
 1

CSC 8505 Handout : JVM & Jasmin

Note: This handout provides you with the basic information about JVM. Although we tried to be
accurate about the description, there may be errors. Feel free to check your compiler’s output (JVM
code in Jasmin syntax) with that of javac. To achieve this, you need to write a Java class equivalent
to your C− program, then compile it and then disassemble the generated .class file using D-Java
with ‘–o jasmin’ flag (see page 10 for an example).

1. JVM Basics
The Java Virtual Machine (JVM) specifies the following:

• A set of instructions and their semantics
• A binary format of class files
• An algorithm to verify virtual machine code for integrity.

Properties of the JVM

• It is a virtual machine. The specification was designed independent of existing architectures.

• Unlike concrete architectures, JVM does not allow access to specific memory locations.
This approach can provide a better program security.

• The JVM has the following organization:

• The class area stores information associated with the class, e.g., fields, methods.
• The heap stores objects associated with the class.
• The Java stack is a higher-level stack, which maintains stack frames corresponding to

methods. The top frame is current/active. In addition, each stack frame contains an operand
stack and an array of local variables. One or two stack-top elements are popped from the
stack, an arithmetic operation is performed on them, and the result is pushed on the stack.
Each stack frame may contain up to 256 local variables.

• There are a number of relatively high-level JVM instructions (compared to assembly
languages for concrete architectures). Thus, while JVM programming follows the format of
assembly language programming, it also retains the flavor of Java programming, esp. with
respect to object handling.

 2

2. Jasmin Code Structure
Since Java class files are hard to read, we use Jasmin as the target language of our compiler.
Assembling Jasmin code to a class file and disassembling a class file to a Jasmin code can be done by
Jasmin and D-Java, respectively (refer to the project handout for the detail).

A Jasmin code consists of the following four sections:

• The comment area provides the developer and source file information. Jasmin comments are of
the end-of-line type and begins with a semicolon ‘;’. Comments can appear anywhere. For
example:

; Output created by D-Java (mailto:umsilve1@cc.umanitoba.ca)
;

;Classfile version:
; Major: 49
; Minor: 0

• The header area contains the following three lines.

.source Test.java
.class synchronized Test
.super java/lang/Object

• The field area contains field declarations. For example, the following line corresponds to
the field (in Java) public static int x;.

.field public static x I

• The method area contains method/constructor declarations. For example, the default constructor
of a class is realized as a JVM method as follows:

; >> METHOD 1 <<

.method

<init>()V
.limit stack
1
.limit
locals 1

 3

.line 1

aload_0
invokenonvirtual
java/lang/Object/<init>()V
return

.end method

; >> METHOD 2 <<

.method public static f(I)V
 .limit stack 2
 .limit locals 2
.line 12
 iload_0
 sipush 300
 iadd
 istore_1
.line 13
 return
.end method

3. Jasmin Directives
Jasmin directives are not JVM instructions, but controls Jasmin assembler by providing meta-level
information. All Jasmin directives begin with a period ‘.’. We need to know the following
directives for our project.

• The required lines in header section: .source, .class, and .super

Pattern:
.source <source file name>
.class synchronized <class name>
.super <super class name> (java/lang/Object by default)

• To declare fields: .field

Pattern: .field <modifiers> <variable name> <type descriptor>
Note: We’ll have public static as modifiers. See the next section about type descriptors.

• To indicate the beginning of a method: .method

Pattern (method):
.method <modifiers> <class name>/<method name>(<arguments>)<return type>
Pattern (constructor): .method <init>(<arguments>)V
Note: We’ll have public static as modifiers. <arguments> are sequence of type descriptors
and <return type> is a type descriptor. See the next section about type descriptors.

• To indicate the end: .end

(e.g., end of a method) .end method

• To set the limit on the operand stack depth or the size of the local variable array: .limit
.limit stack <number>
.limit locals <number>
Note: You may use a reasonably high, fixed value, say 32, as the limit. Exact limit requires

 4

analysis.

• .line: To indicate the line number in the source file. Note: You do not need to generate this.

4. Types in Jasmin Codes
Data types in Jasmin codes are indicated by the following two means.

• Type descriptor: Type information used for field declaration, argument/return type
specification, etc. E.g.,

.field public static x I
.method public static f(I)V

• Type mnemonic: A part of a JVM instruction that corresponds to a Java type. Type

mnemonic often appears as the first character of JVM instructions, written in lower case.
E.g.,

iadd ; add ints
fadd ; add floats

The following table shows type descriptor and type mnemonic with the corresponding Java type.

Note: In our project, only those in bold face will be needed.

5. Data Operations
In this and the following several sections, we overview JVM instructions used in Jasmin codes.
Complete listing is available online. See http://jasmin.sourceforge.net/instructions.html as well as
http://mrl.nyu.edu/~meyer/jvmref/. This section introduces instructions for data operations. JVM
does not have a separate Boolean type. Integer constant 1 is treated as TRUE and integer constant 0
is treated as FALSE.

 5

The above table looks rather complicated. But all you need is the ones in bold face. The reason why
there are so many similar instructions for some data types is as follows. JVM instructions are all
byte length. This means that we can only have 256 instructions. Notice that an instruction such as
load 0 is much more frequently used than, say, load 1234567. If we allocate an instruction for
frequently used operands, we can reduce the size of the class file and also achieve optimized
interpretation of such codes. So, for operands of small numbers, more specialized JVM instructions
are prepared.

For example, while you can write ldc 0 (1+4 bytes), you may also write sipush 0 (1+2 bytes),
bipush 0 (1+1 byte), or iconst_0 (1 byte). You will see all of these instructions when you
disassemble (by D-Java) a class. You can reduce the code size and increase the performance by
choosing a more optimal instruction. Note that efficiency/speed is not the issue in our project and
you can use the most general forms (in bold face) for each data type and operation.

See the example at the end of the next section.

 6

6. Arithmetic Operations
Arithmetic operations are always performed on the top one or two elements on the stack and returns
the result on the top of the stack.

The following example illustrates the use of data/arithmetic operations:

; y = x * 2, assume y is local variable #2 and x is local variable #1

iload 1 ; push value of x
ldc 2 ; push 2. can be replaced by shorter iconst_2
imul ; pop the top two values, multiply and push the result
istore 2 ; pop and store the top value in y

7. Method Operations

There are two return instructions: return and ireturn. While return simply returns from
the method, ireturn returns the stack top.

Method invocation involves three different instructions:
• invokenonvirtual/invokespecial: To invoke a constructor or a private method. The

second one is a replacement of the first one in newer JDKs. But both of them can still be
used.

• invokevirtual: To invoke a public non-static method.

• invokestatic: To invoke a static method.

Static method (function) call pattern (analogous for other method call instructions):

<push arg_1>
<push arg_2>
<push arg_n>
invokestatic <class name>/<method name>(<arguments>)<return type>

As before, <arguments> are sequence of type descriptors and <return type> is a type descriptor. For
non-static methods, use invokevirtual instruction instead. Also, the first parameter to be
pushed is the object reference. For example, the following corresponds to calling a static method
(function) f(x,3) in a class Class1 where x is the local variable # 0 and the method’s return
type is int:

iload 0
ldc 3
invokestatic Class1/f(II)I

 7

8. Flow Control
The destination of jump can be indicated by a label like in other assembly languages. To
unconditionally jump to a label, use “goto label”. For conditional jump, there are branching
instructions that branch based on the top of stack being zero (e.g., ifeq label) and there are
branching instructions that compare the top two values to determine the jump. For this latter group
of instructions, two values must be pushed on to the stack:

if_icmpeq label ; Jump to the label if the top two values on the stack are equal
if_icmpne label ; Jump to the label if the top two values on the stack are not equal
if_icmplt label ; Jump f the first-pushed value is less than the second-pushed value
if_icmple label ; Jump if the first value is less than or equal to the second value
if_icmpgt label ; Jump if the first value is greater than the second value
if_icmpge label ; Jump if the first value is greater than or equal to the second value

The following example corresponds to y = x < 20; where x is the local variable # 0 and y is
local vaiable # 1:

iload 0
ldc 20
if_icmplt Label2
ldc 0
goto Label1
Label2:
ldc 1
Label1:
istore 1

The following example corresponds to if (x < 3) y = 10; else y = 20; where x is
the local variable # 0 and y is a static variable of class ifex (see next section):

iload 0
ldc 3
if_icmplt Label2
ldc 0
goto Label1
Label2:
ldc 1
Label1:
ifeq Label3
ldc 10
putstatic ifex/y I
goto Label4
Label3:
ldc 20
putstatic ifex/y I
Label4:

If you examine the generated code above, you’ll realize that a better code can be generated in this
case since we do not actually compute and store the value of the conditional expression. We can
simply make use of the two-value conditional jump instruction to jump to the `then’ or the `else’

 8

part. This requires carrying a context. You need not worry about this detail in your project. Here
is a better code for the same statement:

iload_0
iconst_3
if_icmpge Label1
bipush 10
putstatic ifex/y I
goto Label2
Label1:
bipush 20
putstatic ifex/y I
Label2:

Note that the interpretation of the conditional in the source language is ‘reversed’. That is, the
conditional jump is when the condition is false.

9. Field Access/Assignment
To access fields in a class Class1, the following instructions can be used:
• To access a static field

getstatic Class1/y I

• To access a non-static field
aload_0
getfield Class1/x I

• To assign a value to a static field in Class1
ldc 123
putstatic Class1/y I

• To assign a value to a non-static field
aload_0
ldc 456
putfield Class1/x I

Note that to access a non-static field, we need to push the (reference to) current object which is
assumed stored in the local variable # 0.

10. Array Processing
In order to allocate an array field, we need to specify the array type descriptor, e.g., [I. To
allocate a local array variable, we simply reserve a local variable for it. So, there will be no
corresponding Jasmin code for a declaration int[] x; much like a non-array declaration.

To create an actual array (object), we need to use the instruction newarray. To access and assign
array elements, we need iaload and iastore, respectively. The following example illustrates
this situation. Here, let’s assume that x and y are represented as local variables # 1 and # 2,

 9

respectively.

C-: int x[5]; Jasmin: ldc 5
 newarray int ; create a new array object
 astore 1 ; store the reference into x

C-/Java: x[2] = 123; Jasmin: aload 1 ; array reference
 ldc 2 ; index value
 ldc 123 ; value to be stored
 iastore ; stores into apecified array location

C-/Java: y = x[2]; Jasmin: aload 1
 ldc 2
 iaload
 istore 2

Note: For static arrays, use getstatic instead of aload. For example, if x were a static array of
class Class1, then getstatic Class1/x [I instead of aload 1. Also, in this case the creation
of array will use putstatic Class1/a [I instead of astore 1.

 10

Appendix A. C− to Java to Jasmin Code Example

An Example C− Program

int i; Global
Variables i and a[10]

int a[10];

void f(int x) Local Variable #0, x
{ int y; Local Variable #1, y
}

int g(int b, int c[]) Local Variable #0, b
{ int z[5]; Local Variable #1, c[]
} Local Variable #2, z
void main(void)

{ int w; Local Variable #1, w
} (Not 0 Since Java’s main requires String[] which is

variable #0)

It’s Java Equivalent

class someclass

{ public static int i; Class/static variable i
 public static int[] a = new int[10]; Class/static variable a
 public static void f(int x) Class/static method f
 { int y; x is local variable #0
 } y is local variable #1
 public static int g(int b, int []c) b is local variable #0
 { int[] z = new int [5]; c is local variable #1
 } z is local variable #2
 public static void main (String[] args) Java requires args
 { int w; args is local variable #0
 } w is local variable #1
}

 11

The Complete C-/Java Program

 int i;
 int a[10];

 void f(int x) {
 int y;
 y = x + 300;
 }

 int g(int b, int[] c) {
 int z[5];
 z[2] = b + c[3];
 return z[2];
 }

 void main(void) {
 int w;
 w = g(i, a);
 }

--

class SomeClass {

 public static int i;
 public static int[] a = new int[10];

 public static void f(int x) {
 int y;
 y = x + 300;
 }

 public static int g(int b, int[] c) {
 int[] z = new int[5];
 z[2] = b + c[3];
 return z[2];
 }

 public static void main(String[] args) {
 int w;
 w = g(i, a);
 }
}

 12

Jasmin Code

Note: The file was first compiled using javac and then disassembled with D-Java with –o jasmin
flag.

;
; Output created by D-Java (mailto:umsilve1@cc.umanitoba.ca)
;

;Classfile version:
; Major: 49
; Minor: 0

.source SomeClass.java
.class synchronized SomeClass
.super java/lang/Object

.field public static i I
.field public static a [I

; >> METHOD 1 <<
.method <init>()V
 .limit stack 1
 .limit locals 1
.line 1
 aload_0
 invokenonvirtual java/lang/Object/<init>()V
 return
.end method

; >> METHOD 2 <<
.method public static f(I)V
 .limit stack 2
 .limit locals 2
.line 9
 iload_0
 sipush 300
 iadd
 istore_1
.line 10
 return
.end method

; >> METHOD 3 <<
.method public static g(I[I)I
 .limit stack 5
 .limit locals 3
.line 13
 iconst_5
 newarray int
 astore_2
.line 14
 aload_2
 iconst_2
 iload_0
 aload_1
 iconst_3

 13

 iaload
 iadd
 iastore
.line 15
 aload_2
 iconst_2
 iaload
 ireturn
.end method

; >> METHOD 4 <<
.method public static main([Ljava/lang/String;)V
 .limit stack 2
 .limit locals 2
.line 20
 getstatic SomeClass/i I
 getstatic SomeClass/a [I
 invokestatic SomeClass/g(I[I)I
 istore_1
.line 21
 return
.end method

; >> METHOD 5 <<
.method static <clinit>()V
 .limit stack 1
 .limit locals 0
.line 4
 bipush 10
 newarray int
 putstatic SomeClass/a [I
 return
.end method

