
Interpretation
and

Compilation
TEST 1A

Luis Caires

Universidade Nova de Lisboa
15 October 2014

Wednesday, October 15, 14

Test Statement
The goal of the exercise is to extend an interpreter for a simple
expression language with additional constructs for manipulating strings.
The basic project files will be available in the CLIP when the test starts.
The basic language includes arithmetic operations, identifiers and
declaration blocks, as defined by the following grammar:

program ::= exp ;;
exp ::= exp + exp |
 exp - exp |
 exp * exp |
 exp / exp |
 (exp) |
 num |
 id |
 decl (id = exp)+ in exp end

Wednesday, October 15, 14

Test Statement
 The grammar is to be extended with

< STR: ("\"" ["0"-"9","a"-"z","A"-"Z"]* "\"") >

exp ::= ... |
 STR |
 exp @ exp | tostr exp

The STR token denotes a string literal, e.g., "Luis Caires".

The expression e1@e2 computes the concatenation of the results
(expected to be string values) of evaluating e1 and e2.

The expression tostr e expects e to evaluate to an integer value and
then returns its string representation of e1.

In the next page we illustrate the evaluation of some sample expressions.

Wednesday, October 15, 14

Examples
“hello”@” “@”world”;; // input (black)
“hello world” // evaluation result (red)
“two is not “@tostr (1+2);;
“two is not 3“
decl x=”apples” y=”oranges” in x@” and “@y end;;
”apples and oranges”
decl x=”o” in
 decl y=x@x in
 “H” @ decl z=y@y in z@z end @ “!”;;
“Hoooooooo!”
decl x=”X” in
 decl y=x@x in y@ tostr (y+1) @ tostr (1+y) @y;;
“XX1000010000XX”

Wednesday, October 15, 14

Test Statement
NOTE: Before doing anything else, compile and run the provided code.

What you are expected to do (extending the provided source files):

Extend the JavaCC parser. Extend the LL grammar to deal with the
additional three constructs string literal, concatenation, and tostr.

AST construction. Define the additional AST node classes.

Representation of string values. Define a class to represent string
values with its required operations, extending the IValue interface.

Extend the interpreter. Define the IValue eval(Environ e) method in
the new ASTNode classes.

Test your interpreter. It should give the right answers for the examples
shown and any other we may think of.

Wednesday, October 15, 14

