overflows.

Overflow is not usually a problem for double-precision floating-point numbers. The

double type has a range of about ±10
308

 and about 15 significant digits. However,

you want to avoid the float type—it has less than 7 significant digits. (Some

programmers use float to save on memory if they need to store a huge set of

numbers that do not require much precision.)

Rounding errors are a more serious issue with floating-point values. Rounding errors

can occur when you convert between binary and decimal numbers, or between

integers and floating-point numbers. When a value cannot be converted exactly, it is

rounded to the nearest match. Consider this example:

Rounding errors occur when an exact conversion between numbers is not possible.

double f = 4.35;

System.out.println(100 * f); // Prints 434.99999999999994

This problem is caused because computers represent numbers in the binary number

system. In the binary number system, there is no exact representation of the fraction

1/10, just as there is no exact representation of the fraction 1/3 = 0.33333 in the

decimal number system. (See Advanced Topic 4.2 for more information.)

For this reason, the double type is not appropriate for financial calculations. In this

book, we will continue to use double values for bank balances and other financial

quantities so that we keep our programs as simple as possible. However, professional

programs need to use the BigDecimal type for this purpose—see Advanced Topic

4.1.

In Java, it is legal to assign an integer value to a floating-point variable:

int dollars = 100;

double balance = dollars; // OK

But the opposite assignment is an error: You cannot assign a floating-point expression

to an integer variable.

135

136

Chapter 4 Fundamental Data Types Page 3 of 69

Java Concepts, 5th Edition

double balance = 13.75;

int dollars = balance; // Error

To overcome this problem, you can convert the floating-point value to an integer with

a cast:

int dollars = (int) balance;

The cast (int) converts the floating-point value balance to an integer by

discarding the fractional part. For example, if balance is 13.75, then dollars is

set to 13.

You use a cast (typeName) to convert a value to a different type.

The cast tells the compiler that you agree to information loss, in this case, to the loss

of the fractional part. You can also cast to other types, such as (float) or (byte).

If you want to round a floating-point number to the nearest whole number, use the

Math.round method. This method returns a long integer, because large

floating-point numbers cannot be stored in an int.

Use the Math.round method to round a floating-point number to the nearest

integer.

long rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14.

SYNTAX 4.1 Cast

(typeName) expression

Example:

(int) (balance * 100)

Purpose:

To convert an expression to a different type

Chapter 4 Fundamental Data Types Page 4 of 69

Java Concepts, 5th Edition

SELF CHECK

1. Which are the most commonly used number types in Java?

2. When does the cast (long) x yield a different result from the call

Math.round(x)?

3. How do you round the double value x to the nearest int value,

assuming that you know that it is less than 2 · 10
9
?

 ADVANCED TOPIC 4.1: Big Numbers

If you want to compute with really large numbers, you can use big number objects.

Big number objects are objects of the BigInteger and BigDecimal classes in

the java.math package. Unlike the number types such as int or double, big

number objects have essentially no limits on their size and precision. However,

computations with big number objects are much slower than those that involve

number types. Perhaps more importantly, you can't use the familiar arithmetic

operators such as (+ - *) with them. Instead, you have to use methods called

add, subtract, and multiply. Here is an example of how to create two big

integers and how to multiply them.

BigInteger a = new BigInteger("1234567890");
BigInteger b = new BigInteger("9876543210");
BigInteger c = a.multiply(b);

System.out.println(c); // Prints 12193263111263526900

The BigDecimal type carries out floating-point computation without roundoff

errors. For example,

BigDecimal d = new BigDecimal("4.35");
BigDecimal e = new BigDecimal ("100");
BigDecimal f = d.multiply(e);

System.out.println(f); // Prints 435.00

136

137

Chapter 4 Fundamental Data Types Page 5 of 69

Java Concepts, 5th Edition

 ADVANCED TOPIC 4.2: Binary Numbers

You are familiar with decimal numbers, which use the digits 0, 1, 2, …, 9. Each

digit has a place value of 1, 10, 100 = 10
2
, 1000 = 10

3
, and so on. For example,

435 = 4 · + 3 · + 5 ·10
2

10
1

10
0

Fractional digits have place values with negative powers of ten: 0.1 = 10
1
, 0.01 =

10
−2
, and so on. For example,

4.35 = 4 · + 3 · + 5 ·10
0

10
− 1

10
− 2

Computers use binary numbers instead, which have just two digits (0 and 1) and

place values that are powers of 2. Binary numbers are easier for computers to

manipulate, because it is easier to build logic circuits that differentiate between ”

off” and ”on” than it is to build circuits that can accurately tell ten different voltage

levels apart.

It is easy to transform a binary number into a decimal number. Just compute the

powers of two that correspond to ones in the binary number. For example,

1101 binary = 1 · + 1 · + 0 · + 1 · = 8 + 4 + 1 = 132
3

2
2

2
1

2
0

Fractional binary numbers use negative powers of two. For example,

1.101 binary = 1 · + 1 · + 0 · + 1 · = 1 + 0.5 + 0.125 = 1.6252
0

2
− 1

2
− 2

2
− 3

Converting decimal numbers to binary numbers is a little trickier. Here is an

algorithm that converts a decimal integer into its binary equivalent: Keep dividing

the integer by 2, keeping track of the remainders. Stop when the number is 0. Then

write the remainders as a binary number, starting with the last one. For example,

137

138

Chapter 4 Fundamental Data Types Page 6 of 69

Java Concepts, 5th Edition

100 ÷ 2 = 50 remainder 0

50 ÷ 2 = 25 remainder 0

25 ÷ 2 = 12 remainder 1

12 ÷ 2 = 6 remainder 0

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

Therefore, 100 in decimal is 1100100 in binary.

To convert a fractional number <1 to its binary format, keep multiplying by 2. If

the result is >1, subtract 1. Stop when the number is 0. Then use the digits before

the decimal points as the binary digits of the fractional part, starting with the first

one. For example,

0.35 · 2 = 0.7

0.7 · 2 = 1.4

0.4 · 2 = 0.8

0.8 · 2 = 1.6

0.6 · 2 = 1.2

0.2 · 2 = 0.4

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110

0110 0110 …

To convert any floating-point number into binary, convert the whole part and the

fractional part separately. For example, 4.35 is 100.01 0110 0110 0110 … in

binary.

You don't actually need to know about binary numbers to program in Java, but at

times it can be helpful to understand a little about them. For example, knowing that

an int is represented as a 32-bit binary number explains why the largest integer

Chapter 4 Fundamental Data Types Page 7 of 69

Java Concepts, 5th Edition

that you can represent in Java is 0111 1111 1111 1111 1111 1111 1111 1111

binary = 2,147,483,647 decimal. (The first bit is the sign bit. It is off for positive

values.)

To convert an integer into its binary representation, you can use the static

toString method of the Integer class. The call Integer.toString(n,

2) returns a string with the binary digits of the integer n. Conversely, you can

convert a string containing binary digits into an integer with the call

Integer.parseInt(digitString, 2). In both of these method calls, the

second parameter denotes the base of the number system. It can be any number

between 0 and 36. You can use these two methods to convert between decimal and

binary integers. However, the Java library has no convenient method to do the

same for floatingpoint numbers.

Now you can see why we had to fight with a roundoff error when computing 100

times 4.35. If you actually carry out the long multiplication, you get:

1 1 0 0 1 0 0 * 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0
...
1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 ...
 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 ...
 0
 0
 1 0 0.0 1|0 1 1 0|0 1 1 0 ...
 0
 0

1 1 0 1 1 0 0 1 0.1 1 1 1 1 1 1 1 ...

That is, the result is 434, followed by an infinite number of 1s. The fractional part

of the product is the binary equivalent of an infinite decimal fraction 0.999999 …,

which is equal to 1. But the CPU can store only a finite number of 1s, and it

discards some of them when converting the result to a decimal number.

 RANDOM FACT 4.1: The Pentium Floating-Point Bug

In 1994, Intel Corporation released what was then its most powerful processor, the

first of the Pentium series. Unlike previous generations of Intel's processors, the

Pentium had a very fast floating-point unit. Intel's goal was to compete

138

139

Chapter 4 Fundamental Data Types Page 8 of 69

Java Concepts, 5th Edition

aggressively with the makers of higher-end processors for engineering

workstations. The Pentium was an immediate success.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg College in Virginia ran

an extensive set of computations to analyze the sums of reciprocals of certain

sequences of prime numbers. The results were not always what his theory

predicted, even after he took into account the inevitable roundoff errors. Then Dr.

Nicely noted that the same program did produce the correct results when run on

the slower 486 processor, which preceded the Pentium in Intel's lineup. This

should not have happened. The optimal roundoff behavior of floating-point

calculations had been standardized by the Institute of Electrical and Electronics

Engineers (IEEE), and Intel claimed to adhere to the IEEE standard in both the 486

and the Pentium processors. Upon further checking, Dr. Nicely discovered that

indeed there was a very small set of numbers for which the product of two

numbers was computed differently on the two processors. For example,

4,195,835 = ((4,195,835 / 3,145,727) × 3,145,727)

is mathematically equal to 0, and it did compute as 0 on a 486 processor. On a

Pentium processor, however, the result was 256.

As it turned out, Intel had independently discovered the bug in its testing and had

started to produce chips that fixed it. (Subsequent versions of the Pentium, such as

the Pentium III and IV, are free of the problem.) The bug was caused by an error in

a table that was used to speed up the floating-point multiplication algorithm of the

processor. Intel determined that the problem was exceedingly rare. They claimed

that under normal use a typical consumer would only notice the problem once

every 27,000 years. Unfortunately for Intel, Dr. Nicely had not been a normal user.

Now Intel had a real problem on its hands. It figured that replacing all the Pentium

processors that it had already sold would cost it a great deal of money. Intel

already had more orders for the chip than it could produce, and it would be

particularly galling to have to give out the scarce chips as free replacements

instead of selling them. Intel's management decided to punt on the issue and

initially offered to replace the processors only for those customers who could

prove that their work required absolute precision in mathematical calculations.

Naturally, that did not go over well with the hundreds of thousands of customers

who had paid retail prices of $700 and more for a Pentium chip and did not want to

139

140

Chapter 4 Fundamental Data Types Page 9 of 69

Java Concepts, 5th Edition

live with the nagging feeling that perhaps, one day, their income tax program

would produce a faulty return.

Ultimately, Intel had to cave in to public demand and replaced all defective chips,

at a cost of about 475 million dollars.

What do you think? Intel claims that the probability of the bug occurring in any

calculation is extremely small—smaller than many chances you take every day,

such as driving to work in an automobile. Indeed, many users had used their

Pentium computers for many months without reporting any ill effects, and the

computations that Professor Nicely was doing are hardly examples of typical user

needs. As a result of its public relations blunder, Intel ended up paying a large

amount of money. Undoubtedly, some of that money was added to chip prices and

thus actually paid by Intel's customers. Also, a large number of processors, whose

manufacture consumed energy and caused some environmental impact, were

destroyed without benefiting anyone. Could Intel have been justified in wanting to

replace only the processors of those users who could reasonably be expected to

suffer an impact from the problem?

Suppose that, instead of stonewalling, Intel had offered you the choice of a free

replacement processor or a $200 rebate. What would you have done? Would you

have replaced your faulty chip, or would you have taken your chances and

pocketed the money?

4.2 Constants

In many programs, you need to use numerical constants—values that do not change

and that have a special significance for a computation.

A typical example for the use of constants is a computation that involves coin values,

such as the following:

payment = dollars + quarters * 0.25 + dimes * 0.1
 + nickels * 0.05 + pennies * 0.01;

Most of the code is self-documenting. However, the four numeric quantities, 0.25,

0.1, 0.05, and 0.01 are included in the arithmetic expression without any explanation.

Of course, in this case, you know that the value of a nickel is five cents, which

Chapter 4 Fundamental Data Types Page 10 of 69

Java Concepts, 5th Edition

explains the 0.05, and so on. However, the next person who needs to maintain this

code may live in another country and may not know that a nickel is worth five cents.

Thus, it is a good idea to use symbolic names for all values, even those that appear

obvious. Here is a clearer version of the computation of the total:

double quarterValue = 0.25;
double dimeValue = 0.1;
double nickelValue = 0.05;
double pennyValue = 0.01;
payment = dollars + quarters * quarterValue + dimes
* dimeValue
 + nickels * nickelValue + pennies *
pennyValue;

There is another improvement we can make. There is a difference between the

nickels and nickelValue variables. The nickels variable can truly vary over

the life of the program, as we calculate different payments. But nickelValue is

always 0.05.

A final variable is a constant. Once its value has been set, it cannot be changed.

In Java, constants are identified with the keyword final. A variable tagged as

final can never change after it has been set. If you try to change the value of a

final variable, the compiler will report an error and your program will not compile.

Many programmers use all-uppercase names for constants (final variables), such as

NICKEL_VALUE. That way, it is easy to distinguish between variables (with mostly

lowercase letters) and constants. We will follow this convention in this book.

However, this rule is a matter of good style, not a requirement of the Java language.

The compiler will not complain if you give a final variable a name with lowercase

letters.

Use named constants to make your programs easier to read and maintain.

Here is an improved version of the code that computes the value of a payment.

final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;

140

141

Chapter 4 Fundamental Data Types Page 11 of 69

Java Concepts, 5th Edition

final double PENNY_VALUE = 0.01;
payment = dollars + quarters * QUARTER_VALUE + dimes
* DIME_VALUE
 + nickels * NICKEL_VALUE + pennies *
PENNY_VALUE;

Frequently, constant values are needed in several methods. Then you should declare

them together with the instance fields of a class and tag them as static and

final. As before, final indicates that the value is a constant. The static

keyword means that the constant belongs to the class—this is explained in greater

detail in Chapter 8.)

public class CashRegister
{

 // Methods
 . . .

 // Constants
 public static final double QUARTER_VALUE =
0.25;
 public static final double DIME_VALUE = 0.1;
 public static final double NICKEL_VALUE = 0.05;
 public static final double PENNY_VALUE = 0.01;

 // Instance fields
 private double purchase;
 private double payment;
}

We declared the constants as public. There is no danger in doing this because

constants cannot be modified. Methods of other classes can access a public constant

by first specifying the name of the class in which it is defined, then a period, then the

name of the constant, such as CashRegister.NICKEL_VALUE.

The Math class from the standard library defines a couple of useful constants:

public class Math
{
 . . .
 public static final double E =
2.7182818284590452354;
 public static final double PI =
3.14159265358979323846;
}

141

142

Chapter 4 Fundamental Data Types Page 12 of 69

Java Concepts, 5th Edition

You can refer to these constants as Math.PI and Math.E in any of your methods.

For example,

double circumference = Math.PI * diameter;

The sample program at the end of this section puts constants to work. The program

shows a refinement of the CashRegister class of How To 3.1. The public

interface of that class has been modified in order to solve a common business

problem.

Busy cashiers sometimes make mistakes totaling up coin values. Our

Cash-Register class features a method whose inputs are the coin counts. For

example, the call

register.enterPayment(1, 2, 1, 1, 4);

enters a payment consisting of one dollar, two quarters, one dime, one nickel, and

four pennies. The enterPayment method figures out the total value of the

payment, $1.69. As you can see from the code listing, the method uses named

constants for the coin values.

SYNTAX 4.2 Constant Definition

In a method:

final typeName variableName = expression;

In a class:

accessSpecifier static final typeName variableName = expression;

Example:

final double NICKEL_VALUE = 0.05;
public static final double LITERS_PER_GALLON =
3.785;

Purpose:

To define a constant in a method or a class
142

Chapter 4 Fundamental Data Types Page 13 of 69

Java Concepts, 5th Edition

ch04/cashregister/CashRegister.java

 1 /**

 2 A cash register totals up sales and computes change due.
 3 */
 4 public class CashRegister
 5 {
 6 /**

 7 Constructs a cash register with no money in it.
 8 */
 9 public CashRegister()
 10 {
 11 purchase = 0;
 12 payment = 0;
 13 }
 14
 15 /**

 16 Records the purchase price of an item.
 17 @param amount the price of the
purchased item
 18 */
 19 public void recordPurchase(double amount)
 20 {
 21 purchase = purchase + amount;
 22 }
 23
 24 /**

 25 Enters the payment received from the customer.

 26 @param dollarsthe number of dollars in the payment

 27 @param quartersthe number of quarters in the

payment

 28 @param dimes the number of dimes in the payment

 29 @param nickelsthe number of nickels in the payment

 30 @param penniesthe number of pennies in the

payment
 31 */
 32 public void enterPayment(int dollars,
int quarters,
 33 int dimes, int nickels, int
pennies)
 34 {

142

143

Chapter 4 Fundamental Data Types Page 14 of 69

Java Concepts, 5th Edition

 35 payment = dollars + quarters *
QUARTER_VALUE + dimes * DIME_VALUE
 36 + nickels *
NICKEL_VALUE + pennies * PENNY_VALUE;
 37 }
 38
 39 /**

 40 Computes the change due and resets the machine for the

next customer.

 41 @return the change due to the customer
 42 *
 43 public double giveChange()
 44 {
 45 double change = payment - purchase;
 46 purchase = 0;
 47 payment = 0;
 48 return change;
 49 }
 50
 51 public static final double QUARTER_VALUE
= 0.25;
 52 public static final double DIME_VALUE =
0.1;
 53 public static final double NICKEL_VALUE
= 0.05;
 54 public static final double PENNY_VALUE =
0.01;
 55
 56 private double purchase;
 57 private double payment;
 58 }

ch04/cashregister/CashRegisterTester.java

 1 /**

 2 This class tests the CashRegister class.
 3 */
 4 public class CashRegisterTester
 5 {
 6 public static void main(String[] args)
 7 {
 8 CashRegister register = new
CashRegister();
 9

143

144

Chapter 4 Fundamental Data Types Page 15 of 69

Java Concepts, 5th Edition

 10 register.recordPurchase(0.75);
 11 register.recordPurchase(1.50);
 12 register.enterPayment(2, 0, 5, 0,
0);
 13 System.out.print(“Change: ”);
 14 System.out.println(register.giveChange())
 15 System.out.println(“Expected:
0.25”);
 16
 17 register.recordPurchase(2.25);
 18 register.recordPurchase(19.25);
 19 register.enterPayment(23, 2, 0,
0, 0);
 20 System.out.print(“Change:”);
 21 System.out.println(register.giveChange())
 22 System.out.println(“Expected: 2.0”);
 23 }
 24 }

Output

Change: 0.25
Expected: 0.25
Change: 2.0
Expected: 2.0

SELF CHECK

4. What is the difference between the following two statements?

final double CM_PER_INCH = 2.54;

and

public static final double CM_PER_INCH = 2.54;

5. What is wrong with the following statement?

double circumference = 3.14 * diameter;
144

Chapter 4 Fundamental Data Types Page 16 of 69

Java Concepts, 5th Edition

 QUALITY TIP 4.1: Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without

explanation. For example, consider the following scary example that actually

occurs in the Java library source:

h = 31 * h + ch;

Why 31? The number of days in January? One less than the number of bits in an

integer? Actually, this code computes a “hash code” from a string—a number that

is derived from the characters in such a way that different strings are likely to yield

different hash codes. The value 31 turns out to scramble the character values nicely.

A better solution is to use a named constant:

final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

You should never use magic numbers in your code. Any number that is not

completely self-explanatory should be declared as a named constant. Even the

most reasonable cosmic constant is going to change one day. You think there are

365 days in a year? Your customers on Mars are going to be pretty unhappy about

your silly prejudice. Make a constant

final int DAYS_PER_YEAR = 365;

By the way, the device

final int THREE_HUNDRED_AND_SIXTY_FIVE = 365;

is counterproductive and frowned upon.

 QUALITY TIP 4.2: Choose Descriptive Variable Names

In algebra, variable names are usually just one letter long, such as p or A, maybe

with a subscript such as p1. You might be tempted to save yourself a lot of typing

by using short variable names in your Java programs:

payment = d + q * QV + di * DIV + n * NV + p * PV;

144

145

Chapter 4 Fundamental Data Types Page 17 of 69

Java Concepts, 5th Edition

Compare this with the following statement:

payment = dollars + quarters * QUARTER_VALUE +
dimes * DIME_VALUE
 + nickels * NICKEL_VALUE + pennies *
PENNY_VALUE;

The advantage is obvious. Reading dollars is a lot less trouble than reading d

and then figuring out that it must mean “dollars”.

In practical programming, descriptive variable names are particularly important

when programs are written by more than one person. It may be obvious to you that

d stands for dollars, but is it obvious to the person who needs to update your code

years later, long after you were promoted (or laid off)? For that matter, will you

remember yourself what d means when you look at the code six months from now?

4.3 Assignment, Increment, and Decrement

The = operator is called the assignment operator. On the left, you need a variable

name. The right-hand side can be a single value or an expression. The assignment

operator sets the variable to the given value. So far, that's straightforward. But now

let's look at a more interesting use of the assignment operator. Consider the statement

items = items + 1;

It means, ”Compute the value of the expression items + 1, and place the result

again into the variable items.” (See Figure 1.) The net effect of executing this

statement is to increment items by 1. For example, if items was 3 before

execution of the statement, it is set to 4 afterwards. (This statement would be useful if

the cash register kept track of the number of purchased items.)

The = sign does not mean that the left-hand side is equal to the right-hand side.

Instead, it is an instruction to copy the right-hand-side value into the left-hand-side

variable. You should not confuse this assignment operation with the = relation used in

algebra to denote equality. The assignment operator is an instruction to do something,

namely place a value into a variable. The mathematical equality states the fact that

two values are equal. Of course, in mathematics it would make no sense to write that i

= i + 1; no integer can equal itself plus 1.

145

146

Chapter 4 Fundamental Data Types Page 18 of 69

Java Concepts, 5th Edition

The concepts of assignment and equality have no relationship with each other, and it

is a bit unfortunate that the Java language (following C and C++) uses = to denote

assignment. Other programming languages use a symbol such as − or :=, which

avoids the confusion.

Assignment to a variable is not the same as mathematical equality.

The increment operation is so common when writing programs that there is a special

shorthand for it, namely

items++;

The ++ and -- operators increment and decrement a variable.

This statement also adds 1 to items. However, it is easier to type and read than the

explicit assignment statement. As you might have guessed, there is also a decrement

operator --. The statement

items--;

subtracts 1 from items.

Figure 1

Incrementing a Variable

SELF CHECK

6. What is the meaning of the following statement?

146

147

Chapter 4 Fundamental Data Types Page 19 of 69

Java Concepts, 5th Edition

balance = balance + amount;

7. What is the value of n after the following sequence of statements?

n--;
n++;
n--;

 PRODUCTIVITY HINT 4.1: Avoid Unstable Layout

Arrange program code and comments so that the program is easy to read. For

example, do not cram all statements on a single line, and make sure that braces { }

line up.

However, be careful when you embark on beautification efforts. Some

programmers like to line up the = signs in a series of assignments, like this:

nickels = 0;
dimes = 0;
quarters = 0;

This looks very neat, but the layout is not stable. Suppose you add a line like the

one at the bottom of this:

nickels = 0;
dimes = 0;
quarters = 0;
halfDollars = 0;

Oops, now the = signs no longer line up, and you have the extra work of lining

them up again.

Here is another example. Some programmers like to put a column of asterisks (*)

in documentation comments, like this:

/**
 * Computes the change due and resets the cash
register for the
 * next customer.
 * @return the change due to the customer
 */

It looks pretty, but it is tedious to rearrange the asterisks when editing comments.

Chapter 4 Fundamental Data Types Page 20 of 69

Java Concepts, 5th Edition

You may not care about these issues. Perhaps you plan to beautify your program

just before it is finished, when you are about to turn in your homework. That is not

a particularly useful approach. In practice, programs are never finished. They are

continuously improved and updated. It is better to develop the habit of laying out

your programs well from the start and keeping them legible at all times. Therefore,

it is a good idea to avoid layout schemes that are hard to maintain.

 ADVANCED TOPIC 4.3: Combining Assignment and

Arithmetic

In Java you can combine arithmetic and assignment. For example, the instruction

balance += amount;

is a shortcut for

balance = balance + amount;

Similarly,

items *= 2;

is another way of writing

items = items * 2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use

it in your own code. For simplicity, we won't use it in this book.

4.4 Arithmetic Operations and Mathematical Functions

You already saw how to add, subtract, and multiply values. Division is indicated with

a /, not a fraction bar. For example,

a + b

2

becomes

(a + b) / 2

147

148

Chapter 4 Fundamental Data Types Page 21 of 69

Java Concepts, 5th Edition

Parentheses are used just as in algebra: to indicate in which order the subexpressions

should be computed. For example, in the expression (a + b) / 2, the sum a +

b is computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

only b is divided by 2, and then the sum of a and b / 2 is formed. Just as in regular

algebraic notation, multiplication and division bind more strongly than addition and

subtraction. For example, in the expression a + b / 2, the / is carried out first,

even though the + operation occurs farther to the left.

Division works as you would expect, as long as at least one of the numbers involved

is a floating-point number. That is,

If both arguments of the / operator are integers, the result is an integer and the

remainder is discarded.

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers, then the result of the division is

always an integer, with the remainder discarded. That is,

7 / 4

evaluates to 1, because 7 divided by 4 is 1 with a remainder of 3 (which is discarded).

This can be a source of subtle programming errors—see Common Error 4.1.

If you are interested only in the remainder of an integer division, use the % operator:

The % operator computes the remainder of a division.

7 % 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in

algebra. It was chosen because it looks similar to /, and the remainder operation is

related to division.

148

149

Chapter 4 Fundamental Data Types Page 22 of 69

Java Concepts, 5th Edition

Here is a typical use for the integer / and % operations. Suppose you want to know

how much change a cash register should give, using separate values for dollars and

cents. You can compute the value as an integer, denominated in cents, and then

compute the whole dollar amount and the remaining change:

final int PENNIES_PER_NICKEL = 5;
final int PENNIES_PER_DIME = 10;
final int PENNIES_PER_QUARTER = 25;
final int PENNIES_PER_DOLLAR = 100;

// Compute total value in pennies
int total = dollars * PENNIES_PER_DOLLAR + quarters
* PENNIES_PER_QUARTER
 + nickels * PENNIES_PER_NICKEL + dimes *
PENNIES_PER_DIME + pennies;

// Use integer division to convert to dollars, cents
int dollars = total / PENNIES_PER_DOLLAR;
int cents = total % PENNIES_PER_DOLLAR;

For example, if total is 243, then dollars is set to 2 and cents to 43.

To compute x
n
, you write Math.pow(x, n). However, to compute x

2
 it is

significantly more efficient simply to compute x * x.

The Math class contains methods sqrt and pow to compute square roots and

powers.

To take the square root of a number, you use the Math.sqrt method. For example,

 is written as Math.sqrt(x).x

In algebra, you use fractions, superscripts for exponents, and radical signs for roots to

arrange expressions in a compact two-dimensional form. In Java, you have to write

all expressions in a linear arrangement. For example, the subexpression

− b + − 4 acb
2

2 a

of the quadratic formula becomes

(-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a) 149

Chapter 4 Fundamental Data Types Page 23 of 69

Java Concepts, 5th Edition

Figure 2 shows how to analyze such an expression. With complicated expressions like

these, it is not always easy to keep the parentheses () matched—see Common Error

4.2.

Table 2 shows additional methods of the Math class. Inputs and outputs are

floating-point numbers.

Table 2 Mathematical Methods

Function Returns
Math.sqrt(x) Square root of x (≥0)
Math.pow(x, y)

x
y
 (x > 0, or x = 0 and y > 0, or x < 0 and y is

an integer)
Math.sin(x) Sine of x (x in radians)
Math.cos(x) Cosine of x
Math.tan(x) Tangent of x
Math.asin(x)

Arc sine (sin
−1
x ε [−π/2, π/2], x ε [−1, 1])

Math.acos(x)
Arc cosine (cos

−1
x ε [0, π], x ε [−1, 1])

Math.atan(x)
Arc tangent (tan

−1
x ε [−π/2, π/2])

Math.atan2(y, x)
Arc tangent (tan

−1
y/x ε [−π, π]), x may be 0

Math.toRadians(x) Convert x degrees to radians (i.e., returns x ·

π/180)
Math.toDegrees(x) Convert x radians to degrees (i.e., returns x ·

180/π)
Math.exp(x)

e
x

Math.log(x) Natural log (ln(x), x > 0)
Math.round(x) Closest integer to x (as a long)
Math.ceil(x) Smallest integer ≥x (as a double)
Math.floor(x) Largest integer ≤x (as a double)
Math.abs(x) Absolute value |x|

Math.max(x, y) The larger of x and y
Math.min(x, y) The smaller of x and y

149

150

150

Chapter 4 Fundamental Data Types Page 24 of 69

Java Concepts, 5th Edition

Figure 2

Analyzing an Expression

SELF CHECK

8. What is the value of 1729 / 100? Of 1729 % 100?

9. Why doesn't the following statement compute the average of s1, s2,

and s3?

double average = s1 + s2 + s3 / 3; // Error

10. What is the value of Math.sqrt(Math.pow(x, 2) +

Math.pow(y, 2)) in mathematical notation?

 COMMON ERROR 4.1: Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and

floating-point division. These are really quite different operations. It is a common

error to use integer division by accident. Consider this program segment that

computes the average of three integers.

int s1 = 5; // Score of test 1

int s2 = 6; // Score of test 2

int s3 = 3; // Score of test 3

double average = (s1 + s2 + s3) / 3; // Error

150

151

Chapter 4 Fundamental Data Types Page 25 of 69

Java Concepts, 5th Edition

System.out.print("Your average score is ");
System.out.println(average);

What could be wrong with that? Of course, the average of s1, s2, and s3 is

+ +s 1 s 2 s 3

3

Here, however, the / does not mean division in the mathematical sense. It denotes

integer division, because the values s1 + s2 + s3 and 3 are both integers. For

example, if the scores add up to 14, the average is computed to be 4, the result of

the integer division of 14 by 3.

That integer 4 is then moved into the floating-point variable average. The remedy

is to make either the numerator or denominator into a floating-point number:

double total = s1 + s2 + s3;
double average = total / 3;

or

double average = (s1 + s2 + s3) / 3.0;

 COMMON ERROR 4.2: Unbalanced Parentheses

Consider the expression

1.5 * ((-(b - Math.sqrt(b * b - 4 * a * c)) / (2 *
a))

What is wrong with it? Count the parentheses. There are five opening parentheses (

and four closing parentheses). The parentheses are unbalanced. This kind of

typing error is very common with complicated expressions. Now consider this

expression.

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / 2 *
a))

This expression has five opening parentheses (and five closing parentheses), but

it is still not correct. In the middle of the expression,

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 *
a))

151

152

Chapter 4 Fundamental Data Types Page 26 of 69

Java Concepts, 5th Edition

there are only two opening parentheses (but three closing parentheses), which is

an error. In the middle of an expression, the count of opening parentheses must be

greater than or equal to the count of closing parentheses, and at the end of the

expression the two counts must be the same.

Here is a simple trick to make the counting easier without using pencil and paper.

It is difficult for the brain to keep two counts simultaneously, so keep only one

count when scanning the expression. Start with 1 at the first opening parenthesis;

add 1 whenever you see an opening parenthesis; subtract 1 whenever you see a

closing parenthesis. Say the numbers aloud as you scan the expression. If the count

ever drops below zero, or if it is not zero at the end, the parentheses are

unbalanced. For example, when scanning the previous expression, you would

mutter

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b
/ 2 * a))
 1 2 1 0 -1

and you would find the error.

 QUALITY TIP 4.3: White Space

The compiler does not care whether you write your entire program onto a single

line or place every symbol onto a separate line. The human reader, though, cares

very much. You should use blank lines to group your code visually into sections.

For example, you can signal to the reader that an output prompt and the

corresponding input statement belong together by inserting a blank line before and

after the group. You will find many examples in the source code listings in this

book.

White space inside expressions is also important. It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

152

153

Chapter 4 Fundamental Data Types Page 27 of 69

Java Concepts, 5th Edition

Simply put spaces around all operators + - * / % =. However, don't put a space

after a unary minus: a - used to negate a single quantity, as in -b. That way, it can

be easily distinguished from a binary minus, as in a − b. Don't put spaces

between a method name and the parentheses, but do put a space after every Java

keyword. That makes it easy to see that the sqrt in Math.sqrt(x) is a method

name, whereas the if in if (x > 0) … is a keyword.

 QUALITY TIP 4.4: Factor Out Common Code

Suppose you want to find both solutions of the quadratic equation ax
2
 + bx + c = 0.

The quadratic formula tells us that the solutions are

=x
1, 2

− b ± − 4 acb
2

2 a

In Java, there is no analog to the ± operation, which indicates how to obtain two

solutions simultaneously. Both solutions must be computed separately:

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x2 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);

This approach has two problems. First, the computation of Math.sqrt(b * b

- 4 * a * c) is carried out twice, which wastes time. Second, whenever the

same code is replicated, the possibility of a typing error increases. The remedy is

to factor out the common code:

double root = Math.sqrt(b * b - 4 * a * c);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

You could go even further and factor out the computation of 2 * a, but the gain

from factoring out very simple computations is too small to warrant the effort.

4.5 Calling Static Methods

In the preceding section, you encountered the Math class, which contains a collection

of helpful methods for carrying out mathematical computations. These methods have

a special form: they are static methods that do not operate on an object.

Chapter 4 Fundamental Data Types Page 28 of 69

Java Concepts, 5th Edition

That is, you don't call
double x = 4;

double root = x.sqrt(); // Error

because, in Java, numbers are not objects, so you can never invoke a method on a

number. Instead, you pass a number as an explicit parameter to a method, enclosing

the number in parentheses after the method name. For example, the number value x

can be a parameter of the Math.sqrt method: Math.sqrt(x).

This call makes it appear as if the sqrt method is applied to an object called Math,

because Math precedes sqrt just as harrysChecking precedes getBalance

in a method call harrysChecking.getBalance(). However, Math is a class,

not an object. A method such as Math.round that does not operate on any object is

called a static method. (The term ”static” is a historical holdover from the C and C++

programming languages. It has nothing to do with the usual meaning of the word.)

Static methods do not operate on objects, but they are still defined inside classes. You

must specify the class to which the sqrt method belongs—hence the call is

Math.sqrt(x).

A static method does not operate on an object.

How can you tell whether Math is a class or an object? All classes in the Java library

start with an uppercase letter (such as System). Objects and methods start with a

lowercase letter (such as out and println). (You can tell objects and methods

apart because method calls are followed by parentheses.) Therefore,

System.out.println() denotes a call of the println method on the out

object inside the System class. On the other hand, Math.sqrt(x) denotes a call

to the sqrt method inside the Math class. This use of upper- and lowercase letters is

merely a convention, not a rule of the Java language. It is, however, a convention that

the authors of the Java class libraries follow consistently. You should do the same in

your programs. If you give names to objects or methods that start with uppercase

letters, you will likely confuse your fellow programmers. Therefore, we strongly

recommend that you follow the standard naming convention.

SYNTAX 4.3 Static Method Call

ClassName.methodName (parameters)

153

154

Chapter 4 Fundamental Data Types Page 29 of 69

Java Concepts, 5th Edition

Example:

Math.sqrt(4)

Purpose:

To invoke a static method (a method that does not operate on an object) and supply

its parameters

SELF CHECK

11. Why can't you call x.pow(y) to compute x
y
?

12. Is the call System.out.println(4) a static method call?

 COMMON ERROR 4.3: Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers.

You probably have encountered this phenomenon yourself with manual

calculations. If you calculate 1/3 to two decimal places, you get 0.33. Multiplying

again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system,

not in decimal. You still get roundoff errors when binary digits are lost. They just

may crop up at different places than you might expect. Here is an example:

double f = 4.35;
int n = (int) (100 * f);

System.out.println(n); // Prints 434!

Of course, one hundred times 4.35 is 435, but the program prints 434.

Computers represent numbers in the binary system (see Advanced Topic 4.2). In

the binary system, there is no exact representation for 4.35, just as there is no exact

representation for 1/3 in the decimal system. The representation used by the

computer is just a little less than 4.35, so 100 times that value is just a little less

than 435. When a floating-point value is converted to an integer, the entire

fractional part is discarded, even if it is almost 1. As a result, the integer 434 is

154

155

Chapter 4 Fundamental Data Types Page 30 of 69

Java Concepts, 5th Edition

stored in n. Remedy: Use Math.round to convert floating-point numbers to

integers. The round method returns the closest integer.

int n = (int) Math.round(100 * f); // OK, n is 435

 HOW TO 4.1: Carrying Out Computations

Many programming problems require that you use mathematical formulas to

compute values. It is not always obvious how to turn a problem statement into a

sequence of mathematical formulas and, ultimately, statements in the Java

programming language.

Step 1 Understand the problem: What are the inputs? What are the desired outputs?

For example, suppose you are asked to simulate a postage stamp vending machine.

A customer inserts money into the vending machine. Then the customer pushes a

“First class stamps” button. The vending machine gives out as many first-class

stamps as the customer paid for. (A first-class stamp cost 39 cents at the time this

book was written.) Finally, the customer pushes a “Penny stamps” button. The

machine gives the change in penny (1-cent) stamps.

In this problem, there is one input:

• The amount of money the customer inserts

There are two desired outputs:

• The number of first-class stamps the machine returns

• The number of penny stamps the machine returns

Step 2 Work out examples by hand.

This is a very important step. If you can't compute a couple of solutions by hand,

it's unlikely that you'll be able to write a program that automates the computation.

Let's assume that a first-class stamp costs 39 cents and the customer inserts $1.00.

That's enough for two stamps (78 cents) but not enough for three stamps ($1.17).

Therefore, the machine returns two first-class stamps and 22 penny stamps.

155

156

Chapter 4 Fundamental Data Types Page 31 of 69

Java Concepts, 5th Edition

Step 3 Find mathematical equations that compute the answers.

Given an amount of money and the price of a first-class stamp, how can you

compute how many first-class stamps can be purchased with the money? Clearly,

the answer is related to the quotient

amount of money

price of first-class stamp

For example, suppose the customer paid $1.00. Use a pocket calculator to compute

the quotient: $1.00/$0.39 ≈ 2.5641.

How do you get “2 stamps” out of 2.5641? It's the integer part. By discarding the

fractional part, you get the number of whole stamps the customer has purchased.

In mathematical notation,

number of first-class stamps = ⌊ money

price of first-class stamp⌋
where ⌊x⌋ denotes the largest integer ≤x. That function is sometimes called the ”

floor function”.

You now know how to compute the number of stamps that are given out when the

customer pushes the “First-class stamps” button. When the customer gets the

stamps, the amount of money is reduced by the value of the stamps purchased. For

example, if the customer gets two stamps, the remaining money is $0.22—the

difference between $1.00 and 2 ċ $0.39. Here is the general formula:

remaining money =money − number of first-class stamps · price of first-class

stamp

How many penny stamps does the remaining money buy? That's easy. If $0.22 is

left, the customer gets 22 stamps. In general, the number of penny stamps is

number of penny stamps = 100 · remaining money

Step 4 Turn the mathematical equations into Java statements.

In Java, you can compute the integer part of a nonnegative floating-point value by

applying an (int) cast. Therefore, you can compute the number of first-class

stamps with the following statement:

Chapter 4 Fundamental Data Types Page 32 of 69

Java Concepts, 5th Edition

firstClassStamps = (int) (money /
FIRST_CLASS_STAMP_PRICE);
money = money - firstClassStamps *
FIRST_CLASS_STAMP_PRICE;

Finally, the number of penny stamps is

pennyStamps = 100 * money;

That's not quite right, though. The value of pennyStamps should be an integer,

but the right-hand side is a floating-point number. Therefore, the correct statement

is

pennyStamps = (int) Math.round(100 * money);

Step 5 Build a class that carries out your computations.

How To 3.1 explains how to develop a class by finding methods and instance

variables. In our case, we can find three methods:

• void insert(double amount)

• int giveFirstClassStamps()

• int givePennyStamps()

The state of a vending machine can be described by the amount of money that the

customer has available for purchases. Therefore, we supply one instance variable,

money.

Here is the implementation:

public class StampMachine
{
 public StampMachine()
 {
 money = 0;
 }
 public void insert(double amount)
 {
 money = money + amount;
 }
 public int giveFirstClassStamps()

156

157

Chapter 4 Fundamental Data Types Page 33 of 69

Java Concepts, 5th Edition

 {
 int firstClassStamps = (int) (money /
FIRST_CLASS_STAMP_PRICE);
 money = money - firstClassStamps *
FIRST_CLASS_STAMP_PRICE;
 return firstClassStamps;
 }
 public int givePennyStamps()
 {
 int pennyStamps = (int) Math.round(100
* money);
 money = 0;
 return pennyStamps;
 }
 public static final double
FIRST_CLASS_STAMP_PRICE = 0.39;
 private double money;
}

Step 6 Test your class.

Run a test program (or use an integrated environment such as BlueJ) to verify that

the values that your class computes are the same values that you computed by

hand. In our example, try the statements

StampMachine machine = new StampMachine();
machine.insert(1);
System.out.print("First class stamps: ");
System.out.println(machi
ne.giveFirstClassStamps());
System.out.println("Expected: 2");
System.out.print("Penny stamps: ");
System.out.println (machine.givePennyStamps());
System.out.println("Expected: 22);

Check that the result is

First class stamps: 2
Expected: 2
Penny stamps: 22
Expected: 22

157

Chapter 4 Fundamental Data Types Page 34 of 69

Java Concepts, 5th Edition

4.6 Strings

Next to numbers, strings are the most important data type that most programs use. A

string is a sequence of characters, such as “Hello, World!”. In Java, strings are

enclosed in quotation marks, which are not themselves part of the string. Note that,

unlike numbers, strings are objects. (You can tell that String is a class name

because it starts with an uppercase letter. The primitive types int and double start

with lowercase letters.)

The number of characters in a string is called the length of the string. For example,

the length of “Hello, World!” is 13. You can compute the length of a string

with the length method.

A string is a sequence of characters. Strings are objects of the String class.

int n = message.length();

A string of length zero, containing no characters, is called the empty string and is

written as “”.

Use the + operator to put strings together to form a longer string.

String name = "Dave";
String message = "Hello, " + name;

The + operator concatenates two strings, provided one of the expressions, either to the

left or the right of a + operator, is a string. The other one is automatically forced to

become a string as well, and both strings are concatenated.

Strings can be concatenated, that is, put end to end to yield a new longer string.

String concatenation is denoted by the + operator.

For example, consider this code:

String a = "Agent";
int n = 7;
String bond = a + n;

157

158

Chapter 4 Fundamental Data Types Page 35 of 69

Java Concepts, 5th Edition

Because a is a string, n is converted from the integer 7 to the string “7”. Then the

two strings “Agent” and “7” are concatenated to form the string “Agent7”.

Whenever one of the arguments of the + operator is a string, the other argument is

converted to a string.

This concatenation is very useful to reduce the number of System, out.print

instructions. For example, you can combine

System.out.print("The total is ");
System.out.println(total);

to the single call

System.out.println("The total is " + total);

The concatenation “The total is ” + total computes a single string that

consists of the string “The total is ”, followed by the string equivalent of the

number total.

Sometimes you have a string that contains a number, usually from user input. For

example, suppose that the string variable input has the value “19”. To get the

integer value 19, you use the static parseInt method of the Integer class.

int count = Integer.parseInt(input);

 // count is the integer 19

Figure 3

String Positions

To convert a string containing floating-point digits to its floating-point value, use the

static parseDouble method of the Double class. For example, suppose input is

the string “3.95”.

158

159

Chapter 4 Fundamental Data Types Page 36 of 69

Java Concepts, 5th Edition

If a string contains the digits of a number, you use the Integer.parseInt or

Double.parseDouble method to obtain the number value.

double price = Double.parseDouble(input);

 // price is the floating-point number 3.95

However, if the string contains spaces or other characters that cannot occur inside

numbers, an error occurs. For now, we will always assume that user input does not

contain invalid characters.

The substring method computes substrings of a string. The call

Use the substring method to extract a part of a string.

s.substring(start, pastEnd)

returns a string that is made up of the characters in the string s, starting at position

start, and containing all characters up to, but not including, the position pastEnd.

Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is
"Hello"

The substring operation makes a string that consists of five characters taken from

the string greeting. A curious aspect of the substring operation is the

numbering of the starting and ending positions. The first string position is labeled 0,

the second one 1, and so on. For example, Figure 3 shows the position numbers in the

greeting string.

String positions are counted starting with 0.

The position number of the last character (12 for the string “Hello, World!”) is

always 1 less than the length of the string.

Let us figure out how to extract the substring “World”. Count characters starting at

0, not 1. You find that W, the eighth character, has position number 7. The first

Chapter 4 Fundamental Data Types Page 37 of 69

Java Concepts, 5th Edition

character that you don't want, !, is the character at position 12 (see Figure 4).

Therefore, the appropriate substring command is

String sub2 = greeting.substring(7, 12);

Figure 4

Extracting a Substring

It is curious that you must specify the position of the first character that you do want

and then the first character that you don't want. There is one advantage to this setup.

You can easily compute the length of the substring: It is pastEnd - start. For

example, the string “World” has length 12 − 7 62 5.

If you omit the second parameter of the substring method, then all characters

from the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7); // Copies all characters

from position 7 on
sets tail to the string "World!".

If you supply an illegal string position (a negative number, or a value that is larger

than the length of the string), then your program terminates with an error message.

In this section, we have made the assumption that each character in a string occupies

a single position. Unfortunately, that assumption is not quite correct. If you process

strings that contain characters from international alphabets or special symbols, some

characters may occupy two positions—see Advanced Topic 4.5.

SELF CHECK

13. Assuming the String variable s holds the value “Agent”, what is

the effect of the assignments s = s + s.length()?

159

160

Chapter 4 Fundamental Data Types Page 38 of 69

Java Concepts, 5th Edition

14. Assuming the String variable river holds the value

“Mississippi”, what is the value of river.substring(1,

2)? Of river.substring(2, river.length() - 3)?

 PRODUCTIVITY HINT 4.2: Reading Exception Reports

You will often have programs that terminate and display an error message, such as

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException:
 String index out of range: -4
 at java.lang.String.substring
(String.java:1444)
 at Homework1.main(Homework1.java:16)

An amazing number of students simply give up at that point, saying “it didn't

work”, or “my program died”, without ever reading the error message. Admittedly,

the format of the exception report is not very friendly. But it is actually easy to

decipher it.

When you have a close look at the error message, you will notice two pieces of

useful information:

1. The name of the exception, such as
StringIndexOutOfBoundsException

2. The line number of the code that contained the statement that caused the

exception, such as Homework1.java:16

The name of the exception is always in the first line of the report, and it ends in

Exception. If you get a StringIndexOutOfBoundsException, then

there was a problem with accessing an invalid position in a string. That is useful

information.

The line number of the offending code is a little harder to determine. The

exception report contains the entire stack trace—that is, the names of all methods

that were pending when the exception hit. The first line of the stack trace is the

method that actually generated the exception. The last line of the stack trace is a

line in main. Often, the exception was thrown by a method that is in the standard

160

161

Chapter 4 Fundamental Data Types Page 39 of 69

Java Concepts, 5th Edition

library. Look for the first line in your code that appears in the exception report. For

example, skip the line that refers to

java.lang.String.substring(String.java:1444)

The next line in our example mentions a line number in your code,

Homework1.java. Once you have the line number in your code, open up the

file, go to that line, and look at it! In the great majority of cases, knowing the name

of the exception and the line that caused it make it completely obvious what went

wrong, and you can easily fix your error.

 ADVANCED TOPIC 4.4: Escape Sequences

Suppose you want to display a string containing quotation marks, such as

Hello, "World"!

You can't use

System.out.println("Hello, "World"!");

As soon as the compiler reads “Hello, ”, it thinks the string is finished, and

then it gets all confused about World followed by two quotation marks. A human

would probably realize that the second and third quotation marks were supposed to

be part of the string, but a compiler has a one-track mind. If a simple analysis of

the input doesn't make sense to it, it just refuses to go on, and reports an error.

Well, how do you then display quotation marks on the screen? You precede the

quotation marks inside the string with a backslash character. Inside a string, the

sequence \” denotes a literal quote, not the end of a string. The correct display

statement is, therefore

System.out.println("Hello, \"World\"!");

The backslash character is used as an escape character; the character sequence \” is

called an escape sequence. The backslash does not denote itself; instead, it is used

to encode other characters that would otherwise be difficult to include in a string.

Now, what do you do if you actually want to print a backslash (for example, to

specify a Windows file name)? You must enter two \ in a row, like this:

Chapter 4 Fundamental Data Types Page 40 of 69

Java Concepts, 5th Edition

System.out.println("The secret message is in
C:\\Temp\\Secret.txt");

This statement prints

The secret message is in C:\Temp\Secret.txt

Another escape sequence occasionally used is \n, which denotes a newline or line

feed character. Printing a newline character causes the start of a new line on the

display. For example, the statement

System.out.print("*n**n***n");

prints the characters

*
**

on three separate lines. Of course, you could have achieved the same effect with

three separate calls to println.

Finally, escape sequences are useful for including international characters in a

string. For example, suppose you want to print “All the way to San José!”, with an

accented letter (é). If you use a U.S. keyboard, you may not have a key to generate

that letter. Java uses the Unicode encoding scheme to denote international

characters. For example, the é character has Unicode encoding 00E9. You can

include that character inside a string by writing \u, followed by its Unicode

encoding:

System.out.println("All the way to San
Jos\u00E9!");

You can look up the codes for the U.S. English and Western European characters

in Appendix B, and codes for thousands of characters in reference [1].

 ADVANCED TOPIC 4.5: Strings and the Char Type

Strings are sequences of Unicode characters (see Random Fact 4.2). Character

constants look like string constants, except that character constants are delimited

by single quotes: ‘H’ is a character, “H” is a string containing a single character.

161

162

Chapter 4 Fundamental Data Types Page 41 of 69

Java Concepts, 5th Edition

You can use escape sequences (see Advanced Topic 4.4) inside character

constants. For example, ‘\n’ is the newline character, and ‘\u00E9’ is the

character é. You can find the values of the character constants that are used in

Western European languages in Appendix B.

Characters have numeric values. For example, if you look at Appendix B, you can

see that the character ‘H’ is actually encoded as the number 72.

When Java was first designed, each Unicode character was encoded as a two-byte

quantity. The char type was intended to hold the code of a Unicode character.

However, as of 2003, Unicode had grown so large that some characters needed to

be encoded as pairs of char values. Thus, you can no longer think of a char value

as a character. Technically speaking, a char value is a code unit in the UTF-16

encoding of Unicode. That encoding represents the most common characters as a

single char value, and less common or supplementary characters as a pair of char

values.

The charAt method of the String class returns a code unit from a string. As

with the sub-string method, the positions in the string are counted starting at

0. For example, the statement

String greeting = "Hello";
char ch = greeting.charAt(0);

sets ch to the value ‘H’.

However, if you use char variables, your programs may fail with some strings

that contain international or symbolic characters. For example, the single character

� (the mathematical symbol for the set of integers) is encoded by the two code

units ‘\uD835’ and ‘\uDD6B’.

If you call charAt(0) on the string containing the single character � (that is, the

string “\uD835\uDD6B”), you only get the first half of a supplementary

character.

Therefore, you should only use char values if you are absolutely sure that you

won't need to encode supplementary characters.
162

Chapter 4 Fundamental Data Types Page 42 of 69

Java Concepts, 5th Edition

 RANDOM FACT 4.2: International Alphabets

The English alphabet is pretty simple: upper- and lowercase a to z. Other European

languages have accent marks and special characters. For example, German has

three umlaut characters (ä, ö, ü) and a double-s character (ß). These are not

optional frills; you couldn't write a page of German text without using these

characters. German computer keyboards have keys for these characters (see A

German Keyboard).

This poses a problem for computer users and designers. The American standard

character encoding (called ASCII, for American Standard Code for Information

Interchange) specifies 128 codes: 52 upper- and lowercase characters, 10 digits, 32

typographical symbols, and 34 control characters (such as space, newline, and 32

others for controlling printers and other devices). The umlaut and double-s are not

among them. Some German data processing systems replace seldom-used ASCII

characters with German letters: [\] { | } ∼ are replaced with Ä Ö Ü ä ö ü

ß. Most people can live without those ASCII characters, but programmers using

Java definitely cannot. Other encoding schemes take advantage of the fact that one

byte can encode 256 different characters, but only 128 are standardized by ASCII.

Unfortunately, there are multiple incompatible standards for using the remaining

128 characters, resulting in a certain amount of aggravation among e-mail

correspondents in different European countries.

Many countries don't use the Roman script at all. Russian, Greek, Hebrew, Arabic,

and Thai letters, to name just a few, have completely different shapes (see The

Thai Alphabet). To complicate matters, scripts like Hebrew and Arabic are written

from right to left instead of from left to right, and many of these scripts have

characters that stack above or below other characters, as those marked with a

dotted circle in The Thai Alphabet do in Thai. Each of these alphabets has between

30 and 100 letters, and the countries using them have established encoding

standards for them.

The situation is much more dramatic in languages that use Chinese script: the

Chinese dialects, Japanese, and Korean. The Chinese script is not alphabetic but

ideographic—a character represents an idea or thing rather than a single sound.

(See A Menu with Chinese Characters; can you identify the characters for soup,

162

163

Chapter 4 Fundamental Data Types Page 43 of 69

Java Concepts, 5th Edition

chicken, and wonton?) Most words are made up of one, two, or three of these

ideographic characters. Tens of thousands of ideographs are in active use, and

China, Taiwan, Hong Kong, Japan, and Korea developed incompatible encoding

standards for them.

A German Keyboard

The Thai Alphabet

The inconsistencies among character encodings have been a major nuisance for

international electronic communication and for software manufacturers vying for a

global market. Between 1988 and 1991 a consortium of hardware and software

manufacturers developed a uniform encoding scheme called Unicode that is

expressly designed to encode text in all written languages of the world (see

reference [1]). In the first version of Unicode, about 39,000 characters were given

codes, including 21,000 Chinese ideographs. A 2-byte code (which can encode

163

164

Chapter 4 Fundamental Data Types Page 44 of 69

Java Concepts, 5th Edition

over 65,000 characters) was chosen. It was thought to leave ample space for

expansion for esoteric scripts, such as Egyptian hieroglyphs and the ancient script

used on the island of Java.

Java was one of the first programming languages to embrace Unicode. The

primitive type char denotes a 2-byte Unicode character. (All Unicode characters

can be stored in Java strings, but which ones can actually be displayed depends on

your computer system.)

A Menu with Chinese Characters

Unfortunately, in 2003, the inevitable happened. Another large batch of Chinese

ideographs had to be added to Unicode, pushing it beyond the 16-bit limit. Now,

some characters need to be encoded with a pair of char values.

4.7 Reading Input

The Java programs that you have made so far have constructed objects, called

methods, printed results, and exited. They were not interactive and took no user input.

In this section, you will learn one method for reading user input.

Use the Scanner class to read keyboard input in a console window.

Because output is sent to System.out, you might think that you use System.in

for input. Unfortunately, it isn't quite that simple. When Java was first designed, not

164

165

Chapter 4 Fundamental Data Types Page 45 of 69

Java Concepts, 5th Edition

much attention was given to reading keyboard input. It was assumed that all

programmers would produce graphical user interfaces with text fields and menus.

System.in was given a minimal set of features—it can only read one byte at a

time. Finally, in Java version 5, a Scanner class was added that lets you read

keyboard input in a convenient manner.

To construct a Scanner object, simply pass the System.in object to the

Scanner constructor:

Scanner in = new Scanner(System.in);

You can create a scanner out of any input stream (such as a file), but you will usually

want to use a scanner to read keyboard input from System.in.

Once you have a scanner, you use the nextInt or nextDouble methods to read

the next integer or floating-point number.

System.out.print("Enter quantity: ");
int quantity = in.nextInt();
System.out.print("Enter price: ");
double price = in.nextDouble();

When the nextInt or nextDouble method is called, the program waits until the

user types a number and hits the Enter key. You should always provide instructions

for the user (such as “Enter quantity:”) before calling a Scanner method.

Such an instruction is called a prompt.

The nextLine method returns the next line of input (until the user hits the Enter

key) as a String object. The next method returns the next word, terminated by any

white space, that is, a space, the end of a line, or a tab.

System.out.print("Enter city: ");
String city = in.nextLine();
System.out.print("Enter state code: ");
String state = in.next();

Here, we use the nextLine method to read a city name that may consist of multiple

words, such as San Francisco. We use the next method to read the state code

(such as CA), which consists of a single word.
165

Chapter 4 Fundamental Data Types Page 46 of 69

Java Concepts, 5th Edition

Here is an example of a class that takes user input. This class uses the

CashRegister class and simulates a transaction in which a user purchases an item,

pays for it, and receives change.

We call this class CashRegisterSimulator, not CashRegisterTester. We

reserve the Tester suffix for classes whose sole purpose is to test other classes.

ch04/cashregister/CashRegisterSimulator.java

 1 import java.util.Scanner;
 2
 3 /**
 4 This program simulates a transaction in
which a user pays for an item

 5 and receives change.
 6 */
 7 public class CashRegisterSimulator
 8 {
 9 public static void main(String[]
args)
 10 {
 11 Scanner in = new
Scanner(System.in);
 12
 13 CashRegister register = new
CashRegister();
 14
 15 System.out.print(“Enter
price: ”);
 16 double price =
in.nextDouble();
 17 register.recordPurchase(price);
 18
 19 System.out.print(“Enter
dollars: ”);
 20 int dollars = in.nextInt();
 21 System.out.print(“Enter
quarters: ”);
 22 int quarters = in.nextInt();
 23 System.out.print(“Enter
dimes: ”);
 24 int dimes = in.nextInt();

165

166

Chapter 4 Fundamental Data Types Page 47 of 69

Java Concepts, 5th Edition

 25 System.out.print(“Enter
nickels: ”);
 26 int nickels = in.nextInt();
 27 System.out.print(“Enter
pennies: ”);
 28 int pennies = in.nextInt();
 29 register.enterPayment(dollars,
quarters, dimes, nickels, pennies);
 30
 31 System.out.print(“Your
change: ”);
 32 System.out.println(register.giveChange
 33 }
 34 }

Output

Enter price: 7.55
Enter dollars: 10
Enter quarters: 2
Enter dimes: 1
Enter nickels: 0
Enter pennies: 0
Your change: 3.05

SELF CHECK

15. Why can't input be read directly from System.in?

16. Suppose in is a Scanner object that reads from System.in, and your

program calls

String name = in.next();

What is the value of name if the user enters John Q. Public?

 ADVANCED TOPIC 4.6: Formatting Numbers

The default format for printing numbers is not always what you would like. For

example, consider the following code segment:

double total = 3.50;

final double TAX_RATE = 8.5; // Tax rate in percent

166

167

Chapter 4 Fundamental Data Types Page 48 of 69

Java Concepts, 5th Edition

double tax = total * TAX_RATE / 100; // tax is 0.2975
System.out.println("Total: " + total);
System.out.println("Tax: " + tax);

The output is

Total: 3.5
Tax: 0.2975

You may prefer the numbers to be printed with two digits after the decimal point,

like this:

Total: 3.50
Tax: 0.30

You can achieve this with the printf method of the PrintStream class.

(Recall that System.out is an instance of PrintStream.) The first parameter

of the printf method is a format string that shows how the output should be

formatted. The format string contains characters that are simply printed, and

format specifiers: codes that start with a % character and end with a letter that

indicates the format type. There are quite a few formats—Table 3 shows the most

important ones. The remaining parameters of printf are the values to be

formatted. For example,

System.out.printf("Total:%5.2f", total);

prints the string Total:, followed by a floating-point number with a width of 5

and a precision of 2. The width is the total number of characters to be printed: in

our case, a space, the digit 3, a period, and two digits. If you increase the width,

more spaces are added. The precision is the number of digits after the decimal

point.

This simple use of printf is sufficient for most formatting needs. Once in a while,

you may see a more complex example, such as this one:

System.out.printf("%-6s%5.2f%n", "Tax:", total);

Here, we have three format specifiers. The first one is %-6s. The s indicates a

string. The hyphen is a flag, modifying the format. (See Table 4 for the most

common format flags. The flags immediately follow the % character.) The hyphen

indicates left alignment. If the string to be formatted is shorter than the width, it is

167

168

Chapter 4 Fundamental Data Types Page 49 of 69

Java Concepts, 5th Edition

placed to the left, and spaces are added to the right. (The default is right alignment,

with spaces added to the left.) Thus, %-6s denotes a left-aligned string of width 6.

Table 3 Format Types

Code Type Example
d Decimal integer 123

x Hexadecimal integer 7B

o Octal integer 173

f Fixed floating-point 12.30

e Exponential floating-point 1.23e+1

g General floating-point (exponential

notation used for very large or very

small values)

12.3

s String Tax:

n Platform-independent line end

You have already seen %5.2f: a floating-point number of width 5 and precision

2. The final specifier is %n, indicating a platform-independent line end. In

Windows, lines need to be terminated by two characters: a carriage return ‘\r’

and a newline ‘\n’. In other operating systems, a ‘\n’ suffices. The %n format

emits the appropriate line terminators.

Moreover, this call to printf has two parameters. You can supply any number of

parameter values to the printf method. Of course, they must match the format

specifiers in the format string.

Table 4 Format Flags

Flag Meaning Example
- Left alignment 1.23 followed by spaces
0 Show leading zeroes 001.23

+ Show a plus sign for positive

numbers

+1.23

(Enclose negative numbers in

parentheses

(1.23)

, Show decimal separators 12,300

∧ Convert letters to uppercase 1.23E+1

The format method of the String class is similar to the printf method.

However, it returns a string instead of producing output. For example, the call

168

169

Chapter 4 Fundamental Data Types Page 50 of 69

Java Concepts, 5th Edition

String message = String.format("Total:%5.2f",
total);

sets the message variable to the string “Total: 3.50”.

 ADVANCED TOPIC 4.7: Using Dialog Boxes for Input and

Output

Most program users find the console window rather old-fashioned. The easiest

alternative is to create a separate pop-up window for each input (see An Input

Dialog Box).

Call the static showInputDialog method of the JOptionPane class, and

supply the string that prompts the input from the user. For example,

String input = JOptionPane.showInputDialog("Enter
price:");

That method returns a String object. Of course, often you need the input as a

number. Use the Integer.parseInt and Double.parseDouble methods

to convert the string to a number:

double price = Double.parseDouble(input);

You can also display output in a dialog box:

JOptionPane.showMessageDialog(null, "Price: " +
price);

Finally, whenever you call the showInputDialog or showMessageDialog

method in a program that does not show any other frame windows, you need to

add a line

System.exit(0);

to the end of your main method. The showInputDialog method starts a user

interface thread to handle user input. When the main method reaches the end, that

thread is still running, and your program won't exit automatically. To force the

program to exit, you need to call the exit method of the System class. The

parameter of the exit method is the status code of the program. A code of 0

Chapter 4 Fundamental Data Types Page 51 of 69

Java Concepts, 5th Edition

denotes successful completion; you can use nonzero status codes to denote various

error conditions.

An Input Dialog Box

CHAPTER SUMMARY

1. Java has eight primitive types, including four integer types and two floating

point types.

2. A numeric computation overflows if the result falls outside the range for the

number type.

3. Rounding errors occur when an exact conversion between numbers is not

possible.

4. You use a cast (typeName) to convert a value to a different type.

5. Use the Math.round method to round a floating-point number to the nearest

integer.

6. A final variable is a constant. Once its value has been set, it cannot be

changed.

7. Use named constants to make your programs easier to read and maintain.

8. Assignment to a variable is not the same as mathematical equality.

9. The ++ and -- operators increment and decrement a variable.

10. If both arguments of the / operator are integers, the result is an integer and the

remainder is discarded.

11. The % operator computes the remainder of a division.

169

170

Chapter 4 Fundamental Data Types Page 52 of 69

Java Concepts, 5th Edition

12. The Math class contains methods sqrt and pow to compute square roots and

powers.

13. A static method does not operate on an object.

14. A string is a sequence of characters. Strings are objects of the String class.

15. Strings can be concatenated, that is, put end to end to yield a new longer string.

String concatenation is denoted by the + operator.

16. Whenever one of the arguments of the + operator is a string, the other argument

is converted to a string.

17. If a string contains the digits of a number, you use the Integer.parseInt

or Double.parseDouble method to obtain the number value.

18. Use the substring method to extract a part of a string.

19. String positions are counted starting with 0.

20. Use the Scanner class to read keyboard input in a console window.

FURTHER READING

1. http://www.unicode.org/ The web site of the Unicode consortium. It

contains character tables that show the Unicode values of characters from

many scripts.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.io.PrintStream
 printf
java.lang.Double
 parseDouble
java.lang.Integer
 parseInt
 toString
 MAX_VALUE
 MIN_VALUE

170

171

Chapter 4 Fundamental Data Types Page 53 of 69

Java Concepts, 5th Edition

java.lang.Math
 E
 PI
 abs
 acos
 asin
 atan
 atan2
 ceil
 cos
 exp
 floor
 log
 max
 min
 pow
 round
 sin
 sqrt
 tan
 toDegrees
 toRadians
java.lang.String
 format
 substring
java.lang.System
 in
java.math.BigDecimal
 add
 multiply
 subtract
java.math.BigInteger
 add
 multiply
 subtract
java.util.Scanner
 next
 nextDouble
 nextInt
 nextLine
javax.swing.JOptionPane
 showInputDialog
 showMessageDialog

Chapter 4 Fundamental Data Types Page 54 of 69

Java Concepts, 5th Edition

REVIEW EXERCISES

★★Exercise R4.1. Write the following mathematical expressions in Java.

s = + t +s
0

v
0

1

2
gt

2

G = 4π
2 a

3

+p
2(m 1 m 2)

FV = PV · 1 +(INT

100)
YRS

c = + − 2 ab cos γa
2

b
2

★★Exercise R4.2. Write the following Java expressions in mathematical

notation.

a. dm = m * (Math.sqrt(1 + v / c) / (Math.sqrt(1

- v / c) - 1));

b. volume = Math.PI * r * r * h;

c. volume = 4 * Math.PI * Math.pow(r, 3) / 3;

d. p = Math.atan2(z, Math.sqrt(x * x + y * y));

★★★Exercise R4.3. What is wrong with this version of the quadratic formula?

x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / 2 * a;
x2 = (-b + Math.sqrt(b * b - 4 * a * c)) / 2 * a;

★★Exercise R4.4. Give an example of integer overflow. Would the same

example work correctly if you used floating-point?

★★Exercise R4.5. Give an example of a floating-point roundoff error. Would

the same example work correctly if you used integers and switched to a

sufficiently small unit, such as cents instead of dollars, so that the values

don't have a fractional part?

★★Exercise R4.6. Consider the following code:

171

172

Chapter 4 Fundamental Data Types Page 55 of 69

Java Concepts, 5th Edition

CashRegister register = new CashRegister();
register.recordPurchase(19.93);
register.enterPayment(20, 0, 0, 0, 0);
System.out.print("Change: ");
System.out.println(register.giveChange());

The code segment prints the total as 0.07000000000000028. Explain

why. Give a recommendation to improve the code so that users will not be

confused.

★ Exercise R4.7. Let n be an integer and x a floating-point number. Explain

the difference between

n = (int) x;

and

n = (int) Math.round(x);

★★★Exercise R4.8. Let n be an integer and x a floating-point number.

Explain the difference between

n = (int) (x + 0.5);

and

n = (int) Math.round(x);

For what values of x do they give the same result? For what values of x

do they give different results?

★ Exercise R4.9. Explain the differences between 2, 2.0, ‘2’, “2”, and “2.0”.

★ Exercise R4.10. Explain what each of the following two program segments

computes:

int x = 2;
int y = x + x;

and

String s = "2";
String t = s + s; 172

Chapter 4 Fundamental Data Types Page 56 of 69

Java Concepts, 5th Edition

★★Exercise R4.11. True or false? (x is an int and s is a String)

a. Integer.parseInt(“” + x) is the same as x

b. “” + Integer.parseInt(s) is the same as s

c. s.substring(0, s.length()) is the same as s

★★Exercise R4.12. How do you get the first character of a string? The last

character? How do you remove the first character? The last character?

★★★Exercise R4.13. How do you get the last digit of an integer? The first

digit? That is, if n is 23456, how do you find out that the first digit is 2

and the last digit is 6? Do not convert the number to a string. Hint: %,

Math.log.

★★Exercise R4.14. This chapter contains several recommendations regarding

variables and constants that make programs easier to read and maintain.

Summarize these recommendations.

★★★Exercise R4.15. What is a final variable? Can you define a final

variable without supplying its value? (Try it out.)

★ Exercise R4.16. What are the values of the following expressions? In each

line, assume that

double x = 2.5;
double y = -1.5;
int m = 18;
int n = 4;
String s = "Hello";
String t = "World";

a. x + n * y - (x + n) * y

b. m / n + m % n

c. 5 * x - n / 5

d. Math.sqrt(Math.sqrt(n))

e. (int) Math.round(x)

172

173

Chapter 4 Fundamental Data Types Page 57 of 69

Java Concepts, 5th Edition

f. (int) Math.round(x) + (int) Math.round(y)

g. s + t

h. s + n

i. 1 - (1 - (1 - (1 - (1 - n))))

j. s.substring(1, 3)

k. s.length() + t.length()

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P4.1. Enhance the CashRegister class by adding separate

methods enterDollars, enterQuarters, enterDimes,

enterNickels, and enterPennies.

Use this tester class:

public class CashRegisterTester
{
 public static void main (String[] args)
 {
 CashRegister register = new
CashRegister();
 register.recordPurchase(20.37);
 register.enterDollars(20);
 register.enterQuarters(2);
 System.out.println("Change: " +
register.giveChange());
 System.out.println("Expected: 0.13");
 }
}

★ Exercise P4.2. Enhance the CashRegister class so that it keeps track of

the total number of items in a sale. Count all recorded purchases and supply

a method

int getItemCount()

173

174

Chapter 4 Fundamental Data Types Page 58 of 69

Java Concepts, 5th Edition

that returns the number of items of the current purchase. Remember to reset

the count at the end of the purchase.

★★Exercise P4.3. Implement a class IceCreamCone with methods

getSurfaceArea() and getVolume(). In the constructor, supply

the height and radius of the cone. Be careful when looking up the formula

for the surface area—you should only include the outside area along the

side of the cone since the cone has an opening on the top to hold the ice

cream.

★★Exercise P4.4. Write a program that prompts the user for two numbers,

then prints

• The sum

• The difference

• The product

• The average

• The distance (absolute value of the difference)

• The maximum (the larger of the two)

• The minimum (the smaller of the two)

To do so, implement a class

public class Pair
{
 /**

 Constructs a pair.

 @param aFirst the first value of the pair

 @param aSecond the second value of the pair
 */
 public Pair(double aFirst, double aSecond)
{ . . . }
 /**

 Computes the sum of the values of this pair.

 @return the sum of the first and second values

174

175

Chapter 4 Fundamental Data Types Page 59 of 69

Java Concepts, 5th Edition

 */
 public double getSum() { . . . }
 . . .
}

Then implement a class PairTester that constructs a Pair object,

invokes its methods, and prints the results.

★ Exercise P4.5. Define a class DataSet that computes the sum and

average of a sequence of integers. Supply methods

• void addValue(int x)

• int getSum()

• double getAverage()

Hint: Keep track of the sum and the count of the values.

Then write a test program DataSetTester that calls addValue four

times and prints the expected and actual results.

★★Exercise P4.6. Write a class DataSet that computes the largest and

smallest values in a sequence of numbers. Supply methods

• void addValue(int x)

• int getLargest()

• int getSmallest()

Keep track of the smallest and largest values that you've seen so far. Then

use the Math.min and Math.max methods to update them in the

addValue method. What should you use as initial values? Hint:

Integer.MIN_VALUE, Integer.MAX_VALUE.

Write a test program DataSetTester that calls addValue four times

and prints the expected and actual results.

★ Exercise P4.7. Write a program that prompts the user for a measurement in

meters and then converts it into miles, feet, and inches. Use a class

public class Converter

Chapter 4 Fundamental Data Types Page 60 of 69

Java Concepts, 5th Edition

{
 /**
 Constructs a converter that can
convert between two units.
 @param aConversionFactor the factor by
which to multiply
 to convert to the target unit
 */
 public Converter(double aConversionFactor) {
. . . }
 /**
 Converts from a source measurement to
a target measurement.
 @param fromMeasurement the measurement
 @return the input value converted to
the target unit
 */
 public double convertTo(double
fromMeasurement) { . . . }
 /**
 Converts from a target measurement to
a source measurement.
 @param toMeasurement the target
measurement
 @return the value whose conversion is
the target measurement
 */
 public double convertFrom(double
toMeasurement) { . . . }
}

In your ConverterTester class, construct and test the following

Converter object:

final double MILE_TO_KM = 1.609;
Converter milesToMeters = new Converter(1000 *
MILE_TO_KM);

★ Exercise P4.8. Write a class Square whose constructor receives the

length of the sides. Then supply methods to compute

• The area and perimeter of the square

• The length of the diagonal (use the Pythagorean theorem)

175

176

Chapter 4 Fundamental Data Types Page 61 of 69

Java Concepts, 5th Edition

★★Exercise P4.9. Implement a class SodaCan whose constructor receives

the height and diameter of the soda can. Supply methods getVolume and

getSurfaceArea. Supply a SodaCanTester class that tests your

class.

★★★Exercise P4.10. Implement a class Balloon that models a spherical

balloon that is being filled with air. The constructor constructs an empty

balloon. Supply these methods:

• void addAir(double amount) adds the given amount of

air

• double getVolume() gets the current volume

• double getSurfaceArea() gets the current surface area

• double getRadius() gets the current radius

Supply a BalloonTester class that constructs a balloon, adds 100 

cm
3
 of air, tests the three accessor methods, adds another 100 cm

3
 of air,

and tests the accessor methods again.

★★Exercise P4.11. Giving change. Enhance the CashRegister class so

that it directs a cashier how to give change. The cash register computes the

amount to be returned to the customer, in pennies.

Add the following methods to the CashRegister class:

• int giveDollars()

• int giveQuarters()

• int giveDimes()

• int giveNickels()

• int givePennies()

Chapter 4 Fundamental Data Types Page 62 of 69

Java Concepts, 5th Edition

Each method computes the number of dollar bills or coins to return to the

customer, and reduces the change due by the returned amount. You may

assume that the methods are called in this order. Here is a test class:

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new
CashRegister();
 register.recordPurchase(8.37);
 register.enterPayment(10, 0, 0, 0, 0);
 System.out.println("Dollars: " +
register.giveDollars());
 System.out.println("Expected: 1");
 System.out.println("Quarters: " +
register.giveQuarters());
 System.out.println("Expected: 2");
 System.out.println("Dimes: " +
register.giveDimes());
 System.out.println("Expected: 1");
 System.out.println("Nickels: " +
register.giveNickels());
 System.out.println("Expected: 0");
 System.out.println("Pennies: " +
register.givePennies());
 System.out.println("Expected: 3");
 }
}

★★★Exercise P4.12. Write a program that reads in an integer and breaks it

into a sequence of individual digits in reverse order. For example, the

input 16384 is displayed as

4
8
3
6
1

You may assume that the input has no more than five digits and is not

negative.

176

177

Chapter 4 Fundamental Data Types Page 63 of 69

Java Concepts, 5th Edition

Define a class DigitExtractor:

public class DigitExtractor
{
 /**

 Constructs a digit extractor that gets the digits

 of an integer in reverse order.

 @param anInteger the integer to break up into digits
 */
 public DigitExtractor(int anInteger) { . .
. }
 /**

 Returns the next digit to be extracted.

 @return the next digit
 */
 public int nextDigit() { . . . }
}

In your main class DigitPrinter, call

System.out.println(myExtractor.nextDigit()) five

times.

★★Exercise P4.13. Implement a class QuadraticEquation whose

constructor receives the coefficients a, b, c of the quadratic equation ax
2
 +

bx + c = 0. Supply methods getSolution1 and getSolution2 that

get the solutions, using the quadratic formula. Write a test class

QuadraticEquationTester that constructs a

QuadraticEquation object, and prints the two solutions.

★★★Exercise P4.14. Write a program that reads two times in military format

(0900, 1730) and prints the number of hours and minutes between the

two times. Here is a sample run. User input is in color.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than

the second time:

Please enter the first time: 1730

177

178

Chapter 4 Fundamental Data Types Page 64 of 69

Java Concepts, 5th Edition

Please enter the second time: 0900
15 hours 30 minutes

Implement a class TimeInterval whose constructor takes two

military times. The class should have two methods getHours and

getMinutes.

★ Exercise P4.15. Writing large letters. A large letter H can be produced like

this:

* *
* *

* *
* *

Use the class

public class LetterH
{
 public String toString()
 {
 return
"* *\n* *\n*****\n* *\n* *\n";
 }
}

Define similar classes for the letters E, L, and O. Then write the message

H
E
L
L
0

in large letters.

Your main class should be called HelloPrinter.

★★Exercise P4.16. Write a class ChristmasTree whose toString

method yields a string depicting a Christmas tree:

Chapter 4 Fundamental Data Types Page 65 of 69

Java Concepts, 5th Edition

Remember to use escape sequences.

★★Exercise P4.17. Your job is to transform numbers 1, 2, 3, …, 12

into the corresponding month names January, February, March,

. . ., December. Implement a class Month whose constructor

parameter is the month number and whose getName method returns the

month name. Hint: Make a very long string “January February

March … ”, in which you add spaces such that each month name has the

same length. Then use substring to extract the month you want.

★★Exercise P4.18. Write a class to compute the date of Easter Sunday. Easter

Sunday is the first Sunday after the first full moon of spring. Use this

algorithm, invented by the mathematician Carl Friedrich Gauss in 1800:

1. Let y be the year (such as 1800 or 2001).

2. Divide y by 19 and call the remainder a. Ignore the quotient.

3. Divide y by 100 to get a quotient b and a remainder c.

4. Divide b by 4 to get a quotient d and a remainder e.

5. Divide 8 * b + 13 by 25 to get a quotient g. Ignore the

remainder.

6. Divide 19 * a + b − d − g + 15 by 30 to get a remainder

h. Ignore the quotient.

7. Divide c by 4 to get a quotient j and a remainder k.

8. Divide a + 11 * h by 319 to get a quotient m. Ignore the

remainder.

178

179

Chapter 4 Fundamental Data Types Page 66 of 69

Java Concepts, 5th Edition

9. Divide 2 * e + 2 * j − k − h + m + 32 by 7 to get a

remainder r. Ignore the quotient.

10. Divide h − m + r + 90 by 25 to get a quotient n. Ignore the

remainder.

11. Divide h − m + r + n + 19 by 32 to get a remainder p.

Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:

a = 6 g = 6 r = 6
b = 20 h = 18 n = 4
c = 1 j = 0, k = 1 P = 15
d = 5, e
= 0

m = 0

Therefore, in 2001, Easter Sunday fell on April 15. Write a class Easter

with methods getEasterSundayMonth and

getEasterSundayDay.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 4.1 In this project, you will perform calculations with triangles.

A triangle is defined by the x- and y-coordinates of its three corner points.

Your job is to compute the following properties of a given triangle:

• the lengths of all sides

• the angles at all corners

• the perimeter

• the area

Of course, you should implement a Triangle class with appropriate

methods. Supply a program that prompts a user for the corner point

179

180

Chapter 4 Fundamental Data Types Page 67 of 69

Java Concepts, 5th Edition

coordinates and produces a nicely formatted table of the triangle

properties.

This is a good team project for two students. Both students should agree

on the Triangle interface. One student implements the Triangle

class, the other simultaneously implements the user interaction and

formatting.

★★★Project 4.2 The CashRegister class has an unfortunate limitation: It

is closely tied to the coin system in the United States and Canada.

Research the system used in most of Europe. Your goal is to produce a

cash register that works with euros and cents. Rather than designing

another limited CashRegister implementation for the European

market, you should design a separate Coin class and a cash register that

can work with coins of all types.

ANSWERS TO SELF-CHECK QUESTIONS

1. int and double.

2. When the fractional part of x is ≥0.5.

3. By using a cast: (int) Math.round(x).

4. The first definition is used inside a method, the second inside a class.

5.

(1) You should use a named constant, not the “magic number” 3.14.

(2) 3.14 is not an accurate representation of π.

6. The statement adds the amount value to the balance variable.

7. One less than it was before.

8. 17 and 29.

9. Only s3 is divided by 3. To get the correct result, use parentheses.

Moreover, if s1, s2, and s3 are integers, you must divide by 3.0 to avoid

integer division:

Chapter 4 Fundamental Data Types Page 68 of 69

Java Concepts, 5th Edition

(s1 + s2 + s3) / 3.0

10. +x
2

y
2

11. x is a number, not an object, and you cannot invoke methods on numbers.

12. No—the println method is called on the object System.out.

13. s is set to the string Agent5.

14. The strings “i” and “ssissi”.

15. The class only has a method to read a single byte. It would be very tedious

to form characters, strings, and numbers from those bytes.

16. The value is “John”. The next method reads the next word.

Chapter 4 Fundamental Data Types Page 69 of 69

Java Concepts, 5th Edition

Chapter 5 Decisions

CHAPTER GOALS

• To be able to implement decisions using if statements

• To understand how to group statements into blocks

• To learn how to compare integers, floating-point numbers, strings, and objects

• To recognize the correct ordering of decisions in multiple branches

• To program conditions using Boolean operators and variables

T To understand the importance of test coverage

The programs we have seen so far were able to do fast computations and render

graphs, but they were very inflexible. Except for variations in the input, they worked

the same way with every program run. One of the essential features of nontrivial

computer programs is their ability to make decisions and to carry out different

actions, depending on the nature of the inputs. The goal of this chapter is to learn

how to program simple and complex decisions.

5.1 The if Statement

Computer programs often need to make decisions, taking different actions depending

on a condition.

Consider the bank account class of Chapter 3. The withdraw method allows you to

withdraw as much money from the account as you like. The balance just moves ever

further into the negatives. That is not a realistic model for a bank account. Let's

implement the withdraw method so that you cannot withdraw more money than

you have in the account. That is, the withdraw method must make a decision:

whether to allow the withdrawal or not.

The if statement is used to implement a decision. The if statement has two parts: a

condition and a body. If the condition is true, the body of the statement is executed.

The body of the if statement consists of a statement:

181

181

182

Chapter 5 Decisions Page 1 of 62

Java Concepts, 5th Edition

The if statement lets a program carry out different actions depending on a

condition.

if (amount <= balance)
 balance = balance - amount;

Figure 1

Flowchart for an if Statement

Figure 2

Flowchart for an if/else Statement

182

183

Chapter 5 Decisions Page 2 of 62

Java Concepts, 5th Edition

The assignment statement is carried out only when the amount to be withdrawn is less

than or equal to the balance (see Figure 1).

Let us make the withdraw method of the BankAccount class even more realistic.

Most banks not only disallow withdrawals that exceed your account balance; they

also charge you a penalty for every attempt to do so.

This operation can't be programmed simply by providing two complementary if

statements, such as:

if (amount <= balance)
 balance = balance - amount;
if (amount > balance) // NO
 balance = balance - OVERDRAFT_PENALTY;

There are two problems with this approach. First, if you need to modify the condition

amount = balance for some reason, you must remember to update the condition

amount > balance as well. If you do not, the logic of the program will no longer

be correct. More importantly, if you modify the value of balance in the body of the

first if statement (as in this example), then the second condition uses the new value.

To implement a choice between alternatives, use the if/else statement:

if (amount <= balance)
 balance = balance - amount;
else
 balance = balance - OVERDRAFT_PENALTY;

Now there is only one condition. If it is satisfied, the first statement is executed.

Otherwise, the second is executed. The flowchart in Figure 2 gives a graphical

representation of the branching behavior.

Quite often, however, the body of the if statement consists of multiple statements

that must be executed in sequence whenever the condition is true. These statements

must be grouped together to form a block statement by enclosing them in braces { }.

Here is an example.

A block statement groups several statements together.

if (amount <= balance)

183

184

Chapter 5 Decisions Page 3 of 62

Java Concepts, 5th Edition

{
 double newBalance = balance - amount;
 balance = newBalance;
}

A statement such as

balance = balance - amount;

is called a simple statement. A conditional statement such as

if (x >= 0) y = x;

is called a compound statement. In Chapter 6, you will encounter loop statements;

they too are compound statements.

The body of an if statement or the else alternative must be a statement—that is, a

simple statement, a compound statement (such as another if statement), or a block

statement.

SYNTAX 5.1 The if Statement

if (condition)

 statement

if (condition)

 statement1
else

 statement2

Example:

if (amount <= balance)
 balance = balance - amount;
if (amount <= balance)
 balance = balance - amount;
else
 balance = balance - OVERDRAFT_PENALTY;

Purpose:

To execute a statement when a condition is true or false
184

Chapter 5 Decisions Page 4 of 62

Java Concepts, 5th Edition

SYNTAX 5.2 Block Statement

{

 statement1

 statement2

 . . .

}

Example:

{
 double newBalance = balance - amount;
 balance = newBalance;
}

Purpose:

To group several statements together to form a single statement

SELF CHECK

1. Why did we use the condition amount = balance and not

amount < balance in the example for the if/else statement?

2. What is logically wrong with the statement

if (amount <= balance)
 newBalance = balance - amount; balance =
newBalance;

and how do you fix it?

 QUALITY TIP 5.1: Brace Layout

The compiler doesn't care where you place braces, but we strongly recommend

that you follow a simple rule: Line up { and }.

if (amount <= balance)
{
 double newBalance = balance - amount;
 balance = newBalance;

184

185

Chapter 5 Decisions Page 5 of 62

Java Concepts, 5th Edition

}

This scheme makes it easy to spot matching braces.

Some programmers put the opening brace on the same line as the if:

if (amount <= balance) {
 double newBalance = balance - amount;
 balance = newBalance;
}

This saves a line of code, but it makes it harder to match the braces.

It is important that you pick a layout scheme and stick with it. Which scheme you

choose may depend on your personal preference or a coding style guide that you

must follow.

 PRODUCTIVITY HINT 5.1: Indentation and Tabs

When writing Java programs, use indentation to indicate nesting levels:

public class BankAccount
{
| . . .
| public void withdraw(double amount)
| {
| | if (amount <= balance)
| | {
| | | double newBalance = balance -
amount;
| | | balance = newBalance;
| | }
| }
| . . .
}

0 1 2 3

Indentation level

How many spaces should you use per indentation level? Some programmers use

eight spaces per level, but that isn't a good choice:

public class BankAccount
{

185

186

Chapter 5 Decisions Page 6 of 62

Java Concepts, 5th Edition

 . . .
 public void withdraw(double amount)
 {
 if (amount <= balance)
 {
 double newBalance =
 balance -
amount;
 balance = newBalance;
 }
 }
 . . .
}

It crowds the code too much to the right side of the screen. As a consequence, long

expressions frequently must be broken into separate lines. More common values

are two, three, or four spaces per indentation level.

How do you move the cursor from the leftmost column to the appropriate

indentation level? A perfectly reasonable strategy is to hit the space bar a sufficient

number of times. However, many programmers use the Tab key instead. A tab

moves the cursor to the next tab stop. By default, there are tab stops every eight

columns, but most editors let you change that value; you should find out how to set

your editor's tab stops to, say, every three columns.

Some editors help you out with an autoindent feature. They automatically insert as

many tabs or spaces as the preceding line because the new line is quite likely to

belong to the same logical indentation level. If it isn't, you must add or remove a

tab, but that is still faster than tabbing all the way from the left margin.

As nice as tabs are for data entry, they have one disadvantage: They can mess up

printouts. If you send a file with tabs to a printer, the printer may either ignore the

tabs altogether or set tab stops every eight columns. It is therefore best to save and

print your files with spaces instead of tabs. Most editors have settings that convert

tabs to spaces before you save or print a file.

 ADVANCED TOPIC 5.1: The Selection Operator

Java has a selection operator of the form

186

187

Chapter 5 Decisions Page 7 of 62

Java Concepts, 5th Edition

condition ? value1 : value2

The value of that expression is either value1 if the condition is true or value2 if it is

false. For example, we can compute the absolute value as

y = x >= 0 ? x : -x;

which is a convenient shorthand for

if (x >= 0)
 y = x;
else
 y = -x;

The selection operator is similar to the if/else statement, but it works on a

different syntactical level. The selection operator combines values and yields

another value. The if/else statement combines statements and yields another

statement.

For example, it would be an error to write

y = if (x < 0) x; else -x; // Error

The if/else construct is a statement, not a value, and you cannot assign it to a

variable.

We don't use the selection operator in this book, but it is a convenient and

legitimate construct that you will find in many Java programs.

5.2 Comparing Values

5.2.1 Relational Operators

A relational operator tests the relationship between two values. An example is the

 <= operator that we used in the test

Relational operators compare values. The == operator tests for equality.

if (amount <= balance)

187

188

Chapter 5 Decisions Page 8 of 62

Java Concepts, 5th Edition

Java has six relational operators:

Java Math Notation Description
> > Greater than
>= > Greater than or equal
< < Less than

 <= < Less than or equal
== = Equal
!= ≠ Not equal

As you can see, only two relational operators (> and <) look as you would expect

from the mathematical notation. Computer keyboards do not have keys for ≥ ≤, or

≠, but the >=, <= , and != operators are easy to remember because they look

similar.

The == operator is initially confusing to most newcomers to Java. In Java, the =

symbol already has a meaning, namely assignment. The == operator denotes

equality testing:

a = 5; // Assign 5 to a

if (a == 5) . . . // Test whether a equals 5

You will have to remember to use == for equality testing, and to use = for

assignment.

5.2.2 Comparing Floating-Point Numbers

You have to be careful when comparing floating-point numbers, in order to cope

with roundoff errors. For example, the following code multiplies the square root of

2 by itself and then subtracts 2.

double r = Math.sqrt(2);
double d = r * r - 2;
if (d == 0)
 System.out.println("sqrt(2) squared minus 2 is
0");
else
 System.out.println(
 "sqrt(2) squared minus 2 is not 0 but
" + d);

188

189

Chapter 5 Decisions Page 9 of 62

Java Concepts, 5th Edition

Even though the laws of mathematics tell us that − 2 equals 0, this program

fragment prints

()2
2

sqrt(2) squared minus 2 is not 0 but
4.440892098500626E-16

Unfortunately, such roundoff errors are unavoidable. It plainly does not make sense

in most circumstances to compare floating-point numbers exactly. Instead, test

whether they are close enough.

To test whether a number x is close to zero, you can test whether the absolute value

|x| (that is, the number with its sign removed) is less than a very small threshold

number. That threshold value is often called ε (the Greek letter epsilon). It is

common to set ε to 10
−14

 when testing double numbers.

When comparing floating-point numbers, don't test for equality. Instead, check

whether they are close enough.

Similarly, you can test whether two numbers are approximately equal by checking

whether their difference is close to 0.

| x − y | ≤ ε

In Java, we program the test as follows:

final double EPSILON = 1E-14;
if (Math.abs(x - y) <= EPSILON)

 // x is approximately equal to y

5.2.3 Comparing Strings

To test whether two strings are equal to each other, you must use the method called

equals:

if (string1. equals(string2)) . . .

Do not use the == operator to compare strings. Use the equals method instead.

Chapter 5 Decisions Page 10 of 62

Java Concepts, 5th Edition

Do not use the == operator to compare strings. The expression

if (string1 == string2) // Not useful

has an unrelated meaning. It tests whether the two string variables refer to the

identical string object. You can have strings with identical contents stored in

different objects, so this test never makes sense in actual programming; see

Common Error 5.1.

In Java, letter case matters. For example, “Harry” and “HARRY” are not the

same string. To ignore the letter case, use the equal sIgnoreCase method:

if (string1.equalsIgnoreCase(string2)) . . .

If two strings are not identical to each other, you still may want to know the

relationship between them. The compareTo method compares strings in

dictionary order. If

The compareTo method compares strings in dictionary order.

string1.compareTo (string2) < 0

Figure 3

Lexicographic Comparison

then the string string1 comes before the string string2 in the dictionary. For

example, this is the case if string1 is “Harry”, and string2 is “Hello”. If

string1.compareTo(string2) > 0

then string1 comes after string2 in dictionary order. Finally, if

string1. compareTo (string2) == 0

189

190

Chapter 5 Decisions Page 11 of 62

Java Concepts, 5th Edition

then string1 and string2 are equal.

Actually, the “dictionary” ordering used by Java is slightly different from that of a

normal dictionary. Java is case sensitive and sorts characters by putting numbers

first, then uppercase characters, then lowercase characters. For example, 1 comes

before B, which comes before a. The space character comes before all other

characters.

Let us investigate the comparison process closely. When Java compares two

strings, corresponding letters are compared until one of the strings ends or the first

difference is encountered. If one of the strings ends, the longer string is considered

the later one. If a character mismatch is found, the characters are compared to

determine which string comes later in the dictionary sequence. This process is

called lexicographic comparison. For example, let's compare “car” with

“cargo”. The first three letters match, and we reach the end of the first string.

Therefore “car” comes before “cargo” in the lexicographic ordering. Now

compare “cathode” with “cargo”. The first two letters match. In the third

character position, t comes after r, so the string “cathode” comes after

“cargo” in lexicographic ordering. (See Figure 3.)

 COMMON ERROR 5.1: Using == to Compare Strings

It is an extremely common error in Java to write == when equals is intended.

This is particularly true for strings. If you write

if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same

string object as the string constant “Rob”. For efficiency, Java makes only one

string object for every string constant. Therefore, the following test will pass:

String nickname = "Rob";
. . .

if (nickname == "Rob") // Test is true

However, if the string with the letters R o b has been assembled in some other

way, then the test will fail:

String name = "Robert";

190

191

Chapter 5 Decisions Page 12 of 62

Java Concepts, 5th Edition

String nickname = name.substring(0, 3);
. . .

if (nickname == "Rob") // Test is false

This is a particularly distressing situation: The wrong code will sometimes do

the right thing, sometimes the wrong thing. Because string objects are always

constructed by the compiler, you never have an interest in whether two string

objects are shared. You must remember never to use == to compare strings.

Always use equals or compareTo to compare strings.

5.2.4 Comparing Objects

If you compare two object references with the == operator, you test whether the

references refer to the same object. Here is an example:

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

The comparison

box1 == box2

is true. Both object variables refer to the same object. But the comparison

box1 == box3

is false. The two object variables refer to different objects (see Figure 4). It does

not matter that the objects have identical contents.

Chapter 5 Decisions Page 13 of 62

Java Concepts, 5th Edition

Figure 4

Comparing Object References

You can use the equals method to test whether two rectangles have the same

contents, that is, whether they have the same upper-left corner and the same width

and height. For example, the test

The == operator tests whether two object references are identical. To compare

the contents of objects, you need to use the equals method.

box1.equals(box3)

is true.

However, you must be careful when using the equals method. It works correctly

only if the implementors of the class have defined it. The Rectangle class has an

equals method that is suitable for comparing rectangles.

For your own classes, you need to supply an appropriate equals method. You will

learn how to do that in Chapter 10. Until that point, you should not use the equals

method to compare objects of your own classes.

191

192

Chapter 5 Decisions Page 14 of 62

Java Concepts, 5th Edition

5.2.5 Testing for Null

An object reference can have the special value null if it refers to no object at all.

It is common to use the null value to indicate that a value has never been set. For

example,

The null reference refers to no object.

String middleInitial = null; // Not set
if (. . .)
 middleInitial = middleName.substring(0, 1);

You use the == operator (and not equals) to test whether an object reference is a

null reference:

if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
else
 System.out.println(firstName + " " +
middleInitial + "." + lastName);

Note that the null reference is not the same as the empty string “”. The empty

string is a valid string of length 0, whereas a null indicates that a string variable

refers to no string at all.

SELF CHECK

3. What is the value of s.length() if s is

a. the empty string “”?

b. the string “ ” containing a space?

c. null?

4. Which of the following comparisons are syntactically incorrect?

Which of them are syntactically correct, but logically questionable?

String a = "1";
String b = "one";
double x = 1;

192

Chapter 5 Decisions Page 15 of 62

Java Concepts, 5th Edition

double y = 3 * (1.0 / 3);

a. a ==“1”

b. a ==null

c. a.equals(“”)

d. a == b

e. a == x

f. x == y

g. x − y == null

h. x.equals(y)

 QUALITY TIP 5.2: Avoid Conditions with Side Effects

In Java, it is legal to nest assignments inside test conditions:

if ((d = b * b - 4 * a * c) >= 0) r =
Math.sqrt(d);

It is legal to use the decrement operator inside other expressions:

if (n-- < 0) . . .

These are bad programming practices, because they mix a test with another

activity. The other activity (setting the variable d, decrementing n) is called a

side effect of the test.

As you will see in Advanced Topic 6.2, conditions with side effects can

occasionally be helpful to simplify loops; for if statements they should always

be avoided.

192

193

Chapter 5 Decisions Page 16 of 62

Java Concepts, 5th Edition

5.3 Multiple Alternatives

5.3.1 Sequences of Comparisons

Many computations require more than a single if/else decision. Sometimes, you

need to make a series of related comparisons.

The following program asks for a value describing the magnitude of an earthquake

on the Richter scale and prints a description of the likely impact of the quake. The

Richter scale is a measurement for the strength of an earthquake. Every step in the

scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of the

quake. The 1989 Loma Prieta earthquake that damaged the Bay Bridge in San

Francisco and destroyed many buildings in several Bay area cities registered 7.1 on

the Richter scale.

Multiple conditions can be combined to evaluate complex decisions. The correct

arrangement depends on the logic of the problem to be solved.

ch05/quake/Earthquake.java

 1 /**

 2 A class that describes the effects of an earthquake.
 3 */
 4 public class Earthquake
 5 {
 6 /**

 7 Constructs an Earthquake object.

 8 @param magnitude the magnitude on the Richter

scale
 9 */
10 public Earthquake(double magnitude)
11 {
12 richter = magnitude;
13 }
14
15 /**

16 Gets a description of the effect of the earthquake.

17 @return the description of the effect

193

194

Chapter 5 Decisions Page 17 of 62

Java Concepts, 5th Edition

18 */
19 public String getDescription()
20 {
21 String r;
22 if (richter >= 8.0)
23 r = “Most structures fall”;
24 else if (richter >= 7.0)
25 r = “Many buildings destroyed”;
26 else if (richter >= 6.0)
27 r = “Many buildings considerably
damaged, some collapse”;
28 else if (richter >= 4.5)
29 r = “Damage to poorly constructed
buildings”;
30 else if (richter >= 3.5)
31 r = “Felt by many people, no
destruction”;
32 else if (richter >= 0)
33 r = “Generally not felt by people”;
34 else
35 r = “Negative numbers are not
valid”;
36 return r;
37 }
38
39 private double richter;
40 }

ch05/quake/EarthquakeRunner.java

 1 import java.util .Scanner;
 2
 3 /**

 4 This program prints a description of an earthquake of a given

magnitude.
 5 */
 6 public class EarthquakeRunner
 7 {
 8 public static void main(String[] args)
 9 {
10 Scanner in = new Scanner(System.in);
11
12 System.out.print(“Enter a magnitude
on the Richter scale: ”);

Chapter 5 Decisions Page 18 of 62

Java Concepts, 5th Edition

13 double magnitude = in.nextDouble();
14 Earthquake quake = new
Earthquake(magnitude);
15 System.out.println(quake.getDescription())
;
16 }
17 }

Output

Enter a magnitude on the Richter scale: 7.1
Many buildings destroyed

Here we must sort the conditions and test against the largest cutoff first. Suppose

we reverse the order of tests:

if (richter >= 0) // Tests in wrong order
 r = "Generally not felt by people";
else if (richter >= 3.5)
 r = "Felt by many people, no destruction";
else if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
else if (richter >= 6.0)
 r = "Many buildings considerably damaged, some
collapse";
else if (richter >= 7.0)
 r = "Many buildings destroyed";
else if (richter >= 8.0)
 r = "Most structures fall";

This does not work. All nonnegative values of richter fall into the first case, and

the other tests will never be attempted.

In this example, it is also important that we use an if/else/else test, not just

multiple independent if statements. Consider this sequence of independent tests:

if (richter >= 8.0) // Didn't use else
 r = "Most structures fall";
if (richter >= 7.0)
 r = "Many buildings destroyed";
if (richter >= 6.0)
 r = "Many buildings considerably damaged, some
collapse";
if (richter >= 4.5)

194

195

Chapter 5 Decisions Page 19 of 62

Java Concepts, 5th Edition

 r = "Damage to poorly constructed buildings";
if (richter >= 3.5)
 r = "Felt by many people, no destruction";
if (richter >= 0)
 r = "Generally not felt by people";

Now the alternatives are no longer exclusive. If richter is 6.0, then the last four

tests all match, and r is set four times.

 PRODUCTIVITY HINT 5.2: Keyboard Shortcuts for

Mouse Operations

Programmers spend a lot of time with the keyboard. Programs and

documentation are many pages long and require a lot of typing. This makes you

different from the average computer user who uses the mouse more often than

the keyboard.

Unfortunately for you, modern user interfaces are optimized for the mouse. The

mouse is the most obvious tool for switching between windows, and for

selecting commands. The constant switching between the keyboard and the

mouse slows you down. You need to move a hand off the keyboard, locate the

mouse, move the mouse, click the mouse, and move the hand back onto the

keyboard. For that reason, most user interfaces have keyboard shortcuts:

combinations of keystrokes that allow you to achieve the same tasks without

having to switch to the mouse at all.

All Microsoft Windows applications use the following conventions:

• The Alt key plus the underlined letter in a menu name (such as the F in

“File”) pulls down that menu. Inside a menu, just type the underlined

character in the name of a submenu to activate it. For example, Alt+F

followed by O selects “File” “Open”. Once your fingers know about this

combination, you can open files faster than the fastest mouse artist.

• Inside dialog boxes, the Tab key is important; it moves from one option to

the next. The arrow keys move within an option. The Enter key accepts the

entire dialog box, and Esc cancels it.

195

196

Chapter 5 Decisions Page 20 of 62

Java Concepts, 5th Edition

• In a program with multiple windows, Ctrl+Tab usually toggles through the

windows managed by that program, for example between the source and

error windows.

• Alt+Tab toggles between applications, allowing you to toggle quickly

between, for example, the text editor and a command shell window.

• Hold down the Shift key and press the arrow keys to highlight text. Then

use Ctrl+X to cut the text, Ctrl+C to copy it, and Ctrl+V to paste it. These

keys are easy to remember. The V looks like an insertion mark that an

editor would use to insert text. The X should remind you of crossing out

text. The C is just the first letter in “Copy”. (OK, so it is also the first letter

in “Cut”—no mnemonic rule is perfect.) You find these reminders in the

Edit menu of most text editors.

Take a little bit of time to learn about the keyboard shortcuts that the program

designers provided for you, and the time investment will be repaid many times

during your programming career. When you blaze through your work in the

computer lab with keyboard shortcuts, you may find yourself surrounded by

amazed onlookers who whisper, “I didn't know you could do that.”

 PRODUCTIVITY HINT 5.3: Copy and Paste in the Editor

When you see code like

if (richter >= 8.0)
 r = "Most structures fall";
else if (richter >= 7.0)
 r = "Many buildings destroyed";
else if (richter >= 6.0)
 r = "Many buildings considerably damaged, some
collapse"
else if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
else if (richter >= 3.5)
 r = "Felt by many people, no destruction";

you should think “copy and paste”.

Make a template:

196

197

Chapter 5 Decisions Page 21 of 62

Java Concepts, 5th Edition

else if (richter >=)
 r = " ";

and copy it. This is usually done by highlighting with the mouse and then

selecting Edit and then Copy from the menu bar. If you follow Productivity Hint

5.2, you are smart and use the keyboard. Hit Shift+End to highlight the entire

line, then Ctrl+C to copy it. Then paste it (Ctrl+V) multiple times and fill the

text into the copies. Of course, your editor may use different commands, but the

concept is the same.

The ability to copy and paste is a lways useful when you have code from an

example or another project that is similar to your current needs. To copy, paste,

and modify is faster than to type everything from scratch. You are also less

likely to make typing errors.

 ADVANCED TOPIC 5.2: The switch Statement

A sequence of if/else/else that compares a single value against several

constant alternatives can be implemented as a switch statement. For example,

int digit;
. . .
switch (digit)
{
 case 1: System.out.print("one"); break;
 case 2: System.out.print("two"); break;
 case 3: System.out.print("three"); break;
 case 4: System.out.print("four"); break;
 case 5: System.out.print("five"); break;
 case 6: System.out.print("six"); break;
 case 7: System.out.print("seven"); break;
 case 8: System.out.print("eight"); break;
 case 9: System.out.print("nine"); break;
 default System.out.print("error"); break;
}

This is a shortcut for

int digit;
. . .
if (digit == 1) System.out.print("one");

Chapter 5 Decisions Page 22 of 62

Java Concepts, 5th Edition

else if (digit == 2) System.out.print("two");
else if (digit == 3) System.out.print("three") ;
else if (digit == 4) System.out.print("four")
else if (digit == 5) System.out.print("five") ;
else if (digit == 6) System.out.print("six") ;
else if (digit == 7) System.out.print("seven") ;
else if (digit == 8) System.out.print("eight") ;
else if (digit == 9) System.out.print("nine") ;
else System.out.print("error") ;

Using the switch statement has one advantage. It is obvious that all branches

test the same value, namely digit.

The switch statement can be applied only in narrow circumstances. The test

cases must be constants, and they must be integers, characters, or enumerated

constants. You cannot use a switch to branch on floating-point or string

values. For example, the following is an error:

switch (name)
{
 case "one": . . . break; // Error
 . . .
}

Note how every branch of the switch was terminated by a break instruction. If

the break is missing, execution falls through to the next branch, and so on,

until finally a break or the end of the switch is reached. For example,

consider the following switch statement:

switch (digit)
{
 case 1: System.out.print("one"); // Oops--no
break
 case 2: System.out.print("two"); break;
 . . .
}

If digit has the value 1, then the statement after the case 1: label is

executed. Because there is no break, the statement after the case 2: label is

executed as well. The program prints “onetwo”.

There are a few cases in which this fall-through behavior is actually useful, but

they are very rare. Peter van der Linden [1, p. 38] describes an analysis of the

197

198

Chapter 5 Decisions Page 23 of 62

Java Concepts, 5th Edition

switch statements in the Sun C compiler front end. Of the 244 switch

statements, each of which had an average of 7 cases, only 3 percent used the

fall-through behavior. That is, the default—falling through to the next case

unless stopped by a break—was wrong 97 percent of the time. Forgetting to

type the break is an exceedingly common error, yielding incorrect code.

We leave it to you to decide whether or not to use the switch statement. At any

rate, you need to have a reading knowledge of switch in case you find it in the

code of other programmers.

5.3.2 Nested Branches

Some computations have multiple levels of decision making. You first make one

decision, and each of the outcomes leads to another decision. Here is a typical

example.

In the United States, taxpayers pay federal income tax at different rates depending

on their incomes and marital status. There are two main tax schedules: one for

single taxpayers and one for married taxpayers “filing jointly”, meaning that the

married taxpayers add their incomes together and pay taxes on the total. (In fact,

there are two other schedules, “head of household” and “married filing separately”,

which we will ignore for simplicity.) Table 1 gives the tax rate computations for

each of the filing categories, using the values for the 1992 federal tax return. (We're

using the 1992 tax rate schedule in this illustration because of its simplicity.

Legislation in 1993 increased the number of rates in each status and added more

complicated rules. By the time that you read this, the tax laws may well have

become even more complex.)

Table 1 Federal Tax Rate Schedule (1992)

If your filing status is Single: If your filing status is Married:

Tax Bracket Percentage Tax Bracket Percentage

$0 … $21,450 15% $0 … $35,800 15%

Amount over $21,450, up

to $51,900

28% Amount over $35,800, up

to $86,500

28%

Amount over $51,900 31% Amount over $86,500 31%

198

199

Chapter 5 Decisions Page 24 of 62

Java Concepts, 5th Edition

Now let us compute the taxes due, given a filing status and an income figure. First,

we must branch on the filing status. Then, for each filing status, we must have

another branch on income level.

The two-level decision process is reflected in two levels of if statements. We say

that the income test is nested inside the test for filing status. (See Figure 5 for a

flowchart.)

Figure 5

Income Tax Computation Using 1992 Schedule

ch05/tax/TaxReturn.java

 1 /**

 2 A tax return of a taxpayer in 1992.
 3 */
 4 public class TaxReturn
 5 {
 6 /**

 7 Constructs a TaxReturn object for a given income and
 8 marital status.

199

200

Chapter 5 Decisions Page 25 of 62

Java Concepts, 5th Edition

 9 @param anIncome the taxpayer income

10 @param aStatus either SINGLE or MARRIED
11 */
12 public TaxReturn(double anIncome, int
aStatus)
13 {
14 income = anIncome;
15 status = aStatus;
16 }
17
18 public double getTax()
19 {
20 double tax = 0;
21
22 if (status == SINGLE)
23 {
24 if (income <= SINGLE_BRACKET1)
25 tax = RATE1 * income;
26 else if (income <=
SINGLE_BRACKET2)
27 tax = RATE1 *
SINGLE_BRACKET1
28 + RATE2 * (income
- SINGLE_BRACKET1);
29 else
30 tax = RATE1 *
SINGLE_BRACKET1
31 + RATE2 *
(SINGLE_BRACKET2 - SINGLE_BRACKET1);
32 + RATE3 * (income
- SINGLE_BRACKET2);
33 }
34 else
35 {
36 if (income <=MARRIED_BRACKET1)
37 tax = RATE1 * income;
38 else if (income
<=MARRIED_BRACKET2)
39 tax = RATE1 *
MARRIED_BRACKET1
40 + RATE2 * (income
- MARRIED_BRACKET1);
41 else
42 tax = RATE1 *
MARRIED_BRACKET1

Chapter 5 Decisions Page 26 of 62

Java Concepts, 5th Edition

43 + RATE2 *
(MARRIED_BRACKET2 - MARRIED_BRACKET1);
44 + RATE3 * (income
- MARRIED_BRACKET2);
45 }
46
47 return tax;
48 }
49
50 public static final int SINGLE = 1;
51 public static final int MARRIED = 2;
52
53 private static final double RATE1 = 0.15;
54 private static final double RATE2 = 0.28;
55 private static final double RATE3 = 0.31;
56
57 private static final double SINGLE_BRACKET1
= 21450;
58 private static final double SINGLE_BRACKET2
= 51900;
59
60 private static final double
MARRIED_BRACKET1 = 35800;
61 private static final double
MARRIED_BRACKET2 = 86500;
62
63 private double income;
64 private int status;
65 }

ch05/tax/TaxCalculator.java

 1 import java.util .Scanner;
 2
 3 /**

 4 This program calculates a simple tax return.
 5 */
 6 public class TaxCalculator
 7 {
 8 public static void main(String[] args)
 9 {
10 Scanner in = new Scanner(System.in);
11

200

201

Chapter 5 Decisions Page 27 of 62

Java Concepts, 5th Edition

12 System.out.print(“Please enter your
income: ”);
13 double income = in.nextDouble();
14
15 System.out.print(”Are you married?
(Y/N) ”);
16 String input = in.next();
17 int status;
18 if (input.equalsIgnoreCase(“Y”))
19 status = TaxReturn.MARRIED;
20 else
21 status = TaxReturn.SINGLE;
22 TaxReturn aTaxReturn = new
TaxReturn(income, status);
23
24 System.out.println(“Tax: ”
25 + aTaxReturn.getTax());
26 }
27 }

Output

Please enter your income: 50000
Are you married? (Y/N) N
Tax: 11211.5

SELF CHECK

5. The if/else/else statement for the earthquake strength first

tested for higher values, then descended to lower values. Can you

reverse that order?

6. Some people object to higher tax rates for higher incomes, claiming

that you might end up with less money after taxes when you get a

raise for working hard. What is the flaw in this argument?

 COMMON ERROR 5.2: The Dangling Else Problem

When an if statement is nested inside another if statement, the following error

may occur.

if (richter >= 0)

201

202

Chapter 5 Decisions Page 28 of 62

Java Concepts, 5th Edition

 if (richter <= 4)
 System.out.println(“The earthquake is
harmless”);
 else // Pitfall!
 System.out.println(“Negative value not
allowed”);

The indentation level seems to suggest that the else is grouped with the test

richter > = 0. Unfortunately, that is not the case. The compiler ignores all

indentation and follows the rule that an else always belongs to the closest if,

like this:

if (richter >= 0)
 if (richter <= 4)
 System.out.println("The earthquake is
harmless");
else // Pitfall!
 System.out.println("Negative value not
allowed");

That isn't what we want. We want to group the else with the first if. For that,

we must use braces.

if (richter >= 0)
{
 if (richter <= 4)
 System.out.println(“The earthquake is
harmless”);
}
else
 System.out.println(“Negative value not
allowed”);

To avoid having to think about the pairing of the else, we recommend that you

always use a set of braces when the body of an if contains another if. In the

following example, the braces are not strictly necessary, but they help clarify the

code:

if (richter >= 0)
{
 if (richter <= 4)
 System.out.println(“The earthquake is
harmless”);
 else

Chapter 5 Decisions Page 29 of 62

Java Concepts, 5th Edition

 System.out.println(“Damage may occur”);
}

The ambiguous else is called a dangling else, and it is enough of a

syntactical blemish that some programming language designers developed an

improved syntax that avoids it altogether. For example, Algol 68 uses the

construction

if condition then statement else statement fi;

The else part is optional, but since the end of the if statement is clearly

marked, the grouping is unambiguous if there are two ifs and only one else.

Here are the two possible cases:

if c1 then if c2 then s1 else s2 fi fi;

if c1 then if c2 then s1 fi else s2 fi;

By the way, fi is just if backwards. Other languages use endif, which has

the same purpose but is less fun.

 PRODUCTIVITY HINT 5.4: Make a Schedule and Make

Time for Unexpected

Problems

Commercial software is notorious for being delivered later than promised. For

example, Microsoft originally promised that the successor to its Windows XP

operating system would be available in 2004, then early in 2005, then late in

2005. Some of the early promises might not have been realistic. It is in

Microsoft's interest to let prospective customers expect the imminent availability

of the product, so that they do not switch to a different product in the meantime.

Undeniably, though, Microsoft had not anticipated the full complexity of the

tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot.

As a student or a programmer, you are expected to manage your time wisely and

to finish your assignments on time. You can probably do simple programming

exercises the night before the due date, but an assignment that looks twice as

hard may well take four times as long, because more things can go wrong. You

should therefore make a schedule whenever you start a programming project.

202

203

Chapter 5 Decisions Page 30 of 62

Java Concepts, 5th Edition

First, estimate realistically how much time it will take you to

• Design the program logic

• Develop test cases

• Type the program in and fix syntax errors

• Test and debug the program

For example, for the income tax program I might estimate 30 minutes for the

design, because it is mostly done; 30 minutes for developing test cases; one hour

for data entry and fixing syntax errors; and 2 hours for testing and debugging.

That is a total of 4 hours. If I work 2 hours a day on this project, it will take me

two days.

Then think of things that can go wrong. Your computer might break down. The

lab might be crowded. You might be stumped by a problem with the computer

system. (That is a particularly important concern for beginners. It is very

common to lose a day over a trivial problem just because it takes time to track

down a person who knows the “magic” command to overcome it.) As a rule of

thumb, double the time of your estimate. That is, you should start four days, not

two days, before the due date. If nothing goes wrong, great; you have the

program done two days early. When the inevitable problem occurs, you have a

cushion of time that protects you from embarrassment and failure.

 ADVANCED TOPIC 5.3: Enumerated Types

In many programs, you use variables that can hold one of a finite number of

values. For example, in the tax return class, the status field holds one of the

values SINGLE or MARRIED. We arbitrarily defined SINGLE as the number 1

and MARRIED as 2. If, due to some programming error, the status field is set

to another integer value (such as −1, 0, or 3), then the programming logic may

produce invalid results.

In a simple program, this is not really a problem. But as programs grow over

time, and more cases are added (such as the “married filing separately” and

“head of household” categories), errors can slip in. Java version 5.0 introduces a

203

204

Chapter 5 Decisions Page 31 of 62

Java Concepts, 5th Edition

remedy: enumerated types. An enumerated type has a finite set of values, for

example

public enum FilingStatus {SINGLE, MARRIED}

You can have any number of values, but you must include them all in the enum

declaration.

You can declare variables of the enumerated type:

FilingStatus status = FilingStatus.SINGLE;

If you try to assign a value that isn't a FilingStatus, such as 2 or ”S”, then

the compiler reports an error.

Use the == operator to compare enumerated values, for example:

if (status = = FilingStatus.SINGLE) . . .

It is common to nest an enum declaration inside a class, such as

public class TaxReturn
{
 public TaxReturn(double anIncome,
FilingStatus aStatus) {. . .}
 . . .
 public enum FilingStatus SINGLE, MARRIED
 private FilingStatus status;
}

To access the enumeration outside the class in which it is defined, use the class

name as a prefix:

TaxReturn return = new TaxReturn(income,
TaxReturn.FilingStatus.SINGLE);

An enumerated type variable can be null. For example, the status field in

the previous example can actually have three values: SINGLE, MARRIED, and

null. This can be useful, for example to identify an uninitialized variable, or a

potential pitfall.

Chapter 5 Decisions Page 32 of 62

Java Concepts, 5th Edition

SYNTAX 5.3 Defining an Enumerated Type

accessSpecifier enum TypeName { value1, value2, . . . }

Example:

public enum FilingStatus {SINGLE, MARRIED}

Purpose:

To define a type with a fixed number of values

5.4 Using Boolean Expressions

5.4.1 The boolean Type

In Java, an expression such as amount < 1000 has a value, just as the

expression amount + 1000 has a value. The value of a relational expression is

either true or false. For example, if amount is 500, then the value of

amount < 1000 is true. Try it out: The program fragment

double amount = 0;
System.out.println(amount > 1000);

prints true. The values true and false are not numbers, nor are they objects of

a class. They belong to a separate type, called boolean. The Boolean type is

named after the mathematician George Boole (1815-1864), a pioneer in the study of

logic.

The boolean type has two values: true and false

204

205

Chapter 5 Decisions Page 33 of 62

Java Concepts, 5th Edition

5.4.2 Predicate Methods

A predicate method is a method that returns a boolean value. Here is an example

of a predicate method:

A predicate method returns a boolean value.

public class BankAccount
{
 public boolean isOverdrawn()
 {
 return balance > 0;
 }
}

You can use the return value of the method as the condition of an if statement:

if (harrysChecking.isOverdrawn()) . . .

There are several useful static predicate methods in the Character class:

isDigit
isLetter
isUpperCase
isLowerCase

205

206

Chapter 5 Decisions Page 34 of 62

Java Concepts, 5th Edition

that let you test whether a character is a digit, a letter, an uppercase letter, or a

lowercase letter:

if (Character.isUpperCase(ch)) . . .

It is a common convention to give the prefix ”is” or ”has” to the name of a

predicate method.

The Scanner class has useful predicate methods for testing whether the next input

will succeed. The hasNextInt method returns true if the next character

sequence denotes an integer. It is a good idea to call that method before calling

nextInt:

if (in.hasNextInt()) n = in.nextInt();

Similarly, the hasNextDouble method tests whether a call to nextDouble

will succeed.

5.4.3 The Boolean Operators

Suppose you want to find whether amount is between 0 and 1000. Then two

conditions have to be true: amount must be greater than 0, and it must be less than

1000. In Java you use the && operator to represent the and to combine test

conditions. That is, you can write the test as follows:

if (0 > amount && amount > 1000) . . .

You can form complex tests with the Boolean operators && (and), | | (or), and

! (not).

The && operator combines several tests into a new test that passes only when all

conditions are true. An operator that combines test conditions is called a logical

operator.

The || (or) logical operator also combines two or more conditions. The resulting

test succeeds if at least one of the conditions is true. For example, here is a test to

check whether the string input is an “S” or “M”:

if (input.equals("S") || input.equals("M")) . . .

Chapter 5 Decisions Page 35 of 62

Java Concepts, 5th Edition

Figure 6 shows flowcharts for these examples.

Sometimes you need to invert a condition with the ! (not) logical operator. For

example, we may want to carry out a certain action only if two strings are not equal:

if (!input.equals("S")) . . .

The ! operator takes a single condition and evaluates to true if that condition is

false and to false if the condition is true.

Figure 6

Flowcharts for && and || Combinations

Here is a summary of the three logical operations:

A B A&&B

true true true
true false false
false Any false

A B A | | B
true Any true

false true true
false false false

206

207

Chapter 5 Decisions Page 36 of 62

Java Concepts, 5th Edition

A !A
true false
false true

 COMMON ERROR 5.3: Multiple Relational Operators

Consider the expression

if (0 < amount < 1000) . . . // Error

This looks just like the mathematical notation for “amount is between 0 and

1000”. But in Java, it is a syntax error.

Let us dissect the condition. The first half, 0 < amount, is a test with outcome

true or false. The outcome of that test (true or false) is then compared

against 1000. This seems to make no sense. Is true larger than 1000 or not?

Can one compare truth values and numbers? In Java, you cannot. The Java

compiler rejects this statement.

Instead, use && to combine two separate tests:

if (0 > amount && amount > 1000) . . .

Another common error, along the same lines, is to write

if (ch == 'S' || 'M') . . . // Error

to test whether ch is ‘S’ or ‘M’. Again, the Java compiler flags this construct

as an error. You cannot apply the || operator to characters. You need to write

two Boolean expressions and join them with the || operator:

if (ch == 'S' || ch == 'M') . . .

 COMMON ERROR 5.4: Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies

between 0 and 100 if it is at least 0 and at most 100. It lies outside that range if it

is less than 0 or greater than 100. There is no golden rule; you just have to think

carefully.

207

208

Chapter 5 Decisions Page 37 of 62

Java Concepts, 5th Edition

Often the and or or is clearly stated, and then it isn't too hard to implement it.

Sometimes, though, the wording isn't as explicit. It is quite common that the

individual conditions are nicely set apart in a bulleted list, but with little

indication of how they should be combined. The instructions for the 1992 tax

return say that you can claim single filing status if any one of the following is

true:

• You were never married.

• You were legally separated or divorced on December 31, 1992.

• You were widowed before January 1, 1992, and did not remarry in 1992.

Because the test passes if any one of the conditions is true, you must combine

the conditions with or. Elsewhere, the same instructions state that you may use

the more advantageous status of married filing jointly if all five of the following

conditions are true:

• Your spouse died in 1990 or 1991 and you did not remarry in 1992.

• You have a child whom you can claim as dependent.

• That child lived in your home for all of 1992.

• You paid over half the cost of keeping up your home for this child.

• You filed (or could have filed) a joint return with your spouse the year he

or she died.

Because all of the conditions must be true for the test to pass, you must combine

them with an and.

 ADVANCED TOPIC 5.4: Lazy Evaluation of Boolean

Operators

The && and || operators in Java are computed using lazy (or short circuit)

evaluation. In other words, logical expressions are evaluated from left to right,

and evaluation stops as soon as the truth value is determined. When an and is

evaluated and the first condition is false, then the second condition is skipped— 208

Chapter 5 Decisions Page 38 of 62

Java Concepts, 5th Edition

no matter what it is, the combined condition must be false. When an or is

evaluated and the first condition is true, the second condition is not evaluated,

because it does not matter what the outcome of the second test is. Here is an

example:

if (input ! = null && Integer.parseInt(input) <
0) . . .

If input is null, then the first condition is false, and thus the combined

statement is false, no matter what the outcome of the second test. The second test

is never evaluated if input is null, and there is no danger of parsing a null

string (which would cause an exception).

If you do need to evaluate both conditions, then use the & and | operators (see

Appendix E). When used with Boolean arguments, these operators always

evaluate both arguments.

 ADVANCED TOPIC 5.5: De Morgan's Law

In the preceding section, we programmed a test to see whether amount was

between 0 and 1000. Let's find out whether the opposite is true:

De Morgan's law shows how to simplify expressions in which the not

operator (!) is applied to terms joined by the && or | | operators.

if (!(0 > amount && amount > 1000)) . . .

This test is a little bit complicated, and you have to think carefully through the

logic. “When it is not true that 0 < amount and amount < 1000 ...” Huh?

It is not true that some people won't be confused by this code.

The computer doesn't care, but humans generally have a hard time

comprehending logical conditions with not operators applied to and/or

expressions. De Morgan's law, named after the mathematician Augustus de

Morgan (1806-1871), can be used to simplify these Boolean expressions. De

Morgan's law has two forms: one for the negation of an and expression and one

for the negation of an or expression:

 !(A && B) is the same as !A || !B

209

Chapter 5 Decisions Page 39 of 62

Java Concepts, 5th Edition

 !(A || B) is the same as !A && !B

Pay particular attention to the fact that the and and or operators are reversed by

moving the not inwards. For example, the negation of “the input is S or the input

is M”,

! (input.equals("S") || input.equals("M"))

is “the input is not S and the input is not M”

!input.equals("S") && !input.equals("M")

Let us apply the law to the negation of ”the amount is between 0 and 1000”:

! (0 < amount && amount < 1000)

is equivalent to

!(0 < amount) || !(amount < 1000)

which can be further simplified to

0 >= amount || amount >= 1000

Note that the opposite of < is >=, not >!

5.4.4 Using Boolean Variables

You can use a Boolean variable if you know that there are only two possible values.

Have another look at the tax program in Section 5.3.2. The marital status is either

single or married. Instead of using an integer, you can use a variable of type

boolean:

You can store the outcome of a condition in a Boolean variable.

private boolean married;

The advantage is that you can't accidentally store a third value in the variable.

Then you can use the Boolean variable in a test:

if (married)
 . . .

209

210

Chapter 5 Decisions Page 40 of 62

Java Concepts, 5th Edition

else
 . . .

Sometimes Boolean variables are called flags because they can have only two

states: ”up” and ”down”.

It pays to think carefully about the naming of Boolean variables. In our example, it

would not be a good idea to give the name marital Status to the Boolean

variable. What does it mean that the marital status is true? With a name like

married there is no ambiguity; if married is true, the taxpayer is married.

By the way, it is considered gauche to write a test such as

if (married == true) . . . // Don't

Just use the simpler test

if (married) . . .

In Chapter 6 we will use Boolean variables to control complex loops.

SELF CHECK

7. When does the statement

System.out.println(x < 0 || x > 0);
print false?

8. Rewrite the following expression, avoiding the comparison with

false:

if (Character.isDigit(ch) == false) . . .

 RANDOM FACT 5.1: Artificial Intelligence

When one uses a sophisticated computer program, such as a tax preparation

package, one is bound to attribute some intelligence to the computer. The

computer asks sensible questions and makes computations that we find a mental

challenge. After all, if doing our taxes were easy, we wouldn't need a computer

to do it for us.
210

Chapter 5 Decisions Page 41 of 62

Java Concepts, 5th Edition

As programmers, however, we know that all this apparent intelligence is an

illusion. Human programmers have carefully ”coached” the software in all

possible scenarios, and it simply replays the actions and decisions that were

programmed into it.

Would it be possible to write computer programs that are genuinely intelligent in

some sense? From the earliest days of computing, there was a sense that the

human brain might be nothing but an immense computer, and that it might well

be feasible to program computers to imitate some processes of human thought.

Serious research into artificial intelligence (AI) began in the mid-1950s, and the

first twenty years brought some impressive successes. Programs that play

chess—surely an activity that appears to require remarkable intellectual

powers—have become so good that they now routinely beat all but the best

human players. In 1975 an expert-system program called Mycin gained fame for

being better in diagnosing meningitis in patients than the average physician.

Theorem-proving programs produced logically correct mathematical proofs.

Optical character recognition software can read pages from a scanner, recognize

the character shapes (including those that are blurred or smudged), and

reconstruct the original document text, even restoring fonts and layout.

However, there were serious setbacks as well. From the very outset, one of the

stated goals of the AI community was to produce software that could translate

text from one language to another, for example from English to Russian. That

undertaking proved to be enormously complicated. Human language appears to

be much more subtle and interwoven with the human experience than had

originally been thought. Even the grammar-checking programs that come with

many word processors today are more a gimmick than a useful tool, and

analyzing grammar is just the first step in translating sentences.

From 1982 to 1992, the Japanese government embarked on a massive research

project, funded at over 50 billion Japanese yen. It was known as the

Fifth-Generation Project. Its goal was to develop new hard- and software to

greatly improve the performance of expert systems. At its outset, the project

created great fear in other countries that the Japanese computer industry was

about to become the undisputed leader in the field. However, the end results

210

211

Chapter 5 Decisions Page 42 of 62

Java Concepts, 5th Edition

were disappointing and did little to bring artificial intelligence applications to

market.

One reason that artificial intelligence programs have not performed as well as it

was hoped seems to be that they simply don't know as much as humans do. In

the early 1990s, Douglas Lenat and his colleagues decided to do something

about it and initiated the CYC project (from enCYClopedia), an effort to codify

the implicit assumptions that underlie human speech and writing. The team

members started out analyzing news articles and asked themselves what

unmentioned facts are necessary to actually understand the sentences. For

example, consider the sentence ”Last fall she enrolled in Michigan State.” The

reader automatically realizes that ”fall” is not related to falling down in this

context, but refers to the season. While there is a State of Michigan, here

Michigan State denotes the university. A priori, a computer program has none of

this knowledge. The goal of the CYC project was to extract and store the

requisite facts—that is, (1) people enroll in universities; (2) Michigan is a state;

(3) a state X is likely to have a university named X State University, often

abbreviated as X State; (4) most people enroll in a university in the fall. In 1995,

the project had codified about 100,000 common-sense concepts and about a

million facts relating them. Even this massive amount of data has not proven

sufficient for useful applications.

Successful artificial intelligence programs, such as chess-playing programs, do

not actually imitate human thinking. They are just very fast in exploring many

scenarios and have been tuned to recognize those cases that do not warrant

further investigation. Neural networks are interesting exceptions: coarse

simulations of the neuron cells in animal and human brains. Suitably

interconnected cells appear to be able to ”learn”. For example, if a network of

cells is presented with letter shapes, it can be trained to identify them. After a

lengthy training period, the network can recognize letters, even if they are

slanted, distorted, or smudged.

When artificial intelligence programs are successful, they can raise serious

ethical issues. There are now programs that can scan résumés, select those that

look promising, and show only those to a human for further analysis. How would

you feel if you knew that your résumé had been rejected by a computer, perhaps

on a technicality, and that you never had a chance to be interviewed? When

211

212

Chapter 5 Decisions Page 43 of 62

Java Concepts, 5th Edition

computers are used for credit analysis, and the analysis software has been

designed to deny credit systematically to certain groups of people (say, all

applicants with certain ZIP codes), is that illegal discrimination? What if the

software has not been designed in this fashion, but a neural network has ”

discovered” a pattern from historical data? These are troubling questions,

especially because those that are harmed by such processes have little recourse.

5.5 Test Coverage

Testing the functionality of a program without consideration of its internal structure is

called black-box testing. This is an important part of testing, because, after all, the

users of a program do not know its internal structure. If a program works perfectly on

all inputs, then it surely does its job.

Black-box testing describes a testing method that does not take the structure of the

implementation into account.

However, it is impossible to ensure absolutely that a program will work correctly on

all inputs just by supplying a finite number of test cases. As the famous computer

scientist Edsger Dijkstra pointed out, testing can show only the presence of bugs—not

their absence. To gain more confidence in the correctness of a program, it is useful to

consider its internal structure. Testing strategies that look inside a program are called

white-box testing. Performing unit tests of each method is a part of white-box testing.

White-box testing uses information about the structure of a program.

You want to make sure that each part of your program is exercised at least once by

one of your test cases. This is called test coverage. If some code is never executed by

any of your test cases, you have no way of knowing whether that code would perform

correctly if it ever were executed by user input. That means that you need to look at

every if/else branch to see that each of them is reached by some test case. Many

conditional branches are in the code only to take care of strange and abnormal inputs,

but they still do something. It is a common phenomenon that they end up doing

something incorrectly, but those faults are never discovered during testing, because

nobody supplied the strange and abnormal inputs. Of course, these flaws become

immediately apparent when the program is released and the first user types in an

Chapter 5 Decisions Page 44 of 62

Java Concepts, 5th Edition

unusual input and is incensed when the program misbehaves. The remedy is to ensure

that each part of the code is covered by some test case.

Test coverage is a measure of how many parts of a program have been tested.

For example, in testing the getTax method of the TaxReturn class, you want to

make sure that every if statement is entered for at least one test case. You should test

both single and married taxpayers, with incomes in each of the three tax brackets.

When you select test cases, you should make it a habit to include boundary test cases:

legal values that lie at the boundary of the set of acceptable inputs.

For example, what happens when you compute the taxes for an income of 0 or if a

bank account has an interest rate of 0%? Boundary cases are still legitimate inputs,

and you expect that the program will handle them correctly—often in some trivial

way or through special cases. Testing boundary cases is important, because

programmers often make mistakes dealing with boundary conditions. Division by

zero, extracting characters from empty strings, and accessing null pointers are

common symptoms of boundary errors.

Boundary test cases are test cases that are at the boundary of acceptable inputs.

SELF CHECK

9. How many test cases do you need to cover all branches of the

getDescription method of the Earthquake class?

10. Give a boundary test case for the EarthquakeRunner program.

What output do you expect?

 QUALITY TIP 5.3: Calculate Sample Data Manually

It is usually difficult or impossible to prove that a given program functions

correctly in all cases. For gaining confidence in the correctness of a program, or

for understanding why it does not function as it should, manually calculated

sample data are invaluable. If the program arrives at the same results as the manual

212

213

Chapter 5 Decisions Page 45 of 62

Java Concepts, 5th Edition

calculation, our confidence in it is strengthened. If the manual results differ from

the program results, we have a starting point for the debugging process.

You should calculate test cases by hand to double-check that your application

computes the correct answer.

Surprisingly, many programmers are reluctant to perform any manual calculations

as soon as a program carries out the slightest bit of algebra. Their math phobia

kicks in, and they irrationally hope that they can avoid the algebra and beat the

program into submission by random tinkering, such as rearranging the + and -

signs. Random tinkering is always a great time sink, but it rarely leads to useful

results.

Let's have another look at the TaxReturn class. Suppose a single taxpayer earns

$50,000. The rules in Table 1 state that the first $21,450 are taxed at 15%. Expect

to take out your calculator—real world numbers are usually nasty. Compute

21,450 × 0.15 = 3,217.50. Next, since $50,000 is less than the upper limit of the

second bracket, the entire amount above $21,450, is taxed at 28%. That is

(50,000-21,450) × 0.28 = 7,994. The total tax is the sum, 3,217.50 + 7,994 =

11,211.50. Now, that wasn't so hard.

Run the program and compare the results. Because the results match, we have an

increased confidence in the correctness of the program.

It is even better to make manual calculations before writing the program. Doing so

helps you understand the task at hand, and you will be able to implement your

solution more quickly.

 QUALITY TIP 5.4: Prepare Test Cases Ahead of Time

Let us consider how we can test the tax computation program. Of course, we

cannot try out all possible inputs of filing status and income level. Even if we

could, there would be no point in trying them all. If the program correctly

computes one or two tax amounts in a given bracket, then we have a good reason

to believe that all amounts within that bracket will be correct. We want to aim for

complete coverage of all cases.

213

214

Chapter 5 Decisions Page 46 of 62

Java Concepts, 5th Edition

There are two possibilities for the filing status and three tax brackets for each

status. That makes six test cases. Then we want to test error conditions, such as a

negative income. That makes seven test cases. For the first six, we need to

compute manually what answer we expect. For the remaining one, we need to

know what error reports we expect. We write down the test cases and then start

coding.

Should you really test seven inputs for this simple program? You certainly should.

Furthermore, if you find an error in the program that wasn't covered by one of the

test cases, make another test case and add it to your collection. After you fix the

known mistakes, run all test cases again. Experience has shown that the cases that

you just tried to fix are probably working now, but that errors that you fixed two or

three iterations ago have a good chance of coming back! If you find that an error

keeps coming back, that is usually a reliable sign that you did not fully understand

some subtle interaction between features of your program.

It is always a good idea to design test cases before starting to code. There are two

reasons for this. Working through the test cases gives you a better understanding of

the algorithm that you are about to program. Furthermore, it has been noted that

programmers instinctively shy away from testing fragile parts of their code. That

seems hard to believe, but you will often make that observation about your own

work. Watch someone else test your program. There will be times when that

person enters input that makes you very nervous because you are not sure that your

program can handle it, and you never dared to test it yourself. This is a well-known

phenomenon, and making the test plan before writing the code offers some

protection.

 ADVANCED TOPIC 5.6: Logging

Sometimes you run a program and you are not sure where it spends its time. To get

a printout of the program flow, you can insert trace messages into the program,

such as this one:

public double getTax()
{
 . . .
 if (status = = SINGLE)
 {

Chapter 5 Decisions Page 47 of 62

Java Concepts, 5th Edition

 System.out.println("status is SINGLE");
 . . .
 }
 . . .
}

However, there is a problem with using System.out.println for trace

messages. When you are done testing the program, you need to remove all print

statements that produce trace messages. If you find another error, however, you

need to stick the print statements back in.

To overcome this problem, you should use the Logger class, which allows you to

turn off the trace messages without removing them from the program.

Instead of printing directly to System. out, use the global logger object

Logger.global and call

Logger.global.info("status is SINGLE");

By default, the message is printed. But if you call

Logging messages can be deactivated when testing is complete.

Logger.global.setLevel(Level.OFF);

at the beginning of the main method of your program, all log message printing is

suppressed. Thus, you can turn off the log messages when your program works

fine, and you can turn them back on if you find another error. In other words, using

Logger.global.info is just like System.out.println, except that you

can easily activate and deactivate the logging.

A common trick for tracing execution flow is to produce log messages when a

method is called, and when it returns. At the beginning of a method, print out the

parameters:

public TaxReturn(double anIncome, int aStatus)
{
 Logger.global.info("Parameters: anIncome = "
+ anIncome
 + " aStatus = " + aStatus);
 . . .
}

214

215

Chapter 5 Decisions Page 48 of 62

Java Concepts, 5th Edition

At the end of a method, print out the return value:

public double getTax()
{
 . . .
 Logger.global.info("Return value = " + tax);
 return tax;
}

The Logger class has many other options for industrial-strength logging. Check

out the API documentation if you want to have more control over logging.

CHAPTER SUMMARY

1. The if statement lets a program carry out different actions depending on a

condition.

2. A block statement groups several statements together.

3. Relational operators compare values. The == operator tests for equality.

4. When comparing floating-point numbers, don't test for equality. Instead, check

whether they are close enough.

5. Do not use the == operator to compare strings. Use the equals method

instead.

6. The compareTo method compares strings in dictionary order.

7. The == operator tests whether two object references are identical. To compare

the contents of objects, you need to use the equals method.

8. The null reference refers to no object.

9. Multiple conditions can be combined to evaluate complex decisions. The

correct arrangement depends on the logic of the problem to be solved.

10. The boolean type has two values: true and false.

11. A predicate method returns a boolean value.

215

216

Chapter 5 Decisions Page 49 of 62

Java Concepts, 5th Edition

12. You can form complex tests with the Boolean operators && (and), || (or), and

! (not).

13. De Morgan's law shows how to simplify expressions in which the not operator

(!) is applied to terms joined by the && or | | operators.

14. You can store the outcome of a condition in a Boolean variable.

15. Black-box testing describes a testing method that does not take the structure of

the implementation into account.

16. White-box testing uses information about the structure of a program.

17. Test coverage is a measure of how many parts of a program have been tested.

18. Boundary test cases are test cases that are at the boundary of acceptable inputs.

19. You should calculate test cases by hand to double-check that your application

computes the correct answer.

20. Logging messages can be deactivated when testing is complete.

FURTHER READING

1. Peter van der Linden Expert C Programming Prentice-Hall 1994.

2. http://www.irs.ustreas.gov The web site of the Internal Revenue Service.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.lang.Character
 isDigit
 isLetter
 isLowerCase
 isUpperCase
 java.lang.Object
 equals
java.lang.String
 equalsIgnoreCase
 compareTo

216

217

Chapter 5 Decisions Page 50 of 62

Java Concepts, 5th Edition

java.util.logging.Level
 ALL
 INFO
 NONE
java.util.logging.Logger
 getLogger
 info
 setLevel
java. util.Scanner
 hasNextDouble
 hasNextInt

REVIEW EXERCISES

★★ Exercise R5.1. Find the errors in the following if statements.

a. if quarters > 0 then
System.out.println(quarters + " quarters");

b. if (1 + x > Math.pow(x, Math.sqrt(2)) y = y +
x;

c. if (x = 1) y ++; else if (x = 2) y = y + 2;

d. if (x && y == 0) { x = 1; y = 1; }

e. if (1 <= x <= 10)

 System.out.println(x);

f. if (! s.equals("nickels") || !
s.equals("pennies")

 || !s.equals("dimes") ||
!s.equals("quarters"))

 System.out.print("Input error!");

g. if (input.equalsIgnoreCase("N") || "NO")

 return;

h. int x = Integer.parseInt(input);

if (x ! = null) y = y + x;

Chapter 5 Decisions Page 51 of 62

Java Concepts, 5th Edition

i. language = "English";

if (country.equals("US"))

 if (state.equals("PR")) language =
"Spanish";

else if (country.equals("China"))

 language = "Chinese";

★ Exercise R5.2. Explain the following terms, and give an example for each

construct:

a. Expression

b. Condition

c. Statement

d. Simple statement

e. Compound statement

f. Block

★ Exercise R5.3. Explain the difference between an if/else if/else

statement and nested if statements. Give an example for each.

★ Exercise R5.4. Give an example for an if/else if/else statement

where the order of the tests does not matter. Give an example where the

order of the tests matters.

★ Exercise R5.5. Of the following pairs of strings, which comes first in

lexicographic order?

a. "Tom", "Dick"

b. "Tom", "Tomato"

c. "church", "Churchill"

d. "car manufacturer", "carburetor"

217

218

Chapter 5 Decisions Page 52 of 62

Java Concepts, 5th Edition

e. "Harry", "hairy"

f. "C++", "Car"

g. "Tom", "Tom"

h. "Car", "Carl"

i. "car", "bar"

j. "101", "11"

k. "1.01", "10.1"

★ Exercise R5.6. Complete the following truth table by finding the truth

values of the Boolean expressions for all combinations of the Boolean

inputs p, q, and r.

p q r (p && q) || !r !(p && (q || !

r))

false false false

false false true

false true false

…

5 more combinations

…

★ Exercise R5.7. Before you implement any complex algorithm, it is a good

idea to understand and analyze it. The purpose of this exercise is to gain a

better understanding of the tax computation algorithm of Section 5.3.2.

One feature of the tax code is the marriage penalty. Under certain

circumstances, a married couple pays higher taxes than the sum of what the

two partners would pay if they both were single. Find examples for such

income levels.

★★★ Exercise R5.8. True or false? A && B is the same as B &&A for any

Boolean conditions A and B.

★ Exercise R5.9. Explain the difference between

s = 0;

218

219

Chapter 5 Decisions Page 53 of 62

Java Concepts, 5th Edition

if (x < 0) s ++;
if (y > 0) s ++;

and

s = 0;
if (x < 0) s ++;
else if (y < 0) s ++;

★★ Exercise R5.10 Use de Morgan's law to simplify the following Boolean

expressions.

a. ! (x < 0 && y < 0)

b. !(x ! = 0 || y ! = 0)

c. !(country.equals("US") && ! state.equals("HI")

 && !state.equals("AK"))

d. !(x % 4 ! = 0 || ! (x % 100 == 0 && x % 400
== 0))

★★ Exercise R5.11 Make up another Java code example that shows the

dangling else problem, using the following statement: A student with a

GPA of at least 1.5, but less than 2, is on probation; with less than 1.5, the

student is failing.

★ Exercise R5.12. Explain the difference between the == operator and the

equals method when comparing strings.

★★ Exercise R5.13 Explain the difference between the tests

r == s

and

r.equals(s)

where both r and s are of type Rectangle.

★★★ Exercise R5.14 What is wrong with this test to see whether r is null?

What happens when this code runs?

Chapter 5 Decisions Page 54 of 62

Java Concepts, 5th Edition

Rectangle r;
. . .
if (r.equals(null))
 r = new Rectangle(5, 10, 20, 30);

★ Exercise R5.15 Explain how the lexicographic ordering of strings differs

from the ordering of words in a dictionary or telephone book. Hint:

Consider strings, such as IBM, wiley.com, Century 21,

While-U-Wait, and 7-11.

★★★ Exercise R5.16. Write Java code to test whether two objects of type

Line2D.Double represent the same line when displayed on the

graphics screen. Do not use a.equals(b).

Line2D.Double a;
Line2D.Double b;

if (your condition goes here)
 g2.drawString(“They look the same!”, x, y);

Hint: If p and q are points, then Line2D.Double(p, q) and

Line2D.Double(q, p) look the same.

★ Exercise R5.17. Explain why it is more difficult to compare floating-point

numbers than integers. Write Java code to test whether an integer n equals

10 and whether a floating-point number x equals 10.

★★ Exercise R5.18 Consider the following test to see whether a point falls

inside a rectangle.

Point2D.Double p = . . .
Rectangle r = . . .
boolean xInside = false;
if (r.getX() <= p.getX() && p.getX() &= r.getX()
+ r.getWidth())
 xInside = true;
boolean yInside = false;
if (r.getY() <= p.getY() && p.getY() <= r.getY()
+ r.getHeight())
 yInside = true;
if (xInside && yInside)
 g2.drawString(“p is inside the rectangle.”,
 p.getX(), p.getY());

219

220

Chapter 5 Decisions Page 55 of 62

Java Concepts, 5th Edition

Rewrite this code to eliminate the explicit true and false values, by

setting xInside and yInside to the values of Boolean expressions.

★T Exercise R5.19 Give a set of test cases for the earthquake program in

Section 5.3.1. Ensure coverage of all branches.

★★T Exercise R5.20 Give a set of test cases for the tax program in Section

5.3.2. Compute the expected results manually.

★T Exercise R5.21 Give an example of a boundary test case for the tax

program in Section 5.3.2. What result do you expect?

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★★ Exercise P5.1. Write a program that prints all real solutions to the

quadratic equation ax
2
 + bx + c = 0. Read in a, b, c and use the quadratic

formula. If the discriminant b
2
 - 4ac is negative, display a message stating

that there are no real solutions.

Implement a class QuadraticEquation whose constructor receives the

coefficients a, b, c of the quadratic equation. Supply methods

getSolution1 and getSolution2 that get the solutions, using the

quadratic formula, or 0 if no solution exists. The getSolution1 method

should return the smaller of the two solutions.

Supply a method

boolean hasSolutions()

that returns false if the discriminant is negative.

★★ Exercise P5.2. Write a program that takes user input describing a playing

card in the following shorthand notation:

220

221

Chapter 5 Decisions Page 56 of 62

Java Concepts, 5th Edition

Notation Meaning

A Ace

2 … 10 Card values

J Jack

Q Queen

K King

D Diamonds

H Hearts

S Spades

C Clubs

Your program should print the full description of the card. For example,

Enter the card notation:
4S
Four of spades

Implement a class Card whose constructor takes the card notation string

and whose getDescription method returns a description of the card.

If the notation string is not in the correct format, the getDescription

method should return the string ”Unknown”.

★★ Exercise P5.3. Write a program that reads in three floating-point numbers

and prints the three inputs in sorted order. For example:

Please enter three numbers:
4
9
2.5
The inputs in sorted order are:
2.5
4
9

★ Exercise P5.4. Write a program that prints the question ”Do you want to

continue?” and reads a user input. If the user input is ”Y”, ”Yes”, ”OK”, ”

Sure”, or ”Why not?”, print out ”OK”. If the user input is ”N” or ”No”,

then print out ”Terminating”. Otherwise, print ”Bad input”. The case of the

user input should not matter. For example, ”y” or ”yes” are also valid

inputs. Write a class YesNoChecker for this purpose.

221

222

Chapter 5 Decisions Page 57 of 62

Java Concepts, 5th Edition

★ Exercise P5.5. Write a program that translates a letter grade into a number

grade. Letter grades are A B C D F, possibly followed by + or −. Their

numeric values are 4, 3, 2, 1, and 0. There is no F+ or F-. A + increases

the numeric value by 0.3, a -decreases it by 0.3. However, an A+ has the

value 4.0.

Enter a letter grade:
B-
Numeric value: 2.7.

Use a class Grade with a method getNumericGrade.

★ Exercise P5.6 Write a program that translates a number into the closest

letter grade. For example, the number 2.8 (which might have been the

average of several grades) would be converted to B-. Break ties in favor of

the better grade; for example, 2.85 should be a B.

Use a class Grade with a method getLetterGrade.

★ Exercise P5.7 Write a program that reads in three strings and prints the

lexicographically smallest and largest one:

Please enter three strings:
Tom
Dick
Harry
The inputs in sorted order are:
Dick
Harry
Tom

★★ Exercise P5.8 Change the implementation of the getTax method in the

TaxReturn class, by setting variables bracket1 and bracket2,

depending on the marital status. Then have a single formula that computes

the tax, depending on the income and the brackets. Verify that your results

are identical to that of the TaxReturn class in this chapter.

★ Exercise P5.9. A year with 366 days is called a leap year. A year is a leap

year if it is divisible by 4 (for example, 1980). However, since the

introduction of the Gregorian calendar on October 15, 1582, a year is not a

leap year if it is divisible by 100 (for example, 1900); however, it is a leap

222

223

Chapter 5 Decisions Page 58 of 62

Java Concepts, 5th Edition

year if it is divisible by 400 (for example, 2000). Write a program that asks

the user for a year and computes whether that year is a leap year.

Implement a class Year with a predicate method boolean

isLeapYear().

★ Exercise P5.10. Write a program that asks the user to enter a month (1 =

January, 2 = February, and so on) and then prints the number of days of the

month. For February, print ”28 days”.

Enter a month (1-12):
5
31 days

Implement a class Month with a method int getDays().

★★★ Exercise P5.11. Write a program that reads in two floating-point

numbers and tests (a) whether they are the same when rounded to two

decimal places and (b) whether they differ by less than 0.01. Here are

two sample runs.

Enter two floating-point numbers:
2.0
1.99998
They are the same when rounded to two decimal
places.
They differ by less than 0.01.
Enter two floating-point numbers:
0.999
0.991
They are different when rounded to two decimal
places.
They differ by less than 0.01.

★ Exercise P5.12 Enhance the BankAccount class of Chapter 3 by

• Rejecting negative amounts in the deposit and withdraw

methods

• Rejecting withdrawals that would result in a negative balance

★ Exercise P5.13. Write a program that reads in the hourly wage of an

employee. Then ask how many hours the employee worked in the past

Chapter 5 Decisions Page 59 of 62

Java Concepts, 5th Edition

week. Be sure to accept fractional hours. Compute the pay. Any overtime

work (over 40 hours per week) is paid at 150 percent of the regular wage.

Solve this problem by implementing a class Paycheck.

★★ Exercise P5.14 Write a unit conversion program that asks users to identify

the unit from which they want to convert and the unit to which they want

to convert. Legal units are in, ft, mi, mm, cm, m, and km. Define two

objects of a class UnitConverter that convert between meters and a

given unit.

Convert from:
in
Convert to:
mm
Value:
10
10 in = 254 mm

★★★ Exercise P5.15. A line in the plane can be specified in various ways:

• by giving a point (x, y) and a slope m

• by giving two points (x1, y1), (x2, y2)

• as an equation in slope-intercept form y = mx + b

• as an equation x = a if the line is vertical

Implement a class Line with four constructors, corresponding to the

four cases above. Implement methods

boolean intersects(Line other)
boolean equals(Line other)
boolean isParallel (Line other)

★★G Exercise P5.16. Write a program that draws a circle with radius 100 and

center (200, 200). Ask the user to specify the x- and y-coordinates of a

point. Draw the point as a small circle. If the point lies inside the circle,

color the small circle green. Otherwise, color it red. In your exercise,

define a class Circle and a method boolean

isInside(Point2D.Double p).

223

224

Chapter 5 Decisions Page 60 of 62

Java Concepts, 5th Edition

★★★G Exercise P5.17. Write a graphics program that asks the user to specify

the radii of two circles. The first circle has center (100, 200), and the

second circle has center (200, 100). Draw the circles. If they intersect,

then color both circles green. Otherwise, color them red. Hint:

Compute the distance between the centers and compare it to the radii.

Your program should draw nothing if the user enters a negative radius.

In your exercise, define a class Circle and a method boolean

intersects(Circle other).

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★ Project 5.1 Implement a combination lock class. A combination lock has

a dial with 26 positions labeled A … Z. The dial needs to be set three

times. If it is set to the correct combination, the lock can be opened.

When the lock is closed again, the combination can be entered again. If a

user sets the dial more than three times, the last three settings determine

whether the lock can be opened. An important part of this exercise is to

implement a suitable interface for the CombinationLock class.

★★★ Project 5.2 Get the instructions for last year's form 1040 from

http://www.irs.ustreas.gov [2]. Find the tax brackets that were used last

year for all categories of taxpayers (single, married filing jointly, married

filing separately, and head of household). Write a program that computes

taxes following that schedule. Ignore deductions, exemptions, and

credits. Simply apply the tax rate to the income.

ANSWERS TO SELF-CHECK QUESTIONS

1. If the withdrawal amount equals the balance, the result should be a zero

balance and no penalty.

2. Only the first assignment statement is part of the if statement. Use braces

to group both assignment statements into a block statement.

3. (a) 0; (b) 1; (c) an exception is thrown

224

225

Chapter 5 Decisions Page 61 of 62

Java Concepts, 5th Edition

4. Syntactically incorrect: e, g, h. Logically questionable: a, d, f

5. Yes, if you also reverse the comparisons:

if (richter > 3.5)
 r = "Generally not felt by people";
else if (richter > 4.5)
 r = "Felt by many people, no destruction";
else if (richter > 6.0)
 r = "Damage to poorly constructed buildings";
. . .

6. The higher tax rate is only applied on the income in the higher bracket.

Suppose you are single and make $51,800. Should you try to get a $200

raise? Absolutely—you get to keep 72% of the first $100 and 69% of the

next $100.

7. When x is zero.

8. if (!Character.isDigit(ch)) . . .

9. 7

10. An input of 0 should yield an output of ”Generally not felt by

people”. (If the output is ”Negative numbers are not

allowed”, there is an error in the program.

Chapter 5 Decisions Page 62 of 62

Java Concepts, 5th Edition

Chapter 6 Iteration

CHAPTER GOALS

• To be able to program loops with the while, , and for statements

• To avoid infinite loops and off-by-one errors

• To understand nested loops

• To learn how to process input

• To implement simulations

T To learn about the debugger

This chapter presents the various iteration constructs of the Java language. These

constructs execute one or more statements repeatedly until a goal is reached. You

will see how the techniques that you learn in this chapter can be applied to the

processing of input data and the programming of simulations.

6.1 While Loops

In this chapter you will learn how to write programs that repeatedly execute one or

more statements. We will illustrate these concepts by looking at typical investment

situations. Consider a bank account with an initial balance of $10,000 that earns 5%

interest. The interest is computed at the end of every year on the current balance and

then deposited into the bank account. For example, after the first year, the account has

earned $500 (5% of $10,000) of interest. The interest gets added to the bank account.

Next year, the interest is $525 (5% of $10,500), and the balance is $11,025. Table 1

shows how the balance grows in the first five years.

How many years does it take for the balance to reach $20,000? Of course, it won't

take longer than 20 years, because at least $500 is added to the bank account each

year. But it will take less than 20 years, because interest is computed on increasingly

larger balances. To know the exact answer, we will write a program that repeatedly

adds interest until the balance is reached.

227

227

228

Chapter 6 Iteration Page 1 of 82

Java Concepts, 5th Edition

In Java, the while statement implements such a repetition. The construct

A while statement executes a block of code repeatedly. A condition controls how

often the loop is executed.

while (condition

 statement

keeps executing the statement while the condition is true.

Table 1 Growth of an Investment

Year Balance

0 $10,000.00

1 $10,500.00

2 $11,025.00

3 $11,576.25

4 $12,155.06

5 $12,762.82

Most commonly, the statement is a block statement, that is, a set of statements

delimited by { }.

In our case, we want to know when the bank account has reached a particular balance.

While the balance is less, we keep adding interest and incrementing the year counter:

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Here is the program that solves our investment problem:

ch06/invest1/Investment.java

 1 /**

 2 A class to monitor the growth of an investment that

 3 accumulates interest at a fixed annual rate.

228

229

Chapter 6 Iteration Page 2 of 82

Java Concepts, 5th Edition

 4 */
 5 public class Investment
 6 {
 7 /**

 8 Constructs an Investment object from a starting balance and

 9 interest rate.

10 @param aBalance the starting balance

11 @param aRate the interest rate in percent
12 */
13 public Investment(double aBalance, double
aRate)
14 {
15 balance = aBalance;
16 rate = aRate;
17 years = 0;
18 }
19
20 /**

21 Keeps accumulating interest until a target balance has

22 been reached.
23 @param targetBalance the desired balance
24 */
25 public void waitForBalance(double
targetBalance)
26 {
27 while (balance < targetBalance)
28 {
29 years++;
30 double interest = balance * rate /
100;
31 balance = balance + interest;
32 }
33 }
34
35 /**

36 Gets the current investment balanace.

37 @return the current balance
38 */
39 public double getBalance()
40 {
41 return balance;
42 }
43

229

230

Chapter 6 Iteration Page 3 of 82

Java Concepts, 5th Edition

44 /**

45 Gets the number of years this investment has accumulated

46 interest.

47 @return the number of years since the start of the

investment
48 */
49 public int getYears()
50 {
51 return years;
52 }
53
54 private double balance;
55 private double rate;
56 private int years;
57 }

ch06/invest1/InvestmentRunner.java

 1 /**

 2 This program computes how long it takes for an investment

 3 to double.
 4 */
 5 public class InvestmentRunner
 6 {
 7 public static void main(String[] args)
 8 {
 9 final double INITIAL_BALANCE =
10000;
10 final double RATE = 5;
11 Investment invest = new
Investment(INITIAL_BALANCE, RATE);
12 Invest.waitForBalance(2 *
INITIAL_BALANCE);
13 int years = invest.getYears();
14 System.out.printf(“The investment
doubled after”
15 + years + “ years”
16 }
17 }

230

231

Chapter 6 Iteration Page 4 of 82

Java Concepts, 5th Edition

Output

The investment doubled after 15 years

A while statement is often called a loop. If you draw a flowchart, you will see that

the control loops backwards to the test after every iteration (see Figure 1).

The following loop,

while (true)
 statement

executes the statement over and over, without terminating. Whoa! Why would you

want that? The program would never stop. There are two reasons. Some programs

indeed never stop; the software controlling an automated teller machine, a telephone

switch, or a microwave oven doesn't ever stop (at least not until the device is turned

off). Our programs aren't usually of that kind, but even if you can't terminate the loop,

you can exit from the method that contains it. This can be helpful when the

termination test naturally falls in the middle of the loop (see Advanced Topic 6.3).

Figure 1

Flowchart of a while Loop
231

Chapter 6 Iteration Page 5 of 82

Java Concepts, 5th Edition

SYNTAX 6.1 The while Statement

while (condition)

 statement

Example:

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Purpose:

To repeatedly execute a statement as long as a condition is true

SELF CHECK

1. How often is the following statement in the loop executed?

while (false) statement;

2. What would happen if RATE was set to 0 in the main method of the

InvestmentRunner program?

 COMMON ERROR 6.1: Infinite Loops

The most annoying loop error is an infinite loop: a loop that runs forever and can

be stopped only by killing the program or restarting the computer. If there are

output statements in the loop, then reams and reams of output flash by on the

screen. Otherwise, the program just sits there and hangs, seeming to do nothing.

On some systems you can kill a hanging program by hitting Ctrl+Break or Ctrl+C.

On others, you can close the window in which the program runs.

A common reason for infinite loops is forgetting to advance the variable that

controls the loop:

int years = 0;

231

232

Chapter 6 Iteration Page 6 of 82

Java Concepts, 5th Edition

while (years < 20)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Here the programmer forgot to add a statement for incrementing years in the

loop. As a result, the value of years always stays 0, and the loop never comes to

an end.

Another common reason for an infinite loop is accidentally incrementing a counter

that should be decremented (or vice versa). Consider this example:

int years = 20;
while (years > 0)
{

 years++; // Oops, should have been years--
 double interest = balance * rate / 100;
 balance = balance + interest;
}

The years variable really should have been decremented, not incremented. This

is a common error, because incrementing counters is so much more common than

decrementing that your fingers may type the ++ on autopilot. As a consequence,

years is always larger than 0, and the loop never terminates. (Actually, years

eventually will exceed the largest representable positive integer and wrap around

to a negative number. Then the loop exits—of course, that takes a long time, and

the result is completely wrong.)

 COMMON ERROR 6.2: Off-by-One Errors

Consider our computation of the number of years that are required to double an

investment:

int years = 0;
while (balance < 2 * initialBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}
System.out.println(

232

233

Chapter 6 Iteration Page 7 of 82

Java Concepts, 5th Edition

 "The investment reached the target after
"
 + years + " years.");

Should years start at 0 or at 1? Should you test for balance < 2 *

initialBalance or for balance <= 2 * initialBalance? It is easy

to be off by one in these expressions.

Some people try to solve off-by-one errors by randomly inserting +1 or −1 until

the program seems to work. That is, of course, a terrible strategy. It can take a long

time to compile and test all the various possibilities. Expending a small amount of

mental effort is a real time saver.

Fortunately, off-by-one errors are easy to avoid, simply by thinking through a

couple of test cases and using the information from the test cases to come up with

a rationale for the correct loop condition.

An off-by-one error is a common error when programming loops. Think

through simple test cases to avoid this type of error.

Should years start at 0 or at 1? Look at a scenario with simple values: an initial

balance of $100 and an interest rate of 50%. After year 1, the balance is $150, and

after year 2 it is $225, or over $200. So the investment doubled after 2 years. The

loop executed two times, incrementing years each time. Hence years must start

at 0, not at 1.

In other words, the balance variable denotes the balance after the end of the

year. At the outset, the balance variable contains the balance after year 0 and

not after year 1.

Next, should you use a < or <= comparison in the test? That is harder to figure out,

because it is rare for the balance to be exactly twice the initial balance. Of course,

there is one case when this happens, namely when the interest is 100%. The loop

executes once. Now years is 1, and balance is exactly equal to 2 *

initialBalance. Has the investment doubled after one year? It has. Therefore,

the loop should not execute again. If the test condition is balance < 2 *

initialBalance, the loop stops, as it should. If the test condition had been

233

234

Chapter 6 Iteration Page 8 of 82

Java Concepts, 5th Edition

balance <= 2 * initialBalance, the loop would have executed once

more.

In other words, you keep adding interest while the balance has not yet doubled.

 ADVANCED TOPIC 6.1: do Loops

Sometimes you want to execute the body of a loop at least once and perform the

loop test after the body was executed. The do loop serves that purpose:

do

 statement

while (condition);

The statement is executed while the condition is true. The condition is tested after

the statement is executed, so the statement is executed at least once.

For example, suppose you want to make sure that a user enters a positive number.

As long as the user enters a negative number or zero, just keep prompting for a

correct input. In this situation, a do loop makes sense, because you need to get a

user input before you can test it.

double value;
do
{
 System.out.print(“Please enter a positive
number: ”);
 value = in.nextDouble();
}
while (value <= 0);

The figure shows a flowchart of this loop.

Chapter 6 Iteration Page 9 of 82

Java Concepts, 5th Edition

Flowchart of a do Loop

In practice, this situation is not very common. You can always replace a do loop

with a while loop, by introducing a boolean control variable.

boolean done = false;
while (!done)
{
 System.out.print("Please enter a positive
number: ");
 value = in.nextDouble();
 if (value > 0) done = true;
}

 RANDOM FACT 6.1: Spaghetti Code

In this chapter we are using flowcharts to illustrate the behavior of the loop

statements. It used to be common to draw flowcharts for every method, on the

theory that flowcharts were easier to read and write than the actual code

(especially in the days of machine-language and assembler programming).

Flowcharts are no longer routinely used for program development and

documentation.

Flowcharts have one fatal flaw. Although it is possible to express the while and

do loops with flowcharts, it is also possible to draw flowcharts that cannot be

234

235

Chapter 6 Iteration Page 10 of 82

Java Concepts, 5th Edition

programmed with loops. Consider the chart in the Spaghetti Code figure. The top

of the flowchart is simply a statement

 years = 1;

The lower part is a do loop:

 do
 {
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
 }
 while (balance < targetBalance);

But how can you join these two parts? According to the flowchart, you are

supposed to jump from the first statement into the middle of the loop, skipping the

first statement.

years = 1;

goto a; // Not an actual Java statement
do
{
 years++;
 a:
 double interest = balance * rate / 100;
 balance = balance + interest;
}
while (balance < targetBalance); 235

Chapter 6 Iteration Page 11 of 82

Java Concepts, 5th Edition

Spaghetti Code

In fact, why even bother with the do loop? Here is a faithful interpretation of the

flowchart:

years = 1;

goto a; // Not an actual Java statement
b:
years++;
a:
double interest = balance * rate / 100;
balance = balance + interest;
if (balance < targetBalance) goto b;

235

236

Chapter 6 Iteration Page 12 of 82

Java Concepts, 5th Edition

This nonlinear control flow turns out to be extremely hard to read and understand

if you have more than one or two goto statements. Because the lines denoting the

goto statements weave back and forth in complex flowcharts, the resulting code

is named spaghetti code.

In 1968 the influential computer scientist Edsger Dijkstra wrote a famous note,

entitled “Goto Statements Considered Harmful” [1], in which he argued for the use

of loops instead of unstructured jumps. Initially, many programmers who had been

using goto for years were mortally insulted and promptly dug out examples in

which the use of goto led to clearer or faster code. Some languages offer weaker

forms of goto that are less harmful, such as the break statement in Java,

discussed in Advanced Topic 6.4. Nowadays, most computer scientists accept

Dijkstra's argument and fight bigger battles than optimal loop design.

6.2 for Loops

One of the most common loop types has the form

i = start;

while (i <= end)
{
 . . .
 i++;
}

Because this loop is so common, there is a special form for it that emphasizes the

pattern:

for (i = start; i <= end; i++)
{
 . . .
}

You can also declare the loop counter variable inside the for loop header. That

convenient shorthand restricts the use of the variable to the body of the loop (as will

be discussed further in Advanced Topic 6.2).

for (int i = start; i <= end; i++)
{
 . . .

236

237

Chapter 6 Iteration Page 13 of 82

Java Concepts, 5th Edition

}

Let us use this loop to find out the size of our $10,000 investment if 5% interest is

compounded for 20 years. Of course, the balance will be larger than $20,000, because

at least $500 is added every year. You may be surprised to find out just how much

larger the balance is.

SYNTAX 6.2 The for Statement

for (initialization; condition; update)

 statement

Example:

for (i = 1; i <= n; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Purpose:

To execute an initialization, then keep executing a statement and updating an

expression while a condition is true

In our loop, we let i go from 1 to n, the number of years for which we want to

compound interest.

You use a for loop when a variable runs from a starting to an ending value with a

constant increment or decrement.

for (int i = 1; i <= n; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Figure 2 shows the corresponding flowchart.

The three slots in the for header can contain any three expressions. You can count

down instead of up:

237

238

Chapter 6 Iteration Page 14 of 82

Java Concepts, 5th Edition

for (years = n; years > 0; years--)

The increment or decrement need not be in steps of 1:

for (x = -10; x <= 10; x = x + 0.5) . . .

Figure 2

Flowchart of a for Loop

It is possible—but a sign of unbelievably bad taste—to put unrelated conditions into

the loop header:

238

239

Chapter 6 Iteration Page 15 of 82

Java Concepts, 5th Edition

for (rate = 5; years-- > 0;
System.out.println(balance))
 . . . // Bad taste

We won't even begin to decipher what that might mean. You should stick with for

loops that initialize, test, and update a single variable.

ch06/invest2/Investment.java

 1 /**

 2 A class to monitor the growth of an investment that

 3 accumulates interest at a fixed annual rate.
 4 */
 5 public class Investment
 6 {
 7 /**

 8 Constructs an Investment object from a starting balance and

 9 interest rate.

10 @param aBalancethe starting balance

11 @param aRate the interest rate in percent
12 */
13 public Investment(double aBalance, double
aRate)
14 {
15 balance = aBalance;
16 rate = aRate;
17 years = 0;
18 }
19
20 /**

21 Keeps accumulating interest until a target balance has

22 been reached.

23 @param targetBalance the desired balance
24 */
25 public void waitForBalance(double
targetBalance)
26 {
27 while (balance < targetBalance)
28 {
29 years++;

Chapter 6 Iteration Page 16 of 82

Java Concepts, 5th Edition

30 double interest = balance * rate
/ 100;
31 balance = balance + interest;
32 }
33 }
34
35 /**

36 Keeps accumulating interest for a given number of years.

37 @param n the number of years
38 */
39 public void waitYears(int n)
40 {
41 for (int i = 1; i <= n; i++)
42 {
43 double interest = balance * rate
/ 100;
44 balance = balance + interest;
45 }
46 years = years + n;
47 }
48
49 /**

50 Gets the current investment balance.

51 @return the current balance
52 */
53 public double getBalance()
54 {
55 return balance;
56 }
57
58 /**

59 Gets the number of years this investment has accumulated

60 interest.

61 @return the number of years since the start of the

investment
62 */
63 public int getYears()
64 {
65 return years;
66 }
67
68 private double balance;
69 private double rate;

239

240

Chapter 6 Iteration Page 17 of 82

Java Concepts, 5th Edition

70 private int years;
71 }

ch06/invest2/InvestmentRunner.java

 1 /**

> 2 This program computes how much an investment grows in

 3 a given number of years.
 4 */
 5 public class InvestmentRunner
 6 {
 7 public static void main(String[] args)
 8 {
 9 final double INITIAL_BALANCE = 10000;
10 final double RATE = 5;
11 final int YEARS = 20;
12 Investment invest = new
Investment(INITIAL_BALANCE, RATE);
13 invest.waitYears(YEARS);
14 double balance = invest.getBalance();
15 System.out.printf(“The balance after
%d years is %.2f\n”,
16 YEARS, balance);
17 }
18 }

Output

The balance after 20 years is 26532.98

SELF CHECK

3. Rewrite the for loop in the waitYears method as a while loop.

4. How many times does the following for loop execute?

for (i = 0; i <= 10; i++)
 System.out.println(i * i);

240

241

Chapter 6 Iteration Page 18 of 82

Java Concepts, 5th Edition

 QUALITY TIP 6.1: Use for Loops for Their Intended

Purpose

A for loop is an idiom for a while loop of a particular form. A counter runs

from the start to the end, with a constant increment:

for (set counter to start; test whether counter at
end;
 update counter by increment)
{ . . .

 // counter, start, end, increment not changed here
}

If your loop doesn't match this pattern, don't use the for construction. The

compiler won't prevent you from writing idiotic for loops:

// Bad style-unrelated header expressions
for (System.out.println(“Inputs:”);
 (x = in.nextDouble()) > 0;
 sum = sum + x)
 count++;
for (int i = 1; i <= years; i++)
{

 // Bad style-modifies counter
 if (balance >= targetBalance)
 i = years + 1;
 else
 {
 double interest = balance * rate / 100;
 balance = balance + interest;
 }
}

These loops will work, but they are plainly bad style. Use a while loop for

iterations that do not fit the for pattern.
241

Chapter 6 Iteration Page 19 of 82

Java Concepts, 5th Edition

 COMMON ERROR 6.3: Forgetting a Semicolon

Occasionally all the work of a loop is already done in the loop header. Suppose

you ignored Quality Tip 6.1; then you could write an investment doubling loop as

follows:

for (years = 1;
 (balance = balance + balance * rate / 100)
< targetBalance;
 years++)
 ;
System.out.println(years);

The body of the for loop is completely empty, containing just one empty statement

terminated by a semicolon.

If you do run into a loop without a body, it is important that you make sure the

semicolon is not forgotten. If the semicolon is accidentally omitted, then the next

line becomes part of the loop statement!

for (years = 1;
 (balance = balance + balance * rate / 100)
< targetBalance;
 years++)
System.out.println(years);

You can avoid this error by using an empty block { } instead of an empty

statement.

 COMMON ERROR 6.4: A Semicolon Too Many

What does the following loop print?

sum = 0;
for (i = 1; i <= 10; i++);
 sum = sum + i;
System.out.println(sum);

Of course, this loop is supposed to compute 1 + 2 + … + 10 = 55. But actually, the

print statement prints 11!

241

242

Chapter 6 Iteration Page 20 of 82

Java Concepts, 5th Edition

Why 11? Have another look. Did you spot the semicolon at the end of the for

loop header? This loop is actually a loop with an empty body.

for (i = 1; i <= 10; i++)
 ;

The loop does nothing 10 times, and when it is finished, sum is still 0 and i is 11.

Then the statement

sum = sum + i;

is executed, and sum is 11. The statement was indented, which fools the human

reader. But the compiler pays no attention to indentation.

Of course, the semicolon at the end of the statement was a typing error. Someone's

fingers were so used to typing a semicolon at the end of every line that a semicolon

was added to the for loop by accident. The result was a loop with an empty body.

 QUALITY TIP 6.2: Don't Use != to Test the End of a

Range

Here is a loop with a hidden danger:

for (i = 1; i != n; i++)

The test i != n is a poor idea. How does the loop behave if n happens to be zero

or negative?

The test i != n is never false, because i starts at 1 and increases with every step.

The remedy is simple. Use <= rather than != in the condition:

for (i = 1; i <= n; i++)

 ADVANCED TOPIC 6.2: Variables Defined in a for Loop

Header

As mentioned, it is legal in Java to declare a variable in the header of a for loop.

Here is the most common form of this syntax:

242

243

Chapter 6 Iteration Page 21 of 82

Java Concepts, 5th Edition

for (int i = 1; i <= n; i++)
{
 . . .
}
// i no longer defined here

The scope of the variable extends to the end of the for loop. Therefore, i is no

longer defined after the loop ends. If you need to use the value of the variable

beyond the end of the loop, then you need to define it outside the loop. In this loop,

you don't need the value of i—you know it is n + 1 when the loop is finished.

(Actually, that is not quite true—it is possible to break out of a loop before its end;

see Advanced Topic 6.4). When you have two or more exit conditions, though, you

may still need the variable. For example, consider the loop

for (i = 1; balance < targetBalance && i <= n; i++)
{
 . . .
}

You want the balance to reach the target, but you are willing to wait only a certain

number of years. If the balance doubles sooner, you may want to know the value of

i. Therefore, in this case, it is not appropriate to define the variable in the loop

header.

Note that the variables named i in the following pair of for loops are

independent:

for (int i = 1; i <= 10; i++)
 System.out.println(i * i);

for (int i = 1; i <= 10; i++) // Declares a new variable i
 System.out.println(i * i * i);

In the loop header, you can declare multiple variables, as long as they are of the

same type, and you can include multiple update expressions, separated by commas:

for (int i = 0, j = 10; i <= 10; i++, j--)
{
 . . .
}

However, many people find it confusing if a for loop controls more than one

variable. I recommend that you not use this form of the for statement (see Quality

243

244

Chapter 6 Iteration Page 22 of 82

Java Concepts, 5th Edition

Tip 6.1). Instead, make the for loop control a single counter, and update the other

variable explicitly:

int j = 10;
for (int i = 0; i <= 10; i++)
{
 . . .
 j--;
}

6.3 Nested Loops

Sometimes, the body of a loop is again a loop. We say that the inner loop is nested

inside an outer loop. This happens often when you process two-dimensional

structures, such as tables.

Loops can be nested. A typical example of nested loops is printing a table with

rows and columns.

Let's look at an example that looks a bit more interesting than a table of numbers. We

want to generate the following triangular shape:

The basic idea is simple. We generate a sequence of rows:

for (int i = 1; i <= width; i++)
{

 // Make triangle row

 . . .
}

How do you make a triangle row? Use another loop to concatenate the squares [] for

that row. Then add a newline character at the end of the row. The ith row has i

symbols, so the loop counter goes from 1 to i.

Chapter 6 Iteration Page 23 of 82

Java Concepts, 5th Edition

for (int j = 1; j <= i; j++)
 r = r + “[]”;
r = r + “\n”;

Putting both loops together yields two nested loops:

String r = “”;
for (int i = 1; i <= width; i++)
{

 // Make triangle row
 for (int j = 1; j <= i; j++)
 r = r + “[]”;
 r = r + “\n”;
}
return r;

Here is the complete program:

ch06/triangle1/Triangle.java

 1 /**

 2 This class describes triangle objects that can be displayed

 3 as shapes like this:
 4 []
 5 [][]
 6 [][][].
 7*/
 8 public class Triangle
 9 {
10 /**

11 Constructs a triangle.

12 @param aWidth the number of [] in the last row of the

triangle
13 */
14 public Triangle(int aWidth)
15 {
16 width = aWidth;
17 }
18
19 /**

20 Computes a string representing the triangle.

21 @return a string consisting of [] and newline characters

244

245

Chapter 6 Iteration Page 24 of 82

Java Concepts, 5th Edition

22 */
23 public String toString()
24 {
25 String r = “”;
26 for (int i = 1; i <= width; i++)
27 {
28 // Make triangle row
29 for (int j = 1; j <= i; j++)
30 r = r + “[]”;
31 r = r + “\n”;
32 }
33 return r;
34 }
35
36 private int width;
37 }

ch06/triangle1/TriangleRunner.java

 1 /**

 2 This program prints two triangles.
 3 */
 4 public class TriangleRunner
 5 {
 6 public static void main(String[] args)
 7 {
 8 Triangle small = new Triangle(3);
 9 System.out.println(small.toString());
10
11 Triangle large = new Triangle(15);
12 System.out.println(large.toString());
13 }
14 }

245

246

Chapter 6 Iteration Page 25 of 82

Java Concepts, 5th Edition

Output

SELF CHECK

5. How would you modify the nested loops so that you print a square

instead of a triangle?

6. What is the value of n after the following nested loops?

int n = 0;
for (int i = 1; i <= 5; i++)
 for (int j = 0; j < i; j++)
 n = n + j;

6.4 Processing Sentinel Values

Suppose you want to process a set of values, for example a set of measurements. Your

goal is to analyze the data and display properties of the data set, such as the average

or the maximum value. You prompt the user for the first value, then the second value,

then the third, and so on. When does the input end?

One common method for indicating the end of a data set is a sentinel value, a value

that is not part of the data. Instead, the sentinel value indicates that the data has come

to an end.

246

247

Chapter 6 Iteration Page 26 of 82

Java Concepts, 5th Edition

Some programmers choose numbers such as 0 or −1 as sentinel values. But that is not

a good idea. These values may well be valid inputs. A better idea is to use an input

that is not a number, such as the letter Q. Here is a typical program run:

Enter value, Q to quit: 1
Enter value, Q to quit: 2
Enter value, Q to quit: 3
Enter value, Q to quit: 4
Enter value, Q to quit: Q
Average = 2.5
Maximum = 4.0

Of course, we need to read each input as a string, not a number. Once we have tested

that the input is not the letter Q, we convert the string into a number.

System.out.print(“Enter value, Q to quit: ”);
String input = in.next();
if (input.equalsIgnoreCase(“Q”))

 We are done
else
{
 double x = Double.parseDouble(input);
 . . .
}

Now we have another problem. The test for loop termination occurs in the middle of

the loop, not at the top or the bottom. You must first try to read input before you can

test whether you have reached the end of input. In Java, there isn't a ready−made

control structure for the pattern “do work, then test, then do more work”. Therefore,

we use a combination of a while loop and a boolean variable.

Sometimes, the termination condition of a loop can only be evaluated in the middle

of a loop. You can introduce a Boolean variable to control such a loop.

boolean done = false;
while (!done)
{

 Print prompt

 String input = read input;

 if (end of input indicated)
 done = true;

Chapter 6 Iteration Page 27 of 82

Java Concepts, 5th Edition

 else
 {

 Process input
 }
}

This pattern is sometimes called “loop and a half”. Some programmers find it clumsy

to introduce a control variable for such a loop. Advanced Topic 6.3 shows several

alternatives.

Let's put together the data analysis program. To decouple the input handling from the

computation of the average and the maximum, we'll introduce a class DataSet. You

add values to a DataSet object with the add method. The getAverage method

returns the average of all added data and the getMaximum method returns the

largest.

ch06/dataset/DataAnalyzer.java

 1 import java.util.Scanner;
 2
 3 /**

 4 This program computes the average and maximum of a set

 5 of input values.
 6 */
 7 public class DataAnalyzer
 8 {
 9 public static void main(String[] args)
10 {
11 Scanner in = new Scanner(System.in);
12 DataSet data = new DataSet();
13
14 boolean done = false;
15 while (!done)
16 {
17 System.out.print(“Enter value,
Q to quit: ”);
18 String input = in.next();
19 if
(input.equalsIgnoreCase(“Q”))
20 done = true;
21 else
22 {

247

248

Chapter 6 Iteration Page 28 of 82

Java Concepts, 5th Edition

23 double x =
Double.parseDouble(input);
24 data.add(x);
25 }
26 }
27
28 System.out.println(“Average = ” +
data.getAverage());
29 System.out.println(“Maximum = ” +
data.getMaximum());
30 }
31 }

ch06/dataset/DataSet.java

 1 /**

 2 Computes information about a set of data values.
 3 */
 4 public class DataSet
 5 {
 6 /**

 7 Constructs an empty data set.
 8 */
 9 public DataSet()
10 {
11 sum = 0;
12 count = 0;
13 maximum = 0;
14 }
15
16 /**

17 Adds a data value to the data set.

18 @param x a data value
19 */
20 public void add(double x)
21 {
22 sum = sum + x;
23 if (count == 0 || maximum < x)
maximum = x;
24 count++;
25 }
26
27 /**

248

249

Chapter 6 Iteration Page 29 of 82

Java Concepts, 5th Edition

28 Gets the average of the added data.

29 @return the average or 0 if no data has been added
30 */
31 public double getAverage()
32 {
33 if (count == 0) return 0;
34 else return sum / count;
35 }
36
37 /**

38 Gets the largest of the added data.

39 @return the maximum or 0 if no data has been

added
40 */
41 public double getMaximum()
42 {
43 return maximum;
44 }
45
46 private double sum;
47 private double maximum;
48 private int count;
49 }

Output

Enter value, Q to quit: 10
Enter value, Q to quit: 0
Enter value, Q to quit: -1
Enter value, Q to quit: Q
Average = 3.0
Maximum = 10.0

SELF CHECK

7. Why does the DataAnalyzer class call in.next and not

in.nextDouble?

8. Would the DataSet class still compute the correct maximum if you

simplified the update of the maximum field in the add method to the

following statement?

249

250

Chapter 6 Iteration Page 30 of 82

Java Concepts, 5th Edition

 if (maximum < x) maximum = x;

 HOW TO 6.1: Implementing Loops

You write a loop because your program needs to repeat an action multiple times.

As you have seen in this chapter, there are several loop types, and it isn't always

obvious how to structure loop statements. This How To walks you through the

thought process that is involved when programming a loop.

Step 1 List the work that needs to be done in every step of the loop body.

For example, suppose you need to read in input values in gallons and convert them

to liters until the end of input is reached. Then the operations are:

• Read input.

• Convert the input to liters.

• Print out the response.

Suppose you need to scan through the characters of a string and count the vowels.

Then the operations are:

• Get the next character.

• If it's a vowel, increase a counter.

Step 2 Find out how often the loop is repeated.

Typical answers might be:

• Ten times

• Once for each character in the string

• Until the end of input is reached

• While the balance is less than the target balance

If a loop is executed for a definite number of times, a for loop is usually

appropriate. The first two answers above lead to for loops, such as

Chapter 6 Iteration Page 31 of 82

Java Concepts, 5th Edition

for (int i = 1; i <= 10; i++) . . .
for (int i = 0; i < str.length(); i++) . . .

The next two need to be implemented as while loops—you don't know how

many times the loop body is going to be repeated.

Step 3 With a while loop, find out where you can determine that the loop is

finished.

There are three possibilities:

• Before entering the loop

• In the middle of the loop

• At the end of the loop

For example, if you execute a loop while the balance is less than the target

balance, you can check for that condition at the beginning of the loop. If the

balance is less than the target balance, you enter the loop. If not, you are done. In

such a case, your loop has the form

while (condition)
{

 Do work
}

However, checking for input requires that you first read the input. That means,

you'll need to enter the loop, read the input, and then decide whether you want to

go any further. Then your loop has the form

boolean done = false;
while (!done)
{

 Do the work needed to check the condition

 if (condition)
 done = true;
 else
 {

 Do more work
 }
}

250

251

Chapter 6 Iteration Page 32 of 82

Java Concepts, 5th Edition

This loop structure is sometimes called a “loop and a half”.

Finally, if you know whether you need to go on after you have gone through the

loop once, then you use a do/while loop:

do
{

 Do work
}

while (condition)

However, these loops are very rare in practice.

Step 4 Implement the loop by putting the operations from Step 1 into the loop

body.

When you write a for loop, you usually use the loop index inside the loop body.

For example, “get the next character” is implemented as the statement

char ch = str.charAt(i);

Step 5 Double-check your variable initializations.

If you use a Boolean variable done, make sure it is initialized to false. If you

accumulate a result in a sum or count variable, make sure that you set it to 0

before entering the loop for the first time.

Step 6 Check for off-by-one errors.

Consider the simplest possible scenarios:

• If you read input, what happens if there is no input at all? Exactly one input?

• If you look through the characters of a string, what happens if the string is

empty? If it has one character in it?

• If you accumulate values until some target has been reached, what happens

if the target is 0? A negative value?

Manually walk through every instruction in the loop, including all initializations.

Carefully check all conditions, paying attention to the difference between

251

252

Chapter 6 Iteration Page 33 of 82

Java Concepts, 5th Edition

comparisons such as < and <=. Check that the loop is not traversed at all, or only

once, and that the final result is what you expect.

If you write a for loop, check to see whether your bounds should be symmetric or

asymmetric (see Quality Tip 6.3), and count the number of iterations (see Quality

Tip 6.4).

 QUALITY TIP 6.3: Symmetric and Asymmetric Bounds

It is easy to write a loop with i going from 1 to n:

for (i = 1; i <= n; i++) . . .

The values for i are bounded by the relation 1 ≤ i ≤ n. Because there

are ≤ comparisons on both bounds, the bounds are called symmetric.

When traversing the characters in a string, the bounds are asymmetric.

for (i = 0; i < str.length(); i++) . . .

The values for i are bounded by 0 ≤ i < str.length(), with a ≤ comparison

to the left and a < comparison to the right. That is appropriate, because

str.length() is not a valid position.

Make a choice between symmetric and asymmetric loop bounds.

It is not a good idea to force symmetry artificially:

for (i = 0; i <= str.length() - 1; i++) . . .

That is more difficult to read and understand.

For every loop, consider which form is most natural for the problem, and use that.

 QUALITY TIP 6.4: Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing.

Should I start at 0? Should I use <= b or < b as a termination condition?

Chapter 6 Iteration Page 34 of 82

Java Concepts, 5th Edition

Count the number of iterations to check that your for loop is correct.

Counting the number of iterations is a very useful device for better understanding a

loop. Counting is easier for loops with asymmetric bounds. The loop

for (i = a; i < b; i++) . . .

is executed b − a times. For example, the loop traversing the characters in a

string,

for (i = 0; i < str.length(); i++) . . .

runs str.length() times. That makes perfect sense, because there are

str.length() characters in a string.

The loop with symmetric bounds,

for (i = a; i <= b; i++)

is executed b − a + 1 times. That “+ 1” is the source of many programming

errors. For example,

for (n = 0; n <= 10; n++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.

One way to visualize this “+ 1” error is to think of the posts and sections of a

fence. Suppose the fence has ten sections (=). How many posts (|) does it have?

|=|=|=|=|=|=|=|=|=|=|

A fence with ten sections has eleven posts. Each section has one post to the left,

and there is one more post after the last section. Forgetting to count the last

iteration of a “<=” loop is often called a “fence post error”.

If the increment is a value c other than 1, and c divides b − a, then the counts are

(b - a) / c for the asymmetric loop

(b - a) / c + 1 for the symmetric loop

252

253

Chapter 6 Iteration Page 35 of 82

Java Concepts, 5th Edition

For example, the loop for (i = 10; i <= 40; i += 5) executes (40 −

10)/5 + 1 = 7 times.

 ADVANCED TOPIC 6.3: The “Loop and a Half” Problem

Reading input data sometimes requires a loop such as the following, which is

somewhat unsightly:

boolean done = false;
while (!done)
{
 String input = in.next();
 if (input.equalsIgnoreCase(“Q”))
 done = true;
 else
 {

 Process data
 }
}

The true test for loop termination is in the middle of the loop, not at the top. This is

called a “loop and a half”, because one must go halfway into the loop before

knowing whether one needs to terminate.

Some programmers dislike the introduction of an additional Boolean variable for

loop control. Two Java language features can be used to alleviate the “loop and a

half” problem. I don't think either is a superior solution, but both approaches are

fairly common, so it is worth knowing about them when reading other people's

code.

You can combine an assignment and a test in the loop condition:

while (!(input = in.next()).equalsIgnoreCase(“Q”))
{

 Process data
}

The expression

(input = in.next()).equalsIgnoreCase("Q")

253

254

Chapter 6 Iteration Page 36 of 82

Java Concepts, 5th Edition

means, “First call in.next(), then assign the result to input, then test whether

it equals “Q””. This is an expression with a side effect. The primary purpose of the

expression is to serve as a test for the while loop, but it also does some work—

namely, reading the input and storing it in the variable input. In general, it is a

bad idea to use side effects, because they make a program hard to read and

maintain. In this case, however, that practice is somewhat seductive, because it

eliminates the control variable done, which also makes the code hard to read and

maintain.

The other solution is to exit the loop from the middle, either by a return

statement or by a break statement (see Advanced Topic 6.4).

public void processInput(Scanner in)
{
 while (true)
 {
 String input = in.next();
 if (input.equalsIgnoreCase(“Q”))
 return;

 Process data
 }
}

 ADVANCED TOPIC 6.4: The break and continue

Statements

You already encountered the break statement in Advanced Topic 5.2, where it

was used to exit a switch statement. In addition to breaking out of a switch

statement, a break statement can also be used to exit a while, for, or do loop.

For example, the break statement in the following loop terminates the loop when

the end of input is reached.

while (true)
{
 String input = in.next();
 if (input.equalsIgnoreCase("Q"))
 break;
 double x = Double.parseDouble(input);
 data.add(x);
} 254

Chapter 6 Iteration Page 37 of 82

Java Concepts, 5th Edition

In general, a break is a very poor way of exiting a loop. In 1990, a misused

break caused an AT&T 4ESS telephone switch to fail, and the failure propagated

through the entire U.S. network, rendering it nearly unusable for about nine hours.

A programmer had used a break to terminate an if statement. Unfortunately,

break cannot be used with if, so the program execution broke out of the

enclosing switch statement, skipping some variable initializations and running

into chaos [2, p. 38]. Using break statements also makes it difficult to use

correctness proof techniques (see Advanced Topic 6.5).

However, when faced with the bother of introducing a separate loop control

variable, some programmers find that break statements are beneficial in the

“loop and a half” case. This issue is often the topic of heated (and quite

unproductive) debate. In this book, we won't use the break statement, and we

leave it to you to decide whether you like to use it in your own programs.

In Java, there is a second form of the break statement that is used to break out of

a nested statement. The statement break label; immediately jumps to the end of

the statement that is tagged with a label. Any statement (including if and block

statements) can be tagged with a label—the syntax is

label: statement

The labeled break statement was invented to break out of a set of nested loops.

outerloop:

while (outer loop condition)
{ . . .

 while (inner loop condition)
 { . . .

 if (something really bad happened)
 break outerloop;
 }
}

Jumps here if something really bad happened

Naturally, this situation is quite rare. We recommend that you try to introduce

additional methods instead of using complicated nested loops.

254

255

Chapter 6 Iteration Page 38 of 82

Java Concepts, 5th Edition

Finally, there is another goto− like statement, the continue statement, which

jumps to the end of the current iteration of the loop. Here is a possible use for this

statement:

while (!done)
{
 String input = in.next();
 if (input.equalsIgnoreCase("Q"))
 {
 done = true;

 continue; // Jump to the end of the loop body
 }
 double x = Double.parseDouble(input);
 data.add(x);

 // continue statement jumps here
}

By using the continue statement, you don't need to place the remainder of the

loop code inside an else clause. This is a minor benefit. Few programmers use

this statement.

6.5 Random Numbers and Simulations

In a simulation you generate random events and evaluate their outcomes. Here is a

typical problem that can be decided by running a simulation: the Buffon needle

experiment, devised by Comte Georges− Louis Leclerc de Buffon (1707–1788), a

French naturalist. On each try, a one−inch long needle is dropped onto paper that is

ruled with lines 2 inches apart. If the needle drops onto a line, count it as a hit. (See

Figure 3.) Buffon conjectured that the quotient tries/hits approximates π.

In a simulation, you repeatedly generate random numbers and use them to simulate

an activity.

Now, how can you run this experiment in the computer? You don't actually want to

build a robot that drops needles on paper. The Random class of the Java library

implements a random number generator, which produces numbers that appear to be

completely random. To generate random numbers, you construct an object of the

Random class, and then apply one of the following methods:

255

256

Chapter 6 Iteration Page 39 of 82

Java Concepts, 5th Edition

Method Returns

nextInt(n) A random integer between the integers 0 (inclusive) and n

(exclusive)

nextDouble() A random floating−point number between 0) (inclusive) and 1

(exclusive)

For example, you can simulate the cast of a die as follows:

Random generator = new Random();
int d = 1 + generator.nextInt(6);

The call generator.nextInt(6) gives you a random number between 0 and 5

(inclusive). Add 1 to obtain a number between 1 and 6.

To give you a feeling for the random numbers, run the following program a few times.

Figure 3

The Buffon Needle Experiment

ch06/random1/Die.java

 1 import java.util.Random;
 2
 3 /**

 4 This class models a die that, when cast, lands on a random

 5 face.
 6 */
 7 public class Die
 8 {
 9 /**

10 Constructs a die with a given number of sides.

256

257

Chapter 6 Iteration Page 40 of 82

Java Concepts, 5th Edition

11 @param s the number of sides, e.g., 6 for a normal die
12 */
13 public Die(int s)
14 {
15 sides = s;
16 generator = new Random();
17 }
18
19 /**

20 Simulates a throw of the die.

21 @return the face of the die
22 */
23 public int cast()
24 {
25 return 1 + generator.nextInt(sides);
26 }
27
28 private Random generator;
29 private int sides;
30 }

ch06/random1/DieSimulator.java

 1 /**

 2 This program simulates casting a die ten times.
 3 */
 4 public class DieSimulator
 5 {
 6 public static void main(String[] args)
 7 {
 8 Die d = new Die(6);
 9 final int TRIES = 10;
10 for (int i = 1; i <= TRIES; i++)
11 {
12 int n = d.cast();
13 System.out.print(n + “ ”);
14 }
15 System.out.println();
16 }
17 }

257

Chapter 6 Iteration Page 41 of 82

Java Concepts, 5th Edition

Typical Output

6 5 6 3 2 6 3 4 4 1

Typical Output (Second Run)

3 2 2 1 6 5 3 4 1 2

As you can see, this program produces a different stream of simulated die casts every

time it is run.

Actually, the numbers are not completely random. They are drawn from very long

sequences of numbers that don't repeat for a long time. These sequences are computed

from fairly simple formulas; they just behave like random numbers. For that reason,

they are often called pseudorandom numbers. Generating good sequences of numbers

that behave like truly random sequences is an important and well−studied problem in

computer science. We won't investigate this issue further, though; we'll just use the

random numbers produced by the Random class.

To run the Buffon needle experiment, we have to work a little harder. When you

throw a die, it has to come up with one of six faces. When throwing a needle,

however, there are many possible outcomes. You must generate two random numbers:

one to describe the starting position and one to describe the angle of the needle with

the x−axis. Then you need to test whether the needle touches a grid line. Stop after

10,000 tries.

Let us agree to generate the lower point of the needle. Its x−coordinate is irrelevant,

and you may assume its y − coordinate ylow to be any random number between 0 and

2. However, because it can be a random floating−point number, we use the

nextDouble method of the Random class. It returns a random floating − point

number between 0 and 1. Multiply by 2 to get a random number between 0 and 2.

The angle α between the needle and the x−axis can be any value between 0 degrees

and 180 degrees. The upper end of the needle has y−coordinate

= + sin (α)y
high

y
low

The needle is a hit if yhigh is at least 2. See Figure 4.

257

258

Chapter 6 Iteration Page 42 of 82

Java Concepts, 5th Edition

Figure 4

When Does the Needle Fall on a Line?

Here is the program to carry out the simulation of the needle experiment.

ch06/random2/Needle.java

 1 import java.util.Random;
 2
 3 /**

 4 This class simulates a needle in the Buffon needle experiment.
 5 */
 6 public class Needle
 7 {
 8 /**

 9 Constructs a needle.
10 */
11 public Needle()
12 {
13 hits = 0;
14 tries = 0;
15 generator = new Random();
16 }
17
18 /**

19 Drops the needle on the grid of lines and
20 remembers whether the needle hit a
line.

258

259

Chapter 6 Iteration Page 43 of 82

Java Concepts, 5th Edition

21 */
22 public void drop()
23 {
24 double ylow = 2 *
generator.nextDouble();
25 double angle = 180 *
generator.nextDouble();
26

27 // Computes high point of needle
28
29 double yhigh = ylow +
Math.sin(Math.toRadians(angle));
30 if (yhigh >= 2) hits++;
31 tries++;
32 }
33
34 /**

35 Gets the number of times the needle hit a line.

36 @return the hit count
37 */
38 public int getHits()
39 {
40 return hits;
41 }
42
43 /**
44 Gets the total number of times the
needle was dropped.
45 @return the try count
46 */
47 public int getTries()
48 {
49 return tries;
50 }
51
52 private Random generator;
53 private int hits;
54 private int tries;
55 }

ch06/random2/NeedleSimulator.java

 1 /**

 2 This program simulates the Buffon needle experiment

259

260

Chapter 6 Iteration Page 44 of 82

Java Concepts, 5th Edition

 3 and prints the resulting approximations of pi.
 4 */
 5 public class NeedleSimulator
 6 {
 7 public static void main(String[] args)
 8 {
 9 Needle n = new Needle();
10 final int TRIES1 = 10000;
11 final int TRIES2 = 1000000;
12
13 for (int i = 1; i <= TRIES1; i++)
14 n.drop();
15 System.out.printf(“Tries = %d, Tries
/ Hits = %8.5f\n”,
16 TRIES1, (double)
n.getTries() / n.getHits());
17
18 for (int i = TRIES1 + 1; i <=
TRIES2; i++)
19 n.drop();
20 System.out.printf(“Tries = %d, Tries
/ Hits = %8.5f\n”,
21 TRIES2, (double)
n.getTries() / n.getHits());
22 }
23 }

Output

Tries = 10000, Tries / Hits = 3.08928
Tries = 1000000, Tries / Hits = 3.14204

The point of this program is not to compute π—there are far more efficient ways to do

that. Rather, the point is to show how a physical experiment can be simulated on the

computer. Buffon had to physically drop the needle thousands of times and record the

results, which must have been a rather dull activity. The computer can execute the

experiment quickly and accurately.

Simulations are very common computer applications. Many simulations use

essentially the same pattern as the code of this example: In a loop, a large number of

sample values are generated, and the values of certain observations are recorded for

Chapter 6 Iteration Page 45 of 82

Java Concepts, 5th Edition

each sample. When the simulation is completed, the averages, or other statistics of

interest from the observed values are printed out.

A typical example of a simulation is the modeling of customer queues at a bank or a

supermarket. Rather than observing real customers, one simulates their arrival and

their transactions at the teller window or checkout stand in the computer. One can try

different staffing or building layout patterns in the computer simply by making

changes in the program. In the real world, making many such changes and measuring

their effects would be impossible, or at least, very expensive.

SELF CHECK

9. How do you use a random number generator to simulate the toss of a

coin?

10. Why is the NeedleSimulator program not an efficient method for

computing π?

 ADVANCED TOPIC 6.5: Loop Invariants

Consider the task of computing an, where a is a floating-point number and n is a

positive integer. Of course, you can multiply a . a . … . a, n times, but if n

is large, you'll end up doing a lot of multiplication. The following loop computes

an in far fewer steps:

double a = . . .;
int n = . . .;
double r = 1;
double b = a;
int i = n;
while (i > 0)
{

 if (i % 2 == 0) // n is even
 {
 b = b * b;
 i = i / 2;
 }
 else
 {
 r = r * b;

260

261

Chapter 6 Iteration Page 46 of 82

Java Concepts, 5th Edition

 i--;
 }
}
// Now r equals a to the nth power

Consider the case n = 100. The method performs the steps shown in the table

below.

Amazingly enough, the algorithm yields exactly a
100

. Do you understand why?

Are you convinced it will work for all values of n? Here is a clever argument to

show that the method always computes the correct result. It demonstrates that

whenever the program reaches the top of the while loop, it is true that

r · =b
i

a
n

Certainly, it is true the first time around, because b = a and i = n. Suppose

that (I) holds at the beginning of the loop. Label the values of r, b, and i as “old”

when entering the loop, and as “new” when exiting the loop. Assume that upon

entry

· =r
old

b
old

i old
a
n

Computing a
100

b i r

a 100 1

a
2 50

a
4 25

24 a
4

a
8 12

a
16 6

a
32 3

2 a
36

a
64 1

0 a
100

In the loop you must distinguish two cases: iold even and iold odd. If iold is even,

the loop performs the following transformations:

261

262

Chapter 6 Iteration Page 47 of 82

Java Concepts, 5th Edition

=r
new

r
old

=b
new

b
old

2

= 2i
new

i
old /

Therefore,

· = ·r
new

b
new

i new
r

old (b old)
22 · i old /

= ·r
old

b
old

i old

= a
n

On the other hand, if iold is odd, then

= ·r
new

r
old

b
old

=b
new

b
old

= − 1i
new

i
old

Therefore,

· = · ·r
new

b
new

i new
r

old
b

old
b

old

− 1i old

= ·r
old

b
old

i old

= a
n

In either case, the new values for r, b, and i fulfill the loop invariant (I). So what?

When the loop finally exits, (I) holds again:

r · =b
i

a
n

262

263

Chapter 6 Iteration Page 48 of 82

Java Concepts, 5th Edition

Furthermore, we know that i = 0, because the loop is terminating. But because

i = 0, r · bi = r · b0 = r. Hence r = an, and the method really does

compute the nth power of a.

This technique is quite useful, because it can explain an algorithm that is not at all

obvious. The condition (I) is called a loop invariant because it is true when the

loop is entered, at the top of each pass, and when the loop is exited. If a loop

invariant is chosen skillfully, you may be able to deduce correctness of a

computation. See [3] for another nice example.

 RANDOM FACT 6.2: Correctness Proofs

In Advanced Topic 6.5 we introduced the technique of loop invariants. If you

skipped that topic, have a glance at it now. That technique can be used to

rigorously prove that a loop computes exactly the value that it is supposed to

compute. Such a proof is far more valuable than any testing. No matter how many

test cases you try, you always worry whether another case that you haven't tried

yet might show a bug. A proof settles the correctness for all possible inputs.

For some time, programmers were very hopeful that proof techniques such as loop

invariants would greatly reduce the need of testing. You would prove that each

simple method is correct, and then put the proven components together and prove

that they work together as they should. Once it is proved that main works

correctly, no testing is required. Some researchers were so excited about these

techniques that they tried to omit the programming step altogether. The designer

would write down the program requirements, using the notation of formal logic.

An automatic prover would prove that such a program could be written and

generate the program as part of its proof.

Unfortunately, in practice these methods never worked very well. The logical

notation to describe program behavior is complex. Even simple scenarios require

many formulas. It is easy enough to express the idea that a method is supposed to

compute a
n
, but the logical formulas describing all methods in a program that

controls an airplane, for instance, would fill many pages. These formulas are

created by humans, and humans make errors when they deal with difficult and

Chapter 6 Iteration Page 49 of 82

Java Concepts, 5th Edition

tedious tasks. Experiments showed that instead of buggy programs, programmers

wrote buggy logic specifications and buggy program proofs.

Van der Linden [2, p. 287], gives some examples of complicated proofs that are

much harder to verify than the programs they are trying to prove.

Program proof techniques are valuable for proving the correctness of individual

methods that make computations in nonobvious ways. At this time, though, there

is no hope to prove any but the most trivial programs correct in such a way that the

specification and the proof can be trusted more than the program. There is hope

that correctness proofs will become more applicable to real-life programming

situations in the future. However, engineering and management are at least as

important as mathematics and logic for the successful completion of large software

projects.

6.6 Using a Debugger

As you have undoubtedly realized by now, computer programs rarely run perfectly

the first time. At times, it can be quite frustrating to find the bugs. Of course, you can

insert print commands, run the program, and try to analyze the printout. If the printout

does not clearly point to the problem, you may need to add and remove print

commands and run the program again. That can be a time-consuming process.

Modern development environments contain special programs, called debuggers, that

help you locate bugs by letting you follow the execution of a program. You can stop

and restart your program and see the contents of variables whenever your program is

temporarily stopped. At each stop, you have the choice of what variables to inspect

and how many program steps to run until the next stop.

A debugger is a program that you can use to execute another program and analyze

its run-time behavior.

Some people feel that debuggers are just a tool to make programmers lazy.

Admittedly some people write sloppy programs and then fix them up with a

debugger, but the majority of programmers make an honest effort to write the best

program they can before trying to run it through a debugger. These programmers

263

264

Chapter 6 Iteration Page 50 of 82

Java Concepts, 5th Edition

realize that a debugger, while more convenient than print commands, is not cost-free.

It does take time to set up and carry out an effective debugging session.

In actual practice, you cannot avoid using a debugger. The larger your programs get,

the harder it is to debug them simply by inserting print commands. You will find that

the time investment to learn about a debugger is amply repaid in your programming

career.

Like compilers, debuggers vary widely from one system to another. On some systems

they are quite primitive and require you to memorize a small set of arcane commands;

on others they have an intuitive window interface. The screen shots in this chapter

show the debugger in the Eclipse development environment, downloadable for free

from the Eclipse Foundation web site [4]. Other integrated environments, such as

BlueJ, also include debuggers. A free standalone debugger called JSwat is available

from the JSwat Graphical Java Debugger web page [5].

You will have to find out how to prepare a program for debugging and how to start a

debugger on your system. If you use an integrated development environment, which

contains an editor, compiler, and debugger, this step is usually very easy. You just

build the program in the usual way and pick a menu command to start debugging. On

some systems, you must manually build a debug version of your program and invoke

the debugger.

Once you have started the debugger, you can go a long way with just three debugging

commands: “set breakpoint”, “single step”, and “inspect variable”. The names and

keystrokes or mouse clicks for these commands differ widely between debuggers, but

all debuggers support these basic commands. You can find out how, either from the

documentation or a lab manual, or by asking someone who has used the debugger

before.

You can make effective use of a debugger by mastering just three concepts:

breakpoints, single-stepping, and inspecting variables.

When you start the debugger, it runs at full speed until it reaches a breakpoint. Then

execution stops, and the breakpoint that causes the stop is displayed (see Figure 5).

You can now inspect variables and step through the program a line at a time, or

264

265

Chapter 6 Iteration Page 51 of 82

Java Concepts, 5th Edition

continue running the program at full speed until it reaches the next breakpoint. When

the program terminates, the debugger stops as well.

When a debugger executes a program, the execution is suspended whenever a

breakpoint is reached.

Breakpoints stay active until you remove them, so you should periodically clear the

breakpoints that you no longer need.

Once the program has stopped, you can look at the current values of variables. Again,

the method for selecting the variables differs among debuggers. Some debuggers

always show you a window with the current local variables. On other debuggers you

issue a command such as “inspect variable” and type in or click on the variable. The

debugger then displays the contents of the variable. If all variables contain what you

expected, you can run the program until the next point where you want to stop.

Figure 5

Stopping at a Breakpoint

265

266

Chapter 6 Iteration Page 52 of 82

Java Concepts, 5th Edition

When inspecting objects, you often need to give a command to “open up” the object,

for example by clicking on a tree node. Once the object is opened up, you see its

instance variables (see Figure 6).

Running to a breakpoint gets you there speedily, but you don't know how the program

got there. You can also step through the program a line at a time. Then you know how

the program flows, but it can take a long time to step through it. The single-step

command executes the current line and stops at the next program line. Most

debuggers have two single-step commands, one called step into, which steps inside

method calls, and one called step over, which skips over method calls.

The single-step command executes the program one line at a time.

For example, suppose the current line is

String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " +
syllables);

When you step over method calls, you get to the next line:

String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " +
syllables);

However, if you step into method calls, you enter the first line of the

countSyllables method.

public int countSyllables()
{
 int count = 0;
 int end = text.length() - 1;
 . . .
}

Chapter 6 Iteration Page 53 of 82

Java Concepts, 5th Edition

Figure 6

Inspecting Variables

You should step into a method to check whether it carries out its job correctly. You

should step over a method if you know it works correctly.

Finally, when the program has finished running, the debug session is also finished. To

run the program again, you may be able to reset the debugger, or you may need to exit

the debugging program and start over. Details depend on the particular debugger.

SELF CHECK

11. In the debugger, you are reaching a call to System.out.println.

Should you step into the method or step over it?

12. In the debugger, you are reaching the beginning of a method with a

couple of loops inside. You want to find out the return value that is

computed at the end of the method. Should you set a breakpoint, or

should you step through the method?

266

267

Chapter 6 Iteration Page 54 of 82

Java Concepts, 5th Edition

6.7 A Sample Debugging Session

To have a realistic example for running a debugger, we will study a Word class

whose primary purpose is to count the number of syllables in a word. The class uses

this rule for counting syllables:

Each group of adjacent vowels (a, e, i, o, u, y) counts as one syllable (for example, the

“ea” in “peach” contributes one syllable, but the “e . . . o” in “yellow” counts as two

syllables). However, an “e” at the end of a word doesn't count as a syllable. Each

word has at least one syllable, even if the previous rules give a count of 0.

Also, when you construct a word from a string, any characters at the beginning or end

of the string that aren't letters are stripped off. That is useful when you read the input

using the next method of the Scanner class. Input strings can still contain

quotation marks and punctuation marks, and we don't want them as part of the word.

Here is the source code. There are a couple of bugs in this class.

ch06/debugger/Word.java

 1 public class Word
 2 {
 3 /**

 4 Constructs a word by removing leading and trailing non-

 5 letter characters, such as punctuation marks.

 6 @param s the input string
 7 */
 8 public Word(String s)
 9 {
10 int i = 0;
11 while (i < s.length() &&
!Character.isLetter(s.charAt(i)))
12 i++;
13 int j = s.length() - 1;
14 while (j > i &&
!Character.isLetter(s.charAt(j)))
15 j--;
16 text = s.substring(i, j);
17 }
18

267

268

Chapter 6 Iteration Page 55 of 82

Java Concepts, 5th Edition

19 /**

20 Returns the text of the word, after removal of the

21 leading and trailing nonletter characters.

22 @return the text of the word
23 */
24 public String getText()
25 {
26 return text;
27 }
28
29 /**

30 Counts the syllables in the word.

31 @return the syllable count
32 */
33 public int countSyllables()
34 {
35 int count = 0;
36 int end = text.length() - 1;

37 if (end < 0) return 0; // The empty string has

no syllables
38
39 // An e at the end of the word doesn't
count as a vowel
40 char ch =
Character.toLowerCase(text.charAt(end));
41 if (ch == ‘e’) end--
42
43 boolean insideVowelGroup = false;
44 for (int i = 0; i <= end; i++)
45 {
46 ch =
Character.toLowerCase(text.charAt(i));
47 if (“aeiouy”.index0f(ch) >= 0)
48 {

49 // ch is a vowel
50 if (!insideVowelGroup)
51 {

52 // Start of new vowel group
53 count++;
54 insideVowelGroup = true;
55 }
56 }
57 }

Chapter 6 Iteration Page 56 of 82

Java Concepts, 5th Edition

58

59 // Every word has at least one syllable
60 if (count == 0)
61 count = 1;
62 return count;
63 }
64
65 private String text;
66 }

Here is a simple test class. Type in a sentence, and the syllable counts of all words are

displayed.

ch06/debugger/SyllableCounter.java

 1 import java.util.Scanner;
 2
 3 /**

 4 This program counts the syllables of all words in a sentence.
 5 */
 6 public class SyllableCounter
 7 {
 8 public static void main(String[] args)
 9 {
10 Scanner in = new
Scanner(System.in);
11
12 System.out.println(“Enter a
sentence ending in a period.”);
13
14 String input;
15 do
16 {
17 input = in.next();
18 Word w = new Word(input);
19 int syllables =
w.countSyllables();
20 System.out.println(“Syllables
in ” + input + “:”
21 + syllables);
22 }
23 while (!input.endsWith(“.”));
24 }
25 }

268

269

Chapter 6 Iteration Page 57 of 82

Java Concepts, 5th Edition

Supply this input:

hello yellow peach.

Then the output is

Syllables in hello: 1
Syllables in yellow: 1
Syllables in peach.: 1

That is not very promising.

First, set a breakpoint in the first line of the countSyllables method of the Word

class, in line 33 of Word.java. Then start the program. The program will prompt

you for the input. The program will stop at the breakpoint you just set.

Figure 7

Debugging the countSyllables Method

First, the countSyllables method checks the last character of the word to see if

it is a letter ’e’. Let's just verify that this works correctly. Run the program to line 41

(see Figure 7).

Now inspect the variable ch. This particular debugger has a handy display of all

current local and instance variables—see Figure 8. If yours doesn't, you may need to

inspect ch manually. You can see that ch contains the value ’l’. That is strange.

Look at the source code. The end variable was set to text.length() - 1, the

last position in the text string, and ch is the character at that position.

269

270

Chapter 6 Iteration Page 58 of 82

Java Concepts, 5th Edition

Looking further, you will find that end is set to 3, not 4, as you would expect. And

text contains the string ”hell”, not ”hello”. Thus, it is no wonder that

countSyllables returns the answer 1. We'll need to look elsewhere for the

culprit. Apparently, the Word constructor contains an error.

Unfortunately, a debugger cannot go back in time. Thus, you must stop the debugger,

set a breakpoint in the Word constructor, and restart the debugger. Supply the input

once again. The debugger will stop at the beginning of the Word constructor. The

constructor sets two variables i and j, skipping past any nonletters at the beginning

and the end of the input string. Set a breakpoint past the end of the second loop (see

Figure 9) so that you can inspect the values of i and j.

Figure 8

The Current Values of the Local and Instance Variables
270

Chapter 6 Iteration Page 59 of 82

Java Concepts, 5th Edition

Figure 9

Debugging the Word Constructor

At this point, inspecting i and j shows that i is 0 and j is 4. That makes sense—

there were no punctuation marks to skip. So why is text being set to ”hell”?

Recall that the substring method counts positions up to, but not including, the

second parameter. Thus, the correct call should be

text = s.substring(i, j + 1);

This is a very typical off-by-one error.

270

271

Chapter 6 Iteration Page 60 of 82

Java Concepts, 5th Edition

Fix this error, recompile the program, and try the three test cases again. You will now

get the output

Syllables in hello: 1
Syllables in yellow: 1
Syllables in peach.: 1

As you can see, there still is a problem. Erase all breakpoints and set a breakpoint in

the countSyllables method. Start the debugger and supply the input ”hello.”.

When the debugger stops at the breakpoint, start single stepping through the lines of

the method. Here is the code of the loop that counts the syllables:

boolean insideVowelGroup = false;
for (int i = 0; i <= end; i++)
{
 ch = Character.toLowerCase(text.charAt(i));
 if (“aeiouy”.indexOf(ch) >= 0)
 {
 // ch is a vowel
 if (!insideVowelGroup)
 {
 // Start of new vowel group
 count++;
 insideVowelGroup = true;
 }
 }
}

In the first iteration through the loop, the debugger skips the if statement. That

makes sense, because the first letter, ’h’, isn't a vowel. In the second iteration, the

debugger enters the if statement, as it should, because the second letter, ’e’, is a

vowel. The insideVowelGroup variable is set to true, and the vowel counter is

incremented. In the third iteration, the if statement is again skipped, because the

letter ’l’ is not a vowel. But in the fifth iteration, something weird happens. The

letter ’o’ is a vowel, and the if statement is entered. But the second if statement is

skipped, and count is not incremented again.

Why? The insideVowelGroup variable is still true, even though the first vowel

group was finished when the consonant ’l’ was encountered. Reading a consonant

should set insideVowelGroup back to false. This is a more subtle logic error,

271

272

Chapter 6 Iteration Page 61 of 82

Java Concepts, 5th Edition

but not an uncommon one when designing a loop that keeps track of the processing

state. To fix it, stop the debugger and add the following clause:

if ("aeiouy".indexOf(ch) >= 0)
{
 . . .
}
else insideVowelGroup = false;

Now recompile and run the test once again. The output is:

A debugger can be used only to analyze the presence of bugs, not to show that a

program is bug-free.

Syllables in hello: 2
Syllables in yellow: 2
Syllables in peach.: 1

Is the program now free from bugs? That is not a question the debugger can answer.

Remember: Testing can show only the presence of bugs, not their absence.

SELF CHECK

13. What caused the first error that was found in this debugging session?

14. What caused the second error? How was it detected?

 HOW TO 6.2: Debugging

Now you know about the mechanics of debugging, but all that knowledge may still

leave you helpless when you fire up a debugger to look at a sick program. There

are a number of strategies that you can use to recognize bugs and their causes.

Step 1 Reproduce the error.

As you test your program, you notice that your program sometimes does

something wrong. It gives the wrong output, it seems to print something

completely random, it goes in an infinite loop, or it crashes. Find out exactly how

to reproduce that behavior. What numbers did you enter? Where did you click with

the mouse?

272

273

Chapter 6 Iteration Page 62 of 82

Java Concepts, 5th Edition

Run the program again; type in exactly the same answers, and click with the mouse

on the same spots (or as close as you can get). Does the program exhibit the same

behavior? If so, then it makes sense to fire up a debugger to study this particular

problem. Debuggers are good for analyzing particular failures. They aren't terribly

useful for studying a program in general.

Step 2 Simplify the error.

Before you fire up a debugger, it makes sense to spend a few minutes trying to

come up with a simpler input that also produces an error. Can you use shorter

words or simpler numbers and still have the program misbehave? If so, use those

values during your debugging session.

Step 3 Divide and conquer.

Now that you have a particular failure, you want to get as close to the failure as

possible. The key point of debugging is to locate the code that produces the failure.

Just as with real insect pests, finding the bug can be hard, but once you find it,

squashing it is usually the easy part. Suppose your program dies with a division by

0. Because there are many division operations in a typical program, it is often not

feasible to set breakpoints to all of them. Instead, use a technique of divide and

conquer. Step over the methods in main, but don't step inside them. Eventually,

the failure will happen again. Now you know which method contains the bug: It is

the last method that was called from main before the program died. Restart the

debugger and go back to that line in main, then step inside that method. Repeat

the process.

Use the divide-and-conquer technique to locate the point of failure of a

program.

Eventually, you will have pinpointed the line that contains the bad division. Maybe

it is completely obvious from the code why the denominator is not correct. If not,

you need to find the location where it is computed. Unfortunately, you can't go

back in the debugger. You need to restart the program and move to the point where

the denominator computation happens.

Step 4 Know what your program should do.

Chapter 6 Iteration Page 63 of 82

Java Concepts, 5th Edition

During debugging, compare the actual contents of variables against the values

you know they should have.

A debugger shows you what the program does. You must know what the program

should do, or you will not be able to find bugs. Before you trace through a loop,

ask yourself how many iterations you expect the program to make. Before you

inspect a variable, ask yourself what you expect to see. If you have no clue, set

aside some time and think first. Have a calculator handy to make independent

computations. When you know what the value should be, inspect the variable. This

is the moment of truth. If the program is still on the right track, then that value is

what you expected, and you must look further for the bug. If the value is different,

you may be on to something. Double-check your computation. If you are sure your

value is correct, find out why your program comes up with a different value.

In many cases, program bugs are the result of simple errors such as loop

termination conditions that are off by one. Quite often, however, programs make

computational errors. Maybe they are supposed to add two numbers, but by

accident the code was written to subtract them. Unlike your calculus instructor,

programs don't make a special effort to ensure that everything is a simple integer

(and neither do real-world problems). You will need to make some calculations

with large integers or nasty floating-point numbers. Sometimes these calculations

can be avoided if you just ask yourself, “Should this quantity be positive? Should

it be larger than that value?” Then inspect variables to verify those theories.

Step 5 Look at all details.

When you debug a program, you often have a theory about what the problem is.

Nevertheless, keep an open mind and look around at all details. What strange

messages are displayed? Why does the program take another unexpected action?

These details count. When you run a debugging session, you really are a detective

who needs to look at every clue available.

If you notice another failure on the way to the problem that you are about to pin

down, don't just say, “I'll come back to it later”. That very failure may be the

original cause for your current problem. It is better to make a note of the current

problem, fix what you just found, and then return to the original mission.

273

274

Chapter 6 Iteration Page 64 of 82

Java Concepts, 5th Edition

Step 6 Make sure you understand each bug before you fix it.

Once you find that a loop makes too many iterations, it is very tempting to apply a

“Band-Aid” solution and subtract 1 from a variable so that the particular problem

doesn't appear again. Such a quick fix has an overwhelming probability of creating

trouble elsewhere. You really need to have a thorough understanding of how the

program should be written before you apply a fix.

It does occasionally happen that you find bug after bug and apply fix after fix, and

the problem just moves around. That usually is a symptom of a larger problem

with the program logic. There is little you can do with the debugger. You must

rethink the program design and reorganize it.

 RANDOM FACT 6.3: The First Bug

According to legend, the first bug was one found in 1947 in the Mark II, a huge

electro-mechanical computer at Harvard University. It really was caused by a

bug—a moth was trapped in a relay switch. Actually, from the note that the

operator left in the log book next to the moth (see The First Bug figure), it appears

as if the term “bug” had already been in active use at the time.

The pioneering computer scientist Maurice Wilkes wrote: “Somehow, at the

Moore School and afterwards, one had always assumed there would be no

particular difficulty in getting programs right. I can remember the exact instant in

time at which it dawned on me that a great part of my future life would be spent

finding mistakes in my own programs.”

The First Bug

274

275

Chapter 6 Iteration Page 65 of 82

Java Concepts, 5th Edition

CHAPTER SUMMARY

1. A while statement executes a block of code repeatedly. A condition controls

how often the loop is executed.

2. An off-by-one error is a common error when programming loops. Think

through simple test cases to avoid this type of error.

3. You use a for loop when a variable runs from a starting to an ending value

with a constant increment or decrement.

4. Loops can be nested. A typical example of nested loops is printing a table with

rows and columns.

5. Sometimes, the termination condition of a loop can only be evaluated in the

middle of a loop. You can introduce a Boolean variable to control such a loop.

6. Make a choice between symmetric and asymmetric loop bounds.

7. Count the number of iterations to check that your for loop is correct.

8. In a simulation, you repeatedly generate random numbers and use them to

simulate an activity.

9. A debugger is a program that you can use to execute another program and

analyze its run-time behavior.

10. You can make effective use of a debugger by mastering just three concepts:

breakpoints, single-stepping, and inspecting variables.

11. When a debugger executes a program, the execution is suspended whenever a

breakpoint is reached.

12. The single-step command executes the program one line at a time.

13. A debugger can be used only to analyze the presence of bugs, not to show that a

program is bug-free.

14. Use the divide-and-conquer technique to locate the point of failure of a

program.

275

276

Chapter 6 Iteration Page 66 of 82

Java Concepts, 5th Edition

15. During debugging, compare the actual contents of variables against the values

you know they should have.

FURTHER READING

1. E. W. Dijkstra, "Goto Statements Considered Harmful", Communications

of the ACM, vol. 11, no. 3 (March 1968), pp. 147–148.

2. Peter van der Linden, Expert C Programming, Prentice-Hall, 1994.

3. Jon Bentley, Programming Pearls, Chapter 4, "Writing Correct

Programs", Addison-Wesley, 1986.

4. http://eclipse.org The Eclipse Foundation web site.

5. http://www.bluemarsh.com/java/jswat The JSwat Graphical Java

Debugger web page.

6. Kai Lai Chung, Elementary Probability Theory with Stochastic Processes,

Undergraduate Texts in Mathematics, Springer-Verlag, 1974.

7. Rudolf Flesch, How to Write Plain English, Barnes & Noble Books, 1979.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.util.Random
 nextDouble
 nextInt

REVIEW EXERCISES

★★Exercise R6.1. Which loop statements does Java support? Give simple

rules when to use each loop type.

★★Exercise R6.2. What does the following code print?

for (int i = 0; i < 10; i++)
{
 for (int j = 0; j < 10; j++)
 System.out.print(i * j % 10);
 System.out.println();
} 276

Chapter 6 Iteration Page 67 of 82

Java Concepts, 5th Edition

★★Exercise R6.3. How often do the following loops execute? Assume that i

is an integer variable that is not changed in the loop body.

a. for (i = 1; i <= 10; i++) …

b. for (i = 0; i < 10; i++) …

c. for (i = 10; i > 0; i––) …

d. for (i = −10; i <= 10; i++) …

e. for (i = 10; i > = 0; i++) …

f. for (i = -10; i <= 10; i = i + 2) …

g. for (i = -10; i <= 10; i = i + 3) …

★ Exercise R6.4. Rewrite the following for loop into a while loop.

int s = 0;
for (int i = 1; i <= 10; i++) s = s + i;

★ Exercise R6.5. Rewrite the following do loop into a while loop.

int n = 1;
double x = 0;
double s;
do
{
 s = 1.0 / (n * n);
 x = x + s;
 n++;
}
while (s > 0.01);

★ Exercise R6.6. What is an infinite loop? On your computer, how can you

terminate a program that executes an infinite loop?

★★★Exercise R6.7 Give three strategies to implement the following “loop

and a half”:

loop
{

276

277

Chapter 6 Iteration Page 68 of 82

Java Concepts, 5th Edition

 Read name of bridge

 If not OK, exit loop

 Read length of bridge in feet

 If not OK, exit loop

 Convert length to meters

 Print bridge data
}

Use a Boolean variable, a break statement, and a method with multiple

return statements. Which of these three approaches do you find

clearest?

★ Exercise R6.8 Implement a loop that prompts a user to enter a number

between 1 and 10, giving three tries to get it right.

★ Exercise R6.9 Sometimes students write programs with instructions such

as “Enter data, 0 to quit” and that exit the data entry loop when the user

enters the number 0. Explain why that is usually a poor idea.

★ Exercise R6.10. How would you use a random number generator to

simulate the drawing of a playing card?

★ Exercise R6.11. What is an “off-by-one error”? Give an example from

your own programming experience.

★★Exercise R6.12. Give an example of a for loop in which symmetric

bounds are more natural. Give an example of a for loop in which

asymmetric bounds are more natural.

★ Exercise R6.13 What are nested loops? Give an example where a nested

loop is typically used.

★T Exercise R6.14 Explain the differences between these debugger operations:

• Stepping into a method

• Stepping over a method

★★TExercise R6.15 Explain in detail how to inspect the string stored in a

String object in your debugger.

277

278

Chapter 6 Iteration Page 69 of 82

Java Concepts, 5th Edition

★★TExercise R6.16 Explain in detail how to inspect the information stored in

a Rectangle object in your debugger.

★★TExercise R6.17 Explain in detail how to use your debugger to inspect the

balance stored in a BankAccount object.

★★TExercise R6.18 Explain the divide-and-conquer strategy to get close to a

bug in a debugger.

 Additional review exercises are available in Wiley PLUS.

PROGRAMMING EXERCISES

★ Exercise P6.1 Currency conversion. Write a program

CurrencyConverter that asks the user to enter today's exchange rate

between U.S. dollars and the euro. Then the program reads U.S. dollar

values and converts each to euro values. Stop when the user enters Q.

★★★Exercise P6.2 Projectile flight. Suppose a cannonball is propelled

vertically into the air with a starting velocity v0. Any calculus book will

tell us that the position of the ball after t seconds is s(t) = −0.5 · g · t
2
 +

v0 · t, where g 9.81 m/sec
2
 is the gravitational force of the earth. No

calculus book ever mentions why someone would want to carry out such

an obviously dangerous experiment, so we will do it in the safety of the

computer.

In fact, we will confirm the theorem from calculus by a simulation. In

our simulation, we will consider how the ball moves in very short time

intervals ∆t. In a short time interval the velocity v is nearly constant, and

we can compute the distance the ball moves as ∆ s = v · ∆t. In our

program, we will simply set

double deltaT = 0.01;

and update the position by

s = s + v * deltaT;

278

279

Chapter 6 Iteration Page 70 of 82

Java Concepts, 5th Edition

The velocity changes constantly—in fact, it is reduced by the

gravitational force of the earth. In a short time interval, v decreases by g ·

∆t, and we must keep the velocity updated as

v = v - g * deltaT;

In the next iteration the new velocity is used to update the distance.

Now run the simulation until the cannonball falls back to the earth. Get

the initial velocity as an input (100 m/sec is a good value). Update the

position and velocity 100 times per second, but only print out the

position every full second. Also print out the values from the exact

formula s(t) = −0.5 · g · t
2
 + v0 · t for comparison. Use a class

Cannonball.

What is the benefit of this kind of simulation when an exact formula is

available? Well, the formula from the calculus book is not exact.

Actually, the gravitational force diminishes the farther the cannonball is

away from the surface of the earth. This complicates the algebra

sufficiently that it is not possible to give an exact formula for the actual

motion, but the computer simulation can simply be extended to apply a

variable gravitational force. For cannonballs, the calculus-book formula

is actually good enough, but computers are necessary to compute

accurate trajectories for higher-flying objects such as ballistic missiles.

★★Exercise P6.3. Write a program that prints the powers of ten

1.0
10.0
100.0
1000.0
10000.0
100000.0
1.0E7
1.0E8
1.0E9
1.0E10
1.0E11

Implement a class

Chapter 6 Iteration Page 71 of 82

Java Concepts, 5th Edition

public class PowerGenerator
{
 /**

 Constructs a power generator.

 @param aFactor the number that will be multiplied

by itself
 */
 public PowerGenerator(int aFactor) { . . . }
 /**

 Computes the next power.
 */
 public double nextPower() { . . . }
 . . .
}

Then supply a test class PowerGeneratorRunner that calls

System.out.println(myGenerator.nextPower()) twelve

times.

★★Exercise P6.4. The Fibonacci sequence is defined by the following rule.

The first two values in the sequence are 1 and 1. Every subsequent value is

the sum of the two values preceding it. For example, the third value is 1 +

1 = 2, the fourth value is 1 + 2 = 3, and the fifth is 2 + 3 = 5. If fn denotes

the first nth value in the Fibonacci sequence, then

= 1f
1

= 1f
2

= + if n > 2f
n

f
n − 1

f
n − 2

Write a program that prompts the user for n and prints the nth value in the

Fibonacci sequence. Use a class FibonacciGenerator with a method

nextNumber.

Hint: There is no need to store all values for fn. You only need the last two

values to compute the next one in the series:

fold1 = 1;
fold2 = 1;

279

280

Chapter 6 Iteration Page 72 of 82

Java Concepts, 5th Edition

fnew = fold1 + fold2;

After that, discard fold2, which is no longer needed, and set fold2 to

fold1 and fold1 to fnew.

Your generator class will be tested with this runner program:

public class FibonacciRunner
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

 System.out.println(“Enter n:”);
 int n = in.nextInt();
 FibonacciGenerator fg = new
FibonacciGenerator();
 for (int i = 1; i <= n; i++)
 System.out.println(fg.nextNumber());
 }
}

★★Exercise P6.5. Mean and standard deviation. Write a program that reads a

set of floating-point data values from the input. When the user indicates the

end of input, print out the count of the values, the average, and the standard

deviation. The average of a data set x1, …, xn is

=x
_ Σ x i

n

where ∑ xi = x1 + … + xn is the sum of the input values. The standard

deviation is

s =
Σ (−)x i x

_ 2

n − 1

However, that formula is not suitable for our task. By the time you have

computed the mean, the individual xi are long gone. Until you know how

to save these values, use the numerically less stable formula

280

281

Chapter 6 Iteration Page 73 of 82

Java Concepts, 5th Edition

s =
Σ −x i

2 1

n
Σ)(x i

2

n − 1

You can compute this quantity by keeping track of the count, the sum, and

the sum of squares in the DataSet class as you process the input values.

★★Exercise P6.6. Factoring of integers. Write a program that asks the user

for an integer and then prints out all its factors in increasing order. For

example, when the user enters 150, the program should print

2
3
5
5

Use a class FactorGenerator with a constructor

FactorGenerator(int numberToFactor) and methods

nextFactor and hasMoreFactors. Supply a class

FactorPrinter whose main method reads a user input, constructs a

FactorGenerator object, and prints the factors.

★★Exercise P6.7. Prime numbers. Write a program that prompts the user for

an integer and then prints out all prime numbers up to that integer. For

example, when the user enters 20, the program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number

except 1 and itself.

Supply a class PrimeGenerator with a method nextPrime.
281

Chapter 6 Iteration Page 74 of 82

Java Concepts, 5th Edition

★★Exercise P6.8. The Heron method is a method for computing square roots

that was known to the ancient Greeks. If x is a guess for the value , then

the average of x and a/x is a better guess.

a

Implement a class RootApproximator that starts with an initial guess

of 1 and whose nextGuess method produces a sequence of increasingly

better guesses. Supply a method hasMoreGuesses that returns false

if two successive guesses are sufficiently close to each other (that is, they

differ by no more than a small value ɛ). Then test your class like this:

RootApproximator approx = new RootApproximator(a,
epsilon);
while (approx.hasMoreGuesses())
 System.out.println(approx.nextGuess());

★★Exercise P6.9. The best known iterative method for computing the roots of

a function f (that is, the x-values for which f(x) is 0) is Newton–Raphson

approximation. To find the zero of a function whose derivative is also

known, compute

= − f f ′ .x
new

x
old (x old) / (x old)

For this exercise, write a program to compute nth roots of floating-point

numbers. Prompt the user for a and n, then obtain by computing a zero

of the function f(x) x
n
 − a. Follow the approach of Exercise P6.8.

an

★★Exercise P6.10. The value of e
x
 can be computed as the power series

=e
x ∑ n = 0

∞
x
n

n !

where n!=1 · 2 · 3 · … · n.

281

282

Chapter 6 Iteration Page 75 of 82

Java Concepts, 5th Edition

Write a program that computes e
x
 using this formula. Of course, you can't

compute an infinite sum. Just keep adding values until an individual

summand (term) is less than a certain threshold. At each step, you need to

compute the new term and add it to the total. Update these terms as follows:

term = term * x / n;

Follow the approach of the preceding two exercises, by implementing a

class ExpApproximator. Its first guess should be 1.

★ Exercise P6.11. Write a program RandomDataAnalyzer that generates 100

random numbers between 0 and 1000 and adds them to a DataSet. Print out

the average and the maximum.

★★Exercise P6.12. Program the following simulation: Darts are thrown at

random points onto the square with corners (1,1) and (−1,−1). If the dart

lands inside the unit circle (that is, the circle with center (0,0) and radius

1), it is a hit. Otherwise it is a miss. Run this simulation and use it to

determine an approximate value for π. Extra credit if you explain why this

is a better method for estimating π than the Buffon needle program.

★★★GExercise P6.13. Random walk. Simulate the wandering of an

intoxicated person in a square street grid. Draw a grid of 20 streets

horizontally and 20 streets vertically. Represent the simulated drunkard

by a dot, placed in the middle of the grid to start. For 100 times, have

the simulated drunkard randomly pick a direction (east, west, north,

south), move one block in the chosen direction, and draw the dot. (One

might expect that on average the person might not get anywhere

because the moves to different directions cancel one another out in the

long run, but in fact it can be shown with probability 1 that the person

eventually moves outside any finite region. See, for example, [6,

Chapter 8] for more details.) Use classes for the grid and the drunkard.

★★★GExercise P6.14. This exercise is a continuation of Exercise P6.2. Most

cannonballs are not shot upright but at an angle. If the starting velocity

has magnitude v and the starting angle is α, then the velocity is a vector

with components vx = v · cos(α), vy = v · sin(α). In the x-direction the

282

283

Chapter 6 Iteration Page 76 of 82

Java Concepts, 5th Edition

velocity does not change. In the y-direction the gravitational force

takes its toll. Repeat the simulation from the previous exercise, but

update the x and y components of the location and the velocity

separately. In every iteration, plot the location of the cannonball on the

graphics display as a tiny circle. Repeat until the cannonball has

reached the earth again.

This kind of problem is of historical interest. The first computers were

designed to carry out just such ballistic calculations, taking into

account the diminishing gravity for high-flying projectiles and wind

speeds.

★GExercise P6.15. Write a graphical application that displays a checkerboard

with 64 squares, alternating white and black.

★★GExercise P6.16. Write a graphical application that prompts a user to

enter a number n and that draws n circles with random diameter and

random location. The circles should be completely contained inside the

window.

★★★GExercise P6.17. Write a graphical application that draws a spiral, such

as the following:

★★GExercise P6.18. It is easy and fun to draw graphs of curves with the Java

graphics library. Simply draw 100 line segments joining the points (x,

f(x)) and (x + d, f(x + d)), where x ranges from xmin to xmax and d = (xmax

283

284

Chapter 6 Iteration Page 77 of 82

Java Concepts, 5th Edition

− xmax)/100. Draw the curve f(x) = 0.00005x
3
 − 0.03x

2
 + 4x + 200,

where x ranges from 0 to 400 in this fashion.

★★★GExercise P6.19. Draw a picture of the “four-leaved rose” whose

equation in polar coordinates is r = cos(2θ). Let θ go from 0 to 2π in

100 steps. Each time, compute r and then compute the (x,y)

coordinates from the polar coordinates by using the formula

x = r cos θ , y = r sin θ

 Additional review exercises are available in Wiley Plus.

PROGRAMMING PROJECTS

★★★Project 6.1. Flesch Readability Index. The following index [7] was

invented by Flesch as a tool to gauge the legibility of a document

without linguistic analysis.

• Count all words in the file. A word is any sequence of characters

delimited by white space, whether or not it is an actual English

word.

• Count all syllables in each word. To make this simple, use the

following rules: Each group of adjacent vowels (a, e, i, o, u, y)

counts as one syllable (for example, the “ea” in “real” contributes

one syllable, but the “e … a” in “regal” count as two syllables).

However, an “e” at the end of a word doesn't count as a syllable.

Also, each word has at least one syllable, even if the previous rules

give a count of 0.

• Count all sentences. A sentence is ended by a period, colon,

semicolon, question mark, or exclamation mark.

• The index is computed by

Index = 206.835

− 84.6 × (Number of syllables / Number of words)

− 1.015 × (Number of words / Number of sentences)

Chapter 6 Iteration Page 78 of 82

Java Concepts, 5th Edition

rounded to the nearest integer.

The purpose of the index is to force authors to rewrite their text until the

index is high enough. This is achieved by reducing the length of

sentences and by removing long words. For example, the sentence

The following index was invented by Flesch as a simple tool

to estimate the legibility of a document without linguistic

analysis.

can be rewritten as

Flesch invented an index to check whether a text is easy to

read. To compute the index, you need not look at the

meaning of the words.

Flesch's book [7] contains delightful examples of translating government

regulations into “plain English”.

This index is a number, usually between 0 and 100, indicating how

difficult the text is to read. Some example indices for random material

from various publications are:

Comics 95

Consumer ads 82

Sports Illustrated 65

Time 57

New York Times 39

Auto insurance policy 10

Internal Revenue Code − 6

Translated into educational levels, the indices are:

284

285

Chapter 6 Iteration Page 79 of 82

Java Concepts, 5th Edition

91–100 5th grader

81–90 6th grader

71–80 7th grader

66–70 8th grader

61–65 9th grader

51–60 High school student

31–50 College student

0–30 College graduate

Less than 0 Law school graduate

Your program should read a text file in, compute the legibility index, and

print out the equivalent educational level. Use classes Word and

Document.

★★★Project 6.2. The game of Nim. This is a well-known game with a number

of variants. We will consider the following variant, which has an

interesting winning strategy. Two players alternately take marbles from a

pile. In each move, a player chooses how many marbles to take. The

player must take at least one but at most half of the marbles. Then the

other player takes a turn. The player who takes the last marble loses.

Write a program in which the computer plays against a human opponent.

Generate a random integer between 10 and 100 to denote the initial size

of the pile. Generate a random integer between 0 and 1 to decide whether

the computer or the human takes the first turn. Generate a random

integer between 0 and 1 to decide whether the computer plays smart or

stupid. In stupid mode, the computer simply takes a random legal value

(between 1 and n/2) from the pile whenever it has a turn. In smart mode

the computer takes off enough marbles to make the size of the pile a

power of two minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal

move, except if the size of the pile is currently one less than a power of

2. In that case, the computer makes a random legal move.

Note that the computer cannot be beaten in smart mode when it has the

first move, unless the pile size happens to be 15, 31, or 63. Of course, a

human player who has the first turn and knows the winning strategy can

win against the computer.

285

286

Chapter 6 Iteration Page 80 of 82

Java Concepts, 5th Edition

Be sure to use classes Pile, Player, and Game in your

implementation. A player can be either stupid, smart, or human. (Human

Player objects prompt for input.)

ANSWERS TO SELF-CHECK QUESTIONS

1. Never

2. The waitForBalance method would never return due to an infinite loop

3.

int i = 1;
while (i <= n)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
 i++;
}

4. 11 times

5. Change the inner loop to for (int j = 1; j <= width; j++)

6. 20

7. Because we don't know whether the next input is a number or the letter Q

8. No. If all input values are negative, the maximum is also negative.

However, the maximum field is initialized with 0. With this simplification,

the maximum would be falsely computed as 0

9. int n = generator.nextInt(2); //0 = heads, 1 = tails

10. The program repeatedly calls Math.toRadians(angle). You could

simply call Math.toRadians(180) to compute π.

11. You should step over it because you are not interested in debugging the

internals of the println method.

12. You should set a breakpoint. Stepping through loops can be tedious.

Chapter 6 Iteration Page 81 of 82

Java Concepts, 5th Edition

13. The programmer misunderstood the second parameter of the substring

method—it is the index of the first character not to be included in the

substring.

14. The second error was caused by failing to reset insideVowelGroup to

false at the end of a vowel group. It was detected by tracing through the

loop and noticing that the loop didn't enter the conditional statement that

increments the vowel count.

Chapter 6 Iteration Page 82 of 82

Java Concepts, 5th Edition

Chapter 7 Arrays and Array Lists

CHAPTER GOALS

• To become familiar with using arrays and array lists

• To learn about wrapper classes, auto-boxing, and the enhanced for loop

• To study common array algorithms

• To learn how to use two-dimensional arrays

• To understand when to choose array lists and arrays in your programs

• To implement partially filled arrays

T To understand the concept of regression testing

In order to process large quantities of data, you need to collect values in a data

structure. The most commonly used data structures in Java are arrays and array lists.

In this chapter, you will learn how to construct arrays and array lists, fill them with

values, and access the stored values. We introduce the enhanced for loop, a

convenient statement for processing all elements of a collection. You will see how to

use the enhanced for loop, as well as ordinary loops, to implement common array

algorithms. The chapter concludes with a technical section on copying array values.

7.1 Arrays

In many programs, you need to manipulate collections of related values. It would be

impractical to use a sequence of variables such as data1, data2, data3, …, and

so on. The array construct provides a better way of storing a collection of values.

An array is a sequence of values of the same type. For example, here is how you

construct an array of 10 floating-point numbers:

new double[10]

The number of elements (here, 10) is called the length of the array.

287

287

288

Chapter 7 Arrays and Array Lists Page 1 of 67

Java Concepts, 5th Edition

An array is a sequence of values of the same type.

The new operator merely constructs the array. You will want to store a reference to

the array in a variable so that you can access it later.

The type of an array variable is the element type, followed by []. In this example, the

type is double[], because the element type is double. Here is the declaration of an

array variable:

double[] data = new double[10];

That is, data is a reference to an array of floating-point numbers. It is initialized with

an array of 10 numbers (see Figure 1).

You can also form arrays of objects, for example

BankAccount[] accounts = new BankAccount[10];

Figure 1

An Array Reference and an Array

When an array is first created, all values are initialized with 0 (for an array of

numbers such as int[] or double[]), false (for a boolean[] array), or null

(for an array of object references).

Each element in the array is specified by an integer index that is placed inside square

brackets ([]). For example, the expression

288

289

Chapter 7 Arrays and Array Lists Page 2 of 67

Java Concepts, 5th Edition

data[4]

denotes the element of the data array with index 4.

You can store a value at a location with an assignment statement, such as the

following.

data[2] = 29.95;

Now the position with index 2 of data is filled with the value 29.95 (see Figure 2).

You access array elements with an integer index, using the notation a[i].

To read out the data value at index 2, simply use the expression data[2] as you

would any variable of type double:

System.out.println("The value of this data item is "
 + data [2]);

Figure 2

Storing a Value in an Array

If you look closely at Figure 2, you will notice that the index values start at 0. That is,

data[0] is the first element

289

290

Chapter 7 Arrays and Array Lists Page 3 of 67

Java Concepts, 5th Edition

data[1] is the second element

data[2] is the third element

and so on. This convention can be a source of grief for the newcomer, so you should

pay close attention to the index values. In particular, the last element in the array has

an index one less than the array length. For example, data refers to an array with

length 10. The last element is data[9].

If you try to access an element that does not exist, then an exception is thrown. For

example, the statement

data[10] = 29.95; // ERROR

is a bounds error.

Index values of an array range from 0 to length - 1. Accessing a nonexistent

element results in a bounds error.

To avoid bounds errors, you will want to know how many elements are in an array.

The length field returns the number of elements: data.length is the length

of the data array. Note that there are no parentheses following length—it is an

instance variable of the array object, not a method. However, you cannot assign a new

value to this instance variable. In other words, length is a final public

instance variable. This is quite an anomaly. Normally, Java programmers use a

method to inquire about the properties of an object. You just have to remember to

omit the parentheses in this case.

Use the length field to find the number of elements in an array.

The following code ensures that you only access the array when the index variable i

is within the legal bounds:

if (0 <= i && i < data.length) data[i] = value;

Chapter 7 Arrays and Array Lists Page 4 of 67

Java Concepts, 5th Edition

Arrays suffer from a significant limitation: their length is fixed. If you start out with

an array of 10 elements and later decide that you need to add additional elements,

then you need to make a new array and copy all values of the existing array into the

new array. We will discuss this process in detail in Section 7.7.

SYNTAX 7.1: Array Construction

new typeName[length]

Example:

new double[10]

Purpose:

To construct an array with a given number of elements

SYNTAX 7.2: Array Element Access

arrayReference[index]

Example:

data[2]

Purpose:

To access an element in an array

SELF CHECK

1. What elements does the data array contain after the following

statements?

double[] data = new double[10];
for (int i = 0; i < data.length; i++) data[i] =
i * i;

2. What do the following program segments print? Or, if there is an error,

describe the error and specify whether it is detected at compile-time or

at run-time.

290

291

Chapter 7 Arrays and Array Lists Page 5 of 67

Java Concepts, 5th Edition

a. double[] a = new double[10];

System.out.println(a[0]);

b. double[] b = new double[10];

System.out.println(b[10]);

c. double[] c;

System.out.println(c[0]);

 COMMON ERROR 7.1: Bounds Errors

The most common array error is attempting to access a nonexistent position.

double[] data = new double[10];
data[10] = 29.95;

// Error-only have elements with index values 0 ... 9

When the program runs, an out-of-bounds index generates an exception and

terminates the program.

This is a great improvement over languages such as C and C++. With those

languages there is no error message; instead, the program will quietly (or not so

quietly) corrupt the memory location that is 10 elements away from the start of the

array. Sometimes that corruption goes unnoticed, but at other times, the program

will act flaky or die a horrible death many instructions later. These are serious

problems that make C and C++ programs difficult to debug.

 COMMON ERROR 7.2: Uninitialized Arrays

A common error is to allocate an array reference, but not an actual array.

double[] data;

data[0] = 29.95; // Error—data not initialized

Array variables work exactly like object variables—they are only references to the

actual array. To construct the actual array, you must use the new operator:

double[] data = new double[10];

291

292

Chapter 7 Arrays and Array Lists Page 6 of 67

Java Concepts, 5th Edition

 ADVANCED TOPIC 7.1: Array Initialization

You can initialize an array by allocating it and then filling each entry:

int[] primes = new int[5];
primes[0] = 2;
primes[1] = 3;
primes[2] = 5;
primes[3] = 7;
primes[4] = 11;

However, if you already know all the elements that you want to place in the array,

there is an easier way. List all elements that you want to include in the array,

enclosed in braces and separated by commas:

int[] primes = { 2, 3, 5, 7, 11 };

The Java compiler counts how many elements you want to place in the array,

allocates an array of the correct size, and fills it with the elements that you specify.

If you want to construct an array and pass it on to a method that expects an array

parameter, you can initialize an anonymous array as follows:

new int[] { 2, 3, 5, 7, 11 }

7.2 Array Lists

Arrays are a rather primitive construct. In this section, we introduce the ArrayList

class that lets you collect objects, just like an array does. Array lists offer two

significant conveniences:

The ArrayList class manages a sequence of objects.

• Array lists can grow and shrink as needed

• The ArrayList class supplies methods for many common tasks, such as

inserting and removing elements

292

293

Chapter 7 Arrays and Array Lists Page 7 of 67

Java Concepts, 5th Edition

Let us define an array list of bank accounts and fill it with objects. (The

BankAccount class has been enhanced from the version in Chapter 3. Each bank

account has an account number.)

ArrayList<BankAccount> accounts = new
ArrayList<BankAccount>();
accounts.add(new BankAccount(1001));
accounts.add(new BankAccount(1015));
accounts.add(new BankAccount(1022));

The ArrayList class is a generic class: ArrayList<T> collects objects of

type T.

The type ArraList<BankAccount> denotes an array list of bank accounts. The

angle brackets around the BankAccount type tell you that BankAccount is a type

parameter. You can replace BankAccount with any other class and get a different

array list type. For that reason, ArrayList is called a generic class. You will learn

more about generic classes in Chapter 17. For now, simply use an ArrayList<T>

whenever you want to collect objects of type T. However, keep in mind that you

cannot use primitive types as type parameters— there is no ArrayList<int> or

ArrayList<double>.

When you construct an ArrayList object, it has size 0. You use the add method to

add an object to the end of the array list. The size increases after each call to add. The

size method yields the current size of the array list.

To get objects out of the array list, use the get method, not the [] operator. As with

arrays, index values start at 0. For example, accounts.get(2) retrieves the

account with index 2, the third element in the array list:

BankAccount anAccount = accounts.get(2);

As with arrays, it is an error to access a nonexistent element. The most common

bounds error is to use the following:

int i = accounts.size();

anAccount = accounts.get(i); // Error

The last valid index is accounts.size() - 1.

Chapter 7 Arrays and Array Lists Page 8 of 67

Java Concepts, 5th Edition

To set an array list element to a new value, use the set method.

BankAccount anAccount = new BankAccount(1729);
accounts.set(2, anAccount);

This call sets position 2 of the accounts array list to anAccount, overwriting

whatever value was there before.

The set method can only overwrite existing values. It is different from the add

method, which adds a new object to the end of the array list.

You can also insert an object in the middle of an array list. The call

accounts.add(i, a) adds the object a at position i and moves all elements by

one position, from the current element at position i to the last element in the array list.

Figure 3

Adding an Element in the Middle of an Array List.

293

294

Chapter 7 Arrays and Array Lists Page 9 of 67

Java Concepts, 5th Edition

Figure 4

Removing an Element from the Middle of an Array List

After each call to the add method, the size of the array list increases by 1 (see Figure

3).

Conversely, the call accounts.remove(i) removes the element at position i,

moves all elements after the removed element down by one position, and reduces the

size of the array list by 1 (see Figure 4).

The following program demonstrates the methods of the ArrayList class. Note

that you import the generic class java.util.ArrayList, without the type

parameter.

ch07/arraylist/ArrayListTester.java

 1 import java.util.ArrayList;
 2
 3 /**
 4 This program tests the ArrayList class.
 5 */
 6 public class ArrayListTester
 7 {
 8 public static void main(String[] args)
 9 {
10 ArrayList<BankAccount> accounts
11 = new ArrayList<BankAccount>();
12 accounts.add(new BankAccount(1001));
13 accounts.add(new BankAccount(1015));

294

295

Chapter 7 Arrays and Array Lists Page 10 of 67

Java Concepts, 5th Edition

14 accounts.add(new BankAccount(1729));
15 accounts.add(1, new BankAccount(1008));
16 accounts.remove(0);
17
18 System.out.println("Size: " +
accounts.size()) ;
19 System.out.println("Expected: 3");
20 BankAccount first = accounts.get(0);
21 System.out.println("First account
number: "
22 + first.getAccountNumber());
23 System.out.println("Expected: 1008");
24 BankAccount last =
accounts.get(accounts.size() - 1);
25 System.out.println("Last account number:
"
26 + last.getAccountNumber());
27 System.out.println("Expected: 1729");
28 }
29 }

ch07/arraylist/ArrayListTester.java

 1 /**
 2 A bank account has a balance that can be
changed by
 3 deposits and withdrawals.
 4 */
 5 public class BankAccount
 6 {
 7 /**
 8 Constructs a bank account with a zero
balance.
 9 @param anAccountNumber the account
number for this account
10 */
11 public BankAccount(int anAccountNumber)
12 {
13 accountNumber = anAccountNumber;
14 balance = 0;
15 }
16
17 /**
18 Constructs a bank account with a given
balance.

Chapter 7 Arrays and Array Lists Page 11 of 67

Java Concepts, 5th Edition

19 @param anAccountNumber the account number
for this account
20 @param initialBalance the initial balance
21 */
22 public BankAccount(int anAccountNumber,
double initialBalance)
23 {
24 accountNumber = anAccountNumber;
25 balance = initialBalance;
26 }
27
28 /**
29 Gets the account number of this bank
account.
30 @return the account number
31 */
32 public int getAccountNumber()
33 {
34 return accountNumber;
35 }
36
37 /**
38 Deposits money into the bank account.
39 @param amount the amount to deposit
40 */
41 public void deposit(double amount)
42 {
43 double newBalance = balance + amount;
44 balance = newBalance;
45 }
46
47 /**
48 Withdraws money from the bank account.
49 @param amount the amount to withdraw
50 */
51 public void withdraw(double amount)
52 {
53 double newBalance = balance - amount;
54 balance = newBalance;
55 }
56
57 /**
58 Gets the current balance of the bank
account.
59 @return the current balance

295

296

Chapter 7 Arrays and Array Lists Page 12 of 67

Java Concepts, 5th Edition

60 */
61 public double getBalance()
62 {
63 return balance;
64 }
65
66 private int accountNumber;
67 private double balance;
68 }

Output

Size: 3
Expected: 3
First account number: 1008
Expected: 1008
Last account number: 1729
Expected: 1729

SELF CHECK

3. How do you construct an array of 10 strings? An array list of strings?

4. What is the content of names after the following statements?

ArrayList<String> names = new
ArrayList<String>();
names.add("A");
names.add(0, "B");
names.add("C");
names.remove(1);

 COMMON ERROR 7.3: Length and Size

Unfortunately, the Java syntax for determining the number of elements in an array,

an array list, and a string is not at all consistent. It is a common error to confuse

these. You just have to remember the correct syntax for every data type.

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

296

297

Chapter 7 Arrays and Array Lists Page 13 of 67

Java Concepts, 5th Edition

QUALITY TIP 7.1: Prefer Parameterized Array Lists

Parameterized array lists, such as ArrayList<BankAccount>, were

introduced to the Java language in 2004. Versions of Java prior to version 5.0 had

only an untyped class ArrayList. The untyped array list can hold elements of

any class. (Technically, it holds elements of type Object, the “lowest common

denominator” of all Java classes.) Whenever you retrieve an element from an

untyped array list, the compiler requires you to use a cast:

ArrayList accounts = new ArrayList(); // Untyped

ArrayList

accounts.add(new BankAccount(1729)); // OK—can add

any object

BankAccount a = (BankAccount) a.get(0); // Need cast

The cast is needed because the compiler does not keep track of the objects that

were inserted into the array list, and the array list get method has return type

Object.

Untyped array lists are still a part of the Java language—after all, we want to

continue to use programs that were written before 2004. But you should not use

them for new code. The casts are tedious and also a bit error-prone. If you apply

the wrong cast, the compiler cannot detect your mistake. Instead, your program

will throw an exception.

7.3 Wrappers and Auto-Boxing

Because numbers are not objects in Java, you cannot directly insert them into array

lists. For example, you cannot form an ArrayList<double>. To store sequences

of numbers in an array list, you must turn them into objects by using wrapper classes.

To treat primitive type values as objects, you must use wrapper classes.

There are wrapper classes for all eight primitive types:

297

298

Chapter 7 Arrays and Array Lists Page 14 of 67

Java Concepts, 5th Edition

Primitive Type Wrapper Class
byte Byte

boolean Boolean
char Character
double Double
float Float
int Integer
long Long
short Short

Note that the wrapper class names start with uppercase letters, and that two of them

differ from the names of the corresponding primitive type: Integer and

Character.

Each wrapper class object contains a value of the corresponding primitive type. For

example, an object of the class Double contains a value of type double (see Figure

5).

Wrapper objects can be used anywhere that objects are required instead of primitive

type values. For example, you can collect a sequence of floating-point numbers in an

ArrayList<Double>.

Figure 5

An Object of a Wrapper Class

Starting with Java version 5.0, conversion between primitive types and the

corresponding wrapper classes is automatic. This process is called auto-boxing (even

though auto-wrapping would have been more consistent).

For example, if you assign a number to a Double object, the number is

automatically “put into a box”, namely a wrapper object.

298

299

Chapter 7 Arrays and Array Lists Page 15 of 67

Java Concepts, 5th Edition

Double d = 29.95; // auto-boxing; same as Double d = new

Double(29.95);

If you use an older version of Java, you need to provide the constructor yourself.

Conversely, starting with Java version 5.0, wrapper objects are automatically

“unboxed” to primitive types.

double x = d; // auto-unboxing; same as double x =
d.doubleValue();

With older versions, you need to call a method such as doubleValue,

intValue, or booleanValue for unboxing.

Auto-boxing even works inside arithmetic expressions. For example, the statement

Double e = d + 1;

is perfectly legal. It means:

• Auto-unbox d into a double

• Add 1

• Auto-box the result into a new Double

• Store a reference to the newly created wrapper object in e

If you use Java version 5.0 or higher, array lists of numbers are straightforward.

Simply remember to use the wrapper type when you declare the array list, and then

rely on auto-boxing.

ArrayList<Double> data = new ArrayList<Double>();
data.add(29.95);
double x = data.get(0);

With older versions of Java, using wrapper classes to store numbers in an array list is

a considerable hassle because you must manually box and unbox the numbers.

Chapter 7 Arrays and Array Lists Page 16 of 67

Java Concepts, 5th Edition

No matter which Java version you use, you should know that storing wrapped

numbers is quite inefficient. The use of wrappers is acceptable for short array lists,

but you should use arrays for long sequences of numbers or characters.

SELF CHECK

5. What is the difference between the Types double and Double?

6. Suppose data is an ArrayList<Double> of size > 0. How do you

increment the element with index 0?

7.4 The Enhanced for Loop

Java version 5.0 introduces a very convenient shortcut for a common loop type.

Often, you need to iterate through a sequence of elements—such as the elements of

an array or array list. The enhanced for loop makes this process particularly easy to

program.

The enhanced for loop traverses all elements of a collection.

Suppose you want to total up all data values in an array data. Here is how you use the

enhanced for loop to carry out that task.

double[] data = . . .;
double sum = 0;
for (double e : data)
{
 sum = sum + e;
}

The loop body is executed for each element in the array data. At the beginning of

each loop iteration, the next element is assigned to the variable e. Then the loop body

is executed. You should read this loop as “for each e in data”.

You may wonder why Java doesn't let you write “for each (e in data)”.

Unquestionably, this would have been neater, and the Java language designers

seriously considered this. However, the “for each” construct was added to Java

several years after its initial release. Had new keywords each and in been added to

299

300

Chapter 7 Arrays and Array Lists Page 17 of 67

Java Concepts, 5th Edition

the language, then older programs that happened to use those identifiers as variable or

method names (such as System.in) would no longer have compiled correctly.

You don't have to use the “for each” construct to loop through all elements in an

array. You can implement the same loop with a straightforward for loop and an

explicit index variable:

double[] data = . . .;
double sum = 0;
for (int i = 0; i < data.length; i++)
{
 double e = data[i];
 sum = sum + e;
}

Note an important difference between the “for each” loop and the ordinary for loop.

In the “for each” loop, the element variable e is assigned values data[0],

data[1], and so on. In the ordinary for loop, the index variable i is assigned

values 0, 1, and so on.

You can also use the enhanced for loop to visit all elements of an array list. For

example, the following loop computes the total value of all accounts:

ArrayList<BankAccount> accounts = . . . ;
double sum = 0;
for (BankAccount a : accounts)
{
 sum = sum + a.getBalance();
}

This loop is equivalent to the following ordinary for loop:

double sum = 0;
for (int i = 0; i < accounts.size(); i++)
{
 BankAccount a = accounts.get(i);
 sum = sum + a.getBalance();
}

The “for each” loop has a very specific purpose: traversing the elements of a

collection, from the beginning to the end. Sometimes you don't want to start at the

beginning, or you may need to traverse the collection backwards. In those situations,

do not hesitate to use an ordinary for loop.

300

301

Chapter 7 Arrays and Array Lists Page 18 of 67

Java Concepts, 5th Edition

SYNTAX 7.3: The “for each” Loop

for (Type variable : collection) statement

Example:

for (double e : data)
 sum = sum + e;

Purpose:

To execute a loop for each element in the collection. In each iteration, the variable

is assigned the next element of the collection. Then the statement is executed.

SELF CHECK

7. Write a “for each” loop that prints all elements in the array data.

8. Why is the “for each” loop not an appropriate shortcut for the following

ordinary for loop?

for (int i = 0; i < data.length; i++) data[i] =
i * i;

7.5 Simple Array Algorithms

7.5.1 Counting Matches

To count values in an array list, check all elements and count the matches until

you reach the end of the array list.

Suppose you want to find how many accounts of a certain type you have. Then you

must go through the entire collection and increment a counter each time you find a

match. Here we count the number of accounts whose balance is at least as much as

a given threshold:

public class Bank
{
 public int count(double atLeast)

301

302

Chapter 7 Arrays and Array Lists Page 19 of 67

Java Concepts, 5th Edition

 {
 int matches = 0;
 for (BankAccount a : accounts)
 {
 if (a.getBalance() >= atLeast) matches++;

 // Found a match
 }
 return matches;
 }
 . . .
 private ArrayList<BankAccount> accounts;
}

7.5.2 Finding a Value

Suppose you want to know whether there is a bank account with a particular

account number in your bank. Simply inspect each element until you find a match

or reach the end of the array list. Note that the loop might fail to find an answer,

namely if none of the accounts match. This search process is called a linear search

through the array list.

To find a value in an array list, check all elements until you have found a match.

public class Bank
{
 public BankAccount find(int accountNumber)
 {
 for (BankAccount a : accounts)
 {

 if (a.getAccountNumber() == accountNumber)//

Found a match
 return a;
 }

 return null; // No match in the entire array list
 }
 . . .
}

Note that the method returns null if no match is found.

302

Chapter 7 Arrays and Array Lists Page 20 of 67

Java Concepts, 5th Edition

7.5.3 Finding the Maximum or Minimum

Suppose you want to find the account with the largest balance in the bank. Keep a

candidate for the maximum. If you find an element with a larger value, then replace

the candidate with that value. When you have reached the end of the array list, you

have found the maximum.

To compute the maximum or minimum value of an array list, initialize a

candidate with the starting element. Then compare the candidate with the

remaining elements and update it if you find a larger or smaller value.

There is just one problem. When you visit the beginning of the array, you don't yet

have a candidate for the maximum. One way to overcome that is to set the

candidate to the starting element of the array and start the comparison with the next

element.

BankAccount largestYet = accounts.get(0);
for (int i = 1; i < accounts.size(); i++)
{
 BankAccount a = accounts.get(i);
 if (a.getBalance() > largestYet.getBalance())
 largestYet = a;
}
return largestYet;

Now we use an explicit for loop because the loop no longer visits all elements—it

skips the starting element.

Of course, this approach works only if there is at least one element in the array list.

It doesn't make a lot of sense to ask for the largest element of an empty collection.

We can return null in that case:

if (accounts.size() == 0) return null;
BankAccount largestYet = accounts.get(0);
. . .

See Exercises R7.5 and R7.6 for slight modifications to this algorithm.

302

303

Chapter 7 Arrays and Array Lists Page 21 of 67

Java Concepts, 5th Edition

To compute the minimum of a data set, keep a candidate for the minimum and

replace it whenever you encounter a smaller value. At the end of the array list, you

have found the minimum.

The following sample program implements a Bank class that stores an array list of

bank accounts. The methods of the Bank class use the algorithms that we have

discussed in this section.

ch07/bank/Bank.java

 1 import java.util.ArrayList;
 2
 3 /**
 4 This bank contains a collection of bank
accounts.
 5 */
 6 public class Bank
 7 {
 8 /**
 9 Constructs a bank with no bank accounts.
10 */
11 public Bank()
12 {
13 accounts = new ArrayList<BankAccount>();
14 }
15
16 /**
17 Adds an account to this bank.
18 @param a the account to add
19 */
20 public void addAccount(BankAccount a)
21 {
22 accounts.add(a);
23 }
24
25 /**
26 Gets the sum of the balances of all
accounts in this bank.
27 @return the sum of the balances
28 */
29 public double getTotalBalance()
30 {
31 double total = 0;

303

304

Chapter 7 Arrays and Array Lists Page 22 of 67

Java Concepts, 5th Edition

32 for (BankAccount a : accounts)
33 {
34 total = total + a.getBalance();
35 }
36 return total;
37 }
38
39 /**
40 Counts the number of bank accounts whose
balance is at
41 least a given value.
42 @param atLeast the balance required to
count an account
43 @return the number of accounts having at
least the given balance
44 */
45 public int count(double atLeast)
46 {
47 int matches = 0;
48 for (BankAccount a : accounts)
49 {
50 if (a.getBalance() >= atLeast)

matches++;// Found a match
51 }
52 return matches;
53 }
54
55 /**
56 Finds a bank account with a given number.
57 @param accountNumber the number to find
58 @return the account with the given
number, or null if there
59 is no such account
60 */
61 public BankAccount find(int accountNumber)
62 {
63 for (BankAccount a : accounts)
64 {
65 if (a.getAccountNumber() ==

accountNumber)// Found a match
66 return a;
67 }

68 return null;// No match in the entire array list
69 }

Chapter 7 Arrays and Array Lists Page 23 of 67

Java Concepts, 5th Edition

70
71 /**
72 Gets the bank account with the largest
balance.
73 @return the account with the largest
balance, or null if the
74 bank has no accounts
75 */
76 public BankAccount getMaximum()
77 {
78 if (accounts.size() == 0) return null;
79 BankAccount largestYet =
accounts.get(0);
80 for (int i = 1; i < accounts.size();
i++)
81 {
82 BankAccount a = accounts.get(i);
83 if (a.getBalance() >
largestYet.getBalance())
84 largestYet = a;
85 }
86 return largestYet;
87 }
88
89 private ArrayList<BankAccount> accounts;
90 }

ch07/bank/BankTester.java

 1 /**
 2 This program tests the Bank class.
 3 */
 4 public class BankTester
 5 {
 6 public static void main(String[] args)
 7 {
 8 Bank firstBankOfJava = new Bank();
 9 firstBankOfJava.addAccount(new
BankAccount(1001, 20000));
10 firstBankOfJava.addAccount(new
BankAccount(1015, 10000));
11 firstBankOfJava.addAccount(new
BankAccount(1729, 15000));
12
13 double threshold = 15000;

304

305

Chapter 7 Arrays and Array Lists Page 24 of 67

Java Concepts, 5th Edition

14 int c = firstBankOfJava.
count(threshold);
15 System.out.println("Count: " + c);
16 System.out.println("Expected: 2");
17
18 int accountNumber = 1015;
19 BankAccount a =
firstBankOfJava.find(accountNumber);
20 if (a == null)
21 System.out.println("No matching
account");
22 else
23 System.out.println("Balance of
matching account: "
24 + a.getBalance());
25 System.out.println("Expected: 10000");
26
27 BankAccount max =
firstBankOfJava.getMaximum();
28 System.out.println("Account with
largest balance: "
29 + max.getAccountNumber());
30 System.out.println("Expected: 1001");
31 }
32 }

Output

Count: 2
Expected: 2
Balance of matching account: 10000.0
Expected: 10000
Account with largest balance: 1001
Expected: 1001

SELF CHECK

9. What does the find method do if there are two bank accounts with a

matching account number?

10. Would it be possible to use a “for each” loop in the getMaximum

method?

305

306

Chapter 7 Arrays and Array Lists Page 25 of 67

Java Concepts, 5th Edition

7.6 Two-Dimensional Arrays

Arrays and array lists can store linear sequences. Occasionally you want to store

collections that have a two-dimensional layout. The traditional example is the

tic-tac-toe board (see Figure 6).

Two-dimensional arrays form a tabular, two-dimensional arrangement. You access

elements with an index pair a[i][j].

Such an arrangement, consisting of rows and columns of values, is called a

two-dimensional array or matrix. When constructing a two-dimensional array, you

specify how many rows and columns you need. In this case, ask for 3 rows and 3

columns:

final int ROWS = 3;
final int COLUMNS = 3;
String[][] board = new String [ROWS][COLUMNS];

This yields a two-dimensional array with 9 elements

board[0][0] board[0][1] board[0][2]
board[1][0] board[1][1] board[1][2]
board[2][0] board[2][1] board[2][2]

To access a particular element, specify two subscripts in separate brackets:

board[i][j] = "x";

When filling or searching a two-dimensional array, it is common to use two nested

loops. For example, this pair of loops sets all elements in the array to spaces.

for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 board[i][j] = " ";

Chapter 7 Arrays and Array Lists Page 26 of 67

Java Concepts, 5th Edition

Figure 6

A Tic-Tac-Toe Board

Here is a class and a test program for playing tic-tac-toe. This class does not check

whether a player has won the game. That is left as the proverbial “exercise for the

reader”—see Exercise P7.10.

ch07/twodim/TicTacToe.java

 1 /**
 2 A 3 x 3 tic-tac-toe board.
 3 */
 4 public class TicTacToe
 5 {
 6 /**
 7 Constructs an empty board.
 8 */
 9 public TicTacToe()
10 {
11 board = new String[ROWS][COLUMNS];

12 //Fill with spaces
13 for (int i = 0; i < ROWS; i++)
14 for (int j = 0; j < COLUMNS; j++)
15 board[i][j] = " ";
16 }
17
18 /**
19 Sets a field in the board. The field
must be unoccupied.
20 @param i the row index
21 @param j the column index
22 @param player the player ("x" or "o")
23 */
24 public void set(int i, int j, String player)
25 {

306

307

Chapter 7 Arrays and Array Lists Page 27 of 67

Java Concepts, 5th Edition

26 if (board[i][j].equals(" "))
27 board[i][j] = player;
28 }
29
30 /**
31 Creates a string representation of the
board, such as
32 |x o|
33 | x |
34 | o|.
35 @return the string representation
36 */
37 public String toString()
38 {
39 String r = "";
40 for (int i = 0; i < ROWS; i++)
41 {
42 r = r + "|";
43 for (int j = 0; j < COLUMNS; j++)
44 r = r + board[i][j];
45 r = r + "|\n";
46 }
47 return r;
48 }
49
50 private String[][] board;
51 private static final int ROWS = 3;
52 private static final int COLUMNS = 3;
53 }

ch07/twodim/TicTacToeRunner.java

 1 import java.util. Scanner;
 2
 3 /**
 4 This program runs a TicTacToe game. It
prompts the
 5 user to set positions on the board and
prints out the
 6 result.
 7 */
 8 public class TicTacToeRunner
 9 {
10 public static void main(String[] args)
11 {

307

308

Chapter 7 Arrays and Array Lists Page 28 of 67

Java Concepts, 5th Edition

12 Scanner in = new Scanner(System.in);
13 String player = "x";
14 TicTacToe game = new TicTacToe();
15 boolean done = false;
16 while (!done)
17 {
18 System.out.print(game.toString());
19 System.out.print(
20 "Row for " + player + " (-1 to
exit): ");
21 int row = in.nextInt();
22 if (row < 0) done = true;
23 else
24 {
25 System.out.print("Column for " +
player + ": ");
26 int column = in.nextInt();
27 game.set(row, column, player);
28 if (player.equals("x"))
29 player = "o";
30 else
31 player = "x";
32 }
33 }
34 }
35 }

Output

| |
| |
| |
Row for x (-1 to exit): 1
Column for x: 2
| |
| x|
| |
Row for o (-1 to exit): 0
Column for o: 0
|o |
| x|
| |
Row for x (-1 to exit): -1

308

309

Chapter 7 Arrays and Array Lists Page 29 of 67

Java Concepts, 5th Edition

SELF CHECK

11. How do you declare and initialize a 4-by-4 array of integers?

12. How do you count the number of spaces in the tic-tac-toe board?

 HOW TO 7.1: Working with Array Lists and Arrays

Step 1 Pick the appropriate data structure.

As a rule of thumb, your first choice should be an array list. Use an array

if you collect numbers (or other primitive type values) and efficiency is

an issue, or if you need a two-dimensional array.

Step 2 Construct the array list or array and save a reference in a variable.

For both array lists and arrays, you need to specify the element type. For

an array, you also need to specify the length.

ArrayList<BankAccount> accounts = new
ArrayList<BankAccount>();
double[] balances = new double[n];

Step 3 Add elements.

For an array list, simply call the add method. Each call adds an element

at the end.

accounts.add(new BankAccount(1008));
accounts.add(new BankAccount(1729));

For an array, you use index values to access the elements.

balance[0] = 29.95;
balance[1] = 1000;

Step 4 Process elements.

The most common processing pattern involves visiting all elements in

the collection. Use the “for each” loop for this purpose:

for (BankAccount a : accounts)

Chapter 7 Arrays and Array Lists Page 30 of 67

Java Concepts, 5th Edition

 Do something with a

If you don't need to look at all of the elements, use an ordinary loop

instead. For example, to skip the initial element, you can use this loop.

for (int i = 1; i < accounts.size(); i++)
{
 BankAccount a = accounts.get(i);
 Do something with a
}

For arrays, you use .length instead of .size() and [i] instead of

.get(i).

 ADVANCED TOPIC 7.2: Two-Dimensional Arrays with

Variable Row Lengths

When you declare a two-dimensional array with the command

int[][] a = new int[5][5];

then you get a 5-by-5 matrix that can store 25 elements:

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]
a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]
a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]
a[3][0] a[3][1] a[3][2] a[3][3] a[3][4]
a[4][0] a[4][1] a[4][2] a[4][3] a[4][4]

In this matrix, all rows have the same length. In Java it is possible to declare arrays

in which the row length varies. For example, you can store an array that has a

triangular shape, such as:

b[0][0]
b[1][0] b[1][1]
b[2][0] b[2][1] b[2][2]
b[3][0] b[3][1] b[3][2] b[3][3]
b[4][0] b[4][1] b[4][2] b[4][3] b[4][4]

To allocate such an array, you must work harder. First, you allocate space to hold

five rows. Indicate that you will manually set each row by leaving the second array

index empty:

309

310

Chapter 7 Arrays and Array Lists Page 31 of 67

Java Concepts, 5th Edition

int[][] b = new int[5][];

Then allocate each row separately.

for (int i = 0; i < b.length; i++)
 b[i] = new int[i + 1];

You can access each array element as b[i][j], but be careful that j is less than

b[i].length.

Naturally, such “ragged” arrays are not very common.

 ADVANCED TOPIC 7.3: Multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a

three-dimensional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values,

rubiksCube[i][j][k]

However, these arrays are quite rare, particularly in object-oriented programs, and

we will not consider them further.

7.7 Copying Arrays

Array variables work just like object variables—they hold a reference to the actual

array. If you copy the reference, you get another reference to the same array (see

Figure 7):

An array variable stores a reference to the array. Copying the variable yields a

second reference to the same array.

double[] data = new double[10];

. . .// Fill array
double[] prices = data;

If you want to make a true copy of an array, call the clone method (see Figure 8).

310

311

Chapter 7 Arrays and Array Lists Page 32 of 67

Java Concepts, 5th Edition

Use the clone method to copy the elements of an array.

double[] prices = (double[]) data.clone();

The clone method (which we will more closely study in Chapter 10) has the return

type Object. You need to cast the return value of the clone method to the

appropriate array type such as double[].

Figure 7

Two References to the Same Array

Figure 8

Cloning an Array
311

Chapter 7 Arrays and Array Lists Page 33 of 67

Java Concepts, 5th Edition

Figure 9

The System.arraycopy Method

Occasionally, you need to copy elements from one array into another array. You can

use the static System.arraycopy method for that purpose (see Figure 9):

Use the System.arraycopy method to copy elements from one array to

another.

System.arraycopy(from, fromStart, to, toStart,
count);

311

312

Chapter 7 Arrays and Array Lists Page 34 of 67

Java Concepts, 5th Edition

One use for the System.arraycopy method is to add or remove elements in the

middle of an array. To add a new element at position i into data, first move all

elements from i onward one position up. Then insert the new value.

System.arraycopy(data, i, data, i + 1, data.length -
i - 1); data[i] = x;

Note that the last element in the array is lost (see Figure 10).

To remove the element at position i, copy the elements above the position downward

(see Figure 11).

System.arraycopy(data, i + 1, data, i, data.length -
i - 1);

Figure 10

Inserting a New Element into an Array

312

313

Chapter 7 Arrays and Array Lists Page 35 of 67

Java Concepts, 5th Edition

Figure 11

Removing an Element from an Array

Another use for System.arraycopy is to grow an array that has run out of space.

Follow these steps:

• Create a new, larger array.

 double[] newData = new double[2 * data.length];

• Copy all elements into the new array

 System.arraycopy(data, 0, newData, 0,

data.length);

• Store the reference to the new array in the array variable.

 data = newData;

Figure 12 shows the process.
313

Chapter 7 Arrays and Array Lists Page 36 of 67

Java Concepts, 5th Edition

Figure 12

Growing an Array

SELF CHECK

13. How do you add or remove elements in the middle of an array list?

14. Why do we double the length of the array when it has run out of space

rather than increasing it by one element?

313

314

314

Chapter 7 Arrays and Array Lists Page 37 of 67

Java Concepts, 5th Edition

 COMMON ERROR 7.4: Underestimating the Size of a

Data Set

Programmers commonly underestimate the amount of input data that a user will

pour into an unsuspecting program. The most common problem caused by

underestimating the amount of input data results from the use of fixed-sized arrays.

Suppose you write a program to search for text in a file. You store each line in a

string, and keep an array of strings. How big do you make the array? Surely

nobody is going to challenge your program with an input that is more than 100

lines. Really? A smart grader can easily feed in the entire text of Alice in

Wonderland or War and Peace (which are available on the Internet). All of a

sudden, your program has to deal with tens or hundreds of thousands of lines.

What will it do? Will it handle the input? Will it politely reject the excess input?

Will it crash and burn?

A famous article [1] analyzed how several UNIX programs reacted when they

were fed large or random data sets. Sadly, about a quarter didn't do well at all,

crashing or hanging without a reasonable error message. For example, in some

versions of UNIX the tape backup program tar cannot handle file names that are

longer than 100 characters, which is a pretty unreasonable limitation. Many of

these shortcomings are caused by features of the C language that, unlike Java,

make it difficult to store strings of arbitrary size.

QUALITY TIP 7.2: Make Parallel Arrays into Arrays of

Objects

Programmers who are familiar with arrays, but unfamiliar with object-oriented

programming, sometimes distribute information across separate arrays. Here is a

typical example. A program needs to manage bank data, consisting of account

numbers and balances. Don't store the account numbers and balances in separate

arrays.

// Don’t do this
int[] accountNumbers;
double[] balances;

314

315

Chapter 7 Arrays and Array Lists Page 38 of 67

Java Concepts, 5th Edition

Arrays such as these are called parallel arrays (see Avoid Parallel Arrays). The i

th slice (accountNumbers[i] and balances[i]) contains data that need to

be processed together.

Avoid Parallel Arrays

Reorganizing Parallel Arrays into an Array of Objects

Avoid parallel arrays by changing them into arrays of objects.

If you find yourself using two arrays that have the same length, ask yourself

whether you couldn't replace them with a single array of a class type. Look at a

slice and find the concept that it represents. Then make the concept into a class. In

our example each slice contains an account number and a balance, describing a

bank account. Therefore, it is an easy matter to use a single array of objects

BankAccount[] accounts;

315

316

Chapter 7 Arrays and Array Lists Page 39 of 67

Java Concepts, 5th Edition

(See figure above.) Or, even better, use an ArrayList<BankAccount>.

Why is this beneficial? Think ahead. Maybe your program will change and you

will need to store the owner of the bank account as well. It is a simple matter to

update the BankAccount class. It may well be quite complicated to add a new

array and make sure that all methods that accessed the original two arrays now also

correctly access the third one.

 ADVANCED TOPIC 7.4: Partially Filled Arrays

Suppose you write a program that reads a sequence of numbers into an array. How

many numbers will the user enter? You can't very well ask the user to count the

items before entering them—that is just the kind of work that the user expects the

computer to do. Unfortunately, you now run into a problem. You need to set the

size of the array before you know how many elements you need. Once the array

size is set, it cannot be changed.

To solve this problem, make an array that is guaranteed to be larger than the

largest possible number of entries, and partially fill it. For example, you can decide

that the user will never enter more than 100 data values. Then allocate an array of

size 100:

final int DATA_LENGTH = 100;
double[] data = new double[DATA_LENGTH];

Then keep a companion variable that tells how many elements in the array are

actually used. It is an excellent idea always to name this companion variable by

adding the suffix Size to the name of the array.

int dataSize = 0;
316

Chapter 7 Arrays and Array Lists Page 40 of 67

Java Concepts, 5th Edition

A Partially Filled Array

Now data.length is the capacity of the array data, and dataSize is the

current size of the array (see A Partially Filled Array). Keep adding elements into

the array, incrementing the dataSize variable each time.

data[dataSize] = x;
dataSize++;

This way, dataSize always contains the correct element count. When you run

out of space, make a new array and copy the elements into it, as described in the

preceding section.

Array lists use this technique behind the scenes. An array list contains an array of

objects. When the array runs out of space, the array list allocates a larger array and

copies the data. However, all of this happens inside the array list methods, so you

never need to think about it.

 ADVANCED TOPIC 7.5: Methods with a Variable

Number of Parameters

Starting with Java version 5.0, it is possible to declare methods that receive a

variable number of parameters. For example, we can modify the add method of the

DataSet class of Chapter 6 so that one can add any number of values:

data.add(1, 3, 7);

316

317

Chapter 7 Arrays and Array Lists Page 41 of 67

Java Concepts, 5th Edition

data.add(4);

data.add();// OK but not useful

The modified add method must be declared as

public void add(double... xs)

The … symbol indicates that the method can receive any number of double

values. The xs parameter is actually a double[] array that contains all values

that were passed to the method. The method implementation traverses the

parameter array and processes the values:

for (x : xs)
{
 sum = sum + x;
}

 RANDOM FACT 7.1: An Early Internet Worm

In November 1988, a graduate student at Cornell University launched a virus

program that infected about 6,000 computers connected to the Internet across the

United States. Tens of thousands of computer users were unable to read their

e-mail or otherwise use their computers. All major universities and many high-tech

companies were affected. (The Internet was much smaller then than it is now.)

The particular kind of virus used in this attack is called a worm. The virus program

crawled from one computer on the Internet to the next. The entire program is quite

complex; its major parts are explained in [2]. However, one of the methods used in

the attack is of interest here. The worm would attempt to connect to finger, a

program in the UNIX operating system for finding information on a user who has

an account on a particular computer on the network. Like many programs in

UNIX, finger was written in the C language. C does not have array lists, only

arrays, and when you construct an array in C, as in Java, you have to make up your

mind how many elements you need. To store the user name to be looked up (say,

walters@cs.sjsu.edu), the finger program allocated an array of 512

characters, under the assumption that nobody would ever provide such a long

input. Unfortunately, C, unlike Java, does not check that an array index is less than

the length of the array. If you write into an array, using an index that is too large,

you simply overwrite memory locations that belong to some other objects. In some

317

318

Chapter 7 Arrays and Array Lists Page 42 of 67

Java Concepts, 5th Edition

versions of the finger program, the programmer had been lazy and had not

checked whether the array holding the input characters was large enough to hold

the input. So the worm program purposefully filled the 512-character array with

536 bytes. The excess 24 bytes would overwrite a return address, which the

attacker knew was stored just after the line buffer. When that function was

finished, it didn't return to its caller but to code supplied by the worm (see A

“Buffer Overrun” Attack). That code ran under the same super-user privileges as

finger, allowing the worm to gain entry into the remote system.

Had the programmer who wrote finger been more conscientious, this particular

attack would not be possible. In C++ and C, all programmers must be especially

careful not to overrun array boundaries.

One may well wonder what would possess a skilled programmer to spend many

weeks or months to plan the antisocial act of breaking into thousands of computers

and disabling them. It appears that the break-in was fully intended by the author,

but the disabling of the computers was a side effect of continuous reinfection and

efforts by the worm to avoid being killed. It is not clear whether the author was

aware that these moves would cripple the attacked machines.

A “Buffer Overrun” Attack

In recent years, the novelty of vandalizing other people's computers has worn off

some-what, and there are fewer jerks with programming skills who write new

viruses. Other attacks by individuals with more criminal energy, whose intent has

been to steal information or money, have surfaced. See [3] for a very readable

account of the discovery and apprehension of one such person.

318

319

Chapter 7 Arrays and Array Lists Page 43 of 67

Java Concepts, 5th Edition

7.8 Regression Testing

It is a common and useful practice to make a new test whenever you find a program

bug. You can use that test to verify that your bug fix really works. Don't throw the

test away; feed it to the next version after that and all subsequent versions. Such a

collection of test cases is called a test suite.

A test suite is a set of tests for repeated testing.

You will be surprised how often a bug that you fixed will reappear in a future version.

This is a phenomenon known as cycling. Sometimes you don't quite understand the

reason for a bug and apply a quick fix that appears to work. Later, you apply a

different quick fix that solves a second problem but makes the first problem appear

again. Of course, it is always best to think through what really causes a bug and fix

the root cause instead of doing a sequence of “Band-Aid” solutions. If you don't

succeed in doing that, however, you at least want to have an honest appraisal of how

well the program works. By keeping all old test cases around and testing them against

every new version, you get that feedback. The process of testing against a set of past

failures is called regression testing.

Regression testing involves repeating previously run tests to ensure that known

failures of prior versions do not appear in new versions of the software.

How do you organize a suite of tests? An easy technique is to produce multiple tester

classes, such as BankTester1, BankTester2, and so on.

Another useful approach is to provide a generic tester, and feed it inputs from

multiple files. Consider this tester for the Bank class of Section 7.5:

ch07/regression/BankTester.java

 1 /**
 2 This program tests the Bank class.
 3 */
 4 public class BankTester
 5 {
 6 public static void main(String[] args)

Chapter 7 Arrays and Array Lists Page 44 of 67

Java Concepts, 5th Edition

 7 {
 8 Bank firstBankOfJava = new Bank();
 9 firstBankOfJava.addAccount(new
BankAccount(1001, 20000));
10 firstBankOfJava.addAccount(new
BankAccount(1015, 10000));
11 firstBankOfJava.addAccount(new
BankAccount(1729, 15000));
12
13 Scanner in = new Scanner(System.in);
14
15 double threshold = in.nextDouble();
16 int c = firstBankOfJava.count(threshold);
17 System.out.println("Count: " + c);
18 int expectedCount = in.nextInt();
19 System.out.println("Expected: " +
expectedCount);
20
21 int accountNumber = in.nextInt;
22 BankAccount a =
firstBankOfJava.find(accountNumber);
23 if (a == null)
24 System.out.println("No matching
account");
25 else
26 {
27 System.out.println("Balance of
maatching account: "
28 + a.getBalance());
29 int matchingBalance = in.nextLine();
30 System.out.println("Expected: " +
matchingBalance);
31 }
32 }
33 }

Rather than using fixed values for the threshold and the account number to be found,

the program reads these values, and the expected responses. By running the program

with different inputs, we can test different scenarios, such as the ones for diagnosing

off-by-one errors discussed in Common Error 6.2.

Of course, it would be tedious to type in the input values by hand every time the test

is executed. It is much better to save the inputs in a file, such as the following:

319

320

Chapter 7 Arrays and Array Lists Page 45 of 67

Java Concepts, 5th Edition

ch07/regression/input1.txt

15000
2
1015
10000

The command line interfaces of most operating systems provide a way to link a file to

the input of a program, as if all the characters in the file had actually been typed by a

user. Type the following command into a shell window:

java BankTester < input1.txt

The program is executed, but it no longer reads input from the keyboard. Instead, the

System.in object (and the Scanner that reads from System.in) gets the input

from the file input1.txt. This process is called input redirection.

The output is still displayed in the console window:

Output

Count: 2
Expected: 2
Balance of matching account: 10000
Expected: 10000

You can also redirect output. To capture the output of a program in a file, use the

command

java BankTester < input1.txt > output1.txt

This is useful for archiving test cases.

SELF CHECK

15. Suppose you modified the code for a method. Why do you want to

repeat tests that already passed with the previous version of the code?

16. Suppose a customer of your program finds an error. What action should

you take beyond fixing the error?

320

321

Chapter 7 Arrays and Array Lists Page 46 of 67

Java Concepts, 5th Edition

17. Why doesn't the BankTester program contain prompts for the inputs?

 PRODUCTIVITY HINT 7.1: Batch Files and Shell Scripts

If you need to perform the same tasks repeatedly on the command line, then it is

worth learning about the automation features offered by your operating system.

Under Windows, you use batch files to execute a number of commands

automatically. For example, suppose you need to test a program by running three

testers:

java BankTester1
java BankTester2
java BankTester3 < input1.txt

Then you find a bug, fix it, and run the tests again. Now you need to type the three

commands once more. There has to be a better way. Under Windows, put the

commands in a text file and call it test.bat:

File test.bat

1 java BankTester1
2 java BankTester2
3 java BankTester3 < input1.txt

Then you just type

test.bat

and the three commands in the batch file execute automatically.

Batch files are a feature of the operating system, not of Java. On Linux, Mac OS,

and UNIX, shell scripts are used for the same purpose. In this simple example, you

can execute the commands by typing

sh test.bat

There are many uses for batch files and shell scripts, and it is well worth it to learn

more about advanced features such as parameters and loops.
321

Chapter 7 Arrays and Array Lists Page 47 of 67

Java Concepts, 5th Edition

 RANDOM FACT 7.2: The Therac-25 Incidents

The Therac-25 is a computerized device to deliver radiation treatment to cancer

patients (see Typical Therac-25 Facility). Between June 1985 and January 1987,

several of these machines delivered serious overdoses to at least six patients,

killing some of them and seriously maiming the others.

The machines were controlled by a computer program. Bugs in the program were

directly responsible for the overdoses. According to Leveson and Turner [4], the

program was written by a single programmer, who had since left the

manufacturing company producing the device and could not be located. None of

the company employees interviewed could say anything about the educational

level or qualifications of the programmer.

The investigation by the federal Food and Drug Administration (FDA) found that

the program was poorly documented and that there was neither a specification

document nor a formal test plan. (This should make you think. Do you have a

formal test plan for your programs?)

The overdoses were caused by an amateurish design of the software that had to

control different devices concurrently, namely the keyboard, the display, the

printer, and of course the radiation device itself. Synchronization and data sharing

between the tasks were done in an ad hoc way, even though safe multitasking

techniques were known at the time. Had the programmer enjoyed a formal

education that involved these techniques, or taken the effort to study the literature,

a safer machine could have been built. Such a machine would have probably

involved a commercial multitasking system, which might have required a more

expensive computer.

The same flaws were present in the software controlling the predecessor model,

the Therac-20, but that machine had hardware interlocks that mechanically

prevented overdoses.

321

322

Chapter 7 Arrays and Array Lists Page 48 of 67

Java Concepts, 5th Edition

Typical Therac-25 Facility

The hardware safety devices were removed in the Therac-25 and replaced by

checks in the software, presumably to save cost.

Frank Houston of the FDA wrote in 1985: “A significant amount of software for

life-critical systems comes from small firms, especially in the medical device

industry; firms that fit the profile of those resistant to or uninformed of the

principles of either system safety or software engineering” [4].

Who is to blame? The programmer? The manager who not only failed to ensure

that the programmer was up to the task but also didn't insist on comprehensive

testing? The hospitals that installed the device, or the FDA, for not reviewing the

design process? Unfortunately, even today there are no firm standards of what

constitutes a safe software design process.

CHAPTER SUMMARY

1. An array is a sequence of values of the same type.

322

323

Chapter 7 Arrays and Array Lists Page 49 of 67

Java Concepts, 5th Edition

2. You access array elements with an integer index, using the notation a[i].

3. Index values of an array range from 0 to length - 1. Accessing a

nonexistent element results in a bounds error.

4. Use the length field to find the number of elements in an array.

5. The ArrayList class manages a sequence of objects.

6. The ArrayList class is a generic class: ArrayList<T> collects objects of

type T.

7. To treat primitive type values as objects, you must use wrapper classes.

8. The enhanced for loop traverses all elements of a collection.

9. To count values in an array list, check all elements and count the matches until

you reach the end of the array list.

10. To find a value in an array list, check all elements until you have found a match.

11. To compute the maximum or minimum value of an array list, initialize a

candidate with the starting element. Then compare the candidate with the

remaining elements and update it if you find a larger or smaller value.

12. Two-dimensional arrays form a tabular, two-dimensional arrangement. You

access elements with an index pair a[i][j].

13. An array variable stores a reference to the array. Copying the variable yields a

second reference to the same array.

14. Use the clone method to copy the elements of an array.

15. Use the System.arraycopy method to copy elements from one array to

another.

16. Avoid parallel arrays by changing them into arrays of objects.

17. A test suite is a set of tests for repeated testing.

323

324

Chapter 7 Arrays and Array Lists Page 50 of 67

Java Concepts, 5th Edition

18. Regression testing involves repeating previously run tests to ensure that known

failures of prior versions do not appear in new versions of the software.

FURTHER READING

1. Barton P. Miller, Louis Fericksen, and Bryan So, “An Empirical Study of

the Reliability of Unix Utilities”, Communications of the ACM, vol. 33,

no. 12 (December 1990), pp. 32–44.

2. Peter J. Denning, Computers under Attack, Addison-Wesley, 1990.

3. Cliff Stoll, The Cuckoo's Egg, Doubleday, 1989.

4. Nancy G. Leveson and Clark S. Turner, “An Investigation of the

Therac-25 Accidents,” IEEE Computer, July 1993, pp. 18–41.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.lang.Boolean
 booleanValue
java.lang.Double
 doubleValue
java.lang.Integer
 intValue
java.lang.System
 arraycopy
java.util.ArrayList<E>
 add
 get
 remove
 set
 size

REVIEW EXERCISES

★ Exercise R7.1. What is an index? What are the bounds of an array or array

list? What is a bounds error?

Chapter 7 Arrays and Array Lists Page 51 of 67

Java Concepts, 5th Edition

★ Exercise R7.2. Write a program that contains a bounds error. Run the

program. What happens on your computer? How does the error message

help you locate the error?

★★Exercise R7.3. Write Java code for a loop that simultaneously computes

the maximum and minimum values of an array list. Use an array list of

accounts as an example.

★ Exercise R7.4. Write a loop that reads 10 strings and inserts them into an

array list. Write a second loop that prints out the strings in the opposite

order from which they were entered.

★★Exercise R7.5. Consider the algorithm that we used for determining the

maximum value in an array list. We set largestYet to the starting

element, which meant that we were no longer able to use the “for each”

loop. An alternate approach is to initialize largestYet with null, then

loop through all elements. Of course, inside the loop you need to test

whether largestYet is still null. Modify the loop that finds the bank

account with the largest balance, using this technique. Is this approach

more or less efficient than the one used in the text?

★★★Exercise R7.6. Consider another variation of the algorithm for

determining the maximum value. Here, we compute the maximum value

of an array of numbers.

 double max = 0;// Contains an error!
 for (x : values)
 {
 if (x > max) max = x;
 }

However, this approach contains a subtle error. What is the error, and

how can you fix it?

★ Exercise R7.7. For each of the following sets of values, write code that

fills an array a with the values.

a. 1 2 3 4 5 6 7 8 9 10

b. 0 2 4 6 8 10 12 14 16 18 20

324

325

Chapter 7 Arrays and Array Lists Page 52 of 67

Java Concepts, 5th Edition

c. 1 4 9 16 25 36 49 64 81 100

d. 0 0 0 0 0 0 0 0 0 0

e. 1 4 9 16 9 7 4 9 11

Use a loop when appropriate.

★★Exercise R7.8. Write a loop that fills an array a with 10 random numbers

between 1 and 100. Write code (using one or more loops) to fill a with 10

different random numbers between 1 and 100.

★ Exercise R7.9. What is wrong with the following loop?

 double[] data = new double[10];
 for (int i = 1; i <= 10; i++) data[i] = i * i;

Explain two ways of fixing the error.

★★★Exercise R7.10. Write a program that constructs an array of 20 integers

and fills the first ten elements with the numbers 1, 4, 9, …, 100. Compile

it and launch the debugger. After the array has been filled with three

numbers, inspect it. What are the contents of the elements in the array

beyond those that you filled?

★★Exercise R7.11. Rewrite the following loops without using the “for each”

construct. Here, data is an array of double values.

a. for (x : data) sum = sum + x;

b. for (x : data) if (x == target) return true;

c. int i = 0;

for (x : data) { data [i] = 2 * x; i++; }

★★Exercise R7.12. Rewrite the following loops, using the “for each”

construct. Here, data is an array of double values.

a. for (int i = 0; i < data.length; i++) sum =

sum + data[i];

325

326

Chapter 7 Arrays and Array Lists Page 53 of 67

Java Concepts, 5th Edition

b. for (int i = 1; i < data.length; i++) sum =

sum + data[i];

c. for (int i = 0; i < data.length; i++)

 if (data[i] == target) return i;

★★★Exercise R7.13. Give an example of

a. A useful method that has an array of integers as a parameter that is

not modified.

b. A useful method that has an array of integers as a parameter that is

modified.

c. A useful method that has an array of integers as a return value.

Describe each method; don't implement the methods.

★★★Exercise R7.14. A method that has an array list as a parameter can

change the contents in two ways. It can change the contents of individual

array elements, or it can rearrange the elements. Describe two useful

methods with ArrayList<BankAccount> parameters that change

an array list of BankAccount objects in each of the two ways just

described.

★ Exercise R7.15. What are parallel arrays? Why are parallel arrays

indications of poor programming? How can they be avoided?

★★Exercise R7.16. How do you perform the following tasks with arrays in

Java?

a. Test that two arrays contain the same elements in the same order

b. Copy one array to another

c. Fill an array with zeroes, overwriting all elements in it

d. Remove all elements from an array list

★ Exercise R7.17. True or false?

Chapter 7 Arrays and Array Lists Page 54 of 67

Java Concepts, 5th Edition

a. All elements of an array are of the same type.

b. Array subscripts must be integers.

c. Arrays cannot contain string references as elements.

d. Arrays cannot use strings as subscripts.

e. Parallel arrays must have equal length.

f. Two-dimensional arrays always have the same numbers of rows and

columns.

g. Two parallel arrays can be replaced by a two-dimensional array.

h. Elements of different columns in a two-dimensional array can have

different types.

★★Exercise R7.18. True or false?

a. A method cannot return a two-dimensional array.

b. A method can change the length of an array parameter.

c. A method can change the length of an array list that is passed as a

parameter.

d. An array list can hold values of any type.

★TExercise R7.19. Define the terms regression testing and test suite.

★TExercise R7.20. What is the debugging phenomenon known as cycling?

What can you do to avoid it?

Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P7.1. Add the following methods to the Bank class:

326

327

Chapter 7 Arrays and Array Lists Page 55 of 67

Java Concepts, 5th Edition

public void addAccount(int accountNumber,
double initialBalance)
public void deposit(int accountNumber, double
amount)
public void withdraw(int accountNumber,
double amount)
public double getBalance(int accountNumber)

★ Exercise P7.2. Implement a class Purse. A purse contains a collection of

coins. For simplicity, we will only store the coin names in an

ArrayList<String>. (We will discuss a better representation in

Chapter 8.) Supply a method

void addCoin(String coinName)

Add a method toString to the Purse class that prints the coins in the

purse in the format

Purse[Quarter,Dime,Nickel,Dime]

★ Exercise P7.3. Write a method reverse that reverses the sequence of coins

in a purse. Use the toString method of the preceding assignment to test

your code. For example, if reverse is called with a purse

Purse[Quarter,Dime,Nickel,Dime]

then the purse is changed to

Purse[Dime,Nickel,Dime,Quarter]

★ Exercise P7.4. Add a method to the Purse class

public void transfer(Purse other)

that transfers the contents of one purse to another. For example, if a is

Purse[Quarter,Dime,Nickel,Dime]

and b is

327

328

Chapter 7 Arrays and Array Lists Page 56 of 67

Java Concepts, 5th Edition

Purse[Dime,Nickel]

then after the call a.transfer(b), a is

Purse[Quarter,Dime,Nickel,Dime,Dime,Nickel]

and b is empty.

★ Exercise P7.5. Write a method for the Purse class

public boolean sameContents(Purse other)

that checks whether the other purse has the same coins in the same order.

★★Exercise P7.6. Write a method for the Purse class

public boolean sameCoins(Purse other)

that checks whether the other purse has the same coins, perhaps in a

different order. For example, the purses

Purse[Quarter,Dime,Nickel,Dime]

and

Purse[Nickel,Dime,Dime,Quarter]

should be considered equal.

You will probably need one or more helper methods.

★★Exercise P7.7. A Polygon is a closed curve made up from line segments

that join the polygon's corner points. Implement a class Polygon with

methods

public double perimeter()

and

Chapter 7 Arrays and Array Lists Page 57 of 67

Java Concepts, 5th Edition

public double area()

that compute the circumference and area of a polygon. To compute the

perimeter, compute the distance between adjacent points, and total up the

distances. The area of a polygon with corners (x0, y0),…, (xn−1, yn−1) is

(+ +⋯ + − − −⋯ −)
1

2
x
0
y
0

x
1
y
2

x
n − 1

y
0

y
0
x
1

y
1
x
2

y
n − 1

x
0

As test cases, compute the perimeter and area of a rectangle and of a

regular hexagon. Note: You need not draw the polygon—that is done in

Exercise P7.15.

★ Exercise P7.8. Write a program that reads a sequence of integers into an

array and that computes the alternating sum of all elements in the array. For

example, if the program is executed with the input data

1 4 9 16 9 7 4 9 11

then it computes

1 − 4 + 9 − 16 + 9 − 7 + 4 − 9 + 11 = − 2

PROGRAMMING EXERCISES

★★Exercise P7.9. Write a program that produces random permutations of the

numbers 1 to 10. To generate a random permutation, you need to fill an

array with the numbers 1 to 10 so that no two entries of the array have the

same contents. You could do it by brute force, by calling

Random.nextInt until it produces a value that is not yet in the array.

Instead, you should implement a smart method. Make a second array and

fill it with the numbers 1 to 10. Then pick one of those at random, remove

it, and append it to the permutation array. Repeat 10 times. Implement a

class Permutation Generator with a method

int[] nextPermutation

328

329

Chapter 7 Arrays and Array Lists Page 58 of 67

Java Concepts, 5th Edition

★★Exercise P7.10. Add a method getWinner to the TicTacToe class of

Section 7.6. It should return "x" or "o" to indicate a winner, or " " if

there is no winner yet. Recall that a winning position has three matching

marks in a row, column, or diagonal.

★★★Exercise P7.11. Write an application that plays tic-tac-toe. Your

program should draw the game board, change players after every

successful move, and pronounce the winner.

★★Exercise P7.12. Magic squares. An n × n matrix that is filled with the

numbers 1, 2, 3, …, n
2
 is a magic square if the sum of the elements in each

row, in each column, and in the two diagonals is the same value. For

example,

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Write a program that reads in n
2
 values from the keyboard and tests

whether they form a magic square when arranged as a square matrix. You

need to test three features:

• Did the user enter n
2
 numbers for some n?

• Do each of the numbers 1, 2, …, n
2
 occur exactly once in the user

input?

• When the numbers are put into a square, are the sums of the rows,

columns, and diagonals equal to each other?

If the size of the input is a square, test whether all numbers between 1 and

n
2
 are present. Then compute the row, column, and diagonal sums.

Implement a class Square with methods

public void add(int i)
public boolean isMagic()

Chapter 7 Arrays and Array Lists Page 59 of 67

Java Concepts, 5th Edition

★★Exercise P7.13. Implement the following algorithm to construct magic

n-by-n
2
 squares; it works only if n is odd. Place a 1 in the middle of the

bottom row. After k has been placed in the (i, j) square, place k + 1 into the

square to the right and down, wrapping around the borders. However, if the

square to the right and down has already been filled, or if you are in the

lower-right corner, then you must move to the square straight up instead.

Here is the 5 × 5 square that you get if you follow this method:

11 18 25 2 9

10 12 19 21 3

4 6 13 20 22

23 5 7 14 16

17 24 1 8 15

Write a program whose input is the number n and whose output is the

magic square of order n if n is odd. Implement a class MagicSquare

with a constructor that constructs the square and a toString method that

returns a representation of the square.

★GExercise P7.14. Implement a class Cloud that contains an array list of

Point 2D.Double objects. Support methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw each point as a tiny circle.

Write a graphical application that draws a cloud of 100 random points.

★★GExercise P7.15. Implement a class Polygon that contains an array list

of Point2D.Double objects. Support methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw the polygon by joining adjacent points with a line, and then closing

it up by joining the end and start points.

329

330

Chapter 7 Arrays and Array Lists Page 60 of 67

Java Concepts, 5th Edition

Write a graphical application that draws a square and a pentagon using

two Polygon objects.

★GExercise P7.16. Write a class Chart with methods

public void add(int value)
public void draw(Graphics2D g2)

that displays a stick chart of the added values, like this:

You may assume that the values are pixel positions.

★★GExercise P7.17. Write a class BarChart with methods

public void add(double value)
public void draw(Graphics2D g2)

that displays a chart of the added values. You may assume that all values

in data are positive. Stretch the bars so that they fill the entire area of the

screen. You must figure out the maximum of the values, and then scale

each bar.

★★★GExercise P7.18. Improve the BarChart class of Exercise P7.17 to

work correctly when the data contains negative values.

★★GExercise P7.19. Write a class PieChart with methods

public void add (double value)
public void draw(Graphics2D g2)

that displays a pie chart of the values in data. You may assume that all

data values are positive.

330

331

Chapter 7 Arrays and Array Lists Page 61 of 67

Java Concepts, 5th Edition

Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 7.1. Poker Simulator. In this assignment, you will implement a

simulation of a popular casino game usually called video poker. The card

deck contains 52 cards, 13 of each suit. At the beginning of the game, the

deck is shuffled. You need to devise a fair method for shuffling. (It does

not have to be efficient.) Then the top five cards of the deck are

presented to the player. The player can reject none, some, or all of the

cards. The rejected cards are replaced from the top of the deck. Now the

hand is scored. Your program should pronounce it to be one of the

following:

• No pair—The lowest hand, containing five separate cards that do

not match up to create any of the hands below.

• One pair—Two cards of the same value, for example two queens.

• Two pairs—Two pairs, for example two queens and two 5’s.

• Three of a kind—Three cards of the same value, for example three

queens.

• Straight—Five cards with consecutive values, not necessarily of

the same suit, such as 4, 5, 6, 7, and 8. The ace can either precede

a 2 or follow a king.

• Flush—Five cards, not necessarily in order, of the same suit.

• Full House—Three of a kind and a pair, for example three queens

and two 5's

• Four of a Kind—Four cards of the same value, such as four queens.

• Straight Flush—A straight and a flush: Five cards with

consecutive values of the same suit.

Chapter 7 Arrays and Array Lists Page 62 of 67

Java Concepts, 5th Edition

• Royal Flush—The best possible hand in poker. A 10, jack, queen,

king, and ace, all of the same suit.

If you are so inclined, you can implement a wager. The player pays a

JavaDollar for each game, and wins according to the following payout

chart:

Hand Payout Hand Payout

Royal Flush 250 Straight 4

Straight Flush 50 Three of a Kind 3

Four of a Kind 25 Two Pair 2

Full House 6 Pair of Jacks or Better 1

Flush 5

★★★Project 7.2. The Game of Life is a well-known mathematical game that

gives rise to amazingly complex behavior, although it can be specified

by a few simple rules. (It is not actually a game in the traditional sense,

with players competing for a win.) Here are the rules. The game is

played on a rectangular board. Each square can be either empty or

occupied. At the beginning, you can specify empty and occupied cells in

some way; then the game runs automatically. In each generation, the

next generation is computed. A new cell is born on an empty square if it

is surrounded by exactly three occupied neighbor cells. A cell dies of

overcrowding if it is surrounded by four or more neighbors, and it dies of

loneliness if it is surrounded by zero or one neighbor. A neighbor is an

occupant of an adjacent square to the left, right, top, or bottom or in a

diagonal direction. Figure 13 shows a cell and its neighbor cells.

Many configurations show interesting behavior when subjected to these

rules. Figure 14 shows a glider, observed over five generations. Note

how it moves. After four generations, it is transformed into the identical

shape, but located one square to the right and below.

One of the more amazing configurations is the glider gun: a complex

collection of cells that, after 30 moves, turns back into itself and a glider

(see Figure 15).

331

332

Chapter 7 Arrays and Array Lists Page 63 of 67

Java Concepts, 5th Edition

Figure 13

Neighborhood of a Cell in the Game of Life

Figure 14

Glider
332

Chapter 7 Arrays and Array Lists Page 64 of 67

Java Concepts, 5th Edition

Figure 15

Glider Gun

Program the game to eliminate the drudgery of computing successive

generations by hand. Use a two-dimensional array to store the

rectangular configuration. Write a program that shows successive

332

333

333

334

Chapter 7 Arrays and Array Lists Page 65 of 67

Java Concepts, 5th Edition

generations of the game. You may get extra credit if you implement a

graphical application that allows the user to add or remove cells by

clicking with the mouse.

ANSWERS TO SELF-CHECK QUESTIONS

1. 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100.

2.

a. 0

b. a run-time error: array index out of bounds

c. a compile-time error: c is not initialized

3. new String[10];

new ArrayList<String>();

4. names contains the strings "B" and "C" at positions 0 and 1.

5. double is one of the eight primitive types. Double is a class type.

6. data.set(0, data.get(0) + 1);

7. for (double x : data) System.out.println(x);

8. The loop writes a value into data[i]. The “for each” loop does not have

the index variable i.

9. It returns the first match that it finds.

10. Yes, but the first comparison would always fail.

11. int[][] array = new int[4][4];

12. int count = 0;

for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 if (board[i][j].equals(" ")) count++;

Chapter 7 Arrays and Array Lists Page 66 of 67

Java Concepts, 5th Edition

13. Use the add and remove methods.

14. Allocating a new array and copying the elements is time-consuming. You

wouldn't want to go through the process every time you add an element.

15. It is possible to introduce errors when modifying code.

16. Add a test case to the test suite that verifies that the error is fixed.

17. There is no human user who would see the prompts because input is

provided from a file.

Chapter 7 Arrays and Array Lists Page 67 of 67

Java Concepts, 5th Edition

Chapter 8 Designing Classes

CHAPTER GOALS

• To learn how to choose appropriate classes to implement

• To understand the concepts of cohesion and coupling

• To minimize the use of side effects

• To document the responsibilities of methods and their callers with

preconditions and postconditions

• To understand the difference between instance methods and static methods

• To introduce the concept of static fields

• To understand the scope rules for local variables and instance fields

• To learn about packages

T To learn about unit testing frameworks

In this chapter you will learn more about designing classes. First, we will discuss

the process of discovering classes and defining methods. Next, we will discuss how

the concepts of pre- and postconditions enable you to specify, implement, and invoke

methods correctly. You will also learn about several more technical issues, such as

static methods and variables. Finally, you will see how to use packages to organize

your classes.

8.1 Choosing Classes

You have used a good number of classes in the preceding chapters and probably

designed a few classes yourself as part of your programming assignments. Designing

a class can be a challenge—it is not always easy to tell how to start or whether the

result is of good quality.

335

335

336

Chapter 8 Designing Classes Page 1 of 71

Java Concepts, 5th Edition

Students who have prior experience with programming in another programming

language are used to programming functions. A function carries out an action. In

object-oriented programming, the actions appear as methods. Each method, however,

belongs to a class. Classes are collections of objects, and objects are not actions—

they are entities. So you have to start the programming activity by identifying objects

and the classes to which they belong.

Remember the rule of thumb from Chapter 2: Class names should be nouns, and

method names should be verbs.

A class should represent a single concept from the problem domain, such as

business, science, or mathematics.

What makes a good class? Most importantly, a class should represent a single

concept. Some of the classes that you have seen represent concepts from mathematics:

• Point

• Rectangle

• Ellipse

Other classes are abstractions of real-life entities.

• BankAccount

• CashRegister

For these classes, the properties of a typical object are easy to understand. A

Rectangle object has a width and height. Given a BankAccount object, you can

deposit and withdraw money. Generally, concepts from the part of the universe that a

program concerns, such as science, business, or a game, make good classes. The

name for such a class should be a noun that describes the concept. Some of the

standard Java class names are a bit strange, such as Ellipse2D.Double, but you

can choose better names for your own classes.

Another useful category of classes can be described as actors. Objects of an actor

class do some kinds of work for you. Examples of actors are the Scanner class of

Chapter 4 and the Random class in Chapter 6. A Scanner object scans a stream for

336

337

Chapter 8 Designing Classes Page 2 of 71

Java Concepts, 5th Edition

numbers and strings. A Random object generates random numbers. It is a good idea

to choose class names for actors that end in “-er” or “-or”. (A better name for the

Random class might be RandomNumberGenerator.)

Very occasionally, a class has no objects, but it contains a collection of related static

methods and constants. The Math class is a typical example. Such a class is called a

utility class.

Finally, you have seen classes with only a main method. Their sole purpose is to

start a program. From a design perspective, these are somewhat degenerate examples

of classes.

What might not be a good class? If you can't tell from the class name what an object

of the class is supposed to do, then you are probably not on the right track. For

example, your homework assignment might ask you to write a program that prints

paychecks. Suppose you start by trying to design a class PaycheckProgram. What

would an object of this class do? An object of this class would have to do everything

that the homework needs to do. That doesn't simplify anything. A better class would

be Paycheck. Then your program can manipulate one or more Paycheck objects.

Another common mistake, particularly by students who are used to writing programs

that consist of functions, is to turn an action into a class. For example, if your

homework assignment is to compute a paycheck, you may consider writing a class

ComputePaycheck. But can you visualize a “ComputePaycheck” object? The fact

that “ComputePaycheck” isn't a noun tips you off that you are on the wrong track. On

the other hand, a Paycheck class makes intuitive sense. The word “paycheck” is a

noun. You can visualize a paycheck object. You can then think about useful methods

of the Paycheck class, such as computeTaxes, that help you solve the

assignment.

SELF CHECK

1. What is the rule of thumb for finding classes?

2. Your job is to write a program that plays chess. Might ChessBoard be

an appropriate class? How about MovePiece?
337

Chapter 8 Designing Classes Page 3 of 71

Java Concepts, 5th Edition

8.2 Cohesion and Coupling

In this section you will learn two useful criteria for analyzing the quality of the public

interface of a class.

A class should represent a single concept. The public methods and constants that the

public interface exposes should be cohesive. That is, all interface features should be

closely related to the single concept that the class represents.

The public interface of a class is cohesive if all of its features are related to the

concept that the class represents.

If you find that the public interface of a class refers to multiple concepts, then that is a

good sign that it may be time to use separate classes instead. Consider, for example,

the public interface of the CashRegister class in Chapter 4:

public class CashRegister
{
 public void enterPayment(int dollars, int
quarters,
 int dimes, int nickels, int pennies)
 . . .
 public static final double NICKEL_VALUE = 0.05;
 public static final double DIME_VALUE = 0.1;
 public static final double QUARTER_VALUE = 0.25;
 . . .
}

There are really two concepts here: a cash register that holds coins and computes their

total, and the values of individual coins. (For simplicity, we assume that the cash

register only holds coins, not bills. Exercise P8.1 discusses a more general solution.)

It makes sense to have a separate Coin class and have coins responsible for knowing

their values.

public class Coin
{
 public Coin(double aValue, String aName) { . . . }
 public double getValue() { . . . }
 . . .

337

338

Chapter 8 Designing Classes Page 4 of 71

Java Concepts, 5th Edition

}

Figure 1

Dependency Relationship Between the CashRegister and Coin Classes

Then the CashRegister class can be simplified:

public class CashRegister
{
 public void enterPayment(int coinCount, Coin
coinType) { . . . }
 . . .
}

Now the CashRegister class no longer needs to know anything about coin values.

The same class can equally well handle euros or zorkmids!

This is clearly a better solution, because it separates the responsibilities of the cash

register and the coins. The only reason we didn't follow this approach in Chapter 4

was to keep the CashRegister example simple.

Many classes need other classes in order to do their jobs. For example, the

restructured CashRegister class now depends on the Coin class to determine the

value of the payment.

A class depends on another class if it uses objects of that class.

338

339

Chapter 8 Designing Classes Page 5 of 71

Java Concepts, 5th Edition

To visualize relationships, such as dependence between classes, programmers draw

class diagrams. In this book, we use the UML (“Unified Modeling Language”)

notation for objects and classes. UML is a notation for object-oriented analysis and

design invented by Grady Booch, Ivar Jacobson, and James Rumbaugh, three leading

researchers in object-oriented software development. The UML notation distinguishes

between object diagrams and class diagrams. In an object diagram the class names

are underlined; in a class diagram the class names are not underlined. In a class

diagram, you denote dependency by a dashed line with a -shaped open arrow tip that

points to the dependent class. Figure 1 shows a class diagram indicating that the

CashRegister class depends on the Coin class.

Note that the Coin class does not depend on the CashRegister class. Coins have

no idea that they are being collected in cash registers, and they can carry out their

work without ever calling any method in the CashRegister class.

If many classes of a program depend on each other, then we say that the coupling

between classes is high. Conversely, if there are few dependencies between classes,

then we say that the coupling is low (see Figure 2).

Figure 2

High and Low Coupling Between Classes

Why does coupling matter? If the Coin class changes in the next release of the

program, all the classes that depend on it may be affected. If the change is drastic, the

coupled classes must all be updated. Furthermore, if we would like to use a class in

339

340

Chapter 8 Designing Classes Page 6 of 71

Java Concepts, 5th Edition

another program, we have to take with it all the classes on which it depends. Thus, we

want to remove unnecessary coupling between classes.

It is a good practice to minimize the coupling (i.e., dependency) between classes.

SELF CHECK

3. Why is the CashRegister class from Chapter 4 not cohesive?

4. Why does the Coin class not depend on the CashRegister class?

5. Why should coupling be minimized between classes?

QUALITY TIP 8.1: Consistency

In this section you learned of two criteria to analyze the quality of the public

interface of a class. You should maximize cohesion and remove unnecessary

coupling. There is another criterion that we would like you to pay attention to—

consistency. When you have a set of methods, follow a consistent scheme for their

names and parameters. This is simply a sign of good craftsmanship.

Sadly, you can find any number of inconsistencies in the standard library. Here is

an example. To show an input dialog box, you call

JOptionPane.showInputDialog(promptString)

To show a message dialog box, you call

JOptionPane.showMessageDialog(null, messageString)

What's the null parameter? It turns out that the showMessageDialog method

needs a parameter to specify the parent window, or null if no parent window is

required. But the showInputDialog method requires no parent window. Why

the inconsistency? There is no reason. It would have been an easy matter to supply

a showMessageDialog method that exactly mirrors the showInputDialog

method.

Inconsistencies such as these are not a fatal flaw, but they are an annoyance,

particularly because they can be so easily avoided.
340

Chapter 8 Designing Classes Page 7 of 71

Java Concepts, 5th Edition

8.3 Accessors, Mutators, and Immutable Classes

Recall that a mutator method modifies the object on which it is invoked, whereas an

accessor method merely accesses information without making any modifications. For

example, in the BankAccount class, the deposit and withdraw methods are

mutator methods. Calling

account.deposit(1000);

modifies the state of the account object, but calling

double balance = account.getBalance();

does not modify the state of account.

You can call an accessor method as many times as you like—you always get the same

answer, and it does not change the state of your object. That is clearly a desirable

property, because it makes the behavior of such a method very predictable. Some

classes have been designed to have only accessor methods and no mutator methods at

all. Such classes are called immutable. An example is the String class. Once a

string has been constructed, its contents never change. No method in the String

class can modify the contents of a string. For example, the toUpperCase method

does not change characters from the original string. Instead, it constructs a new string

that contains the uppercase characters:

String name = "John Q. Public";

String uppercased = name.toUpperCase();// name is not

changed

An immutable class has no mutator methods.

An immutable class has a major advantage: It is safe to give out references to its

objects freely. If no method can change the object's value, then no code can modify

the object at an unexpected time. In contrast, if you give out a BankAccount

reference to any other method, you have to be aware that the state of your object may

change—the other method can call the deposit and withdraw methods on the

reference that you gave it.

340

341

Chapter 8 Designing Classes Page 8 of 71

Java Concepts, 5th Edition

SELF CHECK

6. Is the substring method of the String class an accessor or a

mutator?

7. Is the Rectangle class immutable?

8.4 Side Effects

A mutator method modifies the object on which it is invoked, whereas an accessor

method leaves it unchanged. This classification relates only to the object on which the

method is invoked.

A side effect of a method is any kind of modification of data that is observable outside

the method. Mutator methods have a side effect, namely the modification of the

implicit parameter.

A side effect of a method is any externally observable data modification.

Here is an example of a method with another kind of side effect, the updating of an

explicit parameter:

public class BankAccount
{
 /**
 Transfers money from this account to another
account.
 @param amount the amount of money to transfer
 @param other the account into which to
transfer the money
 */
 public void transfer(double amount, BankAccount
other)
 {
 balance = balance - amount;
 other.balance = other.balance + amount;
 }
 . . .
}

341

342

Chapter 8 Designing Classes Page 9 of 71

Java Concepts, 5th Edition

As a rule of thumb, updating an explicit parameter can be surprising to programmers,

and it is best to avoid it whenever possible.

You should minimize side effects that go beyond modification of the implicit

parameter.

Another example of a side effect is output. Consider how we have always printed a

bank balance:

System.out.println("The balance is now $"
 + momsSavings.getBalance());

Why don't we simply have a printBalance method?

public void printBalance() // Not recommended
{
 System.out.println("The balance is now $" +
balance);
}

That would be more convenient when you actually want to print the value. But, of

course, there are cases when you want the value for some other purpose. Thus, you

can't simply drop the getBalance method in favor of printBalance.

More importantly, the printBalance method forces strong assumptions on the

BankAccount class.

• The message is in English—you assume that the user of your software reads

English. The majority of people on the planet don't.

• You rely on System.out. A method that relies on System.out won't work

in an embedded system, such as the computer inside an automatic teller

machine.

In other words, this design violates the rule of minimizing the coupling of the classes.

The printBalance method couples the BankAccount class with the System

and PrintStream classes. It is best to decouple input/output from the actual work

of your classes.
342

Chapter 8 Designing Classes Page 10 of 71

Java Concepts, 5th Edition

SELF CHECK

8. If a refers to a bank account, then the call a.deposit(100) modifies

the bank account object. Is that a side effect?

9. Consider the DataSet class of Chapter 6. Suppose we add a method

void read(Scanner in)
{
 while (in.hasNextDouble())
 add(in.nextDouble());
}

Does this method have a side effect other than mutating the data set?

 COMMON ERROR 8.1: Trying to Modify Primitive Type

Parameters

Methods can't update parameters of primitive type (numbers, char, and

boolean). To illustrate this point, let us try to write a method that updates a

number parameter:

public class BankAccount
{
 /**

 Transfers money from this account and tries to add it to a balance.

 @param amount the amount of money to transfer

 @param otherBalance balance to add the amount to
 */
 void transfer(double amount, double

otherBalance)

 {
 balance = balance - amount;
 otherBalance = otherBalance + amount;

 // Won't work

 }

 . . .
}

342

343

Chapter 8 Designing Classes Page 11 of 71

Java Concepts, 5th Edition

This doesn't work. Let's consider a method call.

double savingsBalance = 1000;

harrysChecking.transfer(500, savingsBalance);

System.out.println(savingsBalance);

As the method starts, the parameter variable otherBalance is set to the same

value as savingsBalance. Then the value of the otherBalance value is

modified, but that modification has no effect on savingsBalance, because

otherBalance is a separate variable (see Figure 3). When the method

terminates, the otherBalance variable dies, and savingsBalance isn't

increased.

In Java, a method can never change parameters of primitive type.

Why did the example at the beginning of Section 8.4 work, where the second

explicit parameter was a BankAccount reference? Then the parameter variable

contained a copy of the object reference. Through that reference, the method is

able to modify the object.
343

Chapter 8 Designing Classes Page 12 of 71

Java Concepts, 5th Edition

Figure 3

Modifying a Numeric Parameter Has No Effect on Caller

You already saw this difference between objects and primitive types in Chapter 2.

As a consequence, a Java method can never modify numbers that are passed to it.

343

344

344

Chapter 8 Designing Classes Page 13 of 71

Java Concepts, 5th Edition

QUALITY TIP 8.2: Minimize Side Effects

In an ideal world, all methods would be accessors that simply return an answer

without changing any value at all. (In fact, programs that are written in so-called

functional programming languages, such as Scheme and ML, come close to this

ideal.) Of course, in an object-oriented programming language, we use objects to

remember state changes. Therefore, a method that just changes the state of its

implicit parameter is certainly acceptable. Although side effects cannot be

completely eliminated, they can be the cause of surprises and problems and should

be minimized. Here is a classification of method behavior.

• Accessor methods with no changes to any explicit parameters—no side

effects. Example:getBalance.

• Mutator methods with no changes to any explicit parameters—an acceptable

side effect. Example: withdraw.

• Methods that change an explicit parameter—a side effect that should be

avoided when possible. Example: transfer.

• Methods that change another object (such as System.out)—a side effect that

should be avoided. Example: printBalance.

QUALITY TIP 8.3: Don't Change the Contents of

Parameter Variables

As explained in Common Error 8.1 and Advanced Topic 8.1, a method can treat its

parameter variables like any other local variables and change their contents.

However, that change affects only the parameter variable within the method

itself—not any values supplied in the method call. Some programmers take

“advantage” of the temporary nature of the parameter variables and use them as

“convenient” holders for intermediate results, as in this example:

public void deposit(double amount)
{

 // Using the parameter variable to hold an intermediate value

 amount = balance + amount; // Poor style

344

345

Chapter 8 Designing Classes Page 14 of 71

Java Concepts, 5th Edition

 . . .
}

That code would produce errors if another statement in the method referred to

amount expecting it to be the value of the parameter, and it will confuse later

programmers maintaining this method. You should always treat the parameter

variables as if they were constants. Don't assign new values to them. Instead,

introduce a new local variable.

public void deposit(double amount)
{
 double newBalance = balance + amount;
 . . .
}

 ADVANCED TOPIC 8.1: Call by Value and Call by

Reference

In Java, method parameters are copied into the parameter variables when a method

starts. Computer scientists call this call mechanism “call by value”. There are some

limitations to the “call by value” mechanism. As you saw in Common Error 8.1, it

is not possible to implement methods that modify the contents of number

variables. Other programming languages such as C++ support an alternate

mechanism, called “call by reference”. For example, in C++ it would be an easy

matter to write a method that modifies a number, by using a so-called reference

parameter. Here is the C++ code, for those of you who know C++:

// This is C++
class BankAccount
{
public:
 void transfer(double amount, double&
otherBalance)

 // otherBalance is a double&, a reference to a double
 {
 balance = balance - amount;

 otherBalance = otherBalance + amount; // Works in

C++
 }
 . . .

345

346

Chapter 8 Designing Classes Page 15 of 71

Java Concepts, 5th Edition

};

You will sometimes read in Java books that “numbers are passed by value, objects

are passed by reference”. That is technically not quite correct. In Java, objects

themselves are never passed as parameters; instead, both numbers and object

references are copied by value. To see this clearly, let us consider another

scenario. This method tries to set the otherAccount parameter to a new object:

public class BankAccount
{
 public void transfer(double amount, BankAccount
otherAccount)
 {
 balance = balance - amount;
 double newBalance = otherAccount.balance +
amount;

 otherAccount = new BankAccount(newBalance); //

Won't work
 }
}

In this situation, we are not trying to change the state of the object to which the

parameter variable otherAccount refers; instead, we are trying to replace the

object with a different one (see Modifying an Object Reference Parameter Has No

Effect on the Caller). Now the parameter variable other-Account is replaced

with a reference to a new account. But if you call the method with

harrysChecking.transfer(500, savingsAccount);

then that change does not affect the savingsAccount variable that is supplied

in the call.

In Java, a method can change the state of an object reference parameter, but it

cannot replace the object reference with another.

As you can see, a Java method can update an object's state, but it cannot replace

the contents of an object reference. This shows that object references are passed by

value in Java.
346

Chapter 8 Designing Classes Page 16 of 71

Java Concepts, 5th Edition

Modifying an Object Reference Parameter Has No Effect on the Caller

8.5 Preconditions and Postconditions

A precondition is a requirement that the caller of a method must obey. For example,

the deposit method of the BankAccount class has a precondition that the

amount to be deposited should not be negative. It is the responsibility of the caller

never to call a method if one of its preconditions is violated. If the method is called

anyway, it is not responsible for producing a correct result.

A precondition is a requirement that the caller of a method must meet. If a method

is called in violation of a precondition, the method is not responsible for

computing the correct result.

346

347

Chapter 8 Designing Classes Page 17 of 71

Java Concepts, 5th Edition

Therefore, a precondition is an important part of the method, and you must document

it. Here we document the precondition that the amount parameter must not be

negative.

/**

 Deposits money into this account.

 @param amount the amount of money to deposit

 (Precondition: amount >= 0)
*/

Some javadoc extensions support a @precondition or @requires tag, but it

is not a part of the standard javadoc program. Because the standard javadoc tool

skips all unknown tags, we simply add the precondition to the method explanation or

the appropriate @param tag.

Preconditions are typically provided for one of two reasons:

1. To restrict the parameters of a method

2. To require that a method is only called when it is in the appropriate state

For example, once a Scanner has run out of input, it is no longer legal to call the

next method. Thus, a precondition for the next method is that the hasNext

method returns true.

A method is responsible for operating correctly only when its caller has fulfilled all

preconditions. The method is free to do anything if a precondition is not fulfilled. It

would be perfectly legal if the method reformatted the hard disk every time it was

called with a wrong input. Naturally, that isn't reasonable. What should a method

actually do when it is called with inappropriate inputs? For example, what should

account.deposit(-1000) do? There are two choices.

1. A method can check for the violation and throw an exception. Then the method

does not return to its caller; instead, control is transferred to an exception

handler. If no handler is present, then the program terminates. We will discuss

exceptions in Chapter 11.

347

348

Chapter 8 Designing Classes Page 18 of 71

Java Concepts, 5th Edition

2. A method can skip the check and work under the assumption that the

preconditions are fulfilled. If they aren't, then any data corruption (such as a

negative balance) or other failures are the caller's fault.

The first approach can be inefficient, particularly if the same check is carried out

many times by several methods. The second approach can be dangerous. The

assertion mechanism was invented to give you the best of both approaches.

An assertion is a condition that you believe to be true at all times in a particular

program location. An assertion check tests whether an assertion is true. Here is a

typical assertion check that tests a precondition:

An assertion is a logical condition in a program that you believe to be true.

public double deposit (double amount)
{
 assert amount >= 0;
 balance = balance + amount;
}

In this method, the programmer expects that the quantity amount can never be

negative. When the assertion is correct, no harm is done, and the program works in

the normal way. If, for some reason, the assertion fails, and assertion checking is

enabled, then the program terminates with an AssertionError.

However, if assertion checking is disabled, then the assertion is never checked, and

the program runs at full speed. By default, assertion checking is disabled when you

execute a program. To execute a program with assertion checking turned on, use this

command:

java -enableassertions MyProg

SYNTAX 8.1: Assertion

assert condition;

Example:

assert amount >= 0;

348

349

Chapter 8 Designing Classes Page 19 of 71

Java Concepts, 5th Edition

Purpose:

To assert that a condition is fulfilled. If assertion checking is enabled and the

condition is false, an assertion error is thrown.

You can also use the shortcut -ea instead of -enableassertions. You

definitely want to turn assertion checking on during program development and testing.

You don't have to use assertions for checking preconditions—throwing an exception

is another reasonable option. But assertions have one advantage: You can turn them

off after you have tested your program, so that it runs at maximum speed. That way,

you never have to feel bad about putting lots of assertions into your code. You can

also use assertions for checking conditions other than preconditions.

Many beginning programmers think that it isn't “nice” to abort the program when a

precondition is violated. Why not simply return to the caller instead?

public void deposit(double amount)
{
 if (amount < 0)

 return; // Not recommended
 balance = balance + amount;
}

That is legal—after all, a method can do anything if its preconditions are violated. But

it is not as good as an assertion check. If the program calling the deposit method has a

few bugs that cause it to pass a negative amount as an input value, then the version

that generates an assertion failure will make the bugs very obvious during testing—it

is hard to ignore when the program aborts. The quiet version, on the other hand, will

not alert you, and you may not notice that it performs some wrong calculations as a

consequence. Think of assertions as the “tough love” approach to precondition

checking.

When a method is called in accordance with its preconditions, then the method

promises to do its job correctly. A different kind of promise that the method makes is

called a postcondition. There are two kinds of postconditions:

1. The return value is computed correctly.

2. The object is in a certain state after the method call is completed.

Chapter 8 Designing Classes Page 20 of 71

Java Concepts, 5th Edition

If a method has been called in accordance with its preconditions, then it must

ensure that its postconditions are valid.

Here is a postcondition that makes a statement about the object state after the

deposit method is called.

/**

 Deposits money into this account.

 (Postcondition: getBalance() >= 0)

 @param amount the amount of money to deposit

 (Precondition: amount >= 0)
*/

As long as the precondition is fulfilled, this method guarantees that the balance after

the deposit is not negative.

Some javadoc extensions support a @postcondition or @ensures tag.

However, just as with preconditions, we simply add postconditions to the method

explanation or the @return tag, because the standard javadoc program skips all

tags that it doesn't know.

Some programmers feel that they must specify a postcondition for every method.

When you use javadoc, however, you already specify a part of the postcondition in

the @return tag, and you shouldn't repeat it in a postcondition.

// This postcondition statement is overly repetitive.

/**

 Returns the current balance of this account.

 @return the account balance

 (Postcondition: The return value equals the account balance.)

*/

Note that we formulate pre- and postconditions only in terms of the interface of the

class. Thus, we state the precondition of the withdraw method as amount <=

getBalance(), not amount<= balance. After all, the caller, which needs to

check the precondition, has access only to the public interface, not the private

implementation.

349

350

Chapter 8 Designing Classes Page 21 of 71

Java Concepts, 5th Edition

Bertrand Meyer [1] compares preconditions and postconditions to contracts. In real

life, contracts spell out the obligations of the contracting parties. For example, your

mechanic may promise to fix the brakes of your car, and you promise in turn to pay a

certain amount of money. If either party breaks the promise, then the other is not

bound by the terms of the contract. In the same fashion, pre- and postconditions are

contractual terms between a method and its caller. The method promises to fulfill the

postcondition for all inputs that fulfill the precondition. The caller promises never to

call the method with illegal inputs. If the caller fulfills its promise and gets a wrong

answer, it can take the method to “programmer's court”. If the caller doesn't fulfill its

promise and something terrible happens as a consequence, it has no recourse.

SELF CHECK

10. Why might you want to add a precondition to a method that you provide

for other programmers?

11. When you implement a method with a precondition and you notice that

the caller did not fulfill the precondition, do you have to notify the

caller?

 ADVANCED TOPIC 8.2: Class Invariants

Advanced Topic 6.5 introduced the concept of loop invariants. A loop invariant is

established when the loop is first entered, and it is preserved by all loop iterations.

We then know that the loop invariant must be true when the loop exits, and we can

use that information to reason about the correctness of a loop.

Class invariants fulfill a similar purpose. A class invariant is a statement about an

object that is true after every constructor and that is preserved by every mutator

(provided that the caller respects all preconditions). We then know that the class

invariant must always be true, and we can use that information to reason about the

correctness of our program.

Here is a simple example. Consider a BankAccount class with the following

preconditions for the constructor and the mutators:

public class BankAccount
{

350

351

Chapter 8 Designing Classes Page 22 of 71

Java Concepts, 5th Edition

 /**

 Constructs a bank account with a given balance.

 @param initial Balance the initial balance

 (Precondition: initial Balance >= 0)
 */
 public BankAccount(double initialBalance) {. .
.}
 {
 balance = initialBalance;
 }
 /**

 Deposits money into the bank account.

 @param amount the amount to deposit

 (Precondition: amount >= 0)
 */
 public void deposit(double amount) {. . .}
 /**

 Withdraws money from the bank account.

 @param amount the amount to withdraw

 (Precondition: amount <= getBalance())
 */
 public void withdraw(double amount) {. . .}
 . . .
}

Now we can formulate the following invariant:

getBalance() >= 0

To see why this invariant is true, first check the constructor; because the

precondition of the constructor is

initialBalance >= 0

we can prove that the invariant is true after the constructor has set balance to

initial Balance.

Next, check the mutators. The precondition of the deposit method is

amount >= 0

We can assume that the invariant condition holds before calling the method. Thus,

we know that balance >= 0 before the method executes. The laws of

351

352

Chapter 8 Designing Classes Page 23 of 71

Java Concepts, 5th Edition

mathematics tell us that the sum of two nonnegative numbers is again nonnegative,

so we can conclude that balance >= 0 after the completion of the deposit.

Thus, the deposit method preserves the invariant.

A similar argument shows that the withdraw method preserves the invariant.

Because the invariant is a property of the class, you document it with the class

description:

/**

 A bank account has a balance that can be changed by

 deposits and withdrawals.

 (Invariant: getBalance() >= 0)
*/
public class BankAccount
{
 . . .
}

8.6 Static Methods

Sometimes you need a method that is not invoked on an object. Such a method is

called a static method or a class method. In contrast, the methods that you wrote up to

now are often called instance methods because they operate on a particular instance

of an object.

A static method is not invoked on an object.

A typical example of a static method is the sqrt method in the Math class. When

you call Math.sqrt(x), you don't supply any implicit parameter. (Recall that

Math is the name of a class, not an object.)

Why would you want to write a method that does not operate on an object? The most

common reason is that you want to encapsulate some computation that involves only

numbers. Because numbers aren't objects, you can't invoke methods on them. For

example, the call x.sqrt() can never be legal in Java.

Chapter 8 Designing Classes Page 24 of 71

Java Concepts, 5th Edition

Here is a typical example of a static method that carries out some simple algebra: to

compute p percent of the amount a. Because the parameters are numbers, the method

doesn't operate on any objects at all, so we make it into a static method:

/**

 Computes a percentage of an amount.

 @param p the percentage to apply

 @param a the amount to which the percentage is applied

 @return p percent of a
*/
public static double percentOf(double p, double a)
{
 return (p / 100) * a;
}

You need to find a home for this method. Let us come up with a new class (similar to

the Math class of the standard Java library). Because the percentOf method has to

do with financial calculations, we'll design a class Financial to hold it. Here is the

class:

public class Financial
{
 public static double percentOf(double p, double a)
 {
 return (p / 100) * a;
 }

 // More financial methods can be added here.
}

When calling a static method, you supply the name of the class containing the method

so that the compiler can find it. For example,

double tax = Financial.percentOf(taxRate, total);

Note that you do not supply an object of type Financial when you call the method.

Now we can tell you why the main method is static. When the program starts, there

aren't any objects. Therefore, the first method in the program must be a static method.

You may well wonder why these methods are called static. The normal meaning of

the word static (“staying fixed at one place”) does not seem to have anything to do

352

353

Chapter 8 Designing Classes Page 25 of 71

Java Concepts, 5th Edition

with what static methods do. Indeed, it's used by accident. Java uses the static

keyword because C++ uses it in the same context. C++ uses static to denote class

methods because the inventors of C++ did not want to invent another keyword.

Someone noted that there was a relatively rarely used keyword, static, that

denotes certain variables that stay in a fixed location for multiple method calls. (Java

does not have this feature, nor does it need it.) It turned out that the keyword could be

reused to denote class methods without confusing the compiler. The fact that it can

confuse humans was apparently not a big concern. You'll just have to live with the

fact that “static method” means “class method”: a method that does not operate on an

object and that has only explicit parameters.

SELF CHECK

12. Suppose Java had no static methods. Then all methods of the Math

class would be instance methods. How would you compute the square

root of x?

13. Harry turns in his homework assignment, a program that plays

tic-tac-toe. His solution consists of a single class with many static

methods. Why is this not an object-oriented solution?

8.7 Static Fields

Sometimes, you need to store values outside any particular object. You use static

fields for this purpose. Here is a typical example. We will use a version of our

BankAccount class in which each bank account object has both a balance and an

account number:

public class BankAccount
{
 . . .
 private double balance;
 private int accountNumber;
}

We want to assign account numbers sequentially. That is, we want the bank account

constructor to construct the first account with number 1001, the next with number

1002, and so on. Therefore, we must store the last assigned account number

somewhere.

353

354

Chapter 8 Designing Classes Page 26 of 71

Java Concepts, 5th Edition

It makes no sense, though, to make this value into an instance field:

public class BankAccount
{
 . . .
 private double balance;
 private int accountNumber;

 private int lastAssignedNumber = 1000; // NO—won’t

work
}

In that case each instance of the BankAccount class would have its own value of

1astAssignedNumber.

Instead, we need to have a single value of lastAssignedNumber that is the same

for the entire class. Such a field is called a static field, because you declare it using

the static keyword.

public class BankAccount
{
 . . .
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;
}

Every BankAccount object has its own balance and accountNumber instance

fields, but there is only a single copy of the lastAssignedNumber variable (see

Figure 4). That field is stored in a separate location, outside any BankAccount

objects.

A static field belongs to the class, not to any object of the class.

A static field is sometimes called a class field because there is a single field for the

entire class.

Every method of a class can access its static fields. Here is the constructor of the

BankAccount class, which increments the last assigned number and then uses it to

initialize the account number of the object to be constructed:

public class BankAccount
354

Chapter 8 Designing Classes Page 27 of 71

Java Concepts, 5th Edition

{
 public BankAccount()
 {

 // Generates next account number to be assigned

 lastAssignedNumber++;// Updates the static field

 // Assigns field to account number of this bank account

 accountNumber = lastAssignedNumber; // Sets the

instance field
 }
 . . .
}

How do you initialize a static field? You can't set it in the class constructor:

public BankAccount()
{

 lastAssignedNumber = 1000; // NO—would reset to 1000 for

each new object
 . . .
}

Then the initialization would occur each time a new instance is constructed.

Figure 4

A Static Field and Instance Fields

354

355

355

Chapter 8 Designing Classes Page 28 of 71

Java Concepts, 5th Edition

There are three ways to initialize a static field:

1. Do nothing. The static field is then initialized with 0 (for numbers), false

(for boolean values), or null (for objects).

2. Use an explicit initializer, such as

public class BankAccount
{
 . . .
 private static int lastAssignedNumber = 1000;
}

The initialization is executed once when the class is loaded.

3. Use a static initialization block (see Advanced Topic 8.3).

Like instance fields, static fields should always be declared as private to ensure

that methods of other classes do not change their values. The exception to this rule are

static constants, which may be either private or public. For example, the

BankAccount class may want to define a public constant value, such as

public class BankAccount
{
 . . .
 public static final double OVERDRAFT_FEE = 5;
}

Methods from any class refer to such a constant as

BankAccount.OVERDRAFT_FEE.

It makes sense to declare constants as static—you wouldn't want every object of

the BankAccount class to have its own set of variables with these constant values.

It is sufficient to have one set of them for the class.

Why are class variables called static? As with static methods, the static

keyword itself is just a meaningless holdover from C++. But static fields and static

methods have much in common: They apply to the entire class, not to specific

instances of the class.

355

356

Chapter 8 Designing Classes Page 29 of 71

Java Concepts, 5th Edition

In general, you want to minimize the use of static methods and fields. If you find

yourself using lots of static methods, then that's an indication that you may not have

found the right classes to solve your problem in an object-oriented way.

SELF CHECK

14. Name two static fields of the System class.

15. Harry tells you that he has found a great way to avoid those pesky

objects: Put all code into a single class and declare all methods and

fields static. Then main can call the other static methods, and all of

them can access the static fields. Will Harry's plan work? Is it a good

idea?

 ADVANCED TOPIC 8.3: Alternative Forms of Field

Initialization

As you have seen, instance fields are initialized with a default value (0, false, or

null, depending on their type). You can then set them to any desired value in a

constructor, and that is the style that we prefer in this book.

However, there are two other mechanisms to specify an initial value for a field.

Just as with local variables, you can specify initialization values for fields. For

example,

public class Coin
{
 . . .
 private double value = 1;
 private String name = "Dollar";
}

These default values are used for every object that is being constructed.

There is also another, much less common, syntax. You can place one or more

initialization blocks inside the class definition. All statements in that block are

executed whenever an object is being constructed. Here is an example:

public class Coin

356

357

Chapter 8 Designing Classes Page 30 of 71

Java Concepts, 5th Edition

{
 . . .
 {
 value = 1;
 name = "Dollar";
 }
 private double value;
 private String name;
}

For static fields, you use a static initialization block:

public class BankAccount
{
 . . .
 private static int lastAssignedNumber;
 static
 {
 lastAssignedNumber = 1000;
 }
}

All statements in the static initialization block are executed once when the class is

loaded. Initialization blocks are rarely used in practice.

When an object is constructed, the initializers and initialization blocks are

executed in the order in which they appear. Then the code in the constructor is

executed. Because the rules for the alternative initialization mechanisms are

somewhat complex, we recommend that you simply use constructors to do the job

of construction.

8.8 Scope

8.8.1 Scope of Local Variables

When you have multiple variables or fields with the same name, there is the

possibility of conflict. In order to understand the potential problems, you need to

know about the scope of each variable: the part of the program in which the

variable can be accessed.

357

358

Chapter 8 Designing Classes Page 31 of 71

Java Concepts, 5th Edition

The scope of a variable is the region of a program in which the variable can be

accessed.

The scope of a local variable extends from the point of its declaration to the end of

the block that encloses it.

It sometimes happens that the same variable name is used in two methods. Consider

the variables r in the following example:

public class RectangleTester
{
 public static double area(Rectangle rect)
 {
 double r = rect.getWidth() * rect.getHeight();
 return r;
 }
 public static void main(String[] args)
 {
 Rectangle r = new Rectangle(5, 10, 20, 30);
 double a = area(r);
 System.out.println(r);
 }
}

These variables are independent from each other, or, in other words, their scopes

are disjoint. You can have local variables with the same name r in different

methods, just as you can have different motels with the same name “Bates Motel”

in different cities.

The scope of a local variable cannot contain the definition of another variable

with the same name.

In Java, the scope of a local variable can never contain the definition of local

variable with the same name. For example, the following is an error:

Rectangle r = new Rectangle(5, 10, 20, 30);
if (x >= 0)
{
 double r = Math.sqrt(x);

 // Error—can't declare another variable called r here

Chapter 8 Designing Classes Page 32 of 71

Java Concepts, 5th Edition

 . . .
}

However, you can have local variables with identical names if their scopes do not

overlap, such as

if (x >= 0)
{
 double r = Math.sqrt(x);
 . . .

}// Scope of r ends here
else
{
 Rectangle r = new Rectangle(5, 10, 20, 30);

 // OK—it is legal to declare another r here
 . . .
}

8.8.2 Scope of Class Members

In this section, we consider the scope of fields and methods of a class. (These are

collectively called the members of the class.) Private members have class scope:

You can access all members in any of the methods of the class.

A qualified name is prefixed by its class name or by an object reference, such as

Math.sqrt or other.balance.

If you want to use a public field or method outside its class, you must qualify the

name. You qualify a static field or method by specifying the class name, such as

Math.sqrt or Math.PI. You qualify an instance field or method by specifying

the object to which the field or method should be applied, such as

harrysChecking.getBalance().

An unqualified instance field or method name refers to the this parameter.

Inside a method, you don't need to qualify fields or methods that belong to the same

class. Instance fields automatically refer to the implicit parameter of the method,

that is, the object on which the method is invoked. For example, consider the

transfer method:

358

359

Chapter 8 Designing Classes Page 33 of 71

Java Concepts, 5th Edition

public class BankAccount
{
 public void transfer(double amount, BankAccount
other)
 {

 balance = balance - amount; // i.e., this.balance
 other.balance = other.balance + amount;
 }
 . . .
}

Here, the unqualified name balance means this.balance. (Recall from

Chapter 3 that this is a reference to the implicit parameter of any method.)

The same rule applies to methods. Thus, another implementation of the transfer

method is

public class BankAccount
{
 public void transfer(double amount, BankAccount
other)
 {

 withdraw(amount); // i.e., this.withdraw(amount);
 other.deposit(amount);
 }
 . . .
}

Whenever you see an instance method call without an implicit parameter, then the

method is called on the this parameter. Such a method call is called a “self-call”.

Similarly, you can use a static field or method of the same class without a qualifier.

For example, consider the following version of the withdraw method:

public class BankAccount
{
 public void withdraw(double amount)
 {
 if (balance < amount) balance = balance -
OVERDRAFT_FEE;
 else . . .
 }
 . . .

359

360

Chapter 8 Designing Classes Page 34 of 71

Java Concepts, 5th Edition

 private static double OVERDRAFT_FEE = 5;
}

Here, the unqualified name OVERDRAFT_FEE refers to

BankAccount.OVERDRAFT_FEE.

8.8.3 Overlapping Scope

Problems arise if you have two identical variable names with overlapping scope.

This can never occur with local variables, but the scopes of identically named local

variables and instance fields can overlap. Here is a purposefully bad example.

public class Coin
{
 . . .
 public double getExchangeValue(double
exchangeRate)
 {

 double value; // Local variable
 . . .
 return value;
 }
 private String name;

 private double value; // Field with the same name
}

Inside the getExchangeValue method, the variable name value could

potentially have two meanings: the local variable or the instance shadow a field.

The Java language specifies that in this situation the local variable wins out. It

shadows the instance field. This sounds pretty arbitrary, but there is actually a good

reason: You can still refer to the instance field as this.value.

value = this.value * exchangeRate;

It isn't necessary to write code like this. You can easily change the name of the

local variable to something else, such as result.

A local variable can shadow a field with the same name. You can access the

shadowed field name by qualifying it with the this reference.

Chapter 8 Designing Classes Page 35 of 71

Java Concepts, 5th Edition

However, you should be aware of one common use of the this reference. When

implementing constructors, many programmers find it tiresome to come up with

different names for instance fields and parameters. Using the this reference

solves that problem. Here is a typical example.

public Coin(double value, String name)
{
 this. value = value;
 this.name = name;
}

The expression this.value refers to the instance field, but value is the

parameter. Of course, you can always rename the construction parameters to

aValue and aName, as we have done in this book.

SELF CHECK

16. Consider the deposit method of the BankAccount class. What is

the scope of the variables amount and newBalance?

17. What is the scope of the balance field of the BankAccount class?

 COMMON ERROR 8.2: Shadowing

Accidentally using the same name for a local variable and an instance field is a

surprisingly common error. As you saw in the preceding section, the local

variable then shadows the instance field. Even though you may have meant to

access the instance field, the local variable is quietly accessed. For some reason,

this problem is most common in constructors. Look at this example of an

incorrect constructor:

public class Coin
{
 public Coin(double aValue, String aName)
 {
 value = aValue;

 String name = aName; // Oops. . .
 }
 . . .
 private double value;

360

361

Chapter 8 Designing Classes Page 36 of 71

Java Concepts, 5th Edition

 private String name;
}

The programmer declared a local variable name in the constructor. In all

likelihood, that was just a typo—the programmer's fingers were on autopilot and

typed the keyword String, even though the programmer all the time intended

to access the instance field. Unfortunately, the compiler gives no warning in this

situation and quietly sets the local variable to the value of aName. The instance

field of the object that is being constructed is never touched, and remains null.

Some programmers give all instance field names a special prefix to distinguish

them from other variables. A common convention is to prefix all instance field

names with the prefix my, such as myValue or myName.

 PRODUCTIVITY HINT 8.1: Global Search and Replace

Suppose you chose an unfortunate name for a method—say perc instead of

percentOf—and you regret your choice. Of course, you can locate all

occurrences of perc in your code and replace them manually. However, most

programming editors have a command to search for the perc's automatically

and replace them with percentOf.

You need to specify some details about the search:

• Do you want it to ignore case? That is, should Perc be a match? In Java

you usually don't want that.

• Do you want it to match whole words only? If not, the perc in

superconductor is also a match. In Java you usually want to match

whole words.

• Is this a regular-expression search? No, but regular expressions can make

searches even more powerful—see Productivity Hint 8.2.

• Do you want to confirm each replace, or simply go ahead and replace all

matches? I usually confirm the first three or four, and when I see that it

works as expected, I give the go-ahead to replace the rest. (By the way, a

global replace means to replace all occurrences in the document.) Good

text editors can undo a global replace that has gone awry. Find out

whether yours will.

361

362

Chapter 8 Designing Classes Page 37 of 71

Java Concepts, 5th Edition

• Do you want the search to go from the point where the cursor is in the file

through to the rest of the file, or should it search the currently selected

text? Restricting replacement to a portion of the file can be very useful,

but in this example you would want to move the cursor to the top of the

file and then replace until the end of the file.

Not every editor has all these options. You should investigate what your editor

offers.

 PRODUCTIVITY HINT 8.2: Regular Expressions

Regular expressions describe character patterns. For example, numbers have a

simple form. They contain one or more digits. The regular expression describing

numbers is [0-9]+. The set [0-9] denotes any digit between 0 and 9, and the

+ means “one or more”.

What good is it? Several utility programs use regular expressions to locate

matching text. Also, the search commands of some programming editors

understand regular expressions. The most popular program that uses regular

expressions is grep (which stands for “global regular expression print”). You can

run grep from a command prompt or from inside some compilation

environments. Grep is part of the UNIX operating system, but versions are

available for Windows and MacOS. It needs a regular expression and one or

more files to search. When grep runs, it displays a set of lines that match the

regular expression.

Suppose you want to look for all magic numbers (see Quality Tip 4.1) in a file.

The command

grep [0-9]+ Homework.java

lists all lines in the file Homework.java that contain sequences of digits. That

isn't terribly useful; lines with variable names x1 will be listed. OK, you want

sequences of digits that do not immediately follow letters:

grep [^A-Za-z][0-9]+ Homework.java

362

363

Chapter 8 Designing Classes Page 38 of 71

Java Concepts, 5th Edition

The set [^A-Za-z] denotes any characters that are not in the ranges A to Z and

a to z. This works much better, and it shows only lines that contain actual

numbers.

For more information on regular expressions, consult one of the many tutorials

on the Internet (such as [2]).

 ADVANCED TOPIC 8.4: Static Imports

Starting with Java version 5.0, there is a variant of the import directive that

lets you use static methods and fields without class prefixes. For example,

import static java.lang.System.*;
import static java.lang.Math.*;

public class RootTester
{
 public static void main(String[] args)
 {

 double r = sqrt(PI) // Instead of Math. sqrt
(Math. PI)

 out.println(r); // Instead of System.out
 }
}

Static imports can make programs easier to read, particularly if they use many

mathematical functions.

8.9 Packages

8.9.1 Organizing Related Classes into Packages

A Java program consists of a collection of classes. So far, most of your programs

have consisted of a small number of classes. As programs get larger, however,

simply distributing the classes over multiple files isn't enough. An additional

structuring mechanism is needed. In Java, packages provide this structuring

mechanism. A Java package is a set of related classes. For example, the Java library

consists of dozens of packages, some of which are listed in Table 1.

Chapter 8 Designing Classes Page 39 of 71

Java Concepts, 5th Edition

A package is a set of related classes.

Table 1 Important Packages in the Java Library

Package Purpose Sample Class
java.lang Language support Math

java.util Utilities Random

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.applet Applets Applet

java.net Networking Socket

java.sql Database access through Structured Query Language ResultSet

javax.swing Swing user interface JButton

omg.org.CORBA Common Object Request Broker Architecture for

distributed objects

IntHolder

To put classes in a package, you must place a line

package packageName;

as the first instruction in the source file containing the classes. A package name

consists of one or more identifiers separated by periods. (See Section 8.9.3 for tips

on constructing package names.)

For example, let's put the Financial class introduced in this chapter into a

package named com.horstmann.bigjava. The Financial.java file must

start as follows:

package com.horstmann.bigjava;

public class Financial
{
 . . .
}

SYNTAX 8.2: Package Specification

package packageName;

Example:

363

364

Chapter 8 Designing Classes Page 40 of 71

Java Concepts, 5th Edition

package com.horstmann.bigjava;

Purpose:

To declare that all classes in this file belong to a particular package

In addition to the named packages (such as java.util or

com.horstmann.bigjava), there is a special package, called the default

package, which has no name. If you did not include any package statement at the

top of your source file, its classes are placed in the default package.

8.9.2 Importing Packages

If you want to use a class from a package, you can refer to it by its full name

(package name plus class name). For example, java.util.Scanner refers to

the Scanner class in the java.util package:

java.util.Scanner in = new
java.util.Scanner(System.in);

Naturally, that is somewhat inconvenient. You can instead import a name with an

import statement:

import java.util.Scanner;

Then you can refer to the class as Scanner without the package prefix.

The import directive lets you refer to a class of a package by its class name,

without the package prefix.

You can import all classes of a package with an import statement that ends in .*.

For example, you can use the statement

import java.util.*;

to import all classes from the java.util package. That statement lets you refer

to classes like Scanner or Random without a java.util prefix.

However, you never need to import the classes in the java.lang package

explicitly. That is the package containing the most basic Java classes, such as Math

364

365

Chapter 8 Designing Classes Page 41 of 71

Java Concepts, 5th Edition

and Object. These classes are always available to you. In effect, an automatic

import java.lang.* statement has been placed into every source file.

Finally, you don't need to import other classes in the same package. For example,

when you implement the class homework1.Tester, you don't need to import

the class homework1.Bank. The compiler will find the Bank class without an

import statement because it is located in the same package, homework1.

8.9.3 Package Names

Placing related classes into a package is clearly a convenient mechanism to

organize classes. However, there is a more important reason for packages: to avoid

name clashes. In a large project, it is inevitable that two people will come up with

the same name for the same concept. This even happens in the standard Java class

library (which has now grown to thousands of classes). There is a class Timer in

the java.util package and another class called Timer in the javax.swing

package. You can still tell the Java compiler exactly which Timer class you need,

simply by referring to them as java.util.Timer and javax.swing.Timer.

Of course, for the package-naming convention to work, there must be some way to

ensure that package names are unique. It wouldn't be good if the car maker BMW

placed all its Java code into the package bmw, and some other programmer (perhaps

Bertha M. Walters) had the same bright idea. To avoid this problem, the inventors

of Java recommend that you use a package-naming scheme that takes advantage of

the uniqueness of Internet domain names.

For example, I have a domain name horstmann.com, and there is nobody else

on the planet with the same domain name. (I was lucky that the domain name

horstmann.com had not been taken by anyone else when I applied. If your name

is Walters, you will sadly find that someone else beat you to walters.com.) To

get a package name, turn the domain name around to produce a package name

prefix, such as com.horstmann.

Use a domain name in reverse to construct unambiguous package names.

If you don't have your own domain name, you can still create a package name that

has a high probability of being unique by writing your e-mail address backwards.

365

366

Chapter 8 Designing Classes Page 42 of 71

Java Concepts, 5th Edition

For example, if Bertha Walters has an e-mail address walters@cs.sjsu.edu, then she

can use a package name edu.sjsu.cs.walters for her own classes.

Some instructors will want you to place each of your assignments into a separate

package, such as homework1, homework2, and so on. The reason is again to

avoid name collision. You can have two classes, homework1.Bank and

homework2.Bank, with slightly different properties.

8.9.4 How Classes are Located

If the Java compiler is properly set up on your system, and you use only the

standard classes, you ordinarily need not worry about the location of class files and

can safely skip this section. If you want to add your own packages, however, or if

the compiler cannot locate a particular class or package, you need to understand the

mechanism.

A package is located in a subdirectory that matches the package name. The parts of

the name between periods represent successively nested directories. For example,

the package com.horstmann.bigjava would be placed in a subdirectory

com/horstmann/bigjava. If the package is to be used only in conjunction

with a single program, then you can place the subdirectory inside the directory

holding that program's files. For example, if you do your homework assignments in

a base directory /home/walters, then you can place the class files for the

com.horstmann.bigjava package into the directory

/home/walters/com/horstmann/bigjava, as shown in Figure 5. (Here,

we are using UNIX-style file names. Under Windows, you might use

c:\home\walters\com\horstmann\bigjava.)

The path of a class file must match its package name.

However, if you want to place your programs into many different directories, such

as /home/walters/hw1, /home/walters/hw2, . . ., then you

probably don't want to have lots of identical subdirectories

/home/walters/hw1/com/horstmann/bigjava,

/home/walters/hw2/com/horstmann/bigjava, and so on. In that case,

you want to make a single directory with a name such as

/home/walters/lib/com/horstmann/bigjava, place all class files for

Chapter 8 Designing Classes Page 43 of 71

Java Concepts, 5th Edition

the package in that directory, and tell the Java compiler once and for all how to

locate the class files.

You need to add the directories that might contain packages to the class path. In the

preceding example, you add the /home/walters/lib directory to that class

path. The details for doing this depend on your compilation environment; consult

the documentation for your compiler, or your instructor. If you use the Sun Java

SDK, you need to set the class path. The exact command depends on the operating

system. In UNIX, the command might be

export CLASSPATH=/home/walters/lib:.

This setting places both the /home/walters/lib directory and the current

directory onto the class path. (The period denotes the current directory.)

Figure 5

Base Directories and Subdirectories for Packages

A typical example for Windows would be

set CLASSPATH=c:\home\walters\lib;.

Note that the class path contains the base directories that may contain package

directories. It is a common error to place the complete package address in the class

path. If the class path mistakenly contains

/home/walters/lib/com/horstmann/bigjava, then the compiler will

366

367

Chapter 8 Designing Classes Page 44 of 71

Java Concepts, 5th Edition

attempt to locate the com.horstmann.bigjava package in

/home/walters/lib/com/horstmann/bigjava/com/horstmann/bigjava

and won't find the files.

SELF CHECK

18. Which of the following are packages?

a. java

b. java.lang

c. java.util

d. java.lang.Math

19. Is a Java program without import statements limited to using the

default and java.lang packages?

20. Suppose your homework assignments are located in the directory

/home/me/cs101 (c:\me\cs101 on Windows). Your instructor

tells you to place your homework into packages. In which directory do

you place the class hw1.problem1.TicTacToeTester?

 COMMON ERROR 8.3: Confusing Dots

In Java, the dot symbol (.) is used as a separator in the following situations:

• Between package names (java.util)

• Between package and class names (homework1.Bank)

• Between class and inner class names (Ellipse2D.Double)

• Between class and instance variable names (Math.PI)

• Between objects and methods (account.getBalance())

When you see a long chain of dot-separated names, it can be a challenge to find

out which part is the package name, which part is the class name, which part is

an instance variable name, and which part is a method name. Consider

367

368

Chapter 8 Designing Classes Page 45 of 71

Java Concepts, 5th Edition

java.lang.System.out.println(x);

Because println is followed by an opening parenthesis, it must be a method

name. Therefore, out must be either an object or a class with a static println

method. (Of course, we know that out is an object reference of type

PrintStream.) Again, it is not at all clear, without context, whether System

is another object, with a public variable out, or a class with a static variable.

Judging from the number of pages that the Java language specification [3]

devotes to this issue, even the compiler has trouble interpreting these

dot-separated sequences of strings.

To avoid problems, it is helpful to adopt a strict coding style. If class names

always start with an uppercase letter, and variable, method, and package names

always start with a lowercase letter, then confusion can be avoided.

 HOW TO 8.1: Programming with Packages

This How To explains in detail how to place your programs into packages. For

example, your instructor may ask you to place each homework assignment into a

separate package. That way, you can have classes with the same name but

different implementations in separate packages (such as homework1.Bank

and homework2.Bank).

Step 1 Come up with a package name.

Your instructor may give you a package name to use, such as homework1. Or,

perhaps you want to use a package name that is unique to you. Start with your

e-mail address, written backwards. For example, walters@cs.sjsu.edu

becomes edu.sjsu.cs.walters. Then add a sub-package that describes

your project or homework, such as edu.sjsu.cs. walters.

homework1.

Step 2 Pick a base directory.

The base directory is the directory that contains the directories for your various

packages, for example, /home/walters or c:\cs1
368

Chapter 8 Designing Classes Page 46 of 71

Java Concepts, 5th Edition

Step 3 Make a subdirectory from the base directory that matches your package

name.

The subdirectory must be contained in your base directory. Each segment must

match a segment of the package name. For example,

mkdir /home/walters/homework1

If you have multiple segments, build them up one by one:

mkdir c:\cs1\edu
mkdir c:\cs1\edu\sjsu
mkdir c:\cs1\edu\sjsu\cs
mkdir c:\cs1\edu\sjsu\cs\walters
mkdir c:\cs1\edu\sjsu\cs\walters\homework1

Step 4 Place your source files into the package subdirectory.

For example, if your homework consists of the files Tester.java and

Bank.java, then you place them into

/home/walters/homework1/Tester.java
/home/walters/homework1/Bank.java

or

c:\cs1\edu\sjsu\cs\walters\homework1\Tester.java
c:\cs1\edu\sjsu\cs\walters\homework1\Bank.java

Step 5 Use the package statement in each source file.

The first noncomment line of each file must be a package statement that lists the

name of the package, such as

package homework1;

or

package edu.sjsu.cs.walters.homework1;

Step 6 Compile your source files from the base directory.

Change to the base directory (from Step 2) to compile your files. For example,

368

369

Chapter 8 Designing Classes Page 47 of 71

Java Concepts, 5th Edition

cd /home/walters
javac homework1/Tester.java

or

cd \cs1
java edu\sjsu\cs\walters\homework1\Tester.java

Note that the Java compiler needs the source file name and not the class name.

That is, you need to supply file separators (/ on UNIX, \ on Windows) and a file

extension (.java).

Step 7 Run your program from the base directory.

Unlike the Java compiler, the Java interpreter needs the class name (and not a

file name) of the class containing the main method. That is, use periods as

package separators, and don't use a file extension. For example,

cd /home/walters
java homework1.Tester

or

cd \cs1
java edu.sjsu.cs.walters.homework1.Tester

 RANDOM FACT 8.1: The Explosive Growth of Personal

Computers

In 1971, Marcian E. “Ted” Hoff, an engineer at Intel Corporation, was working

on a chip for a manufacturer of electronic calculators. He realized that it would

be a better idea to develop a general-purpose chip that could be programmed to

interface with the keys and display of a calculator, rather than to do yet another

custom design. Thus, the microprocessor was born. At the time, its primary

application was as a controller for calculators, washing machines, and the like. It

took years for the computer industry to notice that a genuine central processing

unit was now available as a single chip.

Hobbyists were the first to catch on. In 1974 the first computer kit, the Altair

8800, was available from MITS Electronics for about $350. The kit consisted of

369

370

Chapter 8 Designing Classes Page 48 of 71

Java Concepts, 5th Edition

the microprocessor, a circuit board, a very small amount of memory, toggle

switches, and a row of display lights. Purchasers had to solder and assemble it,

then program it in machine language through the toggle switches. It was not a

big hit.

The first big hit was the Apple II. It was a real computer with a keyboard, a

monitor, and a floppy disk drive. When it was first released, users had a $3000

machine that could play Space Invaders, run a primitive bookkeeping program,

or let users program it in BASIC. The original Apple II did not even support

lowercase letters, making it worthless for word processing. The breakthrough

came in 1979 with a new spreadsheet program, VisiCalc. In a spreadsheet, you

enter financial data and their relationships into a grid of rows and columns (see

The VisiCalc Spreadsheet Running on an Apple II). Then you modify some of

the data and watch in real time how the others change. For example, you can see

how changing the mix of widgets in a manufacturing plant might affect

estimated costs and profits. Middle managers in companies, who understood

computers and were fed up with having to wait for hours or days to get their data

runs back from the computing center, snapped up VisiCalc and the computer that

was needed to run it. For them, the computer was a spreadsheet machine.

The next big hit was the IBM Personal Computer, ever after known as the PC. It

was the first widely available personal computer that used Intel's 16-bit

processor, the 8086, whose successors are still being used in personal computers

today. The success of the PC was based not on any engineering breakthroughs

but on the fact that it was easy to clone. IBM published specifications for plug-in

cards, and it went one step further. It published the exact source code of the

so-called BIOS (Basic Input/Output System), which controls the keyboard,

monitor, ports, and disk drives and must be installed in ROM form in every PC.

This allowed third-party vendors of plug-in cards to ensure that the BIOS code,

and third-party extensions of it, interacted correctly with the equipment. Of

course, the code itself was the property of IBM and could not be copied legally.

Perhaps IBM did not foresee that functionally equivalent versions of the BIOS

nevertheless could be recreated by others. Compaq, one of the first clone

vendors, had fifteen engineers, who certified that they had never seen the

original IBM code, write a new version that conformed precisely to the IBM

specifications. Other companies did the same, and soon a variety of vendors

were selling computers that ran the same software as IBM's PC but distinguished

Chapter 8 Designing Classes Page 49 of 71

Java Concepts, 5th Edition

themselves by a lower price, increased portability, or better performance. In

time, IBM lost its dominant position in the PC market. It is now one of many

companies producing IBM PC-compatible computers.

IBM never produced an operating system for its PCs—that is, the software that

organizes the interaction between the user and the computer, starts application

programs, and manages disk storage and other resources. Instead, IBM offered

customers the option of three separate operating systems. Most customers

couldn't care less about the operating system. They chose the system that was

able to launch most of the few applications that existed at the time. It happened

to be DOS (Disk Operating System) by Microsoft. Microsoft cheerfully licensed

the same operating system to other hardware vendors and encouraged software

companies to write DOS applications. A huge number of useful application

programs for PC-compatible machines was the result.

The VisiCalc Spreadsheet Running on an Apple II

370

371

Chapter 8 Designing Classes Page 50 of 71

Java Concepts, 5th Edition

PC applications were certainly useful, but they were not easy to learn. Every

vendor developed a different user interface: the collection of keystrokes, menu

options, and settings that a user needed to master to use a software package

effectively. Data exchange between applications was difficult, because each

program used a different data format. The Apple Macintosh changed all that in

1984. The designers of the Macintosh had the vision to supply an intuitive user

interface with the computer and to force software developers to adhere to it. It

took Microsoft and PC-compatible manufacturers years to catch up.

Accidental Empires [4] is highly recommended for an amusing and irreverent

account of the emergence of personal computers.

At the time of this writing, it is estimated that two in three U.S. households own

a personal computer. Most personal computers are used for accessing

information from online sources, entertainment, word processing, and home

finance (banking, budgeting, taxes). Some analysts predict that the personal

computer will merge with the television set and cable network into an

entertainment and information appliance.

8.10 Unit Test Frameworks

Up to now, we have used a very simple approach to testing. We provided tester

classes whose main method computes values and prints actual and expected values.

However, that approach has two limitations. It takes some time to inspect the output

and decide whether a test has passed. More importantly, the main method gets messy

if it contains many tests.

Unit testing frameworks were designed to quickly execute and evaluate test suites,

and to make it easy to incrementally add test cases. One of the most popular testing

frameworks is JUnit. It is freely available at http://junit.org, and it is also built into a

number of development environments, including BlueJ and Eclipse.

Unit test frameworks simplify the task of writing classes that contain many test

cases.

371

372

Chapter 8 Designing Classes Page 51 of 71

Java Concepts, 5th Edition

When you use JUnit, you design a companion test class for each class that you

develop. Two versions of JUnit are currently in common use, 3 and 4. We describe

both versions. In JUnit 3, your test class has two essential properties:

• The test class must extend the class TestCase from the

junit.framework package.

• For each test case, you must define a method whose name starts with test,

such as testSimpleCase.

Figure 6

Unit Testing with JUnit

In each test case, you make some computations and then compute some condition that

you believe to be true. You then pass the result to a method that communicates a test

result to the framework, most commonly the assertEquals method. The

assertEquals method takes as parameters the expected and actual values and, for

floating-point numbers, a tolerance value.

372

373

Chapter 8 Designing Classes Page 52 of 71

Java Concepts, 5th Edition

It is also customary (but not required) that the name of the test class ends in Test,

such as CashRegisterTest. Consider this example:

import junit.framework.TestCase;

public class CashRegisterTest extends TestCase
{
 public void testSimpleCase()
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(0.75);
 register.recordPurchase(1.50);
 register.enterPayment(2, 0, 5, 0, 0);
 double expected = 0.25;
 assertEquals(expected, register.giveChange(),
EPSILON);
 }
 public void testZeroBalance()
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(2.25);
 register.recordPurchase(19.25);
 register.enterPayment(21, 2, 0, 0, 0);
 assertEquals(0, register.giveChange(),
EPSILON);
 }

 // More test cases
 . . .
 private static final double EPSILON = 1E-12;
}

If all test cases pass, the JUnit tool shows a green bar (see Figure 6). If any of the test

cases fail, the JUnit tool shows a red bar and an error message.

Your test class can also have other methods (whose names should not start with test).

These methods typically carry out steps that you want to share among test methods.

JUnit 4 is even simpler. Your test class need not extend any class and you can freely

choose names for your test methods. You use “annotations” to mark the test methods.

An annotation is an advanced Java feature that places a marker into the code that is

interpreted by another tool. In the case of JUnit, the @Test annotation is used to

mark test methods.

Chapter 8 Designing Classes Page 53 of 71

Java Concepts, 5th Edition

import org.junit.Test
import org.junit.Assert;

public class CashRegisterTest
{
 @Test public void simpleCase()
 {
 register.recordPurchase(0.75);
 register.recordPurchase(1.50);
 register.enterPayment(2, 0, 5, 0, 0);
 double expected = 0.25;
 Assert.assert Equals (expected,
register.giveChange(), EPSILON);
 }

 // More test cases
 . . .
}

The JUnit philosophy is simple. Whenever you implement a class, also make a

companion test class. You design the tests as you design the program, one test method

at a time. The test cases just keep accumulating in the test class. Whenever you have

detected an actual failure, add a test case that flushes it out, so that you can be sure

that you won't introduce that particular bug again. Whenever you modify your class,

simply run the tests again.

The JUnit philosophy is to run all tests whenever you change your code.

If all tests pass, the user interface shows a green bar and you can relax. Otherwise,

there is a red bar, but that's also good. It is much easier to fix a bug in isolation than

inside a complex program.

SELF CHECK

21. Provide a JUnit test class with one test case for the Earthquake class

in Chapter 5.

22. What is the significance of the EPSILON parameter in the

assertEquals method?

373

374

Chapter 8 Designing Classes Page 54 of 71

Java Concepts, 5th Edition

CHAPTER SUMMARY

1. A class should represent a single concept from the problem domain, such as

business, science, or mathematics.

2. The public interface of a class is cohesive if all of its features are related to the

concept that the class represents.

3. A class depends on another class if it uses objects of that class.

4. It is a good practice to minimize the coupling (i.e., dependency) between

classes.

5. An immutable class has no mutator methods.

6. A side effect of a method is any externally observable data modification.

7. You should minimize side effects that go beyond modification of the implicit

parameter.

8. In Java, a method can never change parameters of primitive type.

9. In Java, a method can change the state of an object reference parameter, but it

cannot replace the object reference with another.

10. A precondition is a requirement that the caller of a method must meet. If a

method is called in violation of a precondition, the method is not responsible

for computing the correct result.

11. An assertion is a logical condition in a program that you believe to be true.

12. If a method has been called in accordance with its preconditions, then it must

ensure that its postconditions are valid.

13. A static method is not invoked on an object.

14. A static field belongs to the class, not to any object of the class.

15. The scope of a variable is the region of a program in which the variable can be

accessed.

374

375

Chapter 8 Designing Classes Page 55 of 71

Java Concepts, 5th Edition

16. The scope of a local variable cannot contain the definition of another variable

with the same name.

17. A qualified name is prefixed by its class name or by an object reference, such

as Math.sqrt or other.balance.

18. An unqualified instance field or method name refers to the this parameter.

19. A local variable can shadow a field with the same name. You can access the

shadowed field name by qualifying it with the this reference.

20. A package is a set of related classes.

21. The import directive lets you refer to a class of a package by its class name,

without the package prefix.

22. Use a domain name in reverse to construct unambiguous package names.

23. The path of a class file must match its package name.

24. Unit test frameworks simplify the task of writing classes that contain many test

cases.

25. The JUnit philosophy is to run all tests whenever you change your code.

FURTHER READING

1. Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall,

1989, Chapter 7.

2. http://www.zvon.org/other/PerlTutorial/Output A

dynamic tutorial for regular expressions.

3. http://java.sun.com/docs/books/jls The Java language

specification.

4. Robert X Cringely, Accidental Empires, Addison-Wesley, 1992.

REVIEW EXERCISES

★★Exercise R8.1. Consider the following problem description:

375

376

Chapter 8 Designing Classes Page 56 of 71

Java Concepts, 5th Edition

Users place coins in a vending machine and select a product by

pushing a button. If the inserted coins are sufficient to cover the

purchase price of the product, the product is dispensed and change is

given. Otherwise, the inserted coins are returned to the user.

What classes should you use to implement it?

★★Exercise R8.2. Consider the following problem description:

Employees receive their biweekly paychecks. They are paid their

hourly rates for each hour worked; however, if they worked more

than 40 hours per week, they are paid overtime at 150% of their

regular wage.

What classes should you use to implement it?

★★Exercise R8.3. Consider the following problem description:

Customers order products from a store. Invoices are generated to list

the items and quantities ordered, payments received, and amounts

still due. Products are shipped to the shipping address of the

customer, and invoices are sent to the billing address.

What classes should you use to implement it?

★★★Exercise R8.4. Look at the public interface of the

java.lang.System class and discuss whether or not it is cohesive.

★★Exercise R8.5. Suppose an Invoice object contains descriptions of the

products ordered, and the billing and shipping address of the customer.

Draw a UML diagram showing the dependencies between the classes

Invoice, Address, Customer, and Product.

★★Exercise R8.6. Suppose a vending machine contains products, and users

insert coins into the vending machine to purchase products. Draw a UML

diagram showing the dependencies between the classes

VendingMachine, Coin, and Product.

Chapter 8 Designing Classes Page 57 of 71

Java Concepts, 5th Edition

★★Exercise R8.7. On which classes does the class Integer in the standard

library depend?

★★Exercise R8.8. On which classes does the class Rectangle in the

standard library depend?

★ Exercise R8.9. Classify the methods of the class Scanner that are used in

this book as accessors and mutators.

★ Exercise R8.10. Classify the methods of the class Rectangle as

accessors and mutators.

★ Exercise R8.11. Which of the following classes are immutable?

a. Rectangle

b. String

c. Random

★ Exercise R8.12. Which of the following classes are immutable?

a. PrintStream

b. Date

c. Integer

★★Exercise R8.13. What side effect, if any, do the following three methods

have:

public class Coin
{
 public void print()
 {
 System.out.println(name + " " + value);
 }
 public void print(PrintStream stream)
 {
 stream. println(name + " " + value);
 }
 public String toString()

376

377

Chapter 8 Designing Classes Page 58 of 71

Java Concepts, 5th Edition

 {
 return name + " " + value;
 }
 . . .
}

★★★Exercise R8.14. Ideally, a method should have no side effects. Can you

write a program in which no method has a side effect? Would such a

program be useful?

★★Exercise R8.15. Write preconditions for the following methods. Do not

implement the methods.

a. public static double sqrt(double x)

b. public static String romanNumeral (int n)

c. public static double slope(Line2D.Double a)

d. public static String weekday (int day)

★★Exercise R8.16. What preconditions do the following methods from the

standard Java library have?

a. Math.sqrt

b. Math.tan

c. Math.log

d. Math.exp

e. Math.pow

f. Math.abs

★★Exercise R8.17. What preconditions do the following methods from the

standard Java library have?

a. Integer.parseInt(String s)

b. StringTokenizer. nextToken()

377

378

Chapter 8 Designing Classes Page 59 of 71

Java Concepts, 5th Edition

c. Random. nextInt(int n)

d. String.substring(int m, int n)

★★★Exercise R8.18. When a method is called with parameters that violate its

precondition(s), it can terminate (by throwing an exception or an

assertion error), or it can return to its caller. Give two examples of

library methods (standard or the library methods used in this book) that

return some result to their callers when called with invalid parameters,

and give two examples of library methods that terminate.

★★Exercise R8.19. Consider a CashRegister class with methods

• public void enterPayment(int coinCount, Coin
coinType)

• public double getTotalPayment()

Give a reasonable postcondition of the enterPayment method. What

preconditions would you need so that the CashRegister class can

ensure that postcondition?

★★Exercise R8.20. Consider the following method that is intended to swap

the values of two floating-point numbers:

public static void falseSwap(double a, double
b)
{
 double temp = a;
 a = b;
 b = temp;
}
public static void main(String[] args)
{
 double x = 3;
 double y = 4;
 falseSwap(x, y);
 System.out.println(x + " " + y);
}

Why doesn't the method swap the contents of x and y?

Chapter 8 Designing Classes Page 60 of 71

Java Concepts, 5th Edition

★★★Exercise R8.21. How can you write a method that swaps two

floating-point numbers? Hint: Point2D.Double.

★★Exercise R8.22. Draw a memory diagram that shows why the following

method can't swap two BankAccount objects:

public static void falseSwap(BankAccount a,
BankAccount b)
{
 BankAccount temp = a;
 a = b;
 b = temp;
}

★ Exercise R8.23. Consider an enhancement of the Die class of Chapter 6

with a static field

public class Die
{
 public Die(int s) {. . .}
 public int cast() {. . .}
 private int sides;
 private static Random generator = new
Random();
}

Draw a memory diagram that shows three dice:

Die d4 = new Die(4);
Die d6 = new Die(6);
Die d8 = new Die(8);

Be sure to indicate the values of the sides and generator fields.

★ Exercise R8.24. Try compiling the following program. Explain the error

message that you get.

public class Print13
{
 public void print(int x)
 {

378

379

Chapter 8 Designing Classes Page 61 of 71

Java Concepts, 5th Edition

 System.out.println(x);
 }
 public static void main(String[] args)
 {
 int n = 13;
 print(n);
 }
}

★ Exercise R8.25. Look at the methods in the Integer class. Which are

static? Why?

★★Exercise R8.26. Look at the methods in the String class (but ignore the

ones that take a parameter of type char[]). Which are static? Why?

★★Exercise R8.27. The in and out fields of the System class are public

static fields of the System class. Is that good design? If not, how could

you improve on it?

★★Exercise R8.28. In the following class, the variable n occurs in multiple

scopes. Which declarations of n are legal and which are illegal?

public class X
{
 public int f()
 {
 int n = 1;
 return n;
 }
 public int g(int k)
 {
 int a;
 for (int n = 1; n <= k; n++)
 a = a + n;
 return a;
 }
 public int h(int n)
 {
 int b;
 for (int n = 1; n <= 10; n++)
 b = b + n;
 return b + n;
 }

379

380

Chapter 8 Designing Classes Page 62 of 71

Java Concepts, 5th Edition

 public int k(int n)
 {
 if (n < 0)
 {
 int k = −n;
 int n = (int) (Math.sqrt(k));
 return n;
 }
 else return n;
 }
 public int m(int k)
 {
 int a;
 for (int n = 1; n <= k; n++)
 a = a + n;
 for (int n = k; n >= 1; n++)
 a = a + n;
 return a;
 }
 private int n;
}

★ Exercise R8.29. What is a qualified name? What is an unqualified name?

★★Exercise R8.30. When you access an unqualified name in a method, what

does that access mean? Discuss both instance and static features.

★★Exercise R8.31. Every Java program can be rewritten to avoid import

statements. Explain how, and rewrite RectangleComponent.java

from Chapter 2 to avoid import statements.

★ Exercise R8.32. What is the default package? Have you used it before this

chapter in your programming?

★★TExercise R8.33. What does JUnit do when a test method throws an

exception? Try it out and report your findings.

Additional review exercises are available in WileyPLUS.
380

Chapter 8 Designing Classes Page 63 of 71

Java Concepts, 5th Edition

PROGRAMMING EXERCISES

★★Exercise P8.1. Implement the Coin class described in Section 8.2.

Modify the CashRegister class so that coins can be added to the cash

register, by supplying a method

void enterPayment(int coinCount, Coin
coinType)

The caller needs to invoke this method multiple times, once for each type

of coin that is present in the payment.

★★Exercise P8.2. Modify the giveChange method of the CashRegister

class so that it returns the number of coins of a particular type to return:

int giveChange(Coin coinType)

The caller needs to invoke this method for each coin type, in decreasing

value.

★ Exercise P8.3. Real cash registers can handle both bills and coins. Design a

single class that expresses the commonality of these concepts. Redesign the

CashRegister class and provide a method for entering payments that

are described by your class. Your primary challenge is to come up with a

good name for this class.

★ Exercise P8.4. Enhance the BankAccount class by adding preconditions

for the constructor and the deposit method that require the amount

parameter to be at least zero, and a precondition for the withdraw

method that requires amount to be a value between 0 and the current

balance. Use assertions to test the preconditions.

★★Exercise P8.5. Write static methods

• public static double sphereVolume(double r)

• public static double sphereSurface(double r)

380

381

Chapter 8 Designing Classes Page 64 of 71

Java Concepts, 5th Edition

• public static double cylinderVolume(double r,
double h)

• public static double cylinderSurface(double
r, double h)

• public static double coneVolume(double r,
double h)

• public static double coneSurface(double r,
double h)

that compute the volume and surface area of a sphere with radius r, a

cylinder with circular base with radius r and height h, and a cone with

circular base with radius r and height h. Place them into a class

Geometry. Then write a program that prompts the user for the values of

r and h, calls the six methods, and prints the results.

★★Exercise P8.6. Solve Exercise P8.5 by implementing classes Sphere,

Cylinder, and Cone. Which approach is more object-oriented?

★★Exercise P8.7. Write methods

public static double
perimeter(Ellipse2D.Double e);
public static double area(Ellipse2D.Double e);

that compute the area and the perimeter of the ellipse e. Add these

methods to a class Geometry. The challenging part of this assignment is

to find and implement an accurate formula for the perimeter. Why does it

make sense to use a static method in this case?

★★Exercise P8.8. Write methods

public static double angle(Point2D.Double p,
Point2D.Double q)
public static double slope(Point2D.Double p,
Point2D.Double q)

that compute the angle between the x-axis and the line joining two points,

measured in degrees, and the slope of that line. Add the methods to the

381

382

Chapter 8 Designing Classes Page 65 of 71

Java Concepts, 5th Edition

class Geometry. Supply suitable preconditions. Why does it make sense

to use a static method in this case?

★★Exercise P8.9. Write methods

public static boolean isInside(Point2D.Double
p, Ellipse2D.Double e)
public static boolean
isOnBoundary(Point2D.Double p,
Ellipse2D.Double e)

that test whether a point is inside or on the boundary of an ellipse. Add the

methods to the class Geometry.

★ Exercise P8.10. Write a method

public static int readInt(
 Scanner in, String prompt, String
error, int min, int max)

that displays the prompt string, reads an integer, and tests whether it is

between the minimum and maximum. If not, print an error message and

repeat reading the input. Add the method to a class Input.

★★Exercise P8.11. Consider the following algorithm for computing x
n
 for an

integer n. If n < 0, x
n
 is 1/x

−n
. If n is positive and even, then x

n
 = (x

n/2
)
2
. If

n is positive and odd, then x
n
 = x

n−1
 · x. Implement a static method

double intPower(double x, int n) that uses this algorithm.

Add it to a class called Numeric.

★★Exercise P8.12. Improve the Needle class of Chapter 6. Turn the

generator field into a static field so that all needles share a single

random number generator.

★★Exercise P8.13. Implement a Coin and CashRegister class as

described in Exercise P8.1. Place the classes into a package called money.

Keep the CashRegisterTester class in the default package.

Chapter 8 Designing Classes Page 66 of 71

Java Concepts, 5th Edition

★ Exercise P8.14. Place a BankAccount class in a package whose name is

derived from your e-mail address, as described in Section 8.9. Keep the

BankAccountTester class in the default package.

★★TExercise P8.15. Provide a JUnit test class BankTest with three test

methods, each of which tests a different method of the Bank class in

Chapter 7.

★★TExercise P8.16. Provide JUnit test class TaxReturnTest with three

test methods that test different tax situations for the Tax class in Chapter

5.

★GExercise P8.17. Write methods

• public static void drawH(Graphics2D g2,
Point2D.Double p);

• public static void drawE(Graphics2D g2,
Point2D.Double p);

• public static void drawL(Graphics2D g2,
Point2D.Double p);

• public static void drawO(Graphics2D g2,
Point2D.Double p);

that show the letters H, E, L, O on the graphics window, where the point p

is the top-left corner of the letter. Then call the methods to draw the words

“HELLO” and “HOLE” on the graphics display. Draw lines and ellipses.

Do not use the drawString method. Do not use System.out.

★★GExercise P8.18. Repeat Exercise P8.15 by designing classes LetterH,

LetterE, LetterL, and LetterO, each with a constructor that takes

a Point2D.Double parameter (the top-left corner) and a method

draw(Graphics2D g2).Which solution is more object-oriented?

Additional programming exercises are available in WileyPLUS.

382

383

Chapter 8 Designing Classes Page 67 of 71

Java Concepts, 5th Edition

PROGRAMMING PROJECTS

★★★Project 8.1. Implement a program that prints paychecks for a group of

student assistants. Deduct federal and Social Security taxes. (You may

want to use the tax computation used in Chapter 5. Find out about Social

Security taxes on the Internet.) Your program should prompt for the

names, hourly wages, and hours worked of each student.

★★★Project 8.2. For faster sorting of letters, the United States Postal Service

encourages companies that send large volumes of mail to use a bar code

denoting the ZIP code (see Figure 7).

The encoding scheme for a five-digit ZIP code is shown in Figure 8.

There are full-height frame bars on each side. The five encoded digits are

followed by a check digit, which is computed as follows: Add up all

digits, and choose the check digit to make the sum a multiple of 10. For

example, the sum of the digits in the ZIP code 95014 is 19, so the check

digit is 1 to make the sum equal to 20.

Figure 7

A Postal Bar Code

Chapter 8 Designing Classes Page 68 of 71

Java Concepts, 5th Edition

Figure 8

Encoding for Five-Digit Bar Codes

Each digit of the ZIP code, and the check digit, is encoded according to

the following table:

7 4 2 1 0

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 1 0 0 0 1

8 1 0 0 1 0

9 1 0 1 0 0

0 1 1 0 0 0

where 0 denotes a half bar and 1 a full bar. Note that they represent all

combinations of two full and three half bars. The digit can be computed

easily from the bar code using the column weights 7, 4, 2, 1, 0. For

example, 01100 is

0.7 + 1.4 + 1.2 + 0.1 + 0.0 = 6

The only exception is 0, which would yield 11 according to the weight

formula.

Write a program that asks the user for a ZIP code and prints the bar code.

Use : for half bars, | for full bars. For example, 95014 becomes

||:|:::|:|:||::::::||:|::|:::|||

383

384

Chapter 8 Designing Classes Page 69 of 71

Java Concepts, 5th Edition

(Alternatively, write a graphical application that draws real bars.)

Your program should also be able to carry out the opposite conversion:

Translate bars into their ZIP code, reporting any errors in the input

format or a mismatch of the digits.

ANSWERS TO SELF-CHECK QUESTIONS

1. Look for nouns in the problem description.

2. Yes (ChessBoard) and no (MovePiece).

3. Some of its features deal with payments, others with coin values.

4. None of the coin operations require the CashRegister class.

5. If a class doesn't depend on another, it is not affected by interface changes

in the other class.

6. It is an accessor—calling substring doesn't modify the string on which

the method is invoked. In fact, all methods of the String class are

accessors.

7. No—translate is a mutator.

8. It is a side effect; this kind of side effect is common in object-oriented

programming.

9. Yes—the method affects the state of the Scanner parameter.

10. Then you don't have to worry about checking for invalid values—it

becomes the caller's responsibility.

11. No—you can take any action that is convenient for you.

12. Math m = new Math(); y = m.sqrt(x);

13. In an object-oriented solution, the main method would construct objects of

classes Game, Player, and the like. Most methods would be instance

methods that depend on the state of these objects.

384

385

Chapter 8 Designing Classes Page 70 of 71

Java Concepts, 5th Edition

14. System.in and System.out.

15. Yes, it works. Static methods can access static fields of the same class. But

it is a terrible idea. As your programming tasks get more complex, you will

want to use objects and classes to organize your programs.

16. The scope of amount is the entire deposit method. The scope of

newBalance starts at the point at which the variable is defined and

extends to the end of the method.

17. It starts at the beginning of the class and ends at the end of the class.

18. (a) No; (b) Yes; (c) Yes; (d) No

19. No—you simply use fully qualified names for all other classes, such as

java.util.Random and java.awt.Rectangle.

20. /home/me/cs101/hw1/problem1 or, on Windows,

c:\me\cs101\hw1\problem1.

21. Here is one possible answer, using the JUnit 4 style.

public class EarthquakeTest
{
 @Test public void testLevel4()
 {
 Earthquake quake = new Earthquake(4);
 Assert.assertEquals("Felt by many people, no
destruction",
 quake.getDescription());
 }
}

22. It is a tolerance threshold for comparing floating-point numbers. We want

the equality test to pass if there is a small roundoff error.
385

Chapter 8 Designing Classes Page 71 of 71

Java Concepts, 5th Edition

Chapter 9 Interfaces and Polymorphism

CHAPTER GOALS

• To learn about interfaces

• To be able to convert between class and interface references

• To understand the concept of polymorphism

• To appreciate how interfaces can be used to decouple classes

• To learn how to implement helper classes as inner classes

• To understand how inner classes access variables from the surrounding scope

G To implement event listeners in graphical applications

In order to increase programming productivity, we want to be able to reuse software

components in multiple projects. However, some adaptations are often required to

make reuse possible. In this chapter, you will learn an important strategy for

separating the reusable part of a computation from the parts that vary in each reuse

scenario. The reusable part invokes methods of an interface. It is combined with a

class that implements the interface methods. To produce a different application, you

simply plug in another class that implements the same methods. The program's

behavior varies according to the class that was plugged in—this phenomenon is

called polymorphism.

9.1 Using Interfaces for Code Reuse

It is often possible to make code more general and more reusable by focusing on the

essential operations that are carried out. Interface types are used to express these

common operations.

Use interface types to make code more reusable.

387

387

388

Chapter 9 Interfaces and Polymorphism Page 1 of 68

Java Concepts, 5th Edition

Consider the DataSet class of Chapter 6. We used that class to compute the average

and maximum of a set of input values. However, the class was suitable only for

computing the average of a set of numbers. If we wanted to process bank accounts to

find the bank account with the highest balance, we would have to modify the class,

like this:

public class DataSet// Modified for BankAccount objects
{
 . . .
 public void add(BankAccount x)
 {
 sum = sum + x.getBalance();
 if (count == 0 || maximum.getBalance() <
x.getBalance())
 maximum = x;
 count ++;
 }
 public BankAccount getMaximum()
 {
 return maximum;
 }
 private double sum;
 private BankAccount maximum;
 private int count;
}

Or suppose we wanted to find the coin with the highest value among a set of coins.

We would need to modify the DataSet class again.

public class DataSet // Modified for Coin objects
{
 . . .
 public void add(Coin x)
 {
 sum = sum + x.getValue();
 if (count == 0 || maximum.getValue() <
x.getValue())
 maximum = x;
 count++;
 }
 public Coin getMaximum()
 {
 return maximum;

388

389

Chapter 9 Interfaces and Polymorphism Page 2 of 68

Java Concepts, 5th Edition

 }
 private double sum;
 private Coin maximum;
 private int count;
}

Clearly, the fundamental mechanics of analyzing the data is the same in all cases, but

the details of measurement differ.

Suppose that the various classes agree on a single method getMeasure that obtains

the measure to be used in the data analysis. For bank accounts, getMeasure returns

the balance. For coins, getMeasure returns the coin value, and so on. Then we can

implement a single reusable DataSet class whose add method looks like this:

sum = sum + x.getMeasure();
if (count == 0 || maximum.getMeasure() <
x.getMeasure())
 maximum = x;
count++;

What is the type of the variable x? Ideally, x should refer to any class that has a

getMeasure method.

A Java interface type declares a set of methods and their signatures.

In Java, an interface type is used to specify required operations. We will define an

interface type that we call Measurable:

public interface Measurable
{
 double getMeasure();
}

The interface declaration lists all methods that the interface type requires. The

Measurable interface type requires a single method, but in general, an interface

type can require multiple methods.

Note that the Measurable type is not a type in the standard library—it is a type that

was created specifically for this book, in order to make the DataSet class more

reusable.

389

390

Chapter 9 Interfaces and Polymorphism Page 3 of 68

Java Concepts, 5th Edition

Unlike a class, an interface type provides no implementation.

An interface type is similar to a class, but there are several important differences:

• All methods in an interface type are abstract; that is, they have a name,

parameters, and a return type, but they don't have an implementation.

• All methods in an interface type are automatically public.

• An interface type does not have instance fields.

Now we can use the interface type Measurable to declare the variables x and

maximum.

public class DataSet
{
 . . .
 public void add(Measurable x)
 {
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() <
x.getMeasure())
 maximum = x;
 count++;
 }
 public Measurable getMaximum()
 {
 return maximum;
 }
 private double sum;
 private Measurable maximum;
 private int count;
}

Use the implements keyword to indicate that a class implements an interface

type.

This DataSet class is usable for analyzing objects of any class that implements the

Measurable interface. A class implements an interface type if it declares the

Chapter 9 Interfaces and Polymorphism Page 4 of 68

Java Concepts, 5th Edition

interface in an implements clause. It should then implement the method or

methods that the interface requires.

class ClassName implements Measurable
{
 public double getMeasure()
 {
 Implementation
 }
 Additional methods and fields
}

A class can implement more than one interface type. Of course, the class must then

define all the methods that are required by all the interfaces it implements.

Let us modify the BankAccount class to implement the Measurable interface.

public class BankAccount implements Measurable
{
 public double getMeasure()
 {
 return balance;
 }
 . . .
}

Note that the class must declare the method as public, whereas the interface need

not—all methods in an interface are public.

Similarly, it is an easy matter to modify the Coin class to implement the

Measurable interface.

public class Coin implements Measurable
{
 public double getMeasure()
 {
 return value;
 }
 . . .
}

In summary, the Measurable interface expresses what all measurable objects have

in common. This commonality makes the DataSet class reusable. Objects of the

DataSet class can be used to analyze collections of objects of any class that

390

391

Chapter 9 Interfaces and Polymorphism Page 5 of 68

Java Concepts, 5th Edition

implements the Measurable interface. Following is a test program that illustrates

that fact.

Interfaces can reduce the coupling between classes.

Figure 1 shows the relationships between the Measurable interface, the classes that

implement the interface, and the DataSet class that uses the interface. In the UML

notation, interfaces are tagged with a “stereotype” indicator «interface». A

dotted arrow with a triangular tip denotes the “is-a” relationship between a class and

an interface. You have to look carefully at the arrow tips—a dotted line with an open

arrow tip denotes the “uses” relationship or dependency.

Figure 1

UML Diagram of the DataSet Class and the Classes that Implement the

Measurable Interface

This diagram shows that the DataSet class depends only on the Measurable

interface. It is decoupled from the BankAccount and Coin classes.

SYNTAX 9.1: Defining an Interface

public interface InterfaceName
{
 method signatures
}

391

392

Chapter 9 Interfaces and Polymorphism Page 6 of 68

Java Concepts, 5th Edition

Example

public interface Measurable
{
 double getMeasure();
}

Purpose

To define an interface and its method signatures. The methods are automatically

public.

SYNTAX 9.2: Implementing an Interface

public class ClassName
 implements InterfaceName, InterfaceName, . .
.
{
 methods
 fields
}

Example

public class BankAccount implements Measurable
{

 // Other BankAccount methods
 public double getMeasure()
 {

 // Method implementation
 }
}

Purpose

To define a new class that implements the methods of an interface

ch09/measure1/DataSetTester.java

 1 /**
 2 This program tests the DataSet class.
 3 */
 4 public class DataSetTester

392

393

Chapter 9 Interfaces and Polymorphism Page 7 of 68

Java Concepts, 5th Edition

 5 {
 6 public static void main(String[] args)
 7 {
 8 DataSet bankData = new DataSet();
 9
10 bankData.add(new BankAccount(0));
11 bankData.add(new BankAccount(10000));
12 bankData.add(new BankAccount(2000));
13
14 System.out.println("Average balance: "
15 + bankData.getAverage());
16 System.out.println("Expected: 4000");
17 Measurable max = bankData.getMaximum();
18 System.out.println("Highest balance: "
19 + max.getMeasure());
20 System.out.println("Expected: 10000");
21
22 DataSet coinData = new DataSet();
23
24 coinData.add(new Coin(0.25, "quarter"));
25 coinData.add(new Coin(0.1, "dime"));
26 coinData.add(new Coin(0.05, "nickel"));
27
28 System.out.println("Average coin value: "
29 + coinData.getAverage());
30 System.out.println("Expected: 0.133");
31 max = coinData.getMaximum();
32 System.out.println("Highest coin value: "
33 + max.getMeasure());
34 System.out.println("Expected: 0.25");
35 }
36 }

Output

 Average balance: 4000.0
 Expected: 4000
 Highest balance: 10000.0
 Expected: 10000
 Average coin value: 0.13333333333333333
 Expected: 0.133
 Highest coin value: 0.25
 Expected: 0.25

393

Chapter 9 Interfaces and Polymorphism Page 8 of 68

Java Concepts, 5th Edition

SELF CHECK

1. Suppose you want to use the DataSet class to find the Country

object with the largest population. What condition must the Country

class fulfill?

2. Why can't the add method of the DataSet class have a parameter of

type Object?

 COMMON ERROR 9.1: Forgetting to Define

Implementing Methods as Public

The methods in an interface are not declared as public, because they are public

by default. However, the methods in a class are not public by default—their

default access level is “package” access, which we discuss in Chapter 10. It is a

COMMON ERROR to forget the public keyword when defining a method from an

interface:

public class BankAccount implements Measurable
{

 double getMeasure() // Oops should be public
 {
 return balance;
 }
 . . .
}

Then the compiler complains that the method has a weaker access level, namely

package access instead of public access. The remedy is to declare the method as

public.

 ADVANCED TOPIC 9.1: Constants in Interfaces

Interfaces cannot have instance fields, but it is legal to specify constants. For

example, the SwingConstants interface defines various constants, such as

SwingConstants.NORTH, SwingConstants.EAST, and so on.

393

394

Chapter 9 Interfaces and Polymorphism Page 9 of 68

Java Concepts, 5th Edition

When defining a constant in an interface, you can (and should) omit the keywords

public static final, because all fields in an interface are automatically

public static final. For example,

public interface SwingConstants
{
 int NORTH = 1;
 int NORTHEAST = 2;
 int EAST = 3;
 . . .
}

9.2 Converting Between Class and Interface Types

Interfaces are used to express the commonality between classes. In this section, we

discuss when it is legal to convert between class and interface types.

Have a close look at the call

bankData.add(new BankAccount(10000));

from the test program of the preceding section. Here we pass an object of type

BankAccount to the add method of the DataSet class. However, that method

has a parameter of type Measurable:

public void add(Measurable x)

Is it legal to convert from the BankAccount type to the Measurable type?

You can convert from a class type to an interface type, provided the class

implements the interface.

In Java, such a type conversion is legal. You can convert from a class type to the type

of any interface that the class implements. For example,

BankAccount account = new BankAccount(10000);

Measurable x = account; // OK

Alternatively, x can refer to a Coin object, provided the Coin class has been

modified to implement the Measurable interface.

394

395

Chapter 9 Interfaces and Polymorphism Page 10 of 68

Java Concepts, 5th Edition

Coin dime = new Coin(0.1, "dime");

Measurable x = dime; // Also OK

Thus, when you have an object variable of type Measurable, you don't actually

know the exact type of the object to which x refers. All you know is that the object

has a getMeasure method.

However, you cannot convert between unrelated types:

Measurable x = new Rectangle(5, 10, 20, 30);// Error

That assignment is an error, because the Rectangle class doesn't implement the

Measurable interface.

Occasionally, it happens that you convert an object to an interface reference and you

need to convert it back. This happens in the getMaximum method of the DataSet

class. The DataSet stores the object with the largest measure, as a Measurable

reference.

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
coinData.add(new Coin(0.05, "nickel"));
Measurable max = coinData.getMaximum();

Now what can you do with the max reference? You know it refers to a Coin object,

but the compiler doesn't. For example, you cannot call the getName method:

String coinName = max.getName(); // Error

That call is an error, because the Measurable type has no getName method.

However, as long as you are absolutely sure that max refers to a Coin object, you

can use the cast notation to convert it back:

Coin maxCoin = (Coin) max;
String name = maxCoin.getName();

You need a cast to convert from an interface type to a class type.

395

396

Chapter 9 Interfaces and Polymorphism Page 11 of 68

Java Concepts, 5th Edition

If you are wrong, and the object doesn't actually refer to a coin, your program will

throw an exception and terminate.

This cast notation is the same notation that you saw in Chapter 4 to convert between

number types. For example, if x is a floating-point number, then (int) x is the

integer part of the number. The intent is similar—to convert from one type to another.

However, there is one big difference between casting of number types and casting of

class types. When casting number types, you lose information, and you use the cast to

tell the compiler that you agree to the information loss. When casting object types, on

the other hand, you take a risk of causing an exception, and you tell the compiler that

you agree to that risk.

SELF CHECK

3. Can you use a cast (BankAccount) x to convert a Measurable

variable x to a BankAccount reference?

4. If both BankAccount and Coin implement the Measurable

interface, can a Coin reference be converted to a BankAccount

reference?

 COMMON ERROR 9.2: Trying to Instantiate an Interface

You can define variables whose type is an interface, for example:

Measurable x;

However, you can never construct an interface:

Measurable x = new Measurable(); // Error

Interfaces aren't classes. There are no objects whose types are interfaces. If an

interface variable refers to an object, then the object must belong to some class—a

class that implements the interface:

Measurable x = new BankAccount(); // OK

Chapter 9 Interfaces and Polymorphism Page 12 of 68

Java Concepts, 5th Edition

9.3 Polymorphism

When multiple classes implement the same interface, each class implements the

methods of the interface in different ways. How is the correct method executed when

the interface method is invoked? We will answer that question in this section.

It is worth emphasizing once again that it is perfectly legal—and in fact very

common—to have variables whose type is an interface, such as

Measurable x;

Just remember that the object to which x refers doesn't have type Measurable. In

fact, no object has type Measurable. Instead, the type of the object is some class

that implements the Measurable interface, such as BankAccount or Coin.

Note that x can refer to objects of different types during its lifetime. Here the variable

x first contains a reference to a bank account, then a reference to a coin.

x = new BankAccount(10000); // OK

x = new Coin(0.1, "dime");// OK

What can you do with an interface variable, given that you don't know the class of the

object that it references? You can invoke the methods of the interface:

double m = x.getMeasure();

The DataSet class took advantage of this capability by computing the measure of

the added object, without worrying exactly what kind of object was added.

Now let's think through the call to the getMeasure method more carefully. Which

getMeasure method? The BankAccount and Coin classes provide two different

implementations of that method. How did the correct method get called if the caller

didn't even know the exact class to which x belongs?

The Java virtual machine makes a special effort to locate the correct method that

belongs to the class of the actual object. That is, if x refers to a BankAccount

object, then the BankAccount.getMeasure method is called. If x refers to a

Coin object, then the Coin.getMeasure method is called. This means that one

method call

396

397

Chapter 9 Interfaces and Polymorphism Page 13 of 68

Java Concepts, 5th Edition

double m = x.getMeasure();

can call different methods depending on the momentary contents of x.

Polymorphism denotes the principle that behavior can vary depending on the

actual type of an object.

The principle that the actual type of the object determines the method to be called is

called polymorphism. The term “polymorphism” comes from the Greek words for

“many shapes”. The same computation works for objects of many shapes, and adapts

itself to the nature of the objects. In Java, all instance methods are polymorphic.

When you see a polymorphic method call, such as x.getMeasure(), there are

several possible getMeasure methods that can be called. You have already seen

another case in which the same method name can refer to different methods, namely

when a method name is overloaded: that is, when a single class has several methods

with the same name but different parameter types. For example, you can have two

constructors BankAccount() and BankAccount(double). The compiler

selects the appropriate method when compiling the program, simply by looking at the

types of the parameters:

account = new BankAccount();

 // Compiler selects BankAccount()
account = new BankAccount(10000);

 // Compiler selects BankAccount(double)

There is an important difference between polymorphism and overloading. The

compiler picks an overloaded method when translating the program, before the

program ever runs. This method selection is called early binding. However, when

selecting the appropriate getMeasure method in a call x.getMeasure(), the

compiler does not make any decision when translating the method. The program has

to run before anyone can know what is stored in x. Therefore, the virtual machine,

and not the compiler, selects the appropriate method. This method selection is called

late binding.

397

398

Chapter 9 Interfaces and Polymorphism Page 14 of 68

Java Concepts, 5th Edition

Early binding of methods occurs if the compiler selects a method from several

possible candidates. Late binding occurs if the method selection takes place when

the program runs.

SELF CHECK

5. Why is it impossible to construct a Measurable object?

6. Why can you nevertheless declare a variable whose type is

Measurable?

7. What do overloading and polymorphism have in common? Where do

they differ?

9.4 Using Interfaces for Callbacks

In this section, we discuss how the DataSet class can be made even more reusable

by supplying a different interface type. This type of interface provides a “callback”

mechanism, allowing the DataSet class to call back a specific method when it

needs more information.

To understand why a further improvement to the DataSet class is desirable,

consider these limitations of the Measurable interface:

• You can add the Measurable interface only to classes under your control. If

you want to process a set of Rectangle objects, you cannot make the

Rectangle class implement another interface—it is a system class, which

you cannot change.

• You can measure an object in only one way. If you want to analyze a set of

savings accounts both by bank balance and by interest rate, you are stuck.

Therefore, let us rethink the DataSet class. The data set needs to measure the

objects that are added. When the objects are required to be of type Measurable, the

responsibility of measuring lies with the added objects themselves, which is the cause

of the limitations that we noted. It would be better if another object could carry out

the measurement. Let's move the measurement method into a different interface:

Chapter 9 Interfaces and Polymorphism Page 15 of 68

Java Concepts, 5th Edition

public interface Measurer
{
 double measure(Object anObject);
}

The measure method measures an object and returns its measurement. Here we use

the fact that all objects can be converted to the type Object, the “lowest common

denominator” of all classes in Java. We will discuss the Object type in greater

detail in Chapter 10.

The improved DataSet class is constructed with a Measurer object (that is, an

object of some class that implements the Measurer interface). That object is saved

in a measurer instance field and used to carry out the measurements, like this:

public void add(Object x)
{
 sum = sum + measurer.measure(x);
 if (count == 0 || measurer.measure(maximum) <
measurer.measure(x))
 maximum = x;
 count++;
}

The DataSet class simply makes a callback to the measure method whenever it

needs to measure any object.

Now you can define measurers to take on any kind of measurement. For example,

here is how you can measure rectangles by area. Define a class

public class RectangleMeasurer implements Measurer
{
 public double measure(Object anObject)
 {
 Rectangle aRectangle = (Rectangle) anObject;
 double area = aRectangle.getWidth() *
aRectangle.getHeight();
 return area;
 }
}

Note that the measure method must accept a parameter of type Object, even

though this particular measurer just wants to measure rectangles. The method

398

399

Chapter 9 Interfaces and Polymorphism Page 16 of 68

Java Concepts, 5th Edition

signature must match the signature of the measure method in the Measurer

interface. Therefore, the Object parameter is cast to the Rectangle type:

Rectangle aRectangle = (Rectangle) anObject;

What can you do with a RectangleMeasurer? You need it for a DataSet that

compares rectangles by area. Construct an object of the RectangleMeasurer

class and pass it to the DataSet constructor.

Measurer m = new RectangleMeasurer();
DataSet data = new DataSet(m);

Next, add rectangles to the data set.

data.add(new Rectangle(5, 10, 20, 30));
data.add(new Rectangle(10, 20, 30, 40));
. . .

The data set will ask the RectangleMeasurer object to measure the rectangles.

In other words, the data set uses the RectangleMeasurer object to carry out

callbacks.

Figure 2 shows the UML diagram of the classes and interfaces of this solution. As in

Figure 1, the DataSet class is decoupled from the Rectangle class whose objects

it processes. However, unlike in Figure 1, the Rectangle class is no longer coupled

with another class. Instead, to process rectangles, you have to come up with a small

“helper” class RectangleMeasurer. This helper class has only one purpose: to

tell the DataSet how to measure its objects.

Figure 2

UML Diagram of the DataSet Class and the Measurer Interface

399

400

Chapter 9 Interfaces and Polymorphism Page 17 of 68

Java Concepts, 5th Edition

ch09/measure2/DataSet.java

 1 /**

 2 Computes the average of a set of data values.
 3 */

 4 public class DataSet
 5 {
 6 /**

 7 Constructs an empty data set with a given measurer.

 8 @param aMeasurer the measurer that is used to measure

data values
 9 */
10 public DataSet(Measurer aMeasurer)
11 {
12 sum = 0;
13 count = 0;
14 maximum = null;
15 measurer = aMeasurer;
16 }
17
18 /**

19 Adds a data value to the data set.

20 @param xa data value
21 */
22 public void add(Object x)
23 {
24 sum = sum + measurer.measure(x);
25 if (count == 0
26 | | measurer.measure(maximum) <
measurer.measure(x))
27 maximum = x;
28 count++;
29 }
30
31 /**

32 Gets the average of the added data.

33 @return the average or 0 if no data has been added
34 */
35 public double getAverage()
36 {
37 if (count == 0) return 0;
38 else return sum / count;

400

401

Chapter 9 Interfaces and Polymorphism Page 18 of 68

Java Concepts, 5th Edition

39 }
40
41 /**

42 Gets the largest of the added data.

43 @return the maximum or 0 if no data has been added
44 */
45 public Object getMaximum()
46 {
47 return maximum;
48 }
49
50 private double sum;
51 private Object maximum;
52 private int count;
53 private Measurer measurer;
54 }

ch09/measure2/DataSetTester2.java

 1 import java.awt.Rectangle;
 2
 3 /**

 4 This program demonstrates the use of a Measurer.
 5 */
 6 public class DataSetTester2
 7 {
 8 public static void main(String[] args)
 9 {
47 Measurer m = new RectangleMeasurer();
11
12 DataSet data = new DataSet(m);
13
14 data.add(new Rectangle(5, 10, 20, 30));
15 data.add(new Rectangle(10, 20, 30, 40));
16 data.add(new Rectangle(20, 30, 5, 15));
17
18 System.out.println("Average area: " +
data.getAverage());
19 System.out.println("Expected: 625");
20
21 Rectangle max = (Rectangle)
data.getMaximum();
22 System.out.println("Maximum area
rectangle: " + max);

Chapter 9 Interfaces and Polymorphism Page 19 of 68

Java Concepts, 5th Edition

23 System.out.println("Expected:
java.awt.Rectangle[
24 x=10,y=20,width=30,height=40]");
25 }
26 }

ch09/measure2/Measurer.java

 1 /**

 2 Describes any class whose objects can measure other objects.
 3 */
 4 public interface Measurer
 5 {
 6 /**

 7 Computes the measure of an object.

 8 @param anObject the object to be measured

 9 @return the measure
10 */
11 double measure(Object anObject);
12 }

ch09/measure2/RectangleMeasurer.java

 1 import java.awt.Rectangle;
 2
 3 /**

 4 Objects of this class measure rectangles by area.
 5 */
 6 public class RectangleMeasurer implements
Measurer
 7 {
 8 public double measure(Object anObject)
 9 {
10 Rectangle aRectangle = (Rectangle)
anObject;
11 double area = aRectangle.getWidth() *
aRectangle.getHeight();
12 return area;
13 }
14 }

401

402

Chapter 9 Interfaces and Polymorphism Page 20 of 68

Java Concepts, 5th Edition

Output

Average area: 625
Expected: 625
Maximum area rectangle:
java.awt.Rectangle[x=10,y=20,width=30,height=40]
Expected:
java.awt.Rectangle[x=10,y=20,width=30,height=40]

SELF CHECK

8. Suppose you want to use the DataSet class of Section 9.1 to find the

longest String from a set of inputs. Why can't this work?

9. How can you use the DataSet class of this section to find the longest

String from a set of inputs?

10. Why does the measure method of the Measurer interface have one

more parameter than the getMeasure method of the Measurable

interface?

9.5 Inner Classes

The RectangleMeasurer class is a very trivial class. We need this class only

because the DataSet class needs an object of some class that implements the

Measurer interface. When you have a class that serves a very limited purpose, such

as this one, you can declare the class inside the method that needs it:

public class DataSetTester3
{
 public static void main(String[] args)
 {
 class RectangleMeasurer implements Measurer
 {
 . . .
 }
 Measurer m = new RectangleMeasurer();
 DataSet data = new DataSet(m);
 . . .
 }
}

402

403

Chapter 9 Interfaces and Polymorphism Page 21 of 68

Java Concepts, 5th Edition

Such a class is called an inner class. An inner class is any class that is defined inside

another class. This arrangement signals to the reader of your program that the

RectangleMeasurer class is not interesting beyond the scope of this method.

Since an inner class inside a method is not a publicly accessible feature, you don't

need to document it as thoroughly.

An inner class is declared inside another class. Inner classes are commonly used

for tactical classes that should not be visible elsewhere in a program.

You can also define an inner class inside an enclosing class, but outside of its

methods. Then the inner class is available to all methods of the enclosing class.

SYNTAX 9.3: Inner Classes

Declared inside a method:

class OuterClassName
{
 method signature
 {
 . . .
 class InnerClassName
 {
 methods
 fields
 }
 . . .
 }
 . . .
}

Declared inside the class:

class OuterClassName
{
 methods
 fields
 accessSpecifier class
InnerClassName

 {
 methods
 fields
 }
 . . .
}

Example

public class Tester
{
 public static void main(String[] args)
 {
 class RectangleMeasurer implements Measurer
 {
 . . .
 }
 . . .
 }
}

403

404

Chapter 9 Interfaces and Polymorphism Page 22 of 68

Java Concepts, 5th Edition

Purpose

To define an inner class whose scope is restricted to a single method or the

methods of a single class

When you compile the source files for a program that uses inner classes, have a look

at the class files in your program directory—you will find that the inner classes are

stored in files with curious names, such as

DataSetTester3$1$RectangleMeasurer.class. The exact names aren't

important. The point is that the compiler turns an inner class into a regular class file.

ch09/measure3/DataSetTester3.java

 1 import java.awt.Rectangle;
 2
 3 /**

 4 This program demonstrates the use of an inner class.
 5 */
 6 public class DataSetTester3
 7 {
 8 public static void main(String[] args)
 9 {
10 class RectangleMeasurer implements
Measurer
11 {
12 public double measure(Object anObject)
13 {
14 Rectangle aRectangle = (Rectangle)
anObject;
15 double area
16 = aRectangle.getWidth() *
aRectangle.getHeight();
17 return area;
18 }
19 }
20
21 Measurer m = new RectangleMeasurer();
22
23 DataSet data = new DataSet(m);
24
25 data.add(new Rectangle(5, 10, 20, 30));
26 data.add(new Rectangle(10, 20, 30, 40));

404

405

Chapter 9 Interfaces and Polymorphism Page 23 of 68

Java Concepts, 5th Edition

27 data.add(new Rectangle(20, 30, 5, 15));
28
29 System.out.println("Average area: " +
data.getAverage());
30 System.out.println("Expected: 625");
31
32 Rectangle max = (Rectangle)
data.getMaximum();
33 System.out.println("Maximum area
rectangle: " + max);
34 System.out.println("Expected:
java.awt.Rectangle[
35 x=10,y=20,width=30,height=40]");
36 }
37 }

SELF CHECK

11. Why would you use an inner class instead of a regular class?

12. How many class files are produced when you compile the

DataSetTester3 program?

 ADVANCED TOPIC 9.2: Anonymous Classes

An entity is anonymous if it does not have a name. In a program, something that is

only used once doesn't usually need a name. For example, you can replace

Coin aCoin = new Coin(0.1, "dime");
data.add(aCoin);

with

data.add(new Coin(0.1, "dime"));

if the coin is not used elsewhere in the same method. The object new

Coin(0.1, "dime") is an anonymous object. Programmers like anonymous

objects, because they don't have to go through the trouble of coming up with a

name. If you have struggled with the decision whether to call a coin c, dime, or

aCoin, you'll understand this sentiment.

405

Chapter 9 Interfaces and Polymorphism Page 24 of 68

Java Concepts, 5th Edition

Inner classes often give rise to a similar situation. After a single object of the

Rectangle-Measurer has been constructed, the class is never used again. In

Java, it is possible to define anonymous classes if all you ever need is a single

object of the class.

public static void main(String[] args)
{

 // Construct an object of an anonymous class
 Measurer m = new Measurer()

 // Class definition starts here
 {
 public double measure(Object anObject)
 {
 Rectangle aRectangle = (Rectangle)
anObject;
 double area = aRectangle.getWidth() *
aRectangle.getHeight();
 return area;
 }
 };
 DataSet data = new DataSet(m);
 . . .
}

This means: Construct an object of a class that implements the Measurer

interface by defining the measure method as specified. Many programmers like

this style, but we will not use it in this book.

 RANDOM FACT 9.1: Operating Systems

Without an operating system, a computer would not be useful. Minimally, you

need an operating system to locate files and to start programs. The programs that

you run need services from the operating system to access devices and to interact

with other programs. Operating systems on large computers need to provide more

services than those on personal computers do.

Here are some typical services:

• Program loading. Every operating system provides some way of launching

application programs. The user indicates what program should be run,

405

406

Chapter 9 Interfaces and Polymorphism Page 25 of 68

Java Concepts, 5th Edition

usually by typing the name of the program or by clicking on an icon. The

operating system locates the program code, loads it into memory, and starts

it.

• Managing files. A storage device, such as a hard disk is, electronically,

simply a device capable of storing a huge sequence of zeroes and ones. It is

up to the operating system to bring some structure to the storage layout and

organize it into files, folders, and so on. The operating system also needs to

impose some amount of security and redundancy into the file system so that

a power outage does not jeopardize the contents of an entire hard disk. Some

operating systems do a better job in this regard than others.

• Virtual memory. RAM is expensive, and few computers have enough RAM

to hold all programs and their data that a user would like to run

simultaneously. Most operating systems extend the available memory by

storing some data on the hard disk. The application programs do not realize

whether a particular data item is in memory or in the virtual memory disk

storage. When a program accesses a data item that is currently not in RAM,

the processor senses this and notifies the operating system. The operating

system swaps the needed data from the hard disk into RAM, simultaneously

swapping out a memory block of equal size that had not been accessed for

some time.

• Handling multiple users. The operating systems of large and powerful

computers allow simultaneous access by multiple users. Each user is

connected to the computer through a separate terminal. The operating

system authenticates users by checking that each one has a valid account and

password. It gives each user a small slice of processor time, then serves the

next user.

• Multitasking. Even if you are the sole user of a computer, you may want to

run multiple applications—for example, to read your e-mail in one window

and run the Java compiler in another. The operating system is responsible

for dividing processor time between the applications you are running, so that

each can make progress.
406

Chapter 9 Interfaces and Polymorphism Page 26 of 68

Java Concepts, 5th Edition

A Graphical Software Environment for the Linux Operating System

• Printing. The operating system queues up the print requests that are sent by

multiple applications. This is necessary to make sure that the printed pages

do not contain a mixture of words sent simultaneously from separate

programs.

• Windows. Many operating systems present their users with a desktop made

up of multiple windows. The operating system manages the location and

appearance of the window frames; the applications are responsible for the

interiors.

• Fonts. To render text on the screen and the printer, the shapes of characters

must be defined. This is especially important for programs that can display

multiple type styles and sizes. Modern operating systems contain a central

font repository.

• Communicating between programs. The operating system can facilitate the

transfer of information between programs. That transfer can happen through

406

407

Chapter 9 Interfaces and Polymorphism Page 27 of 68

Java Concepts, 5th Edition

cut and paste or interprocess communication. Cut and paste is a

user-initiated data transfer in which the user copies data from one

application into a transfer buffer (often called a “clipboard”) managed by the

operating system and inserts the buffer's contents into another application.

Interprocess communication is initiated by applications that transfer data

without direct user involvement.

• Networking. The operating system provides protocols and services for

enabling applications to reach information on other computers attached to

the network.

Today, the most popular operating systems for personal computers are Linux (see

figure), the Macintosh OS, and Microsoft Windows.

9.6 Events, Event Sources, and Event Listeners

In the applications that you have written so far, user input was under control of the

program. The program asked the user for input in a specific order. For example, a

program might ask the user to supply first a name, then a dollar amount. But the

programs that you use every day on your computer don't work like that. In a program

with a modern graphical user interface, the user is in control. The user can use both

the mouse and the keyboard and can manipulate many parts of the user interface in

any desired order. For example, the user can enter information into text fields, pull

down menus, click buttons, and drag scroll bars in any order. The program must react

to the user commands, in whatever order they arrive. Having to deal with many

possible inputs in random order is quite a bit harder than simply forcing the user to

supply input in a fixed order.

In the following sections, you will learn how to write Java programs that can react to

user interface events, such as button pushes and mouse clicks. The Java windowing

toolkit has a very sophisticated mechanism that allows a program to specify the

events in which it is interested and which objects to notify when one of these events

occurs.

User interface events include key presses, mouse moves, button clicks, menu

selections, and so on.

407

408

Chapter 9 Interfaces and Polymorphism Page 28 of 68

Java Concepts, 5th Edition

Whenever the user of a graphical program types characters or uses the mouse

anywhere inside one of the windows of the program, the Java window manager sends

a notification to the program that an event has occurred. The window manager

generates huge numbers of events. For example, whenever the mouse moves a tiny

interval over a window, a “mouse move” event is generated. Events are also

generated when the user presses a key, clicks a button, or selects a menu item.

Most programs don't want to be flooded by boring events. For example, when a

button is clicked with the mouse, the mouse moves over the button, then the mouse

button is pressed, and finally the button is released. Rather than receiving lots of

irrelevant mouse events, a program can indicate that it only cares about button clicks,

not about the underlying mouse events. However, if the mouse input is used for

drawing shapes on a virtual canvas, it is necessary to closely track mouse events.

An event listener belongs to a class that is provided by the application

programmer. Its methods describe the actions to be taken when an event occurs.

Every program must indicate which events it needs to receive. It does that by

installing event listener objects. An event listener object belongs to a class that you

define. The methods of your event listener classes contain the instructions that you

want to have executed when the events occur.

To install a listener, you need to know the event source. The event source is the user

interface component that generates a particular event. You add an event listener

object to the appropriate event sources. Whenever the event occurs, the event source

calls the appropriate methods of all attached event listeners.

Event sources report on events. When an event occurs, the event source notifies all

event listeners.

Use JButton components for buttons. Attach an ActionListener to each

button.

408

409

Chapter 9 Interfaces and Polymorphism Page 29 of 68

Java Concepts, 5th Edition

This sounds somewhat abstract, so let's run through an extremely simple program that

prints a message whenever a button is clicked. Button listeners must belong to a class

that implements the ActionListener interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

This particular interface has a single method, actionPerformed. It is your job to

supply a class whose actionPerformed method contains the instructions that you

want executed whenever the button is clicked. Here is a very simple example of such

a listener class:

ch09/button1/ClickListener.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3
 4 /**

 5 An action listener that prints a message.
 6 */
 7 public class ClickListener implements
ActionListener
 8 {
 9 public void actionPerformed(ActionEvent
event)
10 {
11 System.out.println("I was clicked.");
12 }
13 }

We ignore the event parameter of the actionPerformed method—it contains

additional details about the event, such as the time at which it occurred.

Once the listener class has been defined, we need to construct an object of the class

and add it to the button:

ActionListener listener = new ClickListener();
button.addActionListener(listener);

Whenever the button is clicked, it calls

Chapter 9 Interfaces and Polymorphism Page 30 of 68

Java Concepts, 5th Edition

listener.actionPerformed(event);

As a result, the message is printed.

You can think of the actionPerformed method as another example of a callback,

similar to the measure method of the Measurer class. The windowing toolkit calls

the actionPerformed method whenever the button is pressed, whereas the

DataSet calls the measure method whenever it needs to measure an object.

You can test this program out by opening a console window, starting the

ButtonViewer program from that console window, clicking the button, and

watching the messages in the console window (see Figure 3).

Figure 3

Implementing an Action Listener

ch09/button1/ButtonViewer.java

 1 import java.awt.event.ActionListener;
 2 import javax.swing.JButton;
 3 import javax.swing.JFrame;
 4
 5 /**

 6 This program demonstrates how to install an action listener.
 7 */
 8 public class ButtonViewer
 9 {
10 public static void main(String[] args)

409

410

Chapter 9 Interfaces and Polymorphism Page 31 of 68

Java Concepts, 5th Edition

11 {
12 JFrame frame = new JFrame();
13 JButton button = new JButton(”Click me!”);
14 frame.add(button);
15
16 ActionListener listener = new
ClickListener();
17 button.addActionListener(listener);
18
19 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
21 frame.setVisible(true);
22 }
23
24 private static final int FRAME_WIDTH = 100;
25 private static final int FRAME_HEIGHT = 60;
26 }

SELF CHECK

13. Which objects are the event source and the event listener in the

ButtonViewer program?

14. Why is it legal to assign a ClickListener object to a variable of

type ActionListener?

 COMMON ERROR 9.3: Modifying the Signature in the

Implementing Method

When you implement an interface, you must define each method exactly as it is

specified in the interface. Accidentally making small changes to the parameter or

return types is a COMMON ERROR. Here is the classic example,

class MyListener implements ActionListener
{
 public void actionPerformed()

 // Oops . . . forgot ActionEvent parameter
 {
 . . .
 }
}

410

411

Chapter 9 Interfaces and Polymorphism Page 32 of 68

Java Concepts, 5th Edition

As far as the compiler is concerned, this class has two methods:

public void actionPerformed(ActionEvent event)
public void actionPerformed()

The first method is undefined. The compiler will complain that the method is

missing. You have to read the error message carefully and pay attention to the

parameter and return types to find your error.

9.7 Using Inner Classes for Listeners

In the preceding section, you saw how the code that is executed when a button is

clicked is placed into a listener class. It is common to implement listener classes as

inner classes like this:

JButton button = new JButton(". . .");

// This inner class is declared in the same method as the button variable
class MyListener implements ActionListener
{
 . . .
};

ActionListener listener = new MyListener();
button.addActionListener(listener);

There are two reasons for this arrangement. First, it places the trivial listener class

exactly where it is needed, without cluttering up the remainder of the project.

Moreover, inner classes have a very attractive feature: Their methods can access

variables that are defined in surrounding blocks. In this regard, method definitions of

inner classes behave similarly to nested blocks.

Recall that a block is a statement group enclosed by braces. If a block is nested inside

another, the inner block has access to all variables from the surrounding block:

{ // Surrounding block
 BankAccount account = new BankAccount();
 if (. . .)

 { // Inner block
 . . .

 // OK to access variable from surrounding block

411

412

Chapter 9 Interfaces and Polymorphism Page 33 of 68

Java Concepts, 5th Edition

 account.deposit(interest);
 . . .

 } // End of inner block
 . . .

} // End of surrounding block

The same nesting works for inner classes. Except for some technical restrictions,

which we will examine later in this section, the methods of an inner class can access

the variables from the enclosing scope. This feature is very useful when

implementing event handlers. It allows the inner class to access variables without

having to pass them as constructor or method parameters.

Methods of an inner class can access local variables from surrounding blocks and

fields from surrounding classes.

Let's look at an example. Suppose we want to add interest to a bank account

whenever a button is clicked.

JButton button = new JButton("Add Interest");
final BankAccount account = new
BankAccount(INITIAL_BALANCE);

// This inner class is declared in the same method as the account and button

variables.
class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {

 // The listener method accesses the account variable

 // from the surrounding block
 double interest = account.getBalance()
 * INTEREST_RATE / 100;
 account.deposit(interest);
 }
};

ActionListener listener = new AddInterestListener();
button.addActionListener(listener);

There is a technical wrinkle. An inner class can access surrounding local variables

only if they are declared as final. That sounds like a restriction, but it is usually not

Chapter 9 Interfaces and Polymorphism Page 34 of 68

Java Concepts, 5th Edition

an issue in practice. Keep in mind that an object variable is final when the variable

always refers to the same object. The state of the object can change, but the variable

can't refer to a different object. For example, in our program, we never intended to

have the account variable refer to multiple bank accounts, so there was no harm in

declaring it as final.

Local variables that are accessed by an inner-class method must be declared as

final.

An inner class can also access fields of the surrounding class, again with a restriction.

The field must belong to the object that constructed the inner class object. If the inner

class object was created inside a static method, it can only access static surrounding

fields.

Here is the source code for the program.

ch09/button2/InvestmentViewer1.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3 import javax.swing.JButton;
 4 import javax.swing.JFrame;
 5
 6 /**

 7 This program demonstrates how an action listener can access

 8 a variable from a surrounding block.
 9 */
10 public class InvestmentViewer1
11 {
12 public static void main(String[] args)
13 {
14 JFrame frame = new JFrame();
15

16 // The button to trigger the calculation
17 JButton button = new JButton("Add
Interest");
18 frame.add(button);
19

20 // The application adds interest to this bank account

412

413

Chapter 9 Interfaces and Polymorphism Page 35 of 68

Java Concepts, 5th Edition

21 final BankAccount account = new
BankAccount(INITIAL_BALANCE);
22
23 class AddInterestListener implements
ActionListener
24 {
25 public void
actionPerformed(ActionEvent event)
26 {

27 // The listener method accesses the account variable

28 // from the surrounding block
29 double interest =
account.getBalance()
30 * INTEREST_RATE / 100;
31 account.deposit(interest);
32 System.out.println("balance: " +
account.getBalance());
33 }
34 }
35
36 ActionListener listener = new
AddInterestListener();
37 button.addActionListener(listener);
38
39 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
40 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
41 frame.setVisible(true);
42 }
43
44 private static final double INTEREST_RATE =
10;
45 private static final double INITIAL_BALANCE
= 1000;
46
47 private static final int FRAME_WIDTH = 120;
48 private static final int FRAME_HEIGHT = 60;
49 }

Output

balance: 1100.0
balance: 1210.0
balance: 1331.0
balance: 1464.1

413

414

Chapter 9 Interfaces and Polymorphism Page 36 of 68

Java Concepts, 5th Edition

SELF CHECK

15. Why would an inner class method want to access a variable from a

surrounding scope?

16. If an inner class accesses a local variable from a surrounding scope,

what special rule applies?

9.8 Building Applications with Buttons

In this section, you will learn how to structure a graphical application that contains

buttons. We will put a button to work in our simple investment viewer program.

Whenever the button is clicked, interest is added to a bank account, and the new

balance is displayed (see Figure 4).

First, we construct an object of the JButton class. Pass the button label to the

constructor:

JButton button = new JButton("Add Interest");

We also need a user interface component that displays a message, namely the current

bank balance. Such a component is called a label. You pass the initial message string

to the JLabel constructor, like this:

JLabel label = new JLabel("balance: " +
account.getBalance());

Figure 4

An Application with a Button

The frame of our application contains both the button and the label. However, we

cannot simply add both components directly to the frame—they would be placed on

414

415

Chapter 9 Interfaces and Polymorphism Page 37 of 68

Java Concepts, 5th Edition

top of each other. The solution is to put them into a panel, a container for other

user-interface components, and then add the panel to the frame:

JPanel panel = new JPanel();
panel.add(button);
panel.add(label);
frame.add(panel);

Use a JPanel container to group multiple user-interface components together.

Now we are ready for the hard part—the event listener that handles button clicks. As

in the preceding section, it is necessary to define a class that implements the

ActionListener interface, and to place the button action into the

actionPerformed method. Our listener class adds interest and displays the new

balance:

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance() *
INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance: " +
account.getBalance());
 }
}

There is just a minor technicality. The actionPerformed method manipulates the

account and label variables. These are local variables of the main method of the

investment viewer program, not instance fields of the AddInterestListener

class. We therefore need to declare the account and label variables as final so

that the actionPerformed method can access them.

You often install event listeners as inner classes so that they can have access to the

surrounding fields, methods, and final variables.

Let's put the pieces together.

public static void main(String[] args)
{

Chapter 9 Interfaces and Polymorphism Page 38 of 68

Java Concepts, 5th Edition

 . . .
 JButton button = new JButton("Add Interest");
 final BankAccount account = new
BankAccount(INITIAL_BALANCE);
 final JLabel label = new JLabel("balance: " +
account.getBalance());
 class AddInterestListener implements
ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance()
 * INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance: " +
account.getBalance());
 }
 }
 ActionListener listener = new
AddInterestListener();
 button.addActionListener(listener);
 . . .
}

With a bit of practice, you will learn to glance at this code and translate it into plain

English: “When the button is clicked, add interest and set the label text.”

Here is the complete program. It demonstrates how to add multiple components to a

frame, by using a panel, and how to implement listeners as inner classes.

ch09/button3/InvestmentViewer2.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3 import javax.swing.JButton;
 4 import javax.swing.JFrame;
 5 import javax.swing.JLabel;
 6 import javax.swing.JPanel;
 7 import javax.swing.JTextField;
 8
 9 /**

10 This program displays the growth of an investment.
11 */
12 public class InvestmentViewer2

415

416

Chapter 9 Interfaces and Polymorphism Page 39 of 68

Java Concepts, 5th Edition

13 {
14 public static void main(String[] args)
15 {
16 JFrame frame = new JFrame();
17

18 // The button to trigger the calculation
19 JButton button = new JButton("Add
Interest");
20

21 // The application adds interest to this bank account
22 final BankAccount account = new
BankAccount(INITIAL_BALANCE);
23

24 // The label for displaying the results
25 final JLabel label = new JLabel(
26 "balance: " +
account.getBalance());
27

28 // The panel that holds the user interface components
29 JPanel panel = new JPanel();
30 panel.add(button);
31 panel.add(label);
32 frame.add(panel);
33
34 class AddInterestListener implements
ActionListener
35 {
36 public void
actionPerformed(ActionEvent event)
37 {
38 double interest =
account.getBalance()
39 * INTEREST_RATE / 100;
40 account.deposit(interest);
41 label.setText(
42 "balance: " +
account.getBalance());
43 }
44 }
45
46 ActionListener listener = new
AddInterestListener();
47 button.addActionListener(listener);
48

416

417

Chapter 9 Interfaces and Polymorphism Page 40 of 68

Java Concepts, 5th Edition

49 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
50 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
51 frame.setVisible(true);
52 }
53
54 private static final double INTEREST_RATE =
10;
55 private static final double INITIAL_BALANCE
= 1000;
56
57 private static final int FRAME_WIDTH = 400;
58 private static final int FRAME_HEIGHT = 100;
59 }

SELF CHECK

17. How do you place the “balance: . . .” message to the left of the

"Add Interest" button?

18. Why was it not necessary to declare the button variable as final?

 COMMON ERROR 9.4: Forgetting to Attach a Listener

If you run your program and find that your buttons seem to be dead, double-check

that you attached the button listener. The same holds for other user interface

components. It is a surprisingly COMMON ERROR to program the listener class and

the event handler action without actually attaching the listener to the event source.

 PRODUCTIVITY HINT 9.1: Don't Use a Container as a

Listener

In this book, we use inner classes for event listeners. That approach works for

many different event types. Once you master the technique, you don't have to think

about it anymore. Many development environments automatically generate code

with inner classes, so it is a good idea to be familiar with them.

However, some programmers bypass the event listener classes and instead turn a

container (such as a panel or frame) into a listener. Here is a typical example. The

Chapter 9 Interfaces and Polymorphism Page 41 of 68

Java Concepts, 5th Edition

actionPerformed method is added to the viewer class. That is, the viewer

implements the ActionListener interface.

public class InvestmentViewer

 implements ActionListener// This approach is not

recommended
{
public InvestmentViewer()
{
 JButton button = new JButton("Add Interest");
 button.addActionListener(this);
 . . .
}
public void actionPerformed(ActionEvent event)
{
}
. . .
}

Now the actionPerformed method is a part of the InvestmentViewer

class rather than part of a separate listener class. The listener is installed as this.

This technique has two major flaws. First, it separates the button definition from

the button action. Also, it doesn't scale well. If the viewer class contains two

buttons that each generate action events, then the actionPerformed method

must investigate the event source, which leads to code that is tedious and

error-prone.

9.9 Processing Timer Events

In this section we will study timer events and show how they allow you to implement

simple animations.

The Timer class in the javax.swing package generates a sequence of action

events, spaced apart at even time intervals. (You can think of a timer as an invisible

button that is automatically clicked.) This is useful whenever you want to have an

object updated in regular intervals. For example, in an animation, you may want to

update a scene ten times per second and redisplay the image, to give the illusion of

movement.

417

418

Chapter 9 Interfaces and Polymorphism Page 42 of 68

Java Concepts, 5th Edition

A timer generates timer events at fixed intervals.

When you use a timer, you specify the frequency of the events and an object of a

class that implements the ActionListener interface. Place whatever action you

want to occur inside the actionPerformed method. Finally, start the timer.

class MyListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {

 // This action will be executed at each timer event
 Place listener action here
 }
}
MyListener listener = new MyListener();
Timer t = new Timer (interval, listener);
t.start();

Then the timer calls the actionPerformed method of the listener object

every interval milliseconds.

Our sample program will display a moving rectangle. We first supply a

RectangleComponent class with a moveBy method that moves the rectangle by

a given amount.

ch09/timer/RectangleComponent.java

 1 import java.awt.Graphics;
 2 import java.awt.Graphics2D;
 3 import java.awt.Rectangle;
 4 import javax.swing.JComponent;
 5
 6 /**

 7 This component displays a rectangle that can be moved.
 8 */
 9 public class RectangleComponent extends
JComponent
10 {
11 public RectangleComponent()
12 {

13 // The rectangle that the paint method draws

418

419

Chapter 9 Interfaces and Polymorphism Page 43 of 68

Java Concepts, 5th Edition

14 box = new Rectangle(BOX_X, BOX_Y,
15 BOX_WIDTH, BOX_HEIGHT);
16 }
17
18 public void paintComponent(Graphics g)
19 {
20 super.paintComponent(g);
21 Graphics2D g2 = (Graphics2D) g;
22
23 g2.draw(box);
24 }
25
26 /**

27 Moves the rectangle by a given amount.

28 @param x the amount to move in the x-direction

29 @param y the amount to move in the y-direction
30 */
31 public void moveBy(int dx, int dy)
32 {
33 box.translate(dx, dy);
34 repaint();
35 }
36
37 private Rectangle box;
38
39 private static final int BOX_X = 100;
40 private static final int BOX_Y = 100;
41 private static final int BOX_WIDTH = 20;
42 private static final int BOX_HEIGHT = 30;
43 }

Note the call to repaint in the moveBy method. This call is necessary to ensure

that the component is repainted after the state of the rectangle object has been

changed. Keep in mind that the component object does not contain the pixels that

show the drawing. The component merely contains a Rectangle object, which

itself contains four coordinate values. Calling translate updates the rectangle

coordinate values. The call to repaint forces a call to the paintComponent

method. The paintComponent method redraws the component, causing the

rectangle to appear at the updated location.

419

420

Chapter 9 Interfaces and Polymorphism Page 44 of 68

Java Concepts, 5th Edition

The repaint method causes a component to repaint itself. Call this method

whenever you modify the shapes that the paintComponent method draws.

The actionPerformed method of the timer listener simply calls

component.moveBy(1, 1). This moves the rectangle one pixel down and to the

right. Since the actionPerformed method is called many times per second, the

rectangle appears to move smoothly across the frame.

ch09/timer/RectangleMover.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3 import javax.swing.JFrame;
 4 import javax.swing.Timer;
 5
 6 /**

 7 This program moves the rectangle.
 8 */
 9 public class RectangleMover
10 {
11 public static void main(String[] args)
12 {
13 JFrame frame = new JFrame();
14
15 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
16 frame.setTitle("An animated rectangle");
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
18
19 final RectangleComponent component = new
RectangleComponent();
20 frame.add(component);
21
22 frame.setVisible(true);
23
24 class TimerListener implements
ActionListener
25 {
26 public void
actionPerformed(ActionEvent event)
27 {
28 component.moveBy(1, 1);

Chapter 9 Interfaces and Polymorphism Page 45 of 68

Java Concepts, 5th Edition

29 }
30 }
31
32 ActionListener listener = new
TimerListener();
33

34 final int DELAY = 100;// Milliseconds between timer

ticks
35 Timer t = new Timer(DELAY, listener);
36 t.start();
37 }
38
39 private static final int FRAME_WIDTH = 300;
40 private static final int FRAME_HEIGHT = 400;
41 }

SELF CHECK

19. Why does a timer require a listener object?

20. What would happen if you omitted the call to repaint in the moveBy

method?

 COMMON ERROR 9.5: Forgetting to Repaint

You have to be careful when your event handlers change the data in a painted

component. When you make a change to the data, the component is not

automatically painted with the new data. You must tell the Swing framework that

the component needs to be repainted, by calling the repaint method either in the

event handler or in the component's mutator methods. Your component's

paintComponent method will then be invoked at an opportune moment, with

an appropriate Graphics object. Note that you should not call the

paintComponent method directly.

This is a concern only for your own painted components. When you make a

change to a standard Swing component such as a JLabel, the component is

automatically repainted.

420

421

Chapter 9 Interfaces and Polymorphism Page 46 of 68

Java Concepts, 5th Edition

9.10 Mouse Events

If you write programs that show drawings, and you want users to manipulate the

drawings with a mouse, then you need to process mouse events. Mouse events are

more complex than button clicks or timer ticks.

You use a mouse listener to capture mouse events.

A mouse listener must implement the MouseListener interface, which contains

the following five methods:

public interface MouseListener
{
 void mousePressed(MouseEvent event);

 // Called when a mouse button has been pressed on a component
 void mouseReleased(MouseEvent event);

 // Called when a mouse button has been released on a component
 void mouseClicked(MouseEvent event);

 // Called when the mouse has been clicked on a component
 void mouseEntered(MouseEvent event);

 // Called when the mouse enters a component
 void mouseExited(MouseEvent event);

 // Called when the mouse exits a component
}

The mousePressed and mouseReleased methods are called whenever a mouse

button is pressed or released. If a button is pressed and released in quick succession,

and the mouse has not moved, then the mouseClicked method is called as well.

The mouseEntered and mouseExited methods can be used to paint a

user-interface component in a special way whenever the mouse is pointing inside it.

The most commonly used method is mousePressed. Users generally expect that

their actions are processed as soon as the mouse button is pressed.

You add a mouse listener to a component by calling the addMouseListener

method:

public class MyMouseListener implements MouseListener
{

421

422

Chapter 9 Interfaces and Polymorphism Page 47 of 68

Java Concepts, 5th Edition

 // Implements five methods
}

MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

In our sample program, a user clicks on a component containing a rectangle.

Whenever the mouse button is pressed, the rectangle is moved to the mouse location.

We first enhance the RectangleComponent class and add a moveTo method to

move the rectangle to a new position.

ch09/mouse/RectangleComponent.java

 1 import java.awt.Graphics;
 2 import java.awt.Graphics2D;
 3 import java.awt.Rectangle;
 4 import javax.swing.JComponent;
 5
 6 /**

 7 This component displays a rectangle that can be moved.
 8 */
 9 public class RectangleComponent extends
JComponent
10 {
11 public RectangleComponent()
12 {

13 // The rectangle that the paint method draws
14 box = new Rectangle(BOX_X, BOX_Y,
15 BOX_WIDTH, BOX_HEIGHT);
16 }
17
18 public void paintComponent(Graphics g)
19 {
20 super.paintComponent(g);
21 Graphics2D g2 = (Graphics2D) g;
22
23 g2.draw(box);
24 }
25
26 /**

27 Moves the rectangle to the given location.

28 @param xthe x-position of the new location

29 @param ythe y-position of the new location

422

423

Chapter 9 Interfaces and Polymorphism Page 48 of 68

Java Concepts, 5th Edition

30 */
31 public void moveTo(int x, int y)
32 {
33 box.setLocation(x, y);
34 repaint();
35 }
36
37 private Rectangle box;
38
39 private static final int BOX_X = 100;
40 private static final int BOX_Y = 100;
41 private static final int BOX_WIDTH = 20;
42 private static final int BOX_HEIGHT = 30;
43 }

Note the call to repaint in the moveTo method. As explained in the preceding

section, this call causes the component to repaint itself and show the rectangle in the

new position.

Now, add a mouse listener to the component. Whenever the mouse is pressed, the

listener moves the rectangle to the mouse location.

class MousePressListener implements MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 component.moveTo(x, y);
 }

 // Do-nothing methods
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

It often happens that a particular listener specifies actions only for one or two of the

listener methods. Nevertheless, all five methods of the interface must be

implemented. The unused methods are simply implemented as do-nothing methods.

Chapter 9 Interfaces and Polymorphism Page 49 of 68

Java Concepts, 5th Edition

Go ahead and run the RectangleComponentViewer program. Whenever you

click the mouse inside the frame, the top left corner of the rectangle moves to the

mouse pointer (see Figure 5).

Figure 5

Clicking the Mouse Moves the Rectangle

ch09/mouse/RectangleComponentViewer.java

 1 import java.awt.event.MouseListener;
 2 import java.awt.event.MouseEvent;
 3 import javax.swing.JFrame;
 4
 5 /**

 6 This program displays a RectangleComponent.
 7 */
 8 public class RectangleComponentViewer
 9 {
10 public static void main(String[] args)
11 {
12 final RectangleComponent component = new
RectangleComponent();
13

423

424

Chapter 9 Interfaces and Polymorphism Page 50 of 68

Java Concepts, 5th Edition

14 // Add mouse press listener
15
16 class MousePressListener implements
MouseListener
17 {
18 public void mousePressed(MouseEvent
event)
19 {
20 int x = event.getX();
21 int y = event.getY();
22 component.moveTo(x, y);
23 }
24

25 // Do-nothing methods
26 public void mouseReleased(MouseEvent
event) {}
27 public void mouseClicked(MouseEvent
event) {}
28 public void mouseEntered(MouseEvent
event) {}
29 public void mouseExited(MouseEvent
event) {}
30 }
31
32 MouseListener listener = new
MousePressListener();
33 component.addMouseListener(listener);
34
35 JFrame frame = new JFrame();
36 frame.add(component);
37
38 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
39 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
40 frame.setVisible(true);
41 }
42
43 private static final int FRAME_WIDTH = 300;
44 private static final int FRAME_HEIGHT = 400;
45 }

SELF CHECK

21. Why was the moveBy method in the RectangleComponent

replaced with a moveTo method?

424

425

Chapter 9 Interfaces and Polymorphism Page 51 of 68

Java Concepts, 5th Edition

22. Why must the MousePressListener class supply five methods?

 ADVANCED TOPIC 9.3: Event Adapters

In the preceding section you saw how to install a mouse listener into a mouse

event source and how the listener methods are called when an event occurs.

Usually, a program is not interested in all listener notifications. For example, a

program may only be interested in mouse clicks and may not care that these mouse

clicks are composed of “mouse pressed” and “mouse released” events. Of course,

the program could supply a listener that defines all those methods in which it has

no interest as “do-nothing” methods, for example:

class MouseClickListener implements MouseListener
{
 public void mouseClicked(MouseEvent event)
 {

 // Mouse click action here
 }

 // Four do-nothing methods
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mousePressed(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
}

This is boring. For that reason, some friendly soul has created a MouseAdapter

class that implements the MouseListener interface such that all methods do

nothing. You can extend that class, inheriting the do-nothing methods and

overriding the methods that you care about, like this:

class MouseClickListener extends MouseAdapter
{
 public void mouseClicked(MouseEvent event)
 {

 // Mouse click action here
 }
}

See Chapter 10 for more information on the process of extending classes.

425

426

Chapter 9 Interfaces and Polymorphism Page 52 of 68

Java Concepts, 5th Edition

 RANDOM FACT 9.2: Programming Languages

Many hundreds of programming languages exist today, which is actually quite

surprising. The idea behind a high-level programming language is to provide a

medium for programming that is independent from the instruction set of a

particular processor, so that one can move programs from one computer to another

without rewriting them. Moving a program from one programming language to

another is a difficult process, however, and it is rarely done. Thus, it seems that

there would be little use for so many programming languages.

Unlike human languages, programming languages are created with specific

purposes. Some programming languages make it particularly easy to express tasks

from a particular problem domain. Some languages specialize in database

processing; others in “artificial intelligence” programs that try to infer new facts

from a given base of knowledge; others in multimedia programming. The Pascal

language was purposefully kept simple because it was designed as a teaching

language. The C language was developed to be translated efficiently into fast

machine code, with a minimum of housekeeping overhead. The C++ language

builds on C by adding features for object-oriented programming. The Java

language was designed for securely deploying programs across the Internet.

In the early 1970s the U.S. Department of Defense (DoD) was seriously concerned

about the high cost of the software components of its weapons equipment. It was

estimated that more than half of the total DoD budget was spent on the

development of this embedded-systems software—that is, software that is

embedded in some machinery, such as an airplane or missile, to control it. One of

the perceived problems was the great diversity of programming languages that

were used to produce that software. Many of these languages, such as TACPOL,

CMS-2, SPL/1, and JOVIAL, were virtually unknown outside the defense sector.

In 1976 a committee of computer scientists and defense industry representatives

was asked to evaluate existing programming languages. The committee was to

determine whether any of them could be made the DoD standard for all future

military programming. To nobody's surprise, the committee decided that a new

language would need to be created. Contractors were then invited to submit

designs for such a new language. Of 17 initial proposals, four were chosen to

Chapter 9 Interfaces and Polymorphism Page 53 of 68

Java Concepts, 5th Edition

develop their languages. To ensure an unbiased evaluation, the languages received

code names: Red (by Intermetrics), Green (by CII Honeywell Bull), Blue (by

Softech), and Yellow (by SRI International). All four languages were based on

Pascal. The Green language emerged as the winner in 1979. It was named Ada in

honor of the world's first programmer, Ada Lovelace (see Random Fact 14.1).

The Ada language was roundly derided by academics as a typical bloated Defense

Department product. Military contractors routinely sought, and obtained,

exemptions from the requirement that they had to use Ada on their projects.

Outside the defense industry, few companies used Ada. Perhaps that is unfair. Ada

had been designed to be complex enough to be useful for many applications,

whereas other, more popular languages, notably C++, have grown to be just as

complex and ended up being unmanageable.

The initial version of the C language was designed around 1972. Unlike Ada, C is

a simple language that lets you program “close to the machine”. It is also quite

unsafe. Because different compiler writers added different features, the language

actually sprouted various dialects. Some programming instructions were

understood by one compiler but rejected by another. Such divergence is an

immense pain to a programmer who wants to move code from one computer to

another, and an effort got underway to iron out the differences and come up with a

standard version of C. The design process ended in 1989 with the completion of

the ANSI (American National Standards Institute) Standard. In the meantime,

Bjarne Stroustrup of AT&T added features of the language Simula (an

object-oriented language designed for carrying out simulations) to C. The resulting

language was called C++. From 1985 until today, C++ has grown by the addition

of many features, and a standardization process was completed in 1998. C++ has

been enormously popular because programmers can take their existing C code and

move it to C++ with only minimal changes. In order to keep compatibility with

existing code, every innovation in C++ had to work around the existing language

constructs, yielding a language that is powerful but somewhat cumbersome to use.

In 1995, Java was designed to be conceptually simpler and more internally

consistent than C++, while retaining the syntax that is familiar to millions of C and

C++ programmers. The Java language was a great design success. It is indeed

clean and simple. As for the Java library, you know from your own experience that

it is neither.

426

427

Chapter 9 Interfaces and Polymorphism Page 54 of 68

Java Concepts, 5th Edition

Keep in mind that a programming language is only part of the technology for

writing programs. To be successful, a programming language needs feature-rich

libraries, powerful tools, and a community of knowledgeable and enthusiastic

users. Several very well-designed programming languages have withered on the

vine, whereas other programming languages whose design was merely “good

enough” have thrived in the marketplace.

CHAPTER SUMMARY

1. Use interface types to make code more reusable.

2. A Java interface type declares a set of methods and their signatures.

3. Unlike a class, an interface type provides no implementation.

4. Use the implements keyword to indicate that a class implements an interface

type.

5. Interfaces can reduce the coupling between classes.

6. You can convert from a class type to an interface type, provided the class

implements the interface.

7. You need a cast to convert from an interface type to a class type.

8. Polymorphism denotes the principle that behavior can vary depending on the

actual type of an object.

9. Early binding of methods occurs if the compiler selects a method from several

possible candidates. Late binding occurs if the method selection takes place

when the program runs.

10. An inner class is declared inside another class. Inner classes are commonly

used for tactical classes that should not be visible elsewhere in a program.

11. User interface events include key presses, mouse moves, button clicks, menu

selections, and so on.

12. An event listener belongs to a class that is provided by the application

programmer. Its methods describe the actions to be taken when an event occurs.

427

428

Chapter 9 Interfaces and Polymorphism Page 55 of 68

Java Concepts, 5th Edition

13. Event sources report on events. When an event occurs, the event source notifies

all event listeners.

14. Use JButton components for buttons. Attach an ActionListener to each

button.

15. Methods of an inner class can access local variables from surrounding blocks

and fields from surrounding classes.

16. Local variables that are accessed by an inner-class method must be declared as

final.

17. Use a JPanel container to group multiple user-interface components together.

18. You often install event listeners as inner classes so that they can have access to

the surrounding fields, methods, and final variables.

19. A timer generates timer events at fixed intervals.

20. The repaint method causes a component to repaint itself. Call this method

whenever you modify the shapes that the paintComponent method draws.

21. You use a mouse listener to capture mouse events.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.awt.Component
 addMouseListener
 repaint
java.awt.Container
 add
java.awt.Rectangle
 setLocation
java.awt.event.MouseEvent

 getX
 getY
java.awt.event.ActionListener

 actionPerformed
java.awt.event.MouseListener

 mouseClicked

428

429

Chapter 9 Interfaces and Polymorphism Page 56 of 68

Java Concepts, 5th Edition

 mouseEntered
 mouseExited
 mousePressed
 mouseReleased
javax.swing.AbstractButton
 addActionListener
javax.swing.JButton
javax.swing.JLabel
javax.swing.JPanel
javax.swing.Timer
 start
 stop

REVIEW EXERCISES

★ Exercise R9.1. Suppose C is a class that implements the interfaces I and J.

Which of the following assignments require a cast?

C c = . . .;
I i = . . .;
J j = . . .;

a. c = i;

b. j = c;

c. i = j;

★ Exercise R9.2. Suppose C is a class that implements the interfaces I and J,

and suppose i is declared as

I i = new C();

Which of the following statements will throw an exception?

a. C c = (C) i;

b. J j = (J) i;

c. i = (I) null;

429

430

Chapter 9 Interfaces and Polymorphism Page 57 of 68

Java Concepts, 5th Edition

★ Exercise R9.3. Suppose the class Sandwich implements the Edible

interface, and you are given the variable definitions

Sandwich sub = new Sandwich();
Rectangle cerealBox = new Rectangle(5, 10,
20, 30);
Edible e = null;

Which of the following assignment statements are legal?

a. e = sub;

b. sub = e;

c. sub = (Sandwich) e;

d. sub = (Sandwich) cerealBox;

e. e = cerealBox;

f. e = (Edible) cerealBox;

g. e = (Rectangle) cerealBox;

h. e = (Rectangle) null;

★★Exercise R9.4. How does a cast such as (BankAccount) x differ from

a cast of number values such as (int) x?

★★Exercise R9.5. The classes Rectangle2D.Double,

Ellipse2D.Double, and Line2D.Double implement the Shape

interface. The Graphics2D class depends on the Shape interface but

not on the rectangle, ellipse, and line classes. Draw a UML diagram

denoting these facts.

★★Exercise R9.6. Suppose r contains a reference to a new

Rectangle(5, 10, 20, 30). Which of the following assignments

is legal? (Look inside the API documentation to check which interfaces the

Rectangle class implements.)

a. Rectangle a = r;

Chapter 9 Interfaces and Polymorphism Page 58 of 68

Java Concepts, 5th Edition

b. Shape b = r;

c. String c = r;

d. ActionListener d = r;

e. Measurable e = r;

f. Serializable f = r;

g. Object g = r;

★★Exercise R9.7. Classes such as Rectangle2D.Double,

Ellipse2D.Double and Line2D.Double implement the Shape

interface. The Shape interface has a method

Rectangle getBounds()

that returns a rectangle completely enclosing the shape. Consider the

method call:

Shape s = . . .;
Rectangle r = s.getBounds();

Explain why this is an example of polymorphism.

★★★Exercise R9.8. In Java, a method call such as x.f() uses late binding—

the exact method to be called depends on the type of the object to which

x refers. Give two kinds of method calls that use early binding in Java.

★★Exercise R9.9. Suppose you need to process an array of employees to find

the average and the highest salaries. Discuss what you need to do to use the

implementation of the DataSet class in Section 9.1 (which processes

Measurable objects). What do you need to do to use the second

implementation (in Section 9.4)? Which is easier?

★★★Exercise R9.10. What happens if you add a String object to the

implementation of the DataSet class in Section 9.1? What happens if

you add a String object to a DataSet object of the implementation in

Section 9.4 that uses a RectangleMeasurer class?

430

431

Chapter 9 Interfaces and Polymorphism Page 59 of 68

Java Concepts, 5th Edition

★ Exercise R9.11. How would you reorganize the DataSetTester3

program if you needed to make RectangleMeasurer into a top-level

class (that is, not an inner class)?

★★Exercise R9.12. What is a callback? Can you think of another use for a

callback for the DataSet class? (Hint: Exercise P9.8.)

★★Exercise R9.13. Consider this top-level and inner class. Which variables

can the f method access?

public class T
{
 public void m(final int x, int y)
 {
 int a;
 final int b;
 class C implements I
 {
 public void f()
 {
 . . .
 }
 }
 final int c;
 . . .
 }
 private int t;
}

★★Exercise R9.14. What happens when an inner class tries to access a

non-final local variable? Try it out and explain your findings.

★★★GExercise R9.15. How would you reorganize the

InvestmentViewer1 program if you needed to make

AddInterestListener into a top-level class (that is, not an inner

class)?

★GExercise R9.16. What is an event object? An event source? An event

listener?

431

432

Chapter 9 Interfaces and Polymorphism Page 60 of 68

Java Concepts, 5th Edition

★GExercise R9.17. From a programmer's perspective, what is the most

important difference between the user interfaces of a console application

and a graphical application?

★GExercise R9.18. What is the difference between an ActionEvent and a

MouseEvent?

★★GExercise R9.19. Why does the ActionListener interface have only

one method, whereas the MouseListener has five methods?

★★GExercise R9.20. Can a class be an event source for multiple event types?

If so, give an example.

★★GExercise R9.21. What information does an action event object carry?

What additional information does a mouse event object carry?

★★★GExercise R9.22. Why are we using inner classes for event listeners? If

Java did not have inner classes, could we still implement event

listeners? How?

★★GExercise R9.23. What is the difference between the paintComponent

and repaint methods?

★GExercise R9.24. What is the difference between a frame and a panel?

Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P9.1. Have the Die class of Chapter 6 implement the

Measurable interface. Generate dice, cast them, and add them to the

implementation of the DataSet class in Section 9.1. Display the average.

★ Exercise P9.2. Define a class Quiz that implements the Measurable

interface. A quiz has a score and a letter grade (such as B+). Use the

implementation of the DataSet class in Section 9.1 to process a

collection of quizzes. Display the average score and the quiz with the

highest score (both letter grade and score).

Chapter 9 Interfaces and Polymorphism Page 61 of 68

Java Concepts, 5th Edition

★ Exercise P9.3. A person has a name and a height in centimeters. Use the

implementation of the DataSet class in Section 9.4 to process a

collection of Person objects. Display the average height and the name of

the tallest person.

★ Exercise P9.4. Modify the implementation of the DataSet class in

Section 9.1 (the one processing Measurable objects) to also compute the

minimum data element.

★ Exercise P9.5. Modify the implementation of the DataSet class in

Section 9.4 (the one using a Measurer object) to also compute the

minimum data element.

★ Exercise P9.6. Using a different Measurer object, process a set of

Rectangle objects to find the rectangle with the largest perimeter.

★★★Exercise P9.7. Enhance the DataSet class so that it can either be used

with a Measurer object or for processing Measurable objects. Hint:

Supply a default constructor that implements a Measurer that

processes Measurable objects.

★★Exercise P9.8. Define an interface Filter as follows:

public interface Filter
{
 boolean accept(Object x);
}

Modify the implementation of the DataSet class in Section 9.4 to use

both a Measurer and a Filter object. Only objects that the filter

accepts should be processed. Demonstrate your modification by having a

data set process a collection of bank accounts, filtering out all accounts

with balances less than $1,000.

★★Exercise P9.9. Look up the definition of the standard Comparable

interface in the API documentation. Modify the DataSet class of Section

9.1 to accept Comparable objects. With this interface, it is no longer

meaningful to compute the average. The DataSet class should record the

minimum and maximum data values. Test your modified DataSet class

432

433

Chapter 9 Interfaces and Polymorphism Page 62 of 68

Java Concepts, 5th Edition

by adding a number of String objects. (The String class implements

the Comparable interface.)

★ Exercise P9.10. Modify the Coin class to have it implement the

Comparable interface.

★★★Exercise P9.11. The System.out.printf method has predefined

formats for printing integers, floating-point numbers, and other data

types. But it is also extensible. If you use the S format, you can print any

class that implements the Formattable interface. That interface has a

single method:

void formatTo(Formatter formatter, int
flags, int width, int precision)

In this exercise, you should make the BankAccount class implement

the Formattable interface. Ignore the flags and precision and simply

format the bank balance, using the given width. In order to achieve this

task, you need to get an Appendable reference like this:

Appendable a = formatter.out();

Appendable is another interface with a method

void append(CharSequence sequence)

CharSequence is yet another interface that is implemented by (among

others) the String class. Construct a string by first converting the bank

balance into a string and then padding it with spaces so that it has the

desired width. Pass that string to the append method.

★★★Exercise P9.12. Enhance the formatTo method of Exercise P9.11 by

taking into account the precision.

★★GExercise P9.13. Write a method randomShape that randomly

generates objects implementing the Shape interface: some mixture of

rectangles, ellipses, and lines, with random positions. Call it 10 times and

draw all of them.

433

434

Chapter 9 Interfaces and Polymorphism Page 63 of 68

Java Concepts, 5th Edition

★GExercise P9.14. Enhance the ButtonViewer program so that it prints a

message “I was clicked n times!” whenever the button is clicked. The value

n should be incremented with each click.

★★GExercise P9.15. Enhance the ButtonViewer program so that it has

two buttons, each of which prints a message “I was clicked n times!”

whenever the button is clicked. Each button should have a separate click

count.

★★GExercise P9.16. Enhance the ButtonViewer program so that it has

two buttons labeled A and B, each of which prints a message “Button x

was clicked!”, where x is A or B.

★★★GExercise P9.17. Implement a ButtonViewer program as in Exercise

P9.16, using only a single listener class.

★GExercise P9.18. Enhance the ButtonViewer program so that it prints

the time at which the button was clicked.

★★★GExercise P9.19. Implement the AddInterestListener in the

InvestmentViewer1 program as a regular class (that is, not an

inner class). Hint: Store a reference to the bank account. Add a

constructor to the listener class that sets the reference.

★★★GExercise P9.20. Implement the AddInterestListener in the

InvestmentViewer2 program as a regular class (that is, not an

inner class). Hint: Store references to the bank account and the label in

the listener. Add a constructor to the listener class that sets the

references.

★★GExercise P9.21. Write a program that uses a timer to print the current

time once a second. Hint: The following code prints the current time:

Date now = new Date();
System.out.println(now);

The Date class is in the java.util package.

Chapter 9 Interfaces and Polymorphism Page 64 of 68

Java Concepts, 5th Edition

★★★GExercise P9.22. Change the RectangleComponent for the

animation program in Section 9.9 so that the rectangle bounces off the

edges of the component rather than simply moving outside.

★★GExercise P9.23. Write a program that animates a car so that it moves

across a frame.

★★★GExercise P9.24. Write a program that animates two cars moving across

a frame in opposite directions (but at different heights so that they

don't collide.)

★★GExercise P9.25. Change the RectangleComponent for the mouse

listener program in Section 9.10 so that a new rectangle is added to the

component whenever the mouse is clicked. Hint: Keep an

ArrayList<Rectangle> and draw all rectangles in the

paint-Component method.

★★GExercise P9.26. Write a program that demonstrates the growth of a roach

population. Start with two roaches and double the number of roaches

with each button click.

Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 9.1. Design an interface MoveableShape that can be used as a

generic mechanism for animating a shape. A moveable shape must have

two methods: move and draw. Write a generic AnimationPanel

that paints and moves any MoveableShape (or array list of

MoveableShape objects if you covered Chapter 7). Supply moveable

rectangle and car shapes.

★★★Project 9.2. Your task is to design a general program for managing

board games with two players. Your program should be flexible enough

to handle games such as tic-tac-toe, chess, or the Game of Nim of Project

6.2.

434

435

Chapter 9 Interfaces and Polymorphism Page 65 of 68

Java Concepts, 5th Edition

Design an interface Game that describes a board game. Think about what

your program needs to do. It asks the first player to input a move—a

string in a game-specific format, such as Be3 in chess. Your program

knows nothing about specific games, so the Game interface must have a

method such as

boolean isValidMove(String move)

Once the move is found to be valid, it needs to be executed—the

interface needs another method executeMove. Next, your program

needs to check whether the game is over. If not, the other player's move

is processed. You should also provide some mechanism for displaying

the current state of the board.

Design the Game interface and provide two implementations of your

choice—such as Nim and Chess (or TicTacToe if you are less

ambitious). Your GamePlayer class should manage a Game reference

without knowing which game is played, and process the moves from

both players. Supply two programs that differ only in the initialization of

the Game reference.

ANSWERS TO SELF-CHECK QUESTIONS

1. It must implement the Measurable interface, and its getMeasure

method must return the population.

2. The Object class doesn't have a getMeasure method, and the add

method invokes the getMeasure method.

3. Only if x actually refers to a BankAccount object.

4. No—a Coin reference can be converted to a Measurable reference, but

if you attempt to cast that reference to a BankAccount, an exception

occurs.

5. Measurable is an interface. Interfaces have no fields and no method

implementations.

435

436

Chapter 9 Interfaces and Polymorphism Page 66 of 68

Java Concepts, 5th Edition

6. That variable never refers to a Measurable object. It refers to an object

of some class—a class that implements the Measurable interface.

7. Both describe a situation where one method name can denote multiple

methods. However, overloading is resolved early by the compiler, by

looking at the types of the parameter variables. Polymorphism is resolved

late, by looking at the type of the implicit parameter object just before

making the call.

8. The String class doesn't implement the Measurable interface.

9. Implement a class StringMeasurer that implements the Measurer

interface.

10. A measurer measures an object, whereas getMeasure measures “itself”,

that is, the implicit parameter.

11. Inner classes are convenient for insignificant classes. Also, their methods

can access variables and fields from the surrounding scope.

12. Four: one for the outer class, one for the inner class, and two for the

DataSet and Measurer classes.

13. The button object is the event source. The listener object is the event

listener.

14. The ClickListener class implements the ActionListener

interface.

15. Direct access is simpler than the alternative—passing the variable as a

parameter to a constructor or method.

16. The local variable must be declared as final.

17. First add label to the panel, then add button.

18. The actionPerformed method does not access that variable.

19. The timer needs to call some method whenever the time interval expires. It

calls the actionPerformed method of the listener object.

Chapter 9 Interfaces and Polymorphism Page 67 of 68

Java Concepts, 5th Edition

20. The moved rectangles won't be painted, and the rectangle will appear to be

stationary until the frame is repainted for an external reason.

21. Because you know the current mouse position, not the amount by which the

mouse has moved.

22. It implements the MouseListener interface, which has five methods.

Chapter 9 Interfaces and Polymorphism Page 68 of 68

Java Concepts, 5th Edition

Chapter 10 Inheritance

CHAPTER GOALS

• To learn about inheritance

• To understand how to inherit and override superclass methods

• To be able to invoke superclass constructors

• To learn about protected and package access control

• To understand the common superclass Object and how to override its toString

and equals methods

G To use inheritance for customizing user interfaces

In this chapter, we discuss the important concept of inheritance. Specialized classes

can be created that inherit behavior from more general classes. You will learn how to

implement inheritance in Java, and how to make use of the Object class—the most

general class in the inheritance hierarchy.

10.1 An Introduction to Inheritance

Inheritance is a mechanism for enhancing existing classes. If you need to implement

a new class and a class representing a more general concept is already available, then

the new class can inherit from the existing class. For example, suppose you need to

define a class SavingsAccount to model an account that pays a fixed interest rate

on deposits. You already have a class BankAccount, and a savings account is a

special case of a bank account. In this case, it makes sense to use the language

construct of inheritance. Here is the syntax for the class definition:

Inheritance is a mechanism for extending existing classes by adding methods and

fields.

class SavingsAccount extends BankAccount
{

437

437

438

438

439

Chapter 10 Inheritance Page 1 of 82

Java Concepts, 5th Edition

 new methods

 new instance fields
}

In the SavingsAccount class definition you specify only new methods and

instance fields. The SavingsAccount class automatically inherits all methods and

instance fields of the BankAccount class. For example, the deposit method

automatically applies to savings accounts:

SavingsAccount collegeFund = new SavingsAccount(10);

 // Savings account with 10% interest
collegeFund.deposit(500);

 // OK to use BankAccount method with SavingsAccount object

We must introduce some more terminology here. The more general class that forms

the basis for inheritance is called the superclass. In our example, BankAccount is

the superclass and SavingsAccount is the subclass.

The more general class is called a superclass. The more specialized class that

inherits from the superclass is called the subclass.

In Java, every class that does not specifically extend another class is a subclass of the

class Object. For example, the BankAccount class extends the class Object.

The Object class has a small number of methods that make sense for all objects,

such as the toString method, which you can use to obtain a string that describes

the state of an object.

Every class extends the Object class either directly or indirectly.

Figure 1 is a class diagram showing the relationship between the three classes

Object, BankAccount, and SavingsAccount. In a class diagram, you denote

inheritance by a solid arrow with a “hollow triangle” tip that points to the superclass.

Chapter 10 Inheritance Page 2 of 82

Java Concepts, 5th Edition

Figure 1

An Inheritance Diagram

You may wonder at this point in what way inheritance differs from implementing an

interface. An interface is not a class. It has no state and no behavior. It merely tells

you which methods you should implement. A superclass has state and behavior, and

the subclasses inherit them.

Inheriting from a class differs from implementing an interface: The subclass

inherits behavior and state from the superclass.

One important reason for inheritance is code reuse. By inheriting an existing class,

you do not have to replicate the effort that went into designing and perfecting that

class. For example, when implementing the SavingsAccount class, you can rely

on the withdraw, deposit, and getBalance methods of the BankAccount

class without touching them.

One advantage of inheritance is code reuse.

439

440

Chapter 10 Inheritance Page 3 of 82

Java Concepts, 5th Edition

Let's see how savings account objects are different from BankAccount objects. We

will set an interest rate in the constructor, and we need a method to apply that interest

periodically. That is, in addition to the three methods that can be applied to every

account, there is an additional method addInterest. The new method and instance

field must be defined in the subclass.

When defining a subclass, you specify added instance fields, added methods, and

changed or overridden methods.

public class SavingsAccount extends BankAccount
{
 public SavingsAccount(double rate)
 {

 Constructor implementation
 }
 public void addInterest()
 {

 Method implementation
 }
 private double interestRate;
}

Figure 2 shows the layout of a SavingsAccount object. It inherits the balance

instance field from the BankAccount superclass, and it gains one additional

instance field: interestRate.

Next, you need to implement the new addInterest method. The method computes

the interest due on the current balance and deposits that interest to the account.

Figure 2

Layout of a Subclass Object
440

Chapter 10 Inheritance Page 4 of 82

Java Concepts, 5th Edition

SYNTAX 10.1 Inheritance

class SubclassName extends SuperclassName

{

 methods

 instance fields
}

Example:

public class SavingsAccount extends BankAccount

{
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }
 public void addInterest()
 {
 double interest = getBalance() *
interestRate / 100;
 deposit(interest);
 }
 private double interestRate;
}

Purpose:

To define a new class that inherits from an existing class, and define the methods

and instance fields that are added in the new class

public class SavingsAccount extends BankAccount
{
 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }
 public void addInterest()
 {
 double interest = getBalance() * interestRate
/ 100;
 deposit(interest);

440

441

Chapter 10 Inheritance Page 5 of 82

Java Concepts, 5th Edition

 }
 private double interestRate;
}

You may wonder why the addInterest method calls the getBalance and

deposit methods rather than directly updating the balance field of the

superclass. This is a consequence of encapsulation. The balance field was defined

as private in the BankAccount class. The addInterest method is defined in

the SavingsAccount class. It does not have the right to access a private field of

another class.

Note how the addInterest method calls the getBalance and deposit

methods of the superclass without specifying an implicit parameter. This means that

the calls apply to the same object, that is, the implicit parameter of the

addInterest method. For example, if you call

collegeFund.addInterest();

then the following instructions are executed:

double interest = collegeFund. getBalance()
 * collegeFund. interestRate / 100;
collegeFund. deposit(interest);

In other words, the statements in the addInterest method are a shorthand for the

following statements:

double interest = this. getBalance()
 * this.interestRate / 100;
this. deposit(interest);

(Recall that the this variable holds a reference to the implicit parameter.)

SELF CHECK

1. Which instance fields does an object of class SavingsAccount have?

2. Name four methods that you can apply to SavingsAccount objects.

3. If the class Manager extends the class Employee, which class is the

superclass and which is the subclass?

441

442

Chapter 10 Inheritance Page 6 of 82

Java Concepts, 5th Edition

 COMMON ERROR 10.1: Confusing Super- and Subclasses

If you compare an object of type SavingsAccount with an object of type

BankAccount, then you find that

• The keyword extends suggests that the SavingsAccount object is an

extended version of a BankAccount.

• The SavingsAccount object is larger; it has an added instance field

interestRate.

• The SavingsAccount object is more capable; it has an addInterest

method.

It seems a superior object in every way. So why is SavingsAccount called the

subclass and BankAccount the superclass?

The super/sub terminology comes from set theory. Look at the set of all bank

accounts. Not all of them are SavingsAccount objects; some of them are other

kinds of bank accounts. Therefore, the set of SavingsAccount objects is a

subset of the set of all BankAccount objects, and the set of BankAccount

objects is a superset of the set of SavingsAccount objects. The more

specialized objects in the subset have a richer state and more capabilities.

10.2 Inheritance Hierarchies

In the real world, you often categorize concepts into hierarchies. Hierarchies are

frequently represented as trees, with the most general concepts at the root of the

hierarchy and more specialized ones towards the branches. Figure 3 shows a typical

example.

In Java it is equally common to group classes in complex inheritance hierarchies.

The classes representing the most general concepts are near the root, more specialized

classes towards the branches. For example, Figure 4 shows part of the hierarchy of

Swing user interface components in Java.

Sets of classes can form complex inheritance hierarchies.

442

443

Chapter 10 Inheritance Page 7 of 82

Java Concepts, 5th Edition

When designing a hierarchy of classes, you ask yourself which features and behaviors

are common to all the classes that you are designing. Those common properties are

collected in a superclass. For example, all user interface components have a width

and height, and the getWidth and getHeight methods of the JComponent

class return the component's dimensions. More specialized properties can be found in

subclasses. For example, buttons can have text and icon labels. The class

AbstractButton, but not the superclass JComponent, has methods to set and

get the button text and icon, and instance fields to store them. The individual button

classes (such as JButton, JRadioButton, and JCheckBox) inherit these

properties. In fact, the AbstractButton class was created to express the

commonality among these buttons.

Figure 3

A Part of the Hierarchy of Ancient Reptiles
443

Chapter 10 Inheritance Page 8 of 82

Java Concepts, 5th Edition

Figure 4

A Part of the Hierarchy of Swing User Interface Components

We will use a simpler example of a hierarchy in our study of inheritance concepts.

Consider a bank that offers its customers the following account types:

1. The checking account has no interest, gives you a small number of free

transactions per month, and charges a transaction fee for each additional

transaction.

2. The savings account earns interest that compounds monthly. (In our

implementation, the interest is compounded using the balance of the last day of

the month, which is somewhat unrealistic. Typically, banks use either the

average or the minimum daily balance. Exercise P10.1 asks you to implement

this enhancement.)

443

444

Chapter 10 Inheritance Page 9 of 82

Java Concepts, 5th Edition

Figure 5 shows the inheritance hierarchy. Exercise P10.2 asks you to add another

class to this hierarchy.

Next, let us determine the behavior of these classes. All bank accounts support the

getBalance method, which simply reports the current balance. They also support

the deposit and withdraw methods, although the details of the implementation

differ. For example, a checking account must keep track of the number of transactions

to account for the transaction fees.

The checking account needs a method deductFees to deduct the monthly fees and

to reset the transaction counter. The deposit and withdraw methods must be

redefined to count the transactions.

Figure 5

Inheritance Hierarchy for Bank Account Classes

The savings account needs a method addInterest to add interest.

To summarize: The subclasses support all methods from the superclass, but their

implementations may be modified to match the specialized purposes of the

subclasses. In addition, subclasses are free to introduce additional methods.

SELF CHECK

4. What is the purpose of the JTextComponent class in Figure 4

444

445

Chapter 10 Inheritance Page 10 of 82

Java Concepts, 5th Edition

5. Which instance field will we need to add to the CheckingAccount

class?

10.3 Inheriting Instance Fields and Methods

When you form a subclass of a given class, you can specify additional instance fields

and methods. In this section we will discuss this process in detail.

When defining the methods for a subclass, there are three possibilities.

1. You can override methods from the superclass. If you specify a method with

the same signature (that is, the same name and the same parameter types), it

overrides the method of the same name in the superclass. Whenever the method

is applied to an object of the subclass type, the overriding method, and not the

original method, is executed. For example, CheckingAccount.deposit

overrides BankAccount.deposit.

2. You can inherit methods from the superclass. If you do not explicitly override a

superclass method, you automatically inherit it. The superclass method can be

applied to the subclass objects. For example, the SavingsAccount class

inherits the BankAccount.getBalance method.

3. You can define new methods. If you define a method that did not exist in the

superclass, then the new method can be applied only to subclass objects. For

example, SavingsAccount.addInterest is a new method that does not

exist in the superclass BankAccount.

The situation for instance fields is quite different. You can never override instance

fields. For fields in a subclass, there are only two cases:

1. The subclass inherits all fields from the superclass. All instance fields from the

superclass are automatically inherited. For example, all subclasses of the

BankAccount class inherit the instance field balance.

2. Any new instance fields that you define in the subclass are present only in

subclass objects. For example, the subclass SavingsAccount defines a new

instance field interestRate.

445

446

Chapter 10 Inheritance Page 11 of 82

Java Concepts, 5th Edition

What happens if you define a new field with the same name as a superclass field? For

example, can you define another field named balance in the SavingsAccount

class? This is legal but extremely undesirable. Each SavingsAccount object

would have two instance fields of the same name. The two fields can hold different

values, which is likely to lead to confusion—see Common Error 10.2.

We already implemented the BankAccount and SavingsAccount classes. Now

we will implement the subclass CheckingAccount so that you can see in detail

how methods and instance fields are inherited. Recall that the BankAccount class

has three methods and one instance field:

public class BankAccount
{
 public double getBalance() { . . . }
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 private double balance;
}

The CheckingAccount class has an added method deductFees and an added

instance field transactionCount, and it overrides the deposit and

withdraw methods to increment the transaction count:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 public void deductFees() { . . . }
 private int transactionCount;
}

Each object of class CheckingAccount has two instance fields:

• balance (inherited from BankAccount)

• transactionCount (new to CheckingAccount)

You can apply four methods to CheckingAccount objects:

• getBalance() (inherited from BankAccount)

• deposit(double amount) (overrides BankAccount method)

446

447

Chapter 10 Inheritance Page 12 of 82

Java Concepts, 5th Edition

• withdraw(double amount) (overrides BankAccount method)

• deductFees() (new to CheckingAccount)

Next, let us implement these methods. The deposit method increments the

transaction count and deposits the money:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;

 // Now add amount to balance
 . . .
 }
 . . .
}

Now we have a problem. We can't simply add amount to balance:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;

 // Now add amount to balance
 balance = balance + amount; // Error
 }
 . . .
}

Although every CheckingAccount object has a balance instance field, that

instance field is private to the superclass BankAccount. Subclass methods have no

more access rights to the private data of the superclass than any other methods. If you

want to modify a private superclass field, you must use a public method of the

superclass.

A subclass has no access to private fields of its superclass.

How can we add the deposit amount to the balance, using the public interface of the

BankAccount class? There is a perfectly good method for that purpose—namely,

Chapter 10 Inheritance Page 13 of 82

Java Concepts, 5th Edition

the deposit method of the BankAccount class. So we must invoke the

deposit method on some object. On which object? The checking account into

which the money is deposited—that is, the implicit parameter of the deposit

method of the CheckingAccount class. To invoke another method on the implicit

parameter, you don't specify the parameter but simply write the method name, like

this:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;

 // Now add amount to balance

 deposit(amount); // Not complete
 }
 . . .
}

But this won't quite work. The compiler interprets

deposit(amount);

as

this.deposit(amount);

The this parameter is of type CheckingAccount. There is a method called

deposit in the CheckingAccount class. Therefore, that method will be called—

but that is just the method we are currently writing! The method will call itself over

and over, and the program will die in an infinite recursion (discussed in Chapter 13).

Use the super keyword to call a method of the superclass.

Instead, we must be specific that we want to invoke only the superclass's deposit

method. There is a special keyword super for this purpose:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;

447

448

Chapter 10 Inheritance Page 14 of 82

Java Concepts, 5th Edition

 // Now add amount to balance
 super. deposit(amount);
 }
 . . .
}

This version of the deposit method is correct. To deposit money into a checking

account, update the transaction count and call the deposit method of the superclass.

The remaining methods are now straightforward.

public class CheckingAccount extends BankAccount
{
 . . .
 public void withdraw(double amount)
 {
 transactionCount++;

 // Now subtract amount from balance
 super. withdraw(amount);
 }
 public void deductFees()
 {
 if (transactionCount > FREE_TRANSACTIONS)
 {
 double fees = TRANSACTION_FEE
 * (transactionCount -
FREE_TRANSACTIONS);
 super. withdraw(fees);
 }
 transactionCount = 0;
 }
 . . .
 private static final int FREE_TRANSACTIONS = 3;
 private static final double TRANSACTION_FEE = 2.0;
}

SYNTAX 10.2 Calling a Superclass Method

super. methodName(parameters);

Example:

public void deposit(double amount)
{

448

449

Chapter 10 Inheritance Page 15 of 82

Java Concepts, 5th Edition

 transactionCount++;
 super.deposit(amount);
}

Purpose:

To call a method of the superclass instead of the method of the current class

SELF CHECK

6. Why does the withdraw method of the CheckingAccount class

call super.withdraw?

7. Why does the deductFees method set the transaction count to zero?

 COMMON ERROR 10.2: Shadowing Instance Fields

A subclass has no access to the private instance fields of the superclass. For

example, the methods of the CheckingAccount class cannot access the

balance field:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 balance = balance + amount; // Error
 }
 . . .
}

It is a common beginner's error to “solve” this problem by adding another instance

field with the same name.

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 balance = balance + amount;
 }
 . . .

449

450

Chapter 10 Inheritance Page 16 of 82

Java Concepts, 5th Edition

 private double balance; // Don't
}

Sure, now the deposit method compiles, but it doesn't update the correct

balance! Such a CheckingAccount object has two instance fields, both named

balance (see Figure 6). The getBalance method of the superclass retrieves

one of them, and the deposit method of the subclass updates the other.

Figure 6

Shadowing Instance Fields

 COMMON ERROR 10.3: Failing to Invoke the Superclass

Method

A common error in extending the functionality of a superclass method is to forget

the super. qualifier. For example, to withdraw money from a checking account,

update the transaction count and then withdraw the amount:

public void withdraw(double amount)
{
 transactionCount++;
 withdraw(amount);

 // Error—should be super.withdraw(amount)
}

Here withdraw(amount) refers to the withdraw method applied to the

implicit parameter of the method. The implicit parameter is of type

CheckingAccount, and the CheckingAccount class has a withdraw

method, so that method is called. Of course, that calls the current method all over

again, which will call itself yet again, over and over, until the program runs out of

Chapter 10 Inheritance Page 17 of 82

Java Concepts, 5th Edition

memory. Instead, you must precisely identify which withdraw method you want

to call.

Another common error is to forget to call the superclass method altogether. Then

the functionality of the superclass mysteriously vanishes.

10.4 Subclass Construction

In this section, we discuss the implementation of constructors in subclasses. As an

example, let us define a constructor to set the initial balance of a checking account.

We want to invoke the BankAccount constructor to set the balance to the initial

balance. There is a special instruction to call the superclass constructor from a

subclass constructor. You use the keyword super, followed by the construction

parameters in parentheses:

public class CheckingAccount extends BankAccount
{
 public CheckingAccount(double initialBalance)
 {

 // Construct superclass
 super(initialBalance);

 // Initialize transaction count
 transactionCount = 0;
 }
 . . .
}

When the keyword super is followed by a parenthesis, it indicates a call to the

superclass constructor. When used in this way, the constructor call must be the first

statement of the subclass constructor. If super is followed by a period and a method

name, on the other hand, it indicates a call to a superclass method, as you saw in the

preceding section. Such a call can be made anywhere in any subclass method.

To call the superclass constructor, you use the super keyword in the first statement

of the subclass constructor.

450

451

Chapter 10 Inheritance Page 18 of 82

Java Concepts, 5th Edition

SYNTAX 10.3 Calling a Superclass Constructor

accessSpecifier ClassName(parameterType parameterName, . . .)

{

 super(parameters);
 . . .
}

Example:

public CheckingAccount(double initialBalance)

{
 super(initialBalance);
 transactionCount = 0;
}

Purpose:

To invoke the constructor of the superclass. Note that this statement must be the

first statement of the subclass constructor.

The dual use of the super keyword is analogous to the dual use of the this

keyword (see Advanced Topic 3.1).

If a subclass constructor does not call the superclass constructor, the superclass is

constructed with its default constructor (that is, the constructor that has no

parameters). However, if all constructors of the superclass require parameters, then

the compiler reports an error.

For example, you can implement the CheckingAccount constructor without

calling the superclass constructor. Then the BankAccount class is constructed with

its default constructor, which sets the balance to zero. Of course, then the

CheckingAccount constructor must explicitly deposit the initial balance.

Most commonly, however, subclass constructors have some parameters that they pass

on to the superclass and others that they use to initialize subclass fields.

451

452

Chapter 10 Inheritance Page 19 of 82

Java Concepts, 5th Edition

SELF CHECK

8. Why didn't the SavingsAccount constructor in Section 10.1 Call its

Superclass Constructor?

9. When you invoke a superclass method with the super keyword, does

the call have to be the first statement of the subclass method?

10.5 Converting Between Subclass and Superclass Types

It is often necessary to convert a subclass type to a superclass type. Occasionally, you

need to carry out the conversion in the opposite direction. This section discusses the

conversion rules.

Subclass references can be converted to superclass references.

The class SavingsAccount extends the class BankAccount. In other words, a

SavingsAccount object is a special case of a BankAccount object. Therefore, a

reference to a SavingsAccount object can be converted to a BankAccount

reference.

SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;

Furthermore, all references can be converted to the type Object.

Object anObject = collegeFund;

Now the three object references stored in collegeFund, anAccount, and

anObject all refer to the same object of type SavingsAccount (see Figure 7).

However, the object reference anAccount knows less than the full story about the

object to which it refers. Because anAccount is an object of type BankAccount,

you can use the deposit and withdraw methods to change the balance of the

savings account. You cannot use the addInterest method, though—it is not a

method of the BankAccount superclass:

anAccount.deposit(1000); // OK
anAccount.addInterest();

452

453

Chapter 10 Inheritance Page 20 of 82

Java Concepts, 5th Edition

 // No—not a method of the class to which anAccount belongs

Figure 7

Variables of Different Types Refer to the Same Object

And, of course, the variable anObject knows even less. You can't even apply the

deposit method to it—deposit is not a method of the Object class.

Conversion of references is different from a numerical conversion, such as a

conversion from an integer to a floating-point number. If you convert an integer, say

4, into the double value 4.0, then the representation changes: the double value 4.0

uses a different sequence of bits than the int value 4. However, when you convert a

SavingsAccount reference to a BankAccount reference, then the value of the

reference stays the same—it is the memory location of the object. However, after

conversion, less information is known about the object. We only know that it is a

bank account. It might be a plain bank account, a savings account, or another kind of

bank account.

Why would anyone want to know less about an object and store a reference in an

object field of a superclass? This can happen if you want to reuse code that knows

about the superclass but not the subclass. Here is a typical example. Consider a

transfer method that transfers money from one account to another:

public void transfer(double amount, BankAccount
other)
{
 withdraw(amount);
 other.deposit(amount);
}

Chapter 10 Inheritance Page 21 of 82

Java Concepts, 5th Edition

You can use this method to transfer money from one bank account to another:

BankAccount momsAccount = . . . ;
BankAccount harrysAccount = . . . ;
momsAccount.transfer(1000, harrysAccount);

You can also use the method to transfer money into a CheckingAccount:

CheckingAccount harrysChecking = . . . ;
momsAccount.transfer(1000, harrysChecking);

 // OK to pass a CheckingAccount reference to a method expecting a
BankAccount

The transfer method expects a reference to a BankAccount, and it gets a

reference to the subclass CheckingAccount. Fortunately, rather than complaining

about a type mismatch, the compiler simply copies the subclass reference

harrysChecking to the superclass reference other. The transfer method

doesn't actually know that, in this case, other refers to a CheckingAccount

reference. It knows only that other is a BankAccount, and it doesn't need to

know anything else. All it cares about is that the other object can carry out the

deposit method.

Very occasionally, you need to carry out the opposite conversion, from a superclass

reference to a subclass reference. For example, you may have a variable of type

Object, and you know that it actually holds a BankAccount reference. In that

case, you can use a cast to convert the type:

BankAccount anAccount = (BankAccount) anObject;

However, this cast is somewhat dangerous. If you are wrong, and anObject

actually refers to an object of an unrelated type, then an exception is thrown.

To protect against bad casts, you can use the instanceof operator. It tests whether

an object belongs to a particular type. For example,

anObject instanceof BankAccount

returns true if the type of anObject is convertible to BankAccount. This

happens if anObject refers to an actual BankAccount or a subclass such as

SavingsAccount. Using the instanceof operator, a safe cast can be

programmed as follows:

453

454

Chapter 10 Inheritance Page 22 of 82

Java Concepts, 5th Edition

if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

The instanceof operator tests whether an object belongs to a particular type.

SYNTAX 10.4 The instanceof Operator

object instanceof TypeName

Example:

if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

Purpose:

To return true if the object is an instance of TypeName (or one of its subtypes),

and false otherwise

SELF CHECK

10. Why did the second parameter of the transfer method have to be of

type BankAccount and not, for example, SavingsAccount?

11. Why can't we change the second parameter of the transfer method to

the type Object?

10.6 Polymorphism

In Java, the type of a variable does not completely determine the type of the object to

which it refers. For example, a variable of type BankAccount can hold a reference

to an actual BankAccount object or a subclass object such as SavingsAccount.

You already encountered this phenomenon in Chapter 9 with variables whose type

was an interface. A variable whose type is Measurable holds a reference to an

454

455

Chapter 10 Inheritance Page 23 of 82

Java Concepts, 5th Edition

object of a class that implements the Measurable interface, perhaps a Coin object

or an object of an entirely different class.

What happens when you invoke a method? For example,

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);

Which deposit method is called? The anAccount parameter has type

BankAccount, so it would appear as if BankAccount.deposit is called. On

the other hand, the CheckingAccount class provides its own deposit method

that updates the transaction count. The anAccount field actually refers to an object

of the subclass CheckingAccount, so it would be appropriate if the

CheckingAccount.deposit method were called instead.

In Java, method calls are always determined by the type of the actual object, not the

type of the object reference. That is, if the actual object has the type

CheckingAccount, then the CheckingAccount.deposit method is called.

It does not matter that the object reference is stored in a field of type BankAccount.

As we discussed in Chapter 9, the ability to refer to objects of multiple types with

varying behavior is called polymorphism.

If polymorphism is so powerful, why not store all account references in variables of

type Object? This does not work because the compiler needs to check that only

legal methods are invoked. The Object type does not define a deposit method—

the BankAccount type (at least) is required to make a call to the deposit method.

Have another look at the transfer method to see polymorphism at work. Here is

the implementation of the method:

public void transfer(double amount, BankAccount
other)
{
 withdraw(amount);
 other.deposit(amount);
}

Suppose you call

anAccount.transfer(1000, anotherAccount);

Two method calls are the result:

Chapter 10 Inheritance Page 24 of 82

Java Concepts, 5th Edition

anAccount.withdraw(1000);
anotherAccount.deposit(1000);

Depending on the actual types of anAccount and anotherAccount, different

versions of the withdraw and deposit methods are called.

If you look into the implementation of the transfer method, it may not be

immediately obvious that the first method call

withdraw(amount);

depends on the type of an object. However, that call is a shortcut for

this.withdraw(amount);

The this parameter holds a reference to the implicit parameter, which can refer to a

BankAccount or a subclass object.

The following program calls the polymorphic withdraw and deposit methods.

You should manually calculate what the program should print for each account

balance, and confirm that the correct methods have in fact been called.

ch10/accounts/AccountTester.java

 1 /**

 2 This program tests the BankAccount class and

 3 its subclasses.
 4 */
 5 public class AccountTester
 6 {
 7 public static void main(String[] args)
 8 {
 9 SavingsAccount momsSavings
10 = new SavingsAccount(0.5);
11
12 CheckingAccount harrysChecking
13 = new CheckingAccount(100);
14
15 momsSavings.deposit(10000);
16
17 momsSavings.transfer(2000,
harrysChecking);
18 harrysChecking.withdraw(1500);

455

456

Chapter 10 Inheritance Page 25 of 82

Java Concepts, 5th Edition

19 harrysChecking.withdraw(80);
20
21 momsSavings.transfer(1000,
harrysChecking);
22 harrysChecking.withdraw(400);
23

24 // Simulate end of month
25 momsSavings.addInterest();
26 harrysChecking.deductFees();
27
28 System.out.println(“Mom's savings
balance: ”
29 + momsSavings.getBalance());
30 System.out.println(“Expected: 7035”);
31
32 System.out.println(“Harry's checking
balance: ”
33 + harrysChecking.getBalance());
34 System.out.println(“Expected: 1116”);
35 }
36 }

ch10/accounts/BankAccount.java

 1 /**

 2 A bank account has a balance that can be changed by

 3 deposits and withdrawals.
 4 */
 5 public class BankAccount
 6 {
 7 /**

 8 Constructs a bank account with a zero balance.
 9 */
10 public BankAccount()
11 {
12 balance = 0;
13 }
14
15 /**

16 Constructs a bank account with a given balance.

17 @param initialBalance the initial balance
18 */
19 public BankAccount(double initialBalance)

456

457

Chapter 10 Inheritance Page 26 of 82

Java Concepts, 5th Edition

20 {
21 balance = initialBalance;
22 }
23
24 /**

25 Deposits money into the bank account.

26 @param amount the amount to deposit
27 */
28 public void deposit(double amount)
29 {
30 balance = balance + amount;
31 }
32
33 /**

34 Withdraws money from the bank account.

35 @param amount the amount to withdraw
36 */
37 public void withdraw(double amount)
38 {
39 balance = balance - amount;
40 }
41
42 /**

43 Gets the current balance of the bank account.

44 @return the current balance
45 */
46 public double getBalance()
47 {
48 return balance;
49 }
50
51 /**

52 Transfers money from the bank account to another account.

53 @param amount the amount to transfer

54 @param other the other account
55 */
56 public void transfer(double amount,
BankAccount other)
57 {
58 withdraw(amount);
59 other.deposit(amount);
60 }
61

457

458

Chapter 10 Inheritance Page 27 of 82

Java Concepts, 5th Edition

62 private double balance;
63 }

ch10/accounts/CheckingAccount.java

 1 /**

 2 A checking account that charges transaction fees.
 3 */
 4 public class CheckingAccount extends
BankAccount
 5 {
 6 /**

 7 Constructs a checking account with a given balance.

 8 @param initialBalance the initial balance
 9 */
10 public CheckingAccount(double
initialBalance)
11 {

12 // Construct superclass
13 super(initialBalance);
14

15 // Initialize transaction count
16 transactionCount = 0;
17 }
18
19 public void deposit(double amount)
20 {
21 transactionCount++;

22 // Now add amount to balance
23 super.deposit(amount);
24 }
25
26 public void withdraw(double amount)
27 {
28 transactionCount++;

29 // Now subtract amount from balance
30 super.withdraw(amount);
31 }
32
33 /**

34 Deducts the accumulated fees and resets the

35 transaction count.
458

Chapter 10 Inheritance Page 28 of 82

Java Concepts, 5th Edition

36 */
37 public void deductFees()
38 {
39 if (transactionCount > FREE_TRANSACTIONS)
40 {
41 double fees = TRANSACTION_FEE *
42 (transactionCount -
FREE_TRANSACTIONS);
43 super.withdraw(fees);
44 }
45 transactionCount = 0
46 }
47
48 private int transactionCount;
49
50 private static final int FREE_TRANSACTIONS
= 3;
51 private static final double TRANSACTION_FEE
= 2.0;
52 }

ch10/accounts/SavingsAccount.java

 1 /**

 2 An account that earns interest at a fixed rate.
 3 */
 4 public class SavingsAccount extends BankAccount
 5 {
 6 /**

 7 Constructs a bank account with a given interest rate.

 8 @param rate the interest rate
 9 */
10 public SavingsAccount(double rate)
11 {
12 interestRate = rate;
13 }
14
15 /**

16 Adds the earned interest to the account balance.
17 */
18 public void addInterest()
19 {
20 double interest = getBalance() *
interestRate / 100;

458

459

Chapter 10 Inheritance Page 29 of 82

Java Concepts, 5th Edition

21 deposit(interest);
22 }
23
24 private double interestRate;
25 }

Output

 Mom's savings balance: 7035.0
 Expected: 7035
 Harry's checking balance: 1116.0
 Expected: 1116

SELF CHECK

12. If a is a variable of type BankAccount that holds a non-null

reference, what do you know about the object to which a refers?

13. If a refers to a checking account, what is the effect of calling

a.transfer(1000, a)?

 ADVANCED TOPIC 10.1: Abstract Classes

When you extend an existing class, you have the choice whether or not to redefine

the methods of the superclass. Sometimes, it is desirable to force programmers to

redefine a method. That happens when there is no good default for the superclass,

and only the subclass programmer can know how to implement the method

properly.

Here is an example. Suppose the First National Bank of Java decides that every

account type must have some monthly fees. Therefore, a deductFees method

should be added to the BankAccount class:

public class BankAccount
{
 public void deductFees() { . . . }
 . . .
}

But what should this method do? Of course, we could have the method do nothing.

But then a programmer implementing a new subclass might simply forget to

459

460

Chapter 10 Inheritance Page 30 of 82

Java Concepts, 5th Edition

implement the deductFees method, and the new account would inherit the

do-nothing method of the superclass. There is a better way—declare the

deductFees method as an abstract method:

public abstract void deductFees();

An abstract method has no implementation. This forces the implementors of

subclasses to specify concrete implementations of this method. (Of course, some

subclasses might decide to implement a do-nothing method, but then that is their

choice—not a silently inherited default.)

An abstract method is a method whose implementation is not specified.

You cannot construct objects of classes with abstract methods. For example, once

the BankAccount class has an abstract method, the compiler will flag an attempt

to create a new BankAccount() as an error. Of course, if the

CheckingAccount subclass overrides the deductFees method and supplies

an implementation, then you can create CheckingAccount objects.

An abstract class is a class that cannot be instantiated.

A class for which you cannot create objects is called an abstract class. A class for

which you can create objects is sometimes called a concrete class. In Java, you

must declare all abstract classes with the keyword abstract:

public abstract class BankAccount
{
 public abstract void deductFees();
 . . .
}

A class that defines an abstract method, or that inherits an abstract method without

overriding it, must be declared as abstract. You can also declare classes with no

abstract methods as abstract. Doing so prevents programmers from creating

instances of that class but allows them to create their own subclasses.

Note that you cannot construct an object of an abstract class, but you can still have

an object reference whose type is an abstract class. Of course, the actual object to

which it refers must be an instance of a concrete subclass:

460

461

Chapter 10 Inheritance Page 31 of 82

Java Concepts, 5th Edition

BankAccount anAccount; // OK

anAccount = new BankAccount(); // Error—BankAccount is

abstract

anAccount = new SavingsAccount(); // OK

anAccount = null; // OK

The reason for using abstract classes is to force programmers to create subclasses.

By specifying certain methods as abstract, you avoid the trouble of coming up with

useless default methods that others might inherit by accident.

Abstract classes differ from interfaces in an important way—they can have

instance fields, and they can have concrete methods and constructors.

 ADVANCED TOPIC 10.2: Final Methods and Classes

In Advanced Topic 10.1 you saw how you can force other programmers to create

subclasses of abstract classes and override abstract methods. Occasionally, you

may want to do the opposite and prevent other programmers from creating

subclasses or from overriding certain methods. In these situations, you use the

final keyword. For example, the String class in the standard Java library has

been declared as

public final class String { . . . }

That means that nobody can extend the String class.

The String class is meant to be immutable—string objects can't be modified by

any of their methods. Since the Java language does not enforce this, the class

designers did. Nobody can create subclasses of String; therefore, you know that

all String references can be copied without the risk of mutation.

You can also declare individual methods as final:

public class SecureAccount extends BankAccount
{
 . . .
 public final boolean checkPassword(String
password)
 {
 . . .

Chapter 10 Inheritance Page 32 of 82

Java Concepts, 5th Edition

 }
}

This way, nobody can override the checkPassword method with another

method that simply returns true.

10.7 Access Control

Java has four levels of controlling access to fields, methods, and classes:

• public access

• private access

• protected access (see Advanced Topic 10.3)

• package access (the default, when no access modifier is given)

You have already used the private and public modifiers extensively. Private

features can be accessed only by the methods of their own class. Public features can

be accessed by methods of all classes. We will discuss protected access in Advanced

Topic 10.3—we will not need it in this book.

A field or method that is not declared as public, private, or protected can

be accessed by all classes in the same package, which is usually not desirable.

If you do not supply an access control modifier, then the default is package access.

That is, all methods of classes in the same package can access the feature. For

example, if a class is declared as public, then all other classes in all packages can

use it. But if a class is declared without an access modifier, then only the other classes

in the same package can use it. Package access is a good default for classes, but it is

extremely unfortunate for fields. Instance and static fields of classes should always be

private. There are a few exceptions:

• Public constants (public static final fields) are useful and safe.

• Some objects, such as System.out, need to be accessible to all programs and

therefore should be public.

461

462

Chapter 10 Inheritance Page 33 of 82

Java Concepts, 5th Edition

• Very occasionally, several classes in a package must collaborate very closely.

In that case, it may make sense to give some fields package access. But inner

classes are usually a better solution—you have seen examples in Chapter 9.

It is a common error to forget the keyword private, thereby opening up a potential

security hole. For example, at the time of this writing, the Window class in the

java.awt package contained the following declaration:

public class Window extends Container
{
 String warningString;
 . . .
}

The programmer was careless and didn't make the field private. There actually was no

good reason to grant package access to the warningString field—no other class

accesses it. It is a security risk. Packages are not closed entities—any programmer

can make a new class, add it to the java.awt package, and gain access to the

warningString fields of all Window objects! (Actually, this possibility bothered

the Java implementors so much that recent versions of the virtual machine refuse to

load unknown classes whose package name starts with “java.”. Your own packages,

however, do not enjoy this protection.)

Package access for fields is rarely useful, and most fields are given package access by

accident because the programmer simply forgot the private keyword.

Methods should generally be public or private. We recommend avoiding the

use of package-visible methods.

Classes and interfaces can have public or package access. Classes that are generally

useful should have public access. Classes that are used for implementation reasons

should have package access. You can hide them even better by turning them into

inner classes; you saw examples of inner classes in Chapter 9. There are a few

examples of public inner classes, such as the Ellipse2D.Double class that you

saw in Chapter 2 (Section 2.13). However, in general, inner classes should not be

public.

462

463

Chapter 10 Inheritance Page 34 of 82

Java Concepts, 5th Edition

SELF CHECK

14. What is a common reason for defining package-visible instance fields?

15. If a class with a public constructor has package access, who can

construct objects of it?

 COMMON ERROR 10.4: Accidental Package Access

It is very easy to forget the private modifier for instance fields.

public class BankAccount
{
 . . .

 double balance; // Package access really intended?
}

Most likely, this was just an oversight. The programmer probably never intended

to grant access to this field to other classes in the same package. The compiler

won't complain, of course. Much later, some other programmer may take

advantage of the access privilege, either out of convenience or out of evil intent.

This is a serious problem, and you must get into the habit of scanning your field

declarations for missing private modifiers.

 COMMON ERROR 10.5: Making Inherited Methods Less

Accessible

If a superclass declares a method to be publicly accessible, you cannot override it

to be more private. For example,

public class BankAccount
{
 public void withdraw(double amount) { . . . }
 . . .
}
public class CheckingAccount extends BankAccount
{
 private void withdraw(double amount) { . . . }

 // Error—subclass method cannot be more private

463

464

Chapter 10 Inheritance Page 35 of 82

Java Concepts, 5th Edition

 . . .
}

The compiler does not allow this, because the increased privacy would be an

illusion. Anyone can still call the method through a superclass reference:

BankAccount account = new CheckingAccount();
account.withdraw(100000); // Calls
CheckingAccount.withdraw

Because of polymorphism, the subclass method is called.

These errors are usually an oversight. If you forget the public modifier, your

subclass method has package access, which is more restrictive. Simply restore the

public modifier, and the error will go away.

 ADVANCED TOPIC 10.3: Protected Access

We ran into a hurdle when trying to implement the deposit method of the

CheckingAccount class. That method needed access to the balance instance

field of the superclass. Our remedy was to use the appropriate method of the

superclass to set the balance.

Java offers another solution to this problem. The superclass can declare an instance

field as protected:

public class BankAccount
{
 . . .
 protected double balance;
}

Protected data in an object can be accessed by the methods of the object's class and

all its subclasses. For example, CheckingAccount inherits from

BankAccount, so its methods can access the protected instance fields of the

BankAccount class. Furthermore, protected data can be accessed by all methods

of classes in the same package.

Protected features can be accessed by all subclasses and all classes in the

same package.

Chapter 10 Inheritance Page 36 of 82

Java Concepts, 5th Edition

Some programmers like the protected access feature because it seems to strike

a balance between absolute protection (making all fields private) and no protection

at all (making all fields public). However, experience has shown that protected

fields are subject to the same kinds of problems as public fields. The designer of

the superclass has no control over the authors of subclasses. Any of the subclass

methods can corrupt the superclass data. Furthermore, classes with protected fields

are hard to modify. Even if the author of the superclass would like to change the

data implementation, the protected fields cannot be changed, because someone

somewhere out there might have written a subclass whose code depends on them.

In Java, protected fields have another drawback—they are accessible not just by

subclasses, but also by other classes in the same package.

It is best to leave all data private. If you want to grant access to the data to subclass

methods only, consider making the accessor method protected.

10.8 Object: The Cosmic Superclass

In Java, every class that is defined without an explicit extends clause automatically

extends the class Object. That is, the class Object is the direct or indirect

superclass of every class in Java (see Figure 8).

Of course, the methods of the Object class are very general. Here are the most

useful ones:

Method Purpose
String toString() Returns a string representation of

the object
boolean equals(Object

otherObject)
Tests whether the object equals

another object
Object clone() Makes a full copy of an object

It is a good idea for you to override these methods in your classes.

464

465

Chapter 10 Inheritance Page 37 of 82

Java Concepts, 5th Edition

Figure 8

The Object Class Is the Superclass of Every Java Class

10.8.1 Overriding the toString Method

The toString method returns a string representation for each object. It is used

for debugging. For example,

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
 // Sets s to
“java.awt.Rectangle[x=5,y=10,width=20,height=30]”

Define the toString method to yield a string that describes the object state.

In fact, this toString method is called whenever you concatenate a string with an

object. Consider the concatenation

“box=” + box;

On one side of the + concatenation operator is a string, but on the other side is an

object reference. The Java compiler automatically invokes the toString method

465

466

Chapter 10 Inheritance Page 38 of 82

Java Concepts, 5th Edition

to turn the object into a string. Then both strings are concatenated. In this case, the

result is the string

“box=java.awt.Rectangle[x=5,y=10,width=20,height=30]”

The compiler can invoke the toString method, because it knows that every

object has a toString method: Every class extends the Object class, and that

class defines toString.

As you know, numbers are also converted to strings when they are concatenated

with other strings. For example,

int age = 18;
String s = “Harry’s age is ” + age;

 // Sets s to “Harry’s age is 18”

In this case, the toString method is not involved. Numbers are not objects, and

there is no toString method for them. There is only a small set of primitive

types, however, and the compiler knows how to convert them to strings.

Let's try the toString method for the BankAccount class:

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();

 // Sets s to something like “BankAccount@d24606bf”

That's disappointing—all that's printed is the name of the class, followed by the

hash code, a seemingly random code. The hash code can be used to tell objects

apart—different objects are likely to have different hash codes. (See Chapter 16 for

the details.)

We don't care about the hash code. We want to know what is inside the object. But,

of course, the toString method of the Object class does not know what is

inside the BankAccount class. Therefore, we have to override the method and

supply our own version in the BankAccount class. We'll follow the same format

that the toString method of the Rectangle class uses: first print the name of

the class, and then the values of the instance fields inside brackets.

public class BankAccount
 {
 . . .
 public String toString()

466

467

Chapter 10 Inheritance Page 39 of 82

Java Concepts, 5th Edition

 {
 return “BankAccount[balance=“ + balance + “]”;
 }
}

This works better:

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();

 // Sets s to “BankAccount[balance=5000]”

 PRODUCTIVITY HINT 10.1: Supply toString in All

Classes

If you have a class whose toString() method returns a string that describes

the object state, then you can simply call System.out.println(x)

whenever you need to inspect the current state of an object x. This works

because the println method of the PrintStream class invokes

x.toString() when it needs to print an object, which is extremely helpful if

there is an error in your program and the objects don't behave the way you think

they should. You can simply insert a few print statements and peek inside the

object state during the program run. Some debuggers can even invoke the

toString method on objects that you inspect.

Sure, it is a bit more trouble to write a toString method when you aren't sure

your program ever needs one—after all, it might work correctly on the first try.

Then again, many programs don't work on the first try. As soon as you find out

that yours doesn't, consider adding those toString methods to help you debug

the program.

 ADVANCED TOPIC 10.4: Inheritance and the

toString Method

You just saw how to write a toString method: Form a string consisting of the

class name and the names and values of the instance fields. However, if you

want your toString method to be usable by subclasses of your class, you need

to work a bit harder. Instead of hardcoding the class name, you should call the

getClass method to obtain a class object, an object of the Class class that

Chapter 10 Inheritance Page 40 of 82

Java Concepts, 5th Edition

describes classes and their properties. Then invoke the getName method to get

the name of the class:

public String toString()
{
 return getClass().getName() + “[balance=”
 + balance + “]”;
}

Then the toString method prints the correct class name when you apply it to

a subclass, say a SavingsAccount.

SavingsAccount momsSavings = . . . ;
System.out.println(momsSavings);

// Prints “SavingsAccount[balance=10000]”

Of course, in the subclass, you should override toString and add the values

of the subclass instance fields. Note that you must call super.toString to

get the superclass field values—the subclass can't access them directly.

public class SavingsAccount extends BankAccount
{
 public String toString()
 {
 return super.toString() +
 “[interestRate=” + interestRate + “]”;
 }
}

Now a savings account is converted to a string such as

SavingsAccount[balance=10000][interestRate=5]. The

brackets show which fields belong to the superclass.

10.8.2 Overriding the equals Method

The equals method is called whenever you want to compare whether two objects

have the same contents:

if (coin1.equals(coin2)) . . .

 // Contents are the same—see Figure 9

467

468

Chapter 10 Inheritance Page 41 of 82

Java Concepts, 5th Edition

Define the equals method to test whether two objects have equal state.

This is different from the test with the == operator, which tests whether the two

references are to the same object:

if (coin1 == coin2) . . .

 // Objects are the same—see Figure 10

Figure 9

Two References to Equal Objects

Figure 10

Two References to the Same Object

468

469

Chapter 10 Inheritance Page 42 of 82

Java Concepts, 5th Edition

Let us implement the equals method for the Coin class. You need to override

the equals method of the Object class:

public class Coin
{
 . . .
 public boolean equals(Object otherObject)
 {
 . . .
 }
 . . .
}

Now you have a slight problem. The Object class knows nothing about coins, so

it defines the otherObject parameter of the equals method to have the type

Object. When redefining the method, you are not allowed to change the object

signature. Cast the parameter to the class Coin:

Coin other = (Coin) otherObject;

Then you can compare the two coins.

public boolean equals(Object otherObject)
{
 Coin other = (Coin) otherObject;
 return name.equals(other.name)
 && value == other.value;
}

Note that you must use equals to compare object fields, but use == to compare

number fields.

When you override the equals method, you should also override the hashCode

method so that equal objects have the same hash code—see Chapter 16 for details.

SELF CHECK

16. Should the call x.equals(x) always return true?

17. Can you implement equals in terms of toString? Should you?
469

Chapter 10 Inheritance Page 43 of 82

Java Concepts, 5th Edition

 COMMON ERROR 10.6: Defining the equals Method

with the Wrong Parameter

Type

Consider the following, seemingly simpler, version of the equals method for

the Coin class:

public boolean equals(Coin other) // Don’t do this!
{
 return name.equals(other.name) && value ==
other.value;
}

Here, the parameter of the equals method has the type Coin, not Object.

Unfortunately, this method does not override the equals method in the

Object class. Instead, the Coin class now has two different equals methods:

boolean equals(Coin other) // Defined in the Coin class

boolean equals(Object otherObject) // Inherited from the

Object class

This is error-prone because the wrong equals method can be called. For

example, consider these variable definitions:

Coin aCoin = new Coin(0.25, “quarter”);
Object anObject = new Coin(0.25, “quarter”);

The call aCoin.equals (anObject) calls the second equals method,

which returns false.

The remedy is to ensure that you use the Object type for the explicit parameter

of the equals method.

469

470

Chapter 10 Inheritance Page 44 of 82

Java Concepts, 5th Edition

 ADVANCED TOPIC 10.5: Inheritance and the equals

Method

You just saw how to write an equals method: Cast the otherObject

parameter to the type of your class, and then compare the fields of the implicit

parameter and the other parameter.

But what if someone called coin1.equals(x) where x wasn't a Coin

object? Then the bad cast would generate an exception, and the program would

die. Therefore, you first want to test whether otherObject really is an

instance of the Coin class. The easiest test would be with the instanceof

operator. However, that test is not specific enough. It would be possible for

otherObject to belong to some subclass of Coin. To rule out that

possibility, you should test whether the two objects belong to the same class. If

not, return false.

if (getClass() != otherObject.getClass()) return
false;

Moreover, the Java language specification [1] demands that the equals method

return false when otherObject is null.

Here is an improved version of the equals method that takes these two points

into account:

public boolean equals(Object otherObject)
{
 if (otherObject == null) return false;
 if (getClass() != otherObject.getClass())
 return false;
 Coin other = (Coin) otherObject;
 return name.equals(other.name) && value ==
other.value;
}

When you define equals in a subclass, you should first call equals in the

superclass, like this:

public CollectibleCoin extends Coin
{

470

471

Chapter 10 Inheritance Page 45 of 82

Java Concepts, 5th Edition

 . . .
 public boolean equals(Object otherObject)
 {
 if (!super.equals(otherObject)) return
false;
 CollectibleCoin other = (CollectibleCoin)
otherObject;
 return year == other.year;
 }
 private int year;
}

10.8.3 The clone Method

You know that copying an object reference simply gives you two references to the

same object:

BankAccount account = new BankAccount(1000);
BankAccount account2 = account;
account2.deposit(500);
 // Now both account and account2 refer to a bank
account with a balance of 1500

What can you do if you actually want to make a copy of an object? That is the

purpose of the clone method. The clone method must return a new object that

has an identical state to the existing object (see Figure 11).

The clone method makes a new object with the same state as an existing object.

Figure 11

Cloning Objects
471

Chapter 10 Inheritance Page 46 of 82

Java Concepts, 5th Edition

Implementing the clone method is quite a bit more difficult than implementing

the toString or equals methods—see Advanced Topic 10.6 for details.

Let us suppose that someone has implemented the clone method for the

BankAccount class. Here is how to call it:

BankAccount clonedAccount = (BankAccount)
account.clone();

The return type of the clone method is the class Object. When you call the

method, you must use a cast to convince the compiler that account.clone()

really has the same type as clonedAccount.

 COMMON ERROR 10.7: Forgetting to Clone

In Java, object fields contain references to objects, not actual objects. This can

be convenient for giving two names to the same object:

BankAccount harrysChecking = new BankAccount();
BankAccount slushFund = harrysChecking;

 // Use Harry’s checking account for the slush fund
slushFund.deposit(80000)

 // A lot of money ends up in Harry’s checking account

However, if you don't intend two references to refer to the same object, then this

is a problem. In that case, you should use the clone method:

BankAccount slushFund = (BankAccount)
harrysChecking.clone();

 QUALITY TIP 10.1: Clone Mutable Instance Fields in

Accessor Methods

Consider the following class:

public class Customer
{
 public Customer(String aName)
 {
 name = aName;
 account = new BankAccount();

471

472

Chapter 10 Inheritance Page 47 of 82

Java Concepts, 5th Edition

 }
 public String getName()
 {
 return name;
 }
 public BankAccount getAccount();
 {
 return account;
 }
 private String name;
 private BankAccount account;
}

This class looks very boring and normal, but the getAccount method has a

curious property. It breaks encapsulation, because anyone can modify the object

state without going through the public interface:

Customer harry = new Customer(“Harry Handsome”);
BankAccount account = harry.getAccount();

 // Anyone can withdraw money!
account.withdraw(100000);

Maybe that wasn't what the designers of the class had in mind? Maybe they

wanted class users only to inspect the account? In such a situation, you should

clone the object reference:

public BankAccount getAccount();
{
 return (BankAccount) account.clone();
}

Do you also need to clone the getName method? No—that method returns a

string, and strings are immutable. It is safe to give out a reference to an

immutable object.

 ADVANCED TOPIC 10.6: Implementing the clone

Method

The Object.clone method is the starting point for the clone methods in

your own classes. It creates a new object of the same type as the original object.

It also automatically copies the instance fields from the original object to the

472

473

Chapter 10 Inheritance Page 48 of 82

Java Concepts, 5th Edition

cloned object. Here is a first attempt to implement the clone method for the

BankAccount class:

public class BankAccount
{
 . . .
 public Object clone()
 {

 // Not complete
 Object clonedAccount = super.clone();
 return clonedAccount;
 }
}

However, this Object.clone method must be used with care. It only shifts

the problem of cloning by one level; it does not completely solve it. Specifically,

if an object contains a reference to another object, then the Object.clone

method makes a copy of that object reference, not a clone of that object. The

figure below shows how the Object.clone method works with a Customer

object that has references to a String object and a BankAccount object. As

you can see, the Object.clone method copies the references to the cloned

Customer object and does not clone the objects to which they refer. Such a

copy is called a shallow copy.

The Object.clone Method Makes a Shallow Copy

473

474

Chapter 10 Inheritance Page 49 of 82

Java Concepts, 5th Edition

There is a reason why the Object.clone method does not systematically

clone all sub-objects. In some situations, it is unnecessary. For example, if an

object contains a reference to a string, there is no harm in copying the string

reference, because Java string objects can never change their contents. The

Object.clone method does the right thing if an object contains only

numbers, Boolean values, and strings. But it must be used with caution when an

object contains references to other objects.

For that reason, there are two safeguards built into the Object.clone method

to ensure that it is not used accidentally. First, the method is declared

protected (see Advanced Topic 10.3). This prevents you from accidentally

calling x.clone() if the class to which x belongs hasn't redefined clone to

be public.

As a second precaution, Object.clone checks that the object being cloned

implements the Cloneable interface. If not, it throws an exception. The

Object.clone method looks like this:

public class Object
{
 protected Object clone()
 throws CloneNotSupportedException
 {
 if (this instanceof Cloneable)
 {

 // Copy the instance fields
 . . .
 }
 else
 throw new CloneNotSupportedException();
 }
}

Unfortunately, all that safeguarding means that the legitimate callers of

Object.clone() pay a price—they must catch that exception even if their

class implements Cloneable.

public class BankAccount implements Cloneable
{
 . . .
 public Object clone()

474

475

Chapter 10 Inheritance Page 50 of 82

Java Concepts, 5th Edition

 {
 try
 {
 return super.clone();
 }
 catch (CloneNotSupportedException e)
 {

 // Can’t happen because we implement Cloneabl e but

we still must catch it.
 return null;
 }
 }
}

If an object contains a reference to another mutable object, then you must call

clone for that reference. For example, suppose the Customer class has an

instance field of class BankAccount. You can implement Customer.clone

as follows:

public class Customer implements Cloneable
{
 . . .
 public Object clone()
 {
 try
 {
 Customer cloned = (Customer)
super.clone();
 cloned.account = (BankAccount)
account.clone();
 return cloned;
 }
 catch(CloneNotSupportedException e)
 {

 // Can’t happen because we implement Cloneabl e
 return null;
 }
 }
 private String name;
 private BankAccount account;
}

Chapter 10 Inheritance Page 51 of 82

Java Concepts, 5th Edition

 ADVANCED TOPIC 10.7: Enumerated Types Revisited

In Advanced Topic 5.3, we introduced the concept of an enumerated type: a type

with a finite number of values. An example is

public enum FilingStatus { SINGLE, MARRIED }

In Java, enumerated types are classes with special properties. They have a finite

number of instances, namely the objects defined inside the braces. For example,

there are exactly two objects of the FilingStatus class:

FilingStatus.SINGLE and FilingStatus.MARRIED. Since

FilingStatus has no public constructor, it is impossible to construct

additional objects.

Enumeration classes extend the Enum class, from which they inherit toString

and clone methods. The toString method returns a string that equals the

object's name. For example, FilingStatus.SINGLE.toString() returns

“SINGLE”. The clone method returns the given object without making a copy.

After all, it should not be possible to generate new objects of an enumeration

class.

The Enum class inherits the equals method from its superclass, Object.

Thus, two enumeration constants are only considered equal when they are

identical.

You can add your own methods and constructors to an enumeration class, for

example

public enum CoinType
{
 PENNY(0.01), NICKEL(0.05), DIME(0.1),
QUARTER(0.25);
 CoinType(double aValue) { value = aValue; }
 public double getValue() { return value; }
 private double value;
}

This CoinType class has exactly four instances: CoinType.PENNY,

CoinType.NICKEL, CoinType.DIME, and CoinType.QUARTER. If you

475

476

Chapter 10 Inheritance Page 52 of 82

Java Concepts, 5th Edition

have one of these four CoinType objects, you can apply the getValue

method to obtain the coin's value.

Note that there is a major philosophical difference between this CoinType

class and the Coin class that we have discussed elsewhere in this chapter. A

Coin object represents a particular coin. You can construct as many Coin

objects as you like. Different Coin objects can be equal to another. We consider

two Coin objects equal when their names and values match. However,

CoinType describes a type of coins, not an individual coin. The four

CoinType objects are distinct from each other.

 RANDOM FACT 10.1: Scripting Languages

Suppose you work for an office where you must help with the bookkeeping.

Suppose that every sales person sends in a weekly spreadsheet with sales figures.

One of your jobs is to copy and paste the individual figures into a master

spreadsheet and then copy and paste the totals into a word processor document

that gets e-mailed to several managers. This kind of repetitive work can be

intensely boring. Can you automate it?

It would be a real challenge to write a Java program that can help you—you'd

have to know how to read a spreadsheet file, how to format a word processor

document, and how to send e-mail.

Fortunately, many office software packages include scripting languages. These

are programming languages that are integrated with the software for the purpose

of automating repetitive tasks. The best-known of these scripting languages is

Visual Basic Script, which is a part of the Microsoft Office suite. The Macintosh

operating system has a language called AppleScript for the same purpose.

In addition, scripting languages are available for many other purposes.

JavaScript is used for web pages. (There is no relationship between Java and

JavaScript—the name JavaScript was chosen for marketing reasons.) Tcl (short

for “tool control language” and pronounced “tickle”) is an open source scripting

language that has been ported to many platforms and is often used for scripting

software test procedures. Shell scripts are used for automating software

configuration, backup procedures, and other system administration tasks.

476

477

Chapter 10 Inheritance Page 53 of 82

Java Concepts, 5th Edition

Scripting Java Classes with JavaScript

Scripting languages have two features that makes them easier to use than

full-fledged programming languages such as Java. First, they are interpreted.

The interpreter program reads each line of program code and executes it

immediately without compiling it first. That makes experimenting much more

fun—you get immediate feedback. Also, scripting languages are usually loosely

typed, meaning you don't have to declare the types of variables. Every variable

can hold values of any type. For example, the Scripting Java Classes with

JavaScript figure shows a scripting session with Rhino, a JavaScript

implementation that allows you to manipulate Java objects. The script stores

frame and label objects in variables that are declared without types. It then calls

methods that are executed immediately, without compilation. The frame pops up

as soon as the line with the setVisible command is entered. (If you use an

earlier version of Java, you can achieve the same effect with the Rhino scripting

engine. You can download Rhino from the Mozilla web site [2]). In recent years,

authors of computer viruses have discovered how scripting languages simplify

their lives. The famous “love bug” is a Visual Basic Script program that is sent

as an attachment to an e-mail. The e-mail has an enticing subject line “I love

Chapter 10 Inheritance Page 54 of 82

Java Concepts, 5th Edition

you” and asks the recipient to click on an attachment masquerading as a love

letter. In fact, the attachment is a script file that is executed when the user clicks

on it. The script creates some damage on the recipient's computer and then,

through the power of the scripting language, uses the Outlook e-mail client to

mail itself to all addresses found in the address book. Try programming that in

Java! By the way, the person suspected of authoring that virus was a student who

had submitted a proposal to write a thesis researching how to write such

programs. Perhaps not surprisingly, the proposal was rejected by the faculty.

Why do we still need Java if scripting is easy and fun? Scripts often have poor

error checking and are difficult to adapt to new circumstances. Scripting

languages lack many of the structuring and safety mechanisms (such as classes

and type checking by the compiler) that are important for building robust and

scalable programs.

10.9 Using Inheritance to Customize Frames

As you add more user interface components to a frame, the frame can get quite

complex. Your programs will become easier to understand when you use inheritance

for complex frames.

Define a JFrame subclass for a complex frame.

Design a subclass of JFrame. Store the components as instance fields. Initialize

them in the constructor of your subclass. If the initialization code gets complex,

simply add some helper methods.

Here, we carry out this process for the investment viewer program in Chapter 9.

public class InvestmentFrame extends JFrame
{
 public InvestmentFrame()
 {
 account = new BankAccount(INITIAL_BALANCE);

 // Use instance fields for components
 label = new JLabel(“balance: ” +
account.getBalance());

 // Use helper methods
 createButton();

477

478

Chapter 10 Inheritance Page 55 of 82

Java Concepts, 5th Edition

 createPanel();
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }
 private void createButton()
 {
 ActionListener listener = new
AddInterestListener();
 button.addActionListener(listener);
 button = new JButton(“Add Interest”);
 }
 private void createPanel()
 {
 panel = new JPanel();
 panel.add(button);
 panel.add(label);
 add(panel);
 }
 private JButton button;
 private JLabel label;
 private JPanel panel;
 private BankAccount account;
}

This approach differs from the programs in Chapter 9. In those programs, we simply

configured the frame in the main method of a viewer class.

It is a bit more work to provide a separate class for the frame. However, the frame

class makes it easier to organize the code that constructs the user-interface elements.

We will use this approach for all examples in this chapter.

Of course, we still need a class with a main method:

public class InvestmentViewer2
{
 public static void main(String[] args)
 {
 JFrame frame = new InvestmentFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

478

479

Chapter 10 Inheritance Page 56 of 82

Java Concepts, 5th Edition

SELF CHECK

18. How many Java source files are required by the investment viewer

application when we use inheritance to define the frame class?

19. Why does the InvestmentFrame constructor call

setSize(FRAME_WIDTH, FRAME_HEIGHT), whereas the main

method of the investment viewer class in Chapter 9 called

frame.setSize(FRAME_WIDTH, FRAME_HEIGHT)?

 ADVANCED TOPIC 10.8: Adding the main Method to

the Frame Class

Have another look at the InvestmentFrame and InvestmentViewer2

classes. Some programmers prefer to combine these two classes, by adding the

main method to the frame class:

public class InvestmentFrame extends JFrame
{
 public static void main(String[] args)
 {
 JFrame frame = new InvestmentFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 frame.setVisible(true);
 }
 public InvestmentFrame()
 {
 account = new BankAccount(INITIAL_BALANCE);

 // Use instance fields for components
 label = new JLabel(“balance: ” +
account.getBalance());

 // Use helper methods
 createButton();
 createPanel();
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }
 . . .
}

479

480

Chapter 10 Inheritance Page 57 of 82

Java Concepts, 5th Edition

This is a convenient shortcut that you will find in many programs, but it does

muddle the responsibilities between the frame class and the program. Therefore,

we do not use this approach in this book.

10.10 Processing Text Input

A graphical application can receive text input by calling the showInputDialog

method of the JOptionPane class, but popping up a separate dialog box for each

input is not a natural user interface. Most graphical programs collect text input

through text fields (see Figure 12). In this section, you will learn how to add text

fields to a graphical application, and how to read what the user types into them.

The JTextField class provides a text field. When you construct a text field, you

need to supply the width—the approximate number of characters that you expect the

user to type.

final int FIELD_WIDTH = 10;
final JTextField rateField = new
JTextField(FIELD_WIDTH);

Users can type additional characters, but then a part of the contents of the field

becomes invisible.

Use JTextField components to provide space for user input. Place a JLabel

next to each text field.

You will want to label each text field so that the user knows what to type into it.

Construct a JLabel object for each label:

JLabel rateLabel = new JLabel(“Interest Rate: ”);

You want to give the user an opportunity to enter all information into the text fields

before processing it. Therefore, you should supply a button that the user can press to

indicate that the input is ready for processing.

Chapter 10 Inheritance Page 58 of 82

Java Concepts, 5th Edition

Figure 12

An Application with a Text Field

When that button is clicked, its actionPerformed method reads the user input

from the text fields, using the getText method of the JTextField class. The

getText method returns a String object. In our sample program, we turn the

string into a number, using the Double.parseDouble method:

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double rate =
Double.parseDouble(rateField.getText());
 . . .
 }
}

The following application is a useful prototype for a graphical user-interface front end

for arbitrary calculations. You can easily modify it for your own needs. Place other

input components into the frame. Change the contents of the actionPerformed

method to carry out other calculations. Display the result in a label.

ch10/textfield/InvestmentViewer3.java

 1 import javax.swing.JFrame;
 2
 3 /**

 4 This program displays the growth of an investment.
 5 */
 6 public class InvestmentViewer3
 7 {
 8 public static void main(String[] args)
 9 {

480

481

Chapter 10 Inheritance Page 59 of 82

Java Concepts, 5th Edition

10 JFrame frame = new InvestmentFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
12 frame.setVisible(true);
13 }
14 }

ch10/textfield/InvestmentFrame.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3 import javax.swing.JButton;
 4 import javax.swing.JFrame;
 5 import javax.swing.JLabel;
 6 import javax.swing.JPanel;
 7 import javax.swing.JTextField;
 8
 9 /**

10 A frame that shows the growth of an investment with variable

interest.
11 */
12 public class InvestmentFrame extends JFrame
13 {
14 public InvestmentFrame()
15 {
16 account = new
BankAccount(INITIAL_BALANCE);
17

18 // Use instance fields for components
19 resultLabel = new JLabel(“balance: ” +
account.getBalance());
20

21 // Use helper methods
22 createTextField();
23 createButton();
24 createPanel();
25
26 setSize(FRAME_WIDTH, FRAME_HEIGHT);
27 }
28
29 private void createTextField()
30 {
31 rateLabel = new JLabel(“Interest Rate:
”);
32

481

482

Chapter 10 Inheritance Page 60 of 82

Java Concepts, 5th Edition

33 final int FIELD_WIDTH = 10;
34 rateField = new JTextField(FIELD_WIDTH);
35 rateField.setText(“” + DEFAULT_RATE);
36 }
37
38 private void createButton()
39 {
40 button = new JButton(“Add Interest”);
41
42 class AddInterestListener implements
ActionListener
43 {
44 public void
actionPerformed(ActionEvent event)
45 {
46 double rate = Double.parseDouble(
47 rateField.getText());
48 double interest =
account.getBalance()
49 * rate / 100;
50 account.deposit(interest);
51 resultLabel.setText(
52 “balance: ” +
account.getBalance());
53 }
54 }
55
56 ActionListener listener = new
AddInterestListener();
57 button.addActionListener(listener);
58 }
59
60 private void createPanel()
61 {
62 panel = new JPanel();
63 panel.add(rateLabel);
64 panel.add(rateField);
65 panel.add(button);
66 panel.add(resultLabel);
67 add(panel);
68 }
69
70 private JLabel rateLabel;
71 private JTextField rateField;
72 private JButton button;

482

Chapter 10 Inheritance Page 61 of 82

Java Concepts, 5th Edition

73 private JLabel resultLabel;
74 private JPanel panel;
57 private BankAccount account;
76
77 private static final int FRAME_WIDTH = 500;
78 private static final int FRAME_HEIGHT = 200;
79
80 private static final double DEFAULT_RATE =
5;
81 private static final double INITIAL_BALANCE
= 1000;
82 }

SELF CHECK

20. What happens if you omit the first JLabel object?

21. If a text field holds an integer, what expression do you use to read its

contents?

10.11 Text Areas

In Section 10.10, you saw how to construct text fields. A text field holds a single line

of text. To display multiple lines of text, use the JTextArea class.

Use a JTextArea to show multiple lines of text.

When constructing a text area, you can specify the number of rows and columns:

final int ROWS = 10;
final int COLUMNS = 30;
JTextArea textArea = new JTextArea(ROWS, COLUMNS);

Use the setText method to set the text of a text field or text area. The append

method adds text to the end of a text area. Use newline characters to separate lines,

like this:

textArea.append(account.getBalance() + “\n”);

If you want to use a text field or text area for display purposes only, call the

setEditable method like this

482

483

Chapter 10 Inheritance Page 62 of 82

Java Concepts, 5th Edition

textArea.setEditable(false);

Now the user can no longer edit the contents of the field, but your program can still

call setText and append to change it.

As shown in Figure 4, the JTextField and JTextArea classes are subclasses of

the class JTextComponent. The methods setText and setEditable are

defined in the JTextComponent class and inherited by JTextField and

JTextArea. However, the append method is defined in the JTextArea class.

To add scroll bars to a text area, use a JScrollPane, like this:

JTextArea textArea = new JTextArea(ROWS, COLUMNS);
JScrollPane scrollPane = new JScrollPane(textArea);

You can add scroll bars to any component with a JScrollPane.

Then add the scroll pane to the panel. Figure 13 shows the result.

The following sample program puts these concepts together. A user can enter

numbers into the interest rate text field and then click on the “Add Interest” button).

The interest rate is applied, and the updated balance is appended to the text area. The

text area has scroll bars and is not editable.

Figure 13

The Investment Application with a Text Area

This program is similar to the previous investment viewer program, but it keeps track

of all the bank balances, not just the last one.

483

484

Chapter 10 Inheritance Page 63 of 82

Java Concepts, 5th Edition

ch10/textarea/InvestmentFrame.java

 1 import java.awt.event.ActionEvent;
 2 import java.awt.event.ActionListener;
 3 import javax.swing.JButton;
 4 import javax.swing.JFrame;
 5 import javax.swing.JLabel;
 6 import javax.swing.JPanel;
 7 import javax.swing.JScrollPane;
 8 import javax.swing.JTextArea;
 9 import javax.swing.JTextField;
10
11 /**

12 A frame that shows the growth of an investment with variable

interest.
13 */
14 public class InvestmentFrame extends JFrame
15 {
16 public InvestmentFrame()
17 {
18 account = new
BankAccount(INITIAL_BALANCE);
19 resultArea = new JTextArea(AREA_ROWS,
AREA_COLUMNS);
20 resultArea.setEditable(false);
21

22 // Use helper methods
23 createTextField();
24 createButton();
25 createPanel();
26
27 setSize(FRAME_WIDTH, FRAME_HEIGHT);
28 }
29
30 private void createTextField()
31 {
32 rateLabel = new JLabel(“Interest Rate:
”);
33
34 final int FIELD_WIDTH = 10;
35 rateField = new JTextField(FIELD_WIDTH);
36 rateField.setText(“” + DEFAULT_RATE);
37 }

484

485

Chapter 10 Inheritance Page 64 of 82

Java Concepts, 5th Edition

38
39 private void createButton()
40 {
41 button = new JButton(“Add Interest”);
42
43 class AddInterestListener implements
ActionListener
44 {
45 public void
actionPerformed(ActionEvent event)
46 {
47 double rate = Double.parseDouble(
48 rateField.getText());
49 double interest =
account.getBalance()
50 * rate / 100;
51 account.deposit(interest);
52 resultArea.append(account.getBalance()
+ “\n”);
53 }
54 }
55
56 ActionListener listener = new
AddInterestListener();
57 button.addActionListener(listener);
58 }
59
60 private void createPanel()
61 {
62 panel = new JPanel();
63 panel.add(rateLabel);
64 panel.add(rateField);
65 panel.add(button);
66 JScrollPane scrollPane = new
JScrollPane(resultArea);
67 panel.add(scrollPane);
68 add(panel);
69 }
70
71 private JLabel rateLabel;
72 private JTextField rateField;
73 private JButton button;
74 private JTextArea resultArea;
75 private JPanel panel;
76 private BankAccount account;

Chapter 10 Inheritance Page 65 of 82

Java Concepts, 5th Edition

77
78 private static final int FRAME_WIDTH = 400;
79 private static final int FRAME_HEIGHT = 250;
80
81 private static final int AREA_ROWS = 10;
82 private static final int AREA_COLUMNS = 30;
83
84 private static final double DEFAULT_RATE =
5;
85 private static final double INITIAL_BALANCE
= 1000;
86 }

SELF CHECK

22. What is the difference between a text field and a text area?

23. Why did the InvestmentFrame program call

resultArea.setEditable(false)?

24. How would you modify the InvestmentFrame program if you didn't

want to use scroll bars?

 HOW TO 10.1: Implementing a Graphical User

Interface (GUI)

A GUI program allows users to supply inputs and specify actions. The

InvestmentViewer3 program has only one input and one action. More

sophisticated programs have more interesting user interactions, but the basic

principles are the same.

Step 1 Enumerate the actions that your program needs to carry out.

For example, the investment viewer has a single action, to add interest. Other

programs may have different actions, perhaps for making deposits, inserting coins,

and so on.

Step 2 For each action, enumerate the inputs that you need.

485

486

Chapter 10 Inheritance Page 66 of 82

Java Concepts, 5th Edition

For example, the investment viewer has a single input: the interest rate. Other

programs may have different inputs, such as amounts of money, product quantities,

and so on.

Step 3 For each action, enumerate the outputs that you need to show.

The investment viewer has a single output: the current balance. Other programs

may show different quantities, messages, and so on.

Step 4 Supply the user interface components.

Right now, you need to use buttons for actions, text fields for inputs, and labels for

outputs. In Chapter 18, you will see many more user-interface components that can

be used for actions and inputs. In Chapter 3, you learned how to implement your

own components to produce graphical output, such as charts or drawings.

Add the required buttons, text fields, and other components to a frame. In this

chapter, you have seen how to lay out very simple user interfaces, by adding all

components to a single panel and adding the panel to the frame. Chapter 18 shows

you how you can achieve more complex layouts.

Step 5 Supply event handler classes.

For each button, you need to add an object of a listener class. The listener classes

must implement the ActionListener interface. Supply a class for each action

(or group of related actions), and put the instructions for the action in the

actionPerformed method.

class Button1Listener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {

 // button1 action goes here
 . . .
 }
}

Remember to declare any local variables accessed by the listener methods as

final.

Step 6 Make listener objects and attach them to the event sources.

486

487

Chapter 10 Inheritance Page 67 of 82

Java Concepts, 5th Edition

For action events, the event source is a button or other user-interface component,

or a timer. You need to add a listener object to each event source, like this:

ActionListener listener1 = new Button1Listener();
button1.addActionListener(listener1);

 COMMON ERROR 10.8: By Default, Components Have

Zero Width and Height

The sample GUI programs of this chapter display results in a label or text area.

Sometimes, you want to use a graphical component such as a chart. You add the

chart component to the panel:

panel.add(textField);
panel.add(button);
panel.add(chartComponent);

However, the default size for a component is 0 by 0 pixels, and the chart

component will not be visible. The remedy is to call the setPreferredSize

method, like this:

chartComponent.setPreferredSize(new
Dimension(CHART_WIDTH, CHART_HEIGHT));

GUI components such as buttons and text fields know how to compute their

preferred size, but you must set the preferred size of components on which you

paint.

 PRODUCTIVITY HINT 10.2: Code Reuse

Suppose you are given the task of writing another graphical user-interface program

that reads input from a couple of text fields and displays the result of some

calculations in a label or text area. You don't have to start from scratch. Instead,

you can—and often should—reuse the outline of an existing program, such as the

foregoing InvestmentFrame class.

To reuse program code, simply make a copy of a program file and give the copy a

new name. For example, you may want to copy InvestmentFrame.java to a

file TaxReturnFrame.java. Then remove the code that is clearly specific to

Chapter 10 Inheritance Page 68 of 82

Java Concepts, 5th Edition

the old problem, but leave the outline in place. That is, keep the panel, text field,

event listener, and so on. Fill in the code for your new calculations. Finally,

rename classes, buttons, frame titles, and so on.

Once you understand the principles behind event listeners, frames, and panels,

there is no need to rethink them every time. Reusing the structure of a working

program makes your work more efficient.

However, reuse by “copy and rename” is still a mechanical and somewhat

error-prone approach. It is even better to package reusable program structures into

a set of common classes. The inheritance mechanism lets you design classes for

reuse without copy and paste.

CHAPTER SUMMARY

1. Inheritance is a mechanism for extending existing classes by adding methods

and fields.

2. The more general class is called a superclass. The more specialized class that

inherits from the superclass is called the subclass.

3. Every class extends the Object class either directly or indirectly.

4. Inheriting from a class differs from implementing an interface: The subclass

inherits behavior and state from the superclass.

5. One advantage of inheritance is code reuse.

6. When defining a subclass, you specify added instance fields, added methods,

and changed or overridden methods.

7. Sets of classes can form complex inheritance hierarchies.

8. A subclass has no access to private fields of its superclass.

9. Use the super keyword to call a method of the superclass.

10. To call the superclass constructor, you use the super keyword in the first

statement of the subclass constructor.

11. Subclass references can be converted to superclass references.

487

488

Chapter 10 Inheritance Page 69 of 82

Java Concepts, 5th Edition

12. The instanceof operator tests whether an object belongs to a particular type.

13. An abstract method is a method whose implementation is not specified.

14. An abstract class is a class that cannot be instantiated.

15. A field or method that is not declared as public, private, or protected

can be accessed by all classes in the same package, which is usually not

desirable.

16. Protected features can be accessed by all subclasses and all classes in the same

package.

17. Define the toString method to yield a string that describes the object state.

18. Define the equals method to test whether two objects have equal state.

19. The clone method makes a new object with the same state as an existing

object.

20. Define a JFrame subclass for a complex frame.

21. Use JTextField components to provide space for user input. Place a

JLabel next to each text field.

22. Use a JTextArea to show multiple lines of text.

23. You can add scroll bars to any component with a JScrollPane.

FURTHER READING

1. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java

Language Specification, 3rd edition, Addison-Wesley, 2005.

2. http://www.mozilla.org/rhino The Rhino interpreter for the JavaScript

language.

488

489

Chapter 10 Inheritance Page 70 of 82

Java Concepts, 5th Edition

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.awt.Component
 setPreferredSize
java.awt.Dimension
java.lang.Cloneable

java.lang.CloneNotSupportedException
java.lang.Object
 clone
 toString
javax.swing.JTextArea
 append
javax.swing.JTextField
javax.swing.text.JTextComponent
 getText
 isEditable
 setEditable
 setText

REVIEW EXERCISES

★ Exercise R10.1. What is the balance of b after the following operations?

SavingsAccount b = new SavingsAccount(10);
b.deposit(5000);
b.withdraw(b.getBalance() / 2);
b.addInterest();

★ Exercise R10.2. Describe all constructors of the SavingsAccount

class. List all methods that are inherited from the BankAccount class.

List all methods that are added to the SavingsAccount class.

★★Exercise R10.3. Can you convert a superclass reference into a subclass

reference? A subclass reference into a superclass reference? If so, give

examples. If not, explain why not.

★★Exercise R10.4. Identify the superclass and the subclass in each of the

following pairs of classes.

a. Employee, Manager

489

490

Chapter 10 Inheritance Page 71 of 82

Java Concepts, 5th Edition

b. Polygon, Triangle

c. GraduateStudent, Student

d. Person, Student

e. Employee, GraduateStudent

f. BankAccount, CheckingAccount

g. Vehicle, Car

h. Vehicle, Minivan

i. Car, Minivan

j. Truck, Vehicle

★ Exercise R10.5. Suppose the class Sub extends the class Sandwich.

Which of the following assignments are legal?

Sandwich x = new Sandwich();
Sub y = new Sub();

a. x = y;

b. y = x;

c. y = new Sandwich();

d. x = new Sub();

★ Exercise R10.6. Draw an inheritance diagram that shows the inheritance

relationships between the classes:

• Person

• Employee

• Student

• Instructor

Chapter 10 Inheritance Page 72 of 82

Java Concepts, 5th Edition

• Classroom

• Object

★★Exercise R10.7. In an object-oriented traffic simulation system, we have

the following classes:

• Vehicle

• Car

• Truck

• Sedan

• Coupe

• PickupTruck

• SportUtilityVehicle

• Minivan

• Bicycle

• Motorcycle

Draw an inheritance diagram that shows the relationships between these

classes.

★★Exercise R10.8. What inheritance relationships would you establish

among the following classes?

• Student

• Professor

• TeachingAssistant

• Employee

• Secretary

490

491

Chapter 10 Inheritance Page 73 of 82

Java Concepts, 5th Edition

• DepartmentChair

• Janitor

• SeminarSpeaker

• Person

• Course

• Seminar

• Lecture

• ComputerLab

★★★Exercise R10.9. Which of these conditions returns true? Check the

Java documentation for the inheritance patterns.

a. Rectangle r = new Rectangle(5, 10, 20, 30);

b. if (r instanceof Rectangle) …

c. if (r instanceof Point) …

d. if (r instanceof Rectangle2D.Double) …

e. if (r instanceof RectangularShape) …

f. if (r instanceof Object) …

g. if (r instanceof Shape) …

★★Exercise R10.10. Explain the two meanings of the super keyword.

Explain the two meanings of the this keyword. How are they related?

★★★Exercise R10.11. (Tricky.) Consider the two calls

public class D extends B
{
 public void f()
 {
 this.g(); // 1

Chapter 10 Inheritance Page 74 of 82

Java Concepts, 5th Edition

 }
 public void g()
 {
 super.g(); // 2
 }
 . . .
}

Which of them is an example of polymorphism?

★★★Exercise R10.12. Consider this program:

public class AccountPrinter
{
 public static void main(String[] args)
 {
 SavingsAccount momsSavings
 = new SavingsAccount(0.5);
 CheckingAccount harrysChecking
 = new CheckingAccount(0);
 . . .
 endOfMonth(momsSavings);
 endOfMonth(harrysChecking);
 printBalance(momsSavings);
 printBalance(harrysChecking);
 }
 public static void endOfMonth(SavingsAccount
savings)
 {
 savings.addInterest();
 }
 public static void endOfMonth(CheckingAccount
checking)
 {
 checking.deductFees();
 }
 public static void printBalance(BankAccount
account)
 {
 System.out.println(“The balance is $”
 + account.getBalance());
 }
}

491

492

Chapter 10 Inheritance Page 75 of 82

Java Concepts, 5th Edition

Are the calls to the endOfMonth methods resolved by early binding or

late binding? Inside the printBalance method, is the call to

getBalance resolved by early binding or late binding?

★ Exercise R10.13. Explain the terms shallow copy and deep copy.

★ Exercise R10.14. What access attribute should instance fields have? What

access attribute should static fields have? How about static final fields?

★ Exercise R10.15. What access attribute should instance methods have?

Does the same hold for static methods?

★★Exercise R10.16. The fields System.in and System.out are static

public fields. Is it possible to overwrite them? If so, how?

★★Exercise R10.17. Why are public fields dangerous? Are public static fields

more dangerous than public instance fields?

★GExercise R10.18. What is the difference between a label, a text field, and a

text area?

★★GExercise R10.19. Name a method that is defined in JTextArea, a

method that JTextArea inherits from JTextComponent, and a

method that JTextArea inherits from JComponent.

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P10.1. Enhance the addInterest method of the

SavingsAccount class to compute the interest on the minimum balance

since the last call to addInterest. Hint: You need to modify the

withdraw method as well, and you need to add an instance field to

remember the minimum balance.

★★Exercise P10.2. Add a TimeDepositAccount class to the bank

account hierarchy. The time deposit account is just like a savings account,

but you promise to leave the money in the account for a particular number

of months, and there is a penalty for early withdrawal. Construct the

492

493

Chapter 10 Inheritance Page 76 of 82

Java Concepts, 5th Edition

account with the interest rate and the number of months to maturity. In the

addInterest method, decrement the count of months. If the count is

positive during a withdrawal, charge the withdrawal penalty.

★ Exercise P10.3. Implement a subclass Square that extends the

Rectangle class. In the constructor, accept the x- and y-positions of the

center and the side length of the square. Call the setLocation and

setSize methods of the Rectangle class. Look up these methods in

the documentation for the Rectangle class. Also supply a method

getArea that computes and returns the area of the square. Write a sample

program that asks for the center and side length, then prints out the square

(using the toString method that you inherit from Rectangle) and the

area of the square.

★ Exercise P10.4. Implement a superclass Person. Make two classes,

Student and Instructor, that inherit from Person. A person has a

name and a year of birth. A student has a major, and an instructor has a

salary. Write the class definitions, the constructors, and the methods

toString for all classes. Supply a test program that tests these classes

and methods.

★★Exercise P10.5. Make a class Employee with a name and salary. Make a

class Manager inherit from Employee. Add an instance field, named

department, of type String. Supply a method toString that prints

the manager's name, department, and salary. Make a class Executive

inherit from Manager. Supply appropriate toString methods for all

classes. Supply a test program that tests these classes and methods.

★ Exercise P10.6. Write a superclass Worker and subclasses

HourlyWorker and Salaried-Worker. Every worker has a name

and a salary rate. Write a method computePay(int hours) that

computes the weekly pay for every worker. An hourly worker gets paid the

hourly wage for the actual number of hours worked, if hours is at most

40. If the hourly worker worked more than 40 hours, the excess is paid at

time and a half. The salaried worker gets paid the hourly wage for 40

hours, no matter what the actual number of hours is. Supply a test program

that uses polymorphism to test these classes and methods.

Chapter 10 Inheritance Page 77 of 82

Java Concepts, 5th Edition

★★★Exercise P10.7. Reorganize the bank account classes as follows. In the

BankAccount class, introduce an abstract method endOfMonth with

no implementation. Rename the addInterest and deductFees

methods into endOfMonth in the subclasses. Which classes are now

abstract and which are concrete? Write a static method void

test(BankAccount account) that makes five transactions and

then calls endOfMonth. Test it with instances of all concrete account

classes.

★★★GExercise P10.8. Implement an abstract class Vehicle and concrete

subclasses Car and Truck. A vehicle has a position on the screen.

Write methods draw that draw cars and trucks as follows:

Then write a method randomVehicle that randomly generates

Vehicle references, with an equal probability for constructing cars

and trucks, with random positions. Call it 10 times and draw all of

them.

★GExercise P10.9. Write a graphical application front end for a bank account

class. Supply text fields and buttons for depositing and withdrawing

money, and for displaying the current balance in a label.

★GExercise P10.10. Write a graphical application front end for an

Earthquake class. Supply a text field and button for entering the

strength of the earthquake. Display the earthquake description in a label.

★GExercise P10.11. Write a graphical application front end for a DataSet

class. Supply text fields and buttons for adding floating-point values, and

display the current minimum, maximum, and average in a label.

★GExercise P10.12. Write an application with three labeled text fields, one

each for the initial amount of a savings account, the annual interest rate,

and the number of years. Add a button “Calculate” and a read-only text

area to display the result, namely, the balance of the savings account after

the end of each year.

493

494

Chapter 10 Inheritance Page 78 of 82

Java Concepts, 5th Edition

★★GExercise P10.13. In the application from Exercise P10.12, replace the

text area with a bar chart that shows the balance after the end of each

year.

★★★GExercise P10.14. Write a program that contains a text field, a button

“Add Value”, and a component that draws a bar chart of the numbers

that a user typed into the text field.

★★GExercise P10.15. Write a program that prompts the user for an integer

and then draws as many rectangles at random positions in a component

as the user requested.

★GExercise P10.16. Write a program that prompts the user to enter the x- and

y-positions of the center and a radius. When the user clicks a “Draw”

button, draw a circle with that center and radius in a component.

★★GExercise P10.17. Write a program that allows the user to specify a circle

by typing the radius in a text field and then clicking on the center. Note

that you don't need a “Draw” button.

★★★GExercise P10.18. Write a program that allows the user to specify a

circle with two mouse presses, the first one on the center and the

second on a point on the periphery. Hint: In the mouse press handler,

you must keep track of whether you already received the center point

in a previous mouse press.

★★★GExercise P10.19. Write a program that draws a clock face with a time

that the user enters in two text fields (one for the hours, one for the

minutes).

Hint: You need to determine the angles of the hour hand and the

minute hand. The angle of the minute hand is easy: The minute hand

travels 360 degrees in 60 minutes. The angle of the hour hand is

harder; it travels 360 degrees in 12 × 60 minutes.

★★GExercise P10.20. Write a program that asks the user to enter an integer n,

and then draws an n-by-n grid.

494

495

Chapter 10 Inheritance Page 79 of 82

Java Concepts, 5th Edition

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 10.1. Your task is to program robots with varying behaviors. The

robots try to escape a maze, such as the following:

A robot has a position and a method void move (Maze m) that

modifies the position. Provide a common superclass Robot whose

move method does nothing. Provide subclasses RandomRobot,

RightHandRuleRobot, and MemoryRobot. Each of these robots

has a different strategy for escaping. The RandomRobot simply makes

random moves. The RightHandRuleRobot moves around the maze

so that it's right hand always touches a wall. The MemoryRobot

remembers all positions that it has previously occupied and never goes

back to a position that it knows to be a dead end.

★★★Project 10.2. Implement the toString, equals, and clone methods

for all subclasses of the BankAccount class, as well as the Bank class

of Chapter 7. Write unit tests that verify that your methods work

correctly. Be sure to test a Bank that holds objects from a mixture of

account classes.

ANSWERS TO SELF-CHECK QUESTIONS

1. Two instance fields: balance and interestRate.

2. deposit, withdraw, getBalance, and addInterest.

3. Manager is the subclass; Employee is the superclass.

4. To express the common behavior of text fields and text components.

495

496

Chapter 10 Inheritance Page 80 of 82

Java Concepts, 5th Edition

5. We need a counter that counts the number of withdrawals and deposits.

6. It needs to reduce the balance, and it cannot access the balance field

directly.

7. So that the count can reflect the number of transactions for the following

month.

8. It was content to use the default constructor of the superclass, which sets

the balance to zero.

9. No—this is a requirement only for constructors. For example, the

Checking-Account.deposit method first increments the transaction

count, then calls the superclass method.

10. We want to use the method for all kinds of bank accounts. Had we used a

parameter of type SavingsAccount, we couldn't have called the method

with a CheckingAccount object.

11. We cannot invoke the deposit method on a variable of type Object.

12. The object is an instance of BankAccount or one of its subclasses.

13. The balance of a is unchanged, and the transaction count is incremented

twice.

14. Accidentially forgetting the private modifer.

15. Any methods of classes in the same package.

16. It certainly should—unless, of course, x is null.

17. If toString returns a string that describes all instance fields, you can

simply call toString on the implicit and explicit parameters, and

compare the results. However, comparing the fields is more efficient than

converting them into strings.

18. Three: InvestmentFrameViewer, InvestmentFrame, and

BankAccount.

19. The InvestmentFrame constructor adds the panel to itself.

Chapter 10 Inheritance Page 81 of 82

Java Concepts, 5th Edition

20. Then the text field is not labeled, and the user will not know its purpose.

21. Integer.parseInt(textField.getText())

22. A text field holds a single line of text; a text area holds multiple lines.

23. The text area is intended to display the program output. It does not collect

user input.

24. Don't construct a JScrollPane and add the resultArea object

directly to the frame.

Chapter 10 Inheritance Page 82 of 82

Java Concepts, 5th Edition

Chapter 11 Input/Output and Exception Handling

CHAPTER GOALS

• To be able to read and write text files

• To learn how to throw exceptions

• To be able to design your own exception classes

• To understand the difference between checked and unchecked exceptions

• To learn how to catch exceptions

• To know when and where to catch an exception

This chapter starts with a discussion of file input and output. Whenever you read or

write data, potential errors are to be expected. A file may have been corrupted or

deleted, or it may be stored on another computer that was just disconnected from the

network. In order to deal with these issues, you need to know about exception

handling. The remainder of this chapter tells you how your programs can report

exceptional conditions, and how they can recover when an exceptional condition has

occurred.

11.1 Reading and Writing Text Files

We begin this chapter by discussing the common task of reading and writing files that

contain text. Examples are files that are created with a simple text editor, such as

Windows Notepad, as well as Java source code and HTML files.

The simplest mechanism for reading text is to use the Scanner class. You already

know how to use a Scanner for reading console input. To read input from a disk

file, first construct a FileReader object with the name of the input file, then use

the FileReader to construct a Scanner object:

FileReader reader = new FileReader("input.txt");
Scanner in = new Scanner(reader);

497

497

498

Chapter 11 Input/Output and Exception

Handling

Page 1 of 42

Java Concepts, 5th Edition

This Scanner object reads text from the file input.txt. You can use the

Scanner methods (such as next, nextLine, nextInt, and nextDouble) to

read data from the input file.

When reading text files, use the Scanner class.

To write output to a file, you construct a PrintWriter object with the given file

name, for example

PrintWriter out = new PrintWriter("output.txt");

If the output file already exists, it is emptied before the new data are written into it. If

the file doesn't exist, an empty file is created.

When writing text files, use the PrintWriter class and the print/println

methods.

Use the familiar print and println methods to send numbers, objects, and strings

to a PrintWriter:

out.println(29.95);
out.println(new Rectangle(5, 10, 15, 25));
out.println("Hello, World!");

The print and println methods convert numbers to their decimal string

representations and use the toString method to convert objects to strings.

When you are done processing a file, be sure to close the Scanner or
PrintWriter:

in.close();
out.close();

If your program exits without closing the PrintWriter, not all of the output may

be written to the disk file.

You must close all files When you are done processing them.

498

499

Chapter 11 Input/Output and Exception

Handling

Page 2 of 42

Java Concepts, 5th Edition

The following program puts these concepts to work. It reads all lines of an input file

and sends them to the output file, preceded by line numbers. If the input file is

Mary had a little lamb
Whose fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go!

then the program produces the output file

/* 1 */ Mary had a little lamb
/* 2 */ Whose fleece was white as snow.
/* 3 */ And everywhere that Mary went,
/* 4 */ The lamb was sure to go!

The line numbers are enclosed in /* */ delimiters so that the program can be used for

numbering Java source files.

There one additional issue that we need to tackle. When the input or output file

doesn't exist, a FileNotFoundException can occur. The compiler insists that

we tell it what the program should do when that happens. (In this regard, the

FileNot-FoundException is different from the exceptions that you have

already encountered. We will discuss this difference in detail in Section 11.3.) In our

sample program, we take the easy way out and acknowledge that the main method

should simply be terminated if the exception occurs. We label the main method like

this:

public static void main(String[] args) throws
FileNotFoundException

You will see in the following sections how to deal with exceptions in a more

professional way.

ch11/fileio/LineNumberer.java

 1 import java.io.FileReader;
 2 import java.io.FileNotFoundException;
 3 import java.io.PrintWriter;
 4 import java.util.Scanner;
 5
 6 public class LineNumberer
 7 {

Chapter 11 Input/Output and Exception

Handling

Page 3 of 42

Java Concepts, 5th Edition

 8 public static void main(String[] args)
 9 throws FileNotFoundException
10 {
11 Scanner console = new Scanner(System.in);
12 System.out.print(“Input file: ”);
13 String inputFileName = console.next();
14 System.out.print(“Output file:”);
15 String outputFileName = console.next();
16
17 FileReader reader = new
FileReader(inputFileName);
18 Scanner in = new Scanner(reader);
19 PrintWriter out = new
PrintWriter(outputFileName);
20 int lineNumber = 1;
21
22 while (in.hasNextLine())
23 {
24 String line = in.nextLine();
25 out.println(“/* ” + lineNumber + “ */
” + line);
26 lineNumber++;
27 }
28
29 out.close();
30 }
31 }

SELF CHECK

1. What happens when you supply the same name for the input and output

files to the LineNumberer program?

2. What happens when you supply the name of a nonexistent input file to

the LineNumberer program?

 COMMON ERROR 11.1: Backslashes in File Names

When you specify a file name as a constant string, and the name contains

backslash characters (as in a Windows file name), you must supply each backslash

twice:

in = new FileReader("c:\\homework\\input.dat");

499

500

Chapter 11 Input/Output and Exception

Handling

Page 4 of 42

Java Concepts, 5th Edition

Recall that a single backslash inside quoted strings is an escape character that is

combined with another character to form a special meaning, such as \n for a

newline character. The \\ combination denotes a single backslash.

When a user supplies a file name to a program, however, the user should not type

the backslash twice.

 ADVANCED TOPIC 11.1: File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box

(such as the one shown in the figure below) whenever the users of your program

need to pick a file. The JFileChooser class implements a file dialog box for

the Swing user interface toolkit.

The JFileChooser dialog box allows users to select a file by navigating

through directories.

A JFileChooser Dialog Box

The JFileChooser class relies on another class, File, which describes disk

files and directories. For example,

500

501

Chapter 11 Input/Output and Exception

Handling

Page 5 of 42

Java Concepts, 5th Edition

File inputFile = new File("input.txt");

describes the file input.txt in the current directory. The File class has

methods to delete or rename the file. The file does not actually have to exist—you

may want to pass the File object to an output stream or writer so that the file can

be created. The exists method returns true if the file already exists.

A File object describes a file or directory.

You cannot directly use a File object for reading or writing. You still need to

construct a file reader or writer from the File object. Simply pass the File

object in the constructor.

FileReader in = new FileReader(inputFile);

The JFileChooser class has many options to fine-tune the display of the dialog

box, but in its most basic form it is quite simple: Construct a file chooser object;

then call the showOpenDialog or showSaveDialog method. Both methods

show the same dialog box, but the button for selecting a file is labeled “Open” or

“Save”, depending on which method you call.

You can pass a File object to the constructor of a file reader, writer, or

stream.

For better placement of the dialog box on the screen, you can specify the user

interface component over which to pop up the dialog box. If you don't care where

the dialog box pops up, you can simply pass null. These methods return either

JFileChooser.APPROVE_OPTION, if the user has chosen a file, or

JFileChooser.CANCEL_OPTION, if the user canceled the selection. If a file

was chosen, then you call the getSelectedFile method to obtain a File

object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
FileReader in = null;
if (chooser.showOpenDialog(null) ==
JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();

Chapter 11 Input/Output and Exception

Handling

Page 6 of 42

Java Concepts, 5th Edition

 reader = new FileReader(selectedFile);
 . . .
}

 ADVANCED TOPIC 11.2: Command Line Arguments

Depending on the operating system and Java development system used, there are

different methods of starting a program—for example, by selecting “Run” in the

compilation environment, by clicking on an icon, or by typing the name of the

program at a prompt in a terminal or shell window. The latter method is called

“invoking the program from the command line”. When you use this method, you

must type the name of the program, but you can also type in additional information

that the program can use. These additional strings are called command line

arguments.

For example, it is convenient to specify the input and output file names for the

Line-Numberer program on the command line:

java LineNumberer input.txt numbered.txt

The strings that are typed after the Java program name are placed into the args

parameter of the main method. (Now you finally know the use of the args

parameter that you have seen in so many programs!)

When you launch a program from the command line, you can specify

arguments after the program name. The program can access these strings by

processing the args parameter of the main method.

For example, with the given program invocation, the args parameter of the

LineNumberer.main method has the following contents:

• args[0] is “input.txt”

• args[1] is “output.txt”

The main method can then process these parameters, for example:

if (args.length >= 1)
 inputFileName = args[0];

501

502

Chapter 11 Input/Output and Exception

Handling

Page 7 of 42

Java Concepts, 5th Edition

It is entirely up to the program what to do with the command line argument strings.

It is customary to interpret strings starting with a hyphen (-) as options and other

strings as file names. For example, we may want to enhance the LineNumberer

program so that a -c option places line numbers inside comment delimiters; for

example

java LineNumberer -c HelloWorld.java HelloWorld.txt

If the -c option is missing, the delimiters should not be included. Here is how the

main method can analyze the command line arguments:

for (String a : args)
{
 if (a.startsWith("-")) // It's an option
 {
 if (a.equals("-c")) useCommentDelimiters =
true;
 }
 else if (inputFileName == null) inputFileName =
a;
 else if (outputFileName == null) outputFileName
= a;
}

Should you support command line interfaces for your programs, or should you

instead supply a graphical user interface with file chooser dialog boxes? For a

casual and infrequent user, the graphical user interface is much better. The user

interface guides the user along and makes it possible to navigate the application

without much knowledge. But for a frequent user, graphical user interfaces have a

major drawback—they are hard to automate. If you need to process hundreds of

files every day, you could spend all your time typing file names into file chooser

dialog boxes. But it is not difficult to call a program multiple times automatically

with different command line arguments. Productivity Hint 7.1 discusses how to

use shell scripts (also called batch files) for this purpose.

11.2 Throwing Exceptions

There are two main aspects to exception handling: reporting and recovery. A major

challenge of error handling is that the point of reporting is usually far apart from the

point of recovery. For example, the get method of the ArrayList class may detect

502

503

Chapter 11 Input/Output and Exception

Handling

Page 8 of 42

Java Concepts, 5th Edition

that a nonexistent element is being accessed, but it does not have enough information

to decide what to do about this failure. Should the user be asked to try a different

operation? Should the program be aborted after saving the user's work? The logic for

these decisions is contained in a different part of the program code.

In Java, exception handling provides a flexible mechanism for passing control from

the point of error reporting to a competent recovery handler. In the remainder of this

chapter, we will look into the details of this mechanism.

When you detect an error condition, your job is really easy. You just throw an

appropriate exception object, and you are done. For example, suppose someone tries

to withdraw too much money from a bank account.

public class BankAccount
{
 public void withdraw(double amount)
 {
 if (amount > balance)
 // Now what?
 . . .
 }
 . . .
}

First look for an appropriate exception class. The Java library provides many classes

to signal all sorts of exceptional conditions. Figure 1 shows the most useful ones.

To signal an exceptional condition, use the throw statement to throw an

exception object.

Look around for an exception type that might describe your situation. How about the

IllegalStateException? Is the bank account in an illegal state for the

withdraw operation? Not really—some withdraw operations could succeed. Is

the parameter value illegal? Indeed it is. It is just too large. Therefore, let's throw an

illegalArgumentException. (The term argument is an alternative term for a

parameter value.)
503

Chapter 11 Input/Output and Exception

Handling

Page 9 of 42

Java Concepts, 5th Edition

Figure 1

The Hierarchy of Exception Classes

503

504

504

Chapter 11 Input/Output and Exception

Handling

Page 10 of 42

Java Concepts, 5th Edition

public class BankAccount
{
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 IllegalArgumentException exception
 = new
IllegalArgumentException("Amount exceeds balance");
 throw exception;
 }
 balance = balance - amount;
 }
 . . .
}

Actually, you don't have to store the exception object in a variable. You can just

throw the object that the new operator returns:

throw new IllegalArgumentException("Amount exceeds
balance");

When you throw an exception, execution does not continue with the next statement

but with an exception handler. For now, we won't worry about the handling of the

exception. That is the topic of Section 11.4.

When you throw an exception, the current method terminates immediately.

SYNTAX 11.1 Throwing an Exception

throw exceptionObject;

Example:

throw new IllegalArgumentException();

Purpose

To throw an exception and transfer control to a handler for this exception type

504

505

Chapter 11 Input/Output and Exception

Handling

Page 11 of 42

Java Concepts, 5th Edition

SELF CHECK

3. How should you modify the deposit method to ensure that the

balance is never negative?

4. Suppose you construct a new bank account object with a zero balance

and then call withdraw(10). What is the value of balance afterwards?

11.3 Checked and Unchecked Exceptions

Java exceptions fall into two categories, called checked and unchecked exceptions.

When you call a method that throws a checked exception, the compiler checks that

you don't ignore it. You must tell the compiler what you are going to do about the

exception if it is ever thrown. For example, all subclasses of IOException are

checked exceptions. On the other hand, the compiler does not require you to keep

track of unchecked exceptions. Exceptions, such as NumberFormatException,

IllegalArgumentException, and NullPointerException, are

unchecked exceptions. More generally, all exceptions that belong to subclasses of

RuntimeException are unchecked, and all other subclasses of the class

Exception are checked. (In Figure 1, the checked exceptions are shaded in a darker

color.) There is a second category of internal errors that are reported by throwing

objects of type Error. One example is the OutOfMemoryError, which is thrown

when all available memory has been used up. These are fatal errors that happen rarely

and are beyond your control. They too are unchecked.

There are two kinds of exceptions: checked and unchecked. Unchecked exceptions

extend the class RuntimeException or Error.

Why have two kinds of exceptions? A checked exception describes a problem that is

likely to occur at times, no matter how careful you are. The unchecked exceptions, on

the other hand, are your fault. For example, an unexpected end of file can be caused

by forces beyond your control, such as a disk error or a broken network connection.

But you are to blame for a NullPointerException, because your code was

wrong when it tried to use a null reference.

505

506

Chapter 11 Input/Output and Exception

Handling

Page 12 of 42

Java Concepts, 5th Edition

Checked exceptions are due to external circumstances that the programmer cannot

prevent. The compiler checks that your program handles these exceptions.

The compiler doesn't check whether you handle a NullPointer-Exception,

because you should test your references for null before using them rather than

install a handler for that exception. The compiler does insist that your program be

able to handle error conditions that you cannot prevent.

Actually, those categories aren't perfect. For example, the Scanner.nextInt

method throws an unchecked InputMismatchException if a user enters an

input that is not an integer. A checked exception would have been more appropriate

because the programmer cannot prevent users from entering incorrect input. (The

designers of the Scanner class made this choice to make the class easy to use for

beginning programmers.)

As you can see from Figure 1, the majority of checked exceptions occur when you

deal with input and output. That is a fertile ground for external failures beyond your

control—a file might have been corrupted or removed, a network connection might

be overloaded, a server might have crashed, and so on. Therefore, you will need to

deal with checked exceptions principally when programming with files and streams.

You have seen how to use the Scanner class to read data from a file, by passing a

FileReader object to the Scanner constructor:

String filename = . . .;
FileReader reader = new FileReader(filename);
Scanner in = new Scanner(reader);

However, the FileReader constructor can throw a FileNotFoundException.

The FileNotFoundException is a checked exception, so you need to tell the

compiler what you are going to do about it. You have two choices. You can handle

the exception, using the techniques that you will see in Section 11.4. Or you can

simply tell the compiler that you are aware of this exception and that you want your

method to be terminated when it occurs. The method that reads input rarely knows

what to do about an unexpected error, so that is usually the better option.

To declare that a method should be terminated when a checked exception occurs

within it, tag the method with a throws specifier.

506

507

Chapter 11 Input/Output and Exception

Handling

Page 13 of 42

Java Concepts, 5th Edition

public class DataSet
{
 public void read(String filename) throws
FileNotFoundException
 {
 FileReader reader = new
FileReader(filename);
 Scanner in = new Scanner(reader);
 . . .
 }
 . . .
}

The throws clause in turn signals the caller of your method that it may encounter a

FileNotFoundException. Then the caller needs to make the same decision—

handle the exception, or tell its caller that the exception may be thrown.

Add a throws specifier to a method that can throw a checked exception.

If your method can throw checked exceptions of different types, you separate the

exception class names by commas:

public void read (String filename)
 throws IOException, ClassNotFoundException

Always keep in mind that exception classes form an inheritance hierarchy. For

example, FileNotFoundException is a subclass of IOException. Thus, if a

method can throw both an IOException and a FileNotFoundException, you

only tag it as throws IOException.

It sounds somehow irresponsible not to handle an exception when you know that it

happened. Actually, though, it is usually best not to catch an exception if you don't

know how to remedy the situation. After all, what can you do in a low-level read

method? Can you tell the user? How? By sending a message to System.out? You

don't know whether this method is called in a graphical program or an embedded

system (such as a vending machine), where the user may never see System.out.

And even if your users can see your error message, how do you know that they can

understand English? Your class may be used to build an application for users in

another country. If you can't tell the user, can you patch up the data and keep going?

Chapter 11 Input/Output and Exception

Handling

Page 14 of 42

Java Concepts, 5th Edition

How? If you set a variable to zero, null or an empty string, that may just cause the

program to break later, with much greater mystery.

Of course, some methods in the program know how to communicate with the user or

take other remedial action. By allowing the exception to reach those methods, you

make it possible for the exception to be processed by a competent handler.

SYNTAX 11.2 Exception Specification

accessSpecifier returnType

methodName(parameterType parameterName,. . .)
 throws ExceptionClass, ExceptionClass, . .
.

Example:

public void read(FileReader in)
 throws IOException

Purpose:

To indicate the checked exceptions that this method can throw

SELF CHECK

5. Suppose a method calls the FileReader constructor and the read

method of the FileReader class, which can throw an

IOException. Which throws specification should you use?

6. Why is a NullPointerException not a checked exception?

11.4 Catching Exceptions

Every exception should be handled somewhere in your program. If an exception has

no handler, an error message is printed, and your program terminates. That may be

fine for a student program. But you would not want a professionally written program

to die just because some method detected an unexpected error. Therefore, you should

install exception handlers for all exceptions that your program might throw.

507

508

Chapter 11 Input/Output and Exception

Handling

Page 15 of 42

Java Concepts, 5th Edition

In a method that is ready to handle a particular exception type, place the statements

that can cause the exception inside a try block, and the handler inside a catch

clause.

You install an exception handler with the try/catch statement. Each try block

contains one or more statements that may cause an exception. Each catch clause

contains the handler for an exception type. Here is an example:

try
{
 String filename = . . .;
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 String input = in.next();
 int value = Integer.parseInt(input);
 . . .
}
catch (IOException exception)
{
 exception.printStackTrace();
}
 catch (NumberFormatException exception)
 {
 System.out.println("Input was not a number");
 }

Three exceptions may be thrown in this try block: The FileReader constructor

can throw a FileNotFoundException, Scanner.next can throw a

NoSuchElementException, and Integer.parseInt can throw a

NumberFormatException.

SYNTAX 11.3 General try Block

try
{
 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{

508

509

Chapter 11 Input/Output and Exception

Handling

Page 16 of 42

Java Concepts, 5th Edition

 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{
 statement
 statement
 . . .
}
. . .

Example:

try
{
 System.out.println("How old are you?");
 int age = in.nextInt();
 System.out.println("Next year, you'll be " +
(age + 1));
}
catch (InputMismatchException exception)
{
 exception.printStackTrace();
}

Purpose:

To execute one or more statements that may generate exceptions. If an exception

occurs and it matches one of the catch clauses, execute the first one that

matches. If no exception occurs, or an exception is thrown that doesn't match any

catch clause, then skip the catch clauses.

If any of these exceptions is actually thrown, then the rest of the instructions in the

try block are skipped. Here is what happens for the various exception types:

• If a FileNotFoundException is thrown, then the catch clause for the

IOException is executed. (Recall that FileNotFoundException is a

subclass of IOException.)

• If a NumberFormatException occurs, then the second catch clause is

executed.

509

510

Chapter 11 Input/Output and Exception

Handling

Page 17 of 42

Java Concepts, 5th Edition

• A NoSuchElementException is not caught by any of the catch clauses.

The exception remains thrown until it is caught by another try block.

When the catch (IOException exception) block is executed, then some

method in the try block has failed with an IOException. The variable

exception contains a reference to the exception object that was thrown. The

catch clause can analyze that object to find out more details about the failure. For

example, you can get a printout of the chain of method calls that lead to the

exception, by calling

exception.printStackTrace()

In these sample catch clauses, we merely inform the user of the source of the

problem. A better way of dealing with the exception would be to give the user another

chance to provide a correct input—see Section 11.7 for a solution.

It is important to remember that you should place catch clauses only in methods in

which you can competently handle the particular exception type.

SELF CHECK

7. Suppose the file with the given file name exists and has no contents.

Trace the flow of execution in the try block in this section.

8. Is there a difference between catching checked and unchecked

exceptions?

QUALITY TIP 11.1 Throw Early, Catch Late

When a method notices a problem that it cannot solve, it is generally better to

throw an exception rather than try to come up with an imperfect fix (such as doing

nothing or returning a default value).

It is better to declare that a method throws a checked exception than to handle

the exception poorly.

Chapter 11 Input/Output and Exception

Handling

Page 18 of 42

Java Concepts, 5th Edition

Conversely, a method should only catch an exception if it can really remedy the

situation. Otherwise, the best remedy is simply to have the exception propagate to

its caller, allowing it to be caught by a competent handler.

These principles can be summarized with the slogan “throw early, catch late”.

QUALITY TIP 11.2 Do Not Squelch Exceptions

When you call a method that throws a checked exception and you haven't specified

a handler, the compiler complains. In your eagerness to continue your work, it is

an understandable impulse to shut the compiler up by squelching the exception:

try
{
 FileReader reader = new FileReader(filename);

 // Compiler complained about FileNotFoundException
 . . .
}

catch (Exception e) {} // So there!

The do-nothing exception handler fools the compiler into thinking that the

exception has been handled. In the long run, this is clearly a bad idea. Exceptions

were designed to transmit problem reports to a competent handler. Installing an

incompetent handler simply hides an error condition that could be serious.

11.5 The Finally Clause

Occasionally, you need to take some action whether or not an exception is thrown.

The finally construct is used to handle this situation. Here is a typical situation.

It is important to close a PrintWriter to ensure that all output is written to the

file. In the following code segment, we open a writer, call one or more methods, and

then close the writer:

PrintWriter out = new PrintWriter(filename);
writeData(out);

out.close(); // May never get here

510

511

Chapter 11 Input/Output and Exception

Handling

Page 19 of 42

Java Concepts, 5th Edition

Now suppose that one of the methods before the last line throws an exception. Then

the call to close is never executed! Solve this problem by placing the call to close

inside a finally clause:

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

In a normal case, there will be no problem. When the try block is completed, the

finally clause is executed, and the writer is closed. However, if an exception

occurs, the finally clause is also executed before the exception is passed to its

handler.

Once a try block is entered, the statements in a finally clause are guaranteed

to be executed, whether or not an exception is thrown.

Use the finally clause whenever you need to do some clean up, such as closing a

file, to ensure that the clean up happens no matter how the method exits.

It is also possible to have a finally clause following one or more catch clauses.

Then the code in the finally clause is executed whenever the try block is exited

in any of three ways:

1. After completing the last statement of the try block

2. After completing the last statement of a catch clause, if this try block

caught an exception

3. When an exception was thrown in the try block and not caught

SYNTAX 11.4 finally Clause

try
{

511

512

Chapter 11 Input/Output and Exception

Handling

Page 20 of 42

Java Concepts, 5th Edition

 statement
 statement
 . . .
}
finally
{
 statement
 statement
 . . .
}

Examt:

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

Purpose:

To ensure that the statements in the finally clause are executed whether or not

the statements in the try block throw an exception

However, we recommend that you don't mix catch and finally clauses in the

same try block—see Quality Tip 11.3.

SELF CHECK

9. Why was the out variable declared outside the try block?

10. Suppose the file with the given name does not exist. Trace the flow of

execution of the code segment in this section.

512

513

Chapter 11 Input/Output and Exception

Handling

Page 21 of 42

Java Concepts, 5th Edition

QUALITY TIP 11.3 Do Not Use catch and finally in

the Same try Statement

It is tempting to combine catch and finally clauses, but the resulting code

can be hard to understand. Instead, you should use a try/finally statement to

close resources and a separate try/catch statement to handle errors. For

example,

try
{
 PrintWriter out = new PrintWriter(filename);
 try
 {

 // Write output
 }
 finally
 {
 out.close();
 }
}
catch (IOException exception)
{

 // Handle exception
}

Note that the nested statements work correctly if the call out.close() throws

an exception—see Exercise R11.18.

11.6 Designing your Own Exception Types

Sometimes none of the standard exception types describe your particular error

condition well enough. In that case, you can design your own exception class.

Consider a bank account. Let's report an InsufficientFundsException when

an attempt is made to withdraw an amount from a bank account that exceeds the

current balance.

if (amount > balance)
{
throw new InsufficientFundsException(

513

514

Chapter 11 Input/Output and Exception

Handling

Page 22 of 42

Java Concepts, 5th Edition

 "withdrawal of " + amount + " exceeds
balance of " + balance);
}

Now you need to define the InsufficientFundsException class. Should it be

a checked or an unchecked exception? Is it the fault of some external event, or is it

the fault of the programmer? We take the position that the programmer could have

prevented the exceptional condition—after all, it would have been an easy matter to

check whether amount <= account.getBalance() before calling the

withdraw method. Therefore, the exception should be an unchecked exception and

extend the RuntimeException class or one of its subclasses.

You can design your own exception types—subclasses of Exception or

RuntimeException.

It is customary to provide two constructors for an exception class: a default

constructor and a constructor that accepts a message string describing the reason for

the exception. Here is the definition of the exception class.

public class InsufficientFundsException
 extends RuntimeException
{
 public InsufficientFundsException() {}
 public InsufficientFundsException(String message)
 {
 super(message);
 }
}

When the exception is caught, its message string can be retrieved using the

getMessage method of the RunTimeException class.

SELF CHECK

11. What is the purpose of the call super(message) in the second

InsufficientFundsException constructor?

12. Suppose you read bank account data from a file. Contrary to your

expectation, the next input value is not of type double. You decide to

514

Chapter 11 Input/Output and Exception

Handling

Page 23 of 42

Java Concepts, 5th Edition

implement a BadData-Exception. Which exception class should

you extend?

QUALITY TIP 11.4 Do Throw Specific Exceptions

When throwing an exception, you should choose an exception class that describes

the situation as closely as possible. For example, it would be a bad idea to simply

throw a Runtime-Exception object when a bank account has insufficient

funds. This would make it far too difficult to catch the exception. After all, if you

caught all exceptions of type Runtime-Exception, your catch clause would

also be activated by exceptions of the type NullPointer-Exception,

ArrayIndexOutOfBoundsException, and so on. You would then need to

carefully examine the exception object and attempt to deduce whether the

exception was caused by insufficient funds.

If the standard library does not have an exception class that describes your

particular error situation, simply define a new exception class.

11.7 Case Study: A Complete Example

This section walks through a complete example of a program with exception

handling. The program asks a user for the name of a file. The file is expected to

contain data values. The first line of the file contains the total number of values, and

the remaining lines contain the data. A typical input file looks like this:

3
1.45
-2.1
0.05

What can go wrong? There are two principal risks.

• The file might not exist.

• The file might have data in the wrong format.

Who can detect these faults? The FileReader constructor will throw an exception

when the file does not exist. The methods that process the input values need to throw

an exception when they find an error in the data format.

514

515

Chapter 11 Input/Output and Exception

Handling

Page 24 of 42

Java Concepts, 5th Edition

What exceptions can be thrown? The FileReader constructor throws a

FileNot-FoundException when the file does not exist, which is very

appropriate in our situation. The close method of the FileReader class can

throw an IOException. Finally, when the file data is in the wrong format, we will

throw a BadDataException, a custom checked exception class. We use a checked

exception because corruption of a data file is beyond the control of the programmer.

Who can remedy the faults that the exceptions report? Only the main method of the

DataAnalyzer program interacts with the user. It catches the exceptions, prints

appropriate error messages, and gives the user another chance to enter a correct file.

ch11/data/DataAnalyzer.java

 1 import java.io.FileNotFoundException;
 2 import java.io.IOException;
 3 import java.util.Scanner;
 4
 5 /**

 6 This program reads a file containing numbers and analyzes its

contents.

 7 If the file doesn't exist or contains strings that are not numbers, an

 8 error message is displayed.
 9 */
10 public class DataAnalyzer
11 {
12 public static void main(String[] args)
13 {
14 Scanner in = new Scanner(System.in);
15 DataSetReader reader = new DataSetReader();
16

17 boolean done = false;
18 while (!done)
19 {
20 try
21 {
22 System.out.println(“Please enter the
file name: ”);
23 String filename = in.next();
24

515

516

Chapter 11 Input/Output and Exception

Handling

Page 25 of 42

Java Concepts, 5th Edition

25 double[] data = reader.
readFile(filename);
26 double sum = 0;
27 for (double d : data) sum = sum + d;
28 System.out.println(“The sum is ” +
sum);
29 done = true;
30 }
31 catch (FileNotFoundException exception)
32 {
33 System.out.println(“File not found.”);
34 }
35 catch (BadDataException exception)
36 {
37 System.out.println(“Bad data: ” +
exception.getMessage());
38 }
39 catch (IOException exception)
40 {
41 exception.printStackTrace();
42 }
43 }
44 }
45 }

The first two catch clauses in the main method give a human-readable error report

if the file was not found or bad data was encountered. However, if another

IOException occurs, then we print the stack trace so that a programmer can

diagnose the problem.

The following readFile method of the DataSetReader class constructs the

Scanner object and calls the readData method. It is completely unconcerned

with any exceptions. If there is a problem with the input file, it simply passes the

exception to its caller.

public double[] readFile(String filename)
 throws IOException, BadDataException
{
 FileReader reader = new FileReader(filename);
 try
 {
 Scanner in = new Scanner(reader);

Chapter 11 Input/Output and Exception

Handling

Page 26 of 42

Java Concepts, 5th Edition

 readData(in);
 }
 finally
 {
 reader.close();
 }
 return data;
}

Note how the finally clause ensures that the file is closed even when an exception

occurs.

Also note that the throws specifier of the readFile method need not include the

FileNotFoundException class because it is a subclass of IOException.

Next, here is the readData method of the DataSetReader class. It reads the

number of values, constructs an array, and calls readValue for each data value.

private void readData(Scanner in) throws
BadDataException
{
 if (!in.hasNextInt())
 throw new BadDataException("Length expected");
 int numberOfValues = in.nextInt();
 data = new double [numberOfValues];
 for (int i = 0; i < numberOfValues; i + +)
 readValue(in, i);
 if (in.hasNext())
 throw new BadDataException("End of file
expected");
}

This method checks for two potential errors. The file might not start with an integer,

or it might have additional data after reading all values.

However, this method makes no attempt to catch any exceptions. Plus, if the

readValue method throws an exception—which it will if there aren't enough

values in the file—the exception is simply passed on to the caller.

Here is the readVal ue method:

private void readValue(Scanner in, int i) throws
BadDataException
{

516

517

Chapter 11 Input/Output and Exception

Handling

Page 27 of 42

Java Concepts, 5th Edition

 if (!in.hasNextDouble())
 throw new BadDataException("Data value
expected");
 data[i] = in. nextDouble();
}

To see the exception handling at work, look at a specific error scenario.

1. DataAnalyzer.main calls DataSetReader. read File.

2. readFile calls readData.

3. readData calls readValue.

4. readValue doesn't find the expected value and throws a

BadDataException.

5. readValue has no handler for the exception and terminates immediately.

6. readData has no handler for the exception and terminates immediately.

7. readFile has no handler for the exception and terminates immediately after

executing the finally clause and closing the file.

8. DataAnalyzer.main has a handler for a BadDataException. That

handler prints a message to the user. Afterwards, the user is given another

chance to enter a file name. Note that the statements computing the sum of the

values have been skipped.

This example shows the separation between error detection (in the

DataSetReader. readValue method) and error handling (in the

DataAnalyzer.main method). In between the two are the readData and

readFile methods, which just pass exceptions along.

ch11/data/DataSetReader.java

 1 import java.io. FileReader;
 2 import java.io.IOException;
 3 import java.util.Scanner;
 4
 5 /**

 6 Reads a data set from a file. The file must have the format

517

518

Chapter 11 Input/Output and Exception

Handling

Page 28 of 42

Java Concepts, 5th Edition

 7 numberOfValues

 8 value1

 9 value2

 10 ...
11 */
12 public class DataSetReader
13 {
14 /**

15 Reads a data set.

16 @param filename the name of the file holding the data

17 @returnthe data in the file
18 */
19 public double[] readFile(String filename)
20 throws IOException, BadDataException
21 {
22 FileReader reader = new Fi leReader(fil
ename);
23 try
24 {
25 Scanner in = new Scanner(reader);
26 readData(in);
27 }
28 finally
29 {
30 reader.close();
31 }
32 return data;
33 }
34

35 /**

36 Reads all data.

37 @param in the scanner that scans the data
38 */
39 private void readData(Scanner in) throws
BadDataException
40 {
41 if (!in.hasNextInt())
42 throw new BadDataException(“Length
expected”);
43 int numberOfValues = in.nextInt();
44 data = new double[numberOfValues];

518

519

Chapter 11 Input/Output and Exception

Handling

Page 29 of 42

Java Concepts, 5th Edition

45

46 for (int i = 0; i < numberOfValues; i++)
47 readValue(in, i);
48

49 if (in.hasNext())
50 throw new BadDataException(“End of
file expected”);
51 }
52

53 /**

54 Reads one data value.

55 @param in the scanner that scans the data

56 @param i the position of the value to read
57 */
58 private void readValue(Scanner in, int i)
throws BadDataException
59 {
60 if (!in.hasNextDouble())
61 throw new BadDataException(“Data value
expected”);
62 data[i] = in.nextDouble();
63 }
64

65 private double[] data;
66 }

ch11/data/BadDataException.java

 1 /**

 2 This class reports bad input data.
 3 */
 4 public class BadDataException extends Exception
 5 {
 6 public BadDataException()
 7 public BadDataException(String message)
 8 {
 9 super(message);
10 }
11 }

Chapter 11 Input/Output and Exception

Handling

Page 30 of 42

Java Concepts, 5th Edition

SELF CHECK

13. Why doesn't the DataSetReader.read File method catch any

exceptions?

14. Suppose the user specifies a file that exists and is empty. Trace the flow

of execution.

 RANDOM FACT 11.1: The Ariane Rocket Incident

The European Space Agency (ESA), Europe's counterpart to NASA, had

developed a rocket model called Ariane that it had successfully used several times

to launch satellites and scientific experiments into space. However, when a new

version, the Ariane 5, was launched on June 4, 1996, from ESA's launch site in

Kourou, French Guiana, the rocket veered off course about 40 seconds after liftoff.

Flying at an angle of more than 20 degrees, rather than straight up, exerted such an

aerodynamic force that the boosters separated, which triggered the automatic

self-destruction mechanism. The rocket blew itself up.

The ultimate cause of this accident was an unhandled exception! The rocket

contained two identical devices (called inertial reference systems) that processed

flight data from measuring devices and turned the data into information about the

rocket position. The onboard computer used the position information for

controlling the boosters. The same inertial reference systems and computer

software had worked fine on the Ariane 4.

However, due to design changes to the rocket, one of the sensors measured a larger

acceleration force than had been encountered in the Ariane 4. That value,

expressed as a floating-point value, was stored in a 16-bit integer (like a short

variable in Java). Unlike Java, the Ada language, used for the device software,

generates an exception if a floating-point number is too large to be converted to an

integer. Unfortunately, the programmers of the device had decided that this

situation would never happen and didn't provide an exception handler.

When the overflow did happen, the exception was triggered and, because there was

no handler, the device shut itself off. The onboard computer sensed the failure and

switched over to the backup device. However, that device had shut itself off for

519

520

Chapter 11 Input/Output and Exception

Handling

Page 31 of 42

Java Concepts, 5th Edition

exactly the same reason, something that the designers of the rocket had not

expected. They figured that the devices might fail for mechanical reasons, and the

chances of two devices having the same mechanical failure was considered remote.

At that point, the rocket was without reliable position information and went off

course.

Perhaps it would have been better if the software hadn't been so thorough? If it had

ignored the overflow, the device wouldn't have been shut off. It would have

computed bad data. But then the device would have reported wrong position data,

which could have been just as fatal. Instead, a correct implementation should have

caught overflow exceptions and come up with some strategy to recompute the

flight data. Clearly, giving up was not a reasonable option in this context.

The Explosion of the Ariane Rocket

The advantage of the exception-handling mechanism is that it makes these issues

explicit to programmers—something to think about when you curse the Java

compiler for complaining about uncaught exceptions.

CHAPTER SUMMARY

1. When reading text files, use the Scanner class.

2. When writing text files, use the PrintWriter class and the

print/println methods.

3. You must close all files when you are done processing them.

4. The JFileChooser dialog box allows users to select a file by navigating

through directories.

520

521

Chapter 11 Input/Output and Exception

Handling

Page 32 of 42

Java Concepts, 5th Edition

5. A File object describes a file or directory.

6. You can pass a File object to the constructor of a file reader, writer, or stream.

7. When you launch a program from the command line, you can specify

arguments after the program name. The program can access these strings by

processing the args parameter of the main method.

8. To signal an exceptional condition, use the throw statement to throw an

exception object.

9. When you throw an exception, the current method terminates immediately.

10. There are two kinds of exceptions: checked and unchecked. Unchecked

exceptions extend the class RuntimeException or Error.

11. Checked exceptions are due to external circumstances that the programmer

cannot prevent. The compiler checks that your program handles these

exceptions.

12. Add a throws specifier to a method that can throw a checked exception.

13. In a method that is ready to handle a particular exception type, place the

statements that can cause the exception inside a try block, and the handler

inside a catch clause.

14. It is better to declare that a method throws a checked exception than to handle

the exception poorly.

15. Once a try block is entered, the statements in a finally clause are

guaranteed to be executed, whether or not an exception is thrown.

16. You can design your own exception types—subclasses of Exception or

Runtime-Exception.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.io.EOFException
java.io.File

521

522

Chapter 11 Input/Output and Exception

Handling

Page 33 of 42

Java Concepts, 5th Edition

 exists
java.io.FileNotFoundException
java.io.FileReader
java.io.IOException
java.io.PrintWriter
 close
 print
 println
java.lang.Error
java.lang.IllegalArgumentException
java.lang.IllegalStateException
java.lang.NullPointerException
java.lang.NumberFormatException
java.lang.RuntimeException
java.lang.Throwable
 getMessage
 printStackTrace
java.util.InputMismatchException
java.util.NoSuchElementException
java.util.Scanner
 close
javax.swing.JFileChooser
 getSelectedFile
 showOpenDialog
 showSaveDialog

REVIEW EXERCISES

★★ Exercise R11.1. What happens if you try to open a file for reading that

doesn't exist?

What happens if you try to open a file for writing that doesn't exist?

★★★ Exercise R11.2. What happens if you try to open a file for writing, but

the file or device is write-protected (sometimes called read-only)? Try it

out with a short test program.

★ Exercise R11.3. How do you open a file whose name contains a backslash,

like c:\temp\output.dat?

★★★ Exercise R11.4. What is a command line? How can a program read its

command line arguments?

Chapter 11 Input/Output and Exception

Handling

Page 34 of 42

Java Concepts, 5th Edition

★★ Exercise R11.5. Give two examples of programs on your computer that

read arguments from the command line.

★★ Exercise R11.6. If a program Woozle is started with the command

java Woozle-Dname=piglet -I\eeyore -v heff.txt
a.txt lump.txt

what are the values of args[0], args[1], and so on?

★★ Exercise R11.7. What is the difference between throwing an exception and

catching an exception?

★★ Exercise R11.8. What is a checked exception? What is an unchecked

exception? Is a NullPointerException checked or unchecked?

Which exceptions do you need to declare with the throws keyword?

★ Exercise R11.9. Why don't you need to declare that your method might

throw a NullPointerException?

★★ Exercise R11.10. When your program executes a throw statement, which

statement is executed next?

★ Exercise R11.11. What happens if an exception does not have a matching

catch clause?

★ Exercise R11.12. What can your program do with the exception object that

a catch clause receives?

★ Exercise R11.13. Is the type of the exception object always the same as the

type declared in the catch clause that catches it?

★ Exercise R11.14. What kind of values can you throw? Can you throw a

string? An integer?

★★ Exercise R11.15. What is the purpose of the finally clause? Give an

example of how it can be used.

★★★ Exercise R11.16. What happens when an exception is thrown, the code

of a finally clause executes, and that code throws an exception of a

522

523

Chapter 11 Input/Output and Exception

Handling

Page 35 of 42

Java Concepts, 5th Edition

different kind than the original one? Which one is caught by a

surrounding catch clause? Write a sample program to try it out.

★★ Exercise R11.17. Which exceptions can the next and nextInt methods

of the Scanner class throw? Are they checked exceptions or unchecked

exceptions?

★★★ Exercise R11.18. Suppose the catch clause in the example of Quality

Tip 11.3 had been moved to the inner try block, eliminating the outer

try block. Does the modified code work correctly if (a) the

FileReader constructor throws an exception and (b) the close

method throws an exception?

★★ Exercise R11.19. Suppose the program in Section 11.7 reads a file

containing the following values:

0
1
2
3

What is the outcome? How could the program be improved to give a more

accurate error report?

★★ Exercise R11.20. Can the readFile method in Section 11.7 throw a

NullPointer-Exception? If so, how?

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★★ Exercise P11.1. Write a program that asks a user for a file name and prints

the number of characters, words, and lines in that file.

★★ Exercise P11.2. Write a program that asks the user for a file name and

counts the number of characters, words, and lines in that file. Then the

program asks for the name of the next file. When the user enters a file that

doesn't exist, the program prints the total counts of characters, words, and

lines in all processed files and exits.

523

524

Chapter 11 Input/Output and Exception

Handling

Page 36 of 42

Java Concepts, 5th Edition

★★ Exercise P11.3. Write a program CopyFile that copies one file to

another. The file names are specified on the command line. For example,

java CopyFile report.txt report.sav

★★ Exercise P11.4. Write a program that concatenates the contents of several

files into one file. For example,

java CatFiles chapter1.txt chapter2.txt
chapter3.txt book.txt

makes a long file, book.txt, that contains the contents of the files

chapter1.txt, chapter2.txt, and chapter3.txt. The output

file is always the last file specified on the command line.

★★ Exercise P11.5. Write a program Find that searches all files specified on

the command line and prints out all lines containing a keyword. For

example, if you call

java Find ring report.txt address.txt
Homework.java

then the program might print

report.txt: has broken up an international ring
of DVD bootleggers that
address.txt: Kris Kringle, North Pole
address.txt: Homer Simpson, Springfield
Homework.java: String filename;

The keyword is always the first command line argument.

★★ Exercise P11.6. Write a program that checks the spelling of all words in a

file. It should read each word of a file and check whether it is contained in

a word list. A word list is available on most UNIX systems in the file

/usr/dict/words. (If you don't have access to a UNIX system, your

instructor should be able to get you a copy.) The program should print out

all words that it cannot find in the word list.

★★ Exercise P11.7. Write a program that replaces each line of a file with its

reverse. For example, if you run

Chapter 11 Input/Output and Exception

Handling

Page 37 of 42

Java Concepts, 5th Edition

java Reverse HelloPrinter. java

then the contents of HelloPrinter.java are changed to

retnirPolleH ssalc cilbup
{
)sgra] [gnirtS(niam diov citats cilbup
{
wodniw elosnoc eht ni gniteerg a yalpsiD //
;)"!dlroW ,olleH"(nltnirp.tuo.metsyS
}
}

Of course, if you run Reverse twice on the same file, you get back the

original file.

★★★ Exercise P11.8. Write a program that replaces all tab characters ’\t’ in

a file with the appropriate number of spaces. By default, the distance

between tab columns should be 3 (the value we use in this book for Java

programs) but it can be changed by the user. Expand tabs to the number

of spaces necessary to move to the next tab column. That may be less

than three spaces. For example, consider the line containing

“\t|\t||\t|”. The first tab is changed to three spaces, the second to

two spaces, and the third to one space. Your program should be executed

as

java TabExpander filename

or

java -t tabwidth filename

★ Exercise P11.9. Modify the BankAccount class to throw an

IllegalArgumentException when the account is constructed with a

negative balance, when a negative amount is deposited, or when an amount

that is not between 0 and the current balance is withdrawn. Write a test

program that causes all three exceptions to occur and that catches them all.

★★ Exercise P11.10. Repeat Exercise P11.9, but throw exceptions of three

exception types that you define.

524

525

Chapter 11 Input/Output and Exception

Handling

Page 38 of 42

Java Concepts, 5th Edition

★★ Exercise P11.11. Write a program that asks the user to input a set of

floating-point values. When the user enters a value that is not a number,

give the user a second chance to enter the value. After two chances, quit

reading input. Add all correctly specified values and print the sum when

the user is done entering data. Use exception handling to detect improper

inputs.

★★ Exercise P11.12. Repeat Exercise P11.11, but give the user as many

chances as necessary to enter a correct value. Quit the program only when

the user enters a blank input.

★ Exercise P11.13. Modify the DataSetReader class so that you do not

call hasNextInt or hasNextDouble. Simply have nextInt and

nextDouble throw an InputMismatchException or

NoSuchElementException and catch it in the main method.

★★ Exercise P11.14. Write a program that reads in a set of coin descriptions

from a file. The input file has the format

coinName1 coinValue1
coinName2 coinValue2
. . .

Add a method

void read(Scanner in) throws IOException

to the Coin class. Throw an exception if the current line is not properly

formatted. Then implement a method

static ArrayList<Coin> readFile(String filename)
throws IOException

In the main method, call readFile. If an exception is thrown, give the

user a chance to select another file. If you read all coins successfully, print

the total value.

★★★ Exercise P11.15. Design a class Bank that contains a number of bank

accounts. Each account has an account number and a current balance.

Add an accountNumber field to the BankAccount class. Store the

525

526

Chapter 11 Input/Output and Exception

Handling

Page 39 of 42

Java Concepts, 5th Edition

bank accounts in an array list. Write a readFile method of the Bank

class for reading a file with the format

accountNumber1 balance1
accountNumber2 balance2
. . .

Implement read methods for the Bank and BankAccount classes.

Write a sample program to read in a file with bank accounts, then print

the account with the highest balance. If the file is not properly formatted,

give the user a chance to select another file.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★ Project 11.1. You can read the contents of a web page with this

sequence of commands.

String address =
"http://java.sun.com/index.html";
URL u = new URL(address);
URLConnection connection = u.openConnection();
InputStream stream = connection.getInputStream();
Scanner in = new Scanner(stream);
. . .

Some of these methods may throw exceptions—check out the API

documentation. Design a class LinkFinder that finds all hyperlinks of

the form

link text

Throw an exception if you find a malformed hyperlink. Extra credit if

your program can follow the links that it finds and find links in those

web pages as well. (This is the method that search engines such as

Google use to find web sites.)
526

Chapter 11 Input/Output and Exception

Handling

Page 40 of 42

Java Concepts, 5th Edition

ANSWERS TO SELF-CHECK QUESTIONS

1. When the PrintWriter object is created, the output file is emptied.

Sadly, that is the same file as the input file. The input file is now empty and

the while loop exits immediately.

2. The program throws and catches a FileNotFoundException, prints

an error message, and terminates.

3. Throw an exception if the amount being deposited is less than zero.

4. The balance is still zero because the last statement of the withdraw

method was never executed.

5. The specification throws IOException is sufficient because

FileNotFound-Exception is a subclass of IOException.

6. Because programmers should simply check for null pointers instead of

trying to handle a NullPointerException.

7. The FileReader constructor succeeds, and in is constructed. Then the

call in.next() throws a NoSuchElementException, and the try

block is aborted. None of the catch clauses match, so none are executed. If

none of the enclosing method calls catch the exception, the program

terminates.

8. No—you catch both exception types in the same way, as you can see from

the code example on page 508. Recall that IOException is a checked

exception and NumberFormatException is an unchecked exception.

9. If it had been declared inside the try block, its scope would only have

extended to the end of the try block, and the finally clause could not

have closed it.

10. The FileReader constructor throws an exception. The finally clause

is executed. Since reader is null, the call to close is not executed.

Next, a catch clause that matches the FileNotFoundException is

located. If none exists, the program terminates.

526

527

Chapter 11 Input/Output and Exception

Handling

Page 41 of 42

Java Concepts, 5th Edition

11. To pass the exception message string to the RuntimeException

superclass.

12. Exception or IOException are both good choices. Because file

corruption is beyond the control of the programmer, this should be a

checked exception, so it would be wrong to extend RuntimeException.

13. It would not be able to do much with them. The DataSetReader class is

a reusable class that may be used for systems with different languages and

different user interfaces. Thus, it cannot engage in a dialog with the

program user.

14. DataAnalyzer.main calls DataSetReader.readFile, which

calls readData. The call in.hasNextInt() returns false, and

readData throws a BadDataException. The readFile method

doesn't catch it, so it propagates back to main, where it is caught.
527

Chapter 11 Input/Output and Exception

Handling

Page 42 of 42

Java Concepts, 5th Edition

Chapter 12 Object-Oriented Design

CHAPTER GOALS

• To learn about the software life cycle

• To learn how to discover new classes and methods

• To understand the use of CRC cards for class discovery

• To be able to identify inheritance, aggregation, and dependency relationships

between classes

• To master the use of UML class diagrams to describe class relationships

• To learn how to use object-oriented design to build complex programs

To implement a software system successfully, be it as simple as your next

homework project or as complex as the next air traffic monitoring system, some

amount of planning, design, and testing is required. In fact, for larger projects, the

amount of time spent on planning is much higher than the amount of time spent on

programming and testing.

If you find that most of your homework time is spent in front of the computer,

keying in code and fixing bugs, you are probably spending more time on your

homework than you should. You could cut down your total time by spending more

on the planning and design phase. This chapter tells you how to approach these tasks

in a systematic manner, using the object-oriented design methodology.

12.1 The Software Life Cycle

In this section we will discuss the software life cycle: the activities that take place

between the time a software program is first conceived and the time it is finally

retired.

The life cycle of software encompasses all activities from initial analysis until

obsolescence.

529

529

530

Chapter 12 Object-Oriented Design Page 1 of 77

Java Concepts, 5th Edition

A software project usually starts because a customer has a problem and is willing to

pay money to have it solved. The Department of Defense, the customer of many

programming projects, was an early proponent of a formal process for software

development. A formal process identifies and describes different phases and gives

guidelines for carrying out the phases and when to move from one phase to the next.

A formal process for software development describes phases of the development

process and gives guidelines for how to carry out the phases.

Many software engineers break the development process down into the following five

phases:

• Analysis

• Design

• Implementation

• Testing

• Deployment

In the analysis phase, you decide what the project is supposed to accomplish; you do

not think about how the program will accomplish its tasks. The output of the analysis

phase is a requirements document, which describes in complete detail what the

program will be able to do once it is completed. Part of this requirements document

can be a user manual that tells how the user will operate the program to derive the

promised benefits. Another part sets performance criteria—how many inputs the

program must be able to handle in what time, or what its maximum memory and disk

storage requirements are.

In the design phase, you develop a plan for how you will implement the system. You

discover the structures that underlie the problem to be solved. When you use

object-oriented design, you decide what classes you need and what their most

important methods are. The output of this phase is a description of the classes and

methods, with diagrams that show the relationships among the classes.

530

531

Chapter 12 Object-Oriented Design Page 2 of 77

Java Concepts, 5th Edition

In the implementation phase, you write and compile program code to implement the

classes and methods that were discovered in the design phase. The output of this

phase is the completed program.

In the testing phase, you run tests to verify that the program works correctly. The

output of this phase is a report describing the tests that you carried out and their

results.

In the deployment phase, the users of the program install it and use it for its intended

purpose.

When formal development processes were first established in the early 1970s,

software engineers had a very simple visual model of these phases. They postulated

that one phase would run to completion, its output would spill over to the next phase,

and the next phase would begin. This model is called the waterfall model of software

development (see Figure 1).

The waterfall model of software development describes a sequential process of

analysis, design, implementation, testing, and deployment.

Figure 1

The Waterfall Model

Chapter 12 Object-Oriented Design Page 3 of 77

Java Concepts, 5th Edition

In an ideal world the waterfall model has a lot of appeal: You figure out what to do;

then you figure out how to do it; then you do it; then you verify that you did it right;

then you hand the product to the customer. When rigidly applied, though, the

waterfall model simply did not work. It was very difficult to come up with a perfect

requirement specification. It was quite common to discover in the design phase that

the requirements were inconsistent or that a small change in the requirements would

lead to a system that was both easier to design and more useful for the customer, but

the analysis phase was over, so the designers had no choice—they had to take the

existing requirements, errors and all. This problem would repeat itself during

implementation. The designers may have thought they knew how to solve the

problem as efficiently as possible, but when the design was actually implemented, it

turned out that the resulting program was not as fast as the designers had thought. The

next transition is one with which you are surely familiar. When the program was

handed to the quality assurance department for testing, many bugs were found that

would best be fixed by reimplementing, or maybe even redesigning, the program, but

the waterfall model did not allow for this. Finally, when the customers received the

finished product, they were often not at all happy with it. Even though the customers

typically were very involved in the analysis phase, often they themselves were not

sure exactly what they needed. After all, it can be very difficult to describe how you

want to use a product that you have never seen before. But when the customers

started using the program, they began to realize what they would have liked. Of

course, then it was too late, and they had to live with what they got.

The spiral model of software development describes an iterative process in which

design and implementation are repeated.

531

532

Chapter 12 Object-Oriented Design Page 4 of 77

Java Concepts, 5th Edition

Figure 2

A Spiral Model

Having some level of iteration is clearly necessary. There simply must be a

mechanism to deal with errors from the preceding phase. A spiral model, originally

proposed by Barry Boehm in 1988, breaks the development process down into

multiple phases (see Figure 2). Early phases focus on the construction of prototypes.

A prototype is a small system that shows some aspects of the final system. Because

prototypes model only a part of a system and do not need to withstand customer

abuse, they can be implemented quickly. It is common to build a user interface

prototype that shows the user interface in action. This gives customers an early

chance to become more familiar with the system and to suggest improvements before

the analysis is complete. Other prototypes can be built to validate interfaces with

external systems, to test performance, and so on. Lessons learned from the

development of one prototype can be applied to the next iteration of the spiral.

532

533

Chapter 12 Object-Oriented Design Page 5 of 77

Java Concepts, 5th Edition

Figure 3

Activity Levels in the Rational Unified Process Methodology [1]

By building in repeated trials and feedback, a development process that follows the

spiral model has a greater chance of delivering a satisfactory system. However, there

is also a danger. If engineers believe that they don't have to do a good job because

they can always do another iteration, then there will be many iterations, and the

process will take a very long time to complete.

Extreme Programming is a development methodology that strives for simplicity by

removing formal structure and focusing on best practices.

Figure 3 shows activity levels in the “Rational Unified Process”, a development

process methodology by the inventors of UML. The details are not important, but as

you can see, this is a complex process involving multiple iterations.

Even complex development processes with many iterations have not always met with

success. In 1999, Kent Beck published an influential book [2] on Extreme

Chapter 12 Object-Oriented Design Page 6 of 77

Java Concepts, 5th Edition

Programming, a development methodology that strives for simplicity by cutting out

most of the formal trappings of a traditional development methodolgy and instead

focusing on a set of practices:

• Realistic planning: Customers are to make business decisions, programmers are

to make technical decisions. Update the plan when it conflicts with reality.

• Small releases: Release a useful system quickly, then release updates on a very

short cycle.

• Metaphor: All programmers should have a simple shared story that explains the

system under development.

• Simplicity: Design everything to be as simple as possible instead of preparing

for future complexity.

• Testing: Both programmers and customers are to write test cases. The system is

continuously tested.

• Refactoring: Programmers are to restructure the system continuously to

improve the code and eliminate duplication.

• Pair programming: Put programmers together in pairs, and require each pair to

write code on a single computer.

• Collective ownership: All programmers have permission to change all code as

it becomes necessary.

• Continuous integration: Whenever a task is completed, build the entire system

and test it.

• 40-hour week: Don't cover up unrealistic schedules with bursts of heroic effort.

• On-site customer: An actual customer of the system is to be accessible to team

members at all times.

• Coding standards: Programmers are to follow standards that emphasize

self-documenting code.

533

534

Chapter 12 Object-Oriented Design Page 7 of 77

Java Concepts, 5th Edition

Many of these practices are common sense. Others, such as the pair programming

requirement, are surprising. Beck claims that the value of the Extreme Programming

approach lies in the synergy of these practices—the sum is bigger than the parts.

In your first programming course, you will not develop systems that are so complex

that you need a full-fledged methodology to solve your homework problems. This

introduction to the development process should, however, show you that successful

software development involves more than just coding. In the remainder of this

chapter we will have a closer look at the design phase of the software development

process.

SELF CHECK

1. Suppose you sign a contract, promising that you will, for an agreed-upon

price, design, implement, and test a software package exactly as it has

been specified in a requirements document. What is the primary risk you

and your customer are facing with this business arrangement?

2. Does Extreme Programming follow a waterfall or a spiral model?

3. What is the purpose of the “on-site customer” in Extreme Programming?

 RANDOM FACT 12.1: Programmer Productivity

If you talk to your friends in this programming class, you will find that some of

them consistently complete their assignments much more quickly than others.

Perhaps they have more experience. However, even when programmers with the

same education and experience are compared, wide variations in competence are

routinely observed and measured. It is not uncommon to have the best programmer

in a team be five to ten times as productive as the worst, using any of a number of

reasonable measures of productivity [3].

That is a staggering range of performance among trained professionals. In a

marathon race, the best runner will not run five to ten times faster than the slowest

one. Software product managers are acutely aware of these disparities. The

obvious solution is, of course, to hire only the best programmers, but even in

534

535

Chapter 12 Object-Oriented Design Page 8 of 77

Java Concepts, 5th Edition

recent periods of economic slowdown the demand for good programmers has

greatly outstripped the supply.

Fortunately for all of us, joining the rank of the best is not necessarily a question of

raw intellectual power. Good judgment, experience, broad knowledge, attention to

detail, and superior planning are at least as important as mental brilliance. These

skills can be acquired by individuals who are genuinely interested in improving

themselves.

Even the most gifted programmer can deal with only a finite number of details in a

given time period. Suppose a programmer can implement and debug one method

every two hours, or one hundred methods per month. (This is a generous estimate.

Few programmers are this productive.) If a task requires 10,000 methods (which is

typical for a medium-sized program), then a single programmer would need 100

months to complete the job. Such a project is sometimes expressed as a

“100-man-month” project. But as Fred Brooks explains in his famous book [4], the

concept of “man-month” is a myth. One cannot trade months for programmers.

One hundred programmers cannot finish the task in one month. In fact, 10

programmers probably couldn't finish it in 10 months. First of all, the 10

programmers need to learn about the project before they can get productive.

Whenever there is a problem with a particular method, both the author and its

users need to meet and discuss it, taking time away from all of them. A bug in one

method may have other programmers twiddling their thumbs until it is fixed.

It is difficult to estimate these inevitable delays. They are one reason why software

is often released later than originally promised. What is a manager to do when the

delays mount? As Brooks points out, adding more personnel will make a late

project even later, because the productive people have to stop working and train

the newcomers.

You will experience these problems when you work on your first team project with

other students. Be prepared for a major drop in productivity, and be sure to set

ample time aside for team communications.

There is, however, no alternative to teamwork. Most important and worthwhile

projects transcend the ability of one single individual. Learning to function well in

a team is just as important as becoming a competent programmer.
535

Chapter 12 Object-Oriented Design Page 9 of 77

Java Concepts, 5th Edition

12.2 Discovering Classes

In the design phase of software development, your task is to discover structures that

make it possible to implement a set of tasks on a computer. When you use the

object-oriented design process, you carry out the following tasks:

1. Discover classes.

2. Determine the responsibilities of each class.

3. Describe the relationships between the classes.

In object-oriented design, you discover classes, determine the responsibilities of

classes, and describe the relationships between classes.

A class represents some useful concept. You have seen classes for concrete entities,

such as bank accounts, ellipses, and products. Other classes represent abstract

concepts, such as streams and windows. A simple rule for finding classes is to look

for nouns in the task description. For example, suppose your job is to print an invoice

such as the one in Figure 4. Obvious classes that come to mind are Invoice,

LineItem, and Customer. It is a good idea to keep a list of candidate classes on a

whiteboard or a sheet of paper. As you brainstorm, simply put all ideas for classes

onto the list. You can always cross out the ones that weren't useful after all.

535

536

Chapter 12 Object-Oriented Design Page 10 of 77

Java Concepts, 5th Edition

Figure 4

An Invoice

When finding classes, keep the following points in mind:

• A class represents a set of objects with the same behavior. Entities with

multiple occurrences in your problem description, such as customers or

products, are good candidates for objects. Find out what they have in common,

and design classes to capture those commonalities.

• Some entities should be represented as objects, others as primitive types. For

example, should an address be an object of an Address class, or should it

simply be a string? There is no perfect answer—it depends on the task that you

want to solve. If your software needs to analyze addresses (for example, to

determine shipping costs), then an Address class is an appropriate design.

536

537

Chapter 12 Object-Oriented Design Page 11 of 77

Java Concepts, 5th Edition

However, if your software will never need such a capability, you should not

waste time on an overly complex design. It is your job to find a balanced

design; one that is not too limiting or excessively general.

• Not all classes can be discovered in the analysis phase. Most complex programs

need classes for tactical purposes, such as file or database access, user

interfaces, control mechanisms, and so on.

• Some of the classes that you need may already exist, either in the standard

library or in a program that you developed previously. You also may be able to

use inheritance to extend existing classes into classes that match your needs.

Once a set of classes has been identified, you need to define the behavior for each

class. That is, you need to find out what methods each object needs to carry out to

solve the programming problem. A simple rule for finding these methods is to look

for verbs in the task description, and then match the verbs to the appropriate objects.

For example, in the invoice program, a class needs to compute the amount due. Now

you need to figure out which class is responsible for this method. Do customers

compute what they owe? Do invoices total up the amount due? Do the items total

themselves up? The best choice is to make “compute amount due” the responsibility

of the Invoice class.

An excellent way to carry out this task is the “CRC card method.” CRC stands for

“classes”, “responsibilities”, “collaborators”, and in its simplest form, the method

works as follows. Use an index card for each class (see Figure 5). As you think about

verbs in the task description that indicate methods, you pick the card of the class that

you think should be responsible, and write that responsibility on the card. For each

responsibility, you record which other classes are needed to fulfill it. Those classes

are the collaborators.

A CRC card describes a class, its responsibilities, and its collaborating classes.

For example, suppose you decide that an invoice should compute the amount due.

Then you write “compute amount due” on the left-hand side of an index card with the

title Invoice.

Chapter 12 Object-Oriented Design Page 12 of 77

Java Concepts, 5th Edition

If a class can carry out that responsibility by itself, do nothing further. But if the class

needs the help of other classes, write the names of these collaborators on the

right-hand side of the card.

To compute the total, the invoice needs to ask each line item about its total price.

Therefore, the LineItem class is a collaborator.

Figure 5

A CRC Card

This is a good time to look up the index card for the LineItem class. Does it have a

“get total price” method? If not, add one.

How do you know that you are on the right track? For each responsibility, ask

yourself how it can actually be done, using the responsibilities written on the various

cards. Many people find it helpful to group the cards on a table so that the

collaborators are close to each other, and to simulate tasks by moving a token (such as

a coin) from one card to the next to indicate which object is currently active.

Keep in mind that the responsibilities that you list on the CRC card are on a high

level. Sometimes a single responsibility may need two or more Java methods for

carrying it out. Some researchers say that a CRC card should have no more than three

distinct responsibilities.

537

538

Chapter 12 Object-Oriented Design Page 13 of 77

Java Concepts, 5th Edition

The CRC card method is informal on purpose, so that you can be creative and

discover classes and their properties. Once you find that you have settled on a good

set of classes, you will want to know how they are related to each other. Can you find

classes with common properties, so that some responsibilities can be taken care of by

a common superclass? Can you organize classes into clusters that are independent of

each other? Finding class relationships and documenting them with diagrams is the

topic of the next section.

SELF CHECK

4. Suppose the invoice is to be saved to a file. Name a likely collaborator.

5. Looking at the invoice in Figure 4, what is a likely responsibility of the

Customer class?

6. What do you do if a CRC card has ten responsibilities?

12.3 Relationships Between Classes

When designing a program, it is useful to document the relationships between classes.

This helps you in a number of ways. For example, if you find classes with common

behavior, you can save effort by placing the common behavior into a superclass. If

you know that some classes are not related to each other, you can assign different

programmers to implement each of them, without worrying that one of them has to

wait for the other.

You have seen the inheritance relationship between classes many times in this book.

Inheritance is a very important relationship, but, as it turns out, it is not the only

useful relationship, and it can be overused.

Inheritance is a relationship between a more general class (the superclass) and a more

specialized class (the subclass). This relationship is often described as the is-a

relationship. Every truck is a vehicle. Every savings account is a bank account. Every

circle is an ellipse (with equal width and height).

Inheritance (the is-a relationship) is sometimes inappropriately used when the

has-a relationship would be more appropriate.

538

539

Chapter 12 Object-Oriented Design Page 14 of 77

Java Concepts, 5th Edition

Inheritance is sometimes abused, however. For example, consider a Tire class that

describes a car tire. Should the class Tire be a subclass of a class Circle? It

sounds convenient. There are quite a few useful methods in the Circle class—for

example, the Tire class may inherit methods that compute the radius, perimeter, and

center point, which should come in handy when drawing tire shapes. Though it may

be convenient for the programmer, this arrangement makes no sense conceptually. It

isn't true that every tire is a circle. Tires are car parts, whereas circles are geometric

objects. There is a relationship between tires and circles, though. A tire has a circle as

its boundary. Java lets us model that relationship, too. Use an instance field:

public class Tire
{
 . . .
 private String rating;
 private Circle boundary;
}

The technical term for this relationship is aggregation. Each Tire aggregates a

Circle object. In general, a class aggregates another class if its objects have objects

of the other class.

Aggregation (the has-a relationship) denotes that objects of one class contain

references to objects of another class.

Here is another example. Every car is a vehicle. Every car has a tire (in fact, it has

four or, if you count the spare, five). Thus, you would use inheritance from Vehicle

and use aggregation of Tire objects:

public class Car extends Vehicle
{
 . . .
 private Tire[] tires;
}

539

Chapter 12 Object-Oriented Design Page 15 of 77

Java Concepts, 5th Edition

Figure 6

UML Notation for Inheritance and Aggregation

In this book, we use the UML notation for class diagrams. You have already seen

many examples of the UML notation for inheritance—an arrow with an open triangle

pointing to the superclass. In the UML notation, aggregation is denoted by a solid line

with a diamond-shaped symbol next to the aggregating class. Figure 6 shows a class

diagram with an inheritance and an aggregation relationship.

The aggregation relationship is related to the dependency relationship, which you saw

in Chapter 8. Recall that a class depends on another if one of its methods uses an

object of the other class in some way.

Dependency is another name for the “uses” relationship.

For example, many of our applications depend on the Scanner class, because they

use a Scanner object to read input.

539

540

Chapter 12 Object-Oriented Design Page 16 of 77

Java Concepts, 5th Edition

Aggregation is a stronger form of dependency. If a class has objects of another class,

it certainly uses the other class. However, the converse is not true. For example, a

class may use the Scanner class without ever defining an instance field of class

Scanner. The class may simply construct a local variable of type Scanner, or its

methods may receive Scanner objects as parameters. This use is not aggregation

because the objects of the class don't contain Scanner objects—they just create or

receive them for the duration of a single method.

Generally, you need aggregation when an object needs to remember another object

between method calls.

You need to be able to distinguish the UML notations for inheritance, interface

implementation, aggregation, and dependency.

As you saw in Chapter 8, the UML notation for dependency is a dashed line with an

open arrow that points to the dependent class.

The arrows in the UML notation can get confusing. Table 1 shows a summary of the

four UML relationship symbols that we use in this book.

Table 1 UML Relationship Symbols

SELF CHECK

7. Consider the Bank and BankAccount classes of Chapter 7. How are

they related?

8. Consider the BankAccount and SavingsAccount objects of

Chapter 10. How are they related?

540

541

Chapter 12 Object-Oriented Design Page 17 of 77

Java Concepts, 5th Edition

9. Consider the BankAccountTester class of Chapter 3. Which classes

does it depend on?

 HOW TO 12.1: CRC Cards and UML Diagrams

Before writing code for a complex problem, you need to design a solution. The

methodology introduced in this chapter suggests that you follow a design process

that is composed of the following tasks:

1. Discover classes.

2. Determine the responsibilities of each class.

3. Describe the relationships between the classes.

CRC cards and UML diagrams help you discover and record this information.

Step 1 Discover classes.

Highlight the nouns in the problem description. Make a list of the nouns. Cross out

those that don't seem reasonable candidates for classes.

Step 2 Discover responsibilities.

Make a list of the major tasks that your system needs to fulfill. From those tasks,

pick one that is not trivial and that is intuitive to you. Find a class that is

responsible for carrying out that task. Make an index card and write the name and

the task on it. Now ask yourself how an object of the class can carry out the task. It

probably needs help from other objects. Then make CRC cards for the classes to

which those objects belong and write the responsibilities on them.

Don't be afraid to cross out, move, split, or merge responsibilities. Rip up cards if

they become too messy. This is an informal process.

You are done when you have walked through all major tasks and are satisfied that

they can all be solved with the classes and responsibilities that you discovered.

Step 3 Describe relationships.

541

542

Chapter 12 Object-Oriented Design Page 18 of 77

Java Concepts, 5th Edition

Make a class diagram that shows the relationships between all the classes that you

discovered.

Start with inheritance—the is-a relationship between classes. Is any class a

specialization of another? If so, draw inheritance arrows. Keep in mind that many

designs, especially for simple programs, don't use inheritance extensively.

The “collaborators” column of the CRC cards tell you which classes use others.

Draw usage arrows for the collaborators on the CRC cards.

Some dependency relationships give rise to aggregations. For each of the

dependency relationships, ask yourself: How does the object locate its

collaborator? Does it navigate to it directly because it stores a reference? In that

case, draw an aggregation arrow. Or is the collaborator a method parameter or

return value? Then simply draw a dependency arrow.

 ADVANCED TOPIC 12.1: Attributes and Methods in UML

Diagrams

Sometimes it is useful to indicate class attributes and methods in a class diagram.

An attribute is an externally observable property that objects of a class have. For

example, name and price would be attributes of the Product class. Usually,

attributes correspond to instance variables. But they don't have to—a class may

have a different way of organizing its data. For example, a

GregorianCalendar object from the Java library has attributes day, month,

and year, and it would be appropriate to draw a UML diagram that shows these

attributes. However, the class doesn't actually have instance fields that store these

quantities. Instead, it internally represents all dates by counting the milliseconds

from January 1, 1970—an implementation detail that a class user certainly doesn't

need to know about.

You can indicate attributes and methods in a class diagram by dividing a class

rectangle into three compartments, with the class name in the top, attributes in the

middle, and methods in the bottom (see Attributes and Methods in a Class

Diagram). You need not list all attributes and methods in a particular diagram. Just

list the ones that are helpful to understand whatever point you are making with a

particular diagram.

Chapter 12 Object-Oriented Design Page 19 of 77

Java Concepts, 5th Edition

Also, don't list as an attribute what you also draw as an aggregation. If you denote

by aggregation the fact that a Car has Tire objects, don't add an attribute

tires.

Attributes and Methods in a Class Diagram

 ADVANCED TOPIC 12.2: Multiplicities

Some designers like to write multiplicities at the end(s) of an aggregation

relationship to denote how many objects are aggregated. The notations for the

most common multiplicities are:

• any number (zero or more): *

• one or more: 1..*

• zero or one: 0..1

• exactly one: 1

The figure below shows that a customer has one or more bank accounts.

An Aggregation Relationship with Multiplicities

542

543

Chapter 12 Object-Oriented Design Page 20 of 77

Java Concepts, 5th Edition

 ADVANCED TOPIC 12.3: Aggregation and Association

Some designers find the aggregation or has-a terminology unsatisfactory. For

example, consider customers of a bank. Does the bank “have” customers? Do the

customers “have” bank accounts, or does the bank “have” them? Which of these

“has” relationships should be modeled by aggregation? This line of thinking can

lead us to premature implementation decisions.

Early in the design phase, it makes sense to use a more general relationship

between classes called association. A class is associated with another if you can

navigate from objects of one class to objects of the other class. For example, given

a Bank object, you can navigate to Customer objects, perhaps by accessing an

instance field, or by making a database lookup.

The UML notation for an association relationship is a solid line, with optional

arrows that show in which directions you can navigate the relationship. You can

also add words to the line ends to further explain the nature of the relationship. An

Association Relationship shows that you can navigate from Bank objects to

Customer objects, but you cannot navigate the other way around. That is, in this

particular design, the Customer class has no mechanism to determine in which

banks it keeps its money.

An Association Relationship

Frankly, the differences between aggregation and association are confusing, even

to experienced designers. If you find the distinction helpful, by all means use the

relationship that you find most appropriate. But don't spend time pondering subtle

differences between these concepts. From the practical point of view of a Java

programmer, it is useful to know when objects of one class manage objects of

another class. The aggregation or has-a relationship accurately describes this

phenomenon.

543

544

Chapter 12 Object-Oriented Design Page 21 of 77

Java Concepts, 5th Edition

12.4 Case Study: Printing an Invoice

In this chapter, we discuss a five-part development process that is particularly well

suited for beginning programmers:

1. Gather requirements.

2. Use CRC cards to find classes, responsibilities, and collaborators.

3. Use UML diagrams to record class relationships.

4. Use javadoc to document method behavior.

5. Implement your program.

There isn't a lot of notation to learn. The class diagrams are simple to draw. The

deliverables of the design phase are obviously useful for the implementation phase—

you simply take the source files and start adding the method code. Of course, as your

projects get more complex, you will want to learn more about formal design methods.

There are many techniques to describe object scenarios, call sequencing, the

large-scale structure of programs, and so on, that are very beneficial even for

relatively simple projects. The Unified Modeling Language User Guide [1] gives a

good overview of these techniques.

In this section, we will walk through the object-oriented design technique with a very

simple example. In this case, the methodology may feel overblown, but it is a good

introduction to the mechanics of each step. You will then be better prepared for the

more complex example that follows.

12.4.1 Requirements

The task of this program is to print out an invoice. An invoice describes the charges

for a set of products in certain quantities. (We omit complexities such as dates,

taxes, and invoice and customer numbers.) The program simply prints the billing

address, all line items, and the amount due. Each line item contains the description

and unit price of a product, the quantity ordered, and the total price.
544

Chapter 12 Object-Oriented Design Page 22 of 77

Java Concepts, 5th Edition

I N V O I C E
Sam's Small
Appliances

100 Main Street
Anytown, CA
98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE:
$154.78

Also, in the interest of simplicity, we do not provide a user interface. We just

supply a test program that adds line items to the invoice and then prints it.

12.4.2 CRC Cards

First, you need to discover classes. Classes correspond to nouns in the requirements

description. In this problem, it is pretty obvious what the nouns are:

Invoice
Address
LineItem
Product
Description
Price
Quantity
Total
Amount Due

(Of course, Toaster doesn't count—it is the description of a LineItem object

and therefore a data value, not the name of a class.)

Description and price are fields of the Product class. What about the quantity?

The quantity is not an attribute of a Product. Just as in the printed invoice, let's

have a class LineItem that records the product and the quantity (such as “3

toasters”).

The total and amount due are computed—not stored anywhere. Thus, they don't

lead to classes.

544

545

Chapter 12 Object-Oriented Design Page 23 of 77

Java Concepts, 5th Edition

After this process of elimination, we are left with four candidates for classes:
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so let's make them all into classes.

The purpose of the program is to print an invoice. However, the Invoice class

won't necessarily know whether to display the output in System.out, in a text

area, or in a file. Therefore, let's relax the task slightly and make the invoice

responsible for formatting the invoice. The result is a string (containing multiple

lines) that can be printed out or displayed. Record that responsibility on a CRC card:

How does an invoice format itself? It must format the billing address, format all

line items, and then add the amount due. How can the invoice format an address? It

can't—that really is the responsibility of the Address class. This leads to a second

CRC card:

545

546

Chapter 12 Object-Oriented Design Page 24 of 77

Java Concepts, 5th Edition

Similarly, formatting of a line item is the responsibility of the LineItem class.

The format method of the Invoice class calls the format methods of the

Address and LineItem classes. Whenever a method uses another class, you list

that other class as a collaborator. In other words, Address and LineItem are

collaborators of Invoice:

When formatting the invoice, the invoice also needs to compute the total amount

due. To obtain that amount, it must ask each line item about the total price of the

item.

How does a line item obtain that total? It must ask the product for the unit price,

and then multiply it by the quantity. That is, the Product class must reveal the

unit price, and it is a collaborator of the LineItem class.

Finally, the invoice must be populated with products and quantities, so that it makes

sense to format the result. That too is a responsibility of the Invoice class.

We now have a set of CRC cards that completes the CRC card process.

546

547

Chapter 12 Object-Oriented Design Page 25 of 77

Java Concepts, 5th Edition

12.4.3 UML Diagrams

The dependency relationships come from the collaboration column on the CRC

cards. Each class depends on the classes with which it collaborates. In our example,

the Invoice class collaborates with the Address, LineItem, and Product

classes. The LineItem class collaborates with the Product class.

Now ask yourself which of these dependencies are actually aggregations. How does

an invoice know about the address, line item, and product objects with which it

collaborates? An invoice object must hold references to the address and the line

items when it formats the invoice. But an invoice object need not hold a reference

to a product object when adding a product. The product is turned into a line item,

and then it is the item's responsibility to hold a reference to it.

Therefore, the Invoice class aggregates the Address and LineItem classes.

The LineItem class aggregates the Product class. However, there is no has-a

547

548

Chapter 12 Object-Oriented Design Page 26 of 77

Java Concepts, 5th Edition

relationship between an invoice and a product. An invoice doesn't store products

directly—they are stored in the LineItem objects.

There is no inheritance in this example.

Figure 7 shows the class relationships that we discovered.

Figure 7

The Relationships Between the Invoice Classes

12.4.4 Method Documentation

Use javadoc comments (with the method bodies left blank) to record the

behavior of classes.

The final step of the design phase is to write the documentation of the discovered

classes and methods. Simply write a Java source file for each class, write the

method comments for those methods that you have discovered, and leave the bodies

of the methods blank.

 /**

 Describes an invoice for a set of purchased products.
 */
 public class Invoice
 {
 /**

 Adds a charge for a product to this invoice.

 @param aProduct the product that the customer ordered

548

549

Chapter 12 Object-Oriented Design Page 27 of 77

Java Concepts, 5th Edition

 @param quantity the quantity of the product
 */
 public void add(Product aProduct, int quantity)
 {
 }
 /**

 Formats the invoice.

 @return the formatted invoice
 */
 public String format()
 {
 }
}
/**

 Describes a quantity of an article to purchase and its price.
*/
public class LineItem
{
 /**

 Computes the total cost of this line item.

 @return the total price
 */
 public double getTotalPrice()
 {
 }
 /**

 Formats this item.

 @return a formatted string of this line item
 */
 public String format()
 {
 }
}
/**

 Describes a product with a description and a price.
*/
public class Product
{
 /**

 Gets the product description.

 @return the description
 */

Chapter 12 Object-Oriented Design Page 28 of 77

Java Concepts, 5th Edition

 public String getDescription()
 {
 }
 /**

 Gets the product price.

 @return the unit price
 */
 public double getPrice()
 {
 }
}
/**

 Describes a mailing address.
*/
public class Address
{
 /**

 Formats the address.

 @return the address as a string with three lines
 */
 public String format()
 {
 }
}

Then run the javadoc program to obtain a prettily formatted version of your

documentation in HTML format (see Figure 8).

This approach for documenting your classes has a number of advantages. You can

share the HTML documentation with others if you work in a team. You use a

format that is immediately useful—Java source files that you can carry into the

implementation phase. And, most importantly, you supply the comments of the key

methods—a task that less prepared programmers leave for later, and then often

neglect for lack of time.

12.4.5 Implementation

Finally, you are ready to implement the classes.

You already have the method signatures and comments from the previous step.

Now look at the UML diagram to add instance fields. Aggregated classes yield

549

550

Chapter 12 Object-Oriented Design Page 29 of 77

Java Concepts, 5th Edition

instance fields. Start with the Invoice class. An invoice aggregates Address

and LineItem. Every invoice has one billing address, but it can have many line

items. To store multiple LineItem objects, you can use an array list. Now you

have the instance fields of the Invoice class:

public class Invoice
{
 . . .
 private Address billingAddress;
 private ArrayList<LineItem> items;
}

Figure 8

The Class Documentation in HTML Format

550

551

Chapter 12 Object-Oriented Design Page 30 of 77

Java Concepts, 5th Edition

A line item needs to store a Product object and the product quantity. That leads

to the following instance fields:

public class LineItem
{
 . . .
 private int quantity;
 private Product theProduct;
}

The methods themselves are now very easy. Here is a typical example. You already

know what the getTotalPrice method of the LineItem class needs to do—

get the unit price of the product and multiply it with the quantity.

/**

 Computes the total cost of this line item.

 @return the total price
*/
public double getTotalPrice()
{
 return theProduct.getPrice() * quantity;
}

We will not discuss the other methods in detail—they are equally straightforward.

Finally, you need to supply constructors, another routine task.

Here is the entire program. It is a good practice to go through it in detail and match

up the classes and methods against the CRC cards and UML diagram.

ch12/invoice/InvoicePrinter.java

 1 /**

 2 This program demonstrates the invoice classes by

 3 printing a sample invoice.
 4 */
 5 public class InvoicePrinter
 6 {
 7 public static void main(String[] args)
 8 {
 9 Address samsAddress

551

552

Chapter 12 Object-Oriented Design Page 31 of 77

Java Concepts, 5th Edition

10 = new Address(“Sam's
Small Appliances”,
11 “100 Main Street”,
“Anytown”, “CA”, “98765”);
12

13 Invoice samsInvoice = new
Invoice(samsAddress);
14 samsInvoice.add(new
Product(“Toaster”, 29.95), 3);
15 samsInvoice.add(new Product(“Hair
dryer”, 24.95), 1);
16 samsInvoice.add(new Product(“Car
vacuum”, 19.99), 2);
17

18 System.out.println(samsInvoice.format());
19 }
20 }

ch12/invoice/Invoice.java

 1 import java.util.ArrayList;
 2
 3 /**

 4 Describes an invoice for a set of purchased products.
 5 */
 6 public class Invoice
 7 {
 8 /**

 9 Constructs an invoice.

 10 @param anAddress the billing address
 11 */
 12 public Invoice(Address anAddress)
 13 {
 14 items = new ArrayList<LineItem>();
 15 billingAddress = anAddress;
 16 }
 17
 18 /**

 19 Adds a charge for a product to this invoice.

 20 @param aProduct the product that the customer

ordered

552

553

Chapter 12 Object-Oriented Design Page 32 of 77

Java Concepts, 5th Edition

 21 @param quantity the quantity of the product
 22 */
 23 public void add(Product aProduct, int
quantity)
 24 {
 25 LineItem anItem = new
LineItem(aProduct, quantity);
 26 items.add(anItem);
 27 }
 28
 29 /**

 30 Formats the invoice.

 31 @return the formatted invoice
 32 */
 33 public String format()
 34 {
 35 String r =
“ I N V O
I C E\n\n”
 36 +
billingAddress.format()
 37 + String.
format(“\n\n%'-30s%'8s%'5s%'8s\n”,
 38 “Description”,
“Price”, “Qty”, “Total”);
 39
 40 for (LineItem i : items)
 41 {
 42 r = r + i.format() + “\n”;
 43 }
 44
 45 r = r + String.format(“\nAMOUNT
DUE: %$'8.2f”, getAmountDue());
 46
 47 return r;
 48 }
 49
 50 /**

 51 Computes the total amount due.

 52 @return the amount due
 53 */
 54 public double getAmountDue()

Chapter 12 Object-Oriented Design Page 33 of 77

Java Concepts, 5th Edition

 55 {
 56 double amountDue = 0;
 57 for (LineItem i : items)
 58 {
 59 amountDue = amountDue +
i.getTotalPrice();
 60 }
 61 return amountDue;
 62 }
 63
 64 private Address billingAddress;
 65 private ArrayList<LineItem> items;
 66 }

ch12/invoice/LineItem.java

 1 /**

 2 Describes a quantity of an article to purchase.
 3 */
 4 public class LineItem
 5 {
 6 /**

 7 Constructs an item from the product and quantity.

 8 @param aProduct the product

 9 @param aQuantity the item quantity
 10 */
 11 public LineItem(Product aProduct, int
aQuantity)
 12 {
 13 theProduct = aProduct;
 14 quantity = aQuantity;
 15 }
 16
 17 /**

 18 Computes the total cost of this line item.

 19 @returnthe total price
 20 */
 21 public double getTotalPrice()
 22 {
 23 return theProduct.getPrice() *
quantity;

553

554

Chapter 12 Object-Oriented Design Page 34 of 77

Java Concepts, 5th Edition

 24 }
 25
 26 /**

 27 Formats this item.

 28 @return a formatted string of this line item
 29 */
 30 public String format()
 31 {
 32 return
String.format(“%'-30s%'8.2f%'5d%'8.2f”,
 33 theProduct.getDescription(),
theProduct.getPrice(),
 34 quantity,
getTotalPrice());
 35 }
 36
 37 private int quantity;
 38 private Product theProduct;
 39 }

ch12/invoice/Product.java

 1 /**

 2 Describes a product with a description and a price.
 3 */
 4 public class Product
 5 {
 6 /**

 7 Constructs a product from a description and a price.

 8 @param aDescription the product description

 9 @param aPrice the product price
 10 */
 11 public Product(String aDescription,
double aPrice)
 12 {
 13 description = aDescription;
 14 price = aPrice;
 15 }
 16
 17 /**

 18 Gets the product description.

554

555

Chapter 12 Object-Oriented Design Page 35 of 77

Java Concepts, 5th Edition

 19 @return the description
 20 */
 21 public String getDescription()
 22 {
 23 return description;
 24 }
 25
 26 /**

 27 Gets the product price.

 28 @return the unit price
 29 */
 30 public double getPrice()
 31 {
 32 return price;
 33 }
 34
 35 private String description;
 36 private double price;
 37 }

ch12/invoice/Address.java

 1 /**

 2 Describes a mailing address.
 3 */
 4 public class Address
 5 {
 6 /**

 7 Constructs a mailing address.

 8 @param aName the recipient name
 9 @param aStreet the street

 10 @param aCity the city

 11 @param aState the two-letter state code

 12 @param aZip the ZIP postal code
 13 */
 14 public Address(String aName, String
aStreet,
 15 String aCity, String aState,
String aZip)
 16 {
 17 name = aName;

Chapter 12 Object-Oriented Design Page 36 of 77

Java Concepts, 5th Edition

 18 street = aStreet;
 19 city = aCity;
 20 state = aState;
 21 zip = aZip;
 22 }
 23
 24 /**

 25 Formats the address.

 26 @return the address as a string with three lines
 27 */
 28 public String format()
 29 {
 30 return name + “\n” + street + “\n”
 31 + city + “, ” + state + “
” + zip;
 32 }
 33
 34 private String name;
 35 private String street;
 36 private String city;
 37 private String state;
 38 private String zip;
 39 }

SELF CHECK

10. Which class is responsible for computing the amount due? What are

its collaborators for this task?

11. Why do the format methods return String objects instead of

directly printing to System.out?

12.5 Case Study: An Automatic Teller Machine

12.5.1 Requirements

The purpose of this project is to design a simulation of an automatic teller machine

(ATM). The ATM is used by the customers of a bank. Each customer has two

accounts: a checking account and a savings account. Each customer also has a

customer number and a personal identification number (PIN); both are required to

555

556

Chapter 12 Object-Oriented Design Page 37 of 77

Java Concepts, 5th Edition

gain access to the accounts. (In a real ATM, the customer number would be

recorded on the magnetic strip of the ATM card. In this simulation, the customer

will need to type it in.) With the ATM, customers can select an account (checking

or savings). The balance of the selected account is displayed. Then the customer

can deposit and withdraw money. This process is repeated until the customer

chooses to exit.

The details of the user interaction depend on the user interface that we choose for

the simulation. We will develop two separate interfaces: a graphical interface that

closely mimics an actual ATM (see Figure 9), and a text-based interface that allows

you to test the ATM and bank classes without being distracted by GUI

programming.

In the GUI interface, the ATM has a keypad to enter numbers, a display to show

messages, and a set of buttons, labeled A, B, and C, whose function depends on the

state of the machine.

Figure 9

Graphical User Interface for the Automatic Teller Machine

Specifically, the user interaction is as follows. When the ATM starts up, it expects a

user to enter a customer number. The display shows the following message:

Enter customer number
A = OK

556

557

Chapter 12 Object-Oriented Design Page 38 of 77

Java Concepts, 5th Edition

The user enters the customer number on the keypad and presses the A button. The

display message changes to

Enter PIN
A = OK

Next, the user enters the PIN and presses the A button again. If the customer

number and ID match those of one of the customers in the bank, then the customer

can proceed. If not, the user is again prompted to enter the customer number.

If the customer has been authorized to use the system, then the display message

changes to

Select Account
A = Checking
B = Savings
C = Exit

If the user presses the C button, the ATM reverts to its original state and asks the

next user to enter a customer number.

If the user presses the A or B buttons, the ATM remembers the selected account,

and the display message changes to

Balance = balance of selected account
Enter amount and select transaction
A = Withdraw
B = Deposit
C = Cancel

If the user presses the A or B buttons, the value entered in the keypad is withdrawn

from or deposited into the selected account. (This is just a simulation, so no money

is dispensed and no deposit is accepted.) Afterwards, the ATM reverts to the

preceding state, allowing the user to select another account or to exit.

If the user presses the C button, the ATM reverts to the preceding state without

executing any transaction.

In the text-based interaction, we read input from System.in instead of the

buttons. Here is a typical dialog:

Enter account number: 1

557

558

Chapter 12 Object-Oriented Design Page 39 of 77

Java Concepts, 5th Edition

Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C

In our solution, only the user interface classes are affected by the choice of user

interface. The remainder of the classes can be used for both solutions—they are

decoupled from the user interface.

Because this is a simulation, the ATM does not actually communicate with a bank.

It simply loads a set of customer numbers and PINs from a file. All accounts are

initialized with a zero balance.

12.5.2 CRC Cards

We will again follow the recipe of Section 12.2 and show how to discover classes,

responsibilities, and relationships and how to obtain a detailed design for the ATM

program.

Recall that the first rule for finding classes is “Look for nouns in the problem

description”. Here is a list of the nouns:

ATM
User
Keypad
Display
Display message
Button
State
Bank account
Checking account
Savings account
Customer
Customer number
PIN
Bank

Of course, not all of these nouns will become names of classes, and we may yet

discover the need for classes that aren't in this list, but it is a good start.

Chapter 12 Object-Oriented Design Page 40 of 77

Java Concepts, 5th Edition

Users and customers represent the same concept in this program. Let's use a class

Customer. A customer has two bank accounts, and we will require that a

Customer object should be able to locate these accounts. (Another possible

design would make the Bank class responsible for locating the accounts of a given

customer—see Exercise P12.9.)

A customer also has a customer number and a PIN. We can, of course, require that

a customer object give us the customer number and the PIN. But perhaps that isn't

so secure. Instead, simply require that a customer object, when given a customer

number and a PIN, will tell us whether it matches its own information or not.

A bank contains a collection of customers. When a user walks up to the ATM and

enters a customer number and PIN, it is the job of the bank to find the matching

customer. How can the bank do this? It needs to check for each customer whether

its customer number and PIN match. Thus, it needs to call the match number and

PIN method of the Customer class that we just discovered. Because the find

customer method calls a Customer method, it collaborates with the Customer

class. We record that fact in the right-hand column of the CRC card.

When the simulation starts up, the bank must also be able to read account

information from a file.

558

559

Chapter 12 Object-Oriented Design Page 41 of 77

Java Concepts, 5th Edition

The BankAccount class is our familiar class with methods to get the balance and

to deposit and withdraw money.

In this program there is nothing that distinguishes checking accounts from savings

accounts. The ATM does not add interest or deduct fees. Therefore, we decide not

to implement separate subclasses for checking and savings accounts.

Finally, we are left with the ATM class itself. An important notion of the ATM is

the state. The current machine state determines the text of the prompts and the

function of the buttons. For example, when you first log in, you use the A and B

buttons to select an account. Next, you use the same buttons to choose between

deposit and withdrawal. The ATM must remember the current state so that it can

correctly interpret the buttons.

Figure 10

State Diagram for the ATM Class

559

560

Chapter 12 Object-Oriented Design Page 42 of 77

Java Concepts, 5th Edition

There are four states:

1. START: Enter customer ID

2. PIN: Enter PIN

3. ACCOUNT: Select account

4. TRANSACT: Select transaction

To understand how to move from one state to the next, it is useful to draw a state

diagram (Figure 10). The UML notation has standardized shapes for state diagrams.

Draw states as rectangles with rounded corners. Draw state changes as arrows, with

labels that indicate the reason for the change.

The user must type a valid customer number and PIN. Then the ATM can ask the

bank to find the customer. This calls for a select customer method. It collaborates

with the bank, asking the bank for the customer that matches the customer number

and PIN. Next, there must be a select account method that asks the current

customer for the checking or savings account. Finally, the ATM must carry out the

selected transaction on the current account.

Of course, discovering these classes and methods was not as neat and orderly as it

appears from this discussion. When I designed these classes for this book, it took

me several trials and many torn cards to come up with a satisfactory design. It is

also important to remember that there is seldom one best design.

This design has several advantages. The classes describe clear concepts. The

methods are sufficient to implement all necessary tasks. (I mentally walked through

560

561

Chapter 12 Object-Oriented Design Page 43 of 77

Java Concepts, 5th Edition

every ATM usage scenario to verify that.) There are not too many collaboration

dependencies between the classes. Thus, I was satisfied with this design and

proceeded to the next step.

12.5.3 UML Diagrams

Figure 11 shows the relationships between these classes, using the graphical user

interface. (The console user interface uses a single class ATMSimulator instead

of the ATMFrame and Keypad classes.)

Figure 11

Relationships Between the ATM Classes

To draw the dependencies, use the “collaborator” columns from the CRC cards.

Looking at those columns, you find that the dependencies are as follows:

• ATM uses Bank, Customer, and BankAccount.

• Bank uses Customer.

• Customer uses BankAccount.

It is easy to see some of the aggregation relationships. A bank has customers, and

each customer has two bank accounts.

561

562

Chapter 12 Object-Oriented Design Page 44 of 77

Java Concepts, 5th Edition

Does the ATM class aggregate Bank? To answer this question, ask yourself whether

an ATM object needs to store a reference to a bank object. Does it need to locate

the same bank object across multiple method calls? Indeed it does. Therefore,

aggregation is the appropriate relationship.

Does an ATM aggregate customers? Clearly, the ATM is not responsible for storing

all of the bank's customers. That's the bank's job. But in our design, the ATM

remembers the current customer. If a customer has logged in, subsequent

commands refer to the same customer. The ATM needs to either store a reference

to the customer, or ask the bank to look up the object whenever it needs the current

customer. It is a design decision: either store the object, or look it up when needed.

We will decide to store the current customer object. That is, we will use

aggregation. Note that the choice of aggregation is not an automatic consequence of

the problem description—it is a design decision.

Similarly, we will decide to store the current bank account (checking or savings)

that the user selects. Therefore, we have an aggregation relationship between ATM

and BankAccount.

The class diagram is a good tool to visualize dependencies. Look at the GUI

classes. They are completely independent from the rest of the ATM system. You

can replace the GUI with a console interface, and you can take out the Keypad

class and use it in another application. Also, the Bank, BankAccount, and

Customer classes, although dependent on each other, don't know anything about

the ATM class. That makes sense—you can have banks without ATMs. As you can

see, when you analyze relationships, you look for both the absence and presence of

relationships

12.5.4 Method Documentation

Now you are ready for the final step of the design phase: to document the classes

and methods that you discovered. Here is a part of the documentation for the ATM

class:

/**

 An ATM that accesses a bank.
*/
public class ATM

Chapter 12 Object-Oriented Design Page 45 of 77

Java Concepts, 5th Edition

{
 /**

 Constructs an ATM for a given bank.

 @param aBank the bank to which this ATM connects
 */
 public ATM(Bank aBank) { }
 /**

 Sets the current customer number

 and sets state to PIN.

 (Precondition: state is START)

 @param number the customer number
 */
 public void setCustomerNumber(int number) { }
 /**

 Finds customer in bank.

 If found sets state to ACCOUNT, else to START.

 (Precondition: state is PIN)

 @param pin the PIN of the current customer
 */
 public void selectCustomer(int pin) { }
 /**

 Sets current account to checking or savings. Sets

 state to TRANSACT.

 (Precondition: state is ACCOUNT or TRANSACT)

 @param account one of CHECKING or SAVINGS
 */
 public void selectAccount(int account) { }
 /**

 Withdraws amount from current account.

 (Precondition: state is TRANSACT)

 @param value the amount to withdraw
 */
 public void withdraw(double value) { }
 . . .
}

Then run the javadoc utility to turn this documentation into HTML format.

For conciseness, we omit the documentation of the other classes.

562

563

Chapter 12 Object-Oriented Design Page 46 of 77

Java Concepts, 5th Edition

12.5.5 Implementation

Finally, the time has come to implement the ATM simulator. The implementation

phase is very straightforward and should take much less time than the design phase.

A good strategy for implementing the classes is to go “bottom-up”. Start with the

classes that don't depend on others, such as Keypad and BankAccount. Then

implement a class such as Customer that depends only on the BankAccount

class. This “bottom-up” approach allows you to test your classes individually. You

will find the implementations of these classes at the end of this section.

The most complex class is the ATM class. In order to implement the methods, you

need to define the necessary instance variables. From the class diagram, you can

tell that the ATM has a bank object. It becomes an instance variable of the class:

public class ATM
{
 . . .
 private Bank theBank;
}

From the description of the ATM states, it is clear that we require additional

instance variables to store the current state, customer, and bank account.

public class ATM
{
 . . .
 private int state;
 private Customer currentCustomer;
 private BankAccount currentAccount;
 . . .
}

Most methods are very straightforward to implement. Consider the

selectCustomer method. From the design documentation, we have the

description

/**

 Finds customer in bank.

 If found sets state to ACCOUNT, else to START.

 (Precondition: state is PIN)

563

564

Chapter 12 Object-Oriented Design Page 47 of 77

Java Concepts, 5th Edition

 @param pin the PIN of the current customer
*/

This description can be almost literally translated to Java instructions:

public void selectCustomer(int pin)
{
 assert state == PIN;
 currentCustomer =
theBank.findCustomer(customerNumber, pin);
 if (currentCustomer == null)
 state = START;
 else
 state = ACCOUNT;
}

We won't go through a method-by-method description of the ATM program. You

should take some time and compare the actual implementation against the CRC

cards and the UML diagram.

ch12/atm/ATM.java

 1 /**

 2 An ATM that accesses a bank.
 3 */
 4 public class ATM
 5 {
 6 /**

 7 Constructs an ATM for a given bank.

 8 @param aBank the bank to which this ATM connects
 9 */
 10 public ATM(Bank aBank)
 11 {
 12 theBank = aBank;
 13 reset();
 14 }
 15
 16 /**

 17 Resets the ATM to the initial state.
 18 */
 19 public void reset()
 20 {

564

565

Chapter 12 Object-Oriented Design Page 48 of 77

Java Concepts, 5th Edition

 21 customerNumber = -1;
 22 currentAccount = null;
 23 state = START;
 24 }
 25
 26 /**

 27 Sets the current customer number

 28 and sets state to PIN.

 29 (Precondition: state is START)
 30 @param number the customer number
 31 */
 32 public void setCustomerNumber(int number)
 33 {
 34 assert state == START;
 35 customerNumber = number;
 36 state = PIN;
 37 }
 38
 39 /**

 40 Finds customer in bank.

 41 If found, sets state to ACCOUNT, else to START.

 42 (Precondition: state is PIN)

 43 @param pin the PIN of the current customer
 44 */
 45 public void selectCustomer(int pin)
 46 {
 47 assert state == PIN;
 48 currentCustomer =
theBank.findCustomer(customerNumber, pin);
 49 if (currentCustomer == null)
 50 state = START;
 51 else
 52 state = ACCOUNT;
 53 }
 54
 55 /**

 56 Sets current account to checking or savings. Sets

 57 state to TRANSACT.

 58 (Precondition: state is ACCOUNT or TRANSACT)

 59 @param account one of CHECKING or SAVINGS
 60 */

Chapter 12 Object-Oriented Design Page 49 of 77

Java Concepts, 5th Edition

 61 public void selectAccount(int account)
 62 {
 63 assert state == ACCOUNT || state ==
TRANSACT;
 64 if (account == CHECKING)
 65 currentAccount =
currentCustomer.getCheckingAccount();
 66 else
 67 currentAccount =
currentCustomer.getSavingsAccount();
 68 state = TRANSACT;
 69 }
 70
 71 /**

 72 Withdraws amount from current account.

 73 (Precondition: state is TRANSACT)

 74 @param value the amount to withdraw
 75 */
 76 public void withdraw(double value)
 77 {
 78 assert state == TRANSACT;
 79 currentAccount.withdraw(value);
 80 }
 81
 82 /**

 83 Deposits amount to current account.

 84 (Precondition: state is TRANSACT)

 85 @param value the amount to deposit
 86 */
 87 public void deposit(double value)
 88 {
 89 assert state == TRANSACT;
 90 currentAccount.deposit(value);
 91 }
 92
 93 /**

 94 Gets the balance of the current account.

 95 (Precondition: state is TRANSACT)

 96 @return the balance
 97 */
 98 public double getBalance()

565

566

Chapter 12 Object-Oriented Design Page 50 of 77

Java Concepts, 5th Edition

 99 {
 100 assert state == TRANSACT;
 101 return currentAccount.getBalance();
 102 }
 103
 104 /**

 105 Moves back to the previous state.
 106 */
 107 public void back()
 108 {
 109 if (state == TRANSACT)
 110 state = ACCOUNT;
 111 else if (state == ACCOUNT)
 112 state = PIN;
 113 else if (state == PIN)
 114 state = START;
 115 }
 116
 117 /**

 118 Gets the current state of this ATM.

 119 @return the current state
 120 */
 121 public int getState()
 122 {
 123 return state;
 124 }
 125
 126 private int state;
 127 private int customerNumber;
 128 private Customer currentCustomer;
 129 private BankAccount currentAccount;
 130 private Bank theBank;
 131
 132 public static final int START = 1;
 133 public static final int PIN = 2;
 134 public static final int ACCOUNT = 3;
 135 public static final int TRANSACT = 4;
 136
 137 public static final int CHECKING = 1;
 138 public static final int SAVINGS = 2;
 139 }

566

567

Chapter 12 Object-Oriented Design Page 51 of 77

Java Concepts, 5th Edition

ch12/atm/Bank.java

 1 import java.io.FileReader;
 2 import java.io.IOException;
 3 import java.util.ArrayList;
 4 import java.util.Scanner;
 5
 6 /**

 7 A bank contains customers with bank accounts.
 8 */
 9 public class Bank
 10 {
 11 /**

 12 Constructs a bank with no customers.
 13 */
 14 public Bank()
 15 {
 16 customers = new ArrayList<Customer>();
 17 }
 18
 19 /**

 20 Reads the customer numbers and pins

 21 and initializes the bank accounts.

 22 @param filename the name of the customer file
 23 */
 24 public void readCustomers(String filename)
 25 throws IOException
 26 {
 27 Scanner in = new Scanner(new
FileReader(filename));
 28 while (in.hasNext())
 29 {
 30 int number = in.nextInt();
 31 int pin = in.nextInt();
 32 Customer c = new Customer(number,
pin);
 33 addCustomer(c);
 34 }
 35 in.close();
 36 }
 37

567

568

Chapter 12 Object-Oriented Design Page 52 of 77

Java Concepts, 5th Edition

 38 /**

 39 Adds a customer to the bank.

 40 @param c the customer to add
 41 */
 42 public void addCustomer(Customer c)
 43 {
 44 customers.add(c);
 45 }
 46
 47 /**

 48 Finds a customer in the bank.

 49 @param aNumber a customer number

 50 @param aPin a personal identification number

 51 @return the matching customer, or null if no customer

 52 matches
 53 */
 54 public Customer findCustomer(int aNumber,
int aPin)
 55 {
 56 for (Customer c : customers)
 57 {
 58 if (c.match(aNumber, aPin))
 59 return c;
 60 }
 61 return null;
 62 }
 63
 64 private ArrayList<Customer> customers;
 65 }

ch12/atm/Customer.java

 1 /**

 2 A bank customer with a checking and a savings account.
 3 */
 4 public class Customer
 5 {
 6 /**

 7 Constructs a customer with a given number and PIN.

 8 @param aNumber the customer number

Chapter 12 Object-Oriented Design Page 53 of 77

Java Concepts, 5th Edition

 9 @param aPinthe personal identification number
 10 */
 11 public Customer(int aNumber, int aPin)
 12 {
 13 customerNumber = aNumber;
 14 pin = aPin;
 15 checkingAccount = new BankAccount();
 16 savingsAccount = new BankAccount();
 17 }
 18
 19 /**

 20 Tests if this customer matches a customer number

 21 and PIN.

 22 @param aNumber a customer number

 23 @param aPin a personal identification number

 24 @return true if the customer number and PIN match
 25 */
 26 public boolean match(int aNumber, int aPin)
 27 {
 28 return customerNumber == aNumber && pin
== aPin;
 29 }
 30
 31 /**

 32 Gets the checking account of this customer.

 33 @return the checking account
 34 */
 35 public BankAccount getCheckingAccount()
 36 {
 37 return checkingAccount;
 38 }
 39
 40 /**

 41 Gets the savings account of this customer.

 42 @return the checking account
 43 */
 44 public BankAccount getSavingsAccount()
 45 {
 46 return savingsAccount;
 47 }
 48

568

569

Chapter 12 Object-Oriented Design Page 54 of 77

Java Concepts, 5th Edition

 49 private int customerNumber;
 50 private int pin;
 51 private BankAccount checkingAccount;
 52 private BankAccount savingsAccount;
 53 }

The following class implements a console user interface for the ATM.

ch12/atm/ATMSimulator.java

 1 import java.io.IOException;
 2 import java.util.Scanner;
 3
 4 /**

 5 A text-based simulation of an automatic teller machine.
 6 */
 7 public class ATMSimulator
 8 {
 9 public static void main(String[] args)
 10 {
 11 ATM theATM;
 12 try
 13 {
 14 Bank theBank = new Bank();
 15 theBank.readCustomers(“customers.txt”);
 16 theATM = new ATM(theBank);
 17 }
 18 catch(IOException e)
 19 {
 20 System.out.println(“Error opening
accounts file.”);
 21 return;
 22 }
 23
 24 Scanner in = new Scanner(System.in);
 25
 26 while (true)
 27 {
 28 int state = theATM.getState();
 29 if (state == ATM.START)
 30 {

569

570

Chapter 12 Object-Oriented Design Page 55 of 77

Java Concepts, 5th Edition

 31 System.out.print(“Enter customer
number: ”);
 32 int number = in.nextInt();
 33 theATM.setCustomerNumber(number);
 34 }
 35 else if (state == ATM.PIN)
 36 {
 37 System.out.print(“Enter PIN: ”);
 38 int pin = in.nextInt();
 39 theATM.selectCustomer(pin);
 40 }
 41 else if (state == ATM.ACCOUNT)
 42 {
 43 System.out.print(“A=Checking,
B=Savings, C=Quit: ”);
 44 String command = in.next();
 45 if (command.equalsIgnoreCase(“A”))
 46 theATM.selectAccount(ATM.CHECKING);
 47 else if
(command.equalsIgnoreCase(“B”))
 48 theATM.selectAccount(ATM.SAVINGS);
 49 else if
(command.equalsIgnoreCase(“C”))
 50 theATM.reset();
 51 else
 52 System.out.println(“Illegal
input!”);
 53 }
 54 else if (state == ATM.TRANSACT)
 55 {
 56 System.out.println(“Balance=” +
theATM.getBalance());
 57 System.out.print(“A=Deposit,
B=Withdrawal, C=Cancel: ”);
 58 String command = in.next();
 59 if (command.equalsIgnoreCase(“A”))
 60 {
 61 System.out.print(“Amount: ”);
 62 double amount =
in.nextDouble();
 63 theATM.deposit(amount);
 64 theATM.back();
 65 }

Chapter 12 Object-Oriented Design Page 56 of 77

Java Concepts, 5th Edition

 66 else if
(command.equalsIgnoreCase(“B”))
 67 {
 68 System.out.print(“Amount: ”);
 69 double amount =
in.nextDouble();
 70 theATM.withdraw(amount);
 71 theATM.back();
 72 }
 73 else if
(command.equalsIgnoreCase(“C”))
 74 theATM.back();
 75 else
 76 System.out.println(“Illegal
input!”);
 77 }
 78 }
 79 }
 80 }

Output

Enter account number: 1
Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C
. . .

Here are the user interface classes for the GUI version of the user interface.

ch12/atm/ATMViewer.java

 1 import java.io.IOException;
 2 import javax.swing.JFrame;
 3 import javax.swing.JOptionPane;
 4
 5 /**

 6 A graphical simulation of an automatic teller machine.
 7 */
 8 public class ATMViewer

570

571

Chapter 12 Object-Oriented Design Page 57 of 77

Java Concepts, 5th Edition

 9 {
 10 public static void main(String[] args)
 11 {
 12 ATM theATM;
 13
 14 try
 15 {
 16 Bank theBank = new Bank();
 17 theBank.readCustomers(“customers.txt”);
 18 theATM = new ATM(theBank);
 19 }
 20 catch(IOException e)
 21 {
 22 JOptionPane.showMessageDialog(null,
 23 “Error opening accounts
file.”);
 24 return;
 25 }
 26
 27 JFrame frame = new ATMFrame(theATM);
 28 frame.setTitle(“First National Bank of
Java”);
 29 frame.setDefaultCloseOperation(JFrame.EXIT_ON
 30 frame.setVisible(true);
 31 }
 32 }

ch12/atm/ATMFrame.java

 1 import java.awt.FlowLayout;
 2 import java.awt.GridLayout;
 3 import java.awt.event.ActionEvent;
 4 import java.awt.event.ActionListener;
 5 import javax.swing.JButton;
 6 import javax.swing.JFrame;
 7 import javax.swing.JPanel;
 8 import javax.swing.JTextArea;
 9
 10 /**

 11 A frame displaying the components of an ATM.
 12 */
 13 public class ATMFrame extends JFrame

571

572

Chapter 12 Object-Oriented Design Page 58 of 77

Java Concepts, 5th Edition

 14 {
 15 /**

 16 Constructs the user interface of the ATM frame.
 17 */
 18 public ATMFrame(ATM anATM)
 19 {
 20 theATM = anATM;
 21

 22 // Construct components
 23 pad = new KeyPad();
 24
 25 display = new JTextArea(4, 20);
 26
 27 aButton = new JButton(“ A ”);
 28 aButton.addActionListener(new
AButtonListener());
 29
 30 bButton = new JButton(“ B ”);
 31 bButton.addActionListener(new
BButtonListener());
 32
 33 cButton = new JButton(“ C ”);
 34 cButton.addActionListener(new
CButtonListener());
 35

 36 // Add components
 37
 38 JPanel buttonPanel = new JPanel();
 39 buttonPanel.add(aButton);
 40 buttonPanel.add(bButton);
 41 buttonPanel.add(cButton);
 42
 43 setLayout(new FlowLayout());
 44 add(pad);
 45 add(display);
 46 add(buttonPanel);
 47 showState();
 48
 49 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 50 }
 51
 52 /**

572

573

Chapter 12 Object-Oriented Design Page 59 of 77

Java Concepts, 5th Edition

 53 Updates display message.
 54 */
 55 public void showState()
 56 {
 57 int state = theATM.getState();
 58 pad.clear();
 59 if (state == ATM.START)
 60 display.setText(“Enter customer
number\nA = OK”);
 61 else if (state == ATM.PIN)
 62 display.setText(“Enter PIN\nA = OK”);
 63 else if (state == ATM.ACCOUNT)
 64 display.setText(“Select Account\n”
 65 + “A = Checking\nB =
Savings\nC = Exit”);
 66 else if (state == ATM.TRANSACT)
 67 display.setText(“Balance = ”
 68 + theATM.getBalance()
 69 + “\nEnter amount and select
transaction\n”
 70 + “A = Withdraw\nB =
Deposit\nC = Cancel”);
 71 }
 72
 73 private class AButtonListener implements
ActionListener
 74 {
 75 public void actionPerformed(ActionEvent
event)
 76 {
 77 int state = theATM.getState();
 78 if (state == ATM.START)
 79 theATM.setCustomerNumber((int)
pad.getValue());
 80 else if (state == ATM.PIN)
 81 theATM.selectCustomer((int)
pad.getValue());
 82 else if (state == ATM.ACCOUNT)
 83 theATM.selectAccount(ATM.CHECKING);
 84 else if (state == ATM.TRANSACT)
 85 {
 86 theATM.withdraw(pad.getValue());
 87 theATM.back();

Chapter 12 Object-Oriented Design Page 60 of 77

Java Concepts, 5th Edition

 88 }
 89 showState();
 90 }
 91 }
 92
 93 private class BButtonListener implements
ActionListener
 94 {
 95 public void actionPerformed(ActionEvent
event)
 96 {
 97 int state = theATM.getState();
 98 if (state == ATM.ACCOUNT)
 99 theATM.selectAccount(ATM.SAVINGS);
 100 else if (state == ATM.TRANSACT)
 101 {
 102 theATM.deposit(pad.getValue());
 103 theATM.back();
 104 }
 105 showState();
 106 }
 107 }
 108
 109 private class CButtonListener implements
ActionListener
 110 {
 111 public void actionPerformed(ActionEvent
event)
 112 {
 113 int state = theATM.getState();
 114 if (state == ATM.ACCOUNT)
 115 theATM.reset();
 116 else if (state == ATM.TRANSACT)
 117 theATM.back();
 118 showState();
 119 }
 120 }
 121
 122 private JButton aButton;
 123 private JButton bButton;
 124 private JButton cButton;
 125
 126 private KeyPad pad;

573

574

Chapter 12 Object-Oriented Design Page 61 of 77

Java Concepts, 5th Edition

 127 private JTextArea display;
 128
 129 private ATM theATM;
 130
 131 private static final int FRAME_WIDTH = 300;
 132 private static final int FRAME_HEIGHT =
300;
 133 }

This class uses layout managers to arrange the text field and the keypad buttons.

See Chapter 18 for more information about layout managers.

ch12/atm/KeyPad.java

 1 import java.awt.BorderLayout;
 2 import java.awt.GridLayout;
 3 import java.awt.event.ActionEvent;
 4 import java.awt.event.ActionListener;
 5 import javax.swing.JButton;
 6 import javax.swing.JPanel;
 7 import javax.swing.JTextField;
 8
 9 /**

 10 A component that lets the user enter a number, using

 11 a keypad labeled with digits.
 12 */
 13 public class KeyPad extends JPanel
 14 {
 15 /**

 16 Constructs the keypad panel.
 17 */
 18 public KeyPad()
 19 {
 20 setLayout(new BorderLayout());
 21

 22 // Add display field
 23
 24 display = new JTextField();
 25 add(display, “North”);
 26

 27 // Make button panel

574

575

Chapter 12 Object-Oriented Design Page 62 of 77

Java Concepts, 5th Edition

 28
 29 buttonPanel = new JPanel();
 30 buttonPanel.setLayout(new
GridLayout(4, 3));
 31

 32 //Add digit buttons
 33
 34 addButton(“7”);
 35 addButton(“8”);
 36 addButton(“9”);
 37 addButton(“4”);
 38 addButton(“5”);
 39 addButton(“6”);
 40 addButton(“1”);
 41 addButton(“2”);
 42 addButton(“3”);
 43 addButton(“0”);
 44 addButton(“.”);
 45

 46 // Add clear entry button
 47
 48 clearButton = new JButton(“CE”);
 49 buttonPanel.add(clearButton);
 50
 51 class ClearButtonListener implements
ActionListener
 52 {
 53 public void
actionPerformed(ActionEvent event)
 54 {
 55 display.setText(“”);
 56 }
 57 }
 58 ActionListener listener = new
ClearButtonListener();
 59
 60 clearButton.addActionListener(new
 61 ClearButtonListener());
 62
 63 add(buttonPanel, “Center”);
 64 }
 65
 66 /**

575

576

Chapter 12 Object-Oriented Design Page 63 of 77

Java Concepts, 5th Edition

 67 Adds a button to the button panel.

 68 @param label the button label
 69 */
 70 private void addButton(final String label)
 71 {
 72 class DigitButtonListener implements
ActionListener
 73 {
 74 public void
actionPerformed(ActionEvent event)
 75 {
 76

 77 // Don't add two decimal points
 78 if (label.equals(“.”)
 79 &&
display.getText().indexOf(“.”) != -1)
 80 return;
 81

 82 // Append label text to button
 83 display.setText(display.getText()
+ label);
 84 }
 85 }
 86
 87 JButton button = new JButton (label);
 88 buttonPanel.add(button);
 89 ActionListener listener = new
DigitButtonListener();
 90 button.addActionListener(listener);
 91 }
 92
 93 /**

 94 Gets the value that the user entered.

 95 @return the value in the text field of the keypad
 96 */
 97 public double getValue()
 98 {
 99 return
Double.parseDouble(display.getText());
 100 }
 101
 102 /**

Chapter 12 Object-Oriented Design Page 64 of 77

Java Concepts, 5th Edition

 103 Clears the display.
 104 */
 105 public void clear()
 106 {
 107 display.setText(“”);
 108 }
 109
 110 private JPanel buttonPanel;
 111 private JButton clearButton;
 112 private JTextField display;
 113 }

In this chapter, you learned a systematic approach for building a relatively complex

program. However, object-oriented design is definitely not a spectator sport. To

really learn how to design and implement programs, you have to gain experience by

repeating this process with your own projects. It is quite possible that you don't

immediately home in on a good solution and that you need to go back and

reorganize your classes and responsibilities. That is normal and only to be expected.

The purpose of the object-oriented design process is to spot these problems in the

design phase, when they are still easy to rectify, instead of in the implementation

phase, when massive reorganization is more difficult and time consuming.

SELF CHECK

12. Why does the Bank class in this example not store an array list of

bank accounts?

13. Suppose the requirements change—you need to save the current

account balances to a file after every transaction and reload them

when the program starts. What is the impact of this change on the

design?

 RANDOM FACT 12.2: Software Development–Art or

Science?

There has been a long discussion whether the discipline of computing is a

science or not. We call the field “computer science”, but that doesn't mean much.

576

577

Chapter 12 Object-Oriented Design Page 65 of 77

Java Concepts, 5th Edition

Except possibly for librarians and sociologists, few people believe that library

science and social science are scientific endeavors.

A scientific discipline aims to discover certain fundamental principles dictated

by the laws of nature. It operates on the scientific method: by posing hypotheses

and testing them with experiments that are repeatable by other workers in the

field. For example, a physicist may have a theory on the makeup of nuclear

particles and attempt to confirm or refute that theory by running experiments in a

particle collider. If an experiment cannot be confirmed, such as the “cold fusion”

research in the early 1990s, then the theory dies a quick death.

Some software developers indeed run experiments. They try out various methods

of computing certain results or of configuring computer systems, and measure

the differences in performance. However, their aim is not to discover laws of

nature.

Some computer scientists discover fundamental principles. One class of

fundamental results, for instance, states that it is impossible to write certain

kinds of computer programs, no matter how powerful the computing equipment

is. For example, it is impossible to write a program that takes as its input any two

Java program files and as its output prints whether or not these two programs

always compute the same results. Such a program would be very handy for

grading student homework, but nobody, no matter how clever, will ever be able

to write one that works for all input files. However, the majority of computer

scientists are not researching the limits of computation.

Some people view software development as an art or craft. A programmer who

writes elegant code that is easy to understand and runs with optimum efficiency

can indeed be considered a good craftsman. Calling it an art is perhaps

far-fetched, because an art object requires an audience to appreciate it, whereas

the program code is generally hidden from the program user.

Others call software development an engineering discipline. Just as mechanical

engineering is based on the fundamental mathematical principles of statics,

computing has certain mathematical foundations. There is more to mechanical

engineering than mathematics, such as knowledge of materials and of project

planning. The same is true for computing. A software engineer needs to know

about planning, budgeting, design, test automation, documentation, and source

577

578

Chapter 12 Object-Oriented Design Page 66 of 77

Java Concepts, 5th Edition

code control, in addition to computer science subjects, such as programming,

algorithm design, and database technologies.

In one somewhat worrisome aspect, software development does not have the

same standing as other engineering disciplines. There is little agreement as to

what constitutes professional conduct in the computer field. Unlike the scientist,

whose main responsibility is the search for truth, the software developer must

strive to satisfy the conflicting demands of quality, safety, and economy.

Engineering disciplines have professional organizations that hold their members

to standards of conduct. The computer field is so new that in many cases we

simply don't know the correct method for achieving certain tasks. That makes it

difficult to set professional standards.

What do you think? From your limited experience, do you consider software

development an art, a craft, a science, or an engineering activity?

CHAPTER SUMMARY

1. The life cycle of software encompasses all activities from initial analysis until

obsolescence.

2. A formal process for software development describes phases of the

development process and gives guidelines for how to carry out the phases.

3. The waterfall model of software development describes a sequential process of

analysis, design, implementation, testing, and deployment.

4. The spiral model of software development describes an iterative process in

which design and implementation are repeated.

5. Extreme Programming is a development methodology that strives for simplicity

by removing formal structure and focusing on best practices.

6. In object-oriented design, you discover classes, determine the responsibilities

of classes, and describe the relationships between classes.

7. A CRC card describes a class, its responsibilities, and its collaborating classes.

Chapter 12 Object-Oriented Design Page 67 of 77

Java Concepts, 5th Edition

8. Inheritance (the is-a relationship) is sometimes inappropriately used when the

has-a relationship would be more appropriate.

9. Aggregation (the has-a relationship) denotes that objects of one class contain

references to objects of another class.

10. Dependency is another name for the “uses” relationship.

11. You need to be able to distinguish the UML notations for inheritance, interface

implementation, aggregation, and dependency.

12. Use javadoc comments (with the method bodies left blank) to record the

behavior of classes.

FURTHER READING

1. Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling

Language User Guide, Addison-Wesley, 1999.

2. Kent Beck, Extreme Programming Explained, Addison-Wesley, 1999.

3. W. H. Sackmann, W. J. Erikson, and E. E. Grant, “Exploratory

Experimental Studies Comparing Online and Offline Programming

Performance”, Communications of the ACM, vol. 11, no. 1 (January 1968),

pp. 3–11.

4. F. Brooks, The Mythical Man-Month, Addison-Wesley, 1975.

REVIEW EXERCISES

★ Exercise R12.1. What is the software life cycle?

★★ Exercise R12.2. List the steps in the process of object-oriented design that

this chapter recommends for student use.

★ Exercise R12.3. Give a rule of thumb for how to find classes when

designing a program.

★ Exercise R12.4. Give a rule of thumb for how to find methods when

designing a program.

578

579

Chapter 12 Object-Oriented Design Page 68 of 77

Java Concepts, 5th Edition

★★ Exercise R12.5. After discovering a method, why is it important to

identify the object that is responsible for carrying out the action?

★ Exercise R12.6. What relationship is appropriate between the following

classes: aggregation, inheritance, or neither?

a. University–Student

b. Student–TeachingAssistant

c. Student–Freshman

d. Student–Professor

e. Car–Door

f. Truck–Vehicle

g. Traffic–TrafficSign

h. TrafficSign–Color

★★ Exercise R12.7. Every BMW is a vehicle. Should a class BMW inherit from

the class Vehicle? BMW is a vehicle manufacturer. Does that mean that

the class BMW should inherit from the class VehicleManufacturer?

★★ Exercise R12.8. Some books on object-oriented programming recommend

using inheritance so that the class Circle extends the class Point. Then

the Circle class inherits the setLocation method from the Point

superclass. Explain why the setLocation method need not be redefined

in the subclass. Why is it nevertheless not a good idea to have Circle

inherit from Point? Conversely, would inheriting Point from Circle

fulfill the is-a rule? Would it be a good idea?

★ Exercise R12.9. Write CRC cards for the Coin and CashRegister

classes described in Section 8.2.

★ Exercise R12.10. Write CRC cards for the Bank and BankAccount

classes in Section 7.2.

579

580

Chapter 12 Object-Oriented Design Page 69 of 77

Java Concepts, 5th Edition

★★ Exercise R12.11. Draw a UML diagram for the Coin and

CashRegister classes described in Section 8.2.

★★★ Exercise R12.12. A file contains a set of records describing countries.

Each record consists of the name of the country, its population, and its

area. Suppose your task is to write a program that reads in such a file and

prints

• The country with the largest area

• The country with the largest population

• The country with the largest population density (people per square

kilometer)

Think through the problems that you need to solve. What classes and

methods will you need? Produce a set of CRC cards, a UML diagram,

and a set of javadoc comments.

★★★ Exercise R12.13. Discover classes and methods for generating a student

report card that lists all classes, grades, and the grade point average for a

semester. Produce a set of CRC cards, a UML diagram, and a set of

javadoc comments.

★★★ Exercise R12.14. Consider a quiz grading system that grades student

responses to quizzes. A quiz consists of questions. There are different

types of questions, including essay questions and multiple-choice

questions. Students turn in submissions for quizzes, and the grading

system grades them. Draw a UML diagram for classes Quiz,

Question, EssayQuestion, MultipleChoiceQuestion,

Student, and Submission.

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★★ Exercise P12.1. Enhance the invoice-printing program by providing for

two kinds of line items: One kind describes products that are purchased in

Chapter 12 Object-Oriented Design Page 70 of 77

Java Concepts, 5th Edition

certain numerical quantities (such as “3 toasters”), another describes a

fixed charge (such as “shipping: $5.00”). Hint: Use inheritance. Produce a

UML diagram of your modified implementation.

★★ Exercise P12.2. The invoice-printing program is somewhat unrealistic

because the formatting of the LineItem objects won't lead to good visual

results when the prices and quantities have varying numbers of digits.

Enhance the format method in two ways: Accept an int[] array of

column widths as a parameter. Use the NumberFormat class to format

the currency values.

★★ Exercise P12.3. The invoice-printing program has an unfortunate flaw—it

mixes “business logic”, the computation of total charges, and

“presentation”, the visual appearance of the invoice. To appreciate this

flaw, imagine the changes that would be necessary to draw the invoice in

HTML for presentation on the Web. Reimplement the program, using a

separate InvoiceFormatter class to format the invoice. That is, the

Invoice and LineItem methods are no longer responsible for

formatting. However, they will acquire other responsibilities, because the

InvoiceFormatter class needs to query them for the values that it

requires.

★★★ Exercise P12.4. Write a program that teaches arithmetic to your younger

brother. The program tests addition and subtraction. In level 1 it tests

only addition of numbers less than 10 whose sum is less than 10. In level

2 it tests addition of arbitrary one-digit numbers. In level 3 it tests

subtraction of one-digit numbers with a non-negative difference.

Generate random problems and get the player input. The player gets up

to two tries per problem. Advance from one level to the next when the

player has achieved a score of five points.

★★★ Exercise P12.5. Design a simple e-mail messaging system. A message

has a recipient, a sender, and a message text. A mailbox can store

messages. Supply a number of mailboxes for different users and a user

interface for users to log in, send messages to other users, read their own

messages, and log out. Follow the design process that was described in

this chapter.

580

581

Chapter 12 Object-Oriented Design Page 71 of 77

Java Concepts, 5th Edition

★★ Exercise P12.6. Write a program that simulates a vending machine.

Products can be purchased by inserting coins with a value at least equal to

the cost of the product. A user selects a product from a list of available

products, adds coins, and either gets the product or gets the coins returned

if insufficient money was supplied or if the product is sold out. The

machine does not give change if too much money was added. Products can

be restocked and money removed by an operator. Follow the design

process that was described in this chapter. Your solution should include a

class VendingMachine that is not coupled with the Scanner or

PrintStream classes.

★★★ Exercise P12.7. Write a program to design an appointment calendar. An

appointment includes the date, starting time, ending time, and a

description; for example,

Dentist 2007/10/1 17:30 18:30
CS1 class 2007/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled

appointments, and print out a list of appointments for a particular day.

Follow the design process that was described in this chapter. Your

solution should include a class AppointmentCalendar that is not

coupled with the Scanner or PrintStream classes.

★★★ Exercise P12.8. Airline seating. Write a program that assigns seats on an

airplane. Assume the airplane has 20 seats in first class (5 rows of 4 seats

each, separated by an aisle) and 90 seats in economy class (15 rows of 6

seats each, separated by an aisle). Your program should take three

commands: add passengers, show seating, and quit. When passengers are

added, ask for the class (first or economy), the number of passengers

traveling together (1 or 2 in first class; 1 to 3 in economy), and the

seating preference (aisle or window in first class; aisle, center, or

window in economy). Then try to find a match and assign the seats. If no

match exists, print a message. Your solution should include a class

Airplane that is not coupled with the Scanner or PrintSream

classes. Follow the design process that was described in this chapter.

581

582

Chapter 12 Object-Oriented Design Page 72 of 77

Java Concepts, 5th Edition

★★ Exercise P12.9. Modify the implementations of the class in the ATM

example so that the bank manages a collection of bank accounts and a

separate collection of customers. Allow joint accounts in which some

accounts can have more than one customer.

★★★ Exercise P12.10. Write a program that administers and grades quizzes.

A quiz consists of questions. There are four types of questions: text

questions, number questions, choice questions with a single answer, and

choice questions with multiple answers. When grading a text question,

ignore leading or trailing spaces and letter case. When grading a numeric

question, accept a response that is approximately the same as the answer.

A quiz is specified in a text file. Each question starts with a letter

indicating the question type (T, N, S, M), followed by a line containing

the question text. The next line of a non-choice question contains the

answer. Choice questions have a list of choices that is terminated by a

blank line. Each choice starts with + (correct) or − (incorrect). Here is a

sample file:

T
Which Java keyword is used to define a subclass?
extends
S
What is the original name of the Java language?
- *7
- C--
+ Oak
- Gosling
M
Which of the following types are supertypes of
Rectangle?
- PrintStream
+ Shape
+ RectangularShape
+ Object
- String
N
What is the square root of 2?
1.41421356

Chapter 12 Object-Oriented Design Page 73 of 77

Java Concepts, 5th Edition

Your program should read in a quiz file, prompt the user for responses to

all questions, and grade the responses. Follow the design process that

was described in this chapter.

★★★G Exercise P12.11. Implement a program to teach your baby sister

to read the clock. In the game, present an analog clock, such as the one in

Figure 12. Generate random times and display the clock. Accept guesses

from the player. Reward the player for correct guesses. After two

incorrect guesses, display the correct answer and make a new random

time. Implement several levels of play. In level 1, only show full hours.

In level 2, show quarter hours. In level 3, show five-minute multiples,

and in level 4, show any number of minutes. After a player has achieved

five correct guesses at one level, advance to the next level.

Figure 12

An Analog Clock

★★★G Exercise P12.12. Write a program that can be used to design a

suburban scene, with houses, streets, and cars. Users can add houses and

cars of various colors to a street. Write more specific requirements that

include a detailed description of the user interface. Then, discover

classes and methods, provide UML diagrams, and implement your

program.

★★★G Exercise P12.13. Write a simple graphics editor that allows

users to add a mixture of shapes (ellipses, rectangles, and lines in

different colors) to a panel. Supply commands to load and save the

582

583

Chapter 12 Object-Oriented Design Page 74 of 77

Java Concepts, 5th Edition

picture. Discover classes, supply a UML diagram, and implement your

program.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★ Project 12.1. Produce a requirements document for a program that

allows a company to send out personalized mailings, either by e-mail or

through the postal service. Template files contain the message text,

together with variable fields (such as Dear [Title] [Last Name] …). A

database (stored as a text file) contains the field values for each recipient.

Use HTML as the output file format. Then design and implement the

program.

★★★ Project 12.2. Write a tic-tac-toe game that allows a human player to play

against the computer. Your program will play many turns against a

human opponent, and it will learn. When it is the computer's turn, the

computer randomly selects an empty field, except that it won't ever

choose a losing combination. For that purpose, your program must keep

an array of losing combinations. Whenever the human wins, the

immediately preceding combination is stored as losing. For example,

suppose that X = computer and O = human. Suppose the current

combination is

Now it is the human's turn, who will of course choose

583

584

Chapter 12 Object-Oriented Design Page 75 of 77

Java Concepts, 5th Edition

The computer should then remember the preceding combination

as a losing combination. As a result, the computer will never again

choose that combination from

or

Discover classes and supply a UML diagram before you begin to

program.

ANSWERS TO SELF-CHECK QUESTIONS

1. It is unlikely that the customer did a perfect job with the requirements

document. If you don't accommodate changes, your customer may not like

the outcome. If you charge for the changes, your customer may not like the

cost.

584

585

Chapter 12 Object-Oriented Design Page 76 of 77

Java Concepts, 5th Edition

2. An “extreme” spiral model, with lots of iterations.

3. To give frequent feedback as to whether the current iteration of the product

fits customer needs.

4. FileWriter

5. To produce the shipping address of the customer.

6. Reword the responsibilities so that they are at a higher level, or come up

with more classes to handle the responsibilities.

7. Through aggregation. The bank manages bank account objects.

8. Through inheritance.

9. The BankAccount, System, and PrintStream classes.

10. The Invoice class is responsible for computing the amount due. It

collaborates with the LineItem class.

11. This design decision reduces coupling. It enables us to reuse the classes

when we want to show the invoice in a dialog box or on a web page.

12. The bank needs to store the list of customers so that customers can log in.

We need to locate all bank accounts of a customer, and we chose to simply

store them in the customer class. In this program, there is no further need to

access bank accounts.

13. The Bank class needs to have an additional responsibility: to load and save

the accounts. The bank can carry out this responsibility because it has

access to the customer objects and, through them, to the bank accounts.

Chapter 12 Object-Oriented Design Page 77 of 77

Java Concepts, 5th Edition

Chapter 13 Recursion

CHAPTER GOALS

• To learn about the method of recursion

• To understand the relationship between recursion and iteration

• To analyze problems that are much easier to solve by recursion than by

iteration

• To learn to “think recursively”

• To be able to use recursive helper methods

• To understand when the use of recursion affects the efficiency of an algorithm

The method of recursion is a powerful technique to break up complex

computational problems into simpler ones. The term “recursion” refers to the fact

that the same computation recurs, or occurs repeatedly, as the problem is solved.

Recursion is often the most natural way of thinking about a problem, and there are

some computations that are very difficult to perform without recursion. This chapter

shows you simple and complex examples of recursion and teaches you how to “think

recursively”.

13.1 Triangle Numbers

We begin this chapter with a very simple example that demonstrates the power of

thinking recursively. In this example, we will look at triangle shapes such as the ones

from Section 6.3. We'd like to compute the area of a triangle of width n, assuming

that each [] square has area 1. This value is sometimes called the n
th

 triangle number.

For example, as you can tell from looking at

[]
[][]
[][][]

the third triangle number is 6.

587

587

588

Chapter 13 Recursion Page 1 of 54

Java Concepts, 5th Edition

You may know that there is a very simple formula to compute these numbers, but you

should pretend for now that you don't know about it. The ultimate purpose of this

section is not to compute triangle numbers, but to learn about the concept of recursion

in a simple situation.

Here is the the class that we will develop:

public class Triangle
{
 public Triangle(int aWidth)
 {
 width = aWidth;
 }
 public int getArea()
 {
 …
 }
 private int width;
}

If the width of the triangle is 1, then the triangle consists of a single square, and its

area is 1. Let's take care of this case first.

public int getArea()
{
 if (width == 1) return 1;
 …
}

To deal with the general case, consider this picture.

[]
[] []
[] [] []
[] [] [] []

Suppose we knew the area of the smaller, colored triangle. Then we could easily

compute the area of the larger triangle as

smallerArea + width

How can we get the smaller area? Let's make a smaller triangle and ask it!

Triangle smallerTriangle = new Triangle(width - 1);

588

589

Chapter 13 Recursion Page 2 of 54

Java Concepts, 5th Edition

int smallerArea = smallerTriangle.getArea();

Now we can complete the getArea method:

public int getArea()
{
 if (width == 1) return 1;
 Triangle smallerTriangle = new Triangle(width
- 1);
 int smallerArea = smallerTriangle.getArea();
 return smallerArea + width;
}

A recursive computation solves a problem by using the solution of the same

problem with simpler values.

Here is an illustration of what happens when we compute the area of a triangle of

width 4.

• The getArea method makes a smaller triangle of width 3.

• It calls getArea on that triangle.

• That method makes a smaller triangle of width 2.

• It calls getArea on that triangle.

• That method makes a smaller triangle of width 1.

• It calls getArea on that triangle.

• That method returns 1.

• The method returns smallerArea + width = 1 + 2 = 3.

• The method returns smallerArea + width = 3 + 3 = 6.

• The method returns smallerArea + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem for a triangle of a

given width, we use the fact that we can solve the same problem for a lesser width.

This is called a recursive solution.

Chapter 13 Recursion Page 3 of 54

Java Concepts, 5th Edition

The call pattern of a recursive method looks complicated, and the key to the

successful design of a recursive method is not to think about it. Instead, look at the

getArea method one more time and notice how utterly reasonable it is. If the width

is 1, then, of course, the area is 1. The next part is just as reasonable. Compute the

area of the smaller triangle and don't think about why that works. Then the area of the

larger triangle is clearly the sum of the smaller area and the width.

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the computation in some way.

• There must be special cases to handle the simplest computations directly.

The getArea method calls itself again with smaller and smaller width values.

Eventually the width must reach 1, and there is a special case for computing the area

of a triangle with width 1. Thus, the getArea method always succeeds.

For a recursion to terminate, there must be special cases for the simplest values.

Actually, you have to be careful. What happens when you call the area of a triangle

with width −1? It computes the area of a triangle with width −2, which computes the

area of a triangle with width −3, and so on. To avoid this, the getArea method

should return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a

triangle equals the sum

1 + 2 + 3 + … + width

Of course, we can program a simple loop:

double area = 0;
for (int i = 1; i <= width; i++)
 area = area + i;

Many simple recursions can be computed as loops. However, loop equivalents for

more complex recursions—such as the one in our next example—can be complex.

Actually, in this case, you don't even need a loop to compute the answer. The sum of

the first n integers can be computed as

589

590

Chapter 13 Recursion Page 4 of 54

Java Concepts, 5th Edition

1 + 2 + … + n = n × (n + 1) / 2

Thus, the area equals

width * (width + 1) / 2

Therefore, neither recursion nor a loop is required to solve this problem. The

recursive solution is intended as a “warm-up” to introduce you to the concept of

recursion.

ch13/triangle/Triangle.java

 1 /**

 2 A triangular shape composed of stacked unit squares like this:
 3 []
 4 [][]
 5 [][][]
 6 …
 7 */
 8 public class Triangle
 9 {
10 /**

11 Constructs a triangular shape.

12 @param aWidth the width (and height) of the triangle
13 */
14 public Triangle(int aWidth)
15 {
16 width = aWidth;
17 }
18

19 /**

20 Computes the area of the triangle.

21 @return the area
22 */
23 public int getArea()
24 {
25 if (width <= 0) return 0;
26 if (width == 1) return 1;
27 Triangle smallerTriangle = new
Triangle(width - 1);

590

591

Chapter 13 Recursion Page 5 of 54

Java Concepts, 5th Edition

28 int small erArea =
smallerTriangle.getArea();
29 return smallerArea + width;
30 }
31

32 private int width;
33 }

ch13/triangle/TriangleTester.java

 1 public class TriangleTester
 2 {
 3 public static void main(String[] args)
 4 {
 5 Triangle t = new Triangle(10);
 6 int area = t.getArea();
 7 System.out.println(“Area: ” + area);
 8 System.out.println(“Expected: 55”);
 9 }
10 }

Output

 Enter width: 10
 Area: 55
 Expected: 55

SELF CHECK

1. Why is the statement if (width == 1) return 1; in the

getArea method unnecessary?

2. How would you modify the program to recursively compute the area of

a square?

 COMMON ERROR 13.1: Infinite Recursion

A common programming error is an infinite recursion: a method calling itself over

and over with no end in sight. The computer needs some amount of memory for

bookkeeping for each call. After some number of calls, all memory that is

591

592

Chapter 13 Recursion Page 6 of 54

Java Concepts, 5th Edition

available for this purpose is exhausted. Your program shuts down and reports a

“stack fault”.

Infinite recursion happens either because the parameter values don't get simpler or

because a special terminating case is missing. For example, suppose the getArea

method com putes the area of a triangle with width 0. If it wasn't for the special

test, the method would have constructed triangles with width −1, −2, −3, and so on.

13.2 Permutations

We will now turn to a more complex example of recursion that would be difficult to

program with a simple loop. We will design a class that lists all permutations of a

string. A permutation is simply a rearrangement of the letters. For example, the string

“eat” has six permutations (including the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

As in the preceding section, we will define a class that is in charge of computing the

answer. In this case, the answer is not a single number but a collection of permuted

strings. Here is our class:

public class PermutationGenerator
{
 public PermutationGenerator(String aWord) { … }
 ArrayList<String> getPermutations() { … }
}

Here is the test program that prints out all permutations of the string "eat":

ch13/permute/PermutationGeneratorDemo.java

1 import java.util.ArrayList;
2

3 /**

4 This program demonstrates the permutation generator.
5 */

Chapter 13 Recursion Page 7 of 54

Java Concepts, 5th Edition

6 public class PermutationGeneratorDemo
7 {
8 public static void main(String[] args)
9 {
10 PermutationGenerator generator
11 = new
PermutationGenerator(“eat”);
12 ArrayList<String> permutations =
generator.getPermutations();
13 for (String s : permutations)
14 {
15 System.out.println(s);
16 }
17 }
18 }

Output

 eat
 eta
 aet
 ate
 tea
 tae

Now we need a way to generate the permutations recursively. Consider the string

"eat". Let's simplify the problem. First, we'll generate all permutations that start

with the letter ’e’, then those that start with ’a’, and finally those that start with ’

t’. How do we generate the permutations that start with ’e’? We need to know the

permutations of the substring “at”. But that's the same problem—to generate all

permutations—with a simpler input, namely the shorter string "at". Thus, we can

use recursion. Generate the permutations of the substring "at". They are

"at"
"ta"

For each permutation of that substring, prepend the letter ’e’ to get the permutations

of “eat” that start with ’e’, namely

"eat"
"eta"

592

593

Chapter 13 Recursion Page 8 of 54

Java Concepts, 5th Edition

Now let's turn our attention to the permutations of "eat" that start with ’a’. We

need to produce the permutations of the remaining letters, "et". They are:

"et"
"te"

We add the letter ’a’ to the front of the strings and obtain

"aet"
"ate"

We generate the permutations that start with ’t’ in the same way.

That's the idea. The implementation is fairly straightforward. In the

get-Permutations method, we loop through all positions in the word to be

permuted. For each of them, we compute the shorter word that is obtained by

removing the ith letter:

String shorterWord = word.substring(0, i) +
word.substring(i + 1);

We construct a permutation generator to get the permutations of the shorter word, and

ask it to give us all permutations of the shorter word.

PermutationGenerator shorterPermutationGenerator
 = new PermutationGenerator(shorterWord);
ArrayList<String> shorterWordPermutations
 = shorterPermutationGenerator.getPermutations();

Finally, we add the removed letter to the front of all permutations of the shorter word.

for (String s : shorterWordPermutations)
{
 result.add(word.charAt(i) + s);
}

As always, we have to provide a special case for the simplest strings. The simplest

possible string is the empty string, which has a single permutation—itself.

Here is the complete PermutationGenerator class.

593

594

Chapter 13 Recursion Page 9 of 54

Java Concepts, 5th Edition

ch13/permute/PermutationGenerator.java

1 import java.util.ArrayList;
2
3 /**
4 This class generates permutations of a
word.
5 */
6 public class PermutationGenerator
7 {
8 /**
9 Constructs a permutation generator.
10 @param aWord the word to permute
11 */
12 public PermutationGenerator(String aWord)
13 {
14 word = aWord;
15 }
16

17 /**

18 Gets all permutations of a given word.
19 */
20 public ArrayList<String> getPermutations()
21 {
22 ArrayList<String> result = new
ArrayList<String>();
23

24 // The empty string has a single permutation: itself
25 if (word.length() == 0)
26 {
27 result.add(word);
28 return result;
29 }
30

31 // Loop through all character positions
32 for (int i = 0; i < word.length(); i++)
33 {

34 // Form a simpler word by removing the ith character
35 String shorterWord =
word.substring(0, i)
36 + word.substring(i + 1);

594

595

Chapter 13 Recursion Page 10 of 54

Java Concepts, 5th Edition

37

38 // Generate all permutations of the simpler word
39 PermutationGenerator
shorterPermutationGenerator
40 = new
PermutationGenerator(shorterWord);
41 ArrayList<String>
shorterWordPermutations
42 =
shorterPermutationGenerator.getPermutations();
43

44 // Add the removed character to the front of

45 // each permutation of the simpler word
46 for (String s :
shorterWordPermutations)
47 {
48 result.add(word.charAt(i) +
s);
49 }
50 }

51 // Return all permutations
52 return result;
53 }
54

55 private String word;
56 }

Compare the PermutationGenerator and Triangle classes. Both of them

work on the same principle. When they work on a more complex input, they first

solve the problem for a simpler input. Then they combine the result for the simpler

input with additional work to deliver the results for the more complex input. There

really is no particular complexity behind that process as long as you think about the

solution on that level only. However, behind the scenes, the simpler input creates

even simpler input, which creates yet another simplification, and so on, until one

input is so simple that the result can be obtained without further help. It is interesting

to think about this process, but it can also be confusing. What's important is that you

can focus on the one level that matters—putting a solution together from the slightly

simpler problem, ignoring the fact that it also uses recursion to get its results.

Chapter 13 Recursion Page 11 of 54

Java Concepts, 5th Edition

SELF CHECK

3. What are all permutations of the four-letter word beat?

4. Our recursion for the permutation generator stops at the empty string.

What simple modification would make the recursion stop at strings of

length 0 or 1?

 COMMON ERROR 13.2: Tracing Through Recursive

Methods

Debugging a recursive method can be somewhat challenging. When you set a

breakpoint in a recursive method, the program stops as soon as that program line is

encountered in any call to the recursive method. Suppose you want to debug the

recursive getArea method of the Triangle class. Debug the

TriangleTester program and run until the beginning of the getArea

method. Inspect the width instance variable. It is 10.

Remove the breakpoint and now run until the statement return

smallerArea + width; (see Figure 1). When you inspect width again, its

value is 2! That makes no sense. There was no instruction that changed the value

of width. Is that a bug with the debugger?

No. The program stopped in the first recursive call to getArea that reached the

return statement. If you are confused, look at the call stack (top left in the

figure). You will see that nine calls to getArea are pending.

You can debug recursive methods with the debugger. You just need to be

particularly careful, and watch the call stack to understand which nested call you

currently are in.

595

596

Chapter 13 Recursion Page 12 of 54

Java Concepts, 5th Edition

Figure 1

Debugging a Recursive Method

 HOW TO 13.1: Thinking Recursively

To solve a problem recursively requires a different mindset than to solve it by

programming loops. In fact, it helps if you are, or pretend to be, a bit lazy and like

others to do most of the work for you. If you need to solve a complex problem,

pretend that “someone else” will do most of the heavy lifting and solve the

596

597

Chapter 13 Recursion Page 13 of 54

Java Concepts, 5th Edition

problem for all simpler inputs. Then you only need to figure out how you can turn

the solutions with simpler inputs into a solution for the whole problem.

To illustrate the method of recursion, let us consider the following problem. We

want to test whether a sentence is a palindrome—a string that is equal to itself

when you reverse all characters. Typical examples of palindromes are

• A man, a plan, a canal—Panama!

• Go hang a salami, I'm a lasagna hog

and, of course, the oldest palindrome of all:

• Madam, I'm Adam

When testing for a palindrome, we match upper- and lowercase letters, and ignore

all spaces and punctuation marks.

We want to implement the isPalindrome method in the following class:

public class Sentence
{
 /**

 Constructs a sentence.

 @param aText a string containing all characters of the

sentence
 */
 public Sentence(String aText)
 {
 text = aText;
 }
 /**

 Tests whether this sentence is a palindrome.

 @return true if this sentence is a palindrome, false

otherwise
 */
 public boolean isPalindrome()
 {
 …
 }
 private String text;
}

Chapter 13 Recursion Page 14 of 54

Java Concepts, 5th Edition

Step 1 Consider various ways to simplify inputs.

In your mind, fix a particular input or set of inputs for the problem that you want to

solve.

Think how you can simplify the inputs in such a way that the same problem can be

applied to the simpler input.

When you consider simpler inputs, you may want to remove just a little bit from

the original input—maybe remove one or two characters from a string, or remove a

small portion of a geometric shape. But sometimes it is more useful to cut the input

in half and then see what it means to solve the problem for both halves.

In the palindrome test problem, the input is the string that we need to test. How can

you simplify the input? Here are several possibilities:

• Remove the first character.

• Remove the last character.

• Remove both the first and last characters.

• Remove a character from the middle.

• Cut the string into two halves.

These simpler inputs are all potential inputs for the palindrome test.

Step 2 Combine solutions with simpler inputs into a solution of the original

problem.

In your mind, consider the solutions of your problem for the simpler inputs that

you discovered in Step 1. Don't worry how those solutions are obtained. Simply

have faith that the solutions are readily available. Just say to yourself: These are

simpler inputs, so someone else will solve the problem for me.

Now think how you can turn the solution for the simpler inputs into a solution for

the input that you are currently thinking about. Maybe you need to add a small

quantity, related to the quantity that you lopped off to arrive at the simpler input.

597

598

Chapter 13 Recursion Page 15 of 54

Java Concepts, 5th Edition

Maybe you cut the original input in half and have solutions for each half. Then you

may need to add both solutions to arrive at a solution for the whole.

Consider the methods for simplifying the inputs for the palindrome test. Cutting

the string in half doesn't seem a good idea. If you cut

"Madam, I'm Adam"

in half, you get two strings:

"Madam, I"

and

"'m Adam"

Neither of them is a palindrome. Cutting the input in half and testing whether the

halves are palindromes seems a dead end.

The most promising simplification is to remove the first and last characters.

Removing the M at the front and the m at the back yields

"adam, I'm Ada"

Suppose you can verify that the shorter string is a palindrome. Then of course the

original string is a palindrome—we put the same letter in the front and the back.

That's extremely promising. A word is a palindrome if

• The first and last letters match (ignoring letter case)

and

• The word obtained by removing the first and last letters is a palindrome.

Again, don't worry how the test works for the shorter string. It just works.

There is one other case to consider. What if the first or last letter of the word is not

a letter? For example, the string

"A man, a plan, a canal, Panama!"

ends in a ! character, which does not match the A in the front. But we should

ignore non-letters when testing for palindromes. Thus, when the last character is

598

599

Chapter 13 Recursion Page 16 of 54

Java Concepts, 5th Edition

not a letter but the first character is a letter, it doesn't make sense to remove both

the first and the last characters. That's not a problem. Remove only the last

character. If the shorter string is a palindrome, then it stays a palindrome when you

attach a nonletter.

The same argument applies if the first character is not a letter. Now we have a

complete set of cases.

• If the first and last characters are both letters, then check whether they

match. If so, remove both and test the shorter string.

• Otherwise, if the last character isn't a letter, remove it and test the shorter

string.

• Otherwise, the first character isn't a letter. Remove it and test the shorter

string.

In all three cases, you can use the solution to the simpler problem to arrive at a

solution to your problem.

Step 3 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very

simple inputs. To make sure that the recursion comes to a stop, you must deal with

the simplest inputs separately. Come up with special solutions for them, which is

usually very easy.

However, sometimes you get into philosophical questions dealing with degenerate

inputs: empty strings, shapes with no area, and so on. Then you may want to

investigate a slightly larger input that gets reduced to such a trivial input and see

what value you should attach to the degenerate inputs so that the simpler value,

when used according to the rules you discovered in Step 2, yields the correct

answer.

Let's look at the simplest strings for the palindrome test:

• Strings with two characters

• Strings with a single character

Chapter 13 Recursion Page 17 of 54

Java Concepts, 5th Edition

• The empty string

We don't have to come up with a special solution for strings with two characters.

Step 2 still applies to those strings—either or both of the characters are removed.

But we do need to worry about strings of length 0 and 1. In those cases, Step 2

can't apply. There aren't two characters to remove.

The empty string is a palindrome—it's the same string when you read it

backwards. If you find that too artificial, consider a string "mm". According to the

rule discovered in Step 2, this string is a palindrome if the first and last characters

of that string match and the remainder—that is, the empty string—is also a

palindrome. Therefore, it makes sense to consider the empty string a palindrome.

A string with a single letter, such as "I", is a palindrome. How about the case in

which the character is not a letter, such as "!"? Removing the ! yields the empty

string, which is a palindrome. Thus, we conclude that all strings of length 0 or 1

are palindromes.

Step 4 Implement the solution by combining the simple cases and the reduction

step.

Now you are ready to implement the solution. Make separate cases for the simple

inputs that you considered in Step 3. If the input isn't one of the simplest cases,

then implement the logic you discovered in Step 2.

Here is the isPalindrome method.

public boolean isPalindrome()
{
 int length = text.length();

 // Separate case for shortest strings.
 if (length <= 1) return true;

 // Get first and last characters, converted to lowercase.
 char first =
Character.toLowerCase(text.charAt(0));
 char last =
Character.toLowerCase(text.charAt(length - 1));
 if (Character.isLetter(first) &&
Character.isLetter(last))
 {

599

600

Chapter 13 Recursion Page 18 of 54

Java Concepts, 5th Edition

 // Both are letters.
 if (first == last)
 {

 // Remove both first and last character.
 Sentence shorter = new
Sentence(text.substring(1, length - 1));
 return shorter.isPalindrome();
 }
 else
 return false;
 }
 else if (!Character.isLetter(last))
 {

 // Remove last character.
 Sentence shorter = new
Sentence(text.substring(0, length - 1));
 return shorter.isPalindrome();
 }
 else
 {

 // Remove first character.
 Sentence shorter = new
Sentence(text.substring(1));
 return shorter.isPalindrome();
 }
}

13.3 Recursive Helper Methods

Sometimes it is easier to find a recursive solution if you change the original problem

slightly. Then the original problem can be solved by calling a recursive helper method.

Sometimes it is easier to find a recursive solution if you make a slight change to

the original problem.

Here is a typical example. Consider the palindrome test of How To 13.1. It is a bit

inefficient to construct new Sentence objects in every step. Now consider the

following change in the problem. Rather than testing whether the entire sentence is a

palindrome, let's check whether a substring is a palindrome:

/**

600

601

Chapter 13 Recursion Page 19 of 54

Java Concepts, 5th Edition

 Tests whether a substring of the sentence is a palindrome.

 @param start the index of the first character of the substring

 @param end the index of the last character of the substring

 @return true if the substring is a palindrome
*/
public boolean isPalindrome(int start, int end)

This method turns out to be even easier to implement than the original test. In the

recursive calls, simply adjust the start and end parameters to skip over matching

letter pairs and characters that are not letters. There is no need to construct new

Sentence objects to represent the shorter strings.

public boolean isPalindrome(int start, int end)
{

 // Separate case for substrings of length 0 and 1.
 if (start >= end) return true;

 // Get first and last characters, converted to lowercase.
 char first =
Character.toLowerCase(text.charAt(start));
 char last =
Character.toLowerCase(text.charAt(end));
 if (Character.isLetter(first) &&
Character.isLetter(last))
 {
 if (first == last)
 {

 // Test substring that doesn't contain the matching letters.
 return isPalindrome(start + 1, end - 1);
 }
 else
 return false;
 }
 else if (!Character.isLetter(last))
 {

 // Test substring that doesn't contain the last character.
 return isPalindrome(start, end - 1);
 }
 else
 {

 // Test substring that doesn't contain the first character.
 return isPalindrome(start + 1, end);
 }

Chapter 13 Recursion Page 20 of 54

Java Concepts, 5th Edition

}

You should still supply a method to solve the whole problem—the user of your

method shouldn't have to know about the trick with the substring positions. Simply

call the helper method with positions that test the entire string:

public boolean isPalindrome()
{
 return isPalindrome(0, text.length() - 1);
}

Note that this call is not a recursive method. The isPalindrome() method calls

the helper method isPalindrome(int, int). In this example, we use

overloading to define two methods with the same name. The isPalindrome

method without parameters is the method that we expect the public to use. The

second method, with two int parameters, is the recursive helper method. If you

prefer, you can avoid overloaded methods by choosing a different name for the helper

method, such as substringIsPalindrome.

Use the technique of recursive helper methods whenever it is easier to solve a

recursive problem that is slightly different from the original problem.

SELF CHECK

5. Do we have to give the same name to both isPalindrome methods?

6. When does the recursive isPalindrome method stop calling itself?

13.4 The Efficiency of Recursion

As you have seen in this chapter, recursion can be a powerful tool to implement

complex algorithms. On the other hand, recursion can lead to algorithms that perform

poorly. In this section, we will analyze the question of when recursion is beneficial

and when it is inefficient.

Consider the Fibonacci sequence introduced in Exercise P6.4: a sequence of numbers

defined by the equation

601

602

Chapter 13 Recursion Page 21 of 54

Java Concepts, 5th Edition

= 1f
1

= 1f
2

= +f
n

f
n − 1

f
n − 2

That is, each value of the sequence is the sum of the two preceding values. The first

ten terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is easy to extend this sequence indefinitely. Just keep appending the sum of the last

two values of the sequence. For example, the next entry is 34 + 55 = 89.

We would like to write a function that computes fn for any value of n. Let us translate

the definition directly into a recursive method:

ch13/fib/RecursiveFib.java

 1 import java.util.Scanner;
 2
 3 /**

 4 This program computes Fibonacci numbers using a recursive

 5 method.
 6 */
 7 public class RecursiveFib
 8 {
 9 public static void main(String[] args)
10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter n: ");
13 int n = in.nextInt();
14

15 for (int i = 1; i <= n; i++)
16 {
17 long f = fib(i);
18 System.out.println("fib(" + i +
") = " + f);
19 }
20 }

602

603

Chapter 13 Recursion Page 22 of 54

Java Concepts, 5th Edition

21

22 /**

23 Computes a Fibonacci number.

24 @param n an integer

25 @return the nth Fibonacci number
26 */
27 public static long fib(int n)
28 {
29 if (n <= 2) return 1;
30 else return fib(n - 1) + fib(n - 2);
31 }
32 }

Output

 Enter n: 50
 fib(1) = 1
 fib(2) = 1
 fib(3) = 2
 fib(4) = 3
 fib(5) = 5
 fib(6) = 8
 fib(7) = 13
 …
 fib(50) = 12586269025

That is certainly simple, and the method will work correctly. But watch the output

closely as you run the test program. The first few calls to the fib method are quite

fast. For larger values, though, the program pauses an amazingly long time between

outputs.

That makes no sense. Armed with pencil, paper, and a pocket calculator you could

calculate these numbers pretty quickly, so it shouldn't take the computer anywhere

near that long.

To find out the problem, let us insert trace messages into the method:

ch13/fib/RecursiveFibTracer.java

 1 import java.util.Scanner;
 2

603

604

Chapter 13 Recursion Page 23 of 54

Java Concepts, 5th Edition

 3 /**

 4 This program prints trace messages that show how often the

 5 recursive method for computing Fibonacci numbers calls itself.
 6 */
 7 public class RecursiveFibTracer
 8 {
 9 public static void main(String[] args)
10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print(“Enter n: ”);
13 int n = in.nextInt();
14

15 long f = fib(n);
16

17 System.out.println("fib(" + n + ") =
" + f);
18 }
19

20 /**

21 Computes a Fibonacci number.

22 @param n an integer

23 @return the nth Fibonacci number
24 */
25 public static long fib(int n)
26 {
27 System.out.println("Entering fib: n =
" + n);
28 long f;
29 if (n <= 2) f = 1;
30 else f = fib(n - 1) + fib(n - 2);
31 System.out.println("Exiting fib: n =
" + n
32 +" return value = " + f);
33 return f;
34 }
35 }

Output

 Enter n: 6
 Entering fib: n = 6
 Entering fib: n = 5

Chapter 13 Recursion Page 24 of 54

Java Concepts, 5th Edition

 Entering fib: n = 4
 Entering fib: n = 3
 Entering fib: n = 2
 Exiting fib: n = 2 return value = 1
 Entering fib: n = 1
 Exiting fib: n = 1 return value = 1
 Exiting fib: n = 3 return value = 2
 Entering fib: n = 2
 Exiting fib: n = 2 return value = 1
 Exiting fib: n = 4 return value = 3
 Entering fib: n = 3
 Entering fib: n = 2
 Exiting fib: n = 2 return value = 1
 Entering fib: n = 1
 Exiting fib: n = 1 return value = 1
 Exiting fib: n = 3 return value = 2
 Exiting fib: n = 5 return value = 5
 Entering fib: n = 4
 Entering fib: n = 3
 Entering fib: n = 2
 Exiting fib: n = 2 return value = 1
 Entering fib: n = 1
 Exiting fib: n = 1 return value = 1
 Exiting fib: n = 3 return value = 2
 Entering fib: n = 2
 Exiting fib: n = 2 return value = 1
 Exiting fib: n = 4 return value = 3
 Exiting fib: n = 6 return value = 8
 fib(6) = 8

Figure 2 shows the call tree for computing fib(6). Now it is becoming apparent

why the method takes so long. It is computing the same values over and over. For

example, the computation of fib(6) calls fib(4) twice and fib(3) three times.

That is very different from the computation we would do with pencil and paper. There

we would just write down the values as they were computed and add up the last two

to get the next one until we reached the desired entry; no sequence value would ever

be computed twice.

If we imitate the pencil-and-paper process, then we get the following program.

604

605

Chapter 13 Recursion Page 25 of 54

Java Concepts, 5th Edition

Figure 2

Call Pattern of the Recursive fib Method

ch13/fib/LoopFib.java

 1 import java.util.Scanner;
 2
 3 /**

 4 This program computes Fibonacci numbers using an iterative method.
 5 */
 6 public class LoopFib
 7 {
 8 public static void main(String[] args)
 9 {
10 Scanner in = new Scanner(System.in);
11 System.out.print("Enter n: ");
12 int n = in.nextInt();
13

14 for (int i = 1; i <= n; i++)
15 {
16 long f = fib(i);
17 System.out.println("fib(" + i +
") = " + f);
18 }
19 }
20

605

606

Chapter 13 Recursion Page 26 of 54

Java Concepts, 5th Edition

21 /**

22 Computes a Fibonacci number.

23 @param n an integer

24 @return the nth Fibonacci number
25 */
26 public static long fib(int n)
27 {
28 if (n <= 2) return 1;
29 long fold = 1;
30 long fold2 = 1;
31 long fnew = 1;
32 for (int i = 3; i <= n; i++)
33 {
34 fnew = fold + fold2;
35 fold2 = fold;
36 fold = fnew;
37 }
38 return fnew;
39 }
40 }

Output

 Enter n: 50
 fib(1) = 1
 fib(2) = 1
 fib(3) = 2
 fib(4) = 3
 fib(5) = 5
 fib(6) = 8
 fib(7) = 13
 …
 fib(50) = 12586269025

This method runs much faster than the recursive version.

In this example of the fib method, the recursive solution was easy to program

because it exactly followed the mathematical definition, but it ran far more slowly

than the iterative solution, because it computed many intermediate results multiple

times.

606

607

Chapter 13 Recursion Page 27 of 54

Java Concepts, 5th Edition

Can you always speed up a recursive solution by changing it into a loop? Frequently,

the iterative and recursive solution have essentially the same performance. For

example, here is an iterative solution for the palindrome test.

public boolean isPalindrome()
{
 int start = 0;
 int end = text.length() - 1;
 while (start < end)
 {
 char first =
Character.toLowerCase(text.charAt(start));
 char last =
Character.toLowerCase(text.charAt(end);
 if (Character.isLetter(first) &&
Character.isLetter(last))
 {

 // Both are letters.
 if (first == last)
 {
 start++;
 end--;
 }
 else
 return false;
 }
 if (!Character.isLetter(last))
 end--;
 if (!Character.isLetter(first))
 start++;
 }
 return true;
}

This solution keeps two index variables: start and end. The first index starts at the

beginning of the string and is advanced whenever a letter has been matched or a

nonletter has been ignored. The second index starts at the end of the string and moves

toward the beginning. When the two index variables meet, the iteration stops.

Both the iteration and the recursion run at about the same speed. If a palindrome has n

characters, the iteration executes the loop between n/2 and n times, depending on how

many of the characters are letters, since one or both index variables are moved in each

Chapter 13 Recursion Page 28 of 54

Java Concepts, 5th Edition

step. Similarly, the recursive solution calls itself between n/2 and n times, because

one or two characters are removed in each step.

Occasionally, a recursive solution runs much slower than its iterative counterpart.

However, in most cases, the recursive solution is only slightly slower.

In such a situation, the iterative solution tends to be a bit faster, because each

recursive method call takes a certain amount of processor time. In principle, it is

possible for a smart compiler to avoid recursive method calls if they follow simple

patterns, but most compilers don't do that. From that point of view, an iterative

solution is preferable.

There are quite a few problems that are dramatically easier to solve recursively than

iteratively. For example, it is not at all obvious how you can come up with a

nonrecursive solution for the permutation generator. As Exercise P13.11 shows, it is

possible to avoid the recursion, but the resulting solution is quite complex (and no

faster).

In many cases, a recursive solution is easier to understand and implement correctly

than an iterative solution.

Often, recursive solutions are easier to understand and implement correctly than their

iterative counterparts. There is a certain elegance and economy of thought to

recursive solutions that makes them more appealing. As the computer scientist (and

creator of the Ghost-Script interpreter for the PostScript graphics description

language) L. Peter Deutsch put it: “To iterate is human, to recurse divine”.

SELF CHECK

7. You can compute the factorial function either with a loop, using the

definition that n! = 1 × 2 × … × n, or recursively, using the definition

that 0! = 1 and n! = (n − 1)! × n. Is the recursive approach inefficient in

this case?

8. Why isn't it easy to develop an iterative solution for the permutation

generator?

607

608

Chapter 13 Recursion Page 29 of 54

Java Concepts, 5th Edition

 RANDOM FACT 13.1: The Limits of Computation

Have you ever wondered how your instructor or grader makes sure your

programming homework is correct? In all likelihood, they look at your solution and

perhaps run it with some test inputs. But usually they have a correct solution

available. That suggests that there might be an easier way. Perhaps they could feed

your program and their correct program into a “program comparator”, a computer

program that analyzes both programs and determines whether they both compute the

same results. Of course, your solution and the program that is known to be correct

need not be identical—what matters is that they produce the same output when given

the same input.

How could such a program comparator work? Well, the Java compiler knows how to

read a program and make sense of the classes, methods, and statements. So it seems

plausible that someone could, with some effort, write a program that reads two Java

programs, analyzes what they do, and determines whether they solve the same task.

Of course, such a program would be very attractive to instructors, because it could

automate the grading process. Thus, even though no such program exists today, it

might be tempting to try to develop one and sell it to universities around the world.

However, before you start raising venture capital for such an effort, you should know

that theoretical computer scientists have proven that it is impossible to develop such

a program, no matter how hard you try.

There are quite a few of these unsolvable problems. The first one, called the halting

problem, was discovered by the British researcher Alan Turing in 1936 (see photo

below). Because his research occurred before the first actual computer was

constructed, Turing had to devise a theoretical device, the Turing machine, to explain

how computers could work. The Turing machine consists of a long magnetic tape, a

read/write head, and a program that has numbered instructions of the form: "If the

current symbol under the head is x, then replace it with y, move the head one unit left

or right, and continue with instruction n" (see A Turing Machine). Interestingly

enough, with only these instructions, you can program just as much as with Java,

even though it is incredibly tedious to do so. Theoretical computer scientists like

Turing machines because they can be described using nothing more than the laws of

mathematics.

608

609

Chapter 13 Recursion Page 30 of 54

Java Concepts, 5th Edition

Alan Turing

A Turing Machine
609

Chapter 13 Recursion Page 31 of 54

Java Concepts, 5th Edition

Expressed in terms of Java, the halting problem states: “It is impossible to write a

program with two inputs, namely the source code of an arbitrary Java program P and

a string I, and that decides whether the program P, when executed with the input I,

will halt without getting into an infinite loop”. Of course, for some kinds of

programs and inputs, it is possible to decide whether the program halts with the

given input. The halting problem asserts that it is impossible to come up with a

single decision-making algorithm that works with all programs and inputs. Note that

you can't simply run the program P on the input I to settle this question. If the

program runs for 1,000 days, you don't know that the program is in an infinite loop.

Maybe you just have to wait another day for it to stop.

Such a “halt checker”, if it could be written, might also be useful for grading

homework. An instructor could use it to screen student submissions to see if they get

into an infinite loop with a particular input, and then stop checking them. However,

as Turing demonstrated, such a program cannot be written. His argument is

ingenious and quite simple.

Suppose a “halt checker” program existed. Let's call it H. From H, we will develop

another program, the "killer" program K. K does the following computation. Its input

is a string containing the source code for a program R. It then applies the halt

checker on the input program R and the input string R. That is, it checks whether the

program R halts if its input is its own source code. It sounds bizarre to feed a

program to itself, but it isn't impossible. For example, the Java compiler is written in

Java, and you can use it to compile itself. Or, as a simpler example, a word counting

program can count the words in its own source code.

When K gets the answer from H that R halts when applied to itself, it is programmed

to enter an infinite loop. Otherwise K exits. In Java, the program might look like this:

public class Killer
{
 public static void main(String[] args)
 {
 String r = read program input;
 HaltChecker checker = new Haltchecker();
 if (checker.check(r, r))
 while (true) {} // Infinite loop
 else
 return;

609

610

Chapter 13 Recursion Page 32 of 54

Java Concepts, 5th Edition

 }
}

Now ask yourself: What does the halt checker answer when asked whether K halts

when given K as the input? Maybe it finds out that K gets into an infinite loop with

such an input. But wait, that can't be right. That would mean that

checker.check(r, r) returns false when r is the program code of K. As

you can plainly see, in that case, the killer method returns, so K didn't get into an

infinite loop. That shows that K must halt when analyzing itself, so

checker.check(r, r) should return true. But then the killer method

doesn't terminate—it goes into an infinite loop. That shows that it is logically

impossible to implement a program that can check whether every program halts on a

particular input.

It is sobering to know that there are limits to computing. There are problems that no

computer program, no matter how ingenious, can answer.

Theoretical computer scientists are working on other research involving the nature of

computation. One important question that remains unsettled to this day deals with

problems that in practice are very time-consuming to solve. It may be that these

problems are intrinsically hard, in which case it would be pointless to try to look for

better algorithms. Such theoretical research can have important practical

applications. For example, right now, nobody knows whether the most common

encryption schemes used today could be broken by discovering a new algorithm (see

Random Fact 19.1 for more information on encryption algorithms). Knowing that no

fast algorithms exist for breaking a particular code could make us feel more

comfortable about the security of encryption.

13.5 Mutual Recursions

In the preceding examples, a method called itself to solve a simpler problem.

Sometimes, a set of cooperating methods calls each other in a recursive fashion. In

this section, we will explore a typical situation of such a mutual recursion. This

technique is significantly more advanced than the simple recursion that we discussed

in the preceding sections. Feel free to skip this section if this is your first exposure to

recursion.

610

611

Chapter 13 Recursion Page 33 of 54

Java Concepts, 5th Edition

In a mutual recursion, a set of cooperating methods calls each other repeatedly.

We will develop a program that can compute the values of arithmetic expressions

such as

3+4*5
(3+4)*5
1-(2-(3-(4-5)))

Computing such an expression is complicated by the fact that * and / bind more

strongly than + and −, and that parentheses can be used to group subexpressions.

Figure 3 shows a set of syntax diagrams that describes the syntax of these

expressions. To see how the syntax diagrams work, consider the expression 3+4*5.

When you enter the expression syntax diagram, the arrow points directly to term,

giving you no alternative but to enter the term syntax diagram. The arrow points to

factor, again giving you no choice. You enter the factor diagram, and now you have

two choices: to follow the top branch or the bottom branch. Because the first input

token is the number 3 and not a (, you must follow the bottom branch. You accept the

input token because it matches the number. Follow the arrow out of number to the

end of factor. Just like in a method call, you now back up, returning to the end of the

factor element of the term diagram. Now you have another choice—to loop back in

the term diagram, or to exit. The next input token is a +, and it matches neither the *

or the / that would be required to loop back. So you exit, returning to expression.

Again, you have a choice, to loop back or to exit. Now the + matches one of the

choices in the loop. Accept the + in the input and move back to the term element.

611

612

Chapter 13 Recursion Page 34 of 54

Java Concepts, 5th Edition

Figure 3

Syntax Diagrams for Evaluating an Expression

In this fashion, an expression is broken down into a sequence of terms, separated by +

or −, each term is broken down into a sequence of factors, each separated by * or /,

and each factor is either a parenthesized expression or a number. You can draw this

breakdown as a tree. Figure 4 shows how the expressions 3+4*5 and (3+4)*5 are

derived from the syntax diagram.

Why do the syntax diagrams help us compute the value of the tree? If you look at the

syntax trees, you will see that they accurately represent which operations should be

carried out first. In the first tree, 4 and 5 should be multiplied, and then the result

should be added to 3. In the second tree, 3 and 4 should be added, and the result

should be multiplied by 5.

At the end of this section, you will find the implementation of the Evaluator class,

which evaluates these expressions. The Evaluator makes use of an

Expression-Tokenizer class, which breaks up an input string into tokens—

Chapter 13 Recursion Page 35 of 54

Java Concepts, 5th Edition

numbers, operators, and parentheses. (For simplicity, we only accept positive integers

as numbers, and we don't allow spaces in the input.)

Figure 4

Syntax Trees for Two Expressions

When you call nextToken, the next input token is returned as a string. We also

supply another method, peekToken, which allows you to see the next token without

consuming it. To see why the peekToken method is necessary, consider the syntax

diagram of the factor type. If the next token is a "*" or "/", you want to continue

adding and subtracting terms. But if the next token is another character, such as a

"+" or "−", you want to stop without actually consuming it, so that the token can be

considered later.

To compute the value of an expression, we implement three methods:

get-ExpressionValue, getTermValue, and getFactorValue. The

getExpressionValue method first calls getTermValue to get the value of the

first term of the expression. Then it checks whether the next input token is one of + or

−. If so, it calls getTerm-Value again and adds or subtracts it.

public int getExpressionValue()
{
 int value = getTermValue();

612

613

Chapter 13 Recursion Page 36 of 54

Java Concepts, 5th Edition

 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("+".equals(next) || "-".equals(next))
 {
 tokenizer.nextToken(); // Discard "+" or
"-"
 int value2 = getTermValue();
 if ("+".equals(next)) value = value +
value2;
 else value = value - value2;
 }
 else done = true;
 }
 return value;
}

The getTermValue method calls getFactorValue in the same way,

multiplying or dividing the factor values.

Finally, the getFactorValue method checks whether the next input is a number,

or whether it begins with a (token. In the first case, the value is simply the value of

the number. However, in the second case, the getFactorValue method makes a

recursive call to getExpressionValue. Thus, the three methods are mutually

recursive.

public int getFactorValue()
{
 int value;
 String next = tokenizer.peekToken();
 if ("(".equals(next))
 {
 tokenizer.nextToken(); // Discard "("
 value = getExpressionValue();
 tokenizer.nextToken(); // Discard ")"
 }
 else
 value =
Integer.parseInt(tokenizer.nextToken());
 return value;
}

To see the mutual recursion clearly, trace through the expression (3+4)*5:

613

614

Chapter 13 Recursion Page 37 of 54

Java Concepts, 5th Edition

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue

• getFactorValue consumes the (input

• getFactorValue calls getExpressionValue

• getExpressionValue returns eventually with the value

of 7, having consumed 3 + 4. This is the recursive call.

• getFactorValue consumes the) input

• getFactorValue returns 7

• getTermValue consumes the inputs * and 5 and returnsm 35

• getExpressionValue returns 35

As always with a recursive solution, you need to ensure that the recursion terminates.

In this situation, that is easy to see. If getExpressionValue calls itself, the

second call works on a shorter subexpression than the original expression. At each

recursive call, at least some of the tokens of the input string are consumed, so

eventually the recursion must come to an end.

ch13/expr/Evaluator.java

1 /**

2 A class that can compute the value of an arithmetic expression.
3 */
4 public class Evaluator
5 {
6 /**

7 Constructs an evaluator.

8 @param anExpression a string containing the

expression

9 to be evaluated
10 */
11 public Evaluator(String anExpression)
12 {

Chapter 13 Recursion Page 38 of 54

Java Concepts, 5th Edition

13 tokenizer = new
ExpressionTokenizer(anExpression);
14 }
15

16 /**

17 Evaluates the expression.

18 @return the value of the expression
19 */
20 public int getExpressionValue()
21 {
22 int value = getTermValue();
23 boolean done = false;
24 while (!done)
25 {
26 String next =
tokenizer.peekToken();
27 if ("+".equals(next) ||
"-".equals(next))
28 {
29 tokenizer.nextToken(); //
Discard "+" or "-"
30 int value2 = getTermValue();
31 if ("+".equals(next)) value =
value + value2;
32 else value = value - value2;
33 }
34 else done = true;
35 }
36 return value;
37 }
38

39 /**

40 Evaluates the next term found in the expression.

41 @return the value of the term
42 */
43 public int getTermValue()
44 {
45 int value = getFactorValue();
46 boolean done = false;
47 while (!done)
48 {

614

615

Chapter 13 Recursion Page 39 of 54

Java Concepts, 5th Edition

49 String next =
tokenizer.peekToken();
50 if ("*".equals(next) ||
"/".equals(next))
51 {
52 tokenizer.nextToken();
53 int value2 = getFactorValue();
54 if ("*".equals(next)) value =
value * value2;
55 else value = value / value2;
56 }
57 else done = true;
58 }
59 return value;
60 }
61

62 /**

63 Evaluates the next factor found in the expression.

64 @return the value of the factor
65 */
66 public int getFactorValue()
67 {
68 int value;
69 String next = tokenizer.peekToken();
70 if ("(".equals(next))
71 {

72 tokenizer.nextToken(); // Discard "("
73 value = getExpressionValue();

74 tokenizer.nextToken(); // Discard ")"
75 }
76 else
77 value =
Integer.parseInt(tokenizer.nextToken());
78 return value;
79 }
80

81 private ExpressionTokenizer tokenizer;
82 }

ch13/expr/ExpressionTokenizer.java

1 /**

615

616

Chapter 13 Recursion Page 40 of 54

Java Concepts, 5th Edition

2 This class breaks up a string describing an expression

3 into tokens: numbers, parentheses, and operators.
4 */
5 public class ExpressionTokenizer
6 {
7 /**

8 Constructs a tokenizer.
9 @param anInput the string to tokenize
10 */
11 public ExpressionTokenizer(String anInput)
12 {
13 input = anInput;
14 start = 0;
15 end = 0;
16 nextToken();
17 }
18

19 /**

20 Peeks at the next token without consuming it.

21 @return the next token or null if there are no more

tokens
22 */
23 public String peekToken()
24 {
25 if (start >= input.length()) return
null;
26 else return input.substring(start,
end);
27 }
28

29 /**

30 Gets the next token and moves the tokenizer to the following token.

31 @return the next token or null if there are no more

tokens
32 */
33 public String nextToken()
34 {
35 String r = peekToken();
36 start = end;
37 if (start >= input.length()) return r;

Chapter 13 Recursion Page 41 of 54

Java Concepts, 5th Edition

38 if
(Character.isDigit(input.charAt(start)))
39 {
40 end = start + 1;
41 while (end < input.length()
42 &&
Character.isDigit(input.charAt(end)))
43 end++;
44 }
45 else
46 end = start + 1;
47 return r;
48 }
49

50 private String input;
51 private int start;
52 private int end;
53 }

ch13/expr/ExpressionCalculator.java

 1 import java.util.Scanner;
 2
 3 /**

 4 This program calculates the value of an expression
 5 consisting of numbers, arithmetic
operators, and parentheses.
 6 */
 7 public class ExpressionCalculator
 8 {
 9 public static void main(String[] args)
10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter an expression:
");
13 String input = in.nextLine();
14 Evaluator e = new Evaluator(input);
15 int value = e.getExpressionValue();
16 System.out.println(input + "=" + value);
17 }
18 }

616

617

Chapter 13 Recursion Page 42 of 54

Java Concepts, 5th Edition

Output

 Enter an expression: 3+4*5
 3+4*5=23

SELF CHECK

9. What is the difference between a term and a factor? Why do we need

both concepts?

10. Why does the expression parser use mutual recursion?

11. What happens if you try to parse the illegal expression 3+4*)5?

Specifically, which method throws an exception?

CHAPTER SUMMARY

1. A recursive computation solves a problem by using the solution of the same

problem with simpler values.

2. For a recursion to terminate, there must be special cases for the simplest values.

3. Sometimes it is easier to find a recursive solution if you make a slight change

to the original problem.

4. Occasionally, a recursive solution runs much slower than its iterative counter

part. However, in most cases, the recursive solution is only slightly slower.

5. In many cases, a recursive solution is easier to understand and implement

correctly than an iterative solution.

6. In a mutual recursion, a set of cooperating methods calls each other repeatedly.

REVIEW EXERCISES

★ Exercise R13.1. Define the terms

a. Recursion

b. Iteration

617

618

Chapter 13 Recursion Page 43 of 54

Java Concepts, 5th Edition

c. Infinite recursion

d. Recursive helper method

★★Exercise R13.2. Outline, but do not implement, a recursive solution for

finding the smallest value in an array.

★★Exercise R13.3. Outline, but do not implement, a recursive solution for

sorting an array of numbers. Hint: First find the smallest value in the array.

★★Exercise R13.4. Outline, but do not implement, a recursive solution for

generating all subsets of the set {1, 2, … , n}.

★★★Exercise R13.5. Exercise P13.12 shows an iterative way of generating

all permutations of the sequence (0, 1, … , n−1). Explain why the

algorithm produces the correct result.

★ Exercise R13.6. Write a recursive definition of x
n
, where n ≥ 0, similar to

the recursive definition of the Fibonacci numbers. Hint: How do you

compute x
n
 from x

n−1
? How does the recursion terminate?

★★Exercise R13.7. Improve upon Exercise R13.6 by computing x
n
 as (x

n/2
)
2

if n is even. Why is this approach significantly faster? (Hint: Compute

x
1023

 and x
1024

 both ways.)

★ Exercise R13.8. Write a recursive definition of n! = 1 × 2 × … × n, similar

to the recursive definition of the Fibonacci numbers.

★★Exercise R13.9. Find out how often the recursive version of fib calls

itself. Keep a static variable fibCount and increment it once in every

call of fib. What is the relationship between fib(n) and fibCount?

★★★Exercise R13.10. How many moves are required in the "Towers of

Hanoi" problem of Exercise P13.13 to move n disks? Hint: As explained

in the exercise,

moves (1) = 1

moves (n) = 2 · moves (n − 1) + 1

Chapter 13 Recursion Page 44 of 54

Java Concepts, 5th Edition

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P13.1. Write a recursive method void reverse() that

reverses a sentence. For example:

Sentence greeting = new Sentence("Hello!");
greeting.reverse();
System.out.println(greeting.getText());

prints the string "!olleH". Implement a recursive solution by removing

the first character, reversing a sentence consisting of the remaining text,

and combining the two.

★★Exercise P13.2. Redo Exercise P13.1 with a recursive helper method that

reverses a substring of the message text.

★ Exercise P13.3. Implement the reverse method of Exercise P13.1 as an

iteration.

★★Exercise P13.4. Use recursion to implement a method boolean

find(String t) that tests whether a string is contained in a sentence:

Sentence s = new Sentence("Mississippi!");
boolean b = s.find("sip"); // Returns true

Hint: If the text starts with the string you want to match, then you are done.

If not, consider the sentence that you obtain by removing the first character.

★★Exercise P13.5. Use recursion to implement a method int

indexOf(String t) that returns the starting position of the first

substring of the text that matches t. Return −1 if t is not a substring of s.

For example,

Sentence s = new Sentence("Mississippi!");
int n = s.indexOf ("sip"); // Returns 6

618

619

Chapter 13 Recursion Page 45 of 54

Java Concepts, 5th Edition

Hint: This is a bit trickier than the preceding problem, because you must

keep track of how far the match is from the beginning of the sentence.

Make that value a parameter of a helper method.

★ Exercise P13.6. Using recursion, find the largest element in an array.

public class DataSet
{
 public DataSet(int[] values, int first, int
last) { … }
 public int getMaximum() { … }
 …
}

Hint: Find the largest element in the subset containing all but the last

element. Then compare that maximum to the value of the last element.

★ Exercise P13.7. Using recursion, compute the sum of all values in an array.

public class DataSet
{
 public DataSet(int[] values, int first, int
last) { … }
 public int getSum() { … }
 …
}

★★Exercise P13.8. Using recursion, compute the area of a polygon. Cut off a

triangle and use the fact that a triangle with corners (x1, y1), (x2, y2), (x3,

y3) has area

+ + − − −| x 1y 2 x 2y 3 x 3y 1 y 1x 2 y 2x 3 y 3x 1 |
2

619

620

Chapter 13 Recursion Page 46 of 54

Java Concepts, 5th Edition

★★★Exercise P13.9. Implement a SubstringGenerator that generates

all substrings of a string. For example, the substrings of the string

"rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character.

There are n of them if the string has length n. Then enumerate the

substrings of the string that you obtain by removing the first character.

★★★Exercise P13.10. Implement a SubsetGenerator that generates all

subsets of the characters of a string. For example, the subsets of the

characters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don't have to be substrings—for example, "rm"

isn't a substring of "rum".

★★★Exercise P13.11. In this exercise, you will change the

PermutationGenerator of Section 13.2 (which computed all

permutations at once) to a PermutationIterator (which computes

them one at a time.)

public class PermutationIterator
{
 public PermutationIterator(String s) { … }
 public String nextPermutation() { … }
 public boolean hasMorePermutations() { … }
}

Here is how you would print out all permutations of the string "eat":

PermutationIterator iter = new
PermutationIterator("eat");
while (iter.hasMorePermutations())
 System.out.println(iter.nextPermutation());

Now we need a way to iterate through the permutations recursively.

Consider the string "eat". As before, we'll generate all permutations

that start with the letter ’e’, then those that start with ’a’, and finally

those that start with ’t’. How do we generate the permutations that start

620

621

Chapter 13 Recursion Page 47 of 54

Java Concepts, 5th Edition

with ’e’? Make another PermutationIterator object (called

tailIterator) that iterates through the permutations of the substring

"at". In the nextPermutation method, simply ask

tailIterator what its next permutation is, and then add the ’e’ at

the front. However, there is one special case. When the tail generator

runs out of permutations, all permutations that start with the current

letter have been enumerated. Then

• Increment the current position.

• Compute the tail string that contains all letters except for the

current one.

• Make a new permutation iterator for the tail string.

You are done when the current position has reached the end of the string.

★★★Exercise P13.12. The following class generates all permutations of the

numbers 0, 1, 2, …, n − 1, without using recursion.

public class NumberPermutationIterator
{
 public NumberPermutationIterator(int n)
 {
 a = new int[n];
 done = false;
 for (int i = 0; i < n; i++) a[i] = i;
 }
 public int[] nextPermutation()
 {
 if (a.length <= 1) return a;
 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i])
 {
 int j = a.length - 1;
 while (a[i - 1] > a[j]) j--;
 swap(i - 1, j);
 reverse(i, a.length - 1);
 return a;
 }
 }
 return a;

Chapter 13 Recursion Page 48 of 54

Java Concepts, 5th Edition

 }
 public boolean hasMorePermutations()
 {
 if (a.length <= 1) return false;
 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i]) return true;
 }
 return false;
 }
 public void swap(int i, int j)
 {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 public void reverse(int i, int j)
 {
 while (i < j) { swap(i, j); i++; j--; }
 }
 private int[] a;
}

The algorithm uses the fact that the set to be permuted consists of

distinct numbers. Thus, you cannot use the same algorithm to compute

the permutations of the characters in a string. You can, however, use this

class to get all permutations of the character positions and then compute

a string whose ith character is word.charAt(a[i]). Use this

approach to reimplement the PermutationIterator of Exercise

P13.11 without recursion.

★★Exercise P13.13. Towers of Hanoi. This is a well-known puzzle. A stack

of disks of decreasing size is to be transported from the leftmost peg to the

rightmost peg. The middle peg can be used as temporary storage (see

Figure 5). One disk can be moved at one time, from any peg to any other

peg. You can place smaller disks only on top of larger ones, not the other

way around.

Write a program that prints the moves necessary to solve the puzzle for n

disks. (Ask the user for n at the beginning of the program.) Print moves in

the form

621

622

Chapter 13 Recursion Page 49 of 54

Java Concepts, 5th Edition

Move disk from peg 1 to peg 3

Hint: Implement a class DiskMover. The constructor takes

• The source peg from which to move the disks (1, 2, or 3)

• The target peg to which to move the disks (1, 2, or 3)

• The number of disks to move

Figure 5

Towers of Hanoi

A disk mover that moves a single disk from one peg to another simply has

a nextMove method that returns a string

Move disk from peg source to peg target

A disk mover with more than one disk to move must work harder. It needs

another DiskMover to help it. In the constructor, construct a

DiskMover(source, other, disks - 1) where other is the

peg other than from and target.

The nextMove asks that disk mover for its next move until it is done. The

effect is to move the first disks - 1 disks to the other peg. Then the

nextMove method issues a command to move a disk from the from peg

to the to peg. Finally, it constructs another disk mover

DiskMover(other, target, disks - 1) that generates the

moves that move the disks from the other peg to the target peg.

Hint: It helps to keep track of the state of the disk mover:

622

623

Chapter 13 Recursion Page 50 of 54

Java Concepts, 5th Edition

• BEFORE_LARGEST: The helper mover moves the smaller pile to

the other peg.

• LARGEST: Move the largest disk from the source to the destination.

• AFTER_LARGEST: The helper mover moves the smaller pile from

the other peg to the target.

• DONE: All moves are done.

Test your program as follows:

DiskMover mover = new DiskMover(1, 3, n);
while (mover.hasMoreMoves())
 System.out.println(mover.nextMove());

★★★Exercise P13.14. Escaping a Maze. You are currently located inside a

maze. The walls of the maze are indicated by asterisks (*).

Use the following recursive approach to check whether you can escape

from the maze: If you are at an exit, return true. Recursively check

whether you can escape from one of the empty neighboring locations

without visiting the current location. This method merely tests whether

there is a path out of the maze. Extra credit if you can print out a path

that leads to an exit.

★★★GExercise P13.15. The Koch Snowflake. A snowflake-like shape is

recursively defined as follows. Start with an equilateral triangle:

Next, increase the size by a factor of three and replace each straight

line with four line segments. 623

Chapter 13 Recursion Page 51 of 54

Java Concepts, 5th Edition

Repeat the process.

Write a program that draws the iterations of this curve. Supply a button

that, when clicked, produces the next iteration.

★★Exercise P13.16. The recursive computation of Fibonacci numbers can be

speeded up significantly by keeping track of the values that have already

been computed. Provide an implementation of the fib method that uses

this strategy. Whenever you return a new value, also store it in an auxiliary

array. However, before embarking on a computation, consult the array to

find whether the result has already been computed. Compare the running

time of your improved implementation with that of the original recursive

implementation and the loop implementation.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 13.1. Enhance the expression parser of Section 13.5 to handle

more sophisticated expressions, such as exponents, and mathematical

functions, such as sqrt or sin.

624

Chapter 13 Recursion Page 52 of 54

Java Concepts, 5th Edition

★★★GProject 13.2. Implement a graphical version of the Towers of Hanoi

program (see Exercise P13.13). Every time the user clicks on a

button labeled "Next", draw the next move.

ANSWERS TO SELF-CHECK QUESTIONS

1. Suppose we omit the statement. When computing the area of a triangle

with width 1, we compute the area of the triangle with width 0 as 0, and

then add 1, to arrive at the correct area.

2. You would compute the smaller area recursively, then return

smallerArea + width + width - 1.

Of course, it would be simpler to compute the area simply as width *

width. The results are identical because

1 + 0 + 2 + 1 + 3 + 2 + … + n + n − 1 = + = .
n (n + 1)

2

(n − 1) n

2
n

2

3. They are b followed by the six permutations of eat, e followed by the

six permutations of bat, a followed by the six permutations of bet, and

t followed by the six permutations of bea.

4. Simply change if (word.length() == 0) to if

(word.length() <= 1), because a word with a single letter is also

its sole permutation.

5. No—the first one could be given a different name such as

substringIsPalindrome.

6. When start >= end, that is, when the investigated string is either

empty or has length 1.

624

625

Chapter 13 Recursion Page 53 of 54

Java Concepts, 5th Edition

7. No, the recursive solution is about as efficient as the iterative approach.

Both require n − 1 multiplications to compute n!.

8. An iterative solution would have a loop whose body computes the next

permutation from the previous ones. But there is no obvious mechanism

for getting the next permutation. For example, if you already found

permutations eat, eta, and aet, it is not clear how you use that

information to get the next permutation. Actually, there is an ingenious

mechanism for doing just that, but it is far from obvious—see Exercise

P13.12.

9. Factors are combined by multiplicative operators (* and /), terms are

combined by additive operators (+, −). We need both so that

multiplication can bind more strongly than addition.

10. To handle parenthesized expressions, such as 2+3*(4+5). The

subexpression 4+5 is handled by a recursive call to

getExpressionValue.

11. The Integer.parseInt call in getFactorValue throws an

exception when it is given the string ")".

Chapter 13 Recursion Page 54 of 54

Java Concepts, 5th Edition

Chapter 14 Sorting and Searching

CHAPTER GOALS

• To study several sorting and searching algorithms

• To appreciate that algorithms for the same task can differ widely in

performance

• To understand the big-Oh notation

• To learn how to estimate and compare the performance of algorithms

• To learn how to measure the running time of a program

One of the most common tasks in data processing is sorting. For example, a

collection of employees may need to be printed out in alphabetical order or sorted by

salary. We will study several sorting methods in this chapter and compare their

performance. This is by no means an exhaustive treatment of the subject of sorting.

You will likely revisit this topic at a later time in your computer science studies. A

good overview of the many sorting methods available can be found in [1].

Once a sequence of objects is sorted, one can locate individual objects rapidly. We

will study the binary search algorithm, which carries out this fast lookup.

14.1 Selection Sort

In this section, we show you the first of several sorting algorithms. A sorting

algorithm rearranges the elements of a collection so that they are stored in sorted

order. To keep the examples simple, we will discuss how to sort an array of integers

before going on to sorting strings or more complex data. Consider the following array

a:

627

627

628

Chapter 14 Sorting and Searching Page 1 of 52

Java Concepts, 5th Edition

The selection sort algorithm sorts an array by repeatedly finding the smallest

element of the unsorted tail region and moving it to the front.

An obvious first step is to find the smallest element. In this case the smallest element

is 5, stored in a [3]. We should move the 5 to the beginning of the array. Of course,

there is already an element stored in a[0], namely 11. Therefore we cannot simply

move a [3] into a[0] without moving the 11 somewhere else. We don't yet know

where the 11 should end up, but we know for certain that it should not be in a [0].

We simply get it out of the way by swapping it with a [3].

Now the first element is in the correct place. In the foregoing figure, the darker color

indicates the portion of the array that is already sorted.

Next we take the minimum of the remaining entries a[1] . . . a[4]. That

minimum value, 9, is already in the correct place. We don't need to do anything in

this case and can simply extend the sorted area by one to the right:

Repeat the process. The minimum value of the unsorted region is 11, which needs to

be swapped with the first value of the unsorted region, 17:

Now the unsorted region is only two elements long, but we keep to the same

successful strategy. The minimum value is 12, and we swap it with the first value, 17.

That leaves us with an unprocessed region of length 1, but of course a region of

length 1 is always sorted. We are done.

628

629

Chapter 14 Sorting and Searching Page 2 of 52

Java Concepts, 5th Edition

Let us program this algorithm. For this program, as well as the other programs in this

chapter, we will use a utility method to generate an array with random entries. We

place it into a class ArrayUtil so that we don't have to repeat the code in every

example. To show the array, we call the static toString method of the Arrays

class in the Java library and print the resulting string.

This algorithm will sort any array of integers. If speed were not an issue, or if there

simply were no better sorting method available, we could stop the discussion of

sorting right here. As the next section shows, however, this algorithm, while entirely

correct, shows disappointing performance when run on a large data set.

Advanced Topic 14.1 discusses insertion sort, another simple (and similarly

inefficient) sorting algorithm.

ch14/selsort/SelectionSorter.java

 1 /**

 2 This class sorts an array, using the selection sort

 3 algorithm.
 4 */

 5 public class SelectionSorter

 6 {

 7 /**

 8 Constructs a selection sorter.

 9 @param anArray the array to sort
10 */

11 public SelectionSorter(int[] anArray)

12 {

13 a = anArray;

14 }

15

16 /**

17 Sorts the array managed by this selection sorter.
18 */

19 public void sort()

20 {

21 for (int i = 0; i < a.length - 1; i++)

22 {

23 int minPos = minimumPosition (i); 629

Chapter 14 Sorting and Searching Page 3 of 52

Java Concepts, 5th Edition

24 swap(minPos, i);

25 }

26 }

27

28 /**

29 Finds the smallest element in a tail range of the array.

30 @param from the first position in a to compare

31 @return the position of the smallest element in the
32 range a[from] . . . a[a.length - 1]

33 */

34 private int minimumPosition (int from)

35 {

36 int minPos = from;

37 for (int i = from + 1; i < a.length; i++)

38 if (a[i] < a[minPos]) minPos = i;

39 return minPos;

40 }

41

42 /**

43 Swaps two entries of the array.

44 @param i the first position to swap

45 @param j the second position to swap
46 */

47 private void swap(int i, int j)

48 {

49 int temp = a[i] ;

50 a[i] = a[j];

51 a[j] = temp;

52 }

53

54 private int[] a;

55 }

ch14/selsort/SelectionSortDemo.java

 1 import java. util.Arrays;

 2

 3 /**

 4 This program demonstrates the selection sort algorithm by

 5 sorting an array that is filled with random numbers.
 6 */

630

Chapter 14 Sorting and Searching Page 4 of 52

Java Concepts, 5th Edition

 7 public class SelectionSortDemo

 8 {

 9 public static void main(String[] args)

10 {

11 int[] a =

ArrayUtil.randomIntArray(20, 100);

12 System.out.println(Arrays.toString(a));

13

14 SelectionSorter sorter = new

SelectionSorter(a);

15 sorter.sort();

16

17 System.out.println(Arrays.toString(a));

18 }

19 }

ch14/selsort/ArrayUtil.java

 1 import java.util.Random;

 2

 3 /**

 4 This class contains utility methods for array manipulation.
 5 */

 6 public class ArrayUtil

 7 {

 8 /**

 9 Creates an array filled with random values.

10 @param length the length of the array

11 @param n the number of possible random values

12 @return an array filled with length numbers between

13 0 and n - 1
14 */

15 public static int[] randomIntArray(int

length, int n)

16 {

17 int[] a = new int[length];

18 for (int i = 0; i < a.length; i++)

19 a[i] = generator.nextInt(n);

20

21 return a;

22 }

630

631

Chapter 14 Sorting and Searching Page 5 of 52

Java Concepts, 5th Edition

23

24 private static Random generator = new

Random();

25 }

Typical Output

[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24,
99, 89, 77, 73, 87, 36, 81]
[2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52, 65,
73, 77, 81, 87, 89, 96, 99]

SELF CHECK

1. Why do we need the temp variable in the swap method? What would

happen if you simply assigned a[i] to a[j] and a[j] to a[i]?

2. What steps does the selection sort algorithm go through to sort the

sequence 6 5 4 3 2 1?

14.2 Profiling the Selection Sort Algorithm

To measure the performance of a program, you could simply run it and measure how

long it takes by using a stopwatch. However, most of our programs run very quickly,

and it is not easy to time them accurately in this way. Furthermore, when a program

takes a noticeable time to run, a certain amount of that time may simply be used for

loading the program from disk into memory (for which we should not penalize it) or

for screen output (whose speed depends on the computer model, even for computers

with identical CPUs). We will instead create a StopWatch class.

This class works like a real stopwatch. You can start it, stop it, and read out the

elapsed time. The class uses the System.currentTimeMillis method, which

returns the milliseconds that have elapsed since midnight at the start of January 1,

1970. Of course, you don't care about the absolute number of seconds since this

historical moment, but the difference of two such counts gives us the number of

milliseconds of a time interval. Here is the code for the StopWatch class:

631

632

Chapter 14 Sorting and Searching Page 6 of 52

Java Concepts, 5th Edition

ch14/selsort/StopWatch.java

 1 /**

 2 A stopwatch accumulates time when it is running. You can

 3 repeatedly start and stop the stopwatch. You can use a

 4 stopwatch to measure the running time of a program.
 5 */

 6 public class StopWatch

 7 {

 8 /**

 9 Constructs a stopwatch that is in the stopped state
10 and has no time accumulated.

11 */

12 public StopWatch()

13 {

14 reset();

15 }

16

17 /**

18 Starts the stopwatch. Time starts accumulating now.
19 */

20 public void start()

21 {

22 if (isRunning) return;

23 isRunning = true;

24 startTime = System.currentTimeMillis();

25 }

26

27 /**

28 Stops the stopwatch. Time stops accumulating and is
29 is added to the elapsed time.

30 */

31 public void stop()

32 {

33 if (!isRunning) return;

34 isRunning = false;

35 long endTime =

System.currentTimeMillis();

36 elapsedTime = elapsedTime + endTime -

startTime;

37 }

Chapter 14 Sorting and Searching Page 7 of 52

Java Concepts, 5th Edition

38

39 /**

40 Returns the total elapsed time.

41 @return the total elapsed time
42 */

43 public long getElapsedTime()

44 {

45 if (isRunning)

46 {

47 long endTime =

System.currentTimeMillis() ;

48 return elapsedTime + endTime -

startTime;

49 }

50 else

51 return elapsedTime;

52 }

53

54 /**

55 Stops the watch and resets the elapsed time to 0.
56 */

57 public void reset()

58 {

59 elapsedTime = 0;

60 isRunning = false;

61 }

62

63 private long elapsedTime;

64 private long startTime;

65 private boolean isRunning;

66 }

Here is how we will use the stopwatch to measure the performance of the sorting

algorithm:

ch14/selsort/SelectionSortTimer.java

1 import java.util.Scanner;

2

3 /**

4 This program measures how long it takes to sort an

5 array of a user-specified size with the selection

632

633

Chapter 14 Sorting and Searching Page 8 of 52

Java Concepts, 5th Edition

6 sort algorithm.
7 */

8 public class SelectionSortTimer

9 {

10 public static void main(String[] args)

11 {

12 Scanner in = new Scanner(System.in);

13 System.out.print(“E ter array size: ”);

14 int n = in.nextInt();

15

16 // Construct random array
17

18 int[] a = ArrayUtil.randomIntArray(n,

100);

19 SelectionSorter sorter = new

SelectionSorter(a) ;

20

21 // Use stopwatch to time selection sort
22

23 StopWatch timer = new StopWatch();

24

25 timer.start();

26 sorter.sort();

27 timer.stop();

28

29 System.out.println(“Elapsed time: ”

30 + timer.getElapsedTime() +

“milliseconds”);

31 }

32 }

Output

 Enter array size: 100000
 Elapsed time: 27880 milliseconds

By starting to measure the time just before sorting, and stopping the stopwatch just

after, you don't count the time it takes to initialize the array or the time during which

the program waits for the user to type in n.

Here are the results of some sample runs:

633

634

Chapter 14 Sorting and Searching Page 9 of 52

Java Concepts, 5th Edition

n Milliseconds

10,000 786

20,000 2,148

30,000 4,796

40,000 9,192

50,000 13,321

60,000 19,299

Figure 1

Time Taken by Selection Sort

These measurements were obtained with a Pentium processor with a clock speed of 2

GHz, running Java 6 on the Linux operating system. On another computer the actual

numbers will look different, but the relationship between the numbers will be the

same. Figure 1 shows a plot of the measurements. As you can see, doubling the size

of the data set more than doubles the time needed to sort it.

SELF CHECK

3. Approximately how many seconds would it take to sort a data set of

80,000 values?

634

635

Chapter 14 Sorting and Searching Page 10 of 52

Java Concepts, 5th Edition

4. Look at the graph in Figure 1. What mathematical shape does it

resemble?

14.3 Analyzing the Performance of the Selection Sort

Algorithm

Let us count the number of operations that the program must carry out to sort an array

with the selection sort algorithm. We don't actually know how many machine

operations are generated for each Java instruction or which of those instructions are

more time-consuming than others, but we can make a simplification. We will simply

count how often an array element is visited. Each visit requires about the same

amount of work by other operations, such as incrementing subscripts and comparing

values.

Let n be the size of the array. First, we must find the smallest of n numbers. To

achieve that, we must visit n array elements. Then we swap the elements, which takes

two visits. (You may argue that there is a certain probability that we don't need to

swap the values. That is true, and one can refine the computation to reflect that

observation. As we will soon see, doing so would not affect the overall conclusion.)

In the next step, we need to visit only n − 1 elements to find the minimum. In the

following step, n − 2 elements are visited to find the minimum. The last step visits

two elements to find the minimum. Each step requires two visits to swap the

elements. Therefore, the total number of visits is

n + 2 + (n − 1) + 2 + … + 2 + 2 = n + (n − 1) + … + 2 + (n − 1) · 2

= 2 + … + (n − 1) + n + (n − 1) · 2

= − 1 + (n − 1) · 2
n (n + 1)

2

because

1 + 2 + … + (n − 1) + n =
n (n + 1)

2

After multiplying out and collecting terms of n, we find that the number of visits is

Chapter 14 Sorting and Searching Page 11 of 52

Java Concepts, 5th Edition

+ n − 3

1

2
n
2

5

2
We obtain a quadratic equation in n. That explains why the graph of Figure 1 looks

approximately like a parabola.

Now let us simplify the analysis further. When you plug in a large value for n (for

example, 1,000 or 2,000), then is 500,000 or 2,000,000. The lower term, n − 3,

doesn't contribute much at all; it is only 2,497 or 4,997, a drop in the bucket

compared to the hundreds of thousands or even millions of comparisons specified by

the term. We will just ignore these lower-level terms. Next, we will ignore the

constant factor . We are not interested in the actual count of visits for a single n. We

want to compare the ratios of counts for different values of n. For example, we can

say that sorting an array of 2,000 numbers requires four times as many visits as

sorting an array of 1,000 numbers:

1

2
n
2 5

2

1

2
n
2

1

2

= 4

·(
1

2
2000

2)
·(
1

2
1000

2)

635

636

Chapter 14 Sorting and Searching Page 12 of 52

Java Concepts, 5th Edition ()

The factor cancels out in comparisons of this kind. We will simply say, “The

number of visits is of order n
2
”. That way, we can easily see that the number of

comparisons increases fourfold when the size of the array doubles: (2n)
2
 = 4n

2
.

1

2

To indicate that the number of visits is of order n
2
, computer scientists often use

big-Oh notation: The number of visits is O(n
2
). This is a convenient shorthand.

In general, the expression f(n) = O(g(n)) means that f grows no faster than g, or, more

formally, that for all n larger than some thresh-old, the ratio f(n)/g(n) ≤ C for some

constant value C. The function g is usually chosen to be very simple, such as n
2
 in our

example.

Computer scientists use the big-Oh notation f(n) = O(g(n)) to express that the

function f grows no faster than the function g.

To turn an exact expression such as

+ n − 3

1

2
n
2

5

2
into big-Oh notation, simply locate the fastest-growing term, n

2
, and ignore its

constant coefficient, no matter how large or small it may be.

Chapter 14 Sorting and Searching Page 13 of 52

Java Concepts, 5th Edition

We observed before that the actual number of machine operations, and the actual

number of microseconds that the computer spends on them, is approximately

proportional to the number of element visits. Maybe there are about 10 machine

operations (increments, comparisons, memory loads, and stores) for every element

visit. The number of machine operations is then approximately 10 × . Again, we

aren't interested in the coefficient, so we can say that the number of machine

operations, and hence the time spent on the sorting, is of the order of n
2
 or O(n

2
).

1

2
n
2

The sad fact remains that doubling the size of the array causes a fourfold increase in

the time required for sorting it with selection sort. When the size of the array

increases by a factor of 100, the sorting time increases by a factor of 10,000. To sort

an array of a million entries, (for example, to create a telephone directory) takes

10,000 times as long as sorting 10,000 entries. If 10,000 entries can be sorted in about

1/2 of a second (as in our example), then sorting one million entries requires well

over an hour. We will see in the next section how one can dramatically improve the

performance of the sorting process by choosing a more sophisticated algorithm.

Selection sort is an O(n
2
) algorithm. Doubling the data set means a fourfold

increase in processing time.

SELF CHECK

5. If you increase the size of a data set tenfold, how much longer does it

take to sort it with the selection sort algorithm?

6. How large does n need to be so that is bigger than n − 3?
1

2
n
2 5

2

 ADVANCED TOPIC 14.1: Insertion Sort

Insertion sort is another simple sorting algorithm. In this algorithm, we assume that

the initial sequence

a[0] a[1] . . . a[k]

636

637

Chapter 14 Sorting and Searching Page 14 of 52

Java Concepts, 5th Edition

of an array is already sorted. (When the algorithm starts, we set k to 0.) We

enlarge the initial sequence by inserting the next array element, a[k + 1], at the

proper location. When we reach the end of the array, the sorting process is

complete.

For example, suppose we start with the array

Of course, the initial sequence of length 1 is already sorted. We now add a[1],

which has the value 9. The element needs to be inserted before the element 11. The

result is

Next, we add a [2], which has the value 16. As it happens, the element does not

have to be moved.

We repeat the process, inserting a[3] or 5 at the very beginning of the initial

sequence.

Finally, a[4] or 7 is inserted in its correct position, and the sorting is completed.

The following class implements the insertion sort algorithm:

public class InsertionSorter
{
 /**

 Constructs an insertion sorter.

 @param anArray the array to sort
 */
 public InsertionSorter(int[] anArray)
 {
 a = anArray;
 } 637

Chapter 14 Sorting and Searching Page 15 of 52

Java Concepts, 5th Edition

 /**
 Sorts the array managed by this insertion
sorter.
 */
 public void sort()
 {
 for (int i = 1; i < a.length; i ++)
 {
 int next = a[i];

 // Find the insertion location

 // Move all larger elements up
 int j = i;
 while (j > 0 && a[j - 1] > next)
 {
 a[j] = a[j - 1];
 j--;
 }

 // Insert the element
 a[j] = next;
 }
 }

 private int[] a;
}

How efficient is this algorithm? Let n denote the size of the array. We carry out

n − 1 iterations. In the kth iteration, we have a sequence of k elements that is

already sorted, and we need to insert a new element into the sequence. For each

insertion, we need to visit the elements of the initial sequence until we have found

the location in which the new element can be inserted. Then we need to move up

the remaining elements of the sequence. Thus, k + 1 array elements are visited.

Therefore, the total number of visits is

2 + 3 + … + n = − 1
n (n + 1)

2

We conclude that insertion sort is an O(n
2
) algorithm, on the same order of

efficiency as selection sort.

Insertion sort is an O(n
2
) algorithm.

638

Chapter 14 Sorting and Searching Page 16 of 52

Java Concepts, 5th Edition

Insertion sort has one desirable property: Its performance is O(n) if the array is

already sorted—see Exercise R14.13. This is a useful property in practical

applications, in which data sets are often partially sorted.

 ADVANCED TOPIC 14.2: Oh, Omega, and Theta

We have used the big-Oh notation somewhat casually in this chapter, to describe

the growth behavior of a function. Strictly speaking, f(n) = O(g(n)) means that f

grows no faster than g. But it is permissible for f to grow much slower. Thus, it is

technically correct to state that f(n) = n
2
 + 5n − 3 is O(n

3
) or even O(n

10
).

Computer scientists have invented additional notation to describe the growth

behavior of functions more accurately. The expression

f (n) = Ω (g (n))

means that f grows at least as fast as g, or, formally, that for all n larger than some

threshold, the ratio f(n)/g(n) ≥ C for some constant value C. (The Ω symbol is the

capital Greek letter omega.) For example, f(n) = n
2
 + 5n − 3 is Ω(n

2
) or even Ω(n).

The expression

f (n) = Θ (g (n))

means that f and g grow at the same rate—that is, both f(n) = O(g(n)) and

f(n) = Ω(g(n)) hold. (The Θ symbol is the capital Greek letter theta.)

The Θ notation gives the most precise description of growth behavior. For

example, f(n) = n
2
 + 5n − 3 is Θ(n

2
) but not Θ(n) or Θ(n

3
).

The Ω and Θ notation is very important for the precise analysis of algorithms.

However, in casual conversation it is common to stick with big-Oh, while still

giving as good an estimate as one can.

14.4 Merge Sort

In this section, you will learn about the merge sort algorithm, a much more efficient

algorithm than selection sort. The basic idea behind merge sort is very simple.

638

639

Chapter 14 Sorting and Searching Page 17 of 52

Java Concepts, 5th Edition

Suppose we have an array of 10 integers. Let us engage in a bit of wishful thinking

and hope that the first half of the array is already perfectly sorted, and the second half

is too, like this:

Now it is simple to merge the two sorted arrays into one sorted array, by taking a new

element from either the first or the second subarray, and choosing the smaller of the

elements each time:

In fact, you probably performed this merging before when you and a friend had to

sort a pile of papers. You and the friend split the pile in half, each of you sorted your

half, and then you merged the results together.

The merge sort algorithm sorts an array by cutting the array in half, recursively

sorting each half, and then merging the sorted halves.

That is all well and good, but it doesn't seem to solve the problem for the computer. It

still must sort the first and second halves of the array, because it can't very well ask a

few buddies to pitch in. As it turns out, though, if the computer keeps dividing the

array into smaller and smaller subarrays, sorting each half and merging them back

together, it carries out dramatically fewer steps than the selection sort requires.

639

640

Chapter 14 Sorting and Searching Page 18 of 52

Java Concepts, 5th Edition

Let us write a MergeSorter class that implements this idea. When the

MergeSorter sorts an array, it makes two arrays, each half the size of the original,

and sorts them recursively. Then it merges the two sorted arrays together:

public void sort()
{
 if (a.length <= 1) return;
 int[] first = new int[a.length / 2];
 int[] second = new int [a.length - first.length];
 System.arraycopy(a, 0, first, 0, first.length);
 System.arraycopy(a,
 first.length, second, 0, second.length);
 MergeSorter firstSorter = new MergeSorter(first);
 MergeSorter secondSorter = new
MergeSorter(second);
 firstSorter.sort();
 secondSorter.sort();
 merge(first, second);
}

The merge method is tedious but quite straightforward. You will find it in the code

that follows.

ch14/mergesort/MergeSorter.java

 1 /**

 2 This class sorts an array, using the merge sort algorithm.
 3 */

 4 public class MergeSorter

 5 {

 6 /**

 7 Constructs a merge sorter.

 8 @param anArray the array to sort
 9 */

10 public MergeSorter(int[] anArray)

11 {

12 a = anArray;

13 }

14

15 /**

16 Sorts the array managed by this merge sorter.

Chapter 14 Sorting and Searching Page 19 of 52

Java Concepts, 5th Edition

17 */

18 public void sort()

19 {

20 if (a.length <= 1) return;

21 int[] first = new int[a.length / 2];

22 int[] second = new int[a.length -

first.length];

23 System.arraycopy(a, 0, first, 0,

first.length);

24 System.arraycopy(a, first.length,

second, 0, second.length);

25 MergeSorter firstSorter = new

MergeSorter(first);

26 MergeSorter secondSorter = new

MergeSorter(second);

27 firstSorter.sort();

28 secondSorter.sort();

29 merge(first, second);

30 }

31

32 /**

33 Merges two sorted arrays into the array managed by this

34 merge sorter.

35 @param first the first sorted array

36 @param second the second sorted array
37 */

38 private void merge(int[] first, int[] second)

39 {

40 // Merge both halves into the temporary array
41

42 int iFirst = 0;

43 // Next element to consider in the first array
44 int iSecond = 0;

45 // Next element to consider in the second array
46 int j = 0;

47 // Next open position in a
48

49 // As long as neither iFirst nor iSecond past the end, move

50 // the smaller element into a
51 while (iFirst < first.length && iSecond <

second.length)

640

641

Chapter 14 Sorting and Searching Page 20 of 52

Java Concepts, 5th Edition

52 {

53 if (first[iFirst] < second[iSecond])

54 {

55 a[j] = first[iFirst];

56 iFirst++;

57 }

58 else

59 {

60 a[j] = second[iSecond];

61 iSecond++;

62 }

63 j++;

64 }

65

66 // Note that only one of the two calls to arraycopy below

67 // copies entries
68

69 // Copy any remaining entries of the first array
70 System.arraycopy(first, iFirst, a, j,

first.length - iFirst);

71

72 // Copy any remaining entries of the second half
73 System.arraycopy(second, iSecond, a, j,

second.length - iSecond);

74 }

75

76 private int[] a;

77 }

ch14/mergesort/MergeSortDemo.java

 1 import java.util.Arrays;

 1

 1 /**

 2 This program demonstrates the merge sort algorithm by

 3 sorting an array that is filled with random numbers.
 4 */

 5 public class MergeSortDemo

 6 {

 7 public static void main(String[] args)

 8 {

641

642

Chapter 14 Sorting and Searching Page 21 of 52

Java Concepts, 5th Edition

 9 int[] a = ArrayUtil.randomIntArray(20,

100);

10 System.out.println(Arrays.toString(a));

11 MergeSorter sorter = new MergeSorter(a);

12 sorter.sort();

13 System.out.println(Arrays.toString(a));

14 }

15 }

Typical Output

[8, 81, 48, 53, 46, 70, 98, 42, 27, 76, 33, 24, 2,
76, 62, 89, 90, 5, 13, 21]
[2, 5, 8, 13, 21, 24, 27, 33, 42, 46, 48, 53, 62,
70, 76, 76, 81, 89, 90, 98]

SELF CHECK

7. Why does only one of the two arraycopy calls at the end of the merge

method do any work?

8. Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.

14.5 Analyzing the Merge Sort Algorithm

The merge sort algorithm looks a lot more complicated than the selection sort

algorithm, and it appears that it may well take much longer to carry out these repeated

subdivisions. However, the timing results for merge sort look much better than those

for selection sort (see table on next page).

Figure 2 shows a graph comparing both sets of performance data. That is a

tremendous improvement. To understand why, let us estimate the number of array

element visits that are required to sort an array with the merge sort algorithm. First,

let us tackle the merge process that happens after the first and second halves have

been sorted.

Each step in the merge process adds one more element to a. That element may come

from first or second, and in most cases the elements from the two halves must

be compared to see which one to take. Let us count that as 3 visits (one for a and one

each for first and second) per element, or 3n visits total, where n denotes the

Chapter 14 Sorting and Searching Page 22 of 52

Java Concepts, 5th Edition

length of a. Moreover, at the beginning, we had to copy from a to first and

second, yielding another 2n visits, for a total of 5n.

n Merge Sort (milliseconds) Selection Sort (milliseconds)

10,000 40 786

20,000 73 2,148

30,000 134 4,796

40,000 170 9,192

50,000 192 13,321

60,000 205 19,299

If we let T(n) denote the number of visits required to sort a range of n elements

through the merge sort process, then we obtain

T (n) = T + T + 5 n(
n

2) (
n

2)

because sorting each half takes T(n/2) visits. Actually, if n is not even, then we have

one subarray of size (n − l)/2 and one of size (n + 1)/2. Although it turns out that this

detail does not affect the outcome of the computation, we will nevertheless assume

for now that n is a power of 2, say n = 2
m
. That way, all subarrays can be evenly

divided into two parts.

Figure 2

Merge Sort Timing (blue) versus Selection Sort (red)

642

643

643

Chapter 14 Sorting and Searching Page 23 of 52

Java Concepts, 5th Edition

Unfortunately, the formula

T (n) = 2 T + 5 n(
n

2)

does not clearly tell us the relationship between n and T(n). To understand the

relationship, let us evaluate T(n/2), using the same formula:

T = 2 T + 5(
n

2) (
n

4)
n

2

Therefore

T (n) = 2 × 2 T + 5 n + 5 n(
n

4)

Let us do that again:

T = 2 T + 5(
n

4) (
n

8)
n

4

hence

T (n) = 2 × 2 × 2 T + 5 n + 5 n + 5 n(
n

8)

This generalizes from 2, 4, 8, to arbitrary powers of 2:

T (n) = T + 5 nk2
k (n

2
k)

Recall that we assume that n = 2
m
; hence, for k = m,

T (n) = T + 5 nm2
m (n

2
m)

= nT (1) + 5 nm

= n + 5 n (n)log
2

Because n = 2
m
, we have m = log2(n).

643

644

Chapter 14 Sorting and Searching Page 24 of 52

Java Concepts, 5th Edition

To establish the growth order, we drop the lower-order term n and are left with 5n

log2(n). We drop the constant factor 5. It is also customary to drop the base of the

logarithm, because all logarithms are related by a constant factor. For example,

(x) = (x) / (2) ≈ (x) × 3.32193log
2

log
10

log
10

log
10

Hence we say that merge sort is an O(n log(n)) algorithm.

Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more

slowly than n
2
.

Is the O(n log(n)) merge sort algorithm better than the O(n
2
) selection sort algorithm?

You bet it is. Recall that it took 100
2
 = 10,000 times as long to sort a million records

as it took to sort 10,000 records with the O(n
2
) algorithm. With the O(n log(n))

algorithm, the ratio is

= 100 = 150
1,000,000 log (1,000,000)

10,000 log (10,000) (
6

4)

Suppose for the moment that merge sort takes the same time as selection sort to sort

an array of 10,000 integers, that is, 3/4 of a second on the test machine. (Actually, it is

much faster than that.) Then it would take about 0.75 × 150 seconds, or under 2

minutes, to sort a million integers. Contrast that with selection sort, which would take

over 2 hours for the same task. As you can see, even if it takes you several hours to

learn about a better algorithm, that can be time well spent.

In this chapter we have barely begun to scratch the surface of this interesting topic.

There are many sorting algorithms, some with even better performance than the

merge sort algorithm, and the analysis of these algorithms can be quite challenging. If

you are a computer science major, you may revisit these important issues in a later

computer science class.

The Arrays class implements a sorting method that you should use for your Java

programs.

644

645

Chapter 14 Sorting and Searching Page 25 of 52

Java Concepts, 5th Edition

However, when you write Java programs, you don't have to implement your own

sorting algorithm. The Arrays class contains static sort methods to sort arrays of

integers and floating-point numbers. For example, you can sort an array of integers

simply as

int[] a = . . .;
Arrays.sort(a);

That sort method uses the quicksort algorithm—see Advanced Topic 14.3 for more

information about that algorithm.

SELF CHECK

9. Given the timing data for the merge sort algorithm in the table at the

beginning of this section, how long would it take to sort an array of

100,000 values?

10. Suppose you have an array double [] values in a Java program.

How would you sort it?

 ADVANCED TOPIC 14.3: The Quicksort Algorithm

Quicksort is a commonly used algorithm that has the advantage over merge sort

that no temporary arrays are required to sort and merge the partial results.

The quicksort algorithm, like merge sort, is based on the strategy of divide and

conquer. To sort a range a[from] . . . a[to] of the array a, first

rearrange the elements in the range so that no element in the range a[from] .

. . a[p] is larger than any element in the range a[p + 1] . . . a[to].

This step is called partitioning the range.

For example, suppose we start with a range

Here is a partitioning of the range. Note that the partitions aren't yet sorted.

645

646

Chapter 14 Sorting and Searching Page 26 of 52

Java Concepts, 5th Edition

You'll see later how to obtain such a partition. In the next step, sort each partition,

by recursively applying the same algorithm on the two partitions. That sorts the

entire range, because the largest element in the first partition is at most as large as

the smallest element in the second partition.

Quicksort is implemented recursively as follows:

 public void sort(int from, int to)
 {
 if (from >= to) return;
 int p = partition(from, to);
 sort(from, p);
 sort(p + 1, to);
 }

Let us return to the problem of partitioning a range. Pick an element from the

range and call it the pivot. There are several variations of the quicksort algorithm.

In the simplest one, we'll pick the first element of the range, a[from], as the

pivot.

Now form two regions a[from] . . . a[i], consisting of values at most as

large as the pivot and a[j] . . . a[to], consisting of values at least as large

as the pivot. The region a[i + 1] . . . a[j - 1] consists of values that

haven't been analyzed yet. (See Partitioning a Range.) At the beginning, both the

left and right areas are empty; that is, i = from - 1 and j = to + 1.

Partitioning a Range

Chapter 14 Sorting and Searching Page 27 of 52

Java Concepts, 5th Edition

Extending the Partitions

Then keep incrementing i while a[i] < pivot and keep decrementing j while

a[j] > pivot. Extending the Partitions shows i and j when that process stops.

Now swap the values in positions i and j, increasing both areas once more. Keep

going while i < j. Here is the code for the partition method:

private int partition (int from, int to)
 {
 int pivot = a[from];
 int i = from - 1;
 int j = to + 1;
 while (i < j)
 {
 i++; while (a[i] < pivot) i++;
 j--; while (a[j] > pivot) j--;
 if (i < j) swap(i, j);
 }
 return j;
 }

On average, the quicksort algorithm is an O(n log(n)) algorithm. Because it is

simpler, it runs faster than merge sort in most cases. There is just one unfortunate

aspect to the quicksort algorithm. Its worst-case runtime behavior is O(n
2
).

Moreover, if the pivot element is chosen as the first element of the region, that

worst-case behavior occurs when the input set is already sorted—a common

situation in practice. By selecting the pivot element more cleverly, we can make it

extremely unlikely for the worst-case behavior to occur. Such “tuned” quicksort

algorithms are commonly used, because their performance is generally excellent.

For example, as was mentioned, the sort method in the Arrays class uses a

quicksort algorithm.

646

647

Chapter 14 Sorting and Searching Page 28 of 52

Java Concepts, 5th Edition

Another improvement that is commonly made in practice is to switch to insertion

sort when the array is short, because the total number of operations of insertion

sort is lower for short arrays. The Java library makes that switch if the array length

is less than 7.

 RANDOM FACT 14.1: The First Programmer

Before pocket calculators and personal computers existed, navigators and

engineers used mechanical adding machines, slide rules, and tables of logarithms

and trigonometric functions to speed up computations. Unfortunately, the tables—

for which values had to be computed by hand—were notoriously inaccurate. The

mathematician Charles Babbage (1791—1871) had the insight that if a machine

could be constructed that produced printed tables automatically, both calculation

and typesetting errors could be avoided. Babbage set out to develop a machine for

this purpose, which he called a Difference Engine because it used successive

differences to compute polynomials. For example, consider the function f(x) = x
3
.

Write down the values for f(1), f(2), f(3), and so on. Then take the differences

between successive values:

1
 7
8
 19
27
 37
64
 61
125
 91
216

Repeat the process, taking the difference of successive values in the second

column, and then repeat once again:

1
 7
8 12
 19 6
27 18

647

648

Chapter 14 Sorting and Searching Page 29 of 52

Java Concepts, 5th Edition

 37 6
64 24
 61 6
125 30
 91
216

Now the differences are all the same. You can retrieve the function values by a

pattern of additions—you need to know the values at the fringe of the pattern and

the constant difference. This method was very attractive, because mechanical

addition machines had been known for some time. They consisted of cog wheels,

with 10 cogs per wheel, to represent digits, and mechanisms to handle the carry

from one digit to the next. Mechanical multiplication machines, on the other hand,

were fragile and unreliable. Babbage built a successful prototype of the Difference

Engine (see the Babbage's Difference Engine figure) and, with his own money and

government grants, proceeded to build the table-printing machine. However,

because of funding problems and the difficulty of building the machine to the

required precision, it was never completed.

Babbage's Difference Engine

648

649

Chapter 14 Sorting and Searching Page 30 of 52

Java Concepts, 5th Edition

While working on the Difference Engine, Babbage conceived of a much grander

vision that he called the Analytical Engine. The Difference Engine was designed to

carry out a limited set of computations—it was no smarter than a pocket calculator

is today. But Babbage realized that such a machine could be made programmable

by storing programs as well as data. The internal storage of the Analytical Engine

was to consist of 1,000 registers of 50 decimal digits each. Programs and constants

were to be stored on punched cards—a technique that was, at that time, commonly

used on looms for weaving patterned fabrics.

Ada Augusta, Countess of Lovelace (1815—1852), the only child of Lord Byron,

was a friend and sponsor of Charles Babbage. Ada Lovelace was one of the first

people to realize the potential of such a machine, not just for computing

mathematical tables but for processing data that were not numbers. She is

considered by many the world's first programmer. The Ada programming

language, a language developed for use in U.S. Department of Defense projects

(see Random Fact 9.2), was named in her honor.

14.6 Searching

Suppose you need to find the telephone number of your friend. You look up his name

in the telephone book, and naturally you can find it quickly, because the telephone

book is sorted alphabetically. Quite possibly, you may never have thought how

important it is that the telephone book is sorted. To see that, think of the following

problem: Suppose you have a telephone number and you must know to what party it

belongs. You could of course call that number, but suppose nobody picks up on the

other end. You could look through the telephone book, a number at a time, until you

find the number. That would obviously be a tremendous amount of work, and you

would have to be desperate to attempt that.

This thought experiment shows the difference between a search through an unsorted

data set and a search through a sorted data set. The following two sections will

analyze the difference formally.

If you want to find a number in a sequence of values that occur in arbitrary order,

there is nothing you can do to speed up the search. You must simply look through all

elements until you have found a match or until you reach the end. This is called a

linear or sequential search.

Chapter 14 Sorting and Searching Page 31 of 52

Java Concepts, 5th Edition

A linear search examines all values in an array until it finds a match or reaches the

end.

How long does a linear search take? If we assume that the element v is present in the

array a, then the average search visits n/2 elements, where n is the length of the array.

If it is not present, then all n elements must be inspected to verify the absence. Either

way, a linear search is an O(n) algorithm.

A linear search locates a value in an array in O(n) steps.

Here is a class that performs linear searches through an array a of integers. When

searching for the value v, the search method returns the first index of the match, or

-1 if v does not occur in a.

ch14/linsearch/LinearSearcher.java

 1 /**

 2 A class for executing linear searches through an array.
 3 */

 4 public class LinearSearcher

 5 {

 6 /**

 7 Constructs the LinearSearcher.

 8 @param anArray an array of integers
 9 */

10 public LinearSearcher(int[] anArray)

11 {

12 a = anArray;

13 }

14

15 /**

16 Finds a value in an array, using the linear search

17 algorithm.

18 @param v the value to search

19 @return the index at which the value occurs, or -1

20 if it does not occur in the array
21 */

649

650

Chapter 14 Sorting and Searching Page 32 of 52

Java Concepts, 5th Edition

22 public int search(int v)

23 {

24 for (int i = 0; i < a.length;

i++)

25 {

26 if (a[i] == v)

27 return i;

28 }

29 return -1;

30 }

31

32 private int[] a;

33 }

ch14/linsearch/LinearSearchDemo.java

 1 import java.util.Arrays;

 2 import java.util.Scanner;

 3

 4 /**

 5 This program demonstrates the linear search algorithm.
 6 */

 7 public class LinearSearchDemo

 8 {

 9 public static void main(String[] args)

10 {

11 int[] a = ArrayUtil.randomIntArray(20,

100);

12 System.out.println(Arrays.toString(a));

13 LinearSearcher searcher = new

LinearSearcher(a);

14

15 Scanner in = new Scanner(System.in);

16

17 boolean done = false;

18 while (!done)

19 {

20 System.out.print(“Enter number to

search for, -1 to quit: ”);

21 int n = in.nextInt();

22 if (n == -1)

23 done = true;

24 else

650

651

Chapter 14 Sorting and Searching Page 33 of 52

Java Concepts, 5th Edition

25 {

26 int pos = searcher.search(n);

27 System.out.

println(“Foundinposition” + pos);

28 }

29 }

30 }

31 }

Typical Output

 [46, 99, 45, 57, 64, 95, 81, 69, 11, 97, 6, 85,
61, 88, 29, 65, 83, 88, 45, 88]
 Enter number to search for, -1 to quit: 11
 Found in position 8

SELF CHECK

11. Suppose you need to look through 1,000,000 records to find a telephone

number. How many records do you expect to search before finding the

number?

12. Why can't you use a “for each” loop for (int element : a) in the

search method?

14.7 Binary Search

Now let us search for an item in a data sequence that has been previously sorted. Of

course, we could still do a linear search, but it turns out we can do much better than

that.

Consider the following sorted array a. The data set is:

We would like to see whether the value 15 is in the data set. Let's narrow our search

by finding whether the value is in the first or second half of the array. The last point

in the first half of the data set, a [3], is 9, which is smaller than the value we are 651

Chapter 14 Sorting and Searching Page 34 of 52

Java Concepts, 5th Edition

looking for. Hence, we should look in the second half of the array for a match, that is,

in the sequence:

Now the last value of the first half of this sequence is 17; hence, the value must be

located in the sequence:

The last value of the first half of this very short sequence is 12, which is smaller than

the value that we are searching, so we must look in the second half:

It is trivial to see that we don't have a match, because 15 ≠ 17. If we wanted to insert

15 into the sequence, we would need to insert it just before a[5].

A binary search locates a value in a sorted array by determining whether the value

occurs in the first or second half, then repeating the search in one of the halves.

This search process is called a binary search, because we cut the size of the search in

half in each step. That cutting in half works only because we know that the sequence

of values is sorted.

The following class implements binary searches in a sorted array of integers. The

search method returns the position of the match if the search succeeds, or -1 if v is

not found in a.

ch14/binsearch/BinarySearcher.java

 1 /**

 2 A class for executing binary searches through an array.
 3 */

 4 public class BinarySearcher

 5 {

652

Chapter 14 Sorting and Searching Page 35 of 52

Java Concepts, 5th Edition

 6 /**

 7 Constructs a BinarySearcher.

 8 @param anArray a sorted array of integers
 9 */

10 public BinarySearcher(int[] anArray)

11 {

12 a = anArray;

13 }

14

15 /**

16 Finds a value in a sorted array, using the binary

17 search algorithm.

18 @param v the value to search

19 @return the index at which the value occurs, or -1

20 if it does not occur in the array
21 */

22 public int search(int v)

23 {

24 int low = 0;

25 int high = a.length - 1;

26 while (low <= high)

27 {

28 int mid = (low + high) / 2;

29 int diff = a [mid] - v;

30

31 if (diff == 0) // a[mid] == v

32 return mid;

33 else if (diff < 0) // a[mid] <

v

34 low = mid + 1;

35 else

36 high = mid - 1;

37 }

38 return -1;

39 }

40

41 private int[] a;

42 }

Let us determine the number of visits of array elements required to carry out a search.

We can use the same technique as in the analysis of merge sort. Because we look at

652

653

Chapter 14 Sorting and Searching Page 36 of 52

Java Concepts, 5th Edition

the middle element, which counts as one comparison, and then search either the left

or the right subarray, we have

T (n) = T + 1(
n

2)

Using the same equation,

T = T + 1(
n

2) (
n

4)

By plugging this result into the original equation, we get

T (n) = T + 2(
n

4)

That generalizes to

T (n) = T + k(n
2
k)

As in the analysis of merge sort, we make the simplifying assumption that n is a

power of 2, n = 2
m
, where m = log2(n). Then we obtain

T (n) = 1 + (n)log
2

Therefore, binary search is an O(log(n)) algorithm.

That result makes intuitive sense. Suppose that n is 100. Then after each search, the

size of the search range is cut in half, to 50, 25, 12, 6, 3, and 1. After seven

comparisons we are done. This agrees with our formula, because log2(100) ≈

6.64386, and indeed the next larger power of 2 is 2
7
 = 128.

A binary Search locates a value in an array in O(log(n)) steps.

Because a binary search is so much faster than a linear search, is it worthwhile to sort

an array first and then use a binary search? It depends. If you search the array only

once, then it is more efficient to pay for an O(n) linear search than for an O(n log(n))

sort and an O(log(n)) binary search. But if you will be making many searches in the

same array, then sorting it is definitely worthwhile.

653

654

Chapter 14 Sorting and Searching Page 37 of 52

Java Concepts, 5th Edition

The Arrays class contains a static binarySearch method that implements the

binary search algorithm, but with a useful enhancement. If a value is not found in the

array, then the returned value is not − 1, but − k − 1, where k is the position before

which the element should be inserted. For example,

int[] a = { 1, 4, 9 };
int v = 7;
int pos = Arrays.binarySearch(a, v);
 // Returns -3; v should be inserted before
position 2

SELF CHECK

13. Suppose you need to look through a sorted array with 1,000,000

elements to find a value. Using the binary search algorithm, how many

records do you expect to search before finding the value?

14. Why is it useful that the Arrays.binarySearch method indicates

the position where a missing element should be inserted?

15. Why does Arrays.binarySearch return − k − 1 and not − k to

indicate that a value is not present and should be inserted before position

k?

14.8 Sorting Real Data

In this chapter we have studied how to search and sort arrays of integers. Of course,

in application programs, there is rarely a need to search through a collection of

integers. However, it is easy to modify these techniques to search through real data.

The sort method of the Arrays class sorts objects of classes that implement the

Comparable interface.

The Arrays class supplies a static sort method for sorting arrays of objects.

However, the Arrays class cannot know how to compare arbitrary objects. Suppose,

for example, that you have an array of Coin objects. It is not obvious how the coins

should be sorted. You could sort them by their names, or by their values. The

Arrays. sort method cannot make that decision for you. Instead, it requires that

Chapter 14 Sorting and Searching Page 38 of 52

Java Concepts, 5th Edition

the objects belong to classes that implement the Comparable interface. That

interface has a single method:

public interface Comparable
{
 int compareTo(Object otherObject);
}

The call

a.compareTo(b)

must return a negative number if a should come before b, 0 if a and b are the same,

and a positive number otherwise.

Several classes in the standard Java library, such as the String and Date classes,

implement the Comparable interface.

You can implement the Comparable interface for your own classes as well. For

example, to sort a collection of coins, the Coi n class would need to implement this

interface and define a compareTo method:

public class Coin implements Comparable
{
 . . .
 public int compareTo(Object otherObject)
 {
 Coin other = (Coin) otherObject;
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
 . . .
}

When you implement the compareTo method of the Comparable interface, you

must make sure that the method defines a total ordering relationship, with the

following three properties:

• Antisymmetric: If a.compareTo(b) ≤ 0, then b.compareTo(a) ≥ 0

• Reflexive: a.compareTo(a) = 0

654

655

Chapter 14 Sorting and Searching Page 39 of 52

Java Concepts, 5th Edition

• Transitive: If a.compareTo(b) ≤ 0 and b.compareTo(c) ≤ 0, then

a.compareTo(c) ≤ 0

Once your Coin class implements the Comparable interface, you can simply pass

an array of coins to the Arrays. sort method:

Coin[] coins = new Coin[n];
// Add coins
. . .
Arrays.sort(coins);

If the coins are stored in an ArrayList, use the Collections.sort method

instead; it uses the merge sort algorithm:

The Collections class contains a sort method that can sort array lists.

ArrayList<Coin> coins = new ArrayList<Coin>();
// Add coins
. . .
Collections. sort (coins);

As a practical matter, you should use the sorting and searching methods in the

Arrays and Collections classes and not those that you write yourself. The

library algorithms have been fully debugged and optimized. Thus, the primary

purpose of this chapter was not to teach you how to implement practical sorting and

searching algorithms. Instead, you have learned something more important, namely

that different algorithms can vary widely in performance, and that it is worthwhile to

learn more about the design and analysis of algorithms.

SELF CHECK

16. Why can't the Arrays.sort method sort an array of Rectangle

objects?

17. What steps would you need to take to sort an array of BankAccount

objects by increasing balance?

655

656

Chapter 14 Sorting and Searching Page 40 of 52

Java Concepts, 5th Edition

 COMMON ERROR 14.1: The compareTo Method Can

Return Any Integer, Not

Just − 1, 0, and 1

The call a.compareTo(b) is allowed to return any negative integer to

denote that a should come before b, not necessarily the value − 1. That is, the test

if (a.compareTo(b) == -1) // ERROR!

is generally wrong. Instead, you should test

if (a.compareTo(b) < 0) // OK

Why would a compareTo method ever want to return a number other than − 1, 0,

or 1 ? Sometimes, it is convenient to just return the difference of two integers. For

example, the compareTo method of the Stri ng class compares characters

in matching positions:

char c1 = charAt(i);
char c2 = other.charAt(i);

If the characters are different, then the method simply returns their difference:

if (c1 ! = c2) return c1 - c2;

This difference is a negative number if c1 is less than c2, but it is not necessarily

the number − 1.

 ADVANCED TOPIC 14.4: The Parameterized

Comparable Interface

As of Java version 5.0, the Comparabl e interface is a parameterized type,

similar to the Array-List type:

public interface Comparable<T>
{
 int compareTo(T other)
}

Chapter 14 Sorting and Searching Page 41 of 52

Java Concepts, 5th Edition

The type parameter specifies the type of the objects that this class is willing to

accept for comparison. Usually, this type is the same as the class type itself. For

example, the Coin class would implement Comparable<Coin>, like this:

public class Coin implements Comparable<Coin>
{
 . . .
 public int compareTo(Coin other)
 {
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
 . . .
}

The type parameter has a significant advantage: You need not use a cast to convert

an Object parameter into the desired type.

 ADVANCED TOPIC 14.5: The Comparator Interface

Sometimes, you want so sort an array or array list of objects, but the objects don't

belong to a class that implements the Comparabl e interface. Or, perhaps, you

want to sort the array in a different order. For example, you may want to sort coins

by name rather than by value.

You wouldn't want to change the implementation of a class just in order to call

Arrays.sort. Fortunately, there is an alternative. One version of the

Arrays.sort method does not require that the objects belong to classes that

implement the Comparable interface. Instead, you can supply arbitrary objects.

However, you must also provide a comparator object whose job is to compare

objects. The comparator object must belong to a class that implements the

Comparator interface. That interface has a single method, compare, which

compares two objects.

As of Java version 5.0, the Comparator interface is a parameterized type. The

type parameter specifies the type of the compare parameters. For example,

Comparator<Coin> looks like this:

public interface Comparator<Coin>

656

657

Chapter 14 Sorting and Searching Page 42 of 52

Java Concepts, 5th Edition

{
 int compare (Coin a, Coin b);
}

The call

comp.compare(a, b)

must return a negative number if a should come before b, 0 if a and b are the

same, and a positive number otherwise. (Here, comp is an object of a class that

implements Comparator<Coin>.)

For example, here is a Comparator class for coins:

public class CoinComparator implements
Comparator<Coin>
{
 public int compare(Coin a, Coin b)
 {
 if (a.getValue() < b.getValue()) return -1;
 if (a.getValue() == b.getValue()) return 0;
 return 1;
 }
}

To sort an array of coins by value, call

Arrays.sort(coins, new CoinComparator());

CHAPTER SUMMARY

1. The selection sort algorithm sorts an array by repeatedly finding the smallest

element of the unsorted tail region and moving it to the front.

2. Computer scientists use the big-Oh notation f(n) = O(g(n)) to express that the

function f grows no faster than the function g.

3. Selection sort is an O(n
2
) lgorithm. Doubling the data set means a fourfold

increase in processing time.

4. Insertion sort is an O(n
2
) algorithm.

657

658

Chapter 14 Sorting and Searching Page 43 of 52

Java Concepts, 5th Edition

5. The merge sort algorithm sorts an array by cutting the array in half, recursively

sorting each half, and then merging the sorted halves.

6. Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more

slowly than n
2
.

7. The Arrays class implements a sorting method that you should use for your

Java programs.

8. A linear search examines all values in an array until it finds a match or reaches

the end.

9. A linear search locates a value in an array in O(n) steps.

10. A binary search locates a value in a sorted array by determining whether the

value occurs in the first or second half, then repeating the search in one of the

halves.

11. A binary search locates a value in an array in O(log(n)) steps.

12. The sort method of the Arrays class sorts objects of classes that implement

the Comparable interface.

13. The Collections class contains a sort method that can sort array lists.

FURTHER READING

1. Michael T. Goodrich and Roberto Tamassia, Data Structures and

Algorithms in Java, 3rd edition,John Wiley & Sons, 2003.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.lang.Comparable<T>

 compareTo
java.lang.System
 currentTimeMillis
java.util.Arrays
 binarySearch
 sort

658

659

Chapter 14 Sorting and Searching Page 44 of 52

Java Concepts, 5th Edition

 toString
java.util.Collections
 binarySearch
 sort

java.util.Comparator<T>

 compare

REVIEW EXERCISES

★★Exercise R14.1. Checking against off-by-one errors. When writing the

selection sort algorithm of Section 14.1, a programmer must make the

usual choices of < against < = , a.length against

a.length - 1, and from against from + 1. This is a fertile ground

for off-by-one errors. Conduct code walkthroughs of the algorithm with

arrays of length 0, 1,2, and 3 and check carefully that all index values are

correct.

★ Exercise R14.2. What is the difference between searching and sorting?

★★Exercise R14.3. For the following expressions, what is the order of the

growth of each?

a. n
2
 + 2n + 1

b. n
10
 + 9n

9
 + 20n

8
 + 145n

7

c. (n + 1)
4

d. (n
2
 + n)

2

e. n + 0.001n
3

f. n
3
 − 1000n

2
 + 10

9

g. n + log(n)

h. n
2
 + n log(n)

i. 2
n
 + n

2

Chapter 14 Sorting and Searching Page 45 of 52

Java Concepts, 5th Edition

j.
+ 2 nn

3

+ 0.75n
2

★ Exercise R14.4. We determined that the actual number of visits in the

selection sort algorithm is

T (n) = + n − 3

1

2
n
2

5

2
We characterized this method as having O(n

2
) growth. Compute the actual

ratios

T (2,000) / T (1,000)

T (4,000) / T (1,000)

T (10,000) / T (1,000)

and compare them with

f (2,000) / f (1,000)

f (4,000) / f (1,000)

f (10,000) / f (1,000)

659

660

Chapter 14 Sorting and Searching Page 46 of 52

Java Concepts, 5th Edition

where f(n) = n
2
.

★ Exercise R14.5. Suppose algorithm A takes 5 seconds to handle a data set

of 1,000 records. If the algorithm A is an O(n) algorithm, how long will it

take to handle a data set of 2,000 records? Of 10,000 records?

★★Exercise R14.6. Suppose an algorithm takes 5 seconds to handle a data set

of 1,000 records. Fill in the following table, which shows the approximate

growth of the execution times depending on the complexity of the

algorithm.

O(n) O(n
2
) O(n

3
) O(n

log(n)
O(2
n
)

1,000 5 5 5 5 5

2,000

3,000 45

10,000

For example, because 3,000
2
/l,000

2
 = 9, the algorithm would take 9 times

as long, or 45 seconds, to handle a data set of 3,000 records.

★★Exercise R14.7. Sort the following growth rates from slowest to fastest

growth.

O(n) O(n log (n))

O(n
3
) O(2

n
)

O(n
n
) O ()n

O(log(n)) O (n)n

O(n
2
 log(n)) O(n

log(n)
)

★ Exercise R14.8. What is the growth rate of the standard algorithm to find

the minimum value of an array? Of finding both the minimum and the

maximum?

★ Exercise R14.9. What is the growth rate of the following method?

public static int count(int[] a, int c)
{
 int count = 0;
 for (int i = 0; i < a.length; i ++)

660

661

Chapter 14 Sorting and Searching Page 47 of 52

Java Concepts, 5th Edition

 {
 if (a[i] == c) count++;
 }
 return count;
}

★★Exercise R14.10. Your task is to remove all duplicates from an array. For

example, if the array has the values

4 7 11 4 9 5 11 7 3 5

then the array should be changed to

4 7 11 9 5 3

Here is a simple algorithm. Look at a[i]. Count how many times it

occurs in a. If the count is larger than 1, remove it. What is the growth rate

of the time required for this algorithm?

★★Exercise R14.11. Consider the following algorithm to remove all

duplicates from an array. Sort the array. For each element in the array, look

at its next neighbor to decide whether it is present more than once. If so,

remove it. Is this a faster algorithm than the one in Exercise R14.10?

★★★Exercise R14.12. Develop an O(n log (n)) algorithm for removing

duplicates from an array if the resulting array must have the same

ordering as the original array.

★★★Exercise R14.13. Why does insertion sort perform significantly better

than selection sort if an array is already sorted?

★★★Exercise R14.14. Consider the following speedup of the insertion sort

algorithm of Advanced Topic 14.1. For each element, use the enhanced

binary search algorithm that yields the insertion position for missing

elements. Does this speedup have a significant impact on the efficiency

of the algorithm?

 Additional review exercises are available in WileyPLUS.

Chapter 14 Sorting and Searching Page 48 of 52

Java Concepts, 5th Edition

PROGRAMMING EXERCISES

★ Exercise P14.1. Modify the selection sort algorithm to sort an array of

integers in descending order.

★ Exercise P14.2. Modify the selection sort algorithm to sort an array of

coins by their value.

★★Exercise P14.3. Write a program that generates the table of sample runs of

the selection sort times automatically. The program should ask for the

smallest and largest value of n and the number of measurements and then

make all sample runs.

★ Exercise P14.4. Modify the merge sort algorithm to sort an array of strings

in lexicographic order.

★★★Exercise P14.5. Write a telephone lookup program. Read a data set of

1,000 names and telephone numbers from a file that contains the

numbers in random order. Handle lookups by name and also reverse

lookups by phone number. Use a binary search for both lookups.

★★Exercise P14.6. Implement a program that measures the performance of

the insertion sort algorithm described in Advanced Topic 14.1.

★★★Exercise P14.7. Write a program that sorts an ArrayList<Coin> in

decreasing order so that the most valuable coin is at the beginning of the

array. Use a Comparator.

★★Exercise P14.8. Consider the binary search algorithm in Section 14.7. If

no match is found, the search method returns − 1. Modify the method so

that if a is not found, the method returns − k − 1, where k is the position

before which the element should be inserted. (This is the same behavior as

Arrays.binarySearch.)

★★Exercise P14.9. Implement the sort method of the merge sort algorithm

without recursion, where the length of the array is a power of 2. First

merge adjacent regions of size 1, then adjacent regions of size 2, then

adjacent regions of size 4, and so on.

661

662

Chapter 14 Sorting and Searching Page 49 of 52

Java Concepts, 5th Edition

★★★Exercise P14.10. Implement the sort method of the merge sort

algorithm without recursion, where the length of the array is an arbitrary

number. Keep merging adjacent regions whose size is a power of 2, and

pay special attention to the last area whose size is less.

★★★Exercise P14.11. Use insertion sort and the binary search from Exercise

P14.8 to sort an array as described in Exercise R14.14. Implement this

algorithm and measure its performance.

★ Exercise P14.12. Supply a class Person that implements the

Comparable interface. Compare persons by their names. Ask the user to

input 10 names and generate 10 Person objects. Using the compareTo

method, determine the first and last person among them and print them.

★★Exercise P14.13. Sort an array list of strings by increasing length. Hint:

Supply a Comparator.

★★★Exercise P14.14. Sort an array list of strings by increasing length, and so

that strings of the same length are sorted lexicographically. Hint: Supply

a Comparator.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 14.1. Write a program that keeps an appointment book. Make a

class Appoi ntment that stores a description of the appointment, the

appointment day, the starting time, and the ending time. Your program

should keep the appointments in a sorted array list. Users can add

appointments and print out all appointments for a given day. When a

new appointment is added, use binary search to find where it should be

inserted in the array list. Do not add it if it conflicts with another

appointment.

★★★GProject 14.2. Implement a graphical animation of sorting and

searching algorithms. Fill an array with a set of random numbers

between 1 and 100. Draw each array element as a bar, as in Figure 3.

662

663

Chapter 14 Sorting and Searching Page 50 of 52

Java Concepts, 5th Edition

Whenever the algorithm changes the array, wait for the user to click a

button, then call the repaint method.

Animate selection sort, merge sort, and binary search. In the binary

search animation, highlight the currently inspected element and the

current values of from and to.

Figure 3

Graphical Animation

ANSWERS TO SELF-CHECK QUESTIONS

1. Dropping the temp variable would not work. Then a[i] and a[j] would

end up being the same value.

2. 1|54326,12|4356,123456

3. Four times as long as 40,000 values, or about 50 seconds.

4. A parabola.

5. It takes about 100 times longer.

6. If n is 4, then 1/2n
2
 is 8 and 5/2n − 3 is 7.

663

664

Chapter 14 Sorting and Searching Page 51 of 52

Java Concepts, 5th Edition

7. When the preceding while loop ends, the loop condition must be false,

that is, iFirst >= first.length or

iSecond >= second.length (De Morgan's Law). Then

first.length - iFirst <= 0 or iSecond.length -

iSecond <= 0.

8. First sort 8 7 6 5. Recursively, first sort 8 7. Recursively, first sort 8. It's

sorted. Sort 7. It's sorted. Merge them: 7 8. Do the same with 6 5 to get 5 6.

Merge them to 5 6 7 8. Do the same with 4 3 2 1: Sort 4 3 by sorting 4 and

3 and merging them to 3 4. Sort 2 1 by sorting 2 and 1 and merging them to

1 2. Merge 3 4 and 1 2 to 1 2 3 4. Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2

3 4 5 6 7 8.

9. Approximately 100,000 · log(100,000) / 50,000 · log(50,000) = 2 · 5 /

4.7 = 2.13 times the time required for 50,000 values. That's 2.13 · 97

milliseconds or approximately 207 milliseconds.

10. By calling Arrays.sort(values).

11. On average, you'd make 500,000 comparisons.

12. The search method returns the index at which the match occurs, not the

data stored at that location.

13. You would search about 20. (The binary log of 1,024 is 10.)

14. Then you know where to insert it so that the array stays sorted, and you can

keep using binary search.

15. Otherwise, you would not know whether a value is present when the

method returns 0.

16. The Rectangle class does not implement the Comparable interface.

17. The BankAccount class needs to implement the Comparable

interface. Its compareTo method must compare the bank balances.

Chapter 14 Sorting and Searching Page 52 of 52

Java Concepts, 5th Edition

Chapter 15 An Introduction to Data Structures

CHAPTER GOALS

• To learn how to use the linked lists provided in the standard library

• To be able to use iterators to traverse linked lists

• To understand the implementation of linked lists

• To distinguish between abstract and concrete data types

• To know the efficiency of fundamental operations of lists and arrays

• To become familiar with the stack and queue types

Up to this point, we used arrays as a one-size-fits-all mechanism for collecting

objects. However, computer scientists have developed many different data structures

that have varying performance tradeoffs. In this chapter, you will learn about the

linked list, a data structure that allows you to add and remove elements efficiently,

without moving any existing elements. You will also learn about the distinction

between concrete and abstract data types. An abstract type spells out what

fundamental operations should be supported efficiently, but it leaves the

implementation unspecified. The stack and queue types, introduced at the end of this

chapter, are examples of abstract types.

15.1 Using Linked Lists

A linked list is a data structure used for collecting a sequence of objects, which allows

efficient addition and removal of elements in the middle of the sequence.

To understand the need for such a data structure, imagine a program that maintains a

sequence of employee objects, sorted by the last names of the employees. When a

new employee is hired, an object needs to be inserted into the sequence. Unless the

company happened to hire employees in dictionary order, the new object probably

needs to be inserted somewhere near the middle of the sequence. If we use an array to

665

665

666

Chapter 15 An Introduction to Data

Structures

Page 1 of 45

Java Concepts, 5th Edition

store the objects, then all objects following the new hire must be moved toward the

end.

Conversely, if an employee leaves the company, the object must be removed, and the

hole in the sequence needs to be closed up by moving all objects that come after it.

Moving a large number of values can involve a substantial amount of processing

time. We would like to structure the data in a way that minimizes this cost.

A linked list consists of a number of nodes, each of which has a reference to the

next node.

Rather than storing the values in an array, a linked list uses a sequence of nodes. Each

node stores a value and a reference to the next node in the sequence (see Figure 1).

When you insert a new node into a linked list, only the neighboring node references

need to be updated. The same is true when you remove a node. What's the catch?

Linked lists allow speedy insertion and removal, but element access can be slow.

Adding and removing elements in the middle of a linked list is efficient.

For example, suppose you want to locate the fifth element. You must first traverse the

first four. This is a problem if you need to access the elements in arbitrary order. The

term “random access” is used in computer science to describe an access pattern in

which elements are accessed in arbitrary (not necessarily random) order. In contrast,

sequential access visits the elements in sequence. For example, a binary search

requires random access, whereas a linear search requires sequential access.

Visiting the elements of a linked list in sequential order is efficient, but random

access is not.

Of course, if you mostly visit all elements in sequence (for example, to display or

print the elements), the inefficiency of random access is not a problem. You use

linked lists when you are concerned about the efficiency of inserting or removing

elements and you rarely need element access in random order.
666

Chapter 15 An Introduction to Data

Structures

Page 2 of 45

Java Concepts, 5th Edition

Figure 1

Inserting an Element into a Linked List

The Java library provides a linked list class. In this section you will learn how to use

the library class. In the next section you will peek under the hood and see how some

of its key methods are implemented.

The LinkedList class in the java.util package is a generic class, just like the

ArrayList class. That is, you specify the type of the list elements in angle

brackets, such as LinkedList<String> or LinkedList<Product>.

The following methods give you direct access to the first and the last element in the

list. Here, E is the element type of LinkedList<E>.

void addFirst(E element)
void addLast(E element)
E getFirst()
E getLast()
E removeFirst()
E removeLast()

How do you add and remove elements in the middle of the list? The list will not give

you references to the nodes. If you had direct access to them and somehow messed

them up, you would break the linked list. As you will see in the next section, where

you implement some of the linked list operations yourself, keeping all links between

nodes intact is not trivial.

You use a list iterator to access elements inside a linked list.

666

667

Chapter 15 An Introduction to Data

Structures

Page 3 of 45

Java Concepts, 5th Edition

Instead, the Java library supplies a ListIterator type. A list iterator encapsulates

a position anywhere inside the linked list (see Figure 2).

Figure 2

A List Iterator

Figure 3

A Conceptual View of the List Iterator

Conceptually, you should think of the iterator as pointing between two elements, just

as the cursor in a word processor points between two characters (see Figure 3). In the

conceptual view, think of each element as being like a letter in a word processor, and

think of the iterator as being like the blinking cursor between letters.

You obtain a list iterator with the listIterator method of the LinkedList

class:

667

668

Chapter 15 An Introduction to Data

Structures

Page 4 of 45

Java Concepts, 5th Edition

LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator =
employeeNames.listIterator();

Note that the iterator class is also a generic type. A ListIterator<String>

iterates through a list of strings; a ListIterator<Product> visits the elements

in a LinkedList<Product>.

Initially, the iterator points before the first element. You can move the iterator

position with the next method:

iterator.next();

The next method throws a NoSuchElementException if you are already past

the end of the list. You should always call the method hasNext before calling

next—it returns true if there is a next element.

if (iterator.hasNext())
 iterator.next();

The next method returns the element that the iterator is passing. When you use a

ListIterator<String>, the return type of the next method is String. In

general, the return type of the next method matches the type parameter.

You traverse all elements in a linked list of strings with the following loop:

while (iterator.hasNext())
{
 String name = iterator.next();

 Do something with name
}

As a shorthand, if your loop simply visits all elements of the linked list, you can use

the “for each” loop:

for (String name : employeeNames)
{

 Do something with name
}

Then you don't have to worry about iterators at all. Behind the scenes, the for loop

uses an iterator to visit all list elements (see Advanced Topic 15.1).

668

669

Chapter 15 An Introduction to Data

Structures

Page 5 of 45

Java Concepts, 5th Edition

The nodes of the LinkedList class store two links: one to the next element and one

to the previous one. Such a list is called a doubly linked list. You can use the

previous and hasPrevious methods of the ListIterator interface to move

the iterator position backwards.

The add method adds an object after the iterator, then moves the iterator position

past the new element.

iterator.add("Juliet");

You can visualize insertion to be like typing text in a word processor. Each character

is inserted after the cursor, and then the cursor moves past the inserted character (see

Figure 3). Most people never pay much attention to this—you may want to try it out

and watch carefully how your word processor inserts characters.

The remove method removes the object that was returned by the last call to next or

previous. For example, the following loop removes all names that fulfill a certain

condition:

while (iterator.hasNext())
{
 String name = iterator.next();

 if (name fulfills condition)
 iterator.remove();
}

You have to be careful when calling remove. It can be called only once after calling

next or previous, and you cannot call it immediately after a call to add. If you

call the method improperly, it throws an IllegalStateException.

Here is a sample program that inserts strings into a list and then iterates through the

list, adding and removing elements. Finally, the entire list is printed. The comments

indicate the iterator position.

ch15/uselist/ListTester.java

 1 import java.util.LinkedList;

 2 import java.util.ListIterator;

 3

 4 /**

 5 A program that tests the LinkedList class.

Chapter 15 An Introduction to Data

Structures

Page 6 of 45

Java Concepts, 5th Edition

 6 */

 7 public class ListTester

 8 {

 9 public static void main(String[] args)

10 {

11 LinkedList<String> staff = new

LinkedList<String>();

12 staff.addLast(“Dick”);

13 staff.addLast(“Harry”);

14 staff.addLast(“Romeo”);

15 staff.addLast(“Tom”);

16

17 // | in the comments indicates the iterator position
18

19 ListIterator<String> iterator

20 = staff.listIterator();// | DHRT

21 iterator.next(); // D|HRT

22 iterator.next(); // DH|RT
23

24 // Add more elements after second element
25

26 iterator.add(“Juliet”); // DHJ|RT

27 iterator.add(“Nina”); // DHJN|RT
28

29 iterator.next(); // DHJNR|T
30

31 // Remove last traversed element
32

33 iterator.remove();// DHJN|T
34

35 // Print all elements
36

37 for (String name : staff)

38 System.out.print(iterator.next() + “

”);

39 System.out.println();

40 System. out. println(“Expected: Dick

Harry Juliet Nina Tom”);

41 }

42 }

669

670

Chapter 15 An Introduction to Data

Structures

Page 7 of 45

Java Concepts, 5th Edition

Output

Dick Harry Juliet Nina Tom
Expected: Dick Harry Juliet Nina Tom

SELF CHECK

1. Do linked lists take more storage space than arrays of the same size?

2. Why don't we need iterators with arrays?

 ADVANCED TOPIC 15.1: The Iterable Interface and the

“For Each” Loop

You can use the “for each” loop

for (Type variable : collection)

with any of the collection classes in the standard Java library. This includes the

ArrayList and LinkedList classes as well as the library classes which will

be discussed in Chapter 16. In fact, the “for each” loop can be used with any class

that implements the Iterable interface:

public interface Iterable<E>
{
 Iterator<E> iterator();
}

The interface has a type parameter E, denoting the element type of the collection.

The single method, iterator, yields an object that implements the Iterator

interface.

public interface Iterator<E>
{
 boolean hasNext();
 E next();
 void remove();
}

670

671

Chapter 15 An Introduction to Data

Structures

Page 8 of 45

Java Concepts, 5th Edition

The ListIterator interface that you saw in the preceding section is a

subinterface of Iterator with additional methods (such as add and

previous).

The compiler translates a “for each” loop into an equivalent loop that uses an

iterator. The loop

for (Type variable : collection)

 body

is equivalent to

Iterator<Type> iter = collection.iterator();
while (iter.hasNext())
{

 Type variable = iter.next();

 body
}

The ArrayList and LinkedList classes implement the Iterable interface.

If your own classes implement the Iterable interface, you can use them with

the “for each” loop as well—see Exercise P15.15.

15.2 Implementing Linked Lists

In the last section you saw how to use the linked list class supplied by the Java

library. In this section, we will look at the implementation of a simplified version of

this class. This shows you how the list operations manipulate the links as the list is

modified.

To keep this sample code simple, we will not implement all methods of the linked list

class. We will implement only a singly linked list, and the list class will supply direct

access only to the first list element, not the last one. Our list will not use a type

parameter. We will simply store raw Object values and insert casts when retrieving

them. The result will be a fully functional list class that shows how the links are

updated in the add and remove operations and how the iterator traverses the list.

A Node object stores an object and a reference to the next node. Because the methods

of both the linked list class and the iterator class have frequent access to the Node

instance variables, we do not make the instance variables private. Instead, we make

671

672

Chapter 15 An Introduction to Data

Structures

Page 9 of 45

Java Concepts, 5th Edition

Node a private inner class of the LinkedList class. Because none of the list

methods returns a Node object, it is safe to leave the instance variables public.

public class LinkedList
{
 . . .
 private class Node
 {
 public Object data;
 public Node next;
 }
}

The LinkedList class holds a reference first to the first node (or null, if the

list is completely empty).

public class LinkedList
{
 public LinkedList()
 {
 first = null;
 }
 public Object getFirst()
 {
 if (first == null)
 throw new NoSuchElementException();
 return first.data;
 }
 . . .
 private Node first;
}

Now let us turn to the addFirst method (see Figure 4). When a new node is added

to the list, it becomes the head of the list, and the node that was the old list head

becomes its next node:

public class LinkedList
{
 . . .
 public void addFirst(Object element)
 {

 Node newNode = new Node();

 newNode.data = element;

Chapter 15 An Introduction to Data

Structures

Page 10 of 45

Java Concepts, 5th Edition

 newNode.next = first;

 first = newNode;

 }
 . . .
}

Figure 4

Adding a Node to the Head of a Linked List

Removing the first element of the list works as follows. The data of the first node are

saved and later returned as the method result. The successor of the first node becomes

the first node of the shorter list (see Figure 5). Then there are no further references to

the old node, and the garbage collector will eventually recycle it.

public class LinkedList
{
 . . .
 public Object removeFirst()
 {
 if (first == null)
 throw new NoSuchElementException();
 Object element = first.data;

 first = first.next;

 return element;
 }
 . . .

672

673

Chapter 15 An Introduction to Data

Structures

Page 11 of 45

Java Concepts, 5th Edition

}

Next, let us turn to the iterator class. The ListIterator interface in the standard

library defines nine methods. We omit four of them (the methods that move the

iterator backwards and the methods that report an integer index of the iterator).

Figure 5

Removing the First Node from a Linked List

Our LinkedList class defines a private inner class LinkedListIterator,

which implements the simplified ListIterator interface. Because

LinkedListIterator is an inner class, it has access to the private features of the

LinkedList class—in particular, the first field and the private Node class.

Note that clients of the LinkedList class don't actually know the name of the

iterator class. They only know it is a class that implements the ListIterator

interface.

public class LinkedList
{
 . . .
 public ListIterator listIterator()
 {
 return new LinkedListIterator();
 }
 private class LinkedListIterator
 implements ListIterator
 {
 public LinkedListIterator()
 {
 position = null;
 previous = null;
 }
 . . .

673

674

Chapter 15 An Introduction to Data

Structures

Page 12 of 45

Java Concepts, 5th Edition

 private Node position;
 private Node previous;
 }
 . . .
}

Each iterator object has a reference position to the last visited node. We also store

a reference to the last node before that. We will need that reference to adjust the links

properly in the remove method.

The next method is simple. The position reference is advanced to

position.next, and the old position is remembered in previous. There is a

special case, however—if the iterator points before the first element of the list, then

the old position is null, and position must be set to first.

private class LinkedListIterator
 implements ListIterator
{
 . . .
 public Object next()
 {
 if (!hasNext())
 throw new NoSuchElementException();

 previous = position; // Remember for remove
 if (position == null)
 position = first;
 else
 position = position.next;
 return position.data;
 }
 . . .
}

The next method is supposed to be called only when the iterator is not yet at the end

of the list. The iterator is at the end if the list is empty (that is, first == null) or

if there is no element after the current position (position.next == null).

private class LinkedListIterator
 implements ListIterator
{
 . . .
 public boolean hasNext()
 {

674

675

Chapter 15 An Introduction to Data

Structures

Page 13 of 45

Java Concepts, 5th Edition

 if (position == null)
 return first ! = null;
 else
 return position.next ! = null;
 }
 . . .
}

Removing the last visited node is more involved. If the element to be removed is the

first element, we just call removeFirst. Otherwise, an element in the middle of the

list must be removed, and the node preceding it needs to have its next reference

updated to skip the removed element (see Figure 6). If the previous reference

equals position, then this call to remove does not immediately follow a call to

next, and we throw an IllegalStateException.

Implementing operations that modify a linked list is challenging—you need to

make sure that you update all node references correctly.

Figure 6

Removing a Node from the Middle of a Linked List
675

Chapter 15 An Introduction to Data

Structures

Page 14 of 45

Java Concepts, 5th Edition

According to the definition of the remove method, it is illegal to call remove twice

in a row. Therefore, the remove method sets the previous reference to

position.

private class LinkedListIterator
 implements ListIterator
{
 . . .
 public void remove()
 {
 if (previous == position)
 throw new IllegalStateException();
 if (position == first)
 {
 removeFirst();
 }
 else
 {

 previous.next = position.next;

 }

 position = previous;

 }
 . . .
}

Figure 7

Adding a Node to the Middle of a Linked List

675

676

Chapter 15 An Introduction to Data

Structures

Page 15 of 45

Java Concepts, 5th Edition

The set method changes the data stored in the previously visited element. Its

implementation is straightforward because our linked lists can be traversed in only

one direction. The linked-list implementation of the standard library must keep track

of whether the last iterator movement was forward or backward. For that reason, the

standard library forbids a call to the set method following an add or remove

method. We do not enforce that restriction.

public void set(Object element)
{
 if (position == null)
 throw new NoSuchElementException();
 position.data = element;
}

Finally, the most complex operation is the addition of a node. You insert the new

node after the current position, and set the successor of the new node to the successor

of the current position (see Figure 7).

private class LinkedListIterator
 implements ListIterator
{
 . . .
 public void add(Object element)
 {
 if (position == null)
 {
 addFirst(element);
 position = first;
 }
 else
 {
 Node newNode = new Node();
 newNode.data = element;

 newNode.next = position.next;

 position.next = newNode;

 position = newNode;

 }
 previous = position;
 }
 . . .
}

676

677

Chapter 15 An Introduction to Data

Structures

Page 16 of 45

Java Concepts, 5th Edition

At the end of this section is the complete implementation of our LinkedList class.

You now know how to use the LinkedList class in the Java library, and you have

had a peek “under the hood” to see how linked lists are implemented.

ch15/impllist/LinkedList.java

 1 import java.util.NoSuchElementException;
 2
 3 /**

 4 A linked list is a sequence of nodes with efficient

 5 element insertion and removal. This class

 6 contains a subset of the methods of the standard

 7 java.util.LinkedList class.
 8 */
 9 public class LinkedList

 10 {

 11 /**

 12 Constructs an empty linked list.
 13 */

 14 public LinkedList()
 15 {

 16 first = null;

 17 }

 18

 19 /**

 20 Returns the first element in the linked list.
 21 @return the first element in the linked

list

 22 */

 23 public Object getFirst()

 24 {

 25 if (first == null)

 26 throw new NoSuchElementException();

 27 return first.data;

 28 }

 29

 30 /**

 31 Removes the first element in the linked list.

 32 @return the removed element

677

678

Chapter 15 An Introduction to Data

Structures

Page 17 of 45

Java Concepts, 5th Edition

 33 */

 34 public Object removefirst()

 35 {

 36 if (first == null)

 37 throw new NoSuchElementException();

 38 Object element = first.data;

 39 first = first. next;

 40 return element;

 41 }

 42

 43 /**

 44 Adds an element to the front of the linked list.

 45 @param elementthe element to add
 46 */

 47 public void addfirst(Object element)

 48 {

 49 Node newNode = new Node();

 50 newNode.data = element;

 51 newNode.next = first;

 52 first = newNode;

 53 }

 54

 55 /**

 56 Returns an iterator for iterating through this list.

 57 @return an iterator for iterating through this list
 58 */

 59 public ListIterator listIterator()

 60 {

 61 return new LinkedListIterator();

 62 }

 63

 64 private Node first;

 65

 66 private class Node

 67 {

 68 public Object data;

 69 public Node next;

 70 }

 71

 72 private class LinkedListIterator implements

ListIterator

 73 {

678

679

Chapter 15 An Introduction to Data

Structures

Page 18 of 45

Java Concepts, 5th Edition

 74 /**

 75 Constructs an iterator that points to the front

 76 of the linked list.
 77 */

 78 public LinkedListIterator()

 79 {

 80 position = null;

 81 previous = null;

 82 }

 83

 84 /**

 85 Moves the iterator past the next element.
 86 @return the traversed element

 87 */

 88 public Object next()

 89 {

 90 if (!hasNext())

 91 throw new NoSuchElementException();

 92 previous = position; // Remember for remove
 93

 94 if (position == null)

 95 position = first;

 96 else

 97 position = position.next;

 98

 99 return position.data;

100 }

101

102 /**

103 Tests if there is an element after the iterator

104 position.
105 @return true if there is an element

after the iterator

106 position

107 */

108 public boolean hasNext()

109 {

110 if (position == null)

111 return first != null;

112 else

113 return position.next != null;

114 }

Chapter 15 An Introduction to Data

Structures

Page 19 of 45

Java Concepts, 5th Edition

115

116 /**

117 Adds an element before the iterator position

118 and moves the iterator past the inserted element.

119 @param element the element to add
120 */

121 public void add(Object element)

122 {

123 if (position == null)

124 {

125 addFirst(element);

126 position = first;

127 }

128 else

129 {

130 Node newNode = new Node();

131 newNode.data = element;

132 newNode.next = position.next;

133 position.next = newNode;

134 position = newNode;

135 }

136 previous = position;

137 }

138

139 /**

140 Removes the last traversed element. This method may

141 only be called after a call to the next() method.
142 */

143 public void remove()

144 {

145 if (previous == position)

146 throw new IllegalStateException();

147

148 if (position == first)

149 {

150 removeFirst();

151 }

152 else

153 {

154 previous.next = position.next;

155 }

156 position = previous;

679

680

Chapter 15 An Introduction to Data

Structures

Page 20 of 45

Java Concepts, 5th Edition

157 }

158

159 /**

160 Sets the last traversed element to a different

161 value.

162 @param element the element to set
163 */

164 public void set(Object element)

165 {

166 if (position == null)

167 throw new NoSuchElementException();

168 position.data = element;

169 }

170

171 private Node position;

172 private Node previous;

173 }

174 }

ch15/impllist/ListIterator.java

 1 /**

 2 A list iterator allows access to a position in a linked list.

 3 This interface contains a subset of the methods of the

 4 standard java.util.ListIterator interface. The methods

for

 5 backward traversal are not included.
 6 */

 7 public interface ListIterator

 8 {

 9 /**

10 Moves the iterator past the next element.

11 @return the traversed element
12 */

13 Object next();

14

15 /**

16 Tests if there is an element after the iterator

17 position.

18 @return true if there is an element after the iterator

680

681

Chapter 15 An Introduction to Data

Structures

Page 21 of 45

Java Concepts, 5th Edition

19 position
20 */

21 boolean hasNext();

22

23 /**

24 Adds an element before the iterator position

25 and moves the iterator past the inserted element.

26 @param element the element to add
27 */

28 void add (Object element);

29

30 /**

31 Removes the last traversed element. This method may

32 only be called after a call to the next() method.
33 */

34 void remove();

35

36 /**

37 Sets the last traversed element to a different

38 value.

39 @param element the element to set
40 */

41 void set(Object element);

42 }

SELF CHECK

3. Trace through the addFirst method when adding an element to an empty

list.

4. Conceptually, an iterator points between elements (see Figure 3). Does

the position reference point to the element to the left or to the element to

the right?

5. Why does the add method have two separate cases?

681

682

Chapter 15 An Introduction to Data

Structures

Page 22 of 45

Java Concepts, 5th Edition

 ADVANCED TOPIC 15.2: Static Inner Classes

You first saw the use of inner classes for event handlers. Inner classes are useful in

that context, because their methods have the privilege of accessing private data

members of outer-class objects. The same is true for the

LinkedListIterator inner class in the sample code for this section. The

iterator needs to access the first instance variable of its linked list.

However, the Node inner class has no need to access the outer class. In fact, it has

no methods. Thus, there is no need to store a reference to the outer list class with

each Node object. To suppress the outer-class reference, you can declare the inner

class as static:

public class LinkedList
{
 . . .
 private static class Node
 {
 . . .
 }
}

The purpose of the keyword static in this context is to indicate that the

inner-class objects do not depend on the outer-class objects that generate them. In

particular, the methods of a static inner class cannot access the outer-class instance

variables. Declaring the inner class static is efficient, because its objects do not

store an outer-class reference.

However, the LinkedListIterator class cannot be a static inner class. It

frequently references the first element of the enclosing LinkedList.

15.3 Abstract and Concrete Data Types

There are two ways of looking at a linked list. One way is to think of the concrete

implementation of such a list as a sequence of node objects with links between them

(see Figure 8).

Chapter 15 An Introduction to Data

Structures

Page 23 of 45

Java Concepts, 5th Edition

On the other hand, you can think of the abstract concept of the linked list. In the

abstract, a linked list is an ordered sequence of data items that can be traversed with

an iterator (see Figure 9).

An abstract data type defines the fundamental operations on the data but does not

specify an implementation.

Similarly, there are two ways of looking at an array list. Of course, an array list has a

concrete implementation: a partially filled array of object references (see Figure 10).

But you don't usually think about the concrete implementation when using an array

list. You take the abstract point of view. An array list is an ordered sequence of data

items, each of which can be accessed by an integer index (see Figure 11).

Figure 8

A Concrete View of a Linked List

Figure 9

An Abstract View of a Linked List

The concrete implementations of a linked list and an array list are quite different. The

abstractions, on the other hand, seem to be similar at first glance. To see the

difference, consider the public interfaces stripped down to their minimal essentials.

682

683

Chapter 15 An Introduction to Data

Structures

Page 24 of 45

Java Concepts, 5th Edition

Figure 10

A Concrete View of an Array List

Figure 11

An Abstract View of an Array List

An array list allows random access to all elements. You specify an integer index, and

you can get or set the corresponding element.

public class ArrayList
{
 public Object get(int index) { . . . }
 public void set(int index, Object element) { . .
. }
 . . .
}

With a linked list, on the other hand, element access is a bit more complex. A linked

list allows sequential access. You need to ask the linked list for an iterator. Using that

iterator, you can easily traverse the list elements one at a time. But if you want to go

to a particular element, say the 100th one, you first have to skip all elements before it.

public class LinkedList
{
 public ListIterator listIterator() { . . . }

683

684

Chapter 15 An Introduction to Data

Structures

Page 25 of 45

Java Concepts, 5th Edition

 . . .
}
public interface ListIterator
{
 Object next();
 boolean hasNext();
 void add(Object element);
 void remove();
 void set(Object element);
 . . .
}

Here we show only the fundamental operations on array lists and linked lists. Other

operations can be composed from these fundamental operations. For example, you

can add or remove an element in an array list by moving all elements beyond the

insertion or removal index, calling get and set multiple times.

Of course, the ArrayList class has methods to add and remove elements in the

middle, even if they are slow. Conversely, the LinkedList class has get and set

methods that let you access any element in the linked list, albeit very inefficiently, by

performing repeated sequential accesses.

In fact, the term ArrayList signifies that its implementors wanted to combine the

interfaces of an array and a list. Somewhat confusingly, both the ArrayList and

the LinkedList class implement an interface called List that defines operations

both for random access and for sequential access.

That terminology is not in common use outside the Java library. Instead, let us adopt

a more traditional terminology. We will call the abstract types array and list. The

Java library provides concrete implementations ArrayList and LinkedList for

these abstract types. Other concrete implementations are possible in other libraries. In

fact, Java arrays are another implementation of the abstract array type.

To understand an abstract data type completely, you need to know not just its

fundamental operations but also their relative efficiency.
684

Chapter 15 An Introduction to Data

Structures

Page 26 of 45

Java Concepts, 5th Edition

Table 1 Efficiency of Operations for Arrays and Lists

Operation Array List

Random access O(1) O(n)

Linear traversal step O(1) O(1)

Add/remove an element O(n) O(1)

In a linked list, an element can be added or removed in constant time (assuming that

the iterator is already in the right position). A fixed number of node references need

to be modified to add or remove a node, regardless of the size of the list. Using the

big-Oh notation, an operation that requires a bounded amount of time, regardless of

the total number of elements in the structure, is denoted as O(1). Random access in an

array list also takes O(1) time.

An abstract list is an ordered sequence of items that can be traversed sequentially

and that allows for insertion and removal of elements at any position.

Adding or removing an arbitrary element in an array takes O(n) time, where n is the

size of the array list, because on average n/2 elements need to be moved. Random

access in a linked list takes O(n) time because on average n/2 elements need to be

skipped.

An abstract array is an ordered sequence of items with random access via an

integer index.

Table 1 shows this information for arrays and lists.

Why consider abstract types at all? If you implement a particular algorithm, you can

tell what operations you need to carry out on the data structures that your algorithm

manipulates. You can then determine the abstract type that supports those operations

efficiently, without being distracted by implementation details.

For example, suppose you have a sorted collection of items and you want to locate

items using the binary search algorithm (see Section 14.7). That algorithm makes a

random access to the middle of the collection, followed by other random accesses.

Thus, fast random access is essential for the algorithm to work correctly. Once you

know that an array supports fast random access and a linked list does not, you then

684

685

Chapter 15 An Introduction to Data

Structures

Page 27 of 45

Java Concepts, 5th Edition

look for concrete implementations of the abstract array type. You won't be fooled into

using a LinkedList, even though the LinkedList class actually provides get

and set methods.

In the next section, you will see additional examples of abstract data types.

SELF CHECK

6. What is the advantage of viewing a type abstractly?

7. How would you sketch an abstract view of a doubly linked list? A

concrete view?

8. How much slower is the binary search algorithm for a linked list

compared to the linear search algorithm?

15.4 Stacks and Queues

In this section we will consider two common abstract data types that allow insertion

and removal of items at the ends only, not in the middle. A stack lets you insert and

remove elements at only one end, traditionally called the top of the stack. To visualize

a stack, think of a stack of books (see Figure 12).

A stack is a collection of items with “last in first out” retrieval.

New items can be added to the top of the stack. Items are removed at the top of the

stack as well. Therefore, they are removed in the order that is opposite from the order

in which they have been added, called last in, first out or LIFO order. For example, if

you add items A, B, and C and then remove them, you obtain C, B, and A.

Traditionally, the addition and removal operations are called push and pop.

A queue is a collection of items with “first in first out” retrieval.

A queue is similar to a stack, except that you add items to one end of the queue (the

tail) and remove them from the other end of the queue (the head). To visualize a

queue, simply think of people lining up (see Figure 13). People join the tail of the

queue and wait until they have reached the head of the queue. Queues store items in a

685

686

Chapter 15 An Introduction to Data

Structures

Page 28 of 45

Java Concepts, 5th Edition

first in, first out or FIFO fashion. Items are removed in the same order in which they

have been added.

There are many uses of queues and stacks in computer science. The Java graphical

user interface system keeps an event queue of all events, such as mouse and keyboard

events. The events are inserted into the queue whenever the operating system notifies

the application of the event. Another thread of control removes them from the queue

and passes them to the appropriate event listeners. Another example is a print queue.

A printer may be accessed by several applications, perhaps running on different

computers. If each of the applications tried to access the printer at the same time, the

printout would be garbled. Instead, each application places all bytes that need to be

sent to the printer into a file and inserts that file into the print queue. When the printer

is done printing one file, it retrieves the next one from the queue. Therefore, print jobs

are printed using the “first in, first out” rule, which is a fair arrangement for users of

the shared printer.

Figure 12

A Stack of Books
686

Chapter 15 An Introduction to Data

Structures

Page 29 of 45

Java Concepts, 5th Edition

Figure 13

A Queue

Stacks are used when a “last in, first out” rule is required. For example, consider an

algorithm that attempts to find a path through a maze. When the algorithm encounters

an intersection, it pushes the location on the stack, and then it explores the first

branch. If that branch is a dead end, it returns to the location at the top of the stack. If

all branches are dead ends, it pops the location off the stack, revealing a previously

encountered intersection. Another important example is the run-time stack that a

processor or virtual machine keeps to organize the variables of nested methods.

Whenever a new method is called, its parameters and local variables are pushed onto

a stack. When the method exits, they are popped off again. This stack makes

recursive method calls possible.

There is a Stack class in the Java library that implements the abstract stack type and

the push and pop operations. The following sample code shows how to use that

class.

Stack<String> s = new Stack<String>();

686

687

Chapter 15 An Introduction to Data

Structures

Page 30 of 45

Java Concepts, 5th Edition

s.push(“A”);
s.push(“B”);
s.push(“C”);

// The following loop prints C, B, and A
while (s.size() > 0)
 System.out.println(s.pop());

The Stack class in the Java library uses an array to implement a stack. Exercise

P15.11 shows how to use a linked list instead.

The implementations of a queue in the standard library are designed for use with

multithreaded programs. However, it is simple to implement a basic queue yourself:

public class LinkedListQueue
{
 /**

 Constructs an empty queue that uses a linked list.
 */
 public LinkedListQueue()
 {
 list = new LinkedList();
 }
 /**

 Adds an element to the tail of the queue.
 @param element the element to add
 */
 public void add(Object element)
 {
 list.addLast(element);
 }
 /**

 Removes an element from the head of the queue.

 @return the removed element
 */
 public Object remove()
 {
 return list.removeFirst();
 }
 /**

 Gets the number of elements in the queue.

 @return the size
 */
 int size()

687

688

Chapter 15 An Introduction to Data

Structures

Page 31 of 45

Java Concepts, 5th Edition

 {
 return list.size();
 }
 private LinkedList list;
}

You would definitely not want to use an ArrayList to implement a queue.

Removing the first element of an array list is inefficient—all other elements must be

moved towards the beginning. However, Exercise P15.12 shows you how to

implement a queue efficiently as a “circular” array, in which all elements stay at the

position at which they were inserted, but the index values that denote the head and tail

of the queue change when elements are added and removed.

In this chapter, you have seen the two most fundamental abstract data types, arrays

and lists, and their concrete implementations. You also learned about the stack and

queue types. In the next chapter, you will see additional data types that require more

sophisticated implementation techniques.

SELF CHECK

9. Draw a sketch of the abstract queue type, similar to Figures 9 and 11.

10. Why wouldn't you want to use a stack to manage print jobs?

 RANDOM FACT 15.1: Standardization

You encounter the benefits of standardization every day. When you buy a light

bulb, you can be assured that it fits the socket without having to measure the

socket at home and the light bulb in the store. In fact, you may have experienced

how painful the lack of standards can be if you have ever purchased a flashlight

with nonstandard bulbs. Replacement bulbs for such a flashlight can be difficult

and expensive to obtain.

Programmers have a similar desire for standardization. Consider the important

goal of platform independence for Java programs. After you compile a Java

program into class files, you can execute the class files on any computer that has a

Java virtual machine. For this to work, the behavior of the virtual machine has to

be strictly defined. If virtual machines don't all behave exactly the same way, then

the slogan of “write once, run anywhere” turns into “write once, debug

688

689

Chapter 15 An Introduction to Data

Structures

Page 32 of 45

Java Concepts, 5th Edition

everywhere”. In order for multiple implementors to create compatible virtual

machines, the virtual machine needed to be standardized. That is, someone needed

to create a definition of the virtual machine and its expected behavior.

Who creates standards? Some of the most successful standards have been created

by volunteer groups such as the Internet Engineering Task Force (IETF) and the

World Wide Web Consortium (W3C). You can find the Requests for Comment

(RFC) that standardize many of the Internet protocols at the IETF site,

http://www.ietf.org/rfc.html. For example, RFC 822 standardizes the format of

e-mail, and RFC 2616 defines the Hypertext Transmission Protocol (HTTP) that is

used to serve web pages to browsers. The W3 C standardizes the Hypertext

Markup Language (HTML), the format for web pages—see http://www.w3c.org.

These standards have been instrumental in the creation of the World Wide Web as

an open platform that is not controlled by any one company.

Many programming languages, such as C++ and Scheme, have been standardized

by independent standards organizations, such as the American National Standards

Institute (ANSI) and the International Organization for Standardization—called

ISO for short (not an acronym; see

http://www.iso.ch/iso/en/aboutiso/introduction/whatisISO.html). ANSI and ISO

are associations of industry professionals who develop standards for everything

from car tires and credit card shapes to programming languages.

The process of standardizing the C++ language turned out to be very painstaking

and time-consuming, and the standards organization followed a rigorous process to

ensure fairness and to avoid being influenced by companies with vested interests.

When a company invents a new technology, it has an interest in its invention

becoming a standard, so that other vendors produce tools that work with the

invention and thus increase its likelihood of success. On the other hand, by

handing over the invention to a standards committee, especially one that insists on

a fair process, the company may lose control over the standard. For that reason,

Sun Microsystems, the inventor of Java, never agreed to have a third-party

organization standardize the Java language. They run their own standardization

process, involving other companies but refusing to relinquish control. Another

unfortunate but common tactic is to create a weak standard. For example, Netscape

and Microsoft chose the European Computer Manufacturers Association (ECMA)

689

690

Chapter 15 An Introduction to Data

Structures

Page 33 of 45

Java Concepts, 5th Edition

to standardize the JavaScript language (see Random Fact 10.1). ECMA was

willing to settle for something less than truly useful, standardizing the behavior of

the core language and just a few of its libraries. Because most useful JavaScript

programs need to use more libraries than those defined in the standard,

programmers still go through a lot of tedious trial and error to write JavaScript

code that runs identically on different browsers.

Often, competing standards are developed by different coalitions of vendors. For

example, at the time of this writing, hardware vendors are in disagreement whether

to use the HD DVD or Blu-Ray standard for high-density video disks. As Grace

Hopper, the famous computer science pioneer, observed: “The great thing about

standards is that there are so many to choose from”.

Of course, many important pieces of technology aren't standardized at all.

Consider the Windows operating system. Although Windows is often called a

de-facto standard, it really is no standard at all. Nobody has ever attempted to

define formally what the Windows operating system should do. The behavior

changes at the whim of its vendor. That suits Microsoft just fine, because it makes

it impossible for a third party to create its own version of Windows.

As a computer professional, there will be many times in your career when you

need to make a decision whether to support a particular standard. Consider a

simple example. In this chapter, we use the LinkedList class from the standard

Java library. However, many computer scientists dislike this class because the

interface muddies the distinction between abstract lists and arrays, and the iterators

are clumsy to use. Should you use the LinkedList class in your own code, or

should you implement a better list? If you do the former, you have to deal with a

design that is less than optimal. If you do the latter, other programmers may have a

hard time understanding your code because they aren't familiar with your list class.

CHAPTER SUMMARY

1. A linked list consists of a number of nodes, each of which has a reference to the

next node.

2. Adding and removing elements in the middle of a linked list is efficient.

Chapter 15 An Introduction to Data

Structures

Page 34 of 45

Java Concepts, 5th Edition

3. Visiting the elements of a linked list in sequential order is efficient, but random

access is not.

4. You use a list iterator to access elements inside a linked list.

5. Implementing operations that modify a linked list is challenging—you need to

make sure that you update all node references correctly.

6. An abstract data type defines the fundamental operations on the data but does

not specify an implementation.

7. An abstract list is an ordered sequence of items that can be traversed

sequentially and that allows for insertion and removal of elements at any

position.

8. An abstract array is an ordered sequence of items with random access via an

integer index.

9. A stack is a collection of items with “last in first out” retrieval.

10. A queue is a collection of items with “first in first out” retrieval.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.util.Collection<E>

 add
 contains
 iterator
 remove
 size

java. util.Iterator<E>

 hasNext
 next
 remove
java.util.LinkedList<E>
 addfirst
 addLast
 getfirst
 getLast
 removefirst

690

691

Chapter 15 An Introduction to Data

Structures

Page 35 of 45

Java Concepts, 5th Edition

 removeLast

java. util.List<E>

 listIterator

java. util.ListIterator<E>

 add
 hasPrevious
 previous
 set

REVIEW EXERCISES

★ Exercise R15.1. Explain what the following code prints. Draw pictures of

the linked list after each step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new
LinkedList<String>();
staff.addfirst(“Harry”);
staff .addfirst(“Dick”);
staff.addfirst(“Tom”);
System.out.println(staff. removefirst());
System.out.println(staff.removefirst());
System.out.println(staff.removefirst());

★ Exercise R15.2. Explain what the following code prints. Draw pictures of

the linked list after each step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new
LinkedList<String>;();
staff.addfirst(“Harry”);
staff .addFirst(“Dick”);
staff.addfirst(“Tom”);
System.out.println (staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

★ Exercise R15.3. Explain what the following code prints. Draw pictures of

the linked list after each step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new
LinkedList<String>();
staff.addfirst(“Harry”);
staff.addLast(“Dick”);
staff.addfirst(“Tom”);
System.out.println(staff.removeLast());

691

692

Chapter 15 An Introduction to Data

Structures

Page 36 of 45

Java Concepts, 5th Edition

System.out.println(staff.removefirst());
System.out.println(staff.removeLast());

★ Exercise R15.4. Explain what the following code prints. Draw pictures of

the linked list and the iterator position after each step.

LinkedList<String> staff = new
LinkedList<String>();
ListIterator<String>
iterator = staff.listIterator();
iterator.add(“Tom“);
iterator. add(“Dick”);
iterator.add(“Harry”);
iterator = staff.listIterator();
if (iterator.next() .equals(“Tom”))
 iterator.remove();
while (iterator.hasNext())
 System.out.println(iterator.next());

★ Exercise R15.5. Explain what the following code prints. Draw pictures of

the linked list and the iterator position after each step.

LinkedList<String> staff = new
LinkedList<String>();
ListIterator<String>
iterator = staff.listIterator();
iterator.add(“Tom”);
iterator.add(“Dick”);
iterator.add(“Harry”);
iterator = staff.listIterator();
iterator.next();
iterator.next();
iterator.add(“Romeo”);
iterator.next();
iterator.add(“Juliet”);
iterator = staff.listIterator();
iterator.next();
iterator.remove();
while (iterator.hasNext())
 System.out.println(iterator.next());

★★Exercise R15.6. The linked list class in the Java library supports

operations addLast and removeLast. To carry out these operations

efficiently, the LinkedList class has an added reference last to the

Chapter 15 An Introduction to Data

Structures

Page 37 of 45

Java Concepts, 5th Edition

last node in the linked list. Draw a “before/after” diagram of the changes of

the links in a linked list under the addLast and removeLast methods.

★★Exercise R15.7. The linked list class in the Java library supports

bidirectional iterators. To go backward efficiently, each Node has an

added reference, previous, to the predecessor node in the linked list.

Draw a “before/after” diagram of the changes of the links in a linked list

under the addFirst and removeFirst methods that shows how the

previous links need to be updated.

★★Exercise R15.8. What advantages do lists have over arrays? What

disadvantages do they have?

★★Exercise R15.9. Suppose you needed to organize a collection of telephone

numbers for a company division. There are currently about 6,000

employees, and you know that the phone switch can handle at most 10,000

phone numbers. You expect several hundred lookups against the collection

every day. Would you use an array or a list to store the information?

★★Exercise R15.10. Suppose you needed to keep a collection of

appointments. Would you use a list or an array of Appointment objects?

★ Exercise R15.11. Suppose you write a program that models a card deck.

Cards are taken from the top of the deck and given out to players. As cards

are returned to the deck, they are placed on the bottom of the deck. Would

you store the cards in a stack or a queue?

★ Exercise R15.12. Suppose the strings “A” … “Z” are pushed onto a

stack. Then they are popped off the stack and pushed onto a second stack.

Finally, they are all popped off the second stack and printed. In which order

are the strings printed?

Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★★Exercise P15.1. Using only the public interface of the linked list class,

write a method

692

693

Chapter 15 An Introduction to Data

Structures

Page 38 of 45

Java Concepts, 5th Edition

public static void downsize(LinkedList<String>
staff)

that removes every other employee from a linked list.

★★Exercise P15.2. Using only the public interface of the linked list class,

write a method

public static void reverse(LinkedList<String>
staff)

that reverses the entries in a linked list.

★★★Exercise P15.3. Add a method reverse to our implementation of the

LinkedList class that reverses the links in a list. Implement this

method by directly rerouting the links, not by using an iterator.

★ Exercise P15.4. Add a method size to our implementation of the

LinkedList class that computes the number of elements in the list, by

following links and counting the elements until the end of the list is

reached.

★ Exercise P15.5. Add a currentSize field to our implementation of the

LinkedList class. Modify the add and remove methods of both

the linked list and the list iterator to update the currentSize field so

that it always contains the correct size. Change the size method of the

preceding exercise so that it simply returns the value of this instance

variable.

★★Exercise P15.6. The linked list class of the standard library has an add

method that allows efficient insertion at the end of the list. Implement this

method for the LinkedList class in Section 15.2. Add an instance field

to the linked list class that points to the last node in the list. Make sure the

other mutator methods update that field.

★★★Exercise P15.7. Repeat Exercise P15.6, but use a different

implementation strategy. Remove the reference to the first node in the

LinkedList class, and make the next reference of the last node point

to the first node, so that all nodes form a cycle. Such an implementation

is called a circular linked list.

693

694

Chapter 15 An Introduction to Data

Structures

Page 39 of 45

Java Concepts, 5th Edition

★★★Exercise P15.8. Reimplement the LinkedList class of Section 15.2

so that the Node and LinkedListIterator classes are not inner

classes.

★★★Exercise P15.9. Add a previous field to the Node class in Section

15.2, and supply previous and hasPrevious methods in the

iterator.

★★Exercise P15.10. The standard Java library implements a Stack class, but

in this exercise you are asked to provide your own implementation. Do not

implement type parameters. Use an Object[] array to hold the stack

elements. When the array fills up, allocate an array of twice the size and

copy the values to the larger array.

★ Exercise P15.11. Implement a Stack class by using a linked list to store

the elements. Do not implement type parameters.

★★Exercise P15.12. Implement a queue as a circular array as follows: Use

two index variables head and tail that contain the index of the next

element to be removed and the next element to be added. After an element

is removed or added, the index is incremented (see Figure 14).

After a while, the tail element will reach the top of the array. Then it

“wraps around” and starts again at 0—see Figure 15. For that reason, the

array is called “circular”.

public class CircularArrayQueue
{
 public CircularArrayQueue(int capacity) {.
. .}
 public void add(Object x) {. . .}
 public Object remove() {. . .}
 public int size() {. . .}
 private int head;
 private int tail;
 private int theSize;
 private Object[] elements;
}

Chapter 15 An Introduction to Data

Structures

Page 40 of 45

Java Concepts, 5th Edition

This implementation supplies a bounded queue—it can eventually fill up.

See the next exercise on how to remove that limitation.

Figure 14

Adding and Removing Queue Elements

Figure 15

A Queue That Wraps Around the End of the Array

★★★Exercise P15.13. The queue in Exercise P15.12 can fill up if more

elements are added than the array can hold. Improve the implementation

as follows. When the array fills up, allocate a larger array, copy the

values to the larger array, and assign it to the elements instance

variable. Hint: You can't just copy the elements into the same position of

the new array. Move the head element to position 0 instead.

★★Exercise P15.14. Modify the insertion sort algorithm of Advanced Topic

14.1 to sort a linked list.

694

695

Chapter 15 An Introduction to Data

Structures

Page 41 of 45

Java Concepts, 5th Edition

★★Exercise P15.15. Modify the Invoice class of Chapter 12 so that it

implements the Iterable<LineItem> interface. Then demonstrate

how an Invoice object can be used in a “for each” loop.

★★GExercise P15.16. Write a program to display a linked list graphically.

Draw each element of the list as a box, and indicate the links with line

segments. Draw an iterator as in Figure 3. Supply buttons to move the

iterator and to add and remove elements.

Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 15.1. Implement a class Polynomial that describes a

polynomial such as

p (x) = 5 + 9 − x − 10x
10

x
7

Store a polynomial as a linked list of terms. A term contains the

coefficient and the power of x. For example, you would store p(x) as

(5, 10), (9, 7), (− 1, 1), (10, 0)

Supply methods to add, multiply, and print polynomials, and to compute

the derivative of a polynomial.

★★★Project 15.2. Make the list implementation of this chapter as powerful as

the implementation of the Java library. (Do not implement type

parameters, though.)

• Provide bidirectional iteration.

• Make Node a static inner class.

• Implement the standard List and ListIterator interfaces

and provide the missing methods. (Tip: You may find it easier to

extend AbstractList instead of implementing all List

methods from scratch.)

695

696

Chapter 15 An Introduction to Data

Structures

Page 42 of 45

Java Concepts, 5th Edition

★★★Project 15.3. Implement the following algorithm for the evaluation of

arithmetic expressions.

Each operator has a precedence. The + and − operators have the

lowest precedence, * and / have a higher (and equal) precedence, and ∧

(which denotes “raising to a power” in this exercise) has the highest. For

example,

3 * 4 ^ 2 + 5

should mean the same as

(3 * (4 ^ 2)) + 5

with a value of 53.

In your algorithm, use two stacks. One stack holds numbers, the other

holds operators. When you encounter a number, push it on the number

stack. When you encounter an operator, push it on the operator stack if it

has higher precedence than the operator on the top of the stack.

Otherwise, pop an operator off the operator stack, pop two numbers off

the number stack, and push the result of the computation on the number

stack. Repeat until the top of the operator stack has lower precedence. At

the end of the expression, clear the stack in the same way. For example,

here is how the expression 3 * 4 ∧ 2 + 5 is evaluated:

Chapter 15 An Introduction to Data

Structures

Page 43 of 45

Java Concepts, 5th Edition

You should enhance this algorithm to deal with parentheses. Also, make

sure that subtractions and divisions are carried out in the correct order.

For example, 12 − 5 − 3 should yield 4.

ANSWERS TO SELF-CHECK QUESTIONS

1. Yes, for two reasons. You need to store the node references, and each node

is a separate object. (There is a fixed overhead to store each object in the

virtual machine.)

2. An integer index can be used to access any array location.

3. When the list is empty, first is null. A new Node is allocated. It's

data field is set to the newly inserted object. It's next field is set to

696

697

Chapter 15 An Introduction to Data

Structures

Page 44 of 45

Java Concepts, 5th Edition

null because first is null. The first field is set to the new node.

The result is a linked list of length 1.

4. It points to the element to the left. You can see that by tracing out the first

call to next. It leaves position to point to the first node.

5. If position is null, we must be at the head of the list, and inserting an

element requires updating the first reference. If we are in the middle of

the list, the first reference should not be changed.

6. You can focus on the essential characteristics of the data type without

being distracted by implementation details.

7. The abstract view would be like Figure 9, but with arrows in both

directions. The concrete view would be like Figure 8, but with references to

the previous node added to each node.

8. To locate the midde element takes n / 2 steps. To locate the middle of the

sub-interval to the left or right takes another n / 4 steps. The next lookup

takes n / 8 steps. Thus, we expect almost n steps to locate an element. At

this point, you are better off just making a linear search that, on average,

takes n / 2 steps.

9.

10. Stacks use a “last in, first out” discipline. If you are the first one to submit a

print job and lots of people add print jobs before the printer has a chance to

deal with your job, they get their printouts first, and you have to wait until

all other jobs are completed.

697

698

Chapter 15 An Introduction to Data

Structures

Page 45 of 45

Java Concepts, 5th Edition

Chapter 16 Advanced Data Structures

CHAPTER GOALS

• To learn about the set and map data types

• To understand the implementation of hash tables

• To be able to program hash functions

• To learn about binary trees

• To be able to use tree sets and tree maps

• To become familiar with the heap data structure

• To learn how to implement the priority queue data type

• To understand how to use heaps for sorting

In this chapter we study data structures that are more complex than arrays or lists.

These data structures take control of organizing their elements, rather than keeping

them in a fixed position. In return, they can offer better performance for adding,

removing, and finding elements.

You will learn about the abstract set and map data types and the implementations

that the standard library offers for these abstract types. You will see how two

completely different implementations—hash tables and trees—can be used to

implement these abstract types efficiently.

16.1 Sets

In the preceding chapter you encountered two important data structures: arrays and

lists. Both have one characteristic in common: These data structures keep the

elements in the same order in which you inserted them. However, in many

applications, you don't really care about the order of the elements in a collection. For

example, a server may keep a collection of objects representing available printers (see

Figure 1). The order of the objects doesn't really matter.

699

699

700

Chapter 16 Advanced Data Structures Page 1 of 89

Java Concepts, 5th Edition

Figure 1

A Set of Printers

In mathematics, such an unordered collection is called a set. You have probably

learned some set theory in a course in mathematics, and you may know that sets are a

fundamental mathematical notion.

A set is an unordered collection of distinct elements. Elements can be added,

located, and removed.

But what does that mean for data structures? If the data structure is no longer

responsible for remembering the order of element insertion, can it give us better

performance for some of its operations? It turns out that it can indeed, as you will see

later in this chapter.

Let's list the fundamental operations on a set:

• Adding an element

• Removing an element

• Containment testing (does the set contain a given object?)

• Listing all elements (in arbitrary order)

700

701

Chapter 16 Advanced Data Structures Page 2 of 89

Java Concepts, 5th Edition

In mathematics, a set rejects duplicates. If an object is already in the set, an attempt to

add it again is ignored. That's useful in many programming situations as well. For

example, if we keep a set of available printers, each printer should occur at most once

in the set. Thus, we will interpret the add and remove operations of sets just as we

do in mathematics: Adding an element has no effect if the element is already in the

set, and attempting to remove an element that isn't in the set is silently ignored.

Sets don't have duplicates. Adding a duplicate of an element that is already present

is silently ignored.

Of course, we could use a linked list to implement a set. But adding, removing, and

containment testing would be relatively slow, because they all have to do a linear

search through the list. (Adding requires a search through the list to make sure that we

don't add a duplicate.) As you will see later in this chapter, there are data structures

that can handle these operations much more quickly.

In fact, there are two different data structures for this purpose, called hash tables and

trees. The standard Java library provides set implementations based on both data

structures, called HashSet and TreeSet. Both of these data structures implement

the Set interface (see Figure 2).

The HashSet and TreeSet classes both implement the Set interface.

Figure 2

Set Classes and Interfaces in the Standard Library
701

Chapter 16 Advanced Data Structures Page 3 of 89

Java Concepts, 5th Edition

You will see later in this chapter when it is better to choose a hash set over a tree set.

For now, let's look at an example where we choose a hash set. To keep the example

simple, we'll store only strings, not Printer objects.

Set<String> names = new HashSet<String>();

Note that we store the reference to the HashSet<String> object in a

Set<String> variable. After you construct the collection object, the

implementation no longer matters; only the interface is important.

Adding and removing set elements is straightforward:

names.add("Romeo");
names.remove("Juliet");

The contains method tests whether an element is contained in the set:

if (names.contains("Juliet")) . . .

Finally, to list all elements in the set, get an iterator. As with list iterators, you use the

next and hasNext methods to step through the set.

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 String name = iter.next();
 Do something with name
}

Or, as with arrays and lists, you can use the “for each” loop instead of explicitly using

an iterator:

for (String name : names)
{
 Do something with name
}

Note that the elements are not visited in the order in which you inserted them.

Instead, they are visited in the order in which the HashSet keeps them for rapid

execution of its methods.

An iterator visits all elements in a set.

701

702

Chapter 16 Advanced Data Structures Page 4 of 89

Java Concepts, 5th Edition

A set iterator does not visit the elements in the order in which you inserted them.

The set implementation rearranges the elements so that it can locate them quickly.

There is an important difference between the Iterator that you obtain from a set

and the ListIterator that a list yields. The ListIterator has an add method

to add an element at the list iterator position. The Iterator interface has no such

method. It makes no sense to add an element at a particular position in a set, because

the set can order the elements any way it likes. Thus, you always add elements

directly to a set, never to an iterator of the set.

You cannot add an element to a set at an iterator position.

However, you can remove a set element at an iterator position, just as you do with list

iterators.

Also, the Iterator interface has no previous method to go backwards through

the elements. Because the elements are not ordered, it is not meaningful to distinguish

between “going forward“ and “going backward”.

The following test program allows you to add and remove set elements. After each

command, it prints out the current contents of the set. When you run this program, try

adding strings that are already contained in the set and removing strings that aren't

present in the set.

ch16/set/SetDemo.java

 1 import java.util.HashSet;
 2 import java.util.Scanner;
 3 import java.util.Set;
 4
 5 /**

 6 This program demonstrates a set of strings. The user

 7 can add and remove strings.
 8 */
 9 public class SetDemo
10 {
11 public static void main(String[] args)

702

703

Chapter 16 Advanced Data Structures Page 5 of 89

Java Concepts, 5th Edition

12 {
13 Set<String> names = new
HashSet<String>();
14 Scanner in = new Scanner(System.in);
15

16 boolean done = false;
17 while (!done)
18 {
19 System.out.print(“Add name, Q when
done: ”);
20 String input = in.next();
21 if (input.equalsIgnoreCase(“Q”))
22 done = true;
23 else
24 {
25 names.add(input);
26 print(names);
27 }
28 }
29

30 done = false;
31 while (!done)
32 {
33 System.out.print(“Remove name, Q when
done: ”);
34 String input = in.next();
35 if (input.equalsIgnoreCase(“Q”))
36 done = true;
37 else
38 {
39 names.remove(input);
40 print(names);
41 }
42 }
43 }
44

45 /**

46 Prints the contents of a set of strings.

47 @param s a set of strings
48 */
49 private static void print(Set<String> s)
50 {

Chapter 16 Advanced Data Structures Page 6 of 89

Java Concepts, 5th Edition

51 System.out.print(“{ ”);
52 for (String element : s)
53 {
54 System.out.print(element);
55 System.out.print(“ ”);
56 }
57 System.out.println(“}”);
58 }
59 }

Output

Add name, Q when done: Dick
{ Dick }
Add name, Q when done: Tom
{ Tom Dick }
Add name, Q when done: Harry
{ Harry Tom Dick }
Add name, Q when done: Tom
{ Harry Tom Dick }
Add name, Q when done: Q
Remove name, Q when done: Tom
{ Harry Dick }
Remove name, Q when done: Jerry
{ Harry Dick }
Remove name, Q when done: Q

SELF CHECK

1. Arrays and lists remember the order in which you added elements; sets

do not. Why would you want to use a set instead of an array or list?

2. Why are set iterators different from list iterators?

 QUALITY TIP 16.1 Use Interface References to

Manipulate Data Structures

It is considered good style to store a reference to a HashSet or TreeSet in a

variable of type Set.

Set<String> names = new HashSet<String>();

703

704

Chapter 16 Advanced Data Structures Page 7 of 89

Java Concepts, 5th Edition

This way, you have to change only one line if you decide to use a TreeSet

instead.

Also, methods that operate on sets should specify parameters of type Set:

public static void print(Set<String> s)

Then the method can be used for all set implementations.

In theory, we should make the same recommendation for linked lists, namely to

save LinkedList references in variables of type List. However, in the Java

library, the List interface is common to both the ArrayList and the

LinkedList class. In particular, it has get and set methods for random

access, even though these methods are very inefficient for linked lists. You can't

write efficient code if you don't know whether random access is efficient or not.

This is plainly a serious design error in the standard library, and I cannot

recommend using the List interface for that reason. (To see just how

embarrassing that error is, have a look at the source code for the binarySearch

method of the Collections class. That method takes a List parameter, but

binary search makes no sense for a linked list. The code then clumsily tries to

discover whether the list is a linked list, and then switches to a linear search!)

The Set interface and the Map interface, which you will see in the next section,

are well-designed, and you should use them.

16.2 Maps

A map is a data type that keeps associations between keys and values. Figure 3 gives a

typical example: a map that associates names with colors. This map might describe

the favorite colors of various people.

A map keeps associations between key and value objects.

Mathematically speaking, a map is a function from one set, the key set, to another set,

the value set. Every key in the map has a unique value, but a value may be associated

with several keys.

704

705

Chapter 16 Advanced Data Structures Page 8 of 89

Java Concepts, 5th Edition

Just as there are two kinds of set implementations, the Java library has two

implementations for maps: HashMap and TreeMap. Both of them implement the

Map interface (see Figure 4).

The HashMap and TreeMap classes both implement the Map interface.

After constructing a HashMap or TreeMap, you should store the reference to the

map object in a Map reference:

Map<String, Color> favoriteColors = new
HashMap<String, Color>();

Figure 3

A Map
705

Chapter 16 Advanced Data Structures Page 9 of 89

Java Concepts, 5th Edition

Figure 4

Map Classes and Interfaces in the Standard Library

Use the put method to add an association:

favoriteColors.put("Juliet", Color.PINK);

You can change the value of an existing association, simply by calling put again:

favoriteColors.put("Juliet", Color.RED);

The get method returns the value associated with a key.

Color julietsFavoriteColor =
favoriteColors.get("Juliet");

If you ask for a key that isn't associated with any values, then the get method returns

null.

To remove a key and its associated value, use the remove method:

favoriteColors.remove("Juliet");

Sometimes you want to enumerate all keys in a map. The keySet method yields the

set of keys. You can then ask the key set for an iterator and get all keys. From each

key, you can find the associated value with the get method. Thus, the following

instructions print all key/value pairs in a map m:

Set<String> keySet = m.keySet();
for (String key : keySet)

705

706

Chapter 16 Advanced Data Structures Page 10 of 89

Java Concepts, 5th Edition

{
 Color value = m.get(key);
 System.out.println(key + “->” + value);
}

The following sample program shows a map in action.

To find all keys and values in a map, iterate through the key set and find the values

that correspond to the keys.

ch16/map/MapDemo.java

 1 import java.awt.Color;
 2 import java.util.HashMap;
 3 import java.util.Map;
 4 import java.util.Set;
 5
 6 /**

 7 This program demonstrates a map that maps names to colors.
 8 */
 9 public class MapDemo
10 {
11 public static void main(String[] args)
12 {
13 Map<String, Color> favoriteColors
14 = new HashMap<String, Color>();
15 favoriteColors.put(“Juliet”, Color.PINK);
16 favoriteColors.put(“Romeo”, Color.GREEN);
17 favoriteColors.put(“Adam”, Color.BLUE);
18 favoriteColors.put(“Eve”, Color.PINK);
19

20 Set<String> keySet =
favoriteColors.keySet();
21 for (String key : keySet)
22 {
23 Color value = favoriteColors.get(key);
24 System.out.println(key + “->” +
value);
25 }
26 }
27 }

706

707

Chapter 16 Advanced Data Structures Page 11 of 89

Java Concepts, 5th Edition

Output

Romeo->java.awt.Color[r=0,g=255,b=0]
Eve->java.awt.Color[r=255,g=175,b=175]
Adam->java.awt.Color[r=0,g=0,b=255]
Juliet->java.awt.Color[r=255,g=175,b=175]

SELF CHECK

3. What is the difference between a set and a map?

4. Why is the collection of the keys of a map a set?

16.3 Hash Tables

In this section, you will see how the technique of hashing can be used to find

elements in a data structure quickly, without making a linear search through all

elements. Hashing gives rise to the hash table, which can be used to implement sets

and maps.

A hash function is a function that computes an integer value, the hash code, from an

object, in such a way that different objects are likely to yield different hash codes.

The Object class has a hashCode method that other classes need to redefine. The

call

int h = x.hashCode();

computes the hash code of the object x.

A hash function computes an integer value from an object.
707

Chapter 16 Advanced Data Structures Page 12 of 89

Java Concepts, 5th Edition

Table 1 Sample Strings and Their Hash Codes

String Hash Code
“Adam” 2035631

“Eve” 70068

“Harry” 69496448

“Jim” 74478

“Joe” 74656

“Juliet” –2065036585

“Katherine” 2079199209

“Sue” 83491

It is possible for two or more distinct objects to have the same hash code; this is

called a collision. A good hash function minimizes collisions. For example, the

String class defines a hash function for strings that does a good job of producing

different integer values for different strings. Table 1 shows some examples of strings

and their hash codes. You will see in Section 16.4 how these values are obtained.

A good hash function minimizes collisions—identical hash codes for different

objects.

Section 16.4 explains how you should redefine the hashCode method for other

classes.

A hash code is used as an array index into a hash table. In the simplest

implementation of a hash table, you could make an array and insert each object at the

location of its hash code (see Figure 5).

707

708

Chapter 16 Advanced Data Structures Page 13 of 89

Java Concepts, 5th Edition

Figure 5

A Simplistic Implementation of a Hash Table

Then it is a very simple matter to find out whether an object is already present in the

set or not. Compute its hash code and check whether the array position with that hash

code is already occupied. This doesn't require a search through the entire array!

However, there are two problems with this simplistic approach. First, it is not possible

to allocate an array that is large enough to hold all possible integer index positions.

Therefore, we must pick an array of some reasonable size and then reduce the hash

code to fall inside the array:

int h = x.hashCode();
if (h < 0) h = -h;
h = h % size;

Furthermore, it is possible that two different objects have the same hash code. After

reducing the hash code modulo a smaller array size, it becomes even more likely that

several objects will collide and need to share a position in the array.

To store multiple objects in the same array position, use short node sequences for the

elements with the same hash code (see Figure 6). These node sequences are called

buckets.

708

709

Chapter 16 Advanced Data Structures Page 14 of 89

Java Concepts, 5th Edition

A hash table can be implemented as an array of buckets—sequences of nodes that

hold elements with the same hash code.

Now the algorithm for finding an object x in a hash table is quite simple.

1. Compute the hash code and reduce it modulo the table size. This gives an index

h into the hash table.

2. Iterate through the elements of the bucket at position h. For each element of the

bucket, check whether it is equal to x.

3. If a match is found among the elements of that bucket, then x is in the set.

Otherwise, it is not.

Figure 6

A Hash Table with Buckets to Store Elements with the Same Hash Code

In the best case, in which there are no collisions, all buckets either are empty or have

a single element. Then checking for containment takes constant or O(1) time.

709

710

Chapter 16 Advanced Data Structures Page 15 of 89

Java Concepts, 5th Edition

If there are no or only a few collisions, then adding, locating, and removing hash

table elements takes constant or O(1) time.

More generally, for this algorithm to be effective, the bucket sizes must be small. If

the table length is small, then collisions are unavoidable, and each bucket will get

quite full. Then the linear search through a bucket is time-consuming. In the worst

case, where all elements end up in the same bucket, a hash table degenerates into a

linked list!

In order to reduce the chance for collisions, you should make a hash table somewhat

larger than the number of elements that you expect to insert. An excess capacity of

about 30 percent is typically recommended. According to some researchers, the hash

table size should be chosen to be a prime number to minimize the number of

collisions.

The table size should be a prime number, larger than the expected number of

elements.

Adding an element is a simple extension of the algorithm for finding an object. First

compute the hash code to locate the bucket in which the element should be inserted.

Try finding the object in that bucket. If it is already present, do nothing. Otherwise,

insert it.

Removing an element is equally simple. First compute the hash code to locate the

bucket in which the element should be inserted. Try finding the object in that bucket.

If it is present, remove it. Otherwise, do nothing.

As long as there are few collisions, an element can also be added or removed in

constant or O(1) time.

At the end of this section you will find the code for a simple implementation of a hash

set. That implementation takes advantage of the AbstractSet class, which already

implements most of the methods of the Set interface.

In this implementation you must specify the size of the hash table. In the standard

library, you don't need to supply a table size. If the hash table gets too full, a new

table of twice the size is created, and all elements are inserted into the new table.

Chapter 16 Advanced Data Structures Page 16 of 89

Java Concepts, 5th Edition

ch16/hashtable/HashSet.java

 1 import java.util.AbstractSet;
 2 import java.util.Iterator;
 3 import java.util.NoSuchElementException;
 4
 5 /**

 6 A hash set stores an unordered collection of objects, using

 7 a hash table.
 8 */
 9 public class HashSet extends AbstractSet
 10 {
 11 /**

 12 Constructs a hash table.

 13 @param bucketsLength the length of the buckets array
 14 */
 15 public HashSet(int bucketsLength)
 16 {
 17 buckets = new Node[bucketsLength];
 18 size = 0;
 19 }
 20
 21 /**

 22 Tests for set membership.

 23 @param x an object

 24 @return true if x is an element of this set
 25 */
 26 public boolean contains(Object x)
 27 {
 28 int h = x.hashCode();
 29 if (h < 0) h = −h;
 30 h = h % buckets.length;
 31
 32 Node current = buckets[h];
 33 while (current ! = null)
 34 {
 35 if (current.data.equals(x)) return
true;
 36 current = current.next;
 37 }

710

711

Chapter 16 Advanced Data Structures Page 17 of 89

Java Concepts, 5th Edition

 38 return false;
 39 }
 40
 41 /**

 42 Adds an element to this set.

 43 @param x an object

 44 @return true if x is a new object, false if x was

 45 already in the set
 46 */
 47 public boolean add(Object x)
 48 {
 49 int h = x.hashCode();
 50 if (h < 0) h = −h;
 51 h = h % buckets.length;
 52
 53 Node current = buckets[h];
 54 while (current != null)
 55 {
 56 if (current.data.equals(x))

 57 return false;// Already in the set
 58 current = current.next;
 59 }
 60 Node newNode = new Node();
 61 newNode.data = x;
 62 newNode.next = buckets[h];
 63 buckets[h] = newNode;
 64 size++;
 65 return true;
 66 }
 67
 68 /**

 69 Removes an object from this set.

 70 @param x an object

 71 @return true if x was removed from this set, false

 72 if x was not an element of this set
 73 */
 74 public boolean remove(Object x)
 75 {
 76 int h = x.hashCode();
 77 if (h < 0) h = −h;
 78 h = h % buckets.length;

711

712

Chapter 16 Advanced Data Structures Page 18 of 89

Java Concepts, 5th Edition

 79
 80 Node current = buckets[h];
 81 Node previous = null;
 82 while (current ! = null)
 83 {
 84 if (current.data.equals(x))
 85 {
 86 if (previous == null) buckets[h]
= current.next;
 87 else previous.next = current.next;
 88 size--;
 89 return true;
 90 }
 91 previous = current;
 92 current = current.next;
 93 }
 94 return false;
 95 }
 96
 97 /**

 98 Returns an iterator that traverses the elements of this set.

 99 @return a hash set iterator
100 */
101 public Iterator iterator()
102 {
103 return new HashSetIterator();
104 }
105

106 /**

107 Gets the number of elements in this set.

108 @return the number of elements
109 */
110 public int size()
111 {
112 return size;
113 }
114

115 private Node[] buckets;
116 private int size;
117

118 private class Node
119 {

Chapter 16 Advanced Data Structures Page 19 of 89

Java Concepts, 5th Edition

120 public Object data;
121 public Node next;
122 }
123

124 private class HashSetIterator implements
Iterator
125 {
126 /**

127 Constructs a hash set iterator that points to the

128 first element of the hash set.
129 */
130 public HashSetIterator()
131 {
132 current = null;
133 bucket = −1;
134 previous = null;
135 previousBucket = −1;
136 }
137

138 public boolean hasNext()
139 {
140 if (current != null && current.next !
= null)
141 return true;
142 for (int b = bucket + 1; b <
buckets.length; b++)
143 if (buckets[b] != null) return
true;
144 return false;
145 }
146

147 public Object next()
148 {
149 previous = current;
150 previousBucket = bucket;
151 if (current == null | | current.next
== null)
152 {

153 // Move to next bucket
154 bucket++;
155

156 while (bucket < buckets.length

712

713

Chapter 16 Advanced Data Structures Page 20 of 89

Java Concepts, 5th Edition

157 && buckets[bucket] == null)
158 bucket++;
159 if (bucket < buckets.length)
160 current = buckets[bucket];
161 else
162 throw new
NoSuchElementException();
163 }

164 else // Move to next element in bucket
165 current = current.next;
166 return current.data;
167 }
168

169 public void remove()
170 {
171 if (previous != null &&
previous.next == current)
172 previous.next = current.next;
173 else if (previousBucket < bucket)
174 buckets[bucket] = current.next;
175 else
176 throw new IllegalStateException();
177 current = previous;
178 bucket = previousBucket;
179 }
180

181 private int bucket;
182 private Node current;
183 private int previousBucket;
184 private Node previous;
185 }
186 }

ch16/hashtable/HashSetDemo.java

 1 import java.util.Iterator;
 2 import java.util.Set;
 3
 4 /**

 5 This program demonstrates the hash set class.
 6 */
 7 public class HashSetDemo

713

714

Chapter 16 Advanced Data Structures Page 21 of 89

Java Concepts, 5th Edition

 8 {
 9 public static void main(String[] args)
10 {

11 Set names = new HashSet(101); // 101 is a prime
12

13 names.add(“Sue”);
14 names.add(“Harry”);
15 names.add(“Nina”);
16 names.add(“Susannah”);
17 names.add(“Larry”);
18 names.add(“Eve”);
19 names.add(“Sarah”);
20 names.add(“Adam”);
21 names.add(“Tony”);
22 names.add(“Katherine”);
23 names.add(“Juliet”);
24 names.add(“Romeo”);
25 names.remove(“Romeo”);
26 names.remove(“George”);
27

28 Iterator iter = names.iterator();
29 while (iter.hasNext())
30 System.out.println(iter.next());
31 }
32 }

Output

Harry
Sue
Nina
Susannah
Larry
Eve
Sarah
Adam
Juliet
Katherine
Tony

714

Chapter 16 Advanced Data Structures Page 22 of 89

Java Concepts, 5th Edition

SELF CHECK

5. If a hash function returns 0 for all values, will the HashSet work

correctly?

6. What does the hasNext method of the HashSetIterator do when

it has reached the end of a bucket?

16.4 Computing Hash Codes

A hash function computes an integer hash code from an object, so that different

objects are likely to have different hash codes. Let us first look at how you can

compute a hash code from a string. Clearly, you need to combine the character values

of the string to yield some integer. You could, for example, add up the character

values:

int h = 0;
for (int i = 0; i < s.length(); i++)
 h = h + s.charAt(i);

However, that would not be a good idea. It doesn't scramble the character values

enough. Strings that are permutations of another (such as “eat” and “tea”) all

have the same hash code.

Here is the method the standard library uses to compute the hash code for a string.

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
 h = HASH_MULTIPLIER * h + s.charAt(i);

For example, the hash code of “eat” is

31 * (31 * 'e' + 'a') + 't' = 100184

The hash code of “tea” is quite different, namely

31 * (31 * 't' + 'e') + 'a' = 114704

(Use the Unicode table from Appendix B to look up the character values: ’a’ is 97, ’

e’ is 101, and ’t’ is 116.)

714

715

Chapter 16 Advanced Data Structures Page 23 of 89

Java Concepts, 5th Edition

For your own classes, you should make up a hash code that combines the hash codes

of the instance fields in a similar way. For example, let us define a hashCode

method for the Coin class. There are two instance fields: the coin name and the coin

value. First, compute their hash code. You know how to compute the hash code of a

string. To compute the hash code of a floating-point number, first wrap the

floating-point number into a Double object, and then compute its hash code.

Define hashCode methods for your own classes by combining the hash codes for

the instance variables.

class Coin
{
 public int hashCode()
 {
 int h1 = name.hashCode();
 int h2 = new Double(value).hashCode();
 . . .
 }
}

Then combine the two hash codes.

final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2;
return h;

Use a prime number as the hash multiplier—it scrambles the values better.

If you have more than two instance fields, then combine their hash codes as follows:

int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER * h + h4;
. . .
return h;

If one of the instance fields is an integer, just use the field value as its hash code.

When you add objects of your class into a hash table, you need to double-check that

the hashCode method is compatible with the equals method of your class. Two

objects that are equal must yield the same hash code:

715

716

Chapter 16 Advanced Data Structures Page 24 of 89

Java Concepts, 5th Edition

• If x.equals(y), then x.hashCode() == y.hashCode()

After all, if x and y are equal to each other, then you don't want to insert both of

them into a set—sets don't store duplicates. But if their hash codes are different, x

and y may end up in different buckets, and the add method would never notice that

they are actually duplicates.

Your hashCode method must be compatible with the equals method.

Of course, the converse of the compatibility condition is generally not true. It is

possible for two objects to have the same hash code without being equal.

For the Coin class, the compatibility condition holds. We define two coins to be

equal to each other if their names and values are equal. In that case, their hash codes

will also be equal, because the hash code is computed from the hash codes of the

name and value fields.

You get into trouble if your class defines an equals method but not a hashCode

method. Suppose we forget to define a hashCode method for the Coin class. Then

it inherits the hash code method from the Object superclass. That method computes

a hash code from the memory location of the object. The effect is that any two objects

are very likely to have a different hash code.

Coin coin1 = new Coin(0.25, "quarter");
Coin coin2 = new Coin(0.25, "quarter");

Now coin1.hashCode() is derived from the memory location of coin1, and

coin2.hashCode() is derived from the memory location of coin2. Even though

coin1.equals(coin2) is true, their hash codes differ.

However, if you define neither equals nor hashCode, then there is no problem.

The equals method of the Object class considers two objects equal only if their

memory location is the same. That is, the Object class has compatible equals and

hashCode methods. Of course, then the notion of equality is very restricted: Only

identical objects are considered equal. That is not necessarily a bad notion of equality:

If you want to collect a set of coins in a purse, you may not want to lump coins of

equal value together.

716

717

Chapter 16 Advanced Data Structures Page 25 of 89

Java Concepts, 5th Edition

Whenever you use a hash set, you need to make sure that an appropriate hash function

exists for the type of the objects that you add to the set. Check the equals method

of your class. It tells you when two objects are considered equal. There are two

possibilities. Either equals has been defined or it has not been defined. If equals

has not been defined, only identical objects are considered equal. In that case, don't

define hashCode either. However, if the equals method has been defined, look at

its implementation. Typically, two objects are considered equal if some or all of the

instance fields are equal. Sometimes, not all instance fields are used in the

comparison. Two Student objects may be considered equal if their studentID

fields are equal. Define the hashCode method to combine the hash codes of the

fields that are compared in the equals method.

In a hash map, only the keys are hashed.

When you use a HashMap, only the keys are hashed. They need compatible

hashCode and equals methods. The values are never hashed or compared. The

reason is simple—the map only needs to find, add, and remove keys quickly.

What can you do if the objects of your class have equals and hashCode methods

defined that don't work for your situation, or if you don't want to define an

appropriate hashCode method? Maybe you can use a TreeSet or TreeMap

instead. Trees are the subject of the next section.

ch16/hashcode/Coin.java

 1 /**

 2 A coin with a monetary value.
 3 */
 4 public class Coin
 5 {
 6 /**

 7 Constructs a coin.

 8 @param aValue the monetary value of the coin

 9 @param aName the name of the coin
10 */
11 public Coin(double aValue, String aName)
12 {

Chapter 16 Advanced Data Structures Page 26 of 89

Java Concepts, 5th Edition

13 value = aValue;
14 name = aName;
15 }
16

17 /**

18 Gets the coin value.

19 @return the value
20 */
21 public double getValue()
22 {
23 return value;
24 }
25

26 /**

27 Gets the coin name.

28 @return the name
29 */
30 public String getName()
31 {
32 return name;
33 }
34

35 public boolean equals(Object otherObject)
36 {
37 if (otherObject == null) return false;
38 if (getClass() !=
otherObject.getClass()) return false;
39 Coin other = (Coin) otherObject;
40 return value == other.value &&
name.equals(other.name);
41 }
42

43 public int hashCode()
44 {
45 int h1 = name.hashCode();
46 int h2 = new Double(value).hashCode();
47 final int HASH_MULTIPLIER = 29;
48 int h = HASH_MULTIPLIER * h1 + h2;
49 return h;
50 }
51

52 public String toString()

717

718

Chapter 16 Advanced Data Structures Page 27 of 89

Java Concepts, 5th Edition

53 {
54 return “Coin[value = “ + value +
“,name=” + name + ”]”;
55 }
56

57 private double value;
58 private String name;
59 }

ch16/hashcode/CoinHashCodePrinter.java

 1 import java.util.HashSet;
 2 import java.util.Set;
 3
 4 /**

 5 A program that prints hash codes of coins.
 6 */
 7 public class CoinHashCodePrinter
 8 {
 9 public static void main(String[] args)
10 {
11 Coin coin1 = new Coin(0.25, “quarter”);
12 Coin coin2 = new Coin(0.25, “quarter”);
13 Coin coin3 = new Coin(0.05, “nickel”);
14

15 System.out.println(“hash code of coin1=”
16 + coin1.hashCode());
17 System.out.printlnyg(“hash code of
coin2=”
18 + coin2.hashCode());
19 System.out.println(“hash code of coin3=”
20 + coin3.hashCode());
21

22 Set<Coin> coins = new HashSet<Coin>();
23 coins.add(coin1);
24 coins.add(coin2);
25 coins.add(coin3);
26

27 for (Coin c : coins)
28 System.out.println(c);
29 }
30 }

718

719

Chapter 16 Advanced Data Structures Page 28 of 89

Java Concepts, 5th Edition

Output

hash code of coin1=−1513525892
hash code of coin2=−1513525892
hash code of coin3=−1768365211
Coin[value=0.25,name=quarter]
Coin[value=0.05,name=nickel]

SELF CHECK

7. What is the hash code of the string “to”?

8. What is the hash code of new Integer(13)?

 COMMON ERROR 16.1: Forgetting to Define hashCode

When putting elements into a hash table, make sure that the hashCode method is

defined. (The only exception is that you don't need to define hashCode if

equals isn't defined. In that case, distinct objects of your class are considered

different, even if they have matching contents.)

If you forget to implement the hashCode method, then you inherit the

hashCode method of the Object class. That method computes a hash code of

the memory location of the object. For example, suppose that you do not define the

hashCode method of the Coin class. Then the following code is likely to fail:

Set<Coin> coins = new HashSet<Coin>();
coins.add(new Coin(0.25, “quarter”));

// The following comparison will probably fail if hashCode not defined
if (coins.contains(new Coin(0.25, “quarter”))
 System.out.println(“The set contains a
quarter.”);

The two Coin objects are constructed at different memory locations, so the

hashCode method of the Object class will probably compute different hash

codes for them. (As always with hash codes, there is a small chance that the hash

codes happen to collide.) Then the contains method will inspect the wrong

bucket and never find the matching coin.

Chapter 16 Advanced Data Structures Page 29 of 89

Java Concepts, 5th Edition

The remedy is to define a hashCode method in the Coin class.

16.5 Binary Search Trees

A set implementation is allowed to rearrange its elements in any way it chooses so

that it can find elements quickly. Suppose a set implementation sorts its entries. Then

it can use binary search to locate elements quickly. Binary search takes O(log(n))

steps, where n is the size of the set. For example, binary search in an array of 1,000

elements is able to locate an element in about 10 steps by cutting the size of the

search interval in half in each step.

There is just one wrinkle with this idea. We can't use an array to store the elements of

a set, because insertion and removal in an array is slow; an O(n) operation.

In this section we will introduce the simplest of many treelike data structures that

computer scientists have invented to overcome that problem. Binary search trees

allow fast insertion and removal of elements, and they are specially designed for fast

searching.

A linked list is a one-dimensional data structure. Every node has a reference to a

single successor node. You can imagine that all nodes are arranged in line. In

contrast, a tree is made of nodes that have references to multiple nodes, called the

child nodes. Because the child nodes can also have children, the data structure has a

tree-like appearance. It is traditional to draw the tree upside down, like a family tree

or hierarchy chart (see Figure 7). In a binary tree, every node has at most two

children (called the left and right children); hence the name binary.

A binary tree consists of nodes, each of which has at most two child nodes.

Finally, a binary search tree is carefully constructed to have the following important

property:

• The data values of all descendants to the left of any node are less than the data

value stored in that node, and all descendants to the right have greater data

values.

719

720

Chapter 16 Advanced Data Structures Page 30 of 89

Java Concepts, 5th Edition

The tree in Figure 7 has this property. To verify the binary search property, you must

check each node. Consider the node “Juliet”. All descendants to the left have data

before “Juliet”. All descendants on the right have data after “Juliet”. Move on to

“Eve”. There is a single descendant to the left, with data “Adam” before “Eve”, and a

single descendant to the right, with data “Harry” after “Eve”. Check the remaining

nodes in the same way.

All nodes in a binary search tree fulfill the property that the descendants to the left

have smaller data values than the node data value, and the descendants to the right

have larger data values.

Figure 8 shows a binary tree that is not a binary search tree. Look carefully—the root

node passes the test, but its two children do not.

Let us implement these tree classes. Just as you needed classes for lists and their

nodes, you need one class for the tree, containing a reference to the root node, and a

separate class for the nodes. Each node contains two references (to the left and right

child nodes) and a data field. At the fringes of the tree, one or two of the child

references are null. The data field has type Comparable, not Object, because

you must be able to compare the values in a binary search tree in order to place them

into the correct position.

Figure 7

A Binary Search Tree

720

721

Chapter 16 Advanced Data Structures Page 31 of 89

Java Concepts, 5th Edition

Figure 8

A Binary Tree That Is Not a Binary Search Tree

public class BinarySearchTree
{
 public BinarySearchTree() { . . . }
 public void add(Comparable obj) { . . . }
 . . .
 private Node root;
 private class Node
 {
 public void addNode(Node newNode){ . . . }
 . . .
 public Comparable data;
 public Node left;
 public Node right;
 }
}

721

722

Chapter 16 Advanced Data Structures Page 32 of 89

Java Concepts, 5th Edition

To insert data into the tree, use the following algorithm:

• If you encounter a non-null node reference, look at its data value. If the

data value of that node is larger than the one you want to insert, continue the

process with the left child. If the existing data value is smaller, continue the

process with the right child.

• If you encounter a null node reference, replace it with the new node.

Figure 9

Binary Search Tree After Four Insertions

For example, consider the tree in Figure 9. It is the result of the following statements:

BinarySearchTree tree = new BinarySearchTree();

tree.add(“Juliet”);

722

723

Chapter 16 Advanced Data Structures Page 33 of 89

Java Concepts, 5th Edition

tree.add(“Tom”);

tree.add(“Dick”);

tree.add(“Harry”);

We want to insert a new element Romeo into it.

tree.add(“Romeo”);

Start with the root, Juliet. Romeo comes after Juliet, so you move to the

right subtree. You encounter the node Tom. Romeo comes before Tom, so you

move to the left subtree. But there is no left subtree. Hence, you insert a new Romeo

node as the left child of Tom (see Figure 10).

You should convince yourself that the resulting tree is still a binary search tree. When

Romeo is inserted, it must end up as a right descendant of Juliet—that is what the

binary search tree condition means for the root node Juliet. The root node doesn't

care where in the right subtree the new node ends up. Moving along to Tom, the right

child of Juliet, all it cares about is that the new node Romeo ends up somewhere

on its left. There is nothing to its left, so Romeo becomes the new left child, and the

resulting tree is again a binary search tree.

Figure 10

Binary Search Tree After Five Insertions
723

Chapter 16 Advanced Data Structures Page 34 of 89

Java Concepts, 5th Edition

Here is the code for the add method of the BinarySearchTree class:

public class BinarySearchTree
{
 . . .
 public void add(Comparable obj)
 {
 Node newNode = new Node();
 newNode.data = obj;
 newNode.left = null;
 newNode.right = null;
 if (root == null) root = newNode;
 else root.addNode(newNode);
 }
 . . .
}

If the tree is empty, simply set its root to the new node. Otherwise, you know that the

new node must be inserted somewhere within the nodes, and you can ask the root

node to perform the insertion. That node object calls the addNode method of the

Node class, which checks whether the new object is less than the object stored in the

node. If so, the element is inserted in the left subtree; if not, it is inserted in the right

subtree:

private class Node
{
 . . .
 public void addNode(Node newNode)
 {
 int comp = newNode.data.compareTo(data);
 if (comp < 0)
 {
 if (left == null) left = newNode;
 else left.addNode(newNode);
 }
 else if (comp > 0)
 {
 if (right == null) right = newNode;
 else right.addNode(newNode);
 }
 }
 . . .
}

723

724

Chapter 16 Advanced Data Structures Page 35 of 89

Java Concepts, 5th Edition

Let us trace the calls to addNode when inserting Romeo into the tree in Figure 9.

The first call to addNode is

root.addNode(newNode)

Because root points to Juliet, you compare Juliet with Romeo and find that

you must call

root.right.addNode(newNode)

The node root.right is Tom. Compare the data values again (Tom vs. Romeo)

and find that you must now move to the left. Since root.right.left is null,

set root.right.left to newNode, and the insertion is complete (see Figure 10).

Unlike a linked list or an array, and like a hash table, a binary tree has no insert

positions. You cannot select the position where you would like to insert an element

into a binary search tree. The data structure is self-organizing; that is, each element

finds its own place.

We will now discuss the removal algorithm. Our task is to remove a node from the

tree. Of course, we must first find the node to be removed. That is a simple matter,

due to the characteristic property of a binary search tree. Compare the data value to be

removed with the data value that is stored in the root node. If it is smaller, keep

looking in the left subtree. Otherwise, keep looking in the right subtree.

Let us now assume that we have located the node that needs to be removed. First, let

us consider an easy case, when that node has only one child (see Figure 11).

To remove the node, simply modify the parent link that points to the node so that it

points to the child instead.

If the node to be removed has no children at all, then the parent link is simply set to

null.

When removing a node with only one child from a binary search tree, the child

replaces the node to be removed.

The case in which the node to be removed has two children is more challenging.

Rather than removing the node, it is easier to replace its data value with the next

724

725

Chapter 16 Advanced Data Structures Page 36 of 89

Java Concepts, 5th Edition

larger value in the tree. That replacement preserves the binary search tree property.

(Alternatively, you could use the largest element of the left subtree—see Exercise

P16.16).

When removing a node with two children from a binary search tree, replace it with

the smallest node of the right subtree.

To locate the next larger value, go to the right subtree and find its smallest data value.

Keep following the left child links. Once you reach a node that has no left child, you

have found the node containing the smallest data value of the subtree. Now remove

that node—it is easily removed because it has at most one child to the right. Then

store its data value in the original node that was slated for removal. Figure 12 shows

the details. You will find the complete code at the end of this section.

Figure 11

Removing a Node with One Child
725

Chapter 16 Advanced Data Structures Page 37 of 89

Java Concepts, 5th Edition

Figure 12

Removing a Node with Two Children

At the end of this section, you will find the source code for the

BinarySearchTree class. It contains the add and remove methods that we just

described, as well as a find method that tests whether a value is present in a binary

search tree, and a print method that we will analyze in the following section.

Now that you have seen the implementation of this complex data structure, you may

well wonder whether it is any good. Like nodes in a list, nodes are allocated one at a

time. No existing elements need to be moved when a new element is inserted in the

tree; that is an advantage. How fast insertion is, however, depends on the shape of the

tree. If the tree is balanced—that is, if each node has approximately as many

descendants on the left as on the right—then insertion is very fast, because about half

of the nodes are eliminated in each step. On the other hand, if the tree happens to be

725

726

Chapter 16 Advanced Data Structures Page 38 of 89

Java Concepts, 5th Edition

unbalanced, then insertion can be slow—perhaps as slow as insertion into a linked

list. (See Figure 13.)

If a binary search tree is balanced, then adding an element takes O(log(n)) time.

If new elements are fairly random, the resulting tree is likely to be well balanced.

However, if the incoming elements happen to be in sorted order already, then the

resulting tree is completely unbalanced. Each new element is inserted at the end, and

the entire tree must be traversed every time to find that end!

Binary search trees work well for random data, but if you suspect that the data in your

application might be sorted or have long runs of sorted data, you should not use a

binary search tree. There are more sophisticated tree structures whose methods keep

trees balanced at all times. In these tree structures, one can guarantee that finding,

adding, and removing elements takes O(log(n)) time. To learn more about those

advanced data structures, you may want to enroll in a course about data structures.

Figure 13

An Unbalanced Binary Search Tree

726

727

Chapter 16 Advanced Data Structures Page 39 of 89

Java Concepts, 5th Edition

The standard Java library uses red-black trees, a special form of balanced binary

trees, to implement sets and maps. You will see in Section 16.7 what you need to do

to use the TreeSet and TreeMap classes. For information on how to implement a

red-black tree yourself, see [1].

ch16/tree/BinarySearchTree.java

 1 /**

 2 This class implements a binary search tree whose

 3 nodes hold objects that implement the Comparable

 4 interface.
 5 */
 6 public class BinarySearchTree
 7 {
 8 /**

 9 Constructs an empty tree.
 10 */
 11 public BinarySearchTree()
 12 {
 13 root = null;
 14 }
 15
 16 /**

 17 Inserts a new node into the tree.

 18 @param obj the object to insert
 19 */
 20 public void add(Comparable obj)
 21 {
 22 Node newNode = new Node();
 23 newNode.data = obj;
 24 newNode.left = null;
 25 newNode.right = null;
 26 if (root == null) root = newNode;
 27 else root.addNode(newNode);
 28 }
 29
 30 /**

 31 Tries to find an object in the tree.

 32 @param obj the object to find

727

728

Chapter 16 Advanced Data Structures Page 40 of 89

Java Concepts, 5th Edition

 33 @return true if the object is contained in the tree
 34 */
 35 public boolean find(Comparable obj)
 36 {
 37 Node current = root;
 38 while (current != null)
 39 {
 40 int d = current.data.compareTo(obj);
 41 if (d == 0) return true;
 42 else if (d > 0) current =
current.left;
 43 else current = current.right;
 44 }
 45 return false;
 46 }
 47
 48 /**

 49 Tries to remove an object from the tree. Does nothing

 50 if the object is not contained in the tree.
 51 @param obj the object to remove
 52 */
 53 public void remove(Comparable obj)
 54 {

 55 // Find node to be removed
 56
 57 Node toBeRemoved = root;
 58 Node parent = null;
 59 boolean found = false;
 60 while (!found && toBeRemoved != null)
 61 {
 62 int d =
toBeRemoved.data.compareTo(obj);
 63 if (d == 0) found = true;
 64 else
 65 {
 66 parent = toBeRemoved;
 67 if (d > 0) toBeRemoved =
toBeRemoved.left;
 68 else toBeRemoved =
toBeRemoved.right;
 69 }
 70 }

728

729

Chapter 16 Advanced Data Structures Page 41 of 89

Java Concepts, 5th Edition

 71
 72 if (!found) return;
 73

 74 // toBeRemoved contains obj
 75

 76 // If one of the children is empty, use the other
 77
 78 if (toBeRemoved.left == null ||
toBeRemoved.right == null)
 79 {
 80 Node newChild;
 81 if (toBeRemoved.left == null)
 82 newChild = toBeRemoved.right;
 83 else
 84 newChild = toBeRemoved.left;
 85

 86 if (parent == null) // Found in root
 87 root = newChild;
 88 else if (parent.left == toBeRemoved)
 89 parent.left = newChild;
 90 else
 91 parent.right = newChild;
 92 return;
 93 }
 94

 95 // Neither subtree is empty
 96

 97 // Find smallest element of the right subtree
 98
 99 Node smallestParent = toBeRemoved;
100 Node smallest = toBeRemoved.right;
101 while (smallest.left != null)
102 {
103 smallestParent = smallest;
104 smallest = smallest.left;
105 }
106

107 // smallest contains smallest child in right subtree
108

109 // Move contents, unlink child
110

Chapter 16 Advanced Data Structures Page 42 of 89

Java Concepts, 5th Edition

111 toBeRemoved.data = smallest.data;
112 smallestParent.left = smallest.right;
113 }
114

115 /**

116 Prints the contents of the tree in sorted order.
117 */
118 public void print()
119 {
120 if (root != null)
121 root.printNodes();
122 System.out.println();
123 }
124

125 private Node root;
126

127 /**

128 A node of a tree stores a data item and references

129 to the child nodes to the left and to the right.
130 */
131 private class Node
132 {
133 /**

134 Inserts a new node as a descendant of this node.

135 @param newNode the node to insert
136 */
137 public void addNode(Node newNode)
138 {
139 int comp =
newNode.data.compareTo(data);
140 if (comp < 0)
141 {
142 if (left == null) left = newNode;
143 else left.addNode(newNode);
144 }
145 if (comp > 0)
146 {
147 if (right == null) right = newNode;
148 else right.addNode(newNode);
149 }
150 }
151

729

730

Chapter 16 Advanced Data Structures Page 43 of 89

Java Concepts, 5th Edition

152 /**

153 Prints this node and all of its descendants

154 in sorted order.
155 */
156 public void printNodes()
157 {
158 if (left != null)
159 left.printNodes();
160 System.out.println(data + “ ”);
161 if (right != null)
162 right.printNodes();
163 }
164

165 public Comparable data;
166 public Node left;
167 public Node right;
168 }
169 }

SELF CHECK

9. What is the difference between a tree, a binary tree, and a balanced

binary tree?

10. Give an example of a string that, when inserted into the tree of Figure

10, becomes a right child of Romeo.

16.6 Tree Traversal

Now that the data are inserted in the tree, what can you do with them? It turns out to

be surprisingly simple to print all elements in sorted order. You know that all data in

the left subtree of any node must come before the node and before all data in the right

subtree. That is, the following algorithm will print the elements in sorted order:

1. Print the left subtree.

2. Print the data.

3. Print the right subtree.

Let's try this out with the tree in Figure 10. The algorithm tells us to

730

731

Chapter 16 Advanced Data Structures Page 44 of 89

Java Concepts, 5th Edition

1. Print the left subtree of Juliet; that is, Dick and descendants.

2. Print Juliet.

3. Print the right subtree of Juliet; that is, Tom and descendants.

How do you print the subtree starting at Dick?

1. Print the left subtree of Dick. There is nothing to print.

2. Print Dick.

3. Print the right subtree of Dick, that is, Harry.

That is, the left subtree of Juliet is printed as

Dick Harry

The right subtree of Juliet is the subtree starting at Tom. How is it printed? Again,

using the same algorithm:

1. Print the left subtree of Tom, that is, Romeo.

2. Print Tom.

3. Print the right subtree of Tom. There is nothing to print.

Thus, the right subtree of Juliet is printed as

Romeo Tom

Now put it all together: the left subtree, Juliet, and the right subtree:

Dick Harry Juliet Romeo Tom

The tree is printed in sorted order.

Let us implement the print method. You need a worker method printNodes of

the Node class:

private class Node
{
 . . .
 public void printNodes()

731

732

Chapter 16 Advanced Data Structures Page 45 of 89

Java Concepts, 5th Edition

 {
 if (left != null)
 left.printNodes();
 System.out.print(data + " ");
 if (right != null)
 right.printNodes();
 }
 . . .
}

To print the entire tree, start this recursive printing process at the root, with the

following method of the BinarySearchTree class.

public class BinarySearchTree
{
 . . .
 public void print()
 {
 if (root != null)
 root.printNodes();
 System.out.println();
 }
 . . .
}

This visitation scheme is called inorder traversal. There are two other traversal

schemes, called preorder traversal and postorder traversal.

Tree traversal schemes include preorder traversal, inorder traversal, and postorder

traversal.

In preorder traversal,

• Visit the root

• Visit the left subtree

• Visit the right subtree

In postorder traversal,

• Visit the left subtree

Chapter 16 Advanced Data Structures Page 46 of 89

Java Concepts, 5th Edition

• Visit the right subtree

• Visit the root

These two visitation schemes will not print the tree in sorted order. However, they are

important in other applications of binary trees. Here is an example.

Figure 14

Expression Trees

In Chapter 13, we presented an algorithm for parsing arithmetic expressions such as

(3 + 4) * 5
3 + 4 * 5

It is customary to draw these expressions in tree form—see Figure 14. If all operators

have two arguments, then the resulting tree is a binary tree. Its leaves store numbers,

and its interior nodes store operators.

Note that the expression trees describe the order in which the operators are applied.

This order becomes visible when applying the postorder traversal of the expression

tree. The first tree yields

3 4 + 5 *

whereas the second tree yields

3 4 5 * +

732

733

Chapter 16 Advanced Data Structures Page 47 of 89

Java Concepts, 5th Edition

You can interpret these sequences as instructions for a stack-based calculator. A

number means:

• Push the number on the stack.

An operator means:

• Pop the top two numbers off the stack.

• Apply the operator to these two numbers.

• Push the result back on the stack.

Figure 15 shows the computation sequences for the two expressions.

Postorder traversal of an expression tree yields the instructions for evaluating the

expression on a stack-based calculator.

This observation yields an algorithm for evaluating arithmetic expressions. First, turn

the expression into a tree. Then carry out a postorder traversal of the expression tree

and apply the operations in the given order. The result is the value of the expression.

Figure 15

A Stack-Based Calculator

SELF CHECK

11. What are the inorder traversals of the two trees in Figure 14?

733

734

Chapter 16 Advanced Data Structures Page 48 of 89

Java Concepts, 5th Edition

12. Are the trees in Figure 14 binary search trees?

 RANDOM FACT 16.1: Reverse Polish Notation

In the 1920s, the Polish mathematician Jan Łukasiewicz realized that it is possible

to dispense with parentheses in arithmetic expressions, provided that you write the

operators before their arguments. For example,

Standard Notation Łukasiewicz Notation
3 + 4 + 3 4
3 + 4 * 5 + 3 * 4 5
3 * (4 + 5) * 3 + 4 5
(3 + 4) * 5 * + 3 4 5
3 + 4 + 5 + + 3 4 5

The Łukasiewicz notation might look strange to you, but that is just an accident of

history. Had earlier mathematicians realized its advantages, schoolchildren today

would not learn an inferior notation with arbitrary precedence rules and

parentheses.

Of course, an entrenched notation is not easily displaced, even when it has distinct

disadvantages, and Łukasiewicz's discovery did not cause much of a stir for about

50 years.

However, in 1972, Hewlett-Packard introduced the HP 35 calculator that used

reverse Polish notation or RPN. RPN is simply Łukasiewicz's notation in reverse,

with the operators after their arguments. For example, to compute 3 + 4 * 5,

you enter 3 4 5 * +. RPN calculators have no keys labeled with parentheses or

an equals symbol. There is just a key labeled ENTER to push a number onto a

stack. For that reason, Hewlett-Packard's marketing department used to refer to

their product as “the calculators that have no equal”. Indeed, the Hewlett-Packard

calculators were a great advance over competing models that were unable to

handle algebraic notation, leaving users with no other choice but to write

intermediate results on paper.

734

735

Chapter 16 Advanced Data Structures Page 49 of 89

Java Concepts, 5th Edition

Over time, developers of high-quality calculators have adapted to the standard

algebraic notation rather than forcing its users to learn a new notation. However,

those users who have made the effort to learn RPN tend to be fanatic proponents,

and to this day, some Hewlett-Packard calculator models still support it.

16.7 Using Tree Sets and Tree Maps

Both the HashSet and the TreeSet classes implement the Set interface. Thus, if

you need a set of objects, you have a choice.

If you have a good hash function for your objects, then hashing is usually faster than

tree-based algorithms. But the balanced trees used in the TreeSet class can

guarantee reasonable performance, whereas the HashSet is entirely at the mercy of

the hash function.

The TreeSet class uses a form of balanced binary tree that guarantees that

adding and removing an element takes O(log(n)) time.

If you don't want to define a hash function, then a tree set is an attractive option. Tree

sets have another advantage: The iterators visit elements in sorted order rather than

the completely random order given by the hash codes.

To use a TreeSet, your objects must belong to a class that implements the

Comparable interface or you must supply a Comparator object. That is the same

Chapter 16 Advanced Data Structures Page 50 of 89

Java Concepts, 5th Edition

requirement that you saw in Section 14.8 for using the sort and binarySearch

methods in the standard library.

To use a tree set, the elements must be comparable.

To use a TreeMap, the same requirement holds for the keys. There is no requirement

for the values.

For example, the String class implements the Comparable interface. The

compareTo method compares strings in dictionary order. Thus, you can form tree

sets of strings, and use strings as keys for tree maps.

If the class of the tree set elements doesn't implement the Comparable interface, or

the sort order of the compareTo method isn't the one you want, then you can define

your own comparison by supplying a Comparator object to the TreeSet or

TreeMap constructor. For example,

Comparator comp = new CoinComparator();
Set s = new TreeSet(comp);

As described in Advanced Topic 14.5, a Comparator object compares two

elements and returns a negative integer if the first is less than the second, zero if they

are identical, and a positive value otherwise. The example program at the end of this

section constructs a TreeSet of Coin objects, using the coin comparator of

Advanced Topic 14.5.

ch16/treeset/TreeSetTester.java

 1 import java.util.Comparator;
 2 import java.util.Set;
 3 import java.util.TreeSet;
 4
 5 /**

 6 A program to a test a tree set with a comparator for coins.
 7 */
 8 public class TreeSetTester
 9 {
10 public static void main(String[] args)
11 {
12 Coin coin1 = new Coin(0.25, “quarter”);

735

736

Chapter 16 Advanced Data Structures Page 51 of 89

Java Concepts, 5th Edition

13 Coin coin2 = new Coin(0.25, “quarter”);
14 Coin coin3 = new Coin(0.01, “penny”);
15 Coin coin4 = new Coin(0.05, “nickel”);
16

17 class CoinComparator implements
Comparator<Coin>
18 {
19 public int compare(Coin first, Coin
second)
20 {
21 if (first.getValue() <
second.getValue()) return −1;
22 if (first.getValue() ==
second.getValue()) return 0;
23 return 1;
24 }
25 }
26

27 Comparator<Coin> comp = new
CoinComparator();
28 Set<Coin> coins = new
TreeSet<Coin>(comp);
29 coins.add(coin1);
30 coins.add(coin2);
31 coins.add(coin3);
32 coins.add(coin4);
33

34 for (Coin c : coins)
35 System.out.print(c.getValue() + “ ”);
36 System.out.println(“Expected: 0.01 0.05
0.25”);
37 }
38 }

Output

0.01 0.05 0.25
Expected: 0.01 0.05 0.25

SELF CHECK

13. When would you choose a tree set over a hash set?

736

737

Chapter 16 Advanced Data Structures Page 52 of 89

Java Concepts, 5th Edition

14. Suppose we define a coin comparator whose compare method always

returns 0. Would the TreeSet function correctly?

 HOW TO 16.1: Choosing a Container

Suppose you need to store objects in a container. You have now seen a number of

different data structures. This How To reviews how to pick an appropriate

container for your application.

Step 1 Determine how you access the elements.

You store elements in a container so that you can later retrieve them. How do you

want to access individual elements? You have several choices.

• It doesn't matter. Elements are always accessed “in bulk”, by visiting all

elements and doing something with them.

• Access by key. Elements are accessed by a special key. Example: Retrieve a

bank account by the account number.

• Access by integer index. Elements have a position that is naturally an integer

or a pair of integers. Example: A piece on a chess board is accessed by a row

and column index.

If you need keyed access, use a map. If you need access by integer index, use an

array list or array. For an index pair, use a two-dimensional array.

Step 2 Determine whether element order matters.

When you retrieve elements from a container, do you care about the order in which

they are retrieved? You have several choices.

• It doesn't matter. As long as you get to visit all elements, you don't care in

which order.

• Elements must be sorted.

• Elements must be in the same order in which they were inserted.

Chapter 16 Advanced Data Structures Page 53 of 89

Java Concepts, 5th Edition

To keep elements sorted, use a TreeSet. To keep elements in the order in which

you inserted them, use a LinkedList, ArrayList, or array.

Step 3 Determine which operations must be fast.

You have several choices.

• It doesn't matter. You collect so few elements that you aren't concerned

about speed.

• Adding and removing elements must be fast.

• Finding elements must be fast.

Linked lists allow you to add and remove elements efficiently, provided you are

already near the location of the change. Changing either end of the linked list is

always fast.

If you need to find an element quickly, use a set.

At this point, you should have narrowed down your selection to a particular

container. If you answered “It doesn't matter” for each of the choices, then just use

an ArrayList. It's a simple container that you already know well.

Step 4 For sets and maps, choose between hash tables and trees.

If you decided that you need a set or map, you need to pick a particular

implementation, either a hash table or a tree.

If your elements (or keys, in case of a map) are strings, use a hash table. It's more

efficient.

If your elements or keys belong to a type that someone else defined, check whether

the class implements its own hashCode and equals methods. The inherited

hashCode method of the Object class takes only the object's memory address

into account, not its contents. If there is no satisfactory hashCode method, then

you must use a tree.

If your elements or keys belong to your own class, you usually want to use

hashing. Define a hashCode and compatible equals method.

737

738

Chapter 16 Advanced Data Structures Page 54 of 89

Java Concepts, 5th Edition

Step 5 If you use a tree, decide whether to supply a comparator.

Look at the class of the elements or keys that the tree manages. Does that class

implement the Comparable interface? If so, is the sort order given by the

compareTo method the one you want? If yes, then you don't need to do anything

further. If no, then you must define a class that implements the Comparator

interface and define the compare method. Supply an object of the comparator

class to the TreeSet or TreeMap constructor.

 RANDOM FACT 16.2: Software Piracy

As you read this, you have written a few computer programs, and you have

experienced firsthand how much effort it takes to write even the humblest of

programs. Writing a real software product, such as a financial application or a

computer game, takes a lot of time and money. Few people, and fewer companies,

are going to spend that kind of time and money if they don't have a reasonable

chance to make more money from their effort. (Actually, some companies give

away their software in the hope that users will upgrade to more elaborate paid

versions. Other companies give away the software that enables users to read and

use files but sell the software needed to create those files. Finally, there are

individuals who donate their time, out of enthusiasm, and produce programs that

you can copy freely.)

When selling software, a company must rely on the honesty of its customers. It is

an easy matter for an unscrupulous person to make copies of computer programs

without paying for them. In most countries that is illegal. Most governments

provide legal protection, such as copyright laws and patents, to encourage the

development of new products. Countries that tolerate widespread piracy have

found that they have an ample cheap supply of foreign software, but no local

manufacturers willing to design good software for their own citizens, such as word

processors in the local script or financial programs adapted to the local tax laws.

When a mass market for software first appeared, vendors were enraged by the

money they lost through piracy. They tried to fight back by various schemes to

ensure that only the legitimate owner could use the software. Some manufacturers

used key disks: disks with special patterns of holes burned in by a laser, which 738

Chapter 16 Advanced Data Structures Page 55 of 89

Java Concepts, 5th Edition

couldn't be copied. Others used dongles: devices that are attached to a printer port.

Legitimate users hated these measures. They paid for the software, but they had to

suffer through the inconvenience of inserting a key disk every time they started the

software or having multiple dongles stick out from their computer. In the United

States, market pressures forced most vendors to give up on these copy protection

schemes, but they are still commonplace in other parts of the world.

Because it is so easy and inexpensive to pirate software, and the chance of being

found out is minimal, you have to make a moral choice for yourself. If a package

that you would really like to have is too expensive for your budget, do you steal it,

or do you stay honest and get by with a more affordable product?

Of course, piracy is not limited to software. The same issues arise for other digital

products as well. You may have had the opportunity to obtain copies of songs or

movies without payment. Or you may have been frustrated by a copy protection

device on your music player that made it difficult for you to listen to songs that

you paid for. Admittedly, it can be difficult to have a lot of sympathy for a musical

ensemble whose publisher charges a lot of money for what seems to have been

very little effort on their part, at least when compared to the effort that goes into

designing and implementing a software package. Nevertheless, it seems only fair

that artists and authors receive some compensation for their efforts. How to pay

artists, authors, and programmers fairly, without burdening honest customers, is an

unsolved problem at the time of this writing, and many computer scientists are

engaged in research in this area.

16.8 Priority Queues

In Section 15.4, you encountered two common abstract data types: stacks and queues.

Another important abstract data type, the priority queue, collects elements, each of

which has a priority. A typical example of a priority queue is a collection of work

requests, some of which may be more urgent than others.

Unlike a regular queue, the priority queue does not maintain a first-in, first-out

discipline. Instead, elements are retrieved according to their priority. In other words,

new items can be inserted in any order. But whenever an item is removed, that item

has highest priority.

739

Chapter 16 Advanced Data Structures Page 56 of 89

Java Concepts, 5th Edition

When removing an element from a priority queue, the element with the highest

priority is retrieved.

It is customary to give low values to high priorities, with priority 1 denoting the

highest priority. The priority queue extracts the minimum element from the queue.

For example, consider this sample code:

PriorityQueue<WorkOrder> q = new
PriorityQueue<WorkOrder>;
q.add(new WorkOrder(3, “Shampoo carpets”));
q.add(new WorkOrder(1, “Fix overflowing sink”));
q.add(new WorkOrder(2, “Order cleaning supplies”));

When calling q.remove() for the first time, the work order with priority 1 is

removed. The next call to q.remove() removes the work order whose priority is

highest among those remaining in the queue—in our example, the work order with

priority 2.

The standard Java library supplies a PriorityQueue class that is ready for you to

use. Later in this chapter, you will learn how to supply your own implementation.

Keep in mind that the priority queue is an abstract data type. You do not know how a

priority queue organizes its elements. There are several concrete data structures that

can be used to implement priority queues.

Of course, one implementation comes to mind immediately. Just store the elements in

a linked list, adding new elements to the head of the list. The remove method then

traverses the linked list and removes the element with the highest priority. In this

implementation, adding elements is quick, but removing them is slow.

Another implementation strategy is to keep the elements in sorted order, for example

in a binary search tree. Then it is an easy matter to locate and remove the largest

element. However, another data structure, called a heap, is even more suitable for

implementing priority queues.

16.9 Heaps

A heap (or, for greater clarity, min-heap) is a binary tree with two special properties.

739

740

Chapter 16 Advanced Data Structures Page 57 of 89

Java Concepts, 5th Edition

1. A heap is almost complete: all nodes are filled in, except the last level may

have some nodes missing toward the right (see Figure 16).

2. The tree fulfills the heap property: all nodes store values that are at most as

large as the values stored in their descendants (see Figure 17).

It is easy to see that the heap property ensures that the smallest element is stored in

the root.

A heap is an almost complete tree in which the values of all nodes are at most as

large as those of their descendants.

Figure 16

An Almost Complete Tree
740

Chapter 16 Advanced Data Structures Page 58 of 89

Java Concepts, 5th Edition

Figure 17

A Heap

A heap is superficially similar to a binary search tree, but there are two important

differences.

1. The shape of a heap is very regular. Binary search trees can have arbitrary

shapes.

2. In a heap, the left and right subtrees both store elements that are larger than the

root element. In contrast, in a binary search tree, smaller elements are stored in

the left subtree and larger elements are stored in the right subtree.

Suppose we have a heap and want to insert a new element. Afterwards, the heap

property should again be fulfilled. The following algorithm carries out the insertion

(see Figure 18).

1. First, add a vacant slot to the end of the tree.

740

741

Chapter 16 Advanced Data Structures Page 59 of 89

Java Concepts, 5th Edition

Figure 18

Inserting an Element into a Heap
741

Chapter 16 Advanced Data Structures Page 60 of 89

Java Concepts, 5th Edition

2. Next, demote the parent of the empty slot if it is larger than the element to be

inserted. That is, move the parent value into the vacant slot, and move the

vacant slot up. Repeat this demotion as long as the parent of the vacant slot is

larger than the element to be inserted. (See Figure 18 continued.)

3. At this point, either the vacant slot is at the root, or the parent of the vacant slot

is smaller than the element to be inserted. Insert the element into the vacant slot.

We will not consider an algorithm for removing an arbitrary node from a heap. The

only node that we will remove is the root node, which contains the minimum of all of

the values in the heap. Figure 19 shows the algorithm in action.

1. Extract the root node value.

741

743

Chapter 16 Advanced Data Structures Page 61 of 89

Java Concepts, 5th Edition

Figure 19

Removing the Minimum Value from a Heap
743

Chapter 16 Advanced Data Structures Page 62 of 89

Java Concepts, 5th Edition

2. Move the value of the last node of the heap into the root node, and remove the

last node. Now the heap property may be violated for the root node, because

one or both of its children may be smaller.

3. Promote the smaller child of the root node. (See Figure 19 continued.) Now the

root node again fulfills the heap property. Repeat this process with the demoted

child. That is, promote the smaller of its children. Continue until the demoted

child has no smaller children. The heap property is now fulfilled again. This

process is called “fixing the heap”.

Inserting and removing heap elements is very efficient. The reason lies in the

balanced shape of a heap. The insertion and removal operations visit at most h nodes,

where h is the height of the tree. A heap of height h contains at least 2
h−1
 elements,

but less than 2
h
 elements. In other words, if n is the number of elements, then

≤ n <2
h − 1

2
h

or

h − 1 ≤ (n) < hlog
2

This argument shows that the insertion and removal operations in a heap with n

elements take O(log(n)) steps.

Inserting or removing a heap element is an O(log(n)) operation.

Contrast this finding with the situation of binary search trees. When a binary search

tree is unbalanced, it can degenerate into a linked list, so that in the worst case

insertion and removal are O(n) operations.

The regular layout of a heap makes it possible to store heap nodes efficiently in an

array.

Heaps have another major advantage. Because of the regular layout of the heap nodes,

it is easy to store the node values in an array. First store the first layer, then the

second, and so on (see Figure 20). For convenience, we leave the 0 element of the

743

744

744

745

Chapter 16 Advanced Data Structures Page 63 of 89

Java Concepts, 5th Edition

array empty. Then the child nodes of the node with index i have index 2 · i and 2 · i +

1, and the parent node of the node with index i has index i/2. For example, as you can

see in Figure 20, the children of node 4 are nodes 8 and 9, and the parent is node 2.

Storing the heap values in an array may not be intuitive, but it is very efficient. There

is no need to allocate individual nodes or to store the links to the child nodes. Instead,

child and parent positions can be determined by very simple computations.

Figure 20

Storing a Heap in an Array

The program at the end of this section contains an implementation of a heap. For

greater clarity, the computation of the parent and child index positions is carried out

in methods getParentIndex, getLeftChildIndex, and

getRightChildIndex. For greater efficiency, the method calls could be avoided

by using expressions index / 2, 2 * index, and 2 * index + 1 directly.

In this section, we have organized our heaps such that the smallest element is stored

in the root. It is also possible to store the largest element in the root, simply by

745

746

Chapter 16 Advanced Data Structures Page 64 of 89

Java Concepts, 5th Edition

reversing all comparisons in the heap-building algorithm. If there is a possibility of

misunderstanding, it is best to refer to the data structures as min-heap or max-heap.

The test program demonstrates how to use a min-heap as a priority queue.

ch16/pqueue/MinHeap.java

 1 import java.util.*;
 2
 3 /**

 4 This class implements a heap.
 5 */
 6 public class MinHeap
 7 {
 8 /**

 9 Constructs an empty heap.
 10 */
 11 public MinHeap()
 12 {
 13 elements = new ArrayList<Comparable>();
 14 elements.add(null);
 15 }
 16
 17 /**

 18 Adds a new element to this heap.

 19 @param newElement the element to add
 20 */
 21 public void add(Comparable newElement)
 22 {

 23 // Add a new leaf
 24 elements.add(null);
 25 int index = elements.size() - 1;
 26

 27 // Demote parents that are larger than the new element
 28 while (index > 1
 29 &&
getParent(index).compareTo(newElement) > 0)
 30 {
 31 elements.set(index,
getParent(index));
 32 index = getParentIndex(index);

Chapter 16 Advanced Data Structures Page 65 of 89

Java Concepts, 5th Edition

 33 }
 34

 35 // Store the new element in the vacant slot
 36 elements.set(index, newElement);
 37 }
 38
 39 /**

 40 Gets the minimum element stored in this heap.

 41 @return the minimum element
 42 */
 43 public Comparable peek()
 44 {
 45 return elements.get(1);
 46 }
 47
 48 /**

 49 Removes the minimum element from this heap.

 50 @return the minimum element
 51 */
 52 public Comparable remove()
 53 {
 54 Comparable minimum = elements.get(1);
 55

 56 // Remove last element
 57 int lastIndex = elements.size() - 1;
 58 Comparable last =
elements.remove(lastIndex);
 59
 60 if (lastIndex > 1)
 61 {
 62 elements.set(1, last);
 63 fixHeap();
 64 }
 65
 66 return minimum;
 67 }
 68
 69 /**

 70 Turns the tree back into a heap, provided only the root
 71 node violates the heap condition.
 72 */

746

747

Chapter 16 Advanced Data Structures Page 66 of 89

Java Concepts, 5th Edition

 73 private void fixHeap()
 74 {
 75 Comparable root = elements.get(1);
 76
 77 int lastIndex = elements.size() - 1;

 78 // Promote children of removed root while they are larger

than last
 79
 80 int index = 1;
 81 boolean more = true;
 82 while (more)
 83 {
 84 int childIndex =
getLeftChildIndex(index);
 85 if (childIndex <= lastIndex)
 86 {

 87 // Get smaller child
 88

 89 // Get left child first
 90 Comparable child =
getLeftChild(index);
 91

 92 // Use right child instead if it is smaller
 93 if (getRightChildIndex(index) <=
lastIndex
 94 &&
getRightChild(index).compareTo(child) < 0)
 95 {
 96 childIndex =
getRightChildIndex(index);
 97 child = getRightChild(index);
 98 }
 99

100 // Check if larger child is smaller than root
101 if (child.compareTo(root) < 0)
102 {

103 // Promote child
104 elements.set(index, child);
105 index = childIndex;
106 }
107 else
108 {

747

748

Chapter 16 Advanced Data Structures Page 67 of 89

Java Concepts, 5th Edition

109 // root is smaller than both children
110 more = false;
111 }
112 }
113 else
114 {

115 // No children
116 more = false;
117 }
118 }
119

120 // Store root element in vacant slot
121 elements.set(index, root);
122 }
123

124 /**

125 Returns the number of elements in this heap.
126 */
127 public int size()
128 {
129 return elements.size() - 1;
130 }
131

132 /**

133 Returns the index of the left child.

134 @param index the index of a node in this heap
135 @return the index of the left child of
the given node
136 */
137 private static int getLeftChildIndex(int
index)
138 {
139 return 2 * index;
140 }
141

142 /**

143 Returns the index of the right child.

144 @param index the index of a node in this heap

145 @return the index of the right child of the given node
146 */ 748

Chapter 16 Advanced Data Structures Page 68 of 89

Java Concepts, 5th Edition

147 private static int getRightChildIndex(int
index)
148 {
149 return 2 * index + 1;
150 }
151

152 /**

153 Returns the index of the parent.

154 @param index the index of a node in this heap

155 @return the index of the parent of the given node
156 */
157 private static int getParentIndex(int
index)
158 {
159 return index / 2;
160 }
161

162 /**

163 Returns the value of the left child.

164 @param index the index of a node in this heap

165 @return the value of the left child of the given node
166 */
167 private Comparable getLeftChild(int index)
168 {
169 return elements.get(2 * index);
170 }
171

172 /**

173 Returns the value of the right child.

174 @param index the index of a node in this heap

175 @return the value of the right child of the given node
176 */
177 private Comparable getRightChild(int index)
178 {
179 return elements.get(2 * index + 1);
180 }
181

182 /**

183 Returns the value of the parent.

184 @param index the index of a node in this heap

185 @return the value of the parent of the given node

749

Chapter 16 Advanced Data Structures Page 69 of 89

Java Concepts, 5th Edition

186 */
187 private Comparable getParent(int index)
188 {
189 return elements.get(index / 2);
190 }
191

192 private ArrayList<Comparable> elements;
193 }

ch16/pqueue/HeapDemo.java

 1 /**

 2 This program demonstrates the use of a heap as a priority queue.
 3 */
 4 public class HeapDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 MinHeap q = new MinHeap();
 9 q.add(new WorkOrder(3, “Shampoo
carpets”));
10 q.add(new WorkOrder(7, “Empty trash”));
11 q.add(new WorkOrder(8, “Water plants”));
12 q.add(new WorkOrder(10, “Remove pencil
sharpener shavings”));
13 q.add(new WorkOrder(6, “Replace light
bulb”));
14 q.add(new WorkOrder(1, “Fix broken
sink”));
15 q.add(new WorkOrder(9, “Clean coffee
maker”));
16 q.add(new WorkOrder(2, “Order cleaning
supplies”));
17

18 while (q.size() > 0)
19 System.out.println(q.remove());
20 }
21 }

ch16/pqueue/WorkOrder.java

 1 /**

749

750

Chapter 16 Advanced Data Structures Page 70 of 89

Java Concepts, 5th Edition

 2 This class encapsulates a work order with a priority.
 3 */
 4 public class WorkOrder implements Comparable
 5 {
 6 /**

 7 Constructs a work order with a given priority and description.

 8 @param aPriority the priority of this work order

 9 @param aDescription the description of this work order
10 */
11 public WorkOrder(int aPriority, String
aDescription)
12 {
13 priority = aPriority;
14 description = aDescription;
15 }
16

17 public String toString()
18 {
19 return “priority=” + priority + “,
description=” + description;
20 }
21

22 public int compareTo(Object otherObject)
23 {
24 WorkOrder other = (WorkOrder)
otherObject;
25 if (priority < other.priority) return -1;
26 if (priority > other.priority) return 1;
27 return 0;
28 }
29

30 private int priority;
31 private String description;
32 }

Output

priority=1, description=Fix broken sink
priority=2, description=Order cleaning supplies
priority=3, description=Shampoo carpets
priority=6, description=Replace light bulb
priority=7, description=Empty trash

750

751

Chapter 16 Advanced Data Structures Page 71 of 89

Java Concepts, 5th Edition

priority=8, description=Water plants
priority=9, description=Clean coffee maker
priority=10, description=Remove pencil sharpener
shavings

SELF CHECK

15. The software that controls the events in a user interface keeps the events

in a data structure. Whenever an event such as a mouse move or repaint

request occurs, the event is added. Events are retrieved according to

their importance. What abstract data type is appropriate for this

application?

16. Could we store a binary search tree in an array so that we can quickly

locate the children by looking at array locations 2 * index and 2 *

index + 1?

16.10 The Heapsort Algorithm

Heaps are not only useful for implementing priority queues, they also give rise to an

efficient sorting algorithm, heapsort. In its simplest form, the algorithm works as

follows. First insert all elements to be sorted into the heap, then keep extracting the

minimum.

The heapsort algorithm is based on inserting elements into a heap and removing

them in sorted order.

This algorithm is an O(n log(n)) algorithm: each insertion and removal is O(log(n)),

and these steps are repeated n times, once for each element in the sequence that is to

be sorted.

Heapsort is an O(n log(n)) algorithm.

The algorithm can be made a bit more efficient. Rather than inserting the elements

one at a time, we will start with a sequence of values in an array. Of course, that array

does not represent a heap. We will use the procedure of “fixing the heap“ that you

encountered in the preceding section as part of the element removal algorithm.

Chapter 16 Advanced Data Structures Page 72 of 89

Java Concepts, 5th Edition

“Fixing the heap” operates on a binary tree whose child trees are heaps but whose

root value may not be smaller than the descendants. The procedure turns the tree into

a heap, by repeatedly promoting the smallest child value, moving the root value to its

proper location.

Of course, we cannot simply apply this procedure to the initial sequence of unsorted

values—the child trees of the root are not likely to be heaps. But we can first fix small

subtrees into heaps, then fix larger trees. Because trees of size 1 are automatically

heaps, we can begin the fixing procedure with the subtrees whose roots are located in

the next-to-lowest level of the tree.

The sorting algorithm uses a generalized fixHeap method that fixes a subtree with a

given root index:

void fixHeap(int rootIndex, int lastIndex)
751

Chapter 16 Advanced Data Structures Page 73 of 89

Java Concepts, 5th Edition

Figure 21

Turning a Tree into a Heap

751

752

752

Chapter 16 Advanced Data Structures Page 74 of 89

Java Concepts, 5th Edition

Here, lastIndex is the index of the last node in the full tree. The fixHeap

method needs to be invoked on all subtrees whose roots are in the next-to-last level.

Then the subtrees whose roots are in the next level above are fixed, and so on.

Finally, the fixup is applied to the root node, and the tree is turned into a heap (see

Figure 21).

That repetition can be programmed easily. Start with the last node on the

next-to-lowest level and work toward the left. Then go to the next higher level. The

node index values then simply run backwards from the index of the last node to the

index of the root.

int n = a.length - 1;
for (int i = (n - 1) / 2; i >= 0; i--)
 fixHeap(i, n);

Note that the loop ends with index 0. When working with a given array, we don't have

the luxury of skipping the 0 entry. We consider the 0 entry the root and adjust the

formulas for computing the child and parent index values.

After the array has been turned into a heap, we repeatedly remove the root element.

Recall from the preceding section that removing the root element is achieved by

placing the last element of the tree in the root and calling the fixHeap method.

Rather than moving the root element into a separate array, we will swap the root

element with the last element of the tree and then reduce the tree length. Thus, the

removed root ends up in the last position of the array, which is no longer needed by

the heap. In this way, we can use the same array both to hold the heap (which gets

shorter with each step) and the sorted sequence (which gets longer with each step).

There is just a minor inconvenience. When we use a min-heap, the sorted sequence is

accumulated in reverse order, with the smallest element at the end of the array. We

could reverse the sequence after sorting is complete. However, it is easier to use a

max-heap rather than a min-heap in the heapsort algorithm. With this modification,

the largest value is placed at the end of the array after the first step. After the next

step, the next-largest value is swapped from the heap root to the second position from

the end, and so on (see Figure 22).

The following class implements the heapsort algorithm.

752

753

Chapter 16 Advanced Data Structures Page 75 of 89

Java Concepts, 5th Edition

Figure 22

Using Heapsort to Sort an Array

ch16/heapsort/HeapSorter.java

 1 /**

 2 This class applies the heapsort algorithm to sort an array.
 3 */
 4 public class HeapSorter
 5 {
 6 /**

 7 Constructs a heap sorter that sorts a given array.

 8 @param anArray an array of integers
 9 */
 10 public HeapSorter(int[] anArray)
 11 {
 12 a = anArray;
 13 }
 14
 15 /**

 16 Sorts the array managed by this heap sorter.
 17 */
 18 public void sort()
 19 {
 20 int n = a.length - 1;
 21 for (int i = (n - 1) / 2; i >= 0; i--)
 22 fixHeap(i, n);
 23 while (n > 0)
 24 {
 25 swap(0, n);
 26 n--;

753

754

Chapter 16 Advanced Data Structures Page 76 of 89

Java Concepts, 5th Edition

 27 fixHeap(0, n);
 28 }
 29 }
 30
 31 /**

 32 Ensures the heap property for a subtree, provided its

 33 children already fulfill the heap property.

 34 @param rootIndex the index of the subtree to be fixed

 35 @param lastIndex the last valid index of the tree that

 36 contains the subtree to be fixed
 37 */
 38 private void fixHeap(int rootIndex, int
lastIndex)
 39 {

 40 // Remove root
 41 int rootValue = a[rootIndex];
 42

 43 // Promote children while they are larger than the root
 44
 45 int index = rootIndex;
 46 boolean more = true;
 47 while (more)
 48 {
 49 int childIndex =
getLeftChildIndex(index);
 50 if (childIndex <= lastIndex)
 51 {

 52 // Use right child instead if it is larger
 53 int rightChildIndex =
getRightChildIndex(index);
 54 if (rightChildIndex <= lastIndex
 55 && a[rightChildIndex] >
a[childIndex])
 56 {
 57 childIndex = rightChildIndex;
 58 }
 59
 60 if (a[childIndex] > rootValue)
 61 {

 62 // Promote child
 63 a[index] = a[childIndex];

754

755

Chapter 16 Advanced Data Structures Page 77 of 89

Java Concepts, 5th Edition

 64 index = childIndex;
 65 }
 66 else
 67 {

 68 // Root value is larger than both children
 69 more = false;
 70 }
 71 }
 72 else
 73 {

 74 // No children
 75 more = false;
 76 }
 77 }
 78

 79 // Store root value in vacant slot
 80 a[index] = rootValue;
 81 }
 82
 83 /**

 84 Swaps two entries of the array.

 85 @param i the first position to swap

 86 @param j the second position to swap
 87 */
 88 private void swap(int i, int j)
 89 {
 90 int temp = a[i];
 91 a[i] = a[j];
 92 a[j] = temp;
 93 }
 94
 95 /**

 96 Returns the index of the left child.

 97 @param index the index of a node in this heap

 98 @return the index of the left child of the given node
 99 */
100 private static int getLeftChildIndex(int
index)
101 {
102 return 2 * index + 1;
103 }

Chapter 16 Advanced Data Structures Page 78 of 89

Java Concepts, 5th Edition

104

105 /**

106 Returns the index of the right child.

107 @param index the index of a node in this heap

108 @return the index of the right child of the given node
109 */
110 private static int getRightChildIndex(int
index)
111 {
112 return 2 * index + 2;
113 }
114

115 private int[] a;
116 }

SELF CHECK

17. Which algorithm requires less storage, heapsort or merge sort?

18. Why are the computations of the left child index and the right child

index in the HeapSorter different than in MinHeap?

CHAPTER SUMMARY

1. A set is an unordered collection of distinct elements. Elements can be added,

located, and removed.

2. Sets don't have duplicates. Adding a duplicate of an element that is already

present is silently ignored.

3. The HashSet and TreeSet classes both implement the Set interface.

4. An iterator visits all elements in a set.

5. A set iterator does not visit the elements in the order in which you inserted

them. The set implementation rearranges the elements so that it can locate them

quickly.

6. You cannot add an element to a set at an iterator position.

7. A map keeps associations between key and value objects.

755

756

Chapter 16 Advanced Data Structures Page 79 of 89

Java Concepts, 5th Edition

8. The HashMap and TreeMap classes both implement the Map interface.

9. To find all keys and values in a map, iterate through the key set and find the

values that correspond to the keys.

10. A hash function computes an integer value from an object.

11. A good hash function minimizes collisions—identical hash codes for different

objects.

12. A hash table can be implemented as an array of buckets—sequences of nodes

that hold elements with the same hash code.

13. If there are no or only a few collisions, then adding, locating, and removing

hash table elements takes constant or O(1) time.

14. The table size should be a prime number, larger than the expected number of

elements.

15. Define hashCode methods for your own classes by combining the hash codes

for the instance variables.

16. Your hashCode method must be compatible with the equals method.

17. In a hash map, only the keys are hashed.

18. A binary tree consists of nodes, each of which has at most two child nodes.

19. All nodes in a binary search tree fulfill the property that the descendants to the

left have smaller data values than the node data value, and the descendants to

the right have larger data values.

20. When removing a node with only one child from a binary search tree, the child

replaces the node to be removed.

21. When removing a node with two children from a binary search tree, replace it

with the smallest node of the right subtree.

22. If a binary search tree is balanced, then adding an element takes O(log(n)) time.

756

757

Chapter 16 Advanced Data Structures Page 80 of 89

Java Concepts, 5th Edition

23. Tree traversal schemes include preorder traversal, inorder traversal, and

postorder traversal.

24. Postorder traversal of an expression tree yields the instructions for evaluating

the expression on a stack-based calculator.

25. The TreeSet class uses a form of balanced binary trees that guarantees that

adding and removing an element takes O(log(n)) time.

26. To use a tree set, the elements must be comparable.

27. When removing an element from a priority queue, the element with the highest

priority is retrieved.

28. A heap is an almost complete tree in which the values of all nodes are at most

as large as those of their descendants.

29. Inserting or removing a heap element is an O(log(n)) operation.

30. The regular layout of a heap makes it possible to store heap nodes efficiently in

an array.

31. The heapsort algorithm is based on inserting elements into a heap and removing

them in sorted order.

32. Heapsort is an O(n log(n)) algorithm.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.util.Collection<E>

 contains
 remove
 size
java.util.HashMap<K, V>
java.util.HashSet<K, V>
java.util.Map<K, V>

 get
 keySet
 put
 remove

757

758

Chapter 16 Advanced Data Structures Page 81 of 89

Java Concepts, 5th Edition

java.util.PriorityQueue<E>
 remove
java.util.Set<E>

java.util.TreeMap<K, V>
java.util.TreeSet<K, V>

FURTHER READING

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.

REVIEW EXERCISES

★ Exercise R16.1. What is the difference between a set and a map?

★ Exercise R16.2. What implementations does the Java library provide for

the abstract set type?

★★Exercise R16.3. What are the fundamental operations on the abstract set

type? What additional methods does the Set interface provide? (Look up

the interface in the API documentation.)

★★Exercise R16.4. The union of two sets A and B is the set of all elements

that are contained in A, B, or both. The intersection is the set of all

elements that are contained in A and B. How can you compute the union

and intersection of two sets, using the four fundamental set operations

described on page 701?

★★Exercise R16.5. How can you compute the union and intersection of two

sets, using some of the methods that the java.util.Set interface

provides? (Look up the interface in the API documentation.)

★ Exercise R16.6. Can a map have two keys with the same value? Two

values with the same key?

★ Exercise R16.7. A map can be implemented as a set of (key, value) pairs.

Explain.

★★Exercise R16.8. When implementing a map as a hash set of (key, value)

pairs, how is the hash code of a pair computed?

758

759

Chapter 16 Advanced Data Structures Page 82 of 89

Java Concepts, 5th Edition

★ Exercise R16.9. Verify the hash codes of the strings "Jim" and "Joe" in

Table 1.

★ Exercise R16.10. From the hash codes in Table 1, show that Figure 6

accurately shows the locations of the strings if the hash table size is 101.

★ Exercise R16.11. What is the difference between a binary tree and a binary

search tree? Give examples of each.

★ Exercise R16.12. What is the difference between a balanced tree and an

unbalanced tree? Give examples of each.

★ Exercise R16.13. The following elements are inserted into a binary search

tree. Make a drawing that shows the resulting tree after each insertion.

Adam
Eve
Romeo
Juliet
Tom
Dick
Harry

★★Exercise R16.14. Insert the elements of Exercise R16.13 in opposite order.

Then determine how the BinarySearchTree.print method prints

out both the tree from Exercise R16.13 and this tree. Explain how the

printouts are related.

★★Exercise R16.15. Consider the following tree. In which order are the nodes

printed by the BinarySearchTree.print method?

Chapter 16 Advanced Data Structures Page 83 of 89

Java Concepts, 5th Edition

★★Exercise R16.16. Could a priority queue be implemented efficiently as a

binary search tree? Give a detailed argument for your answer.

★★★Exercise R16.17. Will preorder, inorder, or postorder traversal print a

heap in sorted order? Why or why not?

★★★Exercise R16.18. Prove that a heap of height h contains at least 2
h−1

elements but less than 2
h
 elements.

★★★Exercise R16.19. Suppose the heap nodes are stored in an array, starting

with index 1. Prove that the child nodes of the heap node with index i

have index 2 · i and 2 · i + 1, and the parent heap node of the node with

index i has index i/2.

★★Exercise R16.20. Simulate the heapsort algorithm manually to sort the

array

11 27 8 14 45 6 24 81 29 33

Show all steps.

Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P16.1. Write a program that reads text from System.in and

breaks it up into individual words. Insert the words into a tree set. At the

end of the input file, print all words, followed by the size of the resulting

set. This program determines how many unique words a text file has.

★ Exercise P16.2. Insert the 13 standard colors that the Color class

predefines (that is, Color.PINK, Color.GREEN, and so on) into a set.

Prompt the user to enter a color by specifying red, green, and blue integer

values between 0 and 255. Then tell the user whether the resulting color is

in the set.

★★★Exercise P16.3. Add a debug method to the HashSet implementation

in Section 16.3 that prints the nonempty buckets of the hash table. Run

759

760

Chapter 16 Advanced Data Structures Page 84 of 89

Java Concepts, 5th Edition

the test program at the end of Section 16.3. Call the debug method after

all additions and removals and verify that Figure 6 accurately represents

the state of the hash table.

★★Exercise P16.4. Write a program that keeps a map in which both keys and

values are strings—the names of students and their course grades. Prompt

the user of the program to add or remove students, to modify grades, or to

print all grades. The printout should be sorted by name and formatted like

this:

Carl: B+
Joe: C
Sarah: A

★★★Exercise P16.5. Reimplement Exercise P16.4 so that the keys of the map

are objects of class Student. A student should have a first name, a last

name, and a unique integer ID. For grade changes and removals, lookup

should be by ID. The printout should be sorted by last name. If two

students have the same last name, then use the first name as tie breaker.

If the first names are also identical, then use the integer ID. Hint: Use

two maps.

★★Exercise P16.6. Supply compatible hashCode and equals methods to

the Student class described in Exercise P16.5. Test the hash code by

adding Student objects to a hash set.

★ Exercise P16.7. Supply compatible hashCode and equals methods to

the BankAccount class of Chapter 7. Test the hashCode method by

printing out hash codes and by adding BankAccount objects to a hash set.

★★Exercise P16.8. Design an IntTree class that stores only integers, not

objects. Support the same methods as the BinarySearchTree class in

the book.

★★Exercise P16.9. Design a data structure IntSet that can hold a set of

integers. Hide the private implementation: a binary search tree of

Integer objects. Provide the following methods:

• A constructor to make an empty set

760

761

Chapter 16 Advanced Data Structures Page 85 of 89

Java Concepts, 5th Edition

• void add(int x) to add x if it is not present

• void remove(int x) to remove x if it is present

• void print() to print all elements currently in the set

• boolean find(int x) to test whether x is present

★★Exercise P16.10. Reimplement the set class from Exercise P16.9 by using

a TreeSet<Integer>. In addition to the methods specified in Exercise

P16.9, supply an iterator method yielding an object that supports only

the hasNext/next methods.

The next method should return an int, not an object. For that reason,

you cannot simply return the iterator of the tree set.

★ Exercise P16.11. Reimplement the set class from Exercise P16.9 by using

a TreeSet<Integer>. In addition to the methods specified in Exercise

P16.9, supply methods

IntSet union(IntSet other)
IntSet intersection(IntSet other)

that compute the union and intersection of two sets.

★★Exercise P16.12. Implement the sieve of Eratosthenes: a method for

computing prime numbers, known to the ancient Greeks. Choose an n. This

method will compute all prime numbers up to n. First insert all numbers

from 2 to n into a set. Then erase all multiples of 2 (except 2); that is, 4, 6,

8, 10, 12, …. Erase all multiples of 3; that is, 6, 9, 12, 15, …. Go up to .

Then print the set.

n

★ Exercise P16.13. Write a method of the BinarySearchTree class

Comparable smallest()

that returns the smallest element of a tree. You will also need to add a

method to the Node class.

Chapter 16 Advanced Data Structures Page 86 of 89

Java Concepts, 5th Edition

★★★Exercise P16.14. Change the BinarySearchTree.print method

to print the tree as a tree shape. You can print the tree sideways. Extra

credit if you instead display the tree with the root node centered on the

top.

★ Exercise P16.15. Implement methods that use preorder and postorder

traversal to print the elements in a binary search tree.

★★★Exercise P16.16. In the BinarySearchTree class, modify the

remove method so that a node with two children is replaced by the

largest child of the left subtree.

★★Exercise P16.17. Suppose an interface Visitor has a single method

void visit(Object obj)

Supply methods

void inOrder(Visitor v)
void preOrder(Visitor v)
void postOrder(Visitor v)

to the BinarySearchTree class. These methods should visit the tree

nodes in the specified traversal order and apply the visit method to the

data of the visited node.

★★Exercise P16.18. Apply Exercise P16.17 to compute the average value of

the elements in a binary search tree filled with Integer objects. That is,

supply an object of an appropriate class that implements the Visitor

interface.

★★Exercise P16.19. Modify the implementation of the MinHeap class so

that the parent and child index positions and elements are computed

directly, without calling helper methods.

★★★Exercise P16.20. Modify the implementation of the MinHeap class so

that the 0 element of the array is not wasted.

761

762

Chapter 16 Advanced Data Structures Page 87 of 89

Java Concepts, 5th Edition

★ Exercise P16.21. Time the results of heapsort and merge sort. Which

algorithm behaves better in practice?

Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★Project 16.1. Implement a BinaryTreeSet class that uses a

TreeSet to store its elements. You will need to implement an iterator

that iterates through the nodes in sorted order. This iterator is somewhat

complex, because sometimes you need to backtrack. You can either add

a reference to the parent node in each Node object, or have your iterator

object store a stack of the visited nodes.

★★★Project 16.2. Implement an expression evaluator that uses a parser to

build an expression tree, such as in Section 16.6. (Note that the resulting

tree is a binary tree but not a binary search tree.) Then use postorder

traversal to evaluate the expression, using a stack for the intermediate

results.

★★★Project 16.3. Program an animation of the heapsort algorithm,

displaying the tree graphically and stopping after each call to fixHeap.

ANSWERS TO SELF-CHECK QUESTIONS

1. Efficient set implementations can quickly test whether a given element is a

member of the set.

2. Sets do not have an ordering, so it doesn't make sense to add an element at

a particular iterator position, or to traverse a set backwards.

3. A set stores elements. A map stores associations between keys and values.

4. The ordering does not matter, and you cannot have duplicates.

5. Yes, the hash set will work correctly. All elements will be inserted into a

single bucket.

762

763

Chapter 16 Advanced Data Structures Page 88 of 89

Java Concepts, 5th Edition

6. It locates the next bucket in the bucket array and points to its first element.

7. 31 × 116 + 111 = 3707.

8. 13.

9. In a tree, each node can have any number of children. In a binary tree, a

node has at most two children. In a balanced binary tree, all nodes have

approximately as many descendants to the left as to the right.

10. For example, Sarah. Any string between Romeo and Tom will do.

11. For both trees, the inorder traversal is 3 + 4 * 5.

12. No—for example, consider the children of +. Even without looking up the

Unicode codes for 3, 4, and +, it is obvious that + isn't between 3 and 4.

13. When it is desirable to visit the set elements in sorted order.

14. No—it would never be able to tell two coins apart. Thus, it would think

that all coins are duplicates of the first.

15. A priority queue is appropriate because we want to get the important events

first, even if they have been inserted later.

16. Yes, but a binary search tree isn't almost filled, so there may be holes in the

array. We could indicate the missing nodes with null elements.

17. Heapsort requires less storage because it doesn't need an auxiliary array.

18. The MinHeap wastes the 0 entry to make the formulas more intuitive.

When sorting an array, we don't want to waste the 0 entry, so we adjust the

formulas instead.

Chapter 16 Advanced Data Structures Page 89 of 89

Java Concepts, 5th Edition

Chapter 17 Generic Programming

CHAPTER GOALS

• To understand the objective of generic programming

• To be able to implement generic classes and methods

• To understand the execution of generic methods in the virtual machine

• To know the limitations of generic programming in Java

• To understand the relationship between generic types and inheritance

• To learn how to constrain type variables

Generic programming involves the design and implementation of data structures

and algorithms that work for multiple types. You are already familiar with the

generic ArrayList class that can be used to produce array lists of arbitrary types.

In this chapter, you will learn how to implement your own generic classes.

17.1 Type Variables

Generic programming is the creation of programming constructs that can be used

with many different types. For example, the Java library programmers who

implemented the ArrayList class engaged in generic programming. As a result,

you can form array lists that collect different types, such as

ArrayList<String>, ArrayList<BankAccount>, and so on.

The LinkedList class that we implemented in Section 15.2 is also an example of

generic programming—you can store objects of any class inside a LinkedList.

However, that LinkedList class achieves genericity with a different mechanism. It

is a single LinkedList class that stores values of type Object. You can, if you

like, store a String and a BankAccount object into the same LinkedList.

In Java, generic programming can be achieved with inheritance or with type

variables.

765

765

766

Chapter 17 Generic Programming Page 1 of 29

Java Concepts, 5th Edition

Our LinkedList class implements genericity by using inheritance. It stores objects

of any class that inherits from Object. In contrast, the ArrayList class uses type

variables to achieve genericity—you need to specify the type of the objects that you

want to store.

Note that only our LinkedList class of Chapter 15 uses inheritance. The standard

Java library has a LinkedList class that uses type variables. In the next section, we

will add type variables to our LinkedList class as well.

A generic class has one or more type variables.

The ArrayList class is a generic class: it has been declared with a type variable E.

The type variable denotes the element type:

public class ArrayList<E>
{
 public ArrayList() { . . . }
 public void add(E element) {. . .}
 . . .
}

Here, E is the name of a type variable, not a Java keyword. You could use another

name, such as ElementType, instead of E. However, it is customary to use short,

uppercase names for type parameters.

Type variables can be instantiated with class or interface types.

In order to use a generic class, you need to instantiate the type variable, that is,

supply an actual type. You can supply any class or interface type, for example

 ArrayList<BankAccount>
 ArrayList<Measurable>

However, you cannot substitute any of the eight primitive types for a type variable. It

would be an error to declare an ArrayList<double>. Use the corresponding

wrapper class instead, such as ArrayList<Double>.

766

767

Chapter 17 Generic Programming Page 2 of 29

Java Concepts, 5th Edition

The type that you supply replaces the type variable in the interface of the class. For

example, the add method for ArrayList<BankAccount> has the type variable E

replaced with the type BankAccount:

public void add(BankAccount element)

Contrast that with the add method of our LinkedList class:

public void add(Object element)

The ArrayList methods are safer. It is impossible to add a String object into an

ArrayList<BankAccount>, but you can add a String into a LinkedList

that is intended to hold bank accounts.

ArrayList<BankAccount> accounts1 = new
ArrayList<BankAccount>();
LinkedList accounts2 = new LinkedList(); // Should
hold BankAccount objects
accounts1.add(“my savings”); // Compile-time error
accounts2.add(“my savings”); // Not detected at
compile time

The latter will give you grief when some other part of the code retrieves the string,

believing it to be a bank account:

BankAccount account = (BankAccount)
accounts2.getFirst(); // Run-time error

Code that uses the generic ArrayList class is also easier to read. When you spot an

ArrayList<BankAccount>, you know right away that it must contain bank

accounts. When you see a LinkedList, you have to study the code to find out what

it contains.

Type variables make generic code safer and easier to read.

In Chapters 15 and 16, we used inheritance to implement generic linked lists, hash

tables, and binary trees, because you were already familiar with the concept of

inheritance. Using type variables requires new syntax and additional techniques—

those are the topic of this chapter.

Chapter 17 Generic Programming Page 3 of 29

Java Concepts, 5th Edition

SYNTAX 17.1 Instantiating a Generic Class

GenericClassName<Type1, Type2, . . . >

Example:

ArrayList<BankAccount>
HashMap<String, Integer>

Purpose:

To supply specific types for the type variables of a generic class

SELF CHECK

1. The standard library provides a class HashMap<K, V> with key type

K and value type V. Declare a hash map that maps strings to integers.

2. The binary search tree class in Chapter 16 is an example of generic

programming because you can use it with any classes that implement the

Comparable interface. Does it achieve genericity through inheritance

or type variables?

17.2 Implementing Generic Classes

In this section, you will learn how to implement your own generic classes. We will

first start out with a very simple generic class that stores pairs of objects. Then we

will turn the LinkedList class of Chapter 15 into a generic class.

Our first example for writing a generic class stores pairs of objects, each of which can

have an arbitrary type. For example,

Pair<String, BankAccount> result
 = new Pair<String, BankAccount>(“Harry
Hacker”, harrysChecking);

The getFirst and getSecond methods retrieve the first and second values of the

pair.

String name = result.getFirst();

767

768

Chapter 17 Generic Programming Page 4 of 29

Java Concepts, 5th Edition

BankAccount account = result.getSecond();

This class can be useful when you implement a method that computes two values at

the same time. A method cannot simultaneously return a String and a

BankAccount, but it can return a single object of type Pair<String,
BankAccount>.

The generic Pair class requires two type variables, one for the type of the first

element and one for the type of the second element.

We need to give names to the type variables. It is considered good form to give short

uppercase names for type variables, such as the following:

Type Variable Name Meaning

E Element type in a

collection

K Key type in a map

V Value type in a map

T General type

S, U Additional general

types

Type variables of a generic class follow the class name and are enclosed in angle

brackets.

You place the type variables for a generic class after the class name, enclosed in angle

brackets (< and >):

public class Pair<T, S>

When you define the fields and methods of the class, use the type variable T for the

first element type and S for the second element type:

public class Pair<T, S>
{
 public Pair(T firstElement, S secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public T getFirst(){ return first; }
 public S getSecond(){ return second; }

768

769

Chapter 17 Generic Programming Page 5 of 29

Java Concepts, 5th Edition

 private T first;
 private S second;
}

This completes the definition of the generic Pair class. It is now ready to use

whenever you need to form a pair of two objects of arbitrary types.

Use type variables for the types of generic fields, method parameters, and return

values.

As a second example, let us turn our linked list class into a generic class. This class

only requires one type variable for the element type, which we will call E.

public class LinkedList<E>

In the case of the linked list, there is a slight complication. Unlike the Pair class, the

LinkedList class does not store the elements in its instance fields. Instead, a

linked list manages a sequence of nodes, and the nodes store the data. Our

LinkedList class uses an inner class Node for the nodes. The Node class must be

modified to express the fact that each node stores an element of type E.

public class LinkedList<E>
{
 . . .
 private Node first;
 private class Node
 {
 public E data;
 public Node next;
 }
}

The implementation of some of the methods requires local variables whose type is

variable, for example:

public E removeFirst()
{
 if (first == null)
 throw new NoSuchElementException();
 E element = first.data;
 first = first.next;
 return element;
}

769

Chapter 17 Generic Programming Page 6 of 29

Java Concepts, 5th Edition

Overall, the process is straightforward. Use the type E whenever you receive, return,

or store an element object. Complexities arise only when your data structure uses

helper classes, such as the nodes and iterators in a linked list. If the helpers are inner

classes, you need not do anything special. However, helper types that are defined

outside the generic class need to become generic classes as well.

Following is the complete reimplementation of our LinkedList class, as a generic

class with a type variable.

SYNTAX 17.2 Defining a Generic Class

accessSpecifier class

GenericClassName<TypeVariable1, TypeVariable2,. . .

>
{

 constructors

 methods

 fields
}

Example:

public class Pair< T, S>
{
 . . .
}

Purpose:

To define a generic class with methods and fields that depend on type variables

ch17/genlist/LinkedList.java

 1 import java.util.NoSuchElementException;

 2

 3 /**

 4 A linked list is a sequence of nodes with

efficient

 5 element insertion and removal. This class

 6 contains a subset of the methods of the

standard

 7 java.util.LinkedList class.

769

770

Chapter 17 Generic Programming Page 7 of 29

Java Concepts, 5th Edition

 8 */

 9 public class LinkedList<E>

 10 {

 11 /**

 12 Constructs an empty linked list.

 13 */

 14 public LinkedList()

 15 {

 16 first = null;

 17 }

 18

 19 /**

 20 Returns the first element in the

linked list.

 21 @return the first element in the

linked list

 22 */

 23 public E getFirst()

 24 {

 25 if (first == null)

 26 throw new NoSuchElementException();

 27 return first.data;

 28 }

 29

 30 /**

 31 Removes the first element in the

linked list.

 32 @return the removed element

 33 */

 34 public E removeFirst()

 35 {

 36 if (first == null)

 37 throw new NoSuchElementException();

 38 E element = first.data;

 39 first = first.next;

 40 return element;

 41 }

 42

 43 /**

 44 Adds an element to the front of the

linked list.

 45 @param element the element to add

 46 */

770

771

Chapter 17 Generic Programming Page 8 of 29

Java Concepts, 5th Edition

 47 public void addFirst(E element)

 48 {

 49 Node newNode = new Node();

 50 newNode.data = element;

 51 newNode.next = first;

 52 first = newNode;

 53 }

 54

 55 /**

 56 Returns an iterator for iterating

through this list.

 57 @return an iterator for iterating

through this list

 58 */

 59 public ListIterator<E> listIterator()

 60 {

 61 return new LinkedListIterator();

 62 }

 63

 64 private Node first;

 65

 66 private class Node

 67 {

 68 public E data;

 69 public Node next;

 70 }

 71

 72 private class LinkedListIterator

implements ListIterator<E>

 73 {

 74 /**

 75 Constructs an iterator that points

to the front

 76 of the linked list.

 77 */

 78 public LinkedListIterator()

 79 {

 80 position = null;

 81 previous = null;

 82 }

 83

 84 /**

771

772

Chapter 17 Generic Programming Page 9 of 29

Java Concepts, 5th Edition

 85 Moves the iterator past the next

element.

 86 @return the traversed element

 87 */

 88 public E next()

 89 {

 90 if (!hasNext())

 91 throw new

NoSuchElementException();

 92 previous = position; // Remember

for remove

 93

 94 if (position == null)

 95 position = first;

 96 else

 97 position = position.next;

 98

 99 return position.data;

 100 }

 101

 102 /**

 103 Tests if there is an element after

the iterator

 104 position.

 105 @return true if there is an

element after the iterator

 106 position

 107 */

 108 public boolean hasNext()

 109 {

 110 if (position == null)

 111 return first ! = null;

 112 else

 113 return position.next !=null;

 114 }

 115

 116 /**

 117 Adds an element before the

iterator position

 118 and moves the iterator past the

inserted element.

 119 @param element the element to add

 120 */

Chapter 17 Generic Programming Page 10 of 29

Java Concepts, 5th Edition

 121 public void add(E element)

 122 {

 123 if (position == null)

 124 {

 125 addFirst(element);

 126 position = first;

 127 }

 128 else

 129 {

 130 Node newNode = new Node();

 131 newNode.data = element;

 132 newNode.next = position.next;

 133 position.next = newNode;

 134 position = newNode;

 135 }

 136 previous = position;

 137 }

 138

 139 /**

 140 Removes the last traversed element.

This method may

 141 only be called after a call to the

next() method.

 142 */

 143 public void remove()

 144 {

 145 if (previous == position)

 146 throw new IllegalStateException();

 147

 148 if (position == first)

 149 {

 150 removeFirst();

 151 }

 152 else

 153 {

 154 previous.next = position.next;

 155 }

 156 position = previous;

 157 }

 158

 159 /**

 160 Sets the last traversed element to a

different

772

773

Chapter 17 Generic Programming Page 11 of 29

Java Concepts, 5th Edition

 161 value.

 162 @param element the element to set

 163 */

 164 public void set(E element)

 165 {

 166 if (position == null)

 167 throw new NoSuchElementException();

 168 position.data = element;

 169 }

 170

 171 private Node position;

 172 private Node previous;

 173 }

 174 }

ch17/genlist/ListIterator.java

 1 /**

 2 A list iterator allows access to a position

in a linked list.

 3 This interface contains a subset of the

methods of the

 4 standard java.util.ListIterator interface.

The methods for

 5 backward traversal are not included.

 6 */

 7 public interface ListIterator<E>

 8 {

 9 /**

10 Moves the iterator past the next

element.

11 @return the traversed element

12 */

13 E next();

14

15 /**

16 Tests if there is an element after the

iterator

17 position.

18 @return true if there is an element

after the iterator

19 position

20 */

773

774

Chapter 17 Generic Programming Page 12 of 29

Java Concepts, 5th Edition

21 boolean hasNext();

22

23 /**

24 Adds an element before the iterator

position

25 and moves the iterator past the

inserted element.

26 @param element the element to add

27 */

28 void add(E element);

29

30 /**

31 Removes the last traversed element.

This method may

32 only be called after a call to the

next method.

33 */

34 void remove();

35

36 /**

37 Sets the last traversed element to a

different

38 value.

39 @param element the element to set

40 */

41 void set(E element);

42 }

ch17/genlist/ListTester.java

 1 /**

 2 A program that tests the LinkedList class.

 3 */

 4 public class ListTester

 5 {

 6 public static void main(String[] args)

 7 {

 8 LinkedList<String> staff = new

LinkedList<String>();

 9 staff.addFirst(“Tom”);

10 staff.addFirst(“Romeo”);

11 staff.addFirst(“Harry”);

12 staff.addFirst(“Dick”);

774

775

Chapter 17 Generic Programming Page 13 of 29

Java Concepts, 5th Edition

13

14 // | in the comments indicates the

iterator position

15

16 ListIterator<String> iterator =

staff.listIterator(); // |DHRT

17 iterator.next(); // D|HRT

18 iterator.next(); // DH|RT

19

20 // Add more elements after second element

21

22 iterator.add(“Juliet”); // DHJ|RT

23 iterator.add(“Nina”); // DHJN|RT

24

25 iterator.next(); // DHJNR|T

26

27 // Remove last traversed element

28

29 iterator.remove(); // DHJN|T

30

31 // Print all elements

32

33 iterator = staff.listIterator();

34 while (iterator.hasNext())

35 {

36 String element = iterator.next();

37 System.out.print(element + “”);

38 }

39 System.out.println();

40 System.out.println(“Expected: Dick Harry

Juliet Nina Tom”);

41 }

42 }

Output

Dick Harry Juliet Nina Tom
Expected: Dick Harry Juliet Nina Tom

Chapter 17 Generic Programming Page 14 of 29

Java Concepts, 5th Edition

SELF CHECK

3. How would you use the generic Pair class to construct a pair of strings

“Hello“ and “World”?

4. What change was made to the ListIterator interface, and why was

that change necessary?

17.3 Generic Methods

A generic method is a method with a type variable. You can think of it as a template

for a set of methods that differ only by one or more types. One way of defining a

generic method is by starting with a method that operates on a specific type. As an

example, consider the following print method:

public class ArrayUtil
{
 /**
 Prints all elements in an array of strings.
 @param a the array to print
 */
 public static void print(String[] a)
 {
 for (String e : a)
 System.out.print(e + “ ”);
 System.out.println();
 }
 . . .
}

Generic methods can be defined inside ordinary and generic classes.

This method prints the elements in an array of strings. However, we may want to

print an array of Rectangle objects instead. Of course, the same algorithm works

for an array of any type.

Supply the type variables of a generic method between the modifiers and the

method return type.

775

776

Chapter 17 Generic Programming Page 15 of 29

Java Concepts, 5th Edition

In order to make the method into a generic method, replace String with a type

variable, say E, to denote the element type of the array. Add a type variable list,

enclosed in angle brackets, between the modifiers (public static) and the return

type (void):

public static <E> void print(E[] a)
{
 for (E e : a)
 System.out.print(e + “ ”);
 System.out.println();
}

When you call the generic method, you need not specify which type to use for the

type variable. (In this regard, generic methods differ from generic classes.) Simply

call the method with appropriate parameters, and the compiler will match up the type

variables with the parameter types. For example, consider this method call:

Rectangle[] rectangles = . . . ;
ArrayUtil.print(rectangles);

The type of the rectangles parameter is Rectangle[], and the type of the

parameter variable is E[]. The compiler deduces that E is Rectangle.

When calling a generic method, you need not instantiate the type variables.

This particular generic method is a static method in an ordinary class. You can also

define generic methods that are not static. You can even have generic methods in

generic classes.

SYNTAX 17.3 Defining a Generic Method

modifiers <Type Variable1, TypeVariable2, . . .>

returnType methodName(parameters)
{

 body
}

Example:

public static <E> void print(E[] a)
{

776

777

Chapter 17 Generic Programming Page 16 of 29

Java Concepts, 5th Edition

 . . .
}

Purpose:

To define a generic method that depends on type variables

As with generic classes, you cannot replace type variables with primitive types. The

generic print method can print arrays of any type except the eight primitive types.

For example, you cannot use the generic print method to print an array of type

int[]. That is not a major problem. Simply implement a print(int[] a)

method in addition to the generic print method.

SELF CHECK

5. Exactly what does the generic print method print when you pass an

array of BankAccount objects containing two bank accounts with

zero balances?

6. Is the getFirst method of the Pair class a generic method?

17.4 Constraining Type Variables

It is often necessary to specify what types can be used in a generic class or method.

Consider a generic min method that finds the smallest element in an array list of

objects. How can you find the smallest element when you know nothing about the

element type? You need to have a mechanism for comparing array elements. One

solution is to require that the elements belong to a type that implements the

Comparable interface. In this situation, we need to constrain the type variable.

public static <E extends Comparable> E min(E[] a)
{
 E smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(smallest) < 0) smallest =
a[i];
 return smallest;
}

You can call min with a String[] array but not with a Rectangle[] array—the

String class implements Comparable, but Rectangle does not.

777

778

Chapter 17 Generic Programming Page 17 of 29

Java Concepts, 5th Edition

Type variables can be constrained with bounds.

The Comparable bound is necessary for calling the compareTo method. Had it

been omitted, then the min method would not have compiled. It would have been

illegal to call compareTo on a[i] if nothing is known about its type. (Actually, the

Comparable interface is itself a generic type, but for simplicity we do not supply a

type parameter. See Advanced Topic 17.1 for more information.)

Very occasionally, you need to supply two or more type bounds. Then you separate

them with the & character, for example

<E extends Comparable & Cloneable>

The extends keyword, when applied to type variables, actually means “extends or

implements”. The bounds can be either classes or interfaces, and the type variable can

be replaced with a class or interface type.

SELF CHECK

7. How would you constrain the type variable for a generic

BinarySearchTree class?

8. Modify the min method to compute the minimum of an array of

elements that implements the Measurable interface of Chapter 9.

 COMMON ERROR 17.1: Genericity and Inheritance

If SavingsAccount is a subclass of BankAccount, is

ArrayList<SavingsAccount> a subclass of

ArrayList<BankAccount>? Perhaps surprisingly, it is not. Inheritance of

type parameters does not lead to inheritance of generic classes. There is no

relationship between ArrayList<SavingsAccount> and

ArrayList<BankAccount>.

This restriction is necessary for type checking. Suppose it was possible to assign

an ArrayList<SavingsAccount> object to a variable of type

ArrayList<BankAccount>:

778

779

Chapter 17 Generic Programming Page 18 of 29

Java Concepts, 5th Edition

ArrayList<SavingsAccount> savingsAccounts
 = new ArrayList<SavingsAccount>();
ArrayList<BankAccount> bankAccounts =
savingsAccounts;
 // Not legal, but suppose it was
BankAccount harrysChecking = new CheckingAccount();
bankAccounts.add(harrysChecking); // OK—can add
BankAccount object

But bankAccounts and savingsAccounts refer to the same array list! If the

assignment was legal, we would be able to add a CheckingAccount into an

ArrayList<SavingsAccount>.

In many situations, this limitation can be overcome by using wildcards—see

Advanced Topic 17.1.

 ADVANCED TOPIC 17.1: Wildcard Types

It is often necessary to formulate subtle constraints of type variables. Wildcard

types were invented for this purpose. There are three kinds of wildcard types:

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of

B

Unbounded wildcard ? Any type

A wildcard type is a type that can remain unknown. For example, we can define

the following method in the LinkedList<E> class:

public void addAll(LinkedList<? extends E> other)
{
 ListIterator<E> iter = other.listIterator();
 while (iter.hasNext()) add(iter.next());
}

The method adds all elements of other to the end of the linked list.

The addAll method doesn't require a specific type for the element type of

other. Instead, it allows you to use any type that is a subtype of E. For example,

Chapter 17 Generic Programming Page 19 of 29

Java Concepts, 5th Edition

you can use addAll to add a LinkedList<SavingsAccount> to a

LinkedList<BankAccount>.

To see a wildcard with a super bound, have another look at the min method of

the preceding section. Recall that Comparable is a generic interface; the type

parameter of the Comparable interface specifies the parameter type of the

compareTo method.

public interface Comparable<T>
{
 int compareTo(T other)
}

Therefore, we might want to specify a type bound:

public static <E extends Comparable <E>> E min(E[]
a)

However, this bound is too restrictive. Suppose the BankAccount class

implements Comparable<BankAccount>. Then the subclass

SavingsAccount also implements Comparable<BankAccount> and not

Comparable<SavingsAccount>. If you want to use the min method with a

SavingsAccount array, then the type parameter of the Comparable interface

should be any supertype of the array element type:

public static <E extends Comparable<? super E>> E
min(E[] a)

Here is an example of an unbounded wildcard. The Collections class defines a

method

public static void reverse(List<?> list)

You can think of that declaration as a shorthand for

public static <T> void reverse(List<T> list)

17.5 Raw Types

The virtual machine that executes Java programs does not work with generic classes

or methods. Instead, it uses raw types, in which the type variables are replaced with

779

780

Chapter 17 Generic Programming Page 20 of 29

Java Concepts, 5th Edition

ordinary Java types. Each type variable is replaced with its bound, or with Object if

it is not bounded.

The virtual machine works with raw types, not with generic classes.

The raw type of a generic type is obtained by erasing the type variables.

The compiler erases the type variables when it compiles generic classes and methods.

For example, the generic class Pair < T, S > turns into the following raw

class:

public class Pair
{
 public Pair(Object firstElement, Object
secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public Object getFirst() { return first; }
 public Object getSecond() { return second; }
 private Object first;
 private Object second;
}

As you can see, the type variables T and S have been replaced by Object. The result

is an ordinary class.

The same process is applied to generic methods. After erasing the type parameter, the

min method of the preceding section turns into an ordinary method:

public static Comparable min(Comparable[] a)
{
 Comparable smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(smallest) < 0) smallest =
a[i];
 return smallest;
}

Chapter 17 Generic Programming Page 21 of 29

Java Concepts, 5th Edition

Knowing about raw types helps you understand limitations of Java generics. For

example, you cannot replace type variables with primitive types. Erasure turns type

variables into the bounds type, such as Object or Comparable. The resulting

types can never hold values of primitive types.

To interface with legacy code, you can convert between generic and raw types.

Raw types are necessary when you interface with legacy code that was written before

generics were added to the Java language. For example, if a legacy method has a

parameter ArrayList (without a type variable), you can pass an

ArrayList<String> or ArrayList<BankAccount>. This is not completely

safe—after all, the legacy method might insert an object of the wrong type. The

compiler will issue a warning, but your program will compile and run.

SELF CHECK

9. What is the erasure of the print method in Section 17.3?

10. What is the raw type of the LinkedList<E> class in Section 17.2?

 COMMON ERROR 17.2: Writing Code That Does Not

Work After Types Are Erased

Generic classes and methods were added to Java several years after the language

became successful. The language designers decided to use the type erasure

mechanism because it makes it easy to interface generic code with legacy

programs. As a result, you may run into some programming restrictions when you

write generic code.

For example, you cannot construct new objects of a generic type. For example, the

following method, which tries to fill an array with copies of default objects, would

be wrong:

public static <E> void fillWithDefaults(E[] a)
{
 for (int i = 0; i < a.length; i++)
 a[i] = new E(); // ERROR
}

780

781

Chapter 17 Generic Programming Page 22 of 29

Java Concepts, 5th Edition

To see why this is a problem, carry out the type erasure process, as if you were the

compiler:

public static void fillWithDefaults(Object[] a)
{
 for (int i = 0; i < a.length; i++)
 a[i] = new Object(); // Not useful
}

Of course, if you start out with a Rectangle[] array, you don't want it to be

filled with Object instances. But that's what the code would do after erasing

types.

In situations such as this one, the compiler will report an error. You then need to

come up with another mechanism for solving your problem. In this particular

example, you can supply a default object:

public static <E> void fillWithDefaults(E[] a, E
defaultValue)
{
 for (int i = 0; i < a.length; i++)
 a[i] = defaultValue;
}

Similarly, you cannot construct an array of a generic type. Because an array

construction expression new E[] would be erased to new Object[], the

compiler disallows it.

 COMMON ERROR 17.3: Using Generic Types in a Static

Context

You cannot use type variables to define static fields, static methods, or static inner

classes. For example, the following would be illegal:

public class LinkedList <E>
{
 . . .
 private static E defaultValue; // ERROR
 public static List<E> replicate(E value, int
n) { . . . } // ERROR

781

782

Chapter 17 Generic Programming Page 23 of 29

Java Concepts, 5th Edition

 private static class Node { public E data;
public Node next; } // ERROR
}

In the case of static fields, this restriction is very sensible. After the generic types

are erased, there is only a single field LinkedList.defaultValue, whereas

the static field declaration gives the false impression that there is a separate field

for each LinkedList<E>.

For static methods and inner classes, there is an easy workaround; simply add a

type parameter:

public class LinkedList<E>
{
 . . .
 public static <T> List<T> replicate(T value,
int n) { . . . } // OK
 private static class Node<T> { public T data;
public Node<T> next; } // OK
}

CHAPTER SUMMARY

1. In Java, generic programming can be achieved with inheritance or with type

variables.

2. A generic class has one or more type variables.

3. Type variables can be instantiated with class or interface types.

4. Type variables make generic code safer and easier to read.

5. Type variables of a generic class follow the class name and are enclosed in

angle brackets.

6. Use type variables for the types of generic fields, method parameters, and

return values.

7. Generic methods can be defined inside ordinary and generic classes.

8. Supply the type variables of a generic method between the modifiers and the

method return type.

Chapter 17 Generic Programming Page 24 of 29

Java Concepts, 5th Edition

9. When calling a generic method, you need not instantiate the type variables.

10. Type variables can be constrained with bounds.

11. The virtual machine works with raw types, not with generic classes.

12. The raw type of a generic type is obtained by erasing the type variables.

13. To interface with legacy code, you can convert between generic and raw types.

REVIEW EXERCISES

★ Exercise R17.1. What is a type variable?

★ Exercise R17.2. What is the difference between a generic class and an

ordinary class?

★ Exercise R17.3. What is the difference between a generic class and a

generic method?

★ Exercise R17.4. Find an example of a non-static generic method in the

standard Java library.

★★Exercise R17.5. Find four examples of a generic class with two type

parameters in the standard Java library.

★★Exercise R17.6. Find an example of a generic class in the standard library

that is not a collection class.

★ Exercise R17.7. Why is a bound required for the type variable T in the

following method?

<T extends Comparable> int binarySearch(T[]
a, T key)

★★Exercise R17.8. Why is a bound not required for the type variable E in the

HashSet<E> class?

★ Exercise R17.9. What is an ArrayList<Pair<T, T>>?

782

783

Chapter 17 Generic Programming Page 25 of 29

Java Concepts, 5th Edition

★★Exercise R17.10. Explain the type bounds of the following method of the

Collections class:

public static <T extends Comparable<? super
T>> void sort(List<T> a)

Why doesn't T extends Comparable or T extends

Comparable<T> suffice?

★ Exercise R17.11. What happens when you pass an

ArrayList<String> to a method with parameter ArrayList? Try it

out and explain.

★★★Exercise R17.12. What happens when you pass an

ArrayList<String> to a method with parameter ArrayList, and

the method stores an object of type BankAccount into the array list?

Try it out and explain.

★★Exercise R17.13. What is the result of the following test?

ArrayList<BankAccount> accounts = new
ArrayList<BankAccount>();
if (accounts instanceof ArrayList<String>) .
. .

Try it out and explain.

★★★Exercise R17.14. If a class implements the generic Iterable

interface, then you can use its objects in the “for each” loop—see

Advanced Topic 15.1. Describe the needed modifications to the

LinkedList<E> class of Section 17.2.

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★ Exercise P17.1. Modify the generic Pair class so that both values have

the same type.

783

784

Chapter 17 Generic Programming Page 26 of 29

Java Concepts, 5th Edition

★ Exercise P17.2. Add a method swap to the Pair class of Exercise P17.1

that swaps the first and second elements of the pair.

★★Exercise P17.3. Implement a static generic method PairUtil.swap

whose parameter is a Pair object, using the generic class defined in

Section 17.2. The method should return a new pair, with the first and

second element swapped.

★★Exercise P17.4. Write a static generic method PairUtil.minmax that

computes the minimum and maximum elements of an array of type T and

returns a pair containing the minimum and maximum value. Require that

the array elements implement the Measurable interface of Chapter 9.

★★Exercise P17.5. Repeat the problem of Exercise P17.4, but require that the

array elements implement the Comparable interface.

★★★Exercise P17.6. Repeat the problem of Exercise P17.5, but refine the

bound of the type variable to extend the generic Comparable type.

★★Exercise P17.7. Implement a generic version of the binary search

algorithm.

★★★Exercise P17.8. Implement a generic version of the merge sort

algorithm. Your program should compile without warnings.

★★Exercise P17.9. Implement a generic version of the

BinarySearchTree class of Chapter 16.

★★Exercise P17.10. Turn the HashSet implementation of Chapter 16 into a

generic class. Use an array list instead of an array to store the buckets.

★★Exercise P17.11. Define suitable hashCode and equals methods for

the Pair class of Section 17.2 and implement a HashMap class, using a

HashSet<Pair<K, V>>.

★★★Exercise P17.12. Implement a generic version of the permutation

generator in Section 13.2. Generate all permutations of a List<E>.

Chapter 17 Generic Programming Page 27 of 29

Java Concepts, 5th Edition

★★Exercise P17.13. Write a generic static method print that prints the

elements of any object that implements the Iterable<E> interface. The

elements should be separated by commas. Place your method into an

appropriate utility class.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★★★Project 17.1. Design and implement a generic version of the DataSet

class of Chapter 9 that can be used to analyze data of any class that

implements the Measurable interface. Make the Measurable interface

generic as well. Supply an addAll method that lets you add all values

from another data set with a compatible type. Supply a generic

Measurer<T> interface to allow the analysis of data whose classes

don't implement the Measurable type.

★★★Project 17.2. Turn the PriorityQueue class of Chapter 16 into a

generic class. As with the TreeSet class of the standard library, allow

a Comparator to compare queue elements. If no comparator is

supplied, assume that the element type implements the Comparable

interface.

ANSWERS TO SELF-CHECK QUESTIONS

1. HashMap<String, Integer>

2. It uses inheritance.

3. new Pair<String, String>(“Hello”, “World”)

4. ListIterator<E> is now a generic type. Its interface depends on the

element type of the linked list.

5. The output depends on the definition of the toString method in the

Bank-Account class.

784

785

Chapter 17 Generic Programming Page 28 of 29

Java Concepts, 5th Edition

6. No—the method has no type parameters. It is an ordinary method in a

generic class.

7. public class BinarySearchTree<E extends Comparable>

8. public static <E extends Measurable > E min(E[] a)

 {
 E smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].getMeasure() <
smallest.getMeasure())
 smallest = a[i];
 return smallest;
 }

9. public static void print(Object[] a)

 {
 for (Object e : a)
 System.out.print(e + “ ”);
 System.out.println();
 }

10. The LinkedList class of Chapter 15.
785

Chapter 17 Generic Programming Page 29 of 29

Java Concepts, 5th Edition

Chapter 18 Graphical User Interfaces

CHAPTER GOALS

G To understand the use of layout managers to arrange user-interface

components in a container

G To become familiar with common user-interface components, such as buttons,

combo boxes, and menus

G To build programs that handle events from user-interface components

• To learn how to browse the Java documentation

In this chapter, we will delve more deeply into graphical user interface

programming. The graphical applications with which you are familiar have many

visual gadgets for information entry: buttons, scroll bars, menus, etc. In this chapter,

you will learn how to use the most common user-interface components in the Java

Swing user-interface toolkit. Swing has many more components than can be

mastered in a first course, and even the basic components have advanced options that

can't be covered here. In fact, few programmers try to learn everything about a

particular user-interface component. It is more important to understand the concepts

and to search the Java documentation for the details. This chapter walks you through

one example to show you how the Java documentation is organized and how you can

rely on it for your programming.

18.1 Layout Management

Up to now, you have had limited control over the layout of user-interface

components. You learned how to add components to a panel. The panel arranged the

components from the left to the right. However, in many applications, you need more

sophisticated arrangements.

User-interface components are arranged by placing them inside containers.

Containers can be placed inside larger containers.

787

787

788

Chapter 18 Graphical User Interfaces Page 1 of 44

Java Concepts, 5th Edition

In Java, you build up user interfaces by adding components into containers such as

panels. Each container has its own layout manager, which determines how the

components are laid out.

Each container has a layout manager that directs the arrangement of its

components.

By default, a JPanel uses a flow layout. A flow layout simply arranges its

components from left to right and starts a new row when there is no more room in the

current row.

Three useful layout managers are the border layout, flow layout, and grid layout.

Another commonly used layout manager is the border layout. The border layout

groups the container into five areas: center, north, west, south, and east (see Figure 1).

Not all of the areas need to be occupied.

When adding a component to a container with the border layout, specify the

NORTH, EAST, SOUTH, WEST, or CENTER position.

The border layout is the default layout manager for a frame (or, more technically, the

frame's content pane). But you can also use the border layout in a panel:

panel.setLayout(new BorderLayout());

Now the panel is controlled by a border layout, not the flow layout. When adding a

component, you specify the position, like this:

panel.add(component, BorderLayout.NORTH);
788

Chapter 18 Graphical User Interfaces Page 2 of 44

Java Concepts, 5th Edition

Figure 1

Components Expand to Fill Space in the Border Layout

The content pane of a frame has a border layout by default. A panel has a flow

layout by default.

The grid layout is a third layout that is sometimes useful. The grid layout arranges

components in a grid with a fixed number of rows and columns, resizing each of the

components so that they all have the same size. Like the border layout, it also

expands each component to fill the entire allotted area. (If that is not desirable, you

need to place each component inside a panel.) Figure 2 shows a number pad panel

that uses a grid layout. To create a grid layout, you supply the number of rows and

columns in the constructor, then add the components, row by row, left to right:

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
buttonPanel.add(button9);
buttonPanel.add(button4);
. . .

Sometimes you want to have a tabular arrangement of the components where columns

have different sizes or one component spans multiple columns. A more complex

layout manager called the grid bag layout can handle these situations. The grid bag

layout is quite complex to use, however, and we do not cover it in this book; see, for

788

789

Chapter 18 Graphical User Interfaces Page 3 of 44

Java Concepts, 5th Edition

example, [1] for more information. Java 6 introduces a group layout that is designed

for use by interactive tools—see Productivity Hint 18.1.

Figure 2

The Grid Layout

Fortunately, you can create acceptable-looking layouts in nearly all situations by

nesting panels. You give each panel an appropriate layout manager. Panels don't have

visible borders, so you can use as many panels as you need to organize your

components. Figure 3 shows an example; the keypad from the ATM GUI in Chapter

12. The keypad buttons are contained in a panel with grid layout. That panel is itself

contained in a larger panel with border layout. The text field is in the northern

position of the larger panel. The following code produces this arrangement:

JPanel keypadPanel = new JPanel();
keypadPanel.setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
// . . .
keypadPanel.add(buttonPanel, BorderLayout.CENTER);
JTextField display = new JTextField();
keypadPanel.add(display, BorderLayout.NORTH);

789

790

Chapter 18 Graphical User Interfaces Page 4 of 44

Java Concepts, 5th Edition

Figure 3

Nesting Panels

SELF CHECK

1. How do you add two buttons to the north area of a frame?

2. How can you stack three buttons on top of each other?

18.2 Choices

18.2.1 Radio Buttons

For a small set of mutually exclusive choices, use a group of radio buttons or a

combo box.

In this section you will see how to present a finite set of choices to the user. If the

choices are mutually exclusive, use a set of radio buttons. In a radio button set, only

one button can be selected at a time. When the user selects another button in the

same set, the previously selected button is automatically turned off. (These buttons

are called radio buttons because they work like the station selector buttons on a car

radio: If you select a new station, the old station is automatically deselected.) For

example, in Figure 4, the font sizes are mutually exclusive. You can select small,

medium, or large, but not a combination of them.

790

791

Chapter 18 Graphical User Interfaces Page 5 of 44

Java Concepts, 5th Edition

Add radio buttons into a ButtonGroup so that only one button in the group is

on at any time.

To create a set of radio buttons, first create each button individually, and then add

all buttons of the set to a ButtonGroup object:

JRadioButton smallButton = new
JRadioButton("Small");
JRadioButton mediumButton = new
JRadioButton("Medium");
JRadioButton largeButton = new
JRadioButton("Large");

ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);

Note that the button group does not place the buttons close to each other on the

container. The purpose of the button group is simply to find out which buttons to

turn off when one of them is turned on. It is still your job to arrange the buttons on

the screen.

The isSelected method is called to find out whether a button is currently

selected or not. For example,

if (largeButton.isSelected()) size = LARGE_SIZE;

Call setSelected(true) on one of the radio buttons in a radio button group

before making the enclosing frame visible.

If you have multiple button groups, it is a good idea to group them together

visually. You probably use panels to build up your user interface, but the panels

themselves are invisible. You can add a border to a panel to make it visible. In

Figure 4, for example; the panels containing the Size radio buttons and Style check

boxes have borders.

You can place a border around a panel to group its contents visually.

Chapter 18 Graphical User Interfaces Page 6 of 44

Java Concepts, 5th Edition

Figure 4

A Combo Box, Check Boxes, and Radio Buttons

There are a large number of border types. We will show only a couple of variations

and leave it to the border enthusiasts to look up the others in the Swing

documentation. The EtchedBorder class yields a border with a

three-dimensional, etched effect. You can add a border to any component, but most

commonly you apply it to a panel:

JPanel panel = new JPanel();
panel.setBorder(new EtchedBorder());

If you want to add a title to the border (as in Figure 4), you need to construct a

TitledBorder. You make a titled border by supplying a basic border and then

the title you want. Here is a typical example:

panel.setBorder(new TitledBorder(new
EtchedBorder(), "Size"));

791

792

Chapter 18 Graphical User Interfaces Page 7 of 44

Java Concepts, 5th Edition

18.2.2 Check Boxes

A check box is a user-interface component with two states: checked and unchecked.

You use a group of check boxes when one selection does not exclude another. For

example, the choices for “Bold” and “Italic” in Figure 4 are not exclusive. You can

choose either, both, or neither. Therefore, they are implemented as a set of separate

check boxes. Radio buttons and check boxes have different visual appearances.

Radio buttons are round and have a black dot when selected. Check boxes are

square and have a check mark when selected. (Strictly speaking, the appearance

depends on the chosen look and feel. It is possible to create a different look and feel

in which check boxes have a different shape or in which they give off a particular

sound when selected.)

For a binary choice, use a check box.

You construct a check box by giving the name in the constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic");

Do not place check boxes inside a button group.

18.2.3 Combo Boxes

If you have a large number of choices, you don't want to make a set of radio

buttons, because that would take up a lot of space. Instead, you can use a combo

box. This component is called a combo box because it is a combination of a list and

a text field. The text field displays the name of the current selection. When you

click on the arrow to the right of the text field of a combo box, a list of selections

drops down, and you can choose one of the items in the list (see Figure 5).

For a large set of choices, use a combo box.

If the combo box is editable, you can also type in your own selection. To make a

combo box editable, call the setEditable method.

You add strings to a combo box with the addItem method.

Chapter 18 Graphical User Interfaces Page 8 of 44

Java Concepts, 5th Edition

JComboBox facenameCombo = new JComboBox();
facenameCombo.addItem("Serif");
facenameCombo.addItem("SansSerif");
. . .

Figure 5

An Open Combo Box

You get the item that the user has selected by calling the getSelectedItem

method. However, because combo boxes can store other objects in addition to

strings, the getSelectedItem method has return type Object. Hence you

must cast the returned value back to String.

String selectedString
 = (String) facenameCombo.getSelectedItem();

You can select an item for the user with the setSelectedItem method.

Radio buttons, check boxes, and combo boxes generate action events, just as

buttons do.

Radio buttons, check boxes, and combo boxes generate an ActionEvent

whenever the user selects an item. In the following program, we don't care which

component was clicked—all components notify the same listener object. Whenever

the user clicks on any one of them, we simply ask each component for its current

content, using the isSelected and getSelectedItem methods. We then

redraw the text sample with the new font.

Figure 6 shows how the components are arranged in the frame. Figure 7 shows the

UML diagram.

792

793

Chapter 18 Graphical User Interfaces Page 9 of 44

Java Concepts, 5th Edition

Figure 6

The Components of the FontViewerFrame

Figure 7

Classes of the Font Viewer Program

793

794

Chapter 18 Graphical User Interfaces Page 10 of 44

Java Concepts, 5th Edition

ch18/choice/FontViewer.Java

 1 import javax.swing.JFrame;
 2
 3 /**
 4 This program allows the user to view font
effects.
 5 */
 6 public class FontViewer
 7 {
 8 public static void main(String[] args)
 9 {
10 JFrame frame = new FontViewerFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON
12 frame.setTitle(“FontViewer”);
13 frame.setVisible(true);
14 }
15 }

ch18/choice/FontViewerFrame.java

 1 import java.awt.BorderLayout;
 2 import java.awt.Font;
 3 import java.awt.GridLayout;
 4 import java.awt.event.ActionEvent;
 5 import java.awt.event.ActionListener;
 6 import javax.swing.ButtonGroup;
 7 import javax.swing.JButton;
 8 import javax.swing.JCheckBox;
 9 import javax.swing.JComboBox;
 10 import javax.swing.JFrame;
 11 import javax.swing.JLabel;
 12 import javax.swing.JPanel;
 13 import javax.swing.JRadioButton;
 14 import javax.swing.border.EtchedBorder;
 15 import javax.swing.border.TitledBorder;
 16
 17 /**
 18 This frame contains a text field and a
control panel
 19 to change the font of the text.

794

795

Chapter 18 Graphical User Interfaces Page 11 of 44

Java Concepts, 5th Edition

 20 */
 21 public class FontViewerFrame extends JFrame
 22 {
 23 /**
 24 Constructs the frame.
 25 */
 26 public FontViewerFrame()
 27 {
 28 // Construct text sample
 29 sampleField = new JLabel(“Big Java”);
 30 add(sampleField, BorderLayout.CENTER);
 31
 32 // This listener is shared among all
components
 33 class ChoiceListener implements
ActionListener
 34 {
 35 public void
actionPerformed(ActionEvent event)
 36 {
 37 setSampleFont();
 38 }
 39 }
 40
 41 listener = new ChoiceListener();
 42
 43 createControlPanel();
 44 setSampleFont();
 45 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 46 }
 47
 48 /**
 49 Creates the control panel to change the
font.
 50 */
 51 public void createControlPanel()
 52 {
 53 JPanel facenamePanel = createComboBox();
 54 JPanel sizeGroupPanel =
createCheckBoxes();
 55 JPanel styleGroupPanel =
createRadioButtons();
 56

795

796

Chapter 18 Graphical User Interfaces Page 12 of 44

Java Concepts, 5th Edition

 57 // Line up component panels
 58
 59 JPanel controlPanel = new JPanel();
 60 controlPanel.setLayout(new
GridLayout(3, 1));
 61 controlPanel.add(facenamePanel);
 62 controlPanel.add(sizeGroupPanel);
 63 controlPanel.add(styleGroupPanel);
 64
 65 // Add panels to content pane
 66
 67 add(controlPanel, BorderLayout.SOUTH);
 68 }
 69
 70 /**
 71 Creates the combo box with the font
style choices.
 72 @return the panel containing the combo
box
 73 */
 74 public JPanel createComboBox()
 75 {
 76 facenameCombo = new JComboBox();
 77 facenameCombo.addItem(“Serif”);
 78 facenameCombo.addItem(“SansSerif”);
 79 facenameCombo.addItem(“Monospaced”);
 80 facenameCombo.setEditable(true);
 81 facenameCombo.addActionListener(listener);
 82
 83 JPanel panel = new JPanel();
 84 panel.add(facenameCombo);
 85 return panel;
 86 }
 87
 88 /**
 89 Creates the check boxes for selecting
bold and italic styles.
 90 @return the panel containing the check
boxes
 91 */
 92 public JPanel createCheckBoxes()
 93 {

Chapter 18 Graphical User Interfaces Page 13 of 44

Java Concepts, 5th Edition

 94 italicCheckBox = new
JCheckBox(“Italic”);
 95 italicCheckBox.addActionListener(listener);
 96
 97 boldCheckBox = new JCheckBox(“Bold”);
 98 boldCheckBox.addActionListener(listener);
 99
100 JPanel panel = new JPanel();
101 panel.add(italicCheckBox);
102 panel.add(boldCheckBox);
103 panel.setBorder(
104 new TitledBorder(new
EtchedBorder(), “Style”));
105

106 return panel;
107 }
108

109 /**
110 Creates the radio buttons to select the
font size.
111 @return the panel containing the radio
buttons
112 */
113 public JPanel createRadioButtons()
114 {
115 smallButton = new JRadioButton(“Small”);
116 smallButton.addActionListener(listener);
117

118 mediumButton = new
JRadioButton(“Medium”);
119 mediumButton.addActionListener(listener);
120

121 largeButton = new JRadioButton(“Large”);
122 largeButton.addActionListener(listener);
123 largeButton.setSelected(true);
124

125 // Add radio buttons to button group
126

127 ButtonGroup group = new ButtonGroup();
128 group.add(smallButton);
129 group.add(mediumButton);
130 group.add(largeButton);
131

796

797

Chapter 18 Graphical User Interfaces Page 14 of 44

Java Concepts, 5th Edition

132 JPanel panel = new JPanel();
133 panel.add(smallButton);
134 panel.add(mediumButton);
135 panel.add(largeButton);
136 panel.setBorder(
137 new TitledBorder(new
EtchedBorder(), “Size”));
138

139 return panel;
140 }
141

142 /**
143 Gets user choice for font name, style,
and size
144 and sets the font of the text sample.
145 */
146 public void setSampleFont()
147 {
148 // Get font name
149 String facename
150 = (String)
facenameCombo.getSelectedItem();
151

152 // Get font style
153

154 int style = 0;
155 if (italicCheckBox.isSelected())
156 style = style + Font.ITALIC;
157 if (boldCheckBox.isSelected())
158 style = style + Font.BOLD;
159

160 // Get font size
161

162 int size = 0;
163

164 final int SMALL_SIZE = 24;
165 final int MEDIUM_SIZE = 36;
166 final int LARGE_SIZE = 48;
167

168 if (smallButton.isSelected())
169 size = SMALL_SIZE;
170 else if (mediumButton.isSelected())
171 size = MEDIUM_SIZE;

797

798

Chapter 18 Graphical User Interfaces Page 15 of 44

Java Concepts, 5th Edition

172 else if (largeButton.isSelected())
173 size = LARGE_SIZE;
174

175 // Set font of text field
176

177 sampleField.setFont(new Font(facename,
style, size));
178 sampleField.repaint();
179 }
180

181 private JLabel sampleField;
182 private JCheckBox italicCheckBox;
183 private JCheckBox boldCheckBox;
184 private JRadioButton smallButton;
185 private JRadioButton mediumButton;
186 private JRadioButton largeButton;
187 private JComboBox facenameCombo;
188 private ActionListener listener;
189

190 private static final int FRAME_WIDTH = 300;
191 private static final int FRAME_HEIGHT =
400;
192 }

SELF CHECK

3. What is the advantage of a JComboBox over a set of radio buttons?

What is the disadvantage?

4. Why do all user interface components in the FontViewerFrame

class share the same listener?

5. Why was the combo box placed inside a panel? What would have

happened if it had been added directly to the control panel?

 HOW TO 18.1: Laying Out a User Interface

A graphical user interface is made up of components such as buttons and text

fields. The Swing library uses containers and layout managers to arrange these

components. This How To explains how to group components into containers

and how to pick the right layout managers.

798

799

Chapter 18 Graphical User Interfaces Page 16 of 44

Java Concepts, 5th Edition

Step 1 Make a sketch of your desired component layout.

Draw all the buttons, labels, text fields, and borders on a sheet of paper. Graph

paper works best.

Here is an example—a user interface for ordering pizza. The user interface

contains

• Three radio buttons

• Two check boxes

• A label: “Your Price:”

• A text field

• A border

Step 2 Find groupings of adjacent components with the same layout.

Usually, the component arrangement is complex enough that you need to use

several panels, each with its own layout manager. Start by looking at adjacent

components that are arranged top to bottom or left to right. If several

components are surrounded by a border, they should be grouped together.

Here are the groupings from the pizza user interface:

799

Chapter 18 Graphical User Interfaces Page 17 of 44

Java Concepts, 5th Edition

Step 3 Identify layouts for each group.

When components are arranged horizontally, choose a flow layout. When

components are arranged vertically, use a grid layout. The grid in this layout has

as many rows as there are components, and it has one column.

In the pizza user interface example, you would choose

• A (3, 1) grid layout for the radio buttons

• A (2, 1) grid layout for the check boxes

• A flow layout for the label and text field

Step 4 Group the groups together.

Look at each group as one blob, and group the blobs together into larger groups,

just as you grouped the components in the preceding step. If you note one large

blob surrounded by smaller blobs, you can group them together in a border

layout.

You may have to repeat the grouping again if you have a very complex user

interface. You are done if you have arranged all groups in a single container.

For example, the three component groups of the pizza user interface can be

arranged as follows:

• A group containing the first two component groups, placed in the center of

a container with a border layout

• The third component group, in the southern area of that container

799

800

Chapter 18 Graphical User Interfaces Page 18 of 44

Java Concepts, 5th Edition

In this step, you may run into a couple of complications. The group “blobs” tend

to vary in size more than the individual components. If you place them inside a

grid layout, the grid layout forces them all to be the same size. Also, you

occasionally would like a component from one group to line up with a

component from another group, but there is no way for you to communicate that

intent to the layout managers.

These problems can be overcome by using more sophisticated layout managers

or implementing a custom layout manager. However, those techniques are

beyond the scope of this book. Sometimes, you may want to start over with Step

1, using a component layout that is easier to manage. Or you can decide to live

with minor imperfections of the layout. Don't worry about achieving the perfect

layout—after all, you are learning programming, not user-interface design.

Step 5 Write the code to generate the layout.

This step is straightforward but potentially tedious, especially if you have a large

number of components.

Start by constructing the components. Then construct a panel for each

component group and set its layout manager if it is not a flow layout (the default

for panels). Add a border to the panel if required. Finally, add the components to

the panel. Continue in this fashion until you reach the outermost containers,

which you add to the frame.

Here is an outline of the code required for the pizza user interface.

JPanel radioButtonPanel = new JPanel();
radioButtonPanel.setLayout(new GridLayout(3, 1));
radioButton.setBorder(
 new TitledBorder(new EtchedBorder(),
"Size"));
radioButtonPanel.add(smallButton);
radioButtonPanel.add(mediumButton);
radioButtonPanel.add(largeButton);

JPanel checkBoxPanel = new JPanel();
checkBoxPanel.setLayout(new GridLayout(2, 1));
checkBoxPanel.add(pepperoniButton());
checkBoxPanel.add(anchoviesButton());

800

801

Chapter 18 Graphical User Interfaces Page 19 of 44

Java Concepts, 5th Edition

JPanel pricePanel = new JPanel(); // Uses
FlowLayout
pricePanel.add(new JLabel("Your Price:"));
pricePanel.add(priceTextField);

JPanel centerPanel = new JPanel(); // Uses
FlowLayout
centerPanel.add(radioButtonPanel);
centerPanel.add(checkBoxPanel);

// Frame uses BorderLayout by default
add(centerPanel, BorderLayout.CENTER);
add(pricePanel, BorderLayout.SOUTH);

Of course, you also need to add event handlers to the components. That is the

topic of How To 10.1.

 PRODUCTIVITY HINT 18.1: Use a GUI Builder

As you have seen, implementing even a simple graphical user interface in Java is

quite tedious. You have to write a lot of code for constructing components, using

layout managers, and providing event handlers. Most of the code is boring and

repetitive.

A GUI builder takes away much of the tedium. Most GUI builders help you in

three ways:

• You drag and drop components onto a panel. The GUI builder writes the

layout management code for you.

• You customize components with a dialog box, setting properties such as

fonts, colors, text, and so on. The GUI builder writes the customization

code for you.

• You provide event handlers by picking the event to process and providing

just the code snippet for the listener method. The GUI builder writes the

boilerplate code for attaching a listener object.

Java 6 introduced GroupLayout, a powerful layout manager that was

specifically designed to be used by GUI builders. The free NetBeans

801

802

Chapter 18 Graphical User Interfaces Page 20 of 44

Java Concepts, 5th Edition

development environment, available from http://netbeans.org, makes use of this

layout manager—see Figure 8.

If you need to build a complex user interface, you will find that learning to use a

GUI builder is a very worthwhile investment. You will spend less time writing

boring code, and you will have more fun designing your user interface and

focusing on the functionality of your program.

Figure 8

A GUI Builder

18.3 Menus

Anyone who has ever used a graphical user interface is familiar with pull-down

menus (see Figure 9). In Java it is easy to create these menus.

A frame contains a menu bar. The menu bar contains menus. A menu contains

submenus and menu items.

Chapter 18 Graphical User Interfaces Page 21 of 44

Java Concepts, 5th Edition

The container for the top-level menu items is called a menu bar. A menu is a

collection of menu items and more menus (submenus). You add menu items and

submenus with the add method:

JMenuItem fileExitItem = new JMenuItem("Exit");
fileMenu.add(fileExitItem);

Figure 9

Pull-Down Menus

A menu item has no further submenus. When the user selects a menu item, the menu

item sends an action event. Therefore, you want to add a listener to each menu item:

fileExitItem.addActionListener(listener);

You add action listeners only to menu items, not to menus or the menu bar. When the

user clicks on a menu name and a submenu opens, no action event is sent.

Menu items generate action events.

802

803

Chapter 18 Graphical User Interfaces Page 22 of 44

Java Concepts, 5th Edition

The following program builds up a small but typical menu and traps the action events

from the menu items. To keep the program readable, it is a good idea to use a separate

method for each menu or set of related menus. Have a look at the

createFaceItem method, which creates a menu item to change the font face. The

same listener class takes care of three cases, with the name parameters varying for

each menu item. The same strategy is used for the createSizeItem and

createStyleItem methods.

ch18/menu/FontViewer2.java

 1 import javax.swing.JFrame;
 2
 3 /**
 4 This program uses a menu to display font
effects.
 5 */
 6 public class FontViewer2
 7 {
 8 public static void main(String[] args)
 9 {
10 JFrame frame = new FontViewer2Frame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_
12 frame.setVisible(true);
13 }
14 }

ch18/menu/FontViewer2Frame.java

 1 import java.awt.BorderLayout;
 2 import java.awt.Font;
 3 import java.awt.GridLayout;
 4 import java.awt.event.ActionEvent;
 5 import java.awt.event.ActionListener;
 6 import javax.swing.ButtonGroup;
 7 import javax.swing.JButton;
 8 import javax.swing.JCheckBox;
 9 import javax.swing.JComboBox;
 10 import javax.swing.JFrame;
 11 import javax.swing.JLabel;
 12 import javax.swing.JMenu;

803

804

Chapter 18 Graphical User Interfaces Page 23 of 44

Java Concepts, 5th Edition

 13 import javax.swing.JMenuBar;
 14 import javax.swing.JMenuItem;
 15 import javax.swing.JPanel;
 16 import javax.swing.JRadioButton;
 17 import javax.swing.border.EtchedBorder;
 18 import javax.swing.border.TitledBorder;
 19
 20 /**
 21 This frame has a menu with commands to
change the font
 22 of a text sample.
 23 */
 24 public class FontViewer2Frame extends JFrame
 25 {
 26 /**
 27 Constructs the frame.
 28 */
 29 public FontViewer2Frame()
 30 {
 31 // Construct text sample
 32 sampleField = new JLabel(“Big Java”);
 33 add(sampleField, BorderLayout.CENTER);
 34
 35 // Construct menu
 36 JMenuBar menuBar = new JMenuBar();
 37 setJMenuBar(menuBar);
 38 menuBar.add(createFileMenu());
 39 menuBar.add(createFontMenu());
 40
 41 facename = “Serif”;
 42 fontsize = 24;
 43 fontstyle = Font.PLAIN;
 44
 45 setSampleFont();
 46 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 47 }
 48
 49 /**
 50 Creates the File menu.
 51 @return the menu
 52 */
 53 public JMenu createFileMenu()
 54 {

804

805

Chapter 18 Graphical User Interfaces Page 24 of 44

Java Concepts, 5th Edition

 55 JMenu menu = new JMenu(“File”);
 56 menu.add(createFileExitItem());
 57 return menu;
 58 }
 59
 60 /**
 61 Creates the File->Exit menu item and
sets its action listener.
 62 @return the menu item
 63 */
 64 public JMenuItem createFileExitItem()
 65 {
 66 JMenuItem item = new JMenuItem(“Exit”);
 67 class MenuItemListener implements
ActionListener
 68 {
 69 public void
actionPerformed(ActionEvent event)
 70 {
 71 System.exit(0);
 72 }
 73 }
 74 ActionListener listener = new
MenuItemListener();
 75 item.addActionListener(listener);
 76 return item;
 77 }
 78
 79 /**
 80 Creates the Font submenu.
 81 @return the menu
 82 */
 83 public JMenu createFontMenu()
 84 {
 85 JMenu menu = new JMenu(“Font”);
 86 menu.add(createFaceMenu());
 87 menu.add(createSizeMenu());
 88 menu.add(createStyleMenu());
 89 return menu;
 90 }
 91
 92 /**
 93 Creates the Face submenu.

Chapter 18 Graphical User Interfaces Page 25 of 44

Java Concepts, 5th Edition

 94 @return the menu
 95 */
 96 public JMenu createFaceMenu()
 97 {
 98 JMenu menu = new JMenu(“Face”);
 99 menu.add(createFaceItem(“Serif”));
100 menu.add(createFaceItem(“SansSerif”));
101 menu.add(createFaceItem(“Monospaced”));
102 return menu;
103 }
104

105 /**
106 Creates the Size submenu.
107 @return the menu
108 */
109 public JMenu createSizeMenu()
110 {
111 JMenu menu = new JMenu(“Size”);
112 menu.add(createSizeItem(“Smaller”, -1));
113 menu.add(createSizeItem(“Larger”, 1));
114 return menu;
115 }
116

117 /**
118 Creates the Style submenu.
119 @return the menu
120 */
121 public JMenu createStyleMenu()
122 {
123 JMenu menu = new JMenu(“Style”);
124 menu.add(createStyleItem(“Plain”,
Font.PLAIN));
125 menu.add(createStyleItem(“Bold”,
Font.BOLD));
126 menu.add(createStyleItem(“Italic”,
Font.ITALIC));
127 menu.add(createStyleItem(“Bold Italic”,
Font.BOLD
128 + Font.ITALIC));
129 return menu;
130 }
131

132 /**

805

806

Chapter 18 Graphical User Interfaces Page 26 of 44

Java Concepts, 5th Edition

133 Creates a menu item to change the font
face and set its action listener.
134 @param name the name of the font face
135 @return the menu item
136 */
137 public JMenuItem createFaceItem(final
String name)
138 {
139 JMenuItem item = new JMenuItem(name);
140 class MenuItemListener implements
ActionListener
141 {
142 public void
actionPerformed(ActionEvent event)
143 {
144 facename = name;
145 setSampleFont();
146 }
147 }
148 ActionListener listener = new
MenuItemListener();
149 item.addActionListener(listener);
150 return item;
151 }
152

153 /**
154 Creates a menu item to change the font
size
155 and set its action listener.
156 @param name the name of the menu item
157 @param ds the amount by which to change
the size
158 @return the menu item
159 */
160 public JMenuItem createSizeItem(String
name, final int ds)
161 {
162 JMenuItem item = new JMenuItem(name);
163 class MenuItemListener implements
ActionListener
164 {
165 public void
actionPerformed(ActionEvent event)

806

807

Chapter 18 Graphical User Interfaces Page 27 of 44

Java Concepts, 5th Edition

166 {
167 fontsize = fontsize + ds;
168 setSampleFont();
169 }
170 }
171 ActionListener listener = new
MenuItemListener();
172 item.addActionListener(listener);
173 return item;
174 }
175

176 /**
177 Creates a menu item to change the font
style
178 and set its action listener.
179 @param name the name of the menu item
180 @param style the new font style
181 @return the menu item
182 */
183 public JMenuItem createStyleItem(String
name, final int style)
184 {
185 JMenuItem item = new JMenuItem(name);
186 class MenuItemListener implements
ActionListener
187 {
188 public void
actionPerformed(ActionEvent event)
189 {
190 fontstyle = style;
191 setSampleFont();
192 }
193 }
194 ActionListener listener = new
MenuItemListener();
195 item.addActionListener(listener);
196 return item;
197 }
198

199 /**
200 Sets the font of the text sample.
201 */
202 public void setSampleFont()

Chapter 18 Graphical User Interfaces Page 28 of 44

Java Concepts, 5th Edition

203 {
204 Font f = new Font(facename, fontstyle,
fontsize);
205 sampleField.setFont(f);
206 sampleField.repaint();
207 }
208

209 private JLabel sampleField;
210 private String facename;
211 private int fontstyle;
212 private int fontsize;
213

214 private static final int FRAME_WIDTH = 300;
215 private static final int FRAME_HEIGHT = 400;
216 }

SELF CHECK

6. Why do JMenu objects not generate action events?

7. Why is the name parameter in the createFaceItem method

declared as final?

18.4 Exploring the Swing Documentation

In the preceding sections, you saw the basic properties of the most common

user-interface components. We purposefully omitted many options and variations to

simplify the discussion. You can go a long way by using only the simplest properties

of these components. If you want to implement a more sophisticated effect, you can

look inside the Swing documentation. You will probably find the documentation quite

intimidating at first glance, though. The purpose of this section is to show you how

you can use the documentation to your advantage without becoming overwhelmed.

You should learn to navigate the API documentation to find out more about

user-interface components.

Recall the Color class that was introduced in Chapter 2. Every combination of red,

green, and blue values represents a different color. It should be fun to mix your own

colors, with a slider for the red, green, and blue values (see Figure 10).

807

808

Chapter 18 Graphical User Interfaces Page 29 of 44

Java Concepts, 5th Edition

The Swing user interface toolkit has a large set of user-interface components. How do

you know if there is a slider? You can buy a book that illustrates all Swing

components, such as [2]. Or you can run the sample application included in the Java

Development Kit that shows off all Swing components (see Figure 11). Or you can

look at the names of all of the classes that start with J and decide that JSlider may

be a good candidate.

Figure 10

A Color Viewer
808

Chapter 18 Graphical User Interfaces Page 30 of 44

Java Concepts, 5th Edition

Figure 11

The SwingSet Demo

Next, you need to ask yourself a few questions:

• How do I construct a JSlider?

• How can I get notified when the user has moved it?

• How can I tell to which value the user has set it?

808

809

Chapter 18 Graphical User Interfaces Page 31 of 44

Java Concepts, 5th Edition

If you can answer these questions, then you can put a slider to good use. Once you

have mastered sliders, you can fritter away more time and find out how to set tick

marks or otherwise enhance the visual beauty of your creation.

When you look at the documentation of the JSlider class, you will probably not be

happy. There are over 50 methods in the JSlider class and over 250 inherited

methods, and some of the method descriptions look downright scary, such as the one

in Figure 12. Apparently some folks out there are concerned about the

valueIsAdjusting property, whatever that may be, and the designers of this

class felt it necessary to supply a method to tweak that property. Until you too feel

that need, your best bet is to ignore this method. As the author of an introductory

book, it pains me to tell you to ignore certain facts. But the truth of the matter is that

the Java library is so large and complex that nobody understands it in its entirety, not

even the designers of Java themselves. You need to develop the ability to separate

fundamental concepts from ephemeral minutiae. For example, it is important that you

understand the concept of event handling. Once you understand the concept, you can

ask the question, “What event does the slider send when the user moves it?” But it is

not important that you memorize how to set tick marks or that you know how to

implement a slider with a custom look and feel.

Figure 12

A Mysterious Method Description from the API Documentation

809

810

Chapter 18 Graphical User Interfaces Page 32 of 44

Java Concepts, 5th Edition

Let us go back to our fundamental questions. In Java 6, there are six constructors for

the JSlider class. You want to learn about one or two of them. You must strike a

balance somewhere between the trivial and the bizarre. Consider

public JSlider()
 Creates a horizontal slider with the range 0 to
100 and an initial value of 50.

Maybe that is good enough for now, but what if you want another range or initial

value? It seems too limited.

On the other side of the spectrum, there is

public JSlider(BoundedRangeModel brm)
 Creates a horizontal slider using the specified
BoundedRangeModel.

Whoa! What is that? You can click on the BoundedRangeModel link to get a long

explanation of this class. This appears to be some internal mechanism for the Swing

implementors. Let's try to avoid this constructor if we can. Looking further, we find

public JSlider(int min, int max, int value)
 Creates a horizontal slider using the specified
min, max, and value.

This sounds general enough to be useful and simple enough to be usable. You might

want to stash away the fact that you can have vertical sliders as well.

Next, you want to know what events a slider generates. There is no

addActionListener method. That makes sense. Adjusting a slider seems

different from clicking a button, and Swing uses a different event type for these

events. There is a method

public void addChangeListener(ChangeListener l)

Click on the ChangeListener link to find out more about this interface. It has a

single method

void stateChanged(ChangeEvent e)

Apparently, that method is called whenever the user moves the slider. What is a

ChangeEvent? Once again, click on the link, to find out that this event class has no

810

811

Chapter 18 Graphical User Interfaces Page 33 of 44

Java Concepts, 5th Edition

methods of its own, but it inherits the getSource method from its superclass

EventObject. The getSource method tells us which component generated this

event, but we don't need that information—we know that the event came from the

slider.

Now we have a plan: Add a change event listener to each slider. When the slider is

changed, the stateChanged method is called. Find out the new value of the slider.

Recompute the color value and repaint the color panel. That way, the color panel is

continually repainted as the user moves one of the sliders.

To compute the color value, you will still need to get the current value of the slider.

Look at all the methods that start with get. Sure enough, you find

public int getValue()
 Returns the slider's value.

Now you know everything you need to write the program. The program uses one new

Swing component and one event listener of a new type. Of course, now that you have

“tasted blood”, you may want to add those tick marks—see Exercise P18.10.

Figure 13 shows how the components are arranged in the frame. Figure 14 shows the

UML diagram.

Figure 13

The Components of the ColorViewerFrame
811

Chapter 18 Graphical User Interfaces Page 34 of 44

Java Concepts, 5th Edition

Figure 14

Classes of the Color Viewer Program

ch18/slider/ColorViewer.java

 1 import javax.swing.JFrame;
 2
 3 public class ColorViewer
 4 {
 5 public static void main(String[] args)
 6 {
 7 ColorViewerFrame frame = new
ColorViewerFrame();
 8 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 9 frame.setVisible(true);
10 }
11 }

ch18/slider/ColorViewerFrame.java

 1 import java.awt.BorderLayout;
 2 import java.awt.Color;
 3 import java.awt.GridLayout;
 4 import javax.swing.JFrame;
 5 import javax.swing.JLabel;
 6 import javax.swing.JPanel;
 7 import javax.swing.JSlider;

811

812

Chapter 18 Graphical User Interfaces Page 35 of 44

Java Concepts, 5th Edition

 8 import javax.swing.event.ChangeListener;
 9 import javax.swing.event.ChangeEvent;
10

11 public class ColorViewerFrame extends JFrame
12 {
13 public ColorViewerFrame()
14 {
15 colorPanel = new JPanel();
16

17 add(colorPanel, BorderLayout.CENTER);
18 createControlPanel();
19 setSampleColor();
20 setSize(FRAME_WIDTH, FRAME_HEIGHT);
21 }
22

23 public void createControlPanel()
24 {
25 class ColorListener implements
ChangeListener
26 {
27 public void stateChanged(ChangeEvent
event)
28 {
29 setSampleColor();
30 }
31 }
32

33 ChangeListener listener = new
ColorListener();
34

35 redSlider = new JSlider(0, 255, 255);
36 redSlider.addChangeListener(listener);
37

38 greenSlider = new JSlider(0, 255, 175);
39 greenSlider.addChangeListener(listener);
40

41 blueSlider = new JSlider(0, 255, 175);
42 blueSlider.addChangeListener(listener);
43

44 JPanel controlPanel = new JPanel();
45 controlPanel.setLayout(new GridLayout(3,
2));
46

812

813

Chapter 18 Graphical User Interfaces Page 36 of 44

Java Concepts, 5th Edition

47 controlPanel.add(new JLabel(“Red”));
48 controlPanel.add(redSlider);
49

50 controlPanel.add(new JLabel(“Green”));
51 controlPanel.add(greenSlider);
52

53 controlPanel.add(new JLabel(“Blue”));
54 controlPanel.add(blueSlider);
55

56 add(controlPanel, BorderLayout.SOUTH);
57 }
58

59 /**
60 Reads the slider values and sets the
panel to
61 the selected color.
62 */
63 public void setSampleColor()
64 {
65 // Read slider values
66

67 int red = redSlider.getValue();
68 int green = greenSlider.getValue();
69 int blue = blueSlider.getValue();
70

71 // Set panel background to selected color
72

73 colorPanel.setBackground(new Color(red,
green, blue));
74 colorPanel.repaint();
75 }
76

77 private JPanel colorPanel;
78 private JSlider redSlider;
79 private JSlider greenSlider;
80 private JSlider blueSlider;
81

82 private static final int FRAME_WIDTH = 300;
83 private static final int FRAME_HEIGHT = 400;
84 }

813

814

Chapter 18 Graphical User Interfaces Page 37 of 44

Java Concepts, 5th Edition

SELF CHECK

8. Suppose you want to allow users to pick a color from a color dialog box.

Which class would you use? Look in the API documentation.

9. Why does a slider emit change events and not action events?

CHAPTER SUMMARY

1. User-interface components are arranged by placing them inside containers.

Containers can be placed inside larger containers.

2. Each container has a layout manager that directs the arrangement of its

components.

3. Three useful layout managers are the border layout, flow layout, and grid

layout.

4. When adding a component to a container with the border layout, specify the

NORTH, EAST, SOUTH, WEST, or CENTER position.

5. The content pane of a frame has a border layout by default. A panel has a flow

layout by default.

6. For a small set of mutually exclusive choices, use a group of radio buttons or a

combo box.

7. Add radio buttons into a ButtonGroup so that only one button in the group is

on at any time.

8. You can place a border around a panel to group its contents visually.

9. For a binary choice, use a check box.

10. For a large set of choices, use a combo box.

11. Radio buttons, check boxes, and combo boxes generate action events, just as

buttons do.
814

Chapter 18 Graphical User Interfaces Page 38 of 44

Java Concepts, 5th Edition

12. A frame contains a menu bar. The menu bar contains menus. A menu contains

submenus and menu items.

13. Menu items generate action events.

14. You should learn to navigate the API documentation to find out more about

user-interface components.

FURTHER READING

1. Cay S. Horstmann and Gary Cornell, Core Java 2 Volume 1:

Fundamentals, 7th edition, Prentice Hall, 2004.

2. Kim Topley, Core Java Foundation Classes, 2nd edition, Prentice Hall,

2002.

CLASSES, OBJECTS, AND METHODS INTRODUCED IN THIS

CHAPTER

java.awt.BorderLayout
 CENTER
 EAST
 NORTH
 SOUTH
 WEST
java.awt.Container
 setLayout
java.awt.FlowLayout
java.awt.Font
java.awt.GridLayout
javax.swing.AbstractButton
 isSelected
 setSelected
javax.swing.ButtonGroup
 add
javax.swing.ImageIcon
javax.swing.JCheckBox
javax.swing.JComboBox
 addItem
 getSelectedItem
 isEditable

814

815

Chapter 18 Graphical User Interfaces Page 39 of 44

Java Concepts, 5th Edition

 setEditable
javax.swing.JComponent
 setBorder
 setFont
javax.swing.JFrame
 setJMenuBar
javax.swing.JMenu
 add
javax.swing.JMenuBar
 add
javax.swing.JMenuItem
javax.swing.JRadioButton
javax.swing.JScrollPane
javax.swing.JSlider
 addChangeListener
 getValue
javax.swing.border.EtchedBorder
javax.swing.border.TitledBorder
javax.swing.event.ChangeEvent
javax.swing.event.ChangeListener

 stateChanged

REVIEW EXERCISES

★GExercise R18.1. Can you use a flow layout for the components in a frame?

If yes, how?

★GExercise R18.2. What is the advantage of a layout manager over telling the

container “place this component at position (x, y)”?

★★GExercise R18.3. What happens when you place a single button into the

CENTER area of a container that uses a border layout? Try it out, by

writing a small sample program, if you aren't sure of the answer.

★★GExercise R18.4. What happens if you place multiple buttons directly into

the SOUTH area, without using a panel? Try it out, by writing a small

sample program, if you aren't sure of the answer.

★★GExercise R18.5. What happens when you add a button to a container that

uses a border layout and omit the position? Try it out and explain.

815

816

Chapter 18 Graphical User Interfaces Page 40 of 44

Java Concepts, 5th Edition

★★GExercise R18.6. What happens when you try to add a button to another

button? Try it out and explain.

★★GExercise R18.7. The ColorViewerFrame uses a grid layout manager.

Explain a drawback of the grid that is apparent from Figure 13. What

could you do to overcome this drawback?

★★★GExercise R18.8. What is the difference between the grid layout and the

grid bag layout?

★★★GExercise R18.9. Can you add icons to check boxes, radio buttons, and

combo boxes? Browse the Java documentation to find out. Then write

a small test program to verify your findings.

★GExercise R18.10. What is the difference between radio buttons and check

boxes?

★GExercise R18.11. Why do you need a button group for radio buttons but

not for check boxes?

★GExercise R18.12. What is the difference between a menu bar, a menu, and

a menu item?

★GExercise R18.13. When browsing through the Java documentation for

more information about sliders, we ignored the JSlider default

constructor. Why? Would it have worked in our sample program?

★GExercise R18.14. How do you construct a vertical slider? Consult the

Swing documentation for an answer.

★★GExercise R18.15. Why doesn't a JComboBox send out change events?

★★★GExercise R18.16. What component would you use to show a set of

choices, just as in a combo box, but so that several items are visible at

the same time? Run the Swing demo app or look at a book with Swing

example programs to find the answer.

★★GExercise R18.17. How many Swing user interface components are

there? Look at the Java documentation to get an approximate answer.
816

Chapter 18 Graphical User Interfaces Page 41 of 44

Java Concepts, 5th Edition

★★GExercise R18.18. How many methods does the JProgressBar

component have? Be sure to count inherited methods. Look at the Java

documentation.

 Additional review exercises are available in WileyPLUS.

PROGRAMMING EXERCISES

★GExercise P18.1. Write an application with three buttons labeled “Red”,

“Green”, and “Blue” that changes the background color of a panel in the

center of the frame to red, green, or blue.

★★GExercise P18.2. Add icons to the buttons of Exercise P18.1.

★★GExercise P18.3. Write a calculator application. Use a grid layout to

arrange buttons for the digits and for the + − × ÷ operations. Add a text

field to display the result.

★GExercise P18.4. Write an application with three radio buttons labeled

“Red”, “Green”, and “Blue” that changes the background color of a panel

in the center of the frame to red, green, or blue.

★GExercise P18.5. Write an application with three check boxes labeled

“Red”, “Green”, and “Blue” that adds a red, green, or blue component to

the the background color of a panel in the center of the frame. This

application can display a total of eight color combinations.

★GExercise P18.6. Write an application with a combo box containing three

items labeled “Red”, “Green”, and “Blue” that changes the background

color of a panel in the center of the frame to red, green, or blue.

★GExercise P18.7. Write an application with a Color menu and menu items

labeled “Red”, “Green”, and “Blue” that changes the background color of a

panel in the center of the frame to red, green, or blue.

★GExercise P18.8. Write a program that displays a number of rectangles at

random positions. Supply buttons “Fewer” and “More” that generate fewer

or more random rectangles. Each time the user clicks on “Fewer”, the

816

817

Chapter 18 Graphical User Interfaces Page 42 of 44

Java Concepts, 5th Edition

count should be halved. Each time the user clicks on “More”, the count

should be doubled.

★★GExercise P18.9. Modify the program of Exercise P18.8 to replace the

buttons with a slider to generate fewer or more random rectangles.

★★GExercise P18.10. In the slider test program, add a set of tick marks to

each slider that show the exact slider position.

★★★GExercise P18.11. Enhance the font viewer program to allow the user to

select different fonts. Research the API documentation to find out how

to find the available fonts on the user's system.

 Additional programming exercises are available in WileyPLUS.

PROGRAMMING PROJECTS

★★★GProject 18.1. Write a program that lets users design charts such as the

following:

Use appropriate components to ask for the length, label, and color, then

apply them when the user clicks an “Add Item” button. Allow the user

to switch between bar charts and pie charts.

★★★GProject 18.2. Write a program that displays a scrolling message in a

panel. Use a timer for the scrolling effect. In the timer's action listener,

move the starting position of the message and repaint. When the

message has left the window, reset the starting position to the other

corner. Provide a user interface to customize the message text, font,

foreground and background colors, and the scrolling speed and

direction.

817

818

Chapter 18 Graphical User Interfaces Page 43 of 44

Java Concepts, 5th Edition

ANSWERS TO SELF-CHECK QUESTIONS

1. First add them to a panel, then add the panel to the north end of a frame.

2. Place them inside a panel with a GridLayout that has three rows and one

column.

3. If you have many options, a set of radio buttons takes up a large area. A

combo box can show many options without using up much space. But the

user cannot see the options as easily.

4. When any of the component settings is changed, the program simply

queries all of them and updates the label.

5. To keep it from growing too large. It would have grown to the same width

and height as the two panels below it.

6. When you open a menu, you have not yet made a selection. Only

JMenuItem objects correspond to selections.

7. The parameter variable is accessed in a method of an inner class.

8. JColorChooser.

9. Action events describe one-time changes, such as button clicks. Change

events describe continuous changes.

Chapter 18 Graphical User Interfaces Page 44 of 44

