

Students achieve concept
mastery in a rich,
structured environment
that’s available 24/7

From multiple study paths, to self-assessment, to a wealth of interactive

visual and audio resources, WileyPLUS gives you everything you need to

personalize the teaching and learning experience.

With WileyPLUS:

»F ind out how to MAKE IT YOURS »

This online teaching and learning environment
integrates the entire digital textbook with the
most effective instructor and student resources

Instructors personalize and manage
their course more effectively with
assessment, assignments, grade
tracking, and more

 manage time better

study smarter

 save money

www.wileyplus.com

MAKE IT YOURS!

ALL THE HELP, RESOURCES, AND PERSONAL SUPPORT
YOU AND YOUR STUDENTS NEED!

Technical Support 24/7
FAQs, online chat,
and phone support

www.wileyplus.com/support

Student support from an
experienced student user

Ask your local representative
for details!

Your WileyPLUS
Account Manager

Training and implementation support
www.wileyplus.com/accountmanager

Collaborate with your colleagues,
find a mentor, attend virtual and live

events, and view resources
www.WhereFacultyConnect.com

Pre-loaded, ready-to-use
assignments and presentations

www.wiley.com/college/quickstart

2-Minute Tutorials and all
of the resources you & your
students need to get started

www.wileyplus.com/firstday

Java
Concepts

th
edition
6

This page intentionally left blank

th
edition
6

Java
Concepts

Cay Horstmann SAN JOSE STATE UNIVERSITY

JOHN WILEY & SONS, INC.

VICE PRESIDENT AND EXECUTIVE PUBLISHER Donald Fowley
EXECUTIVE EDITOR Beth Lang Golub
EDITORIAL ASSISTANT Michael Berlin
PRODUCTION SERVICES MANAGER Dorothy Sinclair
PRODUCTION EDITOR Janet Foxman
EXECUTIVE MARKETING MANAGER Christopher Ruel
CREATIVE DIRECTOR Harry Nolan
SENIOR DESIGNER Madelyn Lesure
PHOTO EDITOR Lisa Gee
MEDIA EDITOR Lauren Sapira
PRODUCTION SERVICES Cindy Johnson
COVER DESIGNER Howard Grossman
COVER ILLUSTRATION Susan Cyr

This book was set in Stempel Garamond by Publishing Services, and printed and bound by RRD Jefferson
City. The cover was printed by RRD Jefferson City.

This book is printed on acid-free paper. ∞

Copyright © 2010, 2008, 2006, 2003 John Wiley & Sons, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to
a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside
of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data:
Horstmann, Cay S., 1959-
 Java concepts : compatible with Java 5, 6, and 7 / Cay Horstmann. — 6th ed.
 p. cm.
 Includes index.
 ISBN 978-0-470-50947-0 (pbk.)
 1. Java (Computer program language) 2. Electronic data processing. I. Title.
 QA76.73.J38H6754 2010
 005.13'3--dc22
 2009042603
ISBN 978-0-470-50947-0

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.copyright.com
www.wiley.com/go/returnlabel
www.wiley.com/go/permissions

PREFACE

vii

This book is an introductory text in computer science, focusing on the principles of
programming and software engineering. Here are its key features:

• Teach objects gradually.

In Chapter 2, students learn how to use objects and classes from the standard
library. Chapter 3 shows the mechanics of implementing classes from a given
specification. Students then use simple objects as they master branches, loops, and
arrays. Object-oriented design starts in Chapter 8. This gradual approach allows
students to use objects throughout their study of the core algorithmic topics,
without teaching bad habits that must be un-learned later.

• Reinforce sound engineering practices.

A focus on test-driven development encourages students to test their programs
systematically. A multitude of useful tips on software quality and common errors
encourage the development of good programming habits.

• Help students with guidance and worked examples.

Beginning programmers often ask “How do I start? Now what do I do?” Of
course, an activity as complex as programming cannot be reduced to cookbook-
style instructions. However, step-by-step guidance is immensely helpful for
building confidence and providing an outline for the task at hand. The book con-
tains a large number of “How To” guides for common tasks, with pointers to
additional worked examples on the Web.

• Focus on the essentials while being technically accurate.

An encyclopedic coverage is not helpful for a beginning programmer, but neither
is the opposite—reducing the material to a list of simplistic bullet points that give
an illusion of knowledge. In this book, the essentials of each subject are presented
in digestible chunks, with separate notes that go deeper into good practices or lan-
guage features when the reader is ready for the additional information.

• Use standard Java.

The book teaches the standard Java language—not a specialized “training
wheels” environment. The Java language, library, and tools are presented at a
depth that is sufficient to solve real-world programming problems.

• Provide an optional graphics track.

Graphical shapes are splendid examples of objects. Many students enjoy writing
programs that create drawings or use graphical user interfaces. If desired, these
topics can be integrated into the course by using the materials at the end of
Chapters 2, 3, 9, and 10.

viii Preface

This is the fourth edition of Big Java, and the book has once again been carefully
revised and updated. The new and improved features include:

• The How To sections have been updated and expanded, and four new ones have
been added. Fifteen new Worked Examples (on the companion web site and in
WileyPLUS) walk students through the steps required for solving complex and
interesting problems.

• The treatment of algorithm design, planning, and the use of pseudocode has been
enhanced. Students learn to use pseudocode to define the solution algorithm in
Chapter 1.

• Chapters have been revised to focus each section on a specific learning objective.
These learning objectives also organize the chapter summary to help students
assess their progress.

• Syntax diagrams now call out features of typical example code to draw student
attention to the key elements of the syntax. Additional annotations point out
special cases, common errors, and good practice associated with the syntax.

• New example tables clearly present a variety of typical and special cases in a
compact format. Each example is accompanied by a brief note explaining the
usage shown and the values that result from it.

• The gradual introduction of objects has been further improved by providing
additional examples and insights in the early chapters.

• Features introduced in Java 7 are covered as Special Topics so that students can
prepare for them. In this edition, we use Java 5 or 6 for the main discussion.

• The test bank has been greatly expanded and improved. (See page xi.)

• A new set of lab assignments enables students to practice solving complex
problems one step at a time.

• The LabRat code evaluation feature, enhanced for this edition, gives students
instant feedback on their programming assignments. (See page xvi.)

New in This Edition

More Help for Beginning Programmers

Annotated Examples

Updated for Java 7

More Opportunities for Practice

Preface ix

The book can be naturally grouped into four parts, as illustrated by Figure 1. The
organization of chapters offers the same flexibility as the previous edition; depen-
dencies among the chapters are also shown in the figure.

Part A: Fundamentals (Chapters 1–7)

Chapter 1 contains a brief introduction to computer science and Java programming.
Chapter 2 shows how to manipulate objects of predefined classes. In Chapter 3,
you will build your own simple classes from given specifications.

Fundamental data types, branches, loops, and arrays are covered in Chapters 4–7.

Part B: Object-Oriented Design (Chapters 8–12)

Chapter 8 takes up the subject of class design in a systematic fashion, and it intro-
duces a very simple subset of the UML notation.

The discussion of polymorphism and inheritance is split into two chapters. Chap-
ter 9 covers interfaces and polymorphism, whereas Chapter 10 covers inheritance.
Introducing interfaces before inheritance pays off in an important way: Students
immediately see polymorphism before getting bogged down with technical details
such as superclass construction.

Exception handling and basic file input/output are covered in Chapter 11. The
exception hierarchy gives a useful example for inheritance.

Chapter 12 contains an introduction to object-oriented design, including two
significant case studies.

Part C: Data Structures and Algorithms (Chapters 13–15)

Chapters 13 through 15 contain an introduction to algorithms and basic data struc-
tures, covering recursion, sorting and searching, and linked lists, stacks, and queues.
These topics can be covered as desired after Chapter 7 (see Figure 1).

Recursion is introduced from an object-oriented point of view: An object that
solves a problem recursively constructs another object of the same class that solves
a simpler problem. The idea of having the other object do the simpler job is more
intuitive than having a function call itself.

Chapter 14 covers the fundamental sorting algorithms and gives a gentle intro-
duction to big-Oh analysis. Chapter 15 introduces linked lists, stacks, and queues,
both as abstract data types and as they appear in the standard Java library.

Part D: Advanced Topics (Chapters 16–18)

Chapter 16 covers advanced data structures: hash tables, binary search trees, and
heaps. Chapter 17 introduces Java generics. This chapter is suitable for advanced
students who want to implement their own generic classes and methods. Chapter 18
completes the graphics track coverage of user interfaces with a discussion of layout
management and Swing components. These chapters are available on the Web at
www.wiley.com/college/horstmann, or in the WileyPLUS course for this book.

A Tour of the Book

www.wiley.com/college/horstmann

x Preface

Figure 1 Chapter Dependencies

4. Fundamental
Data Types

5. Decisions

9. Interfaces and
Polymorphism

10. Inheritance

11. Input/Output
and Exception

Handling

12. Object-
Oriented Design

13. Recursion

14. Sorting
and Searching

15. Intro to
Data Structures

16. Advanced
Data Structures

7. Arrrays and
Array Lists

6. Iteration

8. Designing
Classes

17. Generic
Programming

3. Implementing
Classes

1. Introduction

2. Using Objects

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

Advanced Topics

WileyPLUS / Web

18. Graphical
User Interfaces

Preface xi

Appendices

Appendix A lists character escape sequences and the Basic Latin and Latin-1 subsets
of Unicode. Appendices B and C summarize Java reserved words and operators.
Appendix D documents all of the library methods and classes used in this book.

In addition, Appendices E–L are available on the Web and contain quick refer-
ences on Java syntax, HTML, Java tools, binary numbers, and UML.

Appendix L contains a style guide for use with this book. Many instructors find
it highly beneficial to require a consistent style for all assignments. If this style
guide conflicts with instructor sentiment or local customs, however, it is available in
electronic form so that it can be modified.

Web Resources

This book is complemented by a complete suite of online resources and a robust
WileyPLUS course.

Go to www.wiley.com/college/horstmann to visit the online companion site, which
includes

• Source code for all examples in the book.
• Worked Examples that apply the problem-solving steps in the book to other

realistic examples.
• Laboratory exercises (and solutions for instructors only).
• Lecture presentation slides (in HTML and PowerPoint formats).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only).

WileyPLUS is an online teaching and learning environment that integrates the
digital textbook with instructor and student resources. See page xvi for details.

Pointers in the book
describe what students
will find on the Web.

• Worked Example How Many Days Have You Been Alive?
• Worked Example Working with Pictures
• Lab Exercises

Animation Variable Initialization and Assignment
Animation Parameter Passing
Animation Object References
Practice Quiz
Code Completion Exercises

Media Resources

www.wiley.com/
college/
horstmann

Web resources are summarized at
chapter end for easy reference.

Enumeration Types

Special Topic 5.3 introduces enumeration types—types that an hold one of a finite number of
values. An example of an enumeration type is a type FilingStatus with values SINGLE and
MARRIED. This is safer than using integer values, as we did in the TaxReturn class.

Special Topic 5.3

Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying tile in
an alternating pattern of colors.

Worked
Example 1.1

www.wiley.com/college/horstmann

xii Walkthrough

The pedagogical elements in this book work together to make the book accessible
to beginners as well as those learning Java as a second language.

A Walkthrough of the Learning Aids

2.3 The Assignment Operator 39

You can change the value of a variable with the assignment operator (=). For exam-
ple, consider the variable declaration

int width = 10;

If you want to change the value of the variable, simply assign the new value:
width = 20;

The assignment replaces the original value of the variable (see Figure 1).

It is an error to use a variable that has never had a value assigned to it. For exam-
ple, the following assignment statement has an error:

int height;
width = height; // ERROR—uninitialized variable height

The compiler will complain about an “uninitialized variable” when you use a vari-
able that has never been assigned a value. (See Figure 2.)

2.3 The Assignment Operator
Use the assignment
operator (=) to
change the value
of a variable. 1

2

Figure 1
Assigning a New
Value to a Variable

width = 10

width = 20

1

2

Figure 2
An Uninitialized
Variable

Syntax 2.2 Assignment

height =
No value has been assigned.

variableName = value;Syntax

Example
double width = 20;
 .
 .
width = 30;

 .
 .
 .
width = width + 10;

The value of this variable is changed.

The same name

can occur on both sides.

See Figure 3.

The new value of the variable

This is a variable declaration.
This is an assignment statement.

Annotations explain
required components
and point to more information
on common errors or best practices
associated with the syntax.

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Explain the flow of execution in a loop.

• A while statement executes a block of code repeatedly. A condition controls for how
long the loop is executed.

• An off-by-one error is a common error when programming loops. Think through
simple test cases to avoid this type of error.

Use for loops to implement counting loops.

• You use a for loop when a variable runs from a starting to an ending value with a
constant increment or decrement.

• Make a choice between symmetric and asymmetric loop bounds.
• Count the number of iterations to check that your for loop is correct.

Implement loops that process a data set until a sentinel value is encountered.

• Sometimes, the termination condition of a loop can only be evaluated in the middle
of a loop. You can introduce a Boolean variable to control such a loop.

Use nested loops to implement multiple levels of iterations.

• When the body of a loop contains another loop, the loops are nested. A typical use
of nested loops is printing a table with rows and columns.

Summary of Learning Objectives

Each section corresponds to a
learning objective, summarized at
chapter end, giving students
a roadmap for assessing what they
know and what they need to review.

Walkthrough xiii

180 Decisions

Table 1 Relational Operator Examples

tnemmoCeulaVnoisserpxE

eurt4 =< 3 3 is less than 4; <= tests for “less than or equal”.

3 =< 4 Error The “less than or equal” operator is <=, not =<,
with the “less than” symbol first.

eslaf4 > 3 > is the opposite of <=.

eslaf4 < 4 The left-hand side must be strictly smaller than
the right-hand side.

eurt4 =< 4 Both sides are equal; <= tests for “less than or equal”.

eurt2 - 5 == 3 == tests for equality.

eurt1 - 5 =! 3 != tests for inequality. It is true that 3 is not 5 – 1.

3 = 6 / 2 Error Use == to test for equality.

1.0 / 3.0 == 0.333333333 false Although the values are very close to one
another, they are not exactly equal. See
Common Error 4.3.

"10" > 5 Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks
whether the strings are stored in the same
location. See Common Error 5.2 on page 180.

"Tom".equalsIgnoreCase("TOM") true Use the equalsIgnoreCase method if you don’t want to
distinguish between uppercase and lowercase letters.

We simply want to know which car is the better buy. That is the desired output.

Step 2 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation sepa-
rately for each car. Once we have the total cost for each car, we can decide which car is the
better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy.

For each car, compute the total cost as follows:

annual fuel consumed = annual miles driven / fuel efficiency

annual fuel cost = price per gallon x annual fuel consumed

operating cost = 10 x annual fuel cost

total cost = purchase price + operating cost

If total cost1 < total cost2

Choose car1.

Else

Choose car2.

HOW TO 1.1 Developing and Describing an Algorithm

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of buying two cars. One is more
fuel efficient than the other, but also more expensive. You know the price and fuel efficiency
(in miles per gallon, mpg) of both cars. You plan to keep the car for ten years. Assume a price
of $4 per gallon of gas and usage of 15,000 miles per year. You will pay cash for the car and
not worry about financing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car.
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples apply the steps in
the How To to a different example,
illustrating how they can be used to
plan, implement, and test a solution
to another programming problem.

Credit Card Processing

This Worked Example uses a loop to remove spaces from a credit
card number.

Worked
Example 6.1

Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying tile in
an alternating pattern of colors.

Worked
Example 1.1

xiv Walkthrough

Now consider the seemingly analogous code with Rectangle objects (see
Figure 21).

Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Since box and box2 refer to the same rectangle after step , both variables refer to
the moved rectangle after the call to the translate method.

You need not worry too much about the difference between objects and object
references. Much of the time, you will have the correct intuition when you think of
“the object box” rather than the technically more accurate “the object reference
stored in box”. The difference between objects and object references only becomes
apparent when you have multiple variables that refer to the same object.

25. What is the effect of the assignment String greeting2 = greeting?
26. After calling greeting2.toUpperCase(), what are the contents of greeting and

greeting2?

Figure 21 Copying Object References

box =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

g

30

box =

box2 =
x =

Rectangle

y =

width =

height =

20

35

20

g

30

box =

x =

Rectangle

y =

width =

height =

5

10

20

g

30

1

2

3

1
2

3A N I M AT I O N
Object References

2

S E L F C H E C K

6.2 for Loops 205

ch06/invest2/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int years;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 years = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
off by a subtle outline.

4. What is the difference between the following two statements?
final double CM_PER_INCH = 2.54;

and
public static final double CM_PER_INCH = 2.54;

5. What is wrong with the following statement sequence?
double diameter = . . .;
double circumference = 3.14 * diameter;

S E L F C H E C K

Figure 4 Execution of a for Loop

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Initialize counter1

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check condition2

for (int i = 1; i <= numberOfYears; i++)
{

double interest = balance * rate / 100;
 balance = balance + interest;
}

Execute loop body3

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Update counter4

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check condition again5

i = 1

i = 1

i = 1

i = 2

i = 2

Progressive figures trace code
segments to help students visualize
the program flow. Color is used
consistently to make variables and
other elements easily recognizable.

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Students can view animations
of key concepts on the Web.

Walkthrough xv

Length and Size

Unfortunately, the Java syntax for determining
the number of elements in an array, an array list,
and a string is not at all consistent. It is a com-
mon error to confuse these. You just have to
remember the correct syntax for every data type.

Common Error 7.3

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

;

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example, consider the following scary example that actually occurs in the Java library source:

h = 31 * h + ch;

Why 31? The number of days in January? One less than the number of bits in an integer?
Actually, this code computes a “hash code” from a string—a number that is derived from the
characters in such a way that different strings are likely to yield different hash codes. The
value 31 turns out to scramble the character values nicely.

A better solution is to use a named constant:

final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

You should never use magic numbers in your code. Any number that is not completely self-
explanatory should be declared as a named constant. Even the most reasonable cosmic con-
stant is going to change one day. You think there are 365 days in a year? Your customers on
Mars are going to be pretty unhappy about your silly prejudice. Make a constant

final int DAYS_PER_YEAR = 365;

By the way, the device

final int THREE_HUNDRED_AND_SIXTY_FIVE = 365;

In the following sections, you will learn how to carry out arithmetic calculations in
Java.

Quality Tip 4.1

Arithmetic Operations and
Hand-Tracing Loops

In Programming Tip 5.2, you learned about the method of hand tracing. This method is par-
ticularly effective for understanding how a loop works.

Consider this example loop. What value is displayed?

int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

1. There are three variables: n, sum, and digit. The first two variables are initialized with
1729 and 0 before the loop is entered.

2. Because n is positive, enter the loop.
3. The variable digit is set to 9 (the remainder of dividing 1729 by 10). The variable sum is

set to 0 + 9 = 9. Finally, n becomes 172. (Recall that the remainder in the division 1729 /
10 is discarded because both arguments are integers.). Cross out the old values and
write the new ones under the old ones.

Productivity Hint 6.1

1

2

3 4 5 6

7

n sum digit

 1729 0

n sum digit

 1729 0

172 9 9

ArrayList Syntax Enhancements in Java 7

Java 7 introduces several convenient syntax enhancements for array lists.
When you declare and construct an array list, you need not repeat the type parameter in

the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

Special Topic 7.2

The First Bug

According to legend, the first bug was one found in 1947 in the Mark II, a huge electro-
mechanical computer at Harvard University. It really was caused by a bug—a moth was
trapped in a relay switch. Actually, from the note that the operator left in the log book next
to the moth (see the figure), it appears as if the term “bug” had already been in active use at
the time.

The pioneering computer scientist Maurice Wilkes wrote: “Somehow, at the Moore
School and afterwards, one had always assumed there would be no particular difficulty in
getting programs right. I can remember the exact instant in time at which it dawned on me

The First Bug

Random Fact 6.1

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Quality Tips explain good
programming practices.
These notes carefully
motivate the reason behind
the advice, and explain why
the effort will be repaid later.

Productivity Hints teach students how to
use their time and tools more effectively.
They encourage students to be more
productive with tips and techniques
such as hand-tracing.

Special Topics present optional
topics and provide additional
explanation of others. New
features of Java 7 are also
covered in these notes.

Random Facts provide historical and
social information on computing—for
interest and to fulfill the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

xvi Walkthrough

WileyPLUS is an online environment that supports students and instructors. This
book’s WileyPLUS course can complement the printed text or replace it altogether.

For Students Different learning styles, different levels of proficiency, different levels of prepara-
tion—each student is unique. WileyPLUS empowers all students to take advantage
of their individual strengths.

Integrated, multi-media resources—including audio and visual exhibits and demon-
stration problems—encourage active learning and provide multiple study paths to
fit each student’s learning preferences.

• Worked Examples apply the problem-solving steps in the book to another realis-
tic example.

• Screencast Videos present the author explaining the steps he is taking and show-
ing his work as he solves a programming problem.

• Animations of key concepts allow students to replay dynamic explanations that
instructors usually provide on a whiteboard.

Self-assessments are linked to relevant portions of the text. Students can take con-
trol of their own learning and practice until they master the material.

• Practice quizzes can reveal areas where students need to focus.
• Lab exercises can be assigned for self-study or for use in the lab.
• “Code completion” questions enable students to practice programming skills by

filling in small code snippets and getting immediate feedback.
• LabRat provides instant feedback on student solutions to all programming exer-

cises in the book.

For Instructors WileyPLUS includes all of the instructor resources found on the companion site,
and more.

WileyPLUS gives you tools for identifying those students who are falling behind,
allowing you to intervene accordingly, without having to wait for them to come to
office hours.

• Practice quizzes for pre-reading assessment, self-quizzing, or additional practice
can be used as-is or modified for your course needs.

• Multi-step laboratory exercises can be used in lab or assigned for extra student
practice.

WileyPLUS simplifies and automates student performance assessment, making
assignments, and scoring student work.

• An extensive set of multiple-choice questions for quizzing and testing have been
developed to focus on skills, not just terminology.

• “Code completion” questions can also be added to online quizzes.
• LabRat can track student work on all programming exercises in the book, adding

the student solution and a record of completion to the gradebook.
• Solutions to all review and programming exercises are provided..

WileyPLUS

Walkthrough xvii

Students can read the book online
and take advantage of searching
and cross-linking.

With WileyPLUS …

Students can practice programming
by filling in small code snippets
and getting immediate feedback.

Instructors can assign drill-and-practice
questions to check that students did
their reading and grasp basic concepts.

Students can play and replay
dynamic explanations of
concepts and program flow.

Students can check that their programming
assignments fulfill the specifications.

To order Java Concepts with its WileyPLUS course for your students, use ISBN 978-0-470-57878-0.

xviii Acknowledgments

Many thanks to Beth Golub, Lauren Sapira, Andre Legaspi, Don Fowley, Mike
Berlin, Janet Foxman, Lisa Gee, and Bud Peters at John Wiley & Sons, and Vickie
Piercey at Publishing Services for their help with this project. An especially deep
acknowledgment and thanks goes to Cindy Johnson for her hard work, sound
judgment, and amazing attention to detail.

I am grateful to Suzanne Dietrich, Rick Giles, Kathy Liszka, Stephanie Smullen,
Julius Dichter, Patricia McDermott-Wells, and David Woolbright, for their work
on the supplemental material.

Many thanks to the individuals who reviewed the manuscript for this edition,
made valuable suggestions, and brought an embarrassingly large number of errors
and omissions to my attention. They include:

Ian Barland, Radford University
Rick Birney, Arizona State University
Paul Bladek, Edmonds Community College
Robert P. Burton, Brigham Young University
Teresa Cole, Boise State University
Geoffrey Decker, Northern Illinois University
Eman El-Sheikh, University of West Florida
David Freer, Miami Dade College
Ahmad Ghafarian, North Georgia College & State University
Norman Jacobson, University of California, Irvine
Mugdha Khaladkar, New Jersey Institute of Technology
Hong Lin, University of Houston, Downtown
Jeanna Matthews, Clarkson University
Sandeep R. Mitra, State University of New York, Brockport
Parviz Partow-Navid, California State University, Los Angeles
Jim Perry, Ulster County Community College
Kai Qian, Southern Polytechnic State University
Cyndi Rader, Colorado School of Mines
Chaman Lal Sabharwal, Missouri University of Science and Technology
John Santore, Bridgewater State College
Stephanie Smullen, University of Tennessee, Chattanooga
Monica Sweat, Georgia Institute of Technology
Shannon Tauro, University of California, Irvine
Russell Tessier, University of Massachusetts, Amherst
Jonathan L. Tolstedt, North Dakota State University
David Vineyard, Kettering University
Lea Wittie, Bucknell University

Acknowledgments

Acknowledgments xix

Every new edition builds on the suggestions and experiences of prior reviewers and
users. I am grateful for the invaluable contributions these individuals have made to
this book:

Tim Andersen, Boise State University
Ivan Bajic, San Diego State University
Ted Bangay, Sheridan Institute of Technology
George Basham, Franklin University
Sambit Bhattacharya, Fayetteville State University
Joseph Bowbeer, Vizrea Corporation
Timothy A. Budd, Oregon State University
Frank Butt, IBM
Jerry Cain, Stanford University
Adam Cannon, Columbia University
Nancy Chase, Gonzaga University
Archana Chidanandan, Rose-Hulman Institute

of Technology
Vincent Cicirello, The Richard Stockton College

of New Jersey
Deborah Coleman, Rochester Institute

of Technology
Valentino Crespi, California State University,

Los Angeles
Jim Cross, Auburn University
Russell Deaton, University of Arkansas
H. E. Dunsmore, Purdue University
Robert Duvall, Duke University
Henry A. Etlinger, Rochester Institute

of Technology
John Fendrich, Bradley University
John Fulton, Franklin University
David Geary, Sabreware, Inc.
Margaret Geroch, Wheeling Jesuit University
Rick Giles, Acadia University
Stacey Grasso, College of San Mateo
Jianchao Han, California State University,

Dominguez Hills
Lisa Hansen, Western New England College
Elliotte Harold
Eileen Head, Binghamton University
Cecily Heiner, University of Utah
Brian Howard, Depauw University
Lubomir Ivanov, Iona College
Curt Jones, Bloomsburg University
Aaron Keen, California Polytechnic State

University, San Luis Obispo

Elliot Koffman, Temple University
Kathy Liszka, University of Akron
Hunter Lloyd, Montana State University
Youmin Lu, Bloomsburg University
John S. Mallozzi, Iona College
John Martin, North Dakota State University
Scott McElfresh, Carnegie Mellon University
Joan McGrory, Christian Brothers University
Carolyn Miller, North Carolina State University
Teng Moh, San Jose State University
John Moore, The Citadel
Faye Navabi, Arizona State University
Kevin O’Gorman, California Polytechnic State

University, San Luis Obispo
Michael Olan, Richard Stockton College
Kevin Parker, Idaho State University
Cornel Pokorny, California Polytechnic State

University, San Luis Obispo
Roger Priebe, University of Texas, Austin
C. Robert Putnam, California State University,

Northridge
Neil Rankin, Worcester Polytechnic Institute
Brad Rippe, Fullerton College
Pedro I. Rivera Vega, University of Puerto Rico,

Mayaguez
Daniel Rogers, SUNY Brockport
Carolyn Schauble, Colorado State University
Christian Shin, SUNY Geneseo
Jeffrey Six, University of Delaware
Don Slater, Carnegie Mellon University
Ken Slonneger, University of Iowa
Peter Stanchev, Kettering University
Ron Taylor, Wright State University
Joseph Vybihal, McGill University
Xiaoming Wei, Iona College
Todd Whittaker, Franklin University
Robert Willhoft, Roberts Wesleyan College
David Womack, University of Texas at

San Antonio
Catherine Wyman, DeVry University
Arthur Yanushka, Christian Brothers University
Salih Yurttas, Texas A&M University

This page intentionally left blank

CONTENTS

xxi

PREFACE vii

SPECIAL FEATURES xxviii

1.1 What Is Programming? 2

1.2 The Anatomy of a Computer 3

1.3 Translating Human-Readable Programs to Machine Code 7

1.4 The Java Programming Language 8

1.5 The Structure of a Simple Program 10

1.6 Compiling and Running a Java Program 14

1.7 Errors 17

1.8 Algorithms 19

2.1 Types 32

2.2 Variables 34

2.3 The Assignment Operator 37

2.4 Objects, Classes, and Methods 39

2.5 Method Parameters and Return Values 41

2.6 Constructing Objects 44

2.7 Accessor and Mutator Methods 46

2.8 The API Documentation 47

2.9T Implementing a Test Program 50

2.10 Object References 52

2.11G Graphical Applications and Frame Windows 54

2.12G Drawing on a Component 56

2.13G Ellipses, Lines, Text, and Color 59

3.1 Instance Variables 74

3.2 Encapsulation 76

3.3 Specifying the Public Interface of a Class 77

3.4 Commenting the Public Interface 81

3.5 Providing the Class Implementation 84

3.6T Unit Testing 90

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 USING OBJECTS 31

CHAPTER 3 IMPLEMENTING CLASSES 73

xxii Contents

3.7 Local Variables 92

3.8 Implicit Parameters 94

3.9G Shape Classes 96

4.1 Number Types 116

4.2 Constants 118

4.3 Arithmetic Operations and Mathematical Functions 123

4.4 Calling Static Methods 131

4.5 Strings 134

4.6 Reading Input 138

5.1 The if Statement 152

5.2 Comparing Values 156

5.3 Multiple Alternatives 165

5.4 Using Boolean Expressions 173

5.5T Code Coverage 178

6.1 while Loops 194

6.2 for Loops 201

6.3 Common Loop Algorithms 210

6.4 Nested Loops 218

6.5 Application: Random Numbers and Simulations 221

6.6T Using a Debugger 223

7.1 Arrays 242

7.2 Array Lists 248

7.3 Wrappers and Auto-boxing 254

7.4 The Enhanced for Loop 255

7.5 Partially Filled Arrays 257

7.6 Common Array Algorithms 259

7.7T Regression Testing 271

7.8 Two-Dimensional Arrays 274

CHAPTER 4 FUNDAMENTAL DATA TYPES 115

CHAPTER 5 DECISIONS 151

CHAPTER 6 ITERATION 193

CHAPTER 7 ARRAYS AND ARRAY LISTS 241

Contents xxiii

8.1 Discovering Classes 290

8.2 Cohesion and Coupling 291

8.3 Immutable Classes 294

8.4 Side Effects 295

8.5 Preconditions and Postconditions 299

8.6 Static Methods 302

8.7 Static Variables 304

8.8 Scope 307

8.9 Packages 310

8.10T Unit Test Frameworks 316

9.1 Using Interfaces for Algorithm Reuse 330

9.2 Converting Between Class and Interface Types 336

9.3 Polymorphism 338

9.4 Using Interfaces for Callbacks 339

9.5 Inner Classes 343

9.6T Mock Objects 345

9.7G Events, Event Sources, and Event Listeners 347

9.8G Using Inner Classes for Listeners 350

9.9G Building Applications with Buttons 352

9.10G Processing Timer Events

9.11G Mouse Events

10.1 Inheritance Hierarchies 368

10.2 Implementing Subclasses 371

10.3 Overriding Methods 375

10.4 Subclass Construction 378

10.5 Converting Between Subclass and Superclass Types 381

10.6 Polymorphism and Inheritance 383

10.7 Object: The Cosmic Superclass 391

10.8G Using Inheritance to Customize Frames 397

CHAPTER 8 DESIGNING CLASSES 289

CHAPTER 9 INTERFACES AND POLYMORPHISM 329

CHAPTER 10 INHERITANCE 367

xxiv Contents

11.1 Reading and Writing Text Files 408

11.2 Reading Text Input 411

11.3 Throwing Exceptions 419

11.4 Checked and Unchecked Exceptions 421

11.5 Catching Exceptions 423

11.6 The finally Clause 426

11.7 Designing Your Own Exception Types 428

11.8 Case Study: A Complete Example 429

12.1 The Software Life Cycle 442

12.2 Discovering Classes 446

12.3 Relationships Between Classes 449

12.4 Case Study: Printing an Invoice 452

12.5 Case Study: An Automatic Teller Machine 463

13.1 Triangle Numbers 492

13.2 Recursive Helper Methods 500

13.3 The Efficiency of Recursion 502

13.4 Permutations 507

13.5 Mutual Recursions 510

14.1 Selection Sort 526

14.2 Profiling the Selection Sort Algorithm 529

14.3 Analyzing the Performance of the Selection Sort Algorithm 532

14.4 Merge Sort 534

14.5 Analyzing the Merge Sort Algorithm 537

14.6 Searching 540

14.7 Binary Search 542

14.8 Sorting Real Data 545

CHAPTER 11 INPUT/OUTPUT AND EXCEPTION HANDLING 407

CHAPTER 12 OBJECT-ORIENTED DESIGN 441

CHAPTER 13 RECURSION 491

CHAPTER 14 SORTING AND SEARCHING 525

Contents xxv

15.1 Using Linked Lists 556

15.2 Implementing Linked Lists 561

15.3 Abstract Data Types 572

15.4 Stacks and Queues 575

16.1 Sets 666

16.2 Maps 670

16.3 Hash Tables 674

16.4 Computing Hash Codes 681

16.5 Binary Search Trees 686

16.6 Binary Tree Traversal 696

16.7 Priority Queues 698

16.8 Heaps 699

16.9 The Heapsort Algorithm 709

17.1 Generic Classes and Type Parameters 724

17.2 Implementing Generic Types 725

17.3 Generic Methods 728

17.4 Constraining Type Parameters 730

17.5 Type Erasure 732

18.1G Processing Text Input 740

18.2G Text Areas 743

18.3G Layout Management 746

18.4G Choices 748

18.5G Menus 758

18.6G Exploring the Swing Documentation 764

CHAPTER 15 AN INTRODUCTION TO DATA STRUCTURES 555

CHAPTER 16 ADVANCED DATA STRUCTURES (ADVANCED)

CHAPTER 17 GENERIC PROGRAMMING (ADVANCED)

CHAPTER 18 GRAPHICAL USER INTERFACES (ADVANCED)

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

xxvi Contents

APPENDIX A THE BASIC LATIN AND LATIN-1 SUBSETS OF UNICODE 589

APPENDIX B JAVA OPERATOR SUMMARY 593

APPENDIX C JAVA RESERVED WORD SUMMARY 595

APPENDIX D THE JAVA LIBRARY 597

APPENDIX E JAVA SYNTAX SUMMARY

APPENDIX F HTML SUMMARY

APPENDIX G TOOL SUMMARY

APPENDIX H JAVADOC SUMMARY

APPENDIX I NUMBER SYSTEMS

APPENDIX J BIT AND SHIFT OPERATIONS

APPENDIX K UML SUMMARY

APPENDIX L JAVA LANGUAGE CODING GUIDELINES

GLOSSARY 629

INDEX 643

ILLUSTRATION CREDITS 665

APPENDICES

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Contents xxvii

Arrays 245
Array Lists 250
Assertion 301
Assignment 37

Calling a Superclass Constructor 379
Calling a Superclass Method 376
Cast 127
Catching Exceptions 424
Class Declaration 80
Comparisons 158
Constant Declaration 119

Declaring a Generic Class
Declaring a Generic Method
Declaring an Enumeration Type
Declaring an Interface 332

Implementing an Interface 333
Importing a Class from a Package 49
Inheritance 372
Instance Variable Declaration 75

Method Call 12
Method Declaration 86

Object Construction 45

Package Specification 310

Static Method Call 131

The finally Clause 427
The “for each” Loop 256
The for Statement 204
The if Statement 154
The instanceof Operator 382
The throws Clause 423
The while Statement 194
Throwing an Exception 419

Variable Declaration 35

ALPHABETICAL LIST OF SYNTAX BOXES

xxviii Special Features

Chapter Common
Errors

How Tos
and Worked
Examples

Quality Tips

1 Introduction Omitting Semicolons 13
Misspelling Words 19

Developing and Describing
an Algorithm 22

Writing an Algorithm for
Tiling a Floor

2 Using Objects Confusing Variable
Declaration and Assign-
ment Statements 38

Trying to Invoke a
Constructor Like
a Method 45

How Many Days Have
You Been Alive?

Working with Pictures

Choose Descriptive
Names for Variables 36

3 Implementing
Classes

Declaring a Constructor
as void 81

Forgetting to Initialize
Object References
in a Constructor 93

Implementing a Class 88
Making a Simple Menu
Drawing Graphical

Shapes 100

4 Fundamental
Data Types

Integer Division 128
Unbalanced

Parentheses 128
Roundoff Errors 130

Carrying Out
Computations 132

Computing the Volume
and Surface Area of
a Pyramid

Extracting Initials

Do Not Use Magic
Numbers 122

White Space 129
Factor Out

Common Code 129

5 Decisions A Semicolon After the
if Condition 156

Using == to Compare
Strings 160

The Dangling else
Problem 170

Multiple Relational
Operators 176

Confusing && and ||
Conditions 176

Implementing an if
Statement 163

Extracting the Middle

Brace Layout 154
Avoid Conditions with

Side Effects 162
Calculate Sample Data

Manually 179
Prepare Test Cases

Ahead of Time 179

6 Iteration Infinite Loops 200
Off-by-One Errors 200
Forgetting a

Semicolon 207
A Semicolon Too

Many 207

Writing a Loop 215
Credit Card Processing
Manipulating the Pixels

in an Image
Debugging 226
A Sample Debugging

Session

Use for Loops for Their
Intended Purpose 206

Don’t Use != to Test
the End of a Range 208

Symmetric and
Asymmetric Bounds 208

Count Iterations 209

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

Special Features xxix

Productivity
Hints

Special
Topics Random Facts

Understand the File System 16
Have a Backup Strategy

Alternative Comment Syntax 13 The ENIAC and the Dawn
of Computing

Don’t Memorize—Use
Online Help 49

Testing Classes in an Interactive
Environment

Applets

Mainframes—When Dinosaurs
Ruled the Earth

The Evolution of the Internet

The javadoc Utility 84 Calling One Constructor
from Another

Electronic Voting Machines
Computer Graphics

Reading Exception
Reports 137

Big Numbers
Binary Numbers
Combining Assignment

and Arithmetic
Escape Sequences
Strings and the char Type
Formatting Numbers
Using Dialog Boxes for

Input and Output

The Pentium Floating-Point
Bug

International Alphabets

Indentation and Tabs 155
Hand-Tracing 171
Make a Schedule and Make

Time for Unexpected
Problems 172

The Conditional Operator
The switch Statement
Enumeration Types
Lazy Evaluation of Boolean

Operators
De Morgan’s Law
Logging 180

Artificial Intelligence

Hand-Tracing Loops 198 do Loops
Variables Declared

in a for Loop Header
The “Loop and a Half”

Problem
The break and continue

Statements
Loop Invariants

The First Bug 228

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

xxx Special Features

Chapter Common
Errors

How Tos
and Worked
Examples

Quality Tips

7 Arrays and
Array Lists

Bounds Errors 245
Uninitialized and

Unfilled Arrays 246
Length and Size 253
Underestimating the

Size of a Data Set 259

Working with Arrays
and Array Lists 306

Rolling the Dice
A World Population

Table

Use Arrays for Sequences
of Related Values 246

Make Parallel Arrays into
Arrays of Objects 246

8 Designing
Classes

Trying to Modify Primitive
Type Parameters 296

Shadowing 309
Confusing Dots 314

Programming with
Packages 315

Consistency 293
Minimize Side Effects 298
Don’t Change Contents of

Parameter Variables 298
Minimize the Use of

Static Methods 304
Minimize Variable

Scope 310

9 Interfaces and
Polymorphism

Forgetting to Declare
Implementing Methods
as Public 335

Trying to Instantiate
an Interface 337

Modifying Parameter Types
in the Implementing
Method 349

Forgetting to Attach
a Listener 355

By Default, Components
Have Zero Width
and Height 356

Forgetting to Repaint 356

Investigating Number
Sequences

10 Inheritance Confusing Super- and
Subclasses 373

Shadowing Instance
Variables 374

Accidental
Overloading 377

Failing to Invoke the
Superclass Method 378

Overriding Methods to
Be Less Accessible 385

Declaring the equals
Method with the Wrong
Parameter Type 395

Developing an Inheritance
Hierarchy 386

Implementing an Employee
Hierarchy for Payroll
Processing

Supply toString in
All Classes 395

Clone Mutable Instance
Variables in Accessor
Methods

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

Special Features xxxi

Productivity
Hints

Special
Topics Random Facts

Easy Printing of Arrays and
Array Lists 268

Batch Files and Shell Scripts

Methods with a Variable
Number of Parameters

ArrayList Syntax Enhancements
in Java 7 253

Two-Dimensional Arrays
with Variable Row Lengths

Multidimensional Arrays

An Early Internet Worm
The Therac-25 Incidents

Call by Value and Call by
Reference

Class Invariants
Static Imports
Alternative Forms of

Instance and Static
Variable Initialization

Package Access 314

The Explosive Growth of
Personal Computers

Don’t Use a Container
as a Listener 355

Constants in Interfaces 335
Anonymous Classes
Event Adapters

Operating Systems
Programming Languages

Abstract Classes
Final Methods and Classes
Protected Access
Inheritance and the
toString Method

Inheritance and the
equals Method

Implementing the
clone Method

Enumeration Types Revisited
Adding the main Method to

the Frame Class 398

Scripting Languages

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

xxxii Special Features

Chapter Common
Errors

How Tos
and Worked
Examples

Quality Tips

11 Input/Output
and Exception
Handling

Backslashes in
File Names 410

Constructing a Scanner
with a String 410

Processing Text Files 416
Analyzing Baby Names

Throw Early,
Catch Late 425

Do Not Squelch
Exceptions 425

Do Not Use catch and
finally in the Same
try Statement 427

Do Throw Specific
Exceptions 429

12 Object-
Oriented
Design

CRC Cards and UML
Diagrams 451

13 Recursion Infinite Recursion 495
Tracing Through

Recursive Methods 496

Thinking Recursively 497
Finding Files

14 Sorting and
Searching

The compareTo Method
Can Return Any
Integer, Not Just
–1, 0, and 1 546

15 An Introduc-
tion to Data
Structures

A Reverse Polish Notation
Calculator

16 Advanced
Data
Structures
(Advanced)

Forgetting to
Provide hashCode

Choosing a Container
Word Frequency

Use Interface References
to Manipulate Data
Structures

17 Generic
Programming

Genericity and
Inheritance

Using Generic Types
in a Static Context

18 Graphical User
Interfaces
(Advanced)

Laying Out a User
Interface

Implementing a Graphical
User Interface (GUI)

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

Special Features xxxiii

Productivity
Hints

Special
Topics Random Facts

Regular Expressions 415 File Dialog Boxes
Reading Web Pages 411
Command Line Arguments
Automatic Resource

Management in Java 7 428

The Ariane Rocket Incident

Attributes and Methods in
UML Diagrams

Multiplicities
Aggregation and Association

Programmer Productivity
Software Development—

Art or Science?

The Limits of Computation

Insertion Sort
Oh, Omega, and Theta
The Quicksort Algorithm
The Parameterized
Comparable Interface 547

The Comparator Interface

The First Programmer

The Iterable Interface
and the “For Each” Loop

Static Inner Classes

Standardization
Reverse Polish Notation 578

Enhancements to Collection
Classes in Java 7

Software Piracy

Wildcard Types

Use a GUI Builder

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

This page intentionally left blank

1

Chapter1
Introduction

CHAPTER GOALS
• To understand the activity of programming

• To learn about the architecture of computers

• To learn about machine code and high-level
programming languages

• To become familiar with the structure of simple
Java programs

• To compile and run your first Java program

• To recognize compile-time and run-time errors

• To write pseudocode for simple algorithms

The purpose of this chapter is to familiarize you with the concepts

of programming and program development. It reviews the architecture of a computer and discusses

the difference between machine code and high-level programming languages. You will see how to

compile and run your first Java program, and how to diagnose errors that may occur when a

program is compiled or executed. Finally, you will learn how to formulate simple algorithms using

pseudocode notation.

2

CHAPTER CONTENTS

You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as balancing a checkbook or writing a term paper. Comput-
ers are good for such tasks. They can handle repetitive chores, such as totaling up
numbers or placing words on a page, without getting bored or exhausted. Comput-
ers also make good game machines because they can play sequences of sounds and
pictures, involving the human user in the process.

The flexibility of a computer is quite an amazing phenomenon. The same
machine can balance your checkbook, print your term paper, and play a game. In
contrast, other machines carry out a much narrower range of tasks—a car drives
and a toaster toasts.

To achieve this flexibility, the computer must be programmed to perform each
task. A computer itself is a machine that stores data (numbers, words, pictures),
interacts with devices (the monitor screen, the sound system, the printer), and exe-
cutes programs. Programs are sequences of instructions and decisions that the com-
puter carries out to achieve a task. One program balances checkbooks; a different
program, perhaps designed and constructed by a different company, processes
words; and a third program, probably from yet another company, plays a game.

Today’s computer programs are so sophisticated that it is hard to believe that
they are all composed of extremely primitive instructions. A typical instruction
may be one of the following:

• Put a red dot onto this screen position.
• Get a number from this location in memory.
• Add up two numbers.
• If this value is negative, continue the program at that instruction.

A computer program tells a computer, in minute detail, the sequence of steps that
are needed to complete a task. A program contains a huge number of simple
instructions, and the computer executes them at great speed. The computer has no
intelligence—it simply executes instruction sequences that have been prepared in
advance.

1.1 What Is Programming?

A computer must be
programmed to
perform tasks.
Different tasks
require different
programs.

A computer program
executes a sequence
of very basic
instructions in
rapid succession.

A computer program
contains the
instruction
sequences for
all tasks that it
can execute.

1.1 What Is Programming? 2

1.2 The Anatomy of a Computer 3
RANDOM FACT 1.1: The ENIAC and the Dawn

of Computing

1.3 Translating Human-Readable Programs
to Machine Code 7

1.4 The Java Programming Language 8

1.5 The Structure of a Simple Program 10
SYNTAX 1.1: Method Call 12
COMMON ERROR 1.1: Omitting Semicolons 13
SPECIAL TOPIC 1.1: Alternative Comment Syntax 13

1.6 Compiling and Running a
Java Program 14

PRODUCTIVITY HINT 1.1: Understand the File System 16
PRODUCTIVITY HINT 1.2: Have a Backup Strategy

1.7 Errors 17
COMMON ERROR 1.2: Misspelling Words 19

1.8 Algorithms 19
HOW TO 1.1: Developing and Describing

an Algorithm 22
WORKED EXAMPLE 1.1: Writing an Algorithm for

Tiling a Floor

1.2 The Anatomy of a Computer 3

To use a computer, no knowledge of programming is required. When you write a
term paper with a word processor, that computer program has been developed by
the manufacturer and is ready for you to use. That is only to be expected—you can
drive a car without being a mechanic and toast bread without being an electrician.

A primary purpose of this book is to teach you how to design and implement
computer programs. You will learn how to formulate instructions for all tasks that
your programs need to execute.

Keep in mind that programming a sophisticated computer game or word proces-
sor requires a team of many highly skilled programmers, graphic artists, and other
professionals. Your first programming efforts will be more mundane. The concepts
and skills you learn in this book form an important foundation, but you should not
expect to immediately produce professional software. A typical college degree in
computer science or software engineering takes four years to complete; this book is
intended as a text for an introductory course in such a program.

Many students find that there is an immense thrill even in simple programming
tasks. It is an amazing experience to see the computer carry out a task precisely and
quickly that would take you hours of drudgery.

1. What is required to play a music CD on a computer?
2. Why is a CD player less flexible than a computer?
3. Can a computer program develop the initiative to execute tasks in a better way

than its programmers envisioned?

To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. This section will describe
a personal computer. Larger computers have faster, larger, or more powerful com-
ponents, but they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see
Figure 1). It consists of a single chip (integrated circuit) or a small number of chips.
A computer chip is a component with a plastic or metal housing, metal connectors,

S E L F C H E C K

1.2 The Anatomy of a Computer

At the heart of the
computer lies the
central processing
unit (CPU).

Figure 1
Central Processing Unit

4 Chapter 1 Introduction

and inside wiring made principally from silicon. For a CPU chip, the inside wiring
is enormously complicated. For example, the Intel Core processor (a popular CPU
for inexpensive laptops at the time of this writing) contains several hundred million
structural elements called transistors—the elements that enable electrical signals to
control other electrical signals, making automatic computing possible. The CPU
locates and executes the program instructions; it carries out arithmetic operations
such as addition, subtraction, multiplication, and division; and it fetches data from
storage and input/output devices and sends data back.

The computer keeps data and programs in storage. There are two kinds of stor-
age. Primary storage, also called random-access memory (RAM) or simply memory,
is fast but expensive; it is made from memory chips (see Figure 2). Primary storage
loses all its data when the power is turned off. Secondary storage, usually a hard disk
(see Figure 3), provides less expensive storage that persists without electricity. A
hard disk consists of rotating platters, which are coated with a magnetic material,
and read/write heads, which can detect and change the patterns of varying magnetic
flux on the platters.

Some computers are self-contained units, whereas others are interconnected
through networks. Home computers are usually intermittently connected to the
Internet via a dialup or broadband connection. The computers in your computer
lab are probably permanently connected to a local area network. Through the net-
work cabling, the computer can read programs from central storage locations or
send data to other computers. For the user of a networked computer, it may not
even be obvious which data reside on the computer itself and which are transmitted
through the network.

Most computers have removable storage devices that can access data or programs
on media such as memory sticks or optical disks.

To interact with a human user, a computer requires other peripheral devices. The
computer transmits information to the user through a display screen, loudspeakers,
and printers. The user can enter information and directions to the computer by
using a keyboard or a pointing device such as a mouse.

Figure 2
A Memory Module with
Memory Chips

Data and programs
are stored in primary
storage (memory)
and secondary
storage (such as a
hard disk).

1.2 The Anatomy of a Computer 5

The CPU, the RAM, and the electronics controlling the hard disk and other
devices are interconnected through a set of electrical lines called a bus. Data travel
along the bus from the system memory and peripheral devices to the CPU and
back. Figure 4 shows a motherboard, which contains the CPU, the RAM, and con-
nectors to peripheral devices.

Figure 3 A Hard Disk

Figure 4 A Motherboard

6 Chapter 1 Introduction

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Figure 5 gives a schematic overview of the architecture of a computer. Program
instructions and data (such as text, numbers, audio, or video) are stored on the hard
disk, on an optical disk (such as a DVD), or on a network. When a program is
started, it is brought into memory where it can be read by the CPU. The CPU reads
the program one instruction at a time. As directed by these instructions, the CPU
reads data, modifies it, and writes it back to RAM or to secondary storage. Some
program instructions will cause the CPU to interact with the devices that control
the display screen or the speaker. Because these actions happen many times over
and at great speed, the human user will perceive images and sound. Similarly, the
CPU can send instructions to a printer to mark the paper with patterns of closely
spaced dots, which a human recognizes as text characters and pictures. Some pro-
gram instructions read user input from the keyboard or mouse. The program ana-
lyzes these inputs and then executes the next appropriate instructions.

4. Where is a program stored when it is not currently running?
5. Which part of the computer carries out arithmetic operations, such as addition

and multiplication?

The ENIAC and the Dawn of Computing

Random Fact 1.1 tells the story of the ENIAC, the first usable electronic computer. The
ENIAC was completed in 1946, contained about 18,000 vacuum tubes, and filled a large room.

Figure 5 Schematic Diagram of a Computer

Printer

Mouse

Keyboard

Bus

Ports

CPU

RAM

Disk
Controller

Hard disk

Optical disk drive

Monitor

Speakers

Internet

Graphics
card

Sound
card

Network
card

The CPU reads
machine instructions
from memory. The
instructions direct it
to communicate with
memory, secondary
storage, and
peripheral devices.

S E L F C H E C K

Random Fact 1.1

www.wiley.com/college/horstmann

1.3 Translating Human-Readable Programs to Machine Code 7

On the most basic level, computer instructions are extremely primitive. The proces-
sor executes machine instructions. CPUs from different vendors, such as the Intel
Pentium or the Sun SPARC, have different sets of machine instructions. To enable
Java applications to run on different CPUs without modification, Java programs
contain machine instructions for a so-called “Java virtual machine” (JVM), an ideal-
ized CPU that is simulated by a program run on the actual CPU.

Instructions for actual and virtual machines are very simple and can be executed
very quickly. A typical sequence of machine instructions is

1. Load the contents of memory location 40.
2. Load the value 100.
3. If the first value is greater than the second value, continue with the instruction

that is stored in memory location 240.

Actually, machine instructions are encoded as numbers so that they can be stored in
memory. On the Java virtual machine, this sequence of instructions is encoded as
the sequence of numbers

21 40
16 100
163 240

When the virtual machine fetches this sequence of numbers, it decodes them and
executes the associated sequence of commands.

How can you communicate the command sequence to the computer? The most
direct method is to place the actual numbers into the computer memory. This is, in
fact, how the very earliest computers worked. However, a long program is com-
posed of thousands of individual commands, and it is tedious and error-prone to
look up the numeric codes for all commands and manually place the codes into
memory. As we said before, computers are really good at automating tedious and
error-prone activities, and it did not take long for computer programmers to realize
that computers could be harnessed to help in the programming process.

In the mid-1950s, high-level programming languages began to appear. In these
languages, the programmer expresses the idea behind the task that needs to be per-
formed, and a special computer program, called a compiler, translates the high-level
description into machine instructions for a particular processor.

For example, in Java, the high-level programming language that you will use in
this book, you might give the following instruction:

if (intRate > 100)
 System.out.println("Interest rate error");

This means, “If the interest rate is over 100, display the message Interest rate error”.
It is then the job of the compiler program to look at the sequence of characters
if (intRate > 100) . . . and translate that into

21 40 16 100 163 240 . . .

Compilers are quite sophisticated programs. They translate logical statements, such
as the if statement, into sequences of computations, tests, and jumps. They assign

1.3 Translating Human-Readable
Programs to Machine Code
Generally, machine
code depends on the
CPU type. However,
the instruction set
of the Java virtual
machine (JVM) can
be executed on
different CPUs.

Because machine
instructions are
encoded as numbers,
it is difficult to
write programs in
machine code.

High-level languages
allow you to describe
tasks at a higher
conceptual level than
machine code.

A compiler translates
programs written in
a high-level language
into machine code.

8 Chapter 1 Introduction

memory locations for variables—items of information identified by symbolic
names—like intRate. In this course, we will generally take the existence of a com-
piler for granted. If you decide to become a professional computer scientist, you
may well learn more about compiler-writing techniques later in your studies.

6. What is the code for the Java virtual machine instruction “Load the contents of
memory location 100”?

7. Does a person who uses a computer for office work ever run a compiler?

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems
designed a programming language that they code-named “Green” for use in con-
sumer devices, such as intelligent television “set-top” boxes. The language was
designed to be simple and architecture neutral, so that it could be executed on a
variety of hardware. No customer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool
browser. It was one of the few things in the client/server mainstream that needed
some of the weird things we’d done: architecture neutral, real-time, reliable,
secure.” Java was introduced to an enthusiastic crowd at the SunWorld exhibition in
1995.

Since then, Java has grown at a phenomenal rate. Programmers have embraced
the language because it is simpler than its closest rival, C++. In addition, Java has a
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted
to be independent of those proprietary systems and was bitterly fought by their
vendors. A “micro edition” and an “enterprise edition” of the Java library make
Java programmers at home on hardware ranging from smart cards and cell phones
to the largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for beginners: safety and portability. If you visit a web page that contains
Java code (so-called applets—see Figure 6 for an example), the code automatically
starts running. It is important that you can trust that applets are inherently safe. If
an applet could do something evil, such as damaging data or reading personal infor-
mation on your computer, then you would be in real danger every time you
browsed the Web—an unscrupulous designer might put up a web page containing
dangerous code that would execute on your machine as soon as you visited the
page. The Java language has an assortment of security features that guarantees that
no malicious applets can run on your computer. As an added benefit, these features
also help you to learn the language faster. The Java virtual machine can catch many
kinds of beginners’ mistakes and report them accurately. (In contrast, many begin-
ners’ mistakes in the C++ language merely produce programs that act in random
and confusing ways.) The other benefit of Java is portability. The same Java pro-
gram will run, without change, on Windows, UNIX, Linux, or the Macintosh. This
too is a requirement for applets. When you visit a web page, the web server that
serves up the page contents has no idea what computer you are using to browse the
Web. It simply returns the portable code that was generated by the Java compiler.

S E L F C H E C K

1.4 The Java Programming Language
Java was originally
designed for
programming
consumer devices,
but it was first used
successfully to write
Internet applets.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

1.4 The Java Programming Language 9

The virtual machine on your computer executes that portable code. Again, there is a
benefit for the student. You do not have to learn how to write programs for differ-
ent platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose programming as well as for computer science instruction. How-
ever, although Java is a good language for beginners, it is not perfect, for three
reasons.

Because Java was not specifically designed for students, no thought was given to
making it really simple to write basic programs. You must master a certain amount
of technical detail to write even the simplest Java program. This is not a problem for
professional programmers, but it is a drawback for beginning students. As you
learn how to program in Java, there will be times when you will be asked to be
satisfied with a preliminary explanation and wait for complete information in a later
chapter.

Java was revised and extended many times during its life—see Table 1 on page 10.
In this book, we assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one term. The Java language itself
is relatively simple, but Java has a vast library with support for graphics, user inter-
face design, cryptography, networking, sound, database storage, and many other
purposes. Even expert Java programmers cannot hope to know the contents of the
entire library—they just use those parts that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important parts of the Java library. Keep in mind that the central

Figure 6 An Applet for Visualizing Molecules
Running in a Browser (http://jmol.sourceforge.net/applet/)

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

10 Chapter 1 Introduction

goal of this book is not to make you memorize Java minutiae, but to teach you how
to think about programming.

8. What are the two most important benefits of the Java language?
9. How long does it take to learn the entire Java library?

When learning a new programming language, it is traditional to start with a “Hello,
World!” program—a program that displays a greeting. Here is this program in Java:

ch01/hello/HelloPrinter.java

Program Run

In the next section, you will see how to compile and run this program. But let us
first understand how it is structured.

Table 1 Java Versions

Version Year Important New Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support

5 2004 Generic classes, enhanced for loop, auto-boxing,
enumerations, annotations

6 2006 Library improvements

7 2010 Small language changes and library improvements

S E L F C H E C K

1.5 The Structure of a Simple Program

1 public class HelloPrinter
2 {
3 public static void main(String[] args)
4 {
5 // Display a greeting in the console window
6
7 System.out.println("Hello, World!");
8 }
9 }

Hello, World!

1.5 The Structure of a Simple Program 11

The line,
public class HelloPrinter

starts a new class. Classes are a fundamental concept in Java, and you will begin to
study them in Chapter 2. In Java, every program consists of one or more classes.

The word public denotes that the class is usable by the “public”, that is, every-
where in your program. You will later encounter private features.

In Java, every source file can contain at most one public class, and the name of
the public class must match the name of the file containing the class. For example,
the class HelloPrinter must be contained in a file named HelloPrinter.java.

The construction

public static void main(String[] args)
{
 . . .
}

declares a method called main. A method contains a collection of programming
instructions that describe how to carry out a particular task. Every Java application
must have a main method. Most Java programs contain other methods besides main,
and you will see in Chapter 3 how to write other methods.

We will fully explain the word static and the declaration String[] args in Chap-
ters 8 and 11. At this time, you should simply consider

public class ClassName
{
 public static void main(String[] args)
 {
 . . .
 }
}

as a part of the “plumbing” that is required to write any Java program.
The first line inside the main method is a comment:
// Display a greeting in the console window

This comment is purely for the benefit of the human reader, to explain in more
detail what the next statement does. Any text enclosed between // and the end of
the line is completely ignored by the compiler. Comments are used to explain the
program to other programmers or to yourself.

The instructions or statements in the body of the main method—that is, the state-
ments inside the curly brackets ({})—are executed one by one. Each statement ends
in a semicolon (;). Our method has a single statement:

System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. However, there are
many places where a program can send that text: to a window, to a file, or to a net-
worked computer on the other side of the world. You need to specify that the desti-
nation is the system output—that is, a console window. The console window is
represented in Java by an object called System.out. An object is an entity that you
manipulate in your programs.

In Java, each object belongs to a class, and the class declares methods that specify
what you can do with the objects. The System.out object belongs to the PrintStream
class. The PrintStream class has a method called println for printing a line of text.

Classes are the
fundamental
building blocks of
Java programs.

Every Java
application contains
a class with a main
method. When the
application starts,
the instructions in
the main method
are executed.

Use comments
to help human
readers understand
your program.

12 Chapter 1 Introduction

You do not have to implement this method—the programmers who wrote the
Java library already did that for us—but you do need to call the method.

Whenever you call a method in Java, you need to specify three items (see
Figure 7):

1. The object that you want to use (in this case, System.out).
2. The name of the method you want to use (in this case, println).
3. A pair of parentheses, containing any other information the method needs

(in this case, "Hello, World!"). The technical term for this information is a
parameter.

A sequence of characters enclosed in double quotation marks
"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation
marks so that the compiler knows you literally mean "Hello, World!". There is a rea-
son for this requirement. Suppose you need to print the word main. By enclosing it
in quotation marks, "main", the compiler knows you mean the sequence of charac-
ters m a i n, not the method named main. The rule is simply that you must enclose all
text strings in quotation marks, so that the compiler considers them plain text and
does not try to interpret them as program instructions.

You can also print numerical values. For example, the statement
System.out.println(3 + 4);

displays the number 7.
 The println method prints a string or a number and then starts a new line. For

example, the sequence of statements
System.out.println("Hello");
System.out.println("World!");

Figure 7
Calling a Method

System.out.println("Hello, World!")

Object Method Parameters

A method is called by
specifying an object,
the method name,
and the method
parameters.

A string is a
sequence of
characters enclosed
in quotation marks.

Syntax 1.1 Method Call

object.methodName(parameters)Syntax

Example
This is the
name of the method.

This parameter is
passed to the method.

The method is
invoked on this object.

System.out.println("Hello")

Parameters are enclosed in parentheses.
Multiple parameters are separated by commas.

1.5 The Structure of a Simple Program 13

prints two lines of text:
Hello
World!

There is a second method, called print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line
007

10. How would you modify the HelloPrinter program to print the words “Hello,”
and “World!” on two lines?

11. Would the program continue to work if you omitted the line starting with //?
12. What does the following set of statements print?

System.out.print("My lucky number is");
System.out.println(3 + 4 + 5);

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a com-
mon error. It confuses the compiler, because the compiler uses the semicolon to find where
one statement ends and the next one starts. The compiler does not use line breaks or closing
braces to recognize the end of statements. For example, the compiler considers

System.out.println("Hello")
System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System fol-
lowing the closing parenthesis after "Hello". The remedy is simple. Scan every statement for a
terminating semicolon, just as a writer would check that every English sentence ends in a
period.

Alternative Comment Syntax

In Java there are two methods for writing comments. You already learned that the compiler
ignores anything that you type between // and the end of the current line. The compiler also
ignores any text between a /* and */.

/* A simple Java program */

The // comment is easier to type if the comment is only a single line long. If you have a com-
ment that is longer than a line, then the /* . . . */ comment is simpler:

S E L F C H E C K

Common Error 1.1

Special Topic 1.1

14 Chapter 1 Introduction

/*
This is a simple Java program that you can use to try out
your compiler and virtual machine.

*/

It would be somewhat tedious to add the // at the beginning of each line and to move them
around whenever the text of the comment changes.

In this book, we use // for comments that will never grow beyond a line, and /* . . . */
for longer comments. If you prefer, you can always use the // style. The readers of your code
will be grateful for any comments, no matter which style you use.

Many students find that the tools that they need as programmers are very different
from the software with which they familiar. You should spend some time making
yourself familiar with your programming environment. Instructions for several
popular environments are available in WileyPLUS.

Some Java development environments are very convenient to use. Enter the code
in one window, click on a button to compile, and click on another button to execute
your program. Error messages show up in a second window, and the program runs
in a third window. With such an environment you are completely shielded from the
details of the compilation process. On other systems you must carry out every step
manually, by typing commands into a console window.

No matter which development environment you use, you begin your activity by
typing in the program statements. The program that you use for entering and mod-
ifying the program text is called an editor. The first step for creating a Java program,
such as the HelloPrinter program of the preceding section, is to start your editor.
Make a new program file and call it HelloPrinter.java. (If your environment requires
that you supply a project name in addition to the file name, use the name hello for
the project.) Enter the program instructions exactly as they are given above. Alter-
natively, locate an electronic copy and paste it into your editor.

Java is case sensitive. You must enter upper- and lowercase letters in the same
way as they appear in the program listing. You cannot type MAIN or PrintLn. If you
are not careful, you will run into problems—see Common Error 1.2 on page 19. On
the other hand, Java has free-form layout. You can use any number of spaces and
line breaks to separate words. You can cram as many words as possible into each
line,

public class HelloPrinter{public static void main(String[]
args){// Display a greeting in the console window
System.out.println("Hello, World!");}}

Of course, this is not a good idea. It is important to format your programs neatly so
that you and other programmers can read them easily. We will give you recommen-
dations for good layout throughout this book. Appendix L contains a summary of
our recommendations.

Now find out how to run the test program. The message
Hello, World!

will appear somewhere on the screen (see Figures 8 and 9). The exact location
depends on your programming environment.

1.6 Compiling and Running a Java Program
Set aside some time
to become familiar
with the computer
system and the Java
compiler that you
will use for your
class work.

An editor is a
program for entering
and modifying
text, such as a
Java program.

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

Lay out your
programs so that
they are easy to read.

1.6 Compiling and Running a Java Program 15

Running your program takes two steps. (Some development environments auto-
matically carry out both steps when you ask to run a program.)

The first step is to compile your program. The compiler translates the Java source
code (that is, the statements that you wrote) into class files, which consist of virtual
machine instructions and other information that is required for execution. The class
files have the extension .class. For example, the virtual machine instructions for the
HelloPrinter program are stored in a file HelloPrinter.class. Note that the compiler
does not produce a class file if it has found errors in your program.

The class file contains merely the translation of the instructions that you wrote.
That is not enough to actually run the program. To display a string in a window,
quite a bit of low-level activity is necessary. The authors of the System and

Figure 8
Running the HelloPrinter
Program in a Console Window

Figure 9 Running the HelloPrinter Program in an Integrated
Development Environment

The Java compiler
translates source
code into class files
that contain
instructions for the
Java virtual machine.

16 Chapter 1 Introduction

PrintStream classes (which declare the out object and the println method) have imple-
mented all necessary actions and placed the required class files into a library. A
library is a collection of code that has been programmed and translated by someone
else, ready for you to use in your program.

The Java virtual machine loads the instructions for the program that you wrote,
starts your program, and loads the necessary library files as they are required.

The steps of compiling and running your program are outlined in Figure 10.

13. Can you use a word processor for writing Java programs?
14. What do you expect to see when you load a class file into your text editor?

Understand the File System

In recent years, computers have become easier to use for home or office users. Many inessen-
tial details are now hidden from casual users. For example, many users simply place all their
work inside a default folder (such as “Home” or “My Documents”) and are blissfully igno-
rant about details of the file system.

Figure 10 From Source Code to Running Program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Library files

Class files

Figure 11
A Folder Hierarchy

The Java virtual
machine loads
program instructions
from class files and
library files.

S E L F C H E C K

Productivity Hint 1.1

1.7 Errors 17

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

For your programming work, you need to understand that files are stored in folders or
directories, and that these file containers can be nested. That is, a folder can contain not only
files but also other folders, which themselves can contain more files and folders (see
Figure 11).

You need to know how to impose an organization on the data that you create. You also
need to be able to locate files and inspect their contents.

If you are not comfortable with files and folders, be sure to set aside some time to learn
about these concepts.

Have a Backup Strategy

Productivity Hint 1.2 discusses strategies for backing up your programming work so that
you won’t lose data if your computer malfunctions.

Experiment a little with the HelloPrinter program. What happens if you make a typ-
ing error such as

System.ou.println("Hello, World!);
System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will say that it has no clue what you
mean by ou. The exact wording of the error message is dependent on the compiler,
but it might be something like “Cannot find symbol ou”. This is a compile-time
error, also called a syntax error. Something is wrong according to the language rules
and the compiler finds it. When the compiler finds one or more errors, it refuses to
translate the program to Java virtual machine instructions, and as a consequence
you have no program that you can run. You must fix the error and compile again. In
fact, the compiler is quite picky, and it is common to go through several rounds of
fixing compile-time errors before compilation succeeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once.

Sometimes, an error throws the compiler off track. Suppose, for example, you
forget the quotation marks around a string: System.out.println(Hello, World!). The
compiler will not complain about the missing quotation marks. Instead, it will
report “Cannot find symbol Hello”. It is up to you to realize that you need to
enclose strings in quotation marks.

The error in the second line is of a different kind. The program will compile and
run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error, also called a logic error. The program is syntactically cor-
rect and does something, but it doesn’t do what it is supposed to do.

Productivity Hint 1.2

1.7 Errors

A compile-time error
is a violation of
the programming
language rules that
is detected by
the compiler.

www.wiley.com/college/horstmann

18 Chapter 1 Introduction

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they
generate an exception: an error message from the Java virtual machine. For example,
if your program includes the statement

System.out.println(1/0);

you will get a run-time error message “Division by zero”.
During program development, errors are unavoidable. Once a program is longer

than a few lines, it requires superhuman concentration to enter it correctly without
slipping up once. You will find yourself omitting semicolons or quotes more often
than you would like, but the compiler will track down these problems for you.

Run-time errors are more troublesome. The compiler will not find them—in fact,
the compiler will cheerfully translate any program as long as its syntax is correct—
but the resulting program will do something wrong. It is the responsibility of the
program author to test the program and find any run-time errors. Testing programs
is an important topic that you will encounter many times in this book. Another
important aspect of good craftsmanship is defensive programming: structuring pro-
grams and development processes in such a way that an error in one part of a pro-
gram does not trigger a disastrous response.

The error examples that you saw so far were not difficult to diagnose or fix, but
as you learn more sophisticated programming techniques, there will also be much
more room for error. It is an uncomfortable fact that locating all errors in a program
is very difficult. Even if you can observe that a program exhibits faulty behavior, it
may not at all be obvious what part of the program caused it and how you can fix it.
Special software tools (so-called debuggers) let you trace through a program to find
bugs—that is, run-time errors. In Chapter 6 you will learn how to use a debugger
effectively.

Note that these errors are different from the types of errors that you are likely to
make in calculations. If you total up a column of numbers, you may miss a minus
sign or accidentally drop a carry, perhaps because you are bored or tired. Comput-
ers do not make these kinds of errors.

This book uses a three-part error management strategy. First, you will learn
about common errors and how to avoid them. Then you will learn defensive pro-
gramming strategies to minimize the likelihood and impact of errors. Finally, you
will learn testing and debugging strategies to flush out those errors that remain.

15. Suppose you omit the // characters fro m the HelloPrinter.java program but not
the remainder of the comment. Will you get a compile-time error or a run-time
error?

16. When you used your computer, you may have experienced a program that
“crashed” (quit spontaneously) or “hung” (failed to respond to your input). Is
that behavior a compile-time error or a run-time error?

17. Why can’t you test a program for run-time errors when it has compiler errors?

A run-time error
causes a program to
take an action that
the programmer did
not intend.

S E L F C H E C K

1.8 Algorithms 19

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always
be completely obvious from the error messages what went wrong. Here is a good example of
how simple spelling errors can cause trouble:

public class HelloPrinter
{
 public static void Main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

This class declares a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case
sensitive. Upper- and lowercase letters are considered to be completely different from each
other, and to the compiler Main is no better match for main than rain. The compiler will cheer-
fully compile your Main method, but when the Java virtual machine executes the compiled
file, it will complain about the missing main method and refuse to run the program. Of
course, the message “missing main method” should give you a clue where to look for the
error.

If you get an error message that seems to indicate that the compiler is on the wrong track,
it is a good idea to check for spelling and capitalization. If you misspell the name of a symbol
(for example, ou instead of out), the compiler will produce an error message such as “Cannot
find symbol ou”. That error message is usually a good clue that you made a spelling error.

You will soon learn how to program calculations and decision making in Java. But
before we look at the mechanics of implementing computations in the next chapter,
let’s consider the planning process that precedes implementation.

You may have run across advertisements that encourage you to pay for a com-
puterized service that matches you up with a love partner. Think how this might
work. You fill out a form and send it in. Others do the same. The data are processed
by a computer program. Is it reasonable to assume that the computer can perform
the task of finding the best match for you? Suppose your younger brother, not the
computer, had all the forms on his desk. What instructions could you give him? You
can’t say, “Find the best-looking person who likes inline skating and browsing the
Internet”. There is no objective standard for good looks, and your brother’s opin-
ion (or that of a computer program analyzing the digitized photo) will likely be dif-
ferent from yours. If you can’t give written instructions for someone to solve the
problem, there is no way the computer can magically find the right solution. The
computer can only do what you tell it to do. It just does it faster, without getting
bored or exhausted.

For that reason, a computerized match-making service cannot guarantee to find
the optimal match for you. Instead, it may present a set of potential partners who
share common interests with you. That is a task that a computer program can solve.

Common Error 1.2

1.8 Algorithms

20 Chapter 1 Introduction

Now consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How
many years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

You keep going until the balance is at least $20,000. Then the last number in the
year column is the answer.

Of course, carrying out this computation is intensely boring to you or your
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of
the steps for finding the solution. Each step must be clear and unambiguous, requir-
ing no guesswork. Here is such a description:

Start with a year value of 0 and a balance of $10,000.

Repeat the following steps while the balance is less than $20,000.
Add 1 to the year value.
Multiply the balance value by 1.05 (a 5 percent increase).

Report the final year value as the answer.

Of course, these steps are not yet in a language that a computer can understand, but
you will soon learn how to formulate them in Java. This informal description is
called pseudocode.

There are no strict requirements for pseudocode because it is read by human
readers, not a computer program. Here are the kinds of pseudocode statements that
we will use in this book:

year balance

 0 10000

 1 10000.00 x 1.05 = 10500.00

 2 10500.00 x 1.05 = 11025.00

 3 11025.00 x 1.05 = 11576.25

 4 11576.25 x 1.05 = 12155.06

year balance

 0 10000

year balance

 0 10000

 1 10500

 14 19799.32

 15 20789.28

Pseudocode is an
informal description
of a sequence of
steps for solving
a problem.

1.8 Algorithms 21

• Use statements such as the following to describe how a value is set or changed:

total cost = purchase price + operating cost

or
Multiply the balance value by 1.05.

or
Remove the first and last character from the word.

• Describe decisions and repetitions as follows:

If total cost 1 < total cost 2

or
While the balance is less than $20,000

or
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated.

For each car
operating cost = 10 x annual fuel cost
total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for
each car.

• Indicate results with statements such as

Choose car1.
Report the final year value as the answer.

The exact wording is not important. What is important is that the pseudocode
describes a sequence of steps that is

• Unambiguous
• Executable
• Terminating

The step sequence is unambiguous when there are precise instructions for what to
do at each step and where to go next. There is no room for guesswork or personal
opinion. A step is executable when it can be carried out in practice. Had we asked to
use the actual interest rate that will be charged in years to come, and not a fixed rate
of 5 percent per year, that step would not have been executable, because there is no
way for anyone to know what that interest rate will be. A sequence of steps is ter-
minating if it will eventually come to an end. In our example, it requires a bit of
thought to see that the sequence will not go on forever: With every step, the balance
goes up by at least $500, so eventually it must reach $20,000.

A sequence of steps that is unambiguous, executable, and terminating is called an
algorithm. We have found an algorithm to solve our investment problem, and thus
we can find the solution by programming a computer. The existence of an algorithm
is an essential prerequisite for programming a task. You need to first discover and
describe an algorithm for the task that you want to solve before you start program-
ming (see Figure 12).

An algorithm for
solving a problem is
a sequence of steps
that is unambiguous,
executable, and
terminating.

22 Chapter 1 Introduction

18. Suppose the interest rate was 20 percent. How long would it take for the invest-
ment to double?

19. Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of
calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees.
Give an algorithm to compute the monthly charge for a given number
of minutes.

HOW TO 1.1 Developing and Describing an Algorithm

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of buying two cars. One is more
fuel efficient than the other, but also more expensive. You know the price and fuel efficiency
(in miles per gallon, mpg) of both cars. You plan to keep the car for ten years. Assume a price
of $4 per gallon of gas and usage of 15,000 miles per year. You will pay cash for the car and
not worry about financing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car.
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car.

Figure 12
The Program Development Process Understand

the problem

Develop and
describe an
algorithm

Translate
the algorithm

into Java

Test the
algorithm with
different inputs

Compile and test
your program

S E L F C H E C K

1.8 Algorithms 23

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

We simply want to know which car is the better buy. That is the desired output.

Step 2 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation sepa-
rately for each car. Once we have the total cost for each car, we can decide which car is the
better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy.

For each car, compute the total cost as follows:

annual fuel consumed = annual miles driven / fuel efficiency

annual fuel cost = price per gallon x annual fuel consumed

operating cost = 10 x annual fuel cost

total cost = purchase price + operating cost

If total cost1 < total cost2

Choose car1.

Else

Choose car2.

Step 4 Test your pseudocode by working problems.

We will use these sample values:

Car 1: $25,000, 50 miles/gallon
Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car.

annual fuel consumed = annual miles driven / fuel efficiency = 15000 / 50 = 300

annual fuel cost = price per gallon x annual fuel consumed = 4 x 300 = 1200

operating cost = 10 x annual fuel cost = 10 x 1200 = 12000

total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm
is to choose car 1.

Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying tile
in an alternating pattern of colors.

Worked
Example 1.1

www.wiley.com/college/horstmann.

24 Chapter 1 Introduction

Define “computer program” and “programming”.

• A computer must be programmed to perform tasks. Different tasks require
different programs.

• A computer program executes a sequence of very basic instructions in rapid
succession.

• A computer program contains the instruction sequences for all tasks that it can
execute.

Describe the components of a computer.

• At the heart of the computer lies the central processing unit (CPU).
• Data and programs are stored in primary storage (memory) and secondary storage

(such as a hard disk).
• The CPU reads machine instructions from memory. The instructions direct it to

communicate with memory, secondary storage, and peripheral devices.

Describe the process of translating high-level languages to machine code.

• Generally, machine code depends on the CPU type. However, the instruction set of
the Java virtual machine (JVM) can be executed on different CPUs.

• Because machine instructions are encoded as numbers, it is difficult to write
programs in machine code.

• High-level languages allow you to describe tasks at a higher conceptual level than
machine code.

• A compiler translates programs written in a high-level language into machine code.

Describe the history and design principles of the Java programming language.

• Java was originally designed for programming consumer devices, but it was first
used successfully to write Internet applets.

• Java was designed to be safe and portable, benefiting both Internet users and
students.

• Java has a very large library. Focus on learning those parts of the library that you
need for your programming projects.

Describe the building blocks of a simple program and the structure of a method call.

• Classes are the fundamental building blocks of Java programs.
• Every Java application contains a class with a main method. When the application

starts, the instructions in the main method are executed.
• Use comments to help human readers understand your program.
• A method is called by specifying an object, the method name, and the method

parameters.
• A string is a sequence of characters enclosed in quotation marks.

Use your programming environment to write and run Java programs.

• Set aside some time to become familiar with the computer system and the Java
compiler that you will use for your class work.

• An editor is a program for entering and modifying text, such as a Java program.

Summary of Learning Objectives

Review Exercises 25

• Java is case sensitive. You must be careful about distinguishing between upper- and
lowercase letters.

• Lay out your programs so that they are easy to read.
• The Java compiler translates source code into class files that contain instructions for

the Java virtual machine.
• The Java virtual machine loads program instructions from class files and library

files.
• Develop a strategy for keeping backup copies of your work before disaster strikes.

Classify program errors as compile-time and run-time errors.

• A compile-time error is a violation of the programming language rules that is
detected by the compiler.

• A run-time error causes a program to take an action that the programmer did not
intend.

Write pseudocode for simple algorithms.

• Pseudocode is an informal description of a sequence of steps for solving a problem.
• An algorithm for solving a problem is a sequence of steps that is unambiguous,

executable, and terminating.

Here is a list of all classes, objects, and methods introduced in this chapter. Turn to
the documentation in Appendix D for more information.

• Worked Example Writing an Algorithm for Tiling a Floor
Practice Quiz
Code Completion Exercises

R1.1 Explain the difference between using a computer program and programming a
computer.

R1.2 What distinguishes a computer from a typical household appliance?

Classes, Objects, and Methods Introduced in this Chapter

java.io.PrintStream
 print
 println

java.lang.System
 out

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

www.wiley.com/college/horstmann
www.wiley.com/college/horstmann
www.wiley.com/college/horstmann

26 Chapter 1 Introduction

R1.3 Describe exactly what steps you would take to back up your work after you have
typed in the HelloPrinter.java program.

R1.4 On your own computer or on a lab computer, find the exact location (folder or
directory name) of

a. The sample file HelloPrinter.java, which you wrote with the editor.
b. The Java program launcher java.exe or java.
c. The library file rt.jar that contains the run-time library.

R1.5 How do you discover syntax errors? How do you discover logic errors?

R1.6 Write three versions of the HelloPrinter.java program that have different compile-
time errors. Write a version that has a run-time error.

R1.7 What do the following statements print? Don’t guess; write programs to find out.
a. System.out.println("3 + 4");

b. System.out.println(3 + 4);
c. System.out.println(3 + "4");

R1.8 Write an algorithm to settle the following question: A bank account starts out with
$10,000. Interest is compounded monthly at 6 percent per year (0.5 percent per
month). Every month, $500 is withdrawn to meet college expenses. After how
many years is the account depleted?

R1.9 Consider the question in Exercise R1.8. Suppose the numbers ($10,000, 6 percent,
$500) were user selectable. Are there values for which the algorithm you developed
would not terminate? If so, change the algorithm to make sure it always terminates.

R1.10 In order to estimate the cost of painting a house, a painter needs to know the surface
area of the exterior. Develop an algorithm for computing that value. Your inputs are
the width, length, and height of the house, the number of windows and doors, and
their dimensions. (Assume the windows and doors have a uniform size.)

R1.11 You want to decide whether you should drive your car to work or take the train.
You know the one-way distance from your home to your place of work, and the
fuel efficiency of your car (in miles per gallon). You also know the one-way price of
a train ticket. You assume the cost of gas at $4 per gallon, and car maintenance at 5
cents per mile. Write an algorithm to decide which commute is cheaper.

R1.12 You want to find out which fraction of your car use is for commuting to work, and
which is for personal use. You know the one-way distance from your home to your
place of work. For a particular period, you recorded the beginning and ending mile-
age on the odometer and the number of work days. Write an algorithm to settle this
question.

R1.13 In the problem described in How To 1.1 on page 22, you made assumptions about
the price of gas and the annual usage. Ideally, you would like to know which car is
the better deal without making these assumptions. Why can’t a computer program
solve that problem?

Programming Exercises 27

P1.1 Write a program NamePrinter that displays your name inside a box on the console
screen, like this:

+----+
|Dave|
+----+

Do your best to approximate lines with characters, such as |, -, and +.

P1.2 Write a program that prints your name in large letters, such as
* * ** **** **** * *
* * * * * * * * * *
***** * * **** **** * *
* * ****** * * * * *
* * * * * * * * *

P1.3 Write a program FacePrinter that prints a face, using text characters, hopefully better
looking than this one:

 /////
 | o o |
(| ^ |)
[_]

Use comments to indicate the statements that print the hair, ears, mouth, and so on.

P1.4 Write a program that prints an animal speaking a greeting, similar to (but different
from) the following

 /_/\ -----
(‘ ’) / Hello \
(-) < Junior |
 | | | \ Coder!/
(__|__) -----

P1.5 Write a program TicTacToeBoardPrinter that prints a tic-tac-toe board:
+---+---+---+
| | | |
+---+---+---+
| | | |
+---+---+---+
| | | |
+---+---+---+

P1.6 Write a program StaircasePrinter that prints a staircase:
 +---+
 | |
 +---+---+
 | | |
 +---+---+---+
 | | | |
+---+---+---+---+
| | | | |
+---+---+---+---+

P1.7 Write a program that prints three items, such as the names of your three best friends
or favorite movies, on three separate lines.

Programming Exercises

28 Chapter 1 Introduction

P1.8 Write a program that computes the sum of the first ten positive integers,
1 + 2 + · · · + 10. Hint: Write a program of the form

public class Sum10
{
 public static void main(String[] args)
 {
 System.out.println();
 }
}

P1.9 Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null, "Hello, World!");
 System.exit(0);
 }
}

Then modify the program to show the message “Hello, your name!”.

P1.10 Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 String name = JOptionPane.showInputDialog("What is your name?");
 System.out.println(name);
 System.exit(0);
 }
}

Then modify the program to print “Hello, name!”, displaying the name that the
user typed in.

P1.11 Run the following program:
import java.net.URL;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class Test
{
 public static void main(String[] args) throws Exception
 {
 URL imageLocation = new URL(
 "http://horstmann.com/bigjava/duke.gif");
 JOptionPane.showMessageDialog(null, "Hello", "Title",
 JOptionPane.PLAIN_MESSAGE, new ImageIcon(imageLocation));
 System.exit(0);
 }
}

Then modify it to show a different greeting and image.

Answers to Self-Check Questions 29

Project 1.1 This project builds on Exercises P1.9 and P1.10. Your program should read the
user’s name, then show a sequence of two dialog boxes:

• First, an input dialog box that asks: “What would you like me to do?”
• Then a message dialog box that says: “I’m sorry, your name. I’m afraid I can’t

do that.”

1. A program that reads the data on the CD and sends output to the speakers and the
screen.

2. A CD player can do one thing—play music CDs. It cannot execute programs.
3. No—the program simply executes the instruction sequences that the programmers

have prepared in advance.
4. In secondary storage, typically a hard disk.
5. The central processing unit.
6. 21 100
7. No—a compiler is intended for programmers, to translate high-level programming

instructions into machine code.
8. Safety and portability.
9. No one person can learn the entire library—it is too large.

10. System.out.println("Hello,"); System.out.println("World!");

11. Yes—the line starting with // is a comment, intended for human readers. The
compiler ignores comments.

12. The printout is My lucky number is12. It would be a good idea to add a space after
the is.

13. Yes, but you must remember to save your file as “plain text.”
14. A sequence of random characters, some funny-looking. Class files contain virtual

machine instructions that are encoded as binary numbers.
15. A compile-time error. The compiler will not know what to do with the word

Display.
16. It is a run-time error. After all, the program had been compiled in order for you to

run it.
17. When a program has compiler errors, no class file is produced, and there is nothing

to run.
18. 4 years:

0 10,000
1 12,000
2 14,400
3 17,280
4 20,736

Programming Projects

Answers to Self-Check Questions

30 Chapter 1 Introduction

19. Is the number of minutes at most 300?
a. If so, the answer is $29.95 × 1.125 = $33.70.
b. If not,
 1. Compute the difference: (number of minutes) – 300.
 2. Multiply that difference by 0.45.
 3. Add $29.95.
 4. Multiply the total by 1.125. That is the answer.

31

Chapter2
Using Objects

CHAPTER GOALS
• To learn about variables

• To understand the concepts of classes and objects

• To be able to call methods

• To learn about parameters and return values

• To be able to browse the API documentation

T To implement test programs

• To understand the difference between objects and
object references

G To write programs that display simple shapes

Most useful programs don’t just manipulate numbers and strings.

Instead, they deal with data items that are more complex and that more closely represent entities in

the real world. Examples of these data items include bank accounts, employee records, and graphical

shapes.

The Java language is ideally suited for designing and manipulating such data items, or objects. In

Java, you implement classes that describe the behavior of these objects. In this chapter, you will learn

how to manipulate objects that belong to classes that have already been implemented. This

knowledge will prepare you for the next chapter in which you will learn how to implement your

own classes.

32

CHAPTER CONTENTS

2.1 Types 32

2.2 Variables 34
SYNTAX 2.1: Variable Declaration 35
QUALITY TIP 2.1: Choose Descriptive Names

for Variables 36

2.3 The Assignment Operator 37
SYNTAX 2.2: Assignment 37
COMMON ERROR 2.1: Confusing Variable Declarations

and Assignment Statements 38

2.4 Objects, Classes, and Methods 39

2.5 Method Parameters and Return Values 41

2.6 Constructing Objects 44
SYNTAX 2.3: Object Construction 45
COMMON ERROR 2.2: Trying to Invoke a Constructor

Like a Method 45

2.7 Accessor and Mutator Methods 46

2.8 The API Documentation 47

SYNTAX 2.4: Importing a Class from a Package 49
PRODUCTIVITY HINT 2.1: Don’t Memorize—Use

Online Help 49

2.9T Implementing a Test Program 50
SPECIAL TOPIC 2.1: Testing Classes in an Interactive

Environment

WORKED EXAMPLE 2.1: How Many Days Have You

Been Alive?

WORKED EXAMPLE 2.2: Working with Pictures

2.10 Object References 52
RANDOM FACT 2.1: Mainframes—When Dinosaurs

Ruled the Earth

2.11G Graphical Applications and
Frame Windows 54

2.12G Drawing on a Component 56
SPECIAL TOPIC 2.2: Applets

2.13G Ellipses, Lines, Text, and Color 59
RANDOM FACT 2.2: The Evolution of the Internet

Before we start with the main topic of this chapter, we need to go over some basic
programming terminology. In the first three sections of this chapter, you will learn
about the concepts of types, variables, and assignment.

A computer program processes values: numbers, strings, and more complex data
items. In Java, every value has a type. For example, the number 13 has the type int
(an abbreviation for “integer”), "Hello, World" has the type String, and the object
System.out has the type PrintStream. The type tells you what operations you can carry
out with the values. For example, you can compute the sum or product of any two
integers. You can call println on any object of type PrintStream.

Java has separate types for integers and floating-point numbers. Integers are
whole numbers; floating-point numbers can have fractional parts. For example, 13
is an integer and 1.3 is a floating-point number.

The name “floating-point” describes the representation of the number in the com-
puter as a sequence of the significant digits and an indication of the position of the
decimal point. For example, the numbers 13000.0, 1.3, 0.00013 all have the same dec-
imal digits: 13. When a floating-point number is multiplied or divided by 10, only
the position of the decimal point changes; it “floats”. This representation is related to
the “scientific” notation 1.3 × 10–4. (Actually, the computer represents numbers in
base 2, not base 10, but the principle is the same.)

If you need to process numbers with a fractional part, you should use the type
called double, which stands for “double precision floating-point number”. Think of
a number in double format as any number that can appear in the display panel of a
calculator, such as 1.3 or –0.333333333.

2.1 Types

A type specifies a set
of values and the
operations that can
be carried out with
the values.

The double type
denotes floating-
point numbers
that can have
fractional parts.

2.1 Types 33

When a value such as 13 or 1.3 occurs in a Java program, it is called a number lit-
eral. Do not use commas when you write number literals in Java. For example,
13,000 must be written as 13000. To write numbers in exponential notation in Java,
use the notation En instead of “ × 10n”. For example, 1.3 × 10–4 is written as 1.3E-4.
Table 1 shows how to write integer and floating-point literals in Java.

You may wonder why Java has separate integer and floating-point number types.
Pocket calculators don’t need a separate integer type; they use floating-point num-
bers for all calculations. However, integers have several advantages over floating-
point numbers. They take less storage space, are processed faster, and don’t cause
rounding errors. You will want to use the int type for quantities that can never have
fractional parts, such as the length of a string. Use the double type for quantities that
can have fractional parts, such as a grade point average.

There are several other number types in Java that are not as commonly used. We
will discuss these types in Chapter 4. For most programs in this book, however, the
int and double types are all you need for processing numbers.

In Java, the number types (int, double, and the less commonly used types) are
primitive types. Numbers are not objects. The number types have no methods.

However, you can combine numbers with operators such as + and -, as in 10 + n
or n - 1. To multiply two numbers, use the * operator. For example, 10 × n is writ-
ten as 10 * n.

A combination of variables, literals, operators, and/or methods (which you will
see in Section 2.4) is called an expression. A typical example of an expression is

x + y * 2

As in mathematics, the * operator binds more strongly than the + operator. That is,
x + y * 2 means the sum of x and y * 2. If you want to multiply the sum of x and y
by 2, use parentheses:

 (x + y) * 2

Table 1 Number Literals in Java

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 double A number with a fractional part has type double.

1.0 double An integer with a fractional part .0 has type double.

1E6 double A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have type double.

2.96E-2 double Negative exponent:
2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5.

In Java, the number
types are primitive
types, and numbers
are not objects.

Numbers can be
combined by
arithmetic operators
such as +, -, and *.

34 Chapter 2 Using Objects

1. What are the types of the values 0 and "0"?
2. Which number type would you use for storing the area of a circle?
3. Why is the expression 13.println() an error?
4. Write an expression to compute the average of the values x and y.

You often want to store values so that you can use them at a later time. To remem-
ber a value, you need to hold it in a variable. A variable is a storage location in the
computer’s memory that has a type, name, and contents. For example, here we
declare three variables:

String greeting = "Hello, World!";
PrintStream printer = System.out;
int width = 20;

The first variable is called greeting. It can be used to store String values, and it is set
to the value "Hello, World!". The second variable, printer, stores a PrintStream value,
and the third stores an integer.

Variables can be used in place of the values that they store:
printer.println(greeting); // Same as System.out.println("Hello, World!")
printer.println(width); // Same as System.out.println(20)

When you declare your own variables, you need to make two decisions.

• What type should you use for the variable?
• What name should you give the variable?

The type depends on the intended use. If you need to store a string, use the String
type for your variable. If you need a number, choose the int or double type.

It is an error to store a value whose type does not match the type of the variable.
For example, the following is an error:

String greeting = 20; // ERROR: Types don’t match

S E L F C H E C K

2.2 Variables

You use variables
to store values that
you want to use at a
later time. A variable
has a type, a name,
and a value.

Table 2 Variable Declarations in Java

Variable Name Comment

int width = 10; Declares an integer variable and initializes it with 10.

int area = width * height; The initial value can depend on other variables. (Of course, width and
height must have been previously declared.)

height = 5; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.3.

int height = "5"; Error: You cannot initialize a number with a string.

int width, height; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

2.2 Variables 35

You cannot use a String variable to store an integer. The compiler checks type mis-
matches to protect you from errors.

When deciding on a name for a variable, you should make a choice that describes
the purpose of the variable. For example, the variable name greeting is a better
choice than the name g.

An identifier is the name of a variable, method, or class. Java imposes the follow-
ing rules for identifiers:

• Identifiers can be made up of letters, digits, and the underscore (_) and dollar sign
($) characters. They cannot start with a digit, though.

• You cannot use spaces or symbols such as ? or %.
• Furthermore, you cannot use reserved words, such as public, as names; these

words are reserved exclusively for their special Java meanings. (See Appendix C
for all reserved words in Java.)

These are firm rules of the Java language. If you violate one of them, the compiler
will report an error. Moreover, there are a couple of conventions that you should
follow so that other programmers will find your programs easy to read:

• Variable and method names should start with a lowercase letter. It is OK to use
an occasional uppercase letter, such as farewellMessage. This mixture of lowercase
and uppercase letters is sometimes called “camel case” because the uppercase let-
ters stick out like the humps of a camel.

• Class names should start with an uppercase letter. For example, Greeting would
be an appropriate name for a class, but not for a variable.

• You should not use the $ symbol in names. It is intended for names that are auto-
matically generated by tools.

If you violate these conventions, the compiler won’t complain, but you will confuse
other programmers who read your code.

Identifiers for
variables, methods,
and classes are
composed of letters,
digits, and the
underscore character.

By convention,
variable names
should start with a
lowercase letter.

Syntax 2.1 Variable Declaration

typeName variableName = value;
or
typeName variableName;

Syntax

Example

String greeting = "Hello, Dave!";
A variable declaration ends
with a semicolon.

The type specifies
what can be done
with values stored
in this variable.

Supplying an initial value is optional,
but it is usually a good idea.

See pages 35-36 for rules and

examples of valid names.

Use a descriptive

 variable name.

 See page 36.

36 Chapter 2 Using Objects

Table 3 shows examples of legal and illegal variable names in Java.

5. Which of the following are legal identifiers?
Greeting1
g
void
101dalmatians
Hello, World
<greeting>

6. Declare a variable to hold your name. Use camel case in the variable name.

Choose Descriptive Names for Variables

In algebra, variable names are usually just one letter long, such as p or A, maybe with a sub-
script such as p1. You might be tempted to save yourself a lot of typing by using short vari-
able names in your Java programs:

int A = w * h;

Compare this with the following statement:

int area = width * height;

The advantage is obvious. Reading width is much easier than reading w and then figuring out
that it must mean “width”.

In practical programming, descriptive variable names are particularly important when
programs are written by more than one person. It may be obvious to you that w stands for
width, but is it obvious to the person who needs to update your code years later? For that
matter, will you yourself remember what w means when you look at the code a month from
now?

Table 3 Variable Names in Java

Variable Name Comment

farewellMessage Use “camel case” for variable names consisting of
multiple words.

x In mathematics, you use short variable names such as x
or y. This is legal in Java, but not very common, because
it can make programs harder to understand.

Greeting Caution: Variable names are case-sensitive.
This variable name is different from greeting.

6pack Error: Variable names cannot start with a number.

farewell message Error: Variable names cannot contain spaces.

public Error: You cannot use a reserved word as a variable name.

!

S E L F C H E C K

Quality Tip 2.1

2.3 The Assignment Operator 37

You can change the value of a variable with the assignment operator (=). For exam-
ple, consider the variable declaration

int width = 10;

If you want to change the value of the variable, simply assign the new value:
width = 20;

The assignment replaces the original value of the variable (see Figure 1).

It is an error to use a variable that has never had a value assigned to it. For example,
the following assignment statement has an error:

int height;
width = height; // ERROR—uninitialized variable height

The compiler will complain about an “uninitialized variable” when you use a vari-
able that has never been assigned a value. (See Figure 2.)

2.3 The Assignment Operator
Use the assignment
operator (=) to
change the value
of a variable. 1

2

Figure 1
Assigning a New
Value to a Variable

width = 10

width = 20

1

2

Figure 2
An Uninitialized
Variable

Syntax 2.2 Assignment

height =
No value has been assigned.

variableName = value;Syntax

Example
double width = 20;
 .
 .
width = 30;

 .
 .
 .
width = width + 10;

The value of this variable is changed.

The same name

can occur on both sides.

See Figure 3.

The new value of the variable

This is a variable declaration.
This is an assignment statement.

38 Chapter 2 Using Objects

The remedy is to assign a value to the variable before you use it:
int height = 30;
width = height; // OK

Or, even better, initialize the variable when you declare it.
int height = 30;
int width = height; // OK

The right-hand side of the = symbol can be a mathematical expression. For example,
width = height + 10;

This means “compute the value of height + 10 and store that value in the variable
width”.

In the Java programming language, the = operator denotes an action, to replace
the value of a variable. This usage differs from the mathematical usage of the = sym-
bol, as a statement about equality. For example, in Java, the following statement is
entirely legal:

width = width + 10;

This means “compute the value of width + 10 and store that value in the variable
width ” (see Figure 3).

 In Java, it is not a problem that the variable width is used on both sides of the =
symbol. Of course, in mathematics, the equation width = width + 10 has no solution.

7. Is 12 = 12 a valid expression in the Java language?
8. How do you change the value of the greeting variable to "Hello, Nina!"?

Confusing Variable Declarations and Assignment Statements

Suppose your program declares a variable as follows:

int width = 20;

If you want to change the value of the variable, you use an assignment statement:

width = 30;

It is a common error to accidentally use another variable declaration:

int width = 30; // ERROR—starts with int and is therefore a declaration

Figure 3 Executing the Statement width = width + 10

1

width =

width + 10

40

30

2

width =

40

40

Compute the value of the right-hand side Store the value in the variable

All variables must be
initialized before you
access them.

A N I M AT I O N
Variable

Initialization and
Assignment

1
2

S E L F C H E C K

Common Error 2.1

2.4 Objects, Classes, and Methods 39

But there is already a variable named width. The compiler will complain that you are trying
to declare another variable with the same name.

We now come to the main purpose of this chapter: a closer understanding of
objects. An object is a value that you can manipulate by calling one or more of its
methods. A method consists of a sequence of instructions that can access the inter-
nal data of an object. When you call the method, you do not know exactly what
those instructions are, or even how the object is organized internally. However, the
behavior of the method is well-defined, and that is what matters to us when we use
it.

For example, you saw in Chapter 1 that System.out refers to an object. You
manipulate it by calling the println method. When the println method is called,
some activities occur inside the object, and the ultimate effect is that text appears in
the console window. You don’t know how that happens, and that’s OK. What mat-
ters is that the method carries out the work that you requested.

Figure 4 shows a representation of the System.out object. The internal data is sym-
bolized by a sequence of zeroes and ones. Think of each method (symbolized by
the gears) as a piece of machinery that carries out its assigned task.

In Chapter 1, you encountered two objects:
• System.out
• "Hello, World!"

The type of an object is a class. The System.out object belongs to the class Print-
Stream. The "Hello, World!" object belongs to the class String. A class specifies the
methods that you can apply to its objects.

You can use the println method with any object that belongs to the PrintStream
class. System.out is one such object. It is possible to obtain other objects of the Print-
Stream class. For example, you can construct a PrintStream object to send output to a
file. However, we won’t discuss files until Chapter 11.

Just as the PrintStream class provides methods such as println and print for its
objects, the String class provides methods that you can apply to String objects. One
of them is the length method. The length method counts the number of characters in

2.4 Objects, Classes, and Methods

Figure 4 Representation of the System.out Object

Objects are entities
in your program that
you manipulate by
calling methods.

A method is a
sequence of
instructions that
accesses the data
of an object.

A class declares
the methods that
you can apply to
its objects.

data =

PrintStream

println

print

10101110

11110110

01101011

00110101

40 Chapter 2 Using Objects

a string. You can apply that method to any object of type String. For example, the
sequence of statements

String greeting = "Hello, World!";
int n = greeting.length();

sets n to the number of characters in the String object "Hello, World!". After the
instructions in the length method are executed, n is set to 13. (The quotation marks
are not part of the string, and the length method does not count them.)

The length method—unlike the println method—requires no input inside the paren-
theses. However, the length method yields an output, namely the character count.

In the next section, you will see in greater detail how to supply method inputs
and obtain method outputs.

Let us look at another method of the String class. When you apply the toUpperCase
method to a String object, the method creates another String object that contains the
characters of the original string, with lowercase letters converted to uppercase. For
example, the sequence of statements

String river = "Mississippi";
String bigRiver = river.toUpperCase();

sets bigRiver to the String object "MISSISSIPPI".
When you apply a method to an object, you must make sure that the method is

declared in the appropriate class. For example, it is an error to call

System.out.length(); // This method call is an error

The PrintStream class (to which System.out belongs) has no length method.
Let us summarize. In Java, every object belongs to a class. The class declares the

methods for the objects. For example, the String class declares the length and toUpper-
Case methods (as well as other methods—you will learn about most of them in
Chapter 4). The methods form the public interface of the class, telling you what you
can do with the objects of the class. A class also declares a private implementation,
describing the data inside its objects and the instructions for its methods. Those
details are hidden from the programmers who use objects and call methods.

Figure 5 shows two objects of the String class. Each object stores its own data
(drawn as boxes that contain characters). Both objects support the same set of
methods—the interface that is specified by the String class.

Figure 5 A Representation of Two String Objects

length

toUpperCase

H e l l o ...

Stringg

data =

length

toUpperCase

Stringg

M i s s i ...data =

The public interface
of a class specifies
what you can do
with its objects.
The hidden imple-
mentation describes
how these actions
are carried out.

2.5 Method Parameters and Return Values 41

Occasionally, a class declares two methods with the same name and different
parameter types. For example, the PrintStream class declares a second method, also
called println, as

public void println(int output)

That method is used to print an integer value. We say that the println name is over-
loaded because it refers to more than one method.

9. How can you compute the length of the string "Mississippi"?
10. How can you print out the uppercase version of "Hello, World!"?
11. Is it legal to call river.println()? Why or why not?

Methods are fundamental building blocks of Java programs. A program performs
useful work by calling methods. In this section, we will examine how to provide
inputs into a method, and how to obtain the result of the method.

Most methods require inputs that give details about the work that the method
needs to do. For example, the println method has an input: the string that should be
printed. Computer scientists use the technical term parameter for method inputs.
We say that the string greeting is a parameter of the method call

System.out.println(greeting);

Figure 6 illustrates passing of the parameter to the method.
Technically speaking, the greeting parameter is an explicit parameter of the

println method. The object on which you invoke the method is also considered a
parameter of the method call; it is called the implicit parameter. For example,
System.out is the implicit parameter of the method call

System.out.println(greeting);

Some methods require multiple explicit parameters, others don’t require any
explicit parameters at all. An example of the latter is the length method of the String
class (see Figure 7). All the information that the length method requires to do its
job—namely, the character sequence of the string—is stored in the implicit parame-
ter object.

S E L F C H E C K

2.5 Method Parameters and Return Values

Figure 6 Passing a Parameter to the println Method

A parameter is an
input to a method.

The implicit
parameter of a
method call is the
object on which
the method is
invoked. All other
parameters are
explicit parameters.

PrintStream

println

print

10101110

11110110

01101011

00110101

"Hello, World"

42 Chapter 2 Using Objects

The length method differs from the println method in another way: it has an out-
put. We say that the method returns a value, namely the number of characters in the
string. You can store the return value in a variable:

int n = greeting.length();

You can also use the return value as a parameter of another method:
System.out.println(greeting.length());

The method call greeting.length() returns a value—the integer 13. The return value
becomes a parameter of the println method. Figure 8 shows the process.

Not all methods return values. One example is the println method. The println
method interacts with the operating system, causing characters to appear in a win-
dow. But it does not return a value to the code that calls it.

Let us analyze a more complex method call. Here, we will call the replace method
of the String class. The replace method carries out a search-and-replace operation,
similar to that of a word processor. For example, the call

river.replace("issipp", "our")

constructs a new string that is obtained by replacing all occurrences of "issipp" in
"Mississippi" with "our". (In this situation, there was only one replacement.) The
method returns the String object "Missouri". You can save that string in a variable:

river = river.replace("issipp", "our");

Or you can pass it to another method:
System.out.println(river.replace("issipp", "our"));

Figure 7 Invoking the length Method on a String Object

13length

toUpperCase

Stringg

(no parameter)

H e l l o ...

The return value of
a method is a result
that the method has
computed for use
by the code that
called it.

A N I M AT I O N
Parameter Passing

Figure 8 Passing the Result of a Method Call to Another Method

13length

toUpperCase

Stringg

no parameter)

H e l l o ...

PrintStream

println

print

10101110

11110110

01101011

00110101

2.5 Method Parameters and Return Values 43

As Figure 9 shows, this method call has

• one implicit parameter: the string "Mississippi"
• two explicit parameters: the strings "issipp" and "our"
• a return value: the string "Missouri"

When a method is declared in a class, the declaration specifies the types of the
explicit parameters and the return value. For example, the String class declares the
length method as

public int length()

That is, there are no explicit parameters, and the return value has the type int. (For
now, all the methods that we consider will be “public” methods—see Chapter 10
for more restricted methods.)

The type of the implicit parameter is the class that declares the method—String in
our case. It is not mentioned in the method declaration—hence the term “implicit”.

The replace method is declared as
public String replace(String target, String replacement)

To call the replace method, you supply two explicit parameters, target and replace-
ment, which both have type String. The returned value is another string.

When a method returns no value, the return type is declared with the reserved
word void. For example, the PrintStream class declares the println method as

public void println(String output)

12. What are the implicit parameters, explicit parameters, and return values in the
method call river.length()?

13. What is the result of the call river.replace("p", "s")?

14. What is the result of the call greeting.replace("World", "Dave").length()?

15. How is the toUpperCase method declared in the String class?

Figure 9 Calling the replace Method

length

toUpperCase

replace

Stringg

M i s s i ...

"issipp"

"our"

"Missouri"

S E L F C H E C K

44 Chapter 2 Using Objects

Most Java programs need to work on a variety of objects. In this section, you will
see how to construct new objects. This allows you to go beyond String objects and
the System.out object.

To learn about object construction, let us turn to another class: the Rectangle class
in the Java class library. Objects of type Rectangle describe rectangular shapes—see
Figure 10. These objects are useful for a variety of purposes. You can assemble rect-
angles into bar charts, and you can program simple games by moving rectangles
inside a window.

Note that a Rectangle object isn’t a rectangular shape—it’s an object that contains a
set of numbers. The numbers describe the rectangle (see Figure 11). Each rectangle is
described by the x- and y-coordinates of its top-left corner, its width, and its height.

It is very important that you understand this distinction. In the computer, a
Rectangle object is a block of memory that holds four numbers, for example x = 5,
y = 10, width = 20, height = 30. In the imagination of the programmer who uses a
Rectangle object, the object describes a geometric figure.

To make a new rectangle, you need to specify the x, y, width, and height values.
Then invoke the new operator, specifying the name of the class and the parameters
that are required for constructing a new object. For example, you can make a new
rectangle with its top-left corner at (5, 10), width 20, and height 30 as follows:

new Rectangle(5, 10, 20, 30)

Here is what happens in detail:

1. The new operator makes a Rectangle object.
2. It uses the parameters (in this case, 5, 10, 20, and 30) to initialize the data of the

object.
3. It returns the object.

2.6 Constructing Objects

Figure 10
Rectangular Shapes

Use the new
operator, followed
by a class name
and parameters,
to construct
new objects.

Figure 11 Rectangle Objects

x =

Rectangle

y =

width =

height =

5

10

20

g

30

x =

Rectangle

y =

width =

height =

45

0

30

g

20

x =

Rectangle

y =

width =

height =

35

30

20

g

20

2.6 Constructing Objects 45

The process of creating a new object is called construction. The four values 5, 10,
20, and 30 are called the construction parameters.

The new expression yields an object, and you need to store the object if you want
to use it later. Usually you assign the output of the new operator to a variable. For
example,

Rectangle box = new Rectangle(5, 10, 20, 30);

Some classes let you construct objects in multiple ways. For example, you can also
obtain a Rectangle object by supplying no construction parameters at all (but you
must still supply the parentheses):

new Rectangle()

This expression constructs a (rather useless) rectangle with its top-left corner at the
origin (0, 0), width 0, and height 0.

16. How do you construct a square with center (100, 100) and side length 20?
17. The getWidth method returns the width of a Rectangle object. What does the fol-

lowing statement print?
System.out.println(new Rectangle().getWidth());

Trying to Invoke a Constructor Like a Method

Constructors are not methods. You can only use a constructor with the new operator, not to
reinitialize an existing object:

box.Rectangle(20, 35, 20, 30); // Error—can’t reinitialize object

The remedy is simple: Make a new object and overwrite the current one stored by box.

box = new Rectangle(20, 35, 20, 30); // OK

Syntax 2.3 Object Construction

new ClassName(parameters)Syntax

Example

Rectangle box = new Rectangle(5, 10, 20, 30);

System.out.println(new Rectangle());

Construction parameters

Usually, you save

the constructed object

in a variable.

The new expression yields an object.

Supply the parentheses even when
there are no parameters.

You can also

pass the constructed object

to a method.

S E L F C H E C K

Common Error 2.2

46 Chapter 2 Using Objects

In this section we introduce a useful terminology for the methods of a class. A
method that accesses an object and returns some information about it, without
changing the object, is called an accessor method. In contrast, a method whose pur-
pose is to modify the internal data of an object is called a mutator method.

For example, the length method of the String class is an accessor method. It
returns information about a string, namely its length. But it doesn’t modify the
string at all when counting the characters.

The Rectangle class has a number of accessor methods. The getX, getY, getWidth, and
getHeight methods return the x- and y-coordinates of the top-left corner, the width,
and the height values. For example,

double width = box.getWidth();

Now let us consider a mutator method. Programs that manipulate rectangles fre-
quently need to move them around, for example, to display animations. The
Rectangle class has a method for that purpose, called translate. (Mathematicians use
the term “translation” for a rigid motion of the plane.) This method moves a rectan-
gle by a certain distance in the x- and y-directions. The method call,

box.translate(15, 25);

moves the rectangle by 15 units in the x-direction and 25 units in the y-direction
(see Figure 12). Moving a rectangle doesn’t change its width or height, but it
changes the top-left corner. Afterward, the rectangle that had its top-left corner at
(5, 10) now has it at (20, 35).

This method is a mutator because it modifies the implicit parameter object.

18. Is the toUpperCase method of the String class an accessor or a mutator?

19. Which call to translate is needed to move the rectangle declared by Rectangle
box = new Rectangle(5, 10, 20, 30) so that its top-left corner is the origin (0, 0)?

2.7 Accessor and Mutator Methods

Figure 12
Using the translate Method
to Move a Rectangle

An accessor method
does not change the
internal data of its
implicit parameter.
A mutator method
changes the data.

S E L F C H E C K

2.8 The API Documentation 47

The classes and methods of the Java library are listed in the API documentation.
The API is the “application programming interface”. A programmer who uses the
Java classes to put together a computer program (or application) is an application
programmer. That’s you. In contrast, the programmers who designed and imple-
mented the library classes such as PrintStream and Rectangle are system programmers.

You can find the API documentation on the Web. Point your web browser to
http://java.sun.com/javase/7/docs/api/index.html. Appendix D contains an abbrevi-
ated version of the API documentation that may be easier to use at first. It is fine if
you rely on the abbreviated documentation for your first programs, but you should
eventually move on to the real thing.

The API documentation documents all classes in the Java library—there are
thousands of them (see Figure 13). Most of the classes are rather specialized, and
only a few are of interest to the beginning programmer.

Locate the Rectangle link in the left pane, preferably by using the search function
of your browser. Click on the link, and the right pane shows all the features of the
Rectangle class (see Figure 14).

2.8 The API Documentation

Figure 13 The API Documentation of the Standard Java Library

Figure 14 The API Documentation for the Rectangle Class

The API (Application
Programming
Interface)
documentation
lists the classes
and methods of
the Java library.

48 Chapter 2 Using Objects

The API documentation for each class starts out with a section that describes the
purpose of the class. Then come summary tables for the constructors and methods
(see Figure 15). Click on the link of a method to get a detailed description (see
Figure 16).

The detailed description of a method shows

• The action that the method carries out.
• The parameters that the method receives.
• The value that it returns (or the reserved word void if the method doesn’t return

any value).
As you can see, the Rectangle class has quite a few methods. While occasionally
intimidating for the beginning programmer, this is a strength of the standard library.
If you ever need to do a computation involving rectangles, chances are that there is
a method that does all the work for you.

For example, suppose you want to change the width or height of a rectangle. If
you browse through the API documentation, you will find a setSize method with
the description “Sets the size of this Rectangle to the specified width and height.”
The method has two parameters, described as

• width - the new width for this Rectangle
• height - the new height for this Rectangle

Now let us use this information to change the box object so that it is a square of side
length 40. The name of the method is setSize, and we supply two parameters: the
new width and height:

box.setSize(40, 40);

Figure 15 The Method Summary for the Rectangle Class

Figure 16 The API Documentation of the translate Method

2.8 The API Documentation 49

The API documentation contains another important piece of information about
each class. The classes in the standard library are organized into packages. A pack-
age is a collection of classes with a related purpose. The Rectangle class belongs to
the package java.awt (where awt is an abbreviation for “Abstract Windowing Tool-
kit”), which contains many classes for drawing windows and graphical shapes. You
can see the package name java.awt in Figure 14, just above the class name.

To use the Rectangle class from the java.awt package, you must import the pack-
age. Simply place the following line at the top of your program:

import java.awt.Rectangle;

Why don’t you have to import the System and String classes? Because the System and
String classes are in the java.lang package, and all classes from this package are auto-
matically imported, so you never need to import them yourself.

20. Look at the API documentation of the String class. Which method would you
use to obtain the string "hello, world!" from the string "Hello, World!"?

21. In the API documentation of the String class, look at the description of the trim
method. What is the result of applying trim to the string " Hello, Space ! "?
(Note the spaces in the string.)

22. The Random class is declared in the java.util package. What do you need to do in
order to use that class in your program?

Don’t Memorize—Use Online Help

The Java library has thousands of classes and methods. It is neither necessary nor useful try-
ing to memorize them. Instead, you should become familiar with using the API documenta-
tion. Because you will need to use the API documentation all the time, it is best to download
and install it onto your computer, particularly if your computer is not always connected to
the Internet. You can download the documentation from http://java.sun.com/javase/
downloads/index.html.

Syntax 2.4 Importing a Class from a Package

import packageName.ClassName;Syntax

Example

import java.awt.Rectangle;

Class name

You can look up the package name

in the API documentation.

Package name

Import statements

must be at the top of

the source file.

Java classes are
grouped into
packages. Use the
import statement
to use classes that
are declared in
other packages.

S E L F C H E C K

Productivity Hint 2.1

50 Chapter 2 Using Objects Testing Track

In this section, we discuss the steps that are necessary to implement a test program.
The purpose of a test program is to verify that one or more methods have been
implemented correctly. A test program calls methods and checks that they return
the expected results. Writing test programs is a very important skill.

In this section, we will develop a simple program that tests a method in the Rect-
angle class. The program performs the following steps:

1. Provide a tester class.
2. Supply a main method.
3. Inside the main method, construct one or more objects.
4. Apply methods to the objects.
5. Display the results of the method calls.
6. Display the values that you expect to get.

Our sample test program tests the behavior of the translate method. Here are the
key steps (which have been placed inside the main method of the MoveTester class).

Rectangle box = new Rectangle(5, 10, 20, 30);

// Move the rectangle
box.translate(15, 25);

// Print information about the moved rectangle
System.out.print("x: ");
System.out.println(box.getX());
System.out.println("Expected: 20");

We print the value that is returned by the getX method, and then we print a message
that describes the value we expect to see.

This is a very important step. You want to spend some time thinking about the
expected result before you run a test program. This thought process will help you
understand how your program should behave, and it can help you track down
errors at an early stage. Finding and fixing errors early is a very effective strategy
that can save you a great deal of time.

In our case, the rectangle has been constructed with the top-left corner at (5, 10).
The x-direction is moved by 15, so we expect an x-value of 5 + 15 = 20 after the
move.

Here is a complete program that tests the moving of a rectangle.

ch02/rectangle/MoveTester.java

2.9 Implementing a Test Program

A test program
verifies that methods
behave as expected.

Determining the
expected result
in advance is an
important part
of testing.

1 import java.awt.Rectangle;
2
3 public class MoveTester
4 {
5 public static void main(String[] args)
6 {
7 Rectangle box = new Rectangle(5, 10, 20, 30);
8
9 // Move the rectangle

10 box.translate(15, 25);
11

Testing Track 2.9 Implementing a Test Program 51

Program Run

23. Suppose we had called box.translate(25, 15) instead of box.translate(15, 25).
What are the expected outputs?

24. Why doesn’t the MoveTester program need to print the width and height of the
rectangle?

Testing Classes in an Interactive Environment

Special Topic 2.1 describes how classes can be tested easily in the BlueJ environment, with-
out having to write a separate tester class.

How Many Days Have You Been Alive?

In this Worked Example, you explore the API of a class Day that represents
a calendar day, and you write a program that computes how many days
have elapsed since the day you were born.

Working with Pictures

In this Worked Example, you use the API of a Picture class to
edit photos.

12 // Print information about the moved rectangle
13 System.out.print("x: ");
14 System.out.println(box.getX());
15 System.out.println("Expected: 20");
16
17 System.out.print("y: ");
18 System.out.println(box.getY());
19 System.out.println("Expected: 35");
20 }
21 }

x: 20
Expected: 20
y: 35
Expected: 35

S E L F C H E C K

Special Topic 2.1

Worked
Example 2.1

Worked
Example 2.2

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

52 Chapter 2 Using Objects

In Java, a variable whose type is a class does not actually hold an object. It merely
holds the memory location of an object. The object itself is stored elsewhere—see
Figure 17.

There is a reason for this behavior. Objects can be very large. It is more efficient
to store only the memory location instead of the entire object.

We use the technical term object reference to denote the memory location of an
object. When a variable contains the memory location of an object, we say that it
refers to an object. For example, after the statement

Rectangle box = new Rectangle(5, 10, 20, 30);

the variable box refers to the Rectangle object that the new operator constructed. Tech-
nically speaking, the new operator returned a reference to the new object, and that
reference is stored in the box variable.

It is very important that you remember that the box variable does not contain the
object. It refers to the object. Two object variables can refer to the same object:

Rectangle box2 = box;

Now you can access the same Rectangle object both as box and as box2, as shown in
Figure 18.

However, number variables actually store numbers. When you declare
int luckyNumber = 13;

then the luckyNumber variable holds the number 13, not a reference to the number
(see Figure 19). The reason is again efficiency. Because numbers require little stor-
age, it is more efficient to store them directly in a variable.

You can see the difference between number variables and object variables when you
make a copy of a variable. When you copy a number, the original and the copy of
the number are independent values. But when you copy an object reference, both
the original and the copy are references to the same object.

Consider the following code, which copies a number and then changes the copy
(see Figure 20):

2.10 Object References

An object reference
describes the
location of an object.

Multiple object
variables can contain
references to the
same object.

Figure 17
An Object Variable Containing an Object Reference

Figure 18
Two Object Variables Referring to the Same Object

box =

x =

Rectangle

y =

width =

height =

5

10

20

g

30

box =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

g

30

Figure 19
A Number Variable Stores a Number luckyNumber = 13

Number variables
store numbers.
Object variables
store references.

2.10 Object References 53

int luckyNumber = 13;
int luckyNumber2 = luckyNumber;
luckyNumber2 = 12;

Now the variable luckyNumber contains the value 13, and luckyNumber2 contains 12.
Now consider the seemingly analogous code with Rectangle objects (see Figure 21).
Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Figure 20
Copying Numbers

luckyNumber = 13

luckyNumber2 = 13

luckyNumber = 131

2

luckyNumber = 13

luckyNumber2 = 12

3

1
2

3

A N I M AT I O N
Object References

1
2

3

Figure 21
Copying Object References

box =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

g

30

box =

box2 =
x =

Rectangle

y =

width =

height =

20

35

20

g

30

box =

x =

Rectangle

y =

width =

height =

5

10

20

g

30

1

2

3

54 Chapter 2 Using Objects Graphics Track

Since box and box2 refer to the same rectangle after step , both variables refer to
the moved rectangle after the call to the translate method.

You need not worry too much about the difference between objects and object
references. Much of the time, you will have the correct intuition when you think of
“the object box” rather than the technically more accurate “the object reference
stored in box”. The difference between objects and object references only becomes
apparent when you have multiple variables that refer to the same object.

25. What is the effect of the assignment String greeting2 = greeting?
26. After calling greeting2.toUpperCase(), what are the contents of greeting and

greeting2?

Mainframes—When Dinosaurs Ruled the Earth

Random Fact 2.1 describes the history of mainframe computers, extremely expensive com-
puters that filled entire rooms and were the mainstay of computing from 1950–1980.

This is the first of several optional sections that teach you how to write graphical
applications: applications that display drawings inside a window. Graphical applica-
tions look more attractive than the console applications that show plain text in a
console window.

2

S E L F C H E C K

Random Fact 2.1

2.11 Graphical Applications and
Frame Windows

Figure 22
A Frame Window

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

Graphics Track 2.11 Graphical Applications and Frame Windows 55

A graphical application shows information inside a frame: a window with a title
bar, as shown in Figure 22. In this section, you will learn how to display a frame. In
Section 3.9, you will learn how to create a drawing inside the frame.

To show a frame, carry out the following steps:

1. Construct an object of the JFrame class:
JFrame frame = new JFrame();

2. Set the size of the frame:
frame.setSize(300, 400);

This frame will be 300 pixels wide and 400 pixels tall. If you omit this step the
frame will be 0 by 0 pixels, and you won’t be able to see it. (Pixels are the tiny
dots from which digital images are composed.)

3. If you’d like, set the title of the frame:
frame.setTitle("An Empty Frame");

If you omit this step, the title bar is simply left blank.

4. Set the “default close operation”:
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

When the user closes the frame, the program automatically exits. Don’t omit
this step. If you do, the program continues running even after the frame is
closed.

5. Make the frame visible:
frame.setVisible(true);

The simple program below shows all of these steps. It produces the empty frame
shown in Figure 22.

The JFrame class is a part of the javax.swing package. Swing is the nickname for the
graphical user interface library in Java. The “x” in javax denotes the fact that Swing
started out as a Java extension before it was added to the standard library.

We will go into much greater detail about Swing programming in Chapters 3, 9,
10, and 18. For now, consider this program to be the essential plumbing that is
required to show a frame.

ch02/emptyframe/EmptyFrameViewer.java

To show a frame,
construct a JFrame
object, set its size,
and make it visible.

1 import javax.swing.JFrame;
2
3 public class EmptyFrameViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8
9 frame.setSize(300, 400);

10 frame.setTitle("An Empty Frame");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12
13 frame.setVisible(true);
14 }
15 }

56 Chapter 2 Using Objects Graphics Track

27. How do you display a square frame with a title bar that reads “Hello, World!”?
28. How can a program display two frames at once?

This section continues the optional graphics track. You will learn how to make
shapes appear inside a frame window. The first drawing will be exceedingly modest:
just two rectangles (see Figure 23). You’ll soon see how to produce more interesting
drawings. The purpose of this example is to show you the basic outline of a pro-
gram that creates a drawing. You cannot draw directly onto a frame. Whenever you
want to show anything inside a frame, be it a button or a drawing, you have to
construct a component object and add it to the frame. In the Swing toolkit, the
JComponent class represents a blank component.

Since we don’t want to add a blank component, we have to modify the JComponent
class and specify how the component should be painted. The solution is to declare a
new class that extends the JComponent class. You will learn about the process of
extending classes in Chapter 10. For now, simply use the following code as a
template.

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

Drawing instructions
 }
}

The extends reserved word indicates that our component class, RectangleComponent,
can be used like a JComponent. However, the RectangleComponent class will be different
from the plain JComponent class in one respect: Its paintComponent method will contain
instructions to draw the rectangles.

S E L F C H E C K

2.12 Drawing on a Component

Figure 23
Drawing Rectangles

In order to display a
drawing in a frame,
declare a class that
extends the
JComponent class.

Graphics Track 2.12 Drawing on a Component 57

When the component is shown for the first time, the paintComponent method is
called automatically. The method is also called when the window is resized, or when
it is shown again after it was hidden.

The paintComponent method receives an object of type Graphics. The Graphics object
stores the graphics state—the current color, font, and so on, that are used for
drawing operations. However, the Graphics class is primitive. When programmers
clamored for a more object-oriented approach for drawing graphics, the designers
of Java created the Graphics2D class, which extends the Graphics class. Whenever the
Swing toolkit calls the paintComponent method, it actually passes a parameter of type
Graphics2D. Because we want to use the more sophisticated methods to draw two-
dimensional graphics objects, we need to use the Graphics2D class. This is accom-
plished by using a cast:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 // Recover Graphics2D

Graphics2D g2 = (Graphics2D) g;
 . . .
 }
}

We cover the concepts of extending classes and of casting in Chapter 10. For now,
you should simply include the cast at the top of your paintComponent methods.

Now you are ready to draw shapes. The draw method of the Graphics2D class can
draw shapes, such as rectangles, ellipses, line segments, polygons, and arcs. Here we
draw a rectangle:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 . . .
 Rectangle box = new Rectangle(5, 10, 20, 30);

g2.draw(box);
 . . .
 }
}

Following is the source code for the RectangleComponent class. Note that the
paintComponent method of the RectangleComponent class draws two rectangles.

As you can see from the import statements, the Graphics and Graphics2D classes are
part of the java.awt package.

ch02/rectangles/RectangleComponent.java

Place drawing
instructions inside
the paintComponent
method. That
method is called
whenever the
component needs to
be repainted.

Use a cast to recover
the Graphics2D object
from the Graphics
parameter of the
paintComponent
method.

1 import java.awt.Graphics;
2 import java.awt.Graphics2D;
3 import java.awt.Rectangle;
4 import javax.swing.JComponent;
5
6 /*
7 A component that draws two rectangles.
8 */
9 public class RectangleComponent extends JComponent

10 {
11 public void paintComponent(Graphics g)
12 {

58 Chapter 2 Using Objects Graphics Track

In order to see the drawing, one task remains. You need to display the frame into
which you added a component object. Follow these steps:

1. Construct a frame as described in the preceding section.
2. Construct an object of your component class:

RectangleComponent component = new RectangleComponent();

3. Add the component to the frame:
frame.add(component);

4. Make the frame visible, as described in the preceding section.

The following listing shows the complete process.

ch02/rectangles/RectangleViewer.java

Note that the rectangle drawing program consists of two classes:

• The RectangleComponent class, whose paintComponent method produces the drawing.
• The RectangleViewer class, whose main method constructs a frame and a

RectangleComponent, adds the component to the frame, and makes the frame visible.

13 // Recover Graphics2D
14 Graphics2D g2 = (Graphics2D) g;
15
16 // Construct a rectangle and draw it
17 Rectangle box = new Rectangle(5, 10, 20, 30);
18 g2.draw(box);
19
20 // Move rectangle 15 units to the right and 25 units down
21 box.translate(15, 25);
22
23 // Draw moved rectangle
24 g2.draw(box);
25 }
26 }

1 import javax.swing.JFrame;
2
3 public class RectangleViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8
9 frame.setSize(300, 400);

10 frame.setTitle("Two rectangles");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12
13 RectangleComponent component = new RectangleComponent();
14 frame.add(component);
15
16 frame.setVisible(true);
17 }
18 }

Graphics Track 2.13 Ellipses, Lines, Text, and Color 59

29. How do you modify the program to draw two squares?
30. How do you modify the program to draw one rectangle and one square?
31. What happens if you call g.draw(box) instead of g2.draw(box)?

Applets

Special Topic 2.2 shows how you can implement programs that show drawings as applets,
programs that run inside a web browser.

In Section 2.12 you learned how to write a program that draws rectangles. In this
section you will learn how to draw other shapes: ellipses and lines. With these
graphical elements, you can draw quite a few interesting pictures.

To draw an ellipse, you specify its bounding box (see Figure 24) in the same way
that you would specify a rectangle, namely by the x- and y-coordinates of the top-
left corner and the width and height of the box.

However, there is no simple Ellipse class that you can use. Instead, you must use
one of the two classes Ellipse2D.Float and Ellipse2D.Double, depending on whether
you want to store the ellipse coordinates as single- or double-precision floating-
point values. Because the latter are more convenient to use in Java, we will always
use the Ellipse2D.Double class. Here is how you construct an ellipse:

Ellipse2D.Double ellipse = new Ellipse2D.Double(x, y, width, height);

S E L F C H E C K

Special Topic 2.2

2.13 Ellipses, Lines, Text, and Color

Figure 24 An Ellipse and Its Bounding Box

2.13.1 Ellipses and Circles

(x, y)

H
ei

gh
t

Width

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

60 Chapter 2 Using Objects Graphics Track

The class name Ellipse2D.Double looks different from the class names that you have
encountered up to now. It consists of two class names Ellipse2D and Double separated
by a period (.). This indicates that Ellipse2D.Double is a so-called inner class inside
Ellipse2D. When constructing and using ellipses, you don’t actually need to worry
about the fact that Ellipse2D.Double is an inner class—just think of it as a class with a
long name. However, in the import statement at the top of your program, you must
be careful that you import only the outer class:

import java.awt.geom.Ellipse2D;

Drawing an ellipse is easy: Use exactly the same draw method of the Graphics2D class
that you used for drawing rectangles.

g2.draw(ellipse);

To draw a circle, simply set the width and height to the same values:
Ellipse2D.Double circle = new Ellipse2D.Double(x, y, diameter, diameter);
g2.draw(circle);

Notice that (x, y) is the top-left corner of the bounding box, not the center of the
circle.

To draw a line, use an object of the Line2D.Double class. A line is constructed by spec-
ifying its two end points. You can do this in two ways. Simply give the x- and y-
coordinates of both end points:

Line2D.Double segment = new Line2D.Double(x1, y1, x2, y2);

Or specify each end point as an object of the Point2D.Double class:
Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);

Line2D.Double segment = new Line2D.Double(from, to);

The second option is more object-oriented and is often more useful, particularly if
the point objects can be reused elsewhere in the same drawing.

You often want to put text inside a drawing, for example, to label some of the parts.
Use the drawString method of the Graphics2D class to draw a string anywhere in a
window. You must specify the string and the x- and y-coordinates of the basepoint
of the first character in the string (see Figure 25). For example,

g2.drawString("Message", 50, 100);

The
Ellipse2D.Double
and Line2D.Double
classes describe
graphical shapes.

2.13.2 Lines

2.13.3 Drawing Text

The drawString
method draws a
string, starting at
its basepoint.

Figure 25
Basepoint
and Baseline

Baseline

Basepoint

Graphics Track 2.13 Ellipses, Lines, Text, and Color 61

When you first start drawing, all shapes and strings are drawn with a black pen. To
change the color, you need to supply an object of type Color. Java uses the RGB
color model. That is, you specify a color by the amounts of the primary colors—
red, green, and blue—that make up the color. The amounts are given as integers
between 0 (primary color not present) and 255 (maximum amount present). For
example,

Color magenta = new Color(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding
a bright purple color called magenta.

For your convenience, a variety of colors have been declared in the Color class.
Table 4 shows those colors and their RGB values. For example, Color.PINK has been
declared to be the same color as new Color(255, 175, 175).
To draw a shape in a different color, first set the color of the Graphics2D object, then
call the draw method:

g2.setColor(Color.RED);
g2.draw(circle); // Draws the shape in red

If you want to color the inside of the shape, use the fill method instead of the draw
method. For example,

g2.fill(circle);

fills the inside of the circle with the current color.

2.13.4 Colors

When you set a new
color in the graphics
context, it is used for
subsequent drawing
operations.

Table 4 Predefined Colors

 Color RGB Value

Color.BLACK 0, 0, 0

Color.BLUE 0, 0, 255

Color.CYAN 0, 255, 255

Color.GRAY 128, 128, 128

Color.DARKGRAY 64, 64, 64

Color.LIGHTGRAY 192, 192, 192

Color.GREEN 0, 255, 0

Color.MAGENTA 255, 0, 255

Color.ORANGE 255, 200, 0

Color.PINK 255, 175, 175

Color.RED 255, 0, 0

Color.WHITE 255, 255, 255

Color.YELLOW 255, 255, 0

62 Chapter 2 Using Objects Graphics Track

The following program puts all these shapes to work, creating a simple drawing
(see Figure 26).

ch02/face/FaceComponent.java

Figure 26
An Alien Face

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.awt.Graphics2D;
4 import java.awt.Rectangle;
5 import java.awt.geom.Ellipse2D;
6 import java.awt.geom.Line2D;
7 import javax.swing.JComponent;
8
9 /*

10 A component that draws an alien face.
11 */
12 public class FaceComponent extends JComponent
13 {
14 public void paintComponent(Graphics g)
15 {
16 // Recover Graphics2D
17 Graphics2D g2 = (Graphics2D) g;
18
19 // Draw the head
20 Ellipse2D.Double head = new Ellipse2D.Double(5, 10, 100, 150);
21 g2.draw(head);
22
23 // Draw the eyes
24 g2.setColor(Color.GREEN);
25 Rectangle eye = new Rectangle(25, 70, 15, 15);
26 g2.fill(eye);
27 eye.translate(50, 0);
28 g2.fill(eye);
29
30 // Draw the mouth
31 Line2D.Double mouth = new Line2D.Double(30, 110, 80, 110);
32 g2.setColor(Color.RED);
33 g2.draw(mouth);
34
35 // Draw the greeting
36 g2.setColor(Color.BLUE);
37 g2.drawString("Hello, World!", 5, 175);
38 }
39 }

Graphics Track 2.13 Ellipses, Lines, Text, and Color 63

ch02/face/FaceViewer.java

32. Give instructions to draw a circle with center (100, 100) and radius 25.

33. Give instructions to draw a letter “V” by drawing two line segments.

34. Give instructions to draw a string consisting of the letter “V”.

35. What are the RGB color values of Color.BLUE?

36. How do you draw a yellow square on a red background?

The Evolution of the Internet

Random Fact 2.2 traces the evolution of the Internet from its humble beginnings as a
research network through its explosive growth that started when graduate student Marc
Andreesen released the first web browser.

Use integers and floating-point numbers.

• A type specifies a set of values and the operations that can be carried out with the
values.

• The double type denotes floating-point numbers that can have fractional parts.
• In Java, the number types are primitive types, and numbers are not objects.
• Numbers can be combined by arithmetic operators such as +, -, and *.

1 import javax.swing.JFrame;
2
3 public class FaceViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8 frame.setSize(150, 250);
9 frame.setTitle("An Alien Face");

10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11
12 FaceComponent component = new FaceComponent();
13 frame.add(component);
14
15 frame.setVisible(true);
16 }
17 }

S E L F C H E C K

Random Fact 2.2

Summary of Learning Objectives

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

64 Chapter 2 Using Objects

Write variable declarations in Java.

• You use variables to store values that you want to use at a later time. A variable has
a type, a name, and a value.

• Identifiers for variables, methods, and classes are composed of letters, digits, and
the underscore character.

• By convention, variable names should start with a lowercase letter.

Explain the processes of variable assignment and initialization.

• Use the assignment operator (=) to change the value of a variable.
• All variables must be initialized before you access them.

Declare objects, classes, and methods.

• Objects are entities in your program that you manipulate by calling methods.
• A method is a sequence of instructions that accesses the data of an object.
• A class declares the methods that you can apply to its objects.
• The public interface of a class specifies what you can do with its objects. The hidden

implementation describes how these actions are carried out.

Recognize implicit parameters, explicit parameters, and return values of methods.

• A parameter is an input to a method.
• The implicit parameter of a method call is the object on which the method is

invoked. All other parameters are explicit parameters.
• The return value of a method is a result that the method has computed for use by

the code that called it.

 Use constructors to construct new objects.

• Use the new operator, followed by a class name and parameters, to construct new
objects.

Classify methods as accessor and mutator methods.

• An accessor method does not change the internal data of its implicit parameter. A
mutator method changes the data.

Use the API documentation for finding method descriptions and packages.

• The API (Application Programming Interface) documentation lists the classes and
methods of the Java library.

• Java classes are grouped into packages. Use the import statement to use classes that
are declared in other packages.

Write programs that test behavior of methods.

• A test program verifies that methods behave as expected.
• Determining the expected result in advance is an important part of testing.

Describe how multiple object references can refer to the same object.

• An object reference describes the location of an object.
• Multiple object variables can contain references to the same object.
• Number variables store numbers. Object variables store references.

Media Resources 65

Write programs that display frame windows.

• To show a frame, construct a JFrame object, set its size, and make it visible.
• In order to display a drawing in a frame, declare a class that extends the JComponent

class.
• Place drawing instructions inside the paintComponent method. That method is called

whenever the component needs to be repainted.
• Use a cast to recover the Graphics2D object from the Graphics parameter of the

paintComponent method.

Use the Java API for drawing simple figures.

• The Ellipse2D.Double and Line2D.Double classes describe graphical shapes.
• The drawString method draws a string, starting at its basepoint.
• When you set a new color in the graphics context, it is used for subsequent drawing

operations.

• Worked Example How Many Days Have You Been Alive?
• Worked Example Working with Pictures
• Lab Exercises

Animation Variable Initialization and Assignment
Animation Parameter Passing
Animation Object References
Practice Quiz
Code Completion Exercises

Classes, Objects, and Methods Introduced in this Chapter
java.awt.Color
java.awt.Component
 getHeight
 getWidth
 setSize
 setVisible
java.awt.Frame
 setTitle
java.awt.geom.Ellipse2D.Double
java.awt.geom.Line2D.Double
java.awt.geom.Point2D.Double
java.awt.Graphics
 setColor
java.awt.Graphics2D
 draw
 drawString
 fill

java.awt.Rectangle
 getX
 getY
 getHeight
 getWidth
 setSize
 translate
java.lang.String
 length
 replace
 toLowerCase
 toUpperCase
javax.swing.JComponent
 paintComponent
javax.swing.JFrame
 setDefaultCloseOperation

Media Resources

www.wiley.com/
college/
horstmann

www.wiley.com/college/horstmann
www.wiley.com/college/horstmann
www.wiley.com/college/horstmann

66 Chapter 2 Using Objects

R2.1 Explain the difference between an object and an object reference.

R2.2 Explain the difference between an object and an object variable.

R2.3 Explain the difference between an object and a class.

R2.4 Give the Java code for constructing an object of class Rectangle, and for declaring an
object variable of class Rectangle.

R2.5 Explain the difference between the = symbol in Java and in mathematics.

R2.6 Give Java code for objects with the following descriptions:
a. A rectangle with center (100, 100) and all side lengths equal to 50
b. A string with the contents “Hello, Dave”

Create objects, not object variables.

R2.7 Repeat Exercise R2.6, but now declare object variables that are initialized with the
required objects.

R2.8 Write a Java statement to initialize a variable square with a rectangle object whose
top left corner is (10, 20) and whose sides all have length 40. Then write a statement
that replaces square with a rectangle of the same size and top left corner (20, 20).

R2.9 Write Java statements that initialize two variables square1 and square2 to refer to the
same square with center (20, 20) and side length 40.

R2.10 Write Java statements that initialize a string message with "Hello" and then change it
to "HELLO". Use the toUpperCase method.

R2.11 Write Java statements that initialize a string message with "Hello" and then change it
to "hello". Use the replace method.

R2.12 Find the errors in the following statements:
a. Rectangle r = (5, 10, 15, 20);

b. double width = Rectangle(5, 10, 15, 20).getWidth();
c. Rectangle r;

r.translate(15, 25);

d. r = new Rectangle();
r.translate("far, far away!");

R2.13 Name two accessor methods and two mutator methods of the Rectangle class.

R2.14 Look into the API documentation of the Rectangle class and locate the method
void add(int newx, int newy)

Read through the method documentation. Then determine the result of the follow-
ing statements:

Rectangle box = new Rectangle(5, 10, 20, 30);
box.add(0, 0);

If you are not sure, write a small test program.

R2.15 What is the difference between a console application and a graphical application?

Review Exercises

G

Programming Exercises 67

R2.16 Who calls the paintComponent method of a component? When does the call to the
paintComponent method occur?

R2.17 Why does the parameter of the paintComponent method have type Graphics and not
Graphics2D?

R2.18 What is the purpose of a graphics context?

R2.19 Why are separate viewer and component classes used for graphical programs?

R2.20 How do you specify a text color?

P2.1 Write an AreaTester program that constructs a Rectangle object and then computes
and prints its area. Use the getWidth and getHeight methods. Also print the expected
answer.

P2.2 Write a PerimeterTester program that constructs a Rectangle object and then com-
putes and prints its perimeter. Use the getWidth and getHeight methods. Also print
the expected answer.

P2.3 Write a program called FourRectanglePrinter that constructs a Rectangle object, prints
its location by calling System.out.println(box), and then translates and prints it three
more times, so that, if the rectangles were drawn, they would form one large
rectangle:

Your program will not produce a drawing. It will simply print the locations of the
four rectangles.

P2.4 Write a GrowSquarePrinter program that constructs a Rectangle object square repre-
senting a square with top-left corner (100, 100) and side length 50, prints its location
by calling System.out.println(square), applies the translate and grow methods and calls
System.out.println(square) again. The calls to translate and grow should modify the
square so that it has twice the size and the same top-left corner as the original. If the
squares were drawn, they would look like this:

G

G

G

G

G

Programming Exercises

T

T

68 Chapter 2 Using Objects

Your program will not produce a drawing. It will simply print the locations of
square before and after calling the mutator methods.
Look up the description of the grow method in the API documentation.

P2.5 The intersection method computes the intersection of two rectangles—that is, the
rectangle that would be formed by two overlapping rectangles if they were drawn:

You call this method as follows:
Rectangle r3 = r1.intersection(r2);

Write a program IntersectionPrinter that constructs two rectangle objects, prints
them as described in Exercise P2.3, and then prints the rectangle object that
describes the intersection. Then the program should print the result of the intersec-
tion method when the rectangles do not overlap. Add a comment to your program
that explains how you can tell whether the resulting rectangle is empty.

P2.6 In this exercise, you will explore a simple way of visualizing a Rectangle object. The
setBounds method of the JFrame class moves a frame window to a given rectangle.
Complete the following program to visually show the translate method of the Rect-
angle class:

import java.awt.Rectangle;
import javax.swing.JFrame;
import javax.swing.JOptionPane;

public class TranslateDemo
{
 public static void main(String[] args)
 {
 // Construct a frame and show it
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);

 // Your work goes here:
 // Construct a rectangle and set the frame bounds

 JOptionPane.showMessageDialog(frame, "Click OK to continue");

 // Your work goes here:
 // Move the rectangle and set the frame bounds again
 }
}

Intersection

Programming Exercises 69

P2.7 In the Java library, a color is specified by its red, green, and blue components between
0 and 255 (see Table 4 on page 61). Write a program BrighterDemo that constructs a
Color object with red, green, and blue values of 50, 100, and 150. Then apply the
brighter method and print the red, green, and blue values of the resulting color. (You
won’t actually see the color—see the next exercise on how to display the color.)

P2.8 Repeat Exercise P2.7, but place your code into the following class. Then the color
will be displayed.

import java.awt.Color;
import javax.swing.JFrame;

public class BrighterDemo
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(200, 200);
 Color myColor = ...;
 frame.getContentPane().setBackground(myColor);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

P2.9 Repeat Exercise P2.7, but apply the darker method twice to the object Color.RED. Call
your class DarkerDemo.

P2.10 The Random class implements a random number generator, which produces sequences
of numbers that appear to be random. To generate random integers, you construct
an object of the Random class, and then apply the nextInt method. For example, the
call generator.nextInt(6) gives you a random number between 0 and 5.
Write a program DieSimulator that uses the Random class to simulate the cast of a die,
printing a random number between 1 and 6 every time that the program is run.

P2.11 Write a program LotteryPrinter that picks a combination in a lottery. In this lottery,
players can choose 6 numbers (possibly repeated) between 1 and 49. (In a real lot-
tery, repetitions aren’t allowed, but we haven’t yet discussed the programming con-
structs that would be required to deal with that problem.) Your program should
print out a sentence such as “Play this combination—it’ll make you rich!”, followed
by a lottery combination.

P2.12 Write a program ReplaceTester that encodes a string by replacing all letters "i" with
"!" and all letters "s" with "$". Use the replace method. Demonstrate that you can
correctly encode the string "Mississippi". Print both the actual and expected result.

P2.13 Write a program HollePrinter that switches the letters "e" and "o" in a string. Use the
replace method repeatedly. Demonstrate that the string "Hello, World!" turns into
"Holle, Werld!"

P2.14 Write a graphics program that draws your name in red, contained inside a blue rect-
angle. Provide a class NameViewer and a class NameComponent.

P2.15 Write a graphics program that draws 12 strings, one each for the 12 standard colors,
besides Color.WHITE, each in its own color. Provide a class ColorNameViewer and a class
ColorNameComponent.

T

G

G

70 Chapter 2 Using Objects

P2.16 Write a program that draws two solid squares: one in pink and one in purple. Use a
standard color for one of them and a custom color for the other. Provide a class
TwoSquareViewer and a class TwoSquareComponent.

P2.17 Write a program that fills the window with a large ellipse, with a black outline and
filled with your favorite color. The ellipse should touch the window boundaries,
even if the window is resized.

P2.18 Write a program to plot the following face.

Provide a class FaceViewer and a class FaceComponent.

Project 2.1 The GregorianCalendar class describes a point in time, as measured by the Gregorian
calendar, the standard calendar that is commonly used throughout the world today.
You construct a GregorianCalendar object from a year, month, and day of the month,
like this:

GregorianCalendar cal = new GregorianCalendar(); // Today’s date
GregorianCalendar eckertsBirthday = new GregorianCalendar(1919,
 Calendar.APRIL, 9);

Use the values Calendar.JANUARY . . . Calendar.DECEMBER to specify the month.
The add method can be used to add a number of days to a GregorianCalendar object:

cal.add(Calendar.DAY_OF_MONTH, 10); // Now cal is ten days from today

This is a mutator method—it changes the cal object.
The get method can be used to query a given GregorianCalendar object:

int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);
int month = cal.get(Calendar.MONTH);
int year = cal.get(Calendar.YEAR);
int weekday = cal.get(Calendar.DAY_OF_WEEK);
 // 1 is Sunday, 2 is Monday, . . . , 7 is Saturday

Your task is to write a program that prints the following information:
• The date and weekday that is 100 days from today
• The weekday of your birthday
• The date that is 10,000 days from your birthday

Use the birthday of a computer scientist if you don’t want to reveal your own
birthday.

Project 2.2 Run the following program:
import java.awt.Color;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class FrameViewer
{

G

G

G

Programming Projects

Answers to Self-Check Questions 71

 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(200, 200);
 JLabel label = new JLabel("Hello, World!");
 label.setOpaque(true);
 label.setBackground(Color.PINK);
 frame.add(label);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

Modify the program as follows:
• Double the frame size.
• Change the greeting to “Hello, your name!”.
• Change the background color to pale green (see Exercise P2.7).
• For extra credit, add an image of yourself. (Hint: Construct an ImageIcon.)

1. int and String
2. double

3. An int is not an object, and you cannot call a method on it.
4. (x + y) * 0.5

5. Only the first two are legal identifiers.
6. String myName = "John Q. Public";

7. No, the left-hand side of the = operator must be a variable.
8. greeting = "Hello, Nina!";

Note that
String greeting = "Hello, Nina!";

is not the right answer—that statement declares a new variable.
9. river.length() or "Mississippi".length()

10. System.out.println(greeting.toUpperCase());

or
System.out.println("Hello, World!".toUpperCase());

11. It is not legal. The variable river has type String. The println method is not a method
of the String class.

12. The implicit parameter is river. There is no explicit parameter. The return value is
11.

13. "Missississi"

14. 12
15. As public String toUpperCase(), with no explicit parameter and return type String.
16. new Rectangle(90, 90, 20, 20)

17. 0

Answers to Self-Check Questions

72 Chapter 2 Using Objects

18. An accessor—it doesn’t modify the original string but returns a new string with
uppercase letters.

19. box.translate(-5, -10), provided the method is called immediately after storing the
new rectangle into box.

20. toLowerCase

21. "Hello, Space !"—only the leading and trailing spaces are trimmed.
22. Add the statement import java.util.Random; at the top of your program.
23. x: 30, y: 25
24. Because the translate method doesn’t modify the shape of the rectangle.
25. Now greeting and greeting2 both refer to the same String object.
26. Both variables still refer to the same string, and the string has not been modified.

Recall that the toUpperCase method constructs a new string that contains uppercase
characters, leaving the original string unchanged.

27. Modify the EmptyFrameViewer program as follows:
frame.setSize(300, 300);
frame.setTitle("Hello, World!");

28. Construct two JFrame objects, set each of their sizes, and call setVisible(true) on
each of them.

29. Rectangle box = new Rectangle(5, 10, 20, 20);

30. Replace the call to box.translate(15, 25) with
box = new Rectangle(20, 35, 20, 20);

31. The compiler complains that g doesn’t have a draw method.
32. g2.draw(new Ellipse2D.Double(75, 75, 50, 50));

33. Line2D.Double segment1 = new Line2D.Double(0, 0, 10, 30);
g2.draw(segment1);
Line2D.Double segment2 = new Line2D.Double(10, 30, 20, 0);
g2.draw(segment2);

34. g2.drawString("V", 0, 30);

35. 0, 0, 255

36. First fill a big red square, then fill a small yellow square inside:
g2.setColor(Color.RED);
g2.fill(new Rectangle(0, 0, 200, 200));
g2.setColor(Color.YELLOW);
g2.fill(new Rectangle(50, 50, 100, 100));

73

Chapter3
Implementing

Classes

CHAPTER GOALS
• To become familiar with the process of implementing classes

• To be able to implement simple methods

• To understand the purpose and use of constructors

• To understand how to access instance variables and
local variables

• To be able to write javadoc comments

G To implement classes for drawing graphical shapes

In this chapter, you will learn how to implement your own classes.

You will start with a given design that specifies the public interface of the class—that is, the methods

through which programmers can manipulate the objects of the class. Then you will learn the steps to

completing the class. You need to implement the methods, which requires that you find a data

representation for the objects, and supply the instructions for each method. You need to document

your efforts so that other programmers can understand and use your creation. And you need to

provide a tester to validate that your class works correctly.

74

CHAPTER CONTENTS

In Chapter 2, you learned how to use objects from existing classes. In this chapter,
you will start implementing your own classes. We begin with a very simple example
that shows you how objects store their data, and how methods access the data of an
object. You will then learn a systematic process for implementing classes.

Our first example is a class that models a tally counter, a mechanical device that is
used to count people—for example, to find out how many people attend a concert
or board a bus (see Figure 1).

Whenever the operator pushes a button, the counter value advances by one. We
model this operation with a count method. A physical counter has a display to show
the current value. In our simulation, we use a getValue method instead. For example,

Counter tally = new Counter();
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

When implementing the Counter class, we need to determine the data that each
counter object contains. In this simple example, that is very straightforward. Each
counter needs to store a variable that keeps track of how many times the counter
has been advanced.

3.1 Instance Variables

Figure 1 A Tally Counter

3.1 Instance Variables 74
SYNTAX 3.1: Instance Variable Declaration 75

3.2 Encapsulation 76

3.3 Specifying the Public Interface of
a Class 77

SYNTAX 3.2: Class Declaration 80
COMMON ERROR 3.1: Declaring a Constructor

as void 81

3.4 Commenting the Public Interface 81
PRODUCTIVITY HINT 3.1: The javadoc Utility 84

3.5 Providing the Class Implementation 84
SYNTAX 3.3: Method Declaration 86
HOW TO 3.1: Implementing a Class 88

WORKED EXAMPLE 3.1: Making a Simple Menu

3.6T Unit Testing 90

3.7 Local Variables 92
COMMON ERROR 3.2: Forgetting to Initialize Object

References in a Constructor 93

3.8 Implicit Parameters 94
SPECIAL TOPIC 3.1: Calling One Constructor

from Another

RANDOM FACT 3.1: Electronic Voting Machines

3.9G Shape Classes 96
HOW TO 3.2: Drawing Graphical Shapes 100
RANDOM FACT 3.2: Computer Graphics

3.1 Instance Variables 75

An object stores its data in instance variables. An instance of a class is an object
of the class. Thus, an instance variable is a storage location that is present in each
object of the class.

You specify instance variables in the class declaration:
public class Counter
{
 private int value;
 . . .
}

An instance variable declaration consists of the following parts:

• An access specifier (private)
• The type of the instance variable (such as int)
• The name of the instance variable (such as value)

Each object of a class has its own set of instance variables. For example, if concert-
Counter and boardingCounter are two objects of the Counter class, then each object has
its own value variable (see Figure 2). As you will see in Section 3.7, the instance vari-
able value is set to 0 when a Counter object is constructed.

In order to gain a better understanding of how methods affect instance variables,
we will have a quick look at the implementation of the methods of the Counter class.

Syntax 3.1 Instance Variable Declaration

accessSpecifier class ClassName
{

accessSpecifier typeName variableName;
 . . .
}

Syntax

Example public class Counter
{

private int value;
 . . .
}

Each object of this class
has a separate copy of
this instance variable.

Instance variables should

always be private.

Type of the variable

Figure 2 Instance Variables

An object’s instance
variables store
the data required
for executing
its methods.

Each object of a class
has its own set of
instance variables.

concertCounter =

value =

Counter

value =

CounterboardingCounter =

Instance
variables

76 Chapter 3 Implementing Classes

The count method advances the counter value by 1. We will cover the syntax of the
method header in Section 3.3. For now, focus on the body of the method inside the
braces:

public void count()
{
 value = value + 1;
}

Note how the count method accesses the instance variable value. Which instance
variable? The one belonging to the object on which the method is invoked. For
example, consider the call

concertCounter.count();

This call advances the value variable of the concertCounter object.
The getValue method returns the current value:
public int getValue()
{
 return value;
}

The return statement is a special statement that terminates the method call and
returns a result to the method’s caller.

Instance variables are generally declared with the access specifier private. That
specifier means that they can be accessed only by the methods of the same class, not
by any other method. For example, the value variable can be accessed by the count
and getValue methods of the Counter class but not a method of another class. Those
other methods need to use the Counter class methods if they want to manipulate a
counter’s value.

In the next section, we discuss the reason for making instance variables private.

1. Supply the body of a method public void reset() that resets the counter back to
zero.

2. Suppose you use a class Clock with private instance variables hours and minutes.
How can you access these variables in your program?

In the preceding section, you learned that you should hide instance variables by
making them private. Why would a programmer want to hide something? In this
section we discuss the benefits of information hiding.

The strategy of information hiding is not unique to computer programming—it
is used in many engineering disciplines. Consider the electronic control module that
is present in every modern car. It is a device that controls the timing of the spark
plugs and the flow of gasoline into the motor. If you ask your mechanic what is
inside the electronic control module, you will likely get a shrug.

The module is a black box, something that magically does its thing. A car
mechanic would never open the control module—it contains electronic parts that
can only be serviced at the factory. In general, engineers use the term “black box” to
describe any device whose inner workings are hidden. Note that a black box is not

Private instance
variables can only be
accessed by methods
of the same class.

S E L F C H E C K

3.2 Encapsulation

3.3 Specifying the Public Interface of a Class 77

totally mysterious. Its interface with the outside world is well-defined. For exam-
ple, the car mechanic understands how the electronic control module must be con-
nected with sensors and engine parts.

The process of hiding implementation details while publishing an interface is
called encapsulation. In Java, the class construct provides encapsulation. The pub-
lic methods of a class are the interface through which the private implementation is
manipulated.

Why do car manufacturers put black boxes into cars? The black box greatly sim-
plifies the work of the car mechanic. Before engine control modules were invented,
gasoline flow was regulated by a mechanical device called a carburetor, and car
mechanics had to know how to adjust the springs and latches inside. Nowadays, a
mechanic no longer needs to know what is inside the module.

Similarly, a programmer using a class is not burdened by unnecessary detail, as
you know from your own experience. In Chapter 2, you used classes for strings,
streams, and windows without worrying how these classes are implemented.

Encapsulation also helps with diagnosing errors. A large program may consist of
hundreds of classes and thousands of methods, but if there is an error with the
internal data of an object, you only need to look at the methods of one class.
Finally, encapsulation makes it possible to change the implementation of a class
without having to tell the programmers who use the class.

In Chapter 2, you learned to be an object user. You saw how to obtain objects,
how to manipulate them, and how to assemble them into a program. In that chapter,
your treated objects as black boxes. Your role was roughly analogous to the car
mechanic who fixed a car by hooking up a new engine control module.

In this chapter, you will move on to implementing classes. In these sections, your
role is analogous to the car parts manufacturer who puts together an engine control
module from transistors, capacitors, and other electronic parts. You will learn the
necessary Java programming techniques that enable your objects to carry out the
desired behavior.

3. Consider the Counter class. A counter’s value starts at 0 and is advanced by the
count method, so it should never be negative. Suppose you found a negative
value variable during testing. Where would you look for the error?

4. In Chapters 1 and 2, you used System.out as a black box to cause output to
appear on the screen. Who designed and implemented System.out?

5. Suppose you are working in a company that produces personal finance soft-
ware. You are asked to design and implement a class for representing bank
accounts. Who will be the users of your class?

In this section, we will discuss the process of specifying the public interface of a
class. Imagine that you are a member of a team that works on banking software. A
fundamental concept in banking is a bank account. Your task is to understand the
design of a BankAccount class so that you can implement it, which in turn allows other
programmers on the team to use it.

Encapsulation is the
process of hiding
implementation
details and providing
methods for data
access.

Encapsulation allows
a programmer to use
a class without
having to know its
implementation.

Information hiding
makes it simpler for
the implementor of a
class to locate errors
and change
implementations.

S E L F C H E C K

3.3 Specifying the Public Interface of a Class

78 Chapter 3 Implementing Classes

You need to know exactly what features of a bank account need to be imple-
mented. Some features are essential (such as deposits), whereas others are not
important (such as the gift that a customer may receive for opening a bank account).
Deciding which features are essential is not always an easy task. We will revisit that
issue in Chapters 8 and 12. For now, we will assume that a competent designer has
decided that the following are considered the essential operations of a bank account:

• Deposit money
• Withdraw money
• Get the current balance

In Java, operations are expressed as method calls. To figure out the exact specifica-
tion of the method calls, imagine how a programmer would carry out the bank
account operations. We’ll assume that the variable harrysChecking contains a refer-
ence to an object of type BankAccount. We want to support method calls such as the
following:

harrysChecking.deposit(2240.59);
harrysChecking.withdraw(500);
double currentBalance = harrysChecking.getBalance();

The first two methods are mutators. They modify the balance of the bank account
and don’t return a value. The third method is an accessor. It returns a value that you
store in a variable or pass to a method.

As you can see from the sample calls, the BankAccount class should declare three
methods:

• public void deposit(double amount)

• public void withdraw(double amount)

• public double getBalance()

Recall from Chapter 2 that double denotes the double-precision floating-point type,
and void indicates that a method does not return a value.

Here we only give the method headers. When you declare a method, you also
need to provide the method body, consisting of statements that are executed when
the method is called.

public void deposit(double amount)
{

implementation—filled in later
}

We will supply the method bodies in Section 3.5.
Every method header contains the following parts:

• An access specifier (usually public)
• The return type (the type of the value returned, such as void or double)
• The name of the method (such as deposit)
• A list of the parameter variables of the method (if any), enclosed in parentheses

(such as double amount)
The access specifier controls which other methods can call this method. Most meth-
ods should be declared as public. That way, all other methods in a program can call
them. (Occasionally, it can be useful to have private methods. They can only be
called from other methods of the same class.)

In order to
implement a class,
you first need to
know which methods
are required.

In a method header,
you specify the
return type, method
name, and the types
and names of the
parameters.

3.3 Specifying the Public Interface of a Class 79

The return type is the type of the value that the method returns. The deposit
method does not return a value, whereas the getBalance method returns a value of
type double.

Each parameter of the method has both a type and a name that describes its pur-
pose. For example, the deposit method has a single parameter named amount of type
double.

Next, you need to supply constructors. A constructor initializes the instance
variables of an object. In Java, a constructor is very similar to a method, with two
important differences.

• The name of the constructor is always the same as the name of the class (e.g.,
BankAccount).

• Constructors have no return type (not even void).

We want to construct bank accounts that initially have a zero balance, as well as
accounts that have a given initial balance. For this purpose, we specify two con-
structors.

• public BankAccount()

• public BankAccount(double initialBalance)

They are used as follows:
BankAccount harrysChecking = new BankAccount();
BankAccount momsSavings = new BankAccount(5000);

Just like a method, a constructor also has a body—a sequence of statements that is
executed when a new object is constructed.

public BankAccount()
{

implementation—filled in later
}

The statements in the constructor body will set the instance variables of the object
that is being constructed—see Section 3.5.

Don’t worry about the fact that there are two constructors with the same name—
all constructors of a class have the same name, that is, the name of the class. The
compiler can tell them apart because they take different parameters.

When declaring a class, you place all constructor and method declarations inside,
like this:

public class BankAccount
{

private instance variables—filled in later

 // Constructors
 public BankAccount()
 {

implementation—filled in later
 }

 public BankAccount(double initialBalance)
 {

implementation—filled in later
 }

Constructors set the
initial data for
objects. The
constructor name is
always the same as
the class name.

80 Chapter 3 Implementing Classes

 // Methods
 public void deposit(double amount)
 {

implementation—filled in later
 }

 public void withdraw(double amount)
 {

implementation—filled in later
 }

 public double getBalance()
 {

implementation—filled in later
 }
}

The public constructors and methods of a class form the public interface of the
class. These are the operations that any programmer can use to create and manipu-
late BankAccount objects.

Our BankAccount class is simple, but it allows programmers to carry out all of the
important operations that commonly occur with bank accounts. For example, con-
sider this program segment, authored by a programmer who uses the BankAccount
class. These statements transfer an amount of money from one bank account to
another:

// Transfer from one account to another
double transferAmount = 500;
momsSavings.withdraw(transferAmount);
harrysChecking.deposit(transferAmount);

And here is a program segment that adds interest to a savings account:
double interestRate = 5; // 5% interest
double interestAmount
 = momsSavings.getBalance() * interestRate / 100;
momsSavings.deposit(interestAmount);

Syntax 3.2 Class Declaration

accessSpecifier class ClassName
{

instance variables
constructors
methods

}

Syntax

Example public class Counter
{

private int value;

public Counter(int initialValue) { value = initialValue; }

public void count() { value = value + 1; }
 public int getValue() { return value; }

}

Public interface

Private
implementation

3.4 Commenting the Public Interface 81

As you can see, programmers can use objects of the BankAccount class to carry out
meaningful tasks, without knowing how the BankAccount objects store their data or
how the BankAccount methods do their work.

Of course, as implementors of the BankAccount class, we will need to supply the
private implementation. We will do so in Section 3.5. First, however, an important
step remains: documenting the public interface. That is the topic of the next section.

6. How can you use the methods of the public interface to empty the harrysChecking
bank account?

7. What is wrong with this sequence of statements?
BankAccount harrysChecking = new BankAccount(10000);
System.out.println(harrysChecking.withdraw(500));

8. Suppose you want a more powerful bank account abstraction that keeps track
of an account number in addition to the balance. How would you change the
public interface to accommodate this enhancement?

Declaring a Constructor as void

Do not use the void reserved word when you declare a constructor:

public void BankAccount() // Error—don’t use void!

This would declare a method with return type void and not a constructor. Unfortunately, the
Java compiler does not consider this a syntax error.

When you implement classes and methods, you should get into the habit of thor-
oughly commenting their behaviors. In Java there is a very useful standard form for
documentation comments. If you use this form in your classes, a program called
javadoc can automatically generate a neat set of HTML pages that describe them.
(See Productivity Hint 3.1 on page 84 for a description of this utility.)

A documentation comment is placed before the class or method declaration that
is being documented. It starts with a /**, a special comment delimiter used by the
javadoc utility. Then you describe the method’s purpose. Then, for each method
parameter, you supply a line that starts with @param, followed by the parameter name
and a short explanation. Finally, you supply a line that starts with @return, describ-
ing the return value. You omit the @param tag for methods that have no parameters,
and you omit the @return tag for methods whose return type is void.

The javadoc utility copies the first sentence of each comment to a summary table
in the HTML documentation. Therefore, it is best to write that first sentence with
some care. It should start with an uppercase letter and end with a period. It does not
have to be a grammatically complete sentence, but it should be meaningful when it
is pulled out of the comment and displayed in a summary.

S E L F C H E C K

Common Error 3.1

3.4 Commenting the Public Interface

Use documentation
comments to
describe the classes
and public methods
of your programs.

82 Chapter 3 Implementing Classes

Here are two typical examples.

/**
Withdraws money from the bank account.

 @param amount the amount to withdraw
*/
public void withdraw(double amount)
{

implementation—filled in later
}

/**
Gets the current balance of the bank account.

 @return the current balance
*/
public double getBalance()
{

implementation—filled in later
}

The comments you have just seen explain individual methods. Supply a brief com-
ment for each class, explaining its purpose. The comment syntax for class comments
is very simple: Just place the documentation comment above the class.

/**
A bank account has a balance that can be changed by
deposits and withdrawals.

*/
public class BankAccount
{
 . . .
}

Your first reaction may well be “Whoa! Am I supposed to write all this stuff?”
These comments do seem pretty repetitive. But you should take the time to write
them, even if it feels silly.

It is always a good idea to write the method comment first, before writing the
code in the method body. This is an excellent test to see that you firmly understand
what you need to program. If you can’t explain what a class or method does, you
aren’t ready to implement it.

What about very simple methods? You can easily spend more time pondering
whether a comment is too trivial to write than it takes to write it. In practical pro-
gramming, very simple methods are rare. It is harmless to have a trivial method
overcommented, whereas a complicated method without any comment can cause
real grief to future maintenance programmers. According to the standard Java doc-
umentation style, every class, every method, every parameter, and every return
value should have a comment.

The javadoc utility formats your comments into a neat set of documents that you
can view in a web browser. It makes good use of the seemingly repetitive phrases.
The first sentence of the comment is used for a summary table of all methods of
your class (see Figure 3). The @param and @return comments are neatly formatted in
the detail description of each method (see Figure 4). If you omit any of the com-
ments, then javadoc generates documents that look strangely empty.

This documentation format should look familiar. The programmers who imple-
ment the Java library use javadoc themselves. They too document every class, every

Provide documen-
tation comments
for every class,
every method,
every parameter, and
every return value.

3.4 Commenting the Public Interface 83

method, every parameter, and every return value, and then use javadoc to extract the
documentation in HTML format.

9. Provide documentation comments for the Counter class of Section 3.1.
10. Suppose we enhance the BankAccount class so that each account has an account

number. Supply a documentation comment for the constructor
public BankAccount(int accountNumber, double initialBalance)

11. Why is the following documentation comment questionable?
/**

Each account has an account number.
 @return the account number of this account
*/
public int getAccountNumber()

Figure 3 A Method Summary Generated by javadoc

Figure 4 Method Detail Generated by javadoc

S E L F C H E C K

84 Chapter 3 Implementing Classes

The javadoc Utility

Always insert documentation comments in your code, whether or not you use javadoc to
produce HTML documentation. Most people find the HTML documentation convenient,
so it is worth learning how to run javadoc. Some programming environments (such as BlueJ)
can execute javadoc for you. Alternatively, you can invoke the javadoc utility from a shell
window, by issuing the command

javadoc MyClass.java

or, if you want to document multiple Java files,

javadoc *.java

The javadoc utility produces files such as MyClass.html in HTML format, which you can
inspect in a browser. If you know HTML (see Appendix F), you can embed HTML tags into
the comments to specify fonts or add images. Perhaps most importantly, javadoc automati-
cally provides hyperlinks to other classes and methods.

You can run javadoc before implementing any methods. Just leave all the method bodies
empty. Don’t run the compiler—it would complain about missing return values. Simply run
javadoc on your file to generate the documentation for the public interface that you are about
to implement.

The javadoc tool is wonderful because it does one thing right: It allows you to put the
documentation together with your code. That way, when you update your programs, you
can see right away which documentation needs to be updated. Hopefully, you will update it
right then and there. Afterward, run javadoc again and get updated information that is timely
and nicely formatted.

Now that you understand the specification of the public interface of the BankAccount
class, let’s provide the implementation.

First, we need to determine the data that each bank account object contains. In
the case of our simple bank account class, each object needs to store a single value,
the current balance. (A more complex bank account class might store additional
data—perhaps an account number, the interest rate paid, the date for mailing out the
next statement, and so on.)

public class BankAccount
{
 private double balance;
 . . .
}

Now that we have determined the instance variables, let’s complete the BankAccount
class by supplying the bodies of the constructors and methods. Each body contains
a sequence of statements. We’ll start with the constructors because they are very
straightforward. A constructor has a simple job: to initialize the instance variables
of an object.

Productivity Hint 3.1

3.5 Providing the Class Implementation

The private
implementation of
a class consists of
instance variables,
and the bodies
of constructors
and methods.

3.5 Providing the Class Implementation 85

Recall that we designed the BankAccount class to have two constructors. The first
constructor simply sets the balance to zero:

public BankAccount()
{
 balance = 0;
}

The second constructor sets the balance to the value supplied as the construction
parameter:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
}

To see how these constructors work, let us trace the statement
BankAccount harrysChecking = new BankAccount(1000);

one step at a time.
Here are the steps that are carried out when the statement executes.

• Create a new object of type BankAccount.

• Call the second constructor (because a parameter value is supplied in the
constructor call).

• Set the parameter variable initialBalance to 1000.

• Set the balance instance variable of the newly created object to initialBalance.

• Return an object reference, that is, the memory location of the object, as the
value of the new expression.

• Store that object reference in the harrysChecking variable.

Let’s move on to implementing the BankAccount methods. Here is the deposit method:
public void deposit(double amount)
{
 balance = balance + amount;
}

To understand exactly what the method does, consider this statement:
harrysChecking.deposit(500);

This statement carries out the following steps:

• Set the parameter variable amount to 500.

• Fetch the balance instance variable of the object whose location is stored in
harrysChecking.

• Add the value of amount to balance

• Store the sum in the balance instance variable, overwriting the old value.

The withdraw method is very similar to the deposit method:
public void withdraw(double amount)
{
 balance = balance - amount;
}

86 Chapter 3 Implementing Classes

There is only one method left, getBalance. Unlike the deposit and withdraw methods,
which modify the instance variables of the object on which they are invoked, the
getBalance method returns a value:

public double getBalance()
{
 return balance;
}

We have now completed the implementation of the BankAccount class—see the code
listing below. There is only one step remaining: testing that the class works cor-
rectly. That is the topic of the next section.

ch03/account/BankAccount.java

Syntax 3.3 Method Declaration

accessSpecifier returnType methodName(parameterType parameterName, . . .)
{

method body
}

Syntax

Example

public void deposit(double amount)
{
 balance = balance + amount;
}

public double getBalance()
{

return balance;
}

These methods
are part of the
public interface.

A mutator method modifies
an instance variable.

An accessor method returns a value.

This method has

no parameters.

This method does

not return a value.

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private double balance;
8
9 /**

10 Constructs a bank account with a zero balance.
11 */
12 public BankAccount()
13 {
14 balance = 0;
15 }
16

3.5 Providing the Class Implementation 87

12. Suppose we modify the BankAccount class so that each bank account has an
account number. How does this change affect the instance variables?

13. Why does the following code not succeed in robbing mom’s bank account?
public class BankRobber
{
 public static void main(String[] args)
 {
 BankAccount momsSavings = new BankAccount(1000);
 momsSavings.balance = 0;
 }
}

14. The Rectangle class has four instance variables: x, y, width, and height. Give a
possible implementation of the getWidth method.

15. Give a possible implementation of the translate method of the Rectangle class.

17 /**
18 Constructs a bank account with a given balance.
19 @param initialBalance the initial balance
20 */
21 public BankAccount(double initialBalance)
22 {
23 balance = initialBalance;
24 }
25
26 /**
27 Deposits money into the bank account.
28 @param amount the amount to deposit
29 */
30 public void deposit(double amount)
31 {
32 balance = balance + amount;
33 }
34
35 /**
36 Withdraws money from the bank account.
37 @param amount the amount to withdraw
38 */
39 public void withdraw(double amount)
40 {
41 balance = balance - amount;
42 }
43
44 /**
45 Gets the current balance of the bank account.
46 @return the current balance
47 */
48 public double getBalance()
49 {
50 return balance;
51 }
52 }

S E L F C H E C K

88 Chapter 3 Implementing Classes

HOW TO 3.1 Implementing a Class

This “How To” section tells you how you implement a class from a given specification.
For example, a homework assignment might ask you to implement a class that models a

cash register. Your class should allow a cashier to enter item prices and the amount of money
that the customer paid. It should then calculate the change due.

Step 1 Find out which methods you are asked to supply.

In the cash register example, you won’t have to provide every feature of a real cash register—
there are too many. The assignment tells you, in plain English, which aspects of a cash regis-
ter your class should simulate. Make a list of them:
• Ring up the sales price for a purchased item.

• Enter the amount of payment.

• Calculate the amount of change due to the customer.

Step 2 Specify the public interface.

Turn the list in Step 1 into a set of methods, with specific types for the parameters and the
return values. Many programmers find this step simpler if they write out method calls that
are applied to a sample object, like this:

CashRegister register = new CashRegister();
register.recordPurchase(29.95);
register.recordPurchase(9.95);
register.enterPayment(50);
double change = register.giveChange();

Now we have a specific list of methods.
• public void recordPurchase(double amount)

• public void enterPayment(double amount)

• public double giveChange()

To complete the public interface, you need to specify the constructors. Ask yourself what
information you need in order to construct an object of your class. Sometimes you will want
two constructors: one that sets all instance variables to a default and one that sets them to
user-supplied values.

In the case of the cash register example, we can get by with a single constructor that cre-
ates an empty register. A more realistic cash register would start out with some coins and
bills so that we can give exact change, but that is beyond the scope of our assignment.

Thus, we add a single constructor:
• public CashRegister()

Step 3 Document the public interface.

Here is the documentation, with comments, that describes the class and its methods:

/**
A cash register totals up sales and computes change due.

*/
public class CashRegister
{
 /**

Constructs a cash register with no money in it.
 */
 public CashRegister()
 {
 }

3.5 Providing the Class Implementation 89

 /**
Records the sale of an item.

 @param amount the price of the item
 */
 public void recordPurchase(double amount)
 {
 }

 /**
Enters the payment received from the customer.

 @param amount the amount of the payment
 */
 public void enterPayment(double amount)
 {
 }

 /**
Computes the change due and resets the machine for the next customer.

 @return the change due to the customer
 */
 public double giveChange()
 {
 }
}

Step 4 Determine instance variables.

Ask yourself what information an object needs to store to do its job. Remember, the meth-
ods can be called in any order! The object needs to have enough internal memory to be able
to process every method using just its instance variables and the method parameters. Go
through each method, perhaps starting with a simple one or an interesting one, and ask your-
self what you need to carry out the method’s task. Make instance variables to store the infor-
mation that the method needs.

In the cash register example, you would want to keep track of the total purchase amount
and the payment. You can compute the change due from these two amounts.

public class CashRegister
{
 private double purchase;
 private double payment;
 . . .
}

Step 5 Implement constructors and methods.

Implement the constructors and methods in your class, one at a time, starting with the easiest
ones. For example, here is the implementation of the recordPurchase method:

public void recordPurchase(double amount)
{
 purchase = purchase + amount;
}

Here is the giveChange method. Note that this method is a bit more sophisticated—it com-
putes the change due, and it also resets the cash register for the next sale.

public double giveChange()
{
 double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
}

90 Chapter 3 Implementing Classes Testing Track

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

If you find that you have trouble with the implementation, you may need to rethink your
choice of instance variables. It is common for a beginner to start out with a set of instance
variables that cannot accurately reflect the state of an object. Don’t hesitate to go back and
add or modify instance variables.

Once you have completed the implementation, compile your class and fix any compile-
time errors.

You can find the complete implementation in the ch03/cashregister directory of the book
code.

Step 6 Test your class.

Write a short tester program and execute it. The tester program can carry out the method
calls that you found in Step 2.

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new CashRegister();

 register.recordPurchase(29.50);
 register.recordPurchase(9.25);
 register.enterPayment(50);

 double change = register.giveChange();

 System.out.println(change);
 System.out.println("Expected: 11.25");
 }
}

The output of this test program is:

11.25
Expected: 11.25

Alternatively, if you use a program that lets you test objects interactively, such as BlueJ, con-
struct an object and apply the method calls.

Making a Simple Menu

Worked Example 3.1 shows how to implement a class that
constructs simple menus.

In the preceding section, we completed the implementation of the BankAccount class.
What can you do with it? Of course, you can compile the file BankAccount.java.
However, you can’t execute the resulting BankAccount.class file. It doesn’t contain a
main method. That is normal—most classes don’t contain a main method.

In the long run, your class may become a part of a larger program that interacts
with users, stores data in files, and so on. However, before integrating a class into a
program, it is always a good idea to test it in isolation. Testing in isolation, outside a
complete program, is called unit testing.

Worked
Example 3.1

3.6 Unit Testing

A unit test verifies
that a class works
correctly in isolation,
outside a complete
program.

www.wiley.com/college/horstmann

Testing Track 3.6 Unit Testing 91

To test your class, you have two choices. Some interactive development environ-
ments have commands for constructing objects and invoking methods (see Special
Topic 2.1). Then you can test a class simply by constructing an object, calling meth-
ods, and verifying that you get the expected return values. Figure 5 shows the result
of calling the getBalance method on a BankAccount object in BlueJ.

Alternatively, you can write a tester class. A tester class is a class with a main
method that contains statements to run methods of another class. As discussed in
Section 2.9, a tester class typically carries out the following steps:

1. Construct one or more objects of the class that is being tested.
2. Invoke one or more methods.
3. Print out one or more results.
4. Print the expected results.

The MoveTester class in Section 2.9 is a good example of a tester class. That class runs
methods of the Rectangle class—a class in the Java library.

Here is a class to run methods of the BankAccount class. The main method con-
structs an object of type BankAccount, invokes the deposit and withdraw methods, and
then displays the remaining balance on the console.

We also print the value that we expect to see. In our sample program, we deposit
$2,000 and withdraw $500. We therefore expect a balance of $1,500.

ch03/account/BankAccountTester.java

Figure 5
The Return Value of the
getBalance Method in BlueJ

1 /**
2 A class to test the BankAccount class.
3 */
4 public class BankAccountTester
5 {
6 /**
7 Tests the methods of the BankAccount class.
8 @param args not used
9 */

10 public static void main(String[] args)
11 {

92 Chapter 3 Implementing Classes Testing Track

Program Run

To produce a program, you need to combine the BankAccount and the BankAccount-
Tester classes. The details for building the program depend on your compiler and
development environment. In most environments, you need to carry out these
steps:

1. Make a new subfolder for your program.
2. Make two files, one for each class.
3. Compile both files.
4. Run the test program.

Many students are surprised that such a simple program contains two classes. How-
ever, this is normal. The two classes have entirely different purposes. The Bank-
Account class describes objects that compute bank balances. The BankAccountTester
class runs a test that puts a BankAccount object through its paces.

16. When you run the BankAccountTester program, how many objects of class Bank-
Account are constructed? How many objects of type BankAccountTester?

17. Why is the BankAccountTester class unnecessary in development environments
that allow interactive testing, such as BlueJ?

In this section, we discuss the behavior of local variables. A local variable is a vari-
able that is declared in the body of a method. For example, the giveChange method in
How To 3.1 on page 88 declares a local variable change:

public double giveChange()
{

double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
}

Parameter variables are similar to local variables, but they are declared in method
headers. For example, the following method declares a parameter variable amount:

public void enterPayment(double amount)

12 BankAccount harrysChecking = new BankAccount();
13 harrysChecking.deposit(2000);
14 harrysChecking.withdraw(500);
15 System.out.println(harrysChecking.getBalance());
16 System.out.println("Expected: 1500");
17 }
18 }

1500
Expected: 1500

S E L F C H E C K

3.7 Local Variables
Local variables are
declared in the body
of a method.

A N I M AT I O N
Lifetime of Variables

3.7 Local Variables 93

Local and parameter variables belong to methods. When a method runs, its local
and parameter variables come to life. When the method exits, they are removed
immediately. For example, if you call register.giveChange(), then a variable change is
created. When the method exits, that variable is removed.

In contrast, instance variables belong to objects, not methods. When an object is
constructed, its instance variables are created. The instance variables stay alive until
no method uses the object any longer. (The Java virtual machine contains an agent
called a garbage collector that periodically reclaims objects when they are no
longer used.)

An important difference between instance variables and local variables is initial-
ization. You must initialize all local variables. If you don’t initialize a local variable,
the compiler complains when you try to use it. (Note that parameter variables are
initialized when the method is called.)

Instance variables are initialized with a default value before a constructor is
invoked. Instance variables that are numbers are initialized to 0. Object references
are set to a special value called null. If an object reference is null, then it refers to no
object at all. We will discuss the null value in greater detail in Section 5.2.5.

18. What do local variables and parameter variables have in common? In which
essential aspect do they differ?

19. Why was it necessary to introduce the local variable change in the giveChange
method? That is, why didn’t the method simply end with the statement
return payment - purchase;

Forgetting to Initialize Object References in a Constructor

Just as it is a common error to forget to initialize a local variable, it is easy to forget about
instance variables. Every constructor needs to ensure that all instance variables are set to
appropriate values.

If you do not initialize an instance variable, the Java compiler will initialize it for you.
Numbers are initialized with 0, but object references—such as string variables—are set to the
null reference.

Of course, 0 is often a convenient default for numbers. However, null is hardly ever a
convenient default for objects. Consider this “lazy” constructor for a modified version of the
BankAccount class:

public class BankAccount
{
 private double balance;

private String owner;
 . . .
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
}

Then balance is initialized, but the owner variable is set to a null reference. This can be a prob-
lem—it is illegal to call methods on the null reference.

When a method
exits, its local
variables are
removed.

Instance variables
are initialized to a
default value, but
you must initialize
local variables.

S E L F C H E C K

Common Error 3.2

94 Chapter 3 Implementing Classes

To avoid this problem, it is a good idea to initialize every instance variable:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
 owner = "None";
}

In Section 2.4, you learned that a method has an implicit parameter (the object on
which the method is invoked) in addition to the explicit parameters, which are
enclosed in parentheses. In this section, we will examine implicit parameters in
greater detail.

Have a look at a particular invocation of the deposit method:
momsSavings.deposit(500);

Here, the implicit parameter is momsSavings and the explicit parameter is 500.
Now look again at the code of the deposit method:
public void deposit(double amount)
{
 balance = balance + amount;
}

What does balance mean exactly? After all, our program may have multiple Bank-
Account objects, and each of them has its own balance.

Of course, since we are depositing the money into momsSavings, balance must mean
momsSavings.balance. In general, when you refer to an instance variable inside a
method, it means the instance variable of the implicit parameter.

If you need to, you can access the implicit parameter—the object on which the
method is called—with the reserved word this. For example, in the preceding
method invocation, this refers to the same object as momsSavings (see Figure 6).

The statement
balance = balance + amount;

actually means
this.balance = this.balance + amount;

3.8 Implicit Parameters

Figure 6 The Implicit Parameter of a Method Call

Use of an instance
variable name in a
method denotes the
instance variable of
the implicit
parameter.

The this reference
denotes the implicit
parameter.

momsSavings =

balance =

BankAccount

1000this =

amount = 500

3.8 Implicit Parameters 95

When you refer to an instance variable in a method, the compiler automatically
applies it to the this reference. Some programmers actually prefer to manually
insert the this reference before every instance variable because they find it makes
the code clearer. Here is an example:

public BankAccount(double initialBalance)
{
 this.balance = initialBalance;
}

You may want to try it out and see if you like that style.
The this reference can also be used to distinguish between instance variables and

local or parameter variables. Consider the constructor
public BankAccount(double balance)
{
 this.balance = balance;
}

The expression this.balance clearly refers to the balance instance variable. However,
the expression balance by itself seems ambiguous. It could denote either the parame-
ter variable or the instance variable. In Java, local and parameter variables are con-
sidered first when looking up variable names. Therefore,

this.balance = balance;

means: “Set the instance variable balance to the parameter variable balance”.
There is another situation in which it is important to understand the implicit

parameter. Consider the following modification to the BankAccount class. We add a
method to apply the monthly account fee:

public class BankAccount
{
 . . .
 public void monthlyFee()
 {
 withdraw(10); // Withdraw $10 from this account
 }
}

That means to withdraw from the same bank account object that is carrying out the
monthlyFee operation. In other words, the implicit parameter of the withdraw method
is the (invisible) implicit parameter of the monthlyFee method.

If you find it confusing to have an invisible parameter, you can use the this refer-
ence to make the method easier to read:

public class BankAccount
{
 . . .
 public void monthlyFee()
 {

this.withdraw(10); // Withdraw $10 from this account
 }
}

You have now seen how to use objects and implement classes, and you have learned
some important technical details about variables and method parameters. The
remainder of this chapter continues the optional graphics track. In the next chapter,
you will learn more about the most fundamental data types of the Java language.

A method call
without an implicit
parameter is applied
to the same object.

96 Chapter 3 Implementing Classes Graphics Track

20. How many implicit and explicit parameters does the withdraw method of the
BankAccount class have, and what are their names and types?

21. In the deposit method, what is the meaning of this.amount? Or, if the expression
has no meaning, why not?

22. How many implicit and explicit parameters does the main method of the Bank-
AccountTester class have, and what are they called?

Calling One Constructor from Another

Special Topic 3.1 describes how you can minimize common code in multiple constructors,
by using the this reserved word for calling one constructor from another.

Electronic Voting Machines

Random Fact 3.1 discusses issues that arise in the design of electronic voting machines. Many
computer scientists believe that electronic voting machines should be complemented by a
voter-verifiable paper audit trail because it is impossible, with today’s technology, to tell that
software is error free and has not been tampered with.

In this section, we continue the optional graphics track by discussing how to orga-
nize complex drawings in a more object-oriented fashion.

When you produce a drawing that is composed of complex parts, such as the one
in Figure 7, it is a good idea to make a separate class for each part. Provide a draw
method that draws the shape, and provide a constructor to set the position of the
shape. For example, here is the outline of the Car class.

public class Car
{
 public Car(int x, int y)
 {
 // Remember position
 . . .
 }

 public void draw(Graphics2D g2)
 {
 // Drawing instructions
 . . .
 }
}

You will find the complete class declaration at the end of this section. The draw
method contains a rather long sequence of instructions for drawing the body, roof,

S E L F C H E C K

Special Topic 3.1

Random Fact 3.1

3.9 Shape Classes

It is a good idea to
make a class for any
part of a drawing
that can occur
more than once.

To figure out how to
draw a complex
shape, make a sketch
on graph paper.

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

www.wiley.com/college/horstmann

Graphics Track 3.9 Shape Classes 97

and tires. The coordinates of the car parts seem a bit arbitrary. To come up with
suitable values, draw the image on graph paper and read off the coordinates
(Figure 8).

The program that produces Figure 7 is composed of three classes.

• The Car class is responsible for drawing a single car. Two objects of this class are
constructed, one for each car.

• The CarComponent class displays the drawing.
• The CarViewer class shows a frame that contains a CarComponent.

Let us look more closely at the CarComponent class. The paintComponent method draws
two cars. We place one car in the top-left corner of the window, and the other car in

Figure 7
The Car Component Draws Two Car Shapes

Figure 8 Using Graph Paper to Find Shape Coordinates

0

10

20

30

40

0 10 20 30 40 50 60

98 Chapter 3 Implementing Classes Graphics Track

the bottom right. To compute the bottom right position, we call the getWidth and
getHeight methods of the JComponent class. These methods return the dimensions of the
component. We subtract the dimensions of the car to determine the position of car2:

Car car1 = new Car(0, 0);
int x = getWidth() - 60;
int y = getHeight() - 30;
Car car2 = new Car(x, y);

Pay close attention to the call to getWidth inside the paintComponent method of
CarComponent. The method call has no implicit parameter, which means that the
method is applied to the same object that executes the paintComponent method. The
component simply obtains its own width.

Run the program and resize the window. Note that the second car always ends
up at the bottom-right corner of the window. Whenever the window is resized, the
paintComponent method is called and the car position is recomputed, taking the cur-
rent component dimensions into account.

ch03/car/CarComponent.java

ch03/car/Car.java

1 import java.awt.Graphics;
2 import java.awt.Graphics2D;
3 import javax.swing.JComponent;
4
5 /**
6 This component draws two car shapes.
7 */
8 public class CarComponent extends JComponent
9 {

10 public void paintComponent(Graphics g)
11 {
12 Graphics2D g2 = (Graphics2D) g;
13
14 Car car1 = new Car(0, 0);
15
16 int x = getWidth() - 60;
17 int y = getHeight() - 30;
18
19 Car car2 = new Car(x, y);
20
21 car1.draw(g2);
22 car2.draw(g2);
23 }
24 }

1 import java.awt.Graphics2D;
2 import java.awt.Rectangle;
3 import java.awt.geom.Ellipse2D;
4 import java.awt.geom.Line2D;
5 import java.awt.geom.Point2D;
6
7 /**
8 A car shape that can be positioned anywhere on the screen.
9 */

10 public class Car
11 {

Graphics Track 3.9 Shape Classes 99

12 private int xLeft;
13 private int yTop;
14
15 /**
16 Constructs a car with a given top left corner.
17 @param x the x coordinate of the top left corner
18 @param y the y coordinate of the top left corner
19 */
20 public Car(int x, int y)
21 {
22 xLeft = x;
23 yTop = y;
24 }
25
26 /**
27 Draws the car.
28 @param g2 the graphics context
29 */
30 public void draw(Graphics2D g2)
31 {
32 Rectangle body
33 = new Rectangle(xLeft, yTop + 10, 60, 10);
34 Ellipse2D.Double frontTire
35 = new Ellipse2D.Double(xLeft + 10, yTop + 20, 10, 10);
36 Ellipse2D.Double rearTire
37 = new Ellipse2D.Double(xLeft + 40, yTop + 20, 10, 10);
38
39 // The bottom of the front windshield
40 Point2D.Double r1
41 = new Point2D.Double(xLeft + 10, yTop + 10);
42 // The front of the roof
43 Point2D.Double r2
44 = new Point2D.Double(xLeft + 20, yTop);
45 // The rear of the roof
46 Point2D.Double r3
47 = new Point2D.Double(xLeft + 40, yTop);
48 // The bottom of the rear windshield
49 Point2D.Double r4
50 = new Point2D.Double(xLeft + 50, yTop + 10);
51
52 Line2D.Double frontWindshield
53 = new Line2D.Double(r1, r2);
54 Line2D.Double roofTop
55 = new Line2D.Double(r2, r3);
56 Line2D.Double rearWindshield
57 = new Line2D.Double(r3, r4);
58
59 g2.draw(body);
60 g2.draw(frontTire);
61 g2.draw(rearTire);
62 g2.draw(frontWindshield);
63 g2.draw(roofTop);
64 g2.draw(rearWindshield);
65 }
66 }

100 Chapter 3 Implementing Classes Graphics Track

ch03/car/CarViewer.java

23. Which class needs to be modified to have the two cars positioned next to each
other?

24. Which class needs to be modified to have the car tires painted in black, and
what modification do you need to make?

25. How do you make the cars twice as big?

HOW TO 3.2 Drawing Graphical Shapes

You can write programs that display a wide variety of graphical shapes. These instructions
give you a step-by-step procedure for decomposing a drawing into parts and implementing a
program that produces the drawing. In this How To, we will create a program to draw a
national flag.

Step 1 Determine the shapes that you need for the drawing.

You can use the following shapes:
• Squares and rectangles
• Circles and ellipses
• Lines
The outlines of these shapes can be drawn in any color, and you can fill the insides of these
shapes with any color. You can also use text to label parts of your drawing.

Some national flag designs consist of three equally wide sections of different colors, side
by side:

1 import javax.swing.JFrame;
2
3 public class CarViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8
9 frame.setSize(300, 400);

10 frame.setTitle("Two cars");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12
13 CarComponent component = new CarComponent();
14 frame.add(component);
15
16 frame.setVisible(true);
17 }
18 }

S E L F C H E C K

Graphics Track 3.9 Shape Classes 101

You could draw such a flag using three rectangles. But if the middle rectangle is white, as it is,
for example, in the flag of Italy (green, white, red), it is easier and looks better to draw a line
on the top and bottom of the middle portion:

Step 2 Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes.
• For rectangles, you need the x- and y-position of the top-left corner, the width, and the

height.
• For ellipses, you need the top-left corner, width, and height of the bounding rectangle.
• For lines, you need the x- and y-positions of the starting point and the end point.
• For text, you need the x- and y-position of the basepoint.
A commonly-used size for a window is 300 by 300 pixels. You may not want the flag
crammed all the way to the top, so perhaps the upper-left corner of the flag should be at
point (100, 100).

Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can often find
exact proportions for a particular flag by doing a bit of Internet research on one of several
Flags of the World sites.) For example, if you make the flag 90 pixels wide, then it should be
60 pixels tall. (Why not make it 100 pixels wide? Then the height would be 100 · 2 / 3 ≈ 67,
which seems more awkward.)

Now you can compute the coordinates of all the important points of the shape:

Step 3 Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

Rectangle leftRectangle
 = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle
 = new Rectangle(160, 100, 30, 60);

Two rectangles

Two lines

(100, 100) (130, 100) (160, 100) (190, 100)

(100, 160) (130, 160) (160, 160) (190, 160)

102 Chapter 3 Implementing Classes Graphics Track

Line2D.Double topLine
 = new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine
 = new Line2D.Double(130, 160, 160, 160);

If you are more ambitious, then you can express the coordinates in terms of a few variables.
In the case of the flag, we have arbitrarily chosen the top-left corner and the width. All other
coordinates follow from those choices. If you decide to follow the ambitious approach, then
the rectangles and lines are determined as follows:

Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);
Rectangle rightRectangle = new Rectangle(
 xLeft + 2 * width / 3, yTop,
 width / 3, width * 2 / 3);
Line2D.Double topLine = new Line2D.Double(
 xLeft + width / 3, yTop,
 xLeft + width * 2 / 3, yTop);
Line2D.Double bottomLine = new Line2D.Double(
 xLeft + width / 3, yTop + width * 2 / 3,
 xLeft + width * 2 / 3, yTop + width * 2 / 3);

Now you need to fill the rectangles and draw the lines. For the flag of Italy, the left rectangle
is green and the right rectangle is red. Remember to switch colors before the filling and
drawing operations:

g2.setColor(Color.GREEN);
g2.fill(leftRectangle);
g2.setColor(Color.RED);
g2.fill(rightRectangle);
g2.setColor(Color.BLACK);
g2.draw(topLine);
g2.draw(bottomLine);

Step 4 Combine the drawing statements with the component “plumbing”.

public class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 // Drawing instructions
 . . .
 }
}

In our example, you can simply add all shapes and drawing instructions inside the paint-
Component method:

public class ItalianFlagComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 Rectangle leftRectangle
 = new Rectangle(100, 100, 30, 60);
 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }
}

Graphics Track 3.9 Shape Classes 103

That approach is acceptable for simple drawings, but it is not very object-oriented. After all,
a flag is an object. It is better to make a separate class for the flag. Then you can draw differ-
ent flags at different positions. Specify the sizes in a constructor and supply a draw method:

public class ItalianFlag
{
 private int xLeft;
 private int yTop;
 private int width;

 public ItalianFlag(int x, int y, int aWidth)
 {
 xLeft = x;
 yTop = y;
 width = aWidth;
 }

 public void draw(Graphics2D g2)
 {
 Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);
 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }
}

You still need a separate class for the component, but it is very simple:

public class ItalianFlagComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 ItalianFlag flag = new ItalianFlag(100, 100, 90);
 flag.draw(g2);
 }
}

Step 5 Write the viewer class.

Provide a viewer class, with a main method in which you construct a frame, add your compo-
nent, and make your frame visible. The viewer class is completely routine; you only need to
change a single line to show a different component.

public class ItalianFlagViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();

 frame.setSize(300, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ItalianFlagComponent component = new ItalianFlagComponent();
 frame.add(component);

 frame.setVisible(true);
 }
}

104 Chapter 3 Implementing Classes Graphics Track

Computer Graphics

Random Fact 3.2 discusses computer graphics, the technology of generating and manipulat-
ing visual images on a computer.

Understand instance variables and the methods that access them.

• An object’s instance variables store the data required for executing its methods.
• Each object of a class has its own set of instance variables.
• Private instance variables can only be accessed by methods of the same class.

Explain the concept and benefits of encapsulation.

• Encapsulation is the process of hiding implementation details and providing
methods for data access.

• Encapsulation allows a programmer to use a class without having to know its
implementation.

• Information hiding makes it simpler for the implementor of a class to locate errors
and change implementations.

Write method and constructor headers that describe the public interface of a class.

• In order to implement a class, you first need to know which methods are required.
• In a method header, you specify the return type, method name, and the types and

names of the parameters.
• Constructors set the initial data for objects. The constructor name is always the

same as the class name.

Write class documentation in javadoc format.

• Use documentation comments to describe the classes and public methods of your
programs.

• Provide documentation comments for every class, every method, every parameter,
and every return value.

Provide the private implementation of a class.

• The private implementation of a class consists of instance variables, and the bodies
of constructors and methods.

Write tests that verify that a class works correctly.

• A unit test verifies that a class works correctly in isolation, outside a complete
program.

Random Fact 3.2

Summary of Learning Objectives

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Review Exercises 105

Compare lifetime and initialization of instance, local, and parameter variables.

• Local variables are declared in the body of a method.
• When a method exits, its local variables are removed.
• Instance variables are initialized to a default value, but you must initialize local

variables.

Recognize the use of the implicit parameter in method declarations.

• Use of an instance variable name in a method denotes the instance variable of the
implicit parameter.

• The this reference denotes the implicit parameter.
• A method call without an implicit parameter is applied to the same object.

Implement classes that draw graphical shapes.

• It is a good idea to make a class for any part of a drawing that can occur more
than once.

• To figure out how to draw a complex shape, make a sketch on graph paper.

• Worked Example Making a Simple Menu
• Lab Exercises

Animation Lifetime of Variables
Practice Quiz
Code Completion Exercises

R3.1 What is the interface of a class? How does it differ from the implementation of a
class?

R3.2 What is encapsulation? Why is it useful?

R3.3 Instance variables are a part of the hidden implementation of a class, but they aren’t
actually hidden from programmers who have the source code of the class. Explain
to what extent the private reserved word provides information hiding.

R3.4 Consider a class Grade that represents a letter grade, such as A+ or B. Give two
choices of instance variables that can be used for implementing the Grade class.

R3.5 Consider a class Time that represents a point in time, such as 9 A.M. or 3:30 P.M. Give
two different sets of instance variables that can be used for implementing the Time
class.

R3.6 Suppose the implementor of the Time class of Exercise R3.5 changes from one imple-
mentation strategy to another, keeping the public interface unchanged. What do the
programmers who use the Time class need to do?

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

106 Chapter 3 Implementing Classes

R3.7 You can read the value instance variable of the Counter class with the getValue acces-
sor method. Should there be a setValue mutator method to change it? Explain why
or why not.

R3.8 a. Show that the BankAccount(double initialBalance) constructor is not strictly nec-
essary. That is, if we removed that constructor from the public interface, how
could a programmer still obtain BankAccount objects with an arbitrary balance?

b. Conversely, could we keep only the BankAccount(double initialBalance) con-
structor and remove the BankAccount() constructor?

R3.9 Why does the BankAccount class not have a reset method?

R3.10 What happens in our implementation of the BankAccount class when more money is
withdrawn from the account than the current balance?

R3.11 What is the this reference? Why would you use it?

R3.12 What does the following method do? Give an example of how you can call the
method.

public class BankAccount
{
 public void mystery(BankAccount that, double amount)
 {
 this.balance = this.balance - amount;
 that.balance = that.balance + amount;
 }
 . . . // Other bank account methods
}

R3.13 Suppose you want to implement a class TimeDepositAccount. A time deposit account
has a fixed interest rate that should be set in the constructor, together with the initial
balance. Provide a method to get the current balance. Provide a method to add the
earned interest to the account. This method should have no parameters because the
interest rate is already known. It should have no return value because you already
provided a method for obtaining the current balance. It is not possible to deposit
additional funds into this account. Provide a withdraw method that removes the
entire balance. Partial withdrawals are not allowed.

R3.14 Consider the following implementation of a class Square:
public class Square
{
 private int sideLength;
 private int area; // Not a good idea

 public Square(int length)
 {
 sideLength = length;
 }

 public int getArea()
 {
 area = sideLength * sideLength;
 return area;
 }
}

Why is it not a good idea to introduce an instance variable for the area? Rewrite the
class so that area is a local variable.

Programming Exercises 107

R3.15 Consider the following implementation of a class Square:
public class Square
{
 private int sideLength;
 private int area;

 public Square(int initialLength)
 {
 sideLength = initialLength;
 area = sideLength * sideLength;
 }

 public int getArea() { return area; }
 public void grow() { sideLength = 2 * sideLength(); }
}

What error does this class have? How would you fix it?

R3.16 Provide a unit test class for the Counter class in Section 3.1.

R3.17 Read Exercise P3.7, but do not implement the Car class yet. Write a tester class that
tests a scenario in which gas is added to the car, the car is driven, more gas is added,
and the car is driven again. Print the actual and expected amount of gas in the tank.

R3.18 Suppose you want to extend the car viewer program in Section 3.9 to show a subur-
ban scene, with several cars and houses. Which classes do you need?

R3.19 Explain why the calls to the getWidth and getHeight methods in the CarComponent class
have no explicit parameter.

R3.20 How would you modify the Car class in order to show cars of varying sizes?

P3.1 Write a BankAccountTester class whose main method constructs a bank account, depos-
its $1,000, withdraws $500, withdraws another $400, and then prints the remaining
balance. Also print the expected result.

P3.2 Add a method
public void addInterest(double rate)

to the BankAccount class that adds interest at the given rate. For example, after the
statements

BankAccount momsSavings = new BankAccount(1000);
momsSavings.addInterest(10); // 10% interest

the balance in momsSavings is $1,100. Also supply a BankAccountTester class that prints
the actual and expected balance.

P3.3 Write a class SavingsAccount that is similar to the BankAccount class, except that it has
an added instance variable interest. Supply a constructor that sets both the initial
balance and the interest rate. Supply a method addInterest (with no explicit parame-
ter) that adds interest to the account. Write a SavingsAccountTester class that con-
structs a savings account with an initial balance of $1,000 and an interest rate of 10

T

T

G

G

G

Programming Exercises

T

108 Chapter 3 Implementing Classes

percent. Then apply the addInterest method and print the resulting balance. Also
compute the expected result by hand and print it.

P3.4 Add a feature to the CashRegister class for computing sales tax. The tax rate should
be supplied when constructing a CashRegister object. Add recordTaxablePurchase and
getTotalTax methods. (Amounts added with recordPurchase are not taxable.) The
giveChange method should correctly reflect the sales tax that is charged on taxable
items.

P3.5 After closing time, the store manager would like to know how much business was
transacted during the day. Modify the CashRegister class to enable this functionality.
Supply methods getSalesTotal and getSalesCount to get the total amount of all sales
and the number of sales. Supply a method reset that resets any counters and totals
so that the next day’s sales start from zero.

P3.6 Implement a class Employee. An employee has a name (a string) and a salary (a dou-
ble). Provide a constructor with two parameters

public Employee(String employeeName, double currentSalary)

and methods
public String getName()
public double getSalary()
public void raiseSalary(double byPercent)

These methods return the name and salary, and raise the employee’s salary by a cer-
tain percentage. Sample usage:

Employee harry = new Employee("Hacker, Harry", 50000);
harry.raiseSalary(10); // Harry gets a 10% raise

Supply an EmployeeTester class that tests all methods.

P3.7 Implement a class Car with the following properties. A car has a certain fuel effi-
ciency (measured in miles/gallon or liters/km—pick one) and a certain amount of
fuel in the gas tank. The efficiency is specified in the constructor, and the initial fuel
level is 0. Supply a method drive that simulates driving the car for a certain distance,
reducing the amount of gasoline in the fuel tank. Also supply methods getGasInTank,
returning the current amount of gasoline in the fuel tank, and addGas, to add gasoline
to the fuel tank. Sample usage:

Car myHybrid = new Car(50); // 50 miles per gallon
myHybrid.addGas(20); // Tank 20 gallons
myHybrid.drive(100); // Drive 100 miles
double gasLeft = myHybrid.getGasInTank(); // Get gas remaining in tank

You may assume that the drive method is never called with a distance that consumes
more than the available gas. Supply a CarTester class that tests all methods.

P3.8 Implement a class Student. For the purpose of this exercise, a student has a name and
a total quiz score. Supply an appropriate constructor and methods getName(),
addQuiz(int score), getTotalScore(), and getAverageScore(). To compute the latter, you
also need to store the number of quizzes that the student took.
Supply a StudentTester class that tests all methods.

P3.9 Implement a class Product. A product has a name and a price, for example new Prod-
uct("Toaster", 29.95). Supply methods getName, getPrice, and reducePrice. Supply a

Programming Exercises 109

program ProductPrinter that makes two products, prints the name and price, reduces
their prices by $5.00, and then prints the prices again.

P3.10 Provide a class for authoring a simple letter. In the constructor, supply the names of
the sender and the recipient:

public Letter(String from, String to)

Supply a method
public void addLine(String line)

to add a line of text to the body of the letter.
Supply a method

public String getText()

that returns the entire text of the letter. The text has the form:
Dear recipient name:
blank line
first line of the body
second line of the body
. . .
last line of the body
blank line
Sincerely,
blank line
sender name

Also supply a class LetterPrinter that prints this letter.
Dear John:

I am sorry we must part.
I wish you all the best.

Sincerely,

Mary

Construct an object of the Letter class and call addLine twice.
Hints: (1) Use the concat method to form a longer string from two shorter strings.
(2) The special string "\n" represents a new line. For example, the statement

body = body.concat("Sincerely,").concat("\n");

adds a line containing the string "Sincerely," to the body.

P3.11 Write a class Bug that models a bug moving along a horizontal line. The bug moves
either to the right or left. Initially, the bug moves to the right, but it can turn to
change its direction. In each move, its position changes by one unit in the current
direction. Provide a constructor

public Bug(int initialPosition)

and methods
public void turn()
public void move()
public int getPosition()

110 Chapter 3 Implementing Classes

Sample usage:
Bug bugsy = new Bug(10);
bugsy.move(); // now the position is 11
bugsy.turn();
bugsy.move(); // now the position is 10

Your BugTester should construct a bug, make it move and turn a few times, and print
the actual and expected position.

P3.12 Implement a class Moth that models a moth flying across a straight line. The moth
has a position, the distance from a fixed origin. When the moth moves toward a
point of light, its new position is halfway between its old position and the position
of the light source. Supply a constructor

public Moth(double initialPosition)

and methods
public void moveToLight(double lightPosition)
public double getPosition()

Your MothTester should construct a moth, move it toward a couple of light sources,
and check that the moth’s position is as expected.

P3.13 Implement a class RoachPopulation that simulates the growth of a roach population.
The constructor takes the size of the initial roach population. The breed method
simulates a period in which the roaches breed, which doubles their population. The
spray method simulates spraying with insecticide, which reduces the population by
10 percent. The getRoaches method returns the current number of roaches. A pro-
gram called RoachSimulation simulates a population that starts out with 10 roaches.
Breed, spray, and print the roach count. Repeat three more times.

P3.14 Implement a VotingMachine class that can be used for a simple election. Have meth-
ods to clear the machine state, to vote for a Democrat, to vote for a Republican, and
to get the tallies for both parties. Extra credit if your program gives the nod to your
favored party if the votes are tallied after 8 P.M. on the first Tuesday in November,
but acts normally on all other dates. (Hint: Use the GregorianCalendar class—see Pro-
gramming Project 2.1.)

P3.15 Draw a “bull’s eye”—a set of concentric rings in alternating black and white colors.
Hint: Fill a black circle, then fill a smaller white circle on top, and so on.

Your program should be composed of classes BullsEye, BullsEyeComponent, and Bulls-
EyeViewer.

G

Programming Exercises 111

P3.16 Write a program that draws a picture of a house. It could be as simple as the accom-
panying figure, or if you like, make it more elaborate (3-D, skyscraper, marble col-
umns in the entryway, whatever).

Implement a class House and supply a method draw(Graphics2D g2) that draws the
house.

P3.17 Extend Exercise P3.16 by supplying a House constructor for specifying the position
and size. Then populate your screen with a few houses of different sizes.

P3.18 Change the car viewer program in Section 3.9 to make the cars appear in different
colors. Each Car object should store its own color. Supply modified Car and Car-
Component classes.

P3.19 Change the Car class so that the size of a car can be specified in the constructor.
Change the CarComponent class to make one of the cars appear twice the size of the
original example.

P3.20 Write a program to plot the string “HELLO”, using only lines and circles. Do not
call drawString, and do not use System.out. Make classes LetterH, LetterE, LetterL, and
LetterO.

P3.21 Write a program that displays the Olympic rings. Color the rings in the Olympic
colors.

Provide a class OlympicRingViewer and a class OlympicRingComponent.

P3.22 Make a bar chart to plot the following data set. Label each bar. Make the bars hori-
zontal for easier labeling.

Provide a class BarChartViewer and a class BarChartComponent.

G

G

G

G

G

G

G

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

112 Chapter 3 Implementing Classes

Project 3.1 In this project, you will enhance the BankAccount class and see how abstraction and
encapsulation enable evolutionary changes to software.
Begin with a simple enhancement: charging a fee for every deposit and withdrawal.
Supply a mechanism for setting the fee and modify the deposit and withdraw methods
so that the fee is levied. Test your resulting class and check that the fee is computed
correctly.
Now make a more complex change. The bank will allow a fixed number of free
transactions (deposits or withdrawals) every month, and charge for transactions
exceeding the free allotment. The charge is not levied immediately but at the end of
the month.
Supply a new method deductMonthlyCharge to the BankAccount class that deducts the
monthly charge and resets the transaction count. (Hint: Use Math.max(actual transac-
tion count, free transaction count) in your computation.)
Produce a test program that verifies that the fees are calculated correctly over sev-
eral months.

Project 3.2 In this project, you will explore an object-oriented alternative to the “Hello,
World” program in Chapter 1.
Begin with a simple Greeter class that has a single method, sayHello. That method
should return a string, not print it. Use BlueJ to create two objects of this class and
invoke their sayHello methods.
That is boring—of course, both objects return the same answer.
Enhance the Greeter class so that each object produces a customized greeting. For
example, the object constructed as new Greeter("Dave") should say "Hello, Dave". (Use
the concat method to combine strings to form a longer string, or peek ahead at Sec-
tion 4.6 to see how you can use the + operator for the same purpose.)
Add a method sayGoodbye to the Greeter class.
Finally, add a method refuseHelp to the Greeter class. It should return a string such as
"I am sorry, Dave. I am afraid I can't do that."

Test your class in BlueJ. Make objects that greet the world and Dave, and invoke
methods on them.

1. public void reset()

{
value = 0;

}

2. You can only access them by invoking the methods of the Clock class.
3. In one of the methods of the Counter class.
4. The programmers who designed and implemented the Java library.
5. Other programmers who work on the personal finance application.
6. harrysChecking.withdraw(harrysChecking.getBalance())

Programming Projects

Answers to Self-Check Questions

Answers to Self-Check Questions 113

7. The withdraw method has return type void. It doesn’t return a value. Use the
getBalance method to obtain the balance after the withdrawal.

8. Add an accountNumber parameter to the constructors, and add a getAccount-
Number method. There is no need for a setAccountNumber method—the account number
never changes after construction.

9. /**
This class models a tally counter.

*/
public class Counter
{
 private int value;

 /**
Gets the current value of this counter.

 @return the current value
 */
 public int getValue()
 {
 return value;
 }

 /**
Advances the value of this counter by 1.

 */
 public void count()
 {
 value = value + 1;
 }
}

10. /**
Constructs a new bank account with a given initial balance.

 @param accountNumber the account number for this account
 @param initialBalance the initial balance for this account
*/

11. The first sentence of the method description should describe the method—it is dis-
played in isolation in the summary table.

12. An instance variable
private int accountNumber;

needs to be added to the class.
13. Because the balance instance variable is accessed from the main method of BankRobber.

The compiler will report an error because it is not a method of the BankAccount class.
14. public int getWidth()

{
 return width;
}

15. There is more than one correct answer. One possible implementation is as follows:
public void translate(int dx, int dy)
{
 int newx = x + dx;
 x = newx;
 int newy = y + dy;
 y = newy;
}

114 Chapter 3 Implementing Classes

16. One BankAccount object, no BankAccountTester object. The purpose of the BankAccount-
Tester class is merely to hold the main method.

17. In those environments, you can issue interactive commands to construct BankAccount
objects, invoke methods, and display their return values.

18. Variables of both categories belong to methods—they come alive when the method
is called, and they die when the method exits. They differ in their initialization.
Parameter variables are initialized with the call values; local variables must be
explicitly initialized.

19. After computing the change due, payment and purchase were set to zero. If the
method returned payment - purchase, it would always return zero.

20. One implicit parameter, called this, of type BankAccount, and one explicit parameter,
called amount, of type double.

21. It is not a legal expression. this is of type BankAccount and the BankAccount class has no
instance variable named amount.

22. No implicit parameter—the main method is not invoked on any object—and one
explicit parameter, called args.

23. CarComponent

24. In the draw method of the Car class, call
g2.fill(frontTire);
g2.fill(rearTire);

25. Double all measurements in the draw method of the Car class.

115

Chapter4
Fundamental

Data Types

CHAPTER GOALS
• To understand integer and floating-point numbers

• To recognize the limitations of the numeric types

• To become aware of causes for overflow and roundoff errors

• To understand the proper use of constants

• To write arithmetic expressions in Java

• To use the String type to manipulate character strings

• To learn how to read program input and produce
formatted output

This chapter teaches how to manipulate numbers and character

strings in Java. The goal of this chapter is to gain a firm understanding of these fundamental data

types in Java.

You will learn about the properties and limitations of the number types in Java. You will see how

to manipulate numbers and strings in your programs. Finally, we cover the important topic of input

and output, which enables you to implement interactive programs.

116

CHAPTER CONTENTS

In Java, every value is either a reference to an object, or it belongs to one of the eight
primitive types shown in Table 1.

Six of the primitive types are number types; four of them for integers and two for
floating-point numbers.

Each of the integer types has a different range—Special Topic 4.2 on page 118
explains why the range limits are related to powers of two. The largest number that
can be represented in an int is denoted by Integer.MAX_VALUE. Its value is about 2.14
billion. Similarly, Integer.MIN_VALUE is the smallest integer, about –2.14 billion.

Generally, you will use the int type for integer quantities. However, occasionally,
calculations involving integers can overflow. This happens if the result of a compu-
tation exceeds the range for the number type. For example:

int n = 1000000;
System.out.println(n * n); // Prints –727379968, which is clearly wrong

The product n * n is 1012, which is larger than the largest integer (about 2 · 109). The
result is truncated to fit into an int, yielding a value that is completely wrong.
Unfortunately, there is no warning when an integer overflow occurs.

If you run into this problem, the simplest remedy is to use the long type. Special
Topic 4.1 on page 118 shows you how to use the BigInteger type in the unlikely
event that even the long type overflows.

Overflow is not usually a problem for double-precision floating-point numbers.
The double type has a range of about ±10308 and about 15 significant digits. How-
ever, you want to avoid the float type—it has less than 7 significant digits. (Some
programmers use float to save on memory if they need to store a huge set of num-
bers that do not require much precision.)

4.1 Number Types
Java has eight
primitive types,
including four
integer types
and two floating-
point types.

A numeric
computation
overflows if the
result falls outside
the range for the
number type.

4.1 Number Types 116
SPECIAL TOPIC 4.1: Big Numbers

SPECIAL TOPIC 4.2: Binary Numbers

RANDOM FACT 4.1: The Pentium Floating-

Point Bug

4.2 Constants 118
SYNTAX 4.1: Constant Declaration 119
QUALITY TIP 4.1: Do Not Use Magic Numbers 122

4.3 Arithmetic Operations and
Mathematical Functions 123

SYNTAX 4.2: Cast 127
COMMON ERROR 4.1: Integer Division 128
COMMON ERROR 4.2: Unbalanced Parentheses 128
QUALITY TIP 4.2: White Space 129
QUALITY TIP 4.3: Factor Out Common Code 129
COMMON ERROR 4.3: Roundoff Errors 130
SPECIAL TOPIC 4.3: Combining Assignment

and Arithmetic

4.4 Calling Static Methods 131
SYNTAX 4.3: Static Method Call 131
HOW TO 4.1: Carrying Out Computations 132
WORKED EXAMPLE 4.1: Computing the Volume and

Surface Area of a Pyramid

4.5 Strings 134
PRODUCTIVITY HINT 4.1: Reading Exception Reports 137
SPECIAL TOPIC 4.4: Escape Sequences

SPECIAL TOPIC 4.5: Strings and the char Type

RANDOM FACT 4.2: International Alphabets

4.6 Reading Input 138
WORKED EXAMPLE 4.2: Extracting Initials

SPECIAL TOPIC 4.6: Formatting Numbers

SPECIAL TOPIC 4.7: Using Dialog Boxes for Input

and Output

4.1 Number Types 117

Rounding errors are a more serious issue with floating-point values. Rounding
errors can occur when you convert between binary and decimal numbers, or
between integers and floating-point numbers. When a value cannot be converted
exactly, it is rounded to the nearest match. Consider this example:

double f = 4.35;
System.out.println(100 * f); // Prints 434.99999999999994

This problem is caused because computers represent numbers in the binary number
system. In the binary number system, there is no exact representation of the frac-
tion 1/10, just as there is no exact representation of the fraction 1/3 = 0.33333 in the
decimal number system. (See Special Topic 4.2 for more information.)

For this reason, the double type is not appropriate for financial calculations. In
this book, we will continue to use double values for bank balances and other finan-
cial quantities so that we keep our programs as simple as possible. However,
professional programs need to use the BigDecimal type for this purpose—see Special
Topic 4.1.

In Java, it is legal to assign an integer value to a floating-point variable:
int dollars = 100;
double balance = dollars; // OK

But the opposite assignment is an error: You cannot assign a floating-point expres-
sion to an integer variable.

double balance = 13.75;
int dollars = balance; // Error

You will see in Section 4.3.5 how to convert a value of type double into an integer.

Table 1 Primitive Types

Type Description Size

int The integer type, with range
–2,147,483,648 (Integer.MIN_VALUE) . . . 2,147,483,647

(Integer.MAX_VALUE, about 2.14 billion)

4 bytes

byte The type describing a single byte, with range –128 . . . 127 1 byte

short The short integer type, with range –32,768 . . . 32,767 2 bytes

long The long integer type, with range
–9,223,372,036,854,775,808 . . . 9,223,372,036,854,775,807

8 bytes

double The double-precision floating-point type, with a range of
about ±10308 and about 15 significant decimal digits

8 bytes

float The single-precision floating-point type, with a range of
about ±1038 and about 7 significant decimal digits

4 bytes

char The character type, representing code units in the
Unicode encoding scheme (see Special Topic 4.5)

2 bytes

boolean The type with the two truth values false and true (see Chapter 5) 1 bit

Rounding errors
occur when an
exact conversion
between numbers
is not possible.

118 Chapter 4 Fundamental Data Types

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

1. Which are the most commonly used number types in Java?
2. Suppose you want to write a program that works with population data from

various countries. Which Java data type should you use?
3. Which of the following initializations are incorrect, and why?

a. int dollars = 100.0;
b. double balance = 100;

Big Numbers

Special Topic 4.1 shows you how to use the BigInteger and BigDecimal types to deal with
really large numbers, or to better control roundoff errors.

Binary Numbers

Special Topic 4.2 discusses how numbers are encoded in the computer, using the binary
number system.

The Pentium Floating-Point Bug

Random Fact 4.1 tells the story of the Intel Pentium floating-point bug, a flaw in a widely-
sold processor that caused multiplication errors in rare circumstances. Discovered by a
mathematics professor who used a computer in his research on prime numbers, it ultimately
caused a recall of all affected chips.

In many programs, you need to use numerical constants—values that do not
change and that have a special significance for a computation.

A typical example for the use of constants is a computation that involves coin
values, such as the following:

payment = dollars + quarters * 0.25 + dimes * 0.1
 + nickels * 0.05 + pennies * 0.01;

Most of the code is self-documenting. However, the four numeric quantities, 0.25,
0.1, 0.05, and 0.01 are included in the arithmetic expression without any explana-
tion. Of course, in this case, you know that the value of a nickel is five cents, which
explains the 0.05, and so on. However, the next person who needs to maintain this
code may live in another country and may not know that a nickel is worth five
cents.

S E L F C H E C K

Special Topic 4.1

Special Topic 4.2

Random Fact 4.1

4.2 Constants

4.2 Constants 119

Thus, it is a good idea to use symbolic names for all values, even those that
appear obvious. Here is a clearer version of the computation of the total:

double quarterValue = 0.25;
double dimeValue = 0.1;
double nickelValue = 0.05;
double pennyValue = 0.01;
payment = dollars + quarters * quarterValue + dimes * dimeValue
 + nickels * nickelValue + pennies * pennyValue;

There is another improvement we can make. There is a difference between the nick-
els and nickelValue variables. The nickels variable can truly vary over the life of the
program, as we calculate different payments. But nickelValue is always 0.05.

In Java, constants are identified with the reserved word final. A variable tagged
as final can never change after it has been set. If you try to change the value of a
final variable, the compiler will report an error and your program will not compile.

Many programmers use all-uppercase names for constants (final variables), such
as NICKEL_VALUE. That way, it is easy to distinguish between variables (with mostly
lowercase letters) and constants. We will follow this convention in this book. How-
ever, this rule is a matter of good style, not a requirement of the Java language. The
compiler will not complain if you give a final variable a name with lowercase letters.

Here is an improved version of the code that computes the value of a payment.
final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;
payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

Frequently, constant values are needed in several methods. Then you should declare
them together with the instance variables of a class and tag them as static and final.
As before, final indicates that the value is a constant. The static reserved word

Syntax 4.1 Constant Declaration

Syntax

Example

final double NICKEL_VALUE = 0.05;

public static final double LITERS_PER_GALLON = 3.785;

The final
reserved word
indicates that this
value cannot
be modified.

Declared in a class

Declared in a method: final typeName variableName = expression;

Declared in a class: accessSpecifier static final typeName variableName = expression;

Use uppercase letters for constants.

Declared in a method

A final variable is a
constant. Once its
value has been set, it
cannot be changed.

Use named constants
to make your
programs easier to
read and maintain.

120 Chapter 4 Fundamental Data Types

means that the constant belongs to the class—this is explained in greater detail in
Chapter 8.)

public class CashRegister
{
 // Constants
 public static final double QUARTER_VALUE = 0.25;
 public static final double DIME_VALUE = 0.1;
 public static final double NICKEL_VALUE = 0.05;
 public static final double PENNY_VALUE = 0.01;

 // Instance variables
 private double purchase;
 private double payment;

 // Methods
 . . .
}

We declared the constants as public. There is no danger in doing this because con-
stants cannot be modified. Methods of other classes can access a public constant by
first specifying the name of the class in which it is declared, then a period, then the
name of the constant, such as CashRegister.NICKEL_VALUE.

The Math class from the standard library declares a couple of useful constants:
public class Math
{
 . . .
 public static final double E = 2.7182818284590452354;
 public static final double PI = 3.14159265358979323846;
}

You can refer to these constants as Math.PI and Math.E in any of your methods. For
example,

double circumference = Math.PI * diameter;

The sample program at the end of this section puts constants to work. The program
shows a refinement of the CashRegister class of How To 3.1. The public interface of
that class has been modified in order to solve a common business problem.

Busy cashiers sometimes make mistakes totaling up coin values. Our Cash-
Register class features a method whose inputs are the coin counts. For example, the
call

register.enterPayment(1, 2, 1, 1, 4);

enters a payment consisting of one dollar, two quarters, one dime, one nickel, and
four pennies. The enterPayment method figures out the total value of the payment,
$1.69. As you can see from the code listing, the method uses named constants for
the coin values.

ch04/cashregister/CashRegister.java

1 /**
2 A cash register totals up sales and computes change due.
3 */
4 public class CashRegister
5 {
6 public static final double QUARTER_VALUE = 0.25;
7 public static final double DIME_VALUE = 0.1;

4.2 Constants 121

ch04/cashregister/CashRegisterTester.java

8 public static final double NICKEL_VALUE = 0.05;
9 public static final double PENNY_VALUE = 0.01;

10
11 private double purchase;
12 private double payment;
13
14 /**
15 Constructs a cash register with no money in it.
16 */
17 public CashRegister()
18 {
19 purchase = 0;
20 payment = 0;
21 }
22
23 /**
24 Records the purchase price of an item.
25 @param amount the price of the purchased item
26 */
27 public void recordPurchase(double amount)
28 {
29 purchase = purchase + amount;
30 }
31
32 /**
33 Enters the payment received from the customer.
34 @param dollars the number of dollars in the payment
35 @param quarters the number of quarters in the payment
36 @param dimes the number of dimes in the payment
37 @param nickels the number of nickels in the payment
38 @param pennies the number of pennies in the payment
39 */
40 public void enterPayment(int dollars, int quarters,
41 int dimes, int nickels, int pennies)
42 {
43 payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
44 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;
45 }
46
47 /**
48 Computes the change due and resets the machine for the next customer.
49 @return the change due to the customer
50 */
51 public double giveChange()
52 {
53 double change = payment - purchase;
54 purchase = 0;
55 payment = 0;
56 return change;
57 }
58 }

1 /**
2 This class tests the CashRegister class.
3 */
4 public class CashRegisterTester
5 {

122 Chapter 4 Fundamental Data Types

Program Run

4. What is the difference between the following two statements?
final double CM_PER_INCH = 2.54;

and
public static final double CM_PER_INCH = 2.54;

5. What is wrong with the following statement sequence?
double diameter = . . .;
double circumference = 3.14 * diameter;

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example, consider the following scary example that actually occurs in the Java library source:

h = 31 * h + ch;

Why 31? The number of days in January? One less than the number of bits in an integer?
Actually, this code computes a “hash code” from a string—a number that is derived from the
characters in such a way that different strings are likely to yield different hash codes. The
value 31 turns out to scramble the character values nicely.

A better solution is to use a named constant:

final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

6 public static void main(String[] args)
7 {
8 CashRegister register = new CashRegister();
9

10 register.recordPurchase(0.75);
11 register.recordPurchase(1.50);
12 register.enterPayment(2, 0, 5, 0, 0);
13 System.out.print("Change: ");
14 System.out.println(register.giveChange());
15 System.out.println("Expected: 0.25");
16
17 register.recordPurchase(2.25);
18 register.recordPurchase(19.25);
19 register.enterPayment(23, 2, 0, 0, 0);
20 System.out.print("Change: ");
21 System.out.println(register.giveChange());
22 System.out.println("Expected: 2.0");
23 }
24 }

Change: 0.25
Expected: 0.25
Change: 2.0
Expected: 2.0

S E L F C H E C K

Quality Tip 4.1

4.3 Arithmetic Operations and Mathematical Functions 123

You should never use magic numbers in your code. Any number that is not completely self-
explanatory should be declared as a named constant. Even the most reasonable cosmic con-
stant is going to change one day. You think there are 365 days in a year? Your customers on
Mars are going to be pretty unhappy about your silly prejudice. Make a constant

final int DAYS_PER_YEAR = 365;

By the way, the device

final int THREE_HUNDRED_AND_SIXTY_FIVE = 365;

is counterproductive and frowned upon.

In the following sections, you will learn how to carry out arithmetic calculations in
Java.

Java supports the same four basic arithmetic operations as a calculator—addition,
subtraction, multiplication, and division. As you have already seen, addition and
subtraction use the familiar + and - operators, and the * operator denotes multiplica-
tion. Division is indicated with a /, not a fraction bar.
For example,

becomes
(a + b) / 2

Parentheses are used just as in algebra: to indicate in which order the subexpressions
should be computed. For example, in the expression (a + b) / 2, the sum a + b is
computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

only b is divided by 2, and then the sum of a and b / 2 is formed. Just as in regular
algebraic notation, multiplication and division bind more strongly than addition
and subtraction. For example, in the expression a + b / 2, the / is carried out first,
even though the + operation occurs farther to the left.

Incrementing a value by 1 is so common when writing programs that there is a spe-
cial shorthand for it, namely

items++;

4.3 Arithmetic Operations and
Mathematical Functions

4.3.1 Arithmetic Operators

a b+
2

4.3.2 Increment and Decrement

124 Chapter 4 Fundamental Data Types

This statement adds 1 to items. It is easier to type and read than the equivalent
assignment statement

items = items + 1;

As you might have guessed, there is also a decrement operator --. The statement
items--;

subtracts 1 from items.

Division works as you would expect, as long as at least one of the numbers involved
is a floating-point number. That is,

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers, then the result of the division
is always an integer, with the remainder discarded. That is,

7 / 4

evaluates to 1, because 7 divided by 4 is 1 with a remainder of 3 (which is discarded).
Discarding the remainder is often useful, but it can also be a source of subtle pro-
gramming errors—see Common Error 4.1 on page 128.

If you are interested only in the remainder of an integer division, use the % opera-
tor:

7 % 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in
algebra. It was chosen because it looks similar to /, and the remainder operation is
related to division.

Here is a typical use for the integer / and % operations. Suppose you want to
know how much change a cash register should give, using separate values for dollars
and cents. You can compute the value as an integer, denominated in cents, and then
compute the whole dollar amount and the remaining change:

final int PENNIES_PER_NICKEL = 5;
final int PENNIES_PER_DIME = 10;
final int PENNIES_PER_QUARTER = 25;
final int PENNIES_PER_DOLLAR = 100;

Figure 1 Incrementing a Variable

items =

items + 1

The ++ and --
operators increment
and decrement
a variable.

4.3.3 Integer Division

If both arguments
of the / operator
are integers, the
result is an integer
and the remainder
is discarded.

The % operator
computes the
remainder of
a division.

4.3 Arithmetic Operations and Mathematical Functions 125

// Compute total value in pennies
int total = dollars * PENNIES_PER_DOLLAR + quarters * PENNIES_PER_QUARTER
 + nickels * PENNIES_PER_NICKEL + dimes * PENNIES_PER_DIME + pennies;

// Use integer division to convert to dollars, cents
int dollars = total / PENNIES_PER_DOLLAR;
int cents = total % PENNIES_PER_DOLLAR;

For example, if total is 243, then dollars is set to 2 and cents to 43.

To compute xn, you write Math.pow(x, n). However, to compute x2 it is significantly
more efficient simply to compute x * x.

To take the square root of a number, you use the Math.sqrt method. For example,
 is written as Math.sqrt(x).

In algebra, you use fractions, superscripts for exponents, and radical signs for
roots to arrange expressions in a compact two-dimensional form. In Java, you have
to write all expressions in a linear arrangement. For example, the subexpression

of the quadratic formula becomes
(-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Figure 2 shows how to analyze such an expression. With complicated expressions
like these, it is not always easy to keep the parentheses () matched—see Common
Error 4.2 on page 128.

Table 2 on page 126 shows additional methods of the Math class. Inputs and out-
puts are floating-point numbers.

Figure 2 Analyzing an Expression

4.3.4 Powers and Roots

The Math class
contains methods
sqrt and pow to
compute square
roots and powers. x

− + −b b ac
a

2 4
2

(–b + Math.sqrt(b * b – 4 * a * c)) / (2 * a)

b2

b2–4ac

b2–4ac

4ac 2a

2a

–b + b2–4ac

–b + b2–4ac

126 Chapter 4 Fundamental Data Types

Occasionally, you have a value of type double that you need to convert to the type
int. Use the cast operator (int) for this purpose. You write the cast operator before
the expression that you want to convert:

double balance = total + tax;
int dollars = (int) balance;

The cast (int) converts the floating-point value balance to an integer by discarding
the fractional part. For example, if balance is 13.75, then dollars is set to 13.

The cast tells the compiler that you agree to information loss, in this case, to the
loss of the fractional part. You can also cast to other types, such as (float) or (byte).

Table 2 Mathematical Methods

Function Returns

Math.sqrt(x) Square root of x (≥0)

Math.pow(x, y) xy (x > 0, or x = 0 and y > 0, or x < 0 and y is an integer)

Math.sin(x) Sine of x (x in radians)

Math.cos(x) Cosine of x

Math.tan(x) Tangent of x

Math.asin(x) Arc sine (sin–1x ∈ [–π/2, π/2], x ∈ [–1, 1])

Math.acos(x) Arc cosine (cos–1x ∈ [0, π], x ∈ [–1, 1])

Math.atan(x) Arc tangent (tan–1x ∈ [–π/2, π/2])

Math.atan2(y, x) Arc tangent (tan–1y/x ∈ [–π, π]), x may be 0

Math.toRadians(x) Convert x degrees to radians (i.e., returns x · π/180)

Math.toDegrees(x) Convert x radians to degrees (i.e., returns x · 180/π)

Math.exp(x) ex

Math.log(x) Natural log (ln(x), x > 0)

Math.log10(x) Decimal log (log10(x), x > 0)

Math.round(x) Closest integer to x (as a long)

Math.ceil(x) Smallest integer ≥x (as a double)

Math.floor(x) Largest integer ≤x (as a double)

Math.abs(x) Absolute value |x |

Math.max(x, y) The larger of x and y

Math.min(x, y) The smaller of x and y

4.3.5 Casting and Rounding

You use a cast
(typeName) to
convert a value to a
different type.

4.3 Arithmetic Operations and Mathematical Functions 127

If you want to round a floating-point number to the nearest whole number, use
the Math.round method. This method returns a long integer, because large floating-
point numbers cannot be stored in an int.

long rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14.

6. What is the value of n after the following sequence of statements?
n--;
n++;
n--;

7. What is the value of 1729 / 100? Of 1729 % 100?

Syntax 4.2 Cast

Syntax

Example

(int) (balance * 100)

This is the type of the expression after casting.

These parentheses are a
part of the cast operator.

Use parentheses here if

the cast is applied to an expression

with arithmetic operators.

(typeName) expression

Use the Math.round
method to round a
floating-point
number to the
nearest integer.

Table 3 Arithmetic Expressions

Mathematical
Expression

Java
Expression Comments

(x + y) / 2 The parentheses are required;

x + y / 2 computes .

x * y / 2 Parentheses are not required; operators with
the same precedence are evaluated left to right.

Math.pow(1 + r / 100, n) Complex formulas are “flattened” in Java.

Math.sqrt(a * a + b * b) a * a is simpler than Math.pow(a, 2).

(i + j + k) / 3.0 If i, j, and k are integers, using a denominator
of 3.0 forces floating-point division.

x y+
2 x y+

2

xy
2

1
100

+
⎛
⎝⎜

⎞
⎠⎟

r
n

a b2 2+

i j k+ +
3

S E L F C H E C K

128 Chapter 4 Fundamental Data Types

8. Why doesn’t the following statement compute the average of s1, s2, and s3?
double average = s1 + s2 + s3 / 3; // Error

9. What is the value of Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)) in mathematical
notation?

10. When does the cast (long) x yield a different result from the call Math.round(x)?
11. How do you round the double value x to the nearest int value, assuming that you

know that it is less than 2 · 109?

Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-
point division. These are really quite different operations. It is a common error to use integer
division by accident. Consider this program segment that computes the average of three
integers.

int s1 = 5; // Score of test 1
int s2 = 6; // Score of test 2
int s3 = 3; // Score of test 3
double average = (s1 + s2 + s3) / 3; // Error
System.out.print("Your average score is ");
System.out.println(average);

What could be wrong with that? Of course, the average of s1, s2, and s3 is

Here, however, the / does not mean division in the mathematical sense. It denotes integer
division, because the values s1 + s2 + s3 and 3 are both integers. For example, if the scores
add up to 14, the average is computed to be 4, the result of the integer division of 14 by 3.
That integer 4 is then moved into the floating-point variable average. The remedy is to make
either the numerator or denominator into a floating-point number:

double total = s1 + s2 + s3;
double average = total / 3;

or

double average = (s1 + s2 + s3) / 3.0;

Unbalanced Parentheses

Consider the expression

1.5 * ((-(b - Math.sqrt(b * b - 4 * a * c)) / (2 * a))

What is wrong with it? Count the parentheses. There are five opening parentheses (and four
closing parentheses). The parentheses are unbalanced. This kind of typing error is very com-
mon with complicated expressions. Now consider this expression.

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))

Common Error 4.1

s s s1 2 3
3

+ +

Common Error 4.2

4.3 Arithmetic Operations and Mathematical Functions 129

This expression has five opening parentheses (and five closing parentheses), but it is still
not correct. In the middle of the expression,

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))

there are only two opening parentheses (but three closing parentheses), which is an error.
In the middle of an expression, the count of opening parentheses must be greater than or
equal to the count of closing parentheses, and at the end of the expression the two counts
must be the same.

Here is a simple trick to make the counting easier without using pencil and paper. It is dif-
ficult for the brain to keep two counts simultaneously, so keep only one count when scan-
ning the expression. Start with 1 at the first opening parenthesis; add 1 whenever you see an
opening parenthesis; subtract 1 whenever you see a closing parenthesis. Say the numbers
aloud as you scan the expression. If the count ever drops below zero, or if it is not zero at the
end, the parentheses are unbalanced. For example, when scanning the previous expression,
you would mutter

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))
 1 2 1 0 –1

and you would find the error.

White Space

The compiler does not care whether you write your entire program onto a single line or
place every symbol onto a separate line. The human reader, though, cares very much. You
should use blank lines to group your code visually into sections. For example, you can signal
to the reader that an output prompt and the corresponding input statement belong together
by inserting a blank line before and after the group. You will find many examples in the
source code listings in this book.

White space inside expressions is also important. It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after a unary
minus: a - used to negate a single quantity, as in -b. That way, it can be easily distinguished
from a binary minus, as in a - b. Don’t put spaces between a method name and the parenthe-
ses, but do put a space after every Java reserved word. That makes it easy to see that the sqrt
in Math.sqrt(x) is a method name, whereas the if in if (x > 0) . . . is a reserved word.

Factor Out Common Code

Suppose you want to find both solutions of the quadratic equation ax2 + bx + c = 0. The qua-
dratic formula tells us that the solutions are

Quality Tip 4.2

Quality Tip 4.3

x
b b ac

a1 2

2 4
2, = − ± −

130 Chapter 4 Fundamental Data Types

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

In Java, there is no analog to the ± operation, which indicates how to obtain two solutions
simultaneously. Both solutions must be computed separately:

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x2 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);

This approach has two problems. First, the computation of Math.sqrt(b * b - 4 * a * c) is
carried out twice, which wastes time. Second, whenever the same code is replicated, the pos-
sibility of a typing error increases. The remedy is to factor out the common code:

double root = Math.sqrt(b * b - 4 * a * c);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

You could go even further and factor out the computation of 2 * a, but the gain from factor-
ing out very simple computations is too small to warrant the effort.

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You proba-
bly have encountered this phenomenon yourself with manual calculations. If you calculate
1/3 to two decimal places, you get 0.33. Multiplying again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, not in
decimal. You still get roundoff errors when binary digits are lost. They just may crop up at
different places than you might expect. Here is an example:

double f = 4.35;
int n = (int) (100 * f);
System.out.println(n); // Prints 434!

Of course, one hundred times 4.35 is 435, but the program prints 434.
Computers represent numbers in the binary system (see Special Topic 4.2). In the binary

system, there is no exact representation for 4.35, just as there is no exact representation for 1/
3 in the decimal system. The representation used by the computer is just a little less than
4.35, so 100 times that value is just a little less than 435. When a floating-point value is con-
verted to an integer, the entire fractional part is discarded, even if it is almost 1. As a result,
the integer 434 is stored in n. Remedy: Use Math.round to convert floating-point numbers to
integers. The round method returns the closest integer.

int n = (int) Math.round(100 * f); // OK, n is 435

Combining Assignment and Arithmetic

Special Topic 4.3 covers special operators that combine assignment and arithmetic. For
example, balance += amount is equivalent to balance = balance + amount.

Common Error 4.3

Special Topic 4.3

4.4 Calling Static Methods 131

In the preceding section, you encountered the Math class, which contains a collection
of helpful methods for carrying out mathematical computations. These methods
have a special form: they are static methods that do not operate on an object.

That is, you don’t call
double root = 100.sqrt(); // Error

In Java, numbers are not objects, so you can never invoke a method on a number.
Instead, you pass a number as an explicit parameter to a method, enclosing the
number in parentheses after the method name:

double root = Math.sqrt(100);

This call makes it appear as if the sqrt method is applied to an object called Math.
However, Math is a class, not an object. A method such as Math.sqrt that does not
operate on any object is called a static method. (The term “static” is a historical
holdover from the C and C++ programming languages. It has nothing to do with
the usual meaning of the word.) In contrast, a method that is invoked on an object is
class, is called an instance method:

harrysChecking.deposit(100); // deposit is an instance method

Static methods do not operate on objects, but they are still declared inside classes.
When calling the method, you specify the class to which the sqrt method belongs—
hence the call is Math.sqrt(100).

How can you tell that Math is a class and not an object? By convention, class
names start with an uppercase letter (such as Math or BankAccount). Objects and meth-
ods start with a lowercase letter (such as harrysChecking and println). Therefore,
harrysChecking.deposit(100) denotes a call of the deposit method on the harrysChecking
object inside the System class. On the other hand, Math.sqrt(100) denotes a call to the
sqrt method inside the Math class.

This use of upper- and lowercase letters is merely a convention, not a rule of the
Java language. It is, however, a convention that the authors of the Java class libraries
follow consistently. You should do the same in your programs so that you don’t
confuse your fellow programmers.

12. Why can’t you call x.pow(y) to compute xy?
13. Is the call System.out.println(4) a static method call?

4.4 Calling Static Methods

A static method
does not operate
on an object.

Syntax 4.3 Static Method Call

Syntax

Example

Math.pow(10, 3)

The class where the
pow method is declared.

ClassName.methodName(parameters)

All parameters of a static method
are explicit parameters.

S E L F C H E C K

132 Chapter 4 Fundamental Data Types

HOW TO 4.1 Carrying Out Computations

Many programming problems require that you use mathematical formulas to compute val-
ues. This How To shows how to turn a problem statement into a sequence of mathematical
formulas and, ultimately, a class in the Java programming language.

Step 1 Understand the problem: What are the inputs? What are the desired outputs?

For example, suppose you are asked to simulate a postage stamp vending machine. A cus-
tomer inserts money into the vending machine. Then the customer pushes a “First class
stamps” button. The vending machine gives out as many first-class stamps as the customer
paid for. (A first-class stamp cost 44 cents at the time this book was written.) Finally, the
customer pushes a “Penny stamps” button. The machine gives the change in penny (1-cent)
stamps.

In this problem, there is one input:
• The amount of money the customer inserts
There are two desired outputs:
• The number of first-class stamps the machine returns
• The number of penny stamps the machine returns

Step 2 Work out examples by hand.

This is a very important step. If you can’t compute a couple of solutions by hand, it’s
unlikely that you’ll be able to write a program that automates the computation.

Let’s assume that a first-class stamp costs 44 cents and the customer inserts $1.00. That’s
enough for two stamps (88 cents) but not enough for three stamps ($1.32). Therefore, the
machine returns two first-class stamps and 12 penny stamps.

Step 3 Design a class that carries out your computations.

How To 3.1 explains how to develop a class by finding methods and instance variables. In
our case, the problem statement yields three methods:
• public void insert(int dollars)
• public int giveFirstClassStamps()
• public int givePennyStamps()
A bigger challenge is to determine instance variables that describe the state of the machine. In
this example, an excellent choice is to keep a single variable, the customer balance. (See Exer-
cise P4.12 for another choice.)

That balance is incremented by the insert method and decremented by the giveFirst-
ClassStamps and givePennyStamps methods.

Step 4 Write pseudocode for implementing the methods.

Given an amount of money and the price of a first-class stamp, how can you compute how
many first-class stamps can be purchased with the money? Clearly, the answer is related to
the quotient

For example, suppose the customer paid $1.00. Use a pocket calculator to compute the quo-
tient: $1.00/$0.44 ≈ 2.27.

How do you get “2 stamps” out of 2.27? It’s the integer part. In Java, this is easy to com-
pute if both arguments are integers. Therefore, let’s switch our computation to pennies. Then
we have

number of first-class stamps = 100 / 44 (integer division, without remainder)

amount of money
price of first-class stamp

4.4 Calling Static Methods 133

What if the user inputs two dollars? Then the numerator becomes 200. What if the price of a
stamp goes up? A more general equation is

input in pennies = 100 x dollars

number of first-class stamps = input in pennies / price of first-class stamps in pennies (without remainder)

How about the remaining balance after dispensing the first class stamps? Here is one way of
computing it. When the customer gets the stamps, the remaining balance is the original bal-
ance, reduced by the value of the stamps purchased. In our example, the remainder is 12
cents—the difference between 100 and 2 · 44. Here is the general formula:

remaining balance = input in pennies – number of first-class stamps x price of first-class stamp in pennies

Step 5 Implement the class.

In Step 3, we decided that the state of the vending machine can be represented by the cus-
tomer balance. In Step 4, it became clear that the balance is best represented in pennies.

It is a good idea to rewrite the pseudocode in terms of this newly found variable. We now
use the instance variable balance for what was previously called input in pennies. When money
is inserted, the balance increases:

balance = balance + 100 * dollars

When the first class stamps are requested, the balance decreases.

firstClassStamps = balance / FIRST_CLASS_STAMP_PRICE;
balance = balance - firstClassStamps * FIRST_CLASS_STAMP_PRICE;

What was previously called remaining balance is now simply the value of the balance instance
variable.

Here is the implementation of the StampMachine class:

public class StampMachine
{
 public static final double FIRST_CLASS_STAMP_PRICE = 44;
 private int balance;

 public StampMachine()
 {
 balance = 0;
 }

 public void insert(int dollars)
 {
 balance = balance + 100 * dollars;
 }

 public int giveFirstClassStamps()
 {
 int firstClassStamps = balance / FIRST_CLASS_STAMP_PRICE;
 balance = balance - firstClassStamps * FIRST_CLASS_STAMP_PRICE;
 return firstClassStamps;
 }

 public int givePennyStamps()
 {
 int pennyStamps = balance;
 balance = 0;
 return pennyStamps;
 }
}

134 Chapter 4 Fundamental Data Types

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Step 6 Test your class.

Run a test program (or use an integrated environment such as BlueJ) to verify that the values
that your class computes are the same values that you computed by hand.

Here is a test program:

public class StampMachineTester
{
 public static void main(String[] args)
 {
 StampMachine machine = new StampMachine();
 machine.insert(1);
 System.out.print("First class stamps: ");
 System.out.println(machine.giveFirstClassStamps());
 System.out.println("Expected: 2");
 System.out.print("Penny stamps: ");
 System.out.println(machine.givePennyStamps());
 System.out.println("Expected: 12”);
 }
}

Program Run

First class stamps: 2
Expected: 2
Penny stamps: 12
Expected: 12

Computing the Volume and Surface Area
of a Pyramid

This Worked Example shows how to design a class for com-
puting the volume and surface area of a pyramid.

Many programs process text that consists of characters: letters, numbers, punctua-
tion, spaces, and so on. A string is a sequence of characters, such as "Hello, World!".
In the following sections, you will learn how to work with strings in Java.

In Java, strings are objects that belong to the class String. (You can tell that String is
a class name because it starts with an uppercase letter. The primitive types int and
double start with lowercase letters.)

You do not need to call a constructor to create a string object. You can obtain a
string literal simply by enclosing a sequence of characters in double quotation
marks. For example, the string literal "Harry" is an object of the String class.

The number of characters in a string is called the length of the string. As you
have seen in Chapter 2, you can use the length method to obtain the length of a

Worked
Example 4.1

4.5 Strings

4.5.1 The String Class

A string is a
sequence of
characters. Strings
are objects of the
String class.

4.5 Strings 135

string. For example, "Hello".length() is 5, and the length of "Hello, World!" is 13.
(The quotation marks are not part of the string and do not contribute to the length,
but you must count spaces and punctuation marks.)

A string of length zero, containing no characters, is called the empty string and is
written as "".

You can use the + operator to put strings together to form a longer string.
String name = "Dave";
String message = "Hello, " + name;

This process is called concatenation.
The + operator concatenates two strings, provided one of the expressions, either

to the left or the right of a + operator, is a string. The other one is automatically
forced to become a string as well, and both strings are concatenated.

For example, consider this code:
String a = "Agent";
int n = 7;
String bond = a + n;

Because a is a string, n is converted from the integer 7 to the string "7". Then the two
strings "Agent" and "7" are concatenated to form the string "Agent7".

This concatenation is very useful to reduce the number of System.out.print
instructions. For example, you can combine

System.out.print("The total is ");
System.out.println(total);

to the single call
System.out.println("The total is " + total);

The concatenation "The total is " + total computes a single string that consists of
the string "The total is ", followed by the string equivalent of the number total.

Sometimes you have a string that contains a number, usually from user input. For
example, suppose that the string variable input has the value "19". To get the integer
value 19, you use the static parseInt method of the Integer class.

int count = Integer.parseInt(input);
 // count is the integer 19

To convert a string containing floating-point digits to its floating-point value, use
the static parseDouble method of the Double class. For example, suppose input is the
string "3.95".

double price = Double.parseDouble(input);
 // price is the floating-point number 3.95

However, if the string contains spaces or other characters that cannot occur inside
numbers, an error occurs. For now, we will always assume that user input does not
contain invalid characters.

4.5.2 Concatenation

Strings can be
concatenated, that
is, put end to end
to yield a new
longer string.
String concatenation
is denoted by the
+ operator.

Whenever one of
the arguments of
the + operator is a
string, the other
argument is
converted to a string.

4.5.3 Converting Strings to Numbers

If a string contains
the digits of a
number, you use the
Integer.parseInt or
Double.parseDouble
method to obtain the
number value.

136 Chapter 4 Fundamental Data Types

The substring method computes substrings of a string. The call
s.substring(start, pastEnd)

returns a string that is made up of the characters in the string s, starting at position
start, and containing all characters up to, but not including, the position pastEnd.
Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello"

The substring operation makes a string that consists of five characters taken from the
string greeting. A curious aspect of the substring operation is the numbering of the
starting and ending positions. The first string position is labeled 0, the second one 1,
and so on. For example, Figure 3 shows the position numbers in the greeting string.

The position number of the last character (12 for the string "Hello, World!") is
always 1 less than the length of the string.

Let us figure out how to extract the substring "World". Count characters starting
at 0, not 1. You find that W, the eighth character, has position number 7. The first
character that you don’t want, !, is the character at position 12 (see Figure 4).

Therefore, the appropriate substring command is
String sub2 = greeting.substring(7, 12);

It is curious that you must specify the position of the first character that you do
want and then the first character that you don’t want. There is one advantage to this
setup. You can easily compute the length of the substring: It is pastEnd - start. For
example, the string "World" has length 12 – 7 = 5.

If you omit the second parameter of the substring method, then all characters
from the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7); // Copies all characters from position 7 on

sets tail to the string "World!".
If you supply an illegal string position (a negative number, or a value that is

larger than the length of the string), then your program terminates with an error
message.

In this section, we have made the assumption that each character in a string occu-
pies a single position. Unfortunately, that assumption is not quite correct. If you
process strings that contain characters from international alphabets or special sym-
bols, some characters may occupy two positions—see Special Topic 4.5.

Figure 3
String Positions

Figure 4
Extracting a Substring

4.5.4 Substrings

Use the substring
method to extract a
part of a string.

String positions are
counted starting
with 0.

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

5

4.5 Strings 137

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

14. Assuming the String variable s holds the value "Agent", what is the effect of the
assignment s = s + s.length()?

15. Assuming the String variable river holds the value "Mississippi", what is the
value of river.substring(1, 2)? Of river.substring(2, river.length() - 3)?

Reading Exception Reports

You will often have programs that terminate and display an error message, such as

Exception in thread "main" java.lang.StringIndexOutOfBoundsException:
 String index out of range: -4
 at java.lang.String.substring(String.java:1444)
 at Homework1.main(Homework1.java:16)

An amazing number of students simply give up at that point, saying “it didn’t work”, or
“my program died”, without ever reading the error message. Admittedly, the format of the
exception report is not very friendly. But it is actually easy to decipher it.

When you have a close look at the error message, you will notice two pieces of useful
information:

1. The name of the exception, such as StringIndexOutOfBoundsException
2. The line number of the code that contained the statement that caused the exception,

such as Homework1.java:16

The name of the exception is always in the first line of the report, and it ends in Exception. If
you get a StringIndexOutOfBoundsException, then there was a problem with accessing an invalid
position in a string. That is useful information.

The line number of the offending code is a little harder to determine. The exception
report contains the entire stack trace—that is, the names of all methods that were pending
when the exception hit. The first line of the stack trace is the method that actually generated
the exception. The last line of the stack trace is a line in main. Often, the exception was
thrown by a method that is in the standard library. Look for the first line in your code that
appears in the exception report. For example, skip the line that refers to

java.lang.String.substring(String.java:1444)

The next line in our example mentions a line number in your code, Homework1.java. Once you
have the line number in your code, open up the file, go to that line, and look at it! Also look
at the name of the exception. In most cases, these two pieces of information will make it
completely obvious what went wrong, and you can easily fix your error.

Escape Sequences

Special Topic 4.4 shows how you can embed special characters (such as quotation marks or
line breaks) inside strings.

S E L F C H E C K

Productivity Hint 4.1

Special Topic 4.4

138 Chapter 4 Fundamental Data Types

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Strings and the char Type

Special Topic 4.5 discusses the char type. Strings are composed of code units of type char. For
most programming tasks, you can simply use strings of length 1 instead of char values.

International Alphabets

Random Fact 4.2 explains how the Unicode character set provides an encoding for all charac-
ters that are in use around the world, including accented characters, scripts such as Hebrew or
Thai, and tens of thousands of ideographs that are used in China, Japan, and Korea.

The Java programs that you have made so far have constructed objects, called meth-
ods, printed results, and exited. They were not interactive and took no user input.
In this section, you will learn one method for reading user input.

Because output is sent to System.out, you might think that you use System.in for
input. Unfortunately, it isn’t quite that simple. When Java was first designed, not
much attention was given to reading keyboard input. It was assumed that all pro-
grammers would produce graphical user interfaces with text fields and menus.
System.in was given a minimal set of features—it can only read one byte at a time.
Finally, in Java version 5, a Scanner class was added that lets you read keyboard input
in a convenient manner.

To construct a Scanner object, simply pass the System.in object to the Scanner con-
structor:

Scanner in = new Scanner(System.in);

You can create a scanner out of any input stream (such as a file), but you will usu-
ally want to use a scanner to read keyboard input from System.in.

Once you have a scanner, you use the nextInt or nextDouble methods to read the
next integer or floating-point number.

System.out.print("Enter quantity: ");
int quantity = in.nextInt();

System.out.print("Enter price: ");
double price = in.nextDouble();

When the nextInt or nextDouble method is called, the program waits until the user
types a number and hits the Enter key. You should always provide instructions for
the user (such as "Enter quantity:") before calling a Scanner method. Such an instruc-
tion is called a prompt.

Special Topic 4.5

Random Fact 4.2

4.6 Reading Input

Use the Scanner
class to read
keyboard input in
a console window.

4.6 Reading Input 139

If the user supplies an input that is not a number, then a run-time exception
occurs. You will see in the next chapter how you can check whether the user sup-
plied a numeric input.

The nextLine method returns the next line of input (until the user hits the Enter
key) as a String object. The next method returns the next word, terminated by any
white space, that is, a space, the end of a line, or a tab.

System.out.print("Enter city: ");
String city = in.nextLine();

System.out.print("Enter state code: ");
String state = in.next();

Here, we use the nextLine method to read a city name that may consist of multiple
words, such as San Francisco. We use the next method to read the state code (such as
CA), which consists of a single word.

Here is an example of a program that takes user input. This program uses the
CashRegister class and simulates a transaction in which a user purchases an item,
pays for it, and receives change.

We call this class CashRegisterSimulator, not CashRegisterTester. We reserve the
Tester suffix for classes whose sole purpose is to test other classes.

ch04/cashregister/CashRegisterSimulator.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates a transaction in which a user pays for an item
5 and receives change.
6 */
7 public class CashRegisterSimulator
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12
13 CashRegister register = new CashRegister();
14
15 System.out.print("Enter price: ");
16 double price = in.nextDouble();
17 register.recordPurchase(price);
18
19 System.out.print("Enter dollars: ");
20 int dollars = in.nextInt();
21 System.out.print("Enter quarters: ");
22 int quarters = in.nextInt();
23 System.out.print("Enter dimes: ");
24 int dimes = in.nextInt();
25 System.out.print("Enter nickels: ");
26 int nickels = in.nextInt();
27 System.out.print("Enter pennies: ");
28 int pennies = in.nextInt();
29 register.enterPayment(dollars, quarters, dimes, nickels, pennies);
30
31 System.out.print("Your change: ");
32 System.out.println(register.giveChange());
33 }
34 }

140 Chapter 4 Fundamental Data Types

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Program Run

16. Why can’t input be read directly from System.in?
17. Suppose in is a Scanner object that reads from System.in, and your program calls

String name = in.next();

What is the value of name if the user enters John Q. Public?

Extracting Initials

This Worked Example shows how to read names and print a set of
corresponding initials.

Formatting Numbers

Special Topic 4.6 shows you how to control the number of digits after the decimal point
when printing a number using the printf method. This is useful if you want to show a cur-
rency value rounded to two digits, such as 0.30 instead of 0.2975. Other options of the printf
method are also discussed.

Using Dialog Boxes for Input and Output

Special Topic 4.7 shows how to use dialog boxes for reading input or displaying output.

Choose appropriate types for representing numeric data.

• Java has eight primitive types, including four integer types and two floating-point
types.

• A numeric computation overflows if the result falls outside the range for the
number type.

• Rounding errors occur when an exact conversion between numbers is not possible.

Enter price: 7.55
Enter dollars: 10
Enter quarters: 2
Enter dimes: 1
Enter nickels: 0
Enter pennies: 0
Your change: 3.05

S E L F C H E C K

Worked
Example 4.2

Special Topic 4.6

Special Topic 4.7

Summary of Learning Objectives

Classes, Objects, and Methods Introduced in this Chapter 141

Write code that uses constants to document the purpose of numeric values.

• A final variable is a constant. Once its value has been set, it cannot be changed.
• Use named constants to make your programs easier to read and maintain.

Write arithmetic expressions in Java.

• The ++ and -- operators increment and decrement a variable.
• If both arguments of the / operator are integers, the result is an integer and the

remainder is discarded.
• The % operator computes the remainder of a division.
• The Math class contains methods sqrt and pow to compute square roots and powers.
• You use a cast (typeName) to convert a value to a different type.
• Use the Math.round method to round a floating-point number to the nearest integer.

Distinguish between static methods and instance methods.

• A static method does not operate on an object.

Process strings in Java programs.

• A string is a sequence of characters. Strings are objects of the String class.
• Strings can be concatenated, that is, put end to end to yield a new longer string.

String concatenation is denoted by the + operator.
• Whenever one of the arguments of the + operator is a string, the other argument is

converted to a string.
• If a string contains the digits of a number, you use the Integer.parseInt or

Double.parseDouble method to obtain the number value.
• Use the substring method to extract a part of a string.
• String positions are counted starting with 0.

Write programs that read user input.

• Use the Scanner class to read keyboard input in a console window.

Classes, Objects, and Methods Introduced in this Chapter

java.io.PrintStream
 printf
java.lang.Double
 parseDouble
java.lang.Integer
 MAX_VALUE
 MIN_VALUE
 parseInt
 toString
java.lang.Math
 E
 PI
 abs
 acos
 asin
 atan
 atan2

 ceil
 cos
 exp
 floor
 log
 log10
 max
 min
 pow
 round
 sin
 sqrt
 tan
 toDegrees
 toRadians

java.lang.String
 format
 substring
java.lang.System
 in
java.math.BigDecimal
 add
 multiply
 subtract
java.math.BigInteger
 add
 multiply
 subtract

java.util.Scanner
 next
 nextDouble
 nextInt
 nextLine
javax.swing.JOptionPane
 showInputDialog
 showMessageDialog

142 Chapter 4 Fundamental Data Types

• Worked Example Computing the Volume and Surface Area of a Pyramid
• Worked Example Extracting Initials
• Lab Exercises

Practice Quiz
Code Completion Exercises

R4.1 Write the following mathematical expressions in Java.

R4.2 Write the following Java expressions in mathematical notation.
a. dm = m * (Math.sqrt(1 + v / c) / (Math.sqrt(1 - v / c) - 1));

b. volume = Math.PI * r * r * h;
c. volume = 4 * Math.PI * Math.pow(r, 3) / 3;

d. p = Math.atan2(z, Math.sqrt(x * x + y * y));

R4.3 What is wrong with this version of the quadratic formula?
x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / 2 * a;
x2 = (-b + Math.sqrt(b * b - 4 * a * c)) / 2 * a;

R4.4 Give an example of integer overflow. Would the same example work correctly if
you used floating-point?

R4.5 Give an example of a floating-point roundoff error. Would the same example work
correctly if you used integers and switched to a sufficiently small unit, such as cents
instead of dollars, so that the values don’t have a fractional part?

R4.6 Consider the following code:
CashRegister register = new CashRegister();
register.recordPurchase(19.93);
register.enterPayment(20, 0, 0, 0, 0);
System.out.print("Change: ");
System.out.println(register.giveChange());

The code segment prints the total as 0.07000000000000028. Explain why. Give a rec-
ommendation to improve the code so that users will not be confused.

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

s s v t gt

G
a

P m m

= + +

=
+()

= ⋅ +

0 0
1
2

2

2
3

2
1 2

10

4

1

π

FV PV INT
00

2 2 2

()
= + −

YRS

c a b abcosγ

Review Exercises 143

R4.7 Let n be an integer and x a floating-point number. Explain the difference between
n = (int) x;

and
n = (int) Math.round(x);

R4.8 Let n be an integer and x a floating-point number. Explain the difference between
n = (int) (x + 0.5);

and
n = (int) Math.round(x);

For what values of x do they give the same result? For what values of x do they give
different results?

R4.9 Consider the vending machine implementation in How To 4.1 on page 132. What
happens if the givePennyStamps method is invoked before the giveFirstClassStamps
method?

R4.10 Explain the differences between 2, 2.0, '2', "2", and "2.0".

R4.11 Explain what each of the following two program segments computes:
int x = 2;
int y = x + x;

and
String s = "2";
String t = s + s;

R4.12 True or false? (x is an int and s is a String)
a. Integer.parseInt("" + x) is the same as x
b. "" + Integer.parseInt(s) is the same as s
c. s.substring(0, s.length()) is the same as s

R4.13 How do you get the first character of a string? The last character? How do you
remove the first character? The last character?

R4.14 How do you get the last digit of an integer? The first digit? That is, if n is 23456, how
do you find out that the first digit is 2 and the last digit is 6? Do not convert the
number to a string. Hint: %, Math.log.

R4.15 This chapter contains several recommendations regarding variables and constants
that make programs easier to read and maintain. Summarize these recommenda-
tions.

R4.16 What is a final variable? Can you declare a final variable without supplying its
value? (Try it out.)

R4.17 What are the values of the following expressions? In each line, assume that
double x = 2.5;
double y = -1.5;
int m = 18;
int n = 4;

a. x + n * y - (x + n) * y

b. m / n + m % n

144 Chapter 4 Fundamental Data Types

c. 5 * x - n / 5

d. Math.sqrt(Math.sqrt(n))
e. (int) Math.round(x)

f. (int) Math.round(x) + (int) Math.round(y)

g. 1 - (1 - (1 - (1 - (1 - n))))

R4.18 What are the values of the following expressions? In each line, assume that
int n = 4;
String s = "Hello";
String t = "World";

a. s + t

b. s + n
c. n + t

d. s.substring(1, n)
e. s.length() + t.length()

P4.1 Enhance the CashRegister class by adding separate methods enterDollars, enterQuar-
ters, enterDimes, enterNickels, and enterPennies.
Use this tester class:

public class CashRegisterTester
{
 public static void main (String[] args)
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(20.37);
 register.enterDollars(20);
 register.enterQuarters(2);
 System.out.println("Change: " + register.giveChange());
 System.out.println("Expected: 0.13");
 }
}

P4.2 Enhance the CashRegister class so that it keeps track of the total number of items in a
sale. Count all recorded purchases and supply a method

int getItemCount()

that returns the number of items of the current purchase. Remember to reset the
count at the end of the purchase.

P4.3 Implement a class IceCreamCone with methods getSurfaceArea() and getVolume(). In the
constructor, supply the height and radius of the cone. Be careful when looking up
the formula for the surface area—you should only include the outside area along
the side of the cone since the cone has an opening on the top to hold the ice cream.

P4.4 Write a program that prompts the user for two numbers, then prints
• The sum
• The difference
• The product

Programming Exercises

Programming Exercises 145

• The average
• The distance (absolute value of the difference)
• The maximum (the larger of the two)
• The minimum (the smaller of the two)

To do so, implement a class
public class Pair
{
 /**

Constructs a pair.
 @param aFirst the first value of the pair
 @param aSecond the second value of the pair
 */
 public Pair(double aFirst, double aSecond) { . . . }

 /**
Computes the sum of the values of this pair.

 @return the sum of the first and second values
 */
 public double getSum() { . . . }
 . . .
}

Then implement a class PairTester that constructs a Pair object, invokes its methods,
and prints the results.

P4.5 Declare a class DataSet that computes the sum and average of a sequence of integers.
Supply methods

• void addValue(int x)
• int getSum()
• double getAverage()

Hint: Keep track of the sum and the count of the values.
Then write a test program DataSetTester that calls addValue four times and prints the
expected and actual results.

P4.6 Write a class DataSet that computes the largest and smallest values in a sequence of
numbers. Supply methods

• void addValue(int x)
• int getLargest()
• int getSmallest()

Keep track of the smallest and largest values that you’ve seen so far. Then use the
Math.min and Math.max methods to update them in the addValue method. What should
you use as initial values? Hint: Integer.MIN_VALUE, Integer.MAX_VALUE.
Write a test program DataSetTester that calls addValue four times and prints the
expected and actual results.

P4.7 Write a program that prompts the user for a measurement in meters and then con-
verts it into miles, feet, and inches. Use a class

public class Converter
{

146 Chapter 4 Fundamental Data Types

 /**
Constructs a converter that can convert between two units.

 @param aConversionFactor the factor by which to multiply
to convert to the target unit

 */
 public Converter(double aConversionFactor) { . . . }

 /**
Converts from a source measurement to a target measurement.

 @param fromMeasurement the measurement
 @return the input value converted to the target unit
 */
 public double convertTo(double fromMeasurement) { . . . }

 /**
Converts from a target measurement to a source measurement.

 @param toMeasurement the target measurement
 @return the value whose conversion is the target measurement
 */
 public double convertFrom(double toMeasurement) { . . . }
}

In your ConverterTester class, construct and test the following Converter object:
final double MILE_TO_KM = 1.609;
Converter milesToMeters = new Converter(1000 * MILE_TO_KM);

P4.8 Write a class Square whose constructor receives the length of the sides. Then supply
methods to compute

• The area and perimeter of the square
• The length of the diagonal (use the Pythagorean theorem)

P4.9 Implement a class SodaCan whose constructor receives the height and diameter of the
soda can. Supply methods getVolume and getSurfaceArea. Supply a SodaCanTester class
that tests your class.

P4.10 Implement a class Balloon that models a spherical balloon that is being filled with air.
The constructor constructs an empty balloon. Supply these methods:

• void addAir(double amount) adds the given amount of air
• double getVolume() gets the current volume
• double getSurfaceArea() gets the current surface area
• double getRadius() gets the current radius

Supply a BalloonTester class that constructs a balloon, adds 100 cm3 of air, tests the
three accessor methods, adds another 100 cm3 of air, and tests the accessor methods
again.

P4.11 Giving change. Enhance the CashRegister class so that it directs a cashier how to give
change. The cash register computes the amount to be returned to the customer, in
pennies. Add the following methods to the CashRegister class:

• int giveDollars()
• int giveQuarters()
• int giveDimes()
• int giveNickels()
• int givePennies()

Programming Exercises 147

Each method computes the number of dollar bills or coins to return to the cus-
tomer, and reduces the change due by the returned amount. You may assume that
the methods are called in this order. Here is a test class:

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new CashRegister();

 register.recordPurchase(8.37);
 register.enterPayment(10, 0, 0, 0, 0);
 System.out.println("Dollars: " + register.giveDollars());
 System.out.println("Expected: 1");
 System.out.println("Quarters: " + register.giveQuarters());
 System.out.println("Expected: 2");
 System.out.println("Dimes: " + register.giveDimes());
 System.out.println("Expected: 1");
 System.out.println("Nickels: " + register.giveNickels());
 System.out.println("Expected: 0");
 System.out.println("Pennies: " + register.givePennies());
 System.out.println("Expected: 3");
 }
}

P4.12 In How To 4.1 on page 132, we represented the state of the vending machine by
storing the balance in pennies. This is ingenious, but it is perhaps not the most obvi-
ous solution. Another possibility is to store the number of dollars that the customer
inserted and the change that remains after giving out the first class stamps. Reimple-
ment the vending machine in this way. Of course, the public interface should
remain unchanged.

P4.13 Write a program that reads in an integer and breaks it into a sequence of individual
digits in reverse order. For example, the input 16384 is displayed as

4
8
3
6
1

You may assume that the input has no more than five digits and is not negative.
Declare a class DigitExtractor:

public class DigitExtractor
{
 /**

Constructs a digit extractor that gets the digits
of an integer in reverse order.

 @param anInteger the integer to break up into digits
 */
 public DigitExtractor(int anInteger) { . . . }

 /**
Returns the next digit to be extracted.

 @return the next digit
 */
 public int nextDigit() { . . . }
}

In your main class DigitPrinter, call System.out.println(myExtractor.nextDigit()) five
times.

148 Chapter 4 Fundamental Data Types

P4.14 Implement a class QuadraticEquation whose constructor receives the coefficients a, b,
c of the quadratic equation ax2 + bx + c = 0. Supply methods getSolution1 and
getSolution2 that get the solutions, using the quadratic formula. Write a test class
QuadraticEquationTester that constructs a QuadraticEquation object, and prints the two
solutions.

P4.15 Write a program that reads two times in military format (0900, 1730) and prints the
number of hours and minutes between the two times. Here is a sample run. User
input is in color.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than the second:
Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

Implement a class TimeInterval whose constructor takes two military times. The
class should have two methods getHours and getMinutes.

P4.16 Writing large letters. A large letter H can be produced like this:
* *
* *

* *
* *

Use the class
public class LetterH
{
 public String toString()
 {
 return "* *\n* *\n*****\n* *\n* *\n";
 }
}

Declare similar classes for the letters E, L, and O. Then write the message
H
E
L
L
O

in large letters.

P4.17 Write a class ChristmasTree whose toString method yields a string depicting a
Christmas tree:

 /\
 / \
 / \
/ \

 " "
 " "
 " "

Remember to use escape sequences.

Programming Projects 149

P4.18 Your job is to transform numbers 1, 2, 3, . . ., 12 into the corresponding month
names January, February, March, . . ., December. Implement a class Month whose con-
structor parameter is the month number and whose getName method returns the
month name. Hint: Make a very long string "January February March . . . ", in which
you add spaces such that each month name has the same length. Then use substring
to extract the month you want.

P4.19 Write a class to compute the date of Easter Sunday. Easter Sunday is the first Sun-
day after the first full moon of spring. Use this algorithm, invented by the mathe-
matician Carl Friedrich Gauss in 1800:

1. Let y be the year (such as 1800 or 2001).
2. Divide y by 19 and call the remainder a. Ignore the quotient.
3. Divide y by 100 to get a quotient b and a remainder c.
4. Divide b by 4 to get a quotient d and a remainder e.
5. Divide 8 * b + 13 by 25 to get a quotient g. Ignore the remainder.
6. Divide 19 * a + b - d - g + 15 by 30 to get a remainder h. Ignore the quotient.
7. Divide c by 4 to get a quotient j and a remainder k.
8. Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder.
9. Divide 2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore the

quotient.
10. Divide h - m + r + 90 by 25 to get a quotient n. Ignore the remainder.
11. Divide h - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:

Therefore, in 2001, Easter Sunday fell on April 15. Write a class Easter with methods
getEasterSundayMonth and getEasterSundayDay.

Project 4.1 In this project, you will perform calculations with triangles. A triangle is defined by
the x- and y-coordinates of its three corner points.
Your job is to compute the following properties of a given triangle:

Of course, you should implement a Triangle class with appropriate methods. Supply
a program that prompts a user for the corner point coordinates and produces a
nicely formatted table of the triangle properties.
This is a good team project for two students. Both students should agree on the
Triangle interface. One student implements the Triangle class, the other simulta-
neously implements the user interaction and formatting.

a = 6
b = 20
c = 1
d = 5, e = 0

g = 6
h = 18
j = 0, k = 1
m = 0

r = 6
n = 4
p = 15

Programming Projects

• the lengths of all sides
• the angles at all corners

• the perimeter
• the area

150 Chapter 4 Fundamental Data Types

Project 4.2 The CashRegister class has an unfortunate limitation: It is closely tied to the coin sys-
tem in the United States and Canada. Research the system used in most of Europe.
Your goal is to produce a cash register that works with euros and cents. Rather than
designing another limited CashRegister implementation for the European market,
you should design a separate Coin class and a cash register that can work with coins
of all types.

1. int and double.
2. The world’s most populous country, China, has about 1.2 x 109 inhabitants. There-

fore, individual population counts could be held in an int. However, the world pop-
ulation is over 6 × 109. If you compute totals or averages of multiple countries, you
can exceed the largest int value. Therefore, double is a better choice. You could also
use long, but there is no benefit because the exact population of a country is not
known at any point in time.

3. The first initialization is incorrect. The right hand side is a value of type double, and
it is not legal to initialize an int variable with a double value. The second initializa-
tion is correct—an int value can always be converted to a double.

4. The first declaration is used inside a method, the second inside a class.
5. (1) You should use a named constant, not the “magic number” 3.14.

(2) 3.14 is not an accurate representation of π.
6. One less than it was before.
7. 17 and 29.
8. Only s3 is divided by 3. To get the correct result, use parentheses. Moreover, if s1,

s2, and s3 are integers, you must divide by 3.0 to avoid integer division:
(s1 + s2 + s3) / 3.0

9.

10. When the fractional part of x is ≥0.5.
11. By using a cast: (int) Math.round(x).
12. x is a number, not an object, and you cannot invoke methods on numbers.
13. No—the println method is called on the object System.out.
14. s is set to the string “Agent5”.
15. The strings "i" and "ssissi".
16. The class only has a method to read a single byte. It would be very tedious to form

characters, strings, and numbers from those bytes.
17. The value is "John". The next method reads the next word.

Answers to Self-Check Questions

x y2 2+

151

Chapter5
Decisions

CHAPTER GOALS
• To be able to implement decisions using if statements

• To effectively group statements into blocks

• To learn how to compare integers, floating-point numbers, strings,
and objects

• To correctly order decisions in multiple branches and
nested branches

• To program conditions using Boolean operators and variables

T To be able to design tests that cover all parts of a program

The programs we have seen so far were able to do fast computations

and render graphs, but they were very inflexible. Except for variations in the input, they worked the

same way with every program run. One of the essential features of nontrivial computer programs is

their ability to make decisions and to carry out different actions, depending on the nature of the

inputs. The goal of this chapter is to learn how to program simple and complex decisions.

152

CHAPTER CONTENTS

Computer programs often need to make decisions, taking different actions depend-
ing on a condition.

Consider the bank account class of Chapter 3. The withdraw method allows you to
withdraw as much money from the account as you like. The balance just moves ever
further into the negatives. That is not a realistic model for a bank account. Let’s
implement the withdraw method so that you cannot withdraw more money than you
have in the account. That is, the withdraw method must make a decision: whether to
allow the withdrawal or not.

The if statement is used to implement a decision. The if statement has two parts:
a condition and a body. If the condition is true, the body of the statement is exe-
cuted. The body of the if statement consists of a statement:

if (amount <= balance) // Condition
 balance = balance - amount; // Body

The assignment statement is carried out only when the amount to be withdrawn is
less than or equal to the balance (see Figure 1).

Let us make the withdraw method of the BankAccount class even more realistic. Most
banks not only disallow withdrawals that exceed your account balance; they also
charge you a penalty for every attempt to do so.

This operation can’t be programmed simply by providing two complementary if
statements, such as:

if (amount <= balance)
 balance = balance - amount;
if (amount > balance) // Use if/else instead
 balance = balance - OVERDRAFT_PENALTY;

5.1 The if Statement

The if statement
lets a program carry
out different actions
depending on a
condition.

5.1 The if Statement 152
SYNTAX 5.1: The if Statement 154
QUALITY TIP 5.1: Brace Layout 154
PRODUCTIVITY HINT 5.1: Indentation and Tabs 155
COMMON ERROR 5.1: A Semicolon After the

if Condition 156
SPECIAL TOPIC 5.1: The Conditional Operator

5.2 Comparing Values 156
SYNTAX 5.2: Comparisons 158
COMMON ERROR 5.2: Using == to Compare Strings 160
QUALITY TIP 5.2: Avoid Conditions with

Side Effects 162
HOW TO 5.1: Implementing an if Statement 163
WORKED EXAMPLE 5.1: Extracting the Middle

5.3 Multiple Alternatives 165
SPECIAL TOPIC 5.2: The switch Statement

COMMON ERROR 5.3: The Dangling else Problem 170
PRODUCTIVITY HINT 5.2: Hand-Tracing 171

PRODUCTIVITY HINT 5.3: Make a Schedule and Make

Time for Unexpected Problems 172
SPECIAL TOPIC 5.3: Enumeration Types

SYNTAX 5.3: Declaring an Enumeration Type

5.4 Using Boolean Expressions 173
COMMON ERROR 5.4: Multiple Relational

Operators 176
COMMON ERROR 5.5: Confusing && and

|| Conditions 177
SPECIAL TOPIC 5.4: Lazy Evaluation of

Boolean Operators

SPECIAL TOPIC 5.5: De Morgan’s Law

RANDOM FACT 5.1: Artificial Intelligence

5.5T Code Coverage 178
QUALITY TIP 5.3: Calculate Sample Data Manually 179
QUALITY TIP 5.4: Prepare Test Cases Ahead

of Time 179
SPECIAL TOPIC 5.6: Logging 180

5.1 The if Statement 153

There are two problems with this approach. First, if you need to modify the condi-
tion amount <= balance for some reason, you must remember to update the condition
amount > balance as well. If you do not, the logic of the program will no longer be
correct. More importantly, if you modify the value of balance in the body of the first
if statement (as in this example), then the second condition uses the new value.

To implement a choice between alternatives, use the if/else statement:
if (amount <= balance)
 balance = balance - amount;
else
 balance = balance - OVERDRAFT_PENALTY;

Now there is only one condition. If it is satisfied, the first statement is executed.
Otherwise, the second is executed. The flowchart in Figure 2 gives a graphical rep-
resentation of the branching behavior.

Quite often, however, the body of the if statement consists of multiple state-
ments that must be executed in sequence whenever the condition is true. These
statements must be grouped together to form a block statement by enclosing them
in braces { }. Here is an example.

if (amount <= balance)
{
 double newBalance = balance - amount;
 balance = newBalance;
}

In general, the body of an if statement must be a block statement, a simple state-
ment, such as

balance = balance - amount;

or a compound statement (another if statement or a loop—see Chapter 6). The else
alternative also must be a statement—that is, a simple statement, a compound state-
ment, or a block statement.

Figure 1
Flowchart for an if Statement

Figure 2
Flowchart for an if/else Statement

amount ≤
balance?

True

False

balance =
balance - amount

Condition

Body

amount ≤
balance?

True False

balance =
balance - amount

balance = balance –
OVERDRAFT_PENALTY

Condition

A block statement
groups several
statements together.

154 Chapter 5 Decisions

1. Why did we use the condition amount <= balance and not amount < balance in the
example for the if/else statement?

2. What is logically wrong with the statement
if (amount <= balance)
 newBalance = balance - amount; balance = newBalance;

and how do you fix it?

Brace Layout

The compiler doesn’t care where you place braces, but we strongly recommend that you fol-
low a simple rule: Line up { and }.

if (amount <= balance)
{
 double newBalance = balance - amount;
 balance = newBalance;
}

This scheme makes it easy to spot matching braces.

Syntax 5.1 The if Statement

if (amount <= balance)
{
 balance = balance - amount;
}
else
{
 System.out.println("Insufficient funds");
 balance = balance - OVERDRAFT_PENALTY;
}

A condition that is true or false.
Often uses relational operators: == != < <= > >= (See page 157.)

If the condition is true, the statement(s)
in this branch are executed in sequence;
if the condition is false, they are skipped.

Braces are not required
if the body contains a
single statement.

If condition is false, the statement(s)
in this branch are executed in sequence;
if the condition is true, they are skipped.

Don’t put a semicolon here!

See page 156.

Lining up braces

is a good idea.

See page 154.

Omit the else branch

if there is nothing to do.

if (condition)
statement

if (condition)
statement1

else
statement2

Syntax

Example

S E L F C H E C K

Quality Tip 5.1

5.1 The if Statement 155

Some programmers put the opening brace on the same line as the if:

if (amount <= balance) {
 double newBalance = balance - amount;
 balance = newBalance;
}

This saves a line of code, but it makes it harder to match the braces.
It is important that you pick a layout scheme and stick with it. Which scheme you choose

may depend on your personal preference or a coding style guide that you must follow.

Indentation and Tabs

When writing Java programs, use indentation to indicate nesting levels:

public class BankAccount
{
| . . .
| public void withdraw(double amount)
| {
| | if (amount <= balance)
| | {
| | | double newBalance = balance - amount;
| | | balance = newBalance;
| | }
| }
| . . .
}
0 1 2 3
Indentation level

How many spaces should you use per indentation level? Some programmers use eight spaces
per level, but that isn’t a good choice:

public class BankAccount
{
 . . .
 public void withdraw(double amount)
 {
 if (amount <= balance)
 {
 double newBalance =
 balance - amount;
 balance = newBalance;
 }
 }
 . . .
}

It crowds the code too much to the right side of the screen. As a consequence, long expres-
sions frequently must be broken into separate lines. More common values are two, three, or
four spaces per indentation level.

How do you move the cursor from the leftmost column to the appropriate indentation
level? A perfectly reasonable strategy is to hit the space bar a sufficient number of times.
However, many programmers use the Tab key instead. A tab moves the cursor to the next
tab stop. By default, there are tab stops every eight columns, but most editors let you change

Productivity Hint 5.1

156 Chapter 5 Decisions

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

that value; you should find out how to set your editor’s tab stops to, say, every three
columns.

Some editors help you out with an autoindent feature. They automatically insert as many
tabs or spaces as the preceding line because the new line is quite likely to belong to the same
logical indentation level. If it isn’t, you must add or remove a tab, but that is still faster than
tabbing all the way from the left margin.

While the Tab key is nice, some editors use tab characters for alignment, which is not so
nice. Tab characters can lead to problems when you send your file to another person or a
printer. There is no universal agreement on the width of a tab character, and some software
will ignore tab characters altogether. It is therefore best to save your files with spaces instead
of tabs. Most editors have settings to automatically convert all tabs to spaces. Look at your
development environment’s documentation to find out how to activate this useful setting.

A Semicolon After the if Condition

The following code fragment has an unfortunate error:

if (input < 0) ; // ERROR
 System.out.println("Bad input);

There should be no semicolon after the if condition. The compiler interprets this statement
as follows: If input is less than 0, execute the statement that is denoted by a single semicolon,
that is, the do-nothing statement. The statement that follows the semicolon is no longer a
part of the if statement. It is always executed—the error message appears for all inputs.

The Conditional Operator

Special Topic 5.1 discusses the ? : conditional operator for conditions inside expressions.

A relational operator tests the relationship between two values. An example is the
<= operator that we used in the test

if (amount <= balance)

Java has six relational operators, as shown in the table on page 157.
As you can see, only two relational operators (> and <) look as you would expect

from the mathematical notation. Computer keyboards do not have keys for ≥, ≤, or
≠, but the >=, <=, and != operators are easy to remember because they look similar.

Common Error 5.1

Special Topic 5.1

5.2 Comparing Values
5.2.1 Relational Operators

Relational operators
compare values. The
== operator tests for
equality.

5.2 Comparing Values 157

The == operator is initially confusing to most newcomers to Java. In Java, the =
symbol already has a meaning, namely assignment. The == operator denotes equal-
ity testing:

a = 5; // Assign 5 to a
if (a == 5) . . . // Test whether a equals 5

You will have to remember to use == for equality testing, and to use = for
assignment.

The relational operators have a lower precedence than the arithmetic operators.
That means, you can write arithmetic expressions on either side of the relational
operator without using parentheses. For example, in the expression

amount + fee <= balance

both sides (amount + fee and balance) of the < operator are evaluated, and the results
are compared. Appendix B shows a table of the Java operators and their precedence.

You have to be careful when comparing floating-point numbers, in order to cope
with roundoff errors. For example, the following code multiplies the square root of
2 by itself and then subtracts 2.

double r = Math.sqrt(2);
double d = r * r - 2;
if (d == 0)
 System.out.println("sqrt(2) squared minus 2 is 0");
else
 System.out.println(
 "sqrt(2) squared minus 2 is not 0 but " + d);

Even though the laws of mathematics tell us that equals 0, this program
fragment prints

sqrt(2) squared minus 2 is not 0 but 4.440892098500626E-16

Unfortunately, such roundoff errors are unavoidable. It plainly does not make sense
in most circumstances to compare floating-point numbers exactly. Instead, test
whether they are close enough.

Java Math Notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

5.2.2 Comparing Floating-Point Numbers

2 2
2() −

158 Chapter 5 Decisions

To test whether a number x is close to zero, you can test whether the absolute
value |x| (that is, the number with its sign removed) is less than a very small thresh-
old number. That threshold value is often called ε (the Greek letter epsilon). It is
common to set ε to 10–14 when testing double numbers.

Similarly, you can test whether two numbers are approximately equal by check-
ing whether their difference is close to 0.

In Java, we program the test as follows:
final double EPSILON = 1E-14;
if (Math.abs(x - y) <= EPSILON)
 // x is approximately equal to y

To test whether two strings are equal to each other, you must use the method called
equals:

if (string1.equals(string2)) . . .

Do not use the == operator to compare strings. The expression
if (string1 == string2) // Not useful

has an unrelated meaning. It tests whether the two string variables refer to the iden-
tical string object. You can have strings with identical contents stored in different

Syntax 5.2 Comparisons

floor > 13

floor == 13

String input;
if (input.equals("Y"))

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

These quantities are compared.

Checks for equality.

Check that you have

the right direction:

> (greater) or < (less)

Use ==, not =.

One of: == != < <= > >= (See page 157.)

Use equals to compare strings. (See page 160.)

Checks that these floating-point numbers are very close.
See page 158.

Check the boundary condition:

Do you want to include (>=) or exclude (>)?

Examples

When comparing
floating-point
numbers, don’t test
for equality. Instead,
check whether they
are close enough.

x y− ≤ ε

5.2.3 Comparing Strings

Do not use the ==
operator to compare
strings. Use the
equals method
instead.

5.2 Comparing Values 159

objects, so this test never makes sense in actual programming; see Common Error
5.2 on page 160.

In Java, letter case matters. For example, "Harry" and "HARRY" are not the same
string. To ignore the letter case, use the equalsIgnoreCase method:

if (string1.equalsIgnoreCase(string2)) . . .

If two strings are not identical to each other, you still may want to know the relation-
ship between them. The compareTo method compares strings in dictionary order. If

string1.compareTo(string2) < 0

then the string string1 comes before the string string2 in the dictionary. For exam-
ple, this is the case if string1 is "Harry", and string2 is "Hello". If

string1.compareTo(string2) > 0

then string1 comes after string2 in dictionary order. Finally, if
string1.compareTo(string2) == 0

then string1 and string2 are equal.

The compareTo
method compares
strings in
dictionary order.

Table 1 Relational Operator Examples

Expression Value Comment

3 <= 4 true 3 is less than 4; <= tests for “less than or equal”.

3 =< 4 Error The “less than or equal” operator is <=, not =<,
with the “less than” symbol first.

3 > 4 false > is the opposite of <=.

4 < 4 false The left-hand side must be strictly smaller than
the right-hand side.

4 <= 4 true Both sides are equal; <= tests for “less than or equal”.

3 == 5 - 2 true == tests for equality.

3 != 5 - 1 true != tests for inequality. It is true that 3 is not 5 – 1.

3 = 6 / 2 Error Use == to test for equality.

1.0 / 3.0 == 0.333333333 false Although the values are very close to one
another, they are not exactly equal. See
Common Error 4.3.

"10" > 5 Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks
whether the strings are stored in the same
location. See Common Error 5.2 on page 160.

"Tom".equalsIgnoreCase("TOM") true Use the equalsIgnoreCase method if you don’t want to
distinguish between uppercase and lowercase letters.

160 Chapter 5 Decisions

Actually, the “dictionary” ordering used by Java is slightly different from that of
a normal dictionary. Java is case sensitive and sorts characters by putting numbers
first, then uppercase characters, then lowercase characters. For example, 1 comes
before B, which comes before a. The space character comes before all other
characters.

Let us investigate the comparison process closely. When Java compares two
strings, corresponding letters are compared until one of the strings ends or the first
difference is encountered. If one of the strings ends, the longer string is considered
the later one. If a character mismatch is found, the characters are compared to deter-
mine which string comes later in the dictionary sequence. This process is called lex-
icographic comparison. For example, let’s compare "car" with "cargo". The first
three letters match, and we reach the end of the first string. Therefore "car" comes
before "cargo" in the lexicographic ordering. Now compare "cathode" with "cargo".
The first two letters match. In the third character position, t comes after r, so the
string "cathode" comes after "cargo" in lexicographic ordering. (See Figure 3.)

Using == to Compare Strings

It is an extremely common error in Java to write == when equals is intended. This is particu-
larly true for strings. If you write

if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same string object as the
string constant "Rob". For efficiency, Java makes only one string object for every string con-
stant. Therefore, the following test will pass:

String nickname = "Rob";
. . .
if (nickname == "Rob") // Test is true

However, if the string with the letters R o b has been assembled in some other way, then the
test will fail:

String name = "Robert";
String nickname = name.substring(0, 3);
. . .
if (nickname == "Rob") // Test is false

This is a particularly distressing situation: The wrong code will sometimes do the right thing,
sometimes the wrong thing. Because string objects are always constructed by the compiler,
you never have an interest in whether two string objects are shared. You must remember
never to use == to compare strings. Always use equals or compareTo to compare strings.

Figure 3
Lexicographic Comparison

c a r g o

c a t h o d

Letters
match

e

r comes
before t

Common Error 5.2

5.2 Comparing Values 161

If you compare two object references with the == operator, you test whether the ref-
erences refer to the same object. Here is an example:

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

The comparison
box1 == box2

is true. Both object variables refer to the same object. But the comparison
box1 == box3

is false. The two object variables refer to different objects (see Figure 4). It does not
matter that the objects have identical contents.

You can use the equals method to test whether two rectangles have the same con-
tents, that is, whether they have the same upper-left corner and the same width and
height. For example, the test

box1.equals(box3)

is true.
However, you must be careful when using the equals method. It works correctly

only if the implementors of the class have supplied it. The Rectangle class has an
equals method that is suitable for comparing rectangles.

For your own classes, you need to supply an appropriate equals method. You will
learn how to do that in Chapter 10. Until that point, you should not use the equals
method to compare objects of your own classes.

Figure 4 Comparing Object References

5.2.4 Comparing Objects

The == operator
tests whether two
object references
are identical. To
compare the
contents of objects,
you need to use the
equals method.

box1 =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

g

30

box3 =

x =

Rectangle

y =

width =

height =

5

10

20

g

30

162 Chapter 5 Decisions

An object reference can have the special value null if it refers to no object at all. It is
common to use the null value to indicate that a value has never been set. For example,

String middleInitial = null; // Not set
if (. . .)
 middleInitial = middleName.substring(0, 1);

You use the == operator (and not equals) to test whether an object reference is a null
reference:

if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
else
 System.out.println(firstName + " " + middleInitial + ". " + lastName);

Note that the null reference is not the same as the empty string "". The empty string
is a valid string of length 0, whereas a null indicates that a string variable refers to no
string at all.

3. What is the value of s.length() if s is
a. the empty string ""?
b. the string " " containing a space?
c. null?

4. Which of the following comparisons are syntactically incorrect? Which of them
are syntactically correct, but logically questionable?
String a = "1";
String b = "one";
double x = 1;
double y = 3 * (1.0 / 3);

a. a == "1"

b. a == null

c. a.equals("")

d. a == b

e. a == x

f. x == y

g. x - y == null

h. x.equals(y)

Avoid Conditions with Side Effects

In Java, it is legal to nest assignments inside test conditions:

if ((d = b * b - 4 * a * c) >= 0) r = Math.sqrt(d);

It is legal to use the decrement operator inside other expressions:

if (n–– > 0) . . .

5.2.5 Testing for null

The null reference
refers to no object.

S E L F C H E C K

Quality Tip 5.2

5.2 Comparing Values 163

These are bad programming practices, because they mix a test with another activity. The
other activity (setting the variable d, decrementing n) is called a side effect of the test.

As you will see in Special Topic 6.3, conditions with side effects can occasionally be help-
ful to simplify loops; for if statements they should always be avoided.

HOW TO 5.1 Implementing an if Statement

This How To walks you through the process of implementing an if statement. We will illus-
trate the steps with the following example problem:

The university bookstore has a Kilobyte Day sale every October 24, giving an 8 percent
discount on all computer accessory purchases if the price is less than $128, and a 16 percent
discount if the price is at least $128. Write a program that asks the cashier for the original
price and then prints the discounted price.

Step 1 In our sample problem, the obvious choice for the condition is:

original price < 128?

That is just fine, and we will use that condition in our solution.
But you could equally well come up with a correct solution if you choose the opposite

condition: Is the original price at least $128? You might choose this condition if you put
yourself into the position of a shopper who wants to know when the bigger discount applies.

Step 2 Give pseudocode for the work that needs to be done when the condition is fulfilled.

In this step, you list the action or actions that are taken in the “positive” branch. The details
depend on your problem. You may want to print a message, compute values, or even exit the
program.

In our example, we need to apply an 8 percent discount:

discounted price = 0.92 x original price

Step 3 Give pseudocode for the work (if any) that needs to be done when the condition is not ful-
filled.

What do you want to do in the case that the condition of Step 1 is not fulfilled? Sometimes,
you want to do nothing at all. In that case, use an if statement without an else branch.

In our example, the condition tested whether the price was less than $128. If that condi-
tion is not fulfilled, the price is at least $128, so the higher discount of 16 percent applies to
the sale:

discounted price = 0.84 x original price

Step 4 Double-check relational operators.

First, be sure that the test goes in the right direction. It is a common error to confuse > and <.
Next, consider whether you should use the < operator or its close cousin, the <= operator.

What should happen if the original price is exactly $128? Reading the problem carefully,
we find that the lower discount applies if the original price is less than $128, and the higher
discount applies when it is at least $128. A price of $128 should therefore not fulfill our con-
dition, and we must use <, not <=.

Step 5 Remove duplication.

Check which actions are common to both branches, and move them outside. (See Quality
Tip 4.3.)

In our example, we have two statements of the form

discounted price = ___ x original price

164 Chapter 5 Decisions

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

They only differ in the discount rate. It is best to just set the rate in the branches, and to do
the computation afterwards:

If original price < 128

discount rate = 0.92

Else

discount rate = 0.84

discounted price = discount rate x original price

Step 6 Test both branches.

Formulate two test cases, one that fulfills the condition of the if statement, and one that does
not. Ask yourself what should happen in each case. Then follow the pseudocode and act each
of them out.

In our example, let us consider two scenarios for the original price: $100 and $200. We
expect that the first price is discounted by $8, the second by $32.

When the original price is 100, then the condition 100 < 128 is true, and we get

discount rate = 0.92

discounted price = 0.92 x 100 = 92

When the original price is 200, then the condition 200 < 128 is false, and

discount rate = 0.84

discounted price = 0.84 x 200 = 168

In both cases, we get the expected answer.

Step 7 Assemble the if statement in Java.

Type the skeleton

if ()
{
}
else
{
}

and fill it in, as shown in Syntax 5.1 on page 154. Omit the else branch if it is not needed.
In our example, the completed statement is

double HIGH_DISCOUNT_THRESHOLD = 128;
double HIGH_DISCOUNT = 0.92;
double LOW_DISCOUNT = 0.84;

if (originalPrice < HIGH_DISCOUNT_THRESHOLD)
{
 discountRate = HIGH_DISCOUNT;
}
else
{
 discountRate = LOW_DISCOUNT;
}
discountedPrice = discountRate * originalPrice;

Here we used named constants to make the program more maintainable (see Quality Tip 4.1).

Extracting the Middle

This Worked Example shows how to extract the middle character from a
string, or the two middle characters if the length of the string is even. 0 1 2 3 4

c r a t e

Worked
Example 5.1

5.3 Multiple Alternatives 165

Many computations require more than a single if/else decision. Sometimes, you
need to make a series of related comparisons.

The following program asks for a value describing the magnitude of an earth-
quake on the Richter scale and prints a description of the likely impact of the quake.
The Richter scale is a measurement for the strength of an earthquake. Every step in
the scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of
the quake. The 1989 Loma Prieta earthquake that damaged the Bay Bridge in San
Francisco and destroyed many buildings in several Bay area cities registered 7.1 on
the Richter scale.

ch05/quake/Earthquake.java

5.3 Multiple Alternatives
5.3.1 Sequences of Comparisons

Multiple conditions
can be combined to
evaluate complex
decisions. The
correct arrangement
depends on the logic
of the problem to
be solved.

1 /**
2 A class that describes the effects of an earthquake.
3 */
4 public class Earthquake
5 {
6 private double richter;
7
8 /**
9 Constructs an Earthquake object.

10 @param magnitude the magnitude on the Richter scale
11 */
12 public Earthquake(double magnitude)
13 {
14 richter = magnitude;
15 }
16
17 /**
18 Gets a description of the effect of the earthquake.
19 @return the description of the effect
20 */
21 public String getDescription()
22 {
23 String r;
24 if (richter >= 8.0)
25 r = "Most structures fall";
26 else if (richter >= 7.0)
27 r = "Many buildings destroyed";
28 else if (richter >= 6.0)
29 r = "Many buildings considerably damaged, some collapse";
30 else if (richter >= 4.5)
31 r = "Damage to poorly constructed buildings";
32 else if (richter >= 3.5)
33 r = "Felt by many people, no destruction";
34 else if (richter >= 0)
35 r = "Generally not felt by people";
36 else
37 r = "Negative numbers are not valid";
38 return r;
39 }
40 }

166 Chapter 5 Decisions

ch05/quake/EarthquakeRunner.java

Program Run

Here we must sort the conditions and test against the largest cutoff first. Suppose
we reverse the order of tests:

if (richter >= 0) // Tests in wrong order
 r = "Generally not felt by people";
else if (richter >= 3.5)
 r = "Felt by many people, no destruction";
else if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
else if (richter >= 6.0)
 r = "Many buildings considerably damaged, some collapse";
else if (richter >= 7.0)
 r = "Many buildings destroyed";
else if (richter >= 8.0)
 r = "Most structures fall";

This does not work. All nonnegative values of richter fall into the first case, and the
other tests will never be attempted.

In this example, it is also important that we use an if/else if/else test, not just
multiple independent if statements. Consider this sequence of independent tests:

if (richter >= 8.0) // Didn’t use else
 r = "Most structures fall";
if (richter >= 7.0)
 r = "Many buildings destroyed";
if (richter >= 6.0)
 r = "Many buildings considerably damaged, some collapse";
if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
if (richter >= 3.5)
 r = "Felt by many people, no destruction";
if (richter >= 0)
 r = "Generally not felt by people";

Now the alternatives are no longer exclusive. If richter is 6.0, then the last four tests
all match, and r is set four times.

1 import java.util.Scanner;
2
3 /**
4 This program prints a description of an earthquake of a given magnitude.
5 */
6 public class EarthquakeRunner
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11
12 System.out.print("Enter a magnitude on the Richter scale: ");
13 double magnitude = in.nextDouble();
14 Earthquake quake = new Earthquake(magnitude);
15 System.out.println(quake.getDescription());
16 }
17 }

Enter a magnitude on the Richter scale: 7.1
Many buildings destroyed

5.3 Multiple Alternatives 167

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

The switch Statement

Special Topic 5.2 discusses the switch statement, an alternative to the if/else if/else state-
ment sequence in which all conditions test the same value against constants.

Some computations have multiple levels of decision making. You first make one deci-
sion, and each of the outcomes leads to another decision. Here is a typical example.

In the United States, taxpayers pay federal income tax at different rates depend-
ing on their incomes and marital status. There are two main tax schedules: one for
single taxpayers and one for married taxpayers “filing jointly”, meaning that the
married taxpayers add their incomes together and pay taxes on the total. Table 2
gives the tax rate computations for each of the filing categories, using a simplified
version of the values for the 2008 federal tax return.

Now let us compute the taxes due, given a filing status and an income figure. First,
we must branch on the filing status. Then, for each filing status, we must have
another branch on income level. (See Figure 5 for a flowchart.)

Special Topic 5.2

5.3.2 Nested Branches

Table 2 Federal Tax Rate Schedule (2008, simplified)

If your filing status is Single: If your filing status is Married:

Tax Bracket Percentage Tax Bracket Percentage

$0 . . . $32,000 10% $0 . . . $64,000 10%

Amount over $32,000 25% Amount over $64,000 25%

Figure 5 Income Tax Computation Using Simplified 2008 Schedule

10%
bracket

25%
bracket

Single

income
≤ 32,000

10%
bracket

25%
bracket

income
≤ 64,000

FalseTrue

True

False

True

False

168 Chapter 5 Decisions

The two-level decision process is reflected in two levels of if statements. We say
that the income test is nested inside the test for filing status.

ch05/tax/TaxReturn.java

1 /**
2 A tax return of a taxpayer in 2008.
3 */
4 public class TaxReturn
5 {
6 public static final int SINGLE = 1;
7 public static final int MARRIED = 2;
8
9 private static final double RATE1 = 0.10;

10 private static final double RATE2 = 0.25;
11 private static final double RATE1_SINGLE_LIMIT = 32000;
12 private static final double RATE1_MARRIED_LIMIT = 64000;
13
14 private double income;
15 private int status;
16
17 /**
18 Constructs a TaxReturn object for a given income and
19 marital status.
20 @param anIncome the taxpayer income
21 @param aStatus either SINGLE or MARRIED
22 */
23 public TaxReturn(double anIncome, int aStatus)
24 {
25 income = anIncome;
26 status = aStatus;
27 }
28
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {
48 if (income <= RATE1_MARRIED_LIMIT)
49 {
50 tax1 = RATE1 * income;
51 }
52 else
53 {

5.3 Multiple Alternatives 169

ch05/tax/TaxCalculator.java

Program Run

5. The if/else/else statement for the earthquake strength first tested for higher
values, then descended to lower values. Can you reverse that order?

6. Some people object to higher tax rates for higher incomes, claiming that you
might end up with less money after taxes when you get a raise for working hard.
What is the flaw in this argument?

54 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56 }
57 }
58
59 return tax1 + tax2;
60 }
61 }

1 import java.util.Scanner;
2
3 /**
4 This program calculates a simple tax return.
5 */
6 public class TaxCalculator
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11
12 System.out.print("Please enter your income: ");
13 double income = in.nextDouble();
14
15 System.out.print("Are you married? (Y/N) ");
16 String input = in.next();
17 int status;
18 if (input.equalsIgnoreCase("Y"))
19 status = TaxReturn.MARRIED;
20 else
21 status = TaxReturn.SINGLE;
22 TaxReturn aTaxReturn = new TaxReturn(income, status);
23
24 System.out.println("Tax: "
25 + aTaxReturn.getTax());
26 }
27 }

Please enter your income: 80000
Are you married? (Y/N) Y
Tax: 10400.0

S E L F C H E C K

170 Chapter 5 Decisions

The Dangling else Problem

When an if statement is nested inside another if statement, the following error may occur.

if (richter >= 0)
 if (richter <= 4)
 System.out.println("The earthquake is harmless");
else // Pitfall!
 System.out.println("Negative value not allowed");

The indentation level seems to suggest that the else is grouped with the test richter >= 0.
Unfortunately, that is not the case. The compiler ignores all indentation and follows the rule
that an else always belongs to the closest if, like this:

if (richter >= 0)
if (richter <= 4)

 System.out.println("The earthquake is harmless");
else // Pitfall!

 System.out.println("Negative value not allowed");

That isn’t what we want. We want to group the else with the first if. For that, we must use
braces.

if (richter >= 0)
{
 if (richter <= 4)
 System.out.println("The earthquake is harmless");
}
else
 System.out.println("Negative value not allowed");

To avoid having to think about the pairing of the else, we recommend that you always use a
set of braces when the body of an if contains another if. In the following example, the
braces are not strictly necessary, but they help clarify the code:

if (richter >= 0)
{
 if (richter <= 4)
 System.out.println("The earthquake is harmless");
 else
 System.out.println("Damage may occur");
}

The ambiguous else is called a dangling else, and it is enough of a syntactical blemish that
some programming language designers developed an improved syntax that avoids it alto-
gether. For example, Algol 68 uses the construction

if condition then statement else statement fi;

The else part is optional, but since the end of the if statement is clearly marked, the group-
ing is unambiguous if there are two ifs and only one else. Here are the two possible cases:

if c1 then if c2 then s1 else s2 fi fi;
if c1 then if c2 then s1 fi else s2 fi;

By the way, fi is just if backwards. Other languages use endif, which has the same purpose
but is less fun.

Common Error 5.3

5.3 Multiple Alternatives 171

Hand-Tracing

A very useful technique for understanding whether a program works correctly is called
hand-tracing. You simulate the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet of paper is within reach. Make a
column for each variable. Have the program code ready. Use a marker, such as a paper clip,
to mark the current statement. In your mind, execute statements one at a time. Every time
the value of a variable changes, cross out the old value and write the new value below the old
one.

For example, let’s trace the getTax method with the data from the program run on page 169.
When the TaxReturn object is constructed, the income instance variable is set to 80,000 and

status is set to MARRIED. Then the getTax method is called. In lines 31 and 32 of TaxReturn.java,
tax1 and tax2 are initialized to 0.

29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Because status is not SINGLE, we move to the
else branch of the outer if statement (line 46).

34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {

Since income is not <= 64000, we move to the else branch of the inner if statement (line 52).

48 if (income <= RATE1_MARRIED_LIMIT)
49 {
50 tax1 = RATE1 * income;
51 }
52 else
53 {
54 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56 }

The values of tax1 and tax2 are updated.

53 {
54 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56 }
57 }

Their sum is returned and the method ends.

58
59 return tax1 + tax2;
60 }

Because the program trace shows the expected
return value ($10,400), it successfully demon-
strates that this test case works correctly.

Productivity Hint 5.2

income status tax1 tax2

 80000 MARRIED 0 0

income status tax1 tax2

 80000 MARRIED 0 0

 6400 4000

 return
 income status tax1 tax2 value

 80000 MARRIED 0 0

 6400 4000 10400

172 Chapter 5 Decisions

Make a Schedule and Make Time for Unexpected Problems

Commercial software is notorious for being delivered later than promised. For example,
Microsoft originally promised that its Windows Vista operating system would be available
late in 2003, then in 2005, then in March 2006; it was finally released in January 2007. Some
of the early promises might not have been realistic. It is in Microsoft’s interest to let prospec-
tive customers expect the imminent availability of the product, so that they do not switch to
a different product in the meantime. Undeniably, though, Microsoft had not anticipated the
full complexity of the tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a stu-
dent or a programmer, you are expected to manage your time wisely and to finish your
assignments on time. You can probably do simple programming exercises the night before
the due date, but an assignment that looks twice as hard may well take four times as long,
because more things can go wrong. You should therefore make a schedule whenever you
start a programming project.

First, estimate realistically how much time it will take you to

• Design the program logic.

• Develop test cases.

• Type the program in and fix compile-time errors.

• Test and debug the program.

For example, for the income tax program I might estimate 30 minutes for the design, because
it is mostly done; 30 minutes for developing test cases; one hour for data entry and fixing
compile-time errors; and 2 hours for testing and debugging. That is a total of 4 hours. If I
work 2 hours a day on this project, it will take me two days.

Then think of things that can go wrong. Your computer might break down. The lab might
be crowded. You might be stumped by a problem with the computer system. (That is a par-
ticularly important concern for beginners. It is very common to lose a day over a trivial
problem just because it takes time to track down a person who knows the “magic” command
to overcome it.) As a rule of thumb, double the time of your estimate. That is, you should
start four days, not two days, before the due date. If nothing goes wrong, great; you have the
program done two days early. When the inevitable problem occurs, you have a cushion of
time that protects you from embarrassment and failure.

Enumeration Types

Special Topic 5.3 introduces enumeration types—types that an hold one of a finite number of
values. An example of an enumeration type is a type FilingStatus with values SINGLE and
MARRIED. This is safer than using integer values, as we did in the TaxReturn class.

Productivity Hint 5.3

Special Topic 5.3

5.4 Using Boolean Expressions 173

In Java, an expression such as amount < 1000 has a value, just as the expression
amount + 1000 has a value. The value of a relational expression is either true or false.
For example, if amount is 500, then the value of amount < 1000 is true. Try it out: The
program fragment

double amount = 0;
System.out.println(amount < 1000);

prints true. The values true and false are not numbers, nor are they objects of a
class. They belong to a separate type, called boolean. The Boolean type is named
after the mathematician George Boole (1815–1864), a pioneer in the study of logic.

A predicate method is a method that returns a boolean value. Here is an example of
a predicate method:

public class BankAccount
{
 public boolean isOverdrawn()
 {
 return balance < 0; // Returns true or false
 }
}

You can use the return value of the method as the condition of an if statement:
if (harrysChecking.isOverdrawn()) . . .

There are several useful static predicate methods in the Character class:
isDigit
isLetter
isUpperCase
isLowerCase

5.4 Using Boolean Expressions
5.4.1 The boolean Type

The boolean type
has two values:
true and false.

5.4.2 Predicate Methods

A predicate method
returns a
boolean value.

174 Chapter 5 Decisions

that let you test whether a character is a digit, a letter, an uppercase letter, or a
lowercase letter:

if (Character.isUpperCase(ch)) . . .

It is a common convention to give the prefix “is” or “has” to the name of a predicate
method.

The Scanner class has useful predicate methods for testing whether the next input
will succeed. The hasNextInt method returns true if the next character sequence
denotes an integer. It is a good idea to call that method before calling nextInt:

if (in.hasNextInt()) input = in.nextInt();

Similarly, the hasNextDouble method tests whether a call to nextDouble will succeed.

Suppose you want to find whether amount is between 0 and 1000. Then two condi-
tions have to be true: amount must be greater than 0, and it must be less than 1000. In
Java you use the && operator to represent the and when combining test conditions.
That is, you can write the test as follows:

if (0 < amount && amount < 1000) . . .

The && (and) operator combines several tests into a new test that passes only when
all conditions are true. An operator that combines Boolean values is called a Bool-
ean operator.

The && operator has a lower precedence than the relational operators. For that
reason, you can write relational expressions on either side of the && operator with-
out using parentheses. For example, in the expression

0 < amount && amount < 1000

the expressions 0 < amount and amount < 1000 are evaluated first. Then the && operator
combines the results. Appendix B shows a table of the Java operators and their
precedence.

Figure 6 Flowcharts for && and || Combinations

5.4.3 The Boolean Operators

You can form
complex tests with
the Boolean
operators && (and),
|| (or), and ! (not).

True True True

True

False

False

False False
0 < amount

amount < 1000

“and” condition
fulfilled

“or” condition
fulfilled

input
equals "S"

input
equals "M"

0 < amount && amount < 1000 input.equals("S") || input.equals("M")

5.4 Using Boolean Expressions 175

The || (or) logical operator also combines two or more conditions. The resulting
test succeeds if at least one of the conditions is true. For example, here is a test to
check whether the string input is an "S" or "M":

if (input.equals("S") || input.equals("M")) . . .

Figure 6 shows flowcharts for these examples.
Sometimes you need to invert a condition with the ! (not) logical operator. For

example, we may want to carry out a certain action only if two strings are not equal:
if (!input.equals("S")) . . .

The ! operator takes a single condition and evaluates to true if that condition is false
and to false if the condition is true.

Here is a summary of the three logical operations:

A B A && B

true true true

true false false

false Any false

A B A || B

true Any true

false true true

false false false

A !A

true false

false true

Table 3 Boolean Operators

Expression Value Comment

0 < 200 && 200 < 100 false Only the first condition is true.

0 < 200 || 200 < 100 true The first condition is true.

0 < 200 || 100 < 200 true The || is not a test for “either-or”. If
both conditions are true, the result is true.

0 < 100 < 200 Syntax error Error: The expression 0 < 100 is true,
which cannot be compared against 200.

0 < x || x < 100 true Error: This condition is always true.
The programmer probably intended
0 < x && x < 100. (See Common Error 5.5).

0 < x && x < 100 || x == -1 (0 < x && x < 100)
|| x == -1

The && operator binds more strongly than
the || operator. (See Appendix B.)

!(0 < 200) false 0 < 200 is true, therefore its negation
is false.

frozen == true frozen There is no need to compare a
Boolean variable with true.

frozen == false !frozen It is clearer to use ! than to compare
with false.

176 Chapter 5 Decisions

You can use a Boolean variable if you know that there are only two possible values.
Have another look at the tax program in Section 5.3.2. The marital status is either
single or married. Instead of using an integer, you can use a variable of type boolean:

private boolean married;

The advantage is that you can’t accidentally store a third value in the variable.
Then you can use the Boolean variable in a test:
if (married)
 . . .
else
 . . .

Sometimes Boolean variables are called flags because they can have only two states:
“up” and “down”.

It pays to think carefully about the naming of Boolean variables. In our example,
it would not be a good idea to give the name maritalStatus to the Boolean variable.
What does it mean that the marital status is true? With a name like married there is
no ambiguity; if married is true, the taxpayer is married.

By the way, it is considered gauche to write a test such as
if (married == true) . . . // Don’t

Just use the simpler test
if (married) . . .

In Chapter 6 we will use Boolean variables to control complex loops.

7. When does the statement
System.out.println(x > 0 || x < 0);

print false?
8. Rewrite the following expression, avoiding the comparison with false:

if (Character.isDigit(ch) == false) . . .

Multiple Relational Operators

Consider the expression

if (0 < amount < 1000) . . . // Error

This looks just like the mathematical notation for “amount is between 0 and 1000”. But in
Java, it is a syntax error.

Let us dissect the condition. The first half, 0 < amount, is a test with outcome true or false.
The outcome of that test (true or false) is then compared against 1000. This seems to make
no sense. Is true larger than 1000 or not? Can one compare truth values and numbers? In
Java, you cannot. The Java compiler rejects this statement.

Instead, use && to combine two separate tests:

if (0 < amount && amount < 1000) . . .

5.4.4 Using Boolean Variables

You can store the
outcome of a
condition in a
Boolean variable.

S E L F C H E C K

Common Error 5.4

5.4 Using Boolean Expressions 177

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Another common error, along the same lines, is to write

if (ch == 'S' || 'M') . . . // Error

to test whether ch is 'S' or 'M'. Again, the Java compiler flags this construct as an error. You
cannot apply the || operator to characters. You need to write two Boolean expressions and
join them with the || operator:

if (ch == 'S' || ch == 'M') . . .

Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies between 0
and 100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater
than 100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. Sometimes,
though, the wording isn’t as explicit. It is quite common that the individual conditions are
nicely set apart in a bulleted list, but with little indication of how they should be combined.
The instructions for the 1992 tax return say that you can claim single filing status if any one
of the following is true:
• You were never married.
• You were legally separated or divorced on December 31, 1992.
• You were widowed before January 1, 1992, and did not remarry in 1992.
Because the test passes if any one of the conditions is true, you must combine the conditions
with or. Elsewhere, the same instructions state that you may use the more advantageous sta-
tus of married filing jointly if all five of the following conditions are true:
• Your spouse died in 1990 or 1991 and you did not remarry in 1992.
• You have a child whom you can claim as dependent.
• That child lived in your home for all of 1992.
• You paid over half the cost of keeping up your home for this child.
• You filed (or could have filed) a joint return with your spouse the year he or she died.
Because all of the conditions must be true for the test to pass, you must combine them with
an and.

Lazy Evaluation of Boolean Operators

Special Topic 5.4 explains lazy evaluation of Boolean operators: the fact that the right-hand side
of && and || expressions is not evaluated if the left-hand side already determines the outcome.

De Morgan’s Law

Special Topic 5.5 covers DeMorgan’s law, a law of logic that is used to simplify conditions in
which not operators are applied to and/or expressions.

Common Error 5.5

Special Topic 5.4

Special Topic 5.5

178 Chapter 5 Decisions Testing Track

Artificial Intelligence

Random Fact 5.1 discusses artificial intelligence computer processes that appear to simulate
intelligent human reasoning.

Testing the functionality of a program without consideration of its internal struc-
ture is called black-box testing. This is an important part of testing, because, after
all, the users of a program do not know its internal structure. If a program works
perfectly on all inputs, then it surely does its job.

However, it is impossible to ensure absolutely that a program will work correctly
on all inputs just by supplying a finite number of test cases. As the famous com-
puter scientist Edsger Dijkstra pointed out, testing can show only the presence of
bugs—not their absence. To gain more confidence in the correctness of a program,
it is useful to consider its internal structure. Testing strategies that look inside a pro-
gram are called white-box testing. Performing unit tests of each method is a part of
white-box testing.

You want to make sure that each part of your program is exercised at least once
by one of your test cases. This is called code coverage. If some code is never exe-
cuted by any of your test cases, you have no way of knowing whether that code
would perform correctly if it ever were executed by user input. That means that you
need to look at every if/else branch to see that each of them is reached by some test
case. Many conditional branches are in the code only to take care of strange and
abnormal inputs, but they still do something. It is a common phenomenon that they
end up doing something incorrectly, but those faults are never discovered during
testing, because nobody supplied the strange and abnormal inputs. Of course, these
flaws become immediately apparent when the program is released and the first user
types in an unusual input and is incensed when the program misbehaves. The rem-
edy is to ensure that each part of the code is covered by some test case.

For example, in testing the getTax method of the TaxReturn class, you want to
make sure that every if statement is entered for at least one test case. You should
test both single and married taxpayers, with incomes in each of the three tax brackets.

When you select test cases, you should make it a habit to include boundary test
cases: legal values that lie at the boundary of the set of acceptable inputs.

For example, what happens when you compute the taxes for an income of 0 or if
a bank account has an interest rate of 0 percent? Boundary cases are still legitimate
inputs, and you expect that the program will handle them correctly—often in some
trivial way or through special cases. Testing boundary cases is important, because
programmers often make mistakes dealing with boundary conditions. Division by
zero, extracting characters from empty strings, and accessing null references are
common symptoms of boundary errors.

Random Fact 5.1

5.5 Code Coverage
Black-box testing
describes a testing
method that does
not take the
structure of the
implementation
into account.

White-box testing
uses information
about the structure
of a program.

Code coverage is a
measure of how many
parts of a program
have been tested.

Boundary test cases
are test cases that
are at the boundary
of acceptable inputs.

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Testing Track 5.5 Code Coverage 179

9. How many test cases do you need to cover all branches of the getDescription
method of the Earthquake class?

10. Give a boundary test case for the EarthquakeRunner program. What output do
you expect?

Calculate Sample Data Manually

It is usually difficult or impossible to prove that a given program functions correctly in all
cases. For gaining confidence in the correctness of a program, or for understanding why it
does not function as it should, manually calculated sample data are invaluable. If the pro-
gram arrives at the same results as the manual calculation, our confidence in it is strength-
ened. If the manual results differ from the program results, we have a starting point for the
debugging process.

Surprisingly, many programmers are reluctant to perform any manual calculations as
soon as a program carries out the slightest bit of algebra. Their math phobia kicks in, and
they irrationally hope that they can avoid the algebra and beat the program into submission
by random tinkering, such as rearranging the + and - signs. Random tinkering is always a
great time sink, but it rarely leads to useful results.

Let’s have another look at the TaxReturn class. Suppose a single taxpayer earns $50,000.
The rules in Table 2 on page 167 state that the first $32,000 are taxed at 10 percent. Compute
32,000 × 0.10 = 3,200. The amount above $32,000, is taxed at 25 percent. It is time to take out
your calculator—real world numbers are usually nasty. That is (50,000 – 32,000) × 0.25 =
4,500. The total tax is the sum, 3,200 + 4,500 = 7,700. Now, that wasn’t so hard.

Run the program and compare the results. Because the results match, we have an
increased confidence in the correctness of the program.

It is even better to make manual calculations before writing the program. Doing so helps
you understand the task at hand, and you will be able to implement your solution more
quickly.

Prepare Test Cases Ahead of Time

Let us consider how we can test the tax computation program. Of course, we cannot try out
all possible inputs of filing status and income level. Even if we could, there would be no
point in trying them all. If the program correctly computes one or two tax amounts in a
given bracket, then we have a good reason to believe that all amounts within that bracket will
be correct. We want to aim for complete coverage of all cases.

There are two possibilities for the filing status and three tax brackets for each status. That
makes six test cases. Then we want to test boundary conditions, such as zero income or
incomes that are at the boundary between two brackets. That makes six test cases. Compute
manually the answers you expect (See Quality Tip 5.3). Write down the test cases before you
start coding.

Test Case Married Expected Output Comment

30,000 N 3,000 10% bracket

72,000 N 13,200 3,200 + 25% of 40,000

50,000 Y 5,000 10% bracket

S E L F C H E C K

Quality Tip 5.3

You should calculate
test cases by hand
to double-check
that your application
computes the
correct answer.

Quality Tip 5.4

180 Chapter 5 Decisions Testing Track

Should you really test six inputs for this simple program? You certainly should. Further-
more, if you find an error in the program that wasn’t covered by one of the test cases, make
another test case and add it to your collection. After you fix the known mistakes, run all test
cases again. Experience has shown that the cases that you just tried to fix are probably work-
ing now, but that errors that you fixed two or three iterations ago have a good chance of
coming back! If you find that an error keeps coming back, that is usually a reliable sign that
you did not fully understand some subtle interaction between features of your program.

It is always a good idea to design test cases before starting to code. There are two reasons
for this. Working through the test cases gives you a better understanding of the algorithm
that you are about to program. Furthermore, it has been noted that programmers instinc-
tively shy away from testing fragile parts of their code. That seems hard to believe, but you
will often make that observation about your own work. Watch someone else test your pro-
gram. There will be times when that person enters input that makes you very nervous
because you are not sure that your program can handle it, and you never dared to test it
yourself. This is a well-known phenomenon, and making the test plan before writing the
code offers some protection.

Logging

Sometimes you run a program and you are not sure where it spends its time. To get a print-
out of the program flow, you can insert trace messages into the program, such as this one:

public double getTax()
{
 . . .
 if (status == SINGLE)
 {
 System.out.println("status is SINGLE");
 . . .
 }
 . . .
}

However, there is a problem with using System.out.println for trace messages. When you are
done testing the program, you need to remove all print statements that produce trace mes-
sages. If you find another error, however, you need to stick the print statements back in.

To overcome this problem, you should use the Logger class, which allows you to turn off
the trace messages without removing them from the program.

Instead of printing directly to System.out, use the global logger object that is returned by
the call Logger.getGlobal(). (Prior to Java 7, you obtained the global logger as Logger.getLog-
ger("global").) Then call the info method:

Logger.getGlobal().info("status is SINGLE");

104,000 Y 16,400 6,400 + 25% of 40,000

32,000 N 3,200 boundary case

0 0 boundary case

Test Case Married Expected Output Comment

Special Topic 5.6

Summary of Learning Objectives 181

By default, the message is printed. But if you call

 Logger.getGlobal().setLevel(Level.OFF);

at the beginning of the main method of your program, all log message printing is suppressed.
Set the level to Level.INFO to turn logging of info messages on again. Thus, you can turn off
the log messages when your program works fine, and you can turn them back on if you find
another error. In other words, using Logger.getGlobal().info is just like System.out.println,
except that you can easily activate and deactivate the logging.

A common trick for tracing execution flow is to produce log messages when a method is
called, and when it returns. At the beginning of a method, print out the parameters:

public TaxReturn(double anIncome, int aStatus)
{
 Logger.getGlobal().info("Parameters: anIncome = " + anIncome
 + " aStatus = " + aStatus);
 . . .
}

At the end of a method, print out the return value:

public double getTax()
{
 . . .
 Logger.getGlobal().info("Return value = " + tax);
 return tax;
}

The Logger class has many other options for industrial-strength logging. Check out the API
documentation if you want to have more control over logging.

Use the if statement to implement a decision.

• The if statement lets a program carry out different actions depending on a
condition.

• A block statement groups several statements together.

Implement comparisons of numbers and objects.

• Relational operators compare values. The == operator tests for equality.
• When comparing floating-point numbers, don’t test for equality. Instead, check

whether they are close enough.
• Do not use the == operator to compare strings. Use the equals method instead.
• The compareTo method compares strings in dictionary order.
• The == operator tests whether two object references are identical. To compare the

contents of objects, you need to use the equals method.
• The null reference refers to no object.

Implement complex decisions that require multiple if statements.

• Multiple conditions can be combined to evaluate complex decisions. The correct
arrangement depends on the logic of the problem to be solved.

Logging messages
can be deactivated
when testing
is complete.

Summary of Learning Objectives

182 Chapter 5 Decisions

Use the Boolean data type to store and combine conditions that can be true or false.

• The boolean type has two values: true and false.
• A predicate method returns a boolean value.
• You can form complex tests with the Boolean operators && (and), || (or), and ! (not).
• You can store the outcome of a condition in a Boolean variable.

Design test cases that cover all parts of a program.

• Black-box testing describes a testing method that does not take the structure of the
implementation into account.

• White-box testing uses information about the structure of a program.
• Code coverage is a measure of how many parts of a program have been tested.
• Boundary test cases are test cases that are at the boundary of acceptable inputs.
• You should calculate test cases by hand to double-check that your application

computes the correct answer.

Use the Java logging library for messages that can be easily turned on or off.

• Logging messages can be deactivated when testing is complete.

• Worked Example Extracting the Middle
• Lab Exercises

Practice Quiz
Code Completion Exercises

R5.1 What is the value of each variable after the if statement?
a. int n = 1; int k = 2; int r = n; if (k < n) r = k;

b. int n = 1; int k = 2; int r; if (n < k) r = k; else r = k + n;
c. int n = 1; int k = 2; int r = k; if (r < k) n = r; else k = n;

d. int n = 1; int k = 2; int r = 3; if (r < n + k) r = 2 * n; else k = 2 * r;

Classes, Objects, and Methods Introduced in this Chapter
java.lang.Character
 isDigit
 isLetter
 isLowerCase
 isUpperCase
java.lang.Object
 equals
java.lang.String
 equals
 equalsIgnoreCase
 compareTo

java.util.Scanner
 hasNextDouble
 hasNextInt
java.util.logging.Level
 INFO
 OFF
java.util.logging.Logger
 getGlobal
 info
 setLevel

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

Review Exercises 183

R5.2 Find the errors in the following if statements.
a. if (1 + x > Math.pow(x, Math.sqrt(2)) y = y + x;

b. if (x = 1) y++; else if (x = 2) y = y + 2;
c. int x = Integer.parseInt(input);

if (x != null) y = y + x;

R5.3 Find the error in the following if statement that is intended to select a language
from a given country and state/province.

language = "English";
if (country.equals("Canada"))
 if (stateOrProvince.equals("Quebec")) language = "French";
else if (country.equals("China"))
 language = "Chinese";

R5.4 Find the errors in the following if statements.
a. if (x && y == 0) { x = 1; y = 1; }

b. if (1 <= x <= 10)
 System.out.println(x);

c. if (!s.equals("nickels") || !s.equals("pennies")
 || !s.equals("dimes") || !s.equals("quarters"))
 System.out.print("Input error!");

d. if (input.equalsIgnoreCase("N") || "NO")
 return;

R5.5 Explain the following terms, and give an example for each construct:
a. Expression
b. Condition
c. Statement
d. Simple statement
e. Compound statement
f. Block

R5.6 Explain the difference between an if statement with multiple else branches and
nested if statements. Give an example for each.

R5.7 Give an example for an if/else if/else statement where the order of the tests does
not matter. Give an example where the order of the tests matters.

R5.8 Of the following pairs of strings, which comes first in lexicographic order?
a. "Tom", "Jerry"

b. "Tom", "Tomato"
c. "church", "Churchill"

d. "car manufacturer", "carburetor"
e. "Harry", "hairy"

f. "C++", " Car"

g. "Tom", "Tom"
h. "Car", "Carl"
i. "car", "bar"

j. "101", "11"

k. "1.01", "10.1"

184 Chapter 5 Decisions

R5.9 Complete the following truth table by finding the truth values of the Boolean
expressions for all combinations of the Boolean inputs p, q, and r.

R5.10 Each square on a chess board can be described by a letter and number, such as g5 in
this example:

The following pseudocode describes an algorithm that determines whether a square
with a given letter and number is dark (black) or light (white).

If the letter is an a, c, e, or g
If the number is odd

color = "black"
Else

color = "white"
Else

If the number is even
color = "black"

Else
color = "white"

Using the procedure in Productivity Hint 5.2 on page 171, trace this pseudocode
with input g5.

R5.11 Give a set of four test cases for the algorithm of Exercise R5.10 that covers all
branches.

R5.12 In a scheduling program, we want to check whether two appointments overlap. For
simplicity, appointments start at a full hour, and we use military time (with hours

p q r (p && q) || !r !(p && (q || !r))

false false false

false false false

false false false

.

5 more combinations

. . .

1
2

4

6

8

3

5

7

1
2

4

6

8

3

5

7

a

a

b

b

d

d

f

f

h

h

c

c

e

e

g5

g

g

Review Exercises 185

0–24). The following pseudocode describes an algorithm that determines whether
the appointment with start time start1 and end time end1 overlaps with the appoint-
ment with start time start2 and end time end2.

If start1 > start2
s = start1

Else
s = start2

If end1 < end2
e = endl

Else
e = end2

If s < e
The appointments overlap.

Else
The appointments don’t overlap.

Trace this algorithm with an appointment from 10–12 and one from 11–13, then
with an appointment from 10–11 and one from 12–13.

R5.13 Write pseudocode for a program that prompts the user for a month and day and
prints out whether it is one of the following four holidays:

• New Year’s Day (January 1)
• Independence Day (July 4)
• Veterans Day (November 11)
• Christmas Day (December 25)

R5.14 True or false? A && B is the same as B && A for any Boolean conditions A and B.

R5.15 Explain the difference between
s = 0;
if (x > 0) s++;
if (y > 0) s++;

and
s = 0;
if (x > 0) s++;
else if (y > 0) s++;

R5.16 Use de Morgan’s law to simplify the following Boolean expressions.
a. !(x > 0 && y > 0)

b. !(x != 0 || y != 0)
c. !(country.equals("US") && !state.equals("HI")

 && !state.equals("AK"))

d. !(x % 4 != 0 || !(x % 100 == 0 && x % 400 == 0))

R5.17 Make up another Java code example that shows the dangling else problem, using
the following statement: A student with a GPA of at least 1.5, but less than 2, is on
probation; with less than 1.5, the student is failing.

R5.18 Explain the difference between the == operator and the equals method when com-
paring strings.

186 Chapter 5 Decisions

R5.19 Explain the difference between the tests
r == s

and
r.equals(s)

where both r and s are of type Rectangle.

R5.20 What is wrong with this test to see whether r is null? What happens when this code
runs?

Rectangle r;
. . .
if (r.equals(null))
 r = new Rectangle(5, 10, 20, 30);

R5.21 Explain how the lexicographic ordering of strings differs from the ordering of
words in a dictionary or telephone book. Hint: Consider strings, such as IBM,
wiley.com, Century 21, While-U-Wait, and 7-11.

R5.22 Write Java code to test whether two objects of type Line2D.Double represent the same
line when displayed on the graphics screen. Do not use a.equals(b).

Line2D.Double a;
Line2D.Double b;

if (your condition goes here)
 g2.drawString("They look the same!", x, y);

Hint: If p and q are points, then Line2D.Double(p, q) and Line2D.Double(q, p) look the
same.

R5.23 Explain why it is more difficult to compare floating-point numbers than integers.
Write Java code to test whether an integer n equals 10 and whether a floating-point
number x is approximately equal to 10.

R5.24 Consider the following test to see whether a point falls inside a rectangle.
Point2D.Double p = . . .
Rectangle r = . . .
boolean xInside = false;
if (r.getX() <= p.getX() && p.getX() <= r.getX() + r.getWidth())
 xInside = true;
boolean yInside = false;
if (r.getY() <= p.getY() && p.getY() <= r.getY() + r.getHeight())
 yInside = true;
if (xInside && yInside)
 g2.drawString("p is inside the rectangle.",
 p.getX(), p.getY());

Rewrite this code to eliminate the explicit true and false values, by setting xInside
and yInside to the values of Boolean expressions.

R5.25 Give a set of test cases for the earthquake program in Section 5.3.1. Ensure coverage
of all branches.

R5.26 Give an example of a boundary test case for the earthquake program in Section
5.3.1. What result do you expect?

T

T

Programming Exercises 187

P5.1 Write a program that prints all real solutions to the quadratic equation
ax2 + bx + c = 0. Read in a, b, c and use the quadratic formula. If the discriminant
b2 – 4ac is negative, display a message stating that there are no real solutions.
Implement a class QuadraticEquation whose constructor receives the coefficients a, b,
c of the quadratic equation. Supply methods getSolution1 and getSolution2 that get
the solutions, using the quadratic formula, or 0 if no solution exists. The
getSolution1 method should return the smaller of the two solutions.
Supply a method

boolean hasSolutions()

that returns false if the discriminant is negative.

P5.2 Write a program that takes user input describing a playing card in the following
shorthand notation:

Your program should print the full description of the card. For example,
Enter the card notation:
4S
Four of spades

Implement a class Card whose constructor takes the card notation string and whose
getDescription method returns a description of the card. If the notation string is not
in the correct format, the getDescription method should return the string "Unknown".

P5.3 Write a program that reads in three floating-point numbers and prints the three
inputs in sorted order. For example:

Please enter three numbers:
4
9
2.5
The inputs in sorted order are:
2.5
4
9

Programming Exercises

Notation Meaning

A Ace

2 ... 10 Card values

J Jack

Q Queen

K King

D Diamonds

H Hearts

S Spades

C Clubs

188 Chapter 5 Decisions

P5.4 Write a program that translates a letter grade into a number grade. Letter grades are
A B C D F, possibly followed by + or -. Their numeric values are 4, 3, 2, 1, and 0.
There is no F+ or F-. A + increases the numeric value by 0.3, a - decreases it by 0.3.
However, an A+ has the value 4.0. All other inputs have value –1.

Enter a letter grade:
B-
Numeric value: 2.7.

Use a class Grade with a method getNumericGrade.

P5.5 Write a program that translates a number into the closest letter grade. For example,
the number 2.8 (which might have been the average of several grades) would be
converted to B-. Break ties in favor of the better grade; for example, 2.85 should be a
B. Any value ≥ 4.15 should be an A+.
Use a class Grade with a method getLetterGrade.

P5.6 Write a program that reads in three strings and prints them in lexicographically
sorted order:

Please enter three strings:
Tom
Dick
Harry
The inputs in sorted order are:
Dick
Harry
Tom

P5.7 Change the implementation of the getTax method in the TaxReturn class, by setting a
variable rate1_limit, depending on the marital status. Then have a single formula
that computes the tax, depending on the income and the limit. Verify that your
results are identical to that of the TaxReturn class in this chapter.

P5.8 The original U.S. income tax of 1913 was quite simple. The tax was
• 1 percent on the first $50,000.
• 2 percent on the amount over $50,000 up to $75,000.
• 3 percent on the amount over $75,000 up to $100,000.
• 4 percent on the amount over $100,000 up to $250,000.
• 5 percent on the amount over $250,000 up to $500,000.
• 6 percent on the amount over $500,000.

There was no separate schedule for single or married taxpayers. Write a program
that computes the income tax according to this schedule.

P5.9 Write a program that prompts for the day and month of the user’s birthday and
then prints a horoscope. Make up fortunes for programmers, like this:

Please enter your birthday (month and day): 6 16
Gemini are experts at figuring out the behavior of complicated programs.
You feel where bugs are coming from and then stay one step ahead. Tonight,
your style wins approval from a tough critic.

Each fortune should contain the name of the astrological sign. (You will find the
names and date ranges of the signs at a distressingly large number of sites on the
Internet.)

Programming Exercises 189

P5.10 When two points in time are compared, each given as hours (in military time, rang-
ing from 0 and 23) and minutes, the following pseudocode determines which comes
first.

If hour1 < hour2
time1 comes first.

Else if hour1 and hour2 are the same
If minute1 < minute2

time1 comes first.
Else if minute1 and minute2 are the same

time1 and time2 are the same.
Else

time2 comes first.
Else

time2 comes first.

Write a program that prompts the user for two points in time and prints the time
that comes first, then the other time.

P5.11 The following algorithm yields the season (Spring, Summer, Fall, or Winter) for a
given month and day.

If month is 1, 2, or 3, season = "Winter"
Else if month is 4, 5, or 6, season = "Spring"
Else if month is 7, 8, or 9, season = "Summer"
Else if month is 10, 11, or 12, season = "Fall"
If month is divisible by 3 and day >= 21

If season is "Winter", season = "Spring"
Else if season is "Spring", season = "Summer"
Else if season is "Summer", season = "Fall"
Else season = "Winter"

Write a program that prompts the user for a month and day and then prints the sea-
son, as determined by this algorithm.

P5.12 A year with 366 days is called a leap year. A year is a leap year if it is divisible by 4
(for example, 1980). However, since the introduction of the Gregorian calendar on
October 15, 1582, a year is not a leap year if it is divisible by 100 (for example,
1900); however, it is a leap year if it is divisible by 400 (for example, 2000). Write a
program that asks the user for a year and computes whether that year is a leap year.
Implement a class Year with a predicate method boolean isLeapYear().

P5.13 Write a program that asks the user to enter a month (1 = January, 2 = February, and
so on) and then prints the number of days of the month. For February, print
“28 days”.

Enter a month (1-12):
5
31 days

Implement a class Month with a method int getDays(). Do not use a separate if or else
statement for each month. Use Boolean operators.

P5.14 Write a program that reads in two floating-point numbers and tests (a) whether
they are the same when rounded to two decimal places and (b) whether they differ
by less than 0.01.

190 Chapter 5 Decisions

Here are two sample runs.
Enter two floating-point numbers:
2.0
1.99998
They are the same when rounded to two decimal places.
They differ by less than 0.01.

Enter two floating-point numbers:
0.999
0.991
They are different when rounded to two decimal places.
They differ by less than 0.01.

P5.15 Enhance the BankAccount class of Chapter 3 by
• Rejecting negative amounts in the deposit and withdraw methods
• Rejecting withdrawals that would result in a negative balance

P5.16 Write a program that reads in the hourly wage of an employee. Then ask how many
hours the employee worked in the past week. Be sure to accept fractional hours.
Compute the pay. Any overtime work (over 40 hours per week) is paid at 150 per-
cent of the regular wage. Solve this problem by implementing a class Paycheck.

P5.17 Write a unit conversion program that asks users to identify the
unit from which they want to convert and the unit to which they want to convert.
Legal units are in, ft, mi, mm, cm, m, and km. Declare two objects of a class
UnitConverter that convert between meters and a given unit.

Convert from:
in
Convert to:
mm
Value:
10
10 in = 254 mm

P5.18 A line in the plane can be specified in various ways:
• by giving a point (x, y) and a slope m
• by giving two points (x1, y1), (x2, y2)
• as an equation in slope-intercept form y = mx + b
• as an equation x = a if the line is vertical

Implement a class Line with four constructors, corresponding to the four cases
above. Implement methods

boolean intersects(Line other)
boolean equals(Line other)
boolean isParallel(Line other)

P5.19 Write a program that draws a circle with radius 100 and center (200, 200). Ask the
user to specify the x- and y-coordinates of a point. Draw the point as a small circle. If
the point lies inside the circle, color the small circle green. Otherwise, color it red. In
your exercise, declare a class Circle and a method boolean isInside(Point2D.Double p).

P5.20 Write a graphics program that asks the user to specify the radii of two circles. The
first circle has center (100, 200), and the second circle has center (200, 100). Draw
the circles. If they intersect, then color both circles green. Otherwise, color them

G

G

Answers to Self-Check Questions 191

red. Hint: Compute the distance between the centers and compare it to the radii.
Your program should draw nothing if the user enters a negative radius. In your
exercise, declare a class Circle and a method boolean intersects(Circle other).

Project 5.1 Implement a combination lock class. A combination lock has a dial with 26 posi-
tions labeled A . . . Z. The dial needs to be set three times. If it is set to the correct
combination, the lock can be opened. When the lock is closed again, the combina-
tion can be entered again. If a user sets the dial more than three times, the last three
settings determine whether the lock can be opened. An important part of this exer-
cise is to implement a suitable interface for the CombinationLock class.

Project 5.2 Get the instructions for last year’s form 1040 from http://www.irs.ustreas.gov. Find
the tax brackets that were used last year for all categories of taxpayers (single, mar-
ried filing jointly, married filing separately, and head of household). Write a pro-
gram that computes taxes following that schedule. Ignore deductions, exemptions,
and credits. Simply apply the tax rate to the income.

1. If the withdrawal amount equals the balance, the result should be a zero balance and
no penalty.

2. Only the first assignment statement is part of the if statement. Use braces to group
both assignment statements into a block statement.

3. (a) 0; (b) 1; (c) An exception occurs.
4. Syntactically incorrect: e, g, h. Logically questionable: a, d, f
5. Yes, if you also reverse the comparisons:

if (richter < 3.5)
 r = "Generally not felt by people";
else if (richter < 4.5)
 r = "Felt by many people, no destruction";
else if (richter < 6.0)
 r = "Damage to poorly constructed buildings";
. . .

6. The higher tax rate is only applied on the income in the higher bracket. Suppose
you are single and make $31,900. Should you try to get a $200 raise? Absolutely:
you get to keep 90 percent of the first $100 and 75 percent of the next $100.

7. When x is zero.
8. if (!Character.isDigit(ch)) . . .

9. Seven
10. An input of 0 should yield an output of "Generally not felt by people". (If the output

is "Negative numbers are not allowed", there is an error in the program.)

Programming Projects

Answers to Self-Check Questions

This page intentionally left blank

193

Chapter6
Iteration

CHAPTER GOALS
• To be able to program loops with the while and for statements

• To avoid infinite loops and off-by-one errors

• To be able to use common loop algorithms

• To understand nested loops

• To implement simulations

T To learn about the debugger

This chapter presents the various iteration constructs of the Java

language. These constructs execute one or more statements repeatedly until a goal is reached. You

will see how the techniques that you learn in this chapter can be applied to the processing of input

data and the programming of simulations.

194

CHAPTER CONTENTS

In this chapter you will learn how to write programs that repeatedly execute one or
more statements. We will illustrate these concepts by looking at typical investment
situations. Consider a bank account with an initial balance of $10,000 that earns 5
percent interest. The interest is computed at the end of every year on the current
balance and then deposited into the bank account. For example, after the first year,
the account has earned $500 (5 percent of $10,000) of interest. The interest gets
added to the bank account. Next year, the interest is $525 (5 percent of $10,500),
and the balance is $11,025.

How many years does it take for the balance to reach $20,000? Of course, it
won’t take longer than 20 years, because at least $500 is added to the bank account
each year. But it will take less than 20 years, because interest is computed on
increasingly larger balances. To know the exact answer, we will write a program that
repeatedly adds interest until the balance is reached.

In Java, the while statement implements such a repetition. The construct
while (condition)

statement

keeps executing the statement while the condition is true.
Most commonly, the statement is a block statement, that is, a set of statements

delimited by { }.
In our case, we want to know when the bank account has reached a particular

balance. While the balance is less, we keep adding interest and incrementing the
years counter:

6.1 while Loops

This is a sample MN
for the left page. This
is a sample four-line
MN for the left page.

A while statement
executes a block of
code repeatedly. A
condition controls
how long the loop
is executed.

6.1 while Loops 194
SYNTAX 6.1: The while Statement 196
PRODUCTIVITY HINT 6.1: Hand-Tracing Loops 198
COMMON ERROR 6.1: Infinite Loops 200
COMMON ERROR 6.2: Off-by-One Errors 200
SPECIAL TOPIC 6.1: do Loops

6.2 for Loops 201
SYNTAX 6.2: The for Statement 204
QUALITY TIP 6.1: Use for Loops for Their

Intended Purpose 206
COMMON ERROR 6.3: Forgetting a Semicolon 207
COMMON ERROR 6.4: A Semicolon Too Many 207
QUALITY TIP 6.2: Don’t Use != to Test the End

of a Range 208
SPECIAL TOPIC 6.2: Variables Declared in a for

Loop Header

QUALITY TIP 6.3: Symmetric and

Asymmetric Bounds 208
QUALITY TIP 6.4: Count Iterations 209

6.3 Common Loop Algorithms 210
HOW TO 6.1: Writing a Loop 215
WORKED EXAMPLE 6.1: Credit Card Processing

SPECIAL TOPIC 6.3: The “Loop and a Half” Problem

SPECIAL TOPIC 6.4: The break and

continue Statements

6.4 Nested Loops 218
WORKED EXAMPLE 6.2: Manipulating the Pixels in

an Image

6.5 Application: Random Numbers
and Simulations 221

SPECIAL TOPIC 6.5: Loop Invariants

6.6T Using a Debugger 223
HOW TO 6.2: Debugging 226
WORKED EXAMPLE 6.3: A Sample Debugging Session

RANDOM FACT 6.1: The First Bug 228

6.1 while Loops 195

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Figure 1 shows the flow of execution of this loop.

For the full text of the sample program that solves our investment problem, see
ch06/invest1/Investment.java in your source code, or view it in WileyPLUS.

Figure 1 Execution of a while Loop

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check the loop condition1 The condition is true

while (balance < targetBalance)
{

years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Execute the statements in the loop2

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check the loop condition again3 The condition is still true

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

After 15 iterations4 The condition is
no longer true

while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}
System.out.println(years);

Execute the statement following the loop5

.

.

.

years = 0

balance = 10000

years = 1

interest = 500

balance = 10500

years = 1

balance = 10500

years = 15

balance = 20789.28

years = 15

balance = 20789.28

196 Chapter 6 Iteration

A while statement is often called a loop. If you draw a flowchart, you will see that
the control loops backwards to the test after every iteration (see Figure 2).

When you declare a variable inside the loop
body, the variable is created for each iteration of
the loop and removed after the end of each itera-
tion. For example, consider the interest variable in
this loop:

while (balance < targetBalance)
{
 years++;

double interest = balance * rate / 100;
 // A new interest variable is created
 // in each iteration
 balance = balance + interest;
} // interest no longer declared here

If a variable needs to be updated in multiple loop
iterations, do not declare it inside the loop. For
example, it would not make sense to declare the
balance variable inside this loop.

Figure 2 Flowchart of a while Loop

A N I M AT I O N
Tracing a Loop

False

True

Add interest
to balance

Increment
years

balance <
targetBalance

?

Syntax 6.1 The while Statement

while (condition)
statement

Syntax

Example

Lining up braces

is a good idea.

See page 154.

double balance = 0;
.
.
.
while (balance < TARGET)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

If the condition
never becomes false,
an infinite loop occurs.
 See page 200.

These statements
are executed while
the condition is true.

Don’t put a semicolon here!

 See page 207.

Beware of “off-by-one”

errors in the loop condition.

 See page 200.

Braces are not required if the body

contains a single statement.

This variable is declared outside the loop
and updated in the loop.

This variable is created
in each loop iteration.

6.1 while Loops 197

The following loop,
while (true)

statement

executes the statement over and over, without terminating. Whoa! Why would you
want that? The program would never stop. There are two reasons. Some programs
indeed never stop; the software controlling an automated teller machine, a tele-
phone switch, or a microwave oven doesn’t ever stop (at least not until the device is
turned off). Our programs aren’t usually of that kind, but even if you can’t termi-
nate the loop, you can exit from the method that contains it. This can be helpful
when the termination test naturally falls in the middle of the loop (see Special Topic
6.3 on page 218).

Table 1 while Loop Examples

Loop Output Explanation

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum + i;

Print i and sum;
}

1 1
2 3
3 6
4 10

When sum is 10, the loop condition is
false, and the loop ends.

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum - i;

Print i and sum;
}

1 -1
2 -3
3 -6
4 -10
. . .

Because sum never reaches 10, this is an
“infinite loop” (see Common Error 6.1
on page 200).

i = 0; sum = 0;
while (sum < 0)
{
 i++; sum = sum - i;

Print i and sum;
}

(No output) The statement sum < 0 is false when the
condition is first checked, and the loop
is never executed.

i = 0; sum = 0;
while (sum >= 10)
{
 i++; sum = sum + i;

Print i and sum;
}

(No output) The programmer probably thought,
“Stop when the sum is at least 10.”
However, the loop condition controls
when the loop is executed, not when
it ends.

i = 0; sum = 0;
while (sum < 10) ;
{
 i++; sum = sum + i;

Print i and sum;
}

(No output, program
does not terminate)

Note the semicolon before the {.
This loop has an empty body. It runs
forever, checking whether sum < 10 and
doing nothing in the body (see
Common Error 6.4 on page 207).

198 Chapter 6 Iteration

1. How many times is the following statement in the loop executed?
while (false) statement;

2. What would happen if RATE was set to 0 in the main method of the
InvestmentRunner program?

Hand-Tracing Loops

In Programming Tip 5.2, you learned about the method of hand-tracing. This method is par-
ticularly effective for understanding how a loop works.

Consider this example loop. What value is displayed?

int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

1. There are three variables: n, sum, and digit. The first two variables are initialized with
1729 and 0 before the loop is entered.

2. Because n is positive, enter the loop.
3. The variable digit is set to 9 (the remainder of dividing 1729 by 10). The variable sum is

set to 0 + 9 = 9. Finally, n becomes 172. (Recall that the remainder in the division 1729 /
10 is discarded because both arguments are integers.). Cross out the old values and
write the new ones under the old ones.

S E L F C H E C K

Productivity Hint 6.1

1

2

3 4 5 6

7

n sum digit

 1729 0

n sum digit

 1729 0

 172 9 9

6.1 while Loops 199

4. Because n > 0, we repeat the loop. Now digit becomes 2, sum is set to 9 + 2 = 11, and n
is set to 17.

5. Because n is still not zero, we repeat the loop, setting digit to 7, sum to 11 + 7 = 18, and
n to 1.

6. We enter the loop one last time. Now digit is set to 1, sum to 19, and n becomes zero.

7. The condition n > 0 is now false, and we continue with the output statement after the
loop. The value that is output is 19.

Of course, you can get the same answer simply by running the code. The hope is that by
hand-tracing, you gain an insight. Consider again what happens in each iteration:
• We extract the last digit of n.
• We add that digit to sum.
• We strip the digit off n.
In other words, the loop forms the sum of the digits in n. You now know what the loop does
for any value of n, not just the one in the example.

Why would anyone want to form the sum of the digits? Operations of this kind are use-
ful for checking the validity of credit card numbers and other forms of ID number—see
Exercise P6.2.

n sum digit

 1729 0

 172 9 9

 17 11 2

n sum digit

 1729 0

 172 9 9

 17 11 2

 1 18 7

n sum digit

 1729 0

 172 9 9

 17 11 2

 1 18 7

 0 19 1

200 Chapter 6 Iteration

Infinite Loops

One of the most annoying loop errors is an infinite loop: a loop that runs forever and can be
stopped only by killing the program or restarting the computer. If there are output state-
ments in the loop, then reams and reams of output flash by on the screen. Otherwise, the
program just sits there and hangs, seeming to do nothing. On some systems you can kill a
hanging program by hitting Ctrl+Break or Ctrl+C. On others, you can close the window in
which the program runs.

A common reason for infinite loops is forgetting to advance the variable that controls the
loop:

int years = 0;
while (years < 20)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Here the programmer forgot to add a statement for incrementing years in the loop. As a
result, the value of years always stays 0, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally incrementing a counter that
should be decremented (or vice versa). Consider this example:

int years = 20;
while (years > 0)
{
 years++; // Oops, should have been years--
 double interest = balance * rate / 100;
 balance = balance + interest;
}

The years variable really should have been decremented, not incremented. This is a common
error, because incrementing counters is so much more common than decrementing that your
fingers may type the ++ on autopilot. As a consequence, years is always larger than 0, and the
loop never terminates. (Actually, years eventually will exceed the largest representable posi-
tive integer and wrap around to a negative number. Then the loop exits—of course, that takes
a long time, and the result is completely wrong.)

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:

int years = 0;
while (balance < 2 * initialBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}
System.out.println("The investment reached the target after "
 + years + " years.");

Should years start at 0 or at 1? Should you test for balance < 2 * initialBalance or for
balance <= 2 * initialBalance? It is easy to be off by one in these expressions.

Common Error 6.1

Common Error 6.2

6.2 for Loops 201

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro-
gram seems to work. That is, of course, a terrible strategy. It can take a long time to compile
and test all the various possibilities. Expending a small amount of mental effort is a real time
saver.

Fortunately, off-by-one errors are easy to avoid, simply by thinking through a couple of
test cases and using the information from the test cases to come up with a rationale for the
correct loop condition.

Should years start at 0 or at 1? Look at a scenario with simple
values: an initial balance of $100 and an interest rate of 50 percent.
After year 1, the balance is $150, and after year 2 it is $225, or over
$200. So the investment doubled after 2 years. The loop executed
two times, incrementing years each time. Hence years must start at
0, not at 1.

In other words, the balance variable denotes the balance after
the end of the year. At the outset, the balance variable contains the
balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? That is harder to figure out,
because it is rare for the balance to be exactly twice the initial balance. Of course, there is one
case when this happens, namely when the interest is 100 percent. The loop executes once.
Now years is 1, and balance is exactly equal to 2 * initialBalance. Has the investment dou-
bled after one year? It has. Therefore, the loop should not execute again. If the test condition
is balance < 2 * initialBalance, the loop stops, as it should. If the test condition had been
balance <= 2 * initialBalance, the loop would have executed once more.

In other words, you keep adding interest while the balance has not yet doubled.

do Loops

Special Topic 6.1 discusses the do loop, an optional loop construct that tests the loop condi-
tion at the end of the loop body.

One of the most common loop types has the form
i = start;
while (i <= end)
{
 . . .
 i++;
}

Because this loop is so common, there is a special form for it that emphasizes the
pattern:

for (i = start; i <= end; i++)
{
 . . .
}

An off-by-one error
is a common error
when programming
loops. Think through
simple test cases
to avoid this type
of error.

year balance

 0 $100

 1 $150

 2 $225

Special Topic 6.1

6.2 for Loops

202 Chapter 6 Iteration

You can also declare the loop counter variable inside the for loop header. That con-
venient shorthand restricts the use of the variable to the body of the loop (as will be
discussed further in Special Topic 6.2).

for (int i = start; i <= end; i++)
{
 . . .
}

A for loop can be used to find out the size of our $10,000 investment if 5 percent
interest is compounded for 20 years. Of course, the balance will be larger than
$20,000, because at least $500 is added every year. You may be surprised to find out
just how much larger the balance is.

In our loop, we let i go from 1 to numberOfYears, the number of years for which we
want to compound interest.

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Figure 3 shows the corresponding flowchart. Figure 4 shows the flow of execution.
The complete program is on page 205.

Figure 3
Flowchart of a for Loop

You use a for loop
when a variable runs
from a starting to an
ending value with a
constant increment
or decrement.

True

False

Add interest
to balance

i++

i ≤ numberOfYears?

i = 1

6.2 for Loops 203

Another common use of the for loop is to traverse all characters of a string:
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);

Process ch
}

Note that the counter variable i starts at 0, and the loop is terminated when i
reaches the length of the string. For example, if str has length 5, i takes on the val-
ues 0, 1, 2, 3, and 4. These are the valid positions in the string.

Note too that the three slots in the for header can contain any three expressions.
You can count down instead of up:

for (int i = 10; i > 0; i–-)

The increment or decrement need not be in steps of 1:
for (int i = -10; i <= 10; i = i + 2) . . .

Figure 4 Execution of a for Loop

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Initialize counter1

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check condition2

for (int i = 1; i <= numberOfYears; i++)
{

double interest = balance * rate / 100;
 balance = balance + interest;
}

Execute loop body3

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Update counter4

for (int i = 1; i <= numberOfYears; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Check condition again5

i = 1

i = 1

i = 1

i = 2

i = 2

A N I M AT I O N
The for Loop

204 Chapter 6 Iteration

It is possible—but a sign of unbelievably bad taste—to put unrelated conditions
into the loop header:

for (rate = 5; years–- > 0; System.out.println(balance))
 . . . // Bad taste

We won’t even begin to decipher what that might mean. You should stick with for
loops that initialize, test, and update a single variable.

Syntax 6.2 The for Statement

for (initialization; condition; update)
statement

Syntax

Example

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
} This loop executes 6 times.

 See page 209.

These three

expressions should be related.

 See page 206.

This initialization
happens once
before the loop starts.

The loop is
executed while
this condition is true.

This update is
executed after
each iteration.

The variable i is

defined only in this for loop.

See page 208.

Table 2 for Loop Examples

Loop Values of i Comment

for (i = 0; i <= 5; i++) 0 1 2 3 4 5 Note that the loop is executed 6 times.
(See Quality Tip 6.4 on page 209.)

for (i = 5; i >= 0; i--) 5 4 3 2 1 0 Use i-- for decreasing values.

for (i = 0; i < 9; i = i + 2) 0 2 4 6 8 Use i = i + 2 for a step size of 2.

for (i = 0; i != 9; i = i + 2) 0 2 4 6 8 10 12 14 ...
(infinite loop)

You can use < or <= instead of != to
avoid this problem.

for (i = 1; i <= 20; i = i * 2) 1 2 4 8 16 You can specify any rule for modifying
i, such as doubling it in every step.

for (i = 0; i < str.length(); i++) 0 1 2 ... until the
last valid index of
the string str

In the loop body, use the expression
str.charAt(i) to get the ith character.

6.2 for Loops 205

ch06/invest2/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int years;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 years = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */
29 public void waitForBalance(double targetBalance)
30 {
31 while (balance < targetBalance)
32 {
33 years++;
34 double interest = balance * rate / 100;
35 balance = balance + interest;
36 }
37 }
38
39 /**
40 Keeps accumulating interest for a given number of years.
41 @param numberOfYears the number of years to wait
42 */
43 public void waitYears(int numberOfYears)
44 {
45 for (int i = 1; i <= numberOfYears; i++)
46 {
47 double interest = balance * rate / 100;
48 balance = balance + interest;
49 }
50 years = years + n;
51 }
52
53 /**
54 Gets the current investment balance.
55 @return the current balance
56 */
57 public double getBalance()
58 {

206 Chapter 6 Iteration

ch06/invest2/InvestmentRunner.java

Program Run

3. Rewrite the for loop in the waitYears method as a while loop.
4. How many times does the following for loop execute?

for (i = 0; i <= 10; i++)
 System.out.println(i * i);

Use for Loops for Their Intended Purpose

A for loop is an idiom for a while loop of a particular form. A counter runs from the start to
the end, with a constant increment:

for (Set counter to start; Test whether counter at end; Update counter by increment)
{ . . .
 // counter, start, end, increment not changed here
}

59 return balance;
60 }
61
62 /**
63 Gets the number of years this investment has accumulated
64 interest.
65 @return the number of years since the start of the investment
66 */
67 public int getYears()
68 {
69 return years;
70 }
71 }

1 /**
2 This program computes how much an investment grows in
3 a given number of years.
4 */
5 public class InvestmentRunner
6 {
7 public static void main(String[] args)
8 {
9 final double INITIAL_BALANCE = 10000;

10 final double RATE = 5;
11 final int YEARS = 20;
12 Investment invest = new Investment(INITIAL_BALANCE, RATE);
13 invest.waitYears(YEARS);
14 double balance = invest.getBalance();
15 System.out.printf("The balance after %d years is %.2f\n",
16 YEARS, balance);
17 }
18 }

The balance after 20 years is 26532.98

S E L F C H E C K

Quality Tip 6.1

6.2 for Loops 207

If your loop doesn’t match this pattern, don’t use the for construction. The compiler won’t
prevent you from writing idiotic for loops:

// Bad style—unrelated header expressions
for (System.out.println("Inputs:");
 (x = in.nextDouble()) > 0;
 sum = sum + x)
 count++;

for (int i = 1; i <= years; i++)
{
 if (balance >= targetBalance)
 i = years; // Bad style—modifies counter
 else
 {
 double interest = balance * rate / 100;
 balance = balance + interest;
 }
}

These loops will work, but they are plainly bad style. Use a while loop for iterations that do
not fit the for pattern.

Forgetting a Semicolon

Occasionally all the work of a loop is already done in the loop header. Suppose you ignored
Quality Tip 6.1 on page 206; then you could write an investment doubling loop as follows:

for (years = 1;
 (balance = balance + balance * rate / 100) < targetBalance;
 years++)
 ;
System.out.println(years);

The body of the for loop is completely empty, containing just one empty statement termi-
nated by a semicolon.

If you do run into a loop without a body, it is important that you make sure the semico-
lon is not forgotten. If the semicolon is accidentally omitted, then the next line becomes part
of the loop statement!

for (years = 1;
 (balance = balance + balance * rate / 100) < targetBalance;
 years++)
System.out.println(years);

You can avoid this error by using an empty block { } instead of an empty statement.

A Semicolon Too Many

What does the following loop print?

sum = 0;
for (i = 1; i <= 10; i++);

Common Error 6.3

Common Error 6.4

208 Chapter 6 Iteration

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

 sum = sum + i;
System.out.println(sum);

Of course, this loop is supposed to compute 1 + 2 + ··· + 10 = 55. But actually, the print state-
ment prints 11!

Why 11? Have another look. Did you spot the semicolon at the end of the for loop
header? This loop is actually a loop with an empty body.

for (i = 1; i <= 10; i++)
 ;

The loop does nothing 10 times, and when it is finished, sum is still 0 and i is 11. Then the
statement

sum = sum + i;

is executed, and sum is 11. The statement was indented, which fools the human reader. But the
compiler pays no attention to indentation.

Of course, the semicolon at the end of the statement was a typing error. Someone’s fingers
were so used to typing a semicolon at the end of every line that a semicolon was added to the
for loop by accident. The result was a loop with an empty body.

Don’t Use != to Test the End of a Range

Here is a loop with a hidden danger:

for (i = 1; i != n; i++)

The test i != n is a poor idea. How does the loop behave if n happens to be zero or negative?
The test i != n is never false, because i starts at 1 and increases with every step.

The remedy is simple. Use <= rather than != in the condition:

for (i = 1; i <= n; i++)

Variables Declared in a for Loop Header

Special Topic 6.2 shows how to declare multiple variables in a for loop header, and it explains
that such variables are not defined beyond the loop body.

Symmetric and Asymmetric Bounds

It is easy to write a loop with i going from 1 to n:

for (i = 1; i <= n; i++) . . .

Quality Tip 6.2

Special Topic 6.2

Quality Tip 6.3

6.2 for Loops 209

The values for i are bounded by the relation 1 ≤ i ≤ n. Because there are ≤ comparisons on
both bounds, the bounds are called symmetric.

When traversing the characters in a string, the bounds are asymmetric.

for (i = 0; i < str.length(); i++) . . .

The values for i are bounded by 0 ≤ i < str.length(), with a ≤ comparison to the left and a <
comparison to the right. That is appropriate, because str.length() is not a valid position.

It is not a good idea to force symmetry artificially:

for (i = 0; i <= str.length() - 1; i++) . . .

That is more difficult to read and understand.
For every loop, consider which form is most natural for the problem, and use that.

Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should I start
at 0? Should I use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop.
Counting is easier for loops with asymmetric bounds. The loop

for (i = a; i < b; i++) . . .

is executed b - a times. For example, the loop traversing the characters in a string,

for (i = 0; i < str.length(); i++) . . .

runs str.length() times. That makes perfect sense, because there are str.length() characters
in a string.

The loop with symmetric bounds,

for (i = a; i <= b; i++)

is executed b - a + 1 times. That “+ 1” is the source of many programming errors. For example,

for (n = 0; n <= 10; n++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.
One way to visualize this “+ 1” error is to think of the posts and sections of a fence. Sup-

pose the fence has ten sections (=). How many posts (|) does it have?

|=|=|=|=|=|=|=|=|=|=|

A fence with ten sections has eleven posts. Each section has one post to the left, and there is
one more post after the last section. Forgetting to count the last iteration of a “<=” loop is
often called a “fence post error”.

If the increment is a value c other than 1, and c divides b - a, then the counts are

(b - a) / c for the asymmetric loop

(b - a) / c + 1 for the symmetric loop

For example, the loop for (i = 10; i <= 40; i += 5) executes times.

Make a choice
between symmetric
and asymmetric
loop bounds.

Quality Tip 6.4

Count the number
of iterations to
check that your for
loop is correct.

40 10 5 1 7−() + =

210 Chapter 6 Iteration

In the following sections, we discuss some of the most common algorithms that are
implemented as loops. You can use them as starting points for your loop designs.

Computing the sum of a number of inputs is a very common task. Keep a running
total: a variable to which you add each input value. Of course, the total should be
initialized with 0.

double total = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
}

You often want to know how many values fulfill a particular condition. For exam-
ple, you may want to count how many uppercase letters are in a string. Keep a
counter, a variable that is initialized with 0 and incremented whenever there is a
match.

int upperCaseLetters = 0;
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 if (Character.isUpperCase(ch))
 {
 upperCaseLetters++;
 }
}

For example, if str is the string "Hello, World!", upperCaseLetters is incremented twice
(when i is 0 and 7).

When you count the values that fulfill a condition, you need to look at all values.
However, if your task is to find a match, then you can stop as soon as the condition
is fulfilled.

Here is a loop that finds the first lowercase letter in a string. Because we do not
visit all elements in a string, a while loop is a better choice than a for loop:

boolean found = false;
char ch = '?';
int position = 0;

6.3 Common Loop Algorithms

6.3.1 Computing a Total

6.3.2 Counting Matches

6.3.3 Finding the First Match

6.3 Common Loop Algorithms 211

while (!found && position < str.length())
{
 ch = str.charAt(position);
 if (Character.isLowerCase(ch)) { found = true; }
 else { position++; }
}

If a match was found, then found is true, ch is the first matching character, and its
index is stored in the variable position. If the loop did not find a match, then found
remains false and the loop continues until position reaches str.length().

Note that the variable ch is declared outside the while loop because you may want
to use it after the loop has finished.

In the preceding example, we searched a string for a character that matches a condi-
tion. You can apply the same process to user input. Suppose you are asking a user to
enter a positive value < 100. Keep asking until the user provides a correct input:

boolean valid = false;
double input = 0;
while (!valid)
{
 System.out.print("Please enter a positive value < 100: ");
 input = in.nextDouble();
 if (0 < input && input < 100) { valid = true; }
 else { System.out.println("Invalid input."); }
}

As in the preceding example, the variable input is declared outside the while loop so
that you can use it after the loop has finished.

When processing a sequence of values in a loop, you sometimes need to compare a
value with the value that just preceded it. For example, suppose you want to check
whether a sequence of inputs contains adjacent duplicates such as 1 7 2 9 9 4 9.

 Now you face a challenge. Consider the typical loop for reading a value:
double input = 0;
while (in.hasNextDouble())
{
 input = in.nextDouble();
 . . .
}

How can you compare the current input with the preceding one? At any time, input
contains the current input, overwriting the previous one.

The answer is to store the previous input, like this:
double input = 0;
while (in.hasNextDouble())
{

6.3.4 Prompting Until a Match is Found

6.3.5 Comparing Adjacent Values

212 Chapter 6 Iteration

 double previous = input;
 input = in.nextDouble();
 if (input == previous) { System.out.println("Duplicate input"); }
}

One problem remains. When the loop is entered for the first time, there is no previ-
ous input value. You can solve this problem with an initial input operation outside
the loop:

double input = in.nextDouble();
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (input == previous) { System.out.println("Duplicate input"); }
}

Suppose you want to process a set of values, for example a set of measurements.
Your goal is to analyze the data and display properties of the data set, such as the
average or the maximum value. You prompt the user for the first value, then the sec-
ond value, then the third, and so on. When does the input end?

One common method for indicating the end of a data set is a sentinel value, a
value that is not part of the data. Instead, the sentinel value indicates that the data
has come to an end.

Some programmers choose numbers such as 0 or –1 as sentinel values. But that is
not a good idea. These values may well be valid inputs. A better idea is to use an
input that is not a number, such as the letter Q. Here is a typical program run:

Enter value, Q to quit: 1
Enter value, Q to quit: 2
Enter value, Q to quit: 3
Enter value, Q to quit: 4
Enter value, Q to quit: Q
Average = 2.5
Maximum = 4.0

Of course, we need to read each input as a string, not a number. Once we have
tested that the input is not the letter Q, we convert the string into a number.

System.out.print("Enter value, Q to quit: ");
String input = in.next();
if (input.equalsIgnoreCase("Q"))

We are done
else
{
 double x = Double.parseDouble(input);
 . . .
}

Now we have another problem. The test for loop termination occurs in the middle
of the loop, not at the top or the bottom. You must first try to read input before
you can test whether you have reached the end of input. In Java, there isn’t a ready-
made control structure for the pattern “do work, then test, then do more work”.
Therefore, we use a combination of a while loop and a boolean variable.

6.3.6 Processing Input with Sentinel Values

6.3 Common Loop Algorithms 213

boolean done = false;
while (!done)
{

Print prompt
 String input = read input;
 if (end of input indicated)
 done = true;
 else
 {

Process input
 }
}

This pattern is sometimes called “loop and a half”. Some programmers find it
clumsy to introduce a control variable for such a loop. Special Topic 6.3 shows sev-
eral alternatives.

Here is a complete program that reads input and analyzes the data. We separate
the input handling from the computation of the data set properties by using two
classes, DataAnalyzer and DataSet. The DataAnalyzer class handles the input and adds
values to a DataSet object with the add method. It then calls the getAverage method
and the getMaximum method to obtain the average and maximum of all added data.

ch06/dataset/DataAnalyzer.java

Sometimes, the
termination
condition of a loop
can only be
evaluated in the
middle of a loop. You
can introduce a
Boolean variable to
control such a loop.

1 import java.util.Scanner;
2
3 /**
4 This program computes the average and maximum of a set
5 of input values.
6 */
7 public class DataAnalyzer
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 DataSet data = new DataSet();
13
14 boolean done = false;
15 while (!done)
16 {
17 System.out.print("Enter value, Q to quit: ");
18 String input = in.next();
19 if (input.equalsIgnoreCase("Q"))
20 done = true;
21 else
22 {
23 double x = Double.parseDouble(input);
24 data.add(x);
25 }
26 }
27
28 System.out.println("Average = " + data.getAverage());
29 System.out.println("Maximum = " + data.getMaximum());
30 }
31 }

214 Chapter 6 Iteration

ch06/dataset/DataSet.java

Program Run

1 /**
2 Computes information about a set of data values.
3 */
4 public class DataSet
5 {
6 private double sum;
7 private double maximum;
8 private int count;
9

10 /**
11 Constructs an empty data set.
12 */
13 public DataSet()
14 {
15 sum = 0;
16 count = 0;
17 maximum = 0;
18 }
19
20 /**
21 Adds a data value to the data set.
22 @param x a data value
23 */
24 public void add(double x)
25 {
26 sum = sum + x;
27 if (count == 0 || maximum < x) maximum = x;
28 count++;
29 }
30
31 /**
32 Gets the average of the added data.
33 @return the average or 0 if no data has been added
34 */
35 public double getAverage()
36 {
37 if (count == 0) return 0;
38 else return sum / count;
39 }
40
41 /**
42 Gets the largest of the added data.
43 @return the maximum or 0 if no data has been added
44 */
45 public double getMaximum()
46 {
47 return maximum;
48 }
49 }

Enter value, Q to quit: 10
Enter value, Q to quit: 0
Enter value, Q to quit: -1
Enter value, Q to quit: Q
Average = 3.0
Maximum = 10.0

6.3 Common Loop Algorithms 215

5. How do you compute the total of all positive inputs?
6. What happens with the algorithm in Section 6.3.5 when no input is provided at

all? How can you overcome that problem?
7. Why does the DataAnalyzer class call in.next and not in.nextDouble?
8. Would the DataSet class still compute the correct maximum if you simplified the

update of the maximum variable in the add method to the following statement?
 if (maximum < x) maximum = x;

HOW TO 6.1 Writing a Loop

This How To walks you through the process of implementing a loop statement. We will
illustrate the steps with the following example problem:

Read twelve temperature values (one for each month), and display the number of the
month with the highest temperature. For example, according to http://worldclimate.com, the
average maximum temperatures for Death Valley are (in order by month):

18.2 22.6 26.4 31.1 36.6 42.2
45.7 44.5 40.2 33.1 24.2 17.6

In this case, the month with the highest temperature (45.7 degrees Celsius) is July, and the
program should display 7.

Step 1 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that
you would take if you solved the problem by hand. For example, with the temperature read-
ing problem, you might write

Read first value.

Read second value.

If second value is higher than the first, set highest temperature to that value, highest month to 2.

Read next value.

If value is higher than the first and second, set highest temperature to that value, highest month to 3.

Read next value.

If value is higher than the highest temperature seen so far, set highest temperature to that value,

highest month to 4.

. . .

Now look at these steps and reduce them to a set of uniform actions that can be placed into
the loop body. The first action is easy:

Read next value.

The next action is trickier. In our description, we used tests “higher than the first”, “higher
than the first and second”, “higher than the highest temperature seen so far”. We need to set-
tle on one test that works for all iterations. The last formulation is the most general.

Similarly, we must find a general way of setting the highest month. We need a variable that
stores the current month, running from 1 to 12. Then we can formulate the second loop action:

If value is higher than the highest temperature, set highest temperature to that value,

highest month to current month.

S E L F C H E C K

216 Chapter 6 Iteration

Altogether our loop is

Loop

Read next value.

If value is higher than the highest temperature, set highest temperature to that value,

highest month to current month.

Increment current month.

Step 2 Specify the loop condition.

What goal do you want to reach in your loop? Typical examples are
• Has a counter reached its final value?
• Have you read the last input value?
• Has a value reached a given threshold?
In our example, we simply want the current month to reach 12.

Step 3 Determine the loop type.

We distinguish between two major loop types. A definite or count-controlled loop is exe-
cuted a definite number of times. In an indefinite or event-controlled loop, the number of
iterations is not known in advance—the loop is executed until some event happens. A typical
example of the latter is a loop that reads data until a sentinel is encountered.

Definite loops can be implemented as for statements. When you have an indefinite loop,
consider the loop condition. Does it involve values that are only set inside the loop body? In
that case, you should choose a do loop to ensure that the loop is executed at least once before
the loop condition is be evaluated. Otherwise, use a while loop.

Sometimes, the condition for terminating a loop changes in the middle of the loop body.
In that case, you can use a Boolean variable that specifies when you are ready to leave the
loop. Follow this pattern:

boolean done = false;
while (!done)
{

Do some work
If all work has been completed

 {
 done = true;
 }
 else
 {

Do more work
 }
}

Such a variable is called a flag.
In summary,

• If you know in advance how many times a loop is repeated, use a for loop.
• If the loop must be executed at least once, use a do loop.
• Otherwise, use a while loop.
In our example, we read 12 temperature values. Therefore, we choose a for loop.

Step 4 Set up variables for entering the loop for the first time.

List all variables that are used and updated in the loop, and determine how to initialize them.
Commonly, counters are initialized with 0 or 1, totals with 0.

6.3 Common Loop Algorithms 217

In our example, the variables are

current month

highest value

highest month

We need to be careful how we set up the highest temperature value. We can’t simply set it to
0. After all, our program needs to work with temperature values from Antarctica, all of
which may be negative.

A good option is to set the highest temperature value to the first input value. Of course,
then we need to remember to only read in another 11 values, with the current month starting
at 2.

We also need to initialize the highest month with 1. After all, in an Australian city, we
may never find a month that is warmer than January.

Step 5 Process the result after the loop has finished.

In many cases, the desired result is simply a variable that was updated in the loop body. For
example, in our temperature program, the result is the highest month. Sometimes, the loop
computes values that contribute to the final result. For example, suppose you are asked to
average the temperatures. Then the loop should compute the sum, not the average. After the
loop has completed, you are ready compute the average: divide the sum by the number of
inputs.

Here is our complete loop.

Read first value; store as highest value.

highest month = 1

for (current month = 2; current month <= 12; current month++)

Read next value.

If value is higher than the highest value, set highest value to that value,

highest month to current month.

Step 6 Trace the loop with typical examples.

Hand trace your loop code, as described in Productivity Hint 6.1 on page 198. Choose
example values that are not too complex—executing the loop 3–5 times is enough to check
for the most common errors. Pay special attention when entering the loop for the first and
last time.

Sometimes, you want to make a slight modification to make tracing feasible. For example,
when hand tracing the investment doubling problem, use an interest rate of 20 percent rather
than 5 percent. When hand tracing the temperature loop, use 4 data values, not 12.

Let’s say the data are 22.6 36.6 44.5 24.2. Here is the walkthrough:

The trace demonstrates that highest month and highest value are properly set.

current month current value highest month highest value

 1 22.6

 2 36.6 2 36.6

 3 44.5 3 44.5

 4 24.2

218 Chapter 6 Iteration

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Step 7 Implement the loop in Java.

Here’s the loop for our example. Exercise P6.1 asks you to complete the program.

double highestValue = in.nextDouble();
int highestMonth = 1;
for (int currentMonth = 2; currentMonth <= 12; currentMonth++)
{
 double nextValue = in.nextDouble();
 if (nextValue > highestValue)
 {
 highestValue = nextValue;
 highestMonth = currentMonth;
 }
}

Credit Card Processing

This Worked Example uses a loop to remove spaces from a credit
card number.

The “Loop and a Half” Problem

Special Topic 6.3 discusses two alternate strategies for implementing a loop whose termina-
tion condition is determined halfway into the loop body.

The break and continue Statements

Special Topic 6.4 discusses the optional break and continue statements. Neither statement is
necessary for implementing loops, but they can occasionally make a complex loop more
concise.

Sometimes, the body of a loop is again a loop. We say that the inner loop is nested
inside an outer loop. This happens often when you process two-dimensional struc-
tures, such as tables.

Let’s look at an example that looks a bit more interesting than a table of numbers.

Worked
Example 6.1

Special Topic 6.3

Special Topic 6.4

6.4 Nested Loops

6.4 Nested Loops 219

We want to generate the following triangular shape:

[]
[][]
[][][]
[][][][]
[][][][][]
[][][][][][]
[][][][][][][]

The basic idea is simple. We generate a sequence of rows:
for (int i = 1; i <= width; i++)
{
 // Make triangle row
 . . .
}

How do you make a triangle row? Use another loop to concatenate the squares []
for that row. Then add a newline character at the end of the row. The ith row has i
symbols, so the loop counter goes from 1 to i.

for (int j = 1; j <= i; j++)
 r = r + "[]";
r = r + "\n";

Putting both loops together yields two nested loops:
String r = "";
for (int i = 1; i <= width; i++)
{
 // Make triangle row
 for (int j = 1; j <= i; j++)
 r = r + "[]";
 r = r + "\n";
}
return r;

For the full text of the program, see ch06/triangle1/ in your source code, or view it
in WileyPLUS.

When the body of a
loop contains
another loop, the
loops are nested.
A typical use of
nested loops is
printing a table with
rows and columns.

Table 3 Nested Loop Examples

Nested Loops Output Explanation

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 4; j++) { Print "*" }
 System.out.println();
}

Prints 3 rows of 4
asterisks each.

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= 3; j++) { Print "*" }
 System.out.println();
}

Prints 4 rows of 3
asterisks each.

220 Chapter 6 Iteration

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

9. How would you modify the nested loops so that you print a square instead of a
triangle?

10. What is the value of n after the following nested loops?
int n = 0;
for (int i = 1; i <= 5; i++)
 for (int j = 0; j < i; j++)
 n = n + j;

Manipulating the Pixels in an Image

This Worked Example shows how to use nested loops
for manipulating the pixels in an image. The outer loop
traverses the rows of the image, and the inner loop
accesses each pixel of a row.

Table 3 Nested Loop Examples, continued

Nested Loops Output Explanation

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= i; j++) { Print "*" }
 System.out.println();
}

*
**

Prints 4 rows of
lengths 1, 2, 3, and 4.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if (j % 2 == 0) { Print "*" }
 else { Print "-" }
 }
 System.out.println();
}

-*-*-
-*-*-
-*-*-

Prints asterisks in
even columns,
dashes in odd
columns.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if ((i + j) % 2 == 0) { Print "*" }
 else { Print " " }
 }
 System.out.println();
}

* * *
 * *
* * *

Prints a
checkerboard
pattern.

S E L F C H E C K

Worked
Example 6.2

6.5 Application: Random Numbers and Simulations 221

A simulation program uses the computer to simulate an activity in the real world (or
an imaginary one). Simulations are commonly used for predicting climate change,
analyzing traffic, picking stocks, and many other applications in science and busi-
ness. In many simulations, one or more loops are used to modify the state of a sys-
tem and observe the changes.

Here is a typical problem that can be decided by running a simulation: the
Buffon needle experiment, devised by Comte Georges-Louis Leclerc de Buffon
(1707–1788), a French naturalist. On each try, a one-inch long needle is dropped
onto paper that is ruled with lines 2 inches apart. If the needle drops onto a line,
count it as a hit. (See Figure 5.) Buffon conjectured that the quotient tries/hits
approximates π.

Now, how can you run this experiment in the computer? You don’t actually
want to build a robot that drops needles on paper. The Random class of the Java
library implements a random number generator, which produces numbers that
appear to be completely random. To generate random numbers, you construct an
object of the Random class, and then apply one of the following methods:

For example, you can simulate the cast of a die as follows:
Random generator = new Random();
int d = 1 + generator.nextInt(6);

The call generator.nextInt(6) gives you a random number between 0 and 5 (inclu-
sive). Add 1 to obtain a number between 1 and 6.

If you call nextInt ten times, you get a random sequence of numbers similar to the
following:

6 5 6 3 2 6 3 4 4 1

Actually, the numbers are not completely random. They are drawn from very long
sequences of numbers that don’t repeat for a long time. These sequences are

6.5 Application: Random Numbers
and Simulations

In a simulation, you
repeatedly generate
random numbers and
use them to simulate
an activity.

Method Returns

nextInt(n) A random integer between the integers 0 (inclusive) and n (exclusive)

nextDouble() A random floating-point number between 0 (inclusive) and 1 (exclusive)

Figure 5 The Buffon Needle Experiment

222 Chapter 6 Iteration

computed from fairly simple formulas; they just behave like random numbers. For
that reason, they are often called pseudorandom numbers. Generating good
sequences of numbers that behave like truly random sequences is an important and
well-studied problem in computer science. We won’t investigate this issue further,
though; we’ll just use the random numbers produced by the Random class.

To run the Buffon needle experiment, we have to work a little harder. When you
throw a die, it has to come up with one of six faces. When throwing a needle, how-
ever, there are many possible outcomes. You must generate two random numbers:
one to describe the starting position and one to describe the angle of the needle with
the x-axis. Then you need to test whether the needle touches a grid line. Stop after
10,000 tries.

Let us agree to generate the lower point of the needle. Its x-coordinate is irrele-
vant, and you may assume its y-coordinate ylow to be any random number between
0 and 2. However, because it can be a random floating-point number, we use the
nextDouble method of the Random class. It returns a random floating-point number
between 0 and 1. Multiply by 2 to get a random number between 0 and 2.

The angle α between the needle and the x-axis can be any value between 0
degrees and 180 degrees. The upper end of the needle has y-coordinate

The needle is a hit if yhigh is at least 2. See Figure 6.

For the program that carries out the simulation of the needle experiment, see ch06/
random2/ in your source code, or view it in WileyPLUS.

The point of this program is not to compute π—there are far more efficient ways to
do that. Rather, the point is to show how a physical experiment can be simulated on
the computer. Buffon had to physically drop the needle thousands of times and
record the results, which must have been a rather dull activity. The computer can
execute the experiment quickly and accurately.

Simulations are very common computer applications. Many simulations use
essentially the same pattern as the code of this example: In a loop, a large number of
sample values are generated, and the values of certain observations are recorded for
each sample. When the simulation is completed, the averages, or other statistics of
interest from the observed values are printed out.

Figure 6 When Does the Needle Fall on a Line?

2

0

yhighyy

ylowyy α

y yhigh low= + sin()α

Testing Track 6.6 Using a Debugger 223

A typical example of a simulation is the modeling of customer queues at a bank
or a supermarket. Rather than observing real customers, one simulates their arrival
and their transactions at the teller window or checkout stand in the computer. One
can try different staffing or building layout patterns in the computer simply by
making changes in the program. In the real world, making many such changes and
measuring their effects would be impossible, or at least, very expensive.

11. How do you use a random number generator to simulate the toss of a coin?
12. Why is the NeedleSimulator program not an efficient method for computing π?

Loop Invariants

Special Topic 6.5 shows how you can use the technique of loop invariants to prove that a
loop will always compute the correct result.

As you have undoubtedly realized by now, computer programs rarely run perfectly
the first time. At times, it can be quite frustrating to find the bugs. Of course, you
can insert print commands, run the program, and try to analyze the printout. If the
printout does not clearly point to the problem, you may need to add and remove
print commands and run the program again. That can be a time-consuming process.

Modern development environments contain special programs, called debuggers,
that help you locate bugs by letting you follow the execution of a program. You can
stop and restart your program and see the contents of variables whenever your pro-
gram is temporarily stopped. At each stop, you have the choice of what variables to
inspect and how many program steps to run until the next stop.

Some people feel that debuggers are just a tool to make programmers lazy.
Admittedly some people write sloppy programs and then fix them up with a
debugger, but the majority of programmers make an honest effort to write the best
program they can before trying to run it through a debugger. These programmers
realize that a debugger, while more convenient than print commands, is not cost-
free. It does take time to set up and carry out an effective debugging session.

In actual practice, you cannot avoid using a debugger. The larger your programs
get, the harder it is to debug them simply by inserting print commands. You will
find that the time investment to learn about a debugger is amply repaid in your pro-
gramming career.

Like compilers, debuggers vary widely from one system to another. On some
systems they are quite primitive and require you to memorize a small set of arcane
commands; on others they have an intuitive window interface. The screen shots in
this chapter show the debugger in the Eclipse development environment, down-
loadable for free from the Eclipse Foundation web site (eclipse.org). Other inte-
grated environments, such as BlueJ, also include debuggers. A free standalone
debugger called JSwat is available from www.bluemarsh.com/java/jswat.

S E L F C H E C K

Special Topic 6.5

6.6 Using a Debugger

A debugger is a
program that you
can use to execute
another program
and analyze its
run-time behavior.

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

224 Chapter 6 Iteration Testing Track

You will have to find out how to prepare a program for debugging and how to
start a debugger on your system. If you use an integrated development environ-
ment, which contains an editor, compiler, and debugger, this step is usually very
easy. You just build the program in the usual way and pick a menu command to
start debugging. On some systems, you must manually build a debug version of
your program and invoke the debugger.

Once you have started the debugger, you can go a long way with just three
debugging commands: “set breakpoint”, “single step”, and “inspect variable”. The
names and keystrokes or mouse clicks for these commands differ widely between
debuggers, but all debuggers support these basic commands. You can find out how,
either from the documentation or a lab manual, or by asking someone who has used
the debugger before.

When you start the debugger, it runs at full speed until it reaches a breakpoint.
Then execution stops, and the breakpoint that causes the stop is displayed (see
Figure 7). You can now inspect variables and step through the program a line at a
time, or continue running the program at full speed until it reaches the next break-
point. When the program terminates, the debugger stops as well.

Breakpoints stay active until you remove them, so you should periodically clear
the breakpoints that you no longer need.

Figure 7 Stopping at a Breakpoint

You can make
effective use of a
debugger by
mastering just three
concepts:
breakpoints, single-
stepping, and
inspecting variables.

When a debugger
executes a program,
the execution is
suspended when-
ever a breakpoint
is reached.

Testing Track 6.6 Using a Debugger 225

Once the program has stopped, you can look at the current values of variables.
Again, the method for selecting the variables differs among debuggers. Some
debuggers always show you a window with the current local variables. On other
debuggers you issue a command such as “inspect variable” and type in or click on
the variable. The debugger then displays the contents of the variable. If all variables
contain what you expected, you can run the program until the next point where you
want to stop.

When inspecting objects, you often need to give a command to “open up” the
object, for example by clicking on a tree node. Once the object is opened up, you
see its instance variables (see Figure 8).

Running to a breakpoint gets you there speedily, but you don’t know how the
program got there. You can also step through the program a line at a time. Then you
know how the program flows, but it can take a long time to step through it. The
single-step command executes the current line and stops at the next program line.
Most debuggers have two single-step commands, one called step into, which steps
inside method calls, and one called step over, which skips over method calls.

For example, suppose the current line is
String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

When you step over method calls, you get to the next line:
String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

However, if you step into method calls, you enter the first line of the countSyllables
method.

public int countSyllables()
{

int count = 0;
 int end = text.length() - 1;
 . . .
}

Figure 8
Inspecting Variables

The single-step
command executes
the program one line
at a time.

226 Chapter 6 Iteration Testing Track

You should step into a method to check whether it carries out its job correctly. You
should step over a method if you know it works correctly.

Finally, when the program has finished running, the debug session is also fin-
ished. To run the program again, you may be able to reset the debugger, or you may
need to exit the debugging program and start over. Details depend on the particular
debugger.

A debugger can be an effective tool for finding and removing bugs in your pro-
gram. However, it is no substitute for good design and careful programming. If the
debugger does not find any errors, it does not mean that your program is bug-free.
Testing and debugging can only show the presence of bugs, not their absence.

13. In the debugger, you are reaching a call to System.out.println. Should you step
into the method or step over it?

14. In the debugger, you are reaching the beginning of a method with a couple of
loops inside. You want to find out the return value that is computed at the end
of the method. Should you set a breakpoint, or should you step through the
method?

HOW TO 6.2 Debugging

Now you know about the mechanics of debugging, but all that knowledge may still leave
you helpless when you fire up a debugger to look at a sick program. There are a number of
strategies that you can use to recognize bugs and their causes.

Step 1 Reproduce the error.

As you test your program, you notice that it sometimes does something wrong. It gives the
wrong output, it seems to print something completely random, it goes in an infinite loop, or
it crashes. Find out exactly how to reproduce that behavior. What numbers did you enter?
Where did you click with the mouse?

Run the program again; type in exactly the same numbers, and click with the mouse on
the same spots (or as close as you can get). Does the program exhibit the same behavior? If
so, then it makes sense to fire up a debugger to study this particular problem. Debuggers are
good for analyzing particular failures. They aren’t terribly useful for studying a program in
general.

Step 2 Simplify the error.

Before you fire up a debugger, it makes sense to spend a few minutes trying to come up with
a simpler input that also produces an error. Can you use shorter words or simpler numbers
and still have the program misbehave? If so, use those values during your debugging session.

Step 3 Divide and conquer.

Now that you have a particular failure, you want to get as close to the failure as possible. The
key point of debugging is to locate the code that produces the failure. Just as with real insect
pests, finding the bug can be hard, but once you find it, squashing it is usually the easy part.
Suppose your program dies with a division by 0. Because there are many division operations
in a typical program, it is often not feasible to set breakpoints to all of them. Instead, use a
technique of divide and conquer. Step over the methods in main, but don’t step inside them.
Eventually, the failure will happen again. Now you know which method contains the bug: It
is the last method that was called from main before the program died. Restart the debugger
and go back to that line in main, then step inside that method. Repeat the process.

A debugger can be
used only to analyze
the presence of bugs,
not to show that a
program is bug-free.

S E L F C H E C K

Use the divide-and-
conquer technique to
locate the point of
failure of a program.

Testing Track 6.6 Using a Debugger 227

Eventually, you will have pinpointed the line that contains the bad division. Maybe it is
completely obvious from the code why the denominator is not correct. If not, you need to
find the location where it is computed. Unfortunately, you can’t go back in the debugger.
You need to restart the program and move to the point where the denominator computation
happens.

Step 4 Know what your program should do.

A debugger shows you what the program does. You must know what the program should
do, or you will not be able to find bugs. Before you trace through a loop, ask yourself how
many iterations you expect the program to make. Before you inspect a variable, ask yourself
what you expect to see. If you have no clue, set aside some time and think first. Have a
calculator handy to make independent computations. When you know what the value
should be, inspect the variable. This is the moment of truth. If the program is still on the
right track, then that value is what you expected, and you must look further for the bug. If
the value is different, you may be on to something. Double-check your computation. If you
are sure your value is correct, find out why your program comes up with a different value.

In many cases, program bugs are the result of simple errors such as loop termination con-
ditions that are off by one. Quite often, however, programs make computational errors.
Maybe they are supposed to add two numbers, but by accident the code was written to sub-
tract them. Unlike your calculus instructor, programs don’t make a special effort to ensure
that everything is a simple integer (and neither do real-world problems). You will need to
make some calculations with large integers or nasty floating-point numbers. Sometimes
these calculations can be avoided if you just ask yourself, “Should this quantity be positive?
Should it be larger than that value?” Then inspect variables to verify those theories.

Step 5 Look at all details.

When you debug a program, you often have a theory about what the problem is. Neverthe-
less, keep an open mind and look around at all details. What strange messages are displayed?
Why does the program take another unexpected action? These details count. When you run
a debugging session, you really are a detective who needs to look at every clue available.

If you notice another failure on the way to the problem that you are about to pin down,
don’t just say, “I’ll come back to it later”. That very failure may be the original cause for
your current problem. It is better to make a note of the current problem, fix what you just
found, and then return to the original mission.

Step 6 Make sure you understand each bug before you fix it.

Once you find that a loop makes too many iterations, it is very tempting to apply a “Band-
Aid” solution and subtract 1 from a variable so that the particular problem doesn’t appear
again. Such a quick fix has an overwhelming probability of creating trouble elsewhere. You
really need to have a thorough understanding of how the program should be written before
you apply a fix.

It does occasionally happen that you find bug after bug and apply fix after fix, and the
problem just moves around. That usually is a symptom of a larger problem with the program
logic. There is little you can do with the debugger. You must rethink the program design and
reorganize it.

A Sample Debugging Session

This Worked Example shows how to find bugs in an
algorithm for counting the syllables of a word.

During debugging,
compare the actual
contents of variables
against the values
you know they
should have.

Worked
Example 6.3

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

228 Chapter 6 Iteration Testing Track

The First Bug

According to legend, the first bug was one found in 1947 in the Mark II, a huge electro-
mechanical computer at Harvard University. It really was caused by a bug—a moth was
trapped in a relay switch. Actually, from the note that the operator left in the log book next
to the moth (see the figure), it appears as if the term “bug” had already been in active use at
the time.

The pioneering computer scientist Maurice Wilkes wrote: “Somehow, at the Moore
School and afterwards, one had always assumed there would be no particular difficulty in
getting programs right. I can remember the exact instant in time at which it dawned on me
that a great part of my future life would be spent finding mistakes in my own programs.”

Explain the flow of execution in a loop.

• A while statement executes a block of code repeatedly. A condition controls for how
long the loop is executed.

• An off-by-one error is a common error when programming loops. Think through
simple test cases to avoid this type of error.

Use for loops to implement counting loops.

• You use a for loop when a variable runs from a starting to an ending value with a
constant increment or decrement.

• Make a choice between symmetric and asymmetric loop bounds.
• Count the number of iterations to check that your for loop is correct.

Implement loops that process a data set until a sentinel value is encountered.

• Sometimes, the termination condition of a loop can only be evaluated in the middle
of a loop. You can introduce a Boolean variable to control such a loop.

Use nested loops to implement multiple levels of iterations.

• When the body of a loop contains another loop, the loops are nested. A typical use
of nested loops is printing a table with rows and columns.

The First Bug

Random Fact 6.1

Summary of Learning Objectives

Review Exercises 229

Apply loops to the implementation of simulations that involve random values.

• In a simulation, you repeatedly generate random numbers and use them to simulate
an activity.

Use a debugger to locate errors in a running program.

• A debugger is a program that you can use to execute another program and analyze
its run-time behavior.

• You can make effective use of a debugger by mastering just three concepts:
breakpoints, single-stepping, and inspecting variables.

• When a debugger executes a program, the execution is suspended when-ever a
breakpoint is reached.

• The single-step command executes the program one line at a time.
• A debugger can be used only to analyze the presence of bugs, not to show that a

program is bug-free.
• Use the divide-and-conquer technique to locate the point of failure of a program.
• During debugging, compare the actual contents of variables against the values you

know they should have.

• Worked Example Credit Card Processing
• Worked Example Manipulating the Pixels in an Image
• Worked Example A Sample Debugging Session
• Lab Exercises

Animation Tracing a Loop
Animation The for Loop
Practice Quiz
Code Completion Exercises

R6.1 Which loop statements does Java support? Give simple rules when to use each loop
type.

R6.2 What does the following code print?
for (int i = 0; i < 10; i++)
{

Classes, Objects, and Methods Introduced in this Chapter
java.util.Random
 nextDouble
 nextInt

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

230 Chapter 6 Iteration

 for (int j = 0; j < 10; j++)
 System.out.print(i * j % 10);
 System.out.println();
}

R6.3 How many iterations do the following loops carry out? Assume that i is an integer
variable that is not changed in the loop body.

a. for (i = 1; i <= 10; i++) . . .

b. for (i = 0; i < 10; i++) . . .
c. for (i = 10; i > 0; i––) . . .

d. for (i = -10; i <= 10; i++) . . .
e. for (i = 10; i >= 0; i++) . . .

f. for (i = -10; i <= 10; i = i + 2) . . .

g. for (i = -10; i <= 10; i = i + 3) . . .

R6.4 Rewrite the following for loop into a while loop.
int s = 0;
for (int i = 1; i <= 10; i++) s = s + i;

R6.5 Rewrite the following do loop into a while loop.
int n = 1;
double x = 0;
double s;
do
{
 s = 1.0 / (n * n);
 x = x + s;
 n++;
}
while (s > 0.01);

R6.6 What is an infinite loop? On your computer, how can you terminate a program that
executes an infinite loop?

R6.7 Give three strategies for implementing the following “loop and a half”:

Loop
 Read name of bridge.
 If not OK, exit loop.
 Read length of bridge in feet.
 If not OK, exit loop.
 Convert length to meters.
 Print bridge data.

Use a Boolean variable, a break statement, and a method with multiple return state-
ments. Which of these three approaches do you find clearest?

R6.8 Implement a loop that prompts a user to enter a number between 1 and 10, giving
three tries to get it right.

R6.9 Sometimes students write programs with instructions such as “Enter data, 0 to
quit” and that exit the data entry loop when the user enters the number 0. Explain
why that is usually a poor idea.

R6.10 How would you use a random number generator to simulate the drawing of a play-
ing card?

Programming Exercises 231

R6.11 What is an “off-by-one error”? Give an example from your own programming
experience.

R6.12 Give an example of a for loop in which symmetric bounds are more natural. Give an
example of a for loop in which asymmetric bounds are more natural.

R6.13 What are nested loops? Give an example where a nested loop is typically used.

R6.14 Explain the differences between these debugger operations:
• Stepping into a method
• Stepping over a method

R6.15 Explain in detail how to inspect the string stored in a String object in your
debugger.

R6.16 Explain in detail how to inspect the information stored in a Rectangle object in your
debugger.

R6.17 Explain in detail how to use your debugger to inspect the balance stored in a Bank–
Account object.

R6.18 Explain the divide-and-conquer strategy to get close to a bug in a debugger.

P6.1 Complete the program in How To 6.1 on page 215. Your program should read
twelve temperature values and print the month with the highest temperature.

P6.2 Credit Card Number Check. The last digit of a credit card number is the check
digit, which protects against transcription errors such as an error in a single digit or
switching two digits. The following method is used to verify actual credit card
numbers but, for simplicity, we will describe it for numbers with 8 digits instead of
16:

• Starting from the rightmost digit, form the sum of every other digit. For
example, if the credit card number is 4358 9795, then you form the sum 5 + 7 +
8 + 3 = 23.

• Double each of the digits that were not included in the preceding step. Add all
digits of the resulting numbers. For example, with the number given above,
doubling the digits, starting with the next-to-last one, yields 18 18 10 8. Add-
ing all digits in these values yields 1 + 8 + 1 + 8 + 1 + 0 + 8 = 27.

• Add the sums of the two preceding steps. If the last digit of the result is 0, the
number is valid. In our case, 23 + 27 = 50, so the number is valid.

Write a program that implements this algorithm. The user should supply an 8-digit
number, and you should print out whether the number is valid or not. If it is not
valid, you should print out the value of the check digit that would make the number
valid.

P6.3 Currency conversion. Write a program CurrencyConverter that asks the user to enter
today’s price of one dollar in euro. Then the program reads U.S. dollar values and
converts each to euro values. Stop when the user enters Q.

T

T

T

T

T

Programming Exercises

232 Chapter 6 Iteration

P6.4 Projectile flight. Suppose a cannonball is propelled vertically into the air with a
starting velocity v0. Any calculus book will tell us that the position of the ball after
t seconds is , where g = 9.81 m/sec2 is the gravitational
force of the earth. No calculus book ever mentions why someone would want to
carry out such an obviously dangerous experiment, so we will do it in the safety of
the computer.
In fact, we will confirm the theorem from calculus by a simulation. In our simula-
tion, we will consider how the ball moves in very short time intervals Δt. In a short
time interval the velocity v is nearly constant, and we can compute the distance the
ball moves as . In our program, we will simply set

double deltaT = 0.01;

and update the position by
s = s + v * deltaT;

The velocity changes constantly—in fact, it is reduced by the gravitational force of
the earth. In a short time interval, v decreases by , and we must keep the
velocity updated as

v = v - g * deltaT;

In the next iteration the new velocity is used to update the distance.
Now run the simulation until the cannonball falls back to the earth. Get the initial
velocity as an input (100 m/sec is a good value). Update the position and velocity
100 times per second, but only print out the position every full second. Also print
out the values from the exact formula for comparison. Use
a class Cannonball.
What is the benefit of this kind of simulation when an exact formula is available?
Well, the formula from the calculus book is not exact. Actually, the gravitational
force diminishes the farther the cannonball is away from the surface of the earth.
This complicates the algebra sufficiently that it is not possible to give an exact for-
mula for the actual motion, but the computer simulation can simply be extended to
apply a variable gravitational force. For cannonballs, the calculus-book formula is
actually good enough, but computers are necessary to compute accurate trajectories
for higher-flying objects such as ballistic missiles.

P6.5 Write a program that prints the powers of ten
1.0
10.0
100.0
1000.0
10000.0
100000.0
1000000.0
1.0E7
1.0E8
1.0E9
1.0E10
1.0E11

Implement a class
public class PowerGenerator
{

s t g t v t() .= − ⋅ ⋅ + ⋅0 5 2
0

Δ Δs v t= ⋅

g t⋅ Δ

s t g t v t() .= − ⋅ ⋅ + ⋅0 5 2
0

Programming Exercises 233

 /**
Constructs a power generator.

 @param aFactor the number that will be multiplied by itself
 */
 public PowerGenerator(double aFactor) { . . . }

 /**
Computes the next power.

 */
 public double nextPower() { . . . }
 . . .
}

Then supply a test class PowerGeneratorRunner that calls System.out.println(
myGenerator.nextPower()) twelve times.

P6.6 The Fibonacci sequence is defined by the following rule. The first two values in the
sequence are 1 and 1. Every subsequent value is the sum of the two values preceding
it. For example, the third value is 1 + 1 = 2, the fourth value is 1 + 2 = 3, and the fifth
is 2 + 3 = 5. If fn denotes the nth value in the Fibonacci sequence, then

Write a program that prompts the user for n and prints the first n values in the
Fibonacci sequence. Use a class FibonacciGenerator with a method nextNumber.
Hint: There is no need to store all values for fn. You only need the last two values to
compute the next one in the series:

fold1 = 1;
fold2 = 1;
fnew = fold1 + fold2;

After that, discard fold2, which is no longer needed, and set fold2 to fold1 and fold1
to fnew.
Your generator class will be tested with this runner program:

public class FibonacciRunner
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

 System.out.println("Enter n:");
 int n = in.nextInt();

 FibonacciGenerator fg = new FibonacciGenerator();

 for (int i = 1; i <= n; i++)
 System.out.println(fg.nextNumber());
 }
}

f

f

f f f nn n n

1

2

1 2

1

1

2

=

=

= + >− − if

234 Chapter 6 Iteration

P6.7 Mean and standard deviation. Write a program that reads a set of floating-point
data values from the input. When the user indicates the end of input, print out the
count of the values, the average, and the standard deviation. The average of a data
set x1, . . . , xn is

where is the sum of the input values. The standard deviation is

However, that formula is not suitable for our task. By the time you have computed
the mean, the individual xi are long gone. Until you know how to save these values,
use the numerically less stable formula

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares in the DataSet class as you process the input values.

P6.8 Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors in increasing order. For example, when the user enters 150,
the program should print

2
3
5
5

Use a class FactorGenerator with a constructor FactorGenerator(int numberToFactor) and
methods nextFactor and hasMoreFactors. Supply a class FactorPrinter whose main
method reads a user input, constructs a FactorGenerator object, and prints the factors.

P6.9 Prime numbers. Write a program that prompts the user for an integer and then
prints out all prime numbers up to that integer. For example, when the user enters
20, the program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1
and itself.
Supply a class PrimeGenerator with a method nextPrime.

P6.10 The Heron method is a method for computing square roots that was known to the
ancient Greeks. If x is a guess for the value , then the average of x and is a
better guess.

x
x

n
i=

∑

x x xi n∑ = + +1 �

s
x x

n
i=

∑ −()
−

2

1

s
x x

n
i n i=

∑ − ∑()
−

2 1 2

1

a a x

Programming Exercises 235

Implement a class RootApproximator that starts with an initial guess of 1 and whose
nextGuess method produces a sequence of increasingly better guesses. Supply a
method hasMoreGuesses that returns false if two successive guesses are sufficiently
close to each other (that is, they differ by no more than a small value ε). Then test
your class like this:

RootApproximator approx = new RootApproximator(a, EPSILON);
while (approx.hasMoreGuesses())
 System.out.println(approx.nextGuess());

P6.11 The best known iterative method for computing the roots of a function f (that is,
the x-values for which f(x) is 0) is Newton–Raphson approximation. To find the
zero of a function whose derivative is also known, compute

.

For this exercise, write a program to compute nth roots of floating-point
numbers. Prompt the user for a and n, then obtain by computing a zero of
the function f(x) = xn − a. Follow the approach of Exercise P6.10.

P6.12 The value of ex can be computed as the power series

where n! = 1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ n.
Write a program that computes ex using this formula. Of course, you can’t compute
an infinite sum. Just keep adding values until an individual summand (term) is less
than a certain threshold. At each step, you need to compute the new term and add it
to the total. Update these terms as follows:

term = term * x / n;

Follow the approach of the preceding two exercises, by implementing a class
ExpApproximator. Its first guess should be 1.

P6.13 Write a program RandomDataAnalyzer that generates 100 random numbers between 0
and 1000 and adds them to a DataSet. Print out the average and the maximum.

P6.14 Program the following simulation: Darts are thrown at random points onto the
square with corners (1,1) and (−1,−1). If the dart lands inside the unit circle (that is,
the circle with center (0,0) and radius 1), it is a hit. Otherwise it is a miss. Run this
simulation and use it to determine an approximate value for π. Extra credit if you
explain why this is a better method for estimating π than the Buffon needle
program.

P6.15 Random walk. Simulate the wandering of an intoxicated person in a square street
grid. Draw a grid of 20 streets horizontally and 20 streets vertically. Represent the
simulated drunkard by a dot, placed in the middle of the grid to start. For 100 times,
have the simulated drunkard randomly pick a direction (east, west, north, south),

x

Midpoint

a x/ a

x x f x f xnew old old old= − () ′ ()

an

e
x
n

x
n

n

=
=

∞

∑ !
0

G

236 Chapter 6 Iteration

move one block in the chosen direction, and draw the dot. (One might expect that
on average the person might not get anywhere because the moves to different direc-
tions cancel one another out in the long run, but in fact it can be shown with proba-
bility 1 that the person eventually moves outside any finite region. Use classes for
the grid and the drunkard.

P6.16 This exercise is a continuation of Exercise P6.4. Most cannonballs are not shot
upright but at an angle. If the starting velocity has magnitude v and the starting
angle is α, then the velocity is a vector with components ,

. In the x-direction the velocity does not change. In the y-direction
the gravitational force takes its toll. Repeat the simulation from the previous exer-
cise, but update the x and y components of the location and the velocity separately.
In every iteration, plot the location of the cannonball on the graphics display as a
tiny circle. Repeat until the cannonball has reached the earth again.
This kind of problem is of historical interest. The first computers were designed to
carry out just such ballistic calculations, taking into account the diminishing gravity
for high-flying projectiles and wind speeds.

P6.17 Write a graphical application that displays a checkerboard with 64 squares, alternat-
ing white and black.

P6.18 Write a graphical application that prompts a user to enter a number n and that draws
n circles with random diameter and random location. The circles should be com-
pletely contained inside the window.

P6.19 Write a graphical application that draws a spiral, such as the following:

P6.20 It is easy and fun to draw graphs of curves with the Java graphics library. Simply
draw 100 line segments joining the points (x, f(x)) and (x + d, f(x + d)), where x
ranges from xmin to xmax and .
Draw the curve , where x ranges from 0 to
400 in this fashion.

P6.21 Draw a picture of the “four-leaved rose” whose equation in polar coordinates is
. Let θ go from 0 to 2π in 100 steps. Each time, compute r and then com-

pute the (x,y) coordinates from the polar coordinates by using the formula

G

v vx = ⋅ cos()α
v vy = ⋅ sin()α

G

G

G

G

d x x= −()max min 100
f x x x x() . .= − + +0 00005 0 03 4 2003 2

G
r = cos()2θ

x r y r= ⋅ = ⋅cos() sin()θ θ,

Programming Projects 237

Project 6.1 Flesch Readability Index. The following index was invented by Rudolf Flesch as a
tool to gauge the legibility of a document without linguistic analysis.

• Count all words in the file. A word is any sequence of characters delimited by
white space, whether or not it is an actual English word.

• Count all syllables in each word. To make this simple, use the following rules:
Each group of adjacent vowels (a, e, i, o, u, y) counts as one syllable (for exam-
ple, the “ea” in “real” contributes one syllable, but the “e . . . a” in “regal”
count as two syllables). However, an “e” at the end of a word doesn’t count as
a syllable. Also, each word has at least one syllable, even if the previous rules
give a count of 0.

• Count all sentences. A sentence is ended by a period, colon, semicolon, ques-
tion mark, or exclamation mark.

• The index is computed by

rounded to the nearest integer.
The purpose of the index is to force authors to rewrite their text until the index is
high enough. This is achieved by reducing the length of sentences and by removing
long words. For example, the sentence

The following index was invented by Flesch as a simple tool to estimate the legibility
of a document without linguistic analysis.

can be rewritten as

Flesch invented an index to check whether a text is easy to read. To compute the
index, you need not look at the meaning of the words.

This index is a number, usually between 0 and 100, indicating how difficult the text
is to read. Some example indices for random material from various publications are:

Programming Projects

Index

Number of syllables Numbe

=
− ×

206 835

84 6

.

. rr of words

Number of words Number o

()
− ×1 015. ff sentences()

Comics 95

Consumer ads 82

Sports Illustrated 65

Time 57

New York Times 39

Auto insurance policy 10

Internal Revenue Code −6

238 Chapter 6 Iteration

Translated into educational levels, the indices are:

Your program should read a text file in, compute the legibility index, and print out
the equivalent educational level. Use classes Word and Document.

Project 6.2 The game of Nim. This is a well-known game with a number of variants. We will
consider the following variant, which has an interesting winning strategy. Two play-
ers alternately take marbles from a pile. In each move, a player chooses how many
marbles to take. The player must take at least one but at most half of the marbles.
Then the other player takes a turn. The player who takes the last marble loses.
Write a program in which the computer plays against a human opponent. Generate
a random integer between 10 and 100 to denote the initial size of the pile. Generate
a random integer between 0 and 1 to decide whether the computer or the human
takes the first turn. Generate a random integer between 0 and 1 to decide whether
the computer plays smart or stupid. In stupid mode, the computer simply takes a
random legal value (between 1 and n/2) from the pile whenever it has a turn. In
smart mode the computer takes off enough marbles to make the size of the pile a
power of 2 minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal move, except if
the size of the pile is currently one less than a power of 2. In that case, the computer
makes a random legal move.
Note that the computer cannot be beaten in smart mode when it has the first move,
unless the pile size happens to be 15, 31, or 63. Of course, a human player who has
the first turn and knows the winning strategy can win against the computer.
When you implement this program, be sure to use classes Pile, Player, and Game. A
player can be either stupid, smart, or human. (Human Player objects prompt for
input.)

91−100 5th grader

81−90 6th grader

71−80 7th grader

66−70 8th grader

61−65 9th grader

51−60 High school student

31−50 College student

0−30 College graduate

Less than 0 Law school graduate

Answers to Self-Check Questions 239

1. Never.
2. The waitForBalance method would never return due to an infinite loop.
3. int i = 1;

while (i <= numberOfYears)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
 i++;
}

4. 11 times.
5. double total = 0;

while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (value > 0) total = total + input;
}

6. The initial call to in.nextDouble() fails, terminating the program. One solution is to
do all input in the loop and introduce a Boolean variable that checks whether the
loop is entered for the first time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();

if (first) { first = false; }
 else if (input == previous) { System.out.println("Duplicate input"); }
}

7. Because we don’t know whether the next input is a number or the letter Q.
8. No. If all input values are negative, the maximum is also negative. However, the

maximum variable is initialized with 0. With this simplification, the maximum would
be falsely computed as 0.

9. Change the inner loop to for (int j = 1; j <= width; j++).
10. 20.
11. int n = generator.nextInt(2); // 0 = heads, 1 = tails
12. The program repeatedly calls Math.toRadians(angle). You could simply call Math.toRa-

dians(180) to compute π.
13. You should step over it because you are not interested in debugging the internals of

the println method.
14. You should set a breakpoint. Stepping through loops can be tedious.

Answers to Self-Check Questions

This page intentionally left blank

241

Chapter7
Arrays and
Array Lists

CHAPTER GOALS
• To become familiar with using arrays and array lists

• To learn about wrapper classes, auto-boxing, and the
enhanced for loop

• To study common array algorithms

• To learn how to use two-dimensional arrays

• To understand when to choose array lists and arrays in
your programs

• To implement partially filled arrays

T To understand the concept of regression testing

In order to process large quantities of data, you need to have a

mechanism for collecting values. In Java, arrays and array lists serve this purpose. In this chapter,

you will learn how to construct arrays and array lists, fill them with values, and access the stored

values. We introduce the enhanced for loop, a convenient statement for processing all elements of a

collection. You will see how to use the enhanced for loop, as well as ordinary loops, to implement

common array algorithms. The chapter concludes with a discussion of two-dimensional arrays,

which are useful for handling rows and columns of data.

242

CHAPTER CONTENTS

In many programs, you need to manipulate collections of related values. It would
be impractical to use a sequence of variables such as value1, value2, value3, . . . , and
so on. The array construct provides a better way of storing a collection of values.

An array is a sequence of values of the same type. The values that are stored in an
array are called its “elements”. For example, here is how you construct an array of
10 floating-point numbers:

new double[10]

The number of elements (here, 10) is called the length of the array.
The new operator merely constructs the array. You will want to store a reference

to the array in a variable so that you can access it later.
The type of an array variable is the element type, followed by []. In this example,

the type is double[], because the element type is double. Here is the declaration of an
array variable:

double[] values = new double[10];

That is, values is a reference to an array of floating-point numbers. It is initialized
with an array of 10 numbers (see Figure 1).

You can also form arrays of objects, for example
BankAccount[] accounts = new BankAccount[10];

When an array is first created, all elements are initialized with 0 (for an array of
numbers such as int[] or double[]), false (for a boolean[] array), or null (for an array
of object references).

7.1 Arrays

An array is a
sequence of values
of the same type.

7.1 Arrays 242
SYNTAX 7.1: Arrays 245
COMMON ERROR 7.1: Bounds Errors 245
COMMON ERROR 7.2: Uninitialized and

Unfilled Arrays 246
QUALITY TIP 7.1: Use Arrays for Sequences of

Related Values 246
QUALITY TIP 7.2: Make Parallel Arrays into Arrays

of Objects 246
SPECIAL TOPIC 7.1: Methods with a Variable

Number of Parameters

RANDOM FACT 7.1: An Early Internet Worm

7.2 Array Lists 248
SYNTAX 7.2: Array Lists 250
COMMON ERROR 7.3: Length and Size 253
SPECIAL TOPIC 7.2: ArrayList Syntax Enhancements

in Java 7 253

7.3 Wrappers and Auto-boxing 254

7.4 The Enhanced for Loop 255
SYNTAX 7.3: The “for each” Loop 256

7.5 Partially Filled Arrays 257
COMMON ERROR 7.4: Underestimating the Size of a

Data Set 259

7.6 Common Array Algorithms 259
PRODUCTIVITY HINT 7.1: Easy Printing of Arrays and

Array Lists 268
HOW TO 7.1: Working with Arrays and Array Lists 269
WORKED EXAMPLE 7.1: Rolling the Dice

7.7T Regression Testing 271
PRODUCTIVITY HINT 7.2: Batch Files and

Shell Scripts

RANDOM FACT 7.2: The Therac-25 Incidents

7.8 Two-Dimensional Arrays 274
WORKED EXAMPLE 7.2: A World Population Table

SPECIAL TOPIC 7.3: Two-Dimensional Arrays with

Variable Row Lengths

SPECIAL TOPIC 7.4: Multidimensional Arrays

7.1 Arrays 243

Alternatively, you can initialize an array with other values. List all elements that
you want to include in the array, enclosed in braces and separated by commas:

int[] primes = { 2, 3, 5, 7, 11 };

The Java compiler counts how many elements you want to place in the array, allo-
cates an array of the correct size, and fills it with the elements that you specify.

Each element in the array is specified by an integer index that is placed inside
square brackets ([]). For example, the expression

values[4]

denotes the element of the values array with index 4.
You can store a value at a location with an assignment statement, such as the

following.
values[2] = 29.95;

Now the position with index 2 of values is filled with 29.95 (see Figure 2).
To read the element at index 2, simply use the expression values[2] as you would

any variable of type double:
System.out.println("The element at index 2 is " + values[2]);

If you look closely at Figure 2, you will notice that the index values start at 0. That is,

values[0] is the first element
values[1] is the second element
values[2] is the third element

Figure 1
An Array Reference
and an Array

Figure 2
Modifying an
Array Element

double[]values =

0
0

0
0

0
0
0
0
0
0

You access an array
element with an
integer index, using
the [] operator.

double[]values =

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

29.95
0

0
0

0
0
0
0
0
0

244 Chapter 7 Arrays and Array Lists

and so on. This convention can be a source of grief for the newcomer, so you should
pay close attention to the index values. In particular, the last element in the array has
an index one less than the array length. For example, values refers to an array with
length 10. The last element is values[9].

If you try to access an element that does not exist, then an “array index out of
bounds” exception occurs. For example, the statement

values[10] = 29.95; // ERROR

is a bounds error.
To avoid bounds errors, you will want to know how many elements are in an

array. The expression
values.length

is the length of the values array. Note that there are no parentheses following
length—it is an instance variable of the array object, not a method. However, you
cannot modify this instance variable. In other words, length is a final public
instance variable. This is quite an anomaly. Normally, Java programmers use a
method to inquire about the properties of an object. You just have to remember to
omit the parentheses in this case.

The following code ensures that you only access the array when the index vari-
able i is within the legal bounds:

if (0 <= i && i < values.length) values[i] = value;

Arrays suffer from a significant limitation: their length is fixed. If you start out with
an array of 10 elements and later decide that you need to add additional elements,
then you need to make a new array and copy all elements of the existing array into
the new array. We will discuss this process in detail in Section 7.6.

Index values of an
array range from 0 to
length - 1.

Accessing a
nonexistent element
results in a
bounds error.

The expression
array.length yields
the number of
elements in an array.

Table 1 Declaring Arrays

int[] numbers = new int[10]; An array of ten integers. All elements
are initialized with zero.

final int NUMBERS_LENGTH = 10;
int[] numbers = new int[NUMBERS_LENGTH];

It is a good idea to use a named constant
instead of a “magic number”.

int valuesLength = in.nextInt();
double[] values = new double[valuesLength];

The length need not be a constant.

int[] squares = { 0, 1, 4, 9, 16 }; An array of five integers, with initial
values.

String[] names = new String[3]; An array of three string references, all
initially null.

String[] friends = { "Emily", "Bob", "Cindy" }; Another array of three strings.

double[] values = new int[10] Error: You cannot initialize a double[]
variable with an array of type int[].

7.1 Arrays 245

1. What elements does the values array contain after the following statements?
double[] values = new double[10];
for (int i = 0; i < values.length; i++) values[i] = i * i;

2. What do the following program segments print? Or, if there is an error, describe
the error and specify whether it is detected at compile-time or at run-time.
a. double[] a = new double[10];

System.out.println(a[0]);

b. double[] b = new double[10];
System.out.println(b[10]);

c. double[] c;
System.out.println(c[0]);

Bounds Errors

A very common array error is attempting to access a nonexistent position.

double[] data = new double[10];
data[10] = 29.95; // Error—only have elements with index values 0 . . . 9

When the program runs, an out-of-bounds index generates an exception and terminates the
program.

This is a great improvement over languages such as C and C++. With those languages
there is no error message; instead, the program will quietly (or not so quietly) corrupt the
memory location that is 10 elements away from the start of the array. Sometimes that corrup-
tion goes unnoticed, but at other times, the program will act flaky or die a horrible death
many instructions later. These are serious problems that make C and C++ programs difficult
to debug. Bounds errors in C and C++ programs are a major cause of security vulnerabili-
ties—see Random Fact 7.1 on page 248.

Syntax 7.1 Arrays

To construct an array: new typeName[length]

To access an element: arrayReference[index]

Syntax

Example

double[] values = new double[10];

 double[] moreValues = { 32, 54, 67.5, 29, 35 };

Type of array variable

Initialized with these elements

Name of array variable

Use brackets to access an element.

values[i] = 29.95;

The index must be ≥ 0 and < the length of the array.

 See page 245.

Length

Element
type

Initialized with zero

S E L F C H E C K

Common Error 7.1

246 Chapter 7 Arrays and Array Lists

Uninitialized and Unfilled Arrays

A common error is to allocate an array reference, but not an actual array.

double[] values;
values[0] = 29.95; // Error—values not initialized

Array variables work exactly like object variables—they are only references to the actual
array. To construct the actual array, you must use the new operator:

double[] values = new double[10];

Another common error is to allocate an array of objects and expect it to be filled with objects.

BankAccount[] accounts = new BankAccount[10]; // Contains ten null references

This array contains null references, not default bank accounts. You need to remember to fill
the array, for example:

for (int i = 0; i < 10; i++)
{
 accounts[i] = new BankAccount();
}

Use Arrays for Sequences of Related Values

Arrays are intended for storing sequences of values with the same meaning. For example, an
array of test scores makes perfect sense:

int[] scores = new int[NUMBER_OF_SCORES];

But it is a bad design to use an array
double[] personalData = new double[3];

that holds a person’s age, bank balance, and shoe size as personalData[0], personalData[1], and
personalData[2]. It would be tedious for the programmer to remember which of these data
items is stored in which array location. In this situation, it is far better to use three variables

int age;
double bankBalance;
double shoeSize;

Make Parallel Arrays into Arrays of Objects

Programmers who are familiar with arrays, but unfamiliar with object-oriented program-
ming, sometimes distribute information across separate arrays. Here is a typical example. A
program needs to manage bank data, consisting of account numbers and balances. Don’t
store the account numbers and balances in separate arrays.

// Don’t do this
int[] accountNumbers;
double[] balances;

Arrays such as these are called parallel arrays (see Figure 3). The ith slice (accountNumbers[i]
and balances[i]) contains data that need to be processed together.

Common Error 7.2

Quality Tip 7.1

Quality Tip 7.2

7.1 Arrays 247

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

If you find yourself using two arrays that have the same length, ask yourself whether you
couldn’t replace them with a single array of a class type. Look at a slice and find the concept
that it represents. Then make the concept into a class. In our example each slice contains an
account number and a balance, describing a bank account. Therefore, it is an easy matter to
use a single array of objects

BankAccount[] accounts;

(See Figure 4.)
Why is this beneficial? Think ahead. Maybe your program will change and you will need

to store the owner of the bank account as well. It is a simple matter to update the BankAccount
class. It may well be quite complicated to add a new array and make sure that all methods
that accessed the original two arrays now also correctly access the third one.

Methods with a Variable Number of Parameters

Special Topic 7.1 shows how to implement a method that takes a variable number of parame-
ters, and how to retrieve the parameter values from an array.

Figure 3 Avoid Parallel Arrays

Figure 4 Reorganizing Parallel Arrays into an Array of Objects

int[]accountNumbers = double[]balances =

Avoid parallel
arrays by changing
them into arrays
of objects.

BankAccount[]accounts =

accountNumber =

balance =

BankAccount

Special Topic 7.1

248 Chapter 7 Arrays and Array Lists

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

An Early Internet Worm

Random Fact 7.1 tells the story of the first serious Internet virus, launched by a graduate stu-
dent at Cornell University. The virus exploited an array overrun vulnerability that is present
in the C programming language but not in Java.

The array construct is rather primitive. In this section, we introduce the ArrayList
class. It lets you collect objects, just like an array does, but array lists offer two sig-
nificant benefits:

• Array lists can grow and shrink as needed.
• The ArrayList class supplies methods for many common tasks, such as inserting

and removing elements.

You declare an array list of strings as follows:
ArrayList<String> names = new ArrayList<String>();

The type ArrayList<String> denotes an array list of strings. The angle brackets
around the String type tell you that String is a type parameter. You can replace
String with any other class and get a different array list type. For that reason,
ArrayList is called a generic class. You will learn more about generic classes in
Chapter 17. For now, simply use an ArrayList<T> whenever you want to collect
objects of type T. However, keep in mind that you cannot use primitive types as
type parameters—there is no ArrayList<int> or ArrayList<double>. You will see in Sec-
tion 7.4 how to overcome that limitation.

When you construct an ArrayList object, it has size 0. You use the add method to
add an object to the end of the array list. The size increases after each call to add (see
Figure 5). The size method yields the current size of the array list.

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

To obtain the value of an array list element, use the get method, not the [] operator.
As with arrays, index values start at 0. For example, names.get(2) retrieves the ele-
ment with index 2, the third element in the array list:

String name = names.get(2);

As with arrays, it is an error to access a nonexistent element. A very common
bounds error is to use the following:

int i = names.size();
name = names.get(i); // Error

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method.
names.set(2, “Carolyn”);

Random Fact 7.1

7.2 Array Lists
The ArrayList class
manages a sequence
of objects whose
size can change.

The ArrayList class
is a generic class:
ArrayList<TypeName>
collects objects of
the given type.

7.2 Array Lists 249

This call sets position 2 of the names array list to “Carolyn”, overwriting whatever
value was there before.

The set method can only overwrite existing values. It is different from the add
method, which adds a new object to the end of the array list.

You can also insert an object in the middle of an array list. The call names.add(1,
“Ann”) moves all elements with index 1 or larger by one position and adds the string
“Ann” at index 1 (see Figure 6). After each call to the add method, the size of the array
list increases by 1.

Conversely, the remove method removes the element at a given index, moves all
elements after the removed element to the next lower index, and reduces the size of
the array list by 1. Part 3 of Figure 6 illustrates the call names.remove(1).

Figure 5 Adding an Element with add

1 Before add 2 After add

2

ArrayList<String>names =

"Bob"
"Emily"

3

Size increased

New element
added at end

ArrayList<String>names =

"Cindy"
"Bob"

"Emily"

Figure 6 Adding and Removing Elements in the Middle of an Array List

1 Before add

ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")

ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element
added at index 1

Moved from index 2 to 3

3 After names.remove(1)

ArrayList<String>names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2

250 Chapter 7 Arrays and Array Lists

The following program demonstrates how to use ArrayList class for collecting
BankAccount objects. The BankAccount class has been enhanced from the version in
Chapter 3. Each bank account has an account number. Note that you import the
generic class java.util.ArrayList, without the type parameter.

Syntax 7.2 Array Lists

To construct an array list: new ArrayList<typeName>()

To access an element: arraylistReference.get(index)
arraylistReference.set(index, value)

Syntax

Example

ArrayList<String> friends = new ArrayList<String>();

The index must be

≥ 0 and < friends.size().

 See page 245.

An array list object of size 0

Use the

get and set methods

to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method

appends an element to the array list,

increasing its size.

Table 2 Working with Array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1.
names is now [Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0.
names is now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value.
names is now [Bill, Cindy].

String name = names.get(i); Gets an element.

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
 squares.add(i * i);
}

Constructs an array list holding the first ten
squares.

7.2 Array Lists 251

ch07/arraylist/ArrayListTester.java

ch07/arraylist/BankAccount.java

1 import java.util.ArrayList;
2
3 /**
4 This program tests the ArrayList class.
5 */
6 public class ArrayListTester
7 {
8 public static void main(String[] args)
9 {

10 ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
11 accounts.add(new BankAccount(1001));
12 accounts.add(new BankAccount(1015));
13 accounts.add(new BankAccount(1729));
14 accounts.add(1, new BankAccount(1008));
15 accounts.remove(0);
16
17 System.out.println("Size: " + accounts.size());
18 System.out.println("Expected: 3");
19 BankAccount first = accounts.get(0);
20 System.out.println("First account number: "
21 + first.getAccountNumber());
22 System.out.println("Expected: 1008");
23 BankAccount last = accounts.get(accounts.size() - 1);
24 System.out.println("Last account number: "
25 + last.getAccountNumber());
26 System.out.println("Expected: 1729");
27 }
28 }

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private int accountNumber;
8 private double balance;
9

10 /**
11 Constructs a bank account with a zero balance.
12 @param anAccountNumber the account number for this account
13 */
14 public BankAccount(int anAccountNumber)
15 {
16 accountNumber = anAccountNumber;
17 balance = 0;
18 }
19
20 /**
21 Constructs a bank account with a given balance.
22 @param anAccountNumber the account number for this account
23 @param initialBalance the initial balance
24 */
25 public BankAccount(int anAccountNumber, double initialBalance)
26 {
27 accountNumber = anAccountNumber;

252 Chapter 7 Arrays and Array Lists

Program Run

3. How do you construct an array of 10 strings? An array list of strings?
4. What is the content of names after the following statements?

ArrayList<String> names = new ArrayList<String>();
names.add("A");
names.add(0, "B");
names.add("C");
names.remove(1);

28 balance = initialBalance;
29 }
30
31 /**
32 Gets the account number of this bank account.
33 @return the account number
34 */
35 public int getAccountNumber()
36 {
37 return accountNumber;
38 }
39
40 /**
41 Deposits money into the bank account.
42 @param amount the amount to deposit
43 */
44 public void deposit(double amount)
45 {
46 double newBalance = balance + amount;
47 balance = newBalance;
48 }
49
50 /**
51 Withdraws money from the bank account.
52 @param amount the amount to withdraw
53 */
54 public void withdraw(double amount)
55 {
56 double newBalance = balance - amount;
57 balance = newBalance;
58 }
59
60 /**
61 Gets the current balance of the bank account.
62 @return the current balance
63 */
64 public double getBalance()
65 {
66 return balance;
67 }
68 }

Size: 3
Expected: 3
First account number: 1008
Expected: 1008
Last account number: 1729
Expected: 1729

S E L F C H E C K

7.2 Array Lists 253

Length and Size

Unfortunately, the Java syntax for determining the number of elements in an array, an array
list, and a string is not at all consistent. It is a common error to confuse these. You just have
to remember the correct syntax for every data type.

ArrayList Syntax Enhancements in Java 7

Java 7 introduces several convenient syntax enhancements for array lists.
When you declare and construct an array list, you need not repeat the type parameter in

the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape.

You can supply initial values as follows:

ArrayList<String> names = new ArrayList<>(["Ann", "Cindy", "Bob"]);

In Java 7, you can access array list elements with the [] operator instead of the get and put
methods. That is, the compiler translates

String name = names[i];

into

String name = names.get(i);

and

names[i] = "Fred";

into

names.set(i, "Fred");

Common Error 7.3

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Special Topic 7.2

254 Chapter 7 Arrays and Array Lists

Because numbers are not objects in Java, you cannot directly insert them into array
lists. For example, you cannot form an ArrayList<double>. To store sequences of
numbers in an array list, you must turn them into objects by using wrapper classes.
There are wrapper classes for all eight primitive types:

Note that the wrapper class names start with uppercase letters, and that two of them
differ from the names of the corresponding primitive type: Integer and Character.

Each wrapper class object contains a value of the corresponding primitive type.
For example, an object of the class Double contains a value of type double (see
Figure 7).

Wrapper objects can be used anywhere that objects are required instead of prim-
itive type values. For example, you can collect a sequence of floating-point numbers
in an ArrayList<Double>.

Conversion between primitive types and the corresponding wrapper classes is
automatic. This process is called auto-boxing (even though auto-wrapping would
have been more consistent).

For example, if you assign a number to a Double object, the number is automati-
cally “put into a box”, namely a wrapper object.

Double d = 29.95; // Auto-boxing; same as Double d = new Double(29.95);

7.3 Wrappers and Auto-boxing
To treat primitive
type values as
objects, you must
use wrapper classes.

Primitive Type Wrapper Class

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

Figure 7 An Object of a Wrapper Class

d =

value =

Double

29.95

7.4 The Enhanced for Loop 255

Conversely, wrapper objects are automatically “unboxed” to primitive types.
double x = d; // Auto-unboxing; same as double x = d.doubleValue();

Auto-boxing even works inside arithmetic expressions. For example, the statement
d = d + 1;

is perfectly legal. It means:

• Auto-unbox d into a double
• Add 1
• Auto-box the result into a new Double
• Store a reference to the newly created wrapper object in d

In order to collect numbers in an array list, simply remember to use the wrapper
type as the type parameter, and then rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0);

Keep in mind that storing wrapped numbers is quite inefficient. The use of wrap-
pers is acceptable if you only collect a few numbers, but you should use arrays for
long sequences of numbers or characters.

5. What is the difference between the types double and Double?
6. Suppose values is an ArrayList<Double> of size > 0. How do you increment the

element with index 0?

Java version 5.0 introduces a very convenient shortcut for a common loop type.
Often, you need to iterate through a sequence of elements—such as the elements of
an array or array list. The enhanced for loop makes this process particularly easy to
program.

Suppose you want to total up all elements in an array values. Here is how you use
the enhanced for loop to carry out that task.

double[] values = . . .;
double sum = 0;
for (double element : values)
{
 sum = sum + element;
}

The loop body is executed for each element in the array values. At the beginning of
each loop iteration, the next element is assigned to the variable element. Then the
loop body is executed. You should read this loop as “for each element in values”.

You may wonder why Java doesn’t let you write “for each (element in values)”.
Unquestionably, this would have been neater, and the Java language designers seri-
ously considered this. However, the “for each” construct was added to Java several

S E L F C H E C K

7.4 The Enhanced for Loop

The enhanced for
loop traverses all
elements of
a collection.

256 Chapter 7 Arrays and Array Lists

years after its initial release. Had new reserved words each and in been added to the
language, then older programs that happened to use those identifiers as variable or
method names (such as System.in) would no longer have compiled correctly.

You don’t have to use the “for each” construct to loop through all elements in an
array. You can implement the same loop with a straightforward for loop and an
explicit index variable:

double[] values = . . .;
double sum = 0;
for (int i = 0; i < values.length; i++)
{
 double element = values[i];
 sum = sum + element;
}

Note an important difference between the “for each” loop and the ordinary for
loop. In the “for each” loop, the loop variable e is assigned elements: values[0],
values[1], and so on. In the ordinary for loop, the loop variable i is assigned index
values: 0, 1, and so on.

You can also use the enhanced for loop to visit all elements of an array list. For
example, the following loop computes the total of the balances of all accounts:

ArrayList<BankAccount> accounts = . . . ;
double sum = 0;
for (BankAccount account : accounts)
{
 sum = sum + account.getBalance();
}

This loop is equivalent to the following ordinary for loop:
double sum = 0;
for (int i = 0; i < accounts.size(); i++)
{
 BankAccount account = accounts.get(i);
 sum = sum + account.getBalance();
}

Keep in mind that the “for each” loop has a very specific purpose: getting the ele-
ments of a collection, from the beginning to the end. It is not suitable for all array

Syntax 7.3 The “for each” Loop

for (typeName variable : collection)
statement

Syntax

Example

for (double element : values)
{
 sum = sum + element;
}

An array or array list

These statements

are executed for each

element.

This variable is set in each loop iteration.
It is only defined inside the loop.

The variable

contains an element,

not an index.

In an enhanced for
loop, the loop
variable contains
an element, not
an index.

7.5 Partially Filled Arrays 257

algorithms. In particular, the “for each” loop does not allow you to modify the con-
tents of an array. The following loop does not fill an array with zeroes:

for (double element : values)
{
 element = 0; // ERROR—this assignment does not modify array elements
}

When the loop is executed, the variable element is first set to values[0]. Then element
is set to 0, then to values[1], then to 0, and so on. The values array is not modified.
The remedy is simple: Use an ordinary for loop

for (int i = 0; i < values.length; i++)
{
 values[i] = 0; // OK
}

7. Write a “for each” loop that prints all elements in the array values.
8. What does this “for each” loop do?

int counter = 0;
for (BankAccount a : accounts)
{
 if (a.getBalance() == 0) { counter++; }
}

Suppose you write a program that reads a sequence of numbers into an array. How
many numbers will the user enter? You can’t very well ask the user to count the
items before entering them—that is just the kind of work that the user expects the
computer to do. Unfortunately, you now run into a problem. You need to set the
size of the array before you know how many elements you need. Once the array
size is set, it cannot be changed.

To solve this problem, make an array that is guaranteed to be larger than the larg-
est possible number of entries, and partially fill it. For example, you can decide that
the user will never provide more than 100 input values. Then allocate an array of
size 100:

final int VALUES_LENGTH = 100;
double[] values = new double[VALUES_LENGTH];

Then keep a companion variable that tells how many elements in the array are actu-
ally used. It is an excellent idea always to name this companion variable by adding
the suffix Size to the name of the array.

int valuesSize = 0;

Now values.length is the capacity of the array values, and valuesSize is the current
size of the array (see Figure 8). Keep adding elements into the array, incrementing
the valuesSize variable each time.

values[valuesSize] = x;
valuesSize++;

This way, valuesSize always contains the correct element count.

S E L F C H E C K

7.5 Partially Filled Arrays

With a partially filled
array, keep a
companion variable
to track how many
elements are used.

258 Chapter 7 Arrays and Array Lists

The following code segment shows how to read numbers into a partially filled
array.

int valuesSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
 if (valuesSize < values.length)
 {
 values[valuesSize] = in.nextDouble();
 valuesSize++;
 }
}

At the end of this loop, valuesSize contains the actual number of elements in the
array. Note that you have to stop accepting inputs if the valuesSize companion vari-
able reaches the array length. Section 7.6 shows how you can overcome that limita-
tion by growing the array.

To process the gathered array elements, you again use the companion variable,
not the array length. This loop prints the partially filled array:

for (int i = 0; i < valuesSize; i++)
{
 System.out.println(values[i]);
}

Array lists use this technique behind the scenes. An array list contains an array of
objects. When the array runs out of space, the array list allocates a larger array and
copies the elements. However, all of this happens inside the array list methods, so
you never need to think about it.

9. Write a loop to print the elements of the partially filled array values in reverse
order, starting with the last element.

10. How do you remove the last element of the partially filled array values?
11. Why would a programmer use a partially filled array of numbers instead of an

array list?

Figure 8 A Partially Filled Array

double[]values =

valuesSize =

values.length

6

valuesSize

S E L F C H E C K

7.6 Common Array Algorithms 259

Underestimating the Size of a Data Set

Programmers frequently underestimate the amount of input data that a user will pour into
an unsuspecting program. A common problem results from the use of fixed-sized arrays.
Suppose you write a program to search for text in a file. You store each line in a string, and
keep an array of strings. How big do you make the array? Surely nobody is going to chal-
lenge your program with an input that is more than 100 lines. Really? It is easy to feed in the
entire text of Alice in Wonderland or War and Peace (which are available on the Internet). All
of a sudden, your program has to deal with tens or hundreds of thousands of lines. What will
it do? Will it handle the input? Will it politely reject the excess input? Will it crash and burn?

A famous article (Barton P. Miller, Louis Fericksen, and Bryan So, “An Empirical Study
of the Reliability of Unix Utilities”, Communications of the ACM, vol. 33, no. 12, pp. 32–44)
analyzed how several UNIX programs reacted when they were fed large or random data
sets. Sadly, about a quarter didn’t do well at all, crashing or hanging without a reasonable
error message. For example, in some older versions of UNIX the tape backup program tar
was not able to handle file names longer than 100 characters, which is a pretty unreasonable
limitation. Many of these shortcomings are caused by features of the C language that, unlike
Java, make it difficult to store strings and collections of arbitrary size.

In the following sections, we discuss some of the most common algorithms for
working with arrays and array lists.

In the examples, we show a mixture of arrays and array lists so that you become
familiar with the syntax for both constructs.

This loop fills an array with zeroes:
for (int i = 0; i < values.length; i++)
{
 values[i] = 0;
}

Here, we fill an array list with squares (0, 1, 4, 9, 16, …). Note that the element with
index 0 contains 02, the element with index 1 contains 12, and so on.

for (int i = 0; i < values.size(); i++)
{
 values.set(i, i * i);
}

To compute the sum of all elements, simply keep a running total.
double total = 0;
for (double element : values)
{

Common Error 7.4

7.6 Common Array Algorithms

7.6.1 Filling

7.6.2 Computing Sum and Average Values

260 Chapter 7 Arrays and Array Lists

 total = total + element;
}

To obtain the average, divide by the number of elements:
double average = total / values.size(); // For an array list

Be sure to check that the size is not zero.

Suppose you want to find how many accounts of a certain type you have. Then you
must go through the entire collection and increment a counter each time you find a
match. Here we count the number of accounts whose balance is at least as much as a
given threshold:

public class Bank
{
 private ArrayList<BankAccount> accounts;

 public int count(double atLeast)
 {
 int matches = 0;
 for (BankAccount account : accounts)
 {
 if (account.getBalance() >= atLeast) matches++; // Found a match
 }
 return matches;
 }
 . . .
}

Suppose you want to find the account with the largest balance in the bank. Keep a
candidate for the maximum. If you find an element with a larger value, then replace
the candidate with that value. When you have reached the end of the sequence, you
have found the maximum.

There is just one problem. When you visit the starting element, you don’t yet
have a candidate for the maximum. One way to overcome that is to set the candi-
date to the starting element and make the first comparison with the next element.

BankAccount largestYet = accounts.get(0);
for (int i = 1; i < accounts.size(); i++)
{
 BankAccount a = accounts.get(i);
 if (a.getBalance() > largestYet.getBalance())
 largestYet = a;
}
return largestYet;

Here we use an explicit for loop because the loop no longer visits all elements—it
skips the starting element.

Of course, this approach works only if there is at least one element. It doesn’t
make a lot of sense to ask for the largest element of an empty collection. We can
return null in that case:

7.6.3 Counting Matches

To count values,
check all elements
and count the
matches until you
reach the end.

7.6.4 Finding the Maximum or Minimum

To compute the
maximum or
minimum value,
initialize a candidate
with the starting
element. Then
compare the candidate
with the remaining
elements and update
it if you find a larger
or smaller value.

7.6 Common Array Algorithms 261

if (accounts.size() == 0) return null;
BankAccount largestYet = accounts.get(0);
. . .

See Exercises R7.5 and R7.6 for slight modifications to this algorithm.
To compute the minimum of a data set, keep a candidate for the minimum and

replace it whenever you encounter a smaller value. At the end of the sequence, you
have found the minimum.

Suppose you want to know whether there is a bank account with a particular
account number in your bank. Simply inspect each element until you find a match
or reach the end of the sequence. Note that the loop might fail to find an answer,
namely if none of the accounts match. This search process is called a linear search.

public class Bank
{
 . . .
 public BankAccount find(int accountNumber)
 {
 for (BankAccount account : accounts)
 {
 if (account.getAccountNumber() == accountNumber) // Found a match
 return account;
 }
 return null; // No match in the entire array list
 }
 . . .
}

Note that the method returns null if no match is found.

You often need to locate the position of an element so that you can replace or
remove it. Use a variation of the linear search algorithm, but remember the position
instead of the matching element. Here we locate the position of the first element
that is larger than 100.

int pos = 0;
boolean found = false;
while (pos < values.size() && !found)
{
 if (values.get(pos) > 100)
 {
 found = true;
 }
 else
 {
 pos++;
 }
}
if (found) { System.out.println("Position: " + pos); }
else { System.out.println("Not found"); }

7.6.5 Searching for a Value

To find a value,
check all elements
until you have
found a match.

7.6.6 Locating the Position of an Element

262 Chapter 7 Arrays and Array Lists

Removing an element from an array list is very easy—simply use the remove method.
With an array, you have to work harder.

Suppose you want to remove the element with index pos from the array values.
First off, you need to keep a companion variable for tracking the number of ele-
ments in the array, as explained in Section 7.5.

If the elements in the array are not in any particular order, simply overwrite the
element to be removed with the last element of the array, then decrement the vari-
able tracking the size of the array. (See Figure 9.)

values[pos] = values[valuesSize - 1];
valuesSize--;

The situation is more complex if the order of the elements matters. Then you must
move all elements following the element to be removed to a lower index, and then
decrement the variable holding the size of the array. (See Figure 10.)

for (int i = pos; i < valuesSize - 1; i++)
{
 values[i] = values[i + 1];
}
valuesSize--;

Figure 9
Removing an Element in an Unordered Array

Figure 10
Removing an Element in an Ordered Array

7.6.7 Removing an Element

A N I M AT I O N
Removing from

an Array

[0]
[1]
[2]
...
[pos]

[valuesSize - 1]

Decrement after
moving element

[0]
[1]
[2]
...
[pos]

[valuesSize - 1]

1
2
3
4
5

Decrement after
moving elements

7.6 Common Array Algorithms 263

To insert an element into an array list, simply use the add method.
In this section, you will see how to insert an element into an array. Note that you

need a companion variable for tracking the array size, as explained in Section 7.5.
If the order of the elements does not matter, you can simply insert new elements at
the end, incrementing the variable tracking the size.

if (valuesSize < values.length)
{
 values[valuesSize] = newElement;
 valuesSize++;
}

It is more work to insert an element at a particular position in the middle of an
array. First, move all elements above the insertion location to a higher index. Then
insert the new element.

Note the order of the movement: When you remove an element, you first move
the next element down to a lower index, then the one after that, until you finally get
to the end of the array. When you insert an element, you start at the end of the
array, move that element to a higher index, then move the one before that, and so on
until you finally get to the insertion location (see Figure 12).

if (valuesSize < values.length)
{
 for (int i = valuesSize; i > pos; i--)
 {
 values[i] = values[i - 1];
 }
 values[pos] = newElement;
 valuesSize++;
}

Figure 11
Inserting an Element in
an Unordered Array

Figure 12
Inserting an Element in
an Ordered Array

7.6.8 Inserting an Element

A N I M AT I O N
Inserting into

an Array

[0]
[1]
[2]
...

[valuesSize]

Increment after
inserting element

Insert new element here

[0]
[1]
[2]
...
[pos]

[valuesSize]

5
4
3
2
1

Increment after
moving elements

Insert new element here

264 Chapter 7 Arrays and Array Lists

Array variables work just like object variables—they hold a reference to the actual
array. If you copy the reference, you get another reference to the same array (see
Figure 13):

double[] values = new double[6];
. . . // Fill array
double[] prices = values;

If you want to make a true copy of an array, call the Arrays.copyOf method.
double[] prices = Arrays.copyOf(values, values.length);

Another use for Arrays.copyOf is to grow an array that has run out of space. The fol-
lowing statement has the effect of doubling the length of an array:

values = Arrays.copyOf(values, 2 * values.length);

See Figure 14.
For example, here is how you can read an arbitrarily long sequence numbers into

an array, without running out of space:
int valuesSize = 0;
while (in.hasNextDouble())
{
 if (valuesSize == values.length)
 values = Arrays.copyOf(values, 2 * values.length);
 values[valuesSize] = in.nextDouble();
 valuesSize++;
}

7.6.9 Copying and Growing Arrays

An array variable
stores a reference to
the array. Copying
the variable yields a
second reference to
the same array.

1

Use the
Arrays.copyOf
method to copy the
elements of an array.

2

Figure 13 Copying an Array Reference vs. Copying an Array

1 2

double[]
values =

prices =
32
54

67.5
29
35

47.5

double[]values =

double[]prices =

32
54

67.5
29
35

47.5

32
54

67.5
29
35

47.5

After the assignment prices = values After calling Arrays.copyOf

7.6 Common Array Algorithms 265

When you display the elements of an array or array list, you usually want to sepa-
rate them, often with commas or vertical lines, like this:

Ann | Bob | Cindy

Note that there is one fewer separator than there are elements. Print the separator
before each element except the initial one (with index 0):

for (int i = 0; i < names.size(); i++)
{
 if (i > 0)
 {
 System.out.print(" | ");
 }
 System.out.print(names.get(i));
}

The following sample program implements a Bank class that stores an array list of
bank accounts. The methods of the Bank class use some of the algorithms that we
have discussed in this section.

Figure 14 Growing an Array

double[] double[]values =

double[]

values =

double[]

1 2Move elements to a larger array Store the reference to the larger array in values

7.6.10 Printing Element Separators

266 Chapter 7 Arrays and Array Lists

ch07/bank/Bank.java

1 import java.util.ArrayList;
2
3 /**
4 This bank contains a collection of bank accounts.
5 */
6 public class Bank
7 {
8 private ArrayList<BankAccount> accounts;
9

10 /**
11 Constructs a bank with no bank accounts.
12 */
13 public Bank()
14 {
15 accounts = new ArrayList<BankAccount>();
16 }
17
18 /**
19 Adds an account to this bank.
20 @param a the account to add
21 */
22 public void addAccount(BankAccount a)
23 {
24 accounts.add(a);
25 }
26
27 /**
28 Gets the sum of the balances of all accounts in this bank.
29 @return the sum of the balances
30 */
31 public double getTotalBalance()
32 {
33 double total = 0;
34 for (BankAccount a : accounts)
35 {
36 total = total + a.getBalance();
37 }
38 return total;
39 }
40
41 /**
42 Counts the number of bank accounts whose balance is at
43 least a given value.
44 @param atLeast the balance required to count an account
45 @return the number of accounts having at least the given balance
46 */
47 public int countBalancesAtLeast(double atLeast)
48 {
49 int matches = 0;
50 for (BankAccount a : accounts)
51 {
52 if (a.getBalance() >= atLeast) matches++; // Found a match
53 }
54 return matches;
55 }
56

7.6 Common Array Algorithms 267

ch07/bank/BankTester.java

57 /**
58 Finds a bank account with a given number.
59 @param accountNumber the number to find
60 @return the account with the given number, or null if there
61 is no such account
62 */
63 public BankAccount find(int accountNumber)
64 {
65 for (BankAccount a : accounts)
66 {
67 if (a.getAccountNumber() == accountNumber) // Found a match
68 return a;
69 }
70 return null; // No match in the entire array list
71 }
72
73 /**
74 Gets the bank account with the largest balance.
75 @return the account with the largest balance, or null if the
76 bank has no accounts
77 */
78 public BankAccount getMaximum()
79 {
80 if (accounts.size() == 0) return null;
81 BankAccount largestYet = accounts.get(0);
82 for (int i = 1; i < accounts.size(); i++)
83 {
84 BankAccount a = accounts.get(i);
85 if (a.getBalance() > largestYet.getBalance())
86 largestYet = a;
87 }
88 return largestYet;
89 }
90 }

1 /**
2 This program tests the Bank class.
3 */
4 public class BankTester
5 {
6 public static void main(String[] args)
7 {
8 Bank firstBankOfJava = new Bank();
9 firstBankOfJava.addAccount(new BankAccount(1001, 20000));

10 firstBankOfJava.addAccount(new BankAccount(1015, 10000));
11 firstBankOfJava.addAccount(new BankAccount(1729, 15000));
12
13 double threshold = 15000;
14 int count = firstBankOfJava.countBalancesAtLeast(threshold);
15 System.out.println("Count: " + count);
16 System.out.println("Expected: 2");
17
18 int accountNumber = 1015;
19 BankAccount account = firstBankOfJava.find(accountNumber);
20 if (account == null)
21 System.out.println("No matching account");

268 Chapter 7 Arrays and Array Lists

Program Run

12. What does the find method do if there are two bank accounts with a matching
account number?

13. Would it be possible to use a “for each” loop in the getMaximum method?
14. When printing separators, we skipped the separator before the initial element.

Rewrite the loop so that the separator is printed after each element, except for
the last element.

15. The following replacement has been suggested for the algorithm in Section
7.6.10.
System.out.print(names.get(0));
for (int i = 1; i < names.size(); i++) System.out.print(" | " + names.get(i));

What is problematic about this suggestion?

Easy Printing of Arrays and Array Lists

If values is an array, the expression

Arrays.toString(values)

returns a string describing the elements, using a format that looks like this:

[32, 54, 67.5, 29, 35, 47.5]

The elements are surrounded by a pair of brackets and separated by commas. This can be
convenient for debugging:

System.out.println("values=" + Arrays.toString(values));

With an array list, it is even easier to get a quick printout. Simply pass the array list to the
println method:

System.out.println(names); // Prints [Ann, Bob, Cindy]

22 else
23 System.out.println("Balance of matching account: "
24 + account.getBalance());
25 System.out.println("Expected: 10000");
26
27 BankAccount max = firstBankOfJava.getMaximum();
28 System.out.println("Account with largest balance: "
29 + max.getAccountNumber());
30 System.out.println("Expected: 1001");
31 }
32 }

Count: 2
Expected: 2
Balance of matching account: 10000.0
Expected: 10000
Account with largest balance: 1001
Expected: 1001

S E L F C H E C K

Productivity Hint 7.1

7.6 Common Array Algorithms 269

HOW TO 7.1 Working with Arrays and Array Lists

When you process a sequence of values, you usually need to use array lists or arrays. (In
some very simple situations, you can process data as you read them in, without storing
them.) This How To walks you through the necessary steps.

Consider this example problem: You are given the quiz scores of a student. You are to
compute the final quiz score, which is the sum of all scores after dropping the lowest one.
For example, if the scores are

8 7 8.5 9.5 7 5 10

then the final score is 50.
However, if there is only one score, it would seem cruel to remove it. In that case, that

score will be the final score. If there is no score, the final score should be 0.

Step 1 Decompose your task into steps.

You will usually want to break down your task into multiple steps, such as
• Reading the data into an array list or array.
• Processing the data in one or more steps.
• Displaying the results.
When deciding how to process the data, you should be familiar with the array algorithms in
Section 7.6. Most processing tasks can be solved by using one or more of these algorithms.

In our sample problem, we will want to read the data. Then we will remove the minimum
and compute the total. For example, if the input is 8 7 8.5 9.5 7 5 10, we will remove the
minimum of 5, yielding 8 7 8.5 9.5 7 10. The sum of those values is the final score of 50.

Thus, we have identified three steps:

Read inputs.

Remove the minimum.

Calculate the sum.

Step 2 Choose between array lists and arrays.

Generally, array lists are more convenient than arrays. You would choose arrays if one of the
following applies:
• You know in advance how many elements you will collect, and the size will not change.
• You collect a large sequence of numbers.
None of these cases applies here, so we will store the scores in an array list. An alternate
solution using arrays is included with the companion code for the book (ch07/scores2 direc-
tory).

Step 3 Determine which algorithm(s) you need.

Sometimes, a step corresponds to exactly one of the basic array algorithms. That is the case
with calculating the sum. At other times, you need to combine several algorithms. To remove
the minimum value, you can find the minimum value (Section 7.6.4), find its position
(Section 7.6.6), and remove the element at that position (Section 7.6.7).

We have now refined our plan as follows:

Read inputs.

Find the minimum.

Find its position.

Remove the minimum.

Calculate the sum.

270 Chapter 7 Arrays and Array Lists

This plan will work, but it is possible to do a bit better. It is easier to compute the sum and
subtract the minimum. Then we don’t have to find its position. The revised plan is

Read inputs.

Find the minimum.

Calculate the sum.

Subtract the minimum.

Step 4 Use classes and methods to structure the program.

Even though it may be possible to put all steps into the main method, this is rarely a good
idea. It is better to carry out each processing step in a separate method. It is also a good idea
to come up with a class that is responsible for collecting and processing the data, such as the
DataSet class in Chapter 6 or the Bank class in the preceding section.

In our example, let’s collect the scores in a GradeBook class.

public class GradeBook
{
 private ArrayList<Double> scores;
 . . .
 public void addScore(double score) { . . . }
 public double finalScore() { . . . }
}

A second class, ScoreAnalyzer, is responsible for reading the user input and displaying the
result. Its main method simply calls the GradeBook methods:

GradeBook book = new GradeBook();
System.out.println("Please enter values, Q to quit:");
while (in.hasNextDouble())
{
 book.addScore(in.nextDouble());
}
System.out.println("Final score: " + book.finalScore());

Now the finalScore method must do the heavy lifting. It too should not have to do all the
work. Instead, we will supply helper methods

public double sum()
public double minimum()

These methods simply implement the algorithms in Section 7.6.2 and Section 7.6.4.
Then the finalScore method becomes

public double finalScore()
{
 if (scores.size() == 0)
 return 0;
 else if (scores.size() == 1)
 return scores.get(0);
 else
 return sum() - minimum();
}

Step 5 Assemble and test the program.

Implement your classes and test them, as described in How To 3.1. Review your code and
check that you handle both normal and exceptional situations. What happens with an empty
array or array list? One that contains a single element? When no match is found? When there
are multiple matches? Consider these boundary conditions and make sure that your pro-
gram works correctly.

Testing Track 7.7 Regression Testing 271

In our example, it is impossible to compute the minimum if the array list is empty. In that
case, we should determine the special score of 0 before attempting to call the minimum method.

What if the minimum value occurs more than once? That means that a student had more
than one test with the same low score. We subtract only one of the occurrences of that low
score, and that is the desired behavior.

The following table shows test cases and their expected output:

The complete program is in the ch07/scores directory of the book’s companion code.

Rolling the Dice

This Worked Example shows how to analyze a set of die tosses to
see whether the die is “fair”.

It is a common and useful practice to make a new test whenever you find a program
bug. You can use that test to verify that your bug fix really works. Don’t throw the
test away; feed it to the next version after that and all subsequent versions. Such a
collection of test cases is called a test suite.

You will be surprised how often a bug that you fixed will reappear in a future
version. This is a phenomenon known as cycling. Sometimes you don’t quite under-
stand the reason for a bug and apply a quick fix that appears to work. Later, you
apply a different quick fix that solves a second problem but makes the first problem
appear again. Of course, it is always best to think through what really causes a bug
and fix the root cause instead of doing a sequence of “Band-Aid” solutions. If you
don’t succeed in doing that, however, you at least want to have an honest appraisal
of how well the program works. By keeping all old test cases around and testing
them against every new version, you get that feedback. The process of checking
each version of a program against a test suite is called regression testing.

Test Case Expected Output Comment

8 7 8.5 9.5 7 5 10 50 See Step 1.

8 7 7 9 24 Only one instance of the low
score should be removed.

8 8 Don’t remove the lowest
score if there is only one.

(no inputs) 0 An empty grade book has
score 0.

Worked
Example 7.1

7.7 Regression Testing
A test suite is a
set of tests for
repeated testing.

Regression testing
involves repeating
previously run
tests to ensure that
known failures of
prior versions do
not appear in
new versions of
the software.

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

272 Chapter 7 Arrays and Array Lists Testing Track

How do you organize a suite of tests? An easy technique is to produce multiple
tester classes, such as BankTester1, BankTester2, and so on.

Another useful approach is to provide a generic tester, and feed it inputs from
multiple files. Consider this tester for the Bank class of Section 7.6:

ch07/regression/BankTester.java

Rather than using fixed values for the threshold and the account number to be
found, the program reads these values, and the expected responses. By running the
program with different inputs, we can test different scenarios, such as the ones for
diagnosing off-by-one errors discussed in Common Error 6.2.

Of course, it would be tedious to type in the input values by hand every time the
test is executed. It is much better to save the inputs in a file, such as the following:

ch07/regression/input1.txt

1 import java.util.Scanner;
2
3 /**
4 This program tests the Bank class.
5 */
6 public class BankTester
7 {
8 public static void main(String[] args)
9 {

10 Bank firstBankOfJava = new Bank();
11 firstBankOfJava.addAccount(new BankAccount(1001, 20000));
12 firstBankOfJava.addAccount(new BankAccount(1015, 10000));
13 firstBankOfJava.addAccount(new BankAccount(1729, 15000));
14
15 Scanner in = new Scanner(System.in);
16
17 double threshold = in.nextDouble();
18 int c = firstBankOfJava.count(threshold);
19 System.out.println("Count: " + c);
20 int expectedCount = in.nextInt();
21 System.out.println("Expected: " + expectedCount);
22
23 int accountNumber = in.nextInt();
24 BankAccount a = firstBankOfJava.find(accountNumber);
25 if (a == null)
26 System.out.println("No matching account");
27 else
28 {
29 System.out.println("Balance of matching account: " + a.getBalance());
30 int matchingBalance = in.nextInt();
31 System.out.println("Expected: " + matchingBalance);
32 }
33 }
34 }

15000
2
1015
10000

Testing Track 7.7 Regression Testing 273

The command line interfaces of most operating systems provide a way to link a file
to the input of a program, as if all the characters in the file had actually been typed
by a user. Type the following command into a shell window:

java BankTester < input1.txt

The program is executed, but it no longer reads input from the keyboard. Instead,
the System.in object (and the Scanner that reads from System.in) gets the input from
the file input1.txt. This process is called input redirection.

The output is still displayed in the console window:

Program Run

You can also redirect output. To capture the output of a program in a file, use the
command

java BankTester < input1.txt > output1.txt

This is useful for archiving test cases.

16. Suppose you modified the code for a method. Why do you want to repeat tests
that already passed with the previous version of the code?

17. Suppose a customer of your program finds an error. What action should you
take beyond fixing the error?

18. Why doesn’t the BankTester program contain prompts for the inputs?

Batch Files and Shell Scripts

Productivity Hint 7.1 shows how you can automate repetitive tasks by writing batch files or
shell scripts.

The Therac-25 Incidents

Random Fact 7.2 tells the story of the Therac-25, a computerized device to deliver radiation
treatment to cancer patients. Due to poor design and insufficient testing, the machine deliv-
ered serious overdoses, killing some patients and seriously maiming others.

Count: 2
Expected: 2
Balance of matching account: 10000
Expected: 10000

S E L F C H E C K

Productivity Hint 7.2

Random Fact 7.2

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

274 Chapter 7 Arrays and Array Lists

Arrays and array lists can store linear sequences. Occasionally you want to store
collections that have a two-dimensional layout. The traditional example is the tic-
tac-toe board (see Figure 15).

Such an arrangement, consisting of rows and columns of values, is called a two-
dimensional array or matrix. When constructing a two-dimensional array, you
specify how many rows and columns you need. In this case, ask for 3 rows and 3
columns:

final int ROWS = 3;
final int COLUMNS = 3;
String[][] board = new String[ROWS][COLUMNS];

This yields a two-dimensional array with 9 elements
board[0][0] board[0][1] board[0][2]
board[1][0] board[1][1] board[1][2]
board[2][0] board[2][1] board[2][2]

To access a particular element, specify two index values in separate brackets. For
example:

board[1][1] = "x";
board[2][1] = "o";

When filling or searching a two-dimensional array, it is common to use two nested
loops. For example, this pair of loops sets all elements in the array to spaces.

for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 board[i][j] = " ";

In this loop, we used constants for the number of rows and columns. You can also
recover the array dimensions from the array variable:

• board.length is the number of rows.
• board[0].length is the number of columns. (See Special Topic 7.3 on page 277 for

an explanation of this expression.)

You can rewrite the loop for filling the tic-tac-toe board as
for (int i = 0; i < board.length; i++)
 for (int j = 0; j < board[0].length; j++)
 board[i][j] = " ";

Here is a class and a test program for playing tic-tac-toe. This class does not check
whether a player has won the game. That is left as an exercise—see Exercise P7.13.

7.8 Two-Dimensional Arrays

Figure 15
A Tic-Tac-Toe Board

Two-dimensional
arrays form a tabular,
two-dimensional
arrangement. You
access elements with
an index pair
a[i][j].

7.8 Two-Dimensional Arrays 275

ch07/twodim/TicTacToe.java

1 /**
2 A 3 x 3 tic-tac-toe board.
3 */
4 public class TicTacToe
5 {
6 private String[][] board;
7 private static final int ROWS = 3;
8 private static final int COLUMNS = 3;
9

10 /**
11 Constructs an empty board.
12 */
13 public TicTacToe()
14 {
15 board = new String[ROWS][COLUMNS];
16 // Fill with spaces
17 for (int i = 0; i < ROWS; i++)
18 for (int j = 0; j < COLUMNS; j++)
19 board[i][j] = " ";
20 }
21
22 /**
23 Sets a field in the board. The field must be unoccupied.
24 @param i the row index
25 @param j the column index
26 @param player the player ("x" or "o")
27 */
28 public void set(int i, int j, String player)
29 {
30 if (board[i][j].equals(" "))
31 board[i][j] = player;
32 }
33
34 /**
35 Creates a string representation of the board, such as
36 |x o|
37 | x |
38 | o|.
39 @return the string representation
40 */
41 public String toString()
42 {
43 String r = "";
44 for (int i = 0; i < ROWS; i++)
45 {
46 r = r + "|";
47 for (int j = 0; j < COLUMNS; j++)
48 r = r + board[i][j];
49 r = r + "|\n";
50 }
51 return r;
52 }
53 }

276 Chapter 7 Arrays and Array Lists

ch07/twodim/TicTacToeRunner.java

Program Run

19. How do you declare and initialize a 4-by-4 array of integers?
20. How do you count the number of spaces in the tic-tac-toe board?

1 import java.util.Scanner;
2
3 /**
4 This program runs a TicTacToe game. It prompts the
5 user to set positions on the board and prints out the
6 result.
7 */
8 public class TicTacToeRunner
9 {

10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13 String player = "x";
14 TicTacToe game = new TicTacToe();
15 boolean done = false;
16 while (!done)
17 {
18 System.out.print(game.toString());
19 System.out.print(
20 "Row for " + player + " (-1 to exit): ");
21 int row = in.nextInt();
22 if (row < 0) done = true;
23 else
24 {
25 System.out.print("Column for " + player + ": ");
26 int column = in.nextInt();
27 game.set(row, column, player);
28 if (player.equals("x"))
29 player = "o";
30 else
31 player = "x";
32 }
33 }
34 }
35 }

| |
| |
| |
Row for x (-1 to exit): 1
Column for x: 2
| |
| x|
| |
Row for o (-1 to exit): 0
Column for o: 0
|o |
| x|
| |
Row for x (-1 to exit): -1

S E L F C H E C K

Summary of Learning Objectives 277

A World Population Table

This Worked Example shows how to print world population data in a table with row and
column headers, and totals for each of the data columns.

Two-Dimensional Arrays with Variable Row Lengths

Special Topic 7.2 discusses two-dimensional arrays in which rows have different lengths.

Multidimensional Arrays

Special Topic 7.3 discusses arrays of three or more dimensions.

Use arrays for collecting values.

• An array is a sequence of values of the same type.
• You access an array element with an integer index, using the [] operator.
• Index values of an array range from 0 to length - 1.
• Accessing a nonexistent element results in a bounds error.
• The expression array.length yields the number of elements in an array.
• Avoid parallel arrays by changing them into arrays of objects.

Use array lists for managing collections whose size can change.

• The ArrayList class manages a sequence of objects whose size can change.
• The ArrayList class is a generic class: ArrayList<TypeName> collects objects of the

given type.

Use wrapper classes when working with array lists of numbers.

• To treat primitive type values as objects, you must use wrapper classes.

Use the enhanced for loop to visit all elements of a collection.

• The enhanced for loop traverses all elements of a collection.
• In an enhanced for loop, the loop variable contains an element, not an index.

Work with arrays that are partially filled.

• With a partially filled array, keep a companion variable to track how many elements
are used.

Worked
Example 7.2

Special Topic 7.3

Special Topic 7.4

Summary of Learning Objectives

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

278 Chapter 7 Arrays and Array Lists

Be able to use common array algorithms.

• To count values, check all elements and count the matches until you reach the end.
• To compute the maximum or minimum value, initialize a candidate with the

starting element. Then compare the candidate with the remaining elements and
update it if you find a larger or smaller value.

• To find a value, check all elements until you have found a match.
• An array variable stores a reference to the array. Copying the variable yields a

second reference to the same array.
• Use the Arrays.copyOf method to copy the elements of an array.

Describe the process of regression testing.

• A test suite is a set of tests for repeated testing.
• Regression testing involves repeating previously run tests to ensure that known

failures of prior versions do not appear in new versions of the software.

Use two-dimensional arrays for data that is arranged in rows and columns.

• Two-dimensional arrays form a tabular, two-dimensional arrangement. You access
elements with an index pair a[i][j].

• Worked Example Rolling the Dice
• Worked Example A World Population Table
• Lab Exercises

Animation Removing from an Array
Animation Inserting into an Array
Practice Quiz
Code Completion Exercises

R7.1 What is an index? What are the bounds of an array or array list? What is a bounds
error?

Classes, Objects, and Methods Introduced in this Chapter

java.lang.Boolean
 booleanValue
java.lang.Double
 doubleValue
java.lang.Integer
 intValue
java.util.Arrays
 copyOf
 toString

java.util.ArrayList<E>
 add
 get
 remove
 set
 size

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

Review Exercises 279

R7.2 Write a program that contains a bounds error. Run the program. What happens on
your computer? How does the error message help you locate the error?

R7.3 Write Java code for a loop that simultaneously computes the maximum and mini-
mum values of an array list. Use an array list of accounts as an example.

R7.4 Write a loop that reads 10 strings and inserts them into an array list. Write a second
loop that prints out the strings in the opposite order from which they were entered.

R7.5 Consider the algorithm that we used for determining the maximum value in an
array list. We set largestYet to the starting element, which meant that we were no
longer able to use the “for each” loop. An alternate approach is to initialize larg-
estYet with null, then loop through all elements. Of course, inside the loop you
need to test whether largestYet is still null. Modify the loop that finds the bank
account with the largest balance, using this technique. Is this approach more or less
efficient than the one used in the text?

R7.6 Consider another variation of the algorithm for determining the maximum value.
Here, we compute the maximum value of an array of numbers.

double max = 0; // Contains an error!
for (double element : values)
{
 if (element > max) max = element;
}

However, this approach contains a subtle error. What is the error, and how can you
fix it?

R7.7 For each of the following sets of values, write code that fills an array a with the val-
ues.

a. 1 2 3 4 5 6 7 8 9 10
b. 0 2 4 6 8 10 12 14 16 18 20
c. 1 4 9 16 25 36 49 64 81 100
d. 0 0 0 0 0 0 0 0 0 0
e. 1 4 9 16 9 7 4 9 11

Use a loop when appropriate.

R7.8 Write a loop that fills an array a with 10 random numbers between 1 and 100. Write
code (using one or more loops) to fill a with 10 different random numbers between
1 and 100.

R7.9 What is wrong with the following loop?
double[] values = new double[10];
for (int i = 1; i <= 10; i++) values[i] = i * i;

Explain two ways of fixing the error.

R7.10 Write a program that constructs an array of 20 integers and fills the first ten ele-
ments with the numbers 1, 4, 9, . . . , 100. Compile it and launch the debugger. After
the array has been filled with three numbers, inspect it. What are the contents of the
elements in the array beyond those that you filled?

T

280 Chapter 7 Arrays and Array Lists

R7.11 Rewrite the following loops without using the “for each” construct. Here, values
has type double.

a. for (double element : values) sum = sum + element;

b. for (double element : values) if (element == target) return true;
c. int i = 0;

for (double element : values) { values[i] = 2 * element; i++; }

R7.12 Rewrite the following loops, using the “for each” construct. Here, values has type
double.

a. for (int i = 0; i < values.length; i++) sum = sum + values[i];

b. for (int i = 1; i < values.length; i++) sum = sum + values[i];
c. for (int i = 0; i < values.length; i++)

 if (values[i] == target) return i;

R7.13 What is wrong with these statements for printing an array list with separators?
System.out.print(values.get(0));
for (int i = 1; i < values.size(); i++)
{
 System.out.print(", " + values.get(i));
}

R7.14 When finding the position of a match in Section 7.6.6, we used a while loop, not a
for loop. What is wrong with using this loop instead?

for (pos = 0; pos < values.size() && !found; pos++)
{
 if (values.get(pos) > 100)
 {
 found = true;
 }
}

R7.15 When inserting an element into an array in Section 7.6.8, we moved the elements
with larger index values, starting at the end of the array. Why is it wrong to start at
the insertion location, like this?

for (int i = pos; i < size - 1; i++)
{
 values[i + 1] = values[i];
}

R7.16 In Section 7.6.9, we doubled the length of the array when growing it. Why didn’t
we just increase the size by one element?

R7.17 What are parallel arrays? Why are parallel arrays indications of poor programming?
How can they be avoided?

R7.18 True or false?
a. All elements of an array are of the same type.
b. An array index must be an integer.
c. Arrays cannot contain string references as elements.
d. Arrays cannot contain null references as elements.
e. Parallel arrays must have equal length.
f. Two-dimensional arrays always have the same numbers of rows and columns.

Programming Exercises 281

g. Two parallel arrays can be replaced by a two-dimensional array.
h. Elements of different columns in a two-dimensional array can have different

types.

R7.19 Define the terms regression testing and test suite.

R7.20 What is the debugging phenomenon known as cycling? What can you do to avoid it?

P7.1 Implement a class Purse. A purse contains a collection of coins. For simplicity, we
will only store the coin names in an ArrayList<String>. (We will discuss a better rep-
resentation in Chapter 8.) Supply a method

void addCoin(String coinName)

Add a method toString to the Purse class that prints the coins in the purse in the
format

Purse[Quarter,Dime,Nickel,Dime]

P7.2 Write a method reverse that reverses the sequence of coins in a purse. Use the
toString method of the preceding assignment to test your code. For example, if
reverse is called with a purse

Purse[Quarter,Dime,Nickel,Dime]

then the purse is changed to
Purse[Dime,Nickel,Dime,Quarter]

P7.3 Add a method to the Purse class
public void transfer(Purse other)

that transfers the contents of one purse to another. For example, if a is
Purse[Quarter,Dime,Nickel,Dime]

and b is
Purse[Dime,Nickel]

then after the call a.transfer(b), a is
Purse[Quarter,Dime,Nickel,Dime,Dime,Nickel]

and b is empty.

P7.4 Write a method for the Purse class
public boolean sameContents(Purse other)

that checks whether the other purse has the same coins in the same order.

P7.5 Write a method for the Purse class
public boolean sameCoins(Purse other)

that checks whether the other purse has the same coins, perhaps in a different order.
For example, the purses

Purse[Quarter,Dime,Nickel,Dime] and Purse[Nickel,Dime,Dime,Quarter]

T

T

Programming Exercises

282 Chapter 7 Arrays and Array Lists

should be considered equal.
You will probably need one or more helper methods.

P7.6 A Polygon is a closed curve made up from line segments that join the polygon’s cor-
ner points. Implement a class Polygon with methods

public double perimeter()

and
public double area()

that compute the circumference and area of a polygon. To compute the perimeter,
compute the distance between adjacent points, and total up the distances. The area
of a polygon with corners (x0, y0), . . . , (xn−1, yn−1) is

As test cases, compute the perimeter and area of a rectangle and of a regular
hexagon. Note: You need not draw the polygon –– that is done in Exercise P7.18.

P7.7 Write a program that reads a sequence of integers into an array and that computes
the alternating sum of all elements in the array. For example, if the program is exe-
cuted with the input data

1 4 9 16 9 7 4 9 11
then it computes

1 − 4 + 9 − 16 + 9 − 7 + 4 − 9 + 11 = −2

P7.8 Write a program that produces random permutations of the numbers 1 to 10. To
generate a random permutation, you need to fill an array with the numbers 1 to 10
so that no two entries of the array have the same contents. You could do it by brute
force, by calling Random.nextInt until it produces a value that is not yet in the array.
Instead, you should implement a smart method. Make a second array and fill it with
the numbers 1 to 10. Then pick one of those at random, remove it, and append it to
the permutation array. Repeat 10 times. Implement a class PermutationGenerator with
a method

int[] nextPermutation

P7.9 A run is a sequence of adjacent repeated values. Write a program that generates a
sequence of 20 random die tosses and that prints the die values, marking the runs by
including them in parentheses, like this:

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array list

If inRun
If values[i] is different from the preceding value

Print)
inRun = false

Else
If values[i] is the same as the following value

Print (
inRun = true

Print values[i]
If inRun, print)

1

2 0 1 1 2 1 0 0 1 1 2 1 0x y x y x y y x y x y xn n+ + + − − − −()− −� �

Programming Exercises 283

P7.10 Write a program that generates a sequence of 20 random die tosses and that prints
the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

P7.11 It is a well-researched fact that men in a restroom generally prefer to maximize their
distance from already occupied stalls, by occupying the middle of the longest
sequence of unoccupied places.
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position:
_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left.
_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the
format given above when the stalls become filled, one at a time. Hint: Use an array
of boolean values to indicate whether a stall is occupied.

P7.12 In this assignment, you will model the game of Bulgarian Solitaire. The game starts
with 45 cards. (They need not be playing cards. Unmarked index cards work just as
well.) Randomly divide them into some number of piles of random size. For exam-
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one
card from each pile, forming a new pile with these cards. For example, the sample
starting configuration would be transformed into piles of size 19, 4, 8, 10, and 5.
The solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order.
(It can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep
applying the solitaire step and print the result. Stop when the solitaire final configu-
ration is reached.

P7.13 Add a method getWinner to the TicTacToe class of Section 7.8. It should return "x" or
"o" to indicate a winner, or " " if there is no winner yet. Recall that a winning posi-
tion has three matching marks in a row, column, or diagonal.

P7.14 Write an application that plays tic-tac-toe. Your program should draw the game
board, change players after every successful move, and pronounce the winner.

P7.15 Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3, . . . , n2 is a
magic square if the sum of the elements in each row, in each column, and in the two
diagonals is the same value. For example,

Write a program that reads in n2 values from the keyboard and tests whether they
form a magic square when arranged as a square matrix.

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

284 Chapter 7 Arrays and Array Lists

You need to test three features:
• Did the user enter n2 numbers for some n?
• Do each of the numbers 1, 2, . . . , n2 occur exactly once in the user input?
• When the numbers are put into a square, are the sums of the rows, columns,

and diagonals equal to each other?
If the size of the input is a square, test whether all numbers between 1 and n2 are
present. Then compute the row, column, and diagonal sums. Implement a class
Square with methods

public void add(int i)
public boolean isMagic()

P7.16 Implement the following algorithm to construct magic n-by-n2 squares; it works
only if n is odd. Place a 1 in the middle of the bottom row. After k has been placed
in the (i, j) square, place k + 1 into the square to the right and down, wrapping
around the borders. However, if the square to the right and down has already been
filled, or if you are in the lower-right corner, then you must move to the square
straight up instead. Here is the 5 × 5 square that you get if you follow this method:

Write a program whose input is the number n and whose output is the magic square
of order n if n is odd. Implement a class MagicSquare with a constructor that con-
structs the square and a toString method that returns a representation of the square.

P7.17 Implement a class Cloud that contains an array list of Point2D.Double objects. Support
methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw each point as a tiny circle.
Write a graphical application that draws a cloud of 100 random points.

P7.18 Implement a class Polygon that contains an array list of Point2D.Double objects.
Support methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw the polygon by joining adjacent points with a line, and then closing it up by
joining the end and start points.
Write a graphical application that draws a square and a pentagon using two Polygon
objects.

P7.19 Write a class Chart with methods
public void add(int value)
public void draw(Graphics2D g2)

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

G

G

G

Programming Projects 285

that displays a stick chart of the added values, like this:

You may assume that the values are pixel positions.

P7.20 Write a class BarChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a chart of the added values. You may assume that all added values are
positive. Stretch the bars so that they fill the entire area of the screen. You must fig-
ure out the maximum of the values, and then scale each bar.

P7.21 Improve the BarChart class of Exercise P7.20 to work correctly when the data con-
tains negative values.

P7.22 Write a class PieChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a pie chart of the added values. You may assume that all data values are
positive.

Project 7.1 Poker Simulator. In this assignment, you will implement a simulation of a popular
casino game usually called video poker. The card deck contains 52 cards, 13 of each
suit. At the beginning of the game, the deck is shuffled. You need to devise a fair
method for shuffling. (It does not have to be efficient.) Then the top five cards of
the deck are presented to the player. The player can reject none, some, or all of the
cards. The rejected cards are replaced from the top of the deck. Now the hand is
scored. Your program should pronounce it to be one of the following:

• No pair—The lowest hand, containing five separate cards that do not match
up to create any of the hands below.

• One pair—Two cards of the same value, for example two queens.

• Two pairs—Two pairs, for example two queens and two 5’s.

• Three of a kind—Three cards of the same value, for example three queens.

• Straight—Five cards with consecutive values, not necessarily of the same suit,
such as 4, 5, 6, 7, and 8. The ace can either precede a 2 or follow a king.

• Flush—Five cards, not necessarily in order, of the same suit.

• Full House—Three of a kind and a pair, for example three queens and two 5’s

• Four of a Kind—Four cards of the same value, such as four queens.

G

G

G

Programming Projects

286 Chapter 7 Arrays and Array Lists

• Straight Flush—A straight and a flush: Five cards with consecutive values of
the same suit.

• Royal Flush—The best possible hand in poker. A 10, jack, queen, king, and
ace, all of the same suit.

If you are so inclined, you can implement a wager. The player pays a JavaDollar for
each game, and wins according to the following payout chart:

Project 7.2 The Game of Life is a well-known mathematical game that gives rise to amazingly
complex behavior, although it can be specified by a few simple rules. (It is not actu-
ally a game in the traditional sense, with players competing for a win.) Here are the
rules. The game is played on a rectangular board. Each square can be either empty
or occupied. At the beginning, you can specify empty and occupied cells in some
way; then the game runs automatically. In each generation, the next generation is
computed. A new cell is born on an empty square if it is surrounded by exactly
three occupied neighbor cells. A cell dies of overcrowding if it is surrounded by
four or more neighbors, and it dies of loneliness if it is surrounded by zero or one
neighbor. A neighbor is an occupant of an adjacent square to the left, right, top, or
bottom or in a diagonal direction. Figure 16 shows a cell and its neighbor cells.
Many configurations show interesting behavior when subjected to these rules.
Figure 17 shows a glider, observed over five generations. Note how it moves. After
four generations, it is transformed into the identical shape, but located one square
to the right and below.
One of the more amazing configurations is the glider gun: a complex collection of
cells that, after 30 moves, turns back into itself and a glider (see Figure 18).

Hand Payout Hand Payout

Royal Flush 250 Straight 4

Straight Flush 50 Three of a Kind 3

Four of a Kind 25 Two Pair 2

Full House 6 Pair of Jacks or Better 1

Flush 5

Figure 16
Neighborhood of a Cell

Figure 17
Glider

Cell

Neighbors

Generation 0 Generation 1 Generation 2 Generation 3 Generation 4

Programming Projects 287

Program the game to eliminate the drudgery of computing successive generations
by hand. Use a two-dimensional array to store the rectangular configuration. Write
a program that shows successive generations of the game. You may get extra credit
if you implement a graphical application that allows the user to add or remove cells
by clicking with the mouse.

Figure 18 Glider Gun

288 Chapter 7 Arrays and Array Lists

1. 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100.
2. (a) 0; (b) a run-time error: array index out of bounds; (c) a compile-time error: c is

not initialized.
3. new String[10];

new ArrayList<String>();

4. names contains the strings "B" and "C" at positions 0 and 1.
5. double is one of the eight primitive types. Double is a class type.
6. values.set(0, values.get(0) + 1);

7. for (double element : values) System.out.println(element);

8. It counts how many accounts have a zero balance.
9. for (int i = valuesSize - 1; i >= 0; i--) System.out.println(values[i]);

10. valuesSize--;

11. You need to use wrapper objects in an ArrayList<Double>, which is less efficient.
12. It returns the first match that it finds.
13. Yes, but the first comparison would always fail.
14. for (int i = 0; i < values.size(); i++)

{
 System.out.print(values.get(i));
 if (i < values.size() - 1)
 {
 System.out.print(" | ");
 }
}

Now you know why we set up the loop the other way.
15. If names happens to be empty, the first line causes a bounds error.
16. It is possible to introduce errors when modifying code.
17. Add a test case to the test suite that verifies that the error is fixed.
18. There is no human user who would see the prompts because input is provided from

a file.
19. int[][] array = new int[4][4];

20. int count = 0;
for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 if (board[i][j].equals(" ")) count++;

Answers to Self-Check Questions

289

Chapter8
Designing

Classes

CHAPTER GOALS
• To learn how to choose appropriate classes for a given problem

• To understand the concepts of cohesion and coupling

• To minimize the use of side effects

• To document the responsibilities of methods and their callers with
preconditions and postconditions

• To understand static methods and variables

• To understand the scope rules for local variables and
instance variables

• To learn about packages

T To learn about unit testing frameworks

In this chapter you will learn more about designing classes. First,

we will discuss the process of discovering classes and declaring methods. Next, we will discuss how

the concepts of pre- and postconditions enable you to specify, implement, and invoke methods

correctly. You will also learn about several more technical issues, such as static methods and

variables. Finally, you will see how to use packages to organize your classes.

290

CHAPTER CONTENTS

8.1 Discovering Classes 290

8.2 Cohesion and Coupling 291
QUALITY TIP 8.1: Consistency 293

8.3 Immutable Classes 294

8.4 Side Effects 295
COMMON ERROR 8.1: Trying to Modify Primitive

Type Parameters 296
QUALITY TIP 8.2: Minimize Side Effects 298
QUALITY TIP 8.3: Don’t Change the Contents of

Parameter Variables 298
SPECIAL TOPIC 8.1: Call by Value and Call

by Reference

8.5 Preconditions and Postconditions 299
SYNTAX 8.1: Assertion 301
SPECIAL TOPIC 8.2: Class Invariants

8.6 Static Methods 302

QUALITY TIP 8.4: Minimize the Use of

Static Methods 304

8.7 Static Variables 304
SPECIAL TOPIC 8.3: Static Imports

SPECIAL TOPIC 8.4: Alternative Forms of Instance and

Static Variable Initialization

8.8 Scope 307
COMMON ERROR 8.2: Shadowing 309
QUALITY TIP 8.5: Minimize Variable Scope 310

8.9 Packages 310
SYNTAX 8.2: Package Specification 310
COMMON ERROR 8.3: Confusing Dots 314
SPECIAL TOPIC 8.5: Package Access 314
HOW TO 8.1: Programming with Packages 315
RANDOM FACT 8.1: The Explosive Growth of

Personal Computers

8.10T Unit Test Frameworks 316

You have used a good number of classes in the preceding chapters and probably
designed a few classes yourself as part of your programming assignments. Design-
ing a class can be a challenge—it is not always easy to tell how to start or whether
the result is of good quality.

What makes a good class? Most importantly, a class should represent a single con-
cept from a problem domain. Some of the classes that you have seen represent con-
cepts from mathematics:

• Point

• Rectangle

• Ellipse

Other classes are abstractions of real-life entities:

• BankAccount

• CashRegister

For these classes, the properties of a typical object are easy to understand. A
Rectangle object has a width and height. Given a BankAccount object, you can deposit
and withdraw money. Generally, concepts from the part of the universe that a pro-
gram concerns, such as science, business, or a game, make good classes. The name
for such a class should be a noun that describes the concept. In fact, a simple rule of
thumb for getting started with class design is to look for nouns in the problem
description.

One useful category of classes can be described as actors. Objects of an actor
class carry out certain tasks for you. Examples of actors are the Scanner class of

8.1 Discovering Classes

A class should
represent a single
concept from a
problem domain,
such as business,
science, or
mathematics.

8.2 Cohesion and Coupling 291

Chapter 4 and the Random class in Chapter 6. A Scanner object scans a stream for num-
bers and strings. A Random object generates random numbers. It is a good idea to
choose class names for actors that end in “-er” or “-or”. (A better name for the Ran-
dom class might be RandomNumberGenerator.)

Very occasionally, a class has no objects, but it contains a collection of related
static methods and constants. The Math class is a typical example. Such a class is
called a utility class.

Finally, you have seen classes with only a main method. Their sole purpose is to
start a program. From a design perspective, these are somewhat degenerate exam-
ples of classes.

What might not be a good class? If you can’t tell from the class name what an
object of the class is supposed to do, then you are probably not on the right track.
For example, your homework assignment might ask you to write a program that
prints paychecks. Suppose you start by trying to design a class PaycheckProgram.
What would an object of this class do? An object of this class would have to do
everything that the homework needs to do. That doesn’t simplify anything. A bet-
ter class would be Paycheck. Then your program can manipulate one or more
Paycheck objects.

Another common mistake is to turn a single operation into a class. For example,
if your homework assignment is to compute a paycheck, you may consider writing
a class ComputePaycheck. But can you visualize a “ComputePaycheck” object? The
fact that “ComputePaycheck” isn’t a noun tips you off that you are on the wrong
track. On the other hand, a Paycheck class makes intuitive sense. The word “pay-
check” is a noun. You can visualize a paycheck object. You can then think about
useful methods of the Paycheck class, such as computeTaxes, that help you solve the
assignment.

1. What is a simple rule of thumb for finding classes?
2. Your job is to write a program that plays chess. Might ChessBoard be an

appropriate class? How about MovePiece?

In this section you will learn two useful criteria for analyzing the quality of a
class—qualities of its public interface.

A class should represent a single concept. The public methods and constants that
the public interface exposes should be cohesive. That is, all interface features should
be closely related to the single concept that the class represents.

If you find that the public interface of a class refers to multiple concepts, then
that is a good sign that it may be time to use separate classes instead. Consider, for
example, the public interface of the CashRegister class in Chapter 4:

public class CashRegister
{
 public static final double NICKEL_VALUE = 0.05;
 public static final double DIME_VALUE = 0.1;
 public static final double QUARTER_VALUE = 0.25;
 . . .

S E L F C H E C K

8.2 Cohesion and Coupling

The public interface
of a class is cohesive
if all of its features
are related to the
concept that the
class represents.

292 Chapter 8 Designing Classes

 public void enterPayment(int dollars, int quarters,
 int dimes, int nickels, int pennies)
 . . .
}

There are really two concepts here: a cash register that holds coins and computes
their total, and the values of individual coins. (For simplicity, we assume that the
cash register only holds coins, not bills. Exercise P8.1 discusses a more general
solution.)

It makes sense to have a separate Coin class and have coins responsible for know-
ing their values.

public class Coin
{
 . . .
 public Coin(double aValue, String aName) { . . . }
 public double getValue() { . . . }
 . . .
}

Then the CashRegister class can be simplified:
public class CashRegister
{
 . . .
 public void enterPayment(int coinCount, Coin coinType) { . . . }
 . . .
}

Now the CashRegister class no longer needs to know anything about coin values.
The same class can equally well handle euros or zorkmids!

This is clearly a better solution, because it separates the responsibilities of the
cash register and the coins. The only reason we didn’t follow this approach in
Chapter 4 was to keep the CashRegister example simple.

Many classes need other classes in order to do their jobs. For example, the
restructured CashRegister class now depends on the Coin class to determine the value
of the payment.

To visualize relationships, such as dependence between classes, programmers
draw class diagrams. In this book, we use the UML (“Unified Modeling Lan-
guage”) notation for objects and classes. UML is a notation for object-oriented
analysis and design invented by Grady Booch, Ivar Jacobson, and James Rum-
baugh, three leading researchers in object-oriented software development. The

Figure 1
Dependency Relationship
Between the CashRegister
and Coin Classes

A class depends on
another class if it
uses objects of
that class.

CashRegister

Coin

8.2 Cohesion and Coupling 293

UML notation distinguishes between object diagrams and class diagrams. In an
object diagram the class names are underlined; in a class diagram the class names are
not underlined. In a class diagram, you denote dependency by a dashed line with a

-shaped open arrow tip that points to the dependent class. Figure 1 shows a class
diagram indicating that the CashRegister class depends on the Coin class.

Note that the Coin class does not depend on the CashRegister class. Coins have no
idea that they are being collected in cash registers, and they can carry out their work
without ever calling any method in the CashRegister class.

If many classes of a program depend on each other, then we say that the coupling
between classes is high. Conversely, if there are few dependencies between classes,
then we say that the coupling is low (see Figure 2).

Why does coupling matter? If the Coin class changes in the next release of the
program, all the classes that depend on it may be affected. If the change is drastic,
the coupled classes must all be updated. Furthermore, if we would like to use a class
in another program, we have to take with it all the classes on which it depends.
Thus, we want to remove unnecessary coupling between classes.

3. Why is the CashRegister class from Chapter 4 not cohesive?
4. Why does the Coin class not depend on the CashRegister class?
5. Why should coupling be minimized between classes?

Consistency

In this section you learned of two criteria for analyzing the quality of the public interface of
a class. You should maximize cohesion and remove unnecessary coupling. There is another
criterion that we would like you to pay attention to—consistency. When you have a set of
methods, follow a consistent scheme for their names and parameters. This is simply a sign of
good craftsmanship.

Sadly, you can find any number of inconsistencies in the standard library. Here is an
example. To show an input dialog box, you call

JOptionPane.showInputDialog(promptString)

Figure 2 High and Low Coupling Between Classes

Low couplingHigh coupling

It is a good practice
to minimize the
coupling (i.e.,
dependency)
between classes.

S E L F C H E C K

Quality Tip 8.1

294 Chapter 8 Designing Classes

To show a message dialog box, you call

JOptionPane.showMessageDialog(null, messageString)

What’s the null parameter? It turns out that the showMessageDialog method needs a parameter
to specify the parent window, or null if no parent window is required. But the
showInputDialog method requires no parent window. Why the inconsistency? There is no rea-
son. It would have been an easy matter to supply a showMessageDialog method that exactly
mirrors the showInputDialog method.

Inconsistencies such as these are not fatal flaws, but they are an annoyance, particularly
because they can be so easily avoided.

When analyzing a program that consists of many classes, it is not only important to
understand which parts of the program use a given class. We also want to under-
stand who modifies objects of a class. The following sections are concerned with
this aspect of class design.

Recall that a mutator method modifies the object on which it is invoked,
whereas an accessor method merely accesses information without making any
modifications. For example, in the BankAccount class, the deposit and withdraw meth-
ods are mutator methods. Calling

account.deposit(1000);

modifies the state of the account object, but calling
double balance = account.getBalance();

does not modify the state of account.
You can call an accessor method as many times as you like—you always get the

same answer, and the method does not change the state of your object. That is
clearly a desirable property, because it makes the behavior of such a method very
predictable.

Some classes have been designed to have only accessor methods and no mutator
methods at all. Such classes are called immutable. An example is the String class.
Once a string has been constructed, its content never changes. No method in the
String class can modify the contents of a string. For example, the toUpperCase method
does not change characters from the original string. Instead, it constructs a new
string that contains the uppercase characters:

String name = "John Q. Public";
String uppercased = name.toUpperCase(); // name is not changed

An immutable class has a major advantage: It is safe to give out references to its
objects freely. If no method can change the object’s value, then no code can modify
the object at an unexpected time. In contrast, if you give out a BankAccount reference
to any other method, you have to be aware that the state of your object may
change—the other method can call the deposit and withdraw methods on the refer-
ence that you gave it.

6. Is the substring method of the String class an accessor or a mutator?
7. Is the Rectangle class immutable?

8.3 Immutable Classes

An immutable
class has no
mutator methods.

References to
objects of an
immutable class can
be safely shared.

S E L F C H E C K

8.4 Side Effects 295

A side effect of a method is any kind of modification of data that is observable out-
side the method. Mutator methods have a side effect, namely the modification of
the implicit parameter. For example, when you call

harrysChecking.deposit(1000);

you can tell that something changed by calling harrysChecking.getBalance().
Now consider the explicit parameter of a method, such as studentNames here:
public class GradeBook
{
 . . .
 /**

Adds student names to this grade book.
 @param studentNames a list of student names
 */
 public void addStudents(ArrayList<String> studentNames)
 {
 while (studentNames.size() > 0)
 {
 String name = studentNames.remove(0); // Not recommended

Add name to gradebook
 }
 }
}

This method removes all names from the studentNames parameter as it adds them to
the grade book. That too is a side effect. After a call

book.addStudents(listOfNames);

the call listOfNames.size() returns 0. Such a side effect would not be what most pro-
grammers expect. It is better if the method reads the names from the list without
modifying it.

Now consider the following method:
public class BankAccount
{
 . . .
 /**

Transfers money from this account to another account.
 @param amount the amount of money to transfer
 @param other the account into which to transfer the money
 */
 public void transfer(double amount, BankAccount other)
 {
 balance = balance - amount;
 other.deposit(amount);
 }
}

This method modifies both the implicit parameter and the explicit parameter other.
Neither side effect is surprising for a transfer method, and there is no reason to
avoid them.

Another example of a side effect is output. Consider how we have always printed
a bank balance:

System.out.println("The balance is now $" + momsSavings.getBalance());

8.4 Side Effects
A side effect of a
method is any
externally
observable data
modification.

296 Chapter 8 Designing Classes

Why don’t we simply have a printBalance method?
public void printBalance() // Not recommended
{
 System.out.println("The balance is now $" + balance);
}

That would be more convenient when you actually want to print the value. But, of
course, there are cases when you want the value for some other purpose. Thus, you
can’t simply drop the getBalance method in favor of printBalance.

More importantly, the printBalance method forces strong assumptions on the
BankAccount class.

• The message is in English—you assume that the user of your software reads
English. The majority of people on the planet don’t.

• You rely on System.out. A method that relies on System.out won’t work in an
embedded system, such as the computer inside an automatic teller machine.

In other words, this design violates the rule of minimizing the coupling of the
classes. The printBalance method couples the BankAccount class with the System and
PrintStream classes. It is best to decouple input/output from the actual work of your
classes.

8. If a refers to a bank account, then the call a.deposit(100) modifies the bank
account object. Is that a side effect?

9. Consider the DataSet class of Chapter 6. Suppose we add a method
void read(Scanner in)
{
 while (in.hasNextDouble())
 add(in.nextDouble());
}

Does this method have a side effect other than mutating the data set?

Trying to Modify Primitive Type Parameters

Methods can’t update parameters of primitive type (numbers, char, and boolean). To illustrate
this point, let’s try to write a method that updates a number parameter:

public class BankAccount
{
 . . .
 /**

Transfers money from this account and tries to add it to a balance.
 @param amount the amount of money to transfer
 @param otherBalance balance to add the amount to
 */
 void transfer(double amount, double otherBalance)
 {
 balance = balance - amount;
 otherBalance = otherBalance + amount;
 // Won’t work
 }
}

S E L F C H E C K

Common Error 8.1

2

3

8.4 Side Effects 297

This doesn’t work. Let’s consider a method call.

double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);

As the method starts, the parameter variable otherBalance is set to the same value as
savingsBalance (see Figure 3). Then the value of the otherBalance value is modified, but that
modification has no effect on savingsBalance, because otherBalance is a separate variable.
When the method terminates, the otherBalance variable dies, and savingsBalance isn’t
increased.

Figure 3 Modifying a Numeric Parameter Has No Effect on Caller

A N I M AT I O N
A Method Cannot
Modify a Numeric

Parameter

1
4

2

3

4

Before method call

Initializing
method parameters

After method call

About to return
to the caller

savingsBalance =

harrysChecking =

balance =

BankAccount

25001000

savingsBalance =

harrysChecking =

balance =

BankAccount

2500
this =

amount = 500

1000

otherBalance = 1000

savingsBalance =

harrysChecking =

balance =

BankAccount

20001000

savingsBalance =

harrysChecking =

balance =

BankAccount

2000
this =

amount = 500

1000

otherBalance = 1500

1

Modification has
no effect on

savingsBalance

298 Chapter 8 Designing Classes

Why did the example at the beginning of Section 8.4 work, where the second explicit
parameter was a BankAccount reference? Then the parameter variable contained a copy of the
object reference. Through that reference, the method is able to modify the object.

You already saw this difference between objects and primitive types in Chapter 2. As a
consequence, a Java method can never modify numbers that are passed to it.

Minimize Side Effects

In an ideal world, all methods would be accessors that simply return an answer without
changing any value at all. (In fact, programs that are written in so-called functional program-
ming languages, such as Scheme and ML, come close to this ideal.) Of course, in an object-
oriented programming language, we use objects to remember state changes. Therefore, a
method that just changes the state of its implicit parameter is certainly acceptable. Although
side effects cannot be completely eliminated, they can be the cause of surprises and problems
and should be minimized.

When analyzing side effects, we can categorize methods as follows:
• Accessor methods with no changes to any explicit parameters—no side effects. Example:

getBalance.
• Mutator methods with no changes to any explicit parameters—an acceptable side effect.

Example: BankAccount.withdraw is acceptable.
• Methods that change an explicit parameter—a side effect that should be avoided when

possible. Example: BankAccount.transfer on page 295 is acceptable, but GradeBook.add-
Students on page 295 should be changed.

• Methods that change another object (such as System.out)—a side effect that should be
avoided. Example: BankAccount.printBalance on page 296 should not be implemented.

Don’t Change the Contents of Parameter Variables

As explained in Common Error 8.1 on page 296 and Special Topic 8.1 on page 299, a method
can treat its parameter variables like local variables and change their contents. However, that
change affects only the parameter variable within the method itself—not any values supplied
in the method call. Some programmers take “advantage” of the temporary nature of the
parameter variables and use them as “convenient” holders for intermediate results, as in this
example:

public void deposit(double amount)
{
 // Using the parameter variable to hold an intermediate value
 amount = balance + amount; // Poor style
 . . .
}

That code would produce errors if another statement in the method referred to amount
expecting it to be the value of the parameter, and it will confuse later programmers
maintaining this method. You should always treat the parameter variables as if they were
constants. Don’t assign new values to them. Instead, introduce a new local variable.

In Java, a method can
never change
parameters of
primitive type.

Quality Tip 8.2

When designing
methods, minimize
side effects.

Quality Tip 8.3

8.5 Preconditions and Postconditions 299

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

public void deposit(double amount)
{
 double newBalance = balance + amount;
 . . .
}

Call by Value and Call by Reference

Special Topic 8.1 explains the theoretical concepts of “call by value” and “call by reference”
and demonstrates that the Java programming language always uses “call by value”.

A precondition is a requirement that the caller of a method must obey. For exam-
ple, the deposit method of the BankAccount class has a precondition that the amount to
be deposited should not be negative. It is the responsibility of the caller never to call
a method if one of its preconditions is violated. If the method is called anyway, it is
not responsible for producing a correct result.

Therefore, a precondition is an important part of the method, and you must doc-
ument it. Here we document the precondition that the amount parameter must not be
negative.

/**
Deposits money into this account.

 @param amount the amount of money to deposit
(Precondition: amount >= 0)

*/

Some javadoc extensions support a @precondition or @requires tag, but it is not a part
of the standard javadoc program. Because the standard javadoc tool skips all
unknown tags, we simply add the precondition to the method explanation or the
appropriate @param tag.

Preconditions are typically provided for one of two reasons:

1. To restrict the parameters of a method
2. To require that a method is only called when it is in the appropriate state

For example, once a Scanner has run out of input, it is no longer legal to call the next
method. Thus, a precondition for the next method is that the hasNext method returns
true.

A method is responsible for operating correctly only when its caller has fulfilled
all preconditions. The method is free to do anything if a precondition is not ful-
filled. What should a method actually do when it is called with inappropriate
inputs? For example, what should account.deposit(-1000) do? There are two choices.

1. A method can check for the violation and throw an exception. Then the
method does not return to its caller; instead, control is transferred to an

Special Topic 8.1

8.5 Preconditions and Postconditions
A precondition is a
requirement that the
caller of a method
must meet.

If a method is called
in violation of a
precondition, the
method is not
responsible for
computing the
correct result.

300 Chapter 8 Designing Classes

exception handler. If no handler is present, then the program terminates. We
will discuss exceptions in Chapter 11.

2. A method can skip the check and work under the assumption that the precon-
ditions are fulfilled. If they aren’t, then any data corruption (such as a negative
balance) or other failures are the caller’s fault.

The first approach can be inefficient, particularly if the same check is carried out
many times by several methods. The second approach can be dangerous. The asser-
tion mechanism was invented to give you the best of both approaches.

An assertion is a condition that you believe to be true at all times in a particular
program location. An assertion check tests whether an assertion is true. Here is a
typical assertion check that tests a precondition:

public double deposit (double amount)
{
 assert amount >= 0;
 balance = balance + amount;
}

In this method, the programmer expects that the quantity amount can never be nega-
tive. When the assertion is correct, no harm is done, and the program works in the
normal way. If, for some reason, the assertion fails, and assertion checking is
enabled, then the program terminates with an AssertionError.

However, if assertion checking is disabled, then the assertion is never checked,
and the program runs at full speed. By default, assertion checking is disabled when
you execute a program. To execute a program with assertion checking turned on,
use this command:

java -enableassertions MainClass

You can also use the shortcut -ea instead of -enableassertions. You definitely want to
turn assertion checking on during program development and testing.

You don’t have to use assertions for checking preconditions—throwing an
exception is another reasonable option. But assertions have one advantage: You can
turn them off after you have tested your program, so that it runs at maximum
speed. That way, you never have to feel bad about putting lots of assertions into
your code. You can also use assertions for checking conditions other than
preconditions.

Many beginning programmers think that it isn’t “nice” to abort the program
when a precondition is violated. Why not simply return to the caller instead?

public void deposit(double amount)
{
 if (amount < 0)

return; // Not recommended
 balance = balance + amount;
}

That is legal—after all, a method can do anything if its preconditions are violated.
But it is not as good as an assertion check. If the program calling the deposit method
has a few bugs that cause it to pass a negative amount as an input value, then the ver-
sion that generates an assertion failure will make the bugs very obvious during test-
ing—it is hard to ignore when the program aborts. The quiet version, on the other
hand, will not alert you, and you may not notice that it performs some wrong cal-
culations as a consequence. Think of assertions as the “tough love” approach to pre-
condition checking.

An assertion is a
logical condition in a
program that you
believe to be true.

8.5 Preconditions and Postconditions 301

When a method is called in accordance with its preconditions, then the method
promises to do its job correctly. A different kind of promise that the method makes
is called a postcondition. There are two kinds of postconditions:

1. The return value is computed correctly.
2. The object is in a certain state after the method call is completed.

Here is a postcondition that makes a statement about the object state after the
deposit method is called.

/**
Deposits money into this account.
(Postcondition: getBalance() >= 0)

 @param amount the amount of money to deposit
(Precondition: amount >= 0)

*/

As long as the precondition is fulfilled, this method guarantees that the balance after
the deposit is not negative.

Some javadoc extensions support a @postcondition or @ensures tag. However, just as
with preconditions, we simply add postconditions to the method explanation or the
@return tag, because the standard javadoc program skips all tags that it doesn’t know.

Some programmers feel that they must specify a postcondition for every method.
When you use javadoc, however, you already specify a part of the postcondition in
the @return tag, and you shouldn’t repeat it in a postcondition.

// This postcondition statement is overly repetitive.
/**

Returns the current balance of this account.
 @return the account balance

(Postcondition: The return value equals the account balance.)
*/

Note that we formulate pre- and postconditions only in terms of the interface of the
class. Thus, we state the precondition of the withdraw method as amount <=

getBalance(), not amount <= balance. After all, the caller, which needs to check the pre-
condition, has access only to the public interface, not the private implementation.

Preconditions and postconditions are often compared to contracts. In real life,
contracts spell out the obligations of the contracting parties. For example, a car
dealer may promise you a car in good working order, and you promise in turn to
pay a certain amount of money. If either party breaks the promise, then the other is
not bound by the terms of the contract. In the same fashion, pre- and postcondi-
tions are contractual terms between a method and its caller. The method promises

Syntax 8.1 Assertion

assert condition;Syntax

Example
assert amount >= 0;

Condition that is claimed to be true.

If the condition is false
and assertion checking is enabled,
an exception occurs.

If a method has
been called in
accordance with its
preconditions, then
it must ensure that
its postconditions
are valid.

302 Chapter 8 Designing Classes

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

to fulfill the postcondition for all inputs that fulfill the precondition. The caller
promises never to call the method with illegal inputs. If the caller fulfills its promise
and gets a wrong answer, it can take the method to “programmer’s court”. If the
caller doesn’t fulfill its promise and something terrible happens as a consequence, it
has no recourse.

10. Why might you want to add a precondition to a method that you provide for
other programmers?

11. When you implement a method with a precondition and you notice that the
caller did not fulfill the precondition, do you have to notify the caller?

Class Invariants

Special Topic 8.2 introduces the topic of class invariants, logical statements that are true after
every constructor and method call. Class invariants can be used for correctness proofs.

Sometimes you need a method that is not invoked on an object. Such a method is
called a static method or a class method. In contrast, the methods that you have
written up to now are often called instance methods because they operate on a par-
ticular instance of an object.

A typical example of a static method is the sqrt method in the Math class. When
you call Math.sqrt(x), you don’t supply any implicit parameter. (Recall that Math is
the name of a class, not an object.)

Why would you want to write a method that does not operate on an object? The
most common reason is that you want to encapsulate some computation that
involves only numbers. Because numbers aren’t objects, you can’t invoke methods
on them. For example, the call x.sqrt() can never be legal in Java.

Here is a typical example of a static method that carries out some simple algebra:
to compute p percent of the amount a. Because the parameters are numbers, the
method doesn’t operate on any objects at all, so we make it into a static method:

/**
Computes a percentage of an amount.

 @param p the percentage to apply
 @param a the amount to which the percentage is applied
 @return p percent of a
*/
public static double percentOf(double p, double a)
{
 return (p / 100) * a;
}

You need to find a home for this method. Let us come up with a new class (similar
to the Math class of the standard Java library). Because the percentOf method has to

S E L F C H E C K

Special Topic 8.2

8.6 Static Methods
A static method is
not invoked on
an object.

8.6 Static Methods 303

do with financial calculations, we’ll design a class Financial to hold it. Here is the
class:

public class Financial
{
 public static double percentOf(double p, double a)
 {
 return (p / 100) * a;
 }
 // More financial methods can be added here.
}

When calling a static method, you supply the name of the class containing the
method so that the compiler can find it. For example,

double tax = Financial.percentOf(taxRate, total);

Note that you do not supply an object of type Financial when you call the method.
There is another reason why static methods are sometimes necessary. If a method

manipulates a class that you do not own, you cannot add it to that class. Consider a
method that computes the area of a rectangle. The Rectangle class in the standard
library has no such feature, and we cannot modify that class. A static method solves
this problem:

public class Geometry
{
 public static double area(Rectangle rect)
 {
 return rect.getWidth() * rect.getHeight();
 }
 // More geometry methods can be added here.
}

Now we can tell you why the main method is static. When the program starts, there
aren’t any objects. Therefore, the first method in the program must be a static
method.

You may well wonder why these methods are called static. The normal meaning
of the word static (“staying fixed at one place”) does not seem to have anything to
do with what static methods do. Indeed, it’s used by accident. Java uses the static
reserved word because C++ uses it in the same context. C++ uses static to denote
class methods because the inventors of C++ did not want to invent another reserved
word. Someone noted that there was a relatively rarely used reserved word, static,
that denotes certain variables that stay in a fixed location for multiple method calls.
(Java does not have this feature, nor does it need it.) It turned out that the reserved
word could be reused to denote class methods without confusing the compiler. The
fact that it can confuse humans was apparently not a big concern. You’ll just have to
live with the fact that “static method” means “class method”: a method that has
only explicit parameters.

12. Suppose that Java had no static methods. How would you use the Math.sqrt
method for computing the square root of a number x?

13. The following method computes the average of an array list of numbers:
public static double average(ArrayList<Double> values)

Why must it be a static method?

When you design a
static method, you
must find a class
into which it should
be placed.

S E L F C H E C K

304 Chapter 8 Designing Classes

Minimize the Use of Static Methods

It is possible to solve programming problems by using classes with only static methods. In
fact, before object-oriented programming was invented, that approach was quite common.
However, it usually leads to a design that is not object-oriented and makes it hard to evolve a
program.

Consider the task of How To 7.1. A program reads scores for a student and prints the
final score, which is obtained by dropping the lowest one. We solved the problem by imple-
menting a GradeBook class that stores student scores. Of course, we could have simply written
a program with a few static methods:

public class ScoreAnalyzer
{
 public static double[] readInputs() { . . . }
 public static double sum(double[] values) { . . . }
 public static double minimum(double[] values) { . . . }
 public static double finalScore(double[] values)
 {
 if (values.length == 0) return 0;
 else if (values.length == 1) return 1;
 else return sum(values) - minimum(values);
 }

 public static void main(String[] args)
 {
 System.out.println(finalScore(readInputs()));
 }
}

That solution is fine if one’s sole objective is to solve a simple homework problem. But
suppose you need to modify the program so that it deals with multiple students. An object-
oriented program can evolve the GradeBook class to store grades for many students. In con-
trast, adding more functionality to static methods gets messy quickly (see Exercise P8.7).

Sometimes, a value properly belongs to a class, not to any object of the class. You
use a static variable for this purpose. Here is a typical example. We want to assign
bank account numbers sequentially. That is, we want the bank account constructor
to construct the first account with number 1001, the next with number 1002, and so
on. Therefore, we must store the last assigned account number somewhere.

Of course, it makes no sense to make this value into an instance variable:
public class BankAccount
{
 private double balance;
 private int accountNumber;
 private int lastAssignedNumber = 1000; // NO—won’t work
 . . .
}

Quality Tip 8.4

8.7 Static Variables

8.7 Static Variables 305

In that case each instance of the BankAccount class would have its own value of last-
AssignedNumber.

Instead, we need to have a single value of lastAssignedNumber that is the same for
the entire class. Such a variable is called a static variable, because you declare it using
the static reserved word.

public class BankAccount
{
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;
 . . .
}

Every BankAccount object has its own balance and accountNumber instance variables, but
there is only a single copy of the lastAssignedNumber variable (see Figure 4). That
variable is stored in a separate location, outside any BankAccount objects.

A static variable is sometimes called a class variable because there is a single vari-
able for the entire class.

Every method of a class can access its static variables. Here is the constructor of
the BankAccount class, which increments the last assigned number and then uses it to
initialize the account number of the object to be constructed:

public class BankAccount
{
 . . .
 public BankAccount()
 {
 lastAssignedNumber++; // Updates the static variable
 accountNumber = lastAssignedNumber; // Sets the instance variable
 }
}

A static variable
belongs to the class,
not to any object
of the class.

Figure 4
A Static Variable
and Instance
Variables

collegeFund =

balance =

accountNumber =

BankAccount

10000
1001

momsSavings =

balance =

accountNumber =

BankAccount

8000
1002

harrysChecking =

balance =

accountNumber =

BankAccount

0
1003

Each
BankAccount

object has its own
accountNumber
instance variable.

BankAccount.lastAssignedNumber = 1003

There is a single
lastAssignedNumber

static variable for the
BankAccount

class.

306 Chapter 8 Designing Classes

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

There are three ways to initialize a static variable:

1. Do nothing. The static variable is then initialized with 0 (for numbers), false
(for boolean values), or null (for objects).

2. Use an explicit initializer, such as
public class BankAccount
{
 private static int lastAssignedNumber = 1000;
 . . .
}

3. Use a static initialization block (see Special Topic 8.4).

Like instance variables, static variables should always be declared as private to
ensure that methods of other classes do not change their values. The exception to
this rule are static constants, which may be either private or public. For example, the
BankAccount class may want to declare a public constant value, such as

public class BankAccount
{
 public static final double OVERDRAFT_FEE = 29.95;
 . . .
}

Methods from any class can refer to such a constant as BankAccount.OVERDRAFT_FEE.
It makes sense to declare constants as static—you wouldn’t want every object of

the BankAccount class to have its own set of variables with these constant values. It is
sufficient to have one set of them for the class.

Why are class variables called static? As with static methods, the static reserved
word itself is just a meaningless holdover from C++. But static variables and static
methods have much in common: They apply to the entire class, not to specific
instances of the class.

In general, you want to minimize the use of static methods and variables. If you
find yourself using lots of static methods that access static variables, then that’s an
indication that you have not found the right classes to solve your problem in an
object-oriented way.

14. Name two static variables of the System class.
15. Harry tells you that he has found a great way to avoid those pesky objects: Put

all code into a single class and declare all methods and variables static. Then
main can call the other static methods, and all of them can access the static vari-
ables. Will Harry’s plan work? Is it a good idea?

Static Imports

Special Topic 8.3 introduces the “static import” syntax for importing static constants so that
they can be used without a class prefix.

S E L F C H E C K

Special Topic 8.3

8.8 Scope 307

Alternative Forms of Instance and Static Variable Initialization

Special Topic 8.4 covers two less common mechanisms for instance variable initialization:
specifying initial values for instance variables, and using initialization blocks.

The scope of a variable is the part of the program in which the variable can be
accessed. It is considered good design to minimize the scope of a variable. This
reduces the possibility of accidental modification and name conflicts.

In the following sections, you will learn how to determine the scopes of local and
instance variables, and how to resolve name conflicts if the scopes overlap.

The scope of a local variable extends from the point of its declaration to the end of
the block or for loop that encloses it. The scope of a parameter variable is the entire
method.

public static void process(double[] values) // values is a parameter variable
{
 for (int i = 0; i < 10; i++) // i is a local variable declared in a for loop
 {
 if (values[i] == 0)
 {
 double r = Math.random(); // r is a local variable declared in a block
 values[i] = r;
 } // Scope of r ends here
 } // Scope of i ends here
} // Scope of values ends here

In Java, the scope of a local variable can never contain the declaration of another
local variable with the same name. For example, the following is an error:

public static void main(String[] args)
{
 double r = Math.random();
 if (r > 0.5)
 {

Rectangle r = new Rectangle(5, 10, 20, 30);
 // Error—can’t declare another variable called r here
 . . .
 }
}

However, you can have local variables with identical names if their scopes do not
overlap, such as

if (Math.random() > 0.5)
{

Special Topic 8.4

8.8 Scope
The scope of a
variable is the region
of a program in
which the variable
can be accessed.

8.8.1 Scope of Variables

The scope of a local
variable cannot
contain the
declaration of
another local
variable with the
same name.

308 Chapter 8 Designing Classes

Rectangle r = new Rectangle(5, 10, 20, 30);
 . . .
} // Scope of r ends here
else
{

int r = 5;
 // OK—it is legal to declare another r here
 . . .
}

These variables are independent from each other, or, in other words, their scopes are
disjoint. You can have local variables with the same name r in different methods,
just as you can have different motels with the same name “Bates Motel” in different
cities.

In contrast, the scope of instance variables and static variables consists of the
entire class in which they are declared.

Problems arise if you have two identical variable names with overlapping scope.
This can never occur with local variables, but the scopes of identically named local
variables and instance variables can overlap. Here is a purposefully bad example.

public class Coin
{
 private String name;
 private double value; // Instance variable
 . . .
 public double getExchangeValue(double exchangeRate)
 {

 double value; // Local variable with the same name
 . . .
 return value;
 }
}

Inside the getExchangeValue method, the variable name value could potentially have
two meanings: the local variable or the instance variable. The Java language speci-
fies that in this situation the local variable wins out. It shadows the instance variable.
This sounds pretty arbitrary, but there is actually a good reason: You can still refer
to the instance variable as this.value.

value = this.value * exchangeRate;

Of course, it is not a good idea to write code like this. You can easily change the
name of the local variable to something else, such as result.

However, there is one situation where overlapping scope is acceptable. When
implementing constructors or setter methods, it can be awkward to come up with
different names for instance variables and parameters. Here is how you can use the
same name for both:

public Coin(double value, String name)
{
 this.value = value;
 this.name = name;
}

The expression this.value refers to the instance variable, and value is the parameter.

8.8.2 Overlapping Scope

A local variable can
shadow an instance
variable with the
same name. You can
access the shadowed
variable name
through the this
reference.

8.8 Scope 309

16. Consider the following program that uses two variables named r. Is this legal?
public class RectangleTester
{
 public static double area(Rectangle rect)
 {
 double r = rect.getWidth() * rect.getHeight();
 return r;
 }

 public static void main(String[] args)
 {

Rectangle r = new Rectangle(5, 10, 20, 30);
 double a = area(r);
 System.out.println(r);
 }
}

17. What is the scope of the balance variable of the BankAccount class?

Shadowing

Accidentally using the same name for a local variable and an instance variable is a surpris-
ingly common error. As you saw in the preceding section, the local variable then shadows the
instance variable. Even though you may have meant to access the instance variable, the local
variable is quietly accessed. Look at this example of an incorrect constructor:

public class Coin
{
 private double value;
 private String name;
 . . .
 public Coin(double aValue, String aName)
 {
 value = aValue;
 String name = aName; // Oops . . .
 }
}

The programmer declared a local variable name in the constructor. In all likelihood, that was
just a typo—the programmer’s fingers were on autopilot and typed the reserved word String,
even though the programmer all the time intended to access the instance variable. Unfortu-
nately, the compiler gives no warning in this situation and quietly sets the local variable to
the value of aName. The instance variable of the object that is being constructed is never
touched, and remains null.

Some programmers give all instance variable names a special prefix to distinguish them
from other variables. A common convention is to prefix all instance variable names with the
prefix my, such as myValue or myName.

Another way of avoiding this problem is to use the this parameter when accessing an
instance variable:

this.name = aName;

S E L F C H E C K

Common Error 8.2

310 Chapter 8 Designing Classes

Minimize Variable Scope

When you make the scope of a variable as small as possible, it becomes less likely that the
variable is accidentally corrupted. It also becomes easier to modify or eliminate the variable
as you reorganize your code.

As already mentioned, don’t make an instance variable public. (The Java library has a few
classes with public instance variables, but their creators later regretted their decision when
they were unable to make optimizations later.)

When you have a constant, ask yourself who needs it. Everybody (public static final)?
Only the class (private static final)? Only a single method (a final local variable)? Choose
the smallest scope.

Beware of unnecessary instance variables. For example, consider the Pyramid class in
Worked Example 4.1. You would not want an instance variable for the volume:

public class Pyramid
{
 private double height;
 private double baseLength;
 private double volume; // Not a good idea to use class scope for this variable
 . . .
}

Instead, compute the volume when it is needed in the getVolume method. That way, no other
method can accidentally modify the volume variable, or forget to modify it when changing the
height or base length.

Finally, with local variables, declare them only when you need them.

A Java program consists of a collection of classes. So far, most of your programs
have consisted of a small number of classes. As programs get larger, however, sim-
ply distributing the classes over multiple files isn’t enough. An additional structur-
ing mechanism is needed.

In Java, packages provide this structuring mechanism. A Java package is a set of
related classes. For example, the Java library consists of several hundred packages,
some of which are listed in Table 1.

Quality Tip 8.5

You should give each
variable the smallest
scope that it needs.

8.9 Packages
A package is a set of
related classes.

Syntax 8.2 Package Specification

package packageName;Syntax

Example
package com.horstmann.bigjava;

The classes in this file
belong to this package. A good choice for a package name

is a domain name in reverse.

8.9 Packages 311

To put one of your classes in a package, you must place a line
package packageName;

as the first instruction in the source file containing the class. A package name con-
sists of one or more identifiers separated by periods. (See Section 8.9.3 for tips on
constructing package names.)

For example, let’s put the Financial class introduced in this chapter into a package
named com.horstmann.bigjava. The Financial.java file must start as follows:

package com.horstmann.bigjava;
public class Financial
{
 . . .
}

In addition to the named packages (such as java.util or com.horstmann.bigjava), there
is a special package, called the default package, which has no name. If you did not
include any package statement at the top of your source file, its classes are placed in
the default package.

If you want to use a class from a package, you can refer to it by its full name (pack-
age name plus class name). For example, java.util.Scanner refers to the Scanner class
in the java.util package:

java.util.Scanner in = new java.util.Scanner(System.in);

Table 1 Important Packages in the Java Library

Package Purpose Sample Class

java.lang Language support Math

java.util Utilities Random

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.applet Applets Applet

java.net Networking Socket

java.sql Database access through Structured Query Language ResultSet

javax.swing Swing user interface JButton

omg.w3c.dom Document Object Model for XML documents Document

8.9.1 Organizing Related Classes into Packages

8.9.2 Importing Packages

312 Chapter 8 Designing Classes

Naturally, that is somewhat inconvenient. You can instead import a name with an
import statement:

import java.util.Scanner;

Then you can refer to the class as Scanner without the package prefix.
You can import all classes of a package with an import statement that ends in .*.

For example, you can use the statement
import java.util.*;

to import all classes from the java.util package. That statement lets you refer to
classes like Scanner or Random without a java.util prefix.

However, you never need to import the classes in the java.lang package explicitly.
That is the package containing the most basic Java classes, such as Math and Object.
These classes are always available to you. In effect, an automatic import java.lang.*;
statement has been placed into every source file.

Finally, you don’t need to import other classes in the same package. For example,
when you implement the class homework1.Tester, you don’t need to import the class
homework1.Bank. The compiler will find the Bank class without an import statement
because it is located in the same package, homework1.

Placing related classes into a package is clearly a convenient mechanism to organize
classes. However, there is a more important reason for packages: to avoid name
clashes. In a large project, it is inevitable that two people will come up with the
same name for the same concept. This even happens in the standard Java class
library (which has now grown to thousands of classes). There is a class Timer in the
java.util package and another class called Timer in the javax.swing package. You can
still tell the Java compiler exactly which Timer class you need, simply by referring to
them as java.util.Timer and javax.swing.Timer.

Of course, for the package-naming convention to work, there must be some way
to ensure that package names are unique. It wouldn’t be good if the car maker
BMW placed all its Java code into the package bmw, and some other programmer
(perhaps Britney M. Walters) had the same bright idea. To avoid this problem, the
inventors of Java recommend that you use a package-naming scheme that takes
advantage of the uniqueness of Internet domain names.

For example, I have a domain name horstmann.com, and there is nobody else on the
planet with the same domain name. (I was lucky that the domain name horstmann.com
had not been taken by anyone else when I applied. If your name is Walters, you will
sadly find that someone else beat you to walters.com.) To get a package name, turn
the domain name around to produce a package name prefix, such as com.horstmann.

If you don’t have your own domain name, you can still create a package name
that has a high probability of being unique by writing your e-mail address back-
wards. For example, if Britney Walters has an e-mail address walters@cs.sjsu.edu,
then she can use a package name edu.sjsu.cs.walters for her own classes.

Some instructors will want you to place each of your assignments into a separate
package, such as homework1, homework2, and so on. The reason is again to avoid name

The import directive
lets you refer to a
class of a package
by its class name,
without the
package prefix.

8.9.3 Package Names

Use a domain name
in reverse to
construct an
unambiguous
package name.

8.9 Packages 313

collision. You can have two classes, homework1.Bank and homework2.Bank, with slightly
different properties.

A source file must be located in a subdirectory that matches the package name. The
parts of the name between periods represent successively nested directories. For
example, the source files for classes in the package com.horstmann.bigjava would be
placed in a subdirectory com/horstmann/bigjava. You place the subdirectory inside the
base directory holding your program’s files. For example, if you do your homework
assignment in a directory /home/britney/hw8/problem1, then you can place the class
files for the com.horstmann.bigjava package into the directory /home/britney/hw8/
problem1/com/horstmann/bigjava, as shown in Figure 5. (Here, we are using UNIX-
style file names. Under Windows, you might use c:\Users\Britney\hw8\problem1\
com\horstmann\bigjava.)

18. Which of the following are packages?
a. java

b. java.lang

c. java.util

d. java.lang.Math

19. Is a Java program without import statements limited to using the default and
java.lang packages?

20. Suppose your homework assignments are located in the directory /home/me/cs101
(c:\Users\Me\cs101 on Windows). Your instructor tells you to place your home-
work into packages. In which directory do you place the class
hw1.problem1.TicTacToeTester?

8.9.4 Packages and Source Files

The path of a class
file must match its
package name.

Figure 5
Base Directories
and Subdirectories
for Packages

Path matches
package name

Base directory

S E L F C H E C K

314 Chapter 8 Designing Classes

Confusing Dots

In Java, the dot symbol (.) is used as a separator in the following situations:
• Between package names (java.util)
• Between package and class names (homework1.Bank)
• Between class and inner class names (Ellipse2D.Double)
• Between class and instance variable names (Math.PI)
• Between objects and methods (account.getBalance())
When you see a long chain of dot-separated names, it can be a challenge to find out which
part is the package name, which part is the class name, which part is an instance variable
name, and which part is a method name. Consider

java.lang.System.out.println(x);

Because println is followed by an opening parenthesis, it must be a method name. Therefore,
out must be either an object or a class with a static println method. (Of course, we know that
out is an object reference of type PrintStream.) Again, it is not at all clear, without context,
whether System is another object, with a public variable out, or a class with a static variable.
Judging from the number of pages that the Java language specification devotes to this issue,
even the compiler has trouble interpreting these dot-separated sequences of strings.

To avoid problems, it is helpful to adopt a strict coding style. If class names always start
with an uppercase letter, and variable, method, and package names always start with a lower-
case letter, then confusion can be avoided.

Package Access

If a class, field, or method has no public or private modifier, then all methods of classes in the
same package can access the feature. For example, if a class is declared as public, then all
other classes in all packages can use it. But if a class is declared without an access modifier,
then only the other classes in the same package can use it. Package access is a reasonable
default for classes, but it is extremely unfortunate for instance variables.

It is a common error to forget the reserved word private, thereby opening up a potential
security hole. For example, at the time of this writing, the Window class in the java.awt package
contained the following declaration:

public class Window extends Container
{
 String warningString;
 . . .
}

There actually was no good reason to grant package access to the warningString instance vari-
able—no other class accesses it.

Package access for instance variables is rarely useful and always a potential security risk.
Most instance variables are given package access by accident because the programmer simply
forgot the private reserved word. It is a good idea to get into the habit of scanning your
instance variable declarations for missing private modifiers.

Common Error 8.3

Special Topic 8.5

A field or method
that is not declared
as public or private
can be accessed by
all classes in the
same package,
which is usually
not desirable.

8.9 Packages 315

HOW TO 8.1 Programming with Packages

This How To explains in detail how to place your programs into packages. For example,
your instructor may ask you to place each homework assignment into a separate package.
That way, you can have classes with the same name but different implementations in separate
packages (such as homework1.problem1.Bank and homework1.problem2.Bank).

Step 1 Come up with a package name.

Your instructor may give you a package name to use, such as homework1.problem2. Or, perhaps
you want to use a package name that is unique to you. Start with your e-mail address, writ-
ten backwards. For example, walters@cs.sjsu.edu becomes edu.sjsu.cs.walters. Then add a
subpackage that describes your project, such as edu.sjsu.cs.walters.cs1project.

Step 2 Pick a base directory.

The base directory is the directory that contains the directories for your various packages,
for example, /home/britney or c:\Users\Britney.

Step 3 Make a subdirectory from the base directory that matches your package name.

The subdirectory must be contained in your base directory. Each segment must match a seg-
ment of the package name. For example,

mkdir -p /home/britney/homework1/problem2 (in UNIX)
or

mkdir /s c:\Users\Britney\homework1\problem2 (in Windows)

Step 4 Place your source files into the package subdirectory.

For example, if your homework consists of the files Tester.java and Bank.java, then you place
them into

/home/britney/homework1/problem2/Tester.java
/home/britney/homework1/problem2/Bank.java

or
c:\Users\Britney\homework1\problem2\Tester.java
c:\Users\Britney\homework1\problem2\Bank.java

Step 5 Use the package statement in each source file.

The first noncomment line of each file must be a package statement that lists the name of the
package, such as

package homework1.problem2;

Step 6 Compile your source files from the base directory.

Change to the base directory (from Step 2) to compile your files. For example,

cd /home/britney
javac homework1/problem2/Tester.java

or
c:
cd \Users\Britney
javac homework1\problem2\Tester.java

Note that the Java compiler needs the source file name and not the class name. That is, you
need to supply file separators (/ on UNIX, \ on Windows) and a file extension (.java).

316 Chapter 8 Designing Classes Testing Track

Step 7 Run your program from the base directory.

Unlike the Java compiler, the Java interpreter needs the class name (and not a file name) of
the class containing the main method. That is, use periods as package separators, and don’t use
a file extension. For example,

cd /home/britney
java homework1.problem2.Tester

or
c:
cd \Users\Britney
java homework1.problem2.Tester

The Explosive Growth of Personal Computers

Random Fact 8.1 traces the history of the personal computer, from the advent of the first
microprocessor to the first Macintosh.

Up to now, we have used a very simple approach to testing. We provided tester
classes whose main method computes values and prints actual and expected values.
However, that approach has limitations. The main method gets messy if it contains
many tests. And if an exception occurs during one of the tests, the remaining tests
are not executed.

Unit testing frameworks were designed to quickly execute and evaluate test
suites, and to make it easy to incrementally add test cases. One of the most popular
testing frameworks is JUnit. It is freely available at http://junit.org, and it is also
built into a number of development environments, including BlueJ and Eclipse.
Here we describe JUnit 4, the most current version of the library as this book is
written.

Random Fact 8.1

8.10 Unit Test Frameworks

Figure 6
Unit Testing with JUnit

Unit test frameworks
simplify the task of
writing classes that
contain many
test cases.

Testing Track 8.10 Unit Test Frameworks 317

When you use JUnit, you design a companion test class for each class that you
develop. You provide a method for each test case that you want to have executed.
You use “annotations” to mark the test methods. An annotation is an advanced Java
feature that places a marker into the code that is interpreted by another tool. In the
case of JUnit, the @Test annotation is used to mark test methods.

In each test case, you make some computations and then compute some condi-
tion that you believe to be true. You then pass the result to a method that communi-
cates a test result to the framework, most commonly the assertEquals method. The
assertEquals method takes as parameters the expected and actual values and, for
floating-point numbers, a tolerance value.

It is also customary (but not required) that the name of the test class ends in Test,
such as CashRegisterTest. Here is a typical example:

import org.junit.Test;
import org.junit.Assert;

public class CashRegisterTest
{
 @Test public void twoPurchases()
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(0.75);
 register.recordPurchase(1.50);
 register.enterPayment(2, 0, 5, 0, 0);
 double expected = 0.25;
 Assert.assertEquals(expected, register.giveChange(), EPSILON);
 }
 // More test cases
 . . .
}

If all test cases pass, the JUnit tool shows a green bar (see Figure 6). If any of the test
cases fail, the JUnit tool shows a red bar and an error message.

Your test class can also have other methods (whose names should not be anno-
tated with @Test). These methods typically carry out steps that you want to share
among test methods.

The JUnit philosophy is simple. Whenever you implement a class, also make a
companion test class. You design the tests as you design the program, one test
method at a time. The test cases just keep accumulating in the test class. Whenever
you have detected an actual failure, add a test case that flushes it out, so that you can
be sure that you won’t introduce that particular bug again. Whenever you modify
your class, simply run the tests again.

If all tests pass, the user interface shows a green bar and you can relax. Other-
wise, there is a red bar, but that’s also good. It is much easier to fix a bug in isolation
than inside a complex program.

21. Provide a JUnit test class with one test case for the Earthquake class in Chapter 5.
22. What is the significance of the EPSILON parameter in the assertEquals method?

The JUnit philosophy
is to run all tests
whenever you
change your code.

S E L F C H E C K

318 Chapter 8 Designing Classes

Find classes that are appropriate for solving a programming problem.

• A class should represent a single concept from a problem domain, such as business,
science, or mathematics.

Analyze cohesiveness and coupling of classes.

• The public interface of a class is cohesive if all of its features are related to the
concept that the class represents.

• A class depends on another class if it uses objects of that class.
• It is a good practice to minimize the coupling (i.e., dependency) between classes.

Recognize immutable classes and their benefits.

• An immutable class has no mutator methods.
• References to objects of an immutable class can be safely shared.

Recognize side effects and the need to minimize them.

• A side effect of a method is any externally observable data modification.
• In Java, a method can never change parameters of primitive type.
• When designing methods, minimize side effects.

Document preconditions and postconditions of methods.

• A precondition is a requirement that the caller of a method must meet.
• If a method is called in violation of a precondition, the method is not responsible

for computing the correct result.
• An assertion is a logical condition in a program that you believe to be true.
• If a method has been called in accordance with its preconditions, then it must

ensure that its postconditions are valid.

Implement static methods that do not operate on objects.

• A static method is not invoked on an object.
• When you design a static method, you must find a class into which it should

be placed.

Use static variables to describe properties of a class.

• A static variable belongs to the class, not to any object of the class.

Determine the scopes of local variables and instance variables.

• The scope of a variable is the region of a program in which the variable can be
accessed.

• The scope of a local variable cannot contain the declaration of another local variable
with the same name.

• A local variable can shadow an instance variable with the same name. You can
access the shadowed variable name through the this reference.

• You should give each variable the smallest scope that it needs.

Summary of Learning Objectives

Review Exercises 319

Use packages to organize sets of related classes.

• A package is a set of related classes.
• The import directive lets you refer to a class of a package by its class name, without

the package prefix.
• Use a domain name in reverse to construct an unambiguous package name.
• The path of a class file must match its package name.
• A field or method that is not declared as public or private can be accessed by all

classes in the same package, which is usually not desirable.

Use JUnit for writing unit tests.

• Unit test frameworks simplify the task of writing classes that contain many
test cases.

• The JUnit philosophy is to run all tests whenever you change your code.

• Lab Exercises
Animation A Method Cannot Modify a Numeric Parameter
Practice Quiz
Code Completion Exercises

R8.1 Consider the following problem description:

Users place coins in a vending machine and select a product by pushing a button.
If the inserted coins are sufficient to cover the purchase price of the product, the
product is dispensed and change is given. Otherwise, the inserted coins are returned
to the user.

What classes should you use to implement it?

R8.2 Consider the following problem description:

Employees receive their biweekly paychecks. They are paid their hourly rates for
each hour worked; however, if they worked more than 40 hours per week, they are
paid at 150 percent of their regular wage for those overtime hours.

What classes should you use to implement it?

R8.3 Consider the following problem description:

Customers order products from a store. Invoices are generated to list the items and
quantities ordered, payments received, and amounts still due. Products are shipped to
the shipping address of the customer, and invoices are sent to the billing address.

What classes should you use to implement it?

R8.4 Look at the public interface of the java.lang.System class and discuss whether or not
it is cohesive.

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

320 Chapter 8 Designing Classes

R8.5 Suppose an Invoice object contains descriptions of the products ordered, and the
billing and shipping addresses of the customer. Draw a UML diagram showing the
dependencies between the classes Invoice, Address, Customer, and Product.

R8.6 Suppose a vending machine contains products, and users insert coins into the vend-
ing machine to purchase products. Draw a UML diagram showing the dependen-
cies between the classes VendingMachine, Coin, and Product.

R8.7 On which classes does the class Integer in the standard library depend?

R8.8 On which classes does the class Rectangle in the standard library depend?

R8.9 Classify the methods of the class Scanner that are used in this book as accessors and
mutators.

R8.10 Classify the methods of the class Rectangle as accessors and mutators.

R8.11 Which of the following classes are immutable?
a. Rectangle

b. String
c. Random

R8.12 Which of the following classes are immutable?
a. PrintStream

b. Date
c. Integer

R8.13 What side effect, if any, do the following three methods have:
public class Coin
{
 . . .
 public void print()
 {
 System.out.println(name + " " + value);
 }

 public void print(PrintStream stream)
 {
 stream.println(name + " " + value);
 }

 public String toString()
 {
 return name + " " + value;
 }
}

R8.14 Ideally, a method should have no side effects. Can you write a program in which no
method has a side effect? Would such a program be useful?

R8.15 Write preconditions for the following methods. Do not implement the methods.
a. public static double sqrt(double x)

b. public static String romanNumeral(int n)
c. public static double slope(Line2D.Double a)

d. public static String weekday(int day)

Review Exercises 321

R8.16 What preconditions do the following methods from the standard Java library have?
a. Math.sqrt

b. Math.tan
c. Math.log

d. Math.pow
e. Math.abs

R8.17 What preconditions do the following methods from the standard Java library have?
a. Integer.parseInt(String s)

b. StringTokenizer.nextToken()
c. Random.nextInt(int n)

d. String.substring(int m, int n)

R8.18 When a method is called with parameters that violate its precondition(s), it can ter-
minate (by throwing an exception or an assertion error), or it can return to its caller.
Give two examples of library methods (standard or the library methods used in this
book) that return some result to their callers when called with invalid parameters,
and give two examples of library methods that terminate.

R8.19 Consider a CashRegister class with methods
• public void enterPayment(int coinCount, Coin coinType)
• public double getTotalPayment()

Give a reasonable postcondition of the enterPayment method. What preconditions
would you need so that the CashRegister class can ensure that postcondition?

R8.20 Consider the following method that is intended to swap the values of two floating-
point numbers:

public static void falseSwap(double a, double b)
{
 double temp = a;
 a = b;
 b = temp;
}

public static void main(String[] args)
{
 double x = 3;
 double y = 4;
 falseSwap(x, y);
 System.out.println(x + " " + y);
}

Why doesn’t the method swap the contents of x and y?

R8.21 How can you write a method that swaps two floating-point numbers?
Hint: Point2D.Double.

R8.22 Draw a memory diagram that shows why the following method can’t swap two
BankAccount objects:

public static void falseSwap(BankAccount a, BankAccount b)
{
 BankAccount temp = a;
 a = b;
 b = temp;
}

322 Chapter 8 Designing Classes

R8.23 Consider an enhancement of the Die class of Chapter 6 with a static variable
public class Die
{
 private int sides;
 private static Random generator = new Random();
 public Die(int s) { . . . }
 public int cast() { . . . }
}

Draw a memory diagram that shows three dice:
Die d4 = new Die(4);
Die d6 = new Die(6);
Die d8 = new Die(8);

Be sure to indicate the values of the sides and generator variables.

R8.24 Try compiling the following program. Explain the error message that you get.
public class Print13
{
 public void print(int x)
 {
 System.out.println(x);
 }

 public static void main(String[] args)
 {
 int n = 13;
 print(n);
 }
}

R8.25 Look at the methods in the Integer class. Which are static? Why?

R8.26 Look at the methods in the String class (but ignore the ones that take a parameter of
type char[]). Which are static? Why?

R8.27 The in and out variables of the System class are public static variables of the System
class. Is that good design? If not, how could you improve on it?

R8.28 In the following class, the variable n occurs in multiple scopes. Which declarations
of n are legal and which are illegal?

public class X
{
 private int n;

 public int f()
 {
 int n = 1;
 return n;
 }

 public int g(int k)
 {
 int a;
 for (int n = 1; n <= k; n++)
 a = a + n;
 return a;
 }

Programming Exercises 323

 public int h(int n)
 {
 int b;
 for (int n = 1; n <= 10; n++)
 b = b + n;
 return b + n;
 }

 public int k(int n)
 {
 if (n < 0)
 {
 int k = -n;
 int n = (int) (Math.sqrt(k));
 return n;
 }
 else return n;
 }

 public int m(int k)
 {
 int a;
 for (int n = 1; n <= k; n++)
 a = a + n;
 for (int n = k; n >= 1; n++)
 a = a + n;
 return a;
 }
}

R8.29 Every Java program can be rewritten to avoid import statements. Explain how, and
rewrite RectangleComponent.java from Chapter 2 to avoid import statements.

R8.30 What is the default package? Have you used it before this chapter in your
programming?

R8.31 What does JUnit do when a test method throws an exception? Try it out and report
your findings.

P8.1 Implement the Coin class described in Section 8.2. Modify the CashRegister class so
that coins can be added to the cash register, by supplying a method

void enterPayment(int coinCount, Coin coinType)

The caller needs to invoke this method multiple times, once for each type of coin
that is present in the payment.

P8.2 Modify the giveChange method of the CashRegister class so that it returns the number
of coins of a particular type to return:

int giveChange(Coin coinType)

The caller needs to invoke this method for each coin type, in decreasing value.

P8.3 Real cash registers can handle both bills and coins. Design a single class that
expresses the commonality of these concepts. Redesign the CashRegister class and

T

Programming Exercises

324 Chapter 8 Designing Classes

provide a method for entering payments that are described by your class. Your pri-
mary challenge is to come up with a good name for this class.

P8.4 Enhance the BankAccount class by adding preconditions for the constructor and the
deposit method that require the amount parameter to be at least zero, and a precondi-
tion for the withdraw method that requires amount to be a value between 0 and the cur-
rent balance. Use assertions to test the preconditions.

P8.5 Write static methods
• public static double sphereVolume(double r)

• public static double sphereSurface(double r)

• public static double cylinderVolume(double r, double h)

• public static double cylinderSurface(double r, double h)

• public static double coneVolume(double r, double h)

• public static double coneSurface(double r, double h)

that compute the volume and surface area of a sphere with radius r, a cylinder with
circular base with radius r and height h, and a cone with circular base with radius r
and height h. Place them into a class Geometry. Then write a program that prompts the
user for the values of r and h, calls the six methods, and prints the results.

P8.6 Solve Exercise P8.5 by implementing classes Sphere, Cylinder, and Cone. Which
approach is more object-oriented?

P8.7 Modify the grade book application of How To 7.1 so that it can deal with multiple
students. First, ask the user for all student names. Then read in the scores for all
quizzes, prompting for the score of each student. Finally, print the names of all stu-
dents and their final scores. Use a single class and only static methods.

P8.8 Repeat Exercise P8.7, using multiple classes. Modify the GradeBook class so that it
collects objects of type Student. Each such object should have a list of scores.

P8.9 Write methods
public static double perimeter(Ellipse2D.Double e);
public static double area(Ellipse2D.Double e);

that compute the area and the perimeter of the ellipse e. Add these methods to a
class Geometry. The challenging part of this assignment is to find and implement an
accurate formula for the perimeter. Why does it make sense to use a static method in
this case?

P8.10 Write methods
public static double angle(Point2D.Double p, Point2D.Double q)
public static double slope(Point2D.Double p, Point2D.Double q)

that compute the angle between the x-axis and the line joining two points, measured
in degrees, and the slope of that line. Add the methods to the class Geometry. Supply
suitable preconditions. Why does it make sense to use a static method in this case?

P8.11 Write methods
public static boolean isInside(Point2D.Double p, Ellipse2D.Double e)
public static boolean isOnBoundary(Point2D.Double p, Ellipse2D.Double e)

that test whether a point is inside or on the boundary of an ellipse. Add the methods
to the class Geometry.

Programming Projects 325

P8.12 Write a method
public static int readInt(
 Scanner in, String prompt, String error, int min, int max)

that displays the prompt string, reads an integer, and tests whether it is between the
minimum and maximum. If not, print an error message and repeat reading the
input. Add the method to a class Input.

P8.13 Consider the following algorithm for computing xn for an integer n. If n < 0, xn is
1/x–n. If n is positive and even, then xn = (xn/2)2. If n is positive and odd, then
xn = xn–1 ⋅ x. Implement a static method double intPower(double x, int n) that uses
this algorithm. Add it to a class called Numeric.

P8.14 Improve the Needle class of Chapter 6. Turn the generator variable into a static
variable so that all needles share a single random number generator.

P8.15 Implement a Coin and CashRegister class as described in Exercise P8.1. Place the
classes into a package called money. Keep the CashRegisterTester class in the default
package.

P8.16 Place a BankAccount class in a package whose name is derived from your e-mail
address, as described in Section 8.9. Keep the BankAccountTester class in the default
package.

P8.17 Provide a JUnit test class BankTest with three test methods, each of which tests a dif-
ferent method of the Bank class in Chapter 7.

P8.18 Provide JUnit test class TaxReturnTest with three test methods that test different tax
situations for the TaxReturn class in Chapter 5.

P8.19 Write methods
• public static void drawH(Graphics2D g2, Point2D.Double p);

• public static void drawE(Graphics2D g2, Point2D.Double p);

• public static void drawL(Graphics2D g2, Point2D.Double p);

• public static void drawO(Graphics2D g2, Point2D.Double p);

that show the letters H, E, L, O on the graphics window, where the point p is the
top-left corner of the letter. Then call the methods to draw the words “HELLO”
and “HOLE” on the graphics display. Draw lines and ellipses. Do not use the
drawString method. Do not use System.out.

P8.20 Repeat Exercise P8.17 by designing classes LetterH, LetterE, LetterL, and LetterO, each
with a constructor that takes a Point2D.Double parameter (the top-left corner) and a
method draw(Graphics2D g2).Which solution is more object-oriented?

Project 8.1 Implement a program that prints paychecks for a group of student assistants.
Deduct federal and Social Security taxes. (You may want to use the tax computation
used in Chapter 5. Find out about Social Security taxes on the Internet.) Your
program should prompt for the names, hourly wages, and hours worked of
each student.

T

T

G

G

Programming Projects

326 Chapter 8 Designing Classes

Project 8.2 For faster sorting of letters, the United States Postal Service encourages companies
that send large volumes of mail to use a bar code denoting the ZIP code (see
Figure 7).
The encoding scheme for a five-digit ZIP code is shown in Figure 8. There are
full-height frame bars on each side. The five encoded digits are followed by a check
digit, which is computed as follows: Add up all digits, and choose the check digit to
make the sum a multiple of 10. For example, the sum of the digits in the ZIP code
95014 is 19, so the check digit is 1 to make the sum equal to 20.
Each digit of the ZIP code, and the check
digit, is encoded according to the table at
right, where 0 denotes a half bar and 1 a full
bar. Note that they represent all combina-
tions of two full and three half bars. The
digit can be computed easily from the bar
code using the column weights 7, 4, 2, 1, 0.
For example, 01100 is

 0 ⋅ 7 + 1 ⋅ 4 + 1 ⋅ 2 + 0 ⋅ 1 + 0 ⋅ 0 = 6

The only exception is 0, which would yield
11 according to the weight formula.
Write a program that asks the user for a ZIP
code and prints the bar code. Use : for half
bars, | for full bars. For example, 95014
becomes

||:|:::|:|:||::::::||:|::|:::|||

(Alternatively, write a graphical application
that draws real bars.)
Your program should also be able to carry out the opposite conversion: Translate
bars into their ZIP code, reporting any errors in the input format or a mismatch of
the digits.

7 4 2 1 0

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 1

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 0

7 1 0 0 0 0

8 1 0 0 1 1

9 1 0 1 0 0

0 1 1 0 0 0

Figure 7 A Postal Bar Code Figure 8 Encoding for Five-Digit Bar Codes

*************** ECRLOT ** CO57

CODE C671RTS2
JOHN DOE CO57
1009 FRANKLIN BLVD
SUNNYVALE CA 95014 – 5143

Frame bars

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Check
Digit

Answers to Self-Check Questions 327

1. Look for nouns in the problem description.
2. Yes (ChessBoard) and no (MovePiece).
3. Some of its features deal with payments, others with coin values.
4. None of the coin operations require the CashRegister class.
5. If a class doesn’t depend on another, it is not affected by interface changes in the

other class.
6. It is an accessor—calling substring doesn’t modify the string on which the method is

invoked. In fact, all methods of the String class are accessors.
7. No—translate is a mutator.
8. It is a side effect; this kind of side effect is common in object-oriented

programming.
9. Yes—the method affects the state of the Scanner parameter.

10. Then you don’t have to worry about checking for invalid values—it becomes the
caller’s responsibility.

11. No—you can take any action that is convenient for you.
12. Math m = new Math(); y = m.sqrt(x);

13. You cannot add a method to the ArrayList class—it is a class in the standard Java
library that you cannot modify.

14. System.in and System.out.
15. Yes, it works. Static methods can access static variables of the same class. But it is a

terrible idea. As your programming tasks get more complex, you will want to use
objects and classes to organize your programs.

16. Yes. The scopes are disjoint.
17. It starts at the beginning of the class and ends at the end of the class.
18. (a) No; (b) Yes; (c) Yes; (d) No
19. No—you simply use fully qualified names for all other classes, such as

java.util.Random and java.awt.Rectangle.
20. /home/me/cs101/hw1/problem1 or, on Windows, c:\Users\Me\cs101\hw1\problem1.
21. Here is one possible answer.

public class EarthquakeTest
{
 @Test public void testLevel4()
 {
 Earthquake quake = new Earthquake(4);
 Assert.assertEquals("Felt by many people, no destruction",
 quake.getDescription());
 }
}

22. It is a tolerance threshold for comparing floating-point numbers. We want the
equality test to pass if there is a small roundoff error.

Answers to Self-Check Questions

This page intentionally left blank

329

Chapter9
Interfaces and
Polymorphism

CHAPTER GOALS
• To be able to declare and use interface types

• To understand the concept of polymorphism

• To appreciate how interfaces can be used to decouple classes

• To learn how to implement helper classes as inner classes

G To implement event listeners in graphical applications

In order to increase programming productivity, we want to be able

to reuse software components in multiple projects. However, some adaptations are often required to

make reuse possible. In this chapter, you will learn an important strategy for separating the reusable

part of a computation from the parts that vary in each reuse scenario. The reusable part invokes

methods of an interface. It is combined with a class that implements the interface methods. To

produce a different application, you simply plug in another class that implements the same interface.

The program’s behavior varies according to the implementation that is plugged in—this

phenomenon is called polymorphism.

330

CHAPTER CONTENTS

It is often possible to make a service available to a wider set of inputs by focusing on
the essential operations that the service requires. Interface types are used to express
these common operations.

Consider the DataSet class of Chapter 6. That class provides a service, namely
computing the average and maximum of a set of input values. Unfortunately, the
class is suitable only for computing the average of a set of numbers. If we wanted to
process bank accounts to find the bank account with the highest balance, we could
not use the class in its current form. We could modify the class, like this:

public class DataSet // Modified for BankAccount objects
{
 private double sum;
 private BankAccount maximum;
 private int count;
 . . .
 public void add(BankAccount x)
 {
 sum = sum + x.getBalance();
 if (count == 0 || maximum.getBalance() < x.getBalance())
 maximum = x;
 count++;
 }

9.1 Using Interfaces for Algorithm Reuse

9.1 Using Interfaces for
Algorithm Reuse 330

SYNTAX 9.1: Declaring an Interface 332
SYNTAX 9.2: Implementing an Interface 333
COMMON ERROR 9.1: Forgetting to Declare

Implementing Methods as Public 335
SPECIAL TOPIC 9.1: Constants in Interfaces 335

9.2 Converting Between Class and
Interface Types 336

COMMON ERROR 9.2: Trying to Instantiate

an Interface 337

9.3 Polymorphism 338
WORKED EXAMPLE 9.1: Investigating Number

Sequences

9.4 Using Interfaces for Callbacks 339

9.5 Inner Classes 343
SPECIAL TOPIC 9.2: Anonymous Classes

RANDOM FACT 9.1: Operating Systems

9.6T Mock Objects 345

9.7G Events, Event Sources, and Event
Listeners 347

COMMON ERROR 9.3: Modifying Parameter Types in the

Implementing Method 349

9.8G Using Inner Classes for Listeners 350

9.9G Building Applications
with Buttons 352

COMMON ERROR 9.4: Forgetting to Attach

a Listener 355
PRODUCTIVITY HINT 9.1: Don’t Use a Container as

a Listener 355
COMMON ERROR 9.5: By Default, Components Have

Zero Width and Height 356

9.10G Processing Timer Events
COMMON ERROR 9.6: Forgetting to Repaint 356

9.11G Mouse Events
SPECIAL TOPIC 9.3: Event Adapters

RANDOM FACT 9.2: Programming Languages

9.1 Using Interfaces for Algorithm Reuse 331

 public BankAccount getMaximum()
 {
 return maximum;
 }
}

Or suppose we wanted to find the coin with the highest value among a set of coins.
We would need to modify the DataSet class again.

public class DataSet // Modified for Coin objects
{
 private double sum;
 private Coin maximum;
 private int count;
 . . .
 public void add(Coin x)
 {
 sum = sum + x.getValue();
 if (count == 0 || maximum.getValue() < x.getValue())
 maximum = x;
 count++;
 }

 public Coin getMaximum()
 {
 return maximum;
 }
}

Clearly, the algorithm for the data analysis service is the same in all cases, but the
details of measurement differ. We would like to provide a single class that provides
this service to any objects that can be measured.

Suppose that the various classes agree on a method getMeasure that obtains the
measure to be used in the data analysis. For bank accounts, getMeasure returns the
balance. For coins, getMeasure returns the coin value, and so on. Then we can imple-
ment a DataSet class whose add method looks like this:

sum = sum + x.getMeasure();
if (count == 0 || maximum.getMeasure() < x.getMeasure())
 maximum = x;
count++;

What is the type of the variable x? Ideally, x should refer to any class that has a
getMeasure method.

In Java, an interface type is used to specify required operations. We will declare
an interface type that we call Measurable:

public interface Measurable
{
 double getMeasure();
}

The interface declaration lists all methods that the interface type requires. The
Measurable interface type requires a single method, but in general, an interface type
can require multiple methods.

Note that the Measurable type is not a type in the standard library—it is a type
that was created specifically for this book, in order to make the DataSet class more
reusable.

A Java interface type
declares methods but
does not provide their
implementations.

332 Chapter 9 Interfaces and Polymorphism

An interface type is similar to a class, but there are several important differences:

• All methods in an interface type are abstract; that is, they have a name, parame-
ters, and a return type, but they don’t have an implementation.

• All methods in an interface type are automatically public.
• An interface type does not have instance variables.

Now we can use the interface type Measurable to declare the variables x and maximum.
public class DataSet
{
 private double sum;
 private Measurable maximum;
 private int count;
 . . .
 public void add(Measurable x)
 {
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() < x.getMeasure())
 maximum = x;
 count++;
 }

 public Measurable getMaximum()
 {
 return maximum;
 }
}

This DataSet class is usable for analyzing objects of any class that implements the
Measurable interface. A class implements an interface type if it declares the interface
in an implements clause. It should then implement the method or methods that the
interface requires.

public class BankAccount implements Measurable
{
 . . .

public double getMeasure()
 {
 return balance;
 }
}

Syntax 9.1 Declaring an Interface

public interface InterfaceName
{

method signatures
}

Syntax

Example public interface Measurable
{
 double getMeasure();
}

The methods of an interface
are automatically public.

No implementation is provided.

Unlike a class, an
interface type
provides no
implementation.

Use the implements
reserved word to
indicate that a class
implements an
interface type.

9.1 Using Interfaces for Algorithm Reuse 333

Note that the class must declare the method as public, whereas the interface need
not—all methods in an interface are public.

Similarly, it is an easy matter to modify the Coin class to implement the Measurable
interface.

public class Coin implements Measurable
{

 public double getMeasure()
 {
 return value;
 }
 . . .
}

In summary, the Measurable interface expresses what all measurable objects have in
common. This commonality makes the flexibility of the improved DataSet class pos-
sible. A data set can analyze objects of any class that implements the Measurable
interface.

This is a typical usage for interface types. A service provider—in this case, the
DataSet—specifies an interface for participating in the service. Any class that con-
forms to that interface can then be used with the service. This is similar to the way a
mixer will provide rotation to any attachment that fits its interface (see Figure 1).

Figure 1
Attachments Conform to the
Mixer’s Interface

Use interface types
to make code
more reusable.

Syntax 9.2 Implementing an Interface

public class ClassName implements InterfaceName, InterfaceName, . . .
{

instance variables
methods

}

Syntax

Example
public class BankAccount implements Measurable
{
 . . .

public double getMeasure()
 {
 return balance;
 }
 . . .
}

List all interface types
that this class implements.

This method provides the implementation
for the method declared in the interface.

BankAccount
instance variables

Other

BankAccount methods

334 Chapter 9 Interfaces and Polymorphism

Figure 2 shows the relationships between the DataSet class, the Measurable inter-
face, and the classes that implement the interface. Note that the DataSet class
depends only on the Measurable interface. It is decoupled from the BankAccount and
Coin classes.

In the UML notation, interfaces are tagged with an indicator «interface». A dot-
ted arrow with a triangular tip denotes the “is-a” relationship between a class and
an interface. You have to look carefully at the arrow tips—a dotted line with an
open arrow tip () denotes the “uses” relationship or dependency.

ch09/measure1/DataSetTester.java

Figure 2 UML Diagram of the DataSet Class and the
Classes that Implement the Measurable Interface

BankAccount Coin

‹‹interface››
Measurable

DataSet

1 /**
2 This program tests the DataSet class.
3 */
4 public class DataSetTester
5 {
6 public static void main(String[] args)
7 {
8 DataSet bankData = new DataSet();
9

10 bankData.add(new BankAccount(0));
11 bankData.add(new BankAccount(10000));
12 bankData.add(new BankAccount(2000));
13
14 System.out.println("Average balance: " + bankData.getAverage());
15 System.out.println("Expected: 4000");
16 Measurable max = bankData.getMaximum();
17 System.out.println("Highest balance: " + max.getMeasure());
18 System.out.println("Expected: 10000");
19
20 DataSet coinData = new DataSet();
21
22 coinData.add(new Coin(0.25, "quarter"));
23 coinData.add(new Coin(0.1, "dime"));
24 coinData.add(new Coin(0.05, "nickel"));
25

9.1 Using Interfaces for Algorithm Reuse 335

Program Run

1. Suppose you want to use the DataSet class to find the Country object with the
largest population. What condition must the Country class fulfill?

2. Why can’t the add method of the DataSet class have a parameter of type Object?

Forgetting to Declare Implementing Methods as Public

The methods in an interface are not declared as public, because they are public by default.
However, the methods in a class are not public by default—their default access level is
“package” access, which we discuss in Chapter 8. It is a common error to forget the public
reserved word when declaring a method from an interface:

public class BankAccount implements Measurable
{
 . . .
 double getMeasure() // Oops—should be public
 {
 return balance;
 }
}

Then the compiler complains that the method has a weaker access level, namely package
access instead of public access. The remedy is to declare the method as public.

Constants in Interfaces

Interfaces cannot have instance variables, but it is legal to specify constants. For example, the
SwingConstants interface declares various constants, such as SwingConstants.NORTH,
SwingConstants.EAST, and so on.

When declaring a constant in an interface, you can (and should) omit the reserved words
public static final, because all variables in an interface are automatically public static final.

26 System.out.println("Average coin value: " + coinData.getAverage());
27 System.out.println("Expected: 0.133");
28 max = coinData.getMaximum();
29 System.out.println("Highest coin value: " + max.getMeasure());
30 System.out.println("Expected: 0.25");
31 }
32 }

Average balance: 4000.0
Expected: 4000
Highest balance: 10000.0
Expected: 10000
Average coin value: 0.13333333333333333
Expected: 0.133
Highest coin value: 0.25
Expected: 0.25

S E L F C H E C K

Common Error 9.1

Special Topic 9.1

336 Chapter 9 Interfaces and Polymorphism

For example,
public interface SwingConstants
{
 int NORTH = 1;
 int NORTHEAST = 2;
 int EAST = 3;
 . . .
}

Interfaces are used to express the commonality between classes. In this section, we
discuss when it is legal to convert between class and interface types.

Have a close look at the call
bankData.add(new BankAccount(1000));

from the test program of the preceding section. Here we pass an object of type
BankAccount to the add method of the DataSet class. However, that method has a
parameter of type Measurable:

public void add(Measurable x)

It it legal to convert from the BankAccount type to the Measurable type. In general, you
can convert from a class type to the type of any interface that the class implements.
For example,

BankAccount account = new BankAccount(1000);
Measurable meas = account; // OK

Alternatively, a Measurable variable can refer to an object of the Coin class of the pre-
ceding section because that class also implements the Measurable interface.

Coin dime = new Coin(0.1, "dime");
Measurable meas = dime; // Also OK

However, the Rectangle class from the standard library doesn’t implement the
Measurable interface. Therefore, the following assignment is an error:

Measurable meas = new Rectangle(5, 10, 20, 30); // Error

9.2 Converting Between Class and
Interface Types

Figure 3 Variables of Class and Interface Types

You can convert from
a class type to an
interface type,
provided the class
implements the
interface.

account =

balance =

BankAccount

1000meas =

Variable has
type BankAccount.

Variable has type Measurable;
can only invoke getMeasure method.

9.2 Converting Between Class and Interface Types 337

Occasionally, it happens that you store an object in an interface reference and you
need to convert its type back. This happens in the getMaximum method of the DataSet
class. The DataSet stores the object with the largest measure, as a Measurable

reference.
DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
coinData.add(new Coin(0.05, "nickel"));
Measurable max = coinData.getMaximum();

Now what can you do with the max reference? You know it refers to a Coin object,
but the compiler doesn’t. For example, you cannot call the getName method:

String coinName = max.getName(); // Error

That call is an error, because the Measurable type has no getName method.
However, as long as you are absolutely sure that max refers to a Coin object, you

can use the cast notation to convert its type back:
Coin maxCoin = (Coin) max;
String name = maxCoin.getName();

If you are wrong, and the object doesn’t actually refer to a coin, a run-time excep-
tion will occur.

This cast notation is the same notation that you saw in Chapter 4 to convert
between number types. For example, if x is a floating-point number, then (int) x is
the integer part of the number. The intent is similar—to convert from one type to
another. However, there is one big difference between casting of number types and
casting of class types. When casting number types, you may lose information, and
you use the cast to tell the compiler that you agree to the potential information loss.
When casting object types, on the other hand, you take a risk of causing an excep-
tion, and you tell the compiler that you agree to that risk.

3. Can you use a cast (BankAccount) meas to convert a Measurable variable meas to a
BankAccount reference?

4. If both BankAccount and Coin implement the Measurable interface, can a Coin
reference be converted to a BankAccount reference?

Trying to Instantiate an Interface

You can declare variables whose type is an interface, for example:

Measurable meas;

However, you can never construct an object of an interface type:

Measurable meas = new Measurable(); // Error

Interfaces aren’t classes. There are no objects whose types are interfaces. If an interface vari-
able refers to an object, then the object must belong to some class—a class that implements
the interface:

Measurable meas = new BankAccount(); // OK

You need a cast to
convert from an
interface type to a
class type.

S E L F C H E C K

Common Error 9.2

338 Chapter 9 Interfaces and Polymorphism

When multiple classes implement the same interface, each class can implement the
methods of the interface in different ways. How is the correct method executed
when the interface method is invoked? We will answer that question in this section.

It is worth emphasizing once again that it is perfectly legal—and in fact very
common—to have variables whose type is an interface, such as

Measurable meas;

Just remember that the object to which meas refers doesn’t have type Measurable. In
fact, no object has type Measurable. Instead, the type of the object is some class that
implements the Measurable interface. This might be an object of the BankAccount or
Coin class, or some other class with a getMeasure method.

meas = new BankAccount(1000); // OK
meas = new Coin(0.1, "dime"); // OK

What can you do with an interface variable, given that you don’t know the class of
the object that it references? You can invoke the methods of the interface:

double m = meas.getMeasure();

The DataSet class took advantage of this capability by computing the measure of the
added object, without knowing exactly what kind of object was added.

Now let’s think through the call to the getMeasure method more carefully. Which
getMeasure method? The BankAccount and Coin classes provide two different imple-
mentations of that method. How did the correct method get called if the caller
didn’t even know the exact class to which meas belongs?

The Java virtual machine locates the correct method by first looking at the class
of the actual object, and then calling the method with the given name in that class.
That is, if meas refers to a BankAccount object, then the BankAccount.getMeasure method
is called. If meas refers to a Coin object, then the Coin.getMeasure method is called. This
means that one method call

double m = meas.getMeasure();

can invoke different methods depending on the momentary contents of meas. This
mechanism for locating the appropriate method is called dynamic method lookup.

Dynamic method lookup enables a programming technique called polymor-
phism. The term “polymorphism” comes from the Greek words for “many
shapes”. The same computation works for objects of many shapes, and adapts itself
to the nature of the objects.

9.3 Polymorphism

Figure 4 An Interface Reference Can Refer to an Object of Any Class that
Implements the Interface

A N I M AT I O N
Polymorphism

When the virtual
machine calls an
instance method, it
locates the method
of the implicit
parameter’s class.
This is called dynamic
method lookup.

Polymorphism
denotes the ability to
treat objects with
differences in
behavior in a
uniform way.

?

meas =

Has a
getMeasure method

9.4 Using Interfaces for Callbacks 339

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5. Why is it impossible to construct a Measurable object?
6. Why can you nevertheless declare a variable whose type is Measurable?
7. What does this code fragment print? Why is this an example of polymorphism?

DataSet data = new DataSet();
data.add(new BankAccount(1000));
data.add(new Coin(0.1, "dime"));
System.out.println(data.getAverage());

Investigating Number Sequences

Worked Example 9.1 uses a Sequence interface to investigate
properties of arbitrary number sequences.

In this section, we introduce the notion of a callback, show how it leads to a more
flexible DataSet class, and study how a callback can be implemented in Java by using
interface types.

To understand why a further improvement to the DataSet class is desirable, con-
sider these limitations of the Measurable interface:

• You can add the Measurable interface only to classes under your control. If you
want to process a set of Rectangle objects, you cannot make the Rectangle class
implement another interface—it is a system class, which you cannot change.

• You can measure an object in only one way. If you want to analyze a set of sav-
ings accounts both by bank balance and by interest rate, you are stuck.

Therefore, let’s rethink the DataSet class. The data set needs to measure the objects
that are added. When the objects are required to be of type Measurable, the responsi-
bility of measuring lies with the added objects themselves, which is the cause of the
limitations that we noted.

It would be better if we could give a method for measuring objects to a data set.
When collecting rectangles, we might give it a method for computing the area of a
rectangle. When collecting savings accounts, we might give it a method for getting
the account’s interest rate.

Such a method is called a callback. A callback is a mechanism for bundling up a
block of code so that it can be invoked at a later time.

In some programming languages, it is possible to specify callbacks directly, as
blocks of code or names of methods. But Java is an object-oriented language. There-
fore, you turn callbacks into objects. This process starts by declaring an interface
for the callback:

public interface Measurer
{
 double measure(Object anObject);
}

S E L F C H E C K

Worked
Example 9.1

9.4 Using Interfaces for Callbacks

A callback is a
mechanism for
specifying code that
is executed at a
later time.

340 Chapter 9 Interfaces and Polymorphism

The measure method measures an object and returns its measurement. Here we use
the fact that all objects can be converted to the type Object, the “lowest common
denominator” of all classes in Java. We will discuss the Object type in greater detail
in Chapter 10.

The code that makes the call to the callback receives an object of a class that
implements this interface. In our case, the improved DataSet class is constructed
with a Measurer object (that is, an object of some class that implements the Measurer
interface). That object is saved in a measurer instance variable.

public DataSet(Measurer aMeasurer)
{
 sum = 0;
 count = 0;
 maximum = null;
 measurer = aMeasurer;
}

The measurer variable is used to carry out the measurements, like this:
public void add(Object x)
{
 sum = sum + measurer.measure(x);
 if (count == 0 || measurer.measure(maximum) < measurer.measure(x))
 maximum = x;
 count++;
}

The DataSet class simply makes a callback to the measure method whenever it needs
to measure any object.

Finally, a specific callback is obtained by implementing the Measurer interface. For
example, here is how you can measure rectangles by area. Provide a class

public class RectangleMeasurer implements Measurer
{
 public double measure(Object anObject)
 {
 Rectangle aRectangle = (Rectangle) anObject;
 double area = aRectangle.getWidth() * aRectangle.getHeight();
 return area;
 }
}

Note that the measure method must accept a parameter of type Object, even though
this particular measurer just wants to measure rectangles. The method parameter
types must match those of the measure method in the Measurer interface. Therefore,
the Object parameter is cast to the Rectangle type:

Rectangle aRectangle = (Rectangle) anObject;

What can you do with a RectangleMeasurer? You need it for a DataSet that compares
rectangles by area. Construct an object of the RectangleMeasurer class and pass it to
the DataSet constructor.

Measurer m = new RectangleMeasurer();
DataSet data = new DataSet(m);

Next, add rectangles to the data set.
data.add(new Rectangle(5, 10, 20, 30));
data.add(new Rectangle(10, 20, 30, 40));
. . .

9.4 Using Interfaces for Callbacks 341

The data set will ask the RectangleMeasurer object to measure the rectangles. In other
words, the data set uses the RectangleMeasurer object to carry out callbacks.

Figure 5 shows the UML diagram of the classes and interfaces of this solution.
As in Figure 2, the DataSet class is decoupled from the Rectangle class whose objects
it processes. However, unlike in Figure 2, the Rectangle class is no longer coupled
with another class. Instead, to process rectangles, you provide a small “helper” class
RectangleMeasurer. This helper class has only one purpose: to tell the DataSet how to
measure its objects.

ch09/measure2/Measurer.java

ch09/measure2/RectangleMeasurer.java

Figure 5 UML Diagram of the DataSet Class and the Measurer Interface

Rectangle
Measurer

Rectangle

‹‹interface››
Measurer

DataSet

1 /**
2 Describes any class whose objects can measure other objects.
3 */
4 public interface Measurer
5 {
6 /**
7 Computes the measure of an object.
8 @param anObject the object to be measured
9 @return the measure

10 */
11 double measure(Object anObject);
12 }

1 import java.awt.Rectangle;
2
3 /**
4 Objects of this class measure rectangles by area.
5 */
6 public class RectangleMeasurer implements Measurer
7 {
8 public double measure(Object anObject)
9 {

10 Rectangle aRectangle = (Rectangle) anObject;
11 double area = aRectangle.getWidth() * aRectangle.getHeight();
12 return area;
13 }
14 }

342 Chapter 9 Interfaces and Polymorphism

ch09/measure2/DataSet.java

ch09/measure2/DataSetTester2.java

1 /**
2 Computes the average of a set of data values.
3 */
4 public class DataSet
5 {
6 private double sum;
7 private Object maximum;
8 private int count;
9 private Measurer measurer;

10
11 /**
12 Constructs an empty data set with a given measurer.
13 @param aMeasurer the measurer that is used to measure data values
14 */
15 public DataSet(Measurer aMeasurer)
16 {
17 sum = 0;
18 count = 0;
19 maximum = null;
20 measurer = aMeasurer;
21 }
22
23 /**
24 Adds a data value to the data set.
25 @param x a data value
26 */
27 public void add(Object x)
28 {
29 sum = sum + measurer.measure(x);
30 if (count == 0 || measurer.measure(maximum) < measurer.measure(x))
31 maximum = x;
32 count++;
33 }
34
35 /**
36 Gets the average of the added data.
37 @return the average or 0 if no data has been added
38 */
39 public double getAverage()
40 {
41 if (count == 0) return 0;
42 else return sum / count;
43 }
44
45 /**
46 Gets the largest of the added data.
47 @return the maximum or 0 if no data has been added
48 */
49 public Object getMaximum()
50 {
51 return maximum;
52 }
53 }

1 import java.awt.Rectangle;
2

9.5 Inner Classes 343

Program Run

8. Suppose you want to use the DataSet class of Section 9.1 to find the longest
String from a set of inputs. Why can’t this work?

9. How can you use the DataSet class of this section to find the longest String from
a set of inputs?

10. Why does the measure method of the Measurer interface have one more parameter
than the getMeasure method of the Measurable interface?

The RectangleMeasurer class is a very trivial class. We need this class only because the
DataSet class needs an object of some class that implements the Measurer interface.
When you have a class that serves a very limited purpose, such as this one, you can
declare the class inside the method that needs it:

public class DataSetTester3
{
 public static void main(String[] args)
 {
 class RectangleMeasurer implements Measurer
 {
 . . .

3 /**
4 This program demonstrates the use of a Measurer.
5 */
6 public class DataSetTester2
7 {
8 public static void main(String[] args)
9 {

10 Measurer m = new RectangleMeasurer();
11
12 DataSet data = new DataSet(m);
13
14 data.add(new Rectangle(5, 10, 20, 30));
15 data.add(new Rectangle(10, 20, 30, 40));
16 data.add(new Rectangle(20, 30, 5, 15));
17
18 System.out.println("Average area: " + data.getAverage());
19 System.out.println("Expected: 625");
20
21 Rectangle max = (Rectangle) data.getMaximum();
22 System.out.println("Maximum area rectangle: " + max);
23 System.out.println("Expected: "
24 + "java.awt.Rectangle[x=10,y=20,width=30,height=40]");
25 }
26 }

Average area: 625
Expected: 625
Maximum area rectangle: java.awt.Rectangle[x=10,y=20,width=30,height=40]
Expected: java.awt.Rectangle[x=10,y=20,width=30,height=40]

S E L F C H E C K

9.5 Inner Classes

344 Chapter 9 Interfaces and Polymorphism

 }

 Measurer m = new RectangleMeasurer();
 DataSet data = new DataSet(m);
 . . .
 }
}

A class that is declared inside another class, such as the RectangleMeasurer class in this
example, is called an inner class. This arrangement signals to the reader of your
program that the RectangleMeasurer class is not interesting beyond the scope of this
method. Since an inner class inside a method is not a publicly accessible feature, you
don’t need to document it as thoroughly.

You can also declare an inner class inside an enclosing class, but outside of its
methods. Then the inner class is available to all methods of the enclosing class.

public class DataSetTester3
{
 class RectangleMeasurer implements Measurer
 {
 . . .
 }

 public static void main(String[] args)
 {

 Measurer m = new RectangleMeasurer();
 DataSet data = new DataSet(m);
 . . .
 }
}

When you compile the source files for a program that uses inner classes, have a look
at the class files in your program directory—you will find that the inner classes are
stored in files with curious names, such as DataSetTester3$1RectangleMeasurer.class.
The exact names aren’t important. The point is that the compiler turns an inner class
into a regular class file.

ch09/measure3/DataSetTester3.java

An inner class is
declared inside
another class.

Inner classes are
commonly used for
utility classes that
should not be
visible elsewhere
in a program.

1 import java.awt.Rectangle;
2
3 /**
4 This program demonstrates the use of an inner class.
5 */
6 public class DataSetTester3
7 {
8 public static void main(String[] args)
9 {

10 class RectangleMeasurer implements Measurer
11 {
12 public double measure(Object anObject)
13 {
14 Rectangle aRectangle = (Rectangle) anObject;
15 double area
16 = aRectangle.getWidth() * aRectangle.getHeight();
17 return area;
18 }
19 }
20

Testing Track 9.6 Mock Objects 345

11. Why would you use an inner class instead of a regular class?
12. How many class files are produced when you compile the DataSetTester3

program?

Anonymous Classes

Special Topic 9.2 shows how you can simplify the declaration of inner classes with the
“anonymous class” syntax.

Operating Systems

Random Fact 9.1 discusses operating systems, the software that provides common services to
all programs that execute on a computer.

When you work on a program that consists of multiple classes, you often want to
test some of the classes before the entire program has been completed. A very effec-
tive technique for this purpose is the use of mock objects. A mock object provides
the same services as another object, but in a simplified manner.

Consider a grade book application that manages quiz scores for students. This
calls for a class GradeBook with methods such as

public void addScore(int studentId, double score)
public double getAverageScore(int studentId)
public void save(String filename)

21 Measurer m = new RectangleMeasurer();
22
23 DataSet data = new DataSet(m);
24
25 data.add(new Rectangle(5, 10, 20, 30));
26 data.add(new Rectangle(10, 20, 30, 40));
27 data.add(new Rectangle(20, 30, 5, 15));
28
29 System.out.println("Average area: " + data.getAverage());
30 System.out.println("Expected: 625");
31
32 Rectangle max = (Rectangle) data.getMaximum();
33 System.out.println("Maximum area rectangle: " + max);
34 System.out.println("Expected: "
35 + "java.awt.Rectangle[x=10,y=20,width=30,height=40]");
36 }
37 }

S E L F C H E C K

Special Topic 9.2

Random Fact 9.1

9.6 Mock Objects

A mock object
provides the same
services as another
object, but in a
simplified manner.

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

346 Chapter 9 Interfaces and Polymorphism Testing Track

Now consider the class GradingProgram that manipulates a GradeBook object. That class
calls the methods of the GradeBook class. We would like to test the GradingProgram class
without having a fully functional GradeBook class.

To make this work, declare an interface type with the same methods that the
GradeBook class provides. A common convention is to use the letter I as the prefix for
such an interface:

public interface IGradeBook
{
 void addScore(int studentId, double score);
 double getAverageScore(int studentId);
 void save(String filename);
 . . .
}

The GradingProgram class should only use this interface, never the GradeBook class. Of
course, the GradeBook class implements this interface, but as already mentioned, it
may not be ready for some time.

In the meantime, provide a mock implementation that makes some simplifying
assumptions. Saving is not actually necessary for testing the user interface. We can
temporarily restrict to the case of a single student.

public class MockGradeBook implements IGradeBook
{
 private ArrayList<Double> scores;

 public void addScore(int studentId, double score)
 {
 // Ignore studentId
 scores.add(score);
 }
 double getAverageScore(int studentId)
 {
 double total = 0;
 for (double x : scores) { total = total + x; }
 return total / scores.size();
 }
 void save(String filename)
 {
 // Do nothing
 }
 . . .
}

Now construct an instance of MockGradeBook and use it in the GradingProgram class. You
can immediately test the GradingProgram class. When you are ready to test the actual
class, simply use a GradeBook instance instead. Don’t erase the mock class—it will still
come in handy for regression testing.

13. Why is it necessary that the real class and the mock class implement the same
interface type?

14. Why is the technique of mock objects particularly effective when the GradeBook
and GradingProgram class are developed by two programmers?

Both the mock class
and the actual class
implement the
same interface.

S E L F C H E C K

Graphics Track 9.7 Events, Event Sources, and Event Listeners 347

This and the following sections continue the book’s graphics track. You will learn
how interfaces are used when programming graphical user interfaces.

In the applications that you have written so far, user input was under control of
the program. The program asked the user for input in a specific order. For example,
a program might ask the user to supply first a name, then a dollar amount. But the
programs that you use every day on your computer don’t work like that. In a pro-
gram with a graphical user interface, the user is in control. The user can use both the
mouse and the keyboard and can manipulate many parts of the user interface in any
desired order. For example, the user can enter information into text fields, pull
down menus, click buttons, and drag scroll bars in any order. The program must
react to the user commands, in whatever order they arrive. Having to deal with
many possible inputs in random order is quite a bit harder than simply forcing the
user to supply input in a fixed order.

In the following sections, you will learn how to write Java programs that can
react to user-interface events, such as menu selections and mouse clicks. The Java
windowing toolkit has a very sophisticated mechanism that allows a program to
specify the events in which it is interested and which objects to notify when one of
these events occurs.

Whenever the user of a graphical program types characters or uses the mouse
anywhere inside one of the windows of the program, the Java windowing toolkit
sends a notification to the program that an event has occurred. The windowing
toolkit generates huge numbers of events. For example, whenever the mouse moves
a tiny interval over a window, a “mouse move” event is generated. Whenever the
mouse button is clicked, a “mouse pressed” and a “mouse released” event are gener-
ated. In addition, higher level events are generated when a user selects a menu item
or button.

Most programs don’t want to be flooded by boring events. For example, con-
sider what happens when selecting a menu item with the mouse. The mouse moves
over the menu item, then the mouse button is pressed, and finally the mouse button
is released. Rather than receiving lots of irrelevant mouse events, a program can
indicate that it only cares about menu selections, not about the underlying mouse
events. However, if the mouse input is used for drawing shapes on a virtual canvas,
it is necessary to closely track mouse events.

Every program must indicate which events it needs to receive. It does that by
installing event listener objects. An event listener object belongs to a class that you
provide. The methods of your event listener classes contain the instructions that
you want to have executed when the events occur.

To install a listener, you need to know the event source. The event source is the
user-interface component that generates a particular event. You add an event lis-
tener object to the appropriate event sources. Whenever the event occurs, the event
source calls the appropriate methods of all attached event listeners.

This sounds somewhat abstract, so let’s run through an extremely simple pro-
gram that prints a message whenever a button is clicked (see Figure 6).

9.7 Events, Event Sources, and Event Listeners

User-interface events
include key presses,
mouse moves,
button clicks, menu
selections, and so on.

An event listener
belongs to a class
that is provided by
the application
programmer. Its
methods describe
the actions to be
taken when an
event occurs.

Event sources report
on events. When an
event occurs, the
event source notifies
all event listeners.

348 Chapter 9 Interfaces and Polymorphism Graphics Track

Button listeners must belong to a class that implements the ActionListener
interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

This particular interface has a single method, actionPerformed. It is your job to sup-
ply a class whose actionPerformed method contains the instructions that you want
executed whenever the button is clicked. Here is a very simple example of such a lis-
tener class:

ch09/button1/ClickListener.java

We ignore the event parameter of the actionPerformed method—it contains addi-
tional details about the event, such as the time at which it occurred.

Once the listener class has been declared, we need to construct an object of the
class and add it to the button:

ActionListener listener = new ClickListener();
button.addActionListener(listener);

Whenever the button is clicked, it calls
listener.actionPerformed(event);

As a result, the message is printed.
You can think of the actionPerformed method as another example of a callback,

similar to the measure method of the Measurer class. The windowing toolkit calls the

Figure 6 Implementing an Action Listener

Use JButton
components for
buttons. Attach an
ActionListener to
each button.

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3
4 /**
5 An action listener that prints a message.
6 */
7 public class ClickListener implements ActionListener
8 {
9 public void actionPerformed(ActionEvent event)

10 {
11 System.out.println("I was clicked.");
12 }
13 }

Graphics Track 9.7 Events, Event Sources, and Event Listeners 349

actionPerformed method whenever the button is pressed, whereas the DataSet calls the
measure method whenever it needs to measure an object.

The ButtonViewer class, whose source code is provided at the end of this section,
constructs a frame with a button and adds a ClickListener to the button. You can test
this program out by opening a console window, starting the ButtonViewer program
from that console window, clicking the button, and watching the messages in the
console window.

ch09/button1/ButtonViewer.java

15. Which objects are the event source and the event listener in the ButtonViewer
program?

16. Why is it legal to assign a ClickListener object to a variable of type
ActionListener?

Modifying Parameter Types in the Implementing Method

When you implement an interface, you must declare each method exactly as it is specified in
the interface. Accidentally making small changes to the parameter types is a common error.
Here is the classic example,

class MyListener implements ActionListener
{
 public void actionPerformed()
 // Oops . . . forgot ActionEvent parameter
 {
 . . .

1 import java.awt.event.ActionListener;
2 import javax.swing.JButton;
3 import javax.swing.JFrame;
4
5 /**
6 This program demonstrates how to install an action listener.
7 */
8 public class ButtonViewer
9 {

10 private static final int FRAME_WIDTH = 100;
11 private static final int FRAME_HEIGHT = 60;
12
13 public static void main(String[] args)
14 {
15 JFrame frame = new JFrame();
16 JButton button = new JButton("Click me!");
17 frame.add(button);
18
19 ActionListener listener = new ClickListener();
20 button.addActionListener(listener);
21
22 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24 frame.setVisible(true);
25 }
26 }

S E L F C H E C K

Common Error 9.3

350 Chapter 9 Interfaces and Polymorphism Graphics Track

 }
}

As far as the compiler is concerned, this class fails to provide the method

public void actionPerformed(ActionEvent event)

You have to read the error message carefully and pay attention to the parameter and return
types to find your error.

In the preceding section, you saw how the code that is executed when a button is
clicked is placed into a listener class. It is common to implement listener classes as
inner classes like this:

JButton button = new JButton(". . .");

// This inner class is declared in the same method as the button variable
class MyListener implements ActionListener
{
 . . .
};

ActionListener listener = new MyListener();
button.addActionListener(listener);

There are two reasons for this arrangement. The trivial listener class is located
exactly where it is needed, without cluttering up the remainder of the project.
Moreover, inner classes have a very attractive feature: Their methods can access
variables that are declared in surrounding blocks. In this regard, method declara-
tions of inner classes behave similarly to nested blocks.

Recall that a block is a statement group enclosed by braces. If a block is nested
inside another, the inner block has access to all variables from the surrounding
block:

{ // Surrounding block
 BankAccount account = new BankAccount();
 if (. . .)
 { // Inner block
 . . .
 // OK to access variable from surrounding block

account.deposit(interest);
 . . .
 } // End of inner block
 . . .
} // End of surrounding block

The same nesting works for inner classes. Except for some technical restrictions,
which we will examine later in this section, the methods of an inner class can access
the variables from the enclosing scope. This feature is very useful when implement-
ing event handlers. It allows the inner class to access variables without having to
pass them as constructor or method parameters.

Let’s look at an example. Suppose we want to add interest to a bank account
whenever a button is clicked.

9.8 Using Inner Classes for Listeners

Methods of an inner
class can access local
and instance
variables from the
surrounding scope.

Graphics Track 9.8 Using Inner Classes for Listeners 351

JButton button = new JButton("Add Interest");
final BankAccount account = new BankAccount(INITIAL_BALANCE);

// This inner class is declared in the same method as the account and button variables.
class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 // The listener method accesses the account variable
 // from the surrounding block
 double interest = account.getBalance() * INTEREST_RATE / 100;

account.deposit(interest);
 }
};

ActionListener listener = new AddInterestListener();
button.addActionListener(listener);

There is a technical wrinkle. An inner class can access surrounding local variables
only if they are declared as final. That sounds like a restriction, but it is usually not
an issue in practice. Keep in mind that an object variable is final when the variable
always refers to the same object. The state of the object can change, but the variable
can’t refer to a different object. For example, in our program, we never intended to
have the account variable refer to multiple bank accounts, so there was no harm in
declaring it as final.

An inner class can also access instance variables of the surrounding class, again
with a restriction. The instance variable must belong to the object that constructed
the inner class object. If the inner class object was created inside a static method, it
can only access static variables.

Here is the source code for the program.

ch09/button2/InvestmentViewer1.java

Local variables that
are accessed by an
inner class method
must be declared
as final.

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5
6 /**
7 This program demonstrates how an action listener can access
8 a variable from a surrounding block.
9 */

10 public class InvestmentViewer1
11 {
12 private static final int FRAME_WIDTH = 120;
13 private static final int FRAME_HEIGHT = 60;
14
15 private static final double INTEREST_RATE = 10;
16 private static final double INITIAL_BALANCE = 1000;
17
18 public static void main(String[] args)
19 {
20 JFrame frame = new JFrame();
21
22 // The button to trigger the calculation
23 JButton button = new JButton("Add Interest");
24 frame.add(button);
25

352 Chapter 9 Interfaces and Polymorphism Graphics Track

Program Run

17. Why would an inner class method want to access a variable from a surrounding
scope?

18. If an inner class accesses a local variable from a surrounding scope, what special
rule applies?

In this section, you will learn how to structure a graphical application that contains
buttons. We will put a button to work in our simple investment viewer program.
Whenever the button is clicked, interest is added to a bank account, and the new
balance is displayed (see Figure 7).

First, we construct an object of the JButton class. Pass the button label to the con-
structor:

JButton button = new JButton("Add Interest");

We also need a user-interface component that displays a message, namely the cur-
rent bank balance. Such a component is called a label. You pass the initial message
string to the JLabel constructor, like this:

JLabel label = new JLabel("balance: " + account.getBalance());

The frame of our application contains both the button and the label. However, we
cannot simply add both components directly to the frame—they would be placed

26 // The application adds interest to this bank account
27 final BankAccount account = new BankAccount(INITIAL_BALANCE);
28
29 class AddInterestListener implements ActionListener
30 {
31 public void actionPerformed(ActionEvent event)
32 {
33 // The listener method accesses the account variable
34 // from the surrounding block
35 double interest = account.getBalance() * INTEREST_RATE / 100;
36 account.deposit(interest);
37 System.out.println("balance: " + account.getBalance());
38 }
39 }
40
41 ActionListener listener = new AddInterestListener();
42 button.addActionListener(listener);
43
44 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
45 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
46 frame.setVisible(true);
47 }
48 }

balance: 1100.0
balance: 1210.0
balance: 1331.0
balance: 1464.1

S E L F C H E C K

9.9 Building Applications with Buttons

Use a JPanel
container to group
multiple user-
interface components
together.

Graphics Track 9.9 Building Applications with Buttons 353

on top of each other. The solution is to put them into a panel, a container for other
user-interface components, and then add the panel to the frame:

JPanel panel = new JPanel();
panel.add(button);
panel.add(label);
frame.add(panel);

Now we are ready for the hard part—the event listener that handles button clicks.
As in the preceding section, it is necessary to provide a class that implements the
ActionListener interface, and to place the button action into the actionPerformed
method. Our listener class adds interest and displays the new balance:

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance() * INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance: " + account.getBalance());
 }
}

There is just a minor technicality. The actionPerformed method manipulates the
account and label variables. These are local variables of the main method of the invest-
ment viewer program, not instance variables of the AddInterestListener class. We
therefore need to declare the account and label variables as final so that the action-
Performed method can access them.

Let’s put the pieces together.
public static void main(String[] args)
{
 . . .
 JButton button = new JButton("Add Interest");
 final BankAccount account = new BankAccount(INITIAL_BALANCE);
 final JLabel label = new JLabel("balance: " + account.getBalance());

 class AddInterestListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance() * INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance: " + account.getBalance());
 }
 }

 ActionListener listener = new AddInterestListener();
 button.addActionListener(listener);
 . . .
}

Figure 7 An Application with a Button

You specify button
click actions through
classes that
implement the
ActionListener
interface.

354 Chapter 9 Interfaces and Polymorphism Graphics Track

With a bit of practice, you will learn to glance at this code and translate it into plain
English: “When the button is clicked, add interest and set the label text.”

Here is the complete program. It demonstrates how to add multiple components
to a frame, by using a panel, and how to implement listeners as inner classes.

ch09/button3/InvestmentViewer2.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JTextField;
8
9 /**

10 This program displays the growth of an investment.
11 */
12 public class InvestmentViewer2
13 {
14 private static final int FRAME_WIDTH = 400;
15 private static final int FRAME_HEIGHT = 100;
16
17 private static final double INTEREST_RATE = 10;
18 private static final double INITIAL_BALANCE = 1000;
19
20 public static void main(String[] args)
21 {
22 JFrame frame = new JFrame();
23
24 // The button to trigger the calculation
25 JButton button = new JButton("Add Interest");
26
27 // The application adds interest to this bank account
28 final BankAccount account = new BankAccount(INITIAL_BALANCE);
29
30 // The label for displaying the results
31 final JLabel label = new JLabel("balance: " + account.getBalance());
32
33 // The panel that holds the user-interface components
34 JPanel panel = new JPanel();
35 panel.add(button);
36 panel.add(label);
37 frame.add(panel);
38
39 class AddInterestListener implements ActionListener
40 {
41 public void actionPerformed(ActionEvent event)
42 {
43 double interest = account.getBalance() * INTEREST_RATE / 100;
44 account.deposit(interest);
45 label.setText("balance: " + account.getBalance());
46 }
47 }
48
49 ActionListener listener = new AddInterestListener();
50 button.addActionListener(listener);
51

Graphics Track 9.9 Building Applications with Buttons 355

19. How do you place the "balance: . . ." message to the left of the "Add
Interest" button?

20. Why was it not necessary to declare the button variable as final?

Forgetting to Attach a Listener

If you run your program and find that your buttons seem to be dead, double-check that you
attached the button listener. The same holds for other user-interface components. It is a sur-
prisingly common error to program the listener class and the event handler action without
actually attaching the listener to the event source.

Don’t Use a Container as a Listener

In this book, we use inner classes for event listeners. That approach works for many differ-
ent event types. Once you master the technique, you don’t have to think about it anymore.
Many development environments automatically generate code with inner classes, so it is a
good idea to be familiar with them.

However, some programmers bypass the event listener classes and instead turn a con-
tainer (such as a panel or frame) into a listener. Here is a typical example. The actionPerformed
method is added to the viewer class. That is, the viewer implements the ActionListener inter-
face.

public class InvestmentViewer
 implements ActionListener // This approach is not recommended
{
 public InvestmentViewer()
 {
 JButton button = new JButton("Add Interest");
 button.addActionListener(this);
 . . .
 }

 public void actionPerformed(ActionEvent event)
 {
 . . .
 }
 . . .
}

Now the actionPerformed method is a part of the InvestmentViewer class rather than part of a
separate listener class. The listener is installed as this.

This technique has two major flaws. First, it separates the button declaration from the
button action. Also, it doesn’t scale well. If the viewer class contains two buttons that each

52 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
53 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
54 frame.setVisible(true);
55 }
56 }

S E L F C H E C K

Common Error 9.4

Productivity Hint 9.1

356 Chapter 9 Interfaces and Polymorphism Graphics Track

generate action events, then the actionPerformed method must investigate the event source,
which leads to code that is tedious and error-prone.

By Default, Components Have Zero Width and Height

You must be careful when you add a painted component to a panel, such as a component dis-
playing a car. You add the component in the same way as a button or label:

panel.add(button);
panel.add(label);
panel.add(carComponent);

However, the default size for a component is 0 by 0 pixels, and the car component will not
be visible. The remedy is to call the setPreferredSize method, like this:

carComponent.setPreferredSize(new Dimension(CAR_COMPONENT_WIDTH, CAR_COMPONENT_HEIGHT));

Sections 9.10 and 9.11, available in WileyPLUS or on the companion web site, show
how you can process timer and mouse events.

Forgetting to Repaint

You have to be careful when your event handlers change the data in a painted component.
When you make a change to the data, the component is not automatically painted with the
new data. You must call the repaint method of the component, either in the event handler or
in the component’s mutator methods. Your component’s paintComponent method will then be
invoked with an appropriate Graphics object. Note that you should not call the paintCompo-
nent method directly.

This is a concern only for your own painted components. When you make a change to a
standard Swing component such as a JLabel, the component is automatically repainted.

Event Adapters

Special Topic 9.3 shows how to use event adapter classes to simplify listener classes.

Programming Languages

Random Fact 9.2 traces the history of several common programming languages.

Common Error 9.5

Common Error 9.6

Special Topic 9.3

Random Fact 9.2

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Summary of Learning Objectives 357

Use interfaces for making a service available to multiple classes.

• A Java interface type declares methods but does not provide their implementations.
• Unlike a class, an interface type provides no implementation.
• Use the implements reserved word to indicate that a class implements an

interface type.
• Use interface types to make code more reusable.

Describe how to convert between class and interface types.

• You can convert from a class type to an interface type, provided the class
implements the interface.

• You need a cast to convert from an interface type to a class type.

Describe dynamic method lookup and polymorphism.

• When the virtual machine calls an instance method, it locates the method of the
implicit parameter’s class. This is called dynamic method lookup.

• Polymorphism denotes the ability to treat objects with differences in behavior in a
uniform way.

Describe how to use interface types for providing callbacks.

• A callback is a mechanism for specifying code that is executed at a later time.

Use inner classes to limit the scope of a utility class.

• An inner class is declared inside another class.
• Inner classes are commonly used for utility classes that should not be visible

elsewhere in a program.

Use mock objects for supplying test versions of classes.

• A mock object provides the same services as another object, but in a simplified
manner.

• Both the mock class and the actual class implement the same interface.

Recognize the use of events and event listeners in user-interface programming.

• User-interface events include key presses, mouse moves, button clicks, menu
selections, and so on.

• An event listener belongs to a class that is provided by the application programmer.
Its methods describe the actions to be taken when an event occurs.

• Event sources report on events. When an event occurs, the event source notifies all
event listeners.

• Use JButton components for buttons. Attach an ActionListener to each button.

Implement event listeners as inner classes.

• Methods of an inner class can access local and instance variables from the
surrounding scope.

• Local variables that are accessed by an inner class method must be declared as final.

Summary of Learning Objectives

358 Chapter 9 Interfaces and Polymorphism

Build graphical applications that use buttons.

• Use a JPanel container to group multiple user-interface components together.
• You specify button click actions through classes that implement the ActionListener

interface.

• Worked Example Investigating Number Sequences
• Lab Exercises

Animation Polymorphism
Practice Quiz
Code Completion Exercises

R9.1 Suppose C is a class that implements the interfaces I and J. Which of the following
assignments require a cast?

C c = . . .;
I i = . . .;
J j = . . .;

a. c = i;

b. j = c;
c. i = j;

R9.2 Suppose C is a class that implements the interfaces I and J, and suppose i is declared as
I i = new C();

Which of the following statements will throw an exception?
a. C c = (C) i;

b. J j = (J) i;
c. i = (I) null;

Classes, Objects, and Methods Introduced in this Chapter
java.awt.Component
 addMouseListener
 repaint
 setPreferredSize
java.awt.Container
 add
java.awt.Dimension
java.awt.Rectangle
 setLocation
java.awt.event.ActionListener
 actionPerformed
java.awt.event.MouseEvent
 getX
 getY

java.awt.event.MouseListener
 mouseClicked
 mouseEntered
 mouseExited
 mousePressed
 mouseReleased
javax.swing.AbstractButton
 addActionListener
javax.swing.JButton
javax.swing.JLabel
javax.swing.JPanel
javax.swing.Timer
 start
 stop

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

Review Exercises 359

R9.3 Suppose the class Sandwich implements the Edible interface, and you are given the
variable declarations

Sandwich sub = new Sandwich();
Rectangle cerealBox = new Rectangle(5, 10, 20, 30);
Edible e = null;

Which of the following assignment statements are legal?
a. e = sub;

b. sub = e;
c. sub = (Sandwich) e;

d. sub = (Sandwich) cerealBox;
e. e = cerealBox;

f. e = (Edible) cerealBox;

g. e = (Rectangle) cerealBox;
h. e = (Rectangle) null;

R9.4 How does a cast such as (BankAccount) x differ from a cast of number values such as
(int) x?

R9.5 The classes Rectangle2D.Double, Ellipse2D.Double, and Line2D.Double implement the
Shape interface. The Graphics2D class depends on the Shape interface but not on the
rectangle, ellipse, and line classes. Draw a UML diagram denoting these facts.

R9.6 Suppose r contains a reference to a new Rectangle(5, 10, 20, 30). Which of the fol-
lowing assignments is legal? (Look inside the API documentation to check which
interfaces the Rectangle class implements.)

a. Rectangle a = r;

b. Shape b = r;
c. String c = r;

d. ActionListener d = r;
e. Measurable e = r;

f. Serializable f = r;

g. Object g = r;

R9.7 Classes such as Rectangle2D.Double, Ellipse2D.Double and Line2D.Double implement the
Shape interface. The Shape interface has a method

Rectangle getBounds()

that returns a rectangle completely enclosing the shape. Consider the method call:
Shape s = . . .;
Rectangle r = s.getBounds();

Explain why this is an example of polymorphism.

R9.8 In Java, a method call such as x.f() uses dynamic method lookup—the exact
method to be called depends on the type of the object to which x refers. Give two
kinds of method calls that do not look dynamic method lookup in Java.

R9.9 Suppose you need to process an array of employees to find the average and the
highest salaries. Discuss what you need to do to use the implementation of the
DataSet class in Section 9.1 (which processes Measurable objects). What do you need
to do to use the second implementation (in Section 9.4)? Which is easier?

360 Chapter 9 Interfaces and Polymorphism

R9.10 What happens if you add a String object to the implementation of the DataSet class
in Section 9.1? What happens if you add a String object to a DataSet object of the
implementation in Section 9.4 that uses a RectangleMeasurer class?

R9.11 How would you reorganize the DataSetTester3 program if you needed to make
RectangleMeasurer into a top-level class (that is, not an inner class)?

R9.12 What is a callback? Can you think of another use for a callback for the DataSet class?
(Hint: Exercise P9.12.)

R9.13 Consider this top-level and inner class. Which variables can the f method access?
public class T
{
 private int t;

 public void m(final int x, int y)
 {
 int a;
 final int b;

 class C implements I
 {
 public void f()
 {
 . . .
 }
 }

 final int c;
 . . .
 }
}

R9.14 What happens when an inner class tries to access a non-final local variable? Try it
out and explain your findings.

R9.15 How would you reorganize the InvestmentViewer1 program if you needed to make
AddInterestListener into a top-level class (that is, not an inner class)?

R9.16 What is an event object? An event source? An event listener?

R9.17 From a programmer’s perspective, what is the most important difference between
the user interfaces of a console application and a graphical application?

R9.18 What is the difference between an ActionEvent and a MouseEvent?

R9.19 Why does the ActionListener interface have only one method, whereas the MouseLis-
tener has five methods?

R9.20 Can a class be an event source for multiple event types? If so, give an example.

R9.21 What information does an action event object carry? What additional information
does a mouse event object carry?

R9.22 Why are we using inner classes for event listeners? If Java did not have inner classes,
could we still implement event listeners? How?

R9.23 What is the difference between the paintComponent and repaint methods?

R9.24 What is the difference between a frame and a panel?

G

G

G

G

G

G

G

G

G

G

Programming Exercises 361

P9.1 Have the Die class of Chapter 6 implement the Measurable interface. Generate dice,
cast them, and add them to the implementation of the DataSet class in Section 9.1.
Display the average.

P9.2 Implement a class Quiz that implements the Measurable interface. A quiz has a score
and a letter grade (such as B+). Use the implementation of the DataSet class in Section
9.1 to process a collection of quizzes. Display the average score and the quiz with
the highest score (both letter grade and score).

P9.3 A person has a name and a height in centimeters. Use the implementation of the
DataSet class in Section 9.4 to process a collection of Person objects. Display the aver-
age height and the name of the tallest person.

P9.4 Modify the implementation of the DataSet class in Section 9.1 (the one processing
Measurable objects) to also compute the minimum data element.

P9.5 Modify the implementation of the DataSet class in Section 9.4 (the one using a
Measurer object) to also compute the minimum data element.

P9.6 Using a different Measurer object, process a set of Rectangle objects to find the rectan-
gle with the largest perimeter.

P9.7 Enhance the DataSet class so that it can either be used with a Measurer object or for
processing Measurable objects. Hint: Supply a constructor with no parameters that
implements a Measurer that processes Measurable objects.

P9.8 Modify the display method of the LastDigitDistribution class of Worked Example 9.1
so that it produces a histogram, like this:

0: *************
1: ******************
2: *************

Scale the bars so that widest one has length 40.

P9.9 Write a class PrimeSequence that implements the Sequence interface of Worked Exam-
ple 9.1, producing the sequence of prime numbers.

P9.10 Add a method hasNext to the Sequence interface of Worked Example 9.1 that returns
false if the sequence has no more values. Implement a class MySequence producing a
sequence of real data of your choice, such as populations of cities or countries, tem-
peratures, or stock prices. Obtain the data from the Internet and reformat the values
so that they are placed into an array. Return one value at a time in the next method,
until you reach the end of the data. Your SequenceTester class should display all data
in the sequence and check whether the last digits are randomly distributed.

P9.11 Provide a class FirstDigitDistribution that works just like the LastDigitDistribution
class of Worked Example 9.1, except that it counts the distribution of the first digit
of each value. (It is a well-known fact that the first digits of random values are not
uniformly distributed. This fact has been used to detect accounting fraud, when
sequences of transaction amounts had an unnatural distribution of their first digits.)

Programming Exercises

362 Chapter 9 Interfaces and Polymorphism

P9.12 Declare an interface Filter as follows:
public interface Filter
{
 boolean accept(Object x);
}

Modify the implementation of the DataSet class in Section 9.4 to use both a Measurer
and a Filter object. Only objects that the filter accepts should be processed. Dem-
onstrate your modification by having a data set process a collection of bank
accounts, filtering out all accounts with balances less than $1,000.

P9.13 The standard Java library provides a Comparable interface:
public interface Comparable
{
 /**

Compares this object with another.
 @param other the object to be compared
 @return a negative integer, zero, or a positive integer if this object

is less than, equal to, or greater than, other
 */
 public int compareTo(Object other);
}

Modify the DataSet class of Section 9.1 to accept Comparable objects. With this inter-
face, it is no longer meaningful to compute the average. The DataSet class should
record the minimum and maximum data values. Test your modified DataSet class by
adding a number of String objects. (The String class implements the Comparable inter-
face.)

P9.14 Modify the Coin class to have it implement the Comparable interface described in
Exercise P9.13.

P9.15 The System.out.printf method has predefined formats for printing integers, float-
ing-point numbers, and other data types. But it is also extensible. If you use the S
format, you can print any class that implements the Formattable interface. That inter-
face has a single method:

void formatTo(Formatter formatter, int flags, int width, int precision)

In this exercise, you should make the BankAccount class implement the Formattable
interface. Ignore the flags and precision and simply format the bank balance, using
the given width. In order to achieve this task, you need to get an Appendable reference
like this:

Appendable a = formatter.out();

Appendable is another interface with a method
void append(CharSequence sequence)

CharSequence is yet another interface that is implemented by (among others) the
String class. Construct a string by first converting the bank balance into a string and
then padding it with spaces so that it has the desired width. Pass that string to the
append method.

P9.16 Enhance the formatTo method of Exercise P9.15 by taking into account the precision.

P9.17 Consider the task of writing a program that plays TicTacToe against a human oppo-
nent. A user interface TicTacToeUI reads the user’s moves and displays the computer’s

T

Programming Exercises 363

moves and the board. A class TicTacToeStrategy determines the next move that the
computer makes. A class TicTacToeBoard represents the current state of the board.
Complete all classes except for the strategy class. Instead, use a mock class that sim-
ply picks the first available empty square.

P9.18 Consider the task of translating a plain text book from Project Gutenberg (http://
gutenberg.org) to HTML. For example, here is the start of the first chapter of Tol-
stoy’s Anna Karenina:

Chapter 1

Happy families are all alike; every unhappy family is unhappy in
its own way.

Everything was in confusion in the Oblonskys' house. The wife
had discovered that the husband was carrying on an intrigue with
a French girl, who had been a governess in their family, and she
had announced to her husband that she could not go on living in
the same house with him ...

The equivalent HTML is:
<h1>Chapter 1</h1>
<p>Happy families are all alike; every unhappy family is unhappy in
its own way.</p>
<p>Everything was in confusion in the Oblonskys’ house. The wife
had discovered that the husband was carrying on an intrigue with
a French girl, who had been a governess in their family, and she
had announced to her husband that she could not go on living in
the same house with him ...</p>

The HTML conversion can be carried out in two steps. First, the plain text is
assembled into segments, blocks of text of the same kind (heading, paragraph, and
so on). Then each segment is converted, by surrounding it with the HTML tags and
converting special characters.

Fetching the text from the Internet and breaking it into segments is a challenging
task. Provide an interface and a mock implementation. Combine it with a class that
uses the mock implementation to finish the formatting task.

P9.19 Write a method randomShape that randomly generates objects implementing the Shape
interface: some mixture of rectangles, ellipses, and lines, with random positions.
Call it 10 times and draw all of them.

T

Plain Text HTML

“ ” “ (left) or ” (right)

‘ ’ ‘ (left) or ’ (right)

— &emdash;

< <

> >

& &

G

364 Chapter 9 Interfaces and Polymorphism

P9.20 Enhance the ButtonViewer program so that it prints a message “I was clicked n
times!” whenever the button is clicked. The value n should be incremented with
each click.

P9.21 Enhance the ButtonViewer program so that it has two buttons, each of which prints a
message “I was clicked n times!” whenever the button is clicked. Each button
should have a separate click count.

P9.22 Enhance the ButtonViewer program so that it has two buttons labeled A and B, each
of which prints a message “Button x was clicked!”, where x is A or B.

P9.23 Implement a ButtonViewer program as in Exercise P9.22, using only a single listener
class.

P9.24 Enhance the ButtonViewer program so that it prints the time at which the button was
clicked.

P9.25 Implement the AddInterestListener in the InvestmentViewer1 program as a regular class
(that is, not an inner class). Hint: Store a reference to the bank account. Add a con-
structor to the listener class that sets the reference.

P9.26 Implement the AddInterestListener in the InvestmentViewer2 program as a regular class
(that is, not an inner class). Hint: Store references to the bank account and the label
in the listener. Add a constructor to the listener class that sets the references.

P9.27 Write a program that demonstrates the growth of a roach population. Start with
two roaches and double the number of roaches with each button click.

P9.28 Write a program that uses a timer to print the current time once a second. Hint: The
following code prints the current time:

Date now = new Date();
System.out.println(now);

The Date class is in the java.util package.

P9.29 Change the RectangleComponent for the animation program in Section 9.10 so that the
rectangle bounces off the edges of the component rather than simply moving out-
side. (See ch09/timer/ in your source code.)

P9.30 Write a program that animates a car so that it moves across a frame.

P9.31 Write a program that animates two cars moving across a frame in opposite direc-
tions (but at different heights so that they don’t collide.)

P9.32 Change the RectangleComponent for the mouse listener program in Section 9.11 so that
a new rectangle is added to the component whenever the mouse is clicked. Hint:
Keep an ArrayList<Rectangle> and draw all rectangles in the paintComponent method.
(See ch09/mouse/ in your source code.)

P9.33 Write a program that prompts the user to enter the x- and y-positions of the center
and a radius, using JOptionPane dialogs.When the user clicks a “Draw” button, draw
a circle with that center and radius in a component.

P9.34 Write a program that allows the user to specify a circle by typing the radius in a JOp-
tionPane and then clicking on the center. Note that you don’t need a “Draw” button.

P9.35 Write a program that allows the user to specify a circle with two mouse presses, the
first one on the center and the second on a point on the periphery. Hint: In the

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

Answers to Self-Check Questions 365

mouse press handler, you must keep track of whether you already received the cen-
ter point in a previous mouse press.

Project 9.1 Design an interface MoveableShape that can be used as a generic mechanism for ani-
mating a shape. A moveable shape must have two methods: move and draw. Write a
generic AnimationPanel that paints and moves any MoveableShape (or array list of Move-
ableShape objects if you covered Chapter 7). Supply moveable rectangle and car
shapes.

Project 9.2 Your task is to design a general program for managing board games with two play-
ers. Your program should be flexible enough to handle games such as tic-tac-toe,
chess, or the Game of Nim of Project 6.2.
Design an interface Game that describes a board game. Think about what your pro-
gram needs to do. It asks the first player to input a move—a string in a
game-specific format, such as Be3 in chess. Your program knows nothing about spe-
cific games, so the Game interface must have a method such as

boolean isValidMove(String move)

Once the move is found to be valid, it needs to be executed—the interface needs
another method executeMove. Next, your program needs to check whether the game
is over. If not, the other player’s move is processed. You should also provide some
mechanism for displaying the current state of the board.
Design the Game interface and provide two implementations of your choice—such as
Nim and Chess (or TicTacToe if you are less ambitious). Your GamePlayer class should
manage a Game reference without knowing which game is played, and process the
moves from both players. Supply two programs that differ only in the initialization
of the Game reference.

1. It must implement the Measurable interface, and its getMeasure method must return
the population.

2. The Object class doesn’t have a getMeasure method, and the add method invokes the
getMeasure method.

3. Only if x actually refers to a BankAccount object.
4. No—a Coin reference can be converted to a Measurable reference, but if you attempt

to cast that reference to a BankAccount, an exception occurs.
5. Measurable is an interface. Interfaces have no instance variables and no method

implementations.
6. That variable never refers to a Measurable object. It refers to an object of some

class—a class that implements the Measurable interface.
7. The code fragment prints 500.05. Each call to add results in a call x.getMeasure(). In

the first call, x is a BankAccount. In the second call, x is a Coin. A different getMeasure

Programming Projects

Answers to Self-Check Questions

366 Chapter 9 Interfaces and Polymorphism

method is called in each case. The first call returns the account balance, the second
one the coin value.

8. The String class doesn’t implement the Measurable interface.
9. Implement a class StringMeasurer that implements the Measurer interface.

10. A measurer measures an object, whereas getMeasure measures “itself”, that is, the
implicit parameter.

11. Inner classes are convenient for insignificant classes. Also, their methods can access
local and instance variables from the surrounding scope.

12. Four: one for the outer class, one for the inner class, and two for the DataSet and Mea-
surer classes.

13. You want to implement the GradingProgram class in terms of that interface so that it
doesn’t have to change when you switch between the mock class and the actual
class.

14. Because the developer of GradingProgram doesn’t have to wait for the GradeBook class
to be complete.

15. The button object is the event source. The listener object is the event listener.
16. The ClickListener class implements the ActionListener interface.
17. Direct access is simpler than the alternative—passing the variable as a parameter to a

constructor or method.
18. The local variable must be declared as final.
19. First add label to the panel, then add button.
20. The actionPerformed method does not access that variable.
21. The timer needs to call some method whenever the time interval expires. It calls the

actionPerformed method of the listener object.

367

Chapter10
Inheritance

CHAPTER GOALS
• To learn about inheritance

• To understand how to inherit and override superclass methods

• To be able to invoke superclass constructors

• To learn about protected and package access control

• To understand the common superclass Object and how to
override its toString and equals methods

G To use inheritance for customizing user interfaces

In this chapter, we discuss the important concept of inheritance.

Specialized classes can be created that inherit behavior from more general classes. You will learn how

to implement inheritance in Java, and how to make use of the Object class—the most general class in

the inheritance hierarchy.

368

CHAPTER CONTENTS

In the real world, you often categorize concepts into hierarchies. Hierarchies are
frequently represented as trees, with the most general concepts at the root of the
hierarchy and more specialized ones towards the branches. Figure 1 shows a typical
example.

In Java it is equally common to group classes in inheritance hierarchies. The
classes representing the most general concepts are near the root, more specialized
classes towards the branches. For example, Figure 2 shows part of the hierarchy of
Swing user-interface components in Java.

We must introduce some more terminology for expressing the relationship
between the classes in an inheritance hierarchy. The more general class is called the
superclass. The more specialized class that inherits from the superclass is called the
subclass. In our example, JPanel is a subclass of JComponent.

Figure 2 uses the UML notation for inheritance. In a class diagram, you denote
inheritance by a solid arrow with a “hollow triangle” tip that points to the super-
class.

When designing a hierarchy of classes, you ask yourself which features and
behaviors are common to all the classes that you are designing. Those common
properties are placed in a superclass. For example, all user-interface components
have a width and height, and the getWidth and getHeight methods of the JComponent

10.1 Inheritance Hierarchies

Sets of classes can
form complex
inheritance
hierarchies.

10.1 Inheritance Hierarchies 368

10.2 Implementing Subclasses 371
SYNTAX 10.1: Inheritance 372
COMMON ERROR 10.1: Confusing Super-

and Subclasses 373
COMMON ERROR 10.2: Shadowing Instance

Variables 374

10.3 Overriding Methods 375
SYNTAX 10.2: Calling a Superclass Method 376
COMMON ERROR 10.3: Accidental Overloading 377
COMMON ERROR 10.4: Failing to Invoke the

Superclass Method 378

10.4 Subclass Construction 378
SYNTAX 10.3: Calling a Superclass Constructor 379

10.5 Converting Between Subclass and
Superclass Types 381

SYNTAX 10.4: The instanceof Operator 382

10.6 Polymorphism and Inheritance 383
SPECIAL TOPIC 10.1: Abstract Classes

SPECIAL TOPIC 10.2: Final Methods and Classes

COMMON ERROR 10.5: Overriding Methods to Be

Less Accessible 385
SPECIAL TOPIC 10.3: Protected Access

HOW TO 10.1: Developing an Inheritance

Hierarchy 386
WORKED EXAMPLE 10.1: Implementing an Employee

Hierarchy for Payroll Processing

10.7 Object: The Cosmic Superclass 391
QUALITY TIP 10.1: Supply toString in All Classes 395
SPECIAL TOPIC 10.4: Inheritance and

the toString Method

COMMON ERROR 10.6: Declaring the equals Method

with the Wrong Parameter Type 395
SPECIAL TOPIC 10.5: Inheritance and the

equals Method

QUALITY TIP 10.2: Clone Mutable Instance Variables in

Accessor Methods

SPECIAL TOPIC 10.6: Implementing the

clone Method

SPECIAL TOPIC 10.7: Enumeration Types Revisited

RANDOM FACT 10.1: Scripting Languages

10.8G Using Inheritance to
Customize Frames 397

SPECIAL TOPIC 10.8: Adding the main Method to the

Frame Class 398

10.1 Inheritance Hierarchies 369

class return the component’s dimensions. More specialized properties can be found
in subclasses. For example, buttons can have text and icon labels. The class Abstract-
Button, but not the superclass JComponent, has methods to set and get the button text
and icon, and instance variables to store them. The individual button classes (such

Figure 1
A Hierarchy of Vehicle Types

Vehicle

Motorcycle Car Truck

Sedan SUV

Figure 2 A Part of the Hierarchy of Swing User-interface Components

JComponent

JPanel

JTextField JTextArea

JCheckBox JRadioButton

JToggleButton JButton

JTextComponent JLabel

getWidth
getHeight

AbstractButton

setText
setIcon

370 Chapter 10 Inheritance

as JButton, JRadioButton, and JCheckBox) inherit these properties. In fact, the Abstract-
Button class was created to express the commonality among these buttons.

We will use a simpler example of a hierarchy in our study of inheritance con-
cepts. Consider a bank that offers its customers the following account types:

1. The checking account has no interest, gives you a small number of free
transactions per month, and charges a transaction fee for each additional
transaction.

2. The savings account earns interest that compounds monthly. (In our imple-
mentation, the interest is compounded using the balance of the last day of the
month, which is somewhat unrealistic. Typically, banks use either the average
or the minimum daily balance. Exercise P10.1 asks you to implement this
enhancement.)

Figure 3 shows the inheritance hierarchy. Exercise P10.2 asks you to add another
class to this hierarchy.

Next, let us determine the behavior of these classes. All bank accounts support
the getBalance method, which simply reports the current balance. They also support
the deposit and withdraw methods, although the details of the implementation differ.
For example, a checking account must keep track of the number of transactions to
account for the transaction fees.

The checking account needs a method deductFees to deduct the monthly fees and
to reset the transaction counter. The deposit and withdraw methods must be overrid-
den to count the transactions.

The savings account needs a method addInterest to add interest.
To summarize: The subclasses support all methods from the superclass, but their

implementations may be modified to match the specialized purposes of the sub-
classes. In addition, subclasses are free to introduce additional methods.

1. What is the purpose of the JTextComponent class in Figure 2?
2. Why don’t we place the addInterest method in the BankAccount class?

Figure 3 Inheritance Hierarchy for Bank Account Classes

BankAccount

deposit
withdraw
getBalance

CheckingAccount

deductFees
deposit
withdraw

SavingsAccount

addInterest

S E L F C H E C K

10.2 Implementing Subclasses 371

In this section, we begin building the inheritance hierarchy of bank account classes.
You will learn how to form a subclass from a given superclass. Let’s start with the
SavingsAccount class. Here is the syntax for the class declaration:

public class SavingsAccount extends BankAccount
{

added instance variables
new methods

}

In the SavingsAccount class declaration you specify only new methods and instance
variables. The SavingsAccount class automatically inherits the methods of the BankAc-
count class. For example, the deposit method automatically applies to savings
accounts:

SavingsAccount collegeFund = new SavingsAccount(10);
 // Savings account with 10% interest
collegeFund.deposit(500);
 // OK to use BankAccount method with SavingsAccount object

Let’s see how savings account objects are different from BankAccount objects. We will
set an interest rate in the constructor, and we need a method to apply that interest
periodically. That is, in addition to the three methods that can be applied to every
account, there is an additional method addInterest. The new method and instance
variable must be declared in the subclass.

public class SavingsAccount extends BankAccount
{
 private double interestRate;

 public SavingsAccount(double rate)
 {

Constructor implementation
 }

 public void addInterest()
 {

Method implementation
 }
}

A subclass object automatically has the instance variables declared in the superclass.
For example, a SavingsAccount object has an instance variable balance that was
declared in the BankAccount class.

Any new instance variables that you declare in the subclass are present only in
subclass objects. For example, every SavingsAccount object has an instance variable
interestRate. Figure 4 shows the layout of a SavingsAccount object.

10.2 Implementing Subclasses

Figure 4
Layout of a
Subclass Object

Inheritance is a
mechanism for
extending existing
classes by adding
instance variables
and methods.

A subclass inherits
the methods of its
superclass.

The instance
variables declared
in the superclass
are present in
subclass objects.

balance =

SavingsAccount

interestRate =

g

10000

10

BankAccount portion

372 Chapter 10 Inheritance

Next, you need to implement the new addInterest method. The method computes
the interest due on the current balance and deposits that interest to the account.

public class SavingsAccount extends BankAccount
{
 private double interestRate;

 public SavingsAccount(double rate)
 {
 interestRate = rate;
 }

 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;

deposit(interest);
 }
}

The addInterest method calls the getBalance and deposit methods rather than directly
updating the balance variable of the superclass. This is a consequence of encapsula-
tion. The balance variable was declared as private in the BankAccount class. The addIn-
terest method is declared in the SavingsAccount class. It does not have the right to
access a private instance variable of another class.

Note how the addInterest method calls the inherited getBalance and deposit meth-
ods without specifying an implicit parameter. This means that the calls apply to the
implicit parameter of the addInterest method.

In other words, the statements in the addInterest method are a shorthand for the
following statements:

double interest = this.getBalance() * this.interestRate / 100;
this.deposit(interest);

Syntax 10.1 Inheritance

class SubclassName extends SuperclassName
{

instance variables
methods

}

Syntax

Example

public class SavingsAccount extends BankAccount
{
 private double interestRate;
 . . .

 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }
}

Subclass Superclass

Declare methods that are
specific to the subclass.

Declare instance variables
that are added to
the subclass.

The reserved word extends
denotes inheritance.

A subclass has no
access to private
instance variables of
its superclass.

10.2 Implementing Subclasses 373

This completes the implementation of the SavingsAccount class. You will find the
complete source code below.

You may wonder at this point in what way inheritance differs from implement-
ing an interface. An interface is not a class. It has no behavior. It merely tells you
which methods you should implement. A superclass has specific behavior that the
subclasses inherit.

ch10/accounts/SavingsAccount.java

3. Which instance variables does an object of class SavingsAccount have?
4. Name four methods that you can apply to SavingsAccount objects.
5. If the class Manager extends the class Employee, which class is the superclass and

which is the subclass?

Confusing Super- and Subclasses

If you compare an object of type SavingsAccount with an object of type BankAccount, then you
find that
• The reserved word extends suggests that the SavingsAccount object is an extended version

of a BankAccount.
• The SavingsAccount object is larger; it has an added instance variable interestRate.
• The SavingsAccount object is more capable; it has an addInterest method.
It seems a superior object in every way. So why is SavingsAccount called the subclass and
BankAccount the superclass?

The more general
class is called a
superclass. The more
specialized class that
inherits from the
superclass is called
the subclass.

Inheriting from a
class differs from
implementing an
interface: The
subclass inherits
behavior from
the superclass.

1 /**
2 An account that earns interest at a fixed rate.
3 */
4 public class SavingsAccount extends BankAccount
5 {
6 private double interestRate;
7
8 /**
9 Constructs a bank account with a given interest rate.

10 @param rate the interest rate
11 */
12 public SavingsAccount(double rate)
13 {
14 interestRate = rate;
15 }
16
17 /**
18 Adds the earned interest to the account balance.
19 */
20 public void addInterest()
21 {
22 double interest = getBalance() * interestRate / 100;
23 deposit(interest);
24 }
25 }

S E L F C H E C K

Common Error 10.1

374 Chapter 10 Inheritance

The super/sub terminology comes from set theory. Look at the set of all bank accounts.
Not all of them are SavingsAccount objects; some of them are other kinds of bank accounts.
Therefore, the set of SavingsAccount objects is a subset of the set of all BankAccount objects, and
the set of BankAccount objects is a superset of the set of SavingsAccount objects. The more spe-
cialized objects in the subset have a richer state and more capabilities.

Shadowing Instance Variables

A subclass has no access to the private instance variables of the superclass. For example, the
methods of the SavingsAccount class cannot access the balance instance variable:

public class SavingsAccount extends BankAccount
{
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 balance = balance + interest; // Error
 }
 . . .
}

It is a common beginner’s error to “solve” this problem by adding another instance variable
with the same name.

public class SavingsAccount extends BankAccount
{
 private double balance; // Don’t
 . . .
 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 balance = balance + interest; // Compiles but doesn’t update the correct balance
 }
}

Sure, now the addInterest method compiles, but it doesn’t update the correct balance! Such a
SavingsAccount object has two instance variables, both named balance (see Figure 5). The
getBalance method of the superclass retrieves one of them, and the addInterest method of the
subclass updates the other.

Figure 5 Shadowing Instance Variables

Common Error 10.2

balance =

SavingsAccount

interestRate =

10000

5

balance = 500

BankAccount portion

10.3 Overriding Methods 375

A subclass method overrides a superclass method if it has the same name and
parameter types as a superclass method. When such a method is applied to a sub-
class object, the overriding method, and not the original method, is executed.

We turn to the CheckingAccount class for an example of overriding methods. Recall
that the BankAccount class has three methods:

public class BankAccount
{
 . . .
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 public double getBalance() { . . . }
}

The CheckingAccount class declares these methods:
public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(double amount) { . . . }
 public void withdraw(double amount) { . . . }
 public void deductFees() { . . . }
}

The deposit and withdraw methods of the CheckingAccount class override the deposit
and withdraw methods of the BankAccount class to handle transaction fees. However,
the deductFees method does not override another method, and the getBalance method
is not overridden.

Let’s implement the deposit method of the CheckingAccount class. It increments the
transaction count and deposits the money:

public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 . . .
 }
}

Now we have a problem. We can’t simply add amount to balance:
public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 balance = balance + amount; // Error
 }
}

Although every CheckingAccount object has a balance instance variable, that instance
variable is private to the superclass BankAccount. Subclass methods have no more

10.3 Overriding Methods
A subclass can
inherit a superclass
method or override it
by providing another
implementation.

These methods override

BankAccount methods.

376 Chapter 10 Inheritance

access rights to the private data of the superclass than any other methods. If you
want to modify a private superclass instance variable, you must use a public method
of the superclass.

How can we add the deposit amount to the balance, using the public interface of
the BankAccount class? There is a perfectly good method for that purpose—namely,
the deposit method of the BankAccount class. So we must invoke the deposit method
on some object. On which object? The checking account into which the money is
deposited—that is, the implicit parameter of the deposit method of the Checking-
Account class. To invoke another method on the implicit parameter, you don’t spec-
ify the parameter but simply write the method name, like this:

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 // Now add amount to balance
 deposit(amount); // Not complete
 }
 . . .
}

But this won’t quite work. The compiler interprets
deposit(amount);

as
this.deposit(amount);

The this parameter is of type CheckingAccount. There is a method called deposit in the
CheckingAccount class. Therefore, that method will be called—but that is just the
method we are currently writing! The method will call itself over and over, and the
program will die in an infinite recursion (discussed in Chapter 13).

Instead, we must be specific that we want to invoke only the superclass’s deposit

method. There is a special reserved word super for this purpose:
public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {

Syntax 10.2 Calling a Superclass Method

super.methodName(parameters);Syntax

Example public void deposit(double amount)
{
 transactionCount++;

super.deposit(amount);
}

Calls the method
of the superclass
instead of the method
of the current class. If you omit super, this method calls itself.

See page 378.

Use the super
reserved word to call
a method of the
superclass.

10.3 Overriding Methods 377

 transactionCount++;
 // Now add amount to balance

super.deposit(amount);
 }
 . . .
}

This version of the deposit method is correct. To deposit money into a checking
account, update the transaction count and call the deposit method of the superclass.

The remaining methods of the CheckingAccount class also invoke a superclass method.
public class CheckingAccount extends BankAccount
{
 private static final int FREE_TRANSACTIONS = 3;
 private static final double TRANSACTION_FEE = 2.0;

 private int transactionCount;
 . . .
 public void withdraw(double amount)
 {
 transactionCount++;
 // Now subtract amount from balance

super.withdraw(amount);
 }

 public void deductFees()
 {
 if (transactionCount > FREE_TRANSACTIONS)
 {
 double fees = TRANSACTION_FEE * (transactionCount - FREE_TRANSACTIONS);

super.withdraw(fees);
 }
 transactionCount = 0;
 }
 . . .
}

6. Categorize the methods of the SavingsAccount class as inherited, new, and over-
ridden.

7. Why does the withdraw method of the CheckingAccount class call super.withdraw?
8. Why does the deductFees method set the transaction count to zero?

Accidental Overloading

Recall from Section 2.4 that two methods can have the same name, provided they have dif-
ferent method parameters. For example, the PrintStream class has methods called println with
headers

void println(int x)

and

void println(String x)

A N I M AT I O N
Inheritance

S E L F C H E C K

Common Error 10.3

378 Chapter 10 Inheritance

These are different methods, each with its own implementation. The Java compiler considers
them to be completely unrelated. We say that the println name is overloaded. This is differ-
ent from overriding, where a subclass method provides an implementation of a method with
the same method parameters.

If you mean to override a method but supply a different parameter type, then you acci-
dentally introduce an overloaded method. For example,

public class CheckingAccount extends BankAccount
{
 . . .
 public void deposit(int amount) // Error: should be double
 {
 . . .
 }
}

The compiler will not complain. It thinks that you want to provide a deposit method just for
int parameters, while inheriting another deposit method for double parameters.

When overriding a method, be sure to check that the parameter types match exactly.

Failing to Invoke the Superclass Method

A common error in extending the functionality of a superclass method is to forget the super
qualifier. For example, to withdraw money from a checking account, update the transaction
count and then withdraw the amount:

public void withdraw(double amount)
{
 transactionCount++;
 withdraw(amount);
 // Error—should be super.withdraw(amount)
}

Here withdraw(amount) refers to the withdraw method applied to the implicit parameter of the
method. The implicit parameter is of type CheckingAccount, and the CheckingAccount class has a
withdraw method, so that method is called. Of course, that calls the current method all over
again, which will call itself yet again, over and over, until the program runs out of memory.
Instead, you must precisely identify which withdraw method you want to call.

Another common error is to forget to call the superclass method altogether. Then the
functionality of the superclass mysteriously vanishes.

In this section, we discuss the implementation of constructors in subclasses. As an
example, let’s declare a constructor to set the initial balance of a checking account.

We want to invoke the BankAccount constructor to set the balance to the initial bal-
ance. There is a special instruction to call the superclass constructor from a subclass

Common Error 10.4

10.4 Subclass Construction

10.4 Subclass Construction 379

constructor. You use the reserved word super, followed by the construction parame-
ters in parentheses:

public class CheckingAccount extends BankAccount
{
 public CheckingAccount(double initialBalance)
 {
 // Construct superclass

super(initialBalance);
 // Initialize transaction count
 transactionCount = 0;
 }
 . . .
}

When the reserved word super is immediately followed by a parenthesis, it indicates
a call to the superclass constructor. When used in this way, the constructor call must
be the first statement of the subclass constructor. If super is followed by a period and
a method name, on the other hand, it indicates a call to a superclass method, as you
saw in the preceding section. Such a call can be made anywhere in any subclass
method.

The dual use of the super reserved word is analogous to the dual use of the this
reserved word (see Special Topic 3.1).

If a subclass constructor does not call the superclass constructor, the superclass
must have a constructor without parameters. That constructor is used to initialize
the superclass data. However, if all constructors of the superclass require parame-
ters, then the compiler reports an error.

For example, you can implement the CheckingAccount constructor without calling
the superclass constructor. Then the BankAccount class is constructed with its BankAc-
count() constructor, which sets the balance to zero. Of course, then the CheckingAc-
count constructor must explicitly deposit the initial balance.

Most commonly, however, subclass constructors have some parameters that they
pass on to the superclass and others that they use to initialize subclass instance
variables.

To call the superclass
constructor, you use
the super reserved
word in the first
statement of the
subclass constructor.

Syntax 10.3 Calling a Superclass Constructor

accessSpecifier ClassName(parameterType parameterName, . . .)
{

super(parameters);
 . . .
}

Syntax

Example
public CheckingAccount(double initialBalance)
{

super(initialBalance);
 transactionCount = 0;
}Must be the first statement

of the subclass constructor.

Subclass constructor

Invokes the constructor
of the superclass.

If not present,

the superclass constructor with

no parameters is called.

380 Chapter 10 Inheritance

ch10/accounts/CheckingAccount.java

9. Why didn’t the SavingsAccount constructor in Section 10.2 call its superclass
constructor?

10. When you invoke a superclass method with the super reserved word, does the
call have to be the first statement of the subclass method?

1 /**
2 A checking account that charges transaction fees.
3 */
4 public class CheckingAccount extends BankAccount
5 {
6 private static final int FREE_TRANSACTIONS = 3;
7 private static final double TRANSACTION_FEE = 2.0;
8
9 private int transactionCount;

10
11 /**
12 Constructs a checking account with a given balance.
13 @param initialBalance the initial balance
14 */
15 public CheckingAccount(double initialBalance)
16 {
17 // Construct superclass
18 super(initialBalance);
19
20 // Initialize transaction count
21 transactionCount = 0;
22 }
23
24 public void deposit(double amount)
25 {
26 transactionCount++;
27 // Now add amount to balance
28 super.deposit(amount);
29 }
30
31 public void withdraw(double amount)
32 {
33 transactionCount++;
34 // Now subtract amount from balance
35 super.withdraw(amount);
36 }
37
38 /**
39 Deducts the accumulated fees and resets the
40 transaction count.
41 */
42 public void deductFees()
43 {
44 if (transactionCount > FREE_TRANSACTIONS)
45 {
46 double fees = TRANSACTION_FEE *
47 (transactionCount - FREE_TRANSACTIONS);
48 super.withdraw(fees);
49 }
50 transactionCount = 0;
51 }
52 }

S E L F C H E C K

10.5 Converting Between Subclass and Superclass Types 381

It is often necessary to convert a subclass type to a superclass type. Occasionally,
you need to carry out the conversion in the opposite direction. This section dis-
cusses the conversion rules.

The class SavingsAccount extends the class BankAccount. In other words, a Savings-
Account object is a special case of a BankAccount object. Therefore, a reference to a
SavingsAccount object can be converted to a BankAccount reference.

SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund; // OK

Furthermore, all references can be converted to the type Object.
Object anObject = collegeFund; // OK

Now the three object references stored in collegeFund, anAccount, and anObject all
refer to the same object of type SavingsAccount (see Figure 6).

However, the variables anAccount and anObject know less than the full story about
the object references that they store. Because anAccount is a variable of type BankAc-
count, you can invoke the deposit and withdraw methods. You cannot use the addInter-
est method, though—it is not a method of the BankAccount class:

anAccount.deposit(1000); // OK
anAccount.addInterest(); // No—not a method of the type of the anAccount variable

And, of course, the variable anObject knows even less. You can’t even invoke the
deposit method on it—deposit is not a method of the Object class.

Why would anyone want to know less about an object reference and use a vari-
able whose type is a superclass? This can happen if you want to reuse code that
knows about the superclass but not the subclass. Here is a typical example. Con-
sider a transfer method that transfers money from one account to another:

public void transfer(double amount, BankAccount other)
{
 withdraw(amount);
 other.deposit(amount);
}

You can use this method to transfer money from one bank account to another:
BankAccount momsAccount = . . . ;
BankAccount harrysAccount = . . . ;
momsAccount.transfer(1000, harrysAccount);

10.5 Converting Between Subclass
and Superclass Types

Figure 6
Variables of
Different Types
Can Refer to the
Same Object

Subclass references
can be converted
to superclass
references.

collegeFund =

anAccount =

anObject = balance =

SavingsAccount

interestRate =

g

10000

10

382 Chapter 10 Inheritance

You can also use the method to transfer money into a CheckingAccount:
CheckingAccount harrysChecking = . . . ;
momsAccount.transfer(1000, harrysChecking);
 // OK to pass a CheckingAccount reference to a method expecting a BankAccount

The transfer method expects a reference to a BankAccount, and it gets a reference to a
CheckingAccount object. That is perfectly legal. The transfer method doesn’t actually
know that, in this case, the parameter variable other contains a reference to a Check-
ingAccount object. All it cares about is that the object can carry out the deposit
method. This is assured because the other variable has the type BankAccount.

Very occasionally, you need to carry out the opposite conversion, from a super-
class type to a subclass type. For example, you may have a variable of type Object,
and you know that it actually holds a BankAccount reference. In that case, you can use
a cast to convert the type:

BankAccount anAccount = (BankAccount) anObject;

However, this cast is somewhat dangerous. If you are wrong, and anObject actually
refers to an object of an unrelated type, then an exception is thrown.

To protect against bad casts, you can use the instanceof operator. It tests whether
an object belongs to a particular type. For example,

anObject instanceof BankAccount

returns true if the type of anObject is convertible to BankAccount. This happens if
anObject refers to an actual BankAccount or a subclass such as SavingsAccount. Using the
instanceof operator, a safe cast can be programmed as follows:

if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

The instanceof
operator tests
whether an object
belongs to a
particular type.

Syntax 10.4 The instanceof Operator

object instanceof TypeNameSyntax

Example

if (anObject instanceof BankAccount)
{
 BankAccount anAccount = (BankAccount) anObject;
 . . .
}

If anObject is null,

instanceof returns false.

Returns true if anObject
can be cast to a BankAccount.

Two references

to the same object.

You can invoke BankAccount
methods on this variable.

The object may belong to a
subclass of BankAccount.

10.6 Polymorphism and Inheritance 383

11. Why did the second parameter of the transfer method have to be of type Bank-
Account and not, for example, SavingsAccount?

12. Why can’t we change the second parameter of the transfer method to the type
Object?

In Java, the type of a variable does not determine the type of the object to which it
refers. For example, a variable of type BankAccount can hold a reference to a BankAccount
object or to a subclass object such as SavingsAccount. You already encountered this
phenomenon in Chapter 9 with variables whose type was an interface. A variable
whose type is Measurable holds a reference to an object of a class that implements the
Measurable interface, perhaps a Coin object or an object of an entirely different class.

What happens when you invoke a method on a variable of type BankAccount? For
example,

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);

Which deposit method is called? The anAccount variable has type BankAccount, so it
would appear as if BankAccount.deposit is called. On the other hand, the
CheckingAccount class provides its own deposit method that updates the transaction
count. The reference stored in the anAccount variable actually refers to an object of
the subclass CheckingAccount, so it would be appropriate if the CheckingAccount.deposit
method were called instead.

Java uses dynamic method lookup to determine which method to invoke. The
method to be called is always determined by the type of the actual object, not the
type of the variable. That is, if the actual object has the type CheckingAccount, then the
CheckingAccount.deposit method is called. It does not matter that the object reference
is stored in a variable of type BankAccount.

Have another look at the transfer method:
public void transfer(double amount, BankAccount other)
{
 withdraw(amount);
 other.deposit(amount);
}

Suppose you call
anAccount.transfer(1000, anotherAccount);

Two method calls are the result:
anAccount.withdraw(1000);
anotherAccount.deposit(1000);

Depending on the actual types of the objects whose references are stored in anAc-
count and anotherAccount, different versions of the withdraw and deposit methods are
called. This is an example of polymorphism. As we discussed in Chapter 9, polymor-
phism is the ability to treat objects with differences in behavior in a uniform way.

If you look into the implementation of the transfer method, it may not be imme-
diately obvious that the first method call

withdraw(amount);

S E L F C H E C K

10.6 Polymorphism and Inheritance

When the virtual
machine calls an
instance method, it
locates the method
of the implicit
parameter’s class.
This is called dynamic
method lookup.

384 Chapter 10 Inheritance

depends on the type of an object. However, that call is a shortcut for
this.withdraw(amount);

The this parameter holds a reference to the implicit parameter, which can refer to a
BankAccount or a subclass object.

The following program calls the polymorphic withdraw and deposit methods. You
should manually calculate what the program should print for each account balance,
and confirm that the correct methods have in fact been called.

ch10/accounts/AccountTester.java

Program Run

13. If a is a variable of type BankAccount that holds a non-null reference, what do you
know about the object to which a refers?

14. If a refers to a checking account, what is the effect of calling a.transfer(1000, a)?

1 /**
2 This program tests the BankAccount class and
3 its subclasses.
4 */
5 public class AccountTester
6 {
7 public static void main(String[] args)
8 {
9 SavingsAccount momsSavings = new SavingsAccount(0.5);

10
11 CheckingAccount harrysChecking = new CheckingAccount(100);
12
13 momsSavings.deposit(10000);
14
15 momsSavings.transfer(2000, harrysChecking);
16 harrysChecking.withdraw(1500);
17 harrysChecking.withdraw(80);
18
19 momsSavings.transfer(1000, harrysChecking);
20 harrysChecking.withdraw(400);
21
22 // Simulate end of month
23 momsSavings.addInterest();
24 harrysChecking.deductFees();
25
26 System.out.println("Mom's savings balance: "
27 + momsSavings.getBalance());
28 System.out.println("Expected: 7035");
29
30 System.out.println("Harry's checking balance: "
31 + harrysChecking.getBalance());
32 System.out.println("Expected: 1116");
33 }
34 }

Mom's savings balance: 7035.0
Expected: 7035
Harry's checking balance: 1116.0
Expected: 1116

S E L F C H E C K

10.6 Polymorphism and Inheritance 385

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Abstract Classes

Special Topic 10.1 introduces the concept of abstract classes and methods. An abstract
method has no implementation. (All methods of an interface are automatically abstract.) You
cannot construct objects of abstract classes, typically because the class has one or more
abstract methods. However, abstract classes differ from interfaces in an important way—
they can have instance variables, and they can have concrete methods and constructors.

Final Methods and Classes

Special Topic 10.2 discusses final methods and classes. A final method cannot be overridden
in a subclass. A final class cannot be subclassed.

Overriding Methods to Be Less Accessible

If a superclass declares a method to be publicly accessible, you cannot override it to be more
private. For example,

public class BankAccount
{
 public void withdraw(double amount) { . . . }
 . . .
}

public class CheckingAccount extends BankAccount
{

private void withdraw(double amount) { . . . }
 // Error—subclass method cannot be more private
 . . .
}

The compiler does not allow this, because the increased privacy would conflict with poly-
morphism. Suppose the AccountTester class has this method call:

BankAccount account = new CheckingAccount();
account.withdraw(100000); // Should CheckingAccount.withdraw be called?

Polymorphism dictates that CheckingAccount.withdraw should be called, but that is a private
method that should not be accessible in AccountTester.

Therefore, the compiler reports an error if you override a public method and make it pri-
vate or give it package access. The latter is a common oversight. If you forget the public mod-
ifier, your subclass method has package access, which is more restrictive. Simply restore the
public modifier, and the error will go away.

Special Topic 10.1

Special Topic 10.2

Common Error 10.5

386 Chapter 10 Inheritance

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Protected Access

Special Topic 10.3 covers the protected access specifier. A protected instance variable or
method can be accessed by all subclasses and by all classes in the same package.

HOW TO 10.1 Developing an Inheritance Hierarchy

When you work with a set of classes, some of which are more general and others more spe-
cialized, you want to organize them into an inheritance hierarchy. This enables you to pro-
cess objects of different classes in a uniform way.

To illustrate the design process, consider an application that presents a quiz and grades the
user’s responses. A quiz consists of questions, and there are different kinds of questions:
• Fill-in-the-blank
• Choice (single or multiple)
• Numeric (where an approximate answer is ok; e.g., 1.33 when the actual answer is 4/3)
• Free response

Step 1 List the classes that are part of the hierarchy.

From the problem description, we can find these classes:

FillInQuestion (fill in the blank)
ChoiceQuestion (offers answer choices to the user)
MultiChoiceQuestion (offers answer choices to the user; user can pick more than one)
NumericQuestion

FreeResponseQuestion

In addition, we introduce a common superclass Question to model the commonality among
these classes.

Step 2 Organize the classes into an inheritance hierarchy.

Draw a UML diagram that shows super- and subclasses. Here is the diagram for our example.

Special Topic 10.3

Choice
Question

FillIn
Question

Numeric
Question

FreeResponse
Question

MultiChoice
Question

Question

10.6 Polymorphism and Inheritance 387

Step 3 Determine the common responsibilities.

In Step 2, you will have identified a class at the root of the hierarchy. That class needs to have
sufficient responsibilities to carry out the tasks at hand.

To find out what those tasks are, write pseudocode for processing the objects.

For each question

Display the question to the user.

Get the user response.

Check whether the response is correct.

From the pseudocode, we obtain the following list of common responsibilities that every
question must carry out:

Display the question.

Check the response.

Step 4 Decide which methods are overridden in subclasses.

For each subclass and each of the common responsibilities, decide whether the inherited
behavior is appropriate or whether it needs to be overridden. Be sure to declare any methods
that are inherited or overridden in the root of the hierarchy.

We place the responsibilities common to all questions into the Question superclass.

public class Question
{
 . . .
 /**

Displays this question.
 */
 public void display() { . . . }

 /**
Checks a given response for correctness.

 @param response the response to check
 @return true if the response was correct, false otherwise
 */
 public boolean checkAnswer(String response) { . . . }
}

The ChoiceQuestion class will need to override the display method to display all the choices.
The NumericQuestion class will need to override the checkAnswer method, converting the
response to a number and checking that it is approximately the same as the expected answer.

From now on, we will only consider the ChoiceQuestion in detail. For the other question
types, see the programming exercises at the end of this chapter.

Step 5 Define the public interface of each subclass.

Typically, subclasses have responsibilities other than those of the superclass. List those, as
well as the methods that need to be overridden. You also need to specify how the objects of
the subclasses should be constructed.

With the ChoiceQuestion, we need a way of adding choices, like this:

ChoiceQuestion question = new ChoiceQuestion(
 "In which country was the inventor of Java born?");
question.addChoice("Australia", false);
question.addChoice("Canada", true);
question.addChoice("Denmark", false);
question.addChoice("United States", false);

388 Chapter 10 Inheritance

We then override the display method to display those choices in the form

1: Australia
2: Canada
3: Denmark
4: United States

Here are the methods that we just discovered for the ChoiceQuestion class:

public class ChoiceQuestion extends Question
{
 . . .
 /**

Adds an answer choice to this question.
 @param choice the choice to add
 @param correct true if this is the correct choice, false otherwise
 */
 public void addChoice(String choice, boolean correct)

 public void display() { . . . } // Overrides superclass method
}

Step 6 Identify instance variables.

List the instance variables for each class. If you find a instance variable that is common to all
classes, be sure to place it in the base of the hierarchy.

All questions have a question text and an answer. We store those values in the Question
superclass.

public class Question
{
 private String text;
 private String answer;
 . . .
}

The ChoiceQuestion class needs to store the list of choices.

public class ChoiceQuestion extends Question
{
 private ArrayList<String> choices;
 . . .
}

We need to spend some thought on how question objects are constructed. We can supply the
question text in the constructor. However, the answer for a choice question is only known
when the correct choice is added, so we need a setter method for it:

public class Question
{
 . . .
 /**

Constructs a question with a given text and an empty answer.
 @param questionText the text of this question
 */
 public Question(String questionText) { . . . }

 /**
Sets the answer for this question.

 @param correctResponse the answer
 */
 public void setAnswer(String correctResponse) { . . . }
}

10.6 Polymorphism and Inheritance 389

Step 7 Implement constructors and methods.

The methods of the Question class are very straightforward:

public class Question
{
 . . .
 public Question(String questionText)
 {
 text = questionText;
 answer = "";
 }

 public void setAnswer(String correctResponse)
 {
 answer = correctResponse;
 }

 public boolean checkAnswer(String response)
 {
 return response.equals(answer);
 }

 public void display()
 {
 System.out.println(text);
 }
}

The ChoiceQuestion constructor must call the superclass constructor to set the question text:

public ChoiceQuestion(String questionText)
{

super(questionText);
 choices = new ArrayList<String>();
}

The addChoice method sets the answer when the correct choice is added.

public void addChoice(String choice, boolean correct)
{
 choices.add(choice);
 if (correct)
 {
 // Convert choices.size() to string
 String choiceString = "" + choices.size();
 setAnswer(choiceString);
 }
}

Finally, the display method of the ChoiceQuestion class displays the question text, then the
choices. Note the call to the superclass method.

public void display()
{

super.display();
 for (int i = 0; i < choices.size(); i++)
 {
 int choiceNumber = i + 1;
 System.out.println(choiceNumber + ": " + choices.get(i));
 }
}

390 Chapter 10 Inheritance

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Step 8 Construct objects of different subclasses and process them.

In our sample program, we construct two questions and present them to the user.

public class QuestionDemo
{
 public static void main(String[] args)
 {
 Question[] quiz = new Question[2];

 quiz[0] = new Question("Who was the inventor of Java?");
 quiz[0].setAnswer("James Gosling");

 ChoiceQuestion question = new ChoiceQuestion(
 "In which country was the inventor of Java born?");
 question.addChoice("Australia", false);
 question.addChoice("Canada", true);
 question.addChoice("Denmark", false);
 question.addChoice("United States", false);
 quiz[1] = question;

 Scanner in = new Scanner(System.in);
 for (Question q : quiz)
 {
 q.display();
 System.out.print("Your answer: ");
 String response = in.nextLine();
 System.out.println(q.checkAnswer(response));
 }
 }
}

Program Run

Who was the inventor of Java?
Your answer: James Gosling
true
In which country was the inventor of Java born?
1: Australia
2: Canada
3: Denmark
4: United States
Your answer: 4
false

The complete program is contained in the ch10/questions directory of your source code.

Implementing an Employee Hierarchy for
Payroll Processing

This Worked Example shows how to implement payroll processing
that works for different kinds of employees.

Worked
Example 10.1

10.7 Object: The Cosmic Superclass 391

In Java, every class that is declared without an explicit extends clause automatically
extends the class Object. That is, the class Object is the direct or indirect superclass of
every class in Java (see Figure 7).

Of course, the methods of the Object class are very general. Here are the most
useful ones:

It is a good idea for you to override these methods in your classes.

The toString method returns a string representation for each object. It is useful for
debugging. For example,

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
 // Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

10.7 Object: The Cosmic Superclass
Every class extends
the Object class
either directly
or indirectly.

Method Purpose

String toString() Returns a string representation of the object

boolean equals(Object otherObject) Tests whether the object equals another object

Object clone() Makes a full copy of an object

10.7.1 Overriding the toString Method

In your classes,
provide toString
methods that
describe each
object’s state.

Figure 7 The Object Class Is the Superclass of Every Java Class

Object

BankAccount

CheckingAccount SavingsAccount

RandomString InputStream

392 Chapter 10 Inheritance

In fact, this toString method is called whenever you concatenate a string with an
object. Consider the concatenation

"box=" + box;

On one side of the + concatenation operator is a string, but on the other side is an
object reference. The Java compiler automatically invokes the toString method to
turn the object into a string. Then both strings are concatenated. In this case, the
result is the string

"box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

The compiler can invoke the toString method, because it knows that every object
has a toString method: Every class extends the Object class, and that class provides a
toString method.

As you know, numbers are also converted to strings when they are concatenated
with other strings. For example,

int age = 18;
String s = "Harry's age is " + age;
 // Sets s to "Harry's age is 18"

In this case, the toString method is not involved. Numbers are not objects, and there
is no toString method for them. There is only a small set of primitive types, how-
ever, and the compiler knows how to convert them to strings.

Let’s try the toString method for the BankAccount class:

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
 // Sets s to something like "BankAccount@d24606bf"

That’s disappointing—all that’s printed is the name of the class, followed by the
hash code, a seemingly random code. The hash code can be used to tell objects
apart—different objects are likely to have different hash codes. (See Chapter 16 for
the details.)

We don’t care about the hash code. We want to know what is inside the object.
But, of course, the toString method of the Object class does not know what is inside
the BankAccount class. Therefore, we have to override the method and supply our
own version in the BankAccount class. We’ll follow the same format that the toString
method of the Rectangle class uses: first print the name of the class, and then the val-
ues of the instance variables inside brackets.

public class BankAccount
{
 . . .
 public String toString()
 {
 return "BankAccount[balance=" + balance + "]";
 }
}

This works better:
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
 // Sets s to "BankAccount[balance=5000]"

10.7 Object: The Cosmic Superclass 393

The equals method is called whenever you want to compare whether two objects
have the same contents:

if (coin1.equals(coin2)) . . .
 // Contents are the same—see Figure 8

This is different from the test with the == operator, which tests whether the two ref-
erences are to the same object:

if (coin1 == coin2) . . .
 // Objects are the same—see Figure 9

Let us implement the equals method for the Coin class. You need to override the
equals method of the Object class:

public class Coin
{
 . . .
 public boolean equals(Object otherObject)
 {
 . . .
 }
 . . .
}

Now you have a slight problem. The Object class knows nothing about coins, so it
declares the otherObject parameter of the equals method to have the type Object.
When overriding the method, you are not allowed to change the parameter type. To
overcome this problem, cast the parameter to the class Coin:

Coin other = (Coin) otherObject;

Then you can compare the two coins.
public boolean equals(Object otherObject)
{
 Coin other = (Coin) otherObject;
 return name.equals(other.name) && value == other.value;
}

10.7.2 Overriding the equals Method

When implementing
the equals method,
test whether
two objects have
equal state.

Figure 8 Two References to Equal Objects Figure 9 Two References to the Same Object

coin1 =

value =

Coin

name = "quarter"

0.25

coin2 =

value =

Coin

name = "quarter"

0.25

coin1 =

value =

Coin

name = "quarter"

0.25
coin2 =

394 Chapter 10 Inheritance

Note that you must use equals to compare object references, but use == to compare
numbers.

When you override the equals method, you should also override the hashCode
method so that equal objects have the same hash code—see Chapter 16 for details.

You know that copying an object reference simply gives you two references to the
same object:

BankAccount account = new BankAccount(1000);
BankAccount account2 = account;
account2.deposit(500);
 // Now both account and account2 refer to a bank account with a balance of 1500

What can you do if you actually want to make a copy of an object? That is the pur-
pose of the clone method. The clone method must return a new object that has an
identical state to the existing object (see Figure 10).

Implementing the clone method is quite a bit more difficult than implementing
the toString or equals methods—see Special Topic 10.6 for details.

Let us suppose that someone has implemented the clone method for the Bank-
Account class. Here is how to call it:

BankAccount clonedAccount = (BankAccount) account.clone();

The return type of the clone method is the class Object. When you call the
method, you must use a cast to convince the compiler that account.clone() really has
the same type as clonedAccount.

15. Should the call x.equals(x) always return true?
16. Can you implement equals in terms of toString? Should you?

Figure 10
Cloning Objects

10.7.3 The clone Method

The clone method
makes a new object
with the same state
as an existing object.

account =

balance =

BankAccount

10000

clonedAccount =

balance =

BankAccount

10000

S E L F C H E C K

10.7 Object: The Cosmic Superclass 395

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Supply toString in All Classes

If you have a class whose toString() method returns a string that describes the object state,
then you can simply call System.out.println(x) whenever you need to inspect the current
state of an object x. This works because the println method of the PrintStream class invokes
x.toString() when it needs to print an object, which is extremely helpful if there is an error in
your program and the objects don’t behave the way you think they should. You can simply
insert a few print statements and peek inside the object state during the program run. Some
debuggers can even invoke the toString method on objects that you inspect.

Sure, it is a bit more trouble to write a toString method when you aren’t sure your pro-
gram ever needs one—after all, it might work correctly on the first try. Then again, many
programs don’t work on the first try. As soon as you find out that yours doesn’t, consider
adding those toString methods to help you debug the program.

Inheritance and the toString Method

Special Topic 10.4 gives a recipe for implementing the toString method so that it can be easily
extended in subclasses.

Declaring the equals Method with the Wrong Parameter Type

Consider the following, seemingly simpler, version of the equals method for the Coin class:

public boolean equals(Coin other) // Don’t do this!
{
 return name.equals(other.name) && value == other.value;
}

Here, the parameter of the equals method has the type Coin, not Object.
Unfortunately, this method does not override the equals method in the Object class.

Instead, the Coin class now has two different equals methods:

boolean equals(Coin other) // Declared in the Coin class
boolean equals(Object otherObject) // Inherited from the Object class

This is error-prone because the wrong equals method can be called. For example, consider
these variable declarations:

Coin aCoin = new Coin(0.25, "quarter");
Object anObject = new Coin(0.25, "quarter");

The call aCoin.equals(anObject) calls the second equals method, which returns false.
The remedy is to ensure that you use the Object type for the explicit parameter of the

equals method.

Quality Tip 10.1

Special Topic 10.4

Common Error 10.6

396 Chapter 10 Inheritance

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Inheritance and the equals Method

Special Topic 10.5 analyzes the subtle problems that arise when the equals method is overrid-
den in a subclass, and it gives you a recipe for minimizing these problems.

Clone Mutable Instance Variables in Accessor Methods

Quality Tip 10.2 suggests that your accessor methods should not give out references to
mutable instance variables, but that the instance variable values should first be cloned.

Implementing the clone Method

Special Topic 10.6 explains how to implement the clone method for your own classes.

Enumeration Types Revisited

Special Topic 10.7 revisits enumeration types and explains that they are all subclasses of the
class Enum. The Enum class has suitable implementations of the toString, equals, and clone meth-
ods that are inherited by all enumeration types.

Scripting Languages

Random Fact 10.1 discusses scripting languages that are designed for rapid development,
having a simple structure and fewer syntax rules, and often supporting a particular applica-
tion (such as office software or a web browser).

Special Topic 10.5

Quality Tip 10.2

Special Topic 10.6

Special Topic 10.7

Random Fact 10.1

Graphics Track 10.8 Using Inheritance to Customize Frames 397

As you add more user-interface components to a frame, the frame can get quite
complex. Your programs will become easier to understand when you use inherit-
ance for complex frames.

To do so, design a subclass of JFrame. Store the components as instance variables.
Initialize them in the constructor of your subclass. If the initialization code gets
complex, simply add some helper methods.

Here, we carry out this process for the investment viewer program in Chapter 9.

public class InvestmentFrame extends JFrame
{
 private JButton button;
 private JLabel label;
 private JPanel panel;
 private BankAccount account;

 public InvestmentFrame()
 {
 account = new BankAccount(INITIAL_BALANCE);

 // Use instance variables for components
 label = new JLabel("balance: " + account.getBalance());

 // Use helper methods
 createButton();
 createPanel();

 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }

 private void createButton()
 {
 button = new JButton("Add Interest");
 ActionListener listener = new AddInterestListener();
 button.addActionListener(listener);
 }

 private void createPanel()
 {
 panel = new JPanel();
 panel.add(button);
 panel.add(label);
 add(panel);
 }
 . . .
}

This approach differs from the programs in Chapter 9. In those programs, we sim-
ply configured the frame in the main method of a viewer class.

It is a bit more work to provide a separate class for the frame. However, the
frame class makes it easier to organize the code that constructs the user-interface
elements.

Of course, we still need a class with a main method:
public class InvestmentViewer2
{

10.8 Using Inheritance to Customize Frames
Provide a JFrame
subclass for a
complex frame.

398 Chapter 10 Inheritance Graphics Track

 public static void main(String[] args)
 {
 JFrame frame = new InvestmentFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

17. How many Java source files are required by the investment viewer application
when we use inheritance to declare the frame class?

18. Why does the InvestmentFrame constructor call setSize(FRAME_WIDTH, FRAME_HEIGHT),
whereas the main method of the investment viewer class in Chapter 9 called
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT)?

Adding the main Method to the Frame Class

Have another look at the InvestmentFrame and InvestmentViewer2 classes. Some programmers
prefer to combine these two classes, by adding the main method to the frame class:

public class InvestmentFrame extends JFrame
{
 public static void main(String[] args)
 {
 JFrame frame = new InvestmentFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 public InvestmentFrame()
 {
 account = new BankAccount(INITIAL_BALANCE);

 // Use instance variables for components
 label = new JLabel("balance: " + account.getBalance());

 // Use helper methods
 createButton();
 createPanel();

 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }
 . . .
}

This is a convenient shortcut that you will find in many programs, but it does muddle the
responsibilities between the frame class and the program. Therefore, we do not use this
approach in this book.

S E L F C H E C K

Special Topic 10.8

Classes, Objects, and Methods Introduced in this Chapter 399

Explain the notions of inheritance, superclasses, and subclasses.

• Sets of classes can form complex inheritance hierarchies.

Implement subclasses in Java.

• Inheritance is a mechanism for extending existing classes by adding instance
variables and methods.

• A subclass inherits the methods of its superclass.
• The instance variables declared in the superclass are present in subclass objects.
• A subclass has no access to private instance variables of its superclass.
• The more general class is called a superclass. The more specialized class that inherits

from the superclass is called the subclass.
• Inheriting from a class differs from implementing an interface: The subclass inherits

behavior from the superclass.

Describe how a subclass can override methods from its superclass.

• A subclass can inherit a superclass method or override it by providing another
implementation.

• Use the super reserved word to call a method of the superclass.

Describe how a subclass can construct its superclass.

• To call the superclass constructor, you use the super reserved word in the first
statement of the subclass constructor.

Describe how to convert between class and superclass types.

• Subclass references can be converted to superclass references.
• The instanceof operator tests whether an object belongs to a particular type.

Describe dynamic method lookup and polymorphism.

• When the virtual machine calls an instance method, it locates the method of the
implicit parameter’s class. This is called dynamic method lookup.

Provide appropriate overrides of the methods of the Object superclass.

• Every class extends the Object class either directly or indirectly.
• In your classes, provide toString methods that describe each object’s state.
• When implementing the equals method, test whether two objects have equal state.
• The clone method makes a new object with the same state as an existing object.

Use inheritance to customize frames.

• Provide a JFrame subclass for a complex frame.

Summary of Learning Objectives

Classes, Objects, and Methods Introduced in this Chapter
java.lang.Cloneable
java.lang.CloneNotSupportedException

java.lang.Object
 clone
 toString

400 Chapter 10 Inheritance

• Worked Example Implementing an Employee Hierarchy for Payroll Processing
• Lab Exercises

Animation Inheritance
Practice Quiz
Code Completion Exercises

R10.1 What is the balance of b after the following operations?
SavingsAccount b = new SavingsAccount(10);
b.deposit(5000);
b.withdraw(b.getBalance() / 2);
b.addInterest();

R10.2 Describe all constructors of the SavingsAccount class. List all methods that are inher-
ited from the BankAccount class. List all methods that are added to the SavingsAccount
class.

R10.3 Can you convert a superclass reference into a subclass reference? A subclass refer-
ence into a superclass reference? If so, give examples. If not, explain why not.

R10.4 Identify the superclass and the subclass in each of the following pairs of classes.
a. Employee, Manager

b. Polygon, Triangle
c. GraduateStudent, Student

d. Person, Student
e. Employee, GraduateStudent

f. BankAccount, CheckingAccount

g. Vehicle, Car
h. Vehicle, Minivan
i. Car, Minivan

j. Truck, Vehicle

R10.5 Suppose the class Sub extends the class Sandwich. Which of the following assignments
are legal?

Sandwich x = new Sandwich();
Sub y = new Sub();

a. x = y;

b. y = x;
c. y = new Sandwich();

d. x = new Sub();

R10.6 Draw an inheritance diagram that shows the inheritance relationships between the
classes:

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

• Person

• Employee

• Student

• Instructor

• Classroom

• Object

Review Exercises 401

R10.7 In an object-oriented traffic simulation system, we have the following classes:

Draw an inheritance diagram that shows the relationships between these classes.

R10.8 What inheritance relationships would you establish among the following classes?

R10.9 Which of these conditions returns true? Check the Java documentation for the
inheritance patterns.

a. Rectangle r = new Rectangle(5, 10, 20, 30);

b. if (r instanceof Rectangle) . . .
c. if (r instanceof Point) . . .

d. if (r instanceof Rectangle2D.Double) . . .
e. if (r instanceof RectangularShape) . . .

f. if (r instanceof Object) . . .

g. if (r instanceof Shape) . . .

R10.10 Explain the two meanings of the super reserved word. Explain the two meanings of
the this reserved word. How are they related?

R10.11 (Tricky.) Consider the two calls
public class D extends B
{
 public void f()
 {
 this.g(); // 1
 }
 public void g()
 {
 super.g(); // 2
 }
 . . .
}

Which of them is an example of polymorphism?

R10.12 Consider this program:
public class AccountPrinter
{

• Vehicle

• Car

• Truck

• Sedan

• Coupe

• PickupTruck

• SportUtilityVehicle

• Minivan

• Bicycle

• Motorcycle

• Student

• Professor

• TeachingAssistant

• Employee

• Secretary

• DepartmentChair

• Janitor

• SeminarSpeaker

• Person

• Course

• Seminar

• Lecture

• ComputerLab

402 Chapter 10 Inheritance

 public static void main(String[] args)
 {
 SavingsAccount momsSavings
 = new SavingsAccount(0.5);

 CheckingAccount harrysChecking
 = new CheckingAccount(0);

 . . .
 endOfMonth(momsSavings);
 endOfMonth(harrysChecking);
 printBalance(momsSavings);
 printBalance(harrysChecking);
 }

 public static void endOfMonth(SavingsAccount savings)
 {
 savings.addInterest();
 }

 public static void endOfMonth(CheckingAccount checking)
 {
 checking.deductFees();
 }

 public static void printBalance(BankAccount account)
 {
 System.out.println("The balance is $"
 + account.getBalance());
 }
}

Do the calls to the endOfMonth methods use dynamic method invocation? Inside the
printBalance method, does the call to getBalance use dynamic method invocation?

R10.13 Explain the terms shallow copy and deep copy.

R10.14 What access attribute should instance variables have? What access attribute should
static variables have? How about static final variables?

R10.15 What access attribute should instance methods have? Does the same hold for static
methods?

R10.16 The static variables System.in and System.out are public. Is it possible to overwrite
them? If so, how?

R10.17 Why are public instance variables dangerous? Are public static variables more dan-
gerous than public instance variables?

P10.1 Enhance the addInterest method of the SavingsAccount class to compute the interest
on the minimum balance since the last call to addInterest. Hint: You need to modify
the withdraw method as well, and you need to add an instance variable to remember
the minimum balance.

Programming Exercises

Programming Exercises 403

P10.2 Add a TimeDepositAccount class to the bank account hierarchy. The time deposit
account is just like a savings account, but you promise to leave the money in the
account for a particular number of months, and there is a $20 penalty for early
withdrawal. Construct the account with the interest rate and the number of months
to maturity. In the addInterest method, decrement the count of months. If the count
is positive during a withdrawal, charge the withdrawal penalty.

P10.3 Add a class NumericQuestion to the question hierarchy of How To 10.1. If the
response and the expected answer differ by no more than 0.01, then accept it as
correct.

P10.4 Add a class FillInQuestion to the question hierarchy of How To 10.1. An object of
this class is constructed with a string that contains the answer, surrounded by _ _,
for example, "The inventor of Java was _James Gosling_". The question should be dis-
played as

The inventor of Java was _____

P10.5 Modify the checkAnswer method of the Question class of How To 10.1 so that it does
not take into account different spaces or upper/lowercase characters. For example,
the response " JAMES gosling" should match an answer of "James Gosling".

P10.6 Add a class MultiChoiceQuestion to the question hierarchy of How To 10.1 that allows
multiple correct choices. The respondent should provide all correct choices, sepa-
rated by spaces. Provide instructions in the question text.

P10.7 Add a class AnyCorrectChoiceQuestion to the question hierarchy of How To 10.1 that
allows multiple correct choices. The respondent should provide any one of the cor-
rect choices. The answer string should contain all of the correct choices, separated
by spaces.

P10.8 Add a method addText to the Question class of How To 10.1 and provide a different
implementation of ChoiceQuestion that calls addText rather than storing an array list of
choices.

P10.9 Provide toString and equals methods for the Question and ChoiceQuestion classes of
How To 10.1.

P10.10 Implement a subclass Square that extends the Rectangle class. In the constructor,
accept the x- and y-positions of the center and the side length of the square. Call the
setLocation and setSize methods of the Rectangle class. Look up these methods in the
documentation for the Rectangle class. Also supply a method getArea that computes
and returns the area of the square. Write a sample program that asks for the center
and side length, then prints out the square (using the toString method that you
inherit from Rectangle) and the area of the square.

P10.11 Implement a superclass Person. Make two classes, Student and Instructor, that inherit
from Person. A person has a name and a year of birth. A student has a major, and an
instructor has a salary. Write the class declarations, the constructors, and the meth-
ods toString for all classes. Supply a test program that tests these classes and meth-
ods.

P10.12 Make a class Employee with a name and salary. Make a class Manager inherit from
Employee. Add an instance variable, named department, of type String. Supply a
method toString that prints the manager’s name, department, and salary. Make a

404 Chapter 10 Inheritance

class Executive inherit from Manager. Supply appropriate toString methods for all
classes. Supply a test program that tests these classes and methods.

P10.13 Reorganize the bank account classes as follows. In the BankAccount class, introduce
an abstract method endOfMonth with no implementation. Rename the addInterest and
deductFees methods into endOfMonth in the subclasses. Which classes are now abstract
and which are concrete? Write a static method void test(BankAccount account) that
makes five transactions and then calls endOfMonth. Test it with instances of all con-
crete account classes.

P10.14 Implement an abstract class Vehicle and concrete subclasses Car and Truck. A vehicle
has a position on the screen. Write methods draw that draw cars and trucks as
follows:

Then write a method randomVehicle that randomly generates Vehicle references, with
an equal probability for constructing cars and trucks, with random positions. Call it
10 times and draw all of them.

P10.15 Write a program that prompts the user for an integer, using a JOptionPane, and then
draws as many rectangles at random positions in a component as the user requested.
Use inheritance for your frame class.

P10.16 Write a program that asks the user to enter an integer n into a JOptionPane, and then
draws an n-by-n grid. Use inheritance for the frame class.

Project 10.1 Your task is to program robots with varying behaviors. The robots try to escape a
maze, such as the following:

* *******
* * *
* ***** *
* * * *
* * *** *
* * *
*** * * *
* * *
******* *

A robot has a position and a method void move(Maze m) that modifies the position.
Provide a common superclass Robot whose move method does nothing. Provide
subclasses RandomRobot, RightHandRuleRobot, and MemoryRobot. Each of these robots has a
different strategy for escaping. The RandomRobot simply makes random moves. The
RightHandRuleRobot moves around the maze so that it’s right hand always touches a

G

Car Truck

G

G

Programming Projects

Answers to Self-Check Questions 405

wall. The MemoryRobot remembers all positions that it has previously occupied and
never goes back to a position that it knows to be a dead end.

Project 10.2 Implement the toString, equals, and clone methods for all subclasses of the BankAc-
count class, as well as the Bank class of Chapter 7. Write unit tests that verify that
your methods work correctly. Be sure to test a Bank that holds objects from a mix-
ture of account classes.

1. To express the common behavior of text fields and text components.
2. Not all bank accounts earn interest.
3. Two instance variables: balance and interestRate.
4. deposit, withdraw, getBalance, and addInterest.
5. Manager is the subclass; Employee is the superclass.
6. The SavingsAccount class inherits the deposit, withdraw, and getBalance methods. The

addInterest method is new. No methods override superclass methods.
7. It needs to reduce the balance, and it cannot access the balance instance variable

directly.
8. So that the count can reflect the number of transactions for the following month.
9. It was content to use the superclass constructor without parameters, which sets the

balance to zero.
10. No—this is a requirement only for constructors. For example, the Checking-

Account.deposit method first increments the transaction count, then calls the super-
class method.

11. We want to use the method for all kinds of bank accounts. Had we used a parameter
of type SavingsAccount, we couldn’t have called the method with a CheckingAccount
object.

12. We cannot invoke the deposit method on a variable of type Object.
13. The object is an instance of BankAccount or one of its subclasses.
14. The balance of a is unchanged (you withdraw from and deposit to the same

account), and the transaction count is incremented twice.
15. It certainly should—unless, of course, x is null.
16. If toString returns a string that describes all instance variables, you can simply call

toString on the implicit and explicit parameters, and compare the results. However,
comparing the instance variables is more efficient than converting them into strings.

17. Three: InvestmentFrameViewer, InvestmentFrame, and BankAccount.
18. The InvestmentFrame constructor adds the panel to itself.

Answers to Self-Check Questions

This page intentionally left blank

407

Chapter11
Input/Output and

Exception Handling

CHAPTER GOALS
• To be able to read and write text files

• To learn how to throw and catch exceptions

• To be able to design your own exception classes

• To understand the difference between checked and
unchecked exceptions

• To know when and where to catch an exception

This chapter starts with a discussion of file input and output.

Whenever you read or write data, potential errors are to be expected. A file may have been corrupted

or deleted, or it may be stored on another computer that was just disconnected from the network. In

order to deal with these issues, you need to know about exception handling. This chapter tells you

how your programs can report exceptional conditions, and how they can recover when an

exceptional condition has occurred.

408

CHAPTER CONTENTS

We begin this chapter by discussing the common task of reading and writing files
that contain text. Examples are files that are created with a simple text editor, such
as Windows Notepad, as well as Java source code and HTML files.

The simplest mechanism for reading text is to use the Scanner class. You already
know how to use a Scanner for reading console input. To read input from a disk file,
the Scanner class relies on another class, File, which describes disk files and directo-
ries. (The File class has many methods that we do not discuss in this book; for
example, methods that delete or rename a file.) First construct a File object with the
name of the input file, then use the File to construct a Scanner object:

File inFile = new File("input.txt");
Scanner in = new Scanner(inFile);

This Scanner object reads text from the file input.txt. You can use the Scanner meth-
ods (such as next, nextLine, nextInt, and nextDouble) to read data from the input file.

To write output to a file, you construct a PrintWriter object with the given file
name, for example

PrintWriter out = new PrintWriter("output.txt");

If the output file already exists, it is emptied before the new data are written into it.
If the file doesn’t exist, an empty file is created. You can also construct a PrintWriter
object from a File object. This is useful if you use a file chooser (see Special Topic
11.1).

The PrintWriter class is an enhancement of the PrintStream class that you already
know—System.out is a PrintStream object. You can use the familiar print, println, and
printf methods with any PrintWriter object:

out.print(29.95);
out.println(new Rectangle(5, 10, 15, 25));
out.printf("%10.2f", price);

11.1 Reading and Writing Text Files

When reading text
files, use the
Scanner class.

When writing text
files, use the
PrintWriter class.

11.1 Reading and Writing Text Files 408
COMMON ERROR 11.1: Backslashes in File Names 410
COMMON ERROR 11.2: Constructing a Scanner with

a String 410
SPECIAL TOPIC 11.1: File Dialog Boxes

SPECIAL TOPIC 11.2: Reading Web Pages 411
SPECIAL TOPIC 11.3: Command Line Arguments

11.2 Reading Text Input 411
PRODUCTIVITY HINT 11.1: Regular Expressions 415
HOW TO 11.1: Processing Text Files 416
WORKED EXAMPLE 11.1: Analyzing Baby Names

11.3 Throwing Exceptions 419
SYNTAX 11.1: Throwing an Exception 419

11.4 Checked and Unchecked
Exceptions 421

SYNTAX 11.2: The throws Clause 423

11.5 Catching Exceptions 423
SYNTAX 11.3: Catching Exceptions 424
QUALITY TIP 11.1: Throw Early, Catch Late 425
QUALITY TIP 11.2: Do Not Squelch Exceptions 425

11.6 The finally Clause 426
SYNTAX 11.4: The finally Clause 427
QUALITY TIP 11.3: Do Not Use catch and finally in

the Same try Statement 427
SPECIAL TOPIC 11.4: Automatic Resource Management

in Java 7 428

11.7 Designing Your Own
Exception Types 428

QUALITY TIP 11.4: Do Throw Specific Exceptions 429

11.8 Case Study: A Complete Example 429
RANDOM FACT 11.1: The Ariane Rocket Incident

11.1 Reading and Writing Text Files 409

When you are done writing to a file, be sure to close the PrintWriter:

out.close();

If your program exits without closing the PrintWriter, the disk file may not contain
all of the output.

The following program puts these concepts to work. It reads all lines of an input
file and sends them to the output file, preceded by line numbers. If the input file is

Mary had a little lamb
Whose fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go!

then the program produces the output file

/* 1 */ Mary had a little lamb
/* 2 */ Whose fleece was white as snow.
/* 3 */ And everywhere that Mary went,
/* 4 */ The lamb was sure to go!

The line numbers are enclosed in /* */ delimiters so that the program can be used
for numbering Java source files.

There is one additional issue that we need to tackle. When the input or output
file doesn’t exist, a FileNotFoundException can occur. The compiler insists that we tell
it what the program should do when that happens. (In this regard, the FileNotFoun-
dException is different from the exceptions that you have already encountered. We
will discuss this difference in detail in Section 11.4.) In our sample program, we take
the easy way out and acknowledge that the main method should simply be termi-
nated if the exception occurs. We label the main method like this:

public static void main(String[] args) throws FileNotFoundException

You will see in the following sections how to deal with exceptions in a more profes-
sional way.

ch11/lines/LineNumberer.java

You must close a
print stream when
you are done
writing output.

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;
5
6 /**
7 This program applies line numbers to a file.
8 */
9 public class LineNumberer

10 {
11 public static void main(String[] args) throws FileNotFoundException
12 {
13 // Prompt for the input and output file names
14
15 Scanner console = new Scanner(System.in);
16 System.out.print("Input file: ");
17 String inputFileName = console.next();
18 System.out.print("Output file: ");
19 String outputFileName = console.next();
20

410 Chapter 11 Input/Output and Exception Handling

1. What happens when you supply the same name for the input and output files to
the LineNumberer program?

2. What happens when you supply the name of a nonexistent input file to the Line-
Numberer program?

Backslashes in File Names

When you specify a file name as a string literal, and the name contains backslash characters
(as in a Windows file name), you must supply each backslash twice:

inFile = new File("c:\\homework\\input.dat");

Recall that a single backslash inside quoted strings is an escape character that is combined
with another character to form a special meaning, such as \n for a newline character. The \\
combination denotes a single backslash.

When a user supplies a file name to a program, however, the user should not type the
backslash twice.

Constructing a Scanner with a String

When you construct a PrintWriter with a string, it writes to a file:

PrintWriter out = new PrintWriter("output.txt");

However, this does not work for a Scanner. The statement

Scanner in = new Scanner("input.txt"); // ERROR?

does not open a file. Instead, it simply reads through the string: in.nextLine() returns the
string "input.txt". This feature can be useful—see Section 11.2.3 for an example.

21 // Construct the Scanner and PrintWriter objects for reading and writing
22
23 File inputFile = new File(inputFileName);
24 Scanner in = new Scanner(inputFile);
25 PrintWriter out = new PrintWriter(outputFileName);
26 int lineNumber = 1;
27
28 // Read the input and write the output
29
30 while (in.hasNextLine())
31 {
32 String line = in.nextLine();
33 out.println("/* " + lineNumber + " */ " + line);
34 lineNumber++;
35 }
36
37 in.close();
38 out.close();
39 }
40 }

S E L F C H E C K

Common Error 11.1

Common Error 11.2

11.2 Reading Text Input 411

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

You must simply remember to use File objects in the Scanner constructor:

Scanner in = new Scanner(new File("input.txt")); // OK

File Dialog Boxes

Special Topic 11.1 shows you how you can present a file chooser dialog box to users of your
programs.

Reading Web Pages

You can read the contents of a web page with this sequence of commands:

String address = "http://java.sun.com/index.html";
URL locator = new URL(address);
Scanner in = new Scanner(locator.openStream());

Now simply read the contents of the web page with the Scanner in the usual way. The URL con-
structor and the openStream method can throw an IOException. You need to tag the main method
with throws IOException. (See Section 11.3 for more information on the throws clause.)

Command Line Arguments

Special Topic 11.3 shows you how you can process command line arguments, strings that are
supplied after the name of a program that is launched from a command shell. The command
line arguments are passed to the args parameter of the main method.

In the following sections, you will learn how to process complex text input that you
often encounter in real life situations.

In the preceding example program, we read input a line at a time. Sometimes, it is
useful to read words rather than lines. For example, consider the loop

while (in.hasNext())
{
 String input = in.next();
 System.out.println(input);

Special Topic 11.1

Special Topic 11.2

Special Topic 11.3

11.2 Reading Text Input

11.2.1 Reading Words

412 Chapter 11 Input/Output and Exception Handling

}

With our sample input, this loop would print a word on every line:
Mary
had
a
little
lamb

In Java, a word is not the same as in English. It is any sequence of characters that is
not white space. White space includes spaces, tab characters, and the newline char-
acters that separate lines. For example, the following are considered words:

snow.
1729
C++

(Note the period after snow—it is considered a part of the word because it is not
white space.)

Here is precisely what happens when the next method is executed. Input charac-
ters that are white space are consumed—that is, removed from the input. However,
they do not become part of the word. The first character that is not white space
becomes the first character of the word. More characters are added until either
another white space character occurs, or the end of the input has been reached.

Sometimes, you want to read just the words and discard anything that isn’t a let-
ter. You achieve this task by calling the useDelimiter method on your Scanner object:

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");

Here, we set the character pattern that separates words to “any sequence of charac-
ters other than letters”. (The notation used for describing the character pattern is
called a regular expression. See Productivity Hint 11.1 on page 415 if you are inter-
ested in more details.) With this setting, punctuation and numbers are stripped off
from the words returned by the next method.

When each line of a file is a data record, it is often best to read entire lines with the
nextLine method:

String line = in.nextLine();

The nextLine method consumes the next input line (including the newline character)
and returns the line without the newline character. You can then take the line apart
for further processing.

Here is a typical example of processing lines in a file. A file with population data
from the CIA Fact Book site (http://www.cia.gov/library/publications/the-world-
factbook/) contains lines such as the following:

China 1330044605
India 1147995898
United States 303824646
. . .

Because some country names have more than one word, it would be tedious to read
this file using the next method. For example, after reading United, how would your

The next method
reads a word at a
time. Call Scanner.
useDelimiter to
specify a pattern for
word boundaries.

11.2.2 Processing Lines

The nextLine method
reads a line of input
and consumes the
newline character at
the end of the line.

11.2 Reading Text Input 413

program know that it still needs to read another word before reading the popula-
tion count?

Instead, read each input line into a string. Then use the isDigit and isWhitespace
methods to find out where the name ends and the number starts.

Locate the first digit:
int i = 0;
while (!Character.isDigit(line.charAt(i))) { i++; }

Then extract the country name and population:
String countryName = line.substring(0, i);
String population = line.substring(i);

However, the country name contains one or more spaces at the end. Use the trim
method to remove them:

countryName = countryName.trim();

The trim method returns the string with all white space at the beginning and end
removed.

There is another problem. The population is stored in a string, not a number. Use
the Integer.parseInt method to convert it:

int populationValue = Integer.parseInt(population);

You need to be careful when calling the Integer.parseInt method. Its parameter
value must be a string containing the digits of an integer or a NumberFormatException
occurs. The parameter value may not contain any additional characters. Not even
spaces are allowed! In our situation, we happen to know that there won’t be any
spaces at the beginning of the string, but there might be some at the end. Therefore,
we use the trim method:

int populationValue = Integer.parseInt(population.trim());

Here you saw how to break a string into parts by looking at individual characters.
Another approach is occasionally easier. Construct a new Scanner object to read the
characters from a string:

Scanner lineScanner = new Scanner(line);

Then you can use lineScanner like any other Scanner object, reading words and
numbers:

String countryName = lineScanner.next();
while (!lineScanner.hasNextInt())
{
 countryName = countryName + " " + lineScanner.next();
}
int populationValue = lineScanner.nextInt();

setatSdetinU 3 0 3 8 2 4 6 4 6

i starts here i ends here
Use trim to

remove this space.

countryName

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

population

414 Chapter 11 Input/Output and Exception Handling

You have used the nextInt and nextDouble methods of the Scanner class many times,
but here we will have a look at their behavior in detail. Suppose you call

double value = in.nextDouble();

The nextDouble method recognizes floating-point numbers such as 3.14159, -21, or
1E12 (a billion in scientific notation). However, if there is no number in the input,
then a NoSuchElementException occurs.

Consider an input containing the characters

White space is consumed and the word 21st is read. However, this word is not a
properly formatted number. In this situation, an “input mismatch exception” occurs.

To avoid exceptions, use the hasNextDouble method to screen the input. For example,
if (in.hasNextDouble())
{
 double value = in.nextDouble();
 . . .
}

Similarly, you should call the hasNextInt method before calling nextInt.
Note that the nextInt and nextDouble methods do not consume the white space

that follows a number. This can be a problem if you alternate between calling
nextInt/nextDouble and nextLine. Suppose a file contains student IDs and names in
this format:

1729
Harry Morgan
1730
Diana Lin
. . .

Now suppose you read the file with these instructions:
while (in.hasNextInt())
{
 int studentID = in.nextInt();
 String name = in.nextLine();

Process the student ID and name
}

Initially, the input contains

After the first call to nextInt, the input contains

The call to nextLine reads an empty string! The remedy is to add a call to nextLine
after reading the ID:

int studentID = in.nextInt();
in.nextLine(); // Consume the newline
String name = in.nextLine();

11.2.3 Reading Numbers

The nextInt and
nextDouble methods
consume white space
and the next number.

2 1 s t c e n t u r y

1 7 2 9 \n H a r r y

\n H a r r y

11.2 Reading Text Input 415

Sometimes, you want to read a file one character at a time. You achieve this task by
calling the useDelimiter method on your Scanner object with an empty string:

Scanner in = new Scanner(. . .);
in.useDelimiter("");

Now each call to next returns a string consisting of a single character. Here is how
you can process the characters:

while (in.hasNext())
{
 char ch = in.next().charAt(0);

Process ch
}

3. Suppose the input contains the characters 6,995.0. What is the value of number
and input after these statements?
int number = in.nextInt();
String input = in.next();

4. Suppose the input contains the characters 6,995.00 12. What is the value of price
and quantity after these statements?
double price = in.nextDouble();
int quantity = in.nextInt();

5. Your input file contains a sequence of numbers, but sometimes a value is not
available and marked as N/A. How can you read the numbers and skip over the
markers?

Regular Expressions

Regular expressions describe character patterns. For example, numbers have a simple form.
They contain one or more digits. The regular expression describing numbers is [0-9]+. The
set [0-9] denotes any digit between 0 and 9, and the + means “one or more”.

The search commands of professional programming editors understand regular expres-
sions. Moreover, several utility programs use regular expressions to locate matching text. A
commonly used program that uses regular expressions is grep (which stands for “global reg-
ular expression print”). You can run grep from a command line or from inside some compi-
lation environments. Grep is part of the UNIX operating system, and versions are available
for Windows. It needs a regular expression and one or more files to search. When grep runs,
it displays a set of lines that match the regular expression.

Suppose you want to look for all magic numbers (see Quality Tip 4.1) in a file. The
command

grep [0-9]+ Homework.java

lists all lines in the file Homework.java that contain sequences of digits. That isn’t terribly use-
ful; lines with variable names x1 will be listed. OK, you want sequences of digits that do not
immediately follow letters:

grep [^A-Za-z][0-9]+ Homework.java

11.2.4 Reading Characters

To read one
character at a time,
set the delimiter
pattern to the
empty string.

S E L F C H E C K

Productivity Hint 11.1

416 Chapter 11 Input/Output and Exception Handling

The set [^A-Za-z] denotes any characters that are not in the ranges A to Z and a to z. This
works much better, and it shows only lines that contain actual numbers.

The useDelimiter method of the Scanner class accepts a regular expression to describe
delimiters—the blocks of text that separate words. As already mentioned, if you set the
delimiter pattern to [^A-Za-z]+, a delimiter is a sequence of one or more characters that are
not letters.

For more information on regular expressions, consult one of the many tutorials on the
Internet by pointing your search engine to “regular expression tutorial”.

HOW TO 11.1 Processing Text Files

Processing text files that contain real data can be surprisingly challenging. This How To
gives you step-by-step guidance.

As an example, we will consider this task: Read two country data files, worldpop.txt and
worldarea.txt (supplied with your book code). Both files contain data for the same countries
in the same order. Write a file world_pop_density.txt that contains country names and popula-
tion densities (people per square km), with the country names aligned left and the numbers
aligned right:

Afghanistan 50.56
Akrotiri 127.64
Albania 125.91
Algeria 14.18
American Samoa 288.92
. . .

Step 1 Understand the processing task.

As always, you need to have a clear understanding of the task before designing a solution.
Can you carry out the task by hand (perhaps with smaller input files)? If not, get more infor-
mation about the problem.

One important aspect that you need to consider is whether you can process the data as it
becomes available, or whether you need to store it first. For example, if you are asked to
write out sorted data, you need to first collect all input, perhaps by placing it in an array list.
However, it is often possible to process the data “on the go”, without storing it.

In our example, we can read each file a line at a time and compute the density for each line
because our input files store the population and area data in the same order.

The following pseudocode describes our processing task.

While there are more lines to be read

Read a line from each file.

Extract the country name.

population = number following the country name in the line from the first file

area = number following the country name in the line from the second file

If area != 0

density = population / area

Print country name and density.

Step 2 Determine which files you need to read and write.

This should be clear from the problem. In our example, there are two input files, the popula-
tion data and the area data, and one output file.

11.2 Reading Text Input 417

Step 3 Choose a mechanism for obtaining the file names.

There are four options:
• Hard-coding the file names (such as "worldpop.txt")
• Asking the user:

Scanner in = new Scanner(System.in);
System.out.print("Enter filename: ");
String inFile = in.nextLine();

• Using command line arguments for the file names (see Special Topic 11.3)
• Using a file dialog box (see Special Topic 11.1)
In our example, we use hard-coded file names for simplicity.

Step 4 Choose between line, word, and character-based input.

As a rule of thumb, read lines if the input data is grouped by lines. That is the case with tab-
ular data, such as in our example, or when you need to report line numbers.

When gathering data that can be distributed over several lines, then it makes more sense
to read words. Keep in mind that you lose all white space when you read words.

Reading characters is mostly useful for tasks that require access to individual characters.
Examples include analyzing character frequencies, changing tabs to spaces, or encryption.

Step 5 With line-oriented input, extract the required data.

It is simple to read a line of input with the nextLine method. Then you need to get the data
out of that line. You can extract substrings, as described in Section 11.2.2.

Typically, you will use methods such as Character.isWhitespace and Character.isDigit to
find the boundaries of substrings.

If you need any of the substrings as numbers, you must convert them, using
Integer.parseInt or Double.parseDouble.

Step 6 Use classes and methods to factor out common tasks.

Processing input files usually has repetitive tasks, such as skipping over white space or
extracting numbers from strings. It really pays off to isolate these tedious operations from
the remainder of the code.

In our example, we have a task that occurs twice: splitting an input line into the country
name and the value that follows. We implement a simple CountryValue class for this purpose,
using the technique described in Section 11.2.2.

Here is the complete source code.

ch11/population/CountryValue.java

1 /**
2 Describes a value that is associated with a country.
3 */
4 public class CountryValue
5 {
6 private String country;
7 private double value;
8
9 /**

10 Constructs a CountryValue from an input line.
11 @param line a line containing a country name, followed by a value
12 */
13 public CountryValue(String line)
14 {
15 int i = 0; // Locate the start of the first digit
16 while (!Character.isDigit(line.charAt(i))) { i++; }

418 Chapter 11 Input/Output and Exception Handling

ch11/population/PopulationDensity.java

17 int j = i - 1; // Locate the end of the preceding word
18 while (Character.isWhitespace(line.charAt(j))) { j--; }
19 country = line.substring(0, j + 1); // Extract the country name
20 value = Double.parseDouble(line.substring(i).trim()); // Extract the value
21 }
22
23 /**
24 Gets the country name.
25 @return the country name
26 */
27 public String getCountry() { return country; }
28
29 /**
30 Gets the associated value.
31 @return the value associated with the country
32 */
33 public double getValue() { return value; }
34 }

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;
5
6 public class PopulationDensity
7 {
8 public static void main(String[] args) throws FileNotFoundException
9 {

10 // Open input files
11 Scanner in1 = new Scanner(new File("worldpop.txt"));
12 Scanner in2 = new Scanner(new File("worldarea.txt"));
13
14 // Open output file
15 PrintWriter out = new PrintWriter("world_pop_density.txt");
16
17 // Read lines from each file
18 while (in1.hasNextLine() && in2.hasNextLine())
19 {
20 CountryValue population = new CountryValue(in1.nextLine());
21 CountryValue area = new CountryValue(in2.nextLine());
22
23 // Compute and print the population density
24 double density = 0;
25 if (area.getValue() != 0) // Protect against division by zero
26 {
27 density = population.getValue() / area.getValue();
28 }
29 out.printf("%-40s%15.2f\n", population.getCountry(), density);
30 }
31
32 in1.close();
33 in2.close();
34 out.close();
35 }
36 }

11.3 Throwing Exceptions 419

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Analyzing Baby Names

In this Worked Example, you will use data from the
Social Security Administration to analyze the most
popular baby names.

There are two main aspects to exception handling: reporting and recovery. A major
challenge of error handling is that the point of reporting is usually far apart from
the point of recovery. For example, the get method of the ArrayList class may detect
that a nonexistent element is being accessed, but it does not have enough informa-
tion to decide what to do about this failure. Should the user be asked to try a differ-
ent operation? Should the program be aborted after saving the user’s work? These
decisions must be made in a different part of the program.

In Java, exception handling provides a flexible mechanism for passing control
from the point of error reporting to a competent recovery handler. In the remainder
of this chapter, we will look into the details of this mechanism.

When you detect an error condition, your job is really easy. You just throw an
appropriate exception object, and you are done. For example, suppose someone
tries to withdraw too much money from a bank account.

public class BankAccount
{
 . . .
 public void withdraw(double amount)
 {
 if (amount > balance)
 // Now what?
 . . .
 }
}

Worked
Example 11.1

11.3 Throwing Exceptions

To signal an
exceptional
condition, use the
throw statement
to throw an
exception object.

Syntax 11.1 Throwing an Exception

throw exceptionObject;Syntax

Example

A new
exception object
is constructed,
then thrown.

if (amount > balance)
{

throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

Most exception objects can be constructed
with an error message.

This line is not executed when

the exception is thrown.

420 Chapter 11 Input/Output and Exception Handling

First look for an appropriate exception class. The Java library provides many classes
to signal all sorts of exceptional conditions. Figure 1 shows the most useful ones.

Look around for an exception type that might describe your situation. How
about the IllegalStateException? Is the bank account in an illegal state for the

Figure 1 The Hierarchy of Exception Classes

ClassNot
Found

Exception

CloneNot
Supported
Exception

ArrayIndexOut
OfBounds
Exception

IndexOut
OfBounds
Exception

IllegalState
Exception

Illegal
Argument
Exception

ClassCast
Exception

Arithmetic
Exception

Runtime
Exception

Exception

IOException

EOFException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

NumberFormat
Exception

NullPointer
Exception

NoSuch
Element

Exception

InputMismatch
Exception

Throwable

Error

11.4 Checked and Unchecked Exceptions 421

withdraw operation? Not really—some withdraw operations could succeed. Is the
parameter value illegal? Indeed it is. It is just too large. Therefore, let’s throw an
IllegalArgumentException. (The term argument is an alternative term for a parameter
value.)

public class BankAccount
{
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 throw new IllegalArgumentException("Amount exceeds balance");
 }
 balance = balance - amount;
 }
 . . .
}

The statement
throw new IllegalArgumentException("Amount exceeds balance");

constructs an object of type IllegalArgumentException and throws that object.
When you throw an exception, execution does not continue with the next state-

ment but with an exception handler. For now, we won’t worry about the handling
of the exception. That is the topic of Section 11.5.

6. How should you modify the deposit method to ensure that the balance is never
negative?

7. Suppose you construct a new bank account object with a zero balance and then
call withdraw(10). What is the value of balance afterwards?

Java exceptions fall into two categories, called checked and unchecked exceptions.
When you call a method that throws a checked exception, the compiler checks that
you don’t ignore it. You must tell the compiler what you are going to do about the
exception if it is ever thrown. For example, all subclasses of IOException are checked
exceptions. On the other hand, the compiler does not require you to keep track of
unchecked exceptions. Exceptions such as NumberFormatException, IllegalArgument-

Exception, and NullPointerException are unchecked exceptions. More generally, all
exceptions that belong to subclasses of RuntimeException are unchecked, and all other
subclasses of the class Exception are checked. (In Figure 1, the checked exceptions
are shaded in a darker color.) There is a second category of internal errors that are
reported by throwing objects of type Error. One example is the OutOfMemoryError,
which is thrown when all available memory has been used up. These are fatal errors
that happen rarely and are beyond your control. They too are unchecked.

Why have two kinds of exceptions? A checked exception describes a problem
that is likely to occur at times, no matter how careful you are. The unchecked
exceptions, on the other hand, are your fault. For example, an unexpected end of
file can be caused by forces beyond your control, such as a disk error or a broken

When you throw an
exception, the
current method
terminates
immediately.

S E L F C H E C K

11.4 Checked and Unchecked Exceptions
There are two kinds of
exceptions: checked
and unchecked.
Unchecked exceptions
extend the class
RuntimeException
or Error.

422 Chapter 11 Input/Output and Exception Handling

network connection. But you are to blame for a NullPointerException, because your
code was wrong when it tried to use a null reference.

The compiler doesn’t check whether you handle a NullPointerException, because
you should test your references for null before using them rather than install a han-
dler for that exception. The compiler does insist that your program be able to han-
dle error conditions that you cannot prevent.

Actually, those categories aren’t perfect. For example, the Scanner.nextInt method
throws an unchecked InputMismatchException if the input does not contain a valid
integer. A checked exception would have been more appropriate because the pro-
grammer cannot prevent users from entering incorrect input. (The designers of the
Scanner class made this choice to make it easy to use for beginning programmers.)

As you can see from Figure 1, the majority of checked exceptions occur when
you deal with input and output. That is a fertile ground for external failures beyond
your control—a file might have been corrupted or removed, a network connection
might be overloaded, a server might have crashed, and so on. Therefore, you will
need to deal with checked exceptions principally when programming with files and
streams.

You have seen how to use the Scanner class to read data from a file, by passing a
File object to the Scanner constructor:

String filename = . . .;
File inFile = new File(filename);
Scanner in = new Scanner(inFile);

However, the Scanner constructor can throw a FileNotFoundException. The
FileNotFoundException is a checked exception, so you need to tell the compiler what
you are going to do about it. You have two choices. You can handle the exception,
using the techniques that you will see in Section 11.5. Or you can simply tell the
compiler that you are aware of this exception and that you want your method to be
terminated when it occurs. The method that reads input does not usually know
what to do about an unexpected error, so that is usually the better option.

To declare that a method should be terminated when a checked exception occurs
within it, tag the method with a throws clause.

 public void read(String filename) throws FileNotFoundException
 {
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 . . .
 }

The throws clause in turn signals the caller of your method that it may encounter a
FileNotFoundException. Then the caller needs to make the same decision—handle the
exception, or tell its caller that the exception may be thrown.

If your method can throw exceptions of different types, you separate the excep-
tion class names by commas:

public void read(String filename)
throws FileNotFoundException, NoSuchElementException

Always keep in mind that exception classes form an inheritance hierarchy. For
example, FileNotFoundException is a subclass of IOException. Thus, if a method can
throw both an IOException and a FileNotFoundException, you only tag it as throws
IOException.

Checked exceptions
are due to external
circumstances that
the programmer
cannot prevent.
The compiler
checks that your
program handles
these exceptions.

Add a throws clause
to a method that
can throw a
checked exception.

11.5 Catching Exceptions 423

It sounds somehow irresponsible not to handle an exception when you know
that it happened. Actually, though, it is usually best not to catch an exception if you
don’t know how to remedy the situation. After all, what can you do in a low-level
read method? Can you tell the user? How? By sending a message to System.out? You
don’t know whether this method is called in a graphical program or an embedded
system (such as a vending machine), where the user may never see System.out. And
even if your users can see your error message, how do you know that they can
understand English? Your class may be used to build an application for users in
another country. If you can’t tell the user, can you patch up the data and keep
going? How? If you set a variable to zero, null, or an empty string, that may just
cause the program to break later, with much greater mystery.

Of course, some methods in the program know how to communicate with the
user or take other remedial action. By allowing the exception to reach those meth-
ods, you make it possible for the exception to be processed by a competent handler.

8. Suppose a method calls the Scanner constructor, which can throw a FileNot-
FoundException, and the nextInt method of the Scanner class, which can cause a
NoSuchElementException or InputMismatchException. Which exceptions should be
included in the throws clause?

9. Why is a NullPointerException not a checked exception?

Every exception should be handled somewhere in your program. If an exception
has no handler, an error message is printed, and your program terminates. That may
be fine for a student program. But you would not want a professionally written
program to die just because some method detected an unexpected error. Therefore,
you should install exception handlers for all exceptions that your program might
throw.

You install an exception handler with the try/catch statement. Each try block
contains one or more statements that may cause an exception. Each catch clause con-
tains the handler for an exception type.

Syntax 11.2 The throws Clause

accessSpecifier returnType methodName(parameterType parameterName, . . .)
throws ExceptionClass, ExceptionClass, . . .

Syntax

Example

You may also list unchecked exceptions.You must specify all checked exceptions
that this method may throw.

public void read(String filename)
throws FileNotFoundException, NoSuchElementException

S E L F C H E C K

11.5 Catching Exceptions
In a method that is
ready to handle a
particular exception
type, place the
statements that can
cause the exception
inside a try block,
and the handler
inside a catch clause.

424 Chapter 11 Input/Output and Exception Handling

Here is an example:
try

 {
 String filename = . . .;
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 String input = in.next();
 int value = Integer.parseInt(input);
 . . .
 }

catch (IOException exception)
 {
 exception.printStackTrace();
 }

catch (NumberFormatException exception)
 {
 System.out.println("Input was not a number");
 }

Three exceptions may be thrown in this try block: The Scanner constructor can
throw a FileNotFoundException, Scanner.next can throw a NoSuchElementException, and
Integer.parseInt can throw a NumberFormatException.

If any of these exceptions is actually thrown, then the rest of the instructions in
the try block are skipped. Here is what happens for the various exception types:

Syntax 11.3 Catching Exceptions

try
{

statement
statement

 . . .
}
catch (ExceptionClass exceptionObject)
{

statement
statement

 . . .
}

Syntax

Example

This constructor can throw a

FileNotFoundException.
try
{
 Scanner in = new Scanner(new File("input.txt"));
 String input = in.next();
 process(input);
}
catch (IOException exception)
{
 System.out.println("Could not open input file");
}

This is the exception that was thrown.

A FileNotFoundException
is a special case of an IOException.

When an IOException is thrown,
execution resumes here.

Additional catch clauses
can appear here.

11.5 Catching Exceptions 425

• If a FileNotFoundException is thrown, then the catch clause for the IOException is
executed. (Recall that FileNotFoundException is a subclass of IOException.)

• If a NumberFormatException occurs, then the second catch clause is executed.
• A NoSuchElementException is not caught by any of the catch clauses. The

exception remains thrown until it is caught by another try block or the main
method terminates.

When the catch (IOException exception) block is executed, then some method in the
try block has failed with an IOException. The variable exception contains a reference
to the exception object that was thrown. The catch clause can analyze that object to
find out more details about the failure. For example, you can get a printout of the
chain of method calls that lead to the exception, by calling

exception.printStackTrace()

In these sample catch clauses, we merely inform the user of the source of the prob-
lem. A better way of dealing with the exception would be to give the user another
chance to provide a correct input—see Section 11.8 for a solution.

It is important to remember that you should place catch clauses only in methods
in which you can competently handle the particular exception type.

10. Suppose the file with the given file name exists and has no contents. Trace the
flow of execution in the try block in this section.

11. Is there a difference between catching checked and unchecked exceptions?

Throw Early, Catch Late

When a method detects a problem that it cannot solve, it is better to throw an exception
rather than to try to come up with an imperfect fix. For example, suppose a method expects
to read a number from a file, and the file doesn’t contain a number. Simply using a zero value
would be a poor choice because it hides the actual problem and perhaps causes a different
problem elsewhere.

Conversely, a method should only catch an exception if it can really remedy the situation.
Otherwise, the best remedy is simply to have the exception propagate to its caller, allowing it
to be caught by a competent handler.

These principles can be summarized with the slogan “throw early, catch late”.

Do Not Squelch Exceptions

When you call a method that throws a checked exception and you haven’t specified a han-
dler, the compiler complains. In your eagerness to continue your work, it is an understand-
able impulse to shut the compiler up by squelching the exception:

try
{

S E L F C H E C K

Quality Tip 11.1

Throw an exception
as soon as a problem
is detected. Catch
it only when the
problem can
be handled.

Quality Tip 11.2

426 Chapter 11 Input/Output and Exception Handling

 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 // Compiler complained about FileNotFoundException
 . . .
}
catch (Exception e) {} // So there!

The do-nothing exception handler fools the compiler into thinking that the exception has
been handled. In the long run, this is clearly a bad idea. Exceptions were designed to transmit
problem reports to a competent handler. Installing an incompetent handler simply hides an
error condition that could be serious.

Occasionally, you need to take some action whether or not an exception is thrown.
The finally construct is used to handle this situation. Here is a typical situation.

It is important to close a PrintWriter to ensure that all output is written to the file.
In the following code segment, we open a stream, call one or more methods, and
then close the stream:

PrintWriter out = new PrintWriter(filename);
writeData(out);
out.close(); // May never get here

Now suppose that one of the methods before the last line throws an exception.
Then the call to close is never executed! Solve this problem by placing the call to
close inside a finally clause:

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

In a normal case, there will be no problem. When the try block is completed, the
finally clause is executed, and the writer is closed. However, if an exception occurs,
the finally clause is also executed before the exception is passed to its handler.

Use the finally clause whenever you need to do some clean up, such as closing a
file, to ensure that the clean up happens no matter how the method exits.

It is also possible to have a finally clause following one or more catch clauses.
Then the code in the finally clause is executed whenever the try block is exited in
any of three ways:

1. After completing the last statement of the try block
2. After completing the last statement of a catch clause, if this try block caught an

exception
3. When an exception was thrown in the try block and not caught

However, we recommend that you don’t mix catch and finally clauses in the same
try block—see Quality Tip 11.3 on page 427.

11.6 The finally Clause

Once a try block is
entered, the
statements in a
finally clause are
guaranteed to be
executed, whether
or not an exception
is thrown.

11.6 The finally Clause 427

12. Why was the out variable declared outside the try block?
13. Suppose the file with the given name does not exist. Trace the flow of execution

of the code segment in this section.

Do Not Use catch and finally in the Same try Statement

It is tempting to combine catch and finally clauses, but the resulting code can be hard to
understand. Instead, you should use a try/finally statement to close resources and a separate
try/catch statement to handle errors. For example,

try
{
 PrintWriter out = new PrintWriter(filename);
 try
 {

Write output to out
 }
 finally
 {
 out.close();

Syntax 11.4 The finally Clause

try
{

statement
statement

 . . .
}
finally
{

statement
statement

 . . .
}

Syntax

Example

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

This variable must be declared outside the try block
so that the finally clause can access it.

This code is
always executed,
even if an exception occurs.

This code may
throw exceptions.

S E L F C H E C K

Quality Tip 11.3

428 Chapter 11 Input/Output and Exception Handling

 }
}
catch (IOException exception)
{

Handle exception
}

Note that the nested statements work correctly if the PrintWriter constructor throws an
exception—see Exercise R11.18.

Automatic Resource Management in Java 7

In Java 7, you can use a new form of the try block that automatically closes an object that
implements the Closeable interface, such as a PrintWriter or Scanner. Here is the syntax:

try (PrintWriter out = new PrintWriter(filename))
{

Write output to out
}

The close method is automatically invoked on the out object when the try block ends,
whether or not an exception has occurred. A finally statement is not required.

Sometimes none of the standard exception types describe your particular error con-
dition well enough. In that case, you can design your own exception class. Consider
a bank account. Let’s report an InsufficientFundsException when an attempt is made
to withdraw an amount from a bank account that exceeds the current balance.

if (amount > balance)
{
 throw new InsufficientFundsException(
 "withdrawal of " + amount + " exceeds balance of " + balance);
}

Now you need to provide the InsufficientFundsException class. Should it be a
checked or an unchecked exception? Is it the fault of some external event, or is it the
fault of the programmer? We take the position that the programmer could have pre-
vented the exceptional condition—after all, it would have been an easy matter to
check whether amount <= account.getBalance() before calling the withdraw method.
Therefore, the exception should be an unchecked exception and extend the Runtime-
Exception class or one of its subclasses.

It is a good idea to extend an appropriate class in the exception hierarchy. For
example, we can consider an InsufficientFundsException a special case of an Illegal-
ArgumentException. This enables other programmers to catch the exception as an
IllegalArgumentException if they are not interested in the exact nature of the problem.

Special Topic 11.4

11.7 Designing Your Own Exception Types

To describe an
error condition,
provide a subclass
of an existing
exception class.

11.8 Case Study: A Complete Example 429

It is customary to provide two constructors for an exception class: a constructor
with no parameters and a constructor that accepts a message string describing the
reason for the exception. Here is the declaration of the exception class.

public class InsufficientFundsException extends IllegalArgumentException
{
 public InsufficientFundsException() {}

 public InsufficientFundsException(String message)
 {
 super(message);
 }
}

When the exception is caught, its message string can be retrieved using the get-
Message method of the Throwable class.

14. What is the purpose of the call super(message) in the second InsufficientFunds-
Exception constructor?

15. Suppose you read bank account data from a file. Contrary to your expectation,
the next input value is not of type double. You decide to implement a BadData-
Exception. Which exception class should you extend?

Do Throw Specific Exceptions

When throwing an exception, you should choose an exception class that describes the situa-
tion as closely as possible. For example, it would be a bad idea to simply throw a Runtime-
Exception object when a bank account has insufficient funds. This would make it far too
difficult to catch the exception. After all, if you caught all exceptions of type Runtime-
Exception, your catch clause would also be activated by exceptions of the type NullPointer-
Exception, ArrayIndexOutOfBoundsException, and so on. You would then need to carefully
examine the exception object and attempt to deduce whether the exception was caused by
insufficient funds.

If the standard library does not have an exception class that describes your particular
error situation, simply provide a new exception class.

This section walks through a complete example of a program with exception han-
dling. The program asks a user for the name of a file. The file is expected to contain
data values. The first line of the file contains the total number of values, and the
remaining lines contain the data. A typical input file looks like this:

3
1.45
-2.1
0.05

S E L F C H E C K

Quality Tip 11.4

11.8 Case Study: A Complete Example

430 Chapter 11 Input/Output and Exception Handling

What can go wrong? There are two principal risks.

• The file might not exist.
• The file might have data in the wrong format.

Who can detect these faults? The Scanner constructor will throw an exception when
the file does not exist. The methods that process the input values need to throw an
exception when they find an error in the data format.

What exceptions can be thrown? The Scanner constructor throws a FileNot-
FoundException when the file does not exist, which is appropriate in our situation.
Finally, when the file data is in the wrong format, we will throw a BadDataException, a
custom checked exception class. We use a checked exception because corruption of
a data file is beyond the control of the programmer.

Who can remedy the faults that the exceptions report? Only the main method of
the DataAnalyzer program interacts with the user. It catches the exceptions, prints
appropriate error messages, and gives the user another chance to enter a correct file.

ch11/data/DataAnalyzer.java

1 import java.io.FileNotFoundException;
2 import java.io.IOException;
3 import java.util.Scanner;
4
5 /**
6 This program reads a file containing numbers and analyzes its contents.
7 If the file doesn’t exist or contains strings that are not numbers, an
8 error message is displayed.
9 */

10 public class DataAnalyzer
11 {
12 public static void main(String[] args)
13 {
14 Scanner in = new Scanner(System.in);
15 DataSetReader reader = new DataSetReader();
16
17 boolean done = false;
18 while (!done)
19 {
20 try
21 {
22 System.out.println("Please enter the file name: ");
23 String filename = in.next();
24
25 double[] data = reader.readFile(filename);
26 double sum = 0;
27 for (double d : data) sum = sum + d;
28 System.out.println("The sum is " + sum);
29 done = true;
30 }
31 catch (FileNotFoundException exception)
32 {
33 System.out.println("File not found.");
34 }
35 catch (BadDataException exception)
36 {
37 System.out.println("Bad data: " + exception.getMessage());
38 }

11.8 Case Study: A Complete Example 431

The catch clauses in the main method give a human-readable error report if the file
was not found or bad data was encountered.

The following readFile method of the DataSetReader class constructs the Scanner
object and calls the readData method. It is completely unconcerned with any
exceptions. If there is a problem with the input file, it simply passes the exception to
its caller.

public double[] readFile(String filename) throws IOException
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 try
 {
 readData(in);
 return data;
 }
 finally
 {
 in.close();
 }
}

The method throws an IOException, the common superclass of FileNotFoundException
(thrown by the Scanner constructor) and BadDataException (thrown by the readData
method).

Next, here is the readData method of the DataSetReader class. It reads the number
of values, constructs an array, and calls readValue for each data value.

private void readData(Scanner in) throws BadDataException
{
 if (!in.hasNextInt())
 throw new BadDataException("Length expected");
 int numberOfValues = in.nextInt();
 data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 readValue(in, i);

 if (in.hasNext())
 throw new BadDataException("End of file expected");
}

This method checks for two potential errors. The file might not start with an inte-
ger, or it might have additional data after reading all values.

However, this method makes no attempt to catch any exceptions. Plus, if the
readValue method throws an exception—which it will if there aren’t enough values
in the file—the exception is simply passed on to the caller.

39 catch (IOException exception)
40 {
41 exception.printStackTrace();
42 }
43 }
44 }
45 }

432 Chapter 11 Input/Output and Exception Handling

Here is the readValue method:
private void readValue(Scanner in, int i) throws BadDataException
{
 if (!in.hasNextDouble())
 throw new BadDataException("Data value expected");
 data[i] = in.nextDouble();
}

To see the exception handling at work, look at a specific error scenario.

1. DataAnalyzer.main calls DataSetReader.readFile.
2. readFile calls readData.
3. readData calls readValue.
4. readValue doesn’t find the expected value and throws a BadDataException.
5. readValue has no handler for the exception and terminates immediately.
6. readData has no handler for the exception and terminates immediately.
7. readFile has no handler for the exception and terminates immediately after

executing the finally clause and closing the Scanner object.
8. DataAnalyzer.main has a handler for a BadDataException. That handler prints a

message to the user. Afterwards, the user is given another chance to enter a file
name. Note that the statements computing the sum of the values have been
skipped.

This example shows the separation between error detection (in the DataSetReader.
readValue method) and error handling (in the DataAnalyzer.main method). In between
the two are the readData and readFile methods, which just pass exceptions along.

ch11/data/DataSetReader.java

A N I M AT I O N
Exception Handling

1 import java.io.File;
2 import java.io.IOException;
3 import java.util.Scanner;
4
5 /**
6 Reads a data set from a file. The file must have the format
7 numberOfValues
8 value1
9 value2

10 . . .
11 */
12 public class DataSetReader
13 {
14 private double[] data;
15
16 /**
17 Reads a data set.
18 @param filename the name of the file holding the data
19 @return the data in the file
20 */
21 public double[] readFile(String filename) throws IOException
22 {
23 File inFile = new File(filename);
24 Scanner in = new Scanner(inFile);
25

11.8 Case Study: A Complete Example 433

ch11/data/BadDataException.java

26 try
27 {
28 readData(in);
29 return data;
30 }
31 finally
32 {
33 in.close();
34 }
35 }
36
37 /**
38 Reads all data.
39 @param in the scanner that scans the data
40 */
41 private void readData(Scanner in) throws BadDataException
42 {
43 if (!in.hasNextInt())
44 throw new BadDataException("Length expected");
45 int numberOfValues = in.nextInt();
46 data = new double[numberOfValues];
47
48 for (int i = 0; i < numberOfValues; i++)
49 readValue(in, i);
50
51 if (in.hasNext())
52 throw new BadDataException("End of file expected");
53 }
54
55 /**
56 Reads one data value.
57 @param in the scanner that scans the data
58 @param i the position of the value to read
59 */
60 private void readValue(Scanner in, int i) throws BadDataException
61 {
62 if (!in.hasNextDouble())
63 throw new BadDataException("Data value expected");
64 data[i] = in.nextDouble();
65 }
66 }

1 import java.io.IOException;
2
3 /**
4 This class reports bad input data.
5 */
6 public class BadDataException extends IOException
7 {
8 public BadDataException() {}
9 public BadDataException(String message)

10 {
11 super(message);
12 }
13 }

434 Chapter 11 Input/Output and Exception Handling

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

16. Why doesn’t the DataSetReader.readFile method catch any exceptions?
17. Suppose the user specifies a file that exists and is empty. Trace the flow of

execution.

The Ariane Rocket Incident

Random Fact 11.1 tells the story of the Ariane 5 rocket that blew itself up due to an unhan-
dled exception.

Read and write text that is stored in files.

• When reading text files, use the Scanner class.
• When writing text files, use the PrintWriter class.
• You must close a print stream when you are done writing output.

Choose an appropriate mechanism for processing input.

• The next method reads a word at a time. Call Scanner.useDelimiter to specify a
pattern for word boundaries.

• The nextLine method reads a line of input and consumes the newline character at the
end of the line.

• The nextInt and nextDouble methods consume white space and the next number.
• To read one character at a time, set the delimiter pattern to the empty string.

Understand when and how to throw an exception.

• To signal an exceptional condition, use the throw statement to throw an exception
object.

• When you throw an exception, the current method terminates immediately.

Choose between checked and unchecked exceptions.

• There are two kinds of exceptions: checked and unchecked. Unchecked exceptions
extend the class RuntimeException or Error.

• Checked exceptions are due to external circumstances that the programmer cannot
prevent. The compiler checks that your program handles these exceptions.

• Add a throws clause to a method that can throw a checked exception.

Use exception handlers to decouple error detection and error reporting.

• In a method that is ready to handle a particular exception type, place the statements
that can cause the exception inside a try block, and the handler inside a catch clause.

• Throw an exception as soon as a problem is detected. Catch it only when the
problem can be handled.

S E L F C H E C K

Random Fact 11.1

Summary of Learning Objectives

Review Exercises 435

Use the finally clause to ensure that resources are released when an exception
is thrown.

• Once a try block is entered, the statements in a finally clause are guaranteed to be
executed, whether or not an exception is thrown.

Design exception types to describe error conditions.

• To describe an error condition, provide a subclass of an existing exception class.

• Worked Example Analyzing Baby Names
• Lab Exercises

Animation Exception Handling
Practice Quiz
Code Completion Exercises

R11.1 What happens if you try to open a file for reading that doesn’t exist? What happens
if you try to open a file for writing that doesn’t exist?

R11.2 What happens if you try to open a file for writing, but the file or device is write-
protected (sometimes called read-only)? Try it out with a short test program.

R11.3 How do you open a file whose name contains a backslash, like c:\temp\output.dat?

R11.4 What is a command line? How can a program read its command line arguments?

R11.5 Give two examples of programs on your computer that read arguments from the
command line.

R11.6 If a program Woozle is started with the command
java Woozle -Dname=piglet -I\eeyore -v heff.txt a.txt lump.txt

what are the values of args[0], args[1], and so on?

Classes, Objects, and Methods Introduced in this Chapter
java.io.EOFException
java.io.File
java.io.FileNotFoundException
java.io.IOException
java.io.PrintWriter
 close
java.lang.Error
java.lang.IllegalArgumentException
java.lang.IllegalStateException
java.lang.NullPointerException
java.lang.NumberFormatException

java.lang.RuntimeException
java.lang.Throwable
 getMessage
 printStackTrace
java.util.NoSuchElementException
java.util.Scanner
 close
javax.swing.JFileChooser
 getSelectedFile
 showOpenDialog
 showSaveDialog

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

436 Chapter 11 Input/Output and Exception Handling

R11.7 What is the difference between throwing an exception and catching an exception?

R11.8 What is a checked exception? What is an unchecked exception? Is a NullPointer-
Exception checked or unchecked? Which exceptions do you need to declare with the
throws reserved word?

R11.9 Why don’t you need to declare that your method might throw a NullPointer-
Exception?

R11.10 When your program executes a throw statement, which statement is executed next?

R11.11 What happens if an exception does not have a matching catch clause?

R11.12 What can your program do with the exception object that a catch clause receives?

R11.13 Is the type of the exception object always the same as the type declared in the catch
clause that catches it?

R11.14 What kind of values can you throw? Can you throw a string? An integer?

R11.15 What is the purpose of the finally clause? Give an example of how it can be used.

R11.16 What happens when an exception is thrown, the code of a finally clause executes,
and that code throws an exception of a different kind than the original one? Which
one is caught by a surrounding catch clause? Write a sample program to try it out.

R11.17 Which exceptions can the next and nextInt methods of the Scanner class throw? Are
they checked exceptions or unchecked exceptions?

R11.18 Suppose the code in Quality Tip 11.3 on page 427 had been condensed to a single
try/catch/finally statement:

PrintWriter out = new PrintWriter(filename);
try
{

Write output
}
catch (IOException exception)
{

Handle exception
}
finally
{
 out.close();
}

What is the disadvantage of this version? (Hint: What happens when the PrintWriter
constructor throws an exception?) Why can’t you solve the problem by moving the
declaration of the out variable inside the try block?

R11.19 Suppose the program in Section 11.8 reads a file containing the following values:
0
1
2
3

What is the outcome? How could the program be improved to give a more accurate
error report?

R11.20 Can the readFile method in Section 11.8 throw a NullPointerException? If so, how?

Programming Exercises 437

P11.1 Write a program that asks a user for a file name and prints the number of characters,
words, and lines in that file.

P11.2 Write a program that asks the user for a file name and counts the number of charac-
ters, words, and lines in that file. Then the program asks for the name of the next
file. When the user enters a file that doesn’t exist, the program prints the total
counts of characters, words, and lines in all processed files and exits.

P11.3 Write a program CopyFile that copies one file to another. The file names are specified
on the command line. For example,

java CopyFile report.txt report.sav

P11.4 Write a program that concatenates the contents of several files into one file. For
example,

java CatFiles chapter1.txt chapter2.txt chapter3.txt book.txt

makes a long file, book.txt, that contains the contents of the files chapter1.txt,
chapter2.txt, and chapter3.txt. The output file is always the last file specified on the
command line.

P11.5 Write a program Find that searches all files specified on the command line and prints
out all lines containing a reserved word. For example, if you call

java Find ring report.txt address.txt Homework.java

then the program might print
report.txt: has broken up an international ring of DVD bootleggers that
address.txt: Kris Kringle, North Pole
address.txt: Homer Simpson, Springfield
Homework.java: String filename;

The reserved word is always the first command line argument.

P11.6 Write a program that checks the spelling of all words in a file. It should read each
word of a file and check whether it is contained in a word list. A word list is avail-
able on most UNIX systems in the file /usr/dict/words. (If you don’t have access to a
UNIX system, your instructor should be able to get you a copy.) The program
should print out all words that it cannot find in the word list.

P11.7 Write a program that replaces each line of a file with its reverse. For example, if you
run

java Reverse HelloPrinter.java

then the contents of HelloPrinter.java are changed to
retnirPolleH ssalc cilbup
{
)sgra][gnirtS(niam diov citats cilbup
{
wodniw elosnoc eht ni gniteerg a yalpsiD //

;)"!dlroW ,olleH"(nltnirp.tuo.metsyS
}
}

Of course, if you run Reverse twice on the same file, you get back the original file.

Programming Exercises

438 Chapter 11 Input/Output and Exception Handling

P11.8 Get the data for names in prior decades from the Social Security Administration.
Paste the table data in files named babynames80s.txt, etc. Modify the BabyNames.java
program so that it prompts the user for a file name. The numbers in the files have
comma separators, so modify the program to handle them. Can you spot a trend in
the frequencies?

P11.9 Write a program that reads in babynames.txt and produces two files boynames.txt and
girlnames.txt, separating the data for the boys and girls.

P11.10 Write a program that reads a file in the same format as babynames.txt and prints all
names that are both boy and girl names (such as Alexis or Morgan).

P11.11 Write a program that replaces all tab characters '\t' in a file with the appropriate
number of spaces. By default, the distance between tab columns should be 3 (the
value we use in this book for Java programs) but it can be changed by the user.
Expand tabs to the number of spaces necessary to move to the next tab column.
That may be less than three spaces. For example, consider the line containing
"\t|\t||\t|". The first tab is changed to three spaces, the second to two spaces, and
the third to one space. Your program should be executed as

java TabExpander filename

or
java TabExpander -t tabwidth filename

P11.12 Modify the BankAccount class to throw an IllegalArgumentException when the account
is constructed with a negative balance, when a negative amount is deposited, or
when an amount that is not between 0 and the current balance is withdrawn. Write
a test program that causes all three exceptions to occur and that catches them all.

P11.13 Repeat Exercise P11.12, but throw exceptions of three exception types that you
provide.

P11.14 Write a program that asks the user to input a set of floating-point values. When the
user enters a value that is not a number, give the user a second chance to enter the
value. After two chances, quit reading input. Add all correctly specified values and
print the sum when the user is done entering data. Use exception handling to detect
improper inputs.

P11.15 Repeat Exercise P11.14, but give the user as many chances as necessary to enter a
correct value. Quit the program only when the user enters a blank input.

P11.16 Modify the DataSetReader class so that you do not call hasNextInt or hasNextDouble.
Simply have nextInt and nextDouble throw a NoSuchElementException and catch it in the
main method.

P11.17 Write a program that reads in a set of coin descriptions from a file. The input file has
the format

coinName1 coinValue1
coinName2 coinValue2
. . .

Add a method
void read(Scanner in) throws FileNotFoundException

Answers to Self-Check Questions 439

to the Coin class. Throw an exception if the current line is not properly formatted.
Then implement a method

static ArrayList<Coin> readFile(String filename)
 throws FileNotFoundException

In the main method, call readFile. If an exception is thrown, give the user a chance to
select another file. If you read all coins successfully, print the total value.

P11.18 Design a class Bank that contains a number of bank accounts. Each account has an
account number and a current balance. Add an accountNumber field to the BankAccount
class. Store the bank accounts in an array list. Write a readFile method of the Bank
class for reading a file with the format

accountNumber1 balance1
accountNumber2 balance2
. . .

Implement read methods for the Bank and BankAccount classes. Write a sample pro-
gram to read in a file with bank accounts, then print the account with the highest
balance. If the file is not properly formatted, give the user a chance to select
another file.

Project 11.1 You can read the contents of a web page with this sequence of commands.
String address = "http://java.sun.com/index.html";
URL u = new URL(address);
Scanner in = new Scanner(u.openStream());
. . .

Some of these methods may throw exceptions—check out the API documentation.
Design a class LinkFinder that finds all hyperlinks of the form

link text

Throw an exception if you find a malformed hyperlink. Extra credit if your pro-
gram can follow the links that it finds and find links in those web pages as well.
(This is the method that search engines such as Google use to find web sites.)

1. When the PrintWriter object is created, the output file is emptied. Sadly, that is the
same file as the input file. The input file is now empty and the while loop exits
immediately.

2. The Scanner constructor throws a FileNotFoundException, and the program terminates.
3. number is 6, input is ",995.0"
4. price is set to 6 because the comma is not considered a part of a floating-point num-

ber in Java. Then the call to nextInt causes an exception, and quantity is not set.

Programming Projects

Answers to Self-Check Questions

440 Chapter 11 Input/Output and Exception Handling

5. Read them as strings, and convert those strings to numbers that are not equal to N/A:
String input = in.next();
if (!input.equals("N/A"))
{
 double value = Double.parseDouble(input);

Process value
}

6. Throw an exception if the amount being deposited is less than zero.
7. The balance is still zero because the last statement of the withdraw method was never

executed.
8. You must include the FileNotFoundException and you may include the NoSuchElementEx-

ception if you consider it important for documentation purposes. InputMismatchExcep-
tion is a subclass of NoSuchElementException. It is your choice whether to include it.

9. Because programmers should simply check for null pointers instead of trying to
handle a NullPointerException.

10. The Scanner constructor succeeds, and in is constructed. Then the call in.next()
throws a NoSuchElementException, and the try block is aborted. None of the catch
clauses match, so none are executed. If none of the enclosing method calls catch the
exception, the program terminates.

11. No—you catch both exception types in the same way, as you can see from the code
example on page 424. Recall that IOException is a checked exception and
NumberFormatException is an unchecked exception.

12. If it had been declared inside the try block, its scope would only have extended to
the end of the try block, and the finally clause could not have closed it.

13. The PrintWriter constructor throws an exception. The assignment to out and the try
block are skipped. The finally clause is not executed. This is the correct behavior
because out has not been initialized.

14. To pass the exception message string to the RuntimeException superclass.
15. Because file corruption is beyond the control of the programmer, this should be a

checked exception, so it would be wrong to extend RuntimeException or Illegal-
ArgumentException. Because the error is related to input, IOException would be a good
choice.

16. It would not be able to do much with them. The DataSetReader class is a reusable
class that may be used for systems with different languages and different user inter-
faces. Thus, it cannot engage in a dialog with the program user.

17. DataAnalyzer.main calls DataSetReader.readFile, which calls readData. The
call in.hasNextInt() returns false, and readData throws a BadDataException. The read-
File method doesn’t catch it, so it propagates back to main, where it is caught.

441

Chapter12
Object-Oriented

Design

CHAPTER GOALS
• To learn about the software life cycle

• To learn how to discover new classes and methods

• To understand the use of CRC cards for class discovery

• To be able to identify inheritance, aggregation, and
dependency relationships between classes

• To master the use of UML class diagrams to describe
class relationships

• To learn how to use object-oriented design to build
complex programs

To implement a software system successfully, be it as simple as

your next homework project or as complex as the next air traffic monitoring system, some amount

of planning, design, and testing is required. In fact, for larger projects, the amount of time spent on

planning is much higher than the amount of time spent on programming and testing.

If you find that most of your homework time is spent in front of the computer, keying in code and

fixing bugs, you are probably spending more time on your homework than you should. You could

cut down your total time by spending more on the planning and design phase. This chapter tells you

how to approach these tasks in a systematic manner, using the object-oriented design methodology.

442

CHAPTER CONTENTS

In this section we will discuss the software life cycle: the activities that take place
between the time a software program is first conceived and the time it is finally
retired.

A software project usually starts because a customer has a problem and is willing
to pay money to have it solved. The Department of Defense, the customer of many
programming projects, was an early proponent of a formal process for software
development. A formal process identifies and describes different phases and gives
guidelines for carrying out the phases and when to move from one phase to the
next.

Many software engineers break the development process down into the follow-
ing five phases:

• Analysis
• Design
• Implementation
• Testing
• Deployment

In the analysis phase, you decide what the project is supposed to accomplish; you
do not think about how the program will accomplish its tasks. The output of the
analysis phase is a requirements document, which describes in complete detail what
the program will be able to do once it is completed. Part of this requirements docu-
ment can be a user manual that tells how the user will operate the program to derive
the promised benefits. Another part sets performance criteria—how many inputs
the program must be able to handle in what time, or what its maximum memory
and disk storage requirements are.

In the design phase, you develop a plan for how you will implement the system.
You discover the structures that underlie the problem to be solved. When you use
object-oriented design, you decide what classes you need and what their most
important methods are. The output of this phase is a description of the classes and
methods, with diagrams that show the relationships among the classes.

In the implementation phase, you write and compile program code to implement
the classes and methods that were discovered in the design phase. The output of this
phase is the completed program.

12.1 The Software Life Cycle
The software life
cycle encompasses
all activities from
initial analysis until
obsolescence.

A formal process
for software
development
describes phases of
the development
process and gives
guidelines for how to
carry out the phases.

12.1 The Software Life Cycle 442
RANDOM FACT 12.1: Programmer Productivity

12.2 Discovering Classes 446

12.3 Relationships Between Classes 449
HOW TO 12.1: CRC Cards and UML Diagrams 451
SPECIAL TOPIC 12.1: Attributes and Methods in

UML Diagrams

SPECIAL TOPIC 12.2: Multiplicities

SPECIAL TOPIC 12.3: Aggregation and Association

12.4 Case Study: Printing an Invoice 452

12.5 Case Study: An Automatic
Teller Machine 463

RANDOM FACT 12.2: Software Development—Art

or Science?

12.1 The Software Life Cycle 443

In the testing phase, you run tests to verify that the program works correctly.
The output of this phase is a report describing the tests that you carried out and
their results.

In the deployment phase, the users of the program install it and use it for its
intended purpose.

When formal development processes were first established in the early 1970s,
software engineers had a very simple visual model of these phases. They postulated
that one phase would run to completion, its output would spill over to the next
phase, and the next phase would begin. This model is called the waterfall model of
software development (see Figure 1).

In an ideal world the waterfall model has a lot of appeal: You figure out what to
do; then you figure out how to do it; then you do it; then you verify that you did it
right; then you hand the product to the customer. When rigidly applied, though, the
waterfall model simply did not work. It was very difficult to come up with a perfect
requirement specification. It was quite common to discover in the design phase that
the requirements were inconsistent or that a small change in the requirements
would lead to a system that was both easier to design and more useful for the cus-
tomer, but the analysis phase was over, so the designers had no choice—they had to
take the existing requirements, errors and all. This problem would repeat itself dur-
ing implementation. The designers may have thought they knew how to solve the
problem as efficiently as possible, but when the design was actually implemented, it
turned out that the resulting program was not as fast as the designers had thought.
The next transition is one with which you are surely familiar. When the program
was handed to the quality assurance department for testing, many bugs were found
that would best be fixed by reimplementing, or maybe even redesigning, the pro-
gram, but the waterfall model did not allow for this. Finally, when the customers
received the finished product, they were often not at all happy with it. Even though
the customers typically were very involved in the analysis phase, often they

Figure 1 The Waterfall Model

The waterfall model
of software
development
describes a
sequential process of
analysis, design,
implementation,
testing, and
deployment.

Analysis

Design

Implementation

Testing

Deployment

444 Chapter 12 Object-Oriented Design

themselves were not sure exactly what they needed. After all, it can be very difficult
to describe how you want to use a product that you have never seen before. But
when the customers started using the program, they began to realize what they
would have liked. Of course, then it was too late, and they had to live with what
they got.

Having some level of iteration is clearly necessary. There simply must be a mech-
anism to deal with errors from the preceding phase. A spiral model, originally pro-
posed by Barry Boehm in 1988, breaks the development process down into multiple
phases (see Figure 2). Early phases focus on the construction of prototypes. A pro-
totype is a small system that shows some aspects of the final system. Because proto-
types model only a part of a system and do not need to withstand customer abuse,
they can be implemented quickly. It is common to build a user interface prototype
that shows the user interface in action. This gives customers an early chance to
become more familiar with the system and to suggest improvements before the
analysis is complete. Other prototypes can be built to validate interfaces with exter-
nal systems, to test performance, and so on. Lessons learned from the development
of one prototype can be applied to the next iteration of the spiral.

By building in repeated trials and feedback, a development process that follows
the spiral model has a greater chance of delivering a satisfactory system. However,
there is also a danger. If engineers believe that they don’t have to do a good job
because they can always do another iteration, then there will be many iterations,
and the process will take a very long time to complete.

Figure 3 shows activity levels in the “Rational Unified Process”, a development
process methodology by the inventors of UML (see Grady Booch, James Rum-
baugh, and Ivar Jacobson, The Unified Modeling Language User Guide, Addison-
Wesley, 1999). The details are not important, but as you can see, this is a complex
process involving multiple iterations.

Even complex development processes with many iterations have not always met
with success. In 1999, Kent Beck published an influential book on Extreme Pro-
gramming, a development methodology that strives for simplicity by cutting out

Figure 2 A Spiral Model

Prototype #1

Prototype #2

Final
Product

Design

Analysis Implementation

Testing

Deployment

The spiral model
of software
development
describes an iterative
process in which
design and
implementation
are repeated.

Extreme
Programming is a
development
methodology that
strives for simplicity
by removing formal
structure and
focusing on
best practices.

12.1 The Software Life Cycle 445

most of the formal trappings of a traditional development methodology and instead
focusing on a set of practices:

• Realistic planning: Customers are to make business decisions, programmers are
to make technical decisions. Update the plan when it conflicts with reality.

• Small releases: Release a useful system quickly, then release updates on a very
short cycle.

• Metaphor: All programmers should have a simple shared story that explains the
system under development.

• Simplicity: Design everything to be as simple as possible instead of preparing for
future complexity.

• Testing: Both programmers and customers are to write test cases. The system is
continuously tested.

• Refactoring: Programmers are to restructure the system continuously to improve
the code and eliminate duplication.

• Pair programming: Put programmers together in pairs, and require each pair to
write code on a single computer.

• Collective ownership: All programmers have permission to change all code as it
becomes necessary.

• Continuous integration: Whenever a task is completed, build the entire system
and test it.

• 40-hour week: Don’t cover up unrealistic schedules with bursts of heroic effort.
• On-site customer: An actual customer of the system is to be accessible to team

members at all times.
• Coding standards: Programmers are to follow standards that emphasize self-

documenting code.

Figure 3 Activity Levels in the Rational Unified Process Methodology

Process Workflows
Inception Elaboration Construction Transition

Business Modeling

Requirements

Analysis and Design

Implementation

Testing

Deployment

Supporting Workflows
Configuration and

Change Management
g

Project Management

Environment
preliminary
iteration(s)

iter
#1

iter
#2

iter
#n #m

iter
#m+1#n+1 #n 2

446 Chapter 12 Object-Oriented Design

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Many of these practices are common sense. Others, such as the pair programming
requirement, are surprising. Beck claims that the value of the Extreme Program-
ming approach lies in the synergy of these practices—the sum is bigger than the
parts.

In your first programming course, you will not develop systems that are so com-
plex that you need a full-fledged methodology to solve your homework problems.
This introduction to the development process should, however, show you that suc-
cessful software development involves more than just coding. In the remainder of
this chapter we will have a closer look at the design phase of the software develop-
ment process.

1. Suppose you sign a contract, promising that you will, for an agreed-upon price,
design, implement, and test a software package exactly as it has been specified in
a requirements document. What is the primary risk you and your customer are
facing with this business arrangement?

2. Does Extreme Programming follow a waterfall or a spiral model?
3. What is the purpose of the “on-site customer” in Extreme Programming?

Programmer Productivity

Random Fact 12.1 presents information about the productivity of individual programmers
and teams.

In the design phase of software development, your task is to discover structures that
make it possible to implement a set of tasks on a computer. When you use the
object-oriented design process, you carry out the following tasks:

1. Discover classes.
2. Determine the responsibilities of each class.
3. Describe the relationships between the classes.

A class represents some useful concept. You have seen classes for concrete entities,
such as bank accounts, ellipses, and products. Other classes represent abstract con-
cepts, such as streams and windows.

A simple rule for finding classes is to look for nouns in the task description. For
example, suppose your job is to print an invoice such as the one in Figure 4.
Obvious classes that come to mind are Invoice, LineItem, and Customer. It is a good
idea to keep a list of candidate classes on a whiteboard or a sheet of paper. As you
brainstorm, simply put all ideas for classes onto the list. You can always cross out
the ones that weren’t useful after all.

S E L F C H E C K

Random Fact 12.1

12.2 Discovering Classes

In object-oriented
design, you discover
classes, determine
the responsibilities of
classes, and describe
the relationships
between classes.

Make a list of
candidates for
classes, starting
with nouns in the
task description.

12.2 Discovering Classes 447

When finding classes, keep the following points in mind:

• A class represents a set of objects with the same behavior. Entities with multiple
occurrences in your problem description, such as customers or products, are
good candidates for objects. Find out what they have in common, and design
classes to capture those commonalities.

• Some entities should be represented as objects, others as primitive types. For
example, should an address be an object of an Address class, or should it simply be
a string? There is no perfect answer—it depends on the task that you want to
solve. If your software needs to analyze addresses (for example, to determine
shipping costs), then an Address class is an appropriate design. However, if your
software will never need such a capability, you should not waste time on an
overly complex design. It is your job to find a balanced design; one that is not
too limiting or excessively general.

• Not all classes can be discovered in the analysis phase. Most complex programs
need classes for tactical purposes, such as file or database access, user interfaces,
control mechanisms, and so on.

• Some of the classes that you need may already exist, either in the standard library
or in a program that you developed previously. You also may be able to use
inheritance to extend existing classes into classes that match your needs.

Once a set of classes has been identified, you need to define the behavior for each
class. That is, you need to find out what methods each object needs to do to solve
the programming problem. A simple rule for finding these methods is to look for
verbs in the task description, then match the verbs to the appropriate objects. For
example, in the invoice program, a class needs to compute the amount due. Now
you need to figure out which class is responsible for this method. Do customers

Figure 4
An Invoice

I N V O I C E

Sam’s Small Appliances
100 Main Street
Anytown, CA 98765

Item Qty Price Total

Toaster 3 $29.95 $89.85

Hair Dryer 1 $24.95 $24.95

Car Vacuum 2 $19.99 $39.98

AMOUNT DUE: $154.78

448 Chapter 12 Object-Oriented Design

compute what they owe? Do invoices total up the amount due? Do the items total
themselves up? The best choice is to make “compute amount due” the responsibil-
ity of the Invoice class.

An excellent way to carry out this task is the “CRC card method.” CRC stands
for “classes”, “responsibilities”, “collaborators”, and in its simplest form, the
method works as follows. Use an index card for each class (see Figure 5). As you
think about verbs in the task description that indicate methods, you pick the card of
the class that you think should be responsible, and write that responsibility on the
card.

For each responsibility, you record which other classes are needed to fulfill it.
Those classes are the collaborators.

For example, suppose you decide that an invoice should compute the amount
due. Then you write “compute amount due” on the left-hand side of an index card
with the title Invoice.

If a class can carry out that responsibility by itself, do nothing further. But if the
class needs the help of other classes, write the names of these collaborators on the
right-hand side of the card.

To compute the total, the invoice needs to ask each line item about its total price.
Therefore, the LineItem class is a collaborator.

This is a good time to look up the index card for the LineItem class. Does it have a
“get total price” method? If not, add one.

How do you know that you are on the right track? For each responsibility, ask
yourself how it can actually be done, using the responsibilities written on the vari-
ous cards. Many people find it helpful to group the cards on a table so that the col-
laborators are close to each other, and to simulate tasks by moving a token (such as
a coin) from one card to the next to indicate which object is currently active.

Keep in mind that the responsibilities that you list on the CRC card are on a high
level. Sometimes a single responsibility may need two or more Java methods for
carrying it out. Some researchers say that a CRC card should have no more than
three distinct responsibilities.

The CRC card method is informal on purpose, so that you can be creative and dis-
cover classes and their properties. Once you find that you have settled on a good set
of classes, you will want to know how they are related to each other. Can you find

Figure 5 A CRC Card

A CRC card
describes a class,
its responsibilities,
and its collaborating
classes.

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

12.3 Relationships Between Classes 449

classes with common properties, so that some responsibilities can be taken care of by
a common superclass? Can you organize classes into clusters that are independent of
each other? Finding class relationships and documenting them with diagrams is the
topic of the next section.

4. Suppose the invoice is to be saved to a file. Name a likely collaborator.
5. Looking at the invoice in Figure 4, what is a likely responsibility of the Customer

class?
6. What do you do if a CRC card has ten responsibilities?

When designing a program, it is useful to document the relationships between
classes. This helps you in a number of ways. For example, if you find classes with
common behavior, you can save effort by placing the common behavior into a
superclass. If you know that some classes are not related to each other, you can
assign different programmers to implement each of them, without worrying that
one of them has to wait for the other.

You have seen the inheritance relationship between classes many times in this
book. Inheritance is a very important relationship, but, as it turns out, it is not the
only useful relationship, and it can be overused.

Inheritance is a relationship between a more general class (the superclass) and a
more specialized class (the subclass). This relationship is often described as the is-a
relationship. Every truck is a vehicle. Every savings account is a bank account.
Every circle is an ellipse (with equal width and height).

Inheritance is sometimes abused, however. For example, consider a Tire class that
describes a car tire. Should the class Tire be a subclass of a class Circle? It sounds
convenient. There are quite a few useful methods in the Circle class—for example,
the Tire class may inherit methods that compute the radius, perimeter, and center
point, which should come in handy when drawing tire shapes. Though it may be
convenient for the programmer, this arrangement makes no sense conceptually. It
isn’t true that every tire is a circle. Tires are car parts, whereas circles are geometric
objects. There is a relationship between tires and circles, though. A tire has a circle
as its boundary. Java lets us model that has-a relationship, too. Use an instance
variable:

public class Tire
{
 private String rating;
 private Circle boundary;
 . . .
}

The technical term for this relationship is aggregation. Each Tire aggregates a
Circle object. In general, a class aggregates another class if its objects have objects of
the other class.

S E L F C H E C K

12.3 Relationships Between Classes

Inheritance (the is-a
relationship) is
sometimes
inappropriately used
when the has-a
relationship would be
more appropriate.

450 Chapter 12 Object-Oriented Design

Here is another example. Every car is a vehicle. Every car has a tire (in fact, it has
typically four or, if you count the spare, five). Thus, you would use inheritance
from Vehicle and use aggregation of Tire objects:

public class Car extends Vehicle
{
 private Tire[] tires;
 . . .
}

In this book, we use the UML notation for class diagrams. You have already seen
many examples of the UML notation for inheritance—an arrow with an open trian-
gle pointing to the superclass. In the UML notation, aggregation is denoted by a
solid line with a diamond-shaped symbol next to the aggregating class. Figure 6
shows a class diagram with an inheritance and an aggregation relationship.

The aggregation relationship is related to the dependency relationship, which
you saw in Chapter 8. Recall that a class depends on another if one of its methods
uses an object of the other class in some way.

For example, many of our applications depend on the Scanner class, because they
use a Scanner object to read input.

Aggregation is a stronger form of dependency. If a class has objects of another
class, it certainly uses the other class. However, the converse is not true. For exam-
ple, a class may use the Scanner class without ever declaring an instance variable of
class Scanner. The class may simply construct a local variable of type Scanner, or its
methods may receive Scanner objects as parameters. This use is not aggregation
because the objects of the class don’t contain Scanner objects—they just create or
receive them for the duration of a single method.

Generally, you need aggregation when an object needs to remember another
object between method calls.

Figure 6
UML Notation for
Inheritance and Aggregation

Aggregation (the
has-a relationship)
denotes that objects
of one class contain
references to objects
of another class.

Dependency is
another name for the
uses relationship.

You need to be able
to distinguish the
UML notations for
inheritance, interface
implementation,
aggregation, and
dependency.

Vehicle

Car

Tire

12.3 Relationships Between Classes 451

As you saw in Chapter 8, the UML notation for dependency is a dashed line with
an open arrow that points to the dependent class.

The arrows in the UML notation can get confusing. Table 1 shows a summary of
the four UML relationship symbols that we use in this book.

7. Consider the Bank and BankAccount classes of Chapter 7. How are they related?
8. Consider the BankAccount and SavingsAccount objects of Chapter 10. How are

they related?
9. Consider the BankAccountTester class of Chapter 3. Which classes does it

depend on?

HOW TO 12.1 CRC Cards and UML Diagrams

Before writing code for a complex problem, you need to design a solution. The methodology
introduced in this chapter suggests that you follow a design process that is composed of the
following tasks:
• Discover classes.
• Determine the responsibilities of each class.
• Describe the relationships between the classes.

CRC cards and UML diagrams help you discover and record this information.

Step 1 Discover classes.

Highlight the nouns in the problem description. Make a list of the nouns. Cross out those
that don’t seem to be reasonable candidates for classes.

Step 2 Discover responsibilities.

Make a list of the major tasks that your system needs to fulfill. From those tasks, pick one
that is not trivial and that is intuitive to you. Find a class that is responsible for carrying out
that task. Make an index card and write the name and the task on it. Now ask yourself how
an object of the class can carry out the task. It probably needs help from other objects. Then
make CRC cards for the classes to which those objects belong and write the responsibilities
on them.

Don’t be afraid to cross out, move, split, or merge responsibilities. Rip up cards if they
become too messy. This is an informal process.

Table 1 UML Relationship Symbols

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

S E L F C H E C K

452 Chapter 12 Object-Oriented Design

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

You are done when you have walked through all major tasks and are satisfied that they
can all be solved with the classes and responsibilities that you discovered.

Step 3 Describe relationships.

Make a class diagram that shows the relationships between all the classes that you
discovered.

Start with inheritance—the is-a relationship between classes. Is any class a specialization
of another? If so, draw inheritance arrows. Keep in mind that many designs, especially for
simple programs, don’t use inheritance extensively.

The “collaborators” column of the CRC cards tell you which classes use others. Draw
usage arrows for the collaborators on the CRC cards.

Some dependency relationships give rise to aggregations. For each of the dependency
relationships, ask yourself: How does the object locate its collaborator? Does it navigate to it
directly because it stores a reference? In that case, draw an aggregation arrow. Or is the col-
laborator a method parameter or return value? Then simply draw a dependency arrow.

UML Notation

Special Topics 12.1–12.3 discuss advanced features of the UML notation: attributes and
methods in class diagrams, multiplicities, and the association relationship.

In this chapter, we discuss a five-part development process that is particularly well
suited for beginning programmers:

1. Gather requirements.
2. Use CRC cards to find classes, responsibilities, and collaborators.
3. Use UML diagrams to record class relationships.
4. Use javadoc to document method behavior.
5. Implement your program.

There isn’t a lot of notation to learn. The class diagrams are simple to draw. The
deliverables of the design phase are obviously useful for the implementation
phase—you simply take the source files and start adding the method code. Of
course, as your projects get more complex, you will want to learn more about for-
mal design methods. There are many techniques to describe object scenarios, call
sequencing, the large-scale structure of programs, and so on, that are very beneficial
even for relatively simple projects. The Unified Modeling Language User Guide
gives a good overview of these techniques.

In this section, we will walk through the object-oriented design technique with a
very simple example. In this case, the methodology may feel overblown, but it is a
good introduction to the mechanics of each step. You will then be better prepared
for the more complex example that follows.

Special Topic 12.1 – 12.3

12.4 Case Study: Printing an Invoice

12.4 Case Study: Printing an Invoice 453

Before you begin designing a solution, you should gather all requirements for your
program in plain English. Write down what your program should do. It is helpful
to include typical scenarios in addition to a general description.

The task of our sample program is to print out an invoice. An invoice describes
the charges for a set of products in certain quantities. (We omit complexities such as
dates, taxes, and invoice and customer numbers.) The program simply prints the
billing address, all line items, and the amount due. Each line item contains the
description and unit price of a product, the quantity ordered, and the total price.

 I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Also, in the interest of simplicity, we do not provide a user interface. We just supply
a test program that adds line items to the invoice and then prints it.

When designing an object-oriented program, you need to discover classes. Classes
correspond to nouns in the requirements description. In this problem, it is pretty
obvious what the nouns are:

Invoice Address
LineItem Product
Description Price
Quantity Total
Amount due

(Of course, Toaster doesn’t count—it is the description of a LineItem object and
therefore a data value, not the name of a class.)

Description and price are attributes of the Product class. What about the quantity?
The quantity is not an attribute of a Product. Just as in the printed invoice, let’s have
a class LineItem that records the product and the quantity (such as “3 toasters”).

The total and amount due are computed—not stored anywhere. Thus, they don’t
lead to classes.

After this process of elimination, we are left with four candidates for classes:
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so let’s make them all into classes.
The purpose of the program is to print an invoice. However, the Invoice class

won’t necessarily know whether to display the output in System.out, in a text area, or

12.4.1 Requirements

Start the
development process
by gathering and
documenting
program
requirements.

12.4.2 CRC Cards

Use CRC cards to
find classes,
responsibilities,
and collaborators.

454 Chapter 12 Object-Oriented Design

in a file. Therefore, let’s relax the task slightly and make the invoice responsible for
formatting the invoice. The result is a string (containing multiple lines) that can be
printed out or displayed. Record that responsibility on a CRC card:

How does an invoice format itself? It must format the billing address, format all line
items, and then add the amount due. How can the invoice format an address? It
can’t—that really is the responsibility of the Address class. This leads to a second
CRC card:

Similarly, formatting of a line item is the responsibility of the LineItem class.
The format method of the Invoice class calls the format methods of the Address and

LineItem classes. Whenever a method uses another class, you list that other class as a
collaborator. In other words, Address and LineItem are collaborators of Invoice:

When formatting the invoice, the invoice also needs to compute the total amount due.
To obtain that amount, it must ask each line item about the total price of the item.

format the invoice

Invoice

format the address

Address

format the invoice Address

LineItem

Invoice

12.4 Case Study: Printing an Invoice 455

How does a line item obtain that total? It must ask the product for the unit price,
and then multiply it by the quantity. That is, the Product class must reveal the unit
price, and it is a collaborator of the LineItem class.

Finally, the invoice must be populated with products and quantities, so that it
makes sense to format the result. That too is a responsibility of the Invoice class.

We now have a set of CRC cards that completes the CRC card process.

After you have discovered classes and their relationships with CRC cards, you
should record your findings in UML diagrams. The dependency relationships come
from the collaboration column on the CRC cards. Each class depends on the classes
with which it collaborates. In our example, the Invoice class collaborates with the
Address, LineItem, and Product classes. The LineItem class collaborates with the Product
class.

get description
get unit price

Product

format the item Product

get total price

LineItem

format the invoice Address

LineItemadd a product and quantity
Product

Invoice

12.4.3 UML Diagrams

Use UML diagrams to
record class
relationships.

456 Chapter 12 Object-Oriented Design

Now ask yourself which of these dependencies are actually aggregations. How
does an invoice know about the address, line item, and product objects with which
it collaborates? An invoice object must hold references to the address and the line
items when it formats the invoice. But an invoice object need not hold a reference to
a product object when adding a product. The product is turned into a line item, and
then it is the item’s responsibility to hold a reference to it.

Therefore, the Invoice class aggregates the Address and LineItem classes. The
LineItem class aggregates the Product class. However, there is no has-a relationship
between an invoice and a product. An invoice doesn’t store products directly—they
are stored in the LineItem objects.

There is no inheritance in this example.
Figure 7 shows the class relationships that we discovered.

The final step of the design phase is to write the documentation of the discovered
classes and methods. Simply write a Java source file for each class, write the method
comments for those methods that you have discovered, and leave the bodies of the
methods blank.

/**
Describes an invoice for a set of purchased products.

*/
public class Invoice
{
 /**

Adds a charge for a product to this invoice.
 @param aProduct the product that the customer ordered
 @param quantity the quantity of the product
 */
 public void add(Product aProduct, int quantity)
 {
 }

 /**
Formats the invoice.

 @return the formatted invoice
 */
 public String format()
 {

Figure 7 The Relationships Between the Invoice Classes

Invoice Address

Product LineItem

12.4.4 Method Documentation

Use javadoc
comments (with the
method bodies left
blank) to record the
behavior of classes.

12.4 Case Study: Printing an Invoice 457

 }
}

/**
Describes a quantity of an article to purchase.

*/
public class LineItem
{
 /**

Computes the total cost of this line item.
 @return the total price
 */
 public double getTotalPrice()
 {
 }

 /**
Formats this item.

 @return a formatted string of this item
 */
 public String format()
 {
 }
}

/**
Describes a product with a description and a price.

*/
public class Product
{
 /**

Gets the product description.
 @return the description
 */
 public String getDescription()
 {
 }

 /**
Gets the product price.

 @return the unit price
 */
 public double getPrice()
 {
 }
}

/**
Describes a mailing address.

*/
public class Address
{
 /**

Formats the address.
 @return the address as a string with three lines
 */
 public String format()
 {
 }
}

458 Chapter 12 Object-Oriented Design

Then run the javadoc program to obtain a prettily formatted version of your docu-
mentation in HTML format (see Figure 8).

This approach for documenting your classes has a number of advantages. You
can share the HTML documentation with others if you work in a team. You use a
format that is immediately useful—Java source files that you can carry into the
implementation phase. And, most importantly, you supply the comments of the
key methods—a task that less prepared programmers leave for later, and then often
neglect for lack of time.

After you have completed the object-oriented design, you are ready to implement
the classes.

You already have the method parameters and comments from the previous step.
Now look at the UML diagram to add instance variables. Aggregated classes yield
instance variables. Start with the Invoice class. An invoice aggregates Address and

Figure 8 The Class Documentation in HTML Format

12.4.5 Implementation

After completing the
design, implement
your classes.

12.4 Case Study: Printing an Invoice 459

LineItem. Every invoice has one billing address, but it can have many line items. To
store multiple LineItem objects, you can use an array list. Now you have the instance
variables of the Invoice class:

public class Invoice
{
 private Address billingAddress;
 private ArrayList<LineItem> items;
 . . .
}

A line item needs to store a Product object and the product quantity. That leads to
the following instance variables:

public class LineItem
{
 private int quantity;
 private Product theProduct;
 . . .
}

The methods themselves are now easy to implement. Here is a typical example. You
already know what the getTotalPrice method of the LineItem class needs to do—get
the unit price of the product and multiply it with the quantity.

/**
Computes the total cost of this line item.

 @return the total price
*/
public double getTotalPrice()
{
 return theProduct.getPrice() * quantity;
}

We will not discuss the other methods in detail—they are equally straightforward.
Finally, you need to supply constructors, another routine task.
Here is the entire program. It is a good practice to go through it in detail and

match up the classes and methods against the CRC cards and UML diagram.

ch12/invoice/InvoicePrinter.java

1 /**
2 This program demonstrates the invoice classes by
3 printing a sample invoice.
4 */
5 public class InvoicePrinter
6 {
7 public static void main(String[] args)
8 {
9 Address samsAddress

10 = new Address("Sam’s Small Appliances",
11 "100 Main Street", "Anytown", "CA", "98765");
12
13 Invoice samsInvoice = new Invoice(samsAddress);
14 samsInvoice.add(new Product("Toaster", 29.95), 3);
15 samsInvoice.add(new Product("Hair dryer", 24.95), 1);
16 samsInvoice.add(new Product("Car vacuum", 19.99), 2);
17
18 System.out.println(samsInvoice.format());
19 }
20 }

460 Chapter 12 Object-Oriented Design

ch12/invoice/Invoice.java

1 import java.util.ArrayList;
2
3 /**
4 Describes an invoice for a set of purchased products.
5 */
6 public class Invoice
7 {
8 private Address billingAddress;
9 private ArrayList<LineItem> items;

10
11 /**
12 Constructs an invoice.
13 @param anAddress the billing address
14 */
15 public Invoice(Address anAddress)
16 {
17 items = new ArrayList<LineItem>();
18 billingAddress = anAddress;
19 }
20
21 /**
22 Adds a charge for a product to this invoice.
23 @param aProduct the product that the customer ordered
24 @param quantity the quantity of the product
25 */
26 public void add(Product aProduct, int quantity)
27 {
28 LineItem anItem = new LineItem(aProduct, quantity);
29 items.add(anItem);
30 }
31
32 /**
33 Formats the invoice.
34 @return the formatted invoice
35 */
36 public String format()
37 {
38 String r = " I N V O I C E\n\n"
39 + billingAddress.format()
40 + String.format("\n\n%-30s%8s%5s%8s\n",
41 "Description", "Price", "Qty", "Total");
42
43 for (LineItem item : items)
44 {
45 r = r + item.format() + "\n";
46 }
47
48 r = r + String.format("\nAMOUNT DUE: $%8.2f", getAmountDue());
49
50 return r;
51 }
52

12.4 Case Study: Printing an Invoice 461

ch12/invoice/LineItem.java

53 /**
54 Computes the total amount due.
55 @return the amount due
56 */
57 public double getAmountDue()
58 {
59 double amountDue = 0;
60 for (LineItem item : items)
61 {
62 amountDue = amountDue + item.getTotalPrice();
63 }
64 return amountDue;
65 }
66 }

1 /**
2 Describes a quantity of an article to purchase.
3 */
4 public class LineItem
5 {
6 private int quantity;
7 private Product theProduct;
8
9 /**

10 Constructs an item from the product and quantity.
11 @param aProduct the product
12 @param aQuantity the item quantity
13 */
14 public LineItem(Product aProduct, int aQuantity)
15 {
16 theProduct = aProduct;
17 quantity = aQuantity;
18 }
19
20 /**
21 Computes the total cost of this line item.
22 @return the total price
23 */
24 public double getTotalPrice()
25 {
26 return theProduct.getPrice() * quantity;
27 }
28
29 /**
30 Formats this item.
31 @return a formatted string of this line item
32 */
33 public String format()
34 {
35 return String.format("%-30s%8.2f%5d%8.2f",
36 theProduct.getDescription(), theProduct.getPrice(),
37 quantity, getTotalPrice());
38 }
39 }

462 Chapter 12 Object-Oriented Design

ch12/invoice/Product.java

ch12/invoice/Address.java

1 /**
2 Describes a product with a description and a price.
3 */
4 public class Product
5 {
6 private String description;
7 private double price;
8
9 /**

10 Constructs a product from a description and a price.
11 @param aDescription the product description
12 @param aPrice the product price
13 */
14 public Product(String aDescription, double aPrice)
15 {
16 description = aDescription;
17 price = aPrice;
18 }
19
20 /**
21 Gets the product description.
22 @return the description
23 */
24 public String getDescription()
25 {
26 return description;
27 }
28
29 /**
30 Gets the product price.
31 @return the unit price
32 */
33 public double getPrice()
34 {
35 return price;
36 }
37 }

1 /**
2 Describes a mailing address.
3 */
4 public class Address
5 {
6 private String name;
7 private String street;
8 private String city;
9 private String state;

10 private String zip;
11
12 /**
13 Constructs a mailing address.
14 @param aName the recipient name
15 @param aStreet the street
16 @param aCity the city

12.5 Case Study: An Automatic Teller Machine 463

10. Which class is responsible for computing the amount due? What are its collabo-
rators for this task?

11. Why do the format methods return String objects instead of directly printing to
System.out?

The purpose of this project is to design a simulation of an automatic teller machine
(ATM). The ATM is used by the customers of a bank. Each customer has two
accounts: a checking account and a savings account. Each customer also has a cus-
tomer number and a personal identification number (PIN); both are required to
gain access to the accounts. (In a real ATM, the customer number would be
recorded on the magnetic strip of the ATM card. In this simulation, the customer
will need to type it in.) With the ATM, customers can select an account (checking or
savings). The balance of the selected account is displayed. Then the customer can
deposit and withdraw money. This process is repeated until the customer chooses
to exit.

The details of the user interaction depend on the user interface that we choose for
the simulation. We will develop two separate interfaces: a graphical interface that
closely mimics an actual ATM (see Figure 9), and a text-based interface that allows
you to test the ATM and bank classes without being distracted by GUI
programming.

17 @param aState the two-letter state code
18 @param aZip the ZIP postal code
19 */
20 public Address(String aName, String aStreet,
21 String aCity, String aState, String aZip)
22 {
23 name = aName;
24 street = aStreet;
25 city = aCity;
26 state = aState;
27 zip = aZip;
28 }
29
30 /**
31 Formats the address.
32 @return the address as a string with three lines
33 */
34 public String format()
35 {
36 return name + "\n" + street + "\n"
37 + city + ", " + state + " " + zip;
38 }
39 }

S E L F C H E C K

12.5 Case Study: An Automatic Teller Machine
12.5.1 Requirements

464 Chapter 12 Object-Oriented Design

In the GUI interface, the ATM has a keypad to enter numbers, a display to show
messages, and a set of buttons, labeled A, B, and C, whose function depends on the
state of the machine.

Specifically, the user interaction is as follows. When the ATM starts up, it expects
a user to enter a customer number. The display shows the following message:

Enter customer number
A = OK

The user enters the customer number on the keypad and presses the A button. The
display message changes to

Enter PIN
A = OK

Next, the user enters the PIN and presses the A button again. If the customer num-
ber and ID match those of one of the customers in the bank, then the customer can
proceed. If not, the user is again prompted to enter the customer number.

If the customer has been authorized to use the system, then the display message
changes to

Select Account
A = Checking
B = Savings
C = Exit

If the user presses the C button, the ATM reverts to its original state and asks the
next user to enter a customer number.

If the user presses the A or B buttons, the ATM remembers the selected account,
and the display message changes to

Balance = balance of selected account
Enter amount and select transaction
A = Withdraw
B = Deposit
C = Cancel

If the user presses the A or B buttons, the value entered in the keypad is withdrawn
from or deposited into the selected account. (This is just a simulation, so no money
is dispensed and no deposit is accepted.) Afterwards, the ATM reverts to the pre-
ceding state, allowing the user to select another account or to exit.

If the user presses the C button, the ATM reverts to the preceding state without
executing any transaction.

Figure 9
Graphical User Interface
for the Automatic Teller Machine

12.5 Case Study: An Automatic Teller Machine 465

In the text-based interaction, we read input from System.in instead of the buttons.
Here is a typical dialog:

Enter account number: 1
Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C

In our solution, only the user interface classes are affected by the choice of user
interface. The remainder of the classes can be used for both solutions—they are
decoupled from the user interface.

Because this is a simulation, the ATM does not actually communicate with a
bank. It simply loads a set of customer numbers and PINs from a file. All accounts
are initialized with a zero balance.

We will again follow the recipe of Section 12.2 and show how to discover classes,
responsibilities, and relationships and how to obtain a detailed design for the ATM
program.

Recall that the first rule for finding classes is “Look for nouns in the problem
description”. Here is a list of the nouns:

ATM
User
Keypad
Display
Display message
Button
State
Bank account
Checking account
Savings account
Customer
Customer number
PIN
Bank

Of course, not all of these nouns will become names of classes, and we may yet dis-
cover the need for classes that aren’t in this list, but it is a good start.

Users and customers represent the same concept in this program. Let’s use a class
Customer. A customer has two bank accounts, and we will require that a Customer
object should be able to locate these accounts. (Another possible design would
make the Bank class responsible for locating the accounts of a given customer—see
Exercise P12.9.)

A customer also has a customer number and a PIN. We can, of course, require
that a customer object give us the customer number and the PIN. But perhaps that
isn’t so secure. Instead, simply require that a customer object, when given a
customer number and a PIN, will tell us whether it matches its own information or
not.

12.5.2 CRC Cards

466 Chapter 12 Object-Oriented Design

A bank contains a collection of customers. When a user walks up to the ATM and
enters a customer number and PIN, it is the job of the bank to find the matching
customer. How can the bank do this? It needs to check for each customer whether
its customer number and PIN match. Thus, it needs to call the match
number and PIN method of the Customer class that we just discovered. Because the
find customer method calls a Customer method, it collaborates with the Customer class.
We record that fact in the right-hand column of the CRC card.

When the simulation starts up, the bank must also be able to read account infor-
mation from a file.

The BankAccount class is our familiar class with methods to get the balance and to
deposit and withdraw money.

In this program there is nothing that distinguishes checking accounts from sav-
ings accounts. The ATM does not add interest or deduct fees. Therefore, we decide
not to implement separate subclasses for checking and savings accounts.

Finally, we are left with the ATM class itself. An important notion of the ATM is
the state. The current machine state determines the text of the prompts and the
function of the buttons. For example, when you first log in, you use the A and B
buttons to select an account. Next, you use the same buttons to choose between
deposit and withdrawal. The ATM must remember the current state so that it can
correctly interpret the buttons.

There are four states:

1. START: Enter customer ID
2. PIN: Enter PIN
3. ACCOUNT: Select account
4. TRANSACT: Select transaction

get accounts
match number and PIN

Customer

find customer Customer

read customers

Bank

12.5 Case Study: An Automatic Teller Machine 467

To understand how to move from one state to the next, it is useful to draw a state
diagram (Figure 10). The UML notation has standardized shapes for state dia-
grams. Draw states as rectangles with rounded corners. Draw state changes as
arrows, with labels that indicate the reason for the change.

The user must type a valid customer number and PIN. Then the ATM can ask
the bank to find the customer. This calls for a select customer method. It collabo-
rates with the bank, asking the bank for the customer that matches the customer
number and PIN. Next, there must be a select account method that asks the current
customer for the checking or savings account. Finally, the ATM must carry out the
selected transaction on the current account.

Of course, discovering these classes and methods was not as neat and orderly as it
appears from this discussion. When I designed these classes for this book, it took

Figure 10 State Diagram for the ATM Class

START

PIN

Customer
not found

Customer found

Account selected

Customer number entered

Exit selected

Transaction
completed or
canceled

ACCOUNT

TRANSACT

manage state Customer

Bank

BankAccount

select customer
select account
execute transaction

ATM

468 Chapter 12 Object-Oriented Design

me several trials and many torn cards to come up with a satisfactory design. It is
also important to remember that there is seldom one best design.

This design has several advantages. The classes describe clear concepts. The
methods are sufficient to implement all necessary tasks. (I mentally walked through
every ATM usage scenario to verify that.) There are not too many collaboration
dependencies between the classes. Thus, I was satisfied with this design and pro-
ceeded to the next step.

Figure 11 shows the relationships between these classes, using the graphical user
interface. (The console user interface uses a single class ATMSimulator instead of the
ATMFrame and Keypad classes.)

To draw the dependencies, use the “collaborator” columns from the CRC cards.
Looking at those columns, you find that the dependencies are as follows:

• ATM uses Bank, Customer, and BankAccount.
• Bank uses Customer.
• Customer uses BankAccount.

It is easy to see some of the aggregation relationships. A bank has customers, and
each customer has two bank accounts.

Does the ATM class aggregate Bank? To answer this question, ask yourself whether
an ATM object needs to store a reference to a bank object. Does it need to locate the
same bank object across multiple method calls? Indeed it does. Therefore, aggrega-
tion is the appropriate relationship.

Does an ATM aggregate customers? Clearly, the ATM is not responsible for stor-
ing all of the bank’s customers. That’s the bank’s job. But in our design, the ATM
remembers the current customer. If a customer has logged in, subsequent com-
mands refer to the same customer. The ATM needs to either store a reference to the
customer, or ask the bank to look up the object whenever it needs the current

Figure 11 Relationships Between the ATM Classes

12.5.3 UML Diagrams

ATMFrame

Keypad

ATM

BankAccount

Customer

Bank
1

1

1 2

*

12.5 Case Study: An Automatic Teller Machine 469

customer. It is a design decision: either store the object, or look it up when needed.
We will decide to store the current customer object. That is, we will use aggrega-
tion. Note that the choice of aggregation is not an automatic consequence of the
problem description—it is a design decision.

Similarly, we will decide to store the current bank account (checking or savings)
that the user selects. Therefore, we have an aggregation relationship between ATM
and BankAccount.

The class diagram is a good tool to visualize dependencies. Look at the GUI
classes. They are completely independent from the rest of the ATM system. You can
replace the GUI with a console interface, and you can take out the Keypad class and
use it in another application. Also, the Bank, BankAccount, and Customer classes,
although dependent on each other, don’t know anything about the ATM class. That
makes sense—you can have banks without ATMs. As you can see, when you ana-
lyze relationships, you look for both the absence and presence of relationships.

Now you are ready for the final step of the design phase: documenting the classes and
methods that you discovered. Here is a part of the documentation for the ATM class:

/**
An ATM that accesses a bank.

*/
public class ATM
{
 . . .
 /**

Constructs an ATM for a given bank.
 @param aBank the bank to which this ATM connects
 */
 public ATM(Bank aBank) { }

 /**
Sets the current customer number
and sets state to PIN.
(Precondition: state is START)

 @param number the customer number
 */
 public void setCustomerNumber(int number) { }

 /**
Finds customer in bank.
If found sets state to ACCOUNT, else to START.
(Precondition: state is PIN)

 @param pin the PIN of the current customer
 */
 public void selectCustomer(int pin) { }

 /**
Sets current account to checking or savings. Sets
state to TRANSACT.
(Precondition: state is ACCOUNT or TRANSACT)

 @param account one of CHECKING or SAVINGS
 */
 public void selectAccount(int account) { }

12.5.4 Method Documentation

470 Chapter 12 Object-Oriented Design

 /**
Withdraws amount from current account.
(Precondition: state is TRANSACT)

 @param value the amount to withdraw
 */
 public void withdraw(double value) { }
}

Then run the javadoc utility to turn this documentation into HTML format.
For conciseness, we omit the documentation of the other classes.

Finally, the time has come to implement the ATM simulator. The implementation
phase is very straightforward and should take much less time than the design phase.

A good strategy for implementing the classes is to go “bottom-up”. Start with
the classes that don’t depend on others, such as Keypad and BankAccount. Then imple-
ment a class such as Customer that depends only on the BankAccount class. This “bot-
tom-up” approach allows you to test your classes individually. You will find the
implementations of these classes at the end of this section.

The most complex class is the ATM class. In order to implement the methods, you
need to declare the necessary instance variables. From the class diagram, you can
tell that the ATM has a bank object. It becomes an instance variable of the class:

public class ATM
{

private Bank theBank;
 . . .
}

From the description of the ATM states, it is clear that we require additional
instance variables to store the current state, customer, and bank account.

public class ATM
{

private int state;
private Customer currentCustomer;
private BankAccount currentAccount;

 . . .
}

Most methods are very straightforward to implement. Consider the selectCustomer
method. From the design documentation, we have the description

/**
Finds customer in bank.
If found sets state to ACCOUNT, else to START.
(Precondition: state is PIN)

 @param pin the PIN of the current customer
*/

This description can be almost literally translated to Java instructions:
public void selectCustomer(int pin)
{
 assert state == PIN;
 currentCustomer = theBank.findCustomer(customerNumber, pin);

12.5.5 Implementation

12.5 Case Study: An Automatic Teller Machine 471

 if (currentCustomer == null)
 state = START;
 else
 state = ACCOUNT;
}

We won’t go through a method-by-method description of the ATM program. You
should take some time and compare the actual implementation against the CRC
cards and the UML diagram.

ch12/atm/ATM.java

1 /**
2 An ATM that accesses a bank.
3 */
4 public class ATM
5 {
6 public static final int CHECKING = 1;
7 public static final int SAVINGS = 2;
8
9 private int state;

10 private int customerNumber;
11 private Customer currentCustomer;
12 private BankAccount currentAccount;
13 private Bank theBank;
14
15 public static final int START = 1;
16 public static final int PIN = 2;
17 public static final int ACCOUNT = 3;
18 public static final int TRANSACT = 4;
19
20 /**
21 Constructs an ATM for a given bank.
22 @param aBank the bank to which this ATM connects
23 */
24 public ATM(Bank aBank)
25 {
26 theBank = aBank;
27 reset();
28 }
29
30 /**
31 Resets the ATM to the initial state.
32 */
33 public void reset()
34 {
35 customerNumber = -1;
36 currentAccount = null;
37 state = START;
38 }
39
40 /**
41 Sets the current customer number
42 and sets state to PIN.
43 (Precondition: state is START)
44 @param number the customer number
45 */
46 public void setCustomerNumber(int number)
47 {

472 Chapter 12 Object-Oriented Design

48 assert state == START;
49 customerNumber = number;
50 state = PIN;
51 }
52
53 /**
54 Finds customer in bank.
55 If found, sets state to ACCOUNT, else to START.
56 (Precondition: state is PIN)
57 @param pin the PIN of the current customer
58 */
59 public void selectCustomer(int pin)
60 {
61 assert state == PIN;
62 currentCustomer = theBank.findCustomer(customerNumber, pin);
63 if (currentCustomer == null)
64 state = START;
65 else
66 state = ACCOUNT;
67 }
68
69 /**
70 Sets current account to checking or savings. Sets
71 state to TRANSACT.
72 (Precondition: state is ACCOUNT or TRANSACT)
73 @param account one of CHECKING or SAVINGS
74 */
75 public void selectAccount(int account)
76 {
77 assert state == ACCOUNT || state == TRANSACT;
78 if (account == CHECKING)
79 currentAccount = currentCustomer.getCheckingAccount();
80 else
81 currentAccount = currentCustomer.getSavingsAccount();
82 state = TRANSACT;
83 }
84
85 /**
86 Withdraws amount from current account.
87 (Precondition: state is TRANSACT)
88 @param value the amount to withdraw
89 */
90 public void withdraw(double value)
91 {
92 assert state == TRANSACT;
93 currentAccount.withdraw(value);
94 }
95
96 /**
97 Deposits amount to current account.
98 (Precondition: state is TRANSACT)
99 @param value the amount to deposit

100 */
101 public void deposit(double value)
102 {
103 assert state == TRANSACT;
104 currentAccount.deposit(value);
105 }
106

12.5 Case Study: An Automatic Teller Machine 473

ch12/atm/Bank.java

107 /**
108 Gets the balance of the current account.
109 (Precondition: state is TRANSACT)
110 @return the balance
111 */
112 public double getBalance()
113 {
114 assert state == TRANSACT;
115 return currentAccount.getBalance();
116 }
117
118 /**
119 Moves back to the previous state.
120 */
121 public void back()
122 {
123 if (state == TRANSACT)
124 state = ACCOUNT;
125 else if (state == ACCOUNT)
126 state = PIN;
127 else if (state == PIN)
128 state = START;
129 }
130
131 /**
132 Gets the current state of this ATM.
133 @return the current state
134 */
135 public int getState()
136 {
137 return state;
138 }
139 }

1 import java.io.File;
2 import java.io.IOException;
3 import java.util.ArrayList;
4 import java.util.Scanner;
5
6 /**
7 A bank contains customers with bank accounts.
8 */
9 public class Bank

10 {
11 private ArrayList<Customer> customers;
12
13 /**
14 Constructs a bank with no customers.
15 */
16 public Bank()
17 {
18 customers = new ArrayList<Customer>();
19 }
20

474 Chapter 12 Object-Oriented Design

ch12/atm/Customer.java

21 /**
22 Reads the customer numbers and pins
23 and initializes the bank accounts.
24 @param filename the name of the customer file
25 */
26 public void readCustomers(String filename)
27 throws IOException
28 {
29 Scanner in = new Scanner(new File(filename));
30 while (in.hasNext())
31 {
32 int number = in.nextInt();
33 int pin = in.nextInt();
34 Customer c = new Customer(number, pin);
35 addCustomer(c);
36 }
37 in.close();
38 }
39
40 /**
41 Adds a customer to the bank.
42 @param c the customer to add
43 */
44 public void addCustomer(Customer c)
45 {
46 customers.add(c);
47 }
48
49 /**
50 Finds a customer in the bank.
51 @param aNumber a customer number
52 @param aPin a personal identification number
53 @return the matching customer, or null if no customer
54 matches
55 */
56 public Customer findCustomer(int aNumber, int aPin)
57 {
58 for (Customer c : customers)
59 {
60 if (c.match(aNumber, aPin))
61 return c;
62 }
63 return null;
64 }
65 }

1 /**
2 A bank customer with a checking and a savings account.
3 */
4 public class Customer
5 {
6 private int customerNumber;
7 private int pin;
8 private BankAccount checkingAccount;
9 private BankAccount savingsAccount;

10

12.5 Case Study: An Automatic Teller Machine 475

The following class implements a console user interface for the ATM.

ch12/atm/ATMSimulator.java

11 /**
12 Constructs a customer with a given number and PIN.
13 @param aNumber the customer number
14 @param aPin the personal identification number
15 */
16 public Customer(int aNumber, int aPin)
17 {
18 customerNumber = aNumber;
19 pin = aPin;
20 checkingAccount = new BankAccount();
21 savingsAccount = new BankAccount();
22 }
23
24 /**
25 Tests if this customer matches a customer number
26 and PIN.
27 @param aNumber a customer number
28 @param aPin a personal identification number
29 @return true if the customer number and PIN match
30 */
31 public boolean match(int aNumber, int aPin)
32 {
33 return customerNumber == aNumber && pin == aPin;
34 }
35
36 /**
37 Gets the checking account of this customer.
38 @return the checking account
39 */
40 public BankAccount getCheckingAccount()
41 {
42 return checkingAccount;
43 }
44
45 /**
46 Gets the savings account of this customer.
47 @return the checking account
48 */
49 public BankAccount getSavingsAccount()
50 {
51 return savingsAccount;
52 }
53 }

1 import java.io.IOException;
2 import java.util.Scanner;
3
4 /**
5 A text-based simulation of an automatic teller machine.
6 */
7 public class ATMSimulator
8 {
9 public static void main(String[] args)

10 {
11 ATM theATM;

476 Chapter 12 Object-Oriented Design

12 try
13 {
14 Bank theBank = new Bank();
15 theBank.readCustomers("customers.txt");
16 theATM = new ATM(theBank);
17 }
18 catch(IOException e)
19 {
20 System.out.println("Error opening accounts file.");
21 return;
22 }
23
24 Scanner in = new Scanner(System.in);
25
26 while (true)
27 {
28 int state = theATM.getState();
29 if (state == ATM.START)
30 {
31 System.out.print("Enter customer number: ");
32 int number = in.nextInt();
33 theATM.setCustomerNumber(number);
34 }
35 else if (state == ATM.PIN)
36 {
37 System.out.print("Enter PIN: ");
38 int pin = in.nextInt();
39 theATM.selectCustomer(pin);
40 }
41 else if (state == ATM.ACCOUNT)
42 {
43 System.out.print("A=Checking, B=Savings, C=Quit: ");
44 String command = in.next();
45 if (command.equalsIgnoreCase("A"))
46 theATM.selectAccount(ATM.CHECKING);
47 else if (command.equalsIgnoreCase("B"))
48 theATM.selectAccount(ATM.SAVINGS);
49 else if (command.equalsIgnoreCase("C"))
50 theATM.reset();
51 else
52 System.out.println("Illegal input!");
53 }
54 else if (state == ATM.TRANSACT)
55 {
56 System.out.println("Balance=" + theATM.getBalance());
57 System.out.print("A=Deposit, B=Withdrawal, C=Cancel: ");
58 String command = in.next();
59 if (command.equalsIgnoreCase("A"))
60 {
61 System.out.print("Amount: ");
62 double amount = in.nextDouble();
63 theATM.deposit(amount);
64 theATM.back();
65 }
66 else if (command.equalsIgnoreCase("B"))
67 {
68 System.out.print("Amount: ");
69 double amount = in.nextDouble();

12.5 Case Study: An Automatic Teller Machine 477

Program Run

Here are the user interface classes for the GUI version of the user interface.

ch12/atm/ATMViewer.java

70 theATM.withdraw(amount);
71 theATM.back();
72 }
73 else if (command.equalsIgnoreCase("C"))
74 theATM.back();
75 else
76 System.out.println("Illegal input!");
77 }
78 }
79 }
80 }

Enter account number: 1
Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C
. . .

1 import java.io.IOException;
2 import javax.swing.JFrame;
3 import javax.swing.JOptionPane;
4
5 /**
6 A graphical simulation of an automatic teller machine.
7 */
8 public class ATMViewer
9 {

10 public static void main(String[] args)
11 {
12 ATM theATM;
13
14 try
15 {
16 Bank theBank = new Bank();
17 theBank.readCustomers("customers.txt");
18 theATM = new ATM(theBank);
19 }
20 catch(IOException e)
21 {
22 JOptionPane.showMessageDialog(null, "Error opening accounts file.");
23 return;
24 }
25
26 JFrame frame = new ATMFrame(theATM);
27 frame.setTitle("First National Bank of Java");
28 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 frame.setVisible(true);
30 }
31 }

478 Chapter 12 Object-Oriented Design

ch12/atm/ATMFrame.java

1 import java.awt.FlowLayout;
2 import java.awt.GridLayout;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import javax.swing.JButton;
6 import javax.swing.JFrame;
7 import javax.swing.JPanel;
8 import javax.swing.JTextArea;
9

10 /**
11 A frame displaying the components of an ATM.
12 */
13 public class ATMFrame extends JFrame
14 {
15 private static final int FRAME_WIDTH = 300;
16 private static final int FRAME_HEIGHT = 300;
17
18 private JButton aButton;
19 private JButton bButton;
20 private JButton cButton;
21
22 private KeyPad pad;
23 private JTextArea display;
24
25 private ATM theATM;
26
27 /**
28 Constructs the user interface of the ATM frame.
29 */
30 public ATMFrame(ATM anATM)
31 {
32 theATM = anATM;
33
34 // Construct components
35 pad = new KeyPad();
36
37 display = new JTextArea(4, 20);
38
39 aButton = new JButton(" A ");
40 aButton.addActionListener(new AButtonListener());
41
42 bButton = new JButton(" B ");
43 bButton.addActionListener(new BButtonListener());
44
45 cButton = new JButton(" C ");
46 cButton.addActionListener(new CButtonListener());
47
48 // Add components
49
50 JPanel buttonPanel = new JPanel();
51 buttonPanel.add(aButton);
52 buttonPanel.add(bButton);
53 buttonPanel.add(cButton);
54
55 setLayout(new FlowLayout());
56 add(pad);
57 add(display);

12.5 Case Study: An Automatic Teller Machine 479

58 add(buttonPanel);
59 showState();
60
61 setSize(FRAME_WIDTH, FRAME_HEIGHT);
62 }
63
64 /**
65 Updates display message.
66 */
67 public void showState()
68 {
69 int state = theATM.getState();
70 pad.clear();
71 if (state == ATM.START)
72 display.setText("Enter customer number\nA = OK");
73 else if (state == ATM.PIN)
74 display.setText("Enter PIN\nA = OK");
75 else if (state == ATM.ACCOUNT)
76 display.setText("Select Account\n"
77 + "A = Checking\nB = Savings\nC = Exit");
78 else if (state == ATM.TRANSACT)
79 display.setText("Balance = "
80 + theATM.getBalance()
81 + "\nEnter amount and select transaction\n"
82 + "A = Withdraw\nB = Deposit\nC = Cancel");
83 }
84
85 class AButtonListener implements ActionListener
86 {
87 public void actionPerformed(ActionEvent event)
88 {
89 int state = theATM.getState();
90 if (state == ATM.START)
91 theATM.setCustomerNumber((int) pad.getValue());
92 else if (state == ATM.PIN)
93 theATM.selectCustomer((int) pad.getValue());
94 else if (state == ATM.ACCOUNT)
95 theATM.selectAccount(ATM.CHECKING);
96 else if (state == ATM.TRANSACT)
97 {
98 theATM.withdraw(pad.getValue());
99 theATM.back();

100 }
101 showState();
102 }
103 }
104
105 class BButtonListener implements ActionListener
106 {
107 public void actionPerformed(ActionEvent event)
108 {
109 int state = theATM.getState();
110 if (state == ATM.ACCOUNT)
111 theATM.selectAccount(ATM.SAVINGS);
112 else if (state == ATM.TRANSACT)
113 {
114 theATM.deposit(pad.getValue());
115 theATM.back();

480 Chapter 12 Object-Oriented Design

This class uses layout managers to arrange the text field and the keypad buttons. See
Chapter 18 for more information about layout managers.

ch12/atm/KeyPad.java

116 }
117 showState();
118 }
119 }
120
121 class CButtonListener implements ActionListener
122 {
123 public void actionPerformed(ActionEvent event)
124 {
125 int state = theATM.getState();
126 if (state == ATM.ACCOUNT)
127 theATM.reset();
128 else if (state == ATM.TRANSACT)
129 theATM.back();
130 showState();
131 }
132 }
133 }

1 import java.awt.BorderLayout;
2 import java.awt.GridLayout;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import javax.swing.JButton;
6 import javax.swing.JPanel;
7 import javax.swing.JTextField;
8
9 /**

10 A component that lets the user enter a number, using
11 a keypad labeled with digits.
12 */
13 public class KeyPad extends JPanel
14 {
15 private JPanel buttonPanel;
16 private JButton clearButton;
17 private JTextField display;
18
19 /**
20 Constructs the keypad panel.
21 */
22 public KeyPad()
23 {
24 setLayout(new BorderLayout());
25
26 // Add display field
27
28 display = new JTextField();
29 add(display, "North");
30
31 // Make button panel
32
33 buttonPanel = new JPanel();
34 buttonPanel.setLayout(new GridLayout(4, 3));

12.5 Case Study: An Automatic Teller Machine 481

35
36 // Add digit buttons
37
38 addButton("7");
39 addButton("8");
40 addButton("9");
41 addButton("4");
42 addButton("5");
43 addButton("6");
44 addButton("1");
45 addButton("2");
46 addButton("3");
47 addButton("0");
48 addButton(".");
49
50 // Add clear entry button
51
52 clearButton = new JButton("CE");
53 buttonPanel.add(clearButton);
54
55 class ClearButtonListener implements ActionListener
56 {
57 public void actionPerformed(ActionEvent event)
58 {
59 display.setText("");
60 }
61 }
62 ActionListener listener = new ClearButtonListener();
63
64 clearButton.addActionListener(new
65 ClearButtonListener());
66
67 add(buttonPanel, "Center");
68 }
69
70 /**
71 Adds a button to the button panel.
72 @param label the button label
73 */
74 private void addButton(final String label)
75 {
76 class DigitButtonListener implements ActionListener
77 {
78 public void actionPerformed(ActionEvent event)
79 {
80
81 // Don’t add two decimal points
82 if (label.equals(".")
83 && display.getText().indexOf(".") != -1)
84 return;
85
86 // Append label text to button
87 display.setText(display.getText() + label);
88 }
89 }
90
91 JButton button = new JButton(label);
92 buttonPanel.add(button);

482 Chapter 12 Object-Oriented Design

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

In this chapter, you learned a systematic approach for building a relatively complex
program. However, object-oriented design is definitely not a spectator sport. To
really learn how to design and implement programs, you have to gain experience by
repeating this process with your own projects. It is quite possible that you don’t
immediately home in on a good solution and that you need to go back and
reorganize your classes and responsibilities. That is normal and only to be expected.
The purpose of the object-oriented design process is to spot these problems in the
design phase, when they are still easy to rectify, instead of in the implementation
phase, when massive reorganization is more difficult and time consuming.

12. Why does the Bank class in this example not store an array list of bank accounts?
13. Suppose the requirements change—you need to save the current account bal-

ances to a file after every transaction and reload them when the program starts.
What is the impact of this change on the design?

Software Development—Art or Science?

Random Fact 12.2 discusses whether software developers are best characterized as artists,
craftspeople, scientists, or engineers.

93 ActionListener listener = new DigitButtonListener();
94 button.addActionListener(listener);
95 }
96
97 /**
98 Gets the value that the user entered.
99 @return the value in the text field of the keypad

100 */
101 public double getValue()
102 {
103 return Double.parseDouble(display.getText());
104 }
105
106 /**
107 Clears the display.
108 */
109 public void clear()
110 {
111 display.setText("");
112 }
113 }

S E L F C H E C K

Random Fact 12.2

Media Resources 483

Describe the software life cycle alternatives for the software development process.

• The software life cycle encompasses all activities from initial analysis until
obsolescence.

• A formal process for software development describes phases of the development
process and gives guidelines for how to carry out the phases.

• The waterfall model of software development describes a sequential process of
analysis, design, implementation, testing, and deployment.

• The spiral model of software development describes an iterative process in which
design and implementation are repeated.

• Extreme Programming is a development methodology that strives for simplicity by
removing formal structure and focusing on best practices.

Recognize how to discover classes and their responsibilities.

• In object-oriented design, you discover classes, determine the responsibilities of
classes, and describe the relationships between classes.

• Make a list of candidates for classes, starting with nouns in the task description.
• A CRC card describes a class, its responsibilities, and its collaborating classes.

Categorize relationships between classes and produce UML diagrams that
describe them.

• Inheritance (the is-a relationship) is sometimes inappropriately used when the has-a
relationship would be more appropriate.

• Aggregation (the has-a relationship) denotes that objects of one class contain
references to objects of another class.

• Dependency is another name for the uses relationship.
• You need to be able to distinguish the UML notations for inheritance, interface

implementation, aggregation, and dependency.

Apply an object-oriented development process to designing a program.

• Start the development process by gathering and documenting program
requirements.

• Use CRC cards to find classes, responsibilities, and collaborators.
• Use UML diagrams to record class relationships.
• Use javadoc comments (with the method bodies left blank) to record the

behavior of classes.
• After completing the design, implement your classes.

• Lab Exercises
Practice Quiz
Code Completion Exercises

Summary of Learning Objectives

Media Resources

www.wiley.com/
college/
horstmann

484 Chapter 12 Object-Oriented Design

R12.1 What is the software life cycle?

R12.2 List the steps in the process of object-oriented design that this chapter recommends
for student use.

R12.3 Give a rule of thumb for how to find classes when designing a program.

R12.4 Give a rule of thumb for how to find methods when designing a program.

R12.5 After discovering a method, why is it important to identify the object that is respon-
sible for carrying out the action?

R12.6 What relationship is appropriate between the following classes: aggregation, inher-
itance, or neither?

a. University—Student

b. Student—TeachingAssistant

c. Student—Freshman

d. Student—Professor

e. Car—Door

f. Truck—Vehicle

g. Traffic—TrafficSign

h. TrafficSign—Color

R12.7 Every BMW is a vehicle. Should a class BMW inherit from the class Vehicle? BMW is a
vehicle manufacturer. Does that mean that the class BMW should inherit from the class
VehicleManufacturer?

R12.8 Some books on object-oriented programming recommend using inheritance so that
the class Circle extends the class Point. Then the Circle class inherits the setLocation
method from the Point superclass. Explain why the setLocation method need not be
overridden in the subclass. Why is it nevertheless not a good idea to have Circle
inherit from Point? Conversely, would inheriting Point from Circle fulfill the is-a
rule? Would it be a good idea?

R12.9 Write CRC cards for the Coin and CashRegister classes described in Section 8.2.

R12.10 Write CRC cards for the Bank and BankAccount classes in Section 7.2.

R12.11 Draw a UML diagram for the Coin and CashRegister classes described in Section 8.2.

R12.12 A file contains a set of records describing countries. Each record consists of the
name of the country, its population, and its area. Suppose your task is to write a
program that reads in such a file and prints

• The country with the largest area
• The country with the largest population
• The country with the largest population density (people per square kilometer)

Think through the problems that you need to solve. What classes and methods will
you need? Produce a set of CRC cards, a UML diagram, and a set of javadoc
comments.

Review Exercises

Programming Exercises 485

R12.13 Discover classes and methods for generating a student report card that lists all
classes, grades, and the grade point average for a semester. Produce a set of CRC
cards, a UML diagram, and a set of javadoc comments.

R12.14 Consider a quiz grading system that grades student responses to quizzes. A quiz
consists of questions. There are different types of questions, including essay ques-
tions and multiple-choice questions. Students turn in submissions for quizzes, and
the grading system grades them. Draw a UML diagram for classes Quiz, Question,
EssayQuestion, MultipleChoiceQuestion, Student, and Submission.

P12.1 Enhance the invoice-printing program by providing for two kinds of line items:
One kind describes products that are purchased in certain numerical quantities
(such as “3 toasters”), another describes a fixed charge (such as “shipping: $5.00”).
Hint: Use inheritance. Produce a UML diagram of your modified implementation.

P12.2 The invoice-printing program is somewhat unrealistic because the formatting of the
LineItem objects won’t lead to good visual results when the prices and quantities
have varying numbers of digits. Enhance the format method in two ways: Accept an
int[] array of column widths as a parameter. Use the NumberFormat class to format the
currency values.

P12.3 The invoice-printing program has an unfortunate flaw—it mixes “application
logic”, the computation of total charges, and “presentation”, the visual appearance
of the invoice. To appreciate this flaw, imagine the changes that would be necessary
to draw the invoice in HTML for presentation on the Web. Reimplement the pro-
gram, using a separate InvoiceFormatter class to format the invoice. That is, the
Invoice and LineItem methods are no longer responsible for formatting. However,
they will acquire other responsibilities, because the InvoiceFormatter class needs to
query them for the values that it requires.

P12.4 Write a program that teaches arithmetic to a young child. The program tests
addition and subtraction. In level 1 it tests only addition of numbers less than 10
whose sum is less than 10. In level 2 it tests addition of arbitrary one-digit numbers.
In level 3 it tests subtraction of one-digit numbers with a nonnegative difference.
Generate random problems and get the player input. The player gets up to two tries
per problem. Advance from one level to the next when the player has achieved a
score of five points.

P12.5 Design a simple e-mail messaging system. A message has a recipient, a sender, and
 a message text. A mailbox can store messages. Supply a number of mailboxes for
different users and a user interface for users to log in, send messages to other users,
read their own messages, and log out. Follow the design process that was described
in this chapter.

P12.6 Write a program that simulates a vending machine. Products can be purchased by
inserting coins with a value at least equal to the cost of the product. A user selects a
product from a list of available products, adds coins, and either gets the product or
gets the coins returned if insufficient money was supplied or if the product is sold
out. The machine does not give change if too much money was added. Products can

Programming Exercises

486 Chapter 12 Object-Oriented Design

be restocked and money removed by an operator. Follow the design process that
was described in this chapter. Your solution should include a class VendingMachine
that is not coupled with the Scanner or PrintStream classes.

P12.7 Write a program to design an appointment calendar. An appointment includes the
date, starting time, ending time, and a description; for example,

Dentist 2007/10/1 17:30 18:30
CS1 class 2007/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day. Follow the design process that
was described in this chapter. Your solution should include a class Appointment-
Calendar that is not coupled with the Scanner or PrintStream classes.

P12.8 Airline seating. Write a program that assigns seats on an airplane. Assume the
airplane has 20 seats in first class (5 rows of 4 seats each, separated by an aisle) and
90 seats in economy class (15 rows of 6 seats each, separated by an aisle). Your pro-
gram should take three commands: add passengers, show seating, and quit. When
passengers are added, ask for the class (first or economy), the number of passengers
traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating prefer-
ence (aisle or window in first class; aisle, center, or window in economy). Then try
to find a match and assign the seats. If no match exists, print a message. Your solu-
tion should include a class Airplane that is not coupled with the Scanner or PrintStream
classes. Follow the design process that was described in this chapter.

P12.9 Modify the implementations of the classes in the ATM example so
that the bank manages a collection of bank accounts and a separate collection of
customers. Allow joint accounts in which some accounts can have more than one
customer.

P12.10 Write a program that administers and grades quizzes. A quiz consists of questions.
There are four types of questions: text questions, number questions, choice ques-
tions with a single answer, and choice questions with multiple answers. When grad-
ing a text question, ignore leading or trailing spaces and letter case. When grading a
numeric question, accept a response that is approximately the same as the answer.
A quiz is specified in a text file. Each question starts with a letter indicating the
question type (T, N, S, M), followed by a line containing the question text. The next
line of a non-choice question contains the answer. Choice questions have a list of
choices that is terminated by a blank line. Each choice starts with + (correct) or
- (incorrect). Here is a sample file:

T
Which Java reserved word is used to declare a subclass?
extends
S
What is the original name of the Java language?
- *7
- C--
+ Oak
- Gosling

M
Which of the following types are supertypes of Rectangle?
- PrintStream
+ Shape

Programming Projects 487

+ RectangularShape
+ Object
- String

N
What is the square root of 2?
1.41421356

Your program should read in a quiz file, prompt the user for responses to all ques-
tions, and grade the responses. Follow the design process that was described in this
chapter.

P12.11 Implement a program to teach a young child to read the clock. In the game, present
an analog clock, such as the one in Figure 12. Generate random times and display
the clock. Accept guesses from the player. Reward the player for correct guesses.
After two incorrect guesses, display the correct answer and make a new random
time. Implement several levels of play. In level 1, only show full hours. In level 2,
show quarter hours. In level 3, show five-minute multiples, and in level 4, show any
number of minutes. After a player has achieved five correct guesses at one level,
advance to the next level.

P12.12 Write a program that can be used to design a suburban scene, with houses, streets,
and cars. Users can add houses and cars of various colors to a street. Write more
specific requirements that include a detailed description of the user interface. Then,
discover classes and methods, provide UML diagrams, and implement your pro-
gram.

P12.13 Write a simple graphics editor that allows users to add a mixture of shapes (ellipses,
rectangles, and lines in different colors) to a panel. Supply commands to load and
save the picture. Discover classes, supply a UML diagram, and implement your
program.

Project 12.1 Produce a requirements document for a program that allows a company to send out
personalized mailings, either by e-mail or through the postal service. Template files
contain the message text, together with variable fields (such as Dear [Title] [Last
Name] . . .). A database (stored as a text file) contains the field values for each recip-
ient. Use HTML as the output file format. Then design and implement the pro-
gram.

Figure 12 An Analog Clock

G

G

G

Programming Projects

488 Chapter 12 Object-Oriented Design

Project 12.2 Write a tic-tac-toe game that allows a human player to play against the computer.
Your program will play many turns against a human opponent, and it will learn.
When it is the computer’s turn, the computer randomly selects an empty field,
except that it won’t ever choose a losing combination. For that purpose, your pro-
gram must keep an array of losing combinations. Whenever the human wins, the
immediately preceding combination is stored as losing. For example, suppose that
X = computer and O = human. Suppose the current combination is

Now it is the human’s turn, who will of course choose

The computer should then remember the preceding combination

as a losing combination. As a result, the computer will never again choose that
combination from

or

Discover classes and supply a UML diagram before you begin to program.

X

O

XO

X

O

XO

O

X

O

XO

X

O

O

O

XO

Answers to Self-Check Questions 489

1. It is unlikely that the customer did a perfect job with the requirements document. If
you don’t accommodate changes, your customer may not like the outcome. If you
charge for the changes, your customer may not like the cost.

2. An “extreme” spiral model, with lots of iterations.
3. To give frequent feedback as to whether the current iteration of the product fits cus-

tomer needs.
4. PrintStream
5. To produce the shipping address of the customer.
6. Reword the responsibilities so that they are at a higher level, or come up with more

classes to handle the responsibilities.
7. Through aggregation. The bank manages bank account objects.
8. Through inheritance.
9. The BankAccount, System, and PrintStream classes.

10. The Invoice class is responsible for computing the amount due. It collaborates with
the LineItem class.

11. This design decision reduces coupling. It enables us to reuse the classes when we
want to show the invoice in a dialog box or on a web page.

12. The bank needs to store the list of customers so that customers can log in. We need
to locate all bank accounts of a customer, and we chose to simply store them in the
customer class. In this program, there is no further need to access bank accounts.

13. The Bank class needs to have an additional responsibility: to load and save the
accounts. The bank can carry out this responsibility because it has access to the cus-
tomer objects and, through them, to the bank accounts.

Answers to Self-Check Questions

This page intentionally left blank

491

Chapter13
Recursion

CHAPTER GOALS
• To learn about the technique of recursion

• To understand the relationship between recursion and iteration

• To analyze problems that are much easier to solve by recursion than
by iteration

• To learn to “think recursively”

• To be able to use recursive helper methods

• To understand when the use of recursion affects the
efficiency of an algorithm

Recursion is a powerful technique for reducing complex

computational problems to simpler ones. The term “recursion” refers to the fact that the same

computation recurs, or occurs repeatedly, as the problem is solved. Recursion is often the most

natural way of thinking about a problem, and there are some computations that are very difficult to

perform without recursion. This chapter shows you simple and complex examples of recursion and

teaches you how to “think recursively”.

492

CHAPTER CONTENTS

13.1 Triangle Numbers 492
COMMON ERROR 13.1: Infinite Recursion 495
COMMON ERROR 13.2: Tracing Through Recursive

Methods 496
HOW TO 13.1: Thinking Recursively 497
WORKED EXAMPLE 13.1: Finding Files

13.2 Recursive Helper Methods 500

13.3 The Efficiency of Recursion 502

13.4 Permutations 507
RANDOM FACT 13.1: The Limits of Computation

13.5 Mutual Recursions 510

We begin this chapter with a very simple example that demonstrates the power of
thinking recursively. In this example, we will look at triangle shapes such as this
one:

[]
[][]
[][][]

We’d like to compute the area of a triangle of width n, assuming that each [] square
has area 1. This value is sometimes called the nth triangle number. For example, as
you can tell from looking at the triangle above, the third triangle number is 6.

You may know that there is a very simple formula to compute these numbers,
but you should pretend for now that you don’t know about it. The ultimate pur-
pose of this section is not to compute triangle numbers, but to learn about the con-
cept of recursion by working through a simple example.

Here is the outline of the class that we will develop:
public class Triangle
{
 private int width;

 public Triangle(int aWidth)
 {
 width = aWidth;
 }

 public int getArea()
 {
 . . .
 }
}

If the width of the triangle is 1, then the triangle consists of a single square, and its
area is 1. Let’s take care of this case first.

public int getArea()
{
 if (width == 1) { return 1; }
 . . .
}

13.1 Triangle Numbers

13.1 Triangle Numbers 493

To deal with the general case, consider this picture.
[]
[][]
[][][]
[][][][]

Suppose we knew the area of the smaller, colored triangle. Then we could easily
compute the area of the larger triangle as

smallerArea + width

How can we get the smaller area? Let’s make a smaller triangle and ask it!
Triangle smallerTriangle = new Triangle(width - 1);
int smallerArea = smallerTriangle.getArea();

Now we can complete the getArea method:
public int getArea()
{
 if (width == 1) { return 1; }
 Triangle smallerTriangle = new Triangle(width - 1);
 int smallerArea = smallerTriangle.getArea();
 return smallerArea + width;
}

Here is an illustration of what happens when we compute the area of a triangle of
width 4.

• The getArea method makes a smaller triangle of width 3.

• It calls getArea on that triangle.

• That method makes a smaller triangle of width 2.

• It calls getArea on that triangle.

• That method makes a smaller triangle of width 1.

• It calls getArea on that triangle.

• That method returns 1.

• The method returns smallerArea + width = 1 + 2 = 3.

• The method returns smallerArea + width = 3 + 3 = 6.

• The method returns smallerArea + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem for a triangle of
a given width, we use the fact that we can solve the same problem for a lesser width.
This is called a recursive solution.

The call pattern of a recursive method looks complicated, and the key to the
successful design of a recursive method is not to think about it. Instead, look at the
getArea method one more time and notice how utterly reasonable it is. If the width is
1, then, of course, the area is 1. The next part is just as reasonable. Compute the area
of the smaller triangle and don’t think about why that works. Then the area
of the larger triangle is clearly the sum of the smaller area and the width.

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the computation in some way.
• There must be special cases to handle the simplest computations directly.

A recursive
computation solves
a problem by using
the solution of the
same problem with
simpler values.

494 Chapter 13 Recursion

The getArea method calls itself again with smaller and smaller width values. Eventu-
ally the width must reach 1, and there is a special case for computing the area of a
triangle with width 1. Thus, the getArea method always succeeds.

Actually, you have to be careful. What happens when you call the area of a trian-
gle with width –1? It computes the area of a triangle with width –2, which computes
the area of a triangle with width –3, and so on. To avoid this, the getArea method
should return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a
triangle equals the sum

1 + 2 + 3 + . . . + width

Of course, we can program a simple loop:
double area = 0;
for (int i = 1; i <= width; i++)
{
 area = area + i;
}

Many simple recursions can be computed as loops. However, loop equivalents for
more complex recursions—such as the one in our next example—can be complex.

Actually, in this case, you don’t even need a loop to compute the answer. The
sum of the first n integers can be computed as

Thus, the area equals
width * (width + 1) / 2

Therefore, neither recursion nor a loop is required to solve this problem. The recur-
sive solution is intended as a “warm-up” to introduce you to the concept of
recursion.

ch13/triangle/Triangle.java

For a recursion to
terminate, there must
be special cases for
the simplest values.

1 2 1 2+ + + = × +� n n n()

A N I M AT I O N
Tracing a Recursion

1 /**
2 A triangular shape composed of stacked unit squares like this:
3 []
4 [][]
5 [][][]
6 . . .
7 */
8 public class Triangle
9 {

10 private int width;
11
12 /**
13 Constructs a triangular shape.
14 @param aWidth the width (and height) of the triangle
15 */
16 public Triangle(int aWidth)
17 {
18 width = aWidth;
19 }
20

13.1 Triangle Numbers 495

ch13/triangle/TriangleTester.java

Program Run

1. Why is the statement if (width == 1) { return 1; } in the getArea method
unnecessary?

2. How would you modify the program to recursively compute the area of a
square?

Infinite Recursion

A common programming error is an infinite recursion: a method calling itself over and over
with no end in sight. The computer needs some amount of memory for bookkeeping for
each call. After some number of calls, all memory that is available for this purpose is
exhausted. Your program shuts down and reports a “stack overflow”.

Infinite recursion happens either because the parameter values don’t get simpler or
because a special terminating case is missing. For example, suppose the getArea method was
allowed to compute the area of a triangle with width 0. If it weren’t for the special test, the
method would construct triangles with width –1, –2, –3, and so on.

21 /**
22 Computes the area of the triangle.
23 @return the area
24 */
25 public int getArea()
26 {
27 if (width <= 0) { return 0; }
28 if (width == 1) { return 1; }
29 Triangle smallerTriangle = new Triangle(width - 1);
30 int smallerArea = smallerTriangle.getArea();
31 return smallerArea + width;
32 }
33 }

1 public class TriangleTester
2 {
3 public static void main(String[] args)
4 {
5 Triangle t = new Triangle(10);
6 int area = t.getArea();
7 System.out.println("Area: " + area);
8 System.out.println("Expected: 55");
9 }

10 }

Enter width: 10
Area: 55
Expected: 55

S E L F C H E C K

Common Error 13.1

496 Chapter 13 Recursion

Tracing Through Recursive Methods

Debugging a recursive method can be somewhat challenging. When you set a breakpoint in
a recursive method, the program stops as soon as that program line is encountered in any call
to the recursive method. Suppose you want to debug the recursive getArea method of the
Triangle class. Debug the TriangleTester program and run until the beginning of the getArea
method. Inspect the width instance variable. It is 10.

Remove the breakpoint and now run until the statement return smallerArea + width; (see
Figure 1). When you inspect width again, its value is 2! That makes no sense. There was no
instruction that changed the value of width. Is that a bug with the debugger?

No. The program stopped in the first recursive call to getArea that reached the return
statement. If you are confused, look at the call stack (top left in the figure). You will see that
nine calls to getArea are pending.

You can debug recursive methods with the debugger. You just need to be particularly
careful, and watch the call stack to understand which nested call you currently are in.

Figure 1 Debugging a Recursive Method

Common Error 13.2

13.1 Triangle Numbers 497

HOW TO 13.1 Thinking Recursively

To solve a problem recursively requires a different mindset than to solve it by programming a
loop. In fact, it helps if you pretend to be a bit lazy, asking others to do most of the work for
you. If you need to solve a complex problem, pretend that “someone else” will do most of the
heavy lifting and solve the problem for simpler inputs. Then you only need to figure out how
you can turn the solutions with simpler inputs into a solution for the whole problem.

To illustrate the technique of recursion, let us consider the following problem. We want to
test whether a sentence is a palindrome—a string that is equal to itself when you reverse all
characters. Typical examples of palindromes are
• A man, a plan, a canal—Panama!
• Go hang a salami, I’m a lasagna hog
and, of course, the oldest palindrome of all:
• Madam, I’m Adam
When testing for a palindrome, we match upper- and lowercase letters, and ignore all spaces
and punctuation marks.

We want to implement the isPalindrome method in the following class:

public class Sentence
{
 private String text;

 /**
Constructs a sentence.

 @param aText a string containing all characters of the sentence
 */
 public Sentence(String aText)
 {
 text = aText;
 }

 /**
Tests whether this sentence is a palindrome.

 @return true if this sentence is a palindrome, false otherwise
 */
 public boolean isPalindrome()
 {
 . . .
 }
}

Step 1 Consider various ways to simplify inputs.

In your mind, fix a particular input or set of inputs for the problem that you want to solve.
Think how you can simplify the inputs in such a way that the same problem can be

applied to the simpler input.
When you consider simpler inputs, you may want to remove just a little bit from the orig-

inal input—maybe remove one or two characters from a string, or remove a small portion of
a geometric shape. But sometimes it is more useful to cut the input in half and then see what
it means to solve the problem for both halves.

In the palindrome test problem, the input is the string that we need to test. How can you
simplify the input? Here are several possibilities:
• Remove the first character.
• Remove the last character.
• Remove both the first and last characters.

498 Chapter 13 Recursion

• Remove a character from the middle.
• Cut the string into two halves.
These simpler inputs are all potential inputs for the palindrome test.

Step 2 Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions of your problem for the simpler inputs that you discov-
ered in Step 1. Don’t worry how those solutions are obtained. Simply have faith that the
solutions are readily available. Just say to yourself: These are simpler inputs, so someone else
will solve the problem for me.

Now think how you can turn the solution for the simpler inputs into a solution for the
input that you are currently thinking about. Maybe you need to add a small quantity, related
to the quantity that you lopped off to arrive at the simpler input. Maybe you cut the original
input in half and have solutions for each half. Then you may need to add both solutions to
arrive at a solution for the whole.

Consider the methods for simplifying the inputs for the palindrome test. Cutting the
string in half doesn’t seem a good idea. If you cut

"Madam, I'm Adam"

in half, you get two strings:

"Madam, I"

and
"'m Adam"

Neither of them is a palindrome. Cutting the input in half and testing whether the halves are
palindromes seems a dead end.

The most promising simplification is to remove the first and last characters. Removing
the M at the front and the m at the back yields

"adam, I'm Ada"

Suppose you can verify that the shorter string is a palindrome. Then of course the original
string is a palindrome—we put the same letter in the front and the back. That’s extremely
promising. A word is a palindrome if
• The first and last letters match (ignoring letter case)
and
• The word obtained by removing the first and last letters is a palindrome.
Again, don’t worry how the test works for the shorter string. It just works.

There is one other case to consider. What if the first or last letter of the word is not a let-
ter? For example, the string

"A man, a plan, a canal, Panama!"

ends in a ! character, which does not match the A in the front. But we should ignore non-
letters when testing for palindromes. Thus, when the last character is not a letter but the first
character is a letter, it doesn’t make sense to remove both the first and the last characters.
That’s not a problem. Remove only the last character. If the shorter string is a palindrome,
then it stays a palindrome when you attach a nonletter.

The same argument applies if the first character is not a letter. Now we have a complete
set of cases.
• If the first and last characters are both letters, then check whether they match. If so,

remove both and test the shorter string.
• Otherwise, if the last character isn’t a letter, remove it and test the shorter string.
• Otherwise, the first character isn’t a letter. Remove it and test the shorter string.
In all three cases, you can use the solution to the simpler problem to arrive at a solution to
your problem.

13.1 Triangle Numbers 499

Step 3 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very simple
inputs. To make sure that the recursion comes to a stop, you must deal with the simplest
inputs separately. Come up with special solutions for them, which is usually very easy.

However, sometimes you get into philosophical questions dealing with degenerate inputs:
empty strings, shapes with no area, and so on. Then you may want to investigate a slightly
larger input that gets reduced to such a trivial input and see what value you should attach to
the degenerate inputs so that the simpler value, when used according to the rules you discov-
ered in Step 2, yields the correct answer.

Let’s look at the simplest strings for the palindrome test:
• Strings with two characters
• Strings with a single character
• The empty string
We don’t have to come up with a special solution for strings with two characters. Step 2 still
applies to those strings—either or both of the characters are removed. But we do need to
worry about strings of length 0 and 1. In those cases, Step 2 can’t apply. There aren’t two
characters to remove.

The empty string is a palindrome—it’s the same string when you read it backwards. If
you find that too artificial, consider a string "mm". According to the rule discovered in Step 2,
this string is a palindrome if the first and last characters of that string match and the
remainder—that is, the empty string—is also a palindrome. Therefore, it makes sense to con-
sider the empty string a palindrome.

A string with a single letter, such as "I", is a palindrome. How about the case in which the
character is not a letter, such as "!"? Removing the ! yields the empty string, which is a palin-
drome. Thus, we conclude that all strings of length 0 or 1 are palindromes.

Step 4 Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple inputs that
you considered in Step 3. If the input isn’t one of the simplest cases, then implement the logic
you discovered in Step 2.

Here is the isPalindrome method.

public boolean isPalindrome()
{
 int length = text.length();

 // Separate case for shortest strings.
 if (length <= 1) { return true; }

 // Get first and last characters, converted to lowercase.
 char first = Character.toLowerCase(text.charAt(0));
 char last = Character.toLowerCase(text.charAt(length - 1));

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {
 // Remove both first and last character.
 Sentence shorter = new Sentence(text.substring(1, length - 1));
 return shorter.isPalindrome();
 }
 else
 {
 return false;

500 Chapter 13 Recursion

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

 }
 }
 else if (!Character.isLetter(last))
 {
 // Remove last character.
 Sentence shorter = new Sentence(text.substring(0, length - 1));
 return shorter.isPalindrome();
 }
 else
 {
 // Remove first character.
 Sentence shorter = new Sentence(text.substring(1));
 return shorter.isPalindrome();
 }
}

Finding Files

In this Worked Example, we find all files with a given extension
in a directory tree.

Sometimes it is easier to find a recursive solution if you change the original problem
slightly. Then the original problem can be solved by calling a recursive helper
method.

Here is a typical example. Consider the palindrome test of How To 13.1. It is a
bit inefficient to construct new Sentence objects in every step. Now consider the fol-
lowing change in the problem. Rather than testing whether the entire sentence is a
palindrome, let’s check whether a substring is a palindrome:

/**
Tests whether a substring of the sentence is a palindrome.

 @param start the index of the first character of the substring
 @param end the index of the last character of the substring
 @return true if the substring is a palindrome
*/
public boolean isPalindrome(int start, int end)

This method turns out to be even easier to implement than the original test. In the
recursive calls, simply adjust the start and end parameters to skip over matching
letter pairs and characters that are not letters. There is no need to construct new Sen-
tence objects to represent the shorter strings.

public boolean isPalindrome(int start, int end)
{
 // Separate case for substrings of length 0 and 1.
 if (start >= end) { return true; }

Worked
Example 13.1

13.2 Recursive Helper Methods
Sometimes it is
easier to find a
recursive solution if
you make a slight
change to the
original problem.

13.2 Recursive Helper Methods 501

 // Get first and last characters, converted to lowercase.
 char first = Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end));

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 if (first == last)
 {
 // Test substring that doesn’t contain the matching letters.
 return isPalindrome(start + 1, end - 1);
 }
 else
 {
 return false;
 }
 }
 else if (!Character.isLetter(last))
 {
 // Test substring that doesn’t contain the last character.
 return isPalindrome(start, end - 1);
 }
 else
 {
 // Test substring that doesn’t contain the first character.
 return isPalindrome(start + 1, end);
 }
}

You should still supply a method to solve the whole problem—the user of your
method shouldn’t have to know about the trick with the substring positions. Sim-
ply call the helper method with positions that test the entire string:

public boolean isPalindrome()
{
 return isPalindrome(0, text.length() - 1);
}

Note that this call is not a recursive method. The isPalindrome() method calls the
helper method isPalindrome(int, int). In this example, we use overloading to declare
two methods with the same name. The isPalindrome method without parameters is
the method that we expect the public to use. The second method, with two int
parameters, is the recursive helper method. If you prefer, you can avoid overloaded
methods by choosing a different name for the helper method, such as substringIs-
Palindrome.

Use the technique of recursive helper methods whenever it is easier to solve a
recursive problem that is equivalent to the original problem—but more amenable to
a recursive solution.

3. Do we have to give the same name to both isPalindrome methods?

4. When does the recursive isPalindrome method stop calling itself?

S E L F C H E C K

502 Chapter 13 Recursion

As you have seen in this chapter, recursion can be a powerful tool to implement
complex algorithms. On the other hand, recursion can lead to algorithms that per-
form poorly. In this section, we will analyze the question of when recursion is ben-
eficial and when it is inefficient.

Consider the Fibonacci sequence: a sequence of numbers defined by the equation

That is, each value of the sequence is the sum of the two preceding values. The first
ten terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55
It is easy to extend this sequence indefinitely. Just keep appending the sum of the
last two values of the sequence. For example, the next entry is 34 + 55 = 89.

We would like to write a function that computes fn for any value of n. Let us
translate the definition directly into a recursive method:

ch13/fib/RecursiveFib.java

13.3 The Efficiency of Recursion

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

1 import java.util.Scanner;
2
3 /**
4 This program computes Fibonacci numbers using a recursive method.
5 */
6 public class RecursiveFib
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Enter n: ");
12 int n = in.nextInt();
13
14 for (int i = 1; i <= n; i++)
15 {
16 long f = fib(i);
17 System.out.println("fib(" + i + ") = " + f);
18 }
19 }
20
21 /**
22 Computes a Fibonacci number.
23 @param n an integer
24 @return the nth Fibonacci number
25 */
26 public static long fib(int n)
27 {
28 if (n <= 2) { return 1; }
29 else return fib(n - 1) + fib(n - 2);
30 }
31 }

13.3 The Efficiency of Recursion 503

Program Run

That is certainly simple, and the method will work correctly. But watch the output
closely as you run the test program. The first few calls to the fib method are fast. For
larger values, though, the program pauses an amazingly long time between outputs.

That makes no sense. Armed with pencil, paper, and a pocket calculator you
could calculate these numbers pretty quickly, so it shouldn’t take the computer any-
where near that long.

To find out the problem, let us insert trace messages into the method:

ch13/fib/RecursiveFibTracer.java

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

1 import java.util.Scanner;
2
3 /**
4 This program prints trace messages that show how often the
5 recursive method for computing Fibonacci numbers calls itself.
6 */
7 public class RecursiveFibTracer
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter n: ");
13 int n = in.nextInt();
14
15 long f = fib(n);
16
17 System.out.println("fib(" + n + ") = " + f);
18 }
19
20 /**
21 Computes a Fibonacci number.
22 @param n an integer
23 @return the nth Fibonacci number
24 */
25 public static long fib(int n)
26 {
27 System.out.println("Entering fib: n = " + n);
28 long f;
29 if (n <= 2) { f = 1; }
30 else { f = fib(n - 1) + fib(n - 2); }
31 System.out.println("Exiting fib: n = " + n
32 + " return value = " + f);
33 return f;
34 }
35 }

504 Chapter 13 Recursion

Program Run

Figure 2 shows the call tree for computing fib(6). Now it is becoming apparent why
the method takes so long. It is computing the same values over and over. For exam-
ple, the computation of fib(6) calls fib(4) twice and fib(3) three times. That is very
different from the computation we would do with pencil and paper. There we
would just write down the values as they were computed and add up the last two to

Figure 2 Call Pattern of the Recursive fib Method

Enter n: 6
Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8
fib(6) = 8

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

13.3 The Efficiency of Recursion 505

get the next one until we reached the desired entry; no sequence value would ever
be computed twice.

If we imitate the pencil-and-paper process, then we get the following program.

ch13/fib/LoopFib.java

Program Run

1 import java.util.Scanner;
2
3 /**
4 This program computes Fibonacci numbers using an iterative method.
5 */
6 public class LoopFib
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Enter n: ");
12 int n = in.nextInt();
13
14 for (int i = 1; i <= n; i++)
15 {
16 long f = fib(i);
17 System.out.println("fib(" + i + ") = " + f);
18 }
19 }
20
21 /**
22 Computes a Fibonacci number.
23 @param n an integer
24 @return the nth Fibonacci number
25 */
26 public static long fib(int n)
27 {
28 if (n <= 2) { return 1; }
29 long olderValue = 1;
30 long oldValue = 1;
31 long newValue = 1;
32 for (int i = 3; i <= n; i++)
33 {
34 newValue = oldValue + olderValue;
35 olderValue = oldValue;
36 oldValue = newValue;
37 }
38 return newValue;
39 }
40 }

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

506 Chapter 13 Recursion

This method runs much faster than the recursive version.
In this example of the fib method, the recursive solution was easy to program

because it exactly followed the mathematical definition, but it ran far more slowly
than the iterative solution, because it computed many intermediate results multiple
times.

Can you always speed up a recursive solution by changing it into a loop? Fre-
quently, the iterative and recursive solution have essentially the same performance.
For example, here is an iterative solution for the palindrome test.

public boolean isPalindrome()
{
 int start = 0;
 int end = text.length() - 1;
 while (start < end)
 {
 char first = Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end);

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {
 start++;
 end--;
 }
 else
 {
 return false;
 }
 }
 if (!Character.isLetter(last)) { end--; }
 if (!Character.isLetter(first)) { start++; }
 }
 return true;
}

This solution keeps two index variables: start and end. The first index starts at the
beginning of the string and is advanced whenever a letter has been matched or a
nonletter has been ignored. The second index starts at the end of the string and
moves toward the beginning. When the two index variables meet, the iteration
stops.

Both the iteration and the recursion run at about the same speed. If a palindrome
has n characters, the iteration executes the loop between n/2 and n times, depending
on how many of the characters are letters, since one or both index variables are
moved in each step. Similarly, the recursive solution calls itself between n/2 and n
times, because one or two characters are removed in each step.

In such a situation, the iterative solution tends to be a bit faster, because each
recursive method call takes a certain amount of processor time. In principle, it is
possible for a smart compiler to avoid recursive method calls if they follow simple
patterns, but most compilers don’t do that. From that point of view, an iterative
solution is preferable.

However, many problems have recursive solutions that are easier to understand
and implement correctly than their iterative counterparts. Sometimes there is no
obvious iterative solution at all—see the example in the next section. There is a

Occasionally, a
recursive solution
runs much slower
than its iterative
counterpart. However,
in most cases, the
recursive solution is
only slightly slower.

In many cases, a
recursive solution is
easier to understand
and implement
correctly than an
iterative solution.

13.4 Permutations 507

certain elegance and economy of thought to recursive solutions that makes them
more appealing. As the computer scientist (and creator of the GhostScript inter-
preter for the PostScript graphics description language) L. Peter Deutsch put it: “To
iterate is human, to recurse divine.”

5. Is it faster to compute the triangle numbers recursively, as shown in Section
13.1, or is it faster to use a loop that computes 1 + 2 + 3 + . . . + width?

6. You can compute the factorial function either with a loop, using the definition
that n! = 1 × 2 × . . . × n, or recursively, using the definition that 0! = 1 and
n! = (n – 1)! × n. Is the recursive approach inefficient in this case?

In this section, we will study a more complex example of recursion that would be
difficult to program with a simple loop. (As Exercise P13.11 shows, it is possible to
avoid the recursion, but the resulting solution is quite complex, and no faster).

We will design a class that lists all permutations of a string. A permutation is sim-
ply a rearrangement of the letters in the string. For example, the string "eat" has six
permutations (including the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

As in the preceding section, we will declare a class that is in charge of computing the
answer. In this case, the answer is not a single number but a collection of permuted
strings. Here is our generator class:

public class PermutationGenerator
{
 public PermutationGenerator(String aWord) { . . . }
 ArrayList<String> getPermutations() { . . . }
}

And here is the program that prints out all permutations of the string "eat":

ch13/permute/PermutationGeneratorDemo.java

S E L F C H E C K

13.4 Permutations
The permutations
of a string can be
obtained more
naturally through
recursion than
with a loop.

1 import java.util.ArrayList;
2
3 /**
4 This program demonstrates the permutation generator.
5 */
6 public class PermutationGeneratorDemo
7 {
8 public static void main(String[] args)
9 {

10 PermutationGenerator generator = new PermutationGenerator("eat");
11 ArrayList<String> permutations = generator.getPermutations();
12 for (String s : permutations)
13 {

508 Chapter 13 Recursion

Program Run

Now we need a way to generate the permutations recursively. Consider the string
"eat". Let’s simplify the problem. First, we’ll generate all permutations that start
with the letter 'e', then those that start with 'a', and finally those that start with 't'.
How do we generate the permutations that start with 'e'? We need to know the
permutations of the substring "at". But that’s the same problem—to generate all
permutations—with a simpler input, namely the shorter string "at". Thus, we can
use recursion. Generate the permutations of the substring "at". They are

"at"
"ta"

For each permutation of that substring, prepend the letter 'e' to get the permuta-
tions of "eat" that start with 'e', namely

"eat"
"eta"

Now let’s turn our attention to the permutations of "eat" that start with 'a'. We
need to produce the permutations of the remaining letters, "et". They are:

"et"
"te"

We add the letter 'a' to the front of the strings and obtain
"aet"
"ate"

We generate the permutations that start with 't' in the same way.
That’s the idea. The implementation is fairly straightforward. In the getPermutations

method, we loop through all positions in the word to be permuted. For each of them,
we compute the shorter word that is obtained by removing the ith letter:

String shorterWord = word.substring(0, i) + word.substring(i + 1);

We construct a permutation generator to get the permutations of the shorter word,
and ask it to give us all permutations of the shorter word.

PermutationGenerator shorterPermutationGenerator
 = new PermutationGenerator(shorterWord);
ArrayList<String> shorterWordPermutations
 = shorterPermutationGenerator.getPermutations();

Finally, we add the removed letter to the front of all permutations of the shorter
word.

for (String s : shorterWordPermutations)
{

14 System.out.println(s);
15 }
16 }
17 }

eat
eta
aet
ate
tea
tae

13.4 Permutations 509

 permutations.add(word.charAt(i) + s);
}

As always, we have to provide a special case for the simplest strings. The simplest
possible string is the empty string, which has a single permutation—itself.

Here is the complete PermutationGenerator class.

ch13/permute/PermutationGenerator.java

1 import java.util.ArrayList;
2
3 /**
4 This class generates permutations of a word.
5 */
6 public class PermutationGenerator
7 {
8 private String word;
9

10 /**
11 Constructs a permutation generator.
12 @param aWord the word to permute
13 */
14 public PermutationGenerator(String aWord)
15 {
16 word = aWord;
17 }
18
19 /**
20 Gets all permutations of a given word.
21 */
22 public ArrayList<String> getPermutations()
23 {
24 ArrayList<String> permutations = new ArrayList<String>();
25
26 // The empty string has a single permutation: itself
27 if (word.length() == 0)
28 {
29 permutations.add(word);
30 return permutations;
31 }
32
33 // Loop through all character positions
34 for (int i = 0; i < word.length(); i++)
35 {
36 // Form a simpler word by removing the ith character
37 String shorterWord = word.substring(0, i)
38 + word.substring(i + 1);
39
40 // Generate all permutations of the simpler word
41 PermutationGenerator shorterPermutationGenerator
42 = new PermutationGenerator(shorterWord);
43 ArrayList<String> shorterWordPermutations
44 = shorterPermutationGenerator.getPermutations();
45
46 // Add the removed character to the front of
47 // each permutation of the simpler word
48 for (String s : shorterWordPermutations)
49 {
50 permutations.add(word.charAt(i) + s);

510 Chapter 13 Recursion

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Compare the PermutationGenerator and Triangle classes. Both of them work on the
same principle. When they work on a more complex input, they first solve the
problem for a simpler input. Then they combine the result for the simpler input
with additional work to deliver the results for the more complex input. There really
is no particular complexity behind that process as long as you think about the solu-
tion on that level only. However, behind the scenes, the simpler input creates even
simpler input, which creates yet another simplification, and so on, until one input is
so simple that the result can be obtained without further help. It is interesting to
think about this process, but it can also be confusing. What’s important is that you
can focus on the one level that matters—putting a solution together from the
slightly simpler problem, ignoring the fact that the simpler problem also uses recur-
sion to get its results.

7. What are all permutations of the four-letter word beat?
8. Our recursion for the permutation generator stops at the empty string. What

simple modification would make the recursion stop at strings of length 0 or 1?
9. Why isn’t it easy to develop an iterative solution for the permutation generator?

The Limits of Computation

Random Fact 13.1 discusses problems that are intrinsically beyond the capabilities of any
computer. For example, theoretical computer scientists have proven that it is impossible to
write a program that can grade your programming homework by comparing your program
against the instructor’s solution and telling with certainty whether these two programs
always produce the same results when given the same inputs.

In the preceding examples, a method called itself to solve a simpler problem. Some-
times, a set of cooperating methods calls each other in a recursive fashion. In this
section, we will explore a typical situation of such a mutual recursion. This tech-
nique is significantly more advanced than the simple recursion that we discussed in
the preceding sections.

We will develop a program that can compute the values of arithmetic expressions
such as

3+4*5
(3+4)*5
1-(2-(3-(4-5)))

51 }
52 }
53 // Return all permutations
54 return permutations;
55 }
56 }

S E L F C H E C K

Random Fact 13.1

13.5 Mutual Recursions
In a mutual
recursion, a set
of cooperating
methods calls each
other repeatedly.

13.5 Mutual Recursions 511

Computing such an expression is complicated by the fact that * and / bind more
strongly than + and -, and that parentheses can be used to group subexpressions.

Figure 3 shows a set of syntax diagrams that describes the syntax of these expres-
sions. To see how the syntax diagrams work, consider the expression 3+4*5. When
you enter the expression syntax diagram, the arrow points directly to term, giving
you no alternative but to enter the term syntax diagram. The arrow points to factor,
again giving you no choice. You enter the factor diagram, and now you have two
choices: to follow the top branch or the bottom branch. Because the first input token
is the number 3 and not a (, you must follow the bottom branch. You accept the
input token because it matches the number. Follow the arrow out of number to the
end of factor. Just like in a method call, you now back up, returning to the end of the
factor element of the term diagram. Now you have another choice—to loop back in
the term diagram, or to exit. The next input token is a +, and it matches neither the *
or the / that would be required to loop back. So you exit, returning to expression.
Again, you have a choice, to loop back or to exit. Now the + matches one of the
choices in the loop. Accept the + in the input and move back to the term element.

In this fashion, an expression is broken down into a sequence of terms, separated
by + or -, each term is broken down into a sequence of factors, each separated by *
or /, and each factor is either a parenthesized expression or a number. You can draw
this breakdown as a tree. Figure 4 shows how the expressions 3+4*5 and (3+4)*5 are
derived from the syntax diagram.

Why do the syntax diagrams help us compute the value of the tree? If you look at
the syntax trees, you will see that they accurately represent which operations
should be carried out first. In the first tree, 4 and 5 should be multiplied, and then
the result should be added to 3. In the second tree, 3 and 4 should be added, and the
result should be multiplied by 5.

Figure 3 Syntax Diagrams for Evaluating an Expression

termexpression

+

–

factorterm

*

/

expression

numbernumber

factor

()

512 Chapter 13 Recursion

At the end of this section, you will find the implementation of the Evaluator class,
which evaluates these expressions. The Evaluator makes use of an Expression-
Tokenizer class, which breaks up an input string into tokens—numbers, operators,
and parentheses. (For simplicity, we only accept positive integers as numbers, and
we don’t allow spaces in the input.)

When you call nextToken, the next input token is returned as a string. We also sup-
ply another method, peekToken, which allows you to see the next token without con-
suming it. To see why the peekToken method is necessary, consider the syntax
diagram of the factor type. If the next token is a "*" or "/", you want to continue
adding and subtracting terms. But if the next token is another character, such as a
"+" or "-", you want to stop without actually consuming it, so that the token can be
considered later.

To compute the value of an expression, we implement three methods: get-
ExpressionValue, getTermValue, and getFactorValue. The getExpressionValue method first
calls getTermValue to get the value of the first term of the expression. Then it checks
whether the next input token is one of + or -. If so, it calls getTermValue again and
adds or subtracts it.

public int getExpressionValue()
{
 int value = getTermValue();
 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("+".equals(next) || "-".equals(next))
 {
 tokenizer.nextToken(); // Discard "+" or "-"
 int value2 = getTermValue();
 if ("+".equals(next)) value = value + value2;
 else value = value - value2;

Figure 4 Syntax Trees for Two Expressions

Expression

Term Term

Factor

Number

3 + * *

Factor

Number

4

Factor

Number

5 5

Expression

Factor

Term

Factor

Number

3(+

Expression

Term

Term

Factor

Number

4)

Factor

Number

13.5 Mutual Recursions 513

 }
 else
 {
 done = true;
 }
 }
 return value;
}

The getTermValue method calls getFactorValue in the same way, multiplying or divid-
ing the factor values.

Finally, the getFactorValue method checks whether the next input is a number, or
whether it begins with a (token. In the first case, the value is simply the value of the
number. However, in the second case, the getFactorValue method makes a recursive
call to getExpressionValue. Thus, the three methods are mutually recursive.

public int getFactorValue()
{
 int value;
 String next = tokenizer.peekToken();
 if ("(".equals(next))
 {
 tokenizer.nextToken(); // Discard "("
 value = getExpressionValue();
 tokenizer.nextToken(); // Discard ")"
 }
 else
 {
 value = Integer.parseInt(tokenizer.nextToken());
 }
 return value;
}

To see the mutual recursion clearly, trace through the expression (3+4)*5:

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue

• getFactorValue consumes the (input

• getFactorValue calls getExpressionValue

• getExpressionValue returns eventually with the value of 7,
having consumed 3 + 4. This is the recursive call.

• getFactorValue consumes the) input

• getFactorValue returns 7

• getTermValue consumes the inputs * and 5 and returns 35

• getExpressionValue returns 35

As always with a recursive solution, you need to ensure that the recursion termi-
nates. In this situation, that is easy to see when you consider the situation in which
getExpressionValue calls itself. The second call works on a shorter subexpression than
the original expression. At each recursive call, at least some of the tokens of the
input string are consumed, so eventually the recursion must come to an end.

514 Chapter 13 Recursion

ch13/expr/Evaluator.java

1 /**
2 A class that can compute the value of an arithmetic expression.
3 */
4 public class Evaluator
5 {
6 private ExpressionTokenizer tokenizer;
7
8 /**
9 Constructs an evaluator.

10 @param anExpression a string containing the expression
11 to be evaluated
12 */
13 public Evaluator(String anExpression)
14 {
15 tokenizer = new ExpressionTokenizer(anExpression);
16 }
17
18 /**
19 Evaluates the expression.
20 @return the value of the expression
21 */
22 public int getExpressionValue()
23 {
24 int value = getTermValue();
25 boolean done = false;
26 while (!done)
27 {
28 String next = tokenizer.peekToken();
29 if ("+".equals(next) || "-".equals(next))
30 {
31 tokenizer.nextToken(); // Discard "+" or "-"
32 int value2 = getTermValue();
33 if ("+".equals(next)) { value = value + value2; }
34 else { value = value - value2; }
35 }
36 else
37 {
38 done = true;
39 }
40 }
41 return value;
42 }
43
44 /**
45 Evaluates the next term found in the expression.
46 @return the value of the term
47 */
48 public int getTermValue()
49 {
50 int value = getFactorValue();
51 boolean done = false;
52 while (!done)
53 {
54 String next = tokenizer.peekToken();
55 if ("*".equals(next) || "/".equals(next))
56 {

13.5 Mutual Recursions 515

ch13/expr/ExpressionTokenizer.java

57 tokenizer.nextToken();
58 int value2 = getFactorValue();
59 if ("*".equals(next)) { value = value * value2; }
60 else { value = value / value2; }
61 }
62 else
63 {
64 done = true;
65 }
66 }
67 return value;
68 }
69
70 /**
71 Evaluates the next factor found in the expression.
72 @return the value of the factor
73 */
74 public int getFactorValue()
75 {
76 int value;
77 String next = tokenizer.peekToken();
78 if ("(".equals(next))
79 {
80 tokenizer.nextToken(); // Discard "("
81 value = getExpressionValue();
82 tokenizer.nextToken(); // Discard ")"
83 }
84 else
85 {
86 value = Integer.parseInt(tokenizer.nextToken());
87 }
88 return value;
89 }
90 }

1 /**
2 This class breaks up a string describing an expression
3 into tokens: numbers, parentheses, and operators.
4 */
5 public class ExpressionTokenizer
6 {
7 private String input;
8 private int start; // The start of the current token
9 private int end; // The position after the end of the current token

10
11 /**
12 Constructs a tokenizer.
13 @param anInput the string to tokenize
14 */
15 public ExpressionTokenizer(String anInput)
16 {
17 input = anInput;
18 start = 0;
19 end = 0;
20 nextToken(); // Find the first token
21 }

516 Chapter 13 Recursion

ch13/expr/ExpressionCalculator.java

22
23 /**
24 Peeks at the next token without consuming it.
25 @return the next token or null if there are no more tokens
26 */
27 public String peekToken()
28 {
29 if (start >= input.length()) { return null; }
30 else { return input.substring(start, end); }
31 }
32
33 /**
34 Gets the next token and moves the tokenizer to the following token.
35 @return the next token or null if there are no more tokens
36 */
37 public String nextToken()
38 {
39 String r = peekToken();
40 start = end;
41 if (start >= input.length()) { return r; }
42 if (Character.isDigit(input.charAt(start)))
43 {
44 end = start + 1;
45 while (end < input.length()
46 && Character.isDigit(input.charAt(end)))
47 {
48 end++;
49 }
50 }
51 else
52 {
53 end = start + 1;
54 }
55 return r;
56 }
57 }

1 import java.util.Scanner;
2
3 /**
4 This program calculates the value of an expression
5 consisting of numbers, arithmetic operators, and parentheses.
6 */
7 public class ExpressionCalculator
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter an expression: ");
13 String input = in.nextLine();
14 Evaluator e = new Evaluator(input);
15 int value = e.getExpressionValue();
16 System.out.println(input + "=" + value);
17 }
18 }

Media Resources 517

Program Run

10. What is the difference between a term and a factor? Why do we need both
concepts?

11. Why does the expression parser use mutual recursion?
12. What happens if you try to parse the illegal expression 3+4*)5? Specifically,

which method throws an exception?

Understand the control flow in a recursive computation.

• A recursive computation solves a problem by using the solution of the same
problem with simpler values.

• For a recursion to terminate, there must be special cases for the simplest values.

Identify recursive helper methods for solving a problem.

• Sometimes it is easier to find a recursive solution if you make a slight change to the
original problem.

Contrast the efficiency of recursive and non-recursive algorithms.

• Occasionally, a recursive solution runs much slower than its iterative counterpart.
However, in most cases, the recursive solution is only slightly slower.

• In many cases, a recursive solution is easier to understand and implement correctly
than an iterative solution.

Review a complex recursion example that cannot be solved with a simple loop.

• The permutations of a string can be obtained more naturally through recursion than
with a loop.

Recognize the phenomenon of mutual recursion in a parsing application.

• In a mutual recursion, a set of cooperating methods calls each other repeatedly.

• Worked Example Finding Files
• Lab Exercises

Animation Tracing a Recursion
Practice Quiz
Code Completion Exercises

Enter an expression: 3+4*5
3+4*5=23

S E L F C H E C K

Summary of Learning Objectives

Media Resources

www.wiley.com/
college/
horstmann

518 Chapter 13 Recursion

R13.1 Define the terms
a. Recursion
b. Iteration
c. Infinite recursion
d. Recursive helper method

R13.2 Outline, but do not implement, a recursive solution for finding the smallest value in
an array.

R13.3 Outline, but do not implement, a recursive solution for sorting an array of num-
bers. Hint: First find the smallest value in the array.

R13.4 Outline, but do not implement, a recursive solution for generating all subsets of the
set {1, 2, . . . , n}.

R13.5 Exercise P13.12 shows an iterative way of generating all permutations of the
sequence (0, 1, . . . , n – 1). Explain why the algorithm produces the correct result.

R13.6 Write a recursive definition of xn, where n ≥ 0, similar to the recursive definition of
the Fibonacci numbers. Hint: How do you compute xn from xn – 1? How does the
recursion terminate?

R13.7 Improve upon Exercise R13.6 by computing xn as (xn/2)2 if n is even. Why is this
approach significantly faster? Hint: Compute x1023 and x1024 both ways.

R13.8 Write a recursive definition of n! = 1 × 2 × . . . × n, similar to the recursive definition
of the Fibonacci numbers.

R13.9 Find out how often the recursive version of fib calls itself. Keep a static variable
fibCount and increment it once in every call of fib. What is the relationship between
fib(n) and fibCount?

R13.10 How many moves are required in the “Towers of Hanoi” problem of Exercise
P13.13 to move n disks? Hint: As explained in the exercise,

P13.1 Write a recursive method void reverse() that reverses a sentence. For example:
Sentence greeting = new Sentence("Hello!");
greeting.reverse();
System.out.println(greeting.getText());

prints the string "!olleH". Implement a recursive solution by removing the first
character, reversing a sentence consisting of the remaining text, and combining the
two.

P13.2 Redo Exercise P13.1 with a recursive helper method that reverses a substring of the
message text.

Review Exercises

moves

moves moves

()

() ()

1 1

2 1 1

=
= ⋅ − +n n

Programming Exercises

Programming Exercises 519

P13.3 Implement the reverse method of Exercise P13.1 as an iteration.

P13.4 Use recursion to implement a method boolean find(String t) that tests whether a
string is contained in a sentence:

Sentence s = new Sentence("Mississippi!");
boolean b = s.find("sip"); // Returns true

Hint: If the text starts with the string you want to match, then you are done. If not,
consider the sentence that you obtain by removing the first character.

P13.5 Use recursion to implement a method int indexOf(String t) that returns the starting
position of the first substring of the text that matches t. Return –1 if t is not a sub-
string of s. For example,

Sentence s = new Sentence("Mississippi!");
int n = s.indexOf("sip"); // Returns 6

Hint: This is a bit trickier than the preceding problem, because you must keep track
of how far the match is from the beginning of the sentence. Make that value a
parameter of a helper method.

P13.6 Using recursion, find the largest element in an array.
public class DataSet
{
 public DataSet(int[] values, int first, int last) { . . . }
 public int getMaximum() { . . . }
 . . .
}

Hint: Find the largest element in the subset containing all but the last element. Then
compare that maximum to the value of the last element.

P13.7 Using recursion, compute the sum of all values in an array.
public class DataSet
{
 public DataSet(int[] values, int first, int last) { . . . }
 public int getSum() { . . . }
 . . .
}

P13.8 Using recursion, compute the area of a polygon. Cut off a triangle and use the fact
that a triangle with corners (x1, y1), (x2, y2), (x3, y3) has area

x y x y x y y x y x y x1 2 2 3 3 1 1 2 2 3 3 1

2

+ + − − −

520 Chapter 13 Recursion

P13.9 Implement a SubstringGenerator that generates all substrings of a string. For example,
the substrings of the string "rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character. There are n of
them if the string has length n. Then enumerate the substrings of the string that you
obtain by removing the first character.

P13.10 Implement a SubsetGenerator that generates all subsets of the characters of a string.
For example, the subsets of the characters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don’t have to be substrings—for example, "rm" isn’t a sub-
string of "rum".

P13.11 In this exercise, you will change the PermutationGenerator of Section 13.4 (which
computed all permutations at once) to a PermutationIterator (which computes them
one at a time.)

public class PermutationIterator
{
 public PermutationIterator(String s) { . . . }
 public String nextPermutation() { . . . }
 public boolean hasMorePermutations() { . . . }
}

Here is how you would print out all permutations of the string "eat":
PermutationIterator iter = new PermutationIterator("eat");
while (iter.hasMorePermutations())
{
 System.out.println(iter.nextPermutation());
}

Now we need a way to iterate through the permutations recursively. Consider the
string "eat". As before, we’ll generate all permutations that start with the letter 'e',
then those that start with 'a', and finally those that start with 't'. How do we
generate the permutations that start with 'e'? Make another PermutationIterator
object (called tailIterator) that iterates through the permutations of the substring
"at". In the nextPermutation method, simply ask tailIterator what its next permuta-
tion is, and then add the 'e' at the front. However, there is one special case. When
the tail generator runs out of permutations, all permutations that start with the cur-
rent letter have been enumerated. Then

• Increment the current position.
• Compute the tail string that contains all letters except for the current one.
• Make a new permutation iterator for the tail string.

You are done when the current position has reached the end of the string.

P13.12 The following class generates all permutations of the numbers 0, 1, 2, . . ., n – 1,
without using recursion.

public class NumberPermutationIterator
{
 public NumberPermutationIterator(int n)
 {

Programming Exercises 521

 a = new int[n];
 done = false;
 for (int i = 0; i < n; i++) a[i] = i;
 }

 public int[] nextPermutation()
 {
 if (a.length <= 1) { return a; }

 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i])
 {
 int j = a.length - 1;
 while (a[i - 1] > a[j]) j--;
 swap(i - 1, j);
 reverse(i, a.length - 1);
 return a;
 }
 }
 return a;
 }

 public boolean hasMorePermutations()
 {
 if (a.length <= 1) { return false; }
 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i]) { return true; }
 }
 return false;
 }

 public void swap(int i, int j)
 {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

 public void reverse(int i, int j)
 {
 while (i < j) { swap(i, j); i++; j--; }
 }
 private int[] a;
}

The algorithm uses the fact that the set to be permuted consists of distinct numbers.
Thus, you cannot use the same algorithm to compute the permutations of the char-
acters in a string. You can, however, use this class to get all permutations of the char-
acter positions and then compute a string whose ith character is word.charAt(a[i]).
Use this approach to reimplement the PermutationIterator of Exercise P13.11 with-
out recursion.

P13.13 Towers of Hanoi. This is a well-known puzzle. A stack of disks of decreasing size is
to be transported from the leftmost peg to the rightmost peg. The middle peg can be
used as temporary storage (see Figure 5). One disk can be moved at one time, from

522 Chapter 13 Recursion

any peg to any other peg. You can place smaller disks only on top of larger ones,
not the other way around.
Write a program that prints the moves necessary to solve the puzzle for n disks.
(Ask the user for n at the beginning of the program.) Print moves in the form

Move disk from peg 1 to peg 3

Hint: Implement a class DiskMover. The constructor takes
• The source peg from which to move the disks (1, 2, or 3)
• The target peg to which to move the disks (1, 2, or 3)
• The number of disks to move

A disk mover that moves a single disk from one peg to another simply has a nextMove
method that returns a string

Move disk from peg source to peg target

A disk mover with more than one disk to move must work harder. It needs another
DiskMover to help it. In the constructor, construct a DiskMover(source, other, disks - 1)
where other is the peg other than from and target.
The nextMove asks that disk mover for its next move until it is done. The effect is to
move the first disks - 1 disks to the other peg. Then the nextMove method issues a
command to move a disk from the from peg to the to peg. Finally, it constructs
another disk mover DiskMover(other, target, disks - 1) that generates the moves that
move the disks from the other peg to the target peg.
Hint: It helps to keep track of the state of the disk mover:

• BEFORE_LARGEST: The helper mover moves the smaller pile to the other peg.
• LARGEST: Move the largest disk from the source to the destination.
• AFTER_LARGEST: The helper mover moves the smaller pile from the other peg to

the target.
• DONE: All moves are done.

Test your program as follows:
DiskMover mover = new DiskMover(1, 3, n);
while (mover.hasMoreMoves())
{
 System.out.println(mover.nextMove());
}

Figure 5 Towers of Hanoi

Programming Exercises 523

P13.14 Escaping a Maze. You are currently located inside a maze. The walls of the maze are
indicated by asterisks (*).

* *******
* * *
* ***** *
* * * *
* * *** *
* * *
*** * * *
* * *
******* *

Use the following recursive approach to check whether you can escape from the
maze: If you are at an exit, return true. Recursively check whether you can escape
from one of the empty neighboring locations without visiting the current location.
This method merely tests whether there is a path out of the maze. Extra credit if
you can print out a path that leads to an exit.

P13.15 The Koch Snowflake. A snowflake-like shape is recursively defined as follows. Start
with an equilateral triangle:

Next, increase the size by a factor of three and replace each straight line with four
line segments.

Repeat the process.

Write a program that draws the iterations of this curve. Supply a button that, when
clicked, produces the next iteration.

P13.16 The recursive computation of Fibonacci numbers can be speeded up significantly
by keeping track of the values that have already been computed. Provide an imple-
mentation of the fib method that uses this strategy. Whenever you return a new
value, also store it in an auxiliary array. However, before embarking on a computa-
tion, consult the array to find whether the result has already been computed. Com-
pare the running time of your improved implementation with that of the original
recursive implementation and the loop implementation.

G

524 Chapter 13 Recursion

Project 13.1 Enhance the expression parser of Section 13.5 to handle more sophisticated expres-
sions, such as exponents, and mathematical functions, such as sqrt or sin.

Project 13.2 Implement a graphical version of the “Towers of Hanoi” program (see Exercise
P13.13). Every time the user clicks on a button labeled “Next”, draw the next move.

1. Suppose we omit the statement. When computing the area of a triangle with width
1, we compute the area of the triangle with width 0 as 0, and then add 1, to arrive at
the correct area.

2. You would compute the smaller area recursively, then return
smallerArea + width + width - 1.
[][][][]
[][][][]
[][][][]
[][][][]

Of course, it would be simpler to compute the area simply as width * width.
The results are identical because

.

3. No—the first one could be given a different name such as substringIsPalindrome.
4. When start >= end, that is, when the investigated string is either empty or has length

1.
5. The loop is slightly faster. Of course, it is even faster to simply compute width *

(width + 1) / 2.
6. No, the recursive solution is about as efficient as the iterative approach. Both

require n – 1 multiplications to compute n!.
7. They are b followed by the six permutations of eat, e followed by the six permuta-

tions of bat, a followed by the six permutations of bet, and t followed by the six per-
mutations of bea.

8. Simply change if (word.length() == 0) to if (word.length() <= 1), because a word
with a single letter is also its sole permutation.

9. An iterative solution would have a loop whose body computes the next permuta-
tion from the previous ones. But there is no obvious mechanism for getting the next
permutation. For example, if you already found permutations eat, eta, and aet, it is
not clear how you use that information to get the next permutation. Actually, there
is an ingenious mechanism for doing just that, but it is far from obvious—see Exer-
cise P13.12.

10. Factors are combined by multiplicative operators (* and /), terms are combined by
additive operators (+, -). We need both so that multiplication can bind more
strongly than addition.

11. To handle parenthesized expressions, such as 2+3*(4+5). The subexpression 4+5 is
handled by a recursive call to getExpressionValue.

12. The Integer.parseInt call in getFactorValue throws an exception when it is given the
string ")".

Programming Projects

Answers to Self-Check Questions

1 0 2 1 3 2 1 1
2

1
2

2+ + + + + + + + − = + + − =� n n n n n n n() ()

525

Chapter14
Sorting and

Searching

CHAPTER GOALS
• To study several sorting and searching algorithms

• To appreciate that algorithms for the same task can differ widely
in performance

• To understand the big-Oh notation

• To learn how to estimate and compare the performance
of algorithms

• To learn how to measure the running time of a program

Sorting and searching are among the most common tasks in data

processing. Of course, the Java library contains methods for carrying out these operations.

Nevertheless, studying algorithms for sorting and searching is fruitful because you will learn how to

analyze the performance of algorithms and how to choose the best algorithm for a particular task.

Sorting and searching are an excellent entry point into the study of algorithm analysis because the

tasks themselves are simple to understand. As you will see in this chapter, the most straightforward

algorithms do not perform very well, and we can achieve dramatic improvements with more

sophisticated algorithms.

526

CHAPTER CONTENTS

In this section, we show you the first of several sorting algorithms. A sorting algo-
rithm rearranges the elements of a collection so that they are stored in sorted order.
To keep the examples simple, we will discuss how to sort an array of integers before
going on to sorting strings or more complex data. Consider the following array a:

An obvious first step is to find the smallest element. In this case the smallest element
is 5, stored in a[3]. We should move the 5 to the beginning of the array. Of course,
there is already an element stored in a[0], namely 11. Therefore we cannot simply
move a[3] into a[0] without moving the 11 somewhere else. We don’t yet know
where the 11 should end up, but we know for certain that it should not be in a[0].
We simply get it out of the way by swapping it with a[3].

Now the first element is in the correct place. In the foregoing figure, the darker
color indicates the portion of the array that is already sorted.

Next we take the minimum of the remaining entries a[1] . . . a[4]. That mini-
mum value, 9, is already in the correct place. We don’t need to do anything in this
case and can simply extend the sorted area by one to the right:

14.1 Selection Sort

11 9 17 5 12

[0][1][2][3][4]

The selection sort
algorithm sorts an
array by repeatedly
finding the smallest
element of the
unsorted tail region
and moving it to
the front.

5 9 17 11 12

[0][1][2][3][4]

5 9 17 11 12

[0][1][2][3][4]

14.1 Selection Sort 526

14.2 Profiling the Selection
Sort Algorithm 529

14.3 Analyzing the Performance of the
Selection Sort Algorithm 532

SPECIAL TOPIC 14.1: Insertion Sort

SPECIAL TOPIC 14.2: Oh, Omega, and Theta

14.4 Merge Sort 534

14.5 Analyzing the Merge
Sort Algorithm 537

SPECIAL TOPIC 14.3: The Quicksort Algorithm

RANDOM FACT 14.1: The First Programmer

14.6 Searching 540

14.7 Binary Search 542

14.8 Sorting Real Data 545
COMMON ERROR 14.1: The compareTo Method Can

Return Any Integer, Not Just –1, 0, and 1 546
SPECIAL TOPIC 14.4: The Parameterized

Comparable Interface 547
SPECIAL TOPIC 14.5: The Comparator Interface

14.1 Selection Sort 527

Repeat the process. The minimum value of the unsorted region is 11, which needs
to be swapped with the first value of the unsorted region, 17:

Now the unsorted region is only two elements long, but we keep to the same suc-
cessful strategy. The minimum value is 12, and we swap it with the first value, 17.

That leaves us with an unprocessed region of length 1, but of course a region of
length 1 is always sorted. We are done.

Let’s program this algorithm. For this program, as well as the other programs in
this chapter, we will use a utility method to generate an array with random entries.
We place it into a class ArrayUtil so that we don’t have to repeat the code in every
example. To show the array, we call the static toString method of the Arrays class in
the Java library and print the resulting string.

This algorithm will sort any array of integers. If speed were not an issue, or if
there simply were no better sorting method available, we could stop the discussion
of sorting right here. As the next section shows, however, this algorithm, while
entirely correct, shows disappointing performance when run on a large data set.

Special Topic 14.1 discusses insertion sort, another simple sorting algorithm.

ch14/selsort/SelectionSorter.java

5 9 11 17 12

[0][1][2][3][4]

5 9 11 12 17

[0][1][2][3][4]

1 /**
2 This class sorts an array, using the selection sort
3 algorithm.
4 */
5 public class SelectionSorter
6 {
7 private int[] a;
8
9 /**

10 Constructs a selection sorter.
11 @param anArray the array to sort
12 */
13 public SelectionSorter(int[] anArray)
14 {
15 a = anArray;
16 }
17
18 /**
19 Sorts the array managed by this selection sorter.
20 */
21 public void sort()
22 {

528 Chapter 14 Sorting and Searching

ch14/selsort/SelectionSortDemo.java

23 for (int i = 0; i < a.length - 1; i++)
24 {
25 int minPos = minimumPosition(i);
26 swap(minPos, i);
27 }
28 }
29
30 /**
31 Finds the smallest element in a tail range of the array.
32 @param from the first position in a to compare
33 @return the position of the smallest element in the
34 range a[from] . . . a[a.length - 1]
35 */
36 private int minimumPosition(int from)
37 {
38 int minPos = from;
39 for (int i = from + 1; i < a.length; i++)
40 if (a[i] < a[minPos]) minPos = i;
41 return minPos;
42 }
43
44 /**
45 Swaps two entries of the array.
46 @param i the first position to swap
47 @param j the second position to swap
48 */
49 private void swap(int i, int j)
50 {
51 int temp = a[i];
52 a[i] = a[j];
53 a[j] = temp;
54 }
55 }

1 import java.util.Arrays;
2
3 /**
4 This program demonstrates the selection sort algorithm by
5 sorting an array that is filled with random numbers.
6 */
7 public class SelectionSortDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13
14 SelectionSorter sorter = new SelectionSorter(a);
15 sorter.sort();
16
17 System.out.println(Arrays.toString(a));
18 }
19 }

14.2 Profiling the Selection Sort Algorithm 529

ch14/selsort/ArrayUtil.java

Typical Output

1. Why do we need the temp variable in the swap method? What would happen if
you simply assigned a[i] to a[j] and a[j] to a[i]?

2. What steps does the selection sort algorithm go through to sort the sequence
6 5 4 3 2 1?

To measure the performance of a program, you could simply run it and use a stop-
watch to measure how long it takes. However, most of our programs run very
quickly, and it is not easy to time them accurately in this way. Furthermore, when a
program takes a noticeable time to run, a certain amount of that time may simply be
used for loading the program from disk into memory and displaying the result (for
which we should not penalize it).

In order to measure the running time of an algorithm more accurately, we will
create a StopWatch class. This class works like a real stopwatch. You can start it, stop
it, and read out the elapsed time. The class uses the System.currentTimeMillis method,
which returns the milliseconds that have elapsed since midnight at the start of Janu-
ary 1, 1970. Of course, you don’t care about the absolute number of seconds since
this historical moment, but the difference of two such counts gives us the number of
milliseconds of a time interval.

1 import java.util.Random;
2
3 /**
4 This class contains utility methods for array manipulation.
5 */
6 public class ArrayUtil
7 {
8 private static Random generator = new Random();
9

10 /**
11 Creates an array filled with random values.
12 @param length the length of the array
13 @param n the number of possible random values
14 @return an array filled with length numbers between
15 0 and n - 1
16 */
17 public static int[] randomIntArray(int length, int n)
18 {
19 int[] a = new int[length];
20 for (int i = 0; i < a.length; i++)
21 a[i] = generator.nextInt(n);
22
23 return a;
24 }
25 }

[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89, 77, 73, 87, 36, 81]
[2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52, 65, 73, 77, 81, 87, 89, 96, 99]

S E L F C H E C K

14.2 Profiling the Selection Sort Algorithm

530 Chapter 14 Sorting and Searching

Here is the code for the StopWatch class:

ch14/selsort/StopWatch.java

1 /**
2 A stopwatch accumulates time when it is running. You can
3 repeatedly start and stop the stopwatch. You can use a
4 stopwatch to measure the running time of a program.
5 */
6 public class StopWatch
7 {
8 private long elapsedTime;
9 private long startTime;

10 private boolean isRunning;
11
12 /**
13 Constructs a stopwatch that is in the stopped state
14 and has no time accumulated.
15 */
16 public StopWatch()
17 {
18 reset();
19 }
20
21 /**
22 Starts the stopwatch. Time starts accumulating now.
23 */
24 public void start()
25 {
26 if (isRunning) return;
27 isRunning = true;
28 startTime = System.currentTimeMillis();
29 }
30
31 /**
32 Stops the stopwatch. Time stops accumulating and is
33 is added to the elapsed time.
34 */
35 public void stop()
36 {
37 if (!isRunning) return;
38 isRunning = false;
39 long endTime = System.currentTimeMillis();
40 elapsedTime = elapsedTime + endTime - startTime;
41 }
42
43 /**
44 Returns the total elapsed time.
45 @return the total elapsed time
46 */
47 public long getElapsedTime()
48 {
49 if (isRunning)
50 {
51 long endTime = System.currentTimeMillis();
52 return elapsedTime + endTime - startTime;
53 }
54 else
55 return elapsedTime;

14.2 Profiling the Selection Sort Algorithm 531

Here is how we will use the stopwatch to measure the performance of the sorting
algorithm:

ch14/selsort/SelectionSortTimer.java

Program Run

56 }
57
58 /**
59 Stops the watch and resets the elapsed time to 0.
60 */
61 public void reset()
62 {
63 elapsedTime = 0;
64 isRunning = false;
65 }
66 }

1 import java.util.Scanner;
2
3 /**
4 This program measures how long it takes to sort an
5 array of a user-specified size with the selection
6 sort algorithm.
7 */
8 public class SelectionSortTimer
9 {

10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13 System.out.print("Enter array size: ");
14 int n = in.nextInt();
15
16 // Construct random array
17
18 int[] a = ArrayUtil.randomIntArray(n, 100);
19 SelectionSorter sorter = new SelectionSorter(a);
20
21 // Use stopwatch to time selection sort
22
23 StopWatch timer = new StopWatch();
24
25 timer.start();
26 sorter.sort();
27 timer.stop();
28
29 System.out.println("Elapsed time: "
30 + timer.getElapsedTime() + " milliseconds");
31 }
32 }

Enter array size: 100000
Elapsed time: 27880 milliseconds

532 Chapter 14 Sorting and Searching

By starting to measure the time just before sorting, and stopping the stopwatch just
after, you get the time required for the sorting process, without counting the time
for input and output.

The table in Figure 1 shows the results of some sample runs. These measure-
ments were obtained with a Intel processor with a clock speed of 2 GHz, running
Java 6 on the Linux operating system. On another computer the actual numbers
will look different, but the relationship between the numbers will be the same.

The graph in Figure 1 shows a plot of the measurements. As you can see, dou-
bling the size of the data set more than doubles the time needed to sort it.

3. Approximately how many seconds would it take to sort a data set of 80,000
values?

4. Look at the graph in Figure 1. What mathematical shape does it resemble?

Let us count the number of operations that the program must carry out to sort an
array with the selection sort algorithm. We don’t actually know how many machine
operations are generated for each Java instruction, or which of those instructions
are more time-consuming than others, but we can make a simplification. We will
simply count how often an array element is visited. Each visit requires about the
same amount of work by other operations, such as incrementing subscripts and
comparing values.

Let n be the size of the array. First, we must find the smallest of n numbers. To
achieve that, we must visit n array elements. Then we swap the elements, which
takes two visits. (You may argue that there is a certain probability that we don’t

Figure 1 Time Taken by Selection Sort

5

10

15

20

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

n Milliseconds

10,000 786

20,000 2,148

30,000 4,796

40,000 9,192

50,000 13,321

60,000 19,299

To measure the
running time of a
method, get the
current time
immediately before
and after the
method call.

S E L F C H E C K

14.3 Analyzing the Performance
of the Selection Sort Algorithm

14.3 Analyzing the Performance of the Selection Sort Algorithm 533

need to swap the values. That is true, and one can refine the computation to reflect
that observation. As we will soon see, doing so would not affect the overall
conclusion.) In the next step, we need to visit only n − 1 elements to find the mini-
mum. In the following step, n − 2 elements are visited to find the minimum. The last
step visits two elements to find the minimum. Each step requires two visits to swap
the elements. Therefore, the total number of visits is

because

After multiplying out and collecting terms of n, we find that the number of visits is

We obtain a quadratic equation in n. That explains why the graph of Figure 1 looks
approximately like a parabola.

Now simplify the analysis further. When you plug in a large value for n (for
example, 1,000 or 2,000), then is 500,000 or 2,000,000. The lower term, ,
doesn’t contribute much at all; it is only 2,497 or 4,997, a drop in the bucket com-
pared to the hundreds of thousands or even millions of comparisons specified by
the term. We will just ignore these lower-level terms. Next, we will ignore the
constant factor . We are not interested in the actual count of visits for a single n.
We want to compare the ratios of counts for different values of n. For example, we
can say that sorting an array of 2,000 numbers requires four times as many visits as
sorting an array of 1,000 numbers:

The factor cancels out in comparisons of this kind. We will simply say, “The
number of visits is of order n2”. That way, we can easily see that the number of
comparisons increases fourfold when the size of the array doubles: (2n)2 = 4n2.

To indicate that the number of visits is of order n2, computer scientists often use
big-Oh notation: The number of visits is O(n2). This is a convenient shorthand.

In general, the expression f(n) = O(g(n)) means that f grows no faster than g, or,
more formally, that for all n larger than some threshold, the ratio
for some constant value C. The function g is usually chosen to be very simple, such
as n2 in our example.

To turn an exact expression such as

into big-Oh notation, simply locate the fastest-growing term, n2, and ignore its
constant coefficient, no matter how large or small it may be.

n n n n n+ + − + + + + = + − + + + − ⋅
= +

2 1 2 2 2 1 2 1 2

2

() () ()� �
� ++ − + + − ⋅

= + − + − ⋅

() ()

()
()

n n n
n n

n

1 1 2

1
2

1 1 2

1 2 1
1

2
+ + + − + = +

� ()
()

n n
n n

1
2

2 5
2

3n n+ −

1
2

2n 5
2

3n −

1
2

2n
1
2

1
2

2

1
2

2

2000

1000
4

⋅()
⋅() =

1
2

Computer scientists
use the big-Oh
notation f (n) = O(g(n))
to express that the
function f grows no
faster than the
function g.

f n g n C() () ≤

1
2

2 5
2

3n n+ −

534 Chapter 14 Sorting and Searching

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

We observed before that the actual number of machine operations, and the actual
amount of time that the computer spends on them, is approximately proportional
to the number of element visits. Maybe there are about 10 machine operations
(increments, comparisons, memory loads, and stores) for every element visit. The
number of machine operations is then approximately . As before, we aren’t
interested in the coefficient, so we can say that the number of machine operations,
and hence the time spent on the sorting, is of the order of n2 or O(n2).

The sad fact remains that doubling the size of the array causes a fourfold increase
in the time required for sorting it with selection sort. When the size of the array
increases by a factor of 100, the sorting time increases by a factor of 10,000. To sort
an array of a million entries, (for example, to create a telephone directory) takes
10,000 times as long as sorting 10,000 entries. If 10,000 entries can be sorted in
about 1/2 of a second (as in our example), then sorting one million entries requires
well over an hour. We will see in the next section how one can dramatically improve
the performance of the sorting process by choosing a more sophisticated algorithm.

5. If you increase the size of a data set tenfold, how much longer does it take to
sort it with the selection sort algorithm?

6. How large does n need to be so that is bigger than ?

Insertion Sort

Special Topic 14.1 describes insertion sort, another simple sorting algorithm that is commonly
used for small arrays. Like selection sort, its run time is O(n2).

Oh, Omega, and Theta

Special Topic 14.2 defines the big-Theta and big-Omega notations that describe the
growth of a function more precisely than the big-Oh notation.

In this section, you will learn about the merge sort algorithm, a much more efficient
algorithm than selection sort. The basic idea behind merge sort is very simple.

Suppose we have an array of 10 integers. Let us engage in a bit of wishful think-
ing and hope that the first half of the array is already perfectly sorted, and the sec-
ond half is too, like this:

10 1
2

2× n

Selection sort is an
O(n2) algorithm.
Doubling the
data set means a
fourfold increase in
processing time.

S E L F C H E C K

1
2

2n 5
2

3n −

Special Topic 14.1

Special Topic 14.2

14.4 Merge Sort

5 9 10 12 17 1 8 11 20 32

14.4 Merge Sort 535

Now it is simple to merge the two sorted arrays into one sorted array, by taking a
new element from either the first or the second subarray, and choosing the smaller
of the elements each time:

In fact, you may have performed this merging before if you and a friend had to sort
a pile of papers. You and the friend split the pile in half, each of you sorted your
half, and then you merged the results together.

That is all well and good, but it doesn’t seem to solve the problem for the com-
puter. It still must sort the first and second halves of the array, because it can’t very
well ask a few buddies to pitch in. As it turns out, though, if the computer keeps
dividing the array into smaller and smaller subarrays, sorting each half and merging
them back together, it carries out dramatically fewer steps than the selection sort
requires.

Let’s write a MergeSorter class that implements this idea. When the MergeSorter
sorts an array, it makes two arrays, each half the size of the original, and sorts them
recursively. Then it merges the two sorted arrays together:

public void sort()
{
 if (a.length <= 1) return;
 int[] first = new int[a.length / 2];
 int[] second = new int[a.length - first.length];
 // Copy the first half of a into first, the second half into second
 . . .
 MergeSorter firstSorter = new MergeSorter(first);
 MergeSorter secondSorter = new MergeSorter(second);

firstSorter.sort();
 secondSorter.sort();
 merge(first, second);
}

The merge method is tedious but quite straightforward. You will find it in the code
that follows.

ch14/mergesort/MergeSorter.java

5 9 10 12 17 1 8 11 20 32 1

5 9 10 12 17 1 8 11 20 32 1 5

5 9 10 12 17 1 8 11 20 32 1 5 8

5 9 10 12 17 1 8 11 20 32 1 5 8 9

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20 32

The merge sort
algorithm sorts an
array by cutting the
array in half,
recursively sorting
each half, and
then merging the
sorted halves.

1 /**
2 This class sorts an array, using the merge sort algorithm.
3 */
4 public class MergeSorter
5 {
6 private int[] a;

536 Chapter 14 Sorting and Searching

7
8 /**
9 Constructs a merge sorter.

10 @param anArray the array to sort
11 */
12 public MergeSorter(int[] anArray)
13 {
14 a = anArray;
15 }
16
17 /**
18 Sorts the array managed by this merge sorter.
19 */
20 public void sort()
21 {
22 if (a.length <= 1) return;
23 int[] first = new int[a.length / 2];
24 int[] second = new int[a.length - first.length];
25 // Copy the first half of a into first, the second half into second
26 for (int i = 0; i < first.length; i++) { first[i] = a[i]; }
27 for (int i = 0; i < second.length; i++)
28 {
29 second[i] = a[first.length + i];
30 }
31 MergeSorter firstSorter = new MergeSorter(first);
32 MergeSorter secondSorter = new MergeSorter(second);
33 firstSorter.sort();
34 secondSorter.sort();
35 merge(first, second);
36 }
37
38 /**
39 Merges two sorted arrays into the array managed by this merge sorter.
40 @param first the first sorted array
41 @param second the second sorted array
42 */
43 private void merge(int[] first, int[] second)
44 {
45 int iFirst = 0; // Next element to consider in the first array
46 int iSecond = 0; // Next element to consider in the second array
47 int j = 0; // Next open position in a
48
49 // As long as neither iFirst nor iSecond past the end, move
50 // the smaller element into a
51 while (iFirst < first.length && iSecond < second.length)
52 {
53 if (first[iFirst] < second[iSecond])
54 {
55 a[j] = first[iFirst];
56 iFirst++;
57 }
58 else
59 {
60 a[j] = second[iSecond];
61 iSecond++;
62 }
63 j++;
64 }
65

14.5 Analyzing the Merge Sort Algorithm 537

ch14/mergesort/MergeSortDemo.java

Typical Output

7. Why does only one of the two while loops at the end of the merge method do any
work?

8. Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.

The merge sort algorithm looks a lot more complicated than the selection sort algo-
rithm, and it appears that it may well take much longer to carry out these repeated
subdivisions. However, the timing results for merge sort look much better than
those for selection sort.

66 // Note that only one of the two loops below copies entries
67 // Copy any remaining entries of the first array
68 while (iFirst < first.length)
69 {
70 a[j] = first[iFirst];
71 iFirst++; j++;
72 }
73 // Copy any remaining entries of the second half
74 while (iSecond < second.length)
75 {
76 a[j] = second[iSecond];
77 iSecond++; j++;
78 }
79 }
80 }

1 import java.util.Arrays;
2
3 /**
4 This program demonstrates the merge sort algorithm by
5 sorting an array that is filled with random numbers.
6 */
7 public class MergeSortDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13
14 MergeSorter sorter = new MergeSorter(a);
15 sorter.sort();
16 System.out.println(Arrays.toString(a));
17 }
18 }

[8, 81, 48, 53, 46, 70, 98, 42, 27, 76, 33, 24, 2, 76, 62, 89, 90, 5, 13, 21]
[2, 5, 8, 13, 21, 24, 27, 33, 42, 46, 48, 53, 62, 70, 76, 76, 81, 89, 90, 98]

S E L F C H E C K

14.5 Analyzing the Merge Sort Algorithm

538 Chapter 14 Sorting and Searching

Figure 2 shows a table and a graph comparing both sets of performance data. As
you can see, merge sort is a tremendous improvement. To understand why, let us
estimate the number of array element visits that are required to sort an array with
the merge sort algorithm. First, let us tackle the merge process that happens after
the first and second halves have been sorted.

Each step in the merge process adds one more element to a. That element may
come from first or second, and in most cases the elements from the two halves must
be compared to see which one to take. We’ll count that as 3 visits (one for a and one
each for first and second) per element, or 3n visits total, where n denotes the length
of a. Moreover, at the beginning, we had to copy from a to first and second, yielding
another 2n visits, for a total of 5n.

If we let T(n) denote the number of visits required to sort a range of n elements
through the merge sort process, then we obtain

because sorting each half takes visits. Actually, if n is not even, then we have
one subarray of size and one of size . Although it turns out that
this detail does not affect the outcome of the computation, we will nevertheless
assume for now that n is a power of 2, say n = 2m. That way, all subarrays can be
evenly divided into two parts.

Unfortunately, the formula

does not clearly tell us the relationship between n and T(n). To understand the rela-
tionship, let us evaluate , using the same formula:

Figure 2 Merge Sort Timing versus Selection Sort

5

10

15

20

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

Merge sort

Selection sort

n
Merge Sort

(milliseconds)
Selection Sort
(milliseconds)

10,000 40 786

20,000 73 2,148

30,000 134 4,796

40,000 170 9,192

50,000 192 13,321

60,000 205 19,299

T n T n T n n() =
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

2 2
5

T n()2
()n − 1 2 ()n + 1 2

T n T n n() =
⎛

⎝
⎜

⎞

⎠
⎟ +2

2
5

T n()2

T n T n n
2

2
4

5
2

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

14.5 Analyzing the Merge Sort Algorithm 539

Therefore

Let us do that again:

hence

This generalizes from 2, 4, 8, to arbitrary powers of 2:

Recall that we assume that n = 2m; hence, for k = m,

Because n = 2m, we have m = log2(n).
To establish the growth order, we drop the lower-order term n and are left with

5n log2(n). We drop the constant factor 5. It is also customary to drop the base of
the logarithm, because all logarithms are related by a constant factor. For example,

Hence we say that merge sort is an O(n log(n)) algorithm.
Is the O(n log(n)) merge sort algorithm better than the O(n2) selection sort algo-

rithm? You bet it is. Recall that it took 1002 = 10,000 times as long to sort a million
records as it took to sort 10,000 records with the O(n2) algorithm. With the O(n
log(n)) algorithm, the ratio is

Suppose for the moment that merge sort takes the same time as selection sort to sort
an array of 10,000 integers, that is, 3/4 of a second on the test machine. (Actually, it
is much faster than that.) Then it would take about 0.75 × 150 seconds, or under 2
minutes, to sort a million integers. Contrast that with selection sort, which would
take over 2 hours for the same task. As you can see, even if it takes you several
hours to learn about a better algorithm, that can be time well spent.

In this chapter we have barely begun to scratch the surface of this interesting
topic. There are many sorting algorithms, some with even better performance than
merge sort, and the analysis of these algorithms can be quite challenging. These
important issues are often revisited in later computer science courses.

T n T n n n() = ×
⎛

⎝
⎜

⎞

⎠
⎟ + +2 2

4
5 5

T n T n n
4

2
8

5
4

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

T n T n n n n() = × ×
⎛

⎝
⎜

⎞

⎠
⎟ + + +2 2 2

8
5 5 5

T n T n nkk
k

() =
⎛

⎝
⎜

⎞

⎠
⎟ +2

2
5

T n T n nm

nT nm
n n n

m
m

()

()

log ()

=
⎛

⎝
⎜

⎞

⎠
⎟ +

= +
= +

2
2

5

1 5

5 2

log () log () log () log () .2 10 10 102 3 32193x x x= ≈ ×

Merge sort is an
O(n log(n)) algorithm.
The n log(n) function
grows much more
slowly than n2.

1 000 000 1 000 000
10 000 10 000

10
, , log , ,

, log ,
()
() = 00 6

4
150

⎛

⎝
⎜

⎞

⎠
⎟ =

540 Chapter 14 Sorting and Searching

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

9. Given the timing data for the merge sort algorithm in the table at the beginning
of this section, how long would it take to sort an array of 100,000 values?

10. If you double the size of an array, how much longer will the merge sort algo-
rithm take to sort the new array?

The Quicksort Algorithm

Special Topic 14.3 describes the quicksort algorithm, a commonly used algorithm that has an
advantage over merge sort in that no temporary arrays are required to sort and merge the
partial results. On average, the quicksort algorithm is an O(n log(n)) algorithm. Because it is
simpler, it runs faster than merge sort in most cases. However, its worst-case run-time behav-
ior is O(n2).

The First Programmer

Random Fact 14.1 tells the story of Charles Babbage, the builder of a programmable
mechanical calculator, and Ada Lovelace, his friend and sponsor. Lovelace is considered by
many to be the world’s first programmer.

Suppose you need to find your friend’s telephone number. You look up the friend’s
name in the telephone book, and naturally you can find it quickly, because the tele-
phone book is sorted alphabetically. Now suppose you have a telephone number
and you must know to what party it belongs. You could of course call that number,
but suppose nobody picks up on the other end. You could look through the tele-
phone book, a number at a time, until you find the number. That would obviously
be a tremendous amount of work, and you would have to be desperate to attempt it.

This thought experiment shows the difference between a search through an
unsorted data set and a search through a sorted data set. The following two sections
will analyze the difference formally.

If you want to find a number in a sequence of values that occur in arbitrary
order, there is nothing you can do to speed up the search. You must simply look
through all elements until you have found a match or until you reach the end. This
is called a linear or sequential search.

How long does a linear search take? If we assume that the element v is present in
the array a, then the average search visits n/2 elements, where n is the length of the
array. If it is not present, then all n elements must be inspected to verify the absence.
Either way, a linear search is an O(n) algorithm.

Here is a class that performs linear searches through an array a of integers. When
searching for the value v, the search method returns the first index of the match, or -1
if v does not occur in a.

S E L F C H E C K

Special Topic 14.3

Random Fact 14.1

14.6 Searching

A linear search
examines all values
in an array until it
finds a match or
reaches the end.

A linear search
locates a value in an
array in O(n) steps.

14.6 Searching 541

ch14/linsearch/LinearSearcher.java

ch14/linsearch/LinearSearchDemo.java

1 /**
2 A class for executing linear searches through an array.
3 */
4 public class LinearSearcher
5 {
6 private int[] a;
7
8 /**
9 Constructs the LinearSearcher.

10 @param anArray an array of integers
11 */
12 public LinearSearcher(int[] anArray)
13 {
14 a = anArray;
15 }
16
17 /**
18 Finds a value in an array, using the linear search
19 algorithm.
20 @param v the value to search
21 @return the index at which the value occurs, or -1
22 if it does not occur in the array
23 */
24 public int search(int v)
25 {
26 for (int i = 0; i < a.length; i++)
27 {
28 if (a[i] == v)
29 return i;
30 }
31 return -1;
32 }
33 }

1 import java.util.Arrays;
2 import java.util.Scanner;
3
4 /**
5 This program demonstrates the linear search algorithm.
6 */
7 public class LinearSearchDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13 LinearSearcher searcher = new LinearSearcher(a);
14
15 Scanner in = new Scanner(System.in);
16
17 boolean done = false;
18 while (!done)
19 {
20 System.out.print("Enter number to search for, -1 to quit: ");
21 int n = in.nextInt();

542 Chapter 14 Sorting and Searching

Typical Output

11. Suppose you need to look through 1,000,000 records to find a telephone num-
ber. How many records do you expect to search before finding the number?

12. Why can’t you use a “for each” loop for (int element : a) in the search method?

Now let us search for an item in a data sequence that has been previously sorted. Of
course, we could still do a linear search, but it turns out we can do much better than
that.

Consider the following sorted array a. The data set is:

We would like to see whether the value 15 is in the data set. Let’s narrow our search
by finding whether the value is in the first or second half of the array. The last point
in the first half of the data set, a[3], is 9, which is smaller than the value we are
looking for. Hence, we should look in the second half of the array for a match, that
is, in the sequence:

Now the last value of the first half of this sequence is 17; hence, the value must be
located in the sequence:

The last value of the first half of this very short sequence is 12, which is smaller than
the value that we are searching, so we must look in the second half:

22 if (n == -1)
23 done = true;
24 else
25 {
26 int pos = searcher.search(n);
27 System.out.println("Found in position " + pos);
28 }
29 }
30 }
31 }

[46, 99, 45, 57, 64, 95, 81, 69, 11, 97, 6, 85, 61, 88, 29, 65, 83, 88, 45, 88]
Enter number to search for, -1 to quit: 11
Found in position 8

S E L F C H E C K

14.7 Binary Search

1 5 8 9 12 17 20 32

[0][1][2][3][4][5][6][7]

1 5 8 9 12 17 20 32

[0][1][2][3][4][5][6][7]

1 5 8 9 12 17 20 32

[0][1][2][3][4][5][6][7]

1 5 8 9 12 17 20 32

[0][1][2][3][4][5][6][7]

14.7 Binary Search 543

It is trivial to see that we don’t have a match, because 15 ≠ 17. If we wanted to insert
15 into the sequence, we would need to insert it just before a[5].

This search process is called a binary search, because we cut the size of the
search in half in each step. That cutting in half works only because we know that the
sequence of values is sorted.

The following class implements binary searches in a sorted array of integers. The
search method returns the position of the match if the search succeeds, or –1 if v is
not found in a.

ch14/binsearch/BinarySearcher.java

Now let’s determine the number of visits to array elements required to carry out a
binary search. We can use the same technique as in the analysis of merge sort.

A binary search
locates a value in a
sorted array by
determining whether
the value occurs in
the first or second
half, then repeating
the search in one of
the halves.

1 /**
2 A class for executing binary searches through an array.
3 */
4 public class BinarySearcher
5 {
6 private int[] a;
7
8 /**
9 Constructs a BinarySearcher.

10 @param anArray a sorted array of integers
11 */
12 public BinarySearcher(int[] anArray)
13 {
14 a = anArray;
15 }
16
17 /**
18 Finds a value in a sorted array, using the binary
19 search algorithm.
20 @param v the value to search
21 @return the index at which the value occurs, or -1
22 if it does not occur in the array
23 */
24 public int search(int v)
25 {
26 int low = 0;
27 int high = a.length - 1;
28 while (low <= high)
29 {
30 int mid = (low + high) / 2;
31 int diff = a[mid] - v;
32
33 if (diff == 0) // a[mid] == v
34 return mid;
35 else if (diff < 0) // a[mid] < v
36 low = mid + 1;
37 else
38 high = mid - 1;
39 }
40 return -1;
41 }
42 }

544 Chapter 14 Sorting and Searching

Because we look at the middle element, which counts as one visit, and then search
either the left or the right subarray, we have

Using the same equation,

By plugging this result into the original equation, we get

That generalizes to

As in the analysis of merge sort, we make the simplifying assumption that n is a
power of 2, n = 2m, where m = log2(n). Then we obtain

Therefore, binary search is an O(log(n)) algorithm.
That result makes intuitive sense. Suppose that n is 100. Then after each search,

the size of the search range is cut in half, to 50, 25, 12, 6, 3, and 1. After seven com-
parisons we are done. This agrees with our formula, because log2(100) ≈ 6.64386,
and indeed the next larger power of 2 is 27 = 128.

Because a binary search is so much faster than a linear search, is it worthwhile to
sort an array first and then use a binary search? It depends. If you search the array
only once, then it is more efficient to pay for an O(n) linear search than for an
O(n log(n)) sort and an O(log(n)) binary search. But if you will be making many
searches in the same array, then sorting it is definitely worthwhile.

The Arrays class contains a static binarySearch method that implements the binary
search algorithm, but with a useful enhancement. If a value is not found in the array,
then the returned value is not –1, but –k – 1, where k is the position before which
the element should be inserted. For example,

int[] a = { 1, 4, 9 };
int v = 7;
int pos = Arrays.binarySearch(a, v);
 // Returns –3; v should be inserted before position 2

13. Suppose you need to look through a sorted array with 1,000,000 elements to
find a value. Using the binary search algorithm, how many records do you
expect to search before finding the value?

14. Why is it useful that the Arrays.binarySearch method indicates the position
where a missing element should be inserted?

15. Why does Arrays.binarySearch return −k − 1 and not −k to indicate that a value is
not present and should be inserted before position k?

T n T n() =
⎛

⎝
⎜

⎞

⎠
⎟ +

2
1

T n T n
2 4

1
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

T n T n() =
⎛

⎝
⎜

⎞

⎠
⎟ +

4
2

T n T n k
k

() =
⎛

⎝
⎜

⎞

⎠
⎟ +

2

T n n() log ()= +1 2

A binary search
locates a value in a
sorted array in
O(log(n)) steps.

S E L F C H E C K

14.8 Sorting Real Data 545

When you write Java programs, you don’t have to implement your own sorting
algorithms. The Arrays class contains static sort methods to sort arrays of integers
and floating-point numbers. For example, you can sort an array of integers simply
as

int[] a = . . .;
Arrays.sort(a);

That sort method uses the quicksort algorithm—see Special Topic 14.3 for more
information about that algorithm.

Of course, in application programs, there is rarely a need to search through a col-
lection of integers. However, it is easy to modify these techniques to search through
real data.

The Arrays class also supplies a static sort method for sorting arrays of objects.
However, the Arrays class cannot know how to compare arbitrary objects. Suppose,
for example, that you have an array of Coin objects. It is not obvious how the coins
should be sorted. You could sort them by their names, or by their values. The
Arrays.sort method cannot make that decision for you. Instead, it requires that the
objects belong to classes that implement the Comparable interface. That interface has a
single method:

public interface Comparable
{
 int compareTo(Object otherObject);
}

The call
a.compareTo(b)

must return a negative number if a should come before b, 0 if a and b are the same,
and a positive number otherwise.

Several classes in the standard Java library, such as the String and Date classes,
implement the Comparable interface.

You can implement the Comparable interface for your own classes as well. For
example, to sort a collection of coins, the Coin class would need to implement this
interface and declare a compareTo method:

public class Coin implements Comparable
{
 . . .
 public int compareTo(Object otherObject)
 {
 Coin other = (Coin) otherObject;
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
 . . .
}

When you implement the compareTo method of the Comparable interface, you must
make sure that the method defines a total ordering relationship, with the following
three properties:

14.8 Sorting Real Data
The Arrays class
implements a sorting
method that you
should use for your
Java programs.

The sort method of
the Arrays class sorts
objects of classes
that implement the
Comparable interface.

546 Chapter 14 Sorting and Searching

• Antisymmetric: If a.compareTo(b) ≤ 0, then b.compareTo(a) ≥ 0
• Reflexive: a.compareTo(a) = 0
• Transitive: If a.compareTo(b) ≤ 0 and b.compareTo(c) ≤ 0, then a.compareTo(c) ≤ 0

Once your Coin class implements the Comparable interface, you can simply pass an
array of coins to the Arrays.sort method:

Coin[] coins = new Coin[n];
// Add coins
. . .
Arrays.sort(coins);

If the coins are stored in an ArrayList, use the Collections.sort method instead; it
uses the merge sort algorithm:

ArrayList<Coin> coins = new ArrayList<Coin>();
// Add coins
. . .
Collections.sort(coins);

As a practical matter, you should use the sorting and searching methods in the
Arrays and Collections classes and not those that you write yourself. The library
algorithms have been fully debugged and optimized. Thus, the primary purpose of
this chapter was not to teach you how to implement practical sorting and searching
algorithms. Instead, you have learned something more important, namely that dif-
ferent algorithms can vary widely in performance, and that it is worthwhile to learn
more about the design and analysis of algorithms.

16. Why can’t the Arrays.sort method sort an array of Rectangle objects?
17. What steps would you need to take to sort an array of BankAccount objects by

increasing balance?

The compareTo Method Can Return Any Integer,
Not Just –1, 0, and 1

The call a.compareTo(b) is allowed to return any negative integer to denote that a should come
before b, not necessarily the value −1. That is, the test

if (a.compareTo(b) == -1) // ERROR!

is generally wrong. Instead, you should test

if (a.compareTo(b) < 0) // OK

Why would a compareTo method ever want to return a number other than −1, 0, or 1? Some-
times, it is convenient to just return the difference of two integers. For example, the compareTo
method of the String class compares characters in matching positions:

char c1 = charAt(i);
char c2 = other.charAt(i);

If the characters are different, then the method simply returns their difference:

if (c1 != c2) return c1 - c2;

This difference is a negative number if c1 is less than c2, but it is not necessarily the number −1.

The Collections
class contains a sort
method that can sort
array lists.

S E L F C H E C K

Common Error 14.1

Summary of Learning Objectives 547

The Parameterized Comparable Interface

As of Java version 5, the Comparable interface is a parameterized type, similar to the ArrayList
type:

public interface Comparable<T>
{
 int compareTo(T other)
}

The type parameter specifies the type of the objects that this class is willing to accept for
comparison. Usually, this type is the same as the class type itself. For example, the Coin class
would implement Comparable<Coin>, like this:

public class Coin implements Comparable<Coin>
{
 . . .
 public int compareTo(Coin other)
 {
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
 . . .
}

The type parameter has a significant advantage: You need not use a cast to convert an Object
parameter into the desired type.

The Comparator Interface

Special Topic 14.5 describes the Comparator interface. You want to use a Comparator to sort
objects of classes that don’t implement the compareTo method at all, or don’t implement the
comparison that you want to use.

Describe the selection sort algorithm.

• The selection sort algorithm sorts an array by repeatedly finding the smallest
element of the unsorted tail region and moving it to the front.

Measure the running time of a method.

• To measure the running time of a method, get the current time immediately before
and after the method call.

Special Topic 14.4

Special Topic 14.5

Summary of Learning Objectives

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

548 Chapter 14 Sorting and Searching

Use the big-Oh notation to describe the running time of an algorithm.

• Computer scientists use the big-Oh notation f(n) = O(g(n)) to express that the
function f grows no faster than the function g.

• Selection sort is an O(n2) algorithm. Doubling the data set means a fourfold
increase in processing time.

Describe the merge sort algorithm.

• The merge sort algorithm sorts an array by cutting the array in half, recursively
sorting each half, and then merging the sorted halves.

Contrast the running times of the merge sort and selection sort algorithms.

• Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more
slowly than n2.

Describe the linear search algorithm and its running time.

• A linear search examines all values in an array until it finds a match or reaches the end.
• A linear search locates a value in an array in O(n) steps.

Describe the binary search algorithm and its running time.

• A binary search locates a value in a sorted array by determining whether the value
occurs in the first or second half, then repeating the search in one of the halves.

• A binary search locates a value in a sorted array in O(log(n)) steps.

Use the Java library methods for sorting data.

• The Arrays class implements a sorting method that you should use for your Java
programs.

• The sort method of the Arrays class sorts objects of classes that implement the
Comparable interface.

• The Collections class contains a sort method that can sort array lists.

• Lab Exercises
Practice Quiz
Code Completion Exercises

Classes, Objects, and Methods Introduced in this Chapter
java.lang.Comparable<T>

compareTo
java.lang.System

currentTimeMillis
java.util.Arrays

binarySearch
sort
toString

java.util.Collections
binarySearch
sort

java.util.Comparator<T>
compare

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises 549

R14.1 What is the difference between searching and sorting?

R14.2 Checking against off-by-one errors. When writing the selection sort algorithm of
Section 14.1, a programmer must make the usual choices of < against <=, a.length
against a.length - 1, and from against from + 1. This is a fertile ground for off-by-one
errors. Conduct code walkthroughs of the algorithm with arrays of length 0, 1, 2,
and 3 and check carefully that all index values are correct.

R14.3 For the following expressions, what is the order of the growth of each?
a. n2 + 2n + 1

b. n10 + 9n9 + 20n8 + 145n7

c. (n + 1)4

d. (n2 + n)2

e. n + 0.001n3

f. n3 − 1000n2 + 109

g. n + log(n)

h. n2 + n log(n)

i. 2n + n2

j.

R14.4 We determined that the actual number of visits in the selection sort algorithm is

We characterized this method as having O(n2) growth. Compute the actual ratios

and compare them with

where f (n) = n2.

R14.5 Suppose algorithm A takes 5 seconds to handle a data set of 1,000 records. If the
algorithm A is an O(n) algorithm, how long will it take to handle a data set of 2,000
records? Of 10,000 records?

Review Exercises

n n

n

3

2
2

0 75

+
+ .

T n n n() = + −1
2

2 5
2

3

T T

T T

T T

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()

() ,,000()

f f

f f

f f

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()

() ,,000()

550 Chapter 14 Sorting and Searching

R14.6 Suppose an algorithm takes 5 seconds to handle a data set of 1,000 records. Fill in
the following table, which shows the approximate growth of the execution times
depending on the complexity of the algorithm.

For example, because , the algorithm would take 9 times as long,
or 45 seconds, to handle a data set of 3,000 records.

R14.7 Sort the following growth rates from slowest to fastest growth.

R14.8 What is the growth rate of the standard algorithm to find the minimum value of an
array? Of finding both the minimum and the maximum?

R14.9 What is the growth rate of the following method?
public static int count(int[] a, int c)
{
 int count = 0;

 for (int i = 0; i < a.length; i++)
 {
 if (a[i] == c) count++;
 }
 return count;
}

R14.10 Your task is to remove all duplicates from an array. For example, if the array has the
values

4 7 11 4 9 5 11 7 3 5

then the array should be changed to

4 7 11 9 5 3

Here is a simple algorithm. Look at a[i]. Count how many times it occurs in a. If
the count is larger than 1, remove it. What is the growth rate of the time required
for this algorithm?

 O(n) O(n2) O(n3) O(n log(n)) O(2n)

1,000 5 5 5 5 5

2,000

3,000 45

10,000

3 000 1 000 92 2, , =

O n O n n

O n O

O n O n

O n O

n

n

() (log())

() ()

() ()

(log())

3 2

(()

(log()) ()log()

n n

O n n O n n2

Programming Exercises 551

R14.11 Consider the following algorithm to remove all duplicates from an array. Sort the
array. For each element in the array, look at its next neighbor to decide whether it is
present more than once. If so, remove it. Is this a faster algorithm than the one in
Exercise R14.10?

R14.12 Develop an O(n log (n)) algorithm for removing duplicates from an array if the
resulting array must have the same ordering as the original array.

R14.13 Why does insertion sort perform significantly better than selection sort if an array
is already sorted?

R14.14 Consider the following speedup of the insertion sort algorithm of Special Topic
14.1. For each element, use the enhanced binary search algorithm that yields the
insertion position for missing elements. Does this speedup have a significant impact
on the efficiency of the algorithm?

P14.1 Modify the selection sort algorithm to sort an array of integers in descending order.

P14.2 Modify the selection sort algorithm to sort an array of coins by their value.

P14.3 Write a program that generates the table of sample runs of the selection sort times
automatically. The program should ask for the smallest and largest value of n and
the number of measurements and then make all sample runs.

P14.4 Modify the merge sort algorithm to sort an array of strings in lexicographic order.

P14.5 Write a telephone lookup program. Read a data set of 1,000 names and telephone
numbers from a file that contains the numbers in random order. Handle lookups by
name and also reverse lookups by phone number. Use a binary search for both
lookups.

P14.6 Implement a program that measures the performance of the insertion sort algorithm
described in Special Topic 14.1.

P14.7 Write a program that sorts an ArrayList<Coin> in decreasing order so that the most
valuable coin is at the beginning of the array. Use a Comparator.

P14.8 Consider the binary search algorithm in Section 14.7. If no match is found, the
search method returns −1. Modify the method so that if a is not found, the method
returns −k − 1, where k is the position before which the element should be inserted.
(This is the same behavior as Arrays.binarySearch.)

P14.9 Implement the sort method of the merge sort algorithm without recursion, where
the length of the array is a power of 2. First merge adjacent regions of size 1, then
adjacent regions of size 2, then adjacent regions of size 4, and so on.

P14.10 Implement the sort method of the merge sort algorithm without recursion, where
the length of the array is an arbitrary number. Keep merging adjacent regions whose
size is a power of 2, and pay special attention to the last area whose size is less.

Programming Exercises

552 Chapter 14 Sorting and Searching

P14.11 Use insertion sort and the binary search from Exercise P14.8 to sort an array as
described in Exercise R14.14. Implement this algorithm and measure its
performance.

P14.12 Supply a class Person that implements the Comparable interface. Compare persons by
their names. Ask the user to input 10 names and generate 10 Person objects. Using
the compareTo method, determine the first and last person among them and print
them.

P14.13 Sort an array list of strings by increasing length. Hint: Supply a Comparator.

P14.14 Sort an array list of strings by increasing length, and so that strings of the same
length are sorted lexicographically. Hint: Supply a Comparator.

Project 14.1 Write a program that keeps an appointment book. Make a class Appointment that
stores a description of the appointment, the appointment day, the starting time, and
the ending time. Your program should keep the appointments in a sorted array list.
Users can add appointments and print out all appointments for a given day. When a
new appointment is added, use binary search to find where it should be inserted in
the array list. Do not add it if it conflicts with another appointment.

Project 14.2 Implement a graphical animation of sorting and searching algorithms. Fill an array
with a set of random numbers between 1 and 100. Draw each array element as a bar,
as in Figure 3. Whenever the algorithm changes the array, wait for the user to click
the Step button, then call the repaint method. The Run button should run the ani-
mation until the animation has finished or the user clicks the Step button again.
Animate selection sort, merge sort, and binary search. In the binary search anima-
tion, highlight the currently inspected element and the current values of from and to.

Programming Projects

Figure 3
Graphical Animation

Answers to Self-Check Questions 553

1. Dropping the temp variable would not work. Then a[i] and a[j] would end up being
the same value.

2. 1 | 5 4 3 2 6, 1 2 | 4 3 5 6, 1 2 3 4 5 6
3. Four times as long as 40,000 values, or about 50 seconds.
4. A parabola.
5. It takes about 100 times longer.
6. If n is 4, then is 8 and is 7.
7. When the preceding while loop ends, the loop condition must be false, that is,

iFirst >= first.length or iSecond >= second.length (De Morgan’s Law).
8. First sort 8 7 6 5. Recursively, first sort 8 7. Recursively, first sort 8. It’s sorted. Sort

7. It’s sorted. Merge them: 7 8. Do the same with 6 5 to get 5 6. Merge them to 5 6 7
8. Do the same with 4 3 2 1: Sort 4 3 by sorting 4 and 3 and merging them to 3 4.
Sort 2 1 by sorting 2 and 1 and merging them to 1 2. Merge 3 4 and 1 2 to 1 2 3 4.
Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2 3 4 5 6 7 8.

9. Approximately 100,000 · log(100,000) / 50,000 · log(50,000) = 2 · 5 / 4.7 = 2.13 times
the time required for 50,000 values. That’s 2.13 · 97 milliseconds or approximately
207 milliseconds.

10. For n > 2, that is a value < 3.

11. On average, you’d make 500,000 comparisons.
12. The search method returns the index at which the match occurs, not the data stored

at that location.
13. You would search about 20. (The binary log of 1,024 is 10.)
14. Then you know where to insert it so that the array stays sorted, and you can keep

using binary search.
15. Otherwise, you would not know whether a value is present when the method

returns 0.
16. The Rectangle class does not implement the Comparable interface.
17. The BankAccount class would need to implement the Comparable interface. Its compareTo

method must compare the bank balances.

Answers to Self-Check Questions

1
2

2n 5
2

3n −

2 2
2

1 2n n
n n n

log()
log()

(log()
log()

=
+

This page intentionally left blank

555

Chapter15
An Introduction to

Data Structures

CHAPTER GOALS
• To learn how to use the linked lists provided in the standard library

• To be able to use iterators to traverse linked lists

• To understand the implementation of linked lists

• To distinguish between abstract and concrete data types

• To know the efficiency of fundamental operations of
lists and arrays

• To become familiar with the stack and queue data types

Up to this point, we have used arrays as a one-size-fits-all mechanism

for collecting objects. However, computer scientists have developed many different data structures

that have varying performance tradeoffs. In this chapter, you will learn about the linked list, a data

structure that allows you to add and remove elements efficiently, without moving any existing

elements. You will also learn about the distinction between concrete and abstract data types. An

abstract type spells out the fundamental operations that should be supported efficiently, but it leaves

the implementation unspecified. The stack and queue types, introduced at the end of this chapter, are

examples of abstract types.

556

CHAPTER CONTENTS

A linked list is a data structure used for collecting a sequence of objects that allows
efficient addition and removal of elements in the middle of the sequence.

To understand the need for such a data structure, imagine a program that main-
tains a sequence of employee objects, sorted by the last names of the employees.
When a new employee is hired, an object needs to be inserted into the sequence.
Unless the company happened to hire employees in alphabetical order, the new
object probably needs to be inserted somewhere near the middle of the sequence. If
we use an array to store the objects, then all objects following the new hire must be
moved toward the end.

Conversely, if an employee leaves the company, the object must be removed, and
the hole in the sequence needs to be closed up by moving all objects that come after
it. Moving a large number of values can involve a substantial amount of processing
time. We would like to structure the data in a way that minimizes this cost.

Rather than storing the values in an array, a linked list uses a sequence of nodes.
Each node stores a value and a reference to the next node in the sequence (see
Figure 1). When you insert a new node into a linked list, only the neighboring node
references need to be updated. The same is true when you remove a node. What’s
the catch? Linked lists allow speedy insertion and removal, but element access can
be slow.

15.1 Using Linked Lists

A linked list consists
of a number of
nodes, each of which
has a reference to
the next node.

Figure 1 Inserting an Element into a Linked List

LinkedList<String> Node<String>

Diana

Node<String>

Harry

Node<String>

Romeo

Node<String>

null

Tom

Node<String>

Juliet

15.1 Using Linked Lists 556
SPECIAL TOPIC 15.1: The Iterable Interface and the

“For Each” Loop

15.2 Implementing Linked Lists 561
SPECIAL TOPIC 15.2: Static Inner Classes

15.3 Abstract Data Types 572
RANDOM FACT 15.1: Standardization

15.4 Stacks and Queues 575
WORKED EXAMPLE 15.1: A Reverse Polish

Notation Calculator

RANDOM FACT 15.2: Reverse Polish Notation 578

15.1 Using Linked Lists 557

For example, suppose you want to locate the fifth element. You must first
traverse the first four. This is a problem if you need to access the elements in arbi-
trary order. The term “random access” is used in computer science to describe an
access pattern in which elements are accessed in arbitrary (not necessarily random)
order. In contrast, sequential access visits the elements in sequence. For example, a
binary search requires random access, whereas a linear search requires sequential
access.

Of course, if you mostly visit all elements in sequence (for example, to display or
print the elements), you don’t need to use random access. Use linked lists when you
are concerned about the efficiency of inserting or removing elements and you rarely
need element access in random order.

The Java library provides a linked list class. In this section you will learn how to
use that library class. In the next section you will peek under the hood and see how
some of its key methods are implemented.

The LinkedList class in the java.util package is a generic class, just like the Array-
List class. That is, you specify the type of the list elements in angle brackets, such as
LinkedList<String> or LinkedList<Product>.

The methods shown in Table 1 give you direct access to the first and the last ele-
ment in the list.

How do you add and remove elements in the middle of the list? The list will not
give you references to the nodes. If you had direct access to them and somehow
messed them up, you would break the linked list. As you will see in the next sec-
tion, when you implement some of the linked list operations yourself, keeping all
links between nodes intact is not trivial.

Instead, the Java library supplies a ListIterator type. A list iterator describes a
position anywhere inside the linked list (see Figure 2).

Adding and
removing elements
in the middle of a
linked list is efficient.

Visiting the elements
of a linked list in
sequential order is
efficient, but random
access is not.

You use a list iterator
to access elements
inside a linked list.

Table 1 LinkedList Methods

LinkedList<String> lst = new LinkedList<String>(); An empty list.

lst.addLast("Harry") Adds an element to the end of the list. Same as add.

lst.addFirst("Sally") Adds an element to the beginning of the list. lst is now
[Sally, Harry].

lst.getFirst() Gets the element stored at the beginning of the list;
here "Sally".

lst.getLast() Gets the element stored at the end of the list; here "Harry".

String removed = lst.removeFirst(); Removes the first element of the list and returns it. removed
is "Sally" and lst is [Harry]. Use removeLast to remove the
last element.

ListIterator<String> iter = lst.listIterator() Provides an iterator for visiting all list elements (see Table 2
on page 560).

558 Chapter 15 An Introduction to Data Structures

Conceptually, you should think of the iterator as pointing between two ele-
ments, just as the cursor in a word processor points between two characters (see
Figure 3). In the conceptual view, think of each element as being like a letter in a
word processor, and think of the iterator as being like the blinking cursor between
letters.

You obtain a list iterator with the listIterator method of the LinkedList class:
LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator = employeeNames.listIterator();

Note that the iterator class is also a generic type. A ListIterator<String> iterates
through a list of strings; a ListIterator<Product> visits the elements in a
LinkedList<Product>.

Initially, the iterator points before the first element. You can move the iterator
position with the next method:

iterator.next();

The next method throws a NoSuchElementException if you are already past the end of
the list. You should always call the method hasNext before calling next—it returns
true if there is a next element.

if (iterator.hasNext())
 iterator.next();

The next method returns the element that the iterator is passing. When you use a
ListIterator<String>, the return type of the next method is String. In general, the
return type of the next method matches the type parameter of the list.

You traverse all elements in a linked list of strings with the following loop:
while (iterator.hasNext())
{
 String name = iterator.next();

Do something with name
}

As a shorthand, if your loop simply visits all elements of the linked list, you can use
the “for each” loop:

for (String name : employeeNames)
{

Do something with name
}

Figure 2 A List Iterator

LinkedList<String> Node<String>

Diana

Node<String>

Harry

Node<String>

Romeo

Node<String>

null

Tom

ListIterator<String>

15.1 Using Linked Lists 559

Then you don’t have to worry about iterators at all. Behind the scenes, the for loop
uses an iterator to visit all list elements (see Special Topic 15.1).

The nodes of the LinkedList class store two links: one to the next element and one
to the previous one. Such a list is called a doubly linked list. You can use the previ-
ous and hasPrevious methods of the ListIterator interface to move the iterator posi-
tion backwards.

The add method adds an object after the iterator, then moves the iterator position
past the new element.

iterator.add("Juliet");

You can visualize insertion to be like typing text in a word processor. Each charac-
ter is inserted after the cursor, and then the cursor moves past the inserted character
(see Figure 3). Most people never pay much attention to this—you may want to try
it out and watch carefully how your word processor inserts characters.

The remove method removes the object that was returned by the last call to next or
previous. For example, the following loop removes all names that fulfill a certain
condition:

while (iterator.hasNext())
{
 String name = iterator.next();
 if (name fulfills condition)
 iterator.remove();
}

You have to be careful when using the remove method. It can be called only once
after calling next or previous. The following is an error:

iterator.next();
iterator.next();
iterator.remove();
iterator.remove(); // Error: You cannot call remove twice.

You cannot call remove immediately after a call to add:
iter.add("Fred");
iter.remove(); // Error: Can only call remove after calling next or previous

If you call the remove method improperly, it throws an IllegalStateException.
Table 2 summarizes the methods of the ListIterator interface.

Figure 3 A Conceptual View of the List Iterator

D H R TInitial ListIterator position

D H R TAfter calling next

D H R TAfter inserting J J

A N I M AT I O N
List Iterators

560 Chapter 15 An Introduction to Data Structures

Here is a sample program that inserts strings into a list and then iterates through
the list, adding and removing elements. Finally, the entire list is printed. The com-
ments indicate the iterator position.

ch15/uselist/ListTester.java

Table 2 Methods of the ListIterator Interface

String s = iter.next(); Assume that iter points to the beginning of the list [Sally] before calling
next. After the call, s is "Sally" and the iterator points to the end.

iter.hasNext() Returns false because the iterator is at the end of the collection.

if (iter.hasPrevious())
{
 s = iter.previous();
}

hasPrevious returns true because the iterator is not at the beginning
of the list.

iter.add("Diana"); Adds an element before the iterator position.
The list is now [Diana, Sally].

iter.next();
iter.remove();

remove removes the last element returned by next or previous.
The list is again [Diana].

1 import java.util.LinkedList;
2 import java.util.ListIterator;
3
4 /**
5 A program that tests the LinkedList class.
6 */
7 public class ListTester
8 {
9 public static void main(String[] args)

10 {
11 LinkedList<String> staff = new LinkedList<String>();
12 staff.addLast("Diana");
13 staff.addLast("Harry");
14 staff.addLast("Romeo");
15 staff.addLast("Tom");
16
17 // | in the comments indicates the iterator position
18
19 ListIterator<String> iterator = staff.listIterator(); // |DHRT
20 iterator.next(); // D|HRT
21 iterator.next(); // DH|RT
22
23 // Add more elements after second element
24
25 iterator.add("Juliet"); // DHJ|RT
26 iterator.add("Nina"); // DHJN|RT
27
28 iterator.next(); // DHJNR|T
29
30 // Remove last traversed element
31
32 iterator.remove(); // DHJN|T

15.2 Implementing Linked Lists 561

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Program Run

1. Do linked lists take more storage space than arrays of the same size?
2. Why don’t we need iterators with arrays?

The Iterable Interface and the “For Each” Loop

Special Topic 15.1 discusses the Iterable interface. The “for each” loop can be applied to any
object that implements the Iterable interface.

In the last section you saw how to use the linked list class supplied by the Java
library. In this section, we will look at the implementation of a simplified version of
this class. This shows you how the list operations manipulate the links as the list is
modified.

To keep this sample code simple, we will not implement all methods of the linked
list class. We will implement only a singly linked list, and the list class will supply
direct access only to the first list element, not the last one. Our list will not use a
type parameter. We will simply store raw Object values and insert casts when retriev-
ing them. The result will be a fully functional list class that shows how the links are
updated in the add and remove operations and how the iterator traverses the list.

A Node object stores an object and a reference to the next node. Because the meth-
ods of both the linked list class and the iterator class have frequent access to the Node
instance variables, we do not make the instance variables of the Node class private.
Instead, we make Node a private inner class of the LinkedList class. Because none of
the LinkedList methods returns a Node object, it is safe to leave the instance variables
public.

public class LinkedList
{
 . . .

class Node
{

33
34 // Print all elements
35
36 for (String name : staff)
37 System.out.print(name + " ");
38 System.out.println();
39 System.out.println("Expected: Diana Harry Juliet Nina Tom");
40 }
41 }

Diana Harry Juliet Nina Tom
Expected: Diana Harry Juliet Nina Tom

S E L F C H E C K

Special Topic 15.1

15.2 Implementing Linked Lists

562 Chapter 15 An Introduction to Data Structures

public Object data;
public Node next;

}
}

Our LinkedList class holds a reference first to the first node (or null, if the list is
completely empty).

public class LinkedList
{

private Node first;
 . . .
 public LinkedList()
 {
 first = null;
 }

 public Object getFirst()
 {
 if (first == null)
 throw new NoSuchElementException();
 return first.data;
 }
}

Now let us turn to the addFirst method (see Figure 4). When a new node is added to
the list, it becomes the head of the list, and the node that was the old list head
becomes its next node:

public class LinkedList
{
 . . .
 public void addFirst(Object element)
 {
 Node newNode = new Node();
 newNode.data = element;
 newNode.next = first;
 first = newNode;
 }
 . . .
}

Figure 4 Adding a Node to the Head of a Linked List

A linked list object
holds a reference to
the first node, and
each node holds a
reference to the
next node.

1

2
3

newNode =

data =

Node

next =

Amy

first =

LinkedList

data =

Node

next =

Diana

1

Before insertion

15.2 Implementing Linked Lists 563

Removing the first element of the list works as follows. The data of the first node
are saved and later returned as the method result. The successor of the first node
becomes the first node of the shorter list (see Figure 5). Then there are no further
references to the old node, and the garbage collector will eventually recycle it.

public class LinkedList
{
 . . .
 public Object removeFirst()
 {
 if (first == null) throw new NoSuchElementException();
 Object element = first.data;
 first = first.next;
 return element;
 }
 . . .
}

Figure 4 (continued) Adding a Node to the Head of a Linked List

newNode =

data =

Node

next =

Amy

first =

LinkedList

data =

Node

next =

Diana

2

3

After insertion

1

Figure 5 Removing the First Node from a Linked List

first =

LinkedList

data =

Node

next =

Amy data =

Node

next =

Diana

Before removal

first =

LinkedList

data =

Node

next =

Amy data =

Node

next =

Diana

1

After removal

564 Chapter 15 An Introduction to Data Structures

Next, we need to implement the iterator class. The ListIterator interface in the stan-
dard library declares nine methods. We omit four of them (the methods that move
the iterator backwards and the methods that report an integer index of the iterator).

Our LinkedList class declares a private inner class LinkedListIterator, which imple-
ments our simplified ListIterator interface. Because LinkedListIterator is an inner
class, it has access to the private features of the LinkedList class—in particular, the
instance variable first and the private Node class.

Note that clients of the LinkedList class don’t actually know the name of the iter-
ator class. They only know it is a class that implements the ListIterator interface.

public class LinkedList
{
 . . .
 public ListIterator listIterator()
 {
 return new LinkedListIterator();
 }

 class LinkedListIterator implements ListIterator
 {
 private Node position;
 private Node previous;
 . . .
 public LinkedListIterator()
 {
 position = null;
 previous = null;
 }
 }
 . . .
}

Each iterator object has a reference, position, to the last visited node. We also store a
reference to the last node before that, previous. We will need that reference to adjust
the links properly in the remove method.

The next method is simple. The position reference is advanced to position.next,
and the old position is remembered in previous. There is a special case, however—if
the iterator points before the first element of the list, then the old position is null,
and position must be set to first.

class LinkedListIterator implements ListIterator
{
 . . .
 public Object next()
 {
 if (!hasNext())
 throw new NoSuchElementException();
 previous = position; // Remember for remove

 if (position == null)
 position = first;
 else
 position = position.next;

 return position.data;
 }
 . . .
}

The next method is supposed to be called only when the iterator is not yet at the end
of the list, so we declare the hasNext method accordingly. The iterator is at the end if

A list iterator object
has a reference to
the last visited node.

15.2 Implementing Linked Lists 565

the list is empty (that is, first == null) or if there is no element after the current
position (position.next == null).

class LinkedListIterator implements ListIterator
{
 . . .
 public boolean hasNext()
 {
 if (position == null)
 return first != null;
 else
 return position.next != null;
 }
 . . .
}

The set method changes the data stored in the previously visited element. Its imple-
mentation is straightforward because our linked lists can be traversed in only one
direction. The linked list implementation of the standard library must keep track of
whether the last iterator movement was forward or backward. For that reason, the
standard library forbids a call to the set method following an add or remove method.
That restriction is unnecessary in our implementation, and we do not enforce it.

public void set(Object element)
{
 if (position == null)
 throw new NoSuchElementException();
 position.data = element;
}

Removing the last visited node is more involved. If the element to be removed is the
first element, we just call removeFirst. Otherwise, an element in the middle of the list
must be removed, and the node preceding it needs to have its next reference updated
to skip the removed element (see Figure 6). If the previous reference equals position,
then this call to remove does not immediately follow a call to next, and we throw an
IllegalStateException.

According to the declaration of the remove method, it is illegal to call remove twice
in a row. Therefore, the remove method sets the position reference to previous.

class LinkedListIterator implements ListIterator
{
 . . .
 public void remove()
 {
 if (previous == position)
 throw new IllegalStateException();
 if (position == first)
 {
 removeFirst();
 }
 else
 {
 previous.next = position.next;
 }
 position = previous;
 }
 . . .
}

Implementing
operations that
modify a linked list
is challenging—
you need to make
sure that you
update all node
references correctly.

1

2

566 Chapter 15 An Introduction to Data Structures

Finally, the most complex operation is the addition of a node. You insert the new
node after the node last visited by the iterator (see Figure 7).

class LinkedListIterator implements ListIterator
{
 . . .
 public void add(Object element)
 {
 if (position == null)
 {
 addFirst(element);
 position = first;
 }

Figure 6 Removing a Node from the Middle of a Linked List

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

previous =

ListIterator

position =

Before removal

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

previous =

ListIterator

position =

12

After removal

15.2 Implementing Linked Lists 567

 else
 {
 Node newNode = new Node();
 newNode.data = element;
 newNode.next = position.next;
 position.next = newNode;
 position = newNode;
 }
 previous = position;
 }
 . . .
}

1
2

3

4

Figure 7 Adding a Node to the Middle of a Linked List

Before insertion

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

previous =

ListIterator

position =

newNode = data =

Node

next =

Juliet

After insertion

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

previous =

ListIterator

position =

newNode = data =

Node

next =

Juliet

1

2

3
4

568 Chapter 15 An Introduction to Data Structures

At the end of this section is the complete implementation of our LinkedList class.
You now know how to use the LinkedList class in the Java library, and you have

had a peek “under the hood” to see how linked lists are implemented.

ch15/impllist/LinkedList.java

1 import java.util.NoSuchElementException;
2
3 /**
4 A linked list is a sequence of nodes with efficient
5 element insertion and removal. This class
6 contains a subset of the methods of the standard
7 java.util.LinkedList class.
8 */
9 public class LinkedList

10 {
11 private Node first;
12
13 /**
14 Constructs an empty linked list.
15 */
16 public LinkedList()
17 {
18 first = null;
19 }
20
21 /**
22 Returns the first element in the linked list.
23 @return the first element in the linked list
24 */
25 public Object getFirst()
26 {
27 if (first == null)
28 throw new NoSuchElementException();
29 return first.data;
30 }
31
32 /**
33 Removes the first element in the linked list.
34 @return the removed element
35 */
36 public Object removeFirst()
37 {
38 if (first == null)
39 throw new NoSuchElementException();
40 Object element = first.data;
41 first = first.next;
42 return element;
43 }
44
45 /**
46 Adds an element to the front of the linked list.
47 @param element the element to add
48 */
49 public void addFirst(Object element)
50 {
51 Node newNode = new Node();
52 newNode.data = element;
53 newNode.next = first;

15.2 Implementing Linked Lists 569

54 first = newNode;
55 }
56
57 /**
58 Returns an iterator for iterating through this list.
59 @return an iterator for iterating through this list
60 */
61 public ListIterator listIterator()
62 {
63 return new LinkedListIterator();
64 }
65
66 class Node
67 {
68 public Object data;
69 public Node next;
70 }
71
72 class LinkedListIterator implements ListIterator
73 {
74 private Node position;
75 private Node previous;
76
77 /**
78 Constructs an iterator that points to the front
79 of the linked list.
80 */
81 public LinkedListIterator()
82 {
83 position = null;
84 previous = null;
85 }
86
87 /**
88 Moves the iterator past the next element.
89 @return the traversed element
90 */
91 public Object next()
92 {
93 if (!hasNext())
94 throw new NoSuchElementException();
95 previous = position; // Remember for remove
96
97 if (position == null)
98 position = first;
99 else

100 position = position.next;
101
102 return position.data;
103 }
104
105 /**
106 Tests if there is an element after the iterator position.
107 @return true if there is an element after the iterator position
108 */
109 public boolean hasNext()
110 {
111 if (position == null)
112 return first != null;

570 Chapter 15 An Introduction to Data Structures

113 else
114 return position.next != null;
115 }
116
117 /**
118 Adds an element before the iterator position
119 and moves the iterator past the inserted element.
120 @param element the element to add
121 */
122 public void add(Object element)
123 {
124 if (position == null)
125 {
126 addFirst(element);
127 position = first;
128 }
129 else
130 {
131 Node newNode = new Node();
132 newNode.data = element;
133 newNode.next = position.next;
134 position.next = newNode;
135 position = newNode;
136 }
137 previous = position;
138 }
139
140 /**
141 Removes the last traversed element. This method may
142 only be called after a call to the next() method.
143 */
144 public void remove()
145 {
146 if (previous == position)
147 throw new IllegalStateException();
148
149 if (position == first)
150 {
151 removeFirst();
152 }
153 else
154 {
155 previous.next = position.next;
156 }
157 position = previous;
158 }
159
160 /**
161 Sets the last traversed element to a different value.
162 @param element the element to set
163 */
164 public void set(Object element)
165 {
166 if (position == null)
167 throw new NoSuchElementException();
168 position.data = element;
169 }
170 }
171 }

15.2 Implementing Linked Lists 571

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

ch15/impllist/ListIterator.java

3. Trace through the addFirst method when adding an element to an empty list.
4. Conceptually, an iterator points between elements (see Figure 3). Does the

position reference point to the element to the left or to the element to the right?
5. Why does the add method have two separate cases?

Static Inner Classes

Special Topic 15.2 shows how you can make the inner Node class slightly more efficient by
declaring it as a static inner class.

1 /**
2 A list iterator allows access to a position in a linked list.
3 This interface contains a subset of the methods of the
4 standard java.util.ListIterator interface. The methods for
5 backward traversal are not included.
6 */
7 public interface ListIterator
8 {
9 /**

10 Moves the iterator past the next element.
11 @return the traversed element
12 */
13 Object next();
14
15 /**
16 Tests if there is an element after the iterator position.
17 @return true if there is an element after the iterator position
18 */
19 boolean hasNext();
20
21 /**
22 Adds an element before the iterator position
23 and moves the iterator past the inserted element.
24 @param element the element to add
25 */
26 void add(Object element);
27
28 /**
29 Removes the last traversed element. This method may
30 only be called after a call to the next() method.
31 */
32 void remove();
33
34 /**
35 Sets the last traversed element to a different value.
36 @param element the element to set
37 */
38 void set(Object element);
39 }

S E L F C H E C K

Special Topic 15.2

572 Chapter 15 An Introduction to Data Structures

There are two ways of looking at a linked list. One way is to think of the concrete
implementation of such a list as a sequence of node objects with links between them
(see Figure 8).

On the other hand, you can think of the abstract concept that underlies the
linked list. In the abstract, a linked list is an ordered sequence of data items that can
be traversed with an iterator (see Figure 9).

Similarly, there are two ways of looking at an array list. Of course, an array list
has a concrete implementation: a partially filled array of object references (see
Figure 10). But you don’t usually think about the concrete implementation when
using an array list. You take the abstract point of view. An array list is an ordered
sequence of data items, each of which can be accessed by an integer index (see
Figure 11).

The concrete implementations of a linked list and an array list are quite different.
The abstractions, on the other hand, seem to be similar at first glance. To see the dif-
ference, consider the public interfaces stripped down to their minimal essentials.

An array list allows random access to all elements. You specify an integer index,
and you can get or set the corresponding element.

public class ArrayList
{
 . . .
 public Object get(int index) { . . . }
 public void set(int index, Object element) { . . . }
 . . .
}

With a linked list, on the other hand, element access is a bit more complex. A linked
list allows sequential access. You need to ask the linked list for an iterator. Using
that iterator, you can easily traverse the list elements one at a time. But if you want

15.3 Abstract Data Types

An abstract data type
defines the
fundamental
operations on the
data but does not
specify an
implementation.

Figure 8 A Concrete View of a Linked List

Node

LinkedList

Node Node

null

Figure 9 An Abstract View of a List

15.3 Abstract Data Types 573

to go to a particular element, say the 100th one, you first have to skip all elements
before it.

public class LinkedList
{
 . . .
 public ListIterator listIterator() { . . . }
 . . .
}

public interface ListIterator
{
 Object next();
 boolean hasNext();
 void add(Object element);
 void remove();
 void set(Object element);
 . . .
}

Here we show only the fundamental operations on array lists and linked lists.
Other operations can be composed from these fundamental operations. For exam-
ple, you can add or remove an element in an array list by moving all elements
beyond the insertion or removal index, calling get and set multiple times.

Of course, the ArrayList class has methods to add and remove elements in the
middle, even if they are slow. Conversely, the LinkedList class has get and set meth-
ods that let you access any element in the linked list, albeit very inefficiently, by
performing repeated sequential accesses.

In fact, the term ArrayList signifies that its implementors wanted to combine the
interfaces of an array and a list. Somewhat confusingly, both the ArrayList and the
LinkedList class implement an interface called List that declares operations both for
random access and for sequential access.

That terminology is not in common use outside the Java library. Instead, let us
adopt a more traditional terminology. We will call the abstract types array and list.

Figure 10 A Concrete View of an Array List

Object[]j

ArrayListy

Figure 11 An Abstract View of an Array

[0] [1] [2] [3] [4]

574 Chapter 15 An Introduction to Data Structures

The Java library provides concrete implementations ArrayList and LinkedList for
these abstract types. Other concrete implementations are possible in other libraries.
In fact, Java arrays are another implementation of the abstract array type.

To understand an abstract data type completely, you need to know not just its
fundamental operations but also their relative efficiency.

In an abstract list, an element can be added or removed in constant time (assum-
ing that the iterator is already in the right position). A fixed number of node refer-
ences need to be modified to add or remove a node, regardless of the size of the list.
Using the big-Oh notation, an operation that requires a bounded amount of time,
regardless of the total number of elements in the structure, is denoted as O(1). Ran-
dom access in an abstract array also takes O(1) time.

Adding or removing an arbitrary element in an abstract array of size n takes O(n)
time, because on average n/2 elements need to be moved. Random access in an
abstract list takes O(n) time because on average n/2 elements need to be skipped.

Table 3 shows this information for abstract arrays and lists.
Why consider abstract types at all? If you implement a particular algorithm, you

can tell what operations you need to carry out on the data structures that your
algorithm manipulates. You can then determine the abstract type that supports
those operations efficiently, without being distracted by implementation details.

For example, suppose you have a sorted collection of items and you want to
locate items using the binary search algorithm (see Section 14.7). That algorithm
makes a random access to the middle of the collection, followed by other random
accesses. Thus, fast random access is essential for the algorithm to work correctly.
Once you know that an abstract array supports fast random access and an abstract
list does not, you then look for concrete implementations of the abstract array type.
You won’t be fooled into using a LinkedList, even though the LinkedList class actu-
ally provides get and set methods.

In the next section, you will see additional examples of abstract data types.

6. What is the advantage of viewing a type abstractly?
7. How would you sketch an abstract view of a doubly linked list? A concrete

view?
8. How much slower is the binary search algorithm for an abstract list compared

to the linear search algorithm?

Table 3 Efficiency of Operations
for the Abstract Array and List Types

Operation Abstract Array Abstract List

Random access O(1) O(n)

Linear traversal step O(1) O(1)

Add/remove an element O(n) O(1)

An abstract list is an
ordered sequence of
items that can be
traversed sequentially
and that allows for
O(1) insertion and
removal of elements
at any position.

An abstract array is
an ordered sequence
of items with O(1)
random access via an
integer index.

S E L F C H E C K

15.4 Stacks and Queues 575

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Standardization

Random Fact 15.1 discusses the benefits of standardization in computer science, and tells
how standards are created.

In this section we will consider two common abstract data types that allow inser-
tion and removal of items at the ends only, not in the middle. A stack lets you insert
and remove elements at only one end, traditionally called the top of the stack. To
visualize a stack, think of a stack of books (see Figure 12).

New items can be added to the top of the stack. Items are removed at the top of
the stack as well. Therefore, they are removed in the order that is opposite from the
order in which they have been added, called last in, first out or LIFO order. For
example, if you add items A, B, and C and then remove them, you obtain C, B, and A.
Traditionally, the addition and removal operations are called push and pop.

A queue is similar to a stack, except that you add items to one end of the queue
(the tail) and remove them from the other end of the queue (the head). To visualize
a queue, simply think of people lining up (see Figure 13). People join the tail of the
queue and wait until they have reached the head of the queue. Queues store items in
a first in, first out or FIFO fashion. Items are removed in the same order in which
they have been added.

There are many uses of queues and stacks in computer science. The Java graphi-
cal user interface system keeps an event queue of all events, such as mouse and key-
board events. The events are inserted into the queue whenever the operating system
notifies the application of the event. Events are removed and passed to event listen-
ers in the order in which they were inserted. Another example is a print queue. A
printer may be accessed by several applications, perhaps running on different com-
puters. If each of the applications tried to access the printer at the same time, the
printout would be garbled. Instead, each application places all bytes that need to be
sent to the printer into a file and inserts that file into the print queue. When the
printer is done printing one file, it retrieves the next one from the queue. Therefore,

Random Fact 15.1

15.4 Stacks and Queues

Figure 12
A Stack of Books

A stack is a collection
of items with “last in,
first out” retrieval.

A queue is a collection
of items with “first in,
first out” retrieval.

576 Chapter 15 An Introduction to Data Structures

print jobs are printed using the “first in, first out” rule, which is a fair arrangement
for users of the shared printer.

Stacks are used when a “last in, first out” rule is required. For example, consider
an algorithm that attempts to find a path through a maze. When the algorithm
encounters an intersection, it pushes the location on the stack, and then it explores
the first branch. If that branch is a dead end, it returns to the location at the top of
the stack and explores the next untried branch. If all branches are dead ends, it pops
the location off the stack, revealing a previously encountered intersection. Another
important example is the run-time stack that a processor or virtual machine keeps
to organize the variables of nested methods. Whenever a new method is called, its
parameters and local variables are pushed onto a stack. When the method exits, they
are popped off again. This stack makes recursive method calls possible.

There is a Stack class in the Java library that implements the abstract stack type
and the push and pop operations.

The Queue interface in the standard Java library has methods add to add an element
to the tail of the queue, remove to remove the head of the queue, and peek to get the
head element of the queue without removing it.

The standard library provides a number of queue classes for programs in which
multiple activities, called threads, run in parallel. These queues are useful for sharing
work between threads. We do not discuss those classes in this book. The LinkedList
class also implements the Queue interface, and you can use it when a queue is
required:

Queue<String> q = new LinkedList<String>();

Table 4 shows how to use the stack and queue methods in Java.
The Stack class in the Java library uses an array list to implement a stack. Exercise

P15.15 shows how to use a linked list instead.

Figure 13 A Queue

15.4 Stacks and Queues 577

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

You would definitely not want to use an array list to implement a queue. Remov-
ing the first element of an array list is inefficient—all other elements must be moved
toward the beginning. A queue can be efficiently implemented as a linked list.
Moreover, Exercise P15.16 shows you how to implement a queue efficiently as a
“circular” array, in which all elements stay at the position at which they were
inserted, but the index values that denote the head and tail of the queue change
when elements are added and removed.

In this chapter, you have seen the two most fundamental abstract data types,
arrays and lists, and their concrete implementations. You also learned about the
stack and queue types. In the next chapter, you will see additional data types that
require more sophisticated implementation techniques.

9. Draw a sketch of the abstract queue type, similar to Figures 9 and 11.

10. Why wouldn’t you want to use a stack to manage print jobs?

A Reverse Polish Notation Calculator

Worked Example 15.1 shows how to use a stack for implementing a “Reverse Polish
Notation” calculator.

Table 4 Working with Queues and Stacks

Queue<Integer> q = new LinkedList<Integer>(); The LinkedList class implements the Queue
interface.

q.add(1); q.add(2); q.add(3); Adds to the tail of the queue;
q is now [1, 2, 3].

int head = q.remove(); Removes the head of the queue; head is set to 1
and q is [2, 3].

head = q.peek(); Gets the head of the queue without removing it;
head is set to 2.

Stack<Integer> s = new Stack<Integer>(); Constructs an empty stack.

s.push(1); s.push(2); s.push(3); Adds to the top of the stack; s is now [1, 2, 3].

int top = s.pop(); Removes the top of the stack; top is set to 3 and
s is now [1, 2].

head = s.peek(); Gets the top of the stack without removing it;
head is set to 2.

S E L F C H E C K

Worked
Example 15.1

578 Chapter 15 An Introduction to Data Structures

Reverse Polish Notation

In the 1920s, the Polish mathematician Jan realized that it is possible to dis-
pense with parentheses in arithmetic expressions, provided that you write the operators
before their arguments, for example, + 3 4 instead of 3 + 4. Thirty years later, Australian
computer scientist Charles Hamblin noted that an even better scheme would be to have the
operators follow the operands. This was termed reverse Polish notation or RPN.

Reverse Polish notation might look strange to you, but that is just an accident of history.
Had earlier mathematicians realized its advantages, today’s schoolchildren might be using it
and not worry about precedence rules and parentheses.

In 1972, Hewlett-Packard introduced the HP 35 calculator that used reverse Polish notation.
The calculator had no keys labeled with parentheses or an equals symbol. There is just a key
labeled ENTER to push a number onto a stack. For that reason, Hewlett-Packard’s
marketing department used to refer to their product as “the calculators that have no equal”.

Over time, calculator vendors have adapted to the standard algebraic notation rather than
forcing its users to learn a new notation. However, those users who have made the effort to
learn reverse Polish notation tend to be fanatic proponents, and to this day, some Hewlett-
Packard calculator models still support it.

Random Fact 15.2

Lukasiewicz

Standard Notation Reverse Polish Notation

3 + 4 3 4 +

3 + 4 × 5 3 4 5 × +

3 × (4 + 5) 3 4 5 + ×

(3 + 4) × (5 + 6) 3 4 + 5 6 + ×

3 + 4 + 5 3 4 + 5 +

Figure 14
The Calculator with No Equal

Media Resources 579

Describe the linked list data structure and the use of list iterators.

• A linked list consists of a number of nodes, each of which has a reference to the next
node.

• Adding and removing elements in the middle of a linked list is efficient.
• Visiting the elements of a linked list in sequential order is efficient, but random

access is not.
• You use a list iterator to access elements inside a linked list.

Explain how linked lists are implemented.

• A linked list object holds a reference to the first node, and each node holds a
reference to the next node.

• A list iterator object has a reference to the last visited node.
• Implementing operations that modify a linked list is challenging— you need to

make sure that you update all node references correctly.

Describe the notion of abstract data types and the behavior of the abstract list and
array types.

• An abstract data type defines the fundamental operations on the data but does not
specify an implementation.

• An abstract list is an ordered sequence of items that can be traversed sequentially
and that allows for O(1) insertion and removal of elements at any position.

• An abstract array is an ordered sequence of items with O(1) random access via an
integer index.

• A stack is a collection of items with “last in, first out” retrieval.
• A queue is a collection of items with “first in, first out” retrieval.

• Worked Example A Reverse Polish Notation Calculator
• Lab Exercises

Animation List Iterators
Practice Quiz
Code Completion Exercises

Summary of Learning Objectives

Classes, Objects, and Methods Introduced in this Chapter
java.util.Collection<E>

add
contains
iterator
remove
size

java.util.Iterator<E>
hasNext
next
remove

java.util.LinkedList<E>
addFirst
addLast
getFirst
getLast
removeFirst
removeLast

java.util.List<E>
listIterator

java.util.ListIterator<E>
add
hasPrevious
previous
set

Media Resources

www.wiley.com/
college/
horstmann

580 Chapter 15 An Introduction to Data Structures

R15.1 Explain what the following code prints. Draw pictures of the linked list after each
step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());

R15.2 Explain what the following code prints. Draw pictures of the linked list after each
step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

R15.3 Explain what the following code prints. Draw pictures of the linked list after each
step. Just draw the forward links, as in Figure 1.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addLast("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

R15.4 Explain what the following code prints. Draw pictures of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
if (iterator.next().equals("Tom"))
 iterator.remove();
while (iterator.hasNext())
 System.out.println(iterator.next());

R15.5 Explain what the following code prints. Draw pictures of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
iterator.next();
iterator.next();
iterator.add("Romeo");

Review Exercises

Review Exercises 581

iterator.next();
iterator.add("Juliet");
iterator = staff.listIterator();
iterator.next();
iterator.remove();
while (iterator.hasNext())
 System.out.println(iterator.next());

R15.6 The linked list class in the Java library supports operations addLast and removeLast.
To carry out these operations efficiently, the LinkedList class has an added reference
last to the last node in the linked list. Draw a “before/after” diagram of the changes
of the links in a linked list under the addLast and removeLast methods.

R15.7 The linked list class in the Java library supports bidirectional iterators. To go back-
ward efficiently, each Node has an added reference, previous, to the predecessor node
in the linked list. Draw a “before/after” diagram of the changes of the links in a
linked list under the addFirst and removeFirst methods that shows how the previous
links need to be updated.

R15.8 What advantages do lists have over arrays? What disadvantages do they have?

R15.9 Suppose you needed to organize a collection of telephone numbers for a company
division. There are currently about 6,000 employees, and you know that the phone
switch can handle at most 10,000 phone numbers. You expect several hundred look-
ups against the collection every day. Would you use an array or a list to store the
information?

R15.10 Suppose you needed to keep a collection of appointments. Would you use a list or
an array of Appointment objects?

R15.11 Suppose you write a program that models a card deck. Cards are taken from the top
of the deck and given out to players. As cards are returned to the deck, they are
placed on the bottom of the deck. Would you store the cards in a stack or a queue?

R15.12 Suppose the strings "A" . . . "Z" are pushed onto a stack. Then they are popped off
the stack and pushed onto a second stack. Finally, they are all popped off the second
stack and printed. In which order are the strings printed?

R15.13 Consider the following algorithm for traversing a maze such as this one:

Make the cell at the entrance the current cell. Take the following actions, then
repeat:

• If the current cell is adjacent to the exit, stop.
• Mark the current cell as visited.

18 19 20 21 22

16 17

11 12 13 14 15

9 10

4 5 6 7 8

1 2 3

Entrance Exit

582 Chapter 15 An Introduction to Data Structures

• Add all unvisited neighbors to the north, east, south, and west to a queue.
• Remove the next element from the queue and make it the current cell.

In which order will the cells of the sample maze be visited?

R15.14 Repeat Exercise R15.13, using a stack instead of a queue.

P15.1 Using only the public interface of the linked list class, write a method
public static void downsize(LinkedList<String> staff)

that removes every other employee from a linked list.

P15.2 Using only the public interface of the linked list class, write a method
public static void reverse(LinkedList<String> staff)

that reverses the entries in a linked list.

P15.3 Add a method reverse to our implementation of the LinkedList class that reverses the
links in a list. Implement this method by directly rerouting the links, not by using
an iterator.

P15.4 Add a method size to our implementation of the LinkedList class that computes the
number of elements in the list, by following links and counting the elements until
the end of the list is reached.

P15.5 Add an instance variable currentSize to our implementation of the LinkedList class.
Modify the add and remove methods of both the linked list and the list iterator to
update the currentSize variable so that it always contains the correct size. Change
the size method of the preceding exercise so that it simply returns the value of this
instance variable.

P15.6 The linked list class of the standard library has an add method that allows efficient
insertion at the end of the list. Implement this method for the LinkedList class in Sec-
tion 15.2. Add an instance variable to the linked list class that points to the last node in
the list. Make sure the other mutator methods update that variable.

P15.7 Repeat Exercise P15.6, but use a different implementation strategy. Remove the ref-
erence to the first node in the LinkedList class, and make the next reference of the last
node point to the first node, so that all nodes form a cycle. Such an implementation
is called a circular linked list.

P15.8 Reimplement the LinkedList class of Section 15.2 so that the Node and LinkedList-
Iterator classes are not inner classes.

P15.9 Add an instance variable previous to the Node class in Section 15.2, and supply
previous and hasPrevious methods in the iterator.

P15.10 The LISP language, created in 1960, implements linked lists in a very elegant way.
You will explore a Java analog in this set of exercises. The key observation is that
the tail of an abstract list—that is, the list with its head node removed—is also a list.
The tail of that list is again a list, and so on, until you reach the empty list. Here is a
Java interface for such as list:

Programming Exercises

Programming Exercises 583

public interface LispList
{
 boolean isEmpty();
 Object head();
 LispList tail();
 . . .
}

There are two kinds of lists, empty lists and nonempty lists:
public class EmptyList extends LispList { ... }
public class NonEmptyList extends LispList { ... }

These classes are quite trivial. The EmptyList class has no instance variables. Its head
and tail methods simply throw an UnsupportedOperationException, and its isEmpty
method returns true. The NonEmptyList class has instance variables for the head and
tail.
Here is one way of making a lisp list with three elements:

LispList list = new NonEmptyList("A", new NonEmptyList("B",
 new NonEmptyList("C", new EmptyList())));

This is a bit tedious, and it is a good idea to supply a convenience method cons that
calls the constructor, as well as a static variable NIL that is an instance of an empty
list. Then our list construction becomes

LispList list = NIL.cons("C").cons("B").cons("A");

Note that you need to build up the list starting from the (empty) tail.
To see the elegance of this approach, consider the implementation of a toString
method that produces a string containing all list elements. The method must be
implemented by both subclasses:

public class EmptyList
{
 ...
 public String toString() { return ""; }
}

public class NonEmptyList
{
 ...
 public String toString() { return head() + " " + tail().toString(); }
}

Note that no if statement is required. A list is either empty or nonempty, and the
correct toString method is invoked due to polymorphism.
In this exercise, complete the LispList interface and the EmptyList and NonEmptyList
classes. Write a test program that constructs a list and prints it.

P15.11 Add a method length to the LispList interface of Exercise P15.10 that returns the
length of the list. Implement the method in the EmptyList and NonEmptyList classes.

P15.12 Add a method
LispList merge(LispList other)

to the LispList interface of Exercise P15.10 that returns the length of the list. Imple-
ment the method in the EmptyList and NonEmptyList classes. When merging two lists,
alternate between the elements, then add the remainder of the longer list. For exam-
ple, merging the lists with elements 1 2 3 4 and 5 6 yields 1 5 2 6 3 4.

584 Chapter 15 An Introduction to Data Structures

P15.13 Add a method
boolean contains(Object obj)

to the LispList interface of Exercise P15.10 that returns true if the list contains an
element that equals obj.

P15.14 The standard Java library implements a Stack class, but in this exercise you are asked
to provide your own implementation. Do not implement type parameters. Use an
Object[] array to hold the stack elements. When the array fills up, allocate an array
of twice the size and copy the values to the larger array.

P15.15 Implement a Stack class by using a linked list to store the elements. Do not imple-
ment type parameters.

P15.16 Implement a queue as a circular array as follows: Use two index variables head and
tail that contain the index of the next element to be removed and the next element
to be added. After an element is removed or added, the index is incremented (see
Figure 15).
After a while, the tail element will reach the top of the array. Then it “wraps
around” and starts again at 0—see Figure 16. For that reason, the array is called
“circular”.

public class CircularArrayQueue
{
 private int head;
 private int tail;
 private int theSize;
 private Object[] elements;

 public CircularArrayQueue(int capacity) { . . . }
 public void add(Object x) { . . . }
 public Object remove() { . . . }
 public int size() { . . . }
}

This implementation supplies a bounded queue—it can eventually fill up. See the
next exercise on how to remove that limitation.

P15.17 The queue in Exercise P15.16 can fill up if more elements are added than the array
can hold. Improve the implementation as follows. When the array fills up, allocate a
larger array, copy the values to the larger array, and assign it to the elements instance

Figure 15
Adding and Removing
Queue Elements

Figure 16
A Queue That Wraps Around
the End of the Array

head

tail

1
2
3
4

head

tail

1
2
3

4

Programming Projects 585

variable. Hint: You can’t just copy the elements into the same position of the new
array. Move the head element to position 0 instead.

P15.18 Modify the insertion sort algorithm of Special Topic 14.1 to sort a linked list.

P15.19 Modify the Invoice class of Chapter 12 so that it implements the Iterable<LineItem>
interface. Then demonstrate how an Invoice object can be used in a “for each” loop.

P15.20 In a paint program, a “flood fill” fills all empty pixels of a drawing with a given
color, stopping when it reaches occupied pixels. In this exercise, you will implement
a simple variation of this algorithm, flood-filling a 10 × 10 array of integers that are
initially 0. Prompt for the starting row and column. Push the (row, column) pair on
a stack. (You will need to provide a simple Pair class.)
Then repeat the following operations until the stack is empty.

• Pop off the (row, column) pair from the top of the stack.
• If it has not yet been filled, fill it now. (Fill in numbers 1, 2, 3, and so on, to

show the order in which the square is filled.)
• Push the coordinates of any unfilled neighbors in the north, east, south, or

west direction on the stack.
When you are done, print the entire array.

P15.21 Repeat Exercise P15.20, but use a queue instead.

P15.22 Use a stack to enumerate all permutations of a string. Suppose you want to find all
permutations of the string meat. Push the string +meat on the stack. Now repeat the
following operations until the stack is empty.

• Pop off the top of the stack.
• If that string ends in a + (such as tame+), remove the + and print the string
• Otherwise, remove each letter in turn from the right of the +, insert it just

before the +, and push the resulting string on the stack. For example, after
popping e+mta, you push em+ta, et+ma, and ea+mt.

P15.23 Repeat Exercise P15.22, but use a queue instead.

P15.24 Write a program to display a linked list graphically. Draw each element of the list as
a box, and indicate the links with line segments. Draw an iterator as in Figure 3.
Supply buttons to move the iterator and to add and remove elements.

Project 15.1 Implement a class Polynomial that describes a polynomial such as

Store a polynomial as a linked list of terms. A term contains the coefficient and the
power of x. For example, you would store p(x) as

(5, 10), (9, 7), (−1, 1), (−10, 0)

Supply methods to add, multiply, and print polynomials, and to compute the deriv-
ative of a polynomial.

G

Programming Projects

p x x x x() = + − −5 9 1010 7

586 Chapter 15 An Introduction to Data Structures

Project 15.2 Make the list implementation of this chapter as powerful as the implementation of
the Java library. (Do not implement type parameters, though.)

• Provide bidirectional iteration.
• Make Node a static inner class.
• Implement the standard List and ListIterator interfaces and provide the miss-

ing methods. (Tip: You may find it easier to extend AbstractList instead of
implementing all List methods from scratch.)

Project 15.3 Implement the following algorithm for the evaluation of arithmetic expressions.
Each operator has a precedence. The + and - operators have the lowest precedence,
* and / have a higher (and equal) precedence, and ^ (which denotes “raising to a
power” in this exercise) has the highest. For example,

3 * 4 ^ 2 + 5

should mean the same as
(3 * (4 ^ 2)) + 5

with a value of 53.
In your algorithm, use two stacks. One stack holds numbers, the other holds opera-
tors. When you encounter a number, push it on the number stack. When you
encounter an operator, push it on the operator stack if it has higher precedence than
the operator on the top of the stack. Otherwise, pop an operator off the operator
stack, pop two numbers off the number stack, and push the result of the computa-
tion on the number stack. Repeat until the top of the operator stack has lower pre-
cedence. At the end of the expression, clear the stack in the same way. For example,
here is how the expression 3 * 4 ^ 2 + 5 is evaluated:

Expression: 3 * 4 ^ 2 + 5

1

3
Remaining expression: * 4 ^ 2 + 5 Number stack Operator stack

3 *

Remaining expression: 4 ^ 2 + 5 Number stack Operator stack2

4
3 *

Remaining expression: ^ 2 + 5 Number stack Operator stack3

4
3 *

^

Remaining expression: 2 + 5 Number stack Operator stack4

2
4
3 *

^

Remaining expression: + 5 Number stack Operator stack5

16
3 *

Remaining expression: + 5 Number stack Operator stack6

Answers to Self-Check Questions 587

You should enhance this algorithm to deal with parentheses. Also, make sure
that subtractions and divisions are carried out in the correct order. For example,
12 - 5 - 3 should yield 4.

1. Yes, for two reasons. You need to store the node references, and each node is a sep-
arate object. (There is a fixed overhead to store each object in the virtual machine.)

2. An integer index can be used to access any array location.
3. When the list is empty, first is null. A new Node is allocated. Its data instance variable

is set to the newly inserted object. It’s next instance variable is set to null because
first is null. The first instance variable is set to the new node. The result is a linked
list of length 1.

4. It points to the element to the left. You can see that by tracing out the first call to
next. It leaves position to point to the first node.

5. If position is null, we must be at the head of the list, and inserting an element
requires updating the first reference. If we are in the middle of the list, the first ref-
erence should not be changed.

6. You can focus on the essential characteristics of the data type without being
distracted by implementation details.

7. The abstract view would be like Figure 9, but with arrows in both directions. The
concrete view would be like Figure 8, but with references to the previous node
added to each node.

8. To locate the middle element takes n / 2 steps. To locate the middle of the subinter-
val to the left or right takes another n / 4 steps. The next lookup takes n / 8 steps.
Thus, we expect almost n steps to locate an element. At this point, you are better off
just making a linear search that, on average, takes n / 2 steps.

9.

10. Stacks use a “last in, first out” discipline. If you are the first one to submit a print
job and lots of people add print jobs before the printer has a chance to deal with
your job, they get their printouts first, and you have to wait until all other jobs are
completed.

48 +

Remaining expression: 5 Number stack Operator stack7

5
48 +

Remaining expression: Number stack Operator stack8

53
Remaining expression: Number stack Operator stack9

Answers to Self-Check Questions

add

remove

This page intentionally left blank

665

Chapter16
Advanced

Data Structures

CHAPTER GOALS
• To learn about the set and map data types

• To understand the implementation of hash tables

• To be able to program hash functions

• To learn about binary trees

• To become familiar with the heap data structure

• To learn how to implement the priority queue data type

• To understand how to use heaps for sorting

In this chapter we study data structures that are more complex

than arrays or lists. These data structures take control of organizing their elements, rather than

keeping them in a fixed position. In return, they can offer better performance for adding, removing,

and finding elements.

You will learn about the abstract set and map data types and the implementations that the

standard library offers for these abstract types. You will see how two completely different

implementations—hash tables and trees—can be used to implement these abstract types efficiently.

666

CHAPTER CONTENTS

In the preceding chapter you encountered two important data structures: arrays and
lists. Both have one characteristic in common: These data structures keep the ele-
ments in the same order in which you inserted them. However, in many applica-
tions, you don’t really care about the order of the elements in a collection. For
example, a server may keep a collection of objects representing available printers
(see Figure 1). The order of the objects doesn’t really matter.

In mathematics, such an unordered collection is called a set. You have probably
learned some set theory in a course in mathematics, and you may know that sets are
a fundamental mathematical notion.

But what does that mean for data structures? If the data structure is no longer
responsible for remembering the order of element insertion, can it give us better
performance for some of its operations? It turns out that it can indeed, as you will
see later in this chapter.

Let’s list the fundamental operations on a set:

• Adding an element
• Removing an element
• Locating an element (Does the set contain a given object?)
• Listing all elements (not necessarily in the order in which they were added)

In mathematics, a set rejects duplicates. If an object is already in the set, an attempt
to add it again is ignored. That’s useful in many programming situations as well. For
example, if we keep a set of available printers, each printer should occur at most
once in the set. Thus, we will interpret the add and remove operations of sets just as
we do in mathematics: Adding an element has no effect if the element is already in
the set, and attempting to remove an element that isn’t in the set is silently ignored.

Of course, we could use a linked list or array list to implement a set. But adding,
removing, and containment testing would be O(n) operations, because they all have
to do a linear search through the list. (Adding requires a search through the list to
make sure that we don’t add a duplicate.) As you will see later in this chapter, there
are data structures that can handle these operations much more quickly.

16.1 Sets

A set is an unordered
collection of distinct
elements. Elements
can be added,
located, and removed.

Sets don’t have
duplicates. Adding a
duplicate of an
element that is
already present is
silently ignored.

16.1 Sets 666
QUALITY TIP 16.1: Use Interface References to

Manipulate Data Structures 670

16.2 Maps 670
SPECIAL TOPIC 16.1: Enhancements to Collection

Classes in Java 7 672
HOW TO 16.1: Choosing a Container 673
WORKED EXAMPLE 16.1: Word Frequency

16.3 Hash Tables 674

16.4 Computing Hash Codes 681

COMMON ERROR 16.1: Forgetting to Provide

hashCode 685

16.5 Binary Search Trees 686

16.6 Binary Tree Traversal 696

16.7 Priority Queues 698

16.8 Heaps 699

16.9 The Heapsort Algorithm 709
RANDOM FACT 16.1: Software Piracy 714

16.1 Sets 667

In fact, there are two different data structures for this purpose, called hash tables
and trees. The standard Java library provides set implementations based on both
data structures, called HashSet and TreeSet. Both of these data structures implement
the Set interface (see Figure 2).

When you want to use a set in your program, you must choose between these
implementations. In order to use a HashSet, the elements must provide a hashCode
method. We discuss this method in Sections 16.3 and 16.4. Many classes in the stan-
dard library implement these methods, for example String, Integer, Point, Rectangle,
Color, and all the collection classes. Therefore, you can form a HashSet<String>, Hash-
Set<Rectangle>, or even a HashSet<HashSet<Integer>>.

The TreeSet class uses a different strategy for arranging its elements. Elements are
kept in sorted order. In order to use a TreeSet, the element type should implement
the Comparable interface (see Section 15.8). The String and Integer classes fulfill this
requirement, but many other classes do not. You can also construct a TreeSet with a
Comparator (see Special Topic 15.5).

As a rule of thumb, use a hash set unless you want to visit the set elements in
sorted order.

Now let’s look at using a set of strings. First, construct the set, either as
Set<String> names = new HashSet<String>();

or
Set<String> names = new TreeSet<String>();

Note that we store the reference to the HashSet<String> or TreeSet<String> object in a
Set<String> variable. After you construct the collection object, the implementation
no longer matters; only the interface is important.

Adding and removing set elements is straightforward:
names.add("Romeo");
names.remove("Juliet");

Figure 1
A Set of Printers

Figure 2
Set Classes and Interfaces in
the Standard Library

The HashSet and
TreeSet classes both
implement the
Set interface.

‹‹interface››
Set

HashSet TreeSet

668 Chapter 16 Advanced Data Structures

The contains method tests whether an element is contained in the set:
if (names.contains("Juliet")) . . .

Finally, to list all elements in the set, get an iterator. As with list iterators, you use
the next and hasNext methods to step through the set.

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 String name = iter.next();

Do something with name
}

Or, as with arrays and lists, you can use the “for each” loop instead of explicitly
using an iterator:

for (String name : names)
{

Do something with name
}

Note that the elements are not visited in the order in which you inserted them.
When you use a hash set, the elements are visited in a seemingly random order—see
Section 16.5 for the reason. With a tree set, elements are visited in sorted order.

There is an important difference between the Iterator that you obtain from a set
and the ListIterator that a list yields. The ListIterator has an add method to add an
element at the list iterator position. The Iterator interface has no such method. It
makes no sense to add an element at a particular position in a set, because the set can
order the elements any way it likes. Thus, you always add elements directly to a set,
never to an iterator of the set.

However, you can remove a set element at an iterator position, just as you do
with list iterators.

Also, the Iterator interface has no previous method to go backwards through the
elements. Because the elements are not ordered, it is not meaningful to distinguish
between “going forward” and “going backward”. The following test program shows
a practical application of sets. We read in all words from a dictionary file that con-
tains correctly spelled words and place them into a set. We then read all words from
a document into a second set—here, the book “Alice in Wonderland”. Finally, we
print all words from that set that are not in the dictionary set. These are the potential
misspellings. (As you can see from the output, we used an American dictionary, and
words with British spelling, such as clamour, are flagged as potential errors.)

ch16/spellcheck/SpellCheck.java

To visit all elements
in a set, use
an iterator.

A set iterator
visits elements in
seemingly random
order (HashSet) or
sorted order
(TreeSet).

You cannot add an
element to a set at an
iterator position.

1 import java.util.HashSet;
2 import java.util.Scanner;
3 import java.util.Set;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6
7 /**
8 This program checks which words in a file are not present in a dictionary.
9 */

10 public class SpellCheck
11 {
12 public static void main(String[] args)
13 throws FileNotFoundException

16.1 Sets 669

Program Run

1. Arrays and lists remember the order in which you added elements; sets do not.
Why would you want to use a set instead of an array or list?

2. Why are set iterators different from list iterators?
3. Suppose you changed line 18 of the SpellCheck program to use a TreeSet instead

of a HashSet. How would the output change?
4. When would you choose a tree set over a hash set?

14 {
15 // Read the dictionary and the document
16
17 Set<String> dictionaryWords = readWords("words");
18 Set<String> documentWords = readWords("alice30.txt");
19
20 // Print all words that are in the document but not the dictionary
21
22 for (String word : documentWords)
23 {
24 if (!dictionaryWords.contains(word))
25 {
26 System.out.println(word);
27 }
28 }
29 }
30
31 /**
32 Reads all words from a file.
33 @param filename the name of the file
34 @return a set with all lowercased words in the file. Here, a
35 word is a sequence of upper- and lowercase letters.
36 */
37 public static Set<String> readWords(String filename)
38 throws FileNotFoundException
39 {
40 Set<String> words = new HashSet<String>();
41 Scanner in = new Scanner(new File(filename));
42 // Use any characters other than a-z or A-Z as delimiters
43 in.useDelimiter("[^a-zA-Z]+");
44 while (in.hasNext())
45 {
46 words.add(in.next().toLowerCase());
47 }
48 return words;
49 }
50 }

neighbouring
croqueted
pennyworth
dutchess
comfits
xii
dinn
clamour
. . .

S E L F C H E C K

670 Chapter 16 Advanced Data Structures

Use Interface References to Manipulate Data Structures

It is considered good style to store a reference to a HashSet or TreeSet in a variable of type Set.

Set<String> names = new HashSet<String>();

This way, you have to change only one line if you decide to use a TreeSet instead.
Also, methods that operate on sets should specify parameters of type Set:

public static void print(Set<String> s)

Then the method can be used for all set implementations.
In theory, we should make the same recommendation for linked lists, namely to save

LinkedList references in variables of type List. However, in the Java library, the List interface
is common to both the ArrayList and the LinkedList class. In particular, it has get and set
methods for random access, even though these methods are very inefficient for linked lists.
You can’t write efficient code if you don’t know whether random access is efficient or not.
This is plainly a serious design error in the standard library, and I cannot recommend using
the List interface for that reason. (To see just how embarrassing that error is, have a look at
the source code for the binarySearch method of the Collections class. That method takes a
List parameter, but binary search makes no sense for a linked list. The code then clumsily
tries to discover whether the list is a linked list, and then switches to a linear search!)

The Set interface and the Map interface, which you will see in the next section, are well-
designed, and you should use them.

A map is a data type that keeps associations between keys and values. Figure 3 gives
a typical example: a map that associates names with colors. This map might describe
the favorite colors of various people.

Mathematically speaking, a map is a function from one set, the key set, to another
set, the value set. Every key in the map has a unique value, but a value may be asso-
ciated with several keys.

Quality Tip 16.1

16.2 Maps
A map keeps
associations between
key and value
objects.

Figure 3 A Map

Romeo

Adam

Eve

Juliet

ValuesKeys

16.2 Maps 671

Just as there are two kinds of set implementations, the Java library has two
implementations for maps: HashMap and TreeMap. Both of them implement the Map
interface (see Figure 4). As with sets, you need to decide which of the two to use. As
a rule of thumb, use a hash map unless you want to visit the keys in sorted order.

After constructing a HashMap or TreeMap, you should store the reference to the map
object in a Map reference:

Map<String, Color> favoriteColors = new HashMap<String, Color>();

or
Map<String, Color> favoriteColors = new TreeMap<String, Color>();

Use the put method to add an association:
favoriteColors.put("Juliet", Color.RED);

You can change the value of an existing association, simply by calling put again:
favoriteColors.put("Juliet", Color.BLUE);

The get method returns the value associated with a key.
Color julietsFavoriteColor = favoriteColors.get("Juliet");

If you ask for a key that isn’t associated with any values, then the get method
returns null.

To remove a key and its associated value, use the remove method:
favoriteColors.remove("Juliet");

Sometimes you want to enumerate all keys in a map. The keySet method yields the
set of keys. You can then ask the key set for an iterator and get all keys. From each
key, you can find the associated value with the get method. Thus, the following
instructions print all key/value pairs in a map m:

Set<String> keySet = m.keySet();
for (String key : keySet)
{
 Color value = m.get(key);
 System.out.println(key + " : " + value);
}

When you use a hash map, the keys are visited in a seemingly random order. With a
tree map, keys are visited in sorted order. The following sample program shows a
map in action.

Figure 4
Map Classes and Interfaces
in the Standard Library

The HashMap and
TreeMap classes both
implement the
Map interface.

To find all keys and
values in a map,
iterate through the
key set and find the
values that
correspond to
the keys.

‹‹interface››
Map

HashMap TreeMap

672 Chapter 16 Advanced Data Structures

ch16/map/MapDemo.java

Program Run

5. What is the difference between a set and a map?
6. Why is the collection of the keys of a map a set?

Enhancements to Collection Classes in Java 7

Java 7 provides several syntactical conveniences for working with collection classes.
Type parameters in constructors can be inferred from variable types. You no longer have

to repeat them in the variable declaration and the constructor. For example,

Set<String> names = new HashSet<>(); // Constructs a HashSet<String>
Map<String, Integer> scores = new TreeMap<>(); // Constructs a TreeMap<String, Integer>

You can obtain collection literals of type List, Set, and Map, with the following syntax:

["Tom", "Diana", "Harry"];
{ 2, 3, 5, 7, 11 };
{ "Juliet" : Color.BLUE, "Romeo" : Color.GREEN, "Eve" : Color.BLUE };

1 import java.awt.Color;
2 import java.util.HashMap;
3 import java.util.Map;
4 import java.util.Set;
5
6 /**
7 This program demonstrates a map that maps names to colors.
8 */
9 public class MapDemo

10 {
11 public static void main(String[] args)
12 {
13 Map<String, Color> favoriteColors = new HashMap<String, Color>();
14 favoriteColors.put("Juliet", Color.BLUE);
15 favoriteColors.put("Romeo", Color.GREEN);
16 favoriteColors.put("Adam", Color.RED);
17 favoriteColors.put("Eve", Color.BLUE);
18
19 // Print all keys and values in the map
20
21 Set<String> keySet = favoriteColors.keySet();
22 for (String key : keySet)
23 {
24 Color value = favoriteColors.get(key);
25 System.out.println(key + " : " + value);
26 }
27 }
28 }

Romeo : java.awt.Color[r=0,g=255,b=0]
Eve : java.awt.Color[r=0,g=0,b=255]
Adam : java.awt.Color[r=255,g=0,b=0]
Juliet : java.awt.Color[r=0,g=0,b=255]

S E L F C H E C K

Special Topic 16.1

16.2 Maps 673

These objects are immutable: you cannot change the contents of the list, set, or map literal.
The objects are instances of classes that implements the List, Set, and Map interfaces, but you
don’t know what those classes are.

You can pass collection or map literals to methods, for example

names.addAll(["Tom", "Diana", "Harry"]);

If you want to store a literal in a variable, you must use the interface type for the variable
declaration:

List<String> friends = ["Tom", "Diana", "Harry"];

Alternatively, you can initialize a collection with a literal:

 ArrayList<String> friends = new ArrayList<>(["Tom", "Diana", "Harry"]);

This works because all Java collection and map classes have constructors that copy entries
from another collection or map.

Finally, you can use the [] operator instead of the get, set, or put methods. For example,

String name = names[0];
names[0] = "Fred";
scores["Fred"] = 13;
int score = scores["Fred"];

HOW TO 16.1 Choosing a Container

Suppose you need to store objects in a container. You have now seen a number of different
data structures. This How To reviews how to pick an appropriate container for your
application.

Step 1 Determine how you access the values.

You store values in a container so that you can later retrieve them. How do you want to
access individual values? You have several choices.
• Values are accessed by an integer position. Use an ArrayList. Go to Step 2, then stop.
• Values are accessed by a key that is not a part of the object. Use a map.
• It doesn’t matter. Values are always accessed “in bulk”, by traversing the collection and

doing something with each value.

Step 2 Determine the element types of key/value types.

For a list or set, determine the type of the elements that you want to store. For example, if
you collect a set of books, then the element type is Book.

Similarly, for a map, determine the types of the keys and the associated values. If you
want to look up books by ID, you can use a Map<Integer, Book> or Map<String, Book>, depend-
ing on your ID type.

Step 3 Determine whether element or key order matters.

When you visit elements from a container or keys from a map, do you care about the order
in which they are visited? You have several choices.
• Elements or keys must be sorted. Use a TreeSet or TreeMap. Go to Step 6.
• Elements must be in the same order in which they were inserted. Your choice is now

narrowed down to a LinkedList or ArrayList.
• It doesn’t matter. As long as you get to visit all elements, you don’t care in which order. If

you chose a map in Step 1, use a HashMap and go to Step 5.

674 Chapter 16 Advanced Data Structures

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Step 4 For a collection, determine which operations must be fast.

You have several choices.
• Finding elements must be fast. Use a HashSet and go to Step 5.
• Adding and removing elements at the beginning or middle must be fast. Use a LinkedList.
• It doesn’t matter. You only insert at the end, or collect so few elements that you aren’t

concerned about speed. Then use an ArrayList.

Step 5 For hash sets and maps, decide whether you need to implement the equals and hashCode
methods.

If your elements or keys belong to a class that someone else provided, check whether the
class implements hashCode and equals methods. If so, you are all set. This is the case for most
classes in the standard Java library, such as String, Integer, Rectangle, and so on.

If not, decide whether you can compare the elements by identity. Are all elements distinct
in your program? That is, can it never happen that you have two different elements with the
same instance variables? In that case, you need not do anything—the hashCode and equals
methods of the Object class are appropriate.

If you need to implement your own equals and hashCode methods, turn to Section 16.4.

Step 6 If you use a tree, decide whether to supply a comparator.

Look at the class of the set elements or map keys. Does that class implement the Comparable
interface? If so, is the sort order given by the compareTo method the one you want? If yes,
then you don’t need to do anything further. This is the case for many classes in the standard
library, in particular for String and Integer.

If no, then your element class must implement the Comparable interface, or you must pro-
vide a class that implements the Comparator interface. See Section 14.8 for the details.

Word Frequency

In this Worked Example, we read a text file and print a list of all words in the file in alphabet-
ical order, together with a count that indicates how often each word occurred in the file

In this section, you will see how the technique of hashing can be used to find ele-
ments in a data structure quickly, without making a linear search through all
elements. Hashing gives rise to the hash table, which can be used to implement sets
and maps.

A hash function is a function that computes an integer value, the hash code,
from an object, in such a way that different objects are likely to yield different hash
codes. The Object class has a hashCode method that other classes need to override. The
call

int h = x.hashCode();

computes the hash code of the object x.

Worked
Example 16.1

16.3 Hash Tables

A hash function
computes an integer
value from an object.

16.3 Hash Tables 675

Table 1 shows some examples of strings and their hash codes. You will see in Sec-
tion 16.4 how these values are obtained.

It is possible for two or more distinct objects to have the same hash code; this is
called a collision. For example, the strings "VII" and "Ugh" happen to have the same
hash code. These collisions are very rare for strings (see Exercise P16.6).

Section 16.5 explains how you should override the hashCode method for other
classes.

A hash code is used as an array index into a hash table. In the simplest implemen-
tation of a hash table, you could make an array and insert each object at the location
of its hash code (see Figure 5).

If there are no collisions, it is a very simple matter to find out whether an object
is already present in the set or not. Compute its hash code and check whether the
array position with that hash code is already occupied. This doesn’t require a search
through the entire array!

Of course, it is not feasible to allocate an array that is large enough to hold all
possible integer index positions. Therefore, we must pick an array of some reason-
able size and then reduce the hash code to fall inside the array:

int h = x.hashCode();
if (h < 0) h = -h;
position = h % buckets.length;

Table 1 Sample Strings and Their Hash Codes

String Hash Code String Hash Code

"Adam" 2035631 "Joe" 74656

"Eve" 70068 "Juliet" –2065036585

"Harry" 69496448 "Katherine" 2079199209

"Jim" 74478 "Sue" 83491

Figure 5
A Simplistic Implementation
of a Hash Table

A good hash function
minimizes
collisions—identical
hash codes for
different objects.

...

...

...

...

[70068]

[74478]

[74656]

Eve

Jim

Joe

676 Chapter 16 Advanced Data Structures

After reducing the hash code modulo a smaller array size, it becomes even more
likely that several objects will collide. In order to handle collisions, we will store all
colliding elements in a “bucket”, a linked list of elements with the same position
value (see Figure 6).

Here is the algorithm for finding an object x in a hash table.

1. Compute the hash code and reduce it modulo the table size. This gives an
index h into the hash table.

2. Iterate through the elements of the bucket at position h. For each element of
the bucket, check whether it is equal to x.

3. If a match is found among the elements of that bucket, then x is in the set.
Otherwise, it is not.

Adding an element is a straightforward extension of the algorithm for finding an
object. First compute the hash code to locate the bucket in which the element
should be inserted. Try finding the object in that bucket. If it is already present, do
nothing. Otherwise, insert it.

Removing an element is equally simple. First compute the hash code to locate the
bucket in which the element should be inserted. Try finding the object in that
bucket. If it is present, remove it. Otherwise, do nothing.

In the best case, in which there are no collisions, all buckets either are empty or
have a single element. Then adding, finding, and removing elements takes constant
or O(1) time.

More generally, for this algorithm to be effective, the bucket sizes must be small.
(In the worst case, where all elements end up in the same bucket, a hash table degen-
erates into a linked list!)

In order to reduce the chances for collisions, you should make a hash table some-
what larger than the number of elements that you expect to insert. An excess capac-
ity of about 30 percent is typically recommended. According to some researchers,

Figure 6
A Hash Table with Buckets
to Store Elements with the
Same Hash Code

...

...
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]

Sue

Nina

Susannah

Larry
Eve

Sarah
Adam

Juliet

Harry

Katherine Tony

A hash table can be
implemented as an
array of buckets—
sequences of nodes
that hold elements
with the same
hash code.

If there are no or
only a few collisions,
then adding,
locating, and
removing hash table
elements takes
constant or
O(1) time.

16.3 Hash Tables 677

the hash table size should be chosen to be a prime number to minimize the number
of collisions.

At the end of this section you will find the code for a simple implementation of a
hash set. That implementation takes advantage of the AbstractSet class, which
already implements most of the methods of the Set interface.

In this implementation you must specify the size of the hash table. In the stan-
dard library, you don’t need to supply a table size. If the hash table gets too full, a
new table of twice the size is created, and all elements are inserted into the new
table.

ch16/hashtable/HashSet.java

1 import java.util.AbstractSet;
2 import java.util.Iterator;
3 import java.util.NoSuchElementException;
4
5 /**
6 A hash set stores an unordered collection of objects, using
7 a hash table.
8 */
9 public class HashSet extends AbstractSet

10 {
11 private Node[] buckets;
12 private int size;
13
14 /**
15 Constructs a hash table.
16 @param bucketsLength the length of the buckets array
17 */
18 public HashSet(int bucketsLength)
19 {
20 buckets = new Node[bucketsLength];
21 size = 0;
22 }
23
24 /**
25 Tests for set membership.
26 @param x an object
27 @return true if x is an element of this set
28 */
29 public boolean contains(Object x)
30 {
31 int h = x.hashCode();
32 if (h < 0) h = -h;
33 h = h % buckets.length;
34
35 Node current = buckets[h];
36 while (current != null)
37 {
38 if (current.data.equals(x)) return true;
39 current = current.next;
40 }
41 return false;
42 }
43

678 Chapter 16 Advanced Data Structures

44 /**
45 Adds an element to this set.
46 @param x an object
47 @return true if x is a new object, false if x was
48 already in the set
49 */
50 public boolean add(Object x)
51 {
52 int h = x.hashCode();
53 if (h < 0) h = -h;
54 h = h % buckets.length;
55
56 Node current = buckets[h];
57 while (current != null)
58 {
59 if (current.data.equals(x))
60 return false; // Already in the set
61 current = current.next;
62 }
63 Node newNode = new Node();
64 newNode.data = x;
65 newNode.next = buckets[h];
66 buckets[h] = newNode;
67 size++;
68 return true;
69 }
70
71 /**
72 Removes an object from this set.
73 @param x an object
74 @return true if x was removed from this set, false
75 if x was not an element of this set
76 */
77 public boolean remove(Object x)
78 {
79 int h = x.hashCode();
80 if (h < 0) h = -h;
81 h = h % buckets.length;
82
83 Node current = buckets[h];
84 Node previous = null;
85 while (current != null)
86 {
87 if (current.data.equals(x))
88 {
89 if (previous == null) buckets[h] = current.next;
90 else previous.next = current.next;
91 size--;
92 return true;
93 }
94 previous = current;
95 current = current.next;
96 }
97 return false;
98 }
99

16.3 Hash Tables 679

100 /**
101 Returns an iterator that traverses the elements of this set.
102 @return a hash set iterator
103 */
104 public Iterator iterator()
105 {
106 return new HashSetIterator();
107 }
108
109 /**
110 Gets the number of elements in this set.
111 @return the number of elements
112 */
113 public int size()
114 {
115 return size;
116 }
117
118 class Node
119 {
120 public Object data;
121 public Node next;
122 }
123
124 class HashSetIterator implements Iterator
125 {
126 private int bucket;
127 private Node current;
128 private int previousBucket;
129 private Node previous;
130
131 /**
132 Constructs a hash set iterator that points to the
133 first element of the hash set.
134 */
135 public HashSetIterator()
136 {
137 current = null;
138 bucket = -1;
139 previous = null;
140 previousBucket = -1;
141 }
142
143 public boolean hasNext()
144 {
145 if (current != null && current.next != null)
146 return true;
147 for (int b = bucket + 1; b < buckets.length; b++)
148 if (buckets[b] != null) return true;
149 return false;
150 }
151
152 public Object next()
153 {
154 previous = current;
155 previousBucket = bucket;
156

680 Chapter 16 Advanced Data Structures

ch16/hashtable/HashSetDemo.java

157 if (current == null || current.next == null)
158 {
159 // Move to next bucket
160 bucket++;
161
162 while (bucket < buckets.length
163 && buckets[bucket] == null)
164 bucket++;
165 if (bucket < buckets.length)
166 current = buckets[bucket];
167 else
168 throw new NoSuchElementException();
169 }
170 else // Move to next element in bucket
171 current = current.next;
172 return current.data;
173 }
174
175 public void remove()
176 {
177 if (previous != null && previous.next == current)
178 previous.next = current.next;
179 else if (previousBucket < bucket)
180 buckets[bucket] = current.next;
181 else
182 throw new IllegalStateException();
183 current = previous;
184 bucket = previousBucket;
185 }
186 }
187 }

1 import java.util.Iterator;
2 import java.util.Set;
3
4 /**
5 This program demonstrates the hash set class.
6 */
7 public class HashSetDemo
8 {
9 public static void main(String[] args)

10 {
11 Set names = new HashSet(101); // 101 is a prime
12
13 names.add("Harry");
14 names.add("Sue");
15 names.add("Nina");
16 names.add("Susannah");
17 names.add("Larry");
18 names.add("Eve");
19 names.add("Sarah");
20 names.add("Adam");
21 names.add("Tony");
22 names.add("Katherine");
23 names.add("Juliet");

16.4 Computing Hash Codes 681

Program Run

7. If a hash function returns 0 for all values, will the HashSet work correctly?
8. What does the hasNext method of the HashSetIterator do when it has reached the

end of a bucket?

A hash function computes an integer hash code from an object, so that different
objects are likely to have different hash codes. Let us first look at how you can com-
pute a hash code from a string. Clearly, you need to combine the character values of
the string to yield some integer. You could, for example, add up the character
values:

int h = 0;
for (int i = 0; i < s.length(); i++)
 h = h + s.charAt(i);

However, that would not be a good idea. It doesn’t scramble the character values
enough. Strings that are permutations of another (such as "eat" and "tea") all have
the same hash code.

Here is the method the standard library uses to compute the hash code for a
string.

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
 h = HASH_MULTIPLIER * h + s.charAt(i);

24 names.add("Romeo");
25 names.remove("Romeo");
26 names.remove("George");
27
28 Iterator iter = names.iterator();
29 while (iter.hasNext())
30 System.out.println(iter.next());
31 }
32 }

Harry
Sue
Nina
Susannah
Larry
Eve
Sarah
Adam
Juliet
Katherine
Tony

S E L F C H E C K

16.4 Computing Hash Codes

682 Chapter 16 Advanced Data Structures

For example, the hash code of "eat" is
31 * (31 * 'e' + 'a') + 't' = 100184

The hash code of "tea" is quite different, namely
31 * (31 * 't' + 'e') + 'a' = 114704

(Use the Unicode table from Appendix A to look up the character values: 'a' is 97,
'e' is 101, and 't' is 116.)

For your own classes, you should make up a hash code that combines the hash
codes of the instance variables in a similar way. For example, let us implement a
hashCode method for the Coin class. There are two instance variables: the coin name
and the coin value. First, compute their hash code. You know how to compute the
hash code of a string. To compute the hash code of a floating-point number, first
wrap the floating-point number into a Double object, and then compute its hash
code.

class Coin
{
 public int hashCode()
 {
 int h1 = name.hashCode();
 int h2 = new Double(value).hashCode();
 . . .
 }
}

Then combine the two hash codes.
final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2;
return h;

Use a prime number as the hash multiplier—it scrambles the values better.
If you have more than two instance variables, then combine their hash codes as

follows:
int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER * h + h4;
. . .
return h;

If one of the instance variables is an integer, just use the integer value as its hash
code.

When you add objects of your class into a hash table, you need to double-check
that the hashCode method is compatible with the equals method of your class. Two
objects that are equal must yield the same hash code:

• If x.equals(y), then x.hashCode() == y.hashCode()

After all, if x and y are equal to each other, then you don’t want to insert both of
them into a set—sets don’t store duplicates. But if their hash codes are different, x
and y may end up in different buckets, and the add method would never notice that
they are actually duplicates.

Of course, the converse of the compatibility condition is generally not true. It is
possible for two objects to have the same hash code without being equal.

For the Coin class, the compatibility condition holds. We define two coins to be
equal to each other if their names and values are equal. In that case, their hash codes

When implementing
the hashCode method,
combine the hash
codes for the
instance variables.

Your hashCode
method must be
compatible with the
equals method.

16.4 Computing Hash Codes 683

will also be equal, because the hash code is computed from the hash codes of the
name and value instance variables.

You get into trouble if your class provides an equals method but not a hashCode
method. Suppose we forget to provide a hashCode method for the Coin class. Then it
inherits the hash code method from the Object superclass. That method computes a
hash code from the memory location of the object. The effect is that any two objects
are very likely to have a different hash code.

Coin coin1 = new Coin(0.25, "quarter");
Coin coin2 = new Coin(0.25, "quarter");

Now coin1.hashCode() is derived from the memory location of coin1, and
coin2.hashCode() is derived from the memory location of coin2. Even though
coin1.equals(coin2) is true, their hash codes differ.

However, if you provide neither equals nor hashCode, then there is no problem.
The equals method of the Object class considers two objects equal only if their mem-
ory location is the same. That is, the Object class has compatible equals and hashCode
methods. Of course, then the notion of equality is very restricted: Only identical
objects are considered equal. That is not necessarily a bad notion of equality: If you
want to collect a set of coins in a purse, you may not want to lump coins of equal
value together.

Whenever you use a hash set, you need to make sure that an appropriate hash
function exists for the type of the objects that you add to the set. Check the equals
method of your class. It tells you when two objects are considered equal. There are
two possibilities. Either equals has been provided or it has not been provided. If
equals has not been provided, only identical objects are considered equal. In that
case, don’t provide hashCode either. However, if the equals method has been pro-
vided, look at its implementation. Typically, two objects are considered equal if
some or all of the instance variables are equal. Sometimes, not all instance variables
are used in the comparison. Two Student objects may be considered equal if their
studentID variables are equal. Implement the hashCode method to combine the hash
codes of the instance variables that are compared in the equals method.

When you use a HashMap, only the keys are hashed. They need compatible hashCode
and equals methods. The values are never hashed or compared. The reason is sim-
ple—the map only needs to find, add, and remove keys quickly.

ch16/hashcode/Coin.java

If a class provides
neither equals nor
hashCode, then
objects are compared
by identity.

In a hash map, only
the keys are hashed.

1 /**
2 A coin with a monetary value.
3 */
4 public class Coin
5 {
6 private double value;
7 private String name;
8
9 /**

10 Constructs a coin.
11 @param aValue the monetary value of the coin
12 @param aName the name of the coin
13 */
14 public Coin(double aValue, String aName)
15 {

684 Chapter 16 Advanced Data Structures

ch16/hashcode/CoinHashCodePrinter.java

16 value = aValue;
17 name = aName;
18 }
19
20 /**
21 Gets the coin value.
22 @return the value
23 */
24 public double getValue()
25 {
26 return value;
27 }
28
29 /**
30 Gets the coin name.
31 @return the name
32 */
33 public String getName()
34 {
35 return name;
36 }
37
38 public boolean equals(Object otherObject)
39 {
40 if (otherObject == null) return false;
41 if (getClass() != otherObject.getClass()) return false;
42 Coin other = (Coin) otherObject;
43 return value == other.value && name.equals(other.name);
44 }
45
46 public int hashCode()
47 {
48 int h1 = name.hashCode();
49 int h2 = new Double(value).hashCode();
50 final int HASH_MULTIPLIER = 29;
51 int h = HASH_MULTIPLIER * h1 + h2;
52 return h;
53 }
54
55 public String toString()
56 {
57 return "Coin[value=" + value + ",name=" + name + "]";
58 }
59 }

1 import java.util.HashSet;
2 import java.util.Set;
3
4 /**
5 A program that prints hash codes of coins.
6 */
7 public class CoinHashCodePrinter
8 {
9 public static void main(String[] args)

10 {

16.4 Computing Hash Codes 685

Program Run

9. What is the hash code of the string "to"?
10. What is the hash code of new Integer(13)?

Forgetting to Provide hashCode

When putting elements into a hash table, make sure that the hashCode method is provided.
(The only exception is that you don’t need to provide hashCode if equals isn’t provided either.
In that case, distinct objects of your class are considered different, even if they have matching
contents.)

If you forget to implement the hashCode method, then you inherit the hashCode method of
the Object class. That method computes a hash code of the memory location of the object.
For example, suppose that you do not provide the hashCode method of the Coin class. Then
the following code is likely to fail:

Set<Coin> coins = new HashSet<Coin>();
coins.add(new Coin(0.25, "quarter"));
// The following comparison will probably fail if hashCode not provided
if (coins.contains(new Coin(0.25, "quarter"))
 System.out.println("The set contains a quarter.");

The two Coin objects are constructed at different memory locations, so the hashCode method
of the Object class will probably compute different hash codes for them. (As always with
hash codes, there is a small chance that the hash codes happen to collide.) Then the contains
method will inspect the wrong bucket and never find the matching coin.

The remedy is to provide a hashCode method in the Coin class.

11 Coin coin1 = new Coin(0.25, "quarter");
12 Coin coin2 = new Coin(0.25, "quarter");
13 Coin coin3 = new Coin(0.05, "nickel");
14
15 System.out.println("hash code of coin1=" + coin1.hashCode());
16 System.out.println("hash code of coin2=" + coin2.hashCode());
17 System.out.println("hash code of coin3=" + coin3.hashCode());
18
19 Set<Coin> coins = new HashSet<Coin>();
20 coins.add(coin1);
21 coins.add(coin2);
22 coins.add(coin3);
23
24 for (Coin c : coins)
25 System.out.println(c);
26 }
27 }

hash code of coin1=-1513525892
hash code of coin2=-1513525892
hash code of coin3=-1768365211
Coin[value=0.25,name=quarter]
Coin[value=0.05,name=nickel]

S E L F C H E C K

Common Error 16.1

686 Chapter 16 Advanced Data Structures

A set implementation is allowed to rearrange its elements in any way it chooses so
that it can find elements quickly. Suppose a set implementation sorts its entries.
Then it can use binary search to locate elements quickly. Binary search takes
O(log(n)) steps, where n is the size of the set. For example, binary search in an array
of 1,000 elements is able to locate an element in at most 10 steps by cutting the size
of the search interval in half in each step.

If we use an array to store the elements of a set, inserting or removing an element
is an O(n) operation. In this section, you will see how tree-shaped data structures
can keep elements in sorted order with more efficient insertion and removal.

A linked list is a one-dimensional data structure. In a linked list, a node has only
one successor. You can imagine that all nodes are arranged in line. In contrast, a tree
is made of nodes that have references to multiple nodes, called the child nodes.
Because the child nodes can also have children, the data structure has a tree-like
appearance. It is traditional to draw the tree upside down, like a family tree or hier-
archy chart (see Figure 7). In keeping with the tree image, the node at the top is
called the root node, and the nodes without children are called leaf nodes. In a
binary tree, every node has at most two children (called the left and right children);
hence the name binary.

Finally, a binary search tree is constructed to have this important property:

• The data values of all descendants to the left of any node are less than the data
value stored in that node, and all descendants to the right have greater data values.

16.5 Binary Search Trees

A binary tree
consists of nodes,
each of which has
at most two
child nodes.

Figure 7 A Binary Search Tree

Node

Node

NodeNode

Node

Node

Juliet

Eve

Adam
null
null

Harry
null
null

Tom
null
null

Romeo
null

BinarySearchTree

Left descendants
Adam, Eve, Harry < Juliet

Right descendants
Romeo, Tom > Juliet

Left descendant
Adam < Eve

Right descendant
Tom > Romeo

Right descendant
Harry > Eve

16.5 Binary Search Trees 687

The tree in Figure 7 has this property. To verify the binary search property, you
must check each node. Consider the node “Juliet”. All descendants to the left have
data before “Juliet”. All descendants on the right have data after “Juliet”. Move on
to “Eve”. There is a single descendant to the left, with data “Adam” before “Eve”,
and a single descendant to the right, with data “Harry” after “Eve”. Check the
remaining nodes in the same way.

Figure 8 shows a binary tree that is not a binary search tree. Look carefully—the
root node passes the test, but its two children do not.

Let us implement these tree classes. Just as you needed classes for lists and their
nodes, you need one class for the tree, containing a reference to the root node, and a
separate class for the nodes. Each node contains two references (to the left and right
child nodes) and an instance variable data. At the fringes of the tree, one or two of
the child references can be null. The data variable has type Comparable, not Object,
because you must be able to compare the values in a binary search tree in order to
place them into the correct position.

public class BinarySearchTree
{
 private Node root;

 public BinarySearchTree() { . . . }
 public void add(Comparable obj) { . . . }
 . . .
 class Node
 {
 public Comparable data;
 public Node left;
 public Node right;

Figure 8 A Binary Tree That Is Not a Binary Search Tree

Node

Node

NodeNode

Node

Tree

Juliet

Adam

Eve
null
null

Harry
null
null

Tom
null

Eve
is in the left subtree

but Eve > Adam

Romeo
is in the right subtree

but Romeo < Tom

Node

Romeo
null
null

All nodes in a binary
search tree fulfill the
property that the
descendants to the
left have smaller data
values than the node
data value, and the
descendants to the
right have larger
data values.

688 Chapter 16 Advanced Data Structures

 public void addNode(Node newNode) { . . . }
 . . .
 }
}

To insert data into the tree, use the following algorithm:

• If you encounter a non-null node reference, look at its data value. If the data value
of that node is larger than the one you want to insert, continue the process with
the left child. If the existing data value is smaller, continue the process with the
right child.

• If you encounter a null node reference, replace it with the new node.

For example, consider the tree in Figure 9. It is the result of the following
statements:

BinarySearchTree tree = new BinarySearchTree();
tree.add("Juliet");
tree.add("Tom");
tree.add("Diana");
tree.add("Harry");

We want to insert a new element Romeo into it.
tree.add("Romeo");

Start with the root node, Juliet. Romeo comes after Juliet, so you move to the right
subtree. You encounter the node Tom. Romeo comes before Tom, so you move to the left
subtree. But there is no left subtree. Hence, you insert a new Romeo node as the left
child of Tom (see Figure 10).

To insert a value into
a binary search tree,
keep comparing the
value with the node
data and follow the
nodes to the left or
right, until reaching a
null node.

1
2

3
4

5

Figure 9
Binary Search Tree
After Four Insertions

Node

Node

Node

Node

BinarySearchTree

Juliet

Diana
null

Harry
null
null

Tom
null
null

1

23

4

16.5 Binary Search Trees 689

You should convince yourself that the resulting tree is still a binary search tree.
When Romeo is inserted, it must end up as a right descendant of Juliet—that is what
the binary search tree condition means for the root node Juliet. The root node
doesn’t care where in the right subtree the new node ends up. Moving along to Tom,
the right child of Juliet, all it cares about is that the new node Romeo ends up some-
where on its left. There is nothing to its left, so Romeo becomes the new left child, and
the resulting tree is again a binary search tree.

Here is the code for the add method of the BinarySearchTree class:
public void add(Comparable obj)
{
 Node newNode = new Node();
 newNode.data = obj;
 newNode.left = null;
 newNode.right = null;
 if (root == null) root = newNode;
 else root.addNode(newNode);
}

If the tree is empty, simply set its root to the new node. Otherwise, you know that
the new node must be inserted somewhere within the nodes, and you can ask the
root node to perform the insertion. That node object calls the addNode method of the
Node class, which checks whether the new object is less than the object stored in the
node. If so, the element is inserted in the left subtree; if not, it is inserted in the right
subtree:

class Node
{
 . . .
 public void addNode(Node newNode)
 {

Figure 10
Binary Search Tree
After Five Insertions

Node

Node

Node

Node

BinarySearchTree

Juliet

Diana
null

Harry
null
null

Tom

null

1

23

4 Node

Romeo
null
null

5

690 Chapter 16 Advanced Data Structures

 int comp = newNode.data.compareTo(data);
 if (comp < 0)
 {
 if (left == null) left = newNode;
 else left.addNode(newNode);
 }
 else if (comp > 0)
 {
 if (right == null) right = newNode;
 else right.addNode(newNode);
 }
 }
 . . .
}

Let’s trace the calls to addNode when inserting Romeo into the tree in Figure 9. The first
call to addNode is

root.addNode(newNode)

Because root points to Juliet, you compare Juliet with Romeo and find that you must
call

root.right.addNode(newNode)

The node root.right is Tom. Compare the data values again (Tom vs. Romeo) and find
that you must now move to the left. Since root.right.left is null, set root.right.left
to newNode, and the insertion is complete (see Figure 10).

Unlike a linked list or an array, and like a hash table, a binary tree has no insert
positions. You cannot select the position where you would like to insert an element
into a binary search tree. The data structure is self-organizing; that is, each element
finds its own place.

We will now discuss the removal algorithm. Our task is to remove a node from
the tree. Of course, we must first find the node to be removed. That is a simple mat-
ter, due to the characteristic property of a binary search tree. Compare the data
value to be removed with the data value that is stored in the root node. If it is
smaller, keep looking in the left subtree. Otherwise, keep looking in the right
subtree.

Let us now assume that we have located the node that needs to be removed. First,
let us consider an easy case, when that node has only one child (see Figure 11).

Figure 11
Removing a Node
with One Child

Parent

Node to be removed

Reroute
link

16.5 Binary Search Trees 691

To remove the node, simply modify the parent link that points to the node so
that it points to the child instead.

If the node to be removed has no children at all, then the parent link is simply set
to null.

The case in which the node to be removed has two children is more challenging.
Rather than removing the node, it is easier to replace its data value with the next
larger value in the tree. That replacement preserves the binary search tree property.
(Alternatively, you could use the largest element of the left subtree—see Exercise
P16.21).

To locate the next larger value, go to the right subtree and find its smallest data
value. Keep following the left child links. Once you reach a node that has no left
child, you have found the node containing the smallest data value of the subtree.
Now remove that node—it is easily removed because it has at most one child to the
right. Then store its data value in the original node that was slated for removal.
Figure 12 shows the details. You will find the complete code at the end of this sec-
tion.

At the end of this section, you will find the source code for the BinarySearchTree
class. It contains the add and remove methods that we just described, as well as a find
method that tests whether a value is present in a binary search tree, and a print
method that we will analyze in the following section.

Now that you have seen the implementation of this data structure, you may well
wonder whether it is any good. Like nodes in a list, nodes are allocated one at a
time. No existing elements need to be moved when a new element is inserted or
removed; that is an advantage. How fast insertion and removal are, however,
depends on the shape of the tree. These operations are fast if the tree is balanced (see
Figure 13).

Figure 12 Removing a Node with Two Children

When removing a
node with only one
child from a binary
search tree, the child
replaces the node to
be removed.

When removing a
node with two
children from a
binary search tree,
replace it with the
smallest node of the
right subtree.

In a balanced tree,
all paths from the
root to the leaves
have about the
same length.

Node to be removed

Smallest child in
right subtree

Reroute
link

Copy
value

692 Chapter 16 Advanced Data Structures

In a balanced tree, all paths from the root to one of the leaf nodes (that is, nodes
without children) have approximately the same length. The number of nodes in the
longest of these paths is called the height of the tree. The trees in Figure 13 have
height 5.

Because the operations of finding, adding, and removing an element process the
nodes along a path from the root to a leaf, their execution time is proportional to
the height of the tree, and not to the total number of nodes in the tree.

 A tree of height h can have up to n = 2h – 1 nodes. For example, a completely
filled tree of height 4 has 1 + 2 + 4 + 8 = 15 = 24 – 1 nodes. In other words, h = log2
(n + 1) for a completely filled tree. For a balanced tree, we still have h ≈ log2 n. For
example, the height of a tree with 1,000 nodes is approximately 10 (because 1024 =
210). A tree with 1,000,000 nodes has height approximately 20. In such a tree, you
can find any element in about 20 steps. That is a lot faster than traversing the
1,000,000 elements of a list.

On the other hand, if the tree happens to be unbalanced, then binary tree opera-
tions can be slow—in the worst case, as slow as insertion into a linked list.

If new elements are fairly random, the resulting tree is likely to be well balanced.
However, if the incoming elements happen to be in sorted order already, then the
resulting tree is completely unbalanced. Each new element is inserted at the end,
and the entire tree must be traversed every time to find that end!

Binary search trees work well for random data, but if you suspect that the data in
your application might be sorted or have long runs of sorted data, you should not
use a binary search tree. There are more sophisticated tree structures whose
methods keep trees balanced at all times. In these tree structures, one can guarantee
that finding, adding, and removing elements takes O(log(n)) time. The standard
Java library uses red-black trees, a special form of balanced binary trees, to imple-
ment sets and maps.

Figure 13 Balanced and Unbalanced Trees

Balanced Unbalanced

Adding, finding, and
removing an element
in a tree set is
proportional to the
height of the tree.

If a binary search
tree is balanced, then
adding, locating, or
removing an element
takes O(log(n)) time.

16.5 Binary Search Trees 693

ch16/tree/BinarySearchTree.java

1 /**
2 This class implements a binary search tree whose
3 nodes hold objects that implement the Comparable
4 interface.
5 */
6 public class BinarySearchTree
7 {
8 private Node root;
9

10 /**
11 Constructs an empty tree.
12 */
13 public BinarySearchTree()
14 {
15 root = null;
16 }
17
18 /**
19 Inserts a new node into the tree.
20 @param obj the object to insert
21 */
22 public void add(Comparable obj)
23 {
24 Node newNode = new Node();
25 newNode.data = obj;
26 newNode.left = null;
27 newNode.right = null;
28 if (root == null) root = newNode;
29 else root.addNode(newNode);
30 }
31
32 /**
33 Tries to find an object in the tree.
34 @param obj the object to find
35 @return true if the object is contained in the tree
36 */
37 public boolean find(Comparable obj)
38 {
39 Node current = root;
40 while (current != null)
41 {
42 int d = current.data.compareTo(obj);
43 if (d == 0) return true;
44 else if (d > 0) current = current.left;
45 else current = current.right;
46 }
47 return false;
48 }
49
50 /**
51 Tries to remove an object from the tree. Does nothing
52 if the object is not contained in the tree.
53 @param obj the object to remove
54 */
55 public void remove(Comparable obj)
56 {
57 // Find node to be removed
58

694 Chapter 16 Advanced Data Structures

59 Node toBeRemoved = root;
60 Node parent = null;
61 boolean found = false;
62 while (!found && toBeRemoved != null)
63 {
64 int d = toBeRemoved.data.compareTo(obj);
65 if (d == 0) found = true;
66 else
67 {
68 parent = toBeRemoved;
69 if (d > 0) toBeRemoved = toBeRemoved.left;
70 else toBeRemoved = toBeRemoved.right;
71 }
72 }
73
74 if (!found) return;
75
76 // toBeRemoved contains obj
77
78 // If one of the children is empty, use the other
79
80 if (toBeRemoved.left == null || toBeRemoved.right == null)
81 {
82 Node newChild;
83 if (toBeRemoved.left == null)
84 newChild = toBeRemoved.right;
85 else
86 newChild = toBeRemoved.left;
87
88 if (parent == null) // Found in root
89 root = newChild;
90 else if (parent.left == toBeRemoved)
91 parent.left = newChild;
92 else
93 parent.right = newChild;
94 return;
95 }
96
97 // Neither subtree is empty
98
99 // Find smallest element of the right subtree

100
101 Node smallestParent = toBeRemoved;
102 Node smallest = toBeRemoved.right;
103 while (smallest.left != null)
104 {
105 smallestParent = smallest;
106 smallest = smallest.left;
107 }
108
109 // smallest contains smallest child in right subtree
110
111 // Move contents, unlink child
112
113 toBeRemoved.data = smallest.data;
114 if (smallestParent == toBeRemoved)
115 smallestParent.right = smallest.right;
116 else
117 smallestParent.left = smallest.right;

16.5 Binary Search Trees 695

118 }
119
120 /**
121 Prints the contents of the tree in sorted order.
122 */
123 public void print()
124 {
125 if (root != null)
126 root.printNodes();
127 System.out.println();
128 }
129
130 /**
131 A node of a tree stores a data item and references
132 to the child nodes to the left and to the right.
133 */
134 class Node
135 {
136 public Comparable data;
137 public Node left;
138 public Node right;
139
140 /**
141 Inserts a new node as a descendant of this node.
142 @param newNode the node to insert
143 */
144 public void addNode(Node newNode)
145 {
146 int comp = newNode.data.compareTo(data);
147 if (comp < 0)
148 {
149 if (left == null) left = newNode;
150 else left.addNode(newNode);
151 }
152 if (comp > 0)
153 {
154 if (right == null) right = newNode;
155 else right.addNode(newNode);
156 }
157 }
158
159 /**
160 Prints this node and all of its descendants
161 in sorted order.
162 */
163 public void printNodes()
164 {
165 if (left != null)
166 left.printNodes();
167 System.out.print(data + " ");
168 if (right != null)
169 right.printNodes();
170 }
171 }
172 }

696 Chapter 16 Advanced Data Structures

11. What is the difference between a tree, a binary tree, and a balanced binary tree?
12. Give an example of a string that, when inserted into the tree of Figure 10,

becomes a right child of Romeo.

Now that the data are inserted in the tree, what can you do with them? It turns out
to be surprisingly simple to print all elements in sorted order. You know that all
data in the left subtree of any node must come before the node and before all data in
the right subtree. That is, the following algorithm will print the elements in sorted
order:

1. Print the left subtree.
2. Print the data.
3. Print the right subtree.

Let’s try this out with the tree in Figure 10 on page 689. The algorithm tells us to

1. Print the left subtree of Juliet; that is, Diana and descendants.
2. Print Juliet.
3. Print the right subtree of Juliet; that is, Tom and descendants.

How do you print the subtree starting at Diana?

1. Print the left subtree of Diana. There is nothing to print.
2. Print Diana.
3. Print the right subtree of Diana, that is, Harry.

That is, the left subtree of Juliet is printed as
Diana Harry

The right subtree of Juliet is the subtree starting at Tom. How is it printed? Again,
using the same algorithm:

1. Print the left subtree of Tom, that is, Romeo.
2. Print Tom.
3. Print the right subtree of Tom. There is nothing to print.

Thus, the right subtree of Juliet is printed as
Romeo Tom

Now put it all together: the left subtree, Juliet, and the right subtree:
Diana Harry Juliet Romeo Tom

The tree is printed in sorted order.
Now we can implement the print method. You need a worker method printNodes

of the Node class:

S E L F C H E C K

16.6 Binary Tree Traversal

16.6 Binary Tree Traversal 697

class Node
{
 . . .
 public void printNodes()
 {
 if (left != null)
 left.printNodes();
 System.out.print(data + " ");

 if (right != null)
 right.printNodes();
 }
 . . .
}

To print the entire tree, start this recursive printing process at the root, with the fol-
lowing method of the BinarySearchTree class.

public class BinarySearchTree
{
 . . .
 public void print()
 {
 if (root != null)
 root.printNodes();
 System.out.println();
 }
 . . .
}

This visitation scheme is called inorder traversal (visit the left subtree, the root, the
right subtree). There are two other common traversal schemes, called preorder tra-
versal and postorder traversal.

In preorder traversal,

• Visit the root,
• Visit the left subtree,
• Visit the right subtree.

In postorder traversal,

• Visit the left subtree,
• Visit the right subtree,
• Visit the root.

These two visitation schemes will not print the tree in sorted order. However, they
are important in other applications of binary trees. Here is an example.

In Chapter 13, we presented an algorithm for parsing arithmetic expressions such
as

(3 + 4) * 5
3 + 4 * 5

It is customary to draw these expressions in tree form—see Figure 14. If all opera-
tors have two arguments, then the resulting tree is a binary tree. Its leaves store
numbers, and its interior nodes store operators.

Note that the expression trees describe the order in which the operators are
applied.

To visit all elements
in a tree, visit the
root and recursively
visit the subtrees.
We distinguish
between preorder,
inorder, and
postorder traversal.

698 Chapter 16 Advanced Data Structures

This order becomes visible when applying the postorder traversal of the expres-
sion tree. The first tree yields

3 4 + 5 *

whereas the second tree yields
3 4 5 * +

You can interpret these sequences as expressions in “reverse Polish notation” (see
Special Topic 15.1), or equivalently, instructions for a stack-based calculator (see
Worked Example 15.1).

13. What are the inorder traversals of the two trees in Figure 14?
14. Are the trees in Figure 14 binary search trees?

In Section 15.4, you encountered two common abstract data types: stacks and
queues. Another important abstract data type, the priority queue, collects ele-
ments, each of which has a priority. A typical example of a priority queue is a collec-
tion of work requests, some of which may be more urgent than others. Unlike a
regular queue, the priority queue does not maintain a first-in, first-out discipline.
Instead, elements are retrieved according to their priority. In other words, new
items can be inserted in any order. But whenever an item is removed, that item has
highest priority.

It is customary to give low values to high priorities, with priority 1 denoting the
highest priority. The priority queue extracts the minimum element from the queue.

For example, consider this sample code:
PriorityQueue<WorkOrder> q = new PriorityQueue<WorkOrder>();
q.add(new WorkOrder(3, "Shampoo carpets"));
q.add(new WorkOrder(1, "Fix overflowing sink"));
q.add(new WorkOrder(2, "Order cleaning supplies"));

When calling q.remove() for the first time, the work order with priority 1 is removed.
The next call to q.remove() removes the work order whose priority is highest among
those remaining in the queue—in our example, the work order with priority 2.

Figure 14 Expression Trees

+ 5

*

3 4 4 5

*3

+

Postorder traversal
of an expression tree
yields the instructions
for evaluating the
expression on a stack-
based calculator.

S E L F C H E C K

16.7 Priority Queues

When removing an
element from a
priority queue, the
element with the
highest priority is
retrieved.

16.8 Heaps 699

The standard Java library supplies a PriorityQueue class that is ready for you to
use. Later in this chapter, you will learn how to supply your own implementation.

Keep in mind that the priority queue is an abstract data type. You do not know
how a priority queue organizes its elements. There are several concrete data struc-
tures that can be used to implement priority queues.

Of course, one implementation comes to mind immediately. Just store the ele-
ments in a linked list, adding new elements to the head of the list. The remove
method then traverses the linked list and removes the element with the highest pri-
ority. In this implementation, adding elements is quick, but removing them is slow.

Another implementation strategy is to keep the elements in sorted order, for
example in a binary search tree. Then it is an easy matter to locate and remove the
largest element. However, another data structure, called a heap, is even more suit-
able for implementing priority queues.

A heap (or, for greater clarity, min-heap) is a binary tree with two special properties.

1. A heap is almost completely filled: all nodes are filled in, except the last level
may have some nodes missing toward the right (see Figure 15).

2. The tree fulfills the heap property: all nodes store values that are at most as
large as the values stored in their descendants (see Figure 16).

It is easy to see that the heap property ensures that the smallest element is stored in
the root.

A heap is superficially similar to a binary search tree, but there are two important
differences.

16.8 Heaps
A heap is an almost
completely filled tree
in which the values
of all nodes are at
most as large as
those of their
descendants.

Figure 15 An Almost Completely Filled Tree

Some nodes missing toward the right

All nodes filled in

700 Chapter 16 Advanced Data Structures

1. The shape of a heap is very regular. Binary search trees can have arbitrary
shapes.

2. In a heap, the left and right subtrees both store elements that are larger than
the root element. In contrast, in a binary search tree, smaller elements are
stored in the left subtree and larger elements are stored in the right subtree.

Suppose you have a heap and want to insert a new element. Afterwards, the heap
property should again be fulfilled. The following algorithm carries out the insertion
(see Figure 17).

1. First, add a vacant slot to the end of the tree.
2. Next, demote the parent of the empty slot if it is larger than the element to be

inserted. That is, move the parent value into the vacant slot, and move the
vacant slot up. Repeat this demotion as long as the parent of the vacant slot is
larger than the element to be inserted. (See Figure 17 continued.)

Figure 16
A Heap

Figure 17 Inserting an Element into a Heap

20

75 43

84 90 57 71

96 91 93

1 Add vacant slot at end
20

75 43

84 90 57 71

96 91 93

Insert 60

16.8 Heaps 701

3. At this point, either the vacant slot is at the root, or the parent of the vacant
slot is smaller than the element to be inserted. Insert the element into the
vacant slot.

Figure 17 (continued) Inserting an Element into a Heap

2 Demote parents
20

75 43

84

90

57 71

96 91 93

Insert 60

20

75

43

84

90

57 71

96 91 93

3 Insert element into vacant slot
20

60 43

84

90

57 71

96 91 93

Insert 60

75

702 Chapter 16 Advanced Data Structures

We will not consider an algorithm for removing an arbitrary node from a heap. The
only node that we will remove is the root node, which contains the minimum of all
of the values in the heap. Figure 18 shows the algorithm in action.

1. Extract the root node value.
2. Move the value of the last node of the heap into the root node, and remove the

last node. Now the heap property may be violated for the root node, because
one or both of its children may be smaller.

3. Promote the smaller child of the root node. (See Figure 18 continued.) Now
the root node again fulfills the heap property. Repeat this process with the
demoted child. That is, promote the smaller of its children. Continue until the
demoted child has no smaller children. The heap property is now fulfilled
again. This process is called “fixing the heap”.

Figure 18 Removing the Minimum Value from a Heap

1 Remove the minimum element from the root
20

75 43

84 90 57 71

96 91 93

2 Move the last element into the root
93

75 43

84 90 57 71

96 91

16.8 Heaps 703

Inserting and removing heap elements is very efficient. The reason lies in the bal-
anced shape of a heap. The insertion and removal operations visit at most h nodes,
where h is the height of the tree. A heap of height h contains at least 2h–1 elements,
but less than 2h elements. In other words, if n is the number of elements, then

or

This argument shows that the insertion and removal operations in a heap with n ele-
ments take O(log(n)) steps.

Contrast this finding with the situation of binary search trees. When a binary
search tree is unbalanced, it can degenerate into a linked list, so that in the worst
case insertion and removal are O(n) operations.

Figure 18 (continued) Removing the Minimum Value from a Heap

3 Fix the heap
43

75 93

84 90 57 71

96 91

43

75 57

84 90 93 71

96 91

2 21h hn− ≤ <

h n h− ≤ <1 2log ()

Inserting or
removing a heap
element is an
O(log(n)) operation.

704 Chapter 16 Advanced Data Structures

Heaps have another major advantage. Because of the regular layout of the heap
nodes, it is easy to store the node values in an array or array list. First store the first
layer, then the second, and so on (see Figure 19). For convenience, we leave the 0
element of the array empty. Then the child nodes of the node with index i have
index 2 · i and 2 · i + 1 , and the parent node of the node with index i has index .
For example, as you can see in Figure 19, the children of node 4 are nodes 8 and 9,
and the parent is node 2.

Storing the heap values in an array may not be intuitive, but it is very efficient.
There is no need to allocate individual nodes or to store the links to the child nodes.
Instead, child and parent positions can be determined by very simple computations.

The program at the end of this section contains an implementation of a heap. For
greater clarity, the computation of the parent and child index positions is carried
out in methods getParentIndex, getLeftChildIndex, and getRightChildIndex. For greater
efficiency, the method calls could be avoided by using expressions index / 2,
2 * index, and 2 * index + 1 directly.

In this section, we have organized our heaps such that the smallest element is
stored in the root. It is also possible to store the largest element in the root, simply
by reversing all comparisons in the heap-building algorithm. If there is a possibility
of misunderstanding, it is best to refer to the data structures as min-heap or max-
heap.

The test program demonstrates how to use a min-heap as a priority queue.

Figure 19 Storing a Heap in an Array

20

75 43

84 90 57 71

96 91 93

Layer 1

Layer 2

Layer 3

Layer 4

Layer 4Layer 3Layer 2Layer 1

20 75 43 84 90 57 71 96 91 93

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The regular layout
of a heap makes it
possible to store
heap nodes efficiently
in an array.

i 2

16.8 Heaps 705

ch16/pqueue/MinHeap.java

1 import java.util.*;
2
3 /**
4 This class implements a heap.
5 */
6 public class MinHeap
7 {
8 private ArrayList<Comparable> elements;
9

10 /**
11 Constructs an empty heap.
12 */
13 public MinHeap()
14 {
15 elements = new ArrayList<Comparable>();
16 elements.add(null);
17 }
18
19 /**
20 Adds a new element to this heap.
21 @param newElement the element to add
22 */
23 public void add(Comparable newElement)
24 {
25 // Add a new leaf
26 elements.add(null);
27 int index = elements.size() - 1;
28
29 // Demote parents that are larger than the new element
30 while (index > 1
31 && getParent(index).compareTo(newElement) > 0)
32 {
33 elements.set(index, getParent(index));
34 index = getParentIndex(index);
35 }
36
37 // Store the new element in the vacant slot
38 elements.set(index, newElement);
39 }
40
41 /**
42 Gets the minimum element stored in this heap.
43 @return the minimum element
44 */
45 public Comparable peek()
46 {
47 return elements.get(1);
48 }
49
50 /**
51 Removes the minimum element from this heap.
52 @return the minimum element
53 */
54 public Comparable remove()
55 {
56 Comparable minimum = elements.get(1);
57

706 Chapter 16 Advanced Data Structures

58 // Remove last element
59 int lastIndex = elements.size() - 1;
60 Comparable last = elements.remove(lastIndex);
61
62 if (lastIndex > 1)
63 {
64 elements.set(1, last);
65 fixHeap();
66 }
67
68 return minimum;
69 }
70
71 /**
72 Turns the tree back into a heap, provided only the root
73 node violates the heap condition.
74 */
75 private void fixHeap()
76 {
77 Comparable root = elements.get(1);
78
79 int lastIndex = elements.size() - 1;
80 // Promote children of removed root while they are smaller than last
81
82 int index = 1;
83 boolean more = true;
84 while (more)
85 {
86 int childIndex = getLeftChildIndex(index);
87 if (childIndex <= lastIndex)
88 {
89 // Get smaller child
90
91 // Get left child first
92 Comparable child = getLeftChild(index);
93
94 // Use right child instead if it is smaller
95 if (getRightChildIndex(index) <= lastIndex
96 && getRightChild(index).compareTo(child) < 0)
97 {
98 childIndex = getRightChildIndex(index);
99 child = getRightChild(index);

100 }
101
102 // Check if larger child is smaller than root
103 if (child.compareTo(root) < 0)
104 {
105 // Promote child
106 elements.set(index, child);
107 index = childIndex;
108 }
109 else
110 {
111 // Root is smaller than both children
112 more = false;
113 }
114 }
115 else
116 {

16.8 Heaps 707

117 // No children
118 more = false;
119 }
120 }
121
122 // Store root element in vacant slot
123 elements.set(index, root);
124 }
125
126 /**
127 Returns the number of elements in this heap.
128 */
129 public int size()
130 {
131 return elements.size() - 1;
132 }
133
134 /**
135 Returns the index of the left child.
136 @param index the index of a node in this heap
137 @return the index of the left child of the given node
138 */
139 private static int getLeftChildIndex(int index)
140 {
141 return 2 * index;
142 }
143
144 /**
145 Returns the index of the right child.
146 @param index the index of a node in this heap
147 @return the index of the right child of the given node
148 */
149 private static int getRightChildIndex(int index)
150 {
151 return 2 * index + 1;
152 }
153
154 /**
155 Returns the index of the parent.
156 @param index the index of a node in this heap
157 @return the index of the parent of the given node
158 */
159 private static int getParentIndex(int index)
160 {
161 return index / 2;
162 }
163
164 /**
165 Returns the value of the left child.
166 @param index the index of a node in this heap
167 @return the value of the left child of the given node
168 */
169 private Comparable getLeftChild(int index)
170 {
171 return elements.get(2 * index);
172 }
173

708 Chapter 16 Advanced Data Structures

ch16/pqueue/WorkOrder.java

174 /**
175 Returns the value of the right child.
176 @param index the index of a node in this heap
177 @return the value of the right child of the given node
178 */
179 private Comparable getRightChild(int index)
180 {
181 return elements.get(2 * index + 1);
182 }
183
184 /**
185 Returns the value of the parent.
186 @param index the index of a node in this heap
187 @return the value of the parent of the given node
188 */
189 private Comparable getParent(int index)
190 {
191 return elements.get(index / 2);
192 }
193 }

1 /**
2 This class encapsulates a work order with a priority.
3 */
4 public class WorkOrder implements Comparable
5 {
6 private int priority;
7 private String description;
8
9 /**

10 Constructs a work order with a given priority and description.
11 @param aPriority the priority of this work order
12 @param aDescription the description of this work order
13 */
14 public WorkOrder(int aPriority, String aDescription)
15 {
16 priority = aPriority;
17 description = aDescription;
18 }
19
20 public String toString()
21 {
22 return "priority=" + priority + ", description=" + description;
23 }
24
25 public int compareTo(Object otherObject)
26 {
27 WorkOrder other = (WorkOrder) otherObject;
28 if (priority < other.priority) return -1;
29 if (priority > other.priority) return 1;
30 return 0;
31 }
32 }

16.9 The Heapsort Algorithm 709

ch16/pqueue/HeapDemo.java

Program Run

15. The software that controls the events in a user interface keeps the events in a
data structure. Whenever an event such as a mouse move or repaint request
occurs, the event is added. Events are retrieved according to their importance.
What abstract data type is appropriate for this application?

16. Could we store a binary search tree in an array so that we can quickly locate the
children by looking at array locations 2 * index and 2 * index + 1?

Heaps are not only useful for implementing priority queues, they also give rise to
an efficient sorting algorithm, heapsort. In its simplest form, the algorithm works as
follows. First insert all elements to be sorted into the heap, then keep extracting the
minimum.

This algorithm is an O(n log(n)) algorithm: each insertion and removal is
O(log(n)), and these steps are repeated n times, once for each element in the
sequence that is to be sorted.

The algorithm can be made a bit more efficient. Rather than inserting the ele-
ments one at a time, we will start with a sequence of values in an array. Of course,

1 /**
2 This program demonstrates the use of a heap as a priority queue.
3 */
4 public class HeapDemo
5 {
6 public static void main(String[] args)
7 {
8 MinHeap q = new MinHeap();
9 q.add(new WorkOrder(3, "Shampoo carpets"));

10 q.add(new WorkOrder(7, "Empty trash"));
11 q.add(new WorkOrder(8, "Water plants"));
12 q.add(new WorkOrder(10, "Remove pencil sharpener shavings"));
13 q.add(new WorkOrder(6, "Replace light bulb"));
14 q.add(new WorkOrder(1, "Fix broken sink"));
15 q.add(new WorkOrder(9, "Clean coffee maker"));
16 q.add(new WorkOrder(2, "Order cleaning supplies"));
17
18 while (q.size() > 0)
19 System.out.println(q.remove());
20 }
21 }

priority=1, description=Fix broken sink
priority=2, description=Order cleaning supplies
priority=3, description=Shampoo carpets
priority=6, description=Replace light bulb
priority=7, description=Empty trash
priority=8, description=Water plants
priority=9, description=Clean coffee maker
priority=10, description=Remove pencil sharpener shavings

S E L F C H E C K

16.9 The Heapsort Algorithm
The heapsort
algorithm is based
on inserting
elements into a heap
and removing them
in sorted order.

Heapsort is an
O(n log(n)) algorithm.

710 Chapter 16 Advanced Data Structures

that array does not represent a heap. We will use the procedure of “fixing the heap”
that you encountered in the preceding section as part of the element removal algo-
rithm. “Fixing the heap” operates on a binary tree whose child trees are heaps but
whose root value may not be smaller than the descendants. The procedure turns the
tree into a heap, by repeatedly promoting the smallest child value, moving the root
value to its proper location.

Of course, we cannot simply apply this procedure to the initial sequence of
unsorted values—the child trees of the root are not likely to be heaps. But we can
first fix small subtrees into heaps, then fix larger trees. Because trees of size 1 are
automatically heaps, we can begin the fixing procedure with the subtrees whose
roots are located in the next-to-last level of the tree.

The sorting algorithm uses a generalized fixHeap method that fixes a subtree:
void fixHeap(int rootIndex, int lastIndex)

The subtree is specified by the index of its root and of its last node.
The fixHeap method needs to be invoked on all subtrees whose roots are in the

next-to-last level. Then the subtrees whose roots are in the next level above are
fixed, and so on. Finally, the fixup is applied to the root node, and the tree is turned
into a heap (see Figure 20).

That repetition can be programmed easily. Start with the last node on the next-
to-lowest level and work toward the left. Then go to the next higher level. The node
index values then simply run backwards from the index of the last node to the index
of the root.

int n = a.length - 1;
for (int i = (n - 1) / 2; i >= 0; i--)
 fixHeap(i, n);

It can be shown that this procedure turns an arbitrary array into a heap in O(n)
steps.

Note that the loop ends with index 0. When working with a given array, we don’t
have the luxury of skipping the 0 entry. We consider the 0 entry the root and adjust
the formulas for computing the child and parent index values.

Figure 20 Turning a Tree into a Heap

1

Call fixHeap
on these nodes

16.9 The Heapsort Algorithm 711

After the array has been turned into a heap, we repeatedly remove the root ele-
ment. Recall from the preceding section that removing the root element is achieved
by placing the last element of the tree in the root and calling the fixHeap method.
Because we call the O(log(n)) fixHeap method n times, this process requires
O(n log(n)) steps.

Rather than moving the root element into a separate array, we can swap the root
element with the last element of the tree and then reduce the tree length. Thus, the
removed root ends up in the last position of the array, which is no longer needed by
the heap. In this way, we can use the same array both to hold the heap (which gets
shorter with each step) and the sorted sequence (which gets longer with each step).

while (n > 0)
{
 swap(0, n);
 n--;
 fixHeap(0, n);
}

Figure 20 (continued) Turning a Tree into a Heap

2

Call fixHeap
on these nodes

3 Call fixHeap
on the root

712 Chapter 16 Advanced Data Structures

There is just a minor inconvenience. When we use a min-heap, the sorted sequence
is accumulated in reverse order, with the smallest element at the end of the array. We
could reverse the sequence after sorting is complete. However, it is easier to use a
max-heap rather than a min-heap in the heapsort algorithm. With this modification,
the largest value is placed at the end of the array after the first step. After the next
step, the next-largest value is swapped from the heap root to the second position
from the end, and so on (see Figure 21).

The following class implements the heapsort algorithm.

ch16/heapsort/HeapSorter.java

Figure 21 Using Heapsort to Sort an Array

Already sorted values

Root Last element
of unsorted heap

Largest
value

1 /**
2 This class applies the heapsort algorithm to sort an array.
3 */
4 public class HeapSorter
5 {
6 private int[] a;
7
8 /**
9 Constructs a heap sorter that sorts a given array.

10 @param anArray an array of integers
11 */
12 public HeapSorter(int[] anArray)
13 {
14 a = anArray;
15 }
16
17 /**
18 Sorts the array managed by this heap sorter.
19 */
20 public void sort()
21 {
22 int n = a.length - 1;
23 for (int i = (n - 1) / 2; i >= 0; i--)
24 fixHeap(i, n);
25 while (n > 0)
26 {
27 swap(0, n);
28 n--;
29 fixHeap(0, n);
30 }
31 }
32

16.9 The Heapsort Algorithm 713

33 /**
34 Ensures the heap property for a subtree, provided its
35 children already fulfill the heap property.
36 @param rootIndex the index of the subtree to be fixed
37 @param lastIndex the last valid index of the tree that
38 contains the subtree to be fixed
39 */
40 private void fixHeap(int rootIndex, int lastIndex)
41 {
42 // Remove root
43 int rootValue = a[rootIndex];
44
45 // Promote children while they are larger than the root
46
47 int index = rootIndex;
48 boolean more = true;
49 while (more)
50 {
51 int childIndex = getLeftChildIndex(index);
52 if (childIndex <= lastIndex)
53 {
54 // Use right child instead if it is larger
55 int rightChildIndex = getRightChildIndex(index);
56 if (rightChildIndex <= lastIndex
57 && a[rightChildIndex] > a[childIndex])
58 {
59 childIndex = rightChildIndex;
60 }
61
62 if (a[childIndex] > rootValue)
63 {
64 // Promote child
65 a[index] = a[childIndex];
66 index = childIndex;
67 }
68 else
69 {
70 // Root value is larger than both children
71 more = false;
72 }
73 }
74 else
75 {
76 // No children
77 more = false;
78 }
79 }
80
81 // Store root value in vacant slot
82 a[index] = rootValue;
83 }
84
85 /**
86 Swaps two entries of the array.
87 @param i the first position to swap
88 @param j the second position to swap
89 */
90 private void swap(int i, int j)
91 {

714 Chapter 16 Advanced Data Structures

17. Which algorithm requires less storage, heapsort or merge sort?
18. Why are the computations of the left child index and the right child index in the

HeapSorter different than in MinHeap?

Software Piracy

As you read this, you have written a few computer programs, and you have experienced
firsthand how much effort it takes to write even the humblest of programs. Writing a real
software product, such as a financial application or a computer game, takes a lot of time and
money. Few people, and fewer companies, are going to spend that kind of time and money if
they don’t have a reasonable chance to make more money from their effort. (Actually, some
companies give away their software in the hope that users will upgrade to more elaborate
paid versions. Other companies give away the software that enables users to read and use
files but sell the software needed to create those files. Finally, there are individuals who
donate their time, out of enthusiasm, and produce programs that you can copy freely.)

When selling software, a company must rely on the honesty of its customers. It is an easy
matter for an unscrupulous person to make copies of computer programs without paying for
them. In most countries that is illegal. Most governments provide legal protection, such as
copyright laws and patents, to encourage the development of new products. Countries that
tolerate widespread piracy have found that they have an ample cheap supply of foreign soft-
ware, but no local manufacturers willing to design good software for their own citizens, such
as word processors in the local script or financial programs adapted to the local tax laws.

When a mass market for software first appeared, vendors were enraged by the money
they lost through piracy. They tried to fight back by various schemes to ensure that only the

92 int temp = a[i];
93 a[i] = a[j];
94 a[j] = temp;
95 }
96
97 /**
98 Returns the index of the left child.
99 @param index the index of a node in this heap

100 @return the index of the left child of the given node
101 */
102 private static int getLeftChildIndex(int index)
103 {
104 return 2 * index + 1;
105 }
106
107 /**
108 Returns the index of the right child.
109 @param index the index of a node in this heap
110 @return the index of the right child of the given node
111 */
112 private static int getRightChildIndex(int index)
113 {
114 return 2 * index + 2;
115 }
116 }

S E L F C H E C K

Random Fact 16.1

Summary of Learning Objectives 715

legitimate owner could use the software. Some manufacturers used key disks: disks with spe-
cial patterns of holes burned in by a laser, which couldn’t be copied. Others used dongles:
devices that are attached to a printer port. Legitimate users hated these measures. They paid
for the software, but they had to suffer through the inconvenience of inserting a key disk
every time they started the software or having multiple dongles stick out from their com-
puter. In the United States, market pressures forced most vendors to give up on these copy
protection schemes, but they are still commonplace in other parts of the world.

Because it is so easy and inexpensive to pirate software, and the chance of being found out
is minimal, you have to make a moral choice for yourself. If a package that you would really
like to have is too expensive for your budget, do you steal it, or do you stay honest and get
by with a more affordable product?

Of course, piracy is not limited to software. The same issues arise for other digital prod-
ucts as well. You may have had the opportunity to obtain copies of songs or movies without
payment. Or you may have been frustrated by a copy protection device on your music
player that made it difficult for you to listen to songs that you paid for. Admittedly, it can be
difficult to have a lot of sympathy for a musical ensemble whose publisher charges a lot of
money for what seems to have been very little effort on their part, at least when compared to
the effort that goes into designing and implementing a software package. Nevertheless, it
seems only fair that artists and authors receive some compensation for their efforts. How to
pay artists, authors, and programmers fairly, without burdening honest customers, is an
unsolved problem at the time of this writing, and many computer scientists are engaged in
research in this area.

Describe the abstract set type and its implementations in the Java library.

• A set is an unordered collection of distinct elements. Elements can be added,
located, and removed.

• Sets don’t have duplicates. Adding a duplicate of an element that is already present
is silently ignored.

• The HashSet and TreeSet classes both implement the Set interface.
• To visit all elements in a set, use an iterator.
• A set iterator visits elements in seemingly random order (HashSet) or sorted order

(TreeSet).
• You cannot add an element to a set at an iterator position.

Describe the abstract map type and its implementations in the Java library.

• A map keeps associations between key and value objects.
• The HashMap and TreeMap classes both implement the Map interface.
• To find all keys and values in a map, iterate through the key set and find the values

that correspond to the keys.

Explain the implementation of a hash table and its performance characteristics.

• A hash function computes an integer value from an object.
• A good hash function minimizes collisions—identical hash codes for different

objects.

Summary of Learning Objectives

716 Chapter 16 Advanced Data Structures

• A hash table can be implemented as an array of buckets—sequences of nodes that
hold elements with the same hash code.

• If there are no or only a few collisions, then adding, locating, and removing hash
table elements takes constant or O(1) time.

Develop a hashCode method that is appropriate for a given class.

• When implementing the hashCode method, combine the hash codes for the instance
variables.

• Your hashCode method must be compatible with the equals method.
• If a class provides neither equals nor hashCode, then objects are compared by

identity.
• In a hash map, only the keys are hashed.

Explain the implementation of a binary search tree and its performance characteristics.

• A binary tree consists of nodes, each of which has at most two child nodes.
• All nodes in a binary search tree fulfill the property that the descendants to the left

have smaller data values than the node data value, and the descendants to the right
have larger data values.

• To insert a value into a binary search tree, keep comparing the value with the node
data and follow the nodes to the left or right, until reaching a null node.

• When removing a node with only one child from a binary search tree, the child
replaces the node to be removed.

• When removing a node with two children from a binary search tree, replace it with
the smallest node of the right subtree.

• In a balanced tree, all paths from the root to the leaves have about the same length.
• Adding, finding, and removing an element in a tree set is proportional to the height

of the tree.
• If a binary search tree is balanced, then adding, locating, or removing an element

takes O(log(n)) time.

Describe preorder, inorder, and postorder tree traversal.

• To visit all elements in a tree, visit the root and recursively visit the subtrees. We dis-
tinguish between preorder, inorder, and postorder traversal.

• Postorder traversal of an expression tree yields the instructions for evaluating the
expression on a stack-based calculator.

Describe the behavior of the priority queue data type.

• When removing an element from a priority queue, the element with the highest pri-
ority is retrieved.

Describe the heap data structure and the efficiency of its operations.

• A heap is an almost completely filled tree in which the values of all nodes are at
most as large as those of their descendants.

• Inserting or removing a heap element is an O(log(n)) operation.
• The regular layout of a heap makes it possible to store heap nodes efficiently in an

array.

Review Exercises 717

Describe the heapsort algorithm and its run-time performance.

• The heapsort algorithm is based on inserting elements into a heap and removing
them in sorted order.

• Heapsort is an O(n log(n)) algorithm.

• Worked Example Word Frequency
• Lab Exercises

Practice Quiz
Code Completion Exercises

R16.1 What is the difference between a set and a map?

R16.2 What implementations does the Java library provide for the abstract set type?

R16.3 What are the fundamental operations on the abstract set type? What additional
methods does the Set interface provide? (Look up the interface in the API
documentation.)

R16.4 The union of two sets A and B is the set of all elements that are contained in A, B, or
both. The intersection is the set of all elements that are contained in A and B. How
can you compute the union and intersection of two sets, using the four fundamental
set operations described on page 666?

R16.5 How can you compute the union and intersection of two sets, using some of the
methods that the java.util.Set interface provides? (Look up the interface in the API
documentation.)

R16.6 Can a map have two keys with the same value? Two values with the same key?

R16.7 A map can be implemented as a set of (key, value) pairs. Explain.

R16.8 When implementing a map as a hash set of (key, value) pairs, how is the hash code
of a pair computed?

R16.9 Verify the hash codes of the strings "Jim" and "Joe" in Table 1.

R16.10 From the hash codes in Table 1, show that Figure 6 accurately shows the locations
of the strings if the hash table size is 101.

Classes, Objects, and Methods Introduced in this Chapter
java.util.Collection<E>

contains
remove
size

java.util.HashMap<K, V>
java.util.HashSet<K, V>

java.util.Map<K, V>
get
keySet
put
remove

java.util.PriorityQueue<E>
remove

java.util.Set<E>
java.util.TreeMap<K, V>
java.util.TreeSet<K, V>

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

718 Chapter 16 Advanced Data Structures

R16.11 What is the difference between a binary tree and a binary search tree? Give exam-
ples of each.

R16.12 What is the difference between a balanced tree and an unbalanced tree? Give exam-
ples of each.

R16.13 The following elements are inserted into a binary search tree. Make a drawing that
shows the resulting tree after each insertion.

Adam
Eve
Romeo
Juliet
Tom
Diana
Harry

R16.14 Insert the elements of Exercise R16.13 in opposite order. Then determine how the
BinarySearchTree.print method prints out both the tree from Exercise R16.13 and
this tree. Explain how the printouts are related.

R16.15 Consider the following tree. In which order are the nodes printed by the Binary-
SearchTree.print method? The numbers identify the nodes. The data stored in the
nodes is not shown.

R16.16 Could a priority queue be implemented efficiently as a binary search tree? Give a
detailed argument for your answer.

R16.17 Will preorder, inorder, or postorder traversal print a heap in sorted order? Why or
why not?

R16.18 Prove that a heap of height h contains at least 2h–1 elements but less than 2h ele-
ments.

R16.19 Suppose the heap nodes are stored in an array, starting with index 1. Prove that the
child nodes of the heap node with index i have index 2 · i and 2 · i + 1, and the parent
heap node of the node with index i has index .

R16.20 Simulate the heapsort algorithm manually to sort the array
11 27 8 14 45 6 24 81 29 33

Show all steps.

1

2 3

7 98 10

4 65

i 2

Programming Exercises 719

P16.1 Write a program that reads text from System.in and breaks it up into individual
words. Insert the words into a tree set. At the end of the input file, print all words,
followed by the size of the resulting set. This program determines how many
unique words a text file has.

P16.2 Insert the 13 standard colors that the Color class declares (that is, Color.PINK,
Color.GREEN, and so on) into a set. Prompt the user to enter a color by specifying red,
green, and blue integer values between 0 and 255. Then tell the user whether the
resulting color is in the set.

P16.3 Implement the sieve of Eratosthenes: a method for computing prime numbers,
known to the ancient Greeks. Choose an n. This method will compute all prime
numbers up to n. First insert all numbers from 2 to n into a set. Then erase all mul-
tiples of 2 (except 2); that is, 4, 6, 8, 10, 12, Erase all multiples of 3; that is, 6, 9,
12, 15, Go up to . Then print the set.

P16.4 Insert all words from a large file (such as the novel “War and Peace”, which is avail-
able on the Internet) into a hash set and a tree set. Time the results. Which data
structure is faster?

P16.5 Write a program that reads a Java source file and produces an index of all identifiers
in the file. For each identifier, print all lines in which it occurs.
Hint: Call in.useDelimiter("[^A-Za-z0-9_]+"). Then each call to next returns a string
consisting only of letters, numbers, and underscores.

P16.6 Try to find two words with the same hash code in a large file, such as the /usr/share/
dict/words file on a Linux system. Keep a Map<Integer, HashSet<String>>. When you
read in a word, compute its hash code h and put the word in the set whose key is h.
Then iterate through all keys and print the sets whose size is > 1.

P16.7 Write a program that keeps a map in which both keys and values are strings—the
names of students and their course grades. Prompt the user of the program to add
or remove students, to modify grades, or to print all grades. The printout should be
sorted by name and formatted like this:

Carl: B+
Joe: C
Sarah: A

P16.8 Reimplement Exercise P16.7 so that the keys of the map are objects of class Student.
A student should have a first name, a last name, and a unique integer ID. For grade
changes and removals, lookup should be by ID. The printout should be sorted by
last name. If two students have the same last name, then use the first name as tie
breaker. If the first names are also identical, then use the integer ID. Hint: Use two
maps.

P16.9 Add a debug method to the HashSet implementation in Section 16.4 that prints the
nonempty buckets of the hash table. Run the test program at the end of Section
16.4. Call the debug method after all additions and removals and verify that Figure 6
accurately represents the state of the hash table.

P16.10 Supply compatible hashCode and equals methods to the Student class described in
Exercise P16.8. Test the hash code by adding Student objects to a hash set.

Programming Exercises

n

720 Chapter 16 Advanced Data Structures

P16.11 Supply compatible hashCode and equals methods to the BankAccount class of Chapter 7.
Test the hashCode method by printing out hash codes and by adding BankAccount
objects to a hash set.

P16.12 A labeled point has x- and y-coordinates and a string label. Provide a class Labeled-
Point with a constructor LabeledPoint(int x, int y, String label) and hashCode and
equals methods. Two labeled points are considered the same when they have the
same location and label.

P16.13 Reimplement the LabeledPoint class of Exercise P16.12 by storing the location in a
java.awt.Point object. Your hashCode and equals methods should call the hashCode and
equals methods of the Point class.

P16.14 Modify the LabeledPoint class of Exercise P16.13 so that it implements the Comparable
interface. Sort points first by their x-coordinates. If two points have the same
x-coordinate, sort them by their y-coordinates. If two points have the same x- and
y-coordinates, sort them by their label. Write a tester program that checks all cases.

P16.15 Design a data structure IntSet that can hold a set of integers. Hide the private imple-
mentation: a binary search tree of Integer objects. Provide the following methods:

• A constructor to make an empty set
• void add(int x) to add x if it is not present
• void remove(int x) to remove x if it is present
• void print() to print all elements currently in the set
• boolean contains(int x) to test whether x is present

P16.16 Reimplement the set class from Exercise P16.15 by using a TreeSet<Integer>. In addi-
tion to the methods specified in Exercise P16.15, supply an iterator method yield-
ing an object that supports only the hasNext/next methods.
The next method should return an int, not an object. For that reason, you cannot
simply return the iterator of the tree set.

P16.17 Reimplement the set class from Exercise P16.15 by using a TreeSet<Integer>. In addi-
tion to the methods specified in Exercise P16.15, supply methods

IntSet union(IntSet other)
IntSet intersection(IntSet other)

that compute the union and intersection of two sets.

P16.18 Write a method of the BinarySearchTree class
Comparable smallest()

that returns the smallest element of a tree. You will also need to add a method to the
Node class.

P16.19 Change the BinarySearchTree.print method to print the tree as a tree shape. You can
print the tree sideways. Extra credit if you instead display the tree with the root
node centered on the top.

P16.20 Implement methods that use preorder and postorder traversal to print the elements
in a binary search tree.

P16.21 In the BinarySearchTree class, modify the remove method so that a node with two chil-
dren is replaced by the largest child of the left subtree.

Answers to Self-Check Questions 721

P16.22 Suppose an interface Visitor has a single method
void visit(Object obj)

Supply methods
void inOrder(Visitor v)
void preOrder(Visitor v)
void postOrder(Visitor v)

to the BinarySearchTree class. These methods should visit the tree nodes in the speci-
fied traversal order and apply the visit method to the data of the visited node.

P16.23 Apply Exercise P16.22 to compute the average value of the elements in a binary
search tree filled with Integer objects. That is, supply an object of an appropriate
class that implements the Visitor interface.

P16.24 Modify the implementation of the MinHeap class so that the parent and child index
positions and elements are computed directly, without calling helper methods.

P16.25 Modify the implementation of the MinHeap class so that the 0 element of the array is
not wasted.

P16.26 Time the results of heapsort and merge sort. Which algorithm behaves better in
practice?

Project 16.1 Implement a BinaryTreeSet class that uses a TreeSet to store its elements. You will
need to implement an iterator that iterates through the nodes in sorted order. This
iterator is somewhat complex, because sometimes you need to backtrack. You can
either add a reference to the parent node in each Node object, or have your iterator
object store a stack of the visited nodes.

Project 16.2 Implement an expression evaluator that uses a parser to build an expression tree,
such as in Section 16.7. (Note that the resulting tree is a binary tree but not a binary
search tree.) Then use postorder traversal to evaluate the expression, using a stack
for the intermediate results.

Project 16.3 Program an animation of the heapsort algorithm, displaying the tree graphically and
stopping after each call to fixHeap.

1. Efficient set implementations can quickly test whether a given element is a member
of the set.

2. Sets do not have an ordering, so it doesn’t make sense to add an element at a partic-
ular iterator position, or to traverse a set backwards.

3. The words would be listed in sorted order.
4. When it is desirable to visit the set elements in sorted order.
5. A set stores elements. A map stores associations between keys and values.

Programming Projects

Answers to Self-Check Questions

722 Chapter 16 Advanced Data Structures

6. The ordering does not matter, and you cannot have duplicates.
7. Yes, the hash set will work correctly. All elements will be inserted into a single

bucket.
8. It locates the next bucket in the bucket array and points to its first element.
9. 31 × 116 + 111 = 3707.

10. 13.
11. In a tree, each node can have any number of children. In a binary tree, a node has at

most two children. In a balanced binary tree, all nodes have approximately as many
descendants to the left as to the right.

12. For example, Sarah. Any string between Romeo and Tom will do.
13. For both trees, the inorder traversal is 3 + 4 * 5.
14. No—for example, consider the children of +. Even without looking up the Unicode

codes for 3, 4, and +, it is obvious that + isn’t between 3 and 4.
15. A priority queue is appropriate because we want to get the important events first,

even if they have been inserted later.
16. Yes, but a binary search tree isn’t almost filled, so there may be holes in the array.

We could indicate the missing nodes with null elements.
17. Heapsort requires less storage because it doesn’t need an auxiliary array.
18. The MinHeap wastes the 0 entry to make the formulas more intuitive. When sorting

an array, we don’t want to waste the 0 entry, so we adjust the formulas instead.

723

Chapter17
Generic

Programming

CHAPTER GOALS
• To understand the objective of generic programming

• To be able to implement generic classes and methods

• To understand the execution of generic methods in the
virtual machine

• To know the limitations of generic programming in Java

Generic programming involves the design and implementation of

data structures and algorithms that work for multiple types. You are already familiar with the

generic ArrayList class that can be used to collect elements of arbitrary types. In this chapter, you will

learn how to implement your own generic classes.

724

CHAPTER CONTENTS

Generic programming is the creation of programming constructs that can be used
with many different types. For example, the Java library programmers who imple-
mented the ArrayList class used the technique of generic programming. As a result,
you can form array lists that collect elements of different types, such as Array-
List<String>, ArrayList<BankAccount>, and so on.

The LinkedList class that we implemented in Section 15.2 is also an example of
generic programming—you can store objects of any class inside a LinkedList. That
LinkedList class achieves genericity by using inheritance. It uses references of type
Object and is therefore capable of storing objects of any class. In contrast, the Array-
List class is a generic class: a class with a type parameter that is used to specify the
type of the objects that you want to store. (Note that only our LinkedList implemen-
tation of Chapter 15 uses inheritance. The standard Java library has a generic
LinkedList class that uses type parameters.)

When declaring a generic class, you specify a type variable for each type parame-
ter. Here is how the standard Java library declares the ArrayList class, using the type
variable E for the element type:

public class ArrayList<E>
{
 public ArrayList() { . . . }
 public void add(E element) { . . . }
 . . .
}

Here, E is a type variable, not a Java reserved word. You could use another name,
such as ElementType, instead of E. However, it is customary to use short, uppercase
names for type parameters.

In order to use a generic class, you need to instantiate the type parameter, that is,
supply an actual type. You can supply any class or interface type, for example

ArrayList<BankAccount>
ArrayList<Measurable>

However, you cannot substitute any of the eight primitive types for a type parame-
ter. It would be an error to declare an ArrayList<double>. Use the corresponding
wrapper class instead, such as ArrayList<Double>.

When you instantiate a generic class, the type that you supply replaces all occur-
rences of the type variable in the declaration of the class. For example, the add

17.1 Generic Classes and Type Parameters

In Java, generic
programming can be
achieved with
inheritance or with
type parameters.

A generic class has
one or more type
parameters.

Type parameters
can be instantiated
with class or
interface types.

17.1 Generic Classes and Type
Parameters 724

17.2 Implementing Generic Types 725
SYNTAX 17.1: Declaring a Generic Class 727

17.3 Generic Methods 728
SYNTAX 17.2: Declaring a Generic Method 729

17.4 Constraining Type Parameters 730
COMMON ERROR 17.1: Genericity and Inheritance 731
SPECIAL TOPIC 17.1: Wildcard Types 731

17.5 Type Erasure 732
COMMON ERROR 17.2: Using Generic Types in a

Static Context 735

17.2 Implementing Generic Types 725

method for ArrayList<BankAccount> has the type variable E replaced with the type
BankAccount:

public void add(BankAccount element)

Contrast that with the add method of the LinkedList class in Chapter 15:
public void add(Object element)

The add method of the generic ArrayList class is safer. It is impossible to add a String
object into an ArrayList<BankAccount>, but you can accidentally add a String into a
LinkedList that is intended to hold bank accounts.

ArrayList<BankAccount> accounts1 = new ArrayList<BankAccount>();
LinkedList accounts2 = new LinkedList(); // Should hold BankAccount objects
accounts1.add("my savings"); // Compile-time error
accounts2.add("my savings"); // Not detected at compile time

The latter will result in a class cast exception when some other part of the code
retrieves the string, believing it to be a bank account:

BankAccount account = (BankAccount) accounts2.getFirst(); // Run-time error

Code that uses the generic ArrayList class is also easier to read. When you spot an
ArrayList<BankAccount>, you know right away that it must contain bank accounts.
When you see a LinkedList, you have to study the code to find out what it contains.

In Chapters 15 and 16, we used inheritance to implement generic linked lists,
hash tables, and binary trees, because you were already familiar with the concept of
inheritance. Using type parameters requires new syntax and additional tech-
niques—those are the topic of this chapter.

1. The standard library provides a class HashMap<K, V> with key type K and value
type V. Declare a hash map that maps strings to integers.

2. The binary search tree class in Chapter 16 is an example of generic program-
ming because you can use it with any classes that implement the Comparable
interface. Does it achieve genericity through inheritance or type parameters?

In this section, you will learn how to implement your own generic classes. We will
write a very simple generic class that stores pairs of objects, each of which can have
an arbitrary type. For example,

Pair<String, Integer> result = new Pair<String, Integer>("Harry Morgan", 1729);

The getFirst and getSecond methods retrieve the first and second values of the pair.
String name = result.getFirst();
Integer number = result.getSecond();

This class can be useful when you implement a method that computes two values at
the same time. A method cannot simultaneously return a String and an Integer, but it
can return a single object of type Pair<String, Integer>.

The generic Pair class requires two type parameters, one for the type of the first
element and one for the type of the second element.

Type parameters
make generic code
safer and easier
to read.

S E L F C H E C K

17.2 Implementing Generic Types

726 Chapter 17 Generic Programming

We need to choose variables for the type parameters. It is considered good form
to use short uppercase names for type variables, such as those in the following table:

You place the type variables for a generic class after the class name, enclosed in
angle brackets (< and >):

public class Pair<T, S>

When you declare the instance variables and methods of the Pair class, use the vari-
able T for the first element type and S for the second element type:

public class Pair<T, S>
{
 private T first;
 private S second;

 public Pair(T firstElement, S secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public T getFirst() { return first; }
 public S getSecond() { return second; }
}

Some people find it simpler to start out with a regular class, choosing some actual
types instead of the type parameters. For example,

public class Pair // Here we start out with a pair of String and Integer values
{
 private String first;
 private Integer second;

 public Pair(String firstElement, Integer secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public String getFirst() { return first; }
 public Integer getSecond() { return second; }
}

Now it is an easy matter to replace all String types with the type variable S and all
Integer types with the type variable T.

This completes the declaration of the generic Pair class. It is ready to use when-
ever you need to form a pair of two objects of arbitrary types. The following sample
program shows how to make use of a Pair for returning two values from a method.

Type Variable Meaning

E Element type in a collection

K Key type in a map

V Value type in a map

T General type

S, U Additional general types

Type variables of a
generic class follow
the class name and
are enclosed in
angle brackets.

Use type parameters
for the types of
generic instance
variables, method
parameters, and
return values.

17.2 Implementing Generic Types 727

ch17/pair/Pair.java

Syntax 17.1 Declaring a Generic Class

accessSpecifier class GenericClassName<TypeVariable1, TypeVariable2, . . .>
{

instance variables
constructors
methods

}

Syntax

Example

public class Pair<T, S>
{
 private T first;
 private S second;
 . . .
 public T getFirst() { return first; }
 . . .
}

Supply a variable for each type parameter.

Instance variables with a variable data type
A method with a
variable return type

1 /**
2 This class collects a pair of elements of different types.
3 */
4 public class Pair<T, S>
5 {
6 private T first;
7 private S second;
8
9 /**

10 Constructs a pair containing two given elements.
11 @param firstElement the first element
12 @param secondElement the second element
13 */
14 public Pair(T firstElement, S secondElement)
15 {
16 first = firstElement;
17 second = secondElement;
18 }
19
20 /**
21 Gets the first element of this pair.
22 @return the first element
23 */
24 public T getFirst() { return first; }
25
26 /**
27 Gets the second element of this pair.
28 @return the second element
29 */
30 public S getSecond() { return second; }
31
32 public String toString() { return "(" + first + ", " + second + ")"; }
33 }

728 Chapter 17 Generic Programming

ch17/pair/PairDemo.java

Program Run

3. How would you use the generic Pair class to construct a pair of strings "Hello"
and "World"?

4. What is the difference between an ArrayList<Pair<String, Integer>> and a
Pair<ArrayList<String>, Integer>?

A generic method is a method with a type parameter. Such a method can occur in a
class that in itself is not generic. You can think of it as a template for a set of meth-
ods that differ only by one or more types. For example, we may want to declare a
method that can print an array of any type:

1 public class PairDemo
2 {
3 public static void main(String[] args)
4 {
5 String[] names = { "Tom", "Diana", "Harry" };
6 Pair<String, Integer> result = firstContaining(names, "a");
7 System.out.println(result.getFirst());
8 System.out.println("Expected: Diana");
9 System.out.println(result.getSecond());

10 System.out.println("Expected: 1");
11 }
12
13 /**
14 Gets the first String containing a given string, together
15 with its index.
16 @param strings an array of strings
17 @param sub a string
18 @return a pair (strings[i], i) where strings[i] is the first
19 strings[i] containing str, or a pair (null, -1) if there is no
20 match.
21 */
22 public static Pair<String, Integer> firstContaining(
23 String[] strings, String sub)
24 {
25 for (int i = 0; i < strings.length; i++)
26 {
27 if (strings[i].contains(sub))
28 {
29 return new Pair<String, Integer>(strings[i], i);
30 }
31 }
32 return new Pair<String, Integer>(null, -1);
33 }
34 }

Diana
Expected: Diana
1
Expected: 1

S E L F C H E C K

17.3 Generic Methods
A generic method
is a method with a
type parameter.

17.3 Generic Methods 729

public class ArrayUtil
{
 /**

Prints all elements in an array.
 @param a the array to print
 */
 public <T> static void print(T[] a)
 {
 . . .
 }
 . . .
}

As described in the previous section, it is often easier to see how to implement a
generic method by starting with a concrete example. This method prints the ele-
ments in an array of strings.

public class ArrayUtil
{
 public static void print(String[] a)
 {
 for (String e : a)
 System.out.print(e + " ");
 System.out.println();
 }
 . . .
}

In order to make the method into a generic method, replace String with a type
parameter, say E, to denote the element type of the array. Add a type parameter list,
enclosed in angle brackets, between the modifiers (public static) and the return type
(void):

public static <E> void print(E[] a)
{
 for (E e : a)
 System.out.print(e + " ");
 System.out.println();
}

Supply the type
parameters of a
generic method
between the
modifiers and the
method return type.

Syntax 17.2 Declaring a Generic Method

modifiers <TypeVariable1, TypeVariable2, . . .> returnType methodName(parameters)
{

body
}

Syntax

Example

public static <E> void print(E[] a)
{
 for (E e : a)
 System.out.print(e + " ");
 System.out.println();
}

Supply the type variable before the return type.

Local variable with a
variable data type

730 Chapter 17 Generic Programming

When you call the generic method, you need not specify which type to use for the
type parameter. (In this regard, generic methods differ from generic classes.) Simply
call the method with appropriate parameters, and the compiler will match up the
type parameters with the parameter types. For example, consider this method call:

Rectangle[] rectangles = . . .;
ArrayUtil.print(rectangles);

The type of the rectangles parameter is Rectangle[], and the type of the parameter
variable is E[]. The compiler deduces that E is Rectangle.

This particular generic method is a static method in an ordinary class. You can
also declare generic methods that are not static. You can even have generic methods
in generic classes.

As with generic classes, you cannot replace type parameters with primitive types.
The generic print method can print arrays of any type except the eight primitive
types. For example, you cannot use the generic print method to print an array of
type int[]. That is not a major problem. Simply implement a print(int[] a) method
in addition to the generic print method.

5. Exactly what does the generic print method print when you pass an array of
BankAccount objects containing two bank accounts with zero balances?

6. Is the getFirst method of the Pair class a generic method?

It is often necessary to specify what types can be used in a generic class or method.
Consider a generic min method that finds the smallest element in an array list of
objects. How can you find the smallest element when you know nothing about the
element type? You need to have a mechanism for comparing array elements. One
solution is to require that the elements belong to a type that implements the
Comparable interface. In this situation, we need to constrain the type parameter.

public static <E extends Comparable> E min(E[] a)
{
 E smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(smallest) < 0) smallest = a[i];
 return smallest;
}

You can call min with a String[] array but not with a Rectangle[] array—the String
class implements Comparable, but Rectangle does not.

The Comparable bound is necessary for calling the compareTo method. Had it been
omitted, then the min method would not have compiled. It would have been illegal
to call compareTo on a[i] if nothing is known about its type. (Actually, the Comparable
interface is itself a generic type, but for simplicity we do not supply a type parame-
ter. See Special Topic 17.1 on page 731 for more information.)

Very occasionally, you need to supply two or more type bounds. Then you sepa-
rate them with the & character, for example

<E extends Comparable & Cloneable>

When calling a
generic method, you
need not instantiate
the type parameters.

S E L F C H E C K

17.4 Constraining Type Parameters
Type parameters
can be constrained
with bounds.

17.4 Constraining Type Parameters 731

The extends reserved word, when applied to type parameters, actually means
“extends or implements”. The bounds can be either classes or interfaces, and the
type parameter can be replaced with a class or interface type.

7. How would you constrain the type parameter for a generic BinarySearchTree
class?

8. Modify the min method to compute the minimum of an array of elements that
implements the Measurable interface of Chapter 9.

Genericity and Inheritance

If SavingsAccount is a subclass of BankAccount, is ArrayList<SavingsAccount> a subclass of Array-
List<BankAccount>? Perhaps surprisingly, it is not. Inheritance of type parameters does not
lead to inheritance of generic classes. There is no relationship between ArrayList<Savings-
Account> and ArrayList<BankAccount>.

This restriction is necessary for type checking. Without the restriction, it would be possi-
ble to add objects of unrelated types to a collection. Suppose it was possible to assign an
ArrayList<SavingsAccount> object to a variable of type ArrayList<BankAccount>:

ArrayList<SavingsAccount> savingsAccounts = new ArrayList<SavingsAccount>();
ArrayList<BankAccount> bankAccounts = savingsAccounts;
 // Not legal, but suppose it was
BankAccount harrysChecking = new CheckingAccount();
 // CheckingAccount is another subclass of BankAccount
bankAccounts.add(harrysChecking); // OK—can add BankAccount object

But bankAccounts and savingsAccounts refer to the same array list! If the assignment was legal,
we would be able to add a CheckingAccount into an ArrayList<SavingsAccount>.

In many situations, this limitation can be overcome by using wildcards—see Special
Topic 17.1.

Wildcard Types

It is often necessary to formulate subtle constraints of type parameters. Wildcard types were
invented for this purpose. There are three kinds of wildcard types:

S E L F C H E C K

Common Error 17.1

Special Topic 17.1

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of B

Unbounded wildcard ? Any type

732 Chapter 17 Generic Programming

A wildcard type is a type that can remain unknown. For example, we can declare the follow-
ing method in the LinkedList<E> class:

public void addAll(LinkedList<? extends E> other)
{
 ListIterator<E> iter = other.listIterator();
 while (iter.hasNext()) add(iter.next());
}

The method adds all elements of other to the end of the linked list.
The addAll method doesn’t require a specific type for the element type of other. Instead, it

allows you to use any type that is a subtype of E. For example, you can use addAll to add a
LinkedList<SavingsAccount> to a LinkedList<BankAccount>.

To see a wildcard with a super bound, have another look at the min method of the preced-
ing section. Recall that Comparable is a generic interface; the type parameter of the Comparable
interface specifies the parameter type of the compareTo method.

public interface Comparable<T>
{
 int compareTo(T other)
}

Therefore, we might want to specify a type bound:

public static <E extends Comparable<E>> E min(E[] a)

However, this bound is too restrictive. Suppose the BankAccount class implements
Comparable<BankAccount>. Then the subclass SavingsAccount also implements Comparable<Bank-
Account> and not Comparable<SavingsAccount>. If you want to use the min method with a
SavingsAccount array, then the type parameter of the Comparable interface should be any super-
type of the array element type:

public static <E extends Comparable<? super E>> E min(E[] a)

Here is an example of an unbounded wildcard. The Collections class declares a method

public static void reverse(List<?> list)

You can think of that declaration as a shorthand for

public static <T> void reverse(List<T> list)

Because generic types are a fairly recent addition to the Java language, the virtual
machine that executes Java programs does not work with generic classes or meth-
ods. Instead, type parameters are “erased”, that is, they are replaced with ordinary
Java types. Each type parameter is replaced with its bound, or with Object if it is not
bounded.

For example, the generic class Pair<T, S> turns into the following raw class:
public class Pair
{
 private Object first;
 private Object second;

 public Pair(Object firstElement, Object secondElement)
 {
 first = firstElement;
 second = secondElement;

17.5 Type Erasure
The virtual machine
erases type
parameters, replacing
them with their
bounds or Objects.

17.5 Type Erasure 733

 }
 public Object getFirst() { return first; }
 public Object getSecond() { return second; }
}

As you can see, the type parameters T and S have been replaced by Object. The result
is an ordinary class.

The same process is applied to generic methods. After erasing the type parameter,
the min method of the preceding section turns into an ordinary method. Note that in
this example, the type parameter is replaced with its bound, the Comparable interface:

public static Comparable min(Comparable[] a)
{

Comparable smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(smallest) < 0) smallest = a[i];
 return smallest;
}

Knowing about type erasure helps you understand limitations of Java generics. For
example, you cannot construct new objects of a generic type. The following
method, which tries to fill an array with copies of default objects, would be wrong:

public static <E> void fillWithDefaults(E[] a)
{
 for (int i = 0; i < a.length; i++)
 a[i] = new E(); // ERROR
}

To see why this is a problem, carry out the type erasure process, as if you were the
compiler:

public static void fillWithDefaults(Object[] a)
{
 for (int i = 0; i < a.length; i++)
 a[i] = new Object(); // Not useful
}

Of course, if you start out with a Rectangle[] array, you don’t want it to be filled
with Object instances. But that’s what the code would do after erasing types.

In situations such as this one, the compiler will report an error. You then need to
come up with another mechanism for solving your problem. In this particular
example, you can supply a default object:

public static <E> void fillWithDefaults(E[] a, E defaultValue)
{
 for (int i = 0; i < a.length; i++)
 a[i] = defaultValue;
}

Similarly, you cannot construct an array of a generic type.
public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = new E[MAX_SIZE]; // Error
 }
}

You cannot construct
objects or arrays of a
generic type.

734 Chapter 17 Generic Programming

Because the array construction expression new E[] would be erased to new Object[],
the compiler disallows it. A remedy is to use an array list instead:

public class Stack<E>
{
 private ArrayList<E> elements;
 . . .
 public Stack()
 {
 elements = new ArrayList<E>(); // Ok
 }
 . . .
}

Another solution is to use an array of objects and provide a cast when reading ele-
ments from the array:

public class Stack<E>
{
 private Object[] elements;
 private int size;
 . . .
 public Stack()
 {
 elements = new Object[MAX_SIZE]; // Ok
 }
 . . .
 public E pop()
 {
 size--;
 return (E) elements[size];
 }
}

The cast (E) generates a warning because it cannot be checked at run time.
These limitations are frankly awkward. It is hoped that a future version of Java

will no longer erase types so that the current restrictions that are the consequence of
erasure can be lifted.

9. What is the erasure of the print method in Section 17.3?
10. Could the Stack example be implemented as follows?

public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = (E[]) new Object[MAX_SIZE];
 }
 . . .
}

S E L F C H E C K

Summary of Learning Objectives 735

Using Generic Types in a Static Context

You cannot use type parameters to declare static variables, static methods, or static inner
classes. For example, the following would be illegal:

public class LinkedList<E>
{
 private static E defaultValue; // ERROR
 . . .
 public static List<E> replicate(E value, int n) { . . . } // ERROR
 private static class Node { public E data; public Node next; } // ERROR
}

In the case of static variables, this restriction is very sensible. After the generic types are
erased, there is only a single variable LinkedList.defaultValue, whereas the static variable dec-
laration gives the false impression that there is a separate variable for each LinkedList<E>.

For static methods and inner classes, there is an easy workaround; simply add a type
parameter:

public class LinkedList<E>
{
 . . .
 public static <T> List<T> replicate(T value, int n) { . . . } // OK
 private static class Node<T> { public T data; public Node<T> next; } // OK
}

Describe generic classes and type parameters.

• In Java, generic programming can be achieved with inheritance or with type
parameters.

• A generic class has one or more type parameters.
• Type parameters can be instantiated with class or interface types.
• Type parameters make generic code safer and easier to read.

 Implement generic classes and interfaces.

• Type variables of a generic class follow the class name and are enclosed in angle
brackets.

• Use type parameters for the types of generic instance variables, method parameters,
and return values.

Implement generic methods.

• A generic method is a method with a type parameter.
• Supply the type parameters of a generic method between the modifiers and the

method return type.
• When calling a generic method, you need not instantiate the type parameters.

Specify constraints on type parameters.

• Type parameters can be constrained with bounds.

Common Error 17.2

Summary of Learning Objectives

736 Chapter 17 Generic Programming

Recognize how erasure of type parameters places limitations on generic
programming in Java.

• The virtual machine erases type parameters, replacing them with their bounds or
Objects.

• You cannot construct objects or arrays of a generic type.

• Lab Exercises
Practice Quiz
Code Completion Exercises

R17.1 What is a type parameter?

R17.2 What is the difference between a generic class and an ordinary class?

R17.3 What is the difference between a generic class and a generic method?

R17.4 Find an example of a non-static generic method in the standard Java library.

R17.5 Find four examples of a generic class with two type parameters in the standard Java
library.

R17.6 Find an example of a generic class in the standard library that is not a collection
class.

R17.7 Why is a bound required for the type parameter T in the following method?
<T extends Comparable> int binarySearch(T[] a, T key)

R17.8 Why is a bound not required for the type parameter E in the HashSet<E> class?

R17.9 What is an ArrayList<Pair<T, T>>?

R17.10 Explain the type bounds of the following method of the Collections class:
public static <T extends Comparable<? super T>> void sort(List<T> a)

Why doesn’t T extends Comparable or T extends Comparable<T> suffice?

R17.11 What happens when you pass an ArrayList<String> to a method with parameter
ArrayList? Try it out and explain.

R17.12 What happens when you pass an ArrayList<String> to a method with parameter
ArrayList, and the method stores an object of type BankAccount into the array list? Try
it out and explain.

Media Resources

www.wiley.com/
college/
horstmann

Review Exercises

Programming Exercises 737

R17.13 What is the result of the following test?
ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
if (accounts instanceof ArrayList<String>) . . .

Try it out and explain.

R17.14 The ArrayList<E> class in the standard Java library must manage an array of objects
of type E, yet it is not legal to construct a generic array of type E[] in Java. Locate the
implementation of the ArrayList class in the library source code that is a part of the
JDK. Explain how this problem is overcome.

P17.1 Modify the generic Pair class so that both values have the same type.

P17.2 Add a method swap to the Pair class of Exercise P17.1 that swaps the first and second
elements of the pair.

P17.3 Implement a static generic method PairUtil.swap whose parameter is a Pair object,
using the generic class declared in Section 17.2. The method should return a new
pair, with the first and second element swapped.

P17.4 Write a static generic method PairUtil.minmax that computes the minimum and max-
imum elements of an array of type T and returns a pair containing the minimum and
maximum value. Require that the array elements implement the Measurable interface
of Chapter 9.

P17.5 Repeat the problem of Exercise P17.4, but require that the array elements imple-
ment the Comparable interface.

P17.6 Repeat the problem of Exercise P17.5, but refine the bound of the type parameter to
extend the generic Comparable type.

P17.7 Implement a generic version of the binary search algorithm.

P17.8 Implement a generic version of the merge sort algorithm. Your program should
compile without warnings.

P17.9 Implement a generic version of the LinkedList class of Chapter 15.

P17.10 Implement a generic version of the BinarySearchTree class of Chapter 16.

P17.11 Turn the HashSet implementation of Chapter 16 into a generic class. Use an array list
instead of an array to store the buckets.

P17.12 Provide suitable hashCode and equals methods for the Pair class of Section 17.2 and
implement a HashMap class, using a HashSet<Pair<K, V>>.

P17.13 Implement a generic version of the permutation generator in Section 13.2. Generate
all permutations of a List<E>.

P17.14 Write a generic static method print that prints the elements of any object that imple-
ments the Iterable<E> interface. The elements should be separated by commas. Place
your method into an appropriate utility class.

Programming Exercises

738 Chapter 17 Generic Programming

Project 17.1 Design and implement a generic version of the DataSet class of Chapter 9 that can be
used to analyze data of any class that implements the Measurable interface. Make the
Measurable interface generic as well. Supply an addAll method that lets you add all
values from another data set with a compatible type. Supply a generic Measurer<T>
interface to allow the analysis of data whose classes don’t implement the Measurable
type.

Project 17.2 Turn the MinHeap class of Chapter 16 into a generic class. As with the TreeSet class of
the standard library, allow a Comparator to compare queue elements. If no compara-
tor is supplied, assume that the element type implements the Comparable interface.

1. HashMap<String, Integer>

2. It uses inheritance.
3. new Pair<String, String>("Hello", "World")

4. An ArrayList<Pair<String, Integer>> contains multiple pairs, for example [(Tom, 1),
(Harry, 3)]. A Pair<ArrayList<String>, Integer> contains a list of strings and a single
integer, such as ([Tom, Harry], 1).

5. The output depends on the implementation of the toString method in the Bank-
Account class.

6. No—the method has no type parameters. It is an ordinary method in a generic
class.

7. public class BinarySearchTree<E extends Comparable>

8. public static <E extends Measurable> E min(E[] a)
{
 E smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].getMeasure() < smallest.getMeasure())
 smallest = a[i];
 return smallest;
}

9. public static void print(Object[] a)
{
 for (Object e : a)
 System.out.print(e + " ");
 System.out.println();
}

10. This code compiles (with a warning), but it is a poor technique. In the future, if type
erasure no longer happens, the code will be wrong. The cast from Object[] to
String[] will cause a class cast exception.

Programming Projects

Answers to Self-Check Questions

739

Chapter18
Graphical

User Interfaces

CHAPTER GOALS
G To become familiar with common user-interface components, such

as text components, radio buttons, check boxes, and menus

G To understand the use of layout managers to arrange user-interface
components in a container

G To build programs that handle events from
user-interface components

• To learn how to browse the Java documentation

In this chapter, we will delve more deeply into graphical user interface

programming. The graphical applications with which you are familiar have many visual gadgets for

information entry: text components, buttons, scroll bars, menus, and so on. In this chapter, you will

learn how to use the most common user-interface components in the Java Swing user-interface

toolkit. Swing has many more components than can be mastered in a first course, and even the basic

components have advanced options that can’t be covered here. In fact, few programmers try to learn

everything about a particular user-interface component. It is more important to understand the

concepts and to search the Java documentation for the details. This chapter walks you through one

example to show you how the Java documentation is organized and how you can rely on it for your

programming.

740

CHAPTER CONTENTS

We start our discussion of graphical user interfaces with text input. Of course, a
graphical application can receive text input by calling the showInputDialog method of
the JOptionPane class, but popping up a separate dialog box for each input is not a
natural user interface. Most graphical programs collect text input through text
fields (see Figure 1). In this section, you will learn how to add text fields to a graph-
ical application, and how to read what the user types into them.

The JTextField class provides a text field. When you construct a text field, you
need to supply the width—the approximate number of characters that you expect
the user to type.

final int FIELD_WIDTH = 10;
final JTextField rateField = new JTextField(FIELD_WIDTH);

Users can type additional characters, but then a part of the contents of the field
becomes invisible.

You will want to label each text field so that the user knows what to type into it.
Construct a JLabel object for each label:

JLabel rateLabel = new JLabel("Interest Rate: ");

You want to give the user an opportunity to enter all information into the text fields
before processing it. Therefore, you should supply a button that the user can press
to indicate that the input is ready for processing.

When that button is clicked, its actionPerformed method reads the user input from
the text field, using the getText method of the JTextField class. The getText method
returns a String object. In our sample program, we turn the string into a number,
using the Double.parseDouble method. After updating the account, we show the bal-
ance in another label.

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double rate = Double.parseDouble(rateField.getText());
 double interest = account.getBalance() * rate / 100;
 account.deposit(interest);
 resultLabel.setText("balance: " + account.getBalance());
 }
}

The following application is a useful prototype for a graphical user-interface front
end for arbitrary calculations. You can easily modify it for your own needs. Place

18.1 Processing Text Input

Use JTextField
components to
provide space for
user input. Place a
JLabel next to each
text field.

18.1G Processing Text Input 740

18.2G Text Areas 743

18.3G Layout Management 746

18.4G Choices 748
HOW TO 18.1: Laying Out a User Interface 755
PRODUCTIVITY HINT 18.1: Use a GUI Builder 757

18.5G Menus 758
HOW TO 18.2: Implementing a Graphical User

Interface (GUI) 763

18.6G Exploring the Swing
Documentation 764

Graphics Track 18.1 Processing Text Input 741

other input components into the frame. Change the contents of the actionPerformed
method to carry out other calculations. Display the result in a label.

ch18/textfield/InvestmentViewer3.java

ch18/textfield/InvestmentFrame.java

Figure 1 An Application with a Text Field

1 import javax.swing.JFrame;
2
3 /**
4 This program displays the growth of an investment.
5 */
6 public class InvestmentViewer3
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new InvestmentFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JTextField;
8
9 /**

10 A frame that shows the growth of an investment with variable interest.
11 */
12 public class InvestmentFrame extends JFrame
13 {
14 private static final int FRAME_WIDTH = 450;
15 private static final int FRAME_HEIGHT = 100;
16
17 private static final double DEFAULT_RATE = 5;
18 private static final double INITIAL_BALANCE = 1000;
19
20 private JLabel rateLabel;
21 private JTextField rateField;
22 private JButton button;
23 private JLabel resultLabel;
24 private JPanel panel;
25 private BankAccount account;
26

742 Chapter 18 Graphical User Interfaces Graphics Track

1. What happens if you omit the first JLabel object?
2. If a text field holds an integer, what expression do you use to read its contents?

27 public InvestmentFrame()
28 {
29 account = new BankAccount(INITIAL_BALANCE);
30
31 // Use instance variables for components
32 resultLabel = new JLabel("balance: " + account.getBalance());
33
34 // Use helper methods
35 createTextField();
36 createButton();
37 createPanel();
38
39 setSize(FRAME_WIDTH, FRAME_HEIGHT);
40 }
41
42 private void createTextField()
43 {
44 rateLabel = new JLabel("Interest Rate: ");
45
46 final int FIELD_WIDTH = 10;
47 rateField = new JTextField(FIELD_WIDTH);
48 rateField.setText("" + DEFAULT_RATE);
49 }
50
51 private void createButton()
52 {
53 button = new JButton("Add Interest");
54
55 class AddInterestListener implements ActionListener
56 {
57 public void actionPerformed(ActionEvent event)
58 {
59 double rate = Double.parseDouble(rateField.getText());
60 double interest = account.getBalance() * rate / 100;
61 account.deposit(interest);
62 resultLabel.setText("balance: " + account.getBalance());
63 }
64 }
65
66 ActionListener listener = new AddInterestListener();
67 button.addActionListener(listener);
68 }
69
70 private void createPanel()
71 {
72 panel = new JPanel();
73 panel.add(rateLabel);
74 panel.add(rateField);
75 panel.add(button);
76 panel.add(resultLabel);
77 add(panel);
78 }
79 }

S E L F C H E C K

Graphics Track 18.2 Text Areas 743

In the preceding section, you saw how to construct text fields. A text field holds a
single line of text. To display multiple lines of text, use the JTextArea class.

When constructing a text area, you can specify the number of rows and columns:
final int ROWS = 10;
final int COLUMNS = 30;
JTextArea textArea = new JTextArea(ROWS, COLUMNS);

Use the setText method to set the text of a text field or text area. The append method
adds text to the end of a text area. Use newline characters to separate lines, like this:

textArea.append(account.getBalance() + "\n");

If you want to use a text field or text area for display purposes only, call the set-
Editable method like this

textArea.setEditable(false);

Now the user can no longer edit the contents of the field, but your program can still
call setText and append to change it.

As shown in Figure 2, the JTextField and JTextArea classes are subclasses of the
class JTextComponent. The methods setText and setEditable are declared in the JText-
Component class and inherited by JTextField and JTextArea. However, the append
method is declared in the JTextArea class.

18.2 Text Areas
Use a JTextArea to
show multiple lines
of text.

Figure 2 A Part of the Hierarchy of Swing User-Interface Components

JComponent

JPanel

JTextField JTextArea

JCheckBox JRadioButton

JToggleButton JButton

JTextComponent JLabel AbstractButton

744 Chapter 18 Graphical User Interfaces Graphics Track

To add scroll bars to a text area, use a JScrollPane, like this:
JTextArea textArea = new JTextArea(ROWS, COLUMNS);
JScrollPane scrollPane = new JScrollPane(textArea);

Then add the scroll pane to the panel. Figure 3 shows the result.
The following sample program puts these concepts together. A user can enter

numbers into the interest rate text field and then click on the “Add Interest” but-
ton). The interest rate is applied, and the updated balance is appended to the text
area. The text area has scroll bars and is not editable.

This program is similar to the previous investment viewer program, but it keeps
track of all the bank balances, not just the last one.

ch18/textarea/InvestmentFrame.java

Figure 3 The Investment Application with a Text Area

You can add scroll
bars to any
component with a
JScrollPane.

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JScrollPane;
8 import javax.swing.JTextArea;
9 import javax.swing.JTextField;

10
11 /**
12 A frame that shows the growth of an investment with variable interest.
13 */
14 public class InvestmentFrame extends JFrame
15 {
16 private static final int FRAME_WIDTH = 400;
17 private static final int FRAME_HEIGHT = 250;
18
19 private static final int AREA_ROWS = 10;
20 private static final int AREA_COLUMNS = 30;
21 private static final double DEFAULT_RATE = 5;
22 private static final double INITIAL_BALANCE = 1000;
23
24 private JLabel rateLabel;
25 private JTextField rateField;
26 private JButton button;

Graphics Track 18.2 Text Areas 745

27 private JTextArea resultArea;
28 private JPanel panel;
29 private BankAccount account;
30
31 public InvestmentFrame()
32 {
33 account = new BankAccount(INITIAL_BALANCE);
34 resultArea = new JTextArea(AREA_ROWS, AREA_COLUMNS);
35 resultArea.setEditable(false);
36
37 // Use helper methods
38 createTextField();
39 createButton();
40 createPanel();
41
42 setSize(FRAME_WIDTH, FRAME_HEIGHT);
43 }
44
45 private void createTextField()
46 {
47 rateLabel = new JLabel("Interest Rate: ");
48
49 final int FIELD_WIDTH = 10;
50 rateField = new JTextField(FIELD_WIDTH);
51 rateField.setText("" + DEFAULT_RATE);
52 }
53
54 private void createButton()
55 {
56 button = new JButton("Add Interest");
57
58 class AddInterestListener implements ActionListener
59 {
60 public void actionPerformed(ActionEvent event)
61 {
62 double rate = Double.parseDouble(rateField.getText());
63 double interest = account.getBalance() * rate / 100;
64 account.deposit(interest);
65 resultArea.append(account.getBalance() + "\n");
66 }
67 }
68
69 ActionListener listener = new AddInterestListener();
70 button.addActionListener(listener);
71 }
72
73 private void createPanel()
74 {
75 panel = new JPanel();
76 panel.add(rateLabel);
77 panel.add(rateField);
78 panel.add(button);
79 JScrollPane scrollPane = new JScrollPane(resultArea);
80 panel.add(scrollPane);
81 add(panel);
82 }
83 }

746 Chapter 18 Graphical User Interfaces Graphics Track

3. What is the difference between a text field and a text area?
4. Why did the InvestmentFrame program call resultArea.setEditable(false)?
5. How would you modify the InvestmentFrame program if you didn’t want to use

scroll bars?

Up to now, you have had limited control over the layout of user-interface compo-
nents. You learned how to add components to a panel. The panel arranged the com-
ponents from the left to the right. However, in many applications, you need more
sophisticated arrangements.

In Java, you build up user interfaces by adding components into containers such
as panels. Each container has its own layout manager, which determines how the
components are laid out.

By default, a JPanel uses a flow layout. A flow layout simply arranges its compo-
nents from left to right and starts a new row when there is no more room in the cur-
rent row.

Another commonly used layout manager is the border layout. The border lay-
out groups components into five areas: center, north, west, south, and east (see
Figure 4). Not all of the areas need to be occupied.

The border layout is the default layout manager for a frame (or, more technically,
the frame’s content pane). But you can also use the border layout in a panel:

panel.setLayout(new BorderLayout());

Now the panel is controlled by a border layout, not the flow layout. When adding a
component, you specify the position, like this:

panel.add(component, BorderLayout.NORTH);

The grid layout is a third layout that is sometimes useful. The grid layout arranges
components in a grid with a fixed number of rows and columns, resizing each of the
components so that they all have the same size. Like the border layout, it also
expands each component to fill the entire allotted area. (If that is not desirable, you
need to place each component inside a panel.) Figure 5 shows a number pad panel
that uses a grid layout. To create a grid layout, you supply the number of rows and
columns in the constructor, then add the components, row by row, left to right:

S E L F C H E C K

18.3 Layout Management

Figure 4
Components Expand
to Fill Space in the
Border Layout

User-interface
components are
arranged by placing
them inside
containers.

Each container has a
layout manager that
directs the
arrangement of its
components.

Three useful layout
managers are the
border layout,
flow layout, and
grid layout.

When adding a
component to a
container with the
border layout,
specify the NORTH,
EAST, SOUTH, WEST, or
CENTER position.

The content pane of
a frame has a border
layout by default. A
panel has a flow
layout by default.

North

West Center East

South

Graphics Track 18.3 Layout Management 747

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
buttonPanel.add(button9);
buttonPanel.add(button4);
. . .

Sometimes you want to have a tabular arrangement of the components where col-
umns have different sizes or one component spans multiple columns. A more com-
plex layout manager called the grid bag layout can handle these situations. The grid
bag layout is quite complex to use, however, and we do not cover it in this book;
see, for example, Cay S. Horstmann and Gary Cornell, Core Java 2 Volume 1: Fun-
damentals, 8th edition (Prentice Hall, 2008), for more information. Java 6 intro-
duces a group layout that is designed for use by interactive tools—see Productivity
Hint 18.1 on page 757.

Fortunately, you can create acceptable-looking layouts in nearly all situations by
nesting panels. You give each panel an appropriate layout manager. Panels don’t
have visible borders, so you can use as many panels as you need to organize your
components. Figure 6 shows an example. The keypad buttons are contained in a
panel with grid layout. That panel is itself contained in a larger panel with border
layout. The text field is in the northern position of the larger panel. The following
code produces this arrangement:

JPanel keypadPanel = new JPanel();
keypadPanel.setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
// . . .
keypadPanel.add(buttonPanel, BorderLayout.CENTER);
JTextField display = new JTextField();
keypadPanel.add(display, BorderLayout.NORTH);

Figure 5
The Grid Layout

Figure 6
Nesting Panels

JTextField
in NORTH position

JPanel
with GridLayout
in CENTER position

748 Chapter 18 Graphical User Interfaces Graphics Track

6. How do you add two buttons to the north area of a frame?
7. How can you stack three buttons on top of each other?

In the following sections, you will see how to present a finite set of choices to the
user. Which Swing component you use depends on whether the choices are mutually
exclusive or not, and on the amount of space you have for displaying the choices.

If the choices are mutually exclusive, use a set of radio buttons. In a radio button
set, only one button can be selected at a time. When the user selects another button
in the same set, the previously selected button is automatically turned off. (These
buttons are called radio buttons because they work like the station selector buttons
on a car radio: If you select a new station, the old station is automatically dese-
lected.) For example, in Figure 7, the font sizes are mutually exclusive. You can
select small, medium, or large, but not a combination of them.

To create a set of radio buttons, first create each button individually, and then
add all buttons of the set to a ButtonGroup object:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);

Note that the button group does not place the buttons close to each other on the
container. The purpose of the button group is simply to find out which buttons to
turn off when one of them is turned on. It is still your job to arrange the buttons on
the screen.

The isSelected method is called to find out whether a button is currently selected
or not. For example,

if (largeButton.isSelected()) { size = LARGE_SIZE; }

Because users will expect one radio button in a radio button group to be selected,
call setSelected(true) on the default radio button before making the enclosing frame
visible.

If you have multiple button groups, it is a good idea to group them together visu-
ally. It is a good idea to use a panel for each set of radio buttons, but the panels
themselves are invisible. You can add a border to a panel to make it visible. In
Figure 7, for example, the panels containing the Size radio buttons and Style check
boxes have borders.

There are a large number of border types. We will show only a couple of varia-
tions and leave it to the border enthusiasts to look up the others in the Swing

S E L F C H E C K

18.4 Choices

18.4.1 Radio Buttons

For a small set of
mutually exclusive
choices, use a group
of radio buttons or a
combo box.

Add radio buttons
into a ButtonGroup so
that only one button
in the group is on at
any time.

You can place a
border around a
panel to group its
contents visually.

Graphics Track 18.4 Choices 749

documentation. The EtchedBorder class yields a border with a three-dimensional,
etched effect. You can add a border to any component, but most commonly you
apply it to a panel:

JPanel panel = new JPanel();
panel.setBorder(new EtchedBorder());

If you want to add a title to the border (as in Figure 7), you need to construct a
TitledBorder. You make a titled border by supplying a basic border and then the title
you want. Here is a typical example:

panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));

A check box is a user-interface component with two states: checked and unchecked.
You use a group of check boxes when one selection does not exclude another. For
example, the choices for “Bold” and “Italic” in Figure 7 are not exclusive. You can
choose either, both, or neither. Therefore, they are implemented as a set of separate
check boxes. Radio buttons and check boxes have different visual appearances.
Radio buttons are round and have a black dot when selected. Check boxes are
square and have a check mark when selected.

You construct a check box by giving the name in the constructor:
JCheckBox italicCheckBox = new JCheckBox("Italic");

Because check box settings do not exclude each other, you do not place a set of
check boxes inside a button group.

As with radio buttons, you use the isSelected method to find out whether a check
box is currently checked or not.

Figure 7
A Combo Box,
Check Boxes, and
Radio Buttons

18.4.2 Check Boxes

For a binary choice,
use a check box.

750 Chapter 18 Graphical User Interfaces Graphics Track

If you have a large number of choices, you don’t want to make a set of radio but-
tons, because that would take up a lot of space. Instead, you can use a combo box.
This component is called a combo box because it is a combination of a list and a text
field. The text field displays the name of the current selection. When you click on
the arrow to the right of the text field of a combo box, a list of selections drops
down, and you can choose one of the items in the list (see Figure 8).

If the combo box is editable, you can also type in your own selection. To make a
combo box editable, call the setEditable method.

You add strings to a combo box with the addItem method.
JComboBox facenameCombo = new JComboBox();
facenameCombo.addItem("Serif");
facenameCombo.addItem("SansSerif");
. . .

You get the item that the user has selected by calling the getSelectedItem method.
However, because combo boxes can store other objects in addition to strings, the
getSelectedItem method has return type Object. Hence you must cast the returned
value back to String.

String selectedString = (String) facenameCombo.getSelectedItem();

Figure 8
An Open Combo Box

Figure 9 The Components of the FontViewerFrame

18.4.3 Combo Boxes

For a large set of
choices, use a
combo box.

JLabel
in CENTER position

JPanel
with GridLayout
in SOUTH position

Graphics Track 18.4 Choices 751

You can select an item for the user with the setSelectedItem method.
Radio buttons, check boxes, and combo boxes generate an ActionEvent whenever

the user selects an item. In the following program, we don’t care which component
was clicked—all components notify the same listener object. Whenever the user
clicks on any one of them, we simply ask each component for its current content,
using the isSelected and getSelectedItem methods. We then redraw the text sample
with the new font.

Figure 9 shows how the components are arranged in the frame. Figure 10 shows
the relationships between the classes used in the font viewer program.

ch18/choice/FontViewer.java

Figure 10 Classes of the Font Viewer Program

FontViewer
Frame

FontViewer

JFrame

JLabel

JCheckBox

JRadioButton

JComboBox

Radio buttons, check
boxes, and combo
boxes generate
action events, just as
buttons do.

1 import javax.swing.JFrame;
2
3 /**
4 This program allows the user to view font effects.
5 */
6 public class FontViewer
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new FontViewerFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setTitle("FontViewer");
13 frame.setVisible(true);
14 }
15 }

752 Chapter 18 Graphical User Interfaces Graphics Track

ch18/choice/FontViewerFrame.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.GridLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import javax.swing.ButtonGroup;
7 import javax.swing.JButton;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;

10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JPanel;
13 import javax.swing.JRadioButton;
14 import javax.swing.border.EtchedBorder;
15 import javax.swing.border.TitledBorder;
16
17 /**
18 This frame contains a text field and a control panel
19 to change the font of the text.
20 */
21 public class FontViewerFrame extends JFrame
22 {
23 private static final int FRAME_WIDTH = 300;
24 private static final int FRAME_HEIGHT = 400;
25
26 private JLabel sampleField;
27 private JCheckBox italicCheckBox;
28 private JCheckBox boldCheckBox;
29 private JRadioButton smallButton;
30 private JRadioButton mediumButton;
31 private JRadioButton largeButton;
32 private JComboBox facenameCombo;
33 private ActionListener listener;
34
35 /**
36 Constructs the frame.
37 */
38 public FontViewerFrame()
39 {
40 // Construct text sample
41 sampleField = new JLabel("Big Java");
42 add(sampleField, BorderLayout.CENTER);
43
44 // This listener is shared among all components
45 class ChoiceListener implements ActionListener
46 {
47 public void actionPerformed(ActionEvent event)
48 {
49 setSampleFont();
50 }
51 }
52
53 listener = new ChoiceListener();
54
55 createControlPanel();
56 setSampleFont();
57 setSize(FRAME_WIDTH, FRAME_HEIGHT);
58 }

Graphics Track 18.4 Choices 753

59
60 /**
61 Creates the control panel to change the font.
62 */
63 public void createControlPanel()
64 {
65 JPanel facenamePanel = createComboBox();
66 JPanel sizeGroupPanel = createCheckBoxes();
67 JPanel styleGroupPanel = createRadioButtons();
68
69 // Line up component panels
70
71 JPanel controlPanel = new JPanel();
72 controlPanel.setLayout(new GridLayout(3, 1));
73 controlPanel.add(facenamePanel);
74 controlPanel.add(sizeGroupPanel);
75 controlPanel.add(styleGroupPanel);
76
77 // Add panels to content pane
78
79 add(controlPanel, BorderLayout.SOUTH);
80 }
81
82 /**
83 Creates the combo box with the font style choices.
84 @return the panel containing the combo box
85 */
86 public JPanel createComboBox()
87 {
88 facenameCombo = new JComboBox();
89 facenameCombo.addItem("Serif");
90 facenameCombo.addItem("SansSerif");
91 facenameCombo.addItem("Monospaced");
92 facenameCombo.setEditable(true);
93 facenameCombo.addActionListener(listener);
94
95 JPanel panel = new JPanel();
96 panel.add(facenameCombo);
97 return panel;
98 }
99

100 /**
101 Creates the check boxes for selecting bold and italic styles.
102 @return the panel containing the check boxes
103 */
104 public JPanel createCheckBoxes()
105 {
106 italicCheckBox = new JCheckBox("Italic");
107 italicCheckBox.addActionListener(listener);
108
109 boldCheckBox = new JCheckBox("Bold");
110 boldCheckBox.addActionListener(listener);
111
112 JPanel panel = new JPanel();
113 panel.add(italicCheckBox);
114 panel.add(boldCheckBox);
115 panel.setBorder(new TitledBorder(new EtchedBorder(), "Style"));
116
117 return panel;

754 Chapter 18 Graphical User Interfaces Graphics Track

118 }
119
120 /**
121 Creates the radio buttons to select the font size.
122 @return the panel containing the radio buttons
123 */
124 public JPanel createRadioButtons()
125 {
126 smallButton = new JRadioButton("Small");
127 smallButton.addActionListener(listener);
128
129 mediumButton = new JRadioButton("Medium");
130 mediumButton.addActionListener(listener);
131
132 largeButton = new JRadioButton("Large");
133 largeButton.addActionListener(listener);
134 largeButton.setSelected(true);
135
136 // Add radio buttons to button group
137
138 ButtonGroup group = new ButtonGroup();
139 group.add(smallButton);
140 group.add(mediumButton);
141 group.add(largeButton);
142
143 JPanel panel = new JPanel();
144 panel.add(smallButton);
145 panel.add(mediumButton);
146 panel.add(largeButton);
147 panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
148
149 return panel;
150 }
151
152 /**
153 Gets user choice for font name, style, and size
154 and sets the font of the text sample.
155 */
156 public void setSampleFont()
157 {
158 // Get font name
159 String facename
160 = (String) facenameCombo.getSelectedItem();
161
162 // Get font style
163
164 int style = 0;
165 if (italicCheckBox.isSelected())
166 {
167 style = style + Font.ITALIC;
168 }
169 if (boldCheckBox.isSelected())
170 {
171 style = style + Font.BOLD;
172 }
173
174 // Get font size
175
176 int size = 0;

Graphics Track 18.4 Choices 755

8. What is the advantage of a JComboBox over a set of radio buttons? What is the dis-
advantage?

9. Why do all user-interface components in the FontViewerFrame class share the same
listener?

10. Why was the combo box placed inside a panel? What would have happened if it
had been added directly to the control panel?

HOW TO 18.1 Laying Out a User Interface

A graphical user interface is made up of components such as buttons and text fields. The
Swing library uses containers and layout managers to arrange these components. This How To
explains how to group components into containers and how to pick the right layout managers.

Step 1 Make a sketch of your desired component layout.

Draw all the buttons, labels, text fields, and borders on a sheet of paper. Graph paper works
best.

Here is an example—a user interface for ordering pizza. The user interface contains
• Three radio buttons
• Two check boxes
• A label: “Your Price:”
• A text field
• A border

Step 2 Find groupings of adjacent components with the same layout.

Usually, the component arrangement is complex enough that you need to use several panels,
each with its own layout manager. Start by looking at adjacent components that are arranged

177
178 final int SMALL_SIZE = 24;
179 final int MEDIUM_SIZE = 36;
180 final int LARGE_SIZE = 48;
181
182 if (smallButton.isSelected()) { size = SMALL_SIZE; }
183 else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
184 else if (largeButton.isSelected()) { size = LARGE_SIZE; }
185
186 // Set font of text field
187
188 sampleField.setFont(new Font(facename, style, size));
189 sampleField.repaint();
190 }
191 }

S E L F C H E C K

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

✓

✓

756 Chapter 18 Graphical User Interfaces Graphics Track

top to bottom or left to right. If several components are surrounded by a border, they should
be grouped together.

Here are the groupings from the pizza user interface:

Step 3 Identify layouts for each group.

When components are arranged horizontally, choose a flow layout. When components are
arranged vertically, use a grid layout with one column.

In the pizza user interface example, you would choose
• A (3, 1) grid layout for the radio buttons
• A (2, 1) grid layout for the check boxes
• A flow layout for the label and text field

Step 4 Group the groups together.

Look at each group as one blob, and group the blobs together into larger groups, just as you
grouped the components in the preceding step. If you note one large blob surrounded by
smaller blobs, you can group them together in a border layout.

You may have to repeat the grouping again if you have a very complex user interface. You
are done if you have arranged all groups in a single container.

For example, the three component groups of the pizza user interface can be arranged as:
• A group containing the first two component groups, placed in the center of a container

with a border layout.
• The third component group, in the southern area of that container.

In this step, you may run into a couple of complications. The group “blobs” tend to vary in
size more than the individual components. If you place them inside a grid layout, the grid
layout forces them all to be the same size. Also, you occasionally would like a component
from one group to line up with a component from another group, but there is no way for
you to communicate that intent to the layout managers.

These problems can be overcome by using more sophisticated layout managers or imple-
menting a custom layout manager. However, those techniques are beyond the scope of this
book. Sometimes, you may want to start over with Step 1, using a component layout that is
easier to manage. Or you can decide to live with minor imperfections of the layout. Don’t
worry about achieving the perfect layout—after all, you are learning programming, not user-
interface design.

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

✓

✓

in CENTER position

in SOUTH position

Graphics Track 18.4 Choices 757

Step 5 Write the code to generate the layout.

This step is straightforward but potentially tedious, especially if you have a large number of
components.

Start by constructing the components. Then construct a panel for each component group
and set its layout manager if it is not a flow layout (the default for panels). Add a border to
the panel if required. Finally, add the components to their panels. Continue in this fashion
until you reach the outermost containers, which you add to the frame.

Here is an outline of the code required for the pizza user interface.

JPanel radioButtonPanel = new JPanel();
radioButtonPanel.setLayout(new GridLayout(3, 1));
radioButton.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
radioButtonPanel.add(smallButton);
radioButtonPanel.add(mediumButton);
radioButtonPanel.add(largeButton);

JPanel checkBoxPanel = new JPanel();
checkBoxPanel.setLayout(new GridLayout(2, 1));
checkBoxPanel.add(pepperoniButton());
checkBoxPanel.add(anchoviesButton());

JPanel pricePanel = new JPanel(); // Uses FlowLayout by default
pricePanel.add(new JLabel("Your Price:"));
pricePanel.add(priceTextField);

JPanel centerPanel = new JPanel(); // Uses FlowLayout
centerPanel.add(radioButtonPanel);
centerPanel.add(checkBoxPanel);

// Frame uses BorderLayout by default
add(centerPanel, BorderLayout.CENTER);
add(pricePanel, BorderLayout.SOUTH);

Of course, you also need to add event handlers to the components. See How To 10.1.

Use a GUI Builder

As you have seen, implementing even a simple graphical user interface in Java is quite
tedious. You have to write a lot of code for constructing components, using layout managers,
and providing event handlers. Most of the code is boring and repetitive.

A GUI builder takes away much of the tedium. Most GUI builders help you in three
ways:
• You drag and drop components onto a panel. The GUI builder writes the layout manage-

ment code for you.
• You customize components with a dialog box, setting properties such as fonts, colors,

text, and so on. The GUI builder writes the customization code for you.
• You provide event handlers by picking the event to process and providing just the code

snippet for the listener method. The GUI builder writes the boilerplate code for attaching
a listener object.

Java 6 introduced GroupLayout, a powerful layout manager that was specifically designed to be
used by GUI builders. The free NetBeans development environment, available from http://
netbeans.org, makes use of this layout manager—see Figure 11.

Productivity Hint 18.1

758 Chapter 18 Graphical User Interfaces Graphics Track

If you need to build a complex user interface, you will find that learning to use a GUI
builder is a very worthwhile investment. You will spend less time writing boring code, and
you will have more fun designing your user interface and focusing on the functionality of
your program.

Anyone who has ever used a graphical user interface is familiar with pull-down
menus (see Figure 12). In Java it is easy to create these menus.

The container for the top-level menu items is called a menu bar. A menu is a col-
lection of menu items and more menus (submenus). You add menu items and sub-
menus with the add method:

JMenuItem fileExitItem = new JMenuItem("Exit");
fileMenu.add(fileExitItem);

A menu item has no further submenus. When the user selects a menu item, the
menu item sends an action event. Therefore, you want to add a listener to each
menu item:

fileExitItem.addActionListener(listener);

You add action listeners only to menu items, not to menus or the menu bar. When
the user clicks on a menu name and a submenu opens, no action event is sent.

Figure 11 A GUI Builder

The GroupLayout
manages the components

on this form

Use this dialog to
edit component

properties

Click here to
view generated

source code

Drag components
from this palette

onto the form

18.5 Menus
A frame contains a
menu bar. The menu
bar contains menus.
A menu contains
submenus and
menu items.

Menu items generate
action events.

Graphics Track 18.5 Menus 759

The following program builds up a small but typical menu and traps the action
events from the menu items. To keep the program readable, it is a good idea to use a
separate method for each menu or set of related menus. Have a look at the create-
FaceItem method, which creates a menu item to change the font face. The same lis-
tener class takes care of three cases, with the name parameters varying for each menu
item. The same strategy is used for the createSizeItem and createStyleItem methods.

ch18/menu/FontViewer2.java

ch18/menu/FontViewer2Frame.java

Figure 12
Pull-Down Menus Menu bar

Submenu

Menu item

Menu

1 import javax.swing.JFrame;
2
3 /**
4 This program uses a menu to display font effects.
5 */
6 public class FontViewer2
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new FontViewer2Frame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.GridLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import javax.swing.ButtonGroup;
7 import javax.swing.JButton;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;

10 import javax.swing.JFrame;

760 Chapter 18 Graphical User Interfaces Graphics Track

11 import javax.swing.JLabel;
12 import javax.swing.JMenu;
13 import javax.swing.JMenuBar;
14 import javax.swing.JMenuItem;
15 import javax.swing.JPanel;
16 import javax.swing.JRadioButton;
17 import javax.swing.border.EtchedBorder;
18 import javax.swing.border.TitledBorder;
19
20 /**
21 This frame has a menu with commands to change the font
22 of a text sample.
23 */
24 public class FontViewer2Frame extends JFrame
25 {
26 private static final int FRAME_WIDTH = 300;
27 private static final int FRAME_HEIGHT = 400;
28
29 private JLabel sampleField;
30 private String facename;
31 private int fontstyle;
32 private int fontsize;
33
34 /**
35 Constructs the frame.
36 */
37 public FontViewer2Frame()
38 {
39 // Construct text sample
40 sampleField = new JLabel("Big Java");
41 add(sampleField, BorderLayout.CENTER);
42
43 // Construct menu
44 JMenuBar menuBar = new JMenuBar();
45 setJMenuBar(menuBar);
46 menuBar.add(createFileMenu());
47 menuBar.add(createFontMenu());
48
49 facename = "Serif";
50 fontsize = 24;
51 fontstyle = Font.PLAIN;
52
53 setSampleFont();
54 setSize(FRAME_WIDTH, FRAME_HEIGHT);
55 }
56
57 /**
58 Creates the File menu.
59 @return the menu
60 */
61 public JMenu createFileMenu()
62
63 {
64 JMenu menu = new JMenu("File");
65 menu.add(createFileExitItem());
66 return menu;
67 }
68

Graphics Track 18.5 Menus 761

69 /**
70 Creates the File->Exit menu item and sets its action listener.
71 @return the menu item
72 */
73 public JMenuItem createFileExitItem()
74 {
75 JMenuItem item = new JMenuItem("Exit");
76 class MenuItemListener implements ActionListener
77 {
78 public void actionPerformed(ActionEvent event)
79 {
80 System.exit(0);
81 }
82 }
83 ActionListener listener = new MenuItemListener();
84 item.addActionListener(listener);
85 return item;
86 }
87
88 /**
89 Creates the Font submenu.
90 @return the menu
91 */
92 public JMenu createFontMenu()
93 {
94 JMenu menu = new JMenu("Font");
95 menu.add(createFaceMenu());
96 menu.add(createSizeMenu());
97 menu.add(createStyleMenu());
98 return menu;
99 }

100
101 /**
102 Creates the Face submenu.
103 @return the menu
104 */
105 public JMenu createFaceMenu()
106 {
107 JMenu menu = new JMenu("Face");
108 menu.add(createFaceItem("Serif"));
109 menu.add(createFaceItem("SansSerif"));
110 menu.add(createFaceItem("Monospaced"));
111 return menu;
112 }
113
114 /**
115 Creates the Size submenu.
116 @return the menu
117 */
118 public JMenu createSizeMenu()
119 {
120 JMenu menu = new JMenu("Size");
121 menu.add(createSizeItem("Smaller", -1));
122 menu.add(createSizeItem("Larger", 1));
123 return menu;
124 }
125

762 Chapter 18 Graphical User Interfaces Graphics Track

126 /**
127 Creates the Style submenu.
128 @return the menu
129 */
130 public JMenu createStyleMenu()
131 {
132 JMenu menu = new JMenu("Style");
133 menu.add(createStyleItem("Plain", Font.PLAIN));
134 menu.add(createStyleItem("Bold", Font.BOLD));
135 menu.add(createStyleItem("Italic", Font.ITALIC));
136 menu.add(createStyleItem("Bold Italic", Font.BOLD
137 + Font.ITALIC));
138 return menu;
139 }
140
141 /**
142 Creates a menu item to change the font face and set its action listener.
143 @param name the name of the font face
144 @return the menu item
145 */
146 public JMenuItem createFaceItem(final String name)
147 {
148 JMenuItem item = new JMenuItem(name);
149 class MenuItemListener implements ActionListener
150 {
151 public void actionPerformed(ActionEvent event)
152 {
153 facename = name;
154 setSampleFont();
155 }
156 }
157 ActionListener listener = new MenuItemListener();
158 item.addActionListener(listener);
159 return item;
160 }
161
162 /**
163 Creates a menu item to change the font size
164 and set its action listener.
165 @param name the name of the menu item
166 @param ds the amount by which to change the size
167 @return the menu item
168 */
169 public JMenuItem createSizeItem(String name, final int ds)
170 {
171 JMenuItem item = new JMenuItem(name);
172 class MenuItemListener implements ActionListener
173 {
174 public void actionPerformed(ActionEvent event)
175 {
176 fontsize = fontsize + ds;
177 setSampleFont();
178 }
179 }
180 ActionListener listener = new MenuItemListener();
181 item.addActionListener(listener);
182 return item;
183 }
184

Graphics Track 18.5 Menus 763

11. Why do JMenu objects not generate action events?
12. Why is the name parameter in the createFaceItem method declared as final?

HOW TO 18.2 Implementing a Graphical User Interface (GUI)

A GUI program allows users to supply inputs and specify actions. The textfield/Investment-
Viewer3 program has only one input and one action. More sophisticated programs have more
interesting user interactions, but the basic principles are the same.

Step 1 Enumerate the actions that your program needs to carry out.

For example, the investment viewer has a single action, to add interest. Other programs may
have different actions, perhaps for making deposits, inserting coins, and so on.

Step 2 For each action, enumerate the inputs that you need.

For example, the investment viewer has a single input: the interest rate. Other programs may
have different inputs, such as amounts of money, product quantities, and so on.

Step 3 For each action, enumerate the outputs that you need to show.

The investment viewer has a single output: the current balance. Other programs may show
different quantities, messages, and so on.

185 /**
186 Creates a menu item to change the font style
187 and set its action listener.
188 @param name the name of the menu item
189 @param style the new font style
190 @return the menu item
191 */
192 public JMenuItem createStyleItem(String name, final int style)
193 {
194 JMenuItem item = new JMenuItem(name);
195 class MenuItemListener implements ActionListener
196 {
197 public void actionPerformed(ActionEvent event)
198 {
199 fontstyle = style;
200 setSampleFont();
201 }
202 }
203 ActionListener listener = new MenuItemListener();
204 item.addActionListener(listener);
205 return item;
206 }
207
208 /**
209 Sets the font of the text sample.
210 */
211 public void setSampleFont()
212 {
213 Font f = new Font(facename, fontstyle, fontsize);
214 sampleField.setFont(f);
215 sampleField.repaint();
216 }
217 }

S E L F C H E C K

764 Chapter 18 Graphical User Interfaces Graphics Track

Step 4 Supply the user-interface components.

Use buttons or menus for actions, text components for inputs, choice components to present
finite sets of choices, and labels for outputs. Implement your own components to produce
graphical output, such as charts or drawings.

Step 5 Use layout managers for layout.

Add the required components to a frame, using the techniques of How To 18.1.

Step 6 Supply event handler classes.

For each button, choice component, or menu item, you need to add an object of a listener
class. The listener classes must implement the ActionListener interface. Supply a class for each
action (or group of related actions), and put the instructions for the action in the actionPer-
formed method.

class Button1Listener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 // button1 action goes here
 . . .
 }
}

Remember to declare any local variables accessed by the listener methods as final.

Step 7 Make listener objects and attach them to the event sources.

For action events, the event source is a button or other user-interface component, or a timer.
You need to add a listener object to each event source, like this:

ActionListener listener1 = new Button1Listener();
button1.addActionListener(listener1);

In the preceding sections, you saw the basic properties of the most common user-
interface components. We purposefully omitted many options and variations to
simplify the discussion. You can go a long way by using only the simplest proper-
ties of these components. If you want to implement a more sophisticated effect, you
can look inside the Swing documentation. You will probably find the documenta-
tion quite intimidating at first glance, though. The purpose of this section is to show
you how you can use the documentation to your advantage without becoming
overwhelmed.

As an example, consider a program for mixing colors by specifying the red,
green, and blue values. How can you specify the colors? Of course, you could sup-
ply three text fields, but sliders would be more convenient for users of your pro-
gram (see Figure 13).

The Swing user-interface toolkit has a large set of user-interface components.
How do you know if there is a slider? You can buy a book that illustrates all Swing
components. Or you can run the sample application included in the Java Develop-
ment Kit that shows off all Swing components (see Figure 14). Or you can look at
the names of all of the classes that start with J and decide that JSlider may be a good
candidate.

18.6 Exploring the Swing Documentation
You should learn to
navigate the API
documentation to
find out more about
user-interface
components.

Graphics Track 18.6 Exploring the Swing Documentation 765

Figure 13
A Color Viewer

Figure 14 The SwingSet Demo

766 Chapter 18 Graphical User Interfaces Graphics Track

Next, you need to ask yourself a few questions:

• How do I construct a JSlider?
• How can I get notified when the user has moved it?
• How can I tell to which value the user has set it?

When you look at the documentation of the JSlider class, you will probably not be
happy. There are over 50 methods in the JSlider class and over 250 inherited meth-
ods, and some of the method descriptions look downright scary, such as the one in
Figure 15. Apparently some folks out there are concerned about the valueIs-
Adjusting property, whatever that may be, and the designers of this class felt it neces-
sary to supply a method to tweak that property. Until you too feel that need, your
best bet is to ignore this method. As the author of an introductory book, it pains me
to tell you to ignore certain facts. But the truth of the matter is that the Java library
is so large and complex that nobody understands it in its entirety, not even the
designers of Java themselves. You need to develop the ability to separate
fundamental concepts from ephemeral minutiae. For example, it is important that
you understand the concept of event handling. Once you understand the concept,
you can ask the question, “What event does the slider send when the user moves
it?” But it is not important that you memorize how to set tick marks or that you
know how to implement a slider with a custom look and feel.

Let us go back to our fundamental questions. In Java 6, there are six constructors
for the JSlider class. You want to learn about one or two of them. You must strike a
balance somewhere between the trivial and the bizarre. Consider

public JSlider()
Creates a horizontal slider with the range 0 to 100 and an initial value of 50.

Maybe that is good enough for now, but what if you want another range or initial
value? It seems too limited.

On the other side of the spectrum, there is
public JSlider(BoundedRangeModel brm)

Creates a horizontal slider using the specified BoundedRangeModel.

Figure 15 A Mysterious Method Description from the API Documentation

Graphics Track 18.6 Exploring the Swing Documentation 767

Whoa! What is that? You can click on the BoundedRangeModel link to get a long expla-
nation of this class. This appears to be some internal mechanism for the Swing
implementors. Let’s try to avoid this constructor if we can. Looking further, we find

public JSlider(int min, int max, int value)
Creates a horizontal slider using the specified min, max, and value.

This sounds general enough to be useful and simple enough to be usable. You might
want to stash away the fact that you can have vertical sliders as well.

Next, you want to know what events a slider generates. There is no addAction-
Listener method. That makes sense. Adjusting a slider seems different from clicking
a button, and Swing uses a different event type for these events. There is a method

public void addChangeListener(ChangeListener l)

Click on the ChangeListener link to find out more about this interface. It has a single
method

void stateChanged(ChangeEvent e)

Apparently, that method is called whenever the user moves the slider. What is a
ChangeEvent? Once again, click on the link, to find out that this event class has no
methods of its own, but it inherits the getSource method from its superclass Event-
Object. The getSource method tells us which component generated this event, but we
don’t need that information—we know that the event came from the slider.

Now let’s make a plan: Add a change event listener to each slider. When the slider
is changed, the stateChanged method is called. Find out the new value of the slider.
Recompute the color value and repaint the color panel. That way, the color panel is
continually repainted as the user moves one of the sliders.

To compute the color value, you will still need to get the current value of the
slider. Look at all the methods that start with get. Sure enough, you find

public int getValue()
Returns the slider’s value.

Figure 16
The Components of
the ColorViewerFrame

JPanel
in CENTER position

JPanel
with GridLayout
in SOUTH position

768 Chapter 18 Graphical User Interfaces Graphics Track

Now you know everything you need to write the program. The program uses one
new Swing component and one event listener of a new type. After having mastered
the basics, you may want to explore the capabilities of the component further, for
example by adding tick marks—see Exercise P18.17.

Figure 16 shows how the components are arranged in the frame. Figure 17 shows
the UML diagram.

ch18/slider/ColorViewer.java

ch18/slider/ColorViewerFrame.java

Figure 17
Classes of the Color
Viewer Program

ColorViewer
ColorViewer

Frame

JFrame

JSlider

1 import javax.swing.JFrame;
2
3 public class ColorViewer
4 {
5 public static void main(String[] args)
6 {
7 ColorViewerFrame frame = new ColorViewerFrame();
8 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9 frame.setVisible(true);

10 }
11 }

1 import java.awt.BorderLayout;
2 import java.awt.Color;
3 import java.awt.GridLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JSlider;
8 import javax.swing.event.ChangeListener;
9 import javax.swing.event.ChangeEvent;

10
11 public class ColorViewerFrame extends JFrame
12 {
13 private static final int FRAME_WIDTH = 300;
14 private static final int FRAME_HEIGHT = 400;
15
16 private JPanel colorPanel;
17 private JSlider redSlider;
18 private JSlider greenSlider;
19 private JSlider blueSlider;

Graphics Track 18.6 Exploring the Swing Documentation 769

20
21 public ColorViewerFrame()
22 {
23 colorPanel = new JPanel();
24
25 add(colorPanel, BorderLayout.CENTER);
26 createControlPanel();
27 setSampleColor();
28 setSize(FRAME_WIDTH, FRAME_HEIGHT);
29 }
30
31 public void createControlPanel()
32 {
33 class ColorListener implements ChangeListener
34 {
35 public void stateChanged(ChangeEvent event)
36 {
37 setSampleColor();
38 }
39 }
40
41 ChangeListener listener = new ColorListener();
42
43 redSlider = new JSlider(0, 255, 255);
44 redSlider.addChangeListener(listener);
45
46 greenSlider = new JSlider(0, 255, 175);
47 greenSlider.addChangeListener(listener);
48
49 blueSlider = new JSlider(0, 255, 175);
50 blueSlider.addChangeListener(listener);
51
52 JPanel controlPanel = new JPanel();
53 controlPanel.setLayout(new GridLayout(3, 2));
54
55 controlPanel.add(new JLabel("Red"));
56 controlPanel.add(redSlider);
57
58 controlPanel.add(new JLabel("Green"));
59 controlPanel.add(greenSlider);
60
61 controlPanel.add(new JLabel("Blue"));
62 controlPanel.add(blueSlider);
63
64 add(controlPanel, BorderLayout.SOUTH);
65 }
66
67 /**
68 Reads the slider values and sets the panel to
69 the selected color.
70 */
71 public void setSampleColor()
72 {
73 // Read slider values
74
75 int red = redSlider.getValue();
76 int green = greenSlider.getValue();
77 int blue = blueSlider.getValue();
78

770 Chapter 18 Graphical User Interfaces Graphics Track

13. Suppose you want to allow users to pick a color from a color dialog box. Which
class would you use? Look in the API documentation.

14. Why does a slider emit change events and not action events?

Use text fields for reading text input.

• Use JTextField components to provide space for user input. Place a JLabel next to
each text field.

Use text areas for reading and displaying multi-line text.

• Use a JTextArea to show multiple lines of text.
• You can add scroll bars to any component with a JScrollPane.

Learn how to arrange multiple components in a container.

• User-interface components are arranged by placing them inside containers.
Containers can be placed inside larger containers.

• Each container has a layout manager that directs the arrangement of its
components.

• When adding a component to a container with the border layout, specify the NORTH,
EAST, SOUTH, WEST, or CENTER position.

• The content pane of a frame has a border layout by default. A panel has a flow
layout by default.

Select among the Swing components for presenting choices to the user.

• For a small set of mutually exclusive choices, use a group of radio buttons or a
combo box.

• Add radio buttons into a ButtonGroup so that only one button in the group is on at
any time.

• You can place a border around a panel to group its contents visually.
• For a binary choice, use a check box.
• For a large set of choices, use a combo box.
• Radio buttons, check boxes, and combo boxes generate action events, just as

buttons do.

79 // Set panel background to selected color
80
81 colorPanel.setBackground(new Color(red, green, blue));
82 colorPanel.repaint();
83 }
84 }

S E L F C H E C K

Summary of Learning Objectives

Media Resources 771

Implement menus in a Swing program.

• A frame contains a menu bar. The menu bar contains menus. A menu contains
submenus and menu items.

• Menu items generate action events.
• You should learn to navigate the API documentation to find out more about user-

interface components.

• Lab Exercises
Practice Quiz
Code Completion Exercises

Classes, Objects, and Methods Introduced in this Chapter
java.awt.BorderLayout
 CENTER
 EAST
 NORTH
 SOUTH
 WEST
java.awt.Container
 setLayout
java.awt.FlowLayout
java.awt.Font
java.awt.GridLayout
javax.swing.AbstractButton
 isSelected
 setSelected
javax.swing.ButtonGroup
 add
javax.swing.ImageIcon
javax.swing.JCheckBox
javax.swing.JComboBox
 addItem
 getSelectedItem
 isEditable
 setEditable
javax.swing.JComponent
 setBorder
 setFont
javax.swing.JFrame
 setJMenuBar
javax.swing.JMenu
 add

javax.swing.JMenuBar
 add
javax.swing.JMenuItem
javax.swing.JRadioButton
javax.swing.JScrollPane
javax.swing.JSlider
 addChangeListener
 getValue
javax.swing.JTextArea
 append
javax.swing.JTextField
javax.swing.border.EtchedBorder
javax.swing.border.TitledBorder
javax.swing.event.ChangeEvent
javax.swing.event.ChangeListener
 stateChanged
javax.swing.text.JTextComponent
 getText
 isEditable
 setEditable
 setText

Media Resources

www.wiley.com/
college/
horstmann

772 Chapter 18 Graphical User Interfaces

R18.1 What is the difference between a label, a text field, and a text area?

R18.2 Name a method that is declared in JTextArea, a method that JTextArea inherits from
JTextComponent, and a method that JTextArea inherits from JComponent.

R18.3 Can you use a flow layout for the components in a frame? If yes, how?

R18.4 What is the advantage of a layout manager over telling the container “place this
component at position (x, y)”?

R18.5 What happens when you place a single button into the CENTER area of a container
that uses a border layout? Try it out, by writing a small sample program, if you
aren’t sure of the answer.

R18.6 What happens if you place multiple buttons directly into the SOUTH area, without
using a panel? Try it out, by writing a small sample program, if you aren’t sure of
the answer.

R18.7 What happens when you add a button to a container that uses a border layout and
omit the position? Try it out and explain.

R18.8 What happens when you try to add a button to another button? Try it out and
explain.

R18.9 The ColorViewerFrame uses a grid layout manager. Explain a drawback of the grid that
is apparent from Figure 16 on page 767. What could you do to overcome this
drawback?

R18.10 What is the difference between the grid layout and the grid bag layout?

R18.11 Can you add icons to check boxes, radio buttons, and combo boxes? Browse the
Java documentation to find out. Then write a small test program to verify your
findings.

R18.12 What is the difference between radio buttons and check boxes?

R18.13 Why do you need a button group for radio buttons but not for check boxes?

R18.14 What is the difference between a menu bar, a menu, and a menu item?

R18.15 When browsing through the Java documentation for more information about slid-
ers, we ignored the JSlider constructor with no parameters. Why? Would it have
worked in our sample program?

R18.16 How do you construct a vertical slider? Consult the Swing documentation for an
answer.

R18.17 Why doesn’t a JComboBox send out change events?

R18.18 What component would you use to show a set of choices, just as in a combo box,
but so that several items are visible at the same time? Run the Swing demo applica-
tion or look at a book with Swing example programs to find the answer.

Review Exercises

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

Programming Exercises 773

R18.19 How many Swing user-interface components are there? Look at the Java documen-
tation to get an approximate answer.

R18.20 How many methods does the JProgressBar component have? Be sure to count inher-
ited methods. Look at the Java documentation.

P18.1 Write a graphical application front end for a bank account class. Supply text fields
and buttons for depositing and withdrawing money, and for displaying the current
balance in a label.

P18.2 Write a graphical application front end for an Earthquake class. Supply a text field
and button for entering the strength of the earthquake. Display the earthquake
description in a label.

P18.3 Write a graphical application front end for a DataSet class. Supply text fields and but-
tons for adding floating-point values, and display the current minimum, maximum,
and average in a label.

P18.4 Write an application with three labeled text fields, one each for the initial amount of
a savings account, the annual interest rate, and the number of years. Add a button
“Calculate” and a read-only text area to display the result, namely, the balance of
the savings account after the end of each year.

P18.5 In the application from Exercise P18.4, replace the text area with a bar chart that
shows the balance after the end of each year.

P18.6 Write a program that contains a text field, a button “Add Value”, and a component
that draws a bar chart of the numbers that a user typed into the text field.

P18.7 Write a program that draws a clock face with a time that the user enters in two text
fields (one for the hours, one for the minutes).
Hint: You need to determine the angles of the hour hand and the minute hand. The
angle of the minute hand is easy: The minute hand travels 360 degrees in 60 minutes.
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes.

P18.8 Write an application with three buttons labeled “Red”, “Green”, and “Blue” that
changes the background color of a panel in the center of the frame to red, green, or
blue.

P18.9 Add icons to the buttons of Exercise P18.8.

P18.10 Write a calculator application. Use a grid layout to arrange buttons for the digits
and for the + – × ÷ operations. Add a text field to display the result.

P18.11 Write an application with three radio buttons labeled “Red”, “Green”, and “Blue”
that changes the background color of a panel in the center of the frame to red,
green, or blue.

G

G

Programming Exercises

G

G

G

G

G

G

G

G

G

G

G

774 Chapter 18 Graphical User Interfaces

P18.12 Write an application with three check boxes labeled “Red”, “Green”, and “Blue”
that adds a red, green, or blue component to the background color of a panel in the
center of the frame. This application can display a total of eight color combinations.

P18.13 Write an application with a combo box containing three items labeled “Red”,
“Green”, and “Blue” that changes the background color of a panel in the center of
the frame to red, green, or blue.

P18.14 Write an application with a Color menu and menu items labeled “Red”, “Green”,
and “Blue” that changes the background color of a panel in the center of the frame
to red, green, or blue.

P18.15 Write a program that displays a number of rectangles at random positions. Supply
buttons “Fewer” and “More” that generate fewer or more random rectangles. Each
time the user clicks on “Fewer”, the count should be halved. Each time the user
clicks on “More”, the count should be doubled.

P18.16 Modify the program of Exercise P18.15 to replace the buttons with a slider to gen-
erate fewer or more random rectangles.

P18.17 In the slider test program, add a set of tick marks to each slider that show the exact
slider position.

P18.18 Enhance the font viewer program to allow the user to select different fonts.
Research the API documentation to find out how to find the available fonts on the
user’s system.

Project 18.1 Write a program that lets users design charts such as the following:

Use appropriate components to ask for the length, label, and color, then apply them
when the user clicks an “Add Item” button. Allow the user to switch between bar
charts and pie charts.

Project 18.2 Write a program that displays a scrolling message in a panel. Use a timer for the
scrolling effect. In the timer’s action listener, move the starting position of the mes-
sage and repaint. When the message has left the window, reset the starting position
to the other corner. Provide a user interface to customize the message text, font,
foreground and background colors, and the scrolling speed and direction.

G

G

G

G

G

G

G

Programming Projects

Golden Gate

Brooklyn

Delaware Memorial

Mackinac

Answers to Self-Check Questions 775

1. Then the text field is not labeled, and the user will not know its purpose.
2. Integer.parseInt(textField.getText())

3. A text field holds a single line of text; a text area holds multiple lines.
4. The text area is intended to display the program output. It does not collect user

input.
5. Don’t construct a JScrollPane but add the resultArea object directly to the frame.
6. First add them to a panel, then add the panel to the north end of a frame.
7. Place them inside a panel with a GridLayout that has three rows and one column.
8. If you have many options, a set of radio buttons takes up a large area. A combo box

can show many options without using up much space. But the user cannot see the
options as easily.

9. When any of the component settings is changed, the program simply queries all of
them and updates the label.

10. To keep it from growing too large. It would have grown to the same width and
height as the two panels below it.

11. When you open a menu, you have not yet made a selection. Only JMenuItem objects
correspond to selections.

12. The parameter variable is accessed in a method of an inner class.
13. JColorChooser.
14. Action events describe one-time changes, such as button clicks. Change events

describe continuous changes.

Answers to Self-Check Questions

This page intentionally left blank

589

AAppendix

The Basic Latin and
Latin-1 Subsets

of Unicode

This appendix lists the Unicode characters that are most commonly used for
processing Western European languages. A complete listing of Unicode characters
can be found at http://unicode.org.

Table 1 Selected Control Characters

Character Code Decimal Escape Sequence

Tab '\u0009' 9 '\t'

Newline '\u000A' 10 '\n'

Return '\u000D' 13 '\r'

Space '\u0020' 32

590 Appendix A The Basic Latin and Latin-1 Subsets of Unicode

Table 2 The Basic Latin (ASCII) Subset of Unicode

Char. Code Dec. Char. Code Dec. Char. Code Dec.

@ '\u0040' 64 ` '\u0060' 96

! '\u0021' 33 A '\u0041' 65 a '\u0061' 97

" '\u0022' 34 B '\u0042' 66 b '\u0062' 98

'\u0023' 35 C '\u0043' 67 c '\u0063' 99

$ '\u0024' 36 D '\u0044' 68 d '\u0064' 100

% '\u0025' 37 E '\u0045' 69 e '\u0065' 101

& '\u0026' 38 F '\u0046' 70 f '\u0066' 102

' '\u0027' 39 G '\u0047' 71 g '\u0067' 103

('\u0028' 40 H '\u0048' 72 h '\u0068' 104

) '\u0029' 41 I '\u0049' 73 i '\u0069' 105

* '\u002A' 42 J '\u004A' 74 j '\u006A' 106

+ '\u002B' 43 K '\u004B' 75 k '\u006B' 107

, '\u002C' 44 L '\u004C' 76 l '\u006C' 108

- '\u002D' 45 M '\u004D' 77 m '\u006D' 109

. '\u002E' 46 N '\u004E' 78 n '\u006E' 110

/ '\u002F' 47 O '\u004F' 79 o '\u006F' 111

0 '\u0030' 48 P '\u0050' 80 p '\u0070' 112

1 '\u0031' 49 Q '\u0051' 81 q '\u0071' 113

2 '\u0032' 50 R '\u0052' 82 r '\u0072' 114

3 '\u0033' 51 S '\u0053' 83 s '\u0073' 115

4 '\u0034' 52 T '\u0054' 84 t '\u0074' 116

5 '\u0035' 53 U '\u0055' 85 u '\u0075' 117

6 '\u0036' 54 V '\u0056' 86 v '\u0076' 118

7 '\u0037' 55 W '\u0057' 87 w '\u0077' 119

8 '\u0038' 56 X '\u0058' 88 x '\u0078' 120

9 '\u0039' 57 Y '\u0059' 89 y '\u0079' 121

: '\u003A' 58 Z '\u005A' 90 z '\u007A' 122

; '\u003B' 59 ['\u005B' 91 { '\u007B' 123

< '\u003C' 60 \ '\u005C' 92 | '\u007C' 124

= '\u003D' 61] '\u005D' 93 } '\u007D' 125

> '\u003E' 62 ˆ '\u005E' 94 ~ '\u007E' 126

? '\u003F' 63 _ '\u005F' 95

Appendix A The Basic Latin and Latin-1 Subsets of Unicode 591

Table 3 The Latin-1 Subset of Unicode

Char. Code Dec. Char. Code Dec. Char. Code Dec.

À '\u00C0' 192 à '\u00E0' 224

¡ '\u00A1' 161 Á '\u00C1' 193 á '\u00E1' 225

¢ '\u00A2' 162 Â '\u00C2' 194 â '\u00E2' 226

£ '\u00A3' 163 Ã '\u00C3' 195 ã '\u00E3' 227

'\u00A4' 164 Ä '\u00C4' 196 ä '\u00E4' 228

¥ '\u00A5' 165 Å '\u00C5' 197 å '\u00E5' 229

'\u00A6' 166 Æ '\u00C6' 198 æ '\u00E6' 230

§ '\u00A7' 167 Ç '\u00C7' 199 ç '\u00E7' 231

¨ '\u00A8' 168 È '\u00C8' 200 è '\u00E8' 232

© '\u00A9' 169 É '\u00C9' 201 é '\u00E9' 233

ª '\u00AA' 170 Ê '\u00CA' 202 ê '\u00EA' 234

« '\u00AB' 171 Ë '\u00CB' 203 ë '\u00EB' 235

¬ '\u00AC' 172 Ì '\u00CC' 204 ì '\u00EC' 236

- '\u00AD' 173 Í '\u00CD' 205 í '\u00ED' 237

® '\u00AE' 174 Î '\u00CE' 206 î '\u00EE' 238

¯ '\u00AF' 175 Ï '\u00CF' 207 ï '\u00EF' 239

˚ '\u00B0' 176 '\u00D0' 208 '\u00F0' 240

± '\u00B1' 177 Ñ '\u00D1' 209 ñ '\u00F1' 241
2 '\u00B2' 178 Ò '\u00D2' 210 ò '\u00F2' 242
3 '\u00B3' 179 Ó '\u00D3' 211 ó '\u00F3' 243

´ '\u00B4' 180 Ô '\u00D4' 212 ô '\u00F4' 244

μ '\u00B5' 181 Õ '\u00D5' 213 õ '\u00F5' 245

¶ '\u00B6' 182 Ö '\u00D6' 214 ö '\u00F6' 246

· '\u00B7' 183 × '\u00D7' 215 ÷ '\u00F7' 247

¸ '\u00B8' 184 Ø '\u00D8' 216 ø '\u00F8' 248
1 '\u00B9' 185 Ù '\u00D9' 217 ù '\u00F9' 249

º '\u00BA' 186 Ú '\u00DA' 218 ú '\u00FA' 250

» '\u00BB' 187 Û '\u00DB' 219 û '\u00FB' 251

'\u00BC' 188 Ü '\u00DC' 220 ü '\u00FC' 252

'\u00BD' 189 '\u00DD' 221 '\u00FD' 253

'\u00BE' 190 '\u00DE' 222 '\u00FE' 254

¿ '\u00BF' 191 ß '\u00DF' 223 ÿ '\u00FF' 255

This page intentionally left blank

593

BAppendix

Java Operator
Summary

The Java operators are listed in groups of decreasing precedence in the table below.
The horizontal lines in the table indicate a change in operator precedence. For
example, z = x - y; means z = (x - y); because = has lower precedence than -.

The prefix unary operators, conditional operator, and the assignment operators
associate right-to-left. All other operators associate left-to-right.

Operator Description Associativity

. Access class feature

Left to right[] Array subscript

() Function call

++ Increment

Right to left

-- Decrement

! Boolean not

~ Bitwise not

+ (unary) (Has no effect)

- (unary) Negative

(TypeName) Cast

new Object allocation

* Multiplication

Left to right/ Division or integer division

% Integer remainder

+ Addition, string concatenation
Left to right

- Subtraction

594 Appendix B Java Operator Summary

Operator Description Associativity

<< Shift left

Left to right>> Right shift with sign extension

>>> Right shift with zero extension

< Less than

Left to right

<= Less than or equal

> Greater than

>= Greater than or equal

instanceof Tests whether an object’s type is a
given type or a subtype thereof

== Equal
Left to right

!= Not equal

& Bitwise and Left to right

^ Bitwise exclusive or Left to right

| Bitwise or Left to right

&& Boolean “short circuit” and Left to right

|| Boolean “short circuit” or Left to right

? : Conditional Right to left

= Assignment
Right to left

op= Assignment with binary operator (op is
one of +, -, *, /, &, |, ^, <<, >>, >>>)

595

CAppendix

Java Reserved
Word Summary

Reserved Word Description

abstract An abstract class or method

assert An assertion that a condition is fulfilled

boolean The Boolean type

break Breaks out of the current loop or labeled statement

byte The 8-bit signed integer type

case A label in a switch statement

catch The handler for an exception in a try block

char The 16-bit Unicode character type

class Defines a class

const Not used

continue Skip the remainder of a loop body

default The default label in a switch statement

do A loop whose body is executed at least once

double The 64-bit double-precision floating-point type

else The alternative clause in an if statement

enum An enumeration type

extends Indicates that a class is a subclass of another class

final A value that cannot be changed after it has been initialized, a method that
cannot be overridden, or a class that cannot be extended

finally A clause of a try block that is always executed

float The 32-bit single-precision floating-point type

for A loop with initialization, condition, and update expressions

goto Not used

596 Appendix C Java Reserved Word Summary

Reserved Word Description

if A conditional branch statement

implements Indicates that a class realizes an interface

import Allows the use of class names without the package name

instanceof Tests whether an object’s type is a given type or a subtype thereof

int The 32-bit integer type

interface An abstract type with only abstract methods and constants

long The 64-bit integer type

native A method implemented in non-Java code

new Allocates an object

package A collection of related classes

private A feature that is accessible only by methods of the same class

protected A feature that is accessible only by methods of the same class, a subclass,
or another class in the same package

public A feature that is accessible by all methods

return Returns from a method

short The 16-bit integer type

static A feature that is defined for a class, not for individual instances

strictfp Use strict rules for floating-point computations

super Invoke the superclass constructor or a superclass method

switch A selection statement

synchronized A block of code that is accessible to only one thread at a time

this The implicit parameter of a method; or invocation of another constructor
of the same class

throw Throws an exception

throws The exceptions that a method may throw

transient Instance variables that should not be serialized

try A block of code with exception handlers or a finally handler

void Tags a method that doesn’t return a value

volatile A variable that may be accessed by multiple threads without
synchronization

while A loop statement

597

DAppendix

 The Java
Library

This appendix lists all classes and methods from the standard Java library that are
used in this book.

In the following inheritance hierarchy, superclasses that are not used in this book
are shown in gray type. Some classes implement interfaces not covered in this book;
they are omitted. Classes are sorted first by package, then alphabetically within a
package.

java.awt.Shape
java.lang.Cloneable
java.lang.Object
 java.awt.BorderLayout
 java.awt.Color
 java.awt.Component
 java.awt.Container
 javax.swing.JComponent
 javax.swing.AbstractButton
 javax.swing.JButton
 javax.swing.JMenuItem
 javax.swing.JMenu
 javax.swing.JToggleButton
 javax.swing.JCheckBox
 javax.swing.JRadioButton
 javax.swing.JComboBox
 javax.swing.JFileChooser
 javax.swing.JLabel
 javax.swing.JMenuBar
 javax.swing.JPanel
 javax.swing.JOptionPane
 javax.swing.JScrollPane
 javax.swing.JSlider
 javax.swing.text.JTextComponent
 javax.swing.JTextArea
 javax.swing.JTextField
 java.awt.Panel
 java.applet.Applet
 javax.swing.JApplet
 java.awt.Window
 java.awt.Frame
 javax.swing.JFrame
 java.awt.Dimension2D
 java.awt.Dimension implements Cloneable
 java.awt.FlowLayout
 java.awt.Font

598 Appendix D The Java Library

 java.awt.Graphics
 java.awt.Graphics2D;
 java.awt.GridLayout
 java.awt.event.MouseAdapter implements MouseListener
 java.awt.geom.Line2D implements Cloneable, Shape
 java.awt.geom.Line2D.Double
 java.awt.geom.Point2D implements Cloneable
 java.awt.geom.Point2D.Double
 java.awt.geom.RectangularShape implements Cloneable, Shape
 java.awt.geom.Rectangle2D
 java.awt.Rectangle
 java.awt.geom.Ellipse2D
 java.awt.geom.Ellipse2D.Double
 java.io.File implements Comparable<File>
 java.io.InputStream
 java.io.FileInputStream
 java.io.ObjectInputStream
 java.io.OutputStream
 java.io.FileOutputStream
 java.io.FilterOutputStream
 java.io.PrintStream
 java.io.ObjectOutputStream
 java.io.RandomAccessFile
 java.io.Writer
 java.io.PrintWriter
 java.lang.Boolean implements Comparable<Boolean>
 java.lang.Character implements Comparable<Character>
 java.lang.Math
 java.lang.Number
 java.math.BigDecimal implements Comparable<BigDecimal>
 java.math.BigInteger implements Comparable<BigInteger>
 java.lang.Double implements Comparable<Double>
 java.lang.Integer implements Comparable<Integer>
 java.lang.String implements Comparable<String>
 java.lang.System
 java.lang.Throwable
 java.lang.Error
 java.lang.Exception
 java.lang.CloneNotSupportedException
 java.io.IOException
 java.io.EOFException
 java.io.FileNotFoundException
 java.lang.RuntimeException
 java.lang.IllegalArgumentException
 java.lang.NumberFormatException
 java.lang.IllegalStateException
 java.util.NoSuchElementException
 java.util.InputMismatchException
 java.lang.NullPointerException
 java.net.URL
 java.util.AbstractCollection<E>
 java.util.AbstractList<E>
 java.util.AbstractSequentialList<E>
 java.util.LinkedList<E> implements Cloneable, List<E>
 java.util.ArrayList<E> implements Cloneable, List<E>
 java.util.AbstractQueue<E>
 java.util.PriorityQueue<E>

Appendix D The Java Library 599

 java.util.AbstractSet<E>
 java.util.HashSet<E> implements Cloneable, Set<E>
 java.util.TreeSet<E> implements Cloneable, SortedSet<E>
 java.util.AbstractMap<K, V>
 java.util.HashMap<K, V> implements Cloneable, Map<K, V>
 java.util.TreeMap<K, V> implements Cloneable, Map<K, V>
 java.util.Arrays
 java.util.Collections
 java.util.Calendar
 java.util.GregorianCalendar
 java.util.EventObject
 java.awt.AWTEvent
 java.awt.event.ActionEvent
 java.awt.event.ComponentEvent
 java.awt.event.InputEvent
 java.awt.event.MouseEvent
 javax.swing.event.ChangeEvent
 java.util.Random
 java.util.Scanner
 java.util.logging.Level
 java.util.logging.Logger
 javax.swing.ButtonGroup
 javax.swing.ImageIcon
 javax.swing.Timer
 javax.swing.border.AbstractBorder
 javax.swing.border.EtchedBorder
 javax.swing.border.TitledBorder
java.lang.Comparable<T>
java.util.Collection<E>
 java.util.List<E>
 java.util.Set<E>
 java.util.SortedSet<E>
java.util.Comparator<T>

 java.util.EventListener
 java.awt.event.ActionListener
 java.awt.event.MouseListener
 javax.swing.event.ChangeListener
java.util.Iterator<E>
 java.util.ListIterator<E>
java.util.Map<K, V>

600 Appendix D The Java Library

In the following descriptions, the phrase “this object” (“this component”, “this
container”, and so forth) means the object (component, container, and so forth) on
which the method is invoked (the implicit parameter, this).

Class java.applet.Applet
• void destroy()

This method is called when the applet is about to be terminated, after the last call to stop.
• void init()

This method is called when the applet has been loaded, before the first call to start.
Applets override this method to carry out applet-specific initialization and to read applet
parameters.

• void start()

This method is called after the init method and each time the applet is revisited.
• void stop()

This method is called whenever the user has stopped watching this applet.

Class java.awt.BorderLayout
• BorderLayout()

This constructs a border layout. A border layout has five regions for adding components,
called "North", "East", "South", "West", and "Center".

• static final int CENTER

This value identifies the center position of a border layout.
• static final int EAST

This value identifies the east position of a border layout.
• static final int NORTH

This value identifies the north position of a border layout.
• static final int SOUTH

This value identifies the south position of a border layout.
• static final int WEST

This value identifies the west position of a border layout.

Class java.awt.Color
• Color(int red, int green, int blue)

This creates a color with the specified red, green, and blue values between 0 and 255.
Parameters: red The red component

green The green component
blue The blue component

Package java.applet

P
a
ck

a
g

e
 j
a
v
a
.
a
p
p
l
e
t

Package java.awt

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t

Appendix D The Java Library 601

Class java.awt.Component
• void addMouseListener(MouseListener listener)

This method adds a mouse listener to the component.
Parameters: listener The mouse listener to be added

• int getHeight()

This method gets the height of this component.
Returns: The height in pixels.

• int getWidth()

This method gets the width of this component.
Returns: The width in pixels.

• void repaint()

This method repaints this component by scheduling a call to the paint method.
• void setPreferredSize(Dimension preferredSize)

This method sets the preferred size of this component.
• void setSize(int width, int height)

This method sets the size of this component.
Parameters: width the component width

height the component height
• void setVisible(boolean visible)

This method shows or hides the component.
Parameters: visible true to show the component, or false to hide it

Class java.awt.Container
• void add(Component c)

• void add(Component c, Object position)

These methods add a component to the end of this container. If a position is given, the
layout manager is called to position the component.
Parameters: c The component to be added

position An object expressing position information for the layout
manager

• void setLayout(LayoutManager manager)

This method sets the layout manager for this container.
Parameters: manager A layout manager

Class java.awt.Dimension
• Dimension(int width, int height)

This constructs a Dimension object with the given width and height.
Parameters: width The width

height The height

Class java.awt.FlowLayout
• FlowLayout()

This constructs a new flow layout. A flow layout places as many components as possible
in a row, without changing their size, and starts new rows when necessary.

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t

602 Appendix D The Java Library

Class java.awt.Font
• Font(String name, int style, int size)

This constructs a font object from the specified name, style, and point size.
Parameters: name The font name, either a font face name or a logical font name,

which must be one of "Dialog", "DialogInput", "Monospaced", "Serif", or
"SansSerif"

style One of Font.PLAIN, Font.ITALIC, Font.BOLD, or Font.ITALIC+Font.BOLD
size The point size of the font

Class java.awt.Frame
• void setTitle(String title)

This method sets the frame title.
Parameters: title The title to be displayed in the border of the frame

Class java.awt.Graphics
• void setColor(Color c)

This method sets the current color. From now on, all graphics operations use this color.
Parameters: c The new drawing color

Class java.awt.Graphics2D
• void draw(Shape s)

This method draws the outline of the given shape. Many classes—among them Rectangle
and Line2D.Double—implement the Shape interface.
Parameters: s The shape to be drawn

• void drawString(String s, int x, int y)

• void drawString(String s, float x, float y)

These methods draw a string in the current font.
Parameters: s The string to draw

x,y The basepoint of the first character in the string
• void fill(Shape s)

This method draws the given shape and fills it with the current color.
Parameters: s The shape to be filled

Class java.awt.GridLayout
• GridLayout(int rows, int cols)

This constructor creates a grid layout with the specified number of rows and columns.
The components in a grid layout are arranged in a grid with equal widths and heights.
One, but not both, of rows and cols can be zero, in which case any number of objects can
be placed in a row or in a column, respectively.
Parameters: rows The number of rows in the grid

cols The number of columns in the grid

Class java.awt.Rectangle
• Rectangle()

This constructs a rectangle with a top-left corner at (0, 0) and width and height set to 0.

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t

Appendix D The Java Library 603

• Rectangle(int x, int y, int width, int height)

This constructs a rectangle with given top-left corner and size.
Parameters: x,y The top-left corner

width The width
height The height

• double getHeight()

• double getWidth()

These methods get the height and width of the rectangle.
• double getX()

• double getY()

These methods get the x- and y-coordinates of the top-left corner of the rectangle.
• void grow(int dw, int dh)

This method adjusts the width and height of this rectangle.
Parameters: dw The amount to add to the width (can be negative)

dh The amount to add to the height (can be negative)
• Rectangle intersection(Rectangle other)

This method computes the intersection of this rectangle with the specified rectangle.
Parameters: other A rectangle
Returns: The largest rectangle contained in both this and other

• void setLocation(int x, int y)

This method moves this rectangle to a new location.
Parameters: x,y The new top-left corner

• void setSize(int width, int height)

This method sets the width and height of this rectangle to new values.
Parameters: width The new width

height The new height
• void translate(int dx, int dy)

This method moves this rectangle.
Parameters: dx The distance to move along the x-axis

dy The distance to move along the y-axis
• Rectangle union(Rectangle other)

This method computes the union of this rectangle with the specified rectangle. This is not
the set-theoretic union but the smallest rectangle that contains both this and other.
Parameters: other A rectangle
Returns: The smallest rectangle containing both this and other

Interface java.awt.Shape
The Shape interface describes shapes that can be drawn and filled by a Graphics2D object.

Interface java.awt.event.ActionListener
• void actionPerformed(ActionEvent e)

The event source calls this method when an action occurs.

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t

Package java.awt.event

j
a
v
a
.
a
w
t
.
e
v
e
n
t

604 Appendix D The Java Library

Class java.awt.event.MouseEvent
• int getX()

This method returns the horizontal position of the mouse as of the time the event
occurred.
Returns: The x-position of the mouse

• int getY()

This method returns the vertical position of the mouse as of the time the event occurred.
Returns: The y-position of the mouse

Interface java.awt.event.MouseListener
• void mouseClicked(MouseEvent e)

This method is called when the mouse has been clicked (that is, pressed and released in
quick succession).

• void mouseEntered(MouseEvent e)

This method is called when the mouse has entered the component to which this listener
was added.

• void mouseExited(MouseEvent e)

This method is called when the mouse has exited the component to which this listener
was added.

• void mousePressed(MouseEvent e)

This method is called when a mouse button has been pressed.
• void mouseReleased(MouseEvent e)

This method is called when a mouse button has been released.

Class java.awt.geom.Ellipse2D.Double
• Ellipse2D.Double(double x, double y, double w, double h)

This constructs an ellipse from the specified coordinates.
Parameters: x, y The top-left corner of the bounding rectangle

w The width of the bounding rectangle
h The height of the bounding rectangle

Class java.awt.geom.Line2D
• double getX1()

• double getX2()

• double getY1()

• double getY2()

These methods get the requested coordinate of an endpoint of this line.
Returns: The x- or y-coordinate of the first or second endpoint

• void setLine(double x1, double y1, double x2, double y2)

This methods sets the endpoints of this line.
Parameters: x1, y1 A new endpoint of this line

x2, y2 The other new endpoint

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t
.
e
v
e
n
t

Package java.awt.geom

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t
.
g
e
o
m

Appendix D The Java Library 605

Class java.awt.geom.Line2D.Double
• Line2D.Double(double x1, double y1, double x2, double y2)

This constructs a line from the specified coordinates.
Parameters: x1, y1 One endpoint of the line

x2, y2 The other endpoint
• Line2D.Double(Point2D p1, Point2D p2)

This constructs a line from the two endpoints.
Parameters: p1, p2 The endpoints of the line

Class java.awt.geom.Point2D
• double getX()

• double getY()

These methods get the requested coordinates of this point.
Returns: The x- or y-coordinate of this point

• void setLocation(double x, double y)

This method sets the x- and y-coordinates of this point.
Parameters: x, y The new location of this point

Class java.awt.geom.Point2D.Double
• Point2D.Double(double x, double y)

This constructs a point with the specified coordinates.
Parameters: x, y The coordinates of the point

Class java.awt.geom.RectangularShape
• int getHeight()

• int getWidth()

These methods get the height or width of the bounding rectangle of this rectangular shape.
Returns: The height or width, respectively

• double getCenterX()

• double getCenterY()

• double getMaxX()

• double getMaxY()

• double getMinX()

• double getMinY()

These methods get the requested coordinate value of the corners or center of the
bounding rectangle of this shape.
Returns: The center, maximum, or minimum x- and y-coordinates

P
a
ck

a
g

e
 j
a
v
a
.
a
w
t
.
g
e
o
m

606 Appendix D The Java Library

Class java.io.EOFException
• EOFException(String message)

This constructs an “end of file” exception object.
Parameters: message The detail message

Class java.io.File
• File(String name)

This constructs a File object that describes a file (which may or may not exist) with the
given name.
Parameters: name The name of the file

• static final String pathSeparator

The sytem-dependent separator between path names. A colon (:) in Linux or Mac OS X;
a semicolon (;) in Windows.

Class java.io.FileInputStream
• FileInputStream(File f)

This constructs a file input stream and opens the chosen file. If the file cannot be opened
for reading, a FileNotFoundException is thrown.
Parameters: f The file to be opened for reading

• FileInputStream(String name)

This constructs a file input stream and opens the named file. If the file cannot be opened
for reading, a FileNotFoundException is thrown.
Parameters: name The name of the file to be opened for reading

Class java.io.FileNotFoundException
This exception is thrown when a file could not be opened.

Class java.io.FileOutputStream
• FileOutputStream(File f)

This constructs a file output stream and opens the chosen file. If the file cannot be opened
for writing, a FileNotFoundException is thrown.
Parameters: f The file to be opened for writing

• FileOutputStream(String name)

This constructs a file output stream and opens the named file. If the file cannot be opened
for writing, a FileNotFoundException is thrown.
Parameters: name The name of the file to be opened for writing

Class java.io.InputStream
• void close()

This method closes this input stream (such as a FileInputStream) and releases any system
resources associated with the stream.

Package java.io

P
a
ck

a
g

e
 j
a
v
a
.
i
o

Appendix D The Java Library 607

• int read()

This method reads the next byte of data from this input stream.
Returns: The next byte of data, or -1 if the end of the stream is reached.

Class java.io.InputStreamReader
• InputStreamReader(InputStream in)

This constructs a reader from a specified input stream.
Parameters: in The stream to read from

Class java.io.IOException
This type of exception is thrown when an input/output error is encountered.

Class java.io.ObjectInputStream
• ObjectInputStream(InputStream in)

This constructs an object input stream.
Parameters: in The stream to read from

• Object readObject()

This method reads the next object from this object input stream.
Returns: The next object

Class java.io.ObjectOutputStream
• ObjectOutputStream(OutputStream out)

This constructs an object output stream.
Parameters: out The stream to write to

• Object writeObject(Object obj)

This method writes the next object to this object output stream.
Parameters: obj The object to write

Class java.io.OutputStream
• void close()

This method closes this output stream (such as a FileOutputStream) and releases any system
resources associated with this stream. A closed stream cannot perform output operations
and cannot be reopened.

• void write(int b)

This method writes the lowest byte of b to this output stream.
Parameters: b The integer whose lowest byte is written

Class java.io.PrintStream/Class java.io.PrintWriter
• PrintStream(String name)

• PrintWriter(String name)

This constructs a PrintStream or PrintWriter and opens the named file. If the file cannot be
opened for writing, a FileNotFoundException is thrown.
Parameters: name The name of the file to be opened for writing

• void close()

This method closes this stream or writer and releases any associated system resources.

P
a
ck

a
g

e
 j
a
v
a
.
i
o

608 Appendix D The Java Library

• void print(int x)

• void print(double x)

• void print(Object x)

• void print(String x)

• void println()

• void println(int x)

• void println(double x)

• void println(Object x)

• void println(String x)

These methods print a value to this PrintStream or PrintWriter. The println methods
print a newline after the value. Objects are printed by converting them to strings with
their toString methods.
Parameters: x The value to be printed

• PrintStream printf(Sting format, Object... values)

• Printwriter printf(Sting format, Object... values)

This method prints the format string to this PrintStream or PrintWriter, substituting the
given values for placeholders that start with %.
Parameters: format The format string

values The values to be printed. You can supply any number of values
Returns: The implicit parameter

Class java.io.RandomAccessFile
• RandomAccessFile(String name, String mode)

This method opens a named random access file for reading or read/write access.
Parameters: name The file name

mode "r" for reading or "rw" for read/write access
• long getFilePointer()

This method gets the current position in this file.
Returns: The current position for reading and writing

• long length()

This method gets the length of this file.
Returns: The file length

• char readChar()

• double readDouble()

• int readInt()

These methods read a value from the current position in this file.
Returns: The value that was read from the file

• void seek(long position)

This method sets the position for reading and writing in this file.
Parameters: position The new position

• void writeChar(int x)

• void writeChars(String x)

• void writeDouble(double x)

• void writeInt(int x)

These methods write a value to the current position in this file.
Parameters: x The value to be written

P
a
ck

a
g

e
 j
a
v
a
.
i
o

Appendix D The Java Library 609

Class java.lang.Boolean
• Boolean(boolean value)

This constructs a wrapper object for a boolean value.
Parameters: value The value to store in this object

• boolean booleanValue()

This method returns the boolean value stored in this Boolean object.
Returns: The Boolean value of this object

Class java.lang.Character
• static boolean isDigit(ch)

This method tests whether a given character is a Unicode digit.
Parameters: ch The character to test
Returns: true if the character is a digit

• static boolean isLetter(ch)

This method tests whether a given character is a Unicode letter.
Parameters: ch The character to test
Returns: true if the character is a letter

• static boolean isLowerCase(ch)

This method tests whether a given character is a lowercase Unicode letter.
Parameters: ch The character to test
Returns: true if the character is a lowercase letter

• static boolean isUpperCase(ch)

This method tests whether a given character is an uppercase Unicode letter.
Parameters: ch The character to test
Returns: true if the character is an uppercase letter

Interface java.lang.Cloneable
A class implements this interface to indicate that the Object.clone method is allowed to
make a shallow copy of its instance variables.

Class java.lang.CloneNotSupportedException
This exception is thrown when a program tries to use Object.clone to make a shallow copy
of an object of a class that does not implement the Cloneable interface.

Interface java.lang.Comparable<T>
• int compareTo(T other)

This method compares this object with the other object.
Parameters: other The object to be compared
Returns: A negative integer if this object is less than the other, zero if they are equal, or
a positive integer otherwise

Package java.lang P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

610 Appendix D The Java Library

Class java.lang.Double
• Double(double value)

This constructs a wrapper object for a double-precision floating-point number.
Parameters: value The value to store in this object

• double doubleValue()

This method returns the floating-point value stored in this Double wrapper object.
Returns: The value stored in the object

• static double parseDouble(String s)

This method returns the floating-point number that the string represents. If the string
cannot be interpreted as a number, a NumberFormatException is thrown.
Parameters: s The string to be parsed
Returns: The value represented by the string parameter

Class java.lang.Error
This is the superclass for all unchecked system errors.

Class java.lang.IllegalArgumentException
• IllegalArgumentException()

This constructs an IllegalArgumentException with no detail message.

Class java.lang.IllegalStateException
This exception is thrown if the state of an object indicates that a method cannot currently
be applied.

Class java.lang.Integer
• Integer(int value)

This constructs a wrapper object for an integer.
Parameters: value The value to store in this object

• int intValue()

This method returns the integer value stored in this wrapper object.
Returns: The value stored in the object

• static int parseInt(String s)

This method returns the integer that the string represents. If the string cannot be
interpreted as an integer, a NumberFormatException is thrown.
Parameters: s The string to be parsed
Returns: The value represented by the string parameter

• static Integer parseInt(String s, int base)

This method returns the integer value that the string represents in a given number system.
If the string cannot be interpreted as an integer, a NumberFormatException is thrown.
Parameters: s The string to be parsed

base The base of the number system (such as 2 or 16)
Returns: The value represented by the string parameter

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

Appendix D The Java Library 611

• static String toString(int i)

• static String toString(int i, int base)

This method creates a string representation of an integer in a given number system. If no
base is given, a decimal representation is created.
Parameters: i An integer number

base The base of the number system (such as 2 or 16)
Returns: A string representation of the number parameter in the specified number system

• static final int MAX_VALUE

This constant is the largest value of type int.
• static final int MIN_VALUE

This constant is the smallest (negative) value of type int.

Class java.lang.Math
• static double abs(double x)

This method returns the absolute value |x |.
Parameters: x A floating-point value
Returns: The absolute value of the parameter

• static double acos(double x)

This method returns the angle with the given cosine, cos−1 x ∈ [0, π].
Parameters: x A floating-point value between −1 and 1
Returns: The arc cosine of the parameter, in radians

• static double asin(double x)

This method returns the angle with the given sine, sin−1 x ∈ [−π/2, π/2].
Parameters: x A floating-point value between −1 and 1
Returns: The arc sine of the parameter, in radians

• static double atan(double x)

This method returns the angle with the given tangent, tan−1 x (−π/2, π/2).
Parameters: x A floating-point value
Returns: The arc tangent of the parameter, in radians

• static double atan2(double y, double x)

This method returns the arc tangent, tan−1 (y/x) ∈ (−π, π). If x can equal zero, or if it is
necessary to distinguish “northwest” from “southeast” and “northeast” from “south-
west”, use this method instead of atan(y/x).
Parameters: y,x Two floating-point values
Returns: The angle, in radians, between the points (0,0) and (x,y)

• static double ceil(double x)

This method returns the smallest integer ≥ x (as a double).
Parameters: x A floating-point value
Returns: The “ceiling integer” of the parameter

• static double cos(double radians)

This method returns the cosine of an angle given in radians.
Parameters: radians An angle, in radians
Returns: The cosine of the parameter

• static double exp(double x)

This method returns the value ex, where e is the base of the natural logarithms.
Parameters: x A floating-point value
Returns: ex

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

612 Appendix D The Java Library

• static double floor(double x)

This method returns the largest integer ≤ x (as a double).
Parameters: x A floating-point value
Returns: The “floor integer” of the parameter

• static double log(double x)

• static double log10(double x)

This method returns the natural (base e) or decimal (base 10) logarithm of x, ln x.
Parameters: x A number greater than 0.0
Returns: The natural logarithm of the parameter

• static int max(int x, int y)

• static double max(double x, double y)

These methods return the larger of the given parameter values.
Parameters: x, y Two integers or floating-point values
Returns: The maximum of the parameter values

• static int min(int x, int y)

• static double min(double x, double y)

These methods return the smaller of the given parameter values.
Parameters: x, y Two integers or floating-point values
Returns: The minimum of the parameter values

• static double pow(double x, double y)

This method returns the value xy (x > 0, or x = 0 and y > 0, or x < 0 and y is an integer).
Parameters: x, y Two floating-point values
Returns: The value of the first parameter raised to the power of the second parameter

• static long round(double x)

This method returns the closest long integer to the parameter.
Parameters: x A floating-point value
Returns: The value of the parameter rounded to the nearest long value

• static double sin(double radians)

This method returns the sine of an angle given in radians.
Parameters: radians An angle, in radians
Returns: The sine of the parameter

• static double sqrt(double x)

This method returns the square root of x, .
Parameters: x A nonnegative floating-point value
Returns: The square root of the parameter

• static double tan(double radians)

This method returns the tangent of an angle given in radians.
Parameters: radians An angle, in radians
Returns: The tangent of the parameter

• static double toDegrees(double radian)

This method converts radians to degrees.
Parameters: radians An angle, in radians
Returns: The angle in degrees

• static double toRadians(double degrees)

This methods converts degrees to radians.
Parameters: degrees An angle, in degrees
Returns: The angle in radians

x

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

Appendix D The Java Library 613

• static final double E

This constant is the value of e, the base of the natural logarithms.
• static final double PI

This constant is the value of π.

Class java.lang.NullPointerException
This exception is thrown when a program tries to use an object through a null
reference.

Class java.lang.NumberFormatException
This exception is thrown when a program tries to parse the numerical value of a
string that is not a number.

Class java.lang.Object
• protected Object clone()

This constructs and returns a shallow copy of this object whose instance variables are
copies of the instance variables of this object. If an instance variable of the object is an
object reference itself, only the reference is copied, not the object itself. However, if the
class does not implement the Cloneable interface, a CloneNotSupportedException is thrown.
Subclasses should redefine this method to make a deep copy.
Returns: A copy of this object

• boolean equals(Object other)

This method tests whether this and the other object are equal. This method tests only
whether the object references are to the same object. Subclasses should redefine this
method to compare the instance variables.
Parameters: other The object with which to compare
Returns: true if the objects are equal, false otherwise

• void notify()

This method notifies one of the threads that is currently on the wait list for the lock of
this object.

• void notifyAll()

This method notifies all of the threads that are currently on the wait list for the lock of
this object.

• String toString()

This method returns a string representation of this object. This method produces only the
class name and locations of the objects. Subclasses should redefine this method to print
the instance variables.
Returns: A string describing this object

• void wait()

This method blocks the currently executing thread and puts it on the wait list for the lock
of this object.

Class java.lang.RuntimeException
This is the superclass for all unchecked exceptions.

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

614 Appendix D The Java Library

Class java.lang.String
• int compareTo(String other)

This method compares this string and the other string lexicographically.
Parameters: other The other string to be compared
Returns: A value less than 0 if this string is lexicographically less than the other, 0 if the
strings are equal, and a value greater than 0 otherwise.

• boolean equals(String other)

• boolean equalsIgnoreCase(String other)

These methods test whether two strings are equal, or whether they are equal when letter
case is ignored.
Parameters: other The other string to be compared
Returns: true if the strings are equal

• static String format(String format, Object... values)

This method formats the given string by substituting placeholders that start with % with
the given values.
Parameters: format The string with the placeholders

values The values to be substituted for the placeholders
Returns: The formatted string, with the placeholders replaced by the given values

• int length()

This method returns the length of this string.
Returns: The count of characters in this string

• String replace(String match, String replacement)

This method replaces matching substrings with a given replacement.
Parameters: match The string whose matches are to be replaced

replacement The string with which matching substrings are replaced
Returns: A string that is identical to this string, with all matching substrings replaced by
the given replacement

• String substring(int begin)

• String substring(int begin, int pastEnd)

These methods return a new string that is a substring of this string, made up of all charac-
ters starting at position begin and up to either position pastEnd - 1, if it is given, or the end
of the string.
Parameters: begin The beginning index, inclusive

pastEnd The ending index, exclusive
Returns: The specified substring

• String toLowerCase()

This method returns a new string that consists of all characters in this string converted to
lowercase.
Returns: A string with all characters in this string converted to lowercase

• String toUpperCase()

This method returns a new string that consists of all characters in this string converted to
uppercase.
Returns: A string with all characters in this string converted to uppercase

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

Appendix D The Java Library 615

Class java.lang.System
• static void arraycopy(

 Object from, int fromStart, Object to, int toStart, int count)

This method copies values from one array to the other. (The array parameters are of type
Object because you can convert an array of numbers to an Object but not to an Object[].)
Parameters: from The source array

fromStart Start position in the source array
to The destination array
toStart Start position in the destination data
count The number of array elements to be copied

• static long currentTimeMillis()

This method returns the difference, measured in milliseconds, between the current time
and midnight, Universal Time, January 1, 1970.
Returns: The current time in milliseconds

• static void exit(int status)

This method terminates the program.
Parameters: status Exit status. A nonzero status code indicates abnormal termination

• static final InputStream in

This object is the “standard input” stream. Reading from this stream typically reads
keyboard input.

• static final PrintStream out

This object is the “standard output” stream. Printing to this stream typically sends output
to the console window.

Class java.lang.Throwable
This is the superclass of exceptions and errors.

• Throwable()

This constructs a Throwable with no detail message.
• String getMessage()

This method gets the message that describes the exception or error.
Returns: The message

• void printStackTrace()

This method prints a stack trace to the “standard error” stream. The stack trace contains a
printout of this object and of all calls that were pending at the time it was created.

Class java.math.BigDecimal
• BigDecimal(String value)

This constructs an arbitrary-precision floating-point number from the digits in the given
string.
Parameters: value A string representing the floating-point number

P
a
ck

a
g

e
 j
a
v
a
.
l
a
n
g

Package java.math

P
a
ck

a
g

e
 j
a
v
a
.
m
a
t
h

616 Appendix D The Java Library

• BigDecimal add(BigDecimal other)

• BigDecimal multiply(BigDecimal other)

• BigDecimal subtract(BigDecimal other)

These methods return a BigDecimal whose value is the sum, difference, product, or
quotient of this number and the other.
Parameters: other The other number
Returns: The result of the arithmetic operation

Class java.math.BigInteger
• BigInteger(String value)

This constructs an arbitrary-precision integer from the digits in the given string.
Parameters: value A string representing an arbitrary-precision integer

• BigInteger add(BigInteger other)

• BigInteger divide(BigInteger other)

• BigInteger mod(BigInteger other)

• BigInteger multiply(BigInteger other)

• BigInteger subtract(BigInteger other)

These methods return a BigInteger whose value is the sum, difference, product, quotient,
or remainder of this number and the other.
Parameters: other The other number
Returns: The result of the arithmetic operation

Class java.net.URL
• URL(String s)

This constructs an URL object from a string containing the URL.
Parameters: s The URL string, such as "http://java.sun.com/index.html"

• InputStream openStream()

This method gets the input stream through which the client can read the information that
the server sends.
Returns: The input stream associated with this URL

Class java.util.ArrayList<E>
• ArrayList()

This constructs an empty array list.
• boolean add(E element)

This method appends an element to the end of this array list.
Parameters: element The element to add
Returns: true (This method returns a value because it overrides a method in the List
interface.)

P
a
ck

a
g

e
 j
a
v
a
.
m
a
t
h

Package java.net

P
a
ck

a
g

e
 j
a
v
a
.
n
e
t

Package java.util

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

Appendix D The Java Library 617

• void add(int index, E element)

This method inserts an element into this array list.
Parameters: index Insert position

element The element to insert
• E get(int index)

This method gets the element at the specified position in this array list.
Parameters: index Position of the element to return
Returns: The requested element

• E remove(int index)

This method removes the element at the specified position in this array list and returns it.
Parameters: index Position of the element to remove
Returns: The removed element

• E set(int index, E element)

This method replaces the element at a specified position in this array list.
Parameters: index Position of element to replace

element Element to be stored at the specified position
Returns: The element previously at the specified position

• int size()

This method returns the number of elements in this array list.
Returns: The number of elements in this array list

Class java.util.Arrays
• static int binarySearch(Object[] a, Object key)

This method searches the specified array for the specified object using the binary search
algorithm. The array elements must implement the Comparable interface. The array must
be sorted in ascending order.
Parameters: a The array to be searched

key The value to be searched for
Returns: The position of the search key, if it is contained in the array; otherwise,
−index − 1, where index is the position where the element may be inserted

• static T[] copyOf(T[] a, int newLength)

This method copies the elements of the array a, or the first newLength elements if
a.length < newLength, into an array of length newLength and returns that array. T can be a
primitive type, class, or interface type.
Parameters: a The array to be copied

key The value to be searched for
Returns: The position of the search key, if it is contained in the array; otherwise,
−index − 1, where index is the position where the element may be inserted

• static void sort(Object[] a)

This method sorts the specified array of objects into ascending order. Its elements must
implement the Comparable interface.
Parameters: a The array to be sorted

• static String toString(T[] a)

This method creates and returns a string containing the array elements. T can be a primi-
tive type, class, or interface type.
Parameters: a An array
Returns: A string containing a comma-separated list of string representations of the
array elements, surrounded by brackets.

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

618 Appendix D The Java Library

Class java.util.Calendar
• int get(int field)

This method returns the value of the given field.
Parameters: One of Calendar.YEAR, Calendar.MONTH, Calendar.DAY_OF_MONTH, Calendar.HOUR,

Calendar.MINUTE, Calendar.SECOND, or Calendar.MILLISECOND

Interface java.util.Collection<E>
• boolean add(E element)

This method adds an element to this collection.
Parameters: element The element to add
Returns: true if adding the element changes the collection

• boolean contains(E element)

This method tests whether an element is present in this collection.
Parameters: element The element to find
Returns: true if the element is contained in the collection

• Iterator iterator()

This method returns an iterator that can be used to traverse the elements of this
collection.
Returns: An object of a class implementing the Iterator interface

• boolean remove(E element)

This method removes an element from this collection.
Parameters: element The element to remove
Returns: true if removing the element changes the collection

• int size()

This method returns the number of elements in this collection.
Returns: The number of elements in this collection

Class java.util.Collections
• static <T> int binarySearch(List<T> a, T key)

This method searches the specified list for the specified object using the binary search
algorithm. The list elements must implement the Comparable interface. The list must be
sorted in ascending order.
Parameters: a The list to be searched

key The value to be searched for
Returns: The position of the search key, if it is contained in the list; otherwise,
−index − 1, where index is the position where the element may be inserted

• static <T> void sort(T[] a)

This method sorts the specified list of objects into ascending order. Its elements must
implement the Comparable interface.
Parameters: a The list to be sorted

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

Appendix D The Java Library 619

Interface java.util.Comparator<T>
• int compare(T first, T second)

This method compares the given objects.
Parameters: first, second The objects to be compared
Returns: A negative integer if the first object is less than the second, zero if they are
equal, or a positive integer otherwise

Class java.util.EventObject
• Object getSource()

This method returns a reference to the object on which this event initially occurred.
Returns: The source of this event

Class java.util.GregorianCalendar
• GregorianCalendar()

This constructs a calendar object that represents the current date and time.
• GregorianCalendar(int year, int month, int day)

This constructs a calendar object that represents the start of the given date.
Parameters: year, month, day The given date

Class java.util.HashMap<K, V>
• HashMap<K, V>()

This constructs an empty hash map.

Class java.util.HashSet<E>
• HashSet<E>()

This constructs an empty hash set.

Class java.util.InputMismatchException
This exception is thrown if the next available input item does not match the type of the
requested item.

Interface java.util.Iterator<E>
• boolean hasNext()

This method checks whether the iterator is past the end of the list.
Returns: true if the iterator is not yet past the end of the list

• E next()

This method moves the iterator over the next element in the linked list. This method
throws an exception if the iterator is past the end of the list.
Returns: The object that was just skipped over

• void remove()

This method removes the element that was returned by the last call to next or previous.
This method throws an exception if there was an add or remove operation after the last call
to next or previous.

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

620 Appendix D The Java Library

Class java.util.LinkedList<E>
• void addFirst(E element)

• void addLast(E element)

These methods add an element before the first or after the last element in this list.
Parameters: element The element to be added

• E getFirst()

• E getLast()

These methods return a reference to the specified element from this list.
Returns: The first or last element

• E removeFirst()

• E removeLast()

These methods remove the specified element from this list.
Returns: A reference to the removed element

Interface java.util.List<E>
• ListIterator<E> listIterator()

This method gets an iterator to visit the elements in this list.
Returns: An iterator that points before the first element in this list

Interface java.util.ListIterator<E>
Objects implementing this interface are created by the listIterator methods of list classes.

• void add(E element)

This method adds an element after the iterator position and moves the iterator after the
new element.
Parameters: element The element to be added

• boolean hasPrevious()

This method checks whether the iterator is before the first element of the list.
Returns: true if the iterator is not before the first element of the list

• E previous()

This method moves the iterator over the previous element in the linked list. This method
throws an exception if the iterator is before the first element of the list.
Returns: The object that was just skipped over

• void set(E element)

This method replaces the element that was returned by the last call to next or previous.
This method throws an exception if there was an add or remove operation after the last
call to next or previous.
Parameters: element The element that replaces the old list element

Interface java.util.Map<K, V>
• V get(K key)

Gets the value associated with a key in this map.
Parameters: key The key for which to find the associated value
Returns: The value associated with the key, or null if the key is not present in the table

• Set<K> keySet()

This method returns all keys in the table of this map.
Returns: A set of all keys in the table of this map

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

Appendix D The Java Library 621

• V put(K key, V value)

This method associates a value with a key in this map.
Parameters: key The lookup key

value The value to associate with the key
Returns: The value previously associated with the key, or null if the key was not present
in the table

• V remove(K key)

This method removes a key and its associated value from this map.
Parameters: key The lookup key
Returns: The value previously associated with the key, or null if the key was not present
in the table

Class java.util.NoSuchElementException
This exception is thrown if an attempt is made to retrieve a value that does not exist.

Class java.util.PriorityQueue<E>
• PriorityQueue<E>()

This constructs an empty priority queue. The element type E must implement the
Comparable interface.

• E remove()

This method removes the smallest element in the priority queue.
Returns: The removed value

Class java.util.Random
• Random()

This constructs a new random number generator.
• double nextDouble()

This method returns the next pseudorandom, uniformly distributed floating-point number
between 0.0 (inclusive) and 1.0 (exclusive) from this random number generator’s sequence.
Returns: The next pseudorandom floating-point number

• int nextInt(int n)

This method returns the next pseudorandom, uniformly distributed integer between 0
(inclusive) and the specified value (exclusive) drawn from this random number generator’s
sequence.
Parameters: n Number of values to draw from
Returns: The next pseudorandom integer

Class java.util.Scanner
• Scanner(File in)

• Scanner(InputStream in)

• Scanner(Reader in)

These construct a scanner that reads from the given file, input stream, or reader.
Parameters: in The file, input stream, or reader from which to read

• void close()

This method closes this scanner and releases any associated system resources.

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

622 Appendix D The Java Library

• boolean hasNext()

• boolean hasNextDouble()

• boolean hasNextInt()

• boolean hasNextLine()

These methods test whether it is possible to read any non-empty string, a floating-point
value, an integer, or a line, as the next item.
Returns: true if it is possible to read an item of the requested type, false otherwise
(either because the end of the file has been reached, or because a number type was tested
and the next item is not a number)

• String next()

• double nextDouble()

• int nextInt()

• String nextLine()

These methods read the next whitespace-delimited string, floating-point value, integer, or line.
Returns: The value that was read

• Scanner useDelimiter(String pattern)

Sets the pattern for the delimiters between input tokens.
Parameters: pattern A regular expression for the delimiter pattern
Returns: This scanner

Interface java.util.Set<E>
This interface describes a collection that contains no duplicate elements.

Class java.util.TreeMap<K, V>
• TreeMap<K, V>()

This constructs an empty tree map. The TreeMap iterator visits the entries in sorted order.

Class java.util.TreeSet<E>
• TreeSet<E>()

This constructs an empty tree set.

Class java.util.logging.Level
• static final int ALL

This value indicates logging of all messages.
• static final int INFO

This value indicates informational logging.
• static final int NONE

This value indicates logging of no messages.

Class java.util.logging.Logger
• static Logger getGlobal()

This method gets the global logger. For Java 5 and 6, use getLogger(“global”) instead.
Returns: The global logger that, by default, displays messages with level INFO or a
higher severity on the console.

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l

Package java.util.logging

P
a
ck

a
g

e
 j
a
v
a
.
u
t
i
l
.
l
o
g
g
i
n
g

Appendix D The Java Library 623

• void info(String message)

This method logs an informational message.
Parameters: message The message to log

• void setLevel(Level aLevel)

This method sets the logging level. Logging messages with a lesser severity than the
current level are ignored.
Parameters: aLevel The minimum level for logging messages

Class javax.swing.AbstractButton
• void addActionListener(ActionListener listener)

This method adds an action listener to the button.
Parameters: listener The action listener to be added

• boolean isSelected()

This method returns the selection state of the button.
Returns: true if the button is selected

• void setSelected(boolean state)

This method sets the selection state of the button. This method updates the button but
does not trigger an action event.
Parameters: state true to select, false to deselect

Class javax.swing.ButtonGroup
• void add(AbstractButton button)

This method adds the button to the group.
Parameters: button The button to add

Class javax.swing.ImageIcon
• ImageIcon(String filename)

This constructs an image icon from the specified graphics file.
Parameters: filename A string specifying a file name

Class javax.swing.JButton
• JButton(String label)

This constructs a button with the given label.
Parameters: label The button label

Class javax.swing.JCheckBox
• JCheckBox(String text)

This constructs a check box, having the given text, initially deselected. (Use the
setSelected() method to make the box selected; see the javax.swing.AbstractButton class.)
Parameters: text The text displayed next to the check box

j
a
v
a
.
u
t
i
l
.
l
o
g
g
i
n
g

Package javax.swing P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g

624 Appendix D The Java Library

Class javax.swing.JComboBox
• JComboBox()

This constructs a combo box with no items.
• void addItem(Object item)

This method adds an item to the item list of this combo box.
Parameters: item The item to add

• Object getSelectedItem()

This method gets the currently selected item of this combo box.
Returns: The currently selected item

• boolean isEditable()

This method checks whether the combo box is editable. An editable combo box allows
the user to type into the text field of the combo box.
Returns: true if the combo box is editable

• void setEditable(boolean state)

This method is used to make the combo box editable or not.
Parameters: state true to make editable, false to disable editing

Class javax.swing.JComponent
• protected void paintComponent(Graphics g)

Override this method to paint the surface of a component. Your method needs to call
super.paintComponent(g).
Parameters: g The graphics context used for drawing

• void setBorder(Border b)

This method sets the border of this component.
Parameters: b The border to surround this component

• void setFont(Font f)

Sets the font used for the text in this component.
Parameters: f A font

Class javax.swing.JFileChooser
• JFileChooser()

This constructs a file chooser.
• File getSelectedFile()

This method gets the selected file from this file chooser.
Returns: The selected file

• int showOpenDialog(Component parent)

This method displays an “Open File” file chooser dialog box.
Parameters: parent The parent component or null
Returns: The return state of this file chooser after it has been closed by the user:
either APPROVE_OPTION or CANCEL_OPTION. If APPROVE_OPTION is returned, call getSelectedFile()
on this file chooser to get the file

• int showSaveDialog(Component parent)

This method displays a “Save File” file chooser dialog box.
Parameters: parent The parent component or null
Returns: The return state of the file chooser after it has been closed by the user:
either APPROVE_OPTION or CANCEL_OPTION

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g

Appendix D The Java Library 625

Class javax.swing.JFrame
• void setDefaultCloseOperation(int operation)

This method sets the default action for closing the frame.
Parameters: operation The desired close operation. Choose among

DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE (the default), DISPOSE_ON_CLOSE, or
EXIT_ON_CLOSE

• void setJMenuBar(JMenuBar mb)

This method sets the menu bar for this frame.
Parameters: mb The menu bar. If mb is null, then the current menu bar is removed

• static final int EXIT_ON_CLOSE

This value indicates that when the user closes this frame, the application is to exit.

Class javax.swing.JLabel
• JLabel(String text)

• JLabel(String text, int alignment)

These containers create a JLabel instance with the specified text and horizontal alignment.
Parameters: text The label text to be displayed by the label

alignment One of SwingConstants.LEFT, SwingConstants.CENTER, or SwingCon-
stants.RIGHT

Class javax.swing.JMenu
• JMenu()

This constructs a menu with no items.
• JMenuItem add(JMenuItem menuItem)

This method appends a menu item to the end of this menu.
Parameters: menuItem The menu item to be added
Returns: The menu item that was added

Class javax.swing.JMenuBar
• JMenuBar()

This constructs a menu bar with no menus.
• JMenu add(JMenu menu)

This method appends a menu to the end of this menu bar.
Parameters: menu The menu to be added
Returns: The menu that was added

Class javax.swing.JMenuItem
• JMenuItem(String text)

This constructs a menu item.
Parameters: text The text to appear in the menu item

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g

626 Appendix D The Java Library

Class javax.swing.JOptionPane
• static String showInputDialog(Object prompt)

This method brings up a modal input dialog box, which displays a prompt and waits for
the user to enter an input in a text field, preventing the user from doing anything else in
this program.
Parameters: prompt The prompt to display
Returns: The string that the user typed

• static void showMessageDialog(Component parent, Object message)

This method brings up a confirmation dialog box that displays a message and waits for the
user to confirm it.
Parameters: parent The parent component or null

message The message to display

Class javax.swing.JPanel
This class is a component without decorations. It can be used as an invisible container for
other components.

Class javax.swing.JRadioButton
• JRadioButton(String text)

This constructs a radio button having the given text that is initially deselected. (Use the
setSelected() method to select it; see the javax.swing.AbstractButton class.)
Parameters: text The string displayed next to the radio button

Class javax.swing.JScrollPane
• JScrollPane(Component c)

This constructs a scroll pane around the given component.
Parameters: c The component that is decorated with scroll bars

Class javax.swing.JSlider
• JSlider(int min, int max, int value)

This constructor creates a horizontal slider using the specified minimum, maximum,
and value.
Parameters: min The smallest possible slider value

max The largest possible slider value
value The initial value of the slider

• void addChangeListener(ChangeListener listener)

This method adds a change listener to the slider.
Parameters: listener The change listener to add

• int getValue()

This method returns the slider’s value.
Returns: The current value of the slider

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g

Appendix D The Java Library 627

Class javax.swing.JTextArea
• JTextArea()

This constructs an empty text area.
• JTextArea(int rows, int columns)

This constructs an empty text area with the specified number of rows and columns.
Parameters: rows The number of rows

columns The number of columns
• void append(String text)

This method appends text to this text area.
Parameters: text The text to append

Class javax.swing.JTextField
• JTextField()

This constructs an empty text field.
• JTextField(int columns)

This constructs an empty text field with the specified number of columns.
Parameters: columns The number of columns

Class javax.swing.Timer
• Timer(int millis, ActionListener listener)

This constructs a timer that notifies an action listener whenever a time interval has
elapsed.
Parameters: millis The number of milliseconds between timer notifications

listener The object to be notified when the time interval has elapsed
• void start()

This method starts the timer. Once the timer has started, it begins notifiying its listener.
• void stop()

This method stops the timer. Once the timer has stopped, it no longer notifies its listener.

Class javax.swing.border.EtchedBorder
• EtchedBorder()

This constructor creates a lowered etched border.

Class javax.swing.border.TitledBorder
• TitledBorder(Border b, String title)

This constructor creates a titled border that adds a title to a given border.
Parameters: b The border to which the title is added

title The title the border should display

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g

Package javax.swing.border P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g
.
b
o
r
d
e
r

628 Appendix D The Java Library

Class javax.swing.event.ChangeEvent
Components such as sliders emit change events when they are manipulated by the user.

Interface javax.swing.event.ChangeListener
• void stateChanged(ChangeEvent e)

This event is called when the event source has changed its state.
Parameters: e A change event

Class javax.swing.text.JTextComponent
• String getText()

This method returns the text contained in this text component.
Returns: The text

• boolean isEditable()

This method checks whether this text component is editable.
Returns: true if the component is editable

• void setEditable(boolean state)

This method is used to make this text component editable or not.
Parameters: state true to make editable, false to disable editing

• void setText(String text)

This method sets the text of this text component to the specified text. If the text is empty,
the old text is deleted.
Parameters: text The new text to be set
This method sets the validation mode for all document builders that are generated from
this factory.
Parameters: b true if documents should be validated during parsing

Package javax.swing.event

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g
.
e
v
e
n
t

Package javax.swing.text

P
a
ck

a
g

e
 j
a
v
a
x
.
s
w
i
n
g
.
t
e
x
t

1029

EAppendix

Java Syntax
Summary

In this syntax summary, we use a monospaced font for actual Java reserved words
and tokens such as while. An italic font denotes language constructs such as condi-
tion or variable. Items enclosed in brackets [] are optional. Items separated by ver-
tical bars | are alternatives. Do not include the brackets or vertical bars in your code!

The summary reflects the parts of the Java language that were covered in this
book. For a full overview of the Java syntax, see http://java.sun.com/docs/books/jls/.

As always, please be careful to distinguish an ellipsis . . . from the ... token.
The latter appears twice in this appendix in the “variable parameters” discussion in
the “Methods” section.

A type is a primitive type or a reference type. The primitive types are

• The numeric types int, long, short, char, byte, float, double
• The boolean type

The reference types are

• Classes such as String or Employee
• Enumeration types such as enum Sex { FEMALE, MALE }
• Interfaces such as Comparable
• Array types such as Employee[] or int[][]

Local variable declarations have the form
[final] Type variableName [= initializer];

Examples:
int n;
double x = 0;
String harry = "Harry Handsome";
Rectangle box = new Rectangle(5, 10, 20, 30);
int[] a = { 1, 4, 9, 16, 25 };

Types

Variables

1030 Appendix E Java Syntax Summary

The variable name consists only of letters, numbers, and underscores. It must begin
with a letter or underscore. Names are case-sensitive: totalscore, TOTALSCORE, and
totalScore are three different variables.

The scope of a local variable extends from the point of its definition to the end of
the enclosing block.

A variable that is declared as final can have its value set only once.
Instance variables will be discussed under “Classes”.

An expression is a variable, a method call, or a combination of subexpressions joined
by operators. Examples are:

x
Math.sin(x)
x + Math.sin(x)
x * (1 + Math.sin(x))
x++
x == y
x == y && (z > 0 || w > 0)
p.x
e.getSalary()
v[i]

Operators can be unary, binary, or ternary. A unary operator acts on a single
expression, such as x++. A binary operator combines two expressions, such as x + y.
A ternary operator combines three expressions. Java has one ternary operator, ? :
(see Special Topic 5.1).

Unary operators can be prefix or postfix. A prefix operator is written before the
expression on which it operates, as in -x. A postfix operator is written after the
expression on which it operates, such as x++.

Operators are ranked by precedence levels. Operators with a higher precedence
bind more strongly than operators with a lower precedence. For example, * has a
higher precedence than +, so x + y * z is the same as x + (y * z), even though the +
comes first.

Most operators are left-associative. That is, operators of the same precedence are
evaluated from the left to the right. For example, x - y + z is interpreted as (x - y)
+ z, not x - (y + z). The exceptions are the unary prefix operators and the assign-
ment operator which are right-associative. For example, z = y = Math.sin(x) means
the same as z = (y = Math.sin(x)).

Appendix B has a list of all Java operators.

The syntax for a class is
[public] [abstract|final] class ClassName

[extends SuperClassName]
[implements InterfaceName1, InterfaceName2, . . .]

{

Expressions

Classes

Appendix E Java Syntax Summary 1031

feature1
feature2

 . . .
}

Each feature is either a declaration of the form
modifiers constructor|method|instance variable|class

or an initialization block
[static] { body }

See the section “Constructors” for more information about initialization blocks.
Potential modifiers include public, private, protected, static, and final.

An instance variable declaration has the form
Type variableName [= initializer];

A constructor has the form
ClassName(parameter1, parameter2, . . .)

[throws ExceptionType1, ExceptionType2, . . .]
{

body
}

A method has the form
Type methodName(parameter1, parameter2, . . .)

[throws ExceptionType1, ExceptionType2, . . .]
{

body
}

An abstract method has the form
abstract Type methodName(parameter1, parameter2, . . .);

Here is an example:
public class Point
{
 private double x;
 private double y;

 public Point()
 {
 x = 0; y = 0;
 }

 public Point(double xx, double yy)
 {
 x = xx; y = yy;
 }

 public double getX()
 {
 return x;
 }

 public double getY()
 {
 return y;
 }
}

1032 Appendix E Java Syntax Summary

A class can have both instance variables and static variables. Each object of the class
has a separate copy of the instance variables. There is only a one per-class copy of
the static variables.

A class that is declared as abstract cannot be instantiated. That is, you cannot
construct objects of that class.

A class that is declared as final cannot be extended.

The syntax for an interface is
[public] interface InterfaceName

[extends InterfaceName1, InterfaceName2, . . .]
{

feature1
feature2

 . . .
}

Each feature has the form
modifiers method | instance variable

Potential modifiers are public, static, final. However, modifiers are never necessary
because methods are automatically public and instance variables are automatically
public static final.

An instance variable declaration has the form
Type variableName = initializer;

A method declaration has the form
Type methodName(parameter1, parameter2, . . .);

Here is an example:
public interface Measurable
{
 int CM_PER_INCH = 2.54;

 int getMeasure();
}

The syntax for an enumeration type is
[public] enum EnumerationTypeName
{

constant1, constant2, . . .;
feature1
feature2

 . . .
}

Each constant is a constant name, followed by optional construction parameters.
constantName[(parameter1, parameter2, . . .)]

Interfaces

Enumeration Types

Appendix E Java Syntax Summary 1033

The semicolon after the constants is only required if the enumeration declares addi-
tional features. An enumeration can have the same features as a class. Each feature
has the form

modifiers method | instance variable

Potential modifiers are public, static, final.
Here are two examples:
public enum Suit { HEARTS, DIAMONDS, SPADES, CLUBS };
public enum Card
{
 TWO(2), THREE(3), FOUR(4), FIVE(5), SIX(6),
 SEVEN(7), EIGHT(8), NINE(9), TEN(10),
 JACK(10), QUEEN(10), KING(10), ACE(11);
 private int value;

 public void Card(int aValue) { value = aValue; }
 public int getValue() { return value; }
}

A method definition has the form
modifiers Type methodName(parameter1, parameter2, . . ., parametern)

[throws ExceptionType1, ExceptionType2, . . .]
{

body
}

The return type Type is any Java type, or the special type void to indicate that the
method returns no value.

Each parameter has the form
[final] Type parameterName

A method has variable parameters if the last parameter has the special form
Type... parameterName

Such a method can be called with a sequence of values of the given type of any
length. The parameter variable with the given name is an array of the given type that
holds the parameter values. For example, the method

public static double sum(double... values)
{
 double s = 0;
 for (double v : values) s = s + v;
 return s;
}

can be called as
double result = sum(1, -2.5, 3.14);

In Java, all parameters are passed by value. Each parameter is a local variable whose
scope extends to the end of the method body. It is initialized with a copy of the
value supplied in the call. That value may be a primitive type or a reference type. If
it is a reference type, invoking a mutator on the reference will modify the object
whose reference has been passed to the method.

Methods

1034 Appendix E Java Syntax Summary

Changing the value of the parameter variable has no effect outside the method.
Tagging the parameter as final disallows such a change altogether. This is com-
monly done to allow access of the parameter from an inner class declared in the
method.

Java distinguishes between instance methods and static methods. Instance meth-
ods have a special parameter, the implicit parameter, supplied in the method call
with the syntax

implicitParameterValue.methodName(parameterValue1, parameterValue2, . . .)

Example:
harry.setSalary(30000)

The type of the implicit parameter must be the same as the type of the class contain-
ing the method definition. A static method does not have an implicit parameter.

In the method body, the this variable is initialized with a copy of the implicit
parameter value. Using an instance variable name without qualification means to
access the instance variable of the implicit parameter. For example,

public void setSalary(double s)
{
 salary = s; // i.e., this.salary = s
}

By default, Java uses dynamic method lookup. The virtual machine determines the
class to which the implicit parameter object belongs and invokes the method
declared in that class. However, if a method is invoked on the special variable super,
then the method declared in the superclass is invoked on this. For example,

public class MyPanel extends JPanel
{
 . . .
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 // Calls JPanel.paintComponent
 . . .
 }
 . . .
}

The return statement causes a method to exit immediately. If the method type is not
void, you must return a value. The syntax is

return [value];

For example,
public double getSalary()
{
 return salary;
}

A method can call itself. Such a method is called recursive:
public static int factorial(int n)
{

Appendix E Java Syntax Summary 1035

 if (n <= 1) return 1;
 return n * factorial(n - 1);
}

A constructor definition has the form
modifiers ClassName(parameter1, parameter2, . . .)

[throws ExceptionType1, ExceptionType2, . . .]
{

body
}

You invoke a constructor to allocate and construct a new object with a new
expression

new ClassName(parameterValue1, parameterValue2, . . .)

A constructor can call the body of another constructor of the same class with the
syntax

this(parameterValue1, parameterValue2, . . .)

For example,
public Employee()
{
 this("", 0);
}

It can call a constructor of its superclass with the syntax
super(parameterValue1, parameterValue2, . . .)

The call to this or super must be the first statement in the constructor.
Arrays are constructed with the syntax
new ArrayType [= { initializer1, initializer2, . . . }]

For example,
new int[] = { 1, 4, 9, 16, 25 }

When an object is constructed, the following actions take place:

• All instance variables are initialized with 0, false, or null.

• The initializers and initialization blocks are executed in the order in which they
are declared.

• The body of the constructor is invoked.

When a class is loaded, the following actions take place:

• All static variables are initialized with 0, false, or null.

• The initializers of static variables and static initialization blocks are executed in
the order in which they are declared.

Constructors

1036 Appendix E Java Syntax Summary

A statement is one of the following:

• An expression followed by a semicolon

• A branch or loop statement

• A return statement

• A throw statement

• A block, that is, a group of variable declarations and statements enclosed in
braces {. . .}

• A try block

Java has two branch statements (if and switch), three loop statements (while, for, and
do), and two mechanisms for nonlinear control flow (break and continue).

The if statement has the form
if (condition) statement1 [else statement2]

If the condition is true, then the first statement is executed. Otherwise, the second
statement is executed.

The switch statement has the form
switch (expression)
{

group1:
group2:

 . . .
[default:
statement1
statement2

 . . .]
}

Where each group has the form
case constant1
case constant2
. . .

statement1
statement2

 . . .

The expression must be an integer or an enumeration type. Depending on its value,
control is transferred to the first statement following the matching case label, or to
the first statement following the default label if none of the case labels match. Exe-
cution continues with the next statement until a break or return statement is encoun-
tered, an exception is thrown, or the end of the switch is reached. Execution skips
over any case labels.

The while loop has the form
while (condition) statement

The statement is executed while the condition is true.

Statements

Appendix E Java Syntax Summary 1037

The for loop has the form
for (initExpression|variableDeclaration;

condition;
updateExpression1, updateExpression2, . . .)

statement

The initialization expression or the variable declaration are executed once. While
the condition remains true, the loop statement and the updateExpressions are exe-
cuted. Examples:

for (i = 0; i < 10; i++)
 sum = sum + i;
for (int i = 0, j = 9; i < 10; i++, j--)
 a[j] = b[i];

The enhanced for loop or “for each” loop has the form
for (Type variable : array|iterableObject)

statement

When this loop traverses an array, it is equivalent to
for (int i = 0; i < array.length; i++)
{

Type variable = array[i];
statement

}

Otherwise, the iterableObject must belong to a class that implements the Iterable
interface. Then the loop is equivalent to

Iterator i = iterableObject.iterator();
while (i.hasNext())
{

Type variable = i.next();
statement

}

The do loop has the form
do statement while (condition);

The statement is repeatedly executed until the condition is no longer true. In con-
trast to a while loop, the statement of a do loop is executed at least once.

The break statement exits the innermost enclosing while, do, for, or switch state-
ment (not counting if or block statements).

Any statement (including if and block statements) can be tagged with a label:
label: statement

The labeled break statement
break label;

exits the labeled statement.
The continue statement skips past the end of the statement part of a while, do, or

for loop. In the case of the while or do loop, the loop condition is executed next. In
the case of the for loop, the updateExpressions are executed next.

The labeled continue statement
continue label;

skips past the end of the statement part of a while, do, or for loop with the matching
label.

1038 Appendix E Java Syntax Summary

The throw statement
throw expression;

abruptly terminates the current method and resumes control inside the innermost
matching catch clause of a surrounding try block. The expression must evaluate to a
reference to an object of a subclass of Throwable.

The try statement has the form
try tryBlock
[catch (ExceptionType1 exceptionVariable1) catchBlock1
catch (ExceptionType2 exceptionVariable2) catchBlock2
. . .]
[finally finallyBlock]

• The try statement must have at least one catch or finally clause.
• All blocks are block statements in the usual sense, that is, { . . . }-delimited

statement sequences.

The statements in the tryBlock are executed. If one of them throws an exception
object whose type is a subtype of one of the types in the catch clauses, then its catch-
Block is executed. As soon as the catch block is entered, that exception is handled.

If the tryBlock exits for any reason at all (because all of its statements executed
completely; because one of its statements was a break, continue, or return statement;
or because an exception was thrown), then the finallyBlock is executed.

If the finallyBlock was entered because an exception was thrown and it itself
throws another exception, then that exception masks the prior exception.

A class can be placed in a package by putting the package declaration
package packageName;

as the first non-import declaration of the source file.
A package name has the form
identifier1.identifier2. . . .

For example,
java.util
com.horstmann.bigjava

A fully qualified name of a class is
packageName.ClassName

Classes can always be referenced by their fully qualified class names. However, this
can be inconvenient. For that reason, you can reference imported classes by just
their ClassName. All classes in the package java.lang and in the package of the cur-
rent source file are always imported. To import additional classes, use an import
directive

import packageName.ClassName;

Exceptions

Packages

Appendix E Java Syntax Summary 1039

or
import packageName.*;

The second version imports all classes in the package.

A generic type is declared with one or more type parameters, placed after the type
name:

modifiers class |interface TypeName<typeParameter1, typeParameter2, . . .>

Similarly, a generic method is declared with one or more type parameters, placed
before the method’s return type:

modifiers <typeParameter1, typeParameter2, . . .> returnType methodName

Each type parameter has the form
typeParameterName [extends bound1 & bound2 & . . .]

For example,
public class BinarySearchTree<T extends Comparable>
public interface Comparator<T>
public <T extends Comparable & Cloneable> T cloneMin(T[] values)

Type parameters can be used in the definition of the generic type or method as if
they were regular types. They can be replaced with any types that match the
bounds. For example, the BinarySearchTree<String> type substitutes the String type
for the type parameter T.

Type parameters can also be replaced with wildcard types. A wildcard type has
the form

? [super |extends Type]

It denotes a specific type that is unknown at the time that is declared. For example,
Comparable<? super Rectangle> is a type Comparable<S> for a specific type S, which can
be Rectangle or a supertype such as RectangularShape or Shape.

There are three kinds of comments:
/* comment */
// one-line-comment
/** documentationComment */

The one-line comment extends to the end of the line. The other comments can span
multiple lines and extend to the */ delimiter.

Documentation comments are further explained in Appendix H.

Generic Types and Methods

Comments

1040

FAppendix

HTML
Summary

A web page is written in a language called HTML (Hypertext Markup Language).
Like Java code, HTML code is made up of text that follows certain strict rules.
When a browser reads a web page, the browser interprets the code and renders the
page, displaying characters, fonts, paragraphs, tables, and images.

HTML files are made up of text and tags that tell the browser how to render the
text. Nowadays, there are dozens of HTML tags—see Table 1 for a summary of the
most important tags. Fortunately, you need only a few to get started. Most HTML
tags come in pairs consisting of an opening tag and a closing tag, and each pair
applies to the text between the two tags. Here is a typical example of a tag pair:

Java is an <i>object-oriented</i> programming language.

The tag pair <i> </i> directs the browser to display the text inside the tags in italics:

Java is an object-oriented programming language.

The closing tag is just like the opening tag, but it is prefixed by a slash (/). For exam-
ple, bold-faced text is delimited by , and a paragraph is delimited by the tag
pair <p> </p>.

<p>Java is an <i>object-oriented</i> programming language.</p>

The result is the paragraph

Java is an object-oriented programming language.

Another common construct is a bulleted list. For example:
Java is

• object-oriented
• safe
• platform-independent

Here is the HTML code to display it:
<p>Java is</p>
object-oriented
safe
platform-independent

Each item in the list is delimited by (for “list item”), and the whole list is
surrounded by (for “unnumbered list”).

A Brief Introduction to HTML

Appendix F HTML Summary 1041

Table 1 Selected HTML Tags

Tag Meaning Children Commonly Used Attributes

html HTML document head, body

head Head of an HTML document title

title Title of an HTML document

body Body of an HTML document

h1 . . . h6 Heading level 1 . . . 6

p Paragraph

ul Unnumbered list li

ol Ordered list li

dl Definition list dt, dd

li List item

dt Term to be defined

dd Definition data

table Table tr

tr Table row th, td

th Table header cell

td Table cell data

a Anchor href, name

img Image src, width, height

applet Applet code, width, height

pre Preformatted text

hr Horizontal rule

br Line break

i or em Italic

b or strong Bold

tt or code Typewriter or code font

s or strike Strike through

u Underline

super Superscript

1042 Appendix F HTML Summary

As in Java code, you can freely use white space (spaces and line breaks) in HTML
code to make it easier to read. For example, you can lay out the code for a list as
follows:

<p>Java is</p>

object-oriented
safe
platform-independent

The browser ignores the white space.
If you omit a tag (such as a), most browsers will try to guess the missing

tags—sometimes with differing results. It is always best to include all tags.
You can include images in your web pages with the img tag. In its simplest form,

an image tag has the form

This code tells the browser to load and display the image that is stored in the file
hamster.jpeg. This is a slightly different type of tag. Rather than text inside a tag pair
 , the img tag uses an attribute to specify a file name. Attributes have
names and values. For example, the src attribute has the value "hamster.jpeg". Table 2
contains commonly used attributes.

It is considered polite to use several additional attributes with the img tag, namely
the image size and an alternate description:

<img src="hamster.jpeg" width="640" height="480"
alt="A photo of Harry, the Horrible Hamster"/>

These additional attributes help the browser lay out the page and display a tempo-
rary description while gathering the data for the image (or if the browser cannot
display images, such as a voice browser for blind users). Users with slow network
connections really appreciate this extra effort.

Because there is no closing tag, we put a slash / before the closing >. This is
not a requirement of HTML, but it is a requirement of the emerging XHTML stan-
dard, the XML-based successor to HTML. See www.w3c.org/TR/xhtml1 for more infor-
mation on XHTML.

Table 1 Selected HTML Tags, continued

Tag Meaning Children Commonly Used Attributes

sub Subscript

form Form action, method

input Input field type, name, value, size, checked

select Combo box style selector option name

option Option for selection

textarea Multiline text area name, rows, cols

Appendix F HTML Summary 1043

The most important tag in web pages is the <a> tag pair, which makes the
enclosed text into a link to another file. The links between web pages are what
makes the Web into, well, a web. The browser displays a link in a special way (for
example, underlined text in blue color). Here is the code for a typical link:

Java is an object-oriented
programming language.

When the viewer of the web page clicks on the word Java, the browser loads the
web page located at java.sun.com. (The value of the href attribute is a Universal
Resource Locator (URL), which tells the browser where to go. The prefix http:, for
Hypertext Transfer Protocol, tells the browser to fetch the file as a web page. Other
protocols allow different actions, such as ftp: to download a file, mailto: to send
e-mail to a user, and file: to view a local HTML file.)

Finally, the applet tag includes an applet in a web page. To display an applet, you
need first to write and compile a Java file to generate the applet code—see Special
Topic 2.2. Then you tell the browser how to find the code for the applet and how
much screen space to reserve for the applet. Here is an example:

<applet code="HamsterApplet.class" width="400" height="300">An
animation of Harry, the Horrible Hamster</applet>

The text between the <applet> and </applet> tags is only displayed in lieu of the
actual applet by browsers that can’t run Java applets.

Table 2 Selected HTML Attributes

Attribute Description Commonly Contained
in Element

name Name of form element or anchor input, select, textarea, a

href Hyperlink reference a

src Source (as of an image) img

code Applet code applet

width, height Width, height of image or applet img, applet

rows, cols Rows, columns of text area textarea

type Type of input field, such as text, password,
checkbox, radio, submit, hidden

input

value Value of input field, or label of submit button input

size Size of text field input

checked Check radio button or checkbox input

action URL of form action form

method GET or POST form

1044 Appendix F HTML Summary

You have noticed that tags are enclosed in angle brackets (less-than and greater-
than signs). What if you want to show an angle bracket on a web page? HTML pro-
vides the notations < and > to produce the < and > symbols, respectively. Other
codes of this kind produce symbols such as accented letters. The & (ampersand)
symbol introduces these codes; to get that symbol itself, use &. See Table 3 for
a summary.

You may already have created web pages with a web editor that works like a
word processor, giving you a WYSIWYG (what you see is what you get) view of
your web page. But the tags are still there, and you can see them when you load the
HTML file into a text editor. If you are comfortable using a WYSIWYG web editor,
and if your editor can insert applet tags, you don’t need to memorize HTML tags at
all. But many programmers and professional web designers prefer to work directly
with the tags at least some of the time, because it gives them more control over their
pages.

Table 3 Selected HTML Entities

Entity Description Appearance

< Less than <

> Greater than >

& Ampersand &

" Quotation mark "

 Nonbreaking space

© Copyright symbol ©

1045

GAppendix

Tool
Summary

In this summary, we use a monospaced font for actual commands such as javac. An
italic font denotes descriptions of tool command components such as options. Items
enclosed in brackets [. . .] are optional. Items separated by vertical bars | are
alternatives. Do not include the brackets or vertical bars when typing the commands.

javac [options] sourceFile1|@fileList1 sourceFile2|@fileList2 . . .

A file list is a text file that contains one file name per line. For example,

File Greeting.list

Then you can compile all files with the command
javac @Greeting.list

The Java compiler options are summarized in Table 1.

The Java Compiler

1 Greeting.java
2 GreetingTest.java

Table 1 Common Compiler Options

Option Description

-classpath locations
 or
-cp locations

The compiler is to look for classes on this path, overriding the CLASSPATH environment
variable. If neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated by a platform-
dependent separator (: on Unix, ; on Windows).

-sourcepath locations The compiler is to look for source files on this path. If not specified, source files are
searched in the class path.

-d directory The compiler places files into the specified directory.

-g Generate debugging information.

-verbose Include information about all classes that are being compiled (useful for troubleshooting).

-deprecation Give detailed information about the usage of deprecated messages.

-Xlint:errorType Carry out additional error checking. If you get warnings about unchecked conversions,
compile with the -Xlint:unchecked option.

1046 Appendix G Tool Summary

The following command loads the given class and starts its main method, passing it
an array containing the provided command line arguments.

java [options] ClassName [argument1 argument2 . . .]

The following command loads the main class of the given JAR file and starts its main
method, passing it an array containing the provided command line arguments.

java [options] -jar jarFileName [argument1 argument2 . . .]

The Java virtual machine options are summarized in Table 2.

appletviewer url1 url2 . . .

The urls are searched for applets, and each applet is displayed in a separate window.
An applet should be specified as an HTML tag of the form
<applet
 code=appletClassFile
 width=pixels
 height=pixels

[codebase=relativeURL]>
 <param name=parameterName1 value=parameterValue1>
 <param name=parameterName2 value=parameterValue2>
 . . .
</applet>

The codebase parameter is an URL that is relative to the URL of the HTML file con-
taining the applet or object tag.

The Java Virtual Machine Launcher

Table 2 Common Virtual Machine Launcher Options

Option Description

-classpath locations
or
-cp locations

Look for classes on this path, overriding the CLASSPATH environment
variable. If neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated
by a platform-dependent separator (: on Unix, ; on Windows).

-verbose Trace class loading

-Dproperty=value Set a system property that you can retrieve with the
System.getProperties method.

The Applet Viewer

Appendix G Tool Summary 1047

To combine one or more files into a JAR (Java Archive) file, use the command
jar cvf jarFile file1 file2 . . .

The resulting JAR file can be included in a class path.
To build a program that can be launched with java -jar, you must create a

manifest file, such as

File myprog.mf

The manifest must specify the path name of the class file that launches the applica-
tion, but with the .class extension removed. Then build the JAR file as

jar cvfm jarFile manifestFile file1 file2 . . .

You can also use JAR as a replacement for a ZIP utility, simply to compress and
bundle a set of files for any purpose. Then you may want to suppress the generation
of the JAR manifest, with the command

jar cvfM jarFile file1 file2 . . .

To extract the contents of a JAR file into the current directory, use
jar xvf jarFile

To see the files contained in a JAR file without extracting the files, use
jar tvf jarFile

The JAR Tool

1 Main-Class: com/horstmann/MyProg

1048

HAppendix

javadoc
Summary

A documentation comment is delimited by /** and */. You can comment

• Classes
• Methods
• Instance variables

Each comment is placed immediately above the feature it documents.
Each /** . . . */ documentation comment contains introductory text followed

by tagged documentation. A tag starts with an @ character, such as @author or @param.
Tags are summarized in Table 1. The first sentence of the introductory text should
be a summary statement. The javadoc utility automatically generates summary pages
that extract these sentences.

Setting Documentation
Comments in Source

Table 1 Common javadoc Tags

Tag Description

@param parameter explanation A parameter of a method. Use a separate tag for
each parameter.

@return explanation The return value of a method.

@throws exceptionType explanation An exception that a method may throw. Use a
separate tag for each exception.

@deprecated A feature that remains for compatibility but that
should not be used for new code.

@see packageName.ClassName
@see packageName.ClassName

#methodName(Type1, Type2, . . .)
@see packageName.ClassName#variableName

A reference to a related documentation entry.

@author The author of a class or interface. Use a separate
tag for each author.

@version The version of a class or interface.

Appendix H javadoc Summary 1049

You can use HTML tags such as em for emphasis, code for a monospaced font, img
for images, ul for bulleted lists, and so on.

Here is a typical example. The summary sentence (in color) will be included with
the method summary.

/**
Withdraws money from the bank account. Increments the
transaction count.

 @param amount the amount to withdraw
 @return the balance after the withdrawal
 @throws IllegalArgumentException if the balance is not sufficient
*/
public double withdraw(double amount)
{
 if (balance - amount < minimumBalance)
 throw new IllegalArgumentException();
 balance = balance - amount;
 transactions++;
 return balance;
}

To extract the comments, run the javadoc program:
javadoc [options] sourceFile1| packageName1| @fileList1

sourceFile2| packageName2| @fileList2 . . .

See the documentation of the javac command in Appendix F for an explanation of
file lists. Commonly used options are summarized in Table 2.

To document all files in the current directory, use (all on one line)
javadoc -link http://java.sun.com/javase/7/docs/api
 -d docdir *.java

Generating Documentation from
Commented Source

Table 2 Common javadoc Command Line Options

Option Description

-link URL Link to another set of Javadoc files. You should include a link to the standard library
documentation, either locally or at http://java.sun.com/javase/7/docs/api.

-d directory Store the output in directory. This is a useful option, because it keeps your current
directory from being cluttered up with javadoc files.

-classpath locations Look for classes on the specified paths, overriding the CLASSPATH environment variable. If
neither is specified, the current directory is used. Each location is a directory, JAR file, or
ZIP file. Locations are separated by a platform-dependent separator (: Unix, ; Windows).

-sourcepath locations Look for source files on the specified paths. If not specified, source files are searched in
the class path.

-author, -version Include author, version information in the documentation. This information is omitted
by default.

1050

IAppendix

Number
Systems

Decimal notation represents numbers as powers of 10, for example

There is no particular reason for the choice of 10, except that several historical num-
ber systems were derived from people’s counting with their fingers. Other number
systems, using a base of 12, 20, or 60, have been used by various cultures through-
out human history. However, computers use a number system with base 2 because
it is far easier to build electronic components that work with two values, which can
be represented by a current being either off or on, than it would be to represent 10
different values of electrical signals. A number written in base 2 is also called a
binary number.

For example,

For digits after the “decimal” point, use negative powers of 2.

In general, to convert a binary number into its decimal equivalent, simply evaluate
the powers of 2 corresponding to digits with value 1, and add them up. Table 1
shows the first powers of 2.

To convert a decimal integer into its binary equivalent, keep dividing the integer
by 2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the last one.

Binary Numbers

1729 1 10 7 10 2 10 9 103 2 1 0
decimal = × + × + × + ×

1101 1 2 1 2 0 2 1 2 8 4 1 133 2 1 0
binary = × + × + × + × = + + =

1 101 1 2 1 2 0 2 1 2

1 1
2

1
8

0 1 2 3. binary = × + × + × + ×

= + +

=

− − −

11 0 5 0 125 1 625+ + =. . .

Appendix I Number Systems 1051

For example,

Therefore, 100decimal = 1100100binary.
Conversely, to convert a fractional num-

ber less than 1 to its binary format, keep
multiplying by 2. If the result is greater than
1, subtract 1. Stop when the number is 0.
Then use the digits before the decimal points
as the binary digits of the fractional part,
starting with the first one. For example,

Here the pattern repeats. That is, the binary
representation of 0.35 is 0.01 0110 0110 0110
. . .

To convert any floating-point number
into binary, convert the whole part and the
fractional part separately.

To represent negative integers, there are two common representations, called
“signed magnitude” and “two’s complement”. Signed magnitude notation is simple:
use the leftmost bit for the sign (0 = positive, 1 = negative). For example, when using
8-bit numbers,

However, building circuitry for adding numbers gets a bit more complicated when
one has to take a sign bit into account. The two’s complement representation solves
this problem.

Table 1 Powers of Two

Power Decimal Value

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024

211 2,048

212 4,096

213 8,192

214 16,384

215 32,768

216 65,536

100 2 50
50 2 25
25 2

0
0

÷ =
÷ =
÷

remainder
remainder

==
÷ =
÷ =

12
12 2 6
6 2 3

1
0

remainder
remainder
remaainder
remainder
remainder

0
1
1

3 2 1
1 2 0

÷ =
÷ =

. .⋅ =0 35 2 7
0 7 2 4
0 4 2 8
0 8 2 6
0 6 2

0
1
0
1

. .

. .

. .

.

⋅ =
⋅ =
⋅ =
⋅ = 11

0
2

0 2 2 4
.

. .⋅ =

Two’s Complement Integers

− =13 10001101signed magnitude

1052 Appendix I Number Systems

To form the two’s complement of a number,

• Flip all bits.
• Then add 1.

For example, to compute −13 as an 8-bit value, first flip all bits of 00001101 to get
11110010. Then add 1:

Now no special circuitry is required for adding two numbers. Simply follow the
normal rule for addition, with a carry to the next position if the sum of the digits
and the prior carry is 2 or 3. For example,

But only the last 8 bits count, so +13 and −13 add up to 0, as they should.
In particular, −1 has two’s complement representation 1111 . . . 1111, with all bits

set.
The leftmost bit of a two’s complement number is 0 if the number is positive or

zero, 1 if it is negative.
Two’s complement notation with a given number of bits can represent one more

negative number than positive numbers. For example, the 8-bit two’s complement
numbers range from −128 to +127.

This phenomenon is an occasional cause for a programming error. For example,
consider the following code:

byte b = . . .;
if (b < 0) b = (byte) -b;

This code does not guarantee that b is nonnegative afterwards. If b happens to be
−128, then computing its negative again yields −128. (Try it out—take 10000000, flip
all bits, and add 1.)

The Institute for Electrical and Electronics Engineering (IEEE) defines standards
for floating-point representations in the IEEE-754 standard. Figure 1 shows how
single-precision (float) and double-precision (double) values are decomposed into

• A sign bit
• An exponent
• A mantissa

Floating-point numbers use scientific notation, in which a number is represented as

− =13 11110011two s complement’

+13 0000 1101
-13 1111 0011

 1 0000 0000

1 1 1 1 1 1 1 1

IEEE Floating-Point Numbers

b b b b e
0 1 2 3 2. … ×

Appendix I Number Systems 1053

In this representation, e is the exponent, and the digits form the man-
tissa. The normalized representation is the one where b0 ≠ 0. For example,

100decimal = 1100100binary = 1.100100binary × 26

Because in the binary number system the first bit of a normalized representation
must be 1, it is not actually stored in the mantissa. Therefore, you always need to
add it on to represent the actual value. For example, the mantissa 1.100100 is stored
as 100100.

The exponent part of the IEEE representation uses neither signed magnitude nor
two’s complement representation. Instead, a bias is added to the actual exponent.
The bias is 127 for single-precision numbers, 1023 for double-precision numbers.
For example, the exponent e = 6 would be stored as 133 in a single-precision
number.

Thus,

100decimal = single-precision IEEE

In addition, there are several special values. Among them are:

• Zero: biased exponent = 0, mantissa = 0.
• Infinity: biased exponent = 11. . .1, mantissa = ±0.
• NaN (not a number): biased exponent = 11. . .1, mantissa ≠ ±0.

Because binary numbers can be hard to read for humans, programmers often use
the hexadecimal number system, with base 16. The digits are denoted as 0, 1, . . . , 9,
A, B, C, D, E, F (see Table 2).

Four binary digits correspond to one hexadecimal digit. That makes it easy to
convert between binary and hexadecimal values. For example,

11|1011|0001binary = 3B1hexadecimal

Figure 1 IEEE Floating-Point Representation

1 bit

1 bit

sign

sign

biased exponent
e + 127

8 bit 23 bit

Single Precision

11 bit 52 bit

biased exponent
e + 1023

mantissa
(without leading 1)

mantissa
(without leading 1)

Double Precision

b b b b0 1 2 3. …

0 10000101 10010000000000000000000

Hexadecimal Numbers

1054 Appendix I Number Systems

In Java, hexadecimal numbers are used for Unicode character values, such as \u03B1
(the Greek lowercase letter alpha). Hexadecimal integers are denoted with a 0x
prefix, such as 0x3B1.

Table 2 Hexadecimal Digits

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1055

JAppendix

Bit and Shift
Operations

There are four bit operations in Java: the unary negation (~) and the binary and (&),
or (|), and exclusive or (^), often called xor.

Tables 1 and 2 show the truth tables for the bit operations in Java. When a bit
operation is applied to integer values, the operation is carried out on corresponding
bits.

For example, suppose we want to compute 46 & 13. First convert both values to
binary. 46decimal = 101110binary (actually 00000000000000000000000000101110 as a
32-bit integer), and 13decimal = 1101binary. Now combine corresponding bits:

The answer is 1100binary = 12decimal.

Table 1 The Unary Negation Operation

a ~a

0 1

1 0

Table 2 The Binary And, Or, and Xor Operations

a b a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

0.....0101110
& 0.....0001101

 0.....0001100

1056 Appendix J Bit and Shift Operations

You sometimes see the | operator being used to combine two bit patterns. For
example, Font.BOLD is the value 1, Font.ITALIC is 2. The binary or combination
Font.BOLD | Font.ITALIC has both the bold and the italic bit set:

Don’t confuse the & and | bit operators with the && and || operators. The latter
work only on boolean values, not on bits of numbers.

Besides the operations that work on individual bits, there are three shift opera-
tions that take the bit pattern of a number and shift it to the left or right by a given
number of positions. There are three shift operations: shift left (<<), right shift with
sign extension (>>), and right shift with zero extension (>>>).

The left shift moves all bits to the left, filling in zeroes in the least significant bits.
Shifting to the left by n bits yields the same result as multiplication by 2n. The right
shift with sign extension moves all bits to the right, propagating the sign bit. There-
fore, the result is the same as integer division by 2n, both for positive and negative
values. Finally, the right shift with zero extension moves all bits to the right, filling
in zeroes in the most significant bits. (See Figure 1.)

Note that the right-hand-side value of the shift operators is reduced modulo 32
(for int values) or 64 (for long values) to determine the actual number of bits to shift.

Figure 1 The Shift Operations

0.....0000001
| 0.....0000010

 0.....0000011

Left shift (<<)

Right shift with sign extension (>>)

Right shift with zero extension (>>>)

0 0

00

Appendix J Bit and Shift Operations 1057

For example, 1 << 35 is the same as 1 << 3. Actually shifting 1 by 35 bits to the left
would make no sense—the result would be 0.

The expression
1 << n

yields a bit pattern in which the nth bit is set (where the 0 bit is the least significant
bit).

To set the nth bit of a number, carry out the operation
x = x | 1 << n

To check whether the nth bit is set, execute the test
if ((x & 1 << n) != 0) . . .

Note that the parentheses around the & are required—the & operator has a lower
precedence than the relational operators.

1058

KAppendix

UML
Summary

In this book, we use a very restricted subset of the UML notation. This appendix
lists the components of the subset.

For a complete discussion of the UML notation, see The Unified Modeling Lan-
guage User Guide, Grady Booch, James Rumbaugh, and Ivar Jacobson (Addison-
Wesley, 2005, 1999).

CRC cards are used to describe in an informal fashion the responsibilities and col-
laborators for a class. Figure 1 shows a typical CRC card.

Figure 2 shows the UML notation for classes and interfaces. You can optionally
supply attributes and methods in a class diagram, as in Figure 3.

Figure 1 Typical CRC Card

CRC Cards

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

UML Diagrams

Appendix K UML Summary 1059

Table 1 shows the arrows used to indicate relationships between classes. Multiplic-
ity can be indicated in a diagram, as in Figure 4.

Figure 2
UML Symbols for Classes and Interfaces

Figure 3 Attributes and Methods in a Class Diagram

Figure 4 An Aggregation Relationship with Multiplicities

ClassName

‹‹interface››
InterfaceName

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

Customer

Class name

No attributes or
methods shown

Customer BankAccount
1..*

Table 1 UML Relationship Symbols

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface
Implementation

Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

1060 Appendix K UML Summary

Dependencies between objects are described by a dependency diagram. Figure 5 is a
typical example.

State diagrams are used when an object goes through a discrete set of states that
affects its behavior (see Figure 6).

Figure 5 UML Class Diagram for the ATM Simulation

Figure 6 UML State Diagram for the ATM Class

ATMFrame

Keypad

ATM

BankAccount

Customer

Bank
1

1

1 2

*

START

PIN

Customer
not found

Customer found

Account selected

Customer number entered

Exit selected

Transaction
completed or
canceled

ACCOUNT

TRANSACT

1061

LAppendix

Java Language
Coding Guidelines

This coding style guide is a simplified version of one that has been used with good
success both in industrial practice and for college courses.

A style guide is a set of mandatory requirements for layout and formatting. Uni-
form style makes it easier for you to read code from your instructor and classmates.
You will really appreciate that if you do a team project. It is also easier for your
instructor and your grader to grasp the essence of your programs quickly.

A style guide makes you a more productive programmer because it reduces gra-
tuitous choice. If you don’t have to make choices about trivial matters, you can
spend your energy on the solution of real problems.

In these guidelines, several constructs are plainly outlawed. That doesn’t mean
that programmers using them are evil or incompetent. It does mean that the con-
structs are not essential and can be expressed just as well or even better with other
language constructs.

If you already have programming experience, in Java or another language, you
may be initially uncomfortable at giving up some fond habits. However, it is a sign
of professionalism to set aside personal preferences in minor matters and to com-
promise for the benefit of your group.

These guidelines are necessarily somewhat dull. They also mention features that
you may not yet have seen in class. Here are the most important highlights:

• Tabs are set every three spaces.
• Variable and method names are lowercase, with occasional upperCase characters

in the middle.
• Class names start with an Uppercase letter.
• Constant names are UPPERCASE, with an occasional UNDER_SCORE.
• There are spaces after keywords and surrounding binary operators.
• Braces must line up horizontally or vertically.
• No magic numbers may be used.
• Every method, except for main and overridden methods, must have a comment.
• At most 30 lines of code may be used per method.
• No continue or break is allowed.
• All non-final variables must be private.

Introduction

1062 Appendix L Java Language Coding Guidelines

Note to the instructor: Of course, many programmers and organizations have
strong feelings about coding style. If this style guide is incompatible with your own
preferences or with local custom, please feel free to modify it. For that purpose, this
coding style guide is available in electronic form at www.wiley.com/college/horstmann
and in the WileyPLUS course for this book.

Each Java program is a collection of one or more source files. The executable
program is obtained by compiling these files. Organize the material in each file as
follows:

• package statement, if appropriate
• import statements
• A comment explaining the purpose of this file
• A public class
• Other classes, if appropriate
The comment explaining the purpose of this file should be in the format recognized
by the javadoc utility. Start with a /**, and use the @author and @version tags:

/**
COPYRIGHT (C) 2010 Harry Morgan. All Rights Reserved.
Classes to manipulate widgets.
Solves CS101 homework assignment #3

 @author Harry Morgan
 @version 1.01 2010-02-15
*/

Each class should be preceded by a class comment explaining the purpose of the
class.

First list all public features, then all private features.
Within the public and private sections, use the following order:

1. Instance variables
2. Static variables
3. Constructors
4. Instance methods
5. Static methods
6. Inner classes

Leave a blank line after every method.
All non-final variables must be private. (However, instance variables of a private

inner class may be public.) Methods and final variables can be either public or pri-
vate, as appropriate.

All features must be tagged public or private. Do not use the default visibility
(that is, package visibility) or the protected attribute.

Source Files

Classes

Appendix L Java Language Coding Guidelines 1063

Avoid static variables (except final ones) whenever possible. In the rare instance
that you need static variables, you are permitted one static variable per class.

Every method (except for main) starts with a comment in javadoc format.
/**

Convert calendar date into Julian day.
Note: This algorithm is from Press et al., Numerical Recipes
in C, 2nd ed., Cambridge University Press, 1992.

 @param day day of the date to be converted
 @param month month of the date to be converted
 @param year year of the date to be converted
 @return the Julian day number that begins at noon of the

given calendar date.
*/
public static int getJulianDayNumber(int day, int month, int year)
{
 . . .
}

Parameter names must be explicit, especially if they are integers or Boolean:
public Employee remove(int d, double s)
 // Huh?
public Employee remove(int department, double severancePay)
 // OK

Methods must have at most 30 lines of code. The method signature, comments,
blank lines, and lines containing only braces are not included in this count. This rule
forces you to break up complex computations into separate methods.

Do not define all variables at the beginning of a block:
{
 double xold; // Don’t
 double xnew;
 boolean done;
 . . .
}

Define each variable just before it is used for the first time:
{
 . . .
 double xold = Integer.parseInt(input);
 boolean done = false;
 while (!done)
 {
 double xnew = (xold + a / xold) / 2;
 . . .
 }
 . . .
}

Methods

Variables and Constants

1064 Appendix L Java Language Coding Guidelines

Do not define two variables on the same line:
int dimes = 0, nickels = 0; // Don’t

Instead, use two separate definitions:
int dimes = 0; // OK
int nickels = 0;

In Java, constants must be defined with the keyword final. If the constant is used
by multiple methods, declare it as static final. It is a good idea to define static final
variables as private if no other class has an interest in them.

Do not use magic numbers! A magic number is a numeric constant embedded in
code, without a constant definition. Any number except −1, 0, 1, and 2 is considered
magic:

if (p.getX() < 300) // Don’t

Use final variables instead:
final double WINDOW_WIDTH = 300;
. . .
if (p.getX() < WINDOW_WIDTH) // OK

Even the most reasonable cosmic constant is going to change one day. You think
there are 365 days per year? Your customers on Mars are going to be pretty
unhappy about your silly prejudice. Make a constant

public static final int DAYS_PER_YEAR = 365;

so that you can easily produce a Martian version without trying to find all the 365s,
364s, 366s, 367s, and so on, in your code.

When declaring array variables, group the [] with the type, not the variable.
int[] values; // OK
int values[]; // Ugh—this is an ugly holdover from C

When using collections, use type parameters and not “raw” types.
ArrayList<String> names = new ArrayList<String>(); // OK
ArrayList names = new ArrayList(); // Not OK

The if Statement
Avoid the “if . . . if . . . else” trap. The code

if (. . .)
 if (. . .) . . .;
else . . .;

will not do what the indentation level suggests, and it can take hours to find such a bug.
Always use an extra pair of { . . . } when dealing with “if . . . if . . . else”:

if (. . .)
{
 if (. . .) . . .;
} // { . . . } are necessary
else . . .;

Control Flow

Appendix L Java Language Coding Guidelines 1065

if (. . .)
{
 if (. . .) . . .;
 else . . .;
} // { . . . } not necessary, but they keep you out of trouble

The for Statement
Use for loops only when a variable runs from somewhere to somewhere with some
constant increment/decrement:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

Or, even better, use the “for each” loop:
for (int e : a)
 System.out.println(e);

Do not use the for loop for weird constructs such as
for (a = a / 2; count < ITERATIONS; System.out.println(xnew))
 // Don’t

Make such a loop into a while loop. That way, the sequence of instructions is much
clearer.

a = a / 2;
while (count < ITERATIONS) // OK
{
 . . .
 System.out.println(xnew);
}

Nonlinear Control Flow
Avoid the switch statement, because it is easy to fall through accidentally to an
unwanted case. Use if/else instead.

Avoid the break or continue statements. Use another boolean variable to control the
execution flow.

Exceptions
Do not tag a method with an overly general exception specification:

Widget readWidget(Reader in) throws Exception // Bad

Instead, specifically declare any checked exceptions that your method may throw:
Widget readWidget(Reader in)
 throws IOException, MalformedWidgetException // Good

Do not “squelch” exceptions:
try
{
 double price = in.readDouble();
}
catch (Exception e)
{ } // Bad

1066 Appendix L Java Language Coding Guidelines

Beginners often make this mistake “to keep the compiler happy”. If the current
method is not appropriate for handling the exception, simply use a throws specifica-
tion and let one of its callers handle it.

Naming Conventions
The following rules specify when to use upper- and lowercase letters in identifier
names.

• All variable and method names are in lowercase (maybe with an occasional
upperCase in the middle); for example, firstPlayer.

• All constants are in uppercase (maybe with an occasional UNDER_SCORE);
for example, CLOCK_RADIUS.

• All class and interface names start with uppercase and are followed by lowercase
letters (maybe with an occasional UpperCase letter); for example, BankTeller.

• Generic type variables are in uppercase, usually a single letter.

Names must be reasonably long and descriptive. Use firstPlayer instead of fp. No
drppng f vwls. Local variables that are fairly routine can be short (ch, i) as long as
they are really just boring holders for an input character, a loop counter, and so on.
Also, do not use ctr, c, cntr, cnt, c2 for variables in your method. Surely these vari-
ables all have specific purposes and can be named to remind the reader of them (for
example, current, next, previous, result, . . .). However, it is customary to use single-
letter names, such as T or E for generic types.

Indentation and White Space
Use tab stops every three columns. That means you will need to change the tab stop
setting in your editor!

Use blank lines freely to separate parts of a method that are logically distinct.
Use a blank space around every binary operator:
x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);
// Good

x1=(-b-Math.sqrt(b*b-4*a*c))/(2*a);
// Bad

Leave a blank space after (and not before) each comma or semicolon. Do not leave a
space before or after a parenthesis or bracket in an expression. Leave spaces around
the (. . .) part of an if, while, for, or catch statement.

if (x == 0) y = 0;

f(a, b[i]);

Every line must fit in 80 columns. If you must break a statement, add an indentation
level for the continuation:

a[n] = ..
 +;

Lexical Issues

Appendix L Java Language Coding Guidelines 1067

Start the indented line with an operator (if possible).
If the condition in an if or while statement must be broken, be sure to brace the

body in, even if it consists of only one statement:
if (...
 &&
 ||)
{
 . . .
}

If it weren’t for the braces, it would be hard to separate the continuation of the con-
dition visually from the statement to be executed.

Braces
Opening and closing braces must line up, either horizontally or vertically:

while (i < n) { System.out.println(a[i]); i++; }

while (i < n)
{
 System.out.println(a[i]);
 i++;
}

Some programmers don’t line up vertical braces but place the { behind the keyword:
while (i < n) { // DON’T
 System.out.println(a[i]);
 i++;
}

Doing so makes it hard to check that the braces match.

Unstable Layout
Some programmers take great pride in lining up certain columns in their code:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;

This is undeniably neat, but the layout is not stable under change. A new variable
name that is longer than the preallotted number of columns requires that you move
all entries around:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;
marginalFudgeFactor = other.marginalFudgeFactor;

This is just the kind of trap that makes you decide to use a short variable name like
mff instead. Use a simple layout that is easy to maintain as your programs change.

GLOSSARY

629

Abstract array An ordered sequence of items that can be efficiently accessed at random
through an integer index.

Abstract class A class that cannot be instantiated.

Abstract list An ordered sequence of items that can be traversed sequentially and that
allows for efficient insertion and removal of elements at any position.

Abstract method A method with a name, parameter types, and return type but without an
implementation.

Abstraction The process of finding the essential feature set for a building block of a pro-
gram such as a class.

Access specifier A reserved word that indicates the accessibility of a feature, such as
private or public.

Accessor method A method that accesses an object but does not change it.

Actual parameter The expression supplied for a formal parameter of a method by the
caller.

ADT (Abstract Data Type) A specification of the fundamental operations that characterize
a data type, without supplying an implementation.

Aggregation The has-a relationship between classes.

Algorithm An unambiguous, executable, and terminating specification of a way to solve a
problem.

Anonymous class A class that does not have a name.

Anonymous object An object that is not stored in a named variable.

API (Application Programming Interface) A code library for building programs.

API Documentation Information about each class in the Java library.

Applet A graphical Java program that executes inside a web browser or applet viewer.

Argument An actual parameter in a method call, or one of the values combined by an
operator.

Array A collection of values of the same type stored in contiguous memory locations, each
of which can be accessed by an integer index.

Array list A Java class that implements a dynamically-growable array of objects.

Assertion A claim that a certain condition holds in a particular program location.

Assignment Placing a new value into a variable.

Association A relationship between classes in which one can navigate from objects of one
class to objects of the other class, usually by following object references.

Asymmetric bounds Bounds that include the starting index but not the ending index.

Attribute A named property that an object is responsible for maintaining.

Auto-boxing Automatically converting a primitive type value into a wrapper type object.

630 Glossary

Balanced tree A tree in which each subtree has the property that the number of descen-
dants to the left is approximately the same as the number of descendants to the right.

Big-Oh notation The notation g(n) = O(f(n)), which denotes that the function g grows at a
rate that is bounded by the growth rate of the function f with respect to n. For example,
10n2 + 100n − 1000 = O(n2).

Binary file A file in which values are stored in their binary representation and cannot be
read as text.

Binary operator An operator that takes two arguments, for example + in x + y.

Binary search A fast algorithm for finding a value in a sorted array. It narrows the search
down to half of the array in every step.

Binary search tree A binary tree in which each subtree has the property that all left
descendants are smaller than the value stored in the root, and all right descendants are larger.

Binary tree A tree in which each node has at most two child nodes.

Bit Binary digit; the smallest unit of information, having two possible values: 0 and 1. A
data element consisting of n bits has 2n possible values.

Black-box testing Testing a method without knowing its implementation.

Block A group of statements bracketed by {}.

Boolean operator See Logical operator

Boolean type A type with two possible values: true and false.

Border layout A layout management scheme in which components are placed into the
center or one of the four borders of their container.

Boundary test case A test case involving values that are at the outer boundary of the set of
legal values. For example, if a function is expected to work for all nonnegative integers, then
0 is a boundary test case.

Bounds error Trying to access an array element that is outside the legal range.

Breakpoint A point in a program, specified in a debugger, at which the debugger stops exe-
cuting the program and lets the user inspect the program state.

break statement A statement that terminates a loop or switch statement.

Bucket In a hash table, a set of values with the same hash code.

Buffer A temporary storage location for holding values that have been produced (for
example, characters typed by the user) and are waiting to be consumed (for example, read a
line at a time).

Buffered input Input that is gathered in batches, for example, a line at a time.

Bug A programming error.

Byte A number made up of eight bits. Essentially all currently manufactured computers
use a byte as the smallest unit of storage in memory.

Bytecode Instructions for the Java virtual machine.

Callback A mechanism for specifying a block of code so it can be executed at a later time.

Call by reference A method call mechanism in which the method receives the memory
location of a variable supplied as an actual parameter. Call by reference enables a method to
change the contents of the original variable so that the change remains in effect after the
method returns.

Glossary 631

Call by value A method call mechanism in which the method receives a copy of the con-
tents of a variable supplied as an actual parameter. Java uses only call by value. If a parameter
variable’s type is a class, its value is an object reference, so the method can alter that object
but cannot make the parameter variable refer to a different object.

Call stack The ordered set of all methods that currently have been called but not yet termi-
nated, starting with the current method and ending with main.

Case sensitive Distinguishing upper- and lowercase characters.

Cast Explicitly converting a value from one type to a different type. For example, the cast
from a floating-point number x to an integer is expressed in Java by the cast notation (int) x.

catch clause A part of a try block that is executed when a matching exception is thrown by
any statement in the try block.

Central processing unit (CPU) The part of a computer that executes the machine instructions.

Character A single letter, digit, or symbol.

Check box A user-interface component that can be used for a binary selection.

Checked exception An exception that the compiler checks. All checked exceptions must
be declared or caught.

Class A programmer-defined data type.

Class method See Static method

Class path The set of directories and archives that the virtual machine searches for class
files.

Client A computer program or system that issues requests to a server and processes the
server responses.

Cloning Making a copy of an object so the copy’s state can be modified independently of
the original object.

Code coverage A measure of the amount of source code that has been executed during
testing.

Cohesion A class is cohesive if its features support a single abstraction.

Collaborator A class on which another class depends.

Combo box A user-interface component that combines a text field with a drop-down list
of selections.

Command line The line the user types to start a program in DOS or UNIX or a command
window in Windows. It consists of the program name followed by any necessary arguments.

Comment An explanation to help the human reader understand a section of a program;
ignored by the compiler.

Compiler A program that translates code in a high-level language (such as Java) to machine
instructions (such as bytecode for the Java virtual machine).

Compile-time error An error that is detected when a program is compiled.

Component See User-interface component

Compound statement A statement such as if or while that is made up of several parts such
as a condition and a body.

Concatenation Placing one string after another to form a new string.

Concrete class A class that can be instantiated.

632 Glossary

Console program A Java program that does not have a graphical window. A console pro-
gram reads input from the keyboard and writes output to the terminal screen.

Constant A value that cannot be changed by a program. In Java, constants are defined with
the reserved word final.

Construction Setting a newly allocated object to an initial state.

Constructor A method that initializes a newly instantiated object.

Container A user-interface component that can hold other components and present them
together to the user. Also, a data structure, such as a list, that can hold a collection of objects
and present them individually to a program.

Content pane The part of a Swing frame that holds the user-interface components of the
frame.

Coupling The degree to which classes are related to each other by dependency.

CRC card An index card representing a class that lists its responsibilities and collaborating
classes.

De Morgan’s Law A law about logical operations that describes how to negate expressions
formed with and and or operations.

Debugger A program that lets a user run another program one or a few steps at a time,
stop execution, and inspect the variables in order to analyze it for bugs.

Default constructor A constructor that is invoked with no parameters.

Dependency The uses relationship between classes, in which one class needs services pro-
vided by another class.

Dictionary ordering See Lexicographic ordering

Directory A structure on a disk that can hold files or other directories; also called a folder.

Documentation comment A comment in a source file that can be automatically extracted
into the program documentation by a program such as javadoc.

Dot notation The notation object.method(parameters) or object.variable used to invoke a
method or access a variable.

Doubly linked list A linked list in which each link has a reference to both its predecessor
and successor links.

Dynamic method lookup Selecting a method to be invoked at run time. In Java, dynamic
method lookup considers the class of the implicit parameter object to select the appropriate
method.

Editor A program for writing and modifying text files.

Embedded system The processor, software, and supporting circuitry that is included in a
device other than a computer.

Encapsulation The hiding of implementation details.

End of file The condition that is true when all characters of a file have been read. Note that
there is no special “end of file character”. When composing a file on the keyboard, you may
need to type a special character to tell the operating system to end the file, but that character
is not part of the file.

Enumeration type A type with a finite number of values, each of which has its own sym-
bolic name.

Glossary 633

Escape character A character in text that is not taken literally but has a special meaning
when combined with the character or characters that follow it. The \ character is an escape
character in Java strings.

Event See User-interface event

Event class A class that contains information about an event, such as its source.

Event adapter A class that implements an event listener interface by defining all methods
to do nothing.

Event handler A method that is executed when an event occurs.

Event listener An object that is notified by an event source when an event occurs.

Event source An object that can notify other classes of events.

Exception A class that signals a condition that prevents the program from continuing nor-
mally. When such a condition occurs, an object of the exception class is thrown.

Exception handler A sequence of statements that is given control when an exception of a
particular type has been thrown and caught.

Explicit parameter A parameter of a method other than the object on which the method is
invoked.

Expression A syntactical construct that is made up of constants, variables, method calls,
and operators combining them.

Extension The last part of a file name, which specifies the file type. For example, the exten-
sion .java denotes a Java file.

Extreme Programming A development methodology that strives for simplicity, by
removing formal structure and focusing on best practices.

Fibonacci numbers The sequence of numbers 1, 1, 2, 3, 5, 8, 13, . . . , in which every term is
the sum of its two predecessors.

File A sequence of bytes that is stored on disk.

File pointer The position within a random-access file of the next byte to be read or writ-
ten. It can be moved so as to access any byte in the file.

finally clause A part of a try block that is executed no matter how the try block is exited.

Flag See Boolean type

Floating-point number A number that can have a fractional part.

Flow layout A layout management scheme in which components are laid out left to right.

Flushing a stream Sending all characters that are still held in a buffer to its destination.

Folder See Directory

Font A set of character shapes in a particular style and size.

Formal parameter A variable in a method definition; it is initialized with an actual param-
eter value when the method is called.

Frame A window with a border and a title bar.

Garbage collection Automatic reclamation of memory occupied by objects that are no
longer referenced.

Generic class A class with one or more type parameters.

Generic method A method with one or more type parameters.

634 Glossary

Generic programming Providing program components that can be reused in a wide vari-
ety of situations.

goto statement A statement that transfers control to some other statement, which is
tagged with a label. Java does not have a goto statement.

Graphics context A class through which a programmer can cause shapes to appear on a
window or off-screen bitmap.

grep The “global regular expression print” search program, useful for finding all strings
matching a pattern in a set of files.

Grid layout A layout management scheme in which components are placed into a two-
dimensional grid.

GUI (Graphical User Interface) A user interface in which the user supplies inputs through
graphical components such as buttons, menus, and text fields.

Hash code A value that is computed by a hash function.

Hash collision Two different objects for which a hash function computes identical values.

Hash function A function that computes an integer value from an object in such a way
that different objects are likely to yield different values.

Hash table A data structure in which elements are mapped to array positions according to
their hash function values.

Hashing Applying a hash function to a set of objects.

Heap A balanced binary tree that is used for implementing sorting algorithms and priority
queues.

Heapsort algorithm A sorting algorithm that inserts the values to be sorted into a heap.

HTML (Hypertext Markup Language) The language in which web pages are described.

IDE (Integrated Development Environment) A programming environment that includes
an editor, compiler, and debugger.

Immutable class A class without a mutator method.

Implementing an interface Implementing a class that defines all methods specified in the
interface.

Implicit parameter The object on which a method is invoked. For example, in the call
x.f(y), the object x is the implicit parameter of the method f.

Importing a class or package Indicating the intention of referring to a class, or all classes
in a package, by the simple name rather than the qualified name.

Inheritance The is-a relationship between a more general superclass and a more special-
ized subclass.

Initialization Setting a variable to a well-defined value when it is created.

Inner class A class that is defined inside another class.

Instance method A method with an implicit parameter; that is, a method that is invoked
on an instance of a class.

Instance of a class An object whose type is that class.

Instance variable A variable defined in a class for which every object of the class has its
own value.

Instantiation of a class Construction of an object of that class.

Glossary 635

Integer A number that cannot have a fractional part.

Integer division Taking the quotient of two integers and discarding the remainder. In Java
the / symbol denotes integer division if both arguments are integers. For example, 11/4 is 2,
not 2.75.

Interface A type with no instance variables, only abstract methods and constants.

Internet A worldwide collection of networks, routing equipment, and computers using a
common set of protocols that define how participants interact with each other.

Interpreter A program that reads a set of codes and carries out the commands specified by
them.

Iterator An object that can inspect all elements in a container such as a linked list.

javadoc The documentation generator in the Java SDK. It extracts documentation com-
ments from Java source files and produces a set of linked HTML files.

JDK The Java software development kit that contains the Java compiler and related devel-
opment tools.

JVM The Java Virtual Machine.

Layout manager A class that arranges user-interface components inside a container.

Lazy evaluation Deferring the computation of a value until it is needed, thereby avoiding
the computation if the value is never needed.

Legacy code Software that has existed for a long time and that continues to operate.

Lexicographic ordering Ordering strings in the same order as in a dictionary, by skipping
all matching characters and comparing the first non matching characters of both strings. For
example, “orbit” comes before “orchid” in lexicographic ordering. Note that in Java, unlike
a dictionary, the ordering is case-sensitive: Z comes before a.

Library A set of precompiled classes that can be included in programs.

Linear search Searching a container (such as an array or list) for an object by inspecting
each element in turn.

Linked list A data structure that can hold an arbitrary number of objects, each of which is
stored in a link object, which contains a pointer to the next link.

Local variable A variable whose scope is a block.

Logging Sending messages that trace the progress of a program to a file or window.

Logical operator An operator that can be applied to Boolean values. Java has three logical
operators: &&, ||, and !.

Logic error An error in a syntactically correct program that causes it to act differently
from its specification. (A form of run-time error.)

Loop A sequence of instructions that is executed repeatedly.

Loop and a half A loop whose termination decision is neither at the beginning nor at the
end.

Loop invariant A statement about the program state that is preserved when the statements
in the loop are executed once.

Machine code Instructions that can be executed directly by the CPU.

Magic number A number that appears in a program without explanation.

main method The method that is first called when a Java application executes.

636 Glossary

Map A data structure that keeps associations between key and value objects.

Markup Information about data that is added as humanly readable instructions. An exam-
ple is the tagging of HTML documents with elements such as <h1> or .

Memory location A value that specifies the location of data in computer memory.

Merge sort A sorting algorithm that first sorts two halves of a data structure and then
merges the sorted subarrays together.

Meta data Data that describe properties of a data set.

Method A sequence of statements that has a name, may have formal parameters, and may
return a value. A method can be invoked any number of times, with different values for its
parameters.

Method signature The name of a method and the types of its parameters.

Mock object An object that is used during program testing, replacing another object and
providing similar behavior. Usually, the mock object is simpler to implement or provides
better support for testing.

Mutator method A method that changes the state of an object.

Mutual recursion Cooperating methods that call each other.

Name clash Accidentally using the same name to denote two program features in a way
that cannot be resolved by the compiler.

Negative test case A test case that is expected to fail. For example, when testing a root-
finding program, an attempt to compute the square root of −1 is a negative test case.

Nested block A block that is contained inside another block.

Nested loop A loop that is contained in another loop.

new operator An operator that allocates new objects.

Newline The '\n' character, which indicates the end of a line.

Null reference A reference that does not refer to any object.

Number literal A constant value in a program this is explicitly written as a number, such as
–2 or 6.02214115E23.

Object A value of a class type.

Object-oriented design Designing a program by discovering objects, their properties, and
their relationships.

Object reference A value that denotes the location of an object in memory. In Java, a vari-
able whose type is a class contains a reference to an object of that class.

Off-by-one error A common programming error in which a value is one larger or smaller
than it should be.

Opening a file Preparing a file for reading or writing.

Operating system The software that launches application programs and provides services
(such as a file system) for those programs.

Operator A symbol denoting a mathematical or logical operation, such as + or &&.

Operator associativity The rule that governs in which order operators of the same prece-
dence are executed. For example, in Java the - operator is left-associative because a - b - c is
interpreted as (a - b) - c, and = is right-associative because a = b = c is interpreted as
a = (b = c).

Glossary 637

Operator precedence The rule that governs which operator is evaluated first. For exam-
ple, in Java the && operator has a higher precedence than the || operator. Hence a || b && c is
interpreted as a || (b && c). (See Appendix B.)

Oracle A program that predicts how another program should behave.

Overloading Giving more than one meaning to a method name.

Overriding Redefining a method in a subclass.

Package A collection of related classes. The import statement is used to access one or more
classes in a package.

Package access Accessibility by methods of classes in the same package.

Panel A user-interface component with no visual appearance. It can be used to group other
components.

Parallel arrays Arrays of the same length, in which corresponding elements are logically
related.

Parameter An item of information that is specified to a method when the method is called.
For example, in the call System.out.println("Hello, World!"), the parameters are the implicit
parameter System.out and the explicit parameter "Hello, World!".

Parameter passing Specifying expressions to be actual parameter values for a method
when it is called.

Parameter variable A variable of a method that is initialized with a parameter value when
the method is called.

Partially filled array An array that is not filled to capacity, together with a companion
variable that indicates the number of elements actually stored.

Permutation A rearrangement of a set of values.

Polymorphism Selecting a method among several methods that have the same name on the
basis of the actual types of the implicit parameters.

Positive test case A test case that a method is expected to handle correctly.

Postcondition A condition that is true after a method has been called.

Postfix operator A unary operator that is written after its argument.

Precondition A condition that must be true when a method is called if the method is to
work correctly.

Predicate method A method that returns a Boolean value.

Prefix operator A unary operator that is written before its argument.

Primitive type In Java, a number type or boolean.

Priority queue An abstract data type that enables efficient insertion of elements and effi-
cient removal of the smallest element.

Private feature A feature that is accessible only by methods of the same class or an inner
class.

Project A collection of source files and their dependencies.

Prompt A string that tells the user to provide input.

Protected feature A feature that is accessible by a class, its inner classes, its subclasses, and
the other classes in the same package.

638 Glossary

Pseudocode A high-level description of the actions of a program or algorithm, using a
mixture of English and informal programming language syntax.

Pseudorandom number A number that appears to be random but is generated by a math-
ematical formula.

Public feature A feature that is accessible by all classes.

Public interface The features (methods, variables, and nested types) of a class that are
accessible to all clients.

Qualified name A name that is made unambiguous because it starts with the package
name.

Queue A collection of items with “first in, first out” retrieval.

Quicksort A generally fast sorting algorithm that picks an element, called the pivot, parti-
tions the sequence into the elements smaller than the pivot and those larger than the pivot,
and then recursively sorts the subsequences.

Radio button A user-interface component that can be used for selecting one of several
options.

RAM (random-access memory) Electronic circuits in a computer that can store code and
data of running programs.

Random access The ability to access any value directly without having to read the values
preceding it.

Reader In the Java input/output library, a class from which to read characters.

Recursion A method for computing a result by decomposing the inputs into simpler val-
ues and applying the same method to them.

Recursive method A method that can call itself with simpler values. It must handle the
simplest values without calling itself.

Redirection Linking the input or output of a program to a file instead of the keyboard or
display.

Reference See Object reference

Regression testing Keeping old test cases and testing every revision of a program against
them.

Regular expression A string that defines a set of matching strings according to their con-
tent. Each part of a regular expression can be a specific required character; one of a set of per-
mitted characters such as [abc], which can be a range such as [a-z]; any character not in a set
of forbidden characters, such as [ˆ0-9]; a repetition of one or more matches, such as [0-9]+,
or zero or more, such as [ACGT]; one of a set of alternatives, such as and|et|und; or various
other possibilities. For example, "[A-Za-z][0-9]+" matches "Cloud9" or "007" but not "Jack".

Relational operator An operator that compares two values, yielding a Boolean result.

Reserved word A word that has a special meaning in a programming language and there-
fore cannot be used as a name by the programmer.

Return value The value returned by a method through a return statement.

Reverse Polish notation A style of writing expressions in which the operators are written
following the operands, such as 2 3 4 + for 2 + 3 4.

Roundoff error An error introduced by the fact that the computer can store only a finite
number of digits of a floating-point number.

Glossary 639

Run-time error An error in a syntactically correct program that causes it to act differently
from its specification.

Run-time stack The data structure that stores the local variables of all called methods as a
program runs.

Scope The part of a program in which a variable is defined.

Scripting language A programming language that favors rapid development over execu-
tion speed and code maintainability.

Selection sort A sorting algorithm in which the smallest element is repeatedly found and
removed until no elements remain.

Sentinel A value in input that is not to be used as an actual input value but to signal the end
of input.

Sequential access Accessing values one after another without skipping over any of them.

Sequential search See Linear search

Serialization The process of saving an object, and all the objects that it references, to a
stream.

Server A computer program or system that receives requests from a client, obtains or
computes the requested information, and sends it to the client.

Set An unordered collection that allows efficient addition, location, and removal of
elements.

Shadowing Hiding a variable by defining another one with the same name.

Shallow copy Copying only the reference to an object.

Shell script A file that contains commands for running programs and manipulating files.
Typing the name of the shell script file on the command line causes those commands to be
executed.

Shell window A window for interacting with an operating system through textual
commands.

Short circuit evaluation Evaluating only a part of an expression if the remainder cannot
change the result.

Side effect An effect of a method other than returning a value.

Sign bit The bit of a binary number that indicates whether the number is positive or
negative.

Signature See Method signature

Simple statement A statement consisting of a single expression.

Single-stepping Executing a program in the debugger one statement at a time.

Software life cycle All activities related to the creation and maintenance of the software
from initial analysis until obsolescence.

Source code Instructions in a programming language that need to be translated before exe-
cution on a computer.

Source file A file containing instructions in a programming language such as Java.

Spiral model An iterative process model of software development in which design and
implementation are repeated.

640 Glossary

Stack A data structure with “last in, first out” retrieval. Elements can be added and
removed only at one position, called the top of the stack.

Stack trace A printout of the call stack, listing all currently pending method calls.

State The current value of an object, which is determined by the cumulative action of all
methods that were invoked on it.

State diagram A diagram that depicts state transitions and their causes.

Statement A syntactical unit in a program. In Java a statement is either a simple statement,
a compound statement, or a block.

Static method A method with no implicit parameter.

Static variable A variable defined in a class that has only one value for the whole class,
which can be accessed and changed by any method of that class.

Stream An abstraction for a sequence of bytes from which data can be read or to which
data can be written.

String A sequence of characters.

Stub A method with no or minimal functionality.

Subclass A class that inherits variables and methods from a superclass but adds instance
variables, adds methods, or redefines methods.

Superclass A general class from which a more specialized class (a subclass) inherits.

Swing A Java toolkit for implementing graphical user interfaces.

Symmetric bounds Bounds that include the starting index and the ending index.

Syntax Rules that define how to form instructions in a particular programming language.

Syntax diagram A graphical representation of grammar rules.

Syntax error An instruction that does not follow the programming language rules and is
rejected by the compiler. (A form of compile-time error.)

Tab character The '\t' character, which advances the next character on the line to the next
one of a set of fixed positions known as tab stops.

TCP/IP (Transmission Control Protocol/Internet Protocol) The pair of communication
protocols that is used to establish reliable transmission of data between two computers on
the Internet.

Ternary operator An operator with three arguments. Java has one ternary operator,
a ? b : c.

Test coverage The instructions of a program that are executed in a set of test cases.

Test harness A program that calls a function that needs to be tested, supplying parameters
and analyzing the function’s return value.

Test suite A set of test cases for a program.

Text field A user-interface component that allows a user to provide text input.

Text file A file in which values are stored in their text representation.

Throwing an exception Indicating an abnormal condition by terminating the normal con-
trol flow of a program and transferring control to a matching catch clause.

throws specifier Indicates the types of the checked exceptions that a method may throw.

Glossary 641

Token A sequence of consecutive characters from an input source that belongs together for
the purpose of analyzing the input. For example, a token can be a sequence of characters
other than white space.

Total ordering An ordering relationship in which all elements can be compared to each
other.

Trace message A message that is printed during a program run for debugging purposes.

Tree A data structure consisting of nodes, each of which has a list of child nodes, and one
of which is distinguished as the root node.

try block A block of statements that contains exception processing clauses. A try block
contains at least one catch or finally clause.

Turing machine A very simple model of computation that is used in theoretical computer
science to explore computability of problems.

Two-dimensional array A tabular arrangement of elements in which an element is speci-
fied by a row and a column index.

Type A named set of values and the operations that can be carried out with them.

Type parameter A parameter in a generic class or method that can be replaced with an
actual type.

Type variable A variable in the declaration of a generic type that can be instantiated with a
type.

Unary operator An operator with one argument.

Unchecked exception An exception that the compiler doesn’t check.

Unicode A standard code that assigns code values consisting of two bytes to characters
used in scripts around the world. Java stores all characters as their Unicode values.

Unified Modeling Language (UML) A notation for specifying, visualizing, constructing,
and documenting the artifacts of software systems.

Uninitialized variable A variable that has not been set to a particular value. In Java, using
an uninitialized local variable is a syntax error.

Unit test A test of a method by itself, isolated from the remainder of the program.

URL (uniform resource locator) A pointer to an information resource (such as a web page
or an image) on the World Wide Web.

User-interface component A building block for a graphical user interface, such as a but-
ton or a text field. User-interface components are used to present information to the user and
allow the user to enter information to the program.

User-interface event A notification to a program that a user action such as a key press,
mouse move, or menu selection has occurred.

Variable A symbol in a program that identifies a storage location that can hold different
values.

Virtual machine A program that simulates a CPU that can be implemented efficiently on a
variety of actual machines. A given program in Java bytecode can be executed by any Java
virtual machine, regardless of which CPU is used to run the virtual machine itself.

Visual programming Programming by arranging graphical elements on a form, setting
program behavior by selecting properties for these elements, and writing only a small
amount of “glue” code linking them.

642 Glossary

void A reserved word indicating no type or an unknown type.

Watch window A window in a debugger that shows the current values of selected vari-
ables.

Waterfall model A sequential process model of software development, consisting of analy-
sis, design, implementation, testing, and deployment.

White-box testing Testing methods by taking their implementations into account, in con-
trast to black-box testing; for example, by selecting boundary test cases and ensuring that all
branches of the code are covered by some test case.

White space Any sequence of only space, tab, and newline characters.

Wrapper class A class that contains a primitive type value, such as Integer.

Writer In the Java input/output library, a class to which characters are to be sent.

INDEX

643

Page references followed by t indicate material in tables. Java library classes are indexed under java, as for example
“java.util.Scanner class.”

\ (backslash)
escape character, 410
in file names, 410

+ (plus sign)
addition operator, 123
string concatenation, 135

; (semicolon)
ending method statements, 11
errors in for loops, 207–208
if statement terminator, 156
omitting, 13

, (comma), in number literals, 33
. (dot), in package names, 314
{ } (curly brackets)

around method statements, 11
array initialization, 243
in block statements, 153
lining up, 154–155

[] (square brackets, array indexing),
243

&& (ampersands), and logical
operator, 174, 177

$ (dollar sign), in names, 35
= (equal sign), vs. equality operator

(==), 157t
== (equal signs), equality operator

comparing objects, 161
comparing strings, 158
description, 157t
testing for null, 162
vs. = (equal sign), assignment

operator, 157t
! (exclamation point), not logical

operator, 175
!= (exclamation point, equal), not-

equal operator, 157t, 208
< (left angle bracket), less-than

operator, 157t
<= (left angle bracket, equal), less-

than-or-equal operator, 157t
% (percent sign), remainder of

division operator, 124
++ (plus signs), increment operator,

123–124
> (right angle bracket), greater-than

operator, 157t

>= (right angle bracket, equal),
greater-than-or-equal
operator, 157t

_ (underscore), in variable
identifiers, 35

|| (vertical bars), or logical operator,
175, 177

- (minus sign), subtraction operator,
123

/ (slash), division operator, 123
-- (minus signs), decrement

operator, 123–124
40-hour week, Extreme

Programming, 445

A
abs method, java.lang.Math class,

126t, 611
absolute values, 126t
abstract arrays, 574
abstract classes, 385
abstract data types, 572–574
abstract lists, 574
abstract methods, 385
abstract windowing toolkit package,

311t
access to packages, 314
accessor methods, 46, 294, 396
AccountTester.java class, 384
acos method, java.lang.Math

class, 126t, 611
actionPerformed method,

java.awt.event.ActionListener
interface, 353, 603

actors, 290
add method

java.awt.Container class, 601
java.math.BigDecimal class, 616
java.math.BigInteger class, 616
java.util.ArrayList class, 250t
java.util.ArrayList<E> class, 617
java.util.Collection<E> interface,

559, 618
java.util.ListIterator<E>

interface, 560t, 620
javax.swing.ButtonGroup class, 623

javax.swing.JMenu class, 625
javax.swing.JMenuBar class, 625

addActionListener method,
javax.swing.AbstractButton
class, 623

addChangeListener method,
javax.swing.JSlider class, 626

addFirst method,
java.util.LinkedList<E> class,
557t, 563, 620

adding
array elements, 259, 264–265
array list elements, 250, 254–255
linked list nodes, 556–557, 563,

566–567
trace messages, 503

addItem method,
javax.swing.JComboBox
class, 624

addition (mathematical). See also
incrementing.

operator for, 123
order of operations, 123
summing array elements, 259–260

addition operator (+), 123
addLast method,

java.util.LinkedList<E>
class, 557t, 620

addMouseListener method,
java.awt.Component class, 601

Address.java class, 462–463
aggregation

definition, 450
UML relationship symbol, 451t

algorithms
definition, 21
describing, 22–23
developing, 22–23
executable, 21
How To example, 22–23
planning, 19–22
pseudocode for, 20
reusing. See interface types.
terminating, 21
unambiguous, 21

ampersands (&&), and logical
operator, 174, 177

644 Index

analysis phase, software life cycle,
442

and logical operator (&&), 174, 177
anonymous classes, 345
API documentation, 47–49
append method, javax.swing.JTextArea

class, 627
Apple Macintosh, history of

computers, 316
applets, graphical applications, 59
applets package, 311t
arc cosines, 126t
arc sines, 126t
arc tangent, 126t
arguments, passing to programs, 411
Ariane rocket incident, 434
arithmetic operations. See also

numbers; static methods.
% (percent sign), remainder of

division operator, 124
+ (plus sign), addition operator,

123
++ (plus signs), increment

operator, 123–124
- (minus sign), subtraction

operator, 123
/ (slash), division operator, 123
-- (minus signs), decrement

operator, 123–124
abs method, 126t
absolute values, 126t
acos method, 126t
addition, 123. See also

incrementing.
arc cosines, 126t
arc sines, 126t
arc tangent, 126t
asin method, 126t
atan method, 126t
atan2 method, 126t
big numbers, 118
binary numbers, 118
casting, 126–128
ceil method, 126t
combining with assignment, 130
computation overflow, 116
constants, 118–122
cos method, 126t
cosines, 126t
decrementing, 123–124. See also

subtraction.
division, 123, 124–125
exp method, 126t
exponential notation, 33

exponentiation, 126t
expressions, 33
floor method, 126t
fractional numbers. See floating-

point numbers.
How To example, 132–134
incrementing, 123–124. See also

addition.
integer division errors, 128
largest integer, determining, 126t
log method, 126t
max method, 126t
methods for. See static methods.
min method, 126t
multiplication, 123
natural logs, 126t
number literals, 33
pow method, 125–126t
powers, 125–126
primitive types, 116–117t
remainder of division, 124–125
roots, 125–126
round method, 126t
rounding, 126–128, 126t
rounding errors, 117
sin method, 126t
sine, in radians, 126t
smallest integer, determining,

126t
sqrt method, 125–126t
square roots, 126t
subtraction, 123. See also

decrementing.
tan method, 126t
tangents, 126t
toDegrees method, 126t
toRadians method, 126t
whole numbers. See integers.
Worked Example: volume and

surface of a pyramid, 134
arithmetic operations, conversions.

See also casting.
degrees to radians, 126t
double to int, 126–128
radians to degrees, 126t
rounding errors, 117

array lists
auto-boxing, 254–255
How To example, 269–271
inserting elements, 250, 254–255
java.util.ArrayList class, 250
printing, 268
removing elements, 250
size, determining, 253

syntax, 250
variable-size objects, 248–253
wrapper classes, 254–255

arraycopy method, java.lang.System
class, 615

ArrayList constructor,
java.util.ArrayList<E>
class, 616

ArrayListTester.java class, 251
arrays

bounds errors, 244, 245
declaring, examples, 244t
definition, 242
fixed length, 244
How To example, 269–271
initialization, 242–243
iterating through, 255–257
length, determining, 253
length of, 242
matrices, 274–276
multidimensional, 277
of objects, 246–247
parallel, 246–247
partially filled, 257–258
printing, 268
printing element separators,

265–268
sequences of related values, 246
specifying elements of, 243
syntax, 245
two-dimensional, 274–276
underestimating data size, 259
variable row lengths, 277
Worked Example: world

population table, 277
arrays, common algorithms

animated lessons, 262, 263
averaging elements, 259–260
copying arrays, 264–265
counting matches, 260
element position, finding, 261
filling, 259
growing arrays, 264–265
inserting elements, 263
maximum value, finding, 260–261
minimum value, finding, 260–261
printing element separators,

265–268
removing elements, 262
searching for values, 261
summing elements, 259–260

ArrayUtil.java class, 529
artificial intelligence, 178

Index 645

asin method, java.lang.Math class,
126t, 611

assignment, combining with
arithmetic operations, 130

assignment operator (=), vs. equality
operator (==), 157t

assignment statements vs. variable
declarations, 38–39

association relationships, UML, 452
asymmetric bounds, 208
atan method, java.lang.Math class,

126t, 611
atan2 method, java.lang.Math class,

126t, 611
ATM (Automatic Teller Machine).

See case study, ATM.
ATMFrame.java class, 478–480
ATM.java class, 471–473
ATMSimulator.java class, 475–477
ATMViewer.java class, 477
attributes, in UML, 452
Augusta, Ada, 540
auto-boxing, 254–255
autoindent feature, 156
Automatic Teller Machine (ATM).

See case study, ATM.
averaging array elements, 259–260

B
Babbage, Charles, 540
backslash (\)

escape character, 410
in file names, 410

backup strategies, 17
BadDataException.java class, 433
BankAccount.java class, 86–87,

251–252
BankAccountTester.java class, 91–92
Bank.java class, 266–267, 473–474
BankTester.java class, 267–268, 272
base directory, packages, 313
batch files, 273–274
Beck, Kent, 444
big numbers, 118
big-Oh notation, 533, 534
big-Omega notation, 534
big-Theta notation, 534
binary numbers

binary/decimal conversions, 117
encoding, 118
overview, 118

binary searches, 542–544
binarySearch method

java.util.Arrays class, 544, 617

java.util.Collections class, 618
BinarySearcher.java class, 543
black box, 76
black-box testing, 178–179
block statements, 153
Boehm, Barry, 444
boolean data type, 117t, 173, 254t
Boolean expressions. See also

comparing values.
&& (ampersands), and logical

operator, 174, 177
! (exclamation point), not logical

operator, 175
|| (vertical bars), or logical

operator, 175, 177
De Morgan’s Law, 177
flowchart of, 174
lazy evaluation, 177
multiple relational, 176–177
negating && and || operators. See

De Morgan’s Law.
predicate methods, 173–174
short circuit evaluation. See lazy

Boolean evaluation.
Boolean constructor,

java.lang.Boolean class, 609
Boolean variables, 176
booleanValue method,

java.lang.Boolean class, 609
BorderLayout constructor,

java.awt.BorderLayout
class, 600

boundary test cases, 179–180
bounds errors, arrays, 244, 245
break statements, 218
breakpoints, 224, 496
Buffon needle experiment, 221–223
bugs

definition, 18
first recorded, 228

bus (computer), 5
buttons

javax.swing.JButton class, 352–355
javax.swing.JLabel class, 352–355
labels, 352–355
overview, 352–355
panels, 353

ButtonViewer.java class, 349
byte data type, 117t, 254t

C
calendar, Worked Example, 51
call by reference, 299
call by value, 299

call stack, recursion, 496
callbacks, 339–343
camel-case method names, 35
candidate classes, listing, 446
car shape, drawing, 96–100
CarComponent.java class, 98–99.

See also drawing, shapes.
CarViewer.java class, 100
case, converting to upper case, 40
case sensitivity, Java programs, 14
case study, ATM

ATMFrame.java class, 478–480
ATM.java class, 471–473
ATMSimulator.java class, 475–477
ATMViewer.java class, 477
Bank.java class, 473–474
CRC cards, 465–468
Customer.java class, 474–475
implementation, 470–482
KeyPad.java class, 480–482
machine state, 466–467
method documentation, 469–470
requirements, 463–465
state diagrams, 467–468
UML diagrams, 468–469

case study, exception handling,
429–433

case study, printing invoices
Address.java class, 462–463
CRC cards, 453–455
implementation, 458–463
Invoice.java class, 460–461
InvoicePrinter.java class, 459
LineItem.java class, 461
method documentation, 456–458
overview, 452
Product.java class, 462
requirements, 453
UML diagrams, 455–456

CashRegister.java class, 120–121
CashRegisterSimulator.java class,

139–140
CashRegisterTester.java class,

121–122
casting, 126–128, 337. See also

arithmetic operations,
conversions.

catch clauses, 423–425, 427
catching exceptions, 423–425
ceil method, java.lang.Math class,

126t, 612
central processing unit (CPU), 3–4
char data type, 117t, 138, 254t. See

also strings.

646 Index

character data. See strings.
characters, reading, 415
checked exceptions, 421–423
CheckingAccount.java class, 380
chips (computer), 3–4
circles, drawing, 59–60
class diagrams, UML, 450–452
.class file extension, 15
class files, Java programs, 15
class invariants, 302
class methods. See static methods.
classes. See also methods; objects;

specific classes.
abstract, 385
actors, 290
anonymous, 345
collections of. See libraries;

packages.
converting to/from interface

types, 336–337
documentation. See API

documentation.
final, 385
generic, 248
immutable, 294
importing from packages, 49,

311–312
inner, 343–345, 350–352
instances, 75
interdependencies. See coupling.
naming conventions, 35
overview, 290–291
private, 40
public. See public interfaces.
testing, interactively, 51
utility, 291
vs. interface types, 332

classes, implementing
constructors, implementing,

89–90
How To example, 88–90
instance variables, specifying, 89
method declaration, syntax, 86
methods, implementing, 89–90
overview, 84–86
testing the class, 90–92
Worked Example: menus, 90

classes, object-oriented design
aggregation, 450
candidates, listing, 446
collaborators, 448
CRC (classes, responsibilities,

collaborators) card method,
448–449, 451–452

dependency relationship, 450
discovering, 446–449
has-a relationship, 449–450
is-a relationship, 449–450
nouns in the task description, 446
relationships, documenting,

449–451
responsibilities, 448
verbs in the task description, 448

classes, responsibilities,
collaborators (CRC) card
method, 448–449, 451–452

ClickListener.java class, 348
clone method

description, 394, 613
java.lang.Cloneable interface, 396
java.lang.Object class, 613

cloning
mutable instance variables, 396
objects, 394

close method
java.io.InputStream class, 606
java.io.OutputStream class, 607
java.io.PrintStream class, 607
java.io.PrintWriter class, 409,

428, 607
java.util.Scanner class, 428,

621–622
closing objects. See close method.
code, Java programs, 14
code coverage, 178–179
coding standards, Extreme

Programming, 445
cohesiveness, public interfaces,

291–293
collaborator classes, 448
collective ownership, Extreme

Programming, 445
Color method, java.awt.Color

class, 600
colors

fills, 61
overview, 61–63
pen, changing, 61
predefined, 61t

comma (,), in number literals, 33
command line arguments, 411
comments. See also documentation.

// (slashes), comment delimiter,
11

methods, 81–83
public interfaces, 81–84

compare method,
java.util.Comparator<T>
interface, 547, 619

compareTo method
java.lang.Comparable<T> interface,

545–546, 609
java.lang.String class, 159, 614

comparing values. See also Boolean
expressions; decisions; if
statements.

adjacent, 211–212
compareTo method, 159
else statements, dangling, 170
enumeration types, 172, 396
equals method, 158–161
floating-point numbers, 157–158
multiple alternatives, 165–167
nested branches, 167–169
objects, 161
relational operators, 156–157
roundoff errors, 157–158
side effects, 162–163
strings, 158–160
switch statements, 167
syntax, 158
testing for null, 162

compile-time errors, definition, 17
compilers, definition, 7
compiling, Java programs, 14–16
component objects, constructing

and drawing on, 56–59
component size, default, 356
compound statements, 153
computation overflow, 116
computers, anatomy of

bus, 5
chips, 3–4
CPU (central processing unit),

3–4
directories, 17. See also files.
file system, 16–17. See also files.
folders. See directories.
hard disks, 4, 5
memory chips (illustration), 4
memory module (illustration), 4
motherboard, 5
networks, 4
peripheral devices, 4
RAM (random access memory), 4
removable storage, 4
schematic diagram, 6
storage (primary), 4. See also

RAM (random access
memory).

Index 647

storage (secondary), 4. See also
hard disks; removable storage.

transistors, 4
computers, history of

Apple Macintosh, 316
ENIAC, 6
first usable electronic computer, 6
the Internet, 63
Macintosh, 316
mainframes, 54
vacuum tubes, 6

computing, limitations of, 510
computing totals, 210
concatenating strings, 135
consistency, public interfaces,

293–294
console window, reading input

from, 138–140
constants

declaration syntax, 119
definition, 118
distinguishing from variables, 119
final keyword, 119
identifying, 119
interface types, 335–336
magic numbers, 122–123
naming conventions, 119
using, 119–122

constructing
component objects, 56–59
objects, 44–45
rectangles, 44–45

constructors
calling other constructors, 96
constructing objects, 44–45
declaring as void, 81
definition, 79
duplicate names, 79
implementing, 89–90
reinitializing existing objects, 45
subclasses, 378–380
superclass, calling, 379
uninitialized object references,

93–94
vs. methods, 45, 79

containers, as event listeners,
355–356

contains method,
java.util.Collection<E>
interface, 618

continue statements, 218
continuous integration, Extreme

Programming, 445
conversions. See also casting.

binary/decimal, 117
degrees to radians, 126t
double to int, 126–128
radians to degrees, 126t
rounding errors, 117
strings to numbers, 135

converting strings to numbers, 135
copying

arrays, 264–265
objects. See clone method;

cloning.
copyOf method, java.util.Arrays

class, 264, 617
cos method, java.lang.Math class,

126t, 612
cosines, 126t
counters, 210
counting matches

in arrays, 260
keeping a counter, 210

CountryValue.java class, 417–418
coupling, public interfaces, 291–293
CPU (central processing unit), 3–4
CRC (classes, responsibilities,

collaborators) card method,
448–449, 451–452

CRC cards, case studies
ATM, 465–468
printing an invoice, 453–455

creating. See implementing.
credit card processing, 218
curly brackets ({ })

around method statements, 11
array initialization, 243
in block statements, 153
lining up, 154–155

currentTimeMillis method,
java.lang.System class, 529, 615

Customer.java class, 474–475
customizing, frames, 397–398

D
data structures. See also linked lists.

abstract arrays, 574
abstract data types, 572–574
abstract lists, 574
FIFO (first in, first out), 575–577
LIFO (last in, first out), 575–577
queues, 575–577
random access, 557, 572
run-time stacks, 576
sequential access, 557, 572
stacks, 575–577
Worked Example: reverse Polish

notation, 577

data types. See also arithmetic
operations.

boolean, 117t
byte, 117t
char, 117t, 138. See also strings.
character data. See strings.
combining. See expressions.
definition, 32
double, 32, 117t
exponential notation, 33
expressions, 33
float, 117t
floating-point numbers. See

floating-point numbers.
fractional numbers. See double

data type; floating-point
numbers.

int, 117t
integers. See integers.
long, 117t
number literals, 33
parameters, specifying, 43
primitive types, 116–117t
short, 117t
testing for, 382
variable, specifying, 34–36
whole numbers. See integers.

DataAnalyzer.java class, 213, 430–431
database access package, 311t
DataSet.java class, 214, 342
DataSetReader.java class, 432–433
DataSetTester2.java class, 342–343
DataSetTester3.java class, 344–345
DataSetTester.java class, 334–335
de Buffon, Georges-Louis Leclerc,

221
De Morgan’s Law, 177
debuggers. See also testing

programs.
breakpoints, 224
definition, 18, 223
description, 223–226
inspect-variable command, 224
set breakpoint command, 224
single-step command, 224
step-into command, 224
step-over command, 224

debugging. See also testing
programs.

How To example, 226–227
recursion, 496
Worked Example: sample session,

227

648 Index

decisions. See also comparing values.
conditional operators, 156
if statements, 152–156

declaring. See also implementing.
interface types, 331–332
variables, 35

decrement operator (--), 123–124
decrementing, 123–124. See also

subtraction.
default package, 311
defensive programming, 18
degrees, converting to radians, 126t
deleting. See removing.
dependency relationship symbol,

UML, 451t
dependency relationships, 450
deployment phase, software life

cycle, 443
design phase, software life cycle, 442
destroy method, java.applet.Applet

class, 600
dialog boxes

choosing files from, 411
reading input from, 140
showInputDialog method,

javax.swing.JOptionPane
class, 626

showMessageDialog method,
javax.swing.JOptionPane
class, 626

showOpenDialog method,
javax.swing.JFileChooser
class, 624

showSaveDialog method,
javax.swing.JFileChooser
class, 624

dice casting, analyzing, 271
Dijkstra, Edsger, 178
Dimension constructor,

java.awt.Dimension class, 601
directories, 17. See also files.
discovering classes, 446–449
divide method, java.math.BigInteger

class, 616
division

integers, 124–125, 128
operator for (/), 123

do loops, 201
Document Object Model package,

311t
documentation. See also comments.

HTML-based, 84
hyperlinks, 84
javadoc utility, 84

public interface, 81–84, 88–89
dollar sign ($), in names, 35
dot (.), in package names, 314
double data type

converting to int, 126–128
description, 117t
fractional numbers, 32
wrapper class, 254t

Double constructor, java.lang.Double
class, 610

doubleValue method, java.lang.Double
class, 255, 610

doubly linked lists, 559
draw method, java.awt.Graphics2D

class, 602
drawing, computer graphics, 104
drawing, shapes. See also graphical

applications.
on components, 56–59
How To example, 100–103
shape classes, 96–100
a simple car, 96–100

drawString method,
java.awt.Graphics2D class, 602

duplicate names. See also
overloading.

constructors, 79
methods, 41
name clashes, packages, 312

dynamic method lookup, 338

E
Earthquake.java class, 165
EarthquakeRunner.java class, 166
editors, Java programs, 14
efficiency, recursion, 502–507
electronic voting machines, 96
Ellipse2D.Double constructor,

java.awt.geom.Ellipse2D.Double
class, 604

ellipses, drawing, 59–60
else statements, dangling, 170
empty strings, 135
EmptyFrameViewer.java class, 55
encapsulation, 76–77, 372
ENIAC computer, 6
enumeration types, 172, 396
EOFException method,

java.io.EOFException class, 606
equal sign (=), vs. equality operator

(==), 157t
equal signs (==), equality operator

comparing objects, 161
comparing strings, 158

description, 157t
testing for null, 162
vs. assignment operator (=), 157t

equals method
declaring with wrong parameter

type, 395
inheritance, 396
java.lang.Object class, 158–161,

613
java.lang.String class, 614
overriding, 393–394

equalsIgnoreCase method,
java.lang.String class, 614

error handling
. (dot), in package names, 314
array bounds errors, 245
array length, determining, 253
array list size, determining, 253
arrays, underestimating data

size, 259
bugs, 18
calling undeclared methods, 40
comparing strings with ==

(equality operator), 160
compile-time errors, 17–18
confusing && and || operators,

177
dangling else statements, 170
debuggers, 18
declaring constructors as void, 81
declaring implementing methods

as public, 335
defensive programming, 18
exception reports, 137
extracting substrings, 136–137
forgetting event listeners, 355
infinite loops, 200
integer division, 128
invoking constructors like

methods, 45
logic errors. See run-time errors.
misspelled words, 19
modifying primitive type

parameters, 296–298
off-by-one errors, 200–201
overlapping scope, 308–309
parameter types, modifying,

349–350
repainting graphic components,

356
run-time errors, 18
semicolon errors, for loops,

207–208
semicolons in if statements, 156

Index 649

shadowing, 309
string length, determining, 253
string-to-number conversions,

135
syntax errors. See compile-time

errors.
unbalanced parentheses, 128–129
unfilled arrays, 246
uninitialized arrays, 246
uninitialized object references in

constructors, 93–94
variable declarations vs.

assignment statements, 38–39
error handling, rounding errors

binary/decimal conversions, 117
floating-point numbers, 130

error messages, retrieving, 429
escape character (\), 410
escape sequences, 137
EtchedBorder constructor,

javax.swing.border.Etched-
Border class, 627

Evaluator.java class, 514–515
event adapters, 356
event listeners

containers as, 355–356
inner classes as, 350–352
overview, 347–350

event sources, 347–350
events, 347–350
exception classes

constructors for, 429
hierarchy of, 420

exception handlers, 421
exception handling

animated lesson, 432
Ariane rocket incident, 434
case study, 429–433
catch clauses, 423–425, 427
catching exceptions, 423–425
checked exceptions, 421–423
closing objects automatically, 428
finally clause, 426–428
recovery, 419
reporting, 419
squelching exceptions, 425–426
throw early, catch late, 425
throw statement, syntax, 419
throwing exceptions, 419–421,

429
throws clause, 422–423
try blocks, 423–425, 428
try/catch statements, 423–425,

427

unchecked exceptions, 421–423
exception reports, 137
exception types, designing your

own, 428–429
exclamation point, equal (!=), not-

equal operator, 157t, 208
exclamation point (!), not logical

operator, 175
executable algorithms, 21
executing programs. See starting

programs.
exit method, java.lang.System class,

615
exp method, java.lang.Math class,

126t, 611
explicit parameters, definition, 41
exponential notation, 33
exponentiation, 126t
ExpressionCalculator.java class,

516–517
expressions, 33
ExpressionTokenizer.java class,

515–516
Extreme Programming, 444–446

F
FaceComponent.java, 62
FaceViewer.java, 63
factoring out common code,

129–130
FIFO (first in, first out), 575–577
File constructor, java.io.File

class, 606
file names, backslash in, 410
file system, 17
FileInputStream constructor,

java.io.FileInputStream
class, 606

FileOutputStream constructor,
java.io.FileOutputStream
class, 606

files
organizing. See directories.
reading text from. See reading

input, from text files.
selecting from a dialog box, 411
storing. See directories.

fill method, java.awt.Graphics2D
class, 602

filling arrays, 259
fills, colors, 61
final reserved word, 119
finally clause, 426–428
finding first match, 210–211

flags, Boolean, 176. See also Boolean
variables.

float data type, 117t, 254t
floating-point numbers. See also

arithmetic operations.
comparing, 157–158
definition, 32
Pentium bug, 118
vs. integers, 32

floor method, java.lang.Math class,
126t, 612

FlowLayout constructor,
java.awt.FlowLayout class, 601

folders. See directories.
Font constructor, java.awt.Font

class, 602
“for each” loops, 256–257, 561
for loops. See also loops.

!= (not equal), testing end of
range, 208

animated lesson, 203
asymmetric bounds, 208–209
code sample, 205–206
counting iterations, 209
description, 202–205
enhanced, 255–257
examples, 204
flowchart, 202
iterating through arrays, 256–257
semicolon errors, 207–208
symmetric bounds, 208–209
syntax, 204
uses for, 206–207
variables, declaring, 208

format method, java.lang.String
class, 614

format specifiers, numbers, 140
formatting, numbers, 140
40-hour week, Extreme

Programming, 445
fractional numbers. See double data

type; floating-point numbers.
Frame class, main method, 397–398
frame windows

creating, 54–56
customizing, 397–398
displaying, 58

frameworks, unit testing, 316–317
functions, describing growth

behavior, 533, 534

G
garbage collector, 93
generic classes, 248

650 Index

get method
java.util.ArrayList<E> class, 617
java.util.Calendar class, 618
java.util.Map<K, V> interface, 626

getCenterX method,
java.awt.geom.RectangularShape
class, 605

getCenterY method,
java.awt.geom.RectangularShape
class, 605

getFilePointer method,
java.io.RandomAccessFile class,
608

getFirst method,
java.util.LinkedList<E> class,
557t, 620

getGlobal method,
java.util.logging.Logger class,
180, 622

getHeight method
java.awt.Component class, 601
java.awt.geom.RectangularShape

class, 605
java.awt.Rectangle class, 46, 603

getLast method,
java.util.LinkedList<E> class,
557t

getMaxX method,
java.awt.geom.RectangularShape
class, 605

getMaxY method,
java.awt.geom.RectangularShape
class, 605

getMessage method,
java.lang.Throwable class, 429,
615

getMinX method,
java.awt.geom.RectangularShape
class, 605

getMinY method,
java.awt.geom.RectangularShape
class, 605

getSelectedFile method,
javax.swing.JFileChooser
class, 624

getSelectedItem method,
javax.swing.JComboBox
class, 624

getSource method,
java.util.EventObject
class, 619

getText method,
javax.swing.text.JText-
Component class, 628

getValue method, javax.swing.JSlider
class, 626

getWidth method
java.awt.Component class, 601
java.awt.geom.RectangularShape

class, 605
java.awt.Rectangle class, 46, 603

getX method
java.awt.event.MouseEvent class,

604
java.awt.geom.Point2D class, 605
java.awt.Rectangle class, 46, 603

getX1 method, java.awt.geom.Line2D
class, 604

getX2 method, java.awt.geom.Line2D
class, 604

getY method
java.awt.event.MouseEvent class,

604
java.awt.geom.Point2D class, 605
java.awt.Rectangle class, 46, 603

getY1 method, java.awt.geom.Line2D
class, 604

getY2 method, java.awt.geom.Line2D
class, 604

Gosling, James, 8
graphical applications. See also

drawing; specific components;
specific shapes.

applets, 59
colors, 61–63
component objects, 56–59
component size, default, 356
drawing on components, 56–59
frame windows, 54–56, 58
manipulating image pixels, 220
repainting, 356
shape classes, 96–100
Worked Example: editing photos,

51
greater-than operator (>), 157t
greater-than-or-equal operator (>=),

157t
“Green,” Java code name, 8
GregorianCalendar constructor,

java.util.GregorianCalendar
class, 619

grep command, 415
GridLayout constructor,

java.awt.GridLayout class, 602
grow method, java.awt.Rectangle

class, 603
growing arrays, 264–265

H
Hamblin, Charles, 578
hand-tracing

loops, 198–199
programs, 171

hard disks, 4, 5
has-a relationship, 449–450
hash codes, 392
HashMap constructor,

java.util.HashMap<K, V>
class, 619

HashSet constructor,
java.util.HashSet<E> class, 619

hasNext method
java.util.Iterator<E> interface,

558, 619
java.util.ListIterator<E>

interface, 560t, 564–565
java.util.Scanner class, 622

hasNextDouble method,
java.util.Scanner class

method summary, 622
reading text numbers, 414
testing calls to nextDouble, 174

hasNextInt method, java.util.Scanner
class, 174, 622

hasNextLine method,
java.util.Scanner class, 622

hasPrevious method,
java.util.ListIterator<E>
interface, 559, 560t, 620

“Hello World” example, Java
programs, 10–13

HelloPrinter.java class, 10
hiding information, encapsulation,

76–77
hierarchies, 368. See also inheritance

hierarchies.
high-level languages, definition, 7
HP 35 calculator, 578
HTML-based documentation, 84
hyperlinks, in documentation, 84

I
I/O. See reading; writing.
if statements

; (semicolon), statement
terminator, 156

{ } (curly brackets), in block
statements, 153

{ } (curly brackets), lining up,
154–155

autoindent, 156
block statements, 153

Index 651

compound statements, 153
description, 152–153
flowchart of, 153
How To example, 163–164
indentation, 155–156
nesting levels, 155–156
simple statements, 153
syntax, 154
tab characters, 156
Tab key, 155
tabs, 155–156

IllegalArgumentException
constructor,
java.lang.IllegalArgument-
Exception class, 610

image pixels, manipulating, 220
ImageIcon constructor,

javax.swing.ImageIcon
class, 623

images, drawing. See drawing;
graphical applications.

immutable classes, 294
implementation phase, software

life cycle
case study, ATM, 470–482
case study, printing an invoice,

458–463
definition, 442

implementing. See also declaring.
classes. See classes, implementing.
constructors, 89–90
interface types, 332–334, 335
methods, 89–90

implements reserved word, 332
implicit parameters, definition, 41
import directive, 312
importing, classes from packages, 49,

311–312
increment operator (++), 123–124
incrementing, 123–124. See also

addition.
indentation of code, 155–156
infinite loops, 200
infinite recursion, 495
info method,

java.util.logging.Logger class,
181, 623

inheritance. See also polymorphism.
clone method, overriding, 394
customizing frames, 397–398
encapsulation, 372
equals method, 396
syntax, 372
vs. creating an interface, 373

inheritance, equals method
declaring with wrong parameter

type, 395
overriding, 393–394

inheritance, toString method
for all classes, 395
description, 395
overriding, 391–392

inheritance hierarchies. See also
subclasses; superclasses.

definition, 368
description, 368–370
How To example, 386–390
Worked Example: employee

hierarchy, 390
inheritance relationship symbol,

UML, 451t
init method, java.applet.Applet

class, 600
initialization

arrays, 242–243
instance variables, 93
variables, 37–38, 93

initialization blocks, 307
inner classes

as event listeners, 350–352
as listeners, 350–352
overview, 343–345

input, reading. See reading input.
input/output package, 311t
InputStreamReader constructor,

java.io.InputStreamReader
class, 607

inserting. See adding.
insertion sorts, 534
inspect-variable command, 224
instance variables. See also variables.

access specifiers, 75
definition, 75
initialization, 93
initialization blocks, 308–309
interface types, 335
mutable, cloning, 396
name, 75
parts of, 75
protecting, 386
shadowing, 374
specifying, 74–76, 89
subclasses, 371–372
syntax, 75
type, 75
vs. local, 93

instanceof operator, 382
instances, of classes, 75

instantiating, interface types, 337
int data type, 117t, 254t
Integer constructor,

java.lang.Integer class, 610
integers. See also arithmetic

operations.
computation overflow, 116
converting from strings. See

parseInt method.
definition, 32
vs. floating-point numbers, 33

integrated circuits. See chips.
Intel Corporation, Pentium floating-

point bug, 118
interdependencies, classes. See

coupling.
interface implementation

relationship symbol, UML,
451t

interface types. See also specific
interfaces.

callbacks, 339–343
constants, 335–336
converting to/from classes,

336–337
declaring, 331–332
implemented by multiple classes.

See polymorphism.
implementing, 332–334, 335
implements reserved word, 332
instance variables, 332
instantiating, 337
overview, 330–331
UML diagram, 334
vs. classes, 332
Worked Example: number

sequences, 339
interfaces, vs. inheritance, 373
international characters, 138
the Internet, history of computers,

63
Internet worm, 248
intersection method,

java.awt.Rectangle class, 603
intValue method, java.lang.Integer

class, 610
InvestmentViewer1.java class,

351–352
InvestmentViewer2.java class,

354–355
Invoice.java class, 460–461
InvoicePrinter.java class, 459
invoices, printing. See case study,

printing invoices.

652 Index

invoking programs. See starting
programs.

is-a relationships, 334, 449–450
isDigit method, java.lang.Character

class
method summary, 609
reading text, line by line, 412–413
testing characters, 173

isEditable method
javax.swing.JComboBox class, 624
javax.swing.text.JTextComponent

class, 628
isLetter method, java.lang.Character

class, 173, 609
isLowerCase method,

java.lang.Character class,
173, 609

isSelected method,
javax.swing.AbstractButton
class, 623

isUpperCase method,
java.lang.Character class,
173, 609

isWhiteSpace method, detecting
whitespace, 413

iteration. See enumeration types; for
loops; loops; while loops.

iterator method,
java.util.Collection<E>
interface, 618

iterators, linked lists, 557–559

J
Java language. See also Java

programs.
code name “Green,” 8
collections of code. See libraries.
portability, 8
safety, 8
security, 8
versions, summary of, 10t

Java operators, summary of, 593t–
594t. See also specific operators.

Java programs. See also Java
language; programs; specific
elements.

basic structure, 10–13
case sensitivity, 14
class files, 15
collections of code. See libraries.
compiling, 14–16
creating and modifying code, 14
free-form layout, 14
“Hello World” example, 10–13

JVM (Java Virtual Machine), 7–8
running, 14–16
source code, 15

Java Virtual Machine (JVM), 7–8
java.applet package, 311t, 600
java.applet.Applet class, method

summary, 600. See also specific
methods.

java.awt package, 311t, 600–603
java.awt.BorderLayout class, method

summary, 600. See also specific
methods.

java.awt.Color class
drawing in color, 61–63
method summary, 600. See also

specific methods.
java.awt.Component class

frame title bar, visibility, 55
method summary, 601. See also

specific methods.
preferred size, setting, 356
repainting graphic components,

356
java.awt.Container class, method

summary, 601. See also specific
methods.

java.awt.Dimension class, method
summary, 601. See also specific
methods.

java.awt.event package, 603–604
java.awt.event.ActionListener

interface
application buttons, 353
method summary, 603. See also

specific methods.
java.awt.event.MouseEvent class,

method summary, 604. See
also specific methods.

java.awt.event.MouseListener
interface, method summary,
604. See also specific methods.

java.awt.FlowLayout class, method
summary, 601. See also specific
methods.

java.awt.Font class, method
summary, 602. See also specific
methods.

java.awt.Frame class
frame size, setting, 55
method summary, 602. See also

specific methods.
java.awt.geom package, 604–605
java.awt.geom.Ellipse2D.Double class

drawing ellipses and circles,
59–60

method summary, 604. See also
specific methods.

java.awt.geom.Line2D class, method
summary, 604. See also specific
methods.

java.awt.geom.Line2D.Double class
drawing lines, 60
method summary, 605. See also

specific methods.
java.awt.geom.Point2D class, method

summary, 605. See also specific
methods.

java.awt.geom.Point2D.Double class
drawing lines, 60
method summary, 605. See also

specific methods.
java.awt.geom.RectangularShape class,

method summary, 605. See
also specific methods.

java.awt.Graphics class
colored drawings, 61–63
description, 57
examples, 57–59
method summary, 602. See also

specific methods.
java.awt.Graphics2D class

casting, 57
colored fills, 61
description, 57
drawing an ellipse, 60
drawing strings, 60
examples, 57–59
method summary, 602. See also

specific methods.
java.awt.GridLayout class, method

summary, 602. See also specific
methods.

java.awt.Rectangle class, method
summary, 602–603. See also
specific methods.

java.awt.Shape interface, 603
javadoc utility, 84
java.io package, 311t, 606–608
java.io.EOFException class, method

summary, 606. See also specific
methods.

java.io.File class. See also
java.util.Scanner class.

method summary, 606. See also
specific methods.

reading text files, 408–410

Index 653

java.io.FileInputStream class,
method summary, 606. See
also specific methods.

java.io.FileNotFoundException class
description, 409
input/output files missing, 409
summary, 606

java.io.FileOutputStream class,
method summary, 606. See
also specific methods.

java.io.InputStream class, method
summary, 606–607. See also
specific methods.

java.io.InputStreamReader class,
method summary, 607. See
also specific methods.

java.io.IOException class
checked exceptions, 421–423
reading Web pages, 411
summary, 607

java.io.ObjectInputStream class,
method summary, 607. See
also specific methods.

java.io.ObjectOutputStream class,
method summary, 607. See
also specific methods.

java.io.OutputStream class, method
summary, 607. See also specific
methods.

java.io.PrintStream class
libraries, 16
method summary, 607–608. See

also specific methods.
java.io.PrintWriter class

automatic object closing, 428
closing output files, 409
method summary, 607–608. See

also specific methods.
writing text files, 408–410

java.io.RandomAccessFile class,
method summary, 608. See
also specific methods.

java.lang package, 311t, 609–615
java.lang.Boolean class, method

summary, 609. See also specific
methods.

java.lang.Character class
method summary, 609. See also

specific methods.
reading text, line by line, 412–413
testing characters, 173

java.lang.Cloneable interface
implementing the clone method,

396

summary, 609
java.lang.CloneNotSupportedException

class, 609
java.lang.Comparable<T> interface

implementing, 545–546
method summary, 609. See also

specific methods.
parameterized type, 547
sorting real data, 545–546

java.lang.Double class, method
summary, 610. See also specific
methods.

java.lang.Error class, summary, 610
java.lang.IllegalArgumentException

class
method summary, 610. See also

specific methods.
throwing exceptions, 419
unchecked exceptions, 421–423

java.lang.IllegalStateException class
summary, 610
throwing an exception, 419–421

java.lang.Integer class
converting strings to integers, 135
maximum values, finding, 116
method summary, 610–611. See

also specific methods.
minimum values, finding, 116

java.lang.Math class, method
summary, 126t, 611–613. See
also specific methods.

java.lang.NullPointerException class
summary, 613
unchecked exceptions, 421–423

java.lang.NumberFormatException class
reading numbers, 414
summary, 613
unchecked exceptions, 421–423

java.lang.Object class, method
summary, 613. See also specific
methods.

java.lang.RuntimeException class
summary, 613
unchecked exceptions, 421–423

java.lang.String class
method summary, 614. See also

specific methods.
overview, 134–135

java.lang.System class
libraries, 16
method summary, 615. See also

specific methods.
out object, 11, 16

java.lang.Throwable class

catching exceptions, 425
method summary, 615. See also

specific methods.
retrieving error messages, 429

java.math package, 615–616
java.math.BigDecimal class, method

summary, 615–616. See also
specific methods.

java.math.BigInteger class, method
summary, 616. See also specific
methods.

java.net package, 311t, 616
java.net.URL class, method summary,

616. See also specific methods.
java.swing package, 311t
java.util package, 311t, 616–622
java.util.ArrayList class

adding array elements, 250, 263
array lists, 250
examples, 250t
removing array elements, 250,

262
syntax enhancements, 253

java.util.ArrayList<E> class, method
summary, 616–617. See also
specific methods.

java.util.Arrays class
copying arrays, 264
method summary, 617. See also

specific methods.
java.util.Calendar class, method

summary, 618. See also specific
methods.

java.util.Collection<E> interface,
method summary, 618. See
also specific methods.

java.util.Collections class, method
summary, 619. See also specific
methods.

java.util.Comparator<T> interface
comparing objects, 547
method summary, 619. See also

specific methods.
java.util.EventObject class, method

summary, 619. See also specific
methods.

java.util.GregorianCalendar class,
method summary, 619. See
also specific methods.

java.util.HashMap<K, V> class,
method summary, 619. See
also specific methods.

654 Index

java.util.HashSet<E> class, method
summary, 619. See also specific
methods.

java.util.InputMismatchException
class, 619

java.util.Iterable interface, 561
java.util.Iterator<E> interface,

method summary, 619. See
also specific methods.

java.util.LinkedList<E> class,
method summary, 620. See
also specific methods.

java.util.List<E> interface, method
summary, 620. See also specific
methods.

java.util.ListIterator<E> interface
implementing linked lists,

564–572
method summary, 620. See also

specific methods.
java.util.logging package, 622–623
java.util.logging.Level class, 622
java.util.logging.Logger class

logging trace messages, 180–181
method summary, 622–623. See

also specific methods.
java.util.Map<K, V> interface,

method summary, 620–621.
See also specific methods.

java.util.NoSuchElementException
class, 423

reading text numbers, 414
summary, 621

java.util.PriorityQueue<E> class,
method summary, 621. See
also specific methods.

java.util.Random class, method
summary, 621. See also specific
methods.

java.util.Scanner class. See also
java.io.File class.

automatic close, 428
creating with a string, 410–411
method summary, 621–622. See

also specific methods.
patterns for word boundaries,

specifying, 412
testing calls to NextDouble method,

174
java.util.Scanner class, reading

input
character by character, 415
from a keyboard, 138–140
line by line, 412–413

reading text numbers, 414
regular expressions, 415–416
text files, 408–410
word by word, 411–412

java.util.Set<E> interface, 622
java.util.TreeMap<K, V> class,

method summary, 622. See
also specific methods.

java.util.TreeSet<E> class, method
summary, 622. See also specific
methods.

javax.swing package, 623–627
javax.swing.AbstractButton class,

method summary, 623. See
also specific methods.

javax.swing.border package, 627
javax.swing.border.EtchedBorder

class, method summary, 627.
See also specific methods.

javax.swing.border.TitledBorder
class, method summary, 627.
See also specific methods.

javax.swing.ButtonGroup class,
method summary, 623. See
also specific methods.

javax.swing.event package, 628
javax.swing.event.ChangeEvent class,

628
javax.swing.event.ChangeListener

interface, method summary,
628. See also specific methods.

javax.swing.ImageIcon class, method
summary, 623. See also specific
methods.

javax.swing.JButton class
buttons, 352–355
method summary, 623. See also

specific methods.
javax.swing.JCheckBox class, method

summary, 623. See also specific
methods.

javax.swing.JComboBox class, method
summary, 624. See also specific
methods.

javax.swing.JComponent class, method
summary, 624. See also specific
methods.

javax.swing.JFileChooser class,
method summary, 624. See
also specific methods.

javax.swing.JFrame class
default close operation, setting,

55
frame size, setting, 55

frame title, setting, 55
frame visibility, setting, 55
method summary, 625. See also

specific methods.
javax.swing.JLabel class

buttons, 352–355
method summary, 625. See also

specific methods.
javax.swing.JMenu class, method

summary, 625. See also specific
methods.

javax.swing.JMenuBar class, method
summary, 625. See also specific
methods.

javax.swing.JMenuItem class, method
summary, 625. See also specific
methods.

javax.swing.JOptionPane class,
method summary, 626. See
also specific methods.

javax.swing.JPanel class
button panels, 353
summary, 626

javax.swing.JRadioButton class,
method summary, 626. See
also specific methods.

javax.swing.JScrollPane class,
method summary, 626. See
also specific methods.

javax.swing.JSlider class, method
summary, 626. See also specific
methods.

javax.swing.JTextArea class, method
summary, 627. See also specific
methods.

javax.swing.JTextField class, method
summary, 627. See also specific
methods.

javax.swing.text package, 628
javax.swing.text.JTextComponent

class, method summary, 628.
See also specific methods.

javax.swing.Timer class, method
summary, 627. See also specific
methods.

JButton constructor,
javax.swing.JButton class, 623

JCheckBox constructor,
javax.swing.JCheckBox class,
623

JComboBox constructor,
javax.swing.JComboBox
class, 624

Index 655

JFileChooser constructor,
javax.swing.JFileChooser
class, 624

JLabel constructor,
javax.swing.JLabel class, 625

JMenu constructor, javax.swing.JMenu
class, 625

JMenuBar constructor,
javax.swing.JMenuBar class, 625

JMenuItem constructor,
javax.swing.JMenuItem
class, 625

JRadioButton constructor,
javax.swing.JRadioButton
class, 626

JScrollPane constructor,
javax.swing.JScrollPane
class, 626

JSlider constructor,
javax.swing.JSlider class, 626

JTextArea constructor,
javax.swing.JTextArea
 class, 627

JTextField constructor,
javax.swing.JTextField
class, 627

JUnit framework, 316–317
JVM (Java Virtual Machine), 7–8

K
keyboards

international characters, 138
reading input from, 138–140

KeyPad.java class, 480–482
keySet method, java.util.Map<K, V>

interface, 620

L
labels, buttons, 352–355
language support package, 311t
largest integer, determining, 126t
launching programs. See starting

programs.
layout, Java programs, 14
lazy Boolean evaluation, 177
left angle bracket, equal (<=), less-

than-or-equal operator, 157t
left angle bracket (<), less-than

operator, 157t
length

arrays, definition, 242
arrays, determining, 253
strings, determining, 134–135
of strings, zero, 135

length method

java.io.RandomAccessFile class,
608

java.lang.String class, 614
less-than operator (<), 157t
less-than-or-equal operator (<=),

157t
libraries. See also packages.

definition, 16
documentation. See API

documentation.
life span, variables, 93
LIFO (last in, first out), 575–577
Line2D.Double constructor,

java.awt.geom.Line2D.Double
class, 605

linear searches, 540–542
LinearSearchDemo.java class, 541–542
LinearSearcher.java class, 541
LineItem.java class, 461
LineNumberer.java class, 409–410
lines (graphic), drawing, 60
lines of text, reading, 413
lineScanner method, 413
linked lists. See also data structures.

animated lesson, 559
definition, 556
doubly linked lists, 559
“for each” loops, 561
implementing, 561–571
iterators, 557–559
java.util.Iterable interface, 561
LinkedList.java class, 568–571
ListIterator.java class, 571
ListTester.java class, 560–561
methods for, 557t
random access, 557
sequential access, 557
static inner classes, 571

linked lists, nodes
adding, 556–557, 563, 566–567
definition, 556
getting, 557
removing, 557, 565–567

LinkedList.java class, 568–571
listIterator method

java.util.LinkedList<E> class,
557t, 558

java.util.List<E> interface, 620
ListIterator.java class, 571
ListTester.java class, 560–561
literals, creating, 134
local variables, 92–93, 309
log method, java.lang.Math class,

126t, 612

log10 method, java.lang.Math class,
126t, 612

logging programs, 180–181
long data type, 117t, 254t
loop and a half pattern, 213, 218
loop invariants, 223
LoopFib.java, 505
loops. See also for loops; while loops.

break statements, 218
continue statements, 218
do loops, 201
hand-tracing, 198–199
How To example, 215–218
infinite, 200
loop and a half pattern, 213, 218
nesting, 218–220
off-by-one errors, 200–201
testing for termination, 213
tracing, animated lesson, 196
Worked Example: credit card

processing, 218
Worked Example: manipulating

image pixels, 220
loops, common algorithms

comparing adjacent values,
211–212

computing totals, 210
counters, 210
counting matches, 210
finding first match, 210–211
prompting for first match, 211
sentinel values, 212–215

Lovelace, Ada, 540
Lukasiewicz, Jan, 578

M
machine instructions, definition, 7–8
machine state, ATM case study,

466–467
Macintosh, history of computers,

316
magic numbers, 122–123
main method

args parameter, 11
calling, 12
description, 11
Frame class, 397–398
“Hello World” example, 12

mainframe computers, 55–56
mathematical computations. See

arithmetic operations.
matrices, 274–276. See also arrays.
max method, java.lang.Math class,

126t, 612

656 Index

maximum value, finding in arrays,
260–261

MAX_VALUE method, java.lang.Integer
class, 116

Measurer.java class, 341
memory chips (illustration), 4
memory module (illustration), 4
menus, Worked Example, 90
merge sorts

algorithm, 537–540
MergeSortDemo.java class, 537
MergeSorter.java class, 535–537
overview, 534–537

MergeSortDemo.java class, 537
MergeSorter.java class, 535–537
metaphor, Extreme Programming,

445
method calls

postconditions, 299–302
preconditions, 299–302
required parameters, 12
syntax, 12
throwing exceptions, 300

method documentation
case study, ATM, 469–470
case study, printing an invoice,

456–458
methods. See also classes; objects;

return values; specific methods.
abstract, 385
for accessing objects. See accessor

methods.
accessor, 46, 294
animated lesson, 297
for arithmetic operations. See

static methods.
camel case names, 35
for changing objects. See mutator

methods.
commenting, 81–83
declaration syntax, 86
documentation. See API

documentation.
duplicate names, 41
final, 385
implementing, 89–90
modifying primitive type

parameters, 296–298
naming conventions, 35
overloading, 41
overriding to a lower access level,

385
passing information to. See

parameters.

private, 78
return values, 42–43
running time, measuring, 532
subclasses, calling syntax, 376
subclasses, inherited from

superclasses, 371
summary table of, 82
terminating on checked

exceptions. See throws clause.
in UML, 452
undeclared, calling, 40
unspecified implementation. See

abstract methods.
void reserved word, 43
vs. constructors, 45, 79

methods, parameters
passing, 42–43
variable number of, 247

microprocessors, history of
computers, 316

min method, java.lang.Math class,
126t, 612

minimum value, finding in arrays,
260–261

minus sign (-), subtraction operator,
123

minus signs (--), decrement
operator, 123–124

MIN_VALUE method, java.lang.Integer
class, 116

misspelled words, error handling, 19
mock objects, 345–346
mod method, java.math.BigInteger

class, 616
moth, as first computer bug, 228
motherboard, 5
mouseClicked method,

java.awt.event.MouseListener
interface, 604

mouseEntered method,
java.awt.event.MouseListener
interface, 604

mouseExited method,
java.awt.event.MouseListener
interface, 604

mousePressed method,
java.awt.event.MouseListener
interface, 604

mouseReleased method,
java.awt.event.MouseListener
interface, 604

MoveTester.java class, 50–51
moving, rectangles, 46, 50–51
multidimensional arrays, 277

multiple relational operators,
176–177

multiplication, 123
multiply method

java.math.BigDecimal class, 616
java.math.BigInteger class, 616

mutator methods
definition, 46
description, 46
immutable classes, 294
side effects, 295–296, 298

mutual recursion. See recursion,
mutual.

N
name clashes, packages, 312
naming conventions

classes, 35
constants, 119
identical variable names, 308–309
methods, 35
packages, 312–313
static methods, 131
variables, 34–36, 309

natural logs, 126t
Naughton, Patrick, 8
negating && and || operators. See

De Morgan’s law.
nested branches, 167–169
nesting

directories, 17
loops, 218–220

nesting levels, 155–156
networking package, 311t
networks, definition, 4
next method

java.util.Iterator<E> interface,
558, 619

java.util.ListIterator<E>
interface, 560t, 564–565

java.util.Scanner class, 139, 408,
622

nextDouble method
java.util.Random class, 621
java.util.Scanner class, 138–140,

408, 414, 622
nextInt method, java.util.Random

class, 621
nextInt method, java.util.Scanner

class
description, 622
reading input, 138–140
reading text files, 408
reading text numbers, 414

Index 657

nextLine method, java.util.Scanner
class

description, 622
reading input, 138–140
reading text, line by line, 412–413
reading text files, 408
reading text numbers, 414

nodes. See linked lists, nodes.
not-equal operator (!=), 157t, 208
not logical operator (!), 175
notify method, java.lang.Object

class, 613
notifyAll method, java.lang.Object

class, 613
nouns in the class task description,

446
null, testing for, 162
number literals, 33
number sequences, Worked

Example, 339
number variables vs. object

variables, 52–53
numbers. See also arithmetic

operations.
format specifiers, 140
formatting, 140
reading, 414

O
object-oriented design

class diagrams, 450–452. See also
UML (Unified Modeling
Language).

software development models,
443–446

software life cycle, phases of,
442–443

object-oriented design, case study
(ATM)

ATMFrame.java class, 478–480
ATM.java class, 471–473
ATMSimulator.java class, 475–477
ATMViewer.java class, 477
Bank.java class, 473–474
CRC cards, 465–468
Customer.java class, 474–475
implementation, 470–482
KeyPad.java class, 480–482
machine state, 466–467
method documentation, 469–470
requirements, 463–465
state diagrams, 467–468
UML diagrams, 468–469

object-oriented design, case study
(printing invoices)

Address.java class, 462–463
CRC cards, 453–455
implementation, 458–463
Invoice.java class, 460–461
InvoicePrinter.java class, 459
LineItem.java class, 461
method documentation, 456–458
overview, 452
Product.java class, 462
requirements, 453
UML diagrams, 455–456

object-oriented design, classes
aggregation, 449–450
candidates, listing, 448
collaborators, 448
CRC (classes, responsibilities,

collaborators) card method,
448–449, 451–452

dependency relationship, 450
discovering, 446–449
has-a relationship, 449–450
is-a relationship, 449–450
nouns in the task description, 446
relationships, documenting,

449–451
responsibilities, 448
uses relationship. See dependency

relationship.
verbs in the task description, 448

object references
animated lesson, 53
definition, 52
number variables vs. object

variables, 52–53
to same object, 52–53

object variables vs. number
variables, 52–53

ObjectInputStream constructor,
java.io.ObjectInputStream
class, 607

ObjectOutputStream constructor,
java.io.ObjectOutputStream
class, 607

objects. See also classes; methods.
arrays of, 246–247
comparing, 161
construction, 44–45
construction parameters, 45
constructors vs. methods, 45
copying. See clone method.
definition, 39
mock, 345–346

reinitializing with constructors,
45

string, creating, 134–135
off-by-one errors, 200–201
omg.w3c.dom package, 311t
on-site customers, Extreme

Programming, 445
online help, 49
openStream method, java.net.URL

class, 616
operating systems, typical services,

345
operators, summary of, 593t–594t.

See also specific operators.
or logical operator (||), 175, 177
out object, java.lang.System class,

11, 16
output destination, system

output, 12
overflow, computation, 116
overlapping scope, 308–310
overloading. See also duplicate

names.
methods, 41
subclasses, accidentally, 377–378

overriding
clone method, 394
equals method, 393–394
final methods, 385
methods to a lower access level,

385
superclass methods, 375–378
toString method, 391–392

P
packages. See also libraries; specific

packages.
. (dot), in package names, 314
abstract windowing toolkit, 311t
access, 314
applets, 311t
base directory, 313
default, 311
definition, 49
How To example, 315–316
import directive, 312
importing classes from, 49,

311–312
input/output, 311t
in the Java library, list of, 311t
java.applet, 311t
java.awt, 311t
java.io, 311t
java.lang, 311t

658 Index

packages (continued)
java.net, 311t
java.swing, 311t
java.util, 311t
language support, 311t
name clashes, 312
naming conventions, 312–313
networking, 311t
omg.w3c.dom, 311t
organizing classes into, 311
security exposure, 314
source files, 313
SQL database access, 311t
swing user interface, 311t
syntax, 310
utilities, 311t
XML Document Object Model,

311t
paintComponent method,

javax.swing.JComponent class,
56–59, 624

pair programming, Extreme
Programming, 445

panels, graphic, 353
parallel arrays, 246–247
parameter types, modifying,

349–350
parameter variables

call by reference, 299
call by value, 299
changing contents of, 298–299
definition, 92–93
reference parameters, 299
scope, 307–309

parameters. See also methods; return
values.

animated lesson, 42
definition, 12
explicit, 41
implicit, 41, 94–96
in methods, variable number of,

247
passing to methods, 42–43
from return values, 42
type, 248
type, specifying, 43

parentheses, unbalanced, 128–129
parseDouble method, java.lang.Double

class, 135, 610
parseInt method, java.lang.Integer

class
converting strings to integers,

135, 413
method summary, 610

patterns for word boundaries,
specifying, 412

pen color, changing, 61
percent sign (%), remainder of

division operator, 124
peripheral devices, 4. See also specific

devices.
PermutationGeneratorDemo.java,

507–508
PermutationGenerator.java, 509–510
permutations, 507–510
pictures, drawing. See drawing;

graphical applications.
planning, Extreme Programming,

445
plus sign (+)

addition operator, 123
string concatenation, 135

plus signs (++), increment operator,
123–124

Point2D.Double constructor,
java.awt.geom.Point2D.Double
class, 605

polymorphism. See also inheritance.
animated lesson, 338
definition, 338
dynamic method lookup, 338,

383–386
overview, 338

PopulationDensity.java class, 418
portability, Java language, 8
postconditions, 299–302
pow method, java.lang.Math class,

125–126t, 612
powers, 125–126, 612
preconditions, 299–302
predicate methods, 173–174
previous method,

java.util.ListIterator<E>
interface, 559, 620

primitive data types
list of, 116–117t
modifying, 296–298
wrapper classes, 254–255

primitive numbers, 33
print method

java.io.PrintStream class, 13, 608
java.io.PrintWriter class,

408–410, 608
printf method, java.io.PrintWriter

class, 408–410
printing

array element separators, 265–268
array lists, 268

arrays, 268
formatting numbers, 140
numerical values, 12
starting a new line. See print

method; println method.
println method

java.io.PrintStream class, 12–13
java.io.PrintWriter class, 408–410
passing parameters to, 41
returning values from, 42

printStackTrace method,
java.lang.Throwable class, 425,
615

PrintStream constructor
java.io.PrintStream class, 607
java.io.PrintWriter class, 607

PrintWriter constructor
java.io.PrintStream class, 607
java.io.PrintWriter class, 607

PriorityQueue constructor,
java.util.PriorityQueue<E>
class, 621

private implementation, classes, 40
Product.java class, 462
programmer productivity, 446
programmers

application, 47
first, 540
system, 47

programming. See also software
development.

description, 2–3
scheduling for unexpected

problems, 172
programming languages, history of,

356. See also specific languages.
programs. See also Java programs;

software.
comparing, limitations of, 510
compilers, 7
high-level languages, 7
machine instructions, 7–8
variables, 8

prompting
for first match, 211
for input, 138

protected access feature, 386
prototypes, 444
pseudorandom numbers, 222, 621
public interfaces, classes

cohesiveness, 291–293
commenting, 81–84
consistency, 293–294
coupling, 291–293

Index 659

documenting, 81–84, 88–89
specifying, 77–81, 88
syntax, 80

put method, java.util.Map<K, V>
interface, 621

pyramid, calculating volume and
surface, 134

Q
queues, 575–577
quicksort algorithm, 540

R
radians, converting to degrees, 126t
radiation overdose incidents, 273
RAM (random access memory), 4
random access. See also

java.io.RandomAccessFile class.
data structures, 557, 572
linked lists, 557

Random constructor, java.util.Random
class, 621

random number generation,
221–223, 621

RandomAccessFile constructor,
java.io.RandomAccessFile
class, 608

Rational Unified Process (RUP),
444, 445

read method, java.io.InputStream
class, 607

readability, adding white space to
code, 129–130

readChar method,
java.io.RandomAccessFile
class, 608

readDouble method,
java.io.RandomAccessFile
class, 608

reading input. See also writing
output.

from a console window, 138–140
from dialog boxes, 140
input redirection, 273
from a keyboard, 138–140
prompts, 141
selecting files for, 411
from Web pages, 411
white space, 139, 412

reading input, from text files. See
also java.io.File class;
java.util.Scanner class.

character by character, 415
How To example, 416–418
line by line, 413

numbers, 414
overview, 408–410
patterns for word boundaries,

412
strings, converting to integers,

413
using regular expressions, 412
white space, consuming, 412
with wildcards. See regular

expressions.
word by word, 411–412
Worked Example: baby names,

419
readInt method,

java.io.RandomAccessFile class,
608

readObject method,
java.io.ObjectInputStream
class, 607

realistic planning, Extreme
Programming, 445

recovery from exceptions, 419. See
also exception handling.

Rectangle class
accessor methods, 46
constructing rectangles, 44–45
getHeight method, 46
getWidth method, 46
getX method, 46
getY method, 46
importing, 49
moving rectangles, 46, 50–51
mutator methods, 46
testing rectangle movement,

50–51
translate method, 46

Rectangle method, java.awt.Rectangle
class, 603

RectangleMeasurer.java class, 341
rectangles

constructing, 44–45
drawing on components, 56–59
moving, 46, 50–51
testing, 50–51

RectangleViewer.java class, 58
recursion

animated lesson, 494
breakpoints, 496
call stack, 496
debugging, 496
efficiency, 502–507
example, 492–495
How To example, 497–500
infinite, 495

LoopFib.java, 505
PermutationGeneratorDemo.java,

507–508
PermutationGenerator.java,

509–510
permutations, 507–510
RecursiveFib.java, 502
RecursiveFibTracer.java, 503
stack faults, 495
trace messages, inserting, 503
tracing, 496
triangle numbers, 492–495
Triangle.java class, 494–495
TriangleTester.java class, 495
Worked Example: finding files,

500
recursion, mutual

Evaluator.java class, 514–515
ExpressionCalculator.java class,

516–517
ExpressionTokenizer.java class,

515–516
overview, 510–513
syntax diagrams, 511–512

recursive helper methods, 500–501
recursive methods, 493–494
RecursiveFib.java, 502
RecursiveFibTracer.java, 503
refactoring, Extreme Programming,

445
reference parameters, 299
regular expressions, 412, 415–416
relational operators, 156–157

multiple, 176–177
relationship symbols, UML, 451
relationships between classes,

documenting, 449–451
releases, Extreme Programming, 445
remainder of division, 124–125
remainder operator (%), 124
removable storage, 4
remove method

java.util.ArrayList class, 250t,
262

java.util.ArrayList<E> class, 617
java.util.Collection<E> interface,

559, 618
java.util.Iterator<E> interface,

619
java.util.ListIterator<E>

interface, 565–566
java.util.Map<K, V> interface, 621
java.util.PriorityQueue<E>

class, 621

660 Index

removeFirst method
java.util.LinkedList<E> class,

557t, 620
java.util.ListIterator<E>

interface, 565
removeLast method,

java.util.LinkedList<E> class,
557t, 620

removing
array elements, 250, 262
array list elements, 250
linked list nodes, 557, 565–567
whitespace, 413

repaint method, java.awt.Component
class, 356, 601

repainting graphic components, 356,
601

replace method, java.lang.String
class, 614

reporting exceptions, 419. See also
exception handling.

requirements
case study, ATM, 463–465
case study, printing an invoice,

453
software life cycle, 442

reserved words
summary of, 595t–596t
in variable identifiers, 35

responsibilities of classes, 448
return values. See also methods;

parameters.
methods, 42–43
from parameters, 42
type, specifying, 43

reusing algorithms. See interface
types.

right angle bracket, equal (>=),
greater-than-or-equal
operator, 157t

right angle bracket (>), greater-than
operator, 157t

rocket incident, 434
roots, 125–126
round method, java.lang.Math class,

126t, 612
rounding, 126–128, 126t
rounding errors

binary/decimal conversions, 117
floating-point numbers, 130

roundoff errors, 157–158
RPN (reverse Polish notation), 578
run-time errors, definition, 17–18
run-time stacks, 576

running, Java programs, 14–16
running programs. See starting

programs.
RUP (Rational Unified Process),

444, 445

S
safety, Java language, 8
SavingsAccount.java class, 373
Scanner constructor,

java.util.Scanner class, 621
scope of variables

with identical names, 308–309
local variables, 309
minimizing, 310
overlapping, 308–310
parameter variables, 307–309
shadowing, 309

scripting languages, 396
searching

binary, 542–544
BinarySearcher.java class, 543
linear, 540–542
LinearSearchDemo.java class,

541–542
LinearSearcher.java class, 541
sequential, 540–542

security
Java language, 8
package access, 314

seek method,
java.io.RandomAccessFile class,
608

selecting files. See files, selecting
from a dialog box.

selection sorts. See sorting, selection
sorts.

SelectionSortDemo.java class, 528
SelectionSorter.java class, 527–528
SelectionSortTimer.java class, 531
semicolon (;)

ending method statements, 11
errors in for loops, 207–208
if statement terminator, 156
omitting, 13

sentinel values, 212–215
sequential access

data structures, 557, 572
linked lists, 557

sequential searches, 540–542
set-breakpoint command, 224
set method

java.util.ArrayList<E> class, 617

java.util.ListIterator<E>
interface, 565, 620

setBorder method,
javax.swing.JComponent class,
624

setColor method, java.awt.Graphics
class, 61–63, 602

setDefaultCloseOperation method,
javax.swing.JFrame class, 625

closing frame windows, 55
frame, default close operation, 55

setEditable method
javax.swing.JComboBox class, 624
javax.swing.text.JTextComponent

class, 628
setFont method,

javax.swing.JComponent
class, 624

setJMenuBar method,
javax.swing.JFrame class, 625

setLayout method, java.awt.Container
class, 601

setLevel method,
java.util.logging.Logger class,
181, 623

setLine method, java.awt.geom.Line2D
class, 604

setLocation method
java.awt.geom.Point2D class, 605
java.awt.Rectangle class, 603

setPreferredSize method,
java.awt.Component class, 356,
601

setSelected method,
javax.swing.AbstractButton
class, 623

setSize method
java.awt.Component class, 55, 601
java.awt.Rectangle class, 603

setText method,
javax.swing.text.JTextComponen
t class, 628

setTitle method, java.awt.Frame
class, 55, 602

setVisible method,
java.awt.Component class, 55,
601

shadowing, 309, 374
shape classes, 96–100
shapes, drawing. See drawing,

shapes; graphical applications.
shell scripts, 273–274
short circuit Boolean evaluation. See

De Morgan’s law.

Index 661

short data type, 117t, 254t
showInputDialog method,

javax.swing.JOptionPane
class, 626

showMessageDialog method,
javax.swing.JOptionPane
class, 626

showOpenDialog method,
javax.swing.JFileChooser
class, 624

showSaveDialog method,
javax.swing.JFileChooser
class, 624

side effects, 162–163, 295–296, 298
simple if statements, 153
simplicity, Extreme Programming,

445
simulation programs

Buffon needle experiment,
221–223

definition, 221
pseudorandom numbers, 222
random number generation,

221–223
sin method, java.lang.Math class,

126t, 612
sine, in radians, 126t
single-step command, 224
size method

java.util.ArrayList<E> class, 617
java.util.Collection<E> interface,

618
slash (/), division operator, 123
slashes (//), comment delimiter, 11
small releases, Extreme

Programming, 445
smallest integer, determining, 126t
software development. See also

programming.
art vs. science, 482
programmer productivity, 446
prototypes, 444
user interface prototypes, 444

software development models
Extreme Programming, 444–446
RUP (Rational Unified Process),

444, 445
spiral, 444
waterfall, 443–444

software life cycle
analysis phase, 442
deployment phase, 443
design phase, 442
implementation phase, 442

phases of, 442–443
requirements documents, 442
testing phase, 443

sort method
java.util.Arrays class, 617
java.util.Collections class, 546,

618
sorting

algorithms, 526
insertion sorts, 534
quicksort algorithm, 540

sorting, merge sorts
algorithm, 537–540
MergeSortDemo.java class, 537
MergeSorter.java class, 535–537
overview, 534–537

sorting, selection sorts
algorithm performance, 532–534
algorithm profile, 529–532
ArrayUtil.java class, 529
big-Oh notation, 53, 533
overview, 526–529
SelectionSortDemo.java class, 528
SelectionSorter.java class,

527–528
SelectionSortTimer.java class, 531
StopWatch.java class, 530–531

source code, Java programs, 15
source files, packages, 313
spaces, in variable identifiers, 35
spiral model, software development,

444
SQL database access package, 311t
sqrt method, java.lang.Math class,

125–126t, 612
square brackets, array indexing ([]),

243
square roots, 125–126t, 612
squelching exceptions, 425–526
stack faults, recursion, 495
stacks, 575–577
standards for coding, 445, 575
start method

java.applet.Applet class, 600
javax.swing.Timer class, 627

starting programs, 411
state diagrams, ATM case study,

467–468
stateChanged method,

javax.swing.event.
ChangeListener interface, 628

states, ATM case study, 466–467
static inner classes, linked lists, 571
static methods

calling, 131
definition, 131
minimizing use of, 305
naming conventions, 131
overview, 302–303
placing in classes, 303
syntax, 131

static variables. See also variables.
initialization blocks, 308–309
overview, 304–306
without class prefixes, 306

step-into command, 224
step-over command, 224
stop method

java.applet.Applet class, 600
javax.swing.Timer class, 627

StopWatch.java class, 530–531
storage, computer

hard disks, 4, 5
primary, 4
removable, 4
secondary, 4

string concatenation operator (+),
135

string-to-number conversions, error
handling, 135

strings
“...” (double quotation marks),

string indicators, 12
+ (plus sign), string

concatenation, 135
case, ignoring, 159
char data type, 117t, 138
char type, 138
comparing, 158–160
concatenating, 135
converting to integers. See

parseInt method.
converting to numbers. See

parseInt method.
converting to upper case, 40
in dictionary order, 159
empty, 135
escape sequences, 137
indicating, 12
international characters, 138
length, determining, 39–40,

134–135, 253
length of zero, 135
literals, creating, 134
number of characters, counting,

39–40
objects, creating, 134
search-and-replace, 42–43

662 Index

strings (continued)
String class. See java.lang.String

class.
strings, substrings

error handling, 136–137
extracting, 136–137
length, determining, 136–137
Worked Example: extracting

initials, 140
Worked Example: extracting the

middle, 164
subclasses. See also inheritance;

superclasses.
accidental overloading, 377–378
animation lesson, 377
calling methods, syntax, 376
cloning mutable instance

variables, 396
confusing with superclasses,

373–374
constructors, 378–380
converting to superclasses,

381–383
definition, 368
failure to invoke superclass

method, 378
of final classes, 385
implementing, 371–374
inherited methods, 371
instance variables, 371–372
overriding superclass methods,

375–378
preventing an override, 385
shadowing instance variables, 374

substring method, java.lang.String
class, 136–137, 614

substrings. See strings, substrings.
subtract method

java.math.BigDecimal class, 616
java.math.BigInteger class, 616

subtraction, 123. See also
decrementing.

subtraction operator (-), 123
summing array elements, 259–260.

See also addition
(mathematical).

super reserved word, 379
superclasses. See also inheritance;

subclasses.
confusing with subclasses,

373–374
converting to subclasses, 381–383
definition, 368
for the Object class, 391

swing user interface package, 311t
switch statements, 167
symmetric bounds, 208

T
tab characters, indenting code, 156
Tab key, indenting code, 155
tabs, indenting code, 155–156
tally counter, example, 74–76
tan method, java.lang.Math class,

126t, 611
tangents, 126t
TaxCalculator.java class, 168–169
TaxReturn.java class, 168–169
terminating algorithms, 21
test cases, preparing, 179
tester class, 91–92
testing phase, software life cycle, 443
testing programs. See also

debuggers; debugging.
archiving test cases, 273
assertions, 300–301
black-box testing, 178
boundary test cases, 179–180
calculating sample data, 179
classes, 90–92
classes, interactively, 51
code coverage, 178–179
Extreme Programming, 445
hand-tracing, 171
input redirection, 273
logging, 180–181
for loop termination, 213
mock objects, 345–346
for null, 162
output redirection, 273
rectangle movement, 50–51
regression testing, 271–273
test cases, preparing, 179
test suites, 271
tracing, 180–181
white-box testing, 178

text, drawing, 60
Therac-25 incidents, 273
throw early, catch late, 425
throw statement, syntax, 419
Throwable constructor,

java.lang.Throwable class, 615
throwing exceptions, 300, 419–421,

429. See also exception
handling.

throws clause, 422–423
TicTacToe.java class, 275
TicTacToeRunner.java class, 276

Timer constructor, javax.swing.Timer
class, 627

TitledBorder constructor,
javax.swing.border.Titled-
Border class, 628

toDegrees method, java.lang.Math
class, 126t, 611

toLowerCase method, java.lang.String
class, 614

toRadians method, java.lang.Math
class, 126t, 611

toString method
for all classes, 395
description, 395
java.lang.Integer class, 611
java.lang.Object class, 613
java.util.Arrays class, 617
overriding, 391–392

toUpperCase method, java.lang.String
class, 614

trace messages, inserting, 503
tracing

loops, animated lesson, 196
recursion, 496
while loops, animated lesson, 196

tracing programs, 180–181
transistors, 4
translate method, java.awt.Rectangle

class, 46, 603
TreeMap constructor,

java.util.TreeMap<K, V>
class, 622

TreeSet constructor,
java.util.TreeSet<E> class, 622

triangle numbers, recursion,
492–495

Triangle.java class, 494–495
TriangleTester.java class, 495
trim method, removing whitespace,

413
try blocks, 423–425, 428
try/catch statements, 423–425, 427
two-dimensional arrays, 274–276
type parameters, 248
types of data. See data types.

U
UML (Unified Modeling Language)

aggregation, relationship symbol,
451t

and association, 452
association relationships, 452
attributes, 452
class diagrams, 450–452

Index 663

dependency relationship symbol,
451t

inheritance relationship symbol,
451t

interface implementation
relationship symbol, 451t

interface types, 334
is-a relationships, 334
methods, 452
object diagrams vs. class

diagrams, 293
relationship multiplicities, 452
relationship symbols, 451
uses relationships, 334

UML diagrams
case study, ATM, 468–469
case study, printing an invoice,

455–456
unambiguous algorithms, 21
unchecked exceptions, 421–423
undeclared methods, calling, 40
underscore (_), in variable

identifiers, 35
Unicode encoding, 589t–591t,

979t–981t
The Unified Modeling Language

User Guide, 444
uninitialized variables, 37
union method, java.awt.Rectangle

class, 603
unit testing

definition, 90
frameworks, 316–317
JUnit framework, 316–317
tester class, 91–92

URL constructor, java.net.URL
class, 616

useDelimiter method,
java.util.Scanner class, 622

patterns for word boundaries,
specifying, 412

reading text, character by
character, 415

reading text, word by word, 412
regular expressions, 415–416

user interface prototypes, 444
uses relationships, 334, 450
utilities package, 311t
utility classes, 291

V
vacuum tubes, history of computers,

6
variable declarations vs. assignment

statements, 38–39
variables

animated lesson, 92
changing value of, 37–38
declaration syntax, 35
declaring in for loops, 208
definition, 8, 34
descriptive names, 36
distinguishing from constants,

119
garbage collector, 93
identifiers, naming conventions,

35–36
initialization, 37–38, 93
instance. See instance variables.
life span, 93
local, 92–93
naming conventions, 34–36
parameter. See parameter

variables.
static. See static variables.
type, specifying, 34–35
uninitialized, 37
variable declarations vs.

assignment statements, 38–39
verbs in the class task description,

448
versions of Java, summary of, 10t
vertical bars (||), or logical operator,

175, 177
viruses, computer, 248
void reserved word, 43
voting machines, 96

W
wait method, java.lang.Object class,

613
waterfall model, software

development, 443–444
Web pages, reading from, 411
while loops. See also loops.

code sample, 196–197
description, 194–196
examples, 197
flow chart, 196

syntax, 196
tracing, animated lesson, 196

while statement, syntax, 196
white-box testing, 178
white space

consuming, 412
improving code readability,

129–130
reading input, 139
removing, 413

whole numbers. See integers.
Wilkes, Maurice, 228
words, reading, 411–412
world population table, 277
worms, computer, 248
wrapper classes, 254–255
write method, java.io.OutputStream

class, 607
writeChar method,

java.io.RandomAccessFile
class, 608

writeChars method,
java.io.RandomAccessFile
class, 608

writeDouble method,
java.io.RandomAccessFile
class, 608

writeInt method,
java.io.RandomAccessFile
class, 608

writeObject method,
java.io.ObjectOutputStream
class, 607

writing output. See also reading
input.

closing the print stream, 409
to dialog boxes, 140
line numbers, 409
output redirection, 273
to text files, 408–410, 416–418

X
XML Document Object Model

package, 311t

This page intentionally left blank

ILLUSTRATION CREDITS

665

Chapter 1 Page 3: Copyright © 2007, Intel Corporation.
Page 4: PhotoDisc, Inc./Getty Images.
Page 5 (top): PhotoDisc, Inc./Getty Images.
Page 5 (bottom): Copyright © 2007, Intel Corporation.

 Courtesy of Sperry Univac, Division of Sperry Corporation.
Page 23: Robert Ban/iStockphoto.

Chapter 2 Constance Bannister Corp/Hulton Archive/Getty Images, Inc.
 Cay Horstmann.
 Corbis Digital Stock.

Chapter 3 Page 74: Jasmin Awad/iStockphoto.
Page 90: Mark Evans/iStockphoto.

 David Young-Wolff/PhotoEdit.
 Lisa F. Young/iStockphoto.
 Punchstock.
 Copyright © 2001-2009 Lev Givon. All rights reserved.
 Keith Kapple/SUPERSTOCK.
 Daniel Biggs/SUPERSTOCK.

Chapter 4 Larry Hoyle, Institute for Policy & Social Research, University of Kansas.
Page 134: Holger Mette/iStockphoto.

 Henrik Aija/iStockphoto.
Page 140: Rich Legg/iStockphoto.

Chapter 5 Page 173: Sidney Harris/ScienceCartoonsPlus.com.
 Vaughn Youtz/Zuma Press.

Chapter 6 Page 218: iStockphoto.
Page 220: Cay Horstmann.
Page 227: Mark Poprocki/iStockphoto.
Page 228: Naval Surface Weapons Center, Dahlgren, VA.

Chapter 7 Page 271: Kiyoshi Takahase/iStockphoto.
 Ryan Ruffatti/iStockphoto.

Chapter 8 Visicalc screen capture, Copyright © IBM Corporation. Used with permission.

Chapter 9 Page 333: gregory horler/iStockphoto.
Page 339: iStockphoto.

 Courtesy of Satoru Satoh.
 Courtesy of Sun Microsystems, Inc.

Chapter 10 Page 369: Tony Tremblay/iStockphoto (vehicle); Peter Dean/iStockphoto (motorcycle);
nicholas belton/iStockphoto (car); Robert Pernell/iStockphoto (truck); Clay Blackburn/
iStockphoto (sedan); iStockphoto (SUV).

Page 390: Sean Locke/iStockphoto.

Chapter 11 Page 419: age fotostock/SUPERSTOCK.
 AP/Wide World Photos.

666 Illustration Credits

Chapter 12 Page 445: Booch/Jacobson/Rumbaugh, The Unified Modeling Language Reference Manual,
pg. 41, © 1999 by Addison Wesley Longman, Inc. Reproduced by permission of Pearson
Education, Inc.

Chapter 13 Science Photo Library/Photo Researchers, Inc.

Chapter 14 Topham/The Image Works.

Chapter 15 Page 576: Photodisc/Punchstock.
Page 578: Courtesy Nigel Tout.

Animation Icon james steidl/iStockphoto.

	Copyright
	Preface
	A Walkthrough of the Learning Aids
	Acknowledgments
	Contents
	Special Features
	Chapter 1: Introduction
	What Is Programming?
	The Anatomy of a Computer
	Translating Human-Readable Programs to Machine Code
	The Java Programming Language
	The Structure of a Simple Program
	Compiling and Running a Java Program
	Errors
	Algorithms

	Chapter 2: Using Objects
	Types
	Variables
	The Assignment Operator
	Objects, Classes, and Methods
	Method Parameters and Return Values
	Constructing Objects
	Accessor and Mutator Methods
	The API Documentation
	Implementing a Test Program
	Object References
	Graphical Applications and Frame Windows
	Drawing on a Component
	Ellipses, Lines, Text, and Color

	Chapter 3: Implementing Classes
	Instance Variables
	Encapsulation
	Specifying the Public Interface of a Class
	Commenting the Public Interface
	Providing the Class Implementation
	Unit Testing
	Local Variables
	Implicit Parameters
	Shape Classes

	Chapter 4: Fundamental Data Types
	Number Types
	Constants
	Arithmetic Operations and Mathematical Functions
	Calling Static Methods
	Strings
	Reading Input

	Chapter 5: Decisions
	The if Statement
	Comparing Values
	Multiple Alternatives
	Using Boolean Expressions
	Code Coverage

	Chapter 6: Iteration
	while Loops
	for Loops
	Common Loop Algorithms
	Nested Loops
	Application: Random Numbers and Simulations
	Using a Debugger

	Chapter 7: Arrays and Array Lists
	Arrays
	Array Lists
	Wrappers and Auto-boxing
	The Enhanced for Loop
	Partially Filled Arrays
	Common Array Algorithms
	Regression Testing
	Two-Dimensional Arrays

	Chapter 8: Designing Classes
	Discovering Classes
	Cohesion and Coupling
	Immutable Classes
	Side Effects
	Preconditions and Postconditions
	Static Methods
	Static Variables
	Scope
	Packages
	Unit Test Frameworks

	Chapter 9: Interfaces and Polymorphism
	Using Interfaces for Algorithm Reuse
	Converting Between Class and Interface Types
	Polymorphism
	Using Interfaces for Callbacks
	Inner Classes
	Mock Objects
	Events, Event Sources, and Event Listeners
	Using Inner Classes for Listeners
	Building Applications with Buttons

	Chapter 10: Inheritance
	Inheritance Hierarchies
	Implementing Subclasses
	Overriding Methods
	Subclass Construction
	Converting Between Subclass and Superclass Types
	Polymorphism and Inheritance
	Object: The Cosmic Superclass
	Using Inheritance to Customize Frames

	Chapter 11: Input/Output and Exception Handling
	Reading and Writing Text Files
	Reading Text Input
	Throwing Exceptions
	Checked and Unchecked Exceptions
	Catching Exceptions
	The finally Clause
	Designing Your Own Exception Types
	Case Study: A Complete Example

	Chapter 12: Object-Oriented Design
	The Software Life Cycle
	Discovering Classes
	Relationships Between Classes
	Case Study: Printing an Invoice
	Case Study: An Automatic Teller Machine

	Chapter 13: Recursion
	Triangle Numbers
	Recursive Helper Methods
	The Efficiency of Recursion
	Permutations
	Mutual Recursions

	Chapter 14: Sorting and Searching
	Selection Sort
	Profiling the Selection Sort Algorithm
	Analyzing the Performance of the Selection Sort Algorithm
	Merge Sort
	Analyzing the Merge Sort Algorithm
	Searching
	Binary Search
	Sorting Real Data

	Chapter 15: An Introduction To Data Structures
	Using Linked Lists
	Implementing Linked Lists
	Abstract Data Types
	Stacks and Queues

	Chapter 16: Advanced Data Structures (Advanced)
	Sets
	Maps
	Hash Tables
	Computing Hash Codes
	Binary Search Trees
	Binary Tree Traversal
	Priority Queues
	Heaps
	The Heapsort Algorithm

	Chapter 17: Generic Programming (Advanced)
	Generic Classes and Type Parameters
	Implementing Generic Types
	Generic Methods
	Constraining Type Parameters
	Type Erasure

	Chapter 18: Graphical User Interfaces (Advanced)
	18.1G Processing Text Input
	18.2G Text Areas
	18.3G Layout Management
	18.4G Choices
	18.5G Menus
	18.6G Exploring the Swing Documentation

	Appendix A: The Basic Latin and Latin-1 Subsets of Unicode
	Appendix B: Java Operator Summary
	Appendix C: Java Reserved Word Summary
	Appendix D: The Java Library
	Appendix E: Java Syntax Summary
	Appendix F: HTML Summary
	Appendix G: Tool Summary
	Appendix H: javadoc Summary
	Appendix I: Number Systems
	Appendix J: Bit and Shift Operations
	Appendix K: UML Summary
	Appendix L: Java Language Coding Guidelines
	Glossary
	Index
	Illustration Credits

